
M A N N I N G

Edwin Brady

The Idris read-eval-print loop (REPL) provides several commands.
The most common commands, listed below, are introduced over

the course of this book.

Command Arguments Description

<expression> None Displays the result of evaluating the expression. The
variable it contains the result of the most recent
evaluation.

:t <expression> Displays the type of the expression.

:total <name> Displays whether the function with the given name is
total.

:doc <name> Displays documentation for name.

:let <definition> Adds a new definition.

:exec <expression> Compiles and executes the expression. If none is
given, compiles and executes main.

:c <output file> Compiles to an executable with the entry point main.

:r None Reloads the current module.

:l <filename> Loads a new file.

:module <module name> Imports an extra module for use at the REPL.

:printdef <name> Displays the definition of name.

:apropos <word> Searches function names, types, and documentation
for the given word.

:search <type> Searches for functions with the given type.

:browse <namespace> Displays the names and types defined in the given
namespace.

:q None Exits the REPL.

Type-Driven Development with Idris

Type-Driven Development
with Idris

EDWIN BRADY

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2017 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Dan Maharry
20 Baldwin Road Review editor: Aleksandar Dragosavljević
PO Box 761 Technical development editor: Andrew Gibson
Shelter Island, NY 11964 Project editor: Kevin Sullivan

Copyeditor: Andy Carroll
 Proofreader: Katie Tennant

Technical proofreaders: Arnaud Bailly, Nicolas Biri
Typesetter: Dottie Marsico

Cover designer: Marija Tudor

ISBN 9781617293023
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 22 21 20 19 18 17

brief contents
PART 1 INTRODUCTION.. 1

1 ■ Overview 3
2 ■ Getting started with Idris 25

PART 2 CORE IDRIS .. 53
3 ■ Interactive development with types 55
4 ■ User-defined data types 87
5 ■ Interactive programs: input and output processing 123
6 ■ Programming with first-class types 147
7 ■ Interfaces: using constrained generic types 182
8 ■ Equality: expressing relationships between data 208
9 ■ Predicates: expressing assumptions and contracts in types 236

10 ■ Views: extending pattern matching 258

PART 3 IDRIS AND THE REAL WORLD ... 289
11 ■ Streams and processes: working with infinite data 291
12 ■ Writing programs with state 324
13 ■ State machines: verifying protocols in types 352
14 ■ Dependent state machines: handling feedback and errors 373
15 ■ Type-safe concurrent programming 403
v

contents
preface xv
acknowledgments xvii
about this book xix
about the author xxiii
about the cover illustration xxiv

PART 1 INTRODUCTION...1

1 Overview 3
1.1 What is a type? 4
1.2 Introducing type-driven development 5

Matrix arithmetic 6 ■ An automated teller machine 7
Concurrent programming 9 ■ Type, define, refine: the
process of type-driven development 10 ■ Dependent types 11

1.3 Pure functional programming 13
Purity and referential transparency 13 ■ Side-effecting
programs 14 ■ Partial and total functions 16

1.4 A quick tour of Idris 17
The interactive environment 17 ■ Checking types 18
Compiling and running Idris programs 19 ■ Incomplete
definitions: working with holes 20 ■ First-class types 22

1.5 Summary 24
vii

CONTENTSviii
2 Getting started with Idris 25
2.1 Basic types 26

Numeric types and values 27 ■ Type conversions using
cast 28 ■ Characters and strings 29 ■ Booleans 30

2.2 Functions: the building blocks of Idris programs 30
Function types and definitions 31 ■ Partially applying
functions 33 ■ Writing generic functions: variables in types 33
Writing generic functions with constrained types 35
Higher-order function types 36 ■ Anonymous functions 38
Local definitions: let and where 39

2.3 Composite types 40
Tuples 40 ■ Lists 41 ■ Functions with lists 43

2.4 A complete Idris program 46
Whitespace significance: the layout rule 46 ■ Documentation
comments 47 ■ Interactive programs 48

2.5 Summary 52

PART 2 CORE IDRIS ...53

3 Interactive development with types 55
3.1 Interactive editing in Atom 56

Interactive command summary 57 ■ Defining functions by
pattern matching 57 ■ Data types and patterns 61

3.2 Adding precision to types: working with vectors 64
Refining the type of allLengths 65 ■ Type-directed search:
automatic refining 69 ■ Type, define, refine: sorting a vector 70

3.3 Example: type-driven development of matrix functions 75
Matrix operations and their types 76 ■ Transposing a matrix 77

3.4 Implicit arguments: type-level variables 82
The need for implicit arguments 82 ■ Bound and unbound
implicits 83 ■ Using implicit arguments in functions 84

3.5 Summary 86

4 User-defined data types 87
4.1 Defining data types 88

Enumerations 89 ■ Union types 90 ■ Recursive types 92
Generic data types 95

CONTENTS ix
4.2 Defining dependent data types 102
A first example: classifying vehicles by power source 102
Defining vectors 104 ■ Indexing vectors with bounded
numbers using Fin 107

4.3 Type-driven implementation of an interactive data
store 110
Representing the store 112 ■ Interactively maintaining
state in main 113 ■ Commands: parsing user input 115
Processing commands 118

4.4 Summary 122

5 Interactive programs: input and output processing 123
5.1 Interactive programming with IO 124

Evaluating and executing interactive programs 125
Actions and sequencing: the >>= operator 127
Syntactic sugar for sequencing with do notation 129

5.2 Interactive programs and control flow 132
Producing pure values in interactive definitions 132
Pattern-matching bindings 134 ■ Writing interactive
definitions with loops 136

5.3 Reading and validating dependent types 138
Reading a Vect from the console 139 ■ Reading a
Vect of unknown length 140 ■ Dependent pairs 141
Validating Vect lengths 143

5.4 Summary 146

6 Programming with first-class types 147
6.1 Type-level functions: calculating types 148

Type synonyms: giving informative names to complex
types 149 ■ Type-level functions with pattern
matching 150 ■ Using case expressions in types 153

6.2 Defining functions with variable numbers of
arguments 155
An addition function 155 ■ Formatted output: a type-safe
printf function 157

6.3 Enhancing the interactive data store with schemas 161
Refining the DataStore type 162 ■ Using a record for the
DataStore 164 ■ Correcting compilation errors using holes 165
Displaying entries in the store 170 ■ Parsing entries according to

CONTENTSx
the schema 171 ■ Updating the schema 175 ■ Sequencing
expressions with Maybe using do notation 177

6.4 Summary 181

7 Interfaces: using constrained generic types 182
7.1 Generic comparisons with Eq and Ord 183

Testing for equality with Eq 183 ■ Defining the Eq
constraint using interfaces and implementations 185
Default method definitions 189 ■ Constrained
implementations 189 ■ Constrained interfaces:
defining orderings with Ord 191

7.2 Interfaces defined in the Prelude 194
Converting to String with Show 194 ■ Defining numeric
types 195 ■ Converting between types with Cast 198

7.3 Interfaces parameterized by Type -> Type 199
Applying a function across a structure with Functor 200
Reducing a structure using Foldable 201 ■ Generic do
notation using Monad and Applicative 205

7.4 Summary 207

8 Equality: expressing relationships between data 208
8.1 Guaranteeing equivalence of data with equality types 209

Implementing exactLength, first attempt 210 ■ Expressing
equality of Nats as a type 211 ■ Testing for equality of
Nats 212 ■ Functions as proofs: manipulating equalities 215
Implementing exactLength, second attempt 216 ■ Equality in
general: the = type 218

8.2 Equality in practice: types and reasoning 220
Reversing a vector 220 ■ Type checking and evaluation 221
The rewrite construct: rewriting a type using equality 223
Delegating proofs and rewriting to holes 224 ■ Appending
vectors, revisited 225

8.3 The empty type and decidability 227
Void: a type with no values 228 ■ Decidability: checking
properties with precision 229 ■ DecEq: an interface for
decidable equality 233

8.4 Summary 234

CONTENTS xi
9 Predicates: expressing assumptions and contracts in types 236
9.1 Membership tests: the Elem predicate 237

Removing an element from a Vect 238 ■ The Elem type:
guaranteeing a value is in a vector 239 ■ Removing an element
from a Vect: types as contracts 241 ■ auto-implicit arguments:
automatically constructing proofs 244 ■ Decidable predicates:
deciding membership of a vector 245

9.2 Expressing program state in types: a guessing game 250
Representing the game’s state 250 ■ A top-level game
function 251 ■ A predicate for validating user input:
ValidInput 251 ■ Processing a guess 253 ■ Deciding input
validity: checking ValidInput 255 ■ Completing the top-level
game implementation 255

9.3 Summary 257

10 Views: extending pattern matching 258
10.1 Defining and using views 259

Matching the last item in a list 260 ■ Building views:
covering functions 262 ■ with blocks: syntax for extended
pattern matching 262 ■ Example: reversing a list using a
view 264 ■ Example: merge sort 266

10.2 Recursive views: termination and efficiency 271
“Snoc” lists: traversing a list in reverse 271 ■ Recursive views
and the with construct 274 ■ Traversing multiple arguments:
nested with blocks 275 ■ More traversals: Data.List.Views 277

10.3 Data abstraction: hiding the structure of data using
views 280
Digression: modules in Idris 280 ■ The data store,
revisited 282 ■ Traversing the store’s contents with a view 284

10.4 Summary 288

PART 3 IDRIS AND THE REAL WORLD289

11 Streams and processes: working with infinite data 291
11.1 Streams: generating and processing infinite lists 292

Labeling elements in a List 293 ■ Producing an infinite list of
numbers 295 ■ Digression: what does it mean for a function to

CONTENTSxii
be total? 296 ■ Processing infinite lists 297 ■ The
Stream data type 299 ■ An arithmetic quiz using
streams of random numbers 301

11.2 Infinite processes: writing interactive total programs 305
Describing infinite processes 306 ■ Executing infinite
processes 307 ■ Executing infinite processes as total
functions 308 ■ Generating infinite structures using
Lazy types 309 ■ Extending do notation for InfIO 311
A total arithmetic quiz 311

11.3 Interactive programs with termination 314
Refining InfIO: introducing termination 314 ■ Domain-
specific commands 317 ■ Sequencing Commands with do
notation 320

11.4 Summary 323

12 Writing programs with state 324
12.1 Working with mutable state 325

The tree-traversal example 326 ■ Representing mutable
state using a pair 328 ■ State, a type for describing stateful
operations 329 ■ Tree traversal with State 331

12.2 A custom implementation of State 333
Defining State and runState 333 ■ Defining Functor,
Applicative, and Monad implementations for State 335

12.3 A complete program with state: working with
records 340
Interactive programs with state: the arithmetic quiz
revisited 340 ■ Complex state: defining nested records 343
Updating record field values 344 ■ Updating record fields
by applying functions 346 ■ Implementing the quiz 346
Running interactive and stateful programs: executing the quiz 348

12.4 Summary 351

13 State machines: verifying protocols in types 352
13.1 State machines: tracking state in types 353

Finite state machines: modeling a door as a type 354
Interactive development of sequences of door operations 356
Infinite states: modeling a vending machine 358
A verified vending machine description 360

CONTENTS xiii
13.2 Dependent types in state: implementing a stack 363
Representing stack operations in a state machine 364
Implementing the stack using Vect 366 ■ Using a stack
interactively: a stack-based calculator 367

13.3 Summary 371

14 Dependent state machines: handling feedback and errors 373
14.1 Dealing with errors in state transitions 374

Refining the door model: representing failure 375 ■ A verified,
error-checking, door-protocol description 378

14.2 Security properties in types: modeling an ATM 382
Defining states for the ATM 383 ■ Defining a type for the
ATM 384 ■ Simulating an ATM at the console: executing
ATMCmd 387 ■ Refining preconditions using auto-implicits 388

14.3 A verified guessing game: describing rules in types 390
Defining an abstract game state and operations 391 ■ Defining a
type for the game state 392 ■ Implementing the game 395
Defining a concrete game state 397 ■ Running the game:
executing GameLoop 399

14.4 Summary 402

15 Type-safe concurrent programming 403
15.1 Primitives for concurrent programming in Idris 404

Defining concurrent processes 406 ■ The Channels library:
primitive message passing 407 ■ Problems with channels: type
errors and blocking 410

15.2 Defining a type for safe message passing 411
Describing message-passing processes in a type 412 ■ Making
processes total using Inf 415 ■ Guaranteeing responses using a
state machine and Inf 418 ■ Generic message-passing
processes 422 ■ Defining a module for Process 426 ■ Example 1:
List processing 427 ■ Example 2: A word-counting process 429

15.3 Summary 433

appendix A Installing Idris and editor modes 435
appendix B Interactive editing commands 438
appendix C REPL commands 439
appendix D Further reading 441

index 445

preface
Computers are everywhere, and we rely on software daily. As well as running our desk-
top and laptop computers, software controls our communications, banking, transport
infrastructure, and even our domestic appliances. Even so, it’s considered a fact of life
that software is unreliable. If a laptop or mobile phone fails, it’s merely inconvenient
and requires a restart (possibly accompanied by cursing over losing the last few min-
utes of work). If, on the other hand, the software controlling a business-critical appli-
cation or server fails, significant time and money can be lost. For safety-critical systems,
the repercussions could be even worse.

 For many years, therefore, computer science researchers have been searching for
ways to improve the robustness and safety of software. One approach among many is
to use types to describe what a program is supposed to do. In particular, by using depen-
dent types, you describe precise properties of a program. The idea is that if you can
express a program’s intention in its type, and the program successfully type-checks,
then the program must behave as intended. An important (if ambitious and long-
term) goal of the Idris programming language is to make the results of this research
accessible to software developers in general, and correspondingly reduce the possibil-
ity of critical software failures.

 Initially, this book’s focus was programming in Idris: showing how to use its type
system to guarantee important properties of programs. Under the guidance of devel-
opment editor Dan Maharry, and thanks to the efforts of technical development edi-
tor Andrew Gibson, it has evolved to become as much about the process of
programming with dependent types as about how the resulting programs work. You’ll
learn about the fundamentals of dependent types, how to use types to define pro-
grams interactively, and how to refine programs and types as your understanding of a
xv

PREFACExvi
problem evolves. You’ll also learn about some real-world applications of type-driven
development, particularly in dealing with state, protocols, and concurrency.

 Idris itself arose as a result of my own research into program verification and lan-
guage design with dependent types. After spending several years immersed in the con-
cept of programming with dependent types, I felt there was a need for a language
designed for developers as well as researchers. I hope that you have as much fun learn-
ing about type-driven development with Idris as I have had developing it!

acknowledgments
Many people have helped in the writing of this book, and it wouldn’t exist without
them. In particular, I thank Dan Maharry, who encouraged me to reveal the ideas of
type-driven development much more clearly. The mantra of “type, define, refine,” which
appears throughout the book, was Dan’s suggestion. I also owe many thanks to
Andrew Gibson, who has meticulously worked through all the examples and exercises
throughout the book, making sure they work, checking that the exercises are solvable,
and suggesting many improvements to the text and explanations. Overall, I’d like to
thank the team at Manning Publications for helping to make this book a reality.

 The design of Idris owes much to several decades of research into type theory,
functional programming, and language design. I’m grateful to James McKinna and
Conor McBride in particular for teaching me the fundamentals of type theory when I
was a graduate student at Durham University, and for their continued advice and
encouragement since. I’d also like to thank the researchers and developers responsi-
ble for the languages and systems that have inspired my work, namely, tools such as
Haskell, Epigram, Agda, and Coq. Idris couldn’t exist without the work that has come
before, and I can only hope that it, in turn, inspires others in the future. See appendix
D for some references to the work that inspired Idris.

 Several colleagues and students at the University of St. Andrews and elsewhere
have provided useful feedback on earlier drafts of chapters and have been patient
while I worked on the book instead of working on other things. In particular, I would
like to thank Ozgur Akgun, Nicola Botta, Sam Elliot, Simon Fowler, Nicolas Gagliani
(who contributed the extension to the Atom editor that you’ll use throughout the
book), Jan de Muijnck-Hughes, Markus Pfeiffer, Chris Schwaab, and Matúš Tejiščák
xvii

ACKNOWLEDGMENTSxviii
for their comments and suggestions. My sincere apologies to anyone else I’ve forgot-
ten to name!

 Readers who have purchased early access and reviewers of earlier drafts have con-
tributed many useful comments and suggestions. Those reviewers include Alexander
A. Myltsev, Álvaro Falquina, Arnaud Bailly, Carsten Jørgensen, Christine Koppelt,
Giovanni Ruggiero, Ian Dees, Juan Gabriel Bono, Mattias Lundell, Phil de Joux,
Rintcius Blok, Satadru Roy, Sergey Selyugin, Todd Fine, and Vitaly Bragilevsky.

 I couldn’t have implemented Idris on my own. Since I began developing the current
version in late 2011, there have been many contributors, but most of all I would like to
thank David Christiansen, who is responsible for much of the polish in the Idris REPL
and the interactive editing tools; he has also worked hard to help newcomers to the
project. Thanks are also due to the other contributors: Ozgur Akgun, Ahmad Salim
Al-Sibahi, Edward Chadwick Amsden, Michael R. Bernstein, Jan Bessai, Nicola Botta,
Vitaly Bragilevsky, Jakob Brünker, Alyssa Carter, Carter Charbonneau, Aaron Craelius,
Jason Dagit, Adam Sandberg Eriksson, Guglielmo Fachini, Simon Fowler, Zack
Grannan, Sean Hunt, Cezar Ionescu, Heath Johns, Irene Knapp, Paul Koerbitz, Niklas
Larsson, Shea Levy, Mathnerd314, Hannes Mehnert, Mekeor Melire, Melissa Mozifian,
Jan de Muijnck-Hughes, Dominic Mulligan, Echo Nolan, Tom Prince, raichoo, Philip
Rasmussen, Aistis Raulinaitis, Reynir Reynisson, Seo Sanghyeon, Benjamin Saunders,
Alexander Shabalin, Jeremy W. Sherman, Timo Petteri Sinnemäki, JP Smith, startling,
Chetan T, Matúš Tejiščák, Dirk Ullrich, Leif Warner, Daniel Waterworth, Eric
Weinstein, Jonas Westerlund, Björn Aili, and Zheng Jihui.

 Finally, thanks go to my parents, whose purchase of a BBC Micro in 1983 set me off
on this path; and to Emma, for waiting so patiently for me to finish this, and for bring-
ing me coffee to keep me going.

about this book
Type-Driven Development with Idris is about making types work for you. Types are often
seen as a tool for checking for errors, with the programmer writing a complete pro-
gram first and using the type checker to detect errors. In type-driven development,
you use types as a tool for constructing programs, and the type checker as your assis-
tant to guide you to a complete and working program.

 This book begins by describing what you can express with types; then, it introduces
the core features of the Idris programming language. Finally, it describes some more-
practical applications of type-driven development.

Who should read this book
This book is aimed at developers who want to learn about the state of the art in using
sophisticated type systems to help develop robust software. It aims to provide an acces-
sible introduction to dependent types, and to show how modern type-based tech-
niques can be applied to real-world problems.

 Readers will ideally already be familiar with functional programming concepts
such as closures and higher-order functions, although the book introduces these and
other concepts as necessary. Knowledge of another functional programming language
such as Haskell, OCaml, or Scala will be particularly helpful, though none is assumed.

Roadmap
This book is divided into three parts. Part 1 (chapters 1 and 2) introduces the con-
cepts and gives a tour of the Idris programming language:

 Chapter 1 introduces type-driven development and gets you started with the
Idris environment.
xix

ABOUT THIS BOOKxx
 Chapter 2 covers the basics of Idris programming, including primitive types and
structuring Idris programs.

Part 2 (chapters 3–10) introduces the core language features of Idris:

 Chapter 3 discusses interactive development using the Atom editor and
describes how using more-precise types means that the type checker can help
you write programs.

 Chapter 4 explains how to define your own data types and presents a first exam-
ple of writing a larger interactive program in the type-driven style.

 Chapter 5 describes interactive programs in more depth, including how to use
types to help validate user inputs to interactive programs.

 Chapter 6 introduces type-level programming, showing how to write functions
that calculate types and how to use them in practice.

 Chapter 7 describes how to use interfaces to write programs with generic types.
 Chapter 8 explains how you can use types to express relationships between data,

particularly to describe properties of data and to guarantee that functions
behave a certain way.

 Chapter 9 explains further how types can express contracts that functions must
satisfy, including an example that shows how to use types to describe the state of
a system.

 Chapter 10 introduces views, which are alternative ways of inspecting and tra-
versing data structures.

Part 3 (chapters 11–15) describes some applications of Idris to real-world software
development, particularly working with state and interactive programs:

 Chapter 11 describes how to work with potentially infinite data, such as
streams, and how to write and reason about interactive programs that could
run indefinitely.

 Chapter 12 explains how to write programs with state and how to represent and
manipulate complex state using records.

 Chapter 13 shows how to express a state machine in an Idris type, and how to
use the type to guarantee that programs follow protocols correctly.

 Chapter 14 describes more-sophisticated state machines, how to handle errors
and feedback from an environment, and how to represent security properties of
a system in its type.

 Chapter 15 concludes the book with a worked example: type-driven develop-
ment of a small library for concurrent programming.

In general, each chapter builds on concepts introduced in earlier chapters, so it’s
intended that you read the chapters in order. Most importantly, the book describes
the process of type-driven development and constructing programs interactively from a
type. Therefore, I strongly recommend working through the examples on a computer

ABOUT THIS BOOK xxi
as you read. Furthermore, if you’re reading the eBook, type in the examples—don’t
just copy and paste.

 There are exercises throughout each chapter, so, as you read, make sure that you
complete the exercises to reinforce your understanding. Sample solutions are available
online from the book’s website at www.manning.com/books/type-driven-development-
with-idris.

 There are four appendices: Appendix A describes how to install Idris and the
Atom editor mode, which we’ll use throughout the book. Appendix B summarizes the
interactive editing commands supported by Atom. Appendix C summarizes the com-
mands you can use in the Idris environment. Finally, appendix D gives references to
some of the work that inspired Idris, and where you can learn more about the theoret-
ical background and related tools.

Code conventions and downloads
This book contains many examples of source code both in numbered listings and
inline with normal text. In both cases, source code is formatted in a fixed-width
font like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; I’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. Additionally, comments in the source code have often been removed from the
listings when the code is described in the text. Code annotations accompany many of
the listings, highlighting important concepts.

 All of the code in this book is available online from the book’s website (www.manning
.com/books/type-driven-development-with-idris) and has been tested with Idris 1.0.
The code is also available in a Git repository here: https://github.com/edwinb/
TypeDD-Samples.

Author Online
Purchase of Type-Driven Development with Idris includes free access to a private web
forum run by Manning Publications where you can make comments about the book,
ask technical questions, and receive help from the author and from other users. To
access the forum and subscribe to it, point your web browser to www.manning
.com/books/type-driven-development-with-idris. This page provides information on
how to get on the forum once you’re registered, what kind of help is available, and the
rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to the forum remains voluntary (and unpaid). We suggest
you try asking him challenging questions lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

ABOUT THIS BOOKxxii
Other online resources
If you’d like to learn more about Idris, you can find more resources on the Idris web-
site: http://idris-lang.org/. You can also find help in several other places:

 The idris-lang Google Group is an active group discussing all aspects of Idris.
The group welcomes questions from beginners and more-advanced users alike.

 There is an IRC channel, #idris on irc.freenode.net, which is similarly open to
questions.

 You can ask and answer questions using the Idris tag on Stack Overflow.

about the author
EDWIN BRADY leads the design and implementation of the Idris pro-
gramming language. He is a lecturer in Computer Science at the
University of St. Andrews in Scotland, and he regularly speaks at
conferences. When he’s not doing that, you might find him playing
a game of Go, watching a game of cricket, or somewhere up a hill in
the middle of Scotland.
xxiii

about the cover illustration
The figure on the cover of Type-Driven Development with Idris is captioned “La Gas-
conne,” or “A woman from Gascony.” The illustration is taken from a collection of
works by many artists, edited by Louis Curmer and published in Paris in 1841. The
title of the collection is Les Français peints par eux-mêmes, which translates as The French
People Painted by Themselves. Each illustration is finely drawn and colored by hand, and
the rich variety of drawings in the collection reminds us vividly of how culturally apart
the world’s regions, towns, villages, and neighborhoods were just 200 years ago. Iso-
lated from each other, people spoke different dialects and languages. In the streets or
in the countryside, it was easy to identify where they lived and what their trade or sta-
tion in life was just by their dress.

 Dress codes have changed since then, and the diversity by region, so rich at the time,
has faded away. It’s now hard to tell apart the inhabitants of different continents, let
alone different towns or regions. Perhaps we have traded cultural diversity for a more
varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it’s hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
pictures from collections such as this one.
xxiv

Part 1

Introduction

In this first part, you’ll get started with Idris and learn about the ideas behind
type-driven development. I’ll take you on a brief tour of the Idris environment,
and you’ll write some simple but complete programs.

 In the first chapter, I’ll explain more about what I mean by type-driven devel-
opment. Most importantly, I’ll define what I mean by “type” and give several
examples of how you can use expressive types to describe the intended purpose
of your programs more precisely. I’ll also introduce the two most distinctive fea-
tures of the Idris language: holes, which stand for parts of programs that are yet
to be written, and the use of types as a first-class language construct.

 Before you get too deeply into type-driven development in Idris, it’s import-
ant to have a solid grasp of the fundamentals of the language. Therefore, in
chapter 2, I’ll discuss some of the primitive language constructs, many of which
will be familiar to you from other languages, and show how to construct com-
plete programs in Idris.

Overview
This book teaches a new approach to building robust software, type-driven develop-
ment, using the Idris programming language. Traditionally, types are seen as a tool
for checking for errors, with the programmer writing a complete program first and
using either the compiler or the runtime system to detect type errors. In type-
driven development, we use types as a tool for constructing programs. We put the
type first, treating it as a plan for a program, and use the compiler and type checker
as our assistant, guiding us to a complete and working program that satisfies the
type. The more expressive the type is that we give up front, the more confidence we
can have that the resulting program will be correct.

TYPES AND TESTS The name “type-driven development” suggests an anal-
ogy to test-driven development. There’s a similarity, in that writing tests
first helps establish a program’s purpose and whether it satisfies some basic
requirements. The difference is that, unlike tests, which can usually only
be used to show the presence of errors, types (used appropriately) can show
the absence of errors. But although types reduce the need for tests, they
rarely eliminate it entirely.

This chapter covers
 Introducing type-driven development

 The essence of pure functional programming

 First steps with Idris
3

4 CHAPTER 1 Overview
Idris is a relatively young programming language, designed from the beginning to
support type-driven development. A prototype implementation first appeared in 2008,
with development of the current implementation beginning in 2011. It builds on
decades of research into the theoretical and practical foundations of programming
languages and type systems.

 In Idris, types are a first-class language construct. Types can be manipulated, used,
passed as arguments to functions, and returned from functions just like any other
value, such as numbers, strings, or lists. This is a simple but powerful idea:

 It allows relationships to be expressed between values; for example, that two
lists have the same length.

 It allows assumptions to be made explicit and checkable by the compiler. For
example, if you assume that a list is non-empty, Idris can ensure this assumption
always holds before the program is run.

 If desired, it allows program behavior to be formally stated and proven correct.

In this chapter, I’ll introduce the Idris programming language and give a brief tour of
its features and environment. I’ll also provide an overview of type-driven develop-
ment, discussing why types matter in programming languages and how they can be
used to guide software development. But first, it’s important to understand exactly
what we mean when we talk about “types.”

1.1 What is a type?
We’re taught from an early age to recognize and distinguish types of objects. As a
young child, you may have had a shape-sorter toy. This consists of a box with variously
shaped holes in the top (see figure 1.1) and some shapes that fit through the holes.
Sometimes they’re equipped with a small plastic hammer. The idea is to fit each shape
(think of this as a “value”) into the appropriate hole (think of this as a “type”), possi-
bly with coercion from the hammer.

 In programming, types are a means of classifying values. For example, the values
94, "thing", and [1,2,3,4,5] could respec-
tively be classified as an integer, a string, and a
list of integers. Just as you can’t put a square
shape in a round hole in the shape sorter, you
can’t use a string like "thing" in a part of a pro-
gram where you need an integer.

 All modern programming languages classify
values by type, although they differ enormously
in when and how they do so (for example,
whether they’re checked statically at compile
time or dynamically at runtime, whether con-
versions between types are automatic or not,
and so on).

Figure 1.1 The top of a shape-sorter toy.
The shapes correspond to the types of
objects that will fit through the holes.

5Introducing type-driven development
 Types serve several important roles:

 For a machine, types describe how bit patterns in memory are to be interpreted.
 For a compiler or interpreter, types help ensure that bit patterns are interpreted

consistently when a program runs.
 For a programmer, types help name and organize concepts, aiding documenta-

tion and supporting interactive editing environments.

From our point of view in this book, the most important purpose of types is the third.
Types help programmers in several ways:

 By allowing for the naming and organization of concepts (such as Square,
Circle, Triangle, and Hexagon)

 By providing explicit documentation of the purposes of variables, functions,
and programs

 By driving code completion in an interactive editing environment

As you’ll see, type-driven development makes extensive use of code completion in par-
ticular. Although all modern, statically typed languages support code completion to
some extent, the expressivity of the Idris type system leads to powerful automatic code
generation.

1.2 Introducing type-driven development
Type-driven development is a style of pro-
gramming in which we write types first and
use those types to guide the definition of
functions. The overall process is to write the
necessary data types, and then, for each func-
tion, do the following:

1 Write the input and output types.
2 Define the function, using the struc-

ture of the input types to guide the
implementation.

3 Refine and edit the type and function
definition as necessary.

In type-driven development, instead of think-
ing of types in terms of checking, with the type
checker criticizing you when you make a mis-
take, you can think of types as being a plan,
with the type checker acting as your guide,
leading you to a working, robust program.
Starting with a type and an empty function
body, you gradually add details to the defini-
tion until it’s complete, regularly using the

Types as models
When you write a program, you’ll
often have a conceptual model in
your head (or, if you’re disci-
plined, even on paper) of how it’s
supposed to work, how the com-
ponents interact, and how the
data is organized. This model is
likely to be quite vague at first
and will become more precise as
the program evolves and your
understanding of the concept
develops.

Types allow you to make these
models explicit in code and
ensure that your implementation
of a program matches the model
in your head. Idris has an expres-
sive type system that allows you
to describe a model as precisely
as you need, and to refine the
model at the same time as devel-
oping the implementation.

6 CHAPTER 1 Overview
compiler to check that the program so far satisfies the type. Idris, as you’ll soon see,
strongly encourages this style of programming by allowing incomplete function defini-
tions to be checked, and by providing an expressive language for describing types.

 To illustrate further, in this section I’ll show some examples of how you can use
types to describe in detail what a program is intended to do: matrix arithmetic, model-
ing an automated teller machine (ATM), and writing concurrent programs. Then, I’ll
summarize the process of type-driven development and introduce the concept of
dependent types, which will allow you to express detailed properties of your programs.

1.2.1 Matrix arithmetic

A matrix is a rectangular grid of numbers, arranged in rows and columns. They have
several scientific applications, and in programming they have applications in cryptog-
raphy, 3D graphics, machine learning, and data analytics. The following, for example,
is a 3 × 4 matrix:

You can implement various arithmetic operations on matrices, such as addition and
multiplication. To add two matrices, you add the corresponding elements, as you see
here:

When programming with matrices, if you begin by defining a Matrix data type, then
addition requires two inputs of type Matrix and gives an output of type Matrix. But
because adding matrices involves adding corresponding elements of the inputs, what
happens if the two inputs have different dimensions, as here?

It’s likely that if you’re trying to add matrices of different dimensions, then you’ve
made a mistake somewhere. So, instead of using a Matrix type, you could refine the

1
5
9

2
6
10

3
7
11

4
8

12

1 2
3 4
5 6

 7 8

9 10
11 12

+
8 10
12 14
16 18

=

1 2
3 4
5 6

7 8
9 10

+ ???=

7Introducing type-driven development
type so that it includes the dimensions of the matrix, and require that the two input
matrices have the same dimensions:

 The first example of a 3 × 4 matrix now has type Matrix 3 4 .
 The first (correct) example of addition takes two inputs of type Matrix 3 2 and

gives an output of type Matrix 3 2.

By including the dimensions in the type of a matrix, you can describe the input and
output types of addition in such a way that it’s a type error to try to add matrices of dif-
ferent sizes. If you try to add a Matrix 3 2 and a Matrix 2 2, your program won’t
compile, let alone run.

 If you include the dimensions of a matrix in its type, then you need to think about
the relationship between the dimensions of the input and output for every matrix
operation. For example, transposing a matrix involves switching the rows to columns
and vice versa, so if you transpose a 3 × 2 matrix, you’ll end up with a 2 × 3 matrix:

The input type of this transposition is Matrix 3 2, and the output type is Matrix 2 3.
 In general, rather than giving exact dimensions in the type, we’ll use variables to

describe the relationship between the dimensions of the inputs and the dimensions of
the outputs. Table 1.1 shows the relationships between the dimensions of inputs and
outputs for three matrix operations: addition, multiplication, and transposition.

We’ll look at matrices in depth in chapter 3, where we’ll work through an implemen-
tation of matrix transposition in detail.

1.2.2 An automated teller machine

As well as using types to describe the relationships between the inputs and outputs of
functions, as with matrix operations, you can describe precisely when operations are
valid. For example, if you’re implementing software to drive an ATM, you’ll want to
guarantee that the machine will dispense cash only after a user has entered a card and
validated their personal identification number (PIN).

Table 1.1 Input and output types for matrix operations. The names x, y, and z
describe, in general, how the dimensions of the inputs and outputs are related.

Operation Input types Output type

Add Matrix x y, Matrix x y Matrix x y

Multiply Matrix x y, Matrix y z Matrix x z

Transpose Matrix x y Matrix y x

1 2
3 4
5 6

 ... transposed to ...
1 3 5
2 4 6

8 CHAPTER 1 Overview
 To see how this works, we’ll need to consider the possible states that an ATM can be in:

 Ready—The ATM is ready and waiting for a user to insert a card.
 CardInserted—The ATM is waiting for a user, having inserted a card, to enter

their PIN.
 Session—A validated session is in progress, with the ATM, having validated the

user’s PIN, ready to dispense cash.

An ATM supports several basic operations, each of which is valid only when the
machine is in a specific state, and each of which might change the state of the
machine, as illustrated in figure 1.2. These are the basic operations:

 InsertCard—Waits for the user to insert a card
 EjectCard—Ejects a card from the machine
 GetPIN—Prompts the user to enter a PIN

 CheckPIN—Checks whether an entered PIN is correct
 Dispense—Dispenses cash

Whether an operation is valid or not depends on the state of the machine. For exam-
ple, InsertCard is valid only in the Ready state, because that’s the only state where
there’s no card already in the machine. Also, Dispense is valid only in the Session
state, because that’s the only state where there’s a validated card in the machine.

 Furthermore, executing one of these operations can change the state of the
machine. For example, InsertCard changes the state from Ready to CardInserted,
and CheckPIN changes the state from CardInserted to Session, provided that the
entered PIN is correct.

STATE MACHINES AND TYPES Figure 1.2 illustrates a state machine, describing
how operations affect the overall state of a system. State machines are often
present, implicitly, in real-world systems. For example, when you open, read,

CardInserted

Session

Ready

EjectCard

Dispense

GetPIN,
CheckPIN (Incorrect)

InsertCard

EjectCard CheckPIN (Correct)

Figure 1.2 The states and valid operations on an ATM. Each operation is valid only in specific
states and can change the state of the machine. CheckPIN changes the state only if the
entered PIN is correct.

9Introducing type-driven development
and then close a file, you change the state of the file with the open and close
operations. As you’ll see in chapter 13, types allow you to make these state
changes explicit, guarantee that you’ll execute operations only when they’re
valid, and help you use resources correctly.

By defining precise types for each of the operations on the ATM, you can guarantee,
by type checking, that the ATM will execute only valid operations. If, for example, you
try to implement a program that dispenses cash without validating a PIN, the pro-
gram won’t compile. By defining valid state transitions explicitly in types, you get
strong and machine-checkable guarantees about the correctness of their implementa-
tion. We’ll look at state machines in chapter 13, and then implement the ATM exam-
ple in chapter 14.

1.2.3 Concurrent programming

A concurrent program consists of multiple processes running at the same time and
coordinating with each other. Concurrent programs can be responsive and continue
to interact with a user while a large computation is running. For example, a user can
continue browsing a web page while a large file is downloading. Moreover, by writing
concurrent programs we can take full advantage of the processor power of modern
CPUs, dividing work among multiple processes on separate CPU cores.

 In Idris, processes coordinate with each other by sending and receiving messages.
Figure 1.3 shows one way this can work, with two processes, main and adder. The adder
process waits for a request to add numbers from other processes. After it receives a mes-
sage from main asking it to add two numbers, it sends a response back with the result.

 Despite its advantages, however, concurrent programming is notoriously error
prone. The need for processes to interact with each other can greatly increase a sys-
tem’s complexity. For each process, you need to ensure that the messages it sends and

Concurrent processes
in Idris coordinate
through messages.

main adder

Add 2 3

5

Time

Figure 1.3 Two interacting
concurrent processes, main and
adder. The main process sends a
request to adder, which then sends a
response back to main.

10 CHAPTER 1 Overview
receives are properly coordinated with other processes. If, for example, main and
adder aren’t properly coordinated and each is expecting to receive a message from
the other at the same time, they’ll deadlock.

TYPES VERSUS TESTING FOR CONCURRENT PROGRAMS Testing a concurrent
program is difficult because, unlike a purely sequential program, there’s no
guarantee about the order in which operations from different processes will
execute. Even if two processes are correctly coordinated when you run a test
once, there’s no guarantee they’ll be correctly coordinated when you next
run the test. On the other hand, if you can express the coordination between
processes in types, you can be sure that a concurrent program that type-checks
has properly coordinated processes.

When you write concurrent programs, you’ll ideally have a model of how processes
should interact. Using types, you can make this model explicit in code. Then, if a con-
current program type-checks, you’ll know that it correctly follows the model. In partic-
ular, you can do two things:

 Define an interface for adder that describes the form of messages it will handle.
 Define a protocol that defines the order of message passing, ensuring that main

will always send a message to adder and then receive a reply, and adder will
always do the opposite.

Concurrent programming is an extensive topic, and there are several ways you can use
types to model coordination between processes. We’ll look at one example of how to
do this in chapter 15.

1.2.4 Type, define, refine: the process of type-driven development

In each of these introductory examples, we’ve discussed in general terms how we
might model a system: by describing the valid forms of inputs and outputs for matrix
operations, the valid states of an interactive system, or the order of transmission of
messages between concurrent processes. In each case, to implement the system, you
start by trying to find a type that captures the important details of the model, and then
define functions to work with that type, refining the type as necessary.

 To put it succinctly, you can characterize type-driven development as an iterative
process of type, define, refine: writing a type, implementing a function to satisfy that
type, and refining the type or definition as you learn more about the problem.

 With matrix addition, for example, you do the following:

 Type—Write a Matrix data type, and use it as the input and output types for an
addition function.

 Define—Write an addition function that satisfies its input and output types.
 Refine—Notice that the input and output types for your addition function allow

you to give invalid inputs with different dimensions, and then make the type
more precise by including the dimensions of the matrices.

11Introducing type-driven development
In general, you’ll write a type to represent the system you’re modeling, define func-
tions using that type, and then refine the type and definition as necessary to capture
any missing properties. You’ll see a lot more of this type-define-refine process
throughout this book, both on a small scale when implementing individual functions,
and on a larger scale when deciding how to write function and data types.

1.2.5 Dependent types

In the matrix arithmetic example, we began with a Matrix type and then refined it to
include the number of rows and columns. This means, for example, that Matrix 3 4
is the type of 3 × 4 matrices. In this type, 3 and 4 are ordinary values. A dependent type,
such as Matrix, is a type that’s calculated from some other values. In other words, it
depends on other values.

 By including values in a type like this, you can make types as precise as required. For
example, some languages have a simple list type, describing lists of objects. You can
make this more precise by parameterizing over the element type: a generic list of
strings is more precise than a simple list and differs from a list of integers. You can be
more precise still with a dependent type: a list of 4 strings differs from a list of 3 strings.

 Table 1.2 illustrates how types in Idris can have differing levels of precision even
for fundamental operations such as appending lists. Suppose you have two specific
input lists of strings:

["a", "b", "c", "d"]
["e", "f", "g"]

When you append them, you’ll expect the following output list:

["a", "b", "c", "d", "e", "f", "g"]

Using a simple type, both input lists have type AnyList, as does the output list. Using a
generic type, you can specify that the input lists are both lists of strings, as is the output
list. The more-precise types mean that, for example, the output is clearly related to the
input in that the element type is unchanged. Finally, using a dependent type, you can
specify the sizes of the input and output lists. It’s clear from the type that the length of
the output list is the sum of the lengths of the input lists. That is, a list of 3 strings
appended to a list of 4 strings results in a list of 7 strings.

Table 1.2 Appending specific typed lists. Unlike simple types, where there’s no difference between the
input and output list types, dependent types allow the length to be encoded in the type.

Input
["a", "b", "c", "d"]

Input
["e", "f", "g"]

Output type

Simple AnyList AnyList AnyList

Generic List String List String List String

Dependent Vect 4 String Vect 3 String Vect 7 String

12 CHAPTER 1 Overview
LISTS AND VECTORS The syntax for the types in table 1.2 is valid Idris syntax.
Idris provides several ways of building list types, with varying levels of preci-
sion. In the table, you can see two of these, List and Vect. AnyList is
included in the table purely for illustrative purposes and is not defined in
Idris. List encodes generic lists with no explicit length, and Vect (short for
“vector”) encodes lists with the length explicitly in the type. You’ll see much
more of both these types throughout this book.

Table 1.3 illustrates how the input and output types of an append function can be writ-
ten with increasing levels of precision in Idris. Using simple types, you can write the
input and output types as AnyList, suggesting that you have no interest in the types of
the elements of the list. Using generic types, you can write the input and output types as
List elem. Here, elem is a type variable standing for the element types. Because the
type variable is the same for both inputs and the output, the types specify that both
the input lists and the output list have a consistent element type. If you append two
lists of integers, the types guarantee that the output will also be a list of integers.
Finally, using dependent types, you can write the inputs as Vect n elem and Vect m
elem, where n and m are variables representing the length of each list. The output type
specifies that the resulting length will be the sum of the lengths of the inputs.

TYPE VARIABLES Types often contain type variables, like n, m, and elem in
table 1.3. These are very much like parameters to generic types in Java or C#,
but they’re so common in Idris that they have a very lightweight syntax. In
general, concrete type names begin with an uppercase letter, and type vari-
able names begin with a lowercase letter.

In the dependent type for the append function in table 1.3, the parameters n and m are
ordinary numeric values, and the + operator is the normal addition operator. All of
these could appear in programs just as they’ve appeared here in the types.

Introductory exercises

Throughout this book, exercises will help reinforce the concepts you’ve learned. As a
warm-up, take a look at the following selection of function specifications, given purely
in the form of input and output types. For each of them, suggest possible operations

Table 1.3 Appending typed lists, in general. Type variables describe the relationships between
the inputs and outputs, even though the exact inputs and outputs are unknown.

Input 1 type Input 2 type Output type

Simple AnyList AnyList AnyList

Generic List elem List elem List elem

Dependent Vect n elem Vect m elem Vect (n + m) elem

13Pure functional programming
that would satisfy the given input and output types. Note that there could be more
than one answer in each case.

1 Input type: Vect n elem

Output type: Vect n elem

2 Input type: Vect n elem

Output type: Vect (n * 2) elem

3 Input type: Vect (1 + n) elem

Output type: Vect n elem

4 Assume that Bounded n represents a number between zero and n - 1.
Input types: Bounded n, Vect n elem
Output type: elem

1.3 Pure functional programming
Idris is a pure functional programming language, so before we begin exploring Idris in
depth, we should look at what it means for a language to be functional, and what we
mean by the concept of purity. Unfortunately, there’s no universally agreed-on defini-
tion of exactly what it means for a programming language to be functional, but for our
purposes we’ll take it to mean the following:

 Programs are composed of functions.
 Program execution consists of the evaluation of functions.
 Functions are a first-class language construct.

This differs from an imperative programming language primarily in that functional
programming is concerned with the evaluation of functions, rather than the execu-
tion of statements.

 In a pure functional language, the following are also true:

 Functions don’t have side effects such as modifying global variables, throwing
exceptions, or performing console input or output.

 As a result, for any specific inputs, a function will always give the same result.

You may wonder, very reasonably, how it’s possible to write any useful software under
these constraints. In fact, far from making it more difficult to write realistic programs,
pure functional programming allows you to treat tricky concepts such as state and
exceptions with the respect they deserve. Let’s explore further.

1.3.1 Purity and referential transparency

The key property of a pure function is that the same inputs always produce the same
result. This property is known as referential transparency. An expression (such as a func-
tion call) in a function is referentially transparent if it can be replaced with its result
without changing the behavior of the function. If functions produce only results, with
no side effects, this property is clearly true. Referential transparency is a very useful
concept in type-driven development, because if a function has no side effects and is

14 CHAPTER 1 Overview
defined entirely by its inputs and outputs, then you can look at its input and output
types and have a clear idea of the limits of what the function can do.

 Figure 1.4 shows example inputs and outputs for the append function. It takes two
inputs and produces a result, but there’s no interaction with a user, such as reading
from the keyboard, and no informative output, such as logging or progress bars.

 Figure 1.5 shows pure functions in general. There can be no observable side
effects when running these programs, other than perhaps making the computer
slightly warmer or taking a different amount of time to run.

Pure functions are very common in practice, particularly for constructing and manip-
ulating data structures. It’s possible to reason about their behavior because the func-
tion always gives the same result for the same inputs; these functions are important
components of larger programs. The preceding append function is pure, and it’s a
valuable component for any program that works with lists. It produces a list as a result,
and because it’s pure, you know that it won’t require any input, output any logging, or
do anything destructive like delete files.

1.3.2 Side-effecting programs

Realistically, programs must have side effects in order to be useful, and you’re always
going to have to deal with unexpected or erroneous inputs in practical software. At
first, this would seem to be impossible in a pure language. There is a way, however:
pure functions may not be able to perform side effects, but they can describe them.

 Consider a function that reads two lists from a file, appends them, prints the result-
ing list, and returns it. The following listing outlines this function in imperative-style
pseudocode, using simple types.

List appendFromFile(File h) {
list1 = readListFrom(h)
list2 = readListFrom(h)

result = append(list1, list2)
print(result)

Listing 1.1 Appending lists read from a file (pseudocode)

["a", "b", "c", "d"]
["a", "b", "c", "d", "e", "f", "g"]append

["e", "f", "g"]

Figure 1.4 A pure function, taking inputs and producing outputs with no observable side effects

ResultInputs Pure function Figure 1.5 Pure functions, in general, take
only inputs and have no observable side effects.

15Pure functional programming
return result
}

This program takes a file handle as an input and returns a List with some side effects.
It reads two lists from the given file and prints the list before returning. Figure 1.6
illustrates this for the situation when the file contains the two lists ["a", "b", "c",
"d"] and ["e", "f", "g"].

 The appendFromFile function doesn’t satisfy the referential transparency prop-
erty. Referential transparency requires that an expression can be replaced by its result
without changing the program’s behavior. Here, however, replacing a call to append-
FromFile with its result means that nothing will be read from the file, and nothing will
be output to the screen. The function’s input and output types tell us that the input is a
file and the output is a list, but nothing in the type describes the side effects the func-
tion may execute.

 In pure functional programming in general, and Idris in particular, you can solve
this problem by writing functions that describe side effects, rather than functions that
execute them, and defer the details of execution to the compiler and runtime system.
We’ll explore this in greater detail in chapter 5; for now, it’s sufficient to recognize
that a program with side effects has a type that makes this explicit. For example,
there’s a distinction between the following:

 String is the type of a program that results in a String and is guaranteed to
perform no input or output as side effects.

 IO String is the type of a program that describes a sequence of input and out-
put operations that result in a String.

Type-driven development takes this idea much further. As you’ll see from chapter 12
onward, you can define types that describe the specific side effects a program can
have, such as console interaction, reading and writing global state, or spawning con-
current processes and sending messages.

File handle appendFromFile ["a", "b", "c", "d", "e", "f", "g"]

Read ["a", "b", "c", "d"]

Print ["a", "b", "c", "d", "e", "f", "g"]

Read ["e", "f", "g"]

Figure 1.6 A side-effecting program, reading inputs from a file, printing the result, and
returning the result

16 CHAPTER 1 Overview
1.3.3 Partial and total functions

Idris supports an even stronger property than purity for functions, making a distinc-
tion between partial and total functions. A total function is guaranteed to produce a
result, meaning that it will return a value in a finite time for every possible well-typed
input, and it’s guaranteed not to throw any exceptions. A partial function, on the
other hand, might not return a result for some inputs. Here are a couple of examples:

 The append function is total for finite lists, because it will always return a new
list.

 The function that returns the first element of a list is partial, because it’s not
defined if the list is empty, and it will therefore crash.

TOTAL FUNCTIONS AND LONG-RUNNING PROGRAMS A total function is guaran-
teed to produce a finite prefix of a potentially infinite result. As you’ll see in
chapter 11, you can write command shells or servers as total functions that
guarantee a response for every user input, indefinitely.

The distinction is important because knowing that a function is total allows you to
make much stronger claims about its behavior based on its type. If you have a function
with a return type of String, for example, you can make different claims depending
on whether the function is partial or total.

 If it’s total—It will return a value of type String in finite time.
 If it’s partial—If it doesn’t crash or enter an infinite loop, the value it returns will

be a String.

In most modern languages, we must assume that functions are partial and can there-
fore only make the latter, weaker, claim. Idris checks whether functions are total, so we
can therefore often make the former, stronger, claim.

A useful pattern in type-driven development is to write a type that precisely describes
the valid states of a system (like the ATM in section 1.2.2) and that constrains the oper-

Total functions and the halting problem
The halting problem is the problem of determining whether a program terminates for
some specific input. Thanks to Alan Turing, we know that it’s not possible to write a
program that solves the halting problem in general. Given this, it’s reasonable to won-
der how Idris can determine that a function is total, which is essentially checking that
a function terminates for all inputs.

Although it can’t solve the problem in general, Idris can identify a large class of func-
tions that are definitely total. You’ll learn more about how it does so, along with some
techniques for writing total functions, in chapters 10 and 11.

17A quick tour of Idris
ations the system is allowed to perform. A total function with that type is then guaran-
teed by the type checker to perform those operations as precisely as the type requires.

1.4 A quick tour of Idris
The Idris system consists of an interactive environment and a batch mode compiler. In
the interactive environment, you can load and type-check source files, evaluate
expressions, search libraries, browse documentation, and compile and run complete
programs. We’ll use these features extensively throughout this book.

 In this section, I’ll briefly introduce the most important features of the environ-
ment, which are evaluation and type checking, and describe how to compile and run
Idris programs. I’ll also introduce the two most distinctive features of the Idris lan-
guage itself:

 Holes, which stand for incomplete programs
 The use of types as first-class language constructs

As you’ll see, by using holes you can define functions incrementally, asking the type
checker for contextual information to help complete definitions. Using first-class
types, you can be very precise about what a function is intended to do, and even ask
the type checker to fill in some of the details of functions for you.

1.4.1 The interactive environment

Much of your interaction with Idris will be through an interactive environment called
the read-eval-print loop, typically abbreviated as REPL. As the name suggests, the REPL
will read input from the user, usually in the form of an expression, evaluate the expres-
sion, and then print the result.

 Once Idris is installed, you can start the REPL by typing idris at a shell prompt.
You should see something like the following:

____ __ _
/ _/___/ /____(_)____
/ // __ / ___/ / ___/ Version 1.0

/ // // / / / (__) http://www.idris-lang.org/
/___/__,_/_/ /_/____/ Type :? for help

Idris is free software with ABSOLUTELY NO WARRANTY.
For details type :warranty.
Idris>

INSTALLING IDRIS You can find instructions on how to download and install
Idris for Linux, OS X, or Windows in appendix A.

You can enter expressions to be evaluated at the Idris> prompt. For example, arith-
metic expressions work in the conventional way, with the usual precedence rules (that
is, * and / have higher precedence than + and -):

Idris> 2 + 2
4 : Integer

18 CHAPTER 1 Overview
Idris> 2.1 * 20
42.0 : Double

Idris> 6 + 8 * 11
94 : Integer

You can also manipulate Strings. The ++ operator concatenates Strings, and the
reverse function reverses a String:

Idris> "Hello" ++ " " ++ "World!"
"Hello World!" : String

Idris> reverse "abcdefg"
"gfedcba" : String

Notice that Idris prints not only the result of evaluating the expression, but also its
type. In general, if you see something of the form x : T—some expression x, a colon,
and some other expression T—this can be read as “x has type T.” In the previous exam-
ples, you have the following:

 4 has type Integer.
 42.0 has type Double.
 "Hello World!" has type String.

1.4.2 Checking types

The REPL provides a number of commands, all prefixed by a colon. One of the most
commonly useful is :t, which allows you to check the types of expressions without eval-
uating them:

Idris> :t 2 + 2
2 + 2 : Integer

Idris> :t "Hello!"
"Hello!" : String

Types, such as Integer and String, can be manipulated just like any other value, so
you can check their types too:

Idris> :t Integer
Integer : Type

Idris> :t String
String : Type

It’s natural to wonder what the type of Type itself might be. In practice, you’ll never
need to worry about this, but for the sake of completeness, let’s take a look:

Idris> :t Type
Type : Type 1

19A quick tour of Idris
That is, Type has type Type 1, Type 1 has type Type 2, and so on forever, as far as
we’re concerned. The good news is that Idris will take care of the details for you, and
you can always write Type alone.

1.4.3 Compiling and running Idris programs

As well as evaluating expressions and inspecting the types of functions, you’ll want to
be able to compile and run complete programs. The following listing shows a minimal
Idris program.

module Main

main : IO ()
main = putStrLn "Hello, Idris World!"

At this stage, there’s no need to worry too much about the syntax or how the program
works. For now, you just need to know that Idris source files consist of a module
header and a collection of function and data type definitions. They may also import
other source files.

WHITESPACE SIGNIFICANCE Whitespace is significant in Idris, so when you
type listing 1.2, make sure there are no spaces at the beginning of each line.

Here, the module is called Main, and there’s only one function definition, called main.
The entry point to any Idris program is the main function in the Main module.

 To run the program, follow these steps:

1 Create a file called Hello.idr in a text editor.1 Idris source files all have the
extension .idr.

2 Enter the code in listing 1.2.
3 In the working directory where you saved Hello.idr, start up an Idris REPL with

the command idris Hello.idr.
4 At the Idris prompt, type :exec.

If all is well, you should see something like the following:

$ idris Hello.idr
____ __ _

/ _/___/ /____(_)____
/ // __ / ___/ / ___/ Version 1.0

/ // // / / / (__) http://www.idris-lang.org/
/___/__,_/_/ /_/____/ Type :? for help

Idris is free software with ABSOLUTELY NO WARRANTY.
For details type :warranty.
Type checking ./Hello.idr

Listing 1.2 Hello, Idris World! (Hello.idr)

1 I recommend Atom because it has a mode for interactive editing of Idris programs, which we’ll use in this
book.

Module header

Function declaration
Function definition

20 CHAPTER 1 Overview
*Hello> :exec
Hello, Idris World

Here, $ stands for your shell prompt. Alternatively, you can create a standalone exe-
cutable by invoking the idris command with the -o option, as follows:

$ idris Hello.idr -o Hello
$./Hello
Hello, Idris World

THE REPL PROMPT The REPL prompt, by default, tells you the name of the
file that’s currently loaded. The Idris> prompt indicates that no file is
loaded, whereas the prompt *Hello> indicates that the Hello.idr file is
loaded.

1.4.4 Incomplete definitions: working with holes

Earlier, I compared working with types and values to inserting shapes into a shape-
sorter toy. Much as the square shape will only fit through a square hole, the argument
"Hello, Idris World!" will only fit into a function in a place where a String type is
expected.

 Idris functions themselves can contain holes, and a function with a hole is incom-
plete. Only a value of an appropriate type will fit into the hole, just as a square shape
will only fit into a square hole in the shape sorter. Here’s an incomplete implementa-
tion of the “Hello, Idris World!” program:

module Main

main : IO ()
main = putStrLn ?greeting

If you edit Hello.idr to replace the string "Hello, Idris World!" with ?greeting and
load it into the Idris REPL, you should see something like the following:

Type checking ./Hello.idr
Holes: Main.greeting
*Hello>

The syntax ?greeting introduces a hole, which is a part of the program yet to be writ-
ten. You can type-check programs with holes and evaluate them at the REPL.

 Here, when Idris encounters the ?greeting hole, it creates a new name, greeting,
that has a type but no definition. You can inspect the type using :t at the REPL:

*Hello> :t greeting

greeting : String

If you try to evaluate it, on the other hand, Idris will show you that it’s a hole:

*Hello> greeting
?greeting : String

?greeting is a hole, standing
for a missing part of the
program.

21A quick tour of Idris
Holes allow you to develop programs incrementally, writing the parts you know and ask-
ing the machine to help you by identifying the types for the parts you don’t. For exam-
ple, let’s say you’d like to print a character (with type Char) instead of a String. The
putStrLn function requires a String argument, so you can’t simply pass a Char to it.

module Main

main : IO ()
main = putStrLn 'x'

If you try loading this program into the REPL, Idris will report an error:

Hello.idr:4:17:When checking right hand side of main:
When checking an application of function Prelude.putStrLn:

Type mismatch between
Char (Type of 'x')

and
String (Expected type)

You have to convert a Char to a String somehow. Even if you don’t know exactly how
to do this at first, you can start by adding a hole to stand in for a conversion.

module Main

main : IO ()
main = putStrLn (?convert 'x')

Then you can check the type of the convert hole:

*Hello> :t convert

convert : Char -> String

The type of the hole, Char -> String, is the type of a function that takes a Char as an
input and returns a String as an output. We’ll discuss type conversions in more detail
in chapter 2, but an appropriate function to complete this definition is cast:

main : IO ()
main = putStrLn (cast 'x')

Listing 1.3 A program with a type error

Reloading
Instead of exiting the REPL and restarting, you can also reload Hello.idr with the :r
REPL command as follows:

*Hello> :r
Type checking ./Hello.idr
Holes: Main.greeting
*Hello>

Type error, giving a
character instead of a string

This is a function type, taking a Char
as input and returning a String.

22 CHAPTER 1 Overview
1.4.5 First-class types

A first-class language construct is one that’s treated as a value, with no syntactic restric-
tions on where it can be used. In other words, a first-class construct can be passed to
functions, returned from functions, stored in variables, and so on.

 In most statically typed languages, there are restrictions on where types can be
used, and there’s a strict syntactic separation between types and values. You can’t, for
example, say x = int in the body of a Java method or C function. In Idris, there are
no such restrictions, and types are first-class; not only can types be used in the same
way as any other language construct, but any construct can appear as part of a type.

 This means that you can write functions that compute types, and the return type of
a function can differ depending on the input value to a function. This idea comes up
regularly when programming in Idris, and there are several real-world situations
where it’s useful:

 A database schema determines the allowed forms of queries on a database.
 A form on a web page determines the number and type of inputs expected.
 A network protocol description determines the types of values that can be sent

or received over a network.

In each of these cases, one piece of data tells you about the expected form of some
other data. If you’ve programmed in C, you’ll have seen a similar idea with the
printf function, where one argument is a format string that describes the number
and expected types of the remaining arguments. The C type system can’t check that
the format string is consistent with the arguments, so this check is often hardcoded
into C compilers. In Idris, however, you can write a function similar to printf
directly, by taking advantage of types as first-class constructs. You’ll see this specific
example in chapter 6.

 The following listing illustrates the concept of first-class types with a small exam-
ple: computing a type from a Boolean input.

StringOrInt : Bool -> Type
StringOrInt x = case x of

True => Int
False => String

getStringOrInt : (x : Bool) -> StringOrInt x
getStringOrInt x = case x of

True => 94
False => "Ninety four"

Listing 1.4 Calculating a type, given a Boolean value (FCTypes.idr)

This function calculates a type
given a Boolean value as an input.

If the input is True,
return the type Int.

If the input is False,
return the type String.

The return type is calculated
from the value of the input.

The input x was True, so
this needs to be an Int.

The input x was False, so
this needs to be a String.

23A quick tour of Idris
valToString : (x : Bool) -> StringOrInt x -> String
valToString x val = case x of

True => cast val
False => val

Here, StringOrInt is a function that computes a type. Listing 1.4 uses it in two ways:

 In getStringOrInt, StringOrInt calculates the return type. If the input is
True, getStringOrInt returns an Int; otherwise it returns a String.

 In valToString, StringOrInt calculates an argument type. If the first input is
True, the second input must be an Int; otherwise it must be a String.

You can see in detail what’s going on by introducing holes in the definition of valTo-
String:

valToString : (x : Bool) -> StringOrInt x -> String
valToString x val = case x of

True => ?xtrueType
False => ?xfalseType

Inspecting the type of a hole with :t gives you not only the type of the hole itself, but
also the types of any local variables in scope. If you check the type of xtrueType, you’ll
see the type of val, which is computed when x is known to be True:

*FCTypes> :t xtrueType
x : Bool
val : Int

xtrueType : String

The argument type is
calculated from the value
of the input.

The input x was True, so the
argument val must be an Int and
needs to be converted to a String.

The input x was False, so the
argument val must be a String
and can be returned directly.

Function syntax
We’ll go into much more detail on Idris syntax in the coming chapters. For now, just
keep the following in mind:

 A function type takes the form a -> b -> ... -> t, where a, b, and so on,
are the input types, and t is the output type. Inputs may also be annotated
with names, taking the form (x : a) -> (y : b) -> ... -> t.

 name : type declares a new function, name, of type type.
 Functions are defined by equations:

square x = x * x

This defines a function called square that multiplies its input by itself.

24 CHAPTER 1 Overview
So, if x is True, then val must be an Int, as computed by the StringOrInt function.
Similarly, you can check the type of xfalseType to see the type of val when x is known
to be False:

*FCTypes> :t xfalseType
x : Bool
val : String

xfalseType : String

This is a small example, but it illustrates a fundamental concept of type-driven devel-
opment and programming with dependent types: the idea that the type of a variable
can be computed from the value of another. In each case, Idris has used StringOrInt
to refine the type of val, given what it knows about the value of x.

1.5 Summary
 Types are a means of classifying values. Programming languages use types to

decide how to lay out data in memory, and to ensure that data is interpreted
consistently.

 A type can be viewed as a specification, so that a language implementation (spe-
cifically, its type checker) can check whether a program conforms to that speci-
fication.

 Type-driven development is an iterative process of type, define, refine, creating
a type to model a system, then defining functions, and finally refining the types
as necessary.

 In type-driven development, a type is viewed more like a plan, helping an inter-
active environment guide the programmer to a working program.

 Dependent types allow you to give more-precise types to programs, and hence
more informative plans to the machine.

 In a functional programming language, program execution consists of evaluat-
ing functions.

 In a purely functional programming language, additionally, functions have no
side effects.

 Instead of writing programs that perform side effects, you can write programs
that describe side effects, with the side effects stated explicitly in a program’s
type.

 A total function is guaranteed to produce a result for any well-typed input in
finite time.

 Idris is a programming language that’s specifically designed to support type-
driven development. It’s a purely functional programming language with first-
class dependent types.

 Idris allows programs to contain holes that stand for incomplete programs.
 In Idris, types are first-class, meaning that they can be stored in variables, passed

to functions, or returned from functions like any other value.

Getting started with Idris
When learning any new language, it’s important to have a solid grasp of the funda-
mentals before moving on to the more distinctive features of the language. With
this in mind, before we begin exploring dependent types and type-driven develop-
ment itself, we’ll look at some types and values that will be familiar to you from
other languages, and you’ll see how they work in Idris. You’ll also see how to define
functions and put these together to build a complete, if simple, Idris program.

 If you’re already familiar with a pure functional language, particularly Haskell,
much of this chapter will seem very familiar. Listing 2.1 shows a simple, but self-
contained, Idris program that repeatedly prompts for input from the console and
then displays the average length of the words in the input. If you’re already comfort-
able reading this program with the help of the annotations, you can safely skip this
chapter, as it deliberately avoids introducing any language features specific to Idris.1

This chapter covers
 Using built-in types and functions

 Defining functions

 Structuring Idris programs

1 Comparing Idris to Haskell, the most important difference is that Idris doesn’t use lazy evaluation by
default.
25

26 CHAPTER 2 Getting started with Idris
Even so, I still suggest you browse through this chapter’s tips and notes and read the
summary at the end to make sure there aren’t any small details you’ve missed.

 Otherwise, don’t worry. By the end of this chapter we’ll have covered all of the nec-
essary features for you to be able to implement similar programs yourself.

module Main

average : (str : String) -> Double
average str = let numWords = wordCount str

totalLength = sum (allLengths (words str)) in
cast totalLength / cast numWords

where
wordCount : String -> Nat
wordCount str = length (words str)

allLengths : List String -> List Nat
allLengths strs = map length strs

showAverage : String -> String
showAverage str = "The average word length is: " ++

show (average str) ++ "\n"

main : IO ()
main = repl "Enter a string: " showAverage

2.1 Basic types
Idris provides some standard basic types and functions for working with various forms,
characters, and strings. In this section, I’ll give you an overview of these, along with
some examples. These basic types are defined in the Prelude, which is a collection of
standard types and functions automatically imported by every Idris program.

 I’ll show you several example expressions in this section, and it may seem fairly
clear what they should do. Nevertheless, instead of simply reading them and nodding,
I strongly recommending you type the examples at the Idris REPL. You’ll learn the syn-
tax much more easily by using it than you will by merely reading it.

 Along the way, we’ll also encounter a couple of useful REPL features that will allow
us to store the results of calculations at the REPL.

Listing 2.1 A complete Idris program to calculate average word length (Average.idr)

All top-level functions must have a type declaration.
Argument types may optionally be given names as
part of the type declaration. Here, there’s one
argument with type String and name str.

The cast function explicitly converts
between types. Here, the division operator
requires a Double, but the totalLength and

numWords variables are Nats.

The where keyword introduces local
function definitions. Here, they’re
only visible inside the scope of the
average function.

String is a primitive type,
unlike some other languages
(notably Haskell, where a
string is represented as a list
of characters).

The function main, in a module
called Main, is the entry point to
an Idris program.

repl is a function that repeatedly
displays a prompt, reads a String
from the console, and then
displays the result of running a
function on that String.

27Basic types
THE PRELUDE The types and functions I’ll discuss are defined in the Prelude.
The Prelude is Idris’s standard library, always available at the REPL and auto-
matically imported by every Idris program. With the exception of some primi-
tive types and operations, everything in the Prelude is written in Idris itself.

2.1.1 Numeric types and values

Idris provides several basic numeric types, including the following:

 Int—A fixed-width signed integer type. It’s guaranteed to be at least 31 bits wide,
but the exact width is system dependent.

 Integer—An unbounded signed integer type. Unlike Int, there’s no limit to the
size of the numbers that can be represented, other than your machine’s mem-
ory, but this type is more expensive in terms of performance and memory
usage.

 Nat—An unbounded unsigned integer type. This is very often used for sizes and
indexing of data structures, because they can never be negative. You’ll see
much more of Nat later.

 Double—A double-precision floating-point type.

SUBTRACTION WITH NATS Because Nats can never be negative, a Nat can only
be subtracted from a larger Nat.

We can use standard numeric literals as values for each of these types. For example,
the literal 333 can be of type Int, Integer, Nat, or Double. The literal 333.0 can be
only of type Double, due to the explicit decimal point.

 You can try some simple calculations
at the REPL:

Idris> 6 + 3 * 12
42 : Integer
Idris> 6.0 + 3 * 12
42.0 : Double

Note that Idris will treat a number as an
Integer by default, unless there’s some
context, and both operands must be the
same type. Therefore, in the second of
the two preceding expressions, the literal
6.0 can be only a Double, so the whole
expression is a Double, and 3 and 12 are
also treated as Doubles.

 When an expression, such as 6 + 3 * 12,
can be one of several types, you can make
the type explicit with the notation the
<type><expression>, to say that type is
the required type of expression:

REPL results
The most recent result at the REPL
can always be retrieved and used in
further calculations by using the spe-
cial value it:

Idris> 6 + 3 * 12
42 : Integer
Idris> it * 2
84 : Integer

It’s also possible to bind expressions
to names at the REPL using the :let
command:

Idris> :let x = 100
Idris> x
100 : Integer
Idris> :let y = 200.0
Idris> y
200.0 : Double

28 CHAPTER 2 Getting started with Idris
Idris> 6 + 3 * 12
42 : Integer
Idris> the Int (6 + 3 * 12)
42 : Int
Idris> the Double (6 + 3 * 12)
42.0 : Double

“THE” EXPRESSIONS the is not built-in syntax but an ordinary Idris function,
defined in the Prelude, which takes advantage of first-class types.

2.1.2 Type conversions using cast

Arithmetic operators work on any numeric types, but both inputs and the output must
have the same type. Sometimes, therefore, you’ll need to convert between types.

 Let’s say you’ve defined an Integer and a Double at the REPL:

Idris> :let integerval = 6 * 6
Idris> :let doubleval = 0.1
Idris> integerval
36 : Integer
Idris> doubleval
0.1 : Double

If you try to add integerval and doubleval, Idris will complain that they aren’t the
same type:

Idris> integerval + doubleval
(input):1:8-9:When checking an application of function Prelude.Classes.+:

Type mismatch between
Double (Type of doubleval)

and
Integer (Expected type)

To fix this, you can use the cast function, which converts its input to the required
type, as long as that conversion is valid. Here, you can cast the Integer to a Double:

Idris> cast integerval + doubleval
36.1 : Double

Idris supports casting between all the primitive types, and it’s possible to add user-
defined casts, as you’ll see in chapter 7. Note that some casts may lose information,
such as casting a Double to an Integer.

Specifying the target of a cast
You can also use the to specify which type you want to cast to, as in these examples:

Idris> the Integer (cast 9.9)
9 : Integer

Idris> the Double (cast (4 + 4))
8.0 : Double

29Basic types
2.1.3 Characters and strings

Idris also provides Unicode characters and strings as primitive types, along with some
useful primitive functions for manipulating them.

 Character literals (of type Char) are enclosed in single quotation marks, such as
'a'.

 String literals (of type String) are enclosed in double quotation marks, such as
"Hello world!"

Like many other languages, Idris supports special characters in character and string
literals by using escape sequences, beginning with a backslash. For example, a newline
character is indicated using \n:

Idris> :t '\n'
'\n' : Char

Idris> :t "Hello world!\n"
"Hello world!\n" : String

These are the most common escape sequences:

 \' for a literal single quote
 \" for a literal double quote
 \\ for a literal backslash
 \n for a newline character
 \t for a tab character

The Prelude defines several useful functions for manipulating Strings. You can see
some of these in action at the REPL:

Idris> length "Hello!"
6 : Nat

Idris> reverse "drawer"
"reward" : String

Idris> substr 6 5 "Hello world"
"world" : String

Idris> "Hello" ++ " " ++ "World"
"Hello World" : String

Here’s a brief explanation of these functions:

 length—Gives the length of its argument as a Nat because a String can’t have a
negative length

 reverse—Returns a reversed version of its input
 substr—Returns a substring of an input string, given a position to start at and

the desired length of the substring
 ++—An operator that concatenates two Strings

30 CHAPTER 2 Getting started with Idris
Notice the syntax of the function calls. In Idris, functions are separated from their
arguments by whitespace. If the argument is a complex expression, it must be brack-
eted, as follows:

Idris> length ("Hello" ++ " " ++ "World")
11 : Nat

FUNCTION SYNTAX Calling functions by separating the arguments with spaces
may seem strange at first. There’s a good reason for it, though, as you’ll dis-
cover when we look at function types later in this chapter. In short, it makes
manipulating functions much more flexible.

2.1.4 Booleans

Idris provides a Bool type for representing truth values. A Bool can take the value
True or False. The operators && and || represent logical and and or, respectively:

Idris> True && False
False : Bool
Idris> True || False
True : Bool

The usual comparison operators (<, <=, ==, /=, >, >=) are available:

Idris> 3 > 2
True : Bool

Idris> 100 == 99
False : Bool

Idris> 100 /= 99
True : Bool

INEQUALITY The inequality operator in Idris is /=, which follows Haskell syn-
tax, rather than !=, which would follow the syntax of languages like C and Java.

There is also an if...then...else construct. This is an expression, so it must always
include both a then branch and an else branch. For example, you can write an
expression that evaluates to a different message as a String, depending on the length
of a word:

Idris> :let word = "programming"

Idris> if length word > 10 then "What a long word!" else "Short word"
"What a long word!" : String

2.2 Functions: the building blocks of Idris programs
Now that you’ve seen some basic types and a simple control structure, you can begin
defining functions. In this section, you’ll write some Idris functions using the basic
types you’ve seen so far, load them into the Idris system, and test them at the REPL.
You’ll also see how the functional programming style allows you to write more generic
programs in two ways:

31Functions: the building blocks of Idris programs
 Using variables in function types, so that functions can be written to work with
several different types

 Using higher-order functions to capture common programming patterns

2.2.1 Function types and definitions

Function types are composed of one or more input types and an output type. For exam-
ple, a function that takes an Int as input and returns another Int would be written as
Int -> Int. The following listing shows a simple function definition with this type, the
double function.

double : Int -> Int
double x = x + x

You can try this function by typing it into a file, Double.idr; loading it into the Idris
REPL by typing idris Double.idr at the shell prompt; and then trying some exam-
ples at the REPL:

*Double> double 47
94 : Int

*Double> double (double 15)
60 : Int

Figure 2.1 shows the components of this function definition. All functions in Idris,
like double, are introduced with a type declaration and then defined by equations with a
left side and a right side.

An expression is evaluated by rewriting the expression according to these equations
until no further rewriting can be done. Functions, therefore, define rules by which
expressions can be rewritten. For example, consider the definition of double:

double x = x + x

Listing 2.2 A function to double an Int (Double.idr)

The function type states that it takes an
Int as input and returns an Int as output.

The function definition gives an equation that
defines what it means to double an input.

double : Int -> Int
double x = x + x

Function
name

Type declaration

Function definition

Function
type

Left
side

Right
side

Figure 2.1 The components
of a function definition

32 CHAPTER 2 Getting started with Idris
This means that whenever the Idris evaluator encounters an expression of the form
double x, with some expression standing for x, it should be rewritten as x + x.

 So, in the example double (double 15),

 First, the inner double 15 is rewritten as 15 + 15.
 15 + 15 is rewritten as 30.
 double 30 is rewritten as 30 + 30.
 30 + 30 is rewritten as 60.

Optionally, you can give explicit names in the input types of a function. For example,
you could write the type of double as follows:

double : (value : Int) -> Int

This has exactly the same meaning as the previous declaration (double : Int ->
Int). There are two reasons why you might make the names of the arguments explicit:

 Naming the argument in the type can give the reader some information about
the purpose of the argument.

 Naming the argument means you can refer to it later.

You’ll see more of this in chapter 4 when we begin to explore dependent types in
depth. For now, remember the example of first-class types from chapter 1, where I
gave the following Idris type for getStringOrInt:

getStringOrInt : (x : Bool) -> StringOrInt x

The first argument, of type Bool, was given the name x, which then appears in the
return type.

TYPE DECLARATIONS ARE REQUIRED! Functions in Idris must have an explicit
type declaration, like double : Int -> Int here. Some other functional lan-
guages, most notably Haskell and ML, allow programmers to omit type decla-
rations and have the compiler infer the type. In a language with first-class
types, however, this generally turns out to be impossible. In any case, it’s

Evaluation order
You might have noticed that instead of choosing to evaluate the inner double 15
first, you could have chosen the outer double (double 15), which would have
reduced to double 15 + double 15. Either order is possible, and each would lead to
the same result. Idris, by default, will evaluate the innermost expression first. In other
words, it will evaluate function arguments before function definitions.

There are merits and drawbacks to both choices, and as a result this topic has been
debated at length! Now is not the time to revisit this debate, but if you’re interested,
you can investigate lazy evaluation. Idris supports lazy evaluation using explicit types,
as you’ll see in chapter 11.

33Functions: the building blocks of Idris programs
undesirable to omit type declarations in type-driven development. Our phi-
losophy is to use types to help us write programs, rather than to use programs
to help us infer types!

2.2.2 Partially applying functions

When a function has more than one argument, you can create a specialized version of
the function by omitting the later arguments. This is called partial application.

 For example, assume you have an add function that adds two integers, defined as
follows in the Partial.idr file:

add : Int -> Int -> Int
add x y = x + y

If you apply the function to two arguments, it will evaluate to an Int:

*Partial> add 2 3
5 : Int

If, on the other hand, you only apply the function to one argument, omitting the sec-
ond, Idris will return a function of type Int -> Int:

*Partial> add 2
add 2 : Int -> Int

By applying add to only one argument, you’ve created a new specialized function, add
2, that adds 2 to its argument. You can see this more explicitly by creating a new func-
tion with :let:

*Partial> :let addTwo = add 2

*Partial> :t addTwo
addTwo : Int -> Int

*Partial> addTwo 3
5 : Int

The function application syntax, applying functions to arguments simply by separat-
ing the function from the argument with whitespace, gives a particularly concise syn-
tax for partial application. Partial application is common in Idris programs, and you’ll
see some examples of it in action shortly, in section 2.2.5.

2.2.3 Writing generic functions: variables in types

As well as concrete types, such as Int, String, and Bool, function types can contain vari-
ables. Variables in a function type can be instantiated with different values, just like
variables in functions themselves.

 For example, let’s consider the identity function, which returns its input,
unchanged. The identity function on Ints is written as follows:

identityInt : Int -> Int
identityInt x = x

34 CHAPTER 2 Getting started with Idris
Similarly, the identity function on Strings is written like this:

identityString : String -> String
identityString x = x

And here’s the identity function on Bools:

identityBool : Bool -> Bool
identityBool x = x

You may have noticed a pattern here. In each case the definition is the same! You
don’t need to know anything about x because you’re returning it unchanged in each
case. So, instead of writing an identity function for every type separately, you can write
one identity function using a variable, ty, at the type level, in place of a concrete type:

identity : ty -> ty
identity x = x

THE ID FUNCTION In fact, there is an identity function in the Prelude called
id, defined in exactly the same way as identity here.

The ty in the type of identity is a variable, standing for any type. Therefore,
identity can be called with any input type, and will return an output with the same
type as the input.

VARIABLE NAMES IN TYPES Any name that appears in a type declaration,
begins with a lowercase letter, and is otherwise undefined is assumed to be a
variable. Note that I’m careful to call these variables, rather than type variables.
This is because, with dependent types, variables in types don’t necessarily
stand for only types, as you’ll see in chapter 3.

You’ve already seen a form of the identity function when working with numeric types:
the is an identity function. It’s defined in the Prelude as follows:

the : (ty : Type) -> ty -> ty
the ty x = x

It takes an explicit type as its first argument, which is explicitly named ty. The type of
the second argument is given by the input value of the first argument. This is a simple
example of dependent types in action, in that the value of an earlier argument gives
the type of a later argument. You can see this explicitly at the REPL, by partially apply-
ing the to only one argument:

Idris> :t the Int
the Int : Int -> Int

Idris> :t the String
the String : String -> String

Idris> :t the Bool
the Bool : Bool -> Bool

35Functions: the building blocks of Idris programs
2.2.4 Writing generic functions with constrained types

The first function you saw in section 2.2.1, double, doubles the Int given as input:

double : Int -> Int
double x = x + x

But what about other numeric types? For example, you could also write a function to
double a Nat, or an Integer:

doubleNat : Nat -> Nat
doubleNat x = x + x

doubleInteger : Integer -> Integer
doubleInteger x = x + x

As with identity, you’re probably starting to see a pattern here, so let’s see what hap-
pens if we try to replace the input and output types with a variable. Put the following
in a file called Generic.idr and load it into Idris:

double : ty -> ty
double x = x + x

You’ll find that Idris rejects this definition, with the following error message:

Generic.idr:2:8:
When checking right hand side of double with expected type

ty

ty is not a numeric type

The problem is that, unlike identity, double needs to know something about its
input x, specifically that it’s numeric. You can only use arithmetic operators on
numeric types, so you need to constrain ty so that it only stands for numeric types. The
following listing shows how you can do this.

double : Num ty => ty -> ty
double x = x + x

The type Num ty => ty -> ty can be read as, “A function with input type ty and out-
put type ty under the constraint that ty is a numeric type.”

TYPE CONSTRAINTS Constraints on generic types can be user-defined using
interfaces, which we’ll cover in depth in chapter 7. Here, Num is an interface
provided by Idris. Interfaces can be given implementations for specific types,
and the Num interface has implementations for numeric types.

Perhaps surprisingly, arithmetic and comparison operators aren’t primitive operators
in Idris, but rather functions with constrained generic types. Infix operators such as +,

Listing 2.3 A generic type, constrained to numeric types (Generic.idr)

The Num ty before the main part of
the function type indicates that ty
can only stand for numeric types.

36 CHAPTER 2 Getting started with Idris
==, and <= are really functions with two inputs, as you can see by checking their types
at the REPL:

Idris> :t (+)
(+) : Num ty => ty -> ty -> ty

Idris> :t (==)
(==) : Eq ty => ty -> ty -> Bool

Idris> :t (<=)
(<=) : Ord ty => ty -> ty -> Bool

As well as Num for numeric types, here you can see two other constraints provided by
Idris:

 Eq states that the type must support the equality and inequality operators, ==
and /=.

 Ord states that the type must support the comparison operators <, <=, >, and >=.

2.2.5 Higher-order function types

There are no restrictions on what the argument or return types of a function can be.
You’ve already seen how functions of multiple arguments are really functions that
return something with a function type. Similarly, functions can take functions as argu-
ments. Such functions are called higher-order functions.

 Higher-order functions can be used to create abstractions for repeated program-
ming patterns. For example, say you’ve defined a quadruple function that quadruples
its input for any number, using double:

quadruple : Num a => a -> a
quadruple x = double (double x)

Infix operators and operator sections
Infix operators in Idris aren’t a primitive part of the syntax, but are defined by func-
tions. Putting operators in brackets, as with (+), (==), and (<=) in the REPL exam-
ple, means that they’ll be treated as ordinary function syntax. For example, you can
apply (+) to one argument:

Idris> :t (+) 2
(+) 2 : Integer -> Integer

Infix operators can also be partially applied using operator sections:

 (< 3) gives a function that returns whether its input is less than 3.
 (3 <) gives a function that returns whether 3 is less than its input.

An operator in brackets with only one argument is therefore considered to be a func-
tion that expects the other missing argument.

37Functions: the building blocks of Idris programs
Or say you have a Shape type that represents any geometric shape, and a function
rotate : Shape -> Shape that rotates a shape through 90 degrees. You could define
a turn_around function that rotates a shape through 180 degrees as follows:

turn_around : Shape -> Shape
turn_around x = rotate (rotate x)

Each of these functions has exactly the same pattern, but they work on different input
types. You can capture this pattern using a higher-order function to apply a function
to an argument twice. The next listing gives a definition of a twice function, along
with new definitions of quadruple and rotate.

twice : (a -> a) -> a -> a
twice f x = f (f x)

Shape : Type
rotate : Shape -> Shape

quadruple : Num a => a -> a
quadruple = twice double

turn_around : Shape -> Shape
turn_around = twice rotate

In chapter 1, I introduced the concept of “holes,” which are incomplete function defi-
nitions. The type declarations with no definitions in listing 2.4, Shape and rotate, are
treated as holes. They allow you to try an idea (such as how to implement
turn_around in terms of rotate) without fully defining the types and functions.

Listing 2.4 Defining quadruple and rotate using a higher-order function (HOF.idr)

twice takes a function as its first
argument, and the argument to apply
that function to as its second.

The definition follows exactly the
same pattern as the initial definitions
of quadruple and turn_around but
with a generic function f.

These are type declarations
with no definitions.

This implements quadruple by directly
instantiating “twice” with “double”.

This implements turn_around by directly
instantiating twice with “rotate”.

Partial application in definitions
In listing 2.4, quadruple and turn_around have function types, Num a => a -> a and
Shape -> Shape, respectively, but in their definitions neither has an argument.

The only requirement when checking a definition is that both sides of the definition
must have the same type. You can check that this is the case here by looking at the
types of the left and right sides of the definition at the REPL. You have the following
definition:

turn_around = twice rotate

38 CHAPTER 2 Getting started with Idris
The definitions of quadruple and turn_around both use partial application, as
described in section 2.2.2.

 Another common use of partial application is in constructing arguments for
higher-order functions. Consider this example, using HOF.idr and adding the defini-
tion of add from section 2.2.2:

*HOF> twice (add 5) 10
20 : Int

This uses a partial application of the add function to add 5 to an Int, twice. Because
twice requires a function of one argument, and add takes two arguments, you can
apply add to one argument so that it’s usable in an application of twice.

 You could also use an operator section, as described at the end of section 2.2.4:

*HOF> twice (5 +) 10
20 : Integer

Note that, in the absence of any other type information, Idris has defaulted to Integer,
as described in section 2.1.1.

2.2.6 Anonymous functions

When using higher-order functions, it’s often useful to pass an anonymous function as
an argument. An anonymous function is generally a small function that you only
expect to use once, so there’s no need to create a top-level definition for it.

 For example, you could pass an anonymous function that squares its input to
twice:

*HOF> twice (\x => x * x) 2
16 : Integer

Anonymous functions are introduced with a backslash \ followed by a list of argu-
ments. If you check the type of the preceding anonymous function, you’ll see that it
has a function type:

*HOF> :t \x => x * x
\x => x * x : Integer -> Integer

Anonymous functions can take more than one argument, and arguments can option-
ally be given explicit types:

(continued)
By checking the types at the REPL, you can see that both turn_around and twice
rotate have the same type:

Idris> :t turn_around
turn_around : Shape -> Shape

Idris> :t twice rotate
twice rotate : Shape -> Shape

39Functions: the building blocks of Idris programs
*HOF> :t \x : Int, y : Int => x + y
\x, y => x + y : Int -> Int -> Int

Note that the output doesn’t show the types explicitly.

2.2.7 Local definitions: let and where

As functions get larger, it’s usually a good idea to break
them down into smaller definitions. Idris provides two
constructs for locally defining variables and functions: let
and where.

 Figure 2.2 illustrates the syntax for let bindings, which
define local variables.

 If you evaluate this expression at the REPL, you’ll see
the following:

Idris> let x = 50 in x + x
100 : Integer

The next listing shows a larger example of let in action. It
defines a function, longer, that takes two Strings and
returns the length of the longer one. It uses let to record
the length of each input.

longer : String -> String -> Nat
longer word1 word2

= let len1 = length word1
len2 = length word2 in
if len1 > len2 then len1 else len2

MULTIPLE LETS There can be several definitions in a let block. In listing 2.5,
for example, there are two local variables defined in the let block in longer.

Whereas let blocks contain local variable definitions, where blocks contain local func-
tion definitions. Listing 2.6 shows where in action. It defines a function to calculate
the length of the hypotenuse of a triangle, using the Pythagorean Theorem and a
local square function.

pythagoras : Double -> Double -> Double
pythagoras x y = sqrt (square x + square y)

where
square : Double -> Double
square x = x * x

Listing 2.5 Local variables with let (Let_Where.idr)

Listing 2.6 Local function definitions with where (Let_Where.idr)

Records the length of the first word

Records the length of the second word

Returns whichever of
the lengths is longest.

sqrt is defined in the Prelude.

This definition is only visible
within the scope of pythagoras.

let x = 50 in x + x

Local variable
definition

Scope of
definition

Figure 2.2 A local variable
definition: in the expression
after the in keyword, x has
the value 50.

40 CHAPTER 2 Getting started with Idris
Generally, let is useful for breaking a complex expression into smaller subexpres-
sions, and where is useful for defining more-complex functions that are only relevant
in the local context.

2.3 Composite types
Composite types are composed of other types. In this section, we’ll look at two of the
most common composite types provided by Idris: tuples and lists.

2.3.1 Tuples

A tuple is a fixed-size collection, where each value in the collection can have a different
type. For example, a pair of an Integer and a String can be written as follows:

Idris> (94, "Pages")
(94, "Pages") : (Integer, String)

Tuples are written as a bracketed, comma-separated list of values. Notice that the type
of the pair (94, "Pages") is (Integer, String). Tuple types are written using the
same syntax as tuple values.

 The fst and snd functions extract the first and second items, respectively, from a
pair:

Idris> :let mypair = (94, "Pages")

Idris> fst mypair
94 : Integer

Idris> snd mypair
"Pages" : String

Both fst and snd have generic types, because pairs can contain any types. You can
check the type of each at the REPL:

Idris> :t fst
fst : (a, b) -> a

Idris> :t snd
snd : (a, b) -> b

You can read the type of fst, for example, as “Given a pair of an a and a b, return the
value that has type a.” In these types, you know that both a and b are variables because
they begin with lowercase letters.

 Tuples can have any number of components, including zero:

Idris> ('x', 8, String)
('x', 8, String) : (Char, Integer, Type)

Idris> ()
() : ()

The empty tuple, (), is often referred to as “unit” and its type as “the unit type.”
Notice that the syntax is overloaded, and Idris will decide whether () means unit or
the unit type from the context.

41Composite types

Tuples can also be arbitrarily deeply nested:

Idris> (('x', 8), (String, 'y', 100), "Hello")
(('x', 8), (String, 'y', 100), "Hello")

: ((Char, Integer), (Type, Char, Integer), String)

2.3.2 Lists

Lists, like tuples, are collections of values. Unlike tuples, lists can be any size, but every
element must have the same type. Lists are written as comma-separated lists of values
in square brackets, as follows.

Idris> [1, 2, 3, 4]
[1, 2, 3, 4] : List Integer

Idris> ["One", "Two", "Three", "Four"]
["One", "Two", "Three", "Four"] : List String

The type of each of these expressions, List Integer and List String, indicates the
element type that Idris has inferred for the list. In type-driven development, we typically
give types first, and then write a corresponding value or function that satisfies this
type. At the REPL, it would be inconvenient to do this for every value, so Idris will try

Colors in the REPL
You may have noticed that some values and types in the REPL are colored differently,
particularly when evaluating the empty tuple (). This is semantic highlighting, and it
indicates whether a subexpression is a type, value, function, or variable. By default,
the REPL displays each as follows:

 Types are blue.
 Values (more precisely, data constructors, as I’ll explain in chapter 3) are red.
 Functions are green.
 Variables are magenta.

If these colors aren’t to your liking or are hard to distinguish (for example, if you’re
color blind), you can change the settings with the :colour command.

Tuples and pairs
Internally, all tuples other than the empty tuple are stored as nested pairs. That is,
if you write (1, 2, 3, 4), Idris will treat this in the same way as (1, (2, (3, 4))).
The REPL will always display a tuple in the non-nested form:

Idris> (1, (2, (3, 4)))
(1, 2, 3, 4) : (Integer, Integer, Integer, Integer)

42 CHAPTER 2 Getting started with Idris
to infer a type for the given value. Unfortunately, it’s not always possible. For example,
if you give it an empty list, Idris doesn’t know what the element type should be:

Idris> []
(input):Can't infer argument elem to []

This error message means that Idris can’t work out the element type (which happens
to be named elem) for the empty list []. The problem can be resolved in this case by
giving an explicit type, using the:

Idris> the (List Int) []
[] : List Int

Like strings, lists can be concatenated with the ++ operator, provided that both oper-
ands have the same element type:

Idris> [1, 2, 3] ++ [4, 5, 6, 7]
[1, 2, 3, 4, 5, 6, 7] : List Integer

You can add an element to the front of a list using the :: (pronounced “cons”) operator:

Idris> 1 :: [2, 3, 4]
[1, 2, 3, 4] : List Integer
Idris> 1 :: 2 :: 3 :: 4 :: []
[1, 2, 3, 4] : List Integer

Syntactic sugar for lists
The :: operator is the primitive operator for constructing lists from a head element
and a tail, and Nil is a primitive name for the empty list. A list can therefore take one
of the following two canonical forms:

 Nil, the empty list
 x :: xs, where x is an element, and xs is another list

Because this can get quite verbose, Idris provides syntactic sugar for lists. List literals
consisting of comma-separated elements inside square brackets are desugared to
these primitive forms. For example, [] is desugared directly to Nil, and [1, 2, 3]
is desugared to 1 :: (2 :: (3 :: Nil)).

There’s also a more concise notation for ranges of numbers. Here are a few examples:

 [1..5] expands to the list [1, 2, 3, 4, 5].
 [1,3..9] expands to the list [1, 3, 5, 7, 9].
 [5,4..1] expands to the list [5, 4, 3, 2, 1].

More generally, [n..m] gives an increasing list of numbers between n and m, and
[n,m..p] gives a list of numbers between n and p with the step given by the differ-
ence between n and m.

43Composite types
2.3.3 Functions with lists

We’ll discuss lists in more depth in the next chapter, including how to define func-
tions over lists, but there are several useful functions defined in the Prelude. Let’s take
a look at some of these.

 The words function, of type String -> List String, converts a string into a list of
the whitespace-separated components of the string:2

Idris> words "'Twas brillig, and the slithy toves"
["'Twas", "brillig,", "and", "the", "slithy", "toves"] : List String

The unwords function, of type List String -> String, does the opposite, converting
a list of words into a string where the words are separated by a space:

Idris> unwords ["One", "two", "three", "four!"]
"One two three four!" : String

You’ve already seen a length function for calculating the lengths of strings. There’s
also an overloaded length function, of type List a -> Nat, that gives the length of a
list:

Idris> length ["One", "two", "three", "four!"]
4 : Nat

You can use length and words to write a word-count function for strings:

wordCount : String -> Nat
wordCount str = length (words str)

The map function is a higher-order function that applies a function to every element
in a list. It has the type (a -> b) -> List a -> List b. This example finds the lengths of
every word in a list:

Idris> map length (words "How long are these words?")
[3, 4, 3, 5, 6] : List Nat

You can use map and length to write a function that gets the length of every element
in a list of Strings:

allLengths : List String -> List Nat
allLengths strs = map length strs

2 The words name comes from a similar function in the Haskell libraries. Many Idris function names follow
Haskell terminology.

Type of map
If you check the type of map at the REPL, you’ll see something slightly different:

Idris> :t map
map : Functor f => (a -> b) -> f a -> f b

44 CHAPTER 2 Getting started with Idris

This
mo

declarat
The filter function is another higher-order function that filters a list according to a
Boolean function. It has type (a -> Bool) -> List a -> List a and returns a new list of
everything in the input list for which the function returns True. For example, here’s
how you find all the numbers larger than 10 in a list:

Idris> filter (> 10) [1,11,2,12,3,13,4,14]
[11, 12, 13, 14] : List Integer

The sum function, of type Num a => List a -> a, calculates the sum of a list of numbers:

Idris> sum [1..100]
5050 : Integer

The type of sum states that every element of the input List must have the same type, a,
and that type is constrained by Num.

 You now know enough to be able to define a function named average that com-
putes the average length of the words in a string. This function is defined in the next
listing, which shows the complete Idris file Average.idr.

module Average

export
average : String -> Double
average str = let numWords = wordCount str

totalLength = sum (allLengths (words str)) in

Listing 2.7 Calculating the average word length in a string (Average.idr)

(continued)
The reason for this is that map can work on a variety of structures, not just lists, so
it has a constrained generic type. You’ll learn about Functor in chapter 7, but for the
moment it’s fine to read f as List in this type.

Overloading functions
You’ve seen the length function on both strings and lists. This works because Idris
allows function names to be overloaded to work on multiple types. You can see
what’s happening by checking the type of length at the REPL:

*lists> :t length
Prelude.List.length : List a -> Nat
Prelude.Strings.length : String -> Nat

In fact, there are two functions called length. The prefixes Prelude.List and
Prelude.Strings are the namespaces these functions are defined in. Idris decides
which length function is required from the context in which it’s used.

 is a
dule
ion.

The export keyword means
that the definition of average
is exported from the module.

45Composite types
cast totalLength / cast numWords
where

wordCount : String -> Nat
wordCount str = length (words str)

allLengths : List String -> List Nat
allLengths strs = map length strs

Listing 2.7 also introduces the module and export keywords. A module declaration can
optionally be put at the top of a file. This declares a namespace in which every func-
tion is defined. Conventionally, module names are the same as the filename (without
the .idr extension). The export keyword allows the average function to be used by
other modules that import Average.idr.

 As usual, you can try this at the REPL by loading Average.idr into Idris, and evaluat-
ing as follows:

*Average> average "How long are these words?"
4.2 : Double

The casts are needed to
convert Nat to Double.

You only need these definitions in
the scope of average, so you put
them in a where block.

A function to calculate the
number of words in a string.

A function to get the lengths
of each word in a list.

Modules and namespaces
By adding a module declaration to the top of Average.idr, you declare a namespace
for the definitions in the module. Here, it means that the fully qualified name of the
average function is Average.average. A module declaration must be the first thing
in the file. If there’s no declaration, Idris calls the module Main.

Modules allow you to divide larger Idris programs logically into several source files,
each with their own purpose. They can be imported with an import statement. For
example:

 import Average will import the definitions from Average.idr, provided that
Average.idr is either in the current directory or in some other path that Idris
can find.

 import Utils.Average will import the definitions from Average.idr in a sub-
directory called Utils, provided that the file and subdirectory exist.

Modules themselves can be combined into packages and distributed separately.
Technically, the Prelude is defined in a module called Prelude, which itself imports
several other modules, and which is part of a package called prelude. You can learn
more about packages and how to create your own from the Idris package documen-
tation at http://idris-lang.org/documentation/packages.

46 CHAPTER 2 Getting started with Idris
2.4 A complete Idris program
So far, you’ve seen how to write functions with built-in types and some basic opera-
tions on those types. Functions are the basic building blocks of Idris programs, so now
that you’ve written some simple functions, it’s time to see how to put these together to
build a complete program.

2.4.1 Whitespace significance: the layout rule

Whitespace, specifically indentation, is significant in Idris programs. Unlike some
other languages, there are no braces or semicolons to indicate where expressions,
type declarations, and definitions begin and end. Instead, in any list of definitions and
declarations, all must begin in precisely the same column. Listing 2.8 illustrates where
definitions and declarations begin and end according to this rule in a file containing
the previous definition of average.

SPACES AND TABS One complication with whitespace significance is that tab
sizes can be set differently in different editors, and Idris expects tabs and
spaces to be used consistently. To avoid any confusion with tab sizes, I
strongly recommend you set your editor to replace tabs with spaces!

average : String -> Double
average str = let numWords = wordCount str

totalLength = sum (allLengths (words str)) in
cast totalLength / cast numWords

where
wordCount : String -> Nat
wordCount str = length (words str)

allLengths : List String -> List Nat
allLengths strs = map length strs

If, for example, allLengths was indented one extra space, as in listing 2.9, it would be
considered a continuation of the previous definition of wordCount, and would there-
fore be invalid.

Listing 2.8 The layout rule applied to average (Average.idr)

Type declaration
begins in column 0

Type declaration ends, and a new definition
begins in column 0. The definition of

numWords begins in column 18.

The type declaration of
wordCount begins in column 4.

The type declaration ends, and the
definition of wordCount begins in column 4.

The definition ends, and the
type declaration of allLengths
begins in column 4.

The definition of numWords
ends, and a new definition

of totalLength begins in
column 18. The definition
of totalLength ends at the

keyword “in”.

47A complete Idris program

wordCount : String -> Nat
wordCount str = length (words str)

allLengths : List String -> List Nat
allLengths strs = map length strs

2.4.2 Documentation comments

As with any other language, it’s good form to comment definitions to give the reader
of the code an idea of the purposes of functions and document how they work. Idris
provides three kinds of comments:

 Single-line comments, introduced with -- (two minus signs). These comments
continue to the end of the line.

 Multiline nested comments, introduced with {- and ending with -}.
 Documentation comments, which are used to provide documentation for func-

tions and types at the REPL.

The first two types of comments are conventional, and merely cause the commented
section to be ignored (the syntax is identical to the syntax of comments in Haskell).

 Documentation comments, on the other hand, make documentation available at
the REPL, accessible with the :doc command. You can look at the documentation for
some of the types and functions we’ve encountered so far. For example, :doc fst pro-
duces the following output:

Idris> :doc fst
Prelude.Basics.fst : (a, b) -> a

Return the first element of a pair.

The function is Total

This output includes the fully qualified name of fst, showing that it is defined in the
module Prelude.Basics, and states that the function is total, meaning that it’s guar-
anteed to produce a result for all inputs.

 You can also get documentation for types. For example, :doc List gives the fol-
lowing output:

Idris> :doc List
Data type Prelude.List.List : Type -> Type

Generic lists

Constructors:
Nil : List elem

The empty list

(::) : elem -> List elem -> List elem
A non-empty list, consisting of a head element and the rest of
the list.
infixr 7

Listing 2.9 The layout rule, applied incorrectly

allLengths is indented one space too far,
so this line is considered a continuation
of the definition of wordCount.

48 CHAPTER 2 Getting started with Idris
Again, this gives the fully qualified name of the type Prelude.List.List. It also gives
the constructors, which are the primitive ways of constructing lists. Finally, for the ::
operator, it gives the fixity, which states the operator is right associative (infixr) and
has precedence level 7. I’ll describe precedence and the associativity of operators in
more detail in chapter 3.

 Documentation comments, which produce this documentation, are introduced
with three vertical bars, |||. For example, you could document average as follows:

||| Calculate the average length of words in a string.
average : String -> Double

Then, :doc average would produce the following output:

*Average> :doc average
Average.average : (str : String) -> Double

Calculate the average length of words in a string.

The function is Total

You can refer to the argument of average by giving it a name, str, and referring to
that name in the comment with @str:

||| Calculate the average length of words in a string.
||| @str a string containing words separated by whitespace.
average : (str : String) -> Double
average str = let numWords = wordCount str

totalLength = sum (allLengths (words str)) in
cast totalLength / cast numWords

This makes :doc average produce some more informative output:

*Average> :doc average
Main.average : (str : String) -> Double

Calculate the average length of words in a string.
Arguments:

str : String -- a string containing words separated by whitespace.

The function is Total

TOTALITY CHECKING Notice that :doc average reports that average is total.
Idris checks every definition for totality. The result of totality checking has
several interesting implications in type-driven development, which we’ll dis-
cuss throughout the book, and particularly in chapters 10 and 11.

2.4.3 Interactive programs

The entry point to a compiled Idris program is the main function, defined in a Main
module. That is, it’s the function with the fully qualified name Main.main. It must have
the type IO (), meaning that it returns an IO action that produces an empty tuple.

 You’ve already seen the “Hello, Idris World!” program:

main : IO ()
main = putStrLn "Hello Idris World!"

49A complete Idris program
Here, putStrLn is a function of type String -> IO () that takes a string as an argu-
ment and returns an IO action that outputs that string. We’ll discuss IO actions in
some depth in chapter 5, but even before then you’ll be able to write complete inter-
active Idris programs using the repl function (and some variants on it, as you’ll see in
chapter 4) provided by the Prelude:

Idris> :doc repl
Prelude.Interactive.repl : (prompt : String) ->

A basic read-eval-print loop
Arguments:

prompt : String -- the prompt to show

onInput : String -> String -- the function to run on reading
input, returning a String to output

This allows you to write programs that repeatedly display a prompt, read some input,
and produce some output by running a function of type String -> String on it. For
example, the next listing is a program that repeatedly reads a string and then prints
the string in reverse.

module Main

main : IO ()
main = repl "> " reverse

You can compile and run this program at the REPL with the :exec command. Note
that the program will loop indefinitely, but you can quit by interrupting the program
with Ctrl-C:

*reverse> :exec
> hello!
!olleh> goodbye
eybdoog>

To conclude this chapter, you’ll write a program that imports the Average module,
reads a string from the console, and displays the average number of letters in each
word in the string. One difficulty is that the average function returns a Double, but
repl requires a function of type String -> String, so you can’t use average directly.
In general, though, values can be converted to String using the show function. Let’s
take a look at it using :doc:

Idris> :doc show
Prelude.Show.show : Show ty => (x : ty) -> String

Convert a value to its String representation.

Note that this is a constrained generic type, meaning that the type ty must support the
Show interface, which is true of all the types in the Prelude.

Listing 2.10 Reversing strings interactively (Reverse.idr)

50 CHAPTER 2 Getting started with Idris

The pro
to dis
 Using this, you can write a showAverage function that uses average to get the aver-
age word length and displays it in a nicely formatted string. The complete program is
given in the following listing.

module Main

import Average

showAverage : String -> String
showAverage str = "The average word length is: " ++

show (average str) ++ "\n"

main : IO ()
main = repl "Enter a string: "

showAverage

Again, you can use :exec to compile and run this at the REPL, and then try some
inputs:

*AveMain> :exec
Enter a string: The quick brown fox jumped over the lazy dog
The average word length is: 4
Enter a string: The quick brown fox jumped over the lazy frog
The average word length is: 4.11111
Enter a string:

Exercises

 1 What are the types of the following values?

 ("A", "B", "C")
 ["A", "B", "C"]
 (('A', "B"), 'C')

You can check your answers with :t at the REPL, but try to work them out yourself
first.

 2 Write a palindrome function, of type String -> Bool, that returns whether the
input reads the same backwards as forwards.

Hint: You may find the function reverse : String -> String useful.

You can test your answer at the REPL as follows:

*ex_2> palindrome "racecar"
True : Bool

*ex_2> palindrome "race car"
False : Bool

Listing 2.11 Displaying average word lengths interactively (AveMain.idr)

Imports the definitions
from Average.idr

The function that calculates
the string to output from
some input. It uses show
to convert the result of
average to a String.mpt

play
The function to call to calculate the output

51A complete Idris program
 3 Modify the palindrome function so that it’s not case sensitive.
Hint: You may find toLower : String -> String useful.

You can test your answer at the REPL as follows:

*ex_2> palindrome "Racecar"
True : Bool

 4 Modify the palindrome function so that it only returns True for strings longer than
10 characters.

You can test your answer at the REPL as follows:

*ex_2> palindrome "racecar"
False : Bool

*ex_2> palindrome "able was i ere i saw elba"
True : Bool

 5 Modify the palindrome function so that it only returns True for strings longer than
some length given as an argument.

Hint: Your new function should have type Nat -> String -> Bool.

You can test your answer at the REPL as follows:

*ex_2> palindrome 10 "racecar"
False : Bool

*ex_2> palindrome 5 "racecar"
True : Bool

 6 Write a counts function of type String -> (Nat, Nat) that returns a pair of the
number of words in the input and the number of characters in the input.

You can test your answer at the REPL as follows:

*ex_2> counts "Hello, Idris world!"
(3, 19) : (Nat, Nat)

 7 Write a top_ten function of type Ord a => List a -> List a that returns the ten larg-
est values in a list. You may find the following Prelude functions useful:

 take : Nat -> List a -> List a
 sort : Ord a => List a -> List a

Use :doc for further information about these functions if you need it.
You can test your answer at the REPL as follows:

*ex_2> top_ten [1..100]
[100, 99, 98, 97, 96, 95, 94, 93, 92, 91] : List Integer

 8 Write an over_length function of type Nat -> List String -> Nat that returns the
number of strings in the list longer than the given number of characters.

You can test your answer at the REPL as follows:

*ex_2> over_length 3 ["One", "Two", "Three", "Four"]
2 : Nat

52 CHAPTER 2 Getting started with Idris
 9 For each of palindrome and counts, write a complete program that prompts for an
input, calls the function, and prints its output.

You can test your answer using :exec at the REPL:

*ex_2_palindrome> :exec
Enter a string: Able was I ere I saw Elba
True
Enter a string: Madam, I'm Adam
False
Enter a string:

2.5 Summary
 The Prelude defines a number of basic types and functions and is imported

automatically by all Idris programs.
 Idris provides basic numeric types, Int, Integer, Nat, and Double, as well as a

Boolean type, Bool, a character type, Char, and a string type, String.
 Values can be converted between compatible types using the cast function, and

can be given explicit types with the the function.
 Tuples are fixed-size collections where each element can be a different type.
 Lists are variable size collections where each element has the same type.
 Function types have one or more input types and one output type.
 Function types can be generic, meaning that they can contain variables. These

variables can be constrained to allow a smaller set of types.
 Higher-order functions are functions in which one of the arguments is itself a

function.
 Functions consist of a required type declaration and a definition. Function defi-

nitions are equations defining rewrite rules to be used during evaluation.
 Whitespace is significant in Idris programs. Each definition in a block must

begin in exactly the same column.
 Function documentation can be accessed at the REPL with the :doc command.
 Idris programs can be divided into separate source files called modules.
 The entry point to an Idris program is the main function, which must have type

IO (), and be defined in the module Main. Simple interactive programs can be
written by applying the repl function from main.

Part 2

Core Idris

Now that you have some experience writing programs in Idris, it’s time to
start your exploration of type-driven development in depth. In this part, you’ll
learn about the core features of Idris and gain some experience in the process of
type-driven development. Rather than showing you complete programs right
from the start, I’ll show you how to build programs interactively, via a process of
type, define, refine:

 Type—Write a type for a function.
 Define—Create an initial definition for the function, possibly containing

holes.
 Refine—Complete the definition by filling in holes, possibly modifying the

type as your understanding of the problem develops.

In chapter 3, you’ll learn the basics of interactive development; and then, in
chapter 4, you’ll learn to define your own data types and build larger programs
around them. Chapter 5 shows how you can write programs that interact with
the outside world, using types to separate evaluation from execution. Later chap-
ters introduce more-advanced concepts in type-driven development, including
type-level computation in chapter 6, working with constrained generic types in
chapter 7, describing and proving properties of programs in chapters 8 and 9,
and defining alternative traversals of data structures using views in chapter 10.

 By the end of part 2, you’ll have learned about all of the core features of
Idris.

Interactive development
with types
You’ve now seen how to define simple functions, and how to structure these into
complete programs. In this chapter, we’ll start a deeper exploration into type-
driven development. First, we’ll look at how to write more-complex functions with
existing types from the Prelude, such as lists. Then, we’ll look at using the Idris type
system to give functions more-precise types.

 In type-driven development, we follow the process of “type, define, refine.”
You’ll see this process in action throughout this chapter as you first write the types
and, as far as possible, always have a type-correct, if perhaps incomplete, definition
of a function and refine it step by step until it’s complete. Each step will be broadly
characterized as one of these three:

 Type—Either write a type to begin the process, or inspect the type of a hole to
decide how to continue the process.

This chapter covers
 Defining functions by pattern matching

 Type-driven interactive editing in Atom

 Adding precision to function types

 Practical programming with vectors
55

56 CHAPTER 3 Interactive development with types
 Define—Create the structure of a function definition either by creating an out-
line of a definition or breaking it down into smaller components.

 Refine—Improve an existing definition either by filling in a hole or making its
type more precise.

In this chapter, I’ll introduce interactive development in the Atom text editor, which
assists with this process. Atom provides an interactive editing mode that communi-
cates with a running Idris system and uses types to help direct function development.
Atom also provides some structural editing features and contextual information about
functions with holes, and, when the types are precise enough, even completes large
parts of functions for you. I’ll begin this chapter, therefore, by introducing the interac-
tive editing mode in Atom.

EDITOR MODES Although we’ll use Atom to edit Idris programs, the interac-
tive features we’ll use are provided by Idris itself. The Atom integration works
by communicating with an Idris process running in the background. This pro-
cess is run as a child of the editor, so it’s independent of any REPLs you may
have running. As such, it’s reasonably straightforward to add Idris support to
other text editors, and similar editing modes currently exist for Emacs and
Vim. In this book, we’ll stick to Atom for consistency, but each of the com-
mands directly maps to corresponding commands in other editors.

3.1 Interactive editing in Atom
You saw in chapter 1 that Idris programs can contain holes, which stand for parts of a
function definition that haven’t yet been written. This is one way in which programs
can be developed interactively: you write an incomplete definition containing holes,
check the types of the holes to see what Idris expects in each, and then continue by
filling in the holes with more code. There are several additional ways in which Idris
can help you by integrating interactive development features with a text editor:

 Add definitions—Given a type declaration, Idris can add a skeleton definition of
a function that satisfies that type.

 Case analysis—Given a skeleton function definition with arguments, Idris can use
the types of those arguments to help define the function by pattern matching.

 Expression search—Given a hole with a precise enough type, Idris can try to find
an expression that satisfies the hole’s type, refining the definition.

In this section, we’ll begin writing some more-complex Idris functions, using its inter-
active editing features to develop those functions, step by step, in a type-directed way.
We’ll use the Atom text editor, because there’s an extension available for editing Idris
programs, which can be installed directly from the default Atom distribution. The rest
of this chapter assumes that you have the interactive Idris mode up and running. If
not, follow the instructions in appendix A for installing Atom and the Idris mode.

57Interactive editing in Atom
3.1.1 Interactive command summary

Interactive editing in Atom involves a number of keyboard commands in the editor,
which are summarized in table 3.1.

COMMAND MNEMONICS For each command, the shortcut in Atom is to press
Ctrl, Alt, and the first letter of the command.

3.1.2 Defining functions by pattern matching

All of the function definitions we’ve looked at so far have involved a single equation to
define that function’s behavior. For example, in the previous chapter you wrote a
function to calculate the lengths of every word in a list:

allLengths : List String -> List Nat
allLengths strs = map length strs

Here, you used functions defined in the Prelude (map and length) to inspect the list.
At some stage, though, you’re going to need a more direct way to inspect values. After
all, functions like map and length need to be defined themselves somehow!

 In general, you define functions by pattern matching on the possible values of
inputs to a function. For example, you can define a function to invert a Bool as follows:

invert : Bool -> Bool
invert False = True
invert True = False

The possible inputs of type Bool are True and False, so here you implement invert
by listing the possible inputs and giving the corresponding outputs. Patterns can also
contain variables, as illustrated by the following function, which returns "Empty" if

Table 3.1 Interactive editing commands in Atom

Shortcut Command Description

Ctrl-Alt-A Add definition Adds a skeleton definition for the name under the cursor

Ctrl-Alt-C Case split Splits a definition into pattern-matching clauses for the
name under the cursor

Ctrl-Alt-D Documentation Displays documentation for the name under the cursor

Ctrl-Alt-L Lift hole Lifts a hole to the top level as a new function declaration

Ctrl-Alt-M Match Replaces a hole with a case expression that matches on
an intermediate result

Ctrl-Alt-R Reload Reloads and type-checks the current buffer

Ctrl-Alt-S Search Searches for an expression that satisfies the type of the
hole name under the cursor

Ctrl-Alt-T Type-check name Displays the type of the name under the cursor

58 CHAPTER 3 Interactive development with types
given an empty list or "Non-empty" followed by the value of the tail if given a non-
empty list:

describeList : List Int -> String
describeList [] = "Empty"
describeList (x :: xs) = "Non-empty, tail = " ++ show xs

Figure 3.1 illustrates how the patterns are matched in describeList for the inputs
[1] (which is syntactic sugar for 1 :: []) and [2,3,4,5] (which is syntactic sugar for
2 :: 3 :: 4 :: 5 :: []).

NAMING CONVENTIONS FOR LISTS Conventionally, when working with lists and
list-like structures, Idris programmers use a name ending in “s” (to suggest a
plural), and then use its singular to refer to individual elements. So, if you
have a list called things, you might refer to an element of the list as thing.

A function definition consists of one or more equations matching the possible inputs
to that function. You can see how this works for lists if you implement allLengths by
inspecting the list directly, instead of using map.

allLengths : List String -> List Nat
allLengths [] = []
allLengths (x :: xs) = length x :: allLengths xs

To see in detail how this definition is constructed, you’ll build it interactively in Atom.
Each step can be broadly characterized as Type (creating or inspecting a type), Define
(making a definition or breaking it down into separate clauses), or Refine (improving
a definition by filling in a hole or making its type more precise).

1 Type—First, start up Atom and create a WordLength.idr file containing the type
declaration for allLengths. That’s only the following:

allLengths : List String -> List Nat

Listing 3.1 Calculating word lengths by pattern matching on the list (WordLength.idr)

x = 1

x = 2

xs = []

1 :: [] "Non-empty, tail = []"

2 :: 3 :: 4 :: 5 :: [] "Non-empty, tail = [3,4,5]"

xs = 3 :: 4 :: 5 :: []

Figure 3.1 Matching the pattern (x :: xs) for inputs [1] and [2,3,4,5]

If the input list is empty, the
output list will also be empty.

If the input list has a head element x and a tail
xs, the output list will have the length of x as

the head and then, recursively, a list of the
lengths of xs as the tail.

59Interactive editing in Atom
You should also start up an Idris REPL in a separate terminal so that you can
type-check and test your definition:

$ idris WordLength.idr
____ __ _

/ _/___/ /____(_)____
/ // __ / ___/ / ___/ Version 1.0

/ // // / / / (__) http://www.idris-lang.org/
/___/__,_/_/ /_/____/ Type :? for help

Idris is free software with ABSOLUTELY NO WARRANTY.
For details type :warranty.
Holes: Main.allLengths
*WordLength>

 2 Define—In Atom, move the cursor over the name allLengths and press Ctrl-Alt-A.
This will add a skeleton definition, and your editor buffer should now contain
the following:

allLengths : List String -> List Nat
allLengths xs = ?allLengths_rhs

The skeleton definition is always a clause with the appropriate number of argu-
ments listed on the left side of the =, and with a hole on the right side. Idris uses
various heuristics to choose initial names for the arguments. By convention,
Idris chooses default names of xs, ys, or zs for Lists.

 3 Type—You can check the types of holes in Atom by pressing Ctrl-Alt-T with
the cursor over the hole you want to check. If you check the type of the
allLengths_rhs hole, you should see this:

xs : List String

allLengths_rhs : List Nat

 4 Define—You’ll write this definition by inspecting the list argument, named xs,
directly. This means that for every form the list can take, you need to explain
how to measure word lengths when it’s in that form. To tell the editor that you
want to inspect the first argument, press Ctrl-Alt-C in Atom with the cursor over
the variable xs in the first argument position. This expands the definition to
give the two forms that the argument xs could take:

allLengths : List String -> List Nat
allLengths [] = ?allLengths_rhs_1
allLengths (x :: xs) = ?allLengths_rhs_2

These are the two canonical forms of a list. That is, every list must be in one of
these two forms: it can either be empty (in the form []), or it can be non-empty,
containing a head element and the rest of the list (in the form (x :: xs)). It’s
a good idea at this point to rename x and xs to something more meaningful
than these default names:

allLengths : List String -> List Nat
allLengths [] = ?allLengths_rhs_1
allLengths (word :: words) = ?allLengths_rhs_2

60 CHAPTER 3 Interactive development with types
In each case, there’s a new hole on the right side to fill in. You can check the
types of these holes; type checking gives the expected return type and the types
of any local variables. For example, if you check the type of allLengths_rhs_2,
you’ll see the types of the local variables word and words, as well as the expected
return type:

word : String
words : List String

allLengths_rhs_2 : List Nat

 5 Refine—Idris has now told you which patterns are needed. Your job is to com-
plete the definition by filling in the holes on the right side. In the case where
the input is the empty list, the output is also the empty list, because there are no
words for which to measure the length:

allLengths [] = []

6 Refine—In the case where the input is non-empty, there’s a word as the first ele-
ment (word) followed by the remainder of the list (words). You need to return a
list with the length of word as its first element. For the moment, you can add a
new hole (?rest) for the remainder of the list:

allLengths : List String -> List Nat
allLengths [] = []
allLengths (word :: words) = length word :: ?rest

You can even test this incomplete definition at the REPL. Note that the REPL
doesn’t reload files automatically, because it runs independently of the interac-
tive editing in Atom, so you’ll need to reload explicitly using the :r command:

*WordLength> :r
Type Checking ./WordLength.idr
Holes: Main.rest
*WordLength> allLengths ["Hello", "Interactive", "Editors"]
5 :: ?rest : List Nat

For the hole rest, you need to calculate the lengths of the words in words. You
can do this with a recursive call to allLengths, to complete the definition:

allLengths : List String -> List Nat
allLengths [] = []
allLengths (word :: words) = length word :: allLengths words

You now have a complete definition, which you can test at the REPL after reloading:

*WordLength> :r
Type Checking ./WordLength.idr
*WordLength> allLengths ["Hello", "Interactive", "Editors"]
[5, 11, 7] : List Nat

It’s also a good idea to check whether Idris believes the definition is total.

*WordLength> :total allLengths
Main.allLengths is Total

61Interactive editing in Atom
Idris believes that allLengths is total because there are clauses for all possible well-
typed inputs, and the argument to the recursive call to allLengths is smaller (that is,
closer to the base case) than the input.

3.1.3 Data types and patterns

When you press Ctrl-Alt-C in Atom with the cursor over a variable on the left side of a
definition, it performs a case split on that variable, giving the possible patterns the vari-
able can match. But where do these patterns come from?

 Each data type has one or more constructors, which are the primitive ways of build-
ing values in that data type and give the patterns that can be matched for that data
type. For List, there are two:

 Nil, which constructs an empty list
 ::, an infix operator that constructs a list from a head element and a tail

Additionally, as you saw in chapter 2, there’s syntactic sugar for lists that allows a list to
be written as a comma-separated list of values in square brackets. Hence, Nil can also
be written as [].

 For any data type, you can find the constructors and thus the patterns to match
using :doc at the REPL prompt:

Idris> :doc List
Data type Prelude.List.List : (elem : Type) -> Type

Generic lists

Constructors:
Nil : List elem

Empty list

(::) : (x : elem) -> (xs : List elem) -> List elem

Totality checking
When Idris has successfully type-checked a function, it also checks whether it
believes the function is total. If a function is total, it’s guaranteed to produce a
result for any well-typed input, in finite time. Thanks to the halting problem, which we
discussed in chapter 1, Idris can’t decide in general whether a function is total, but
by analyzing a function’s syntax, it can decide that a function is total in many spe-
cific cases.

We’ll discuss totality checking in much more detail in chapters 10 and 11. For the
moment, it’s sufficient to know that Idris will consider a function total if

 It has clauses that cover all possible well-typed inputs
 All recursive calls converge on a base case

As you’ll see in chapter 11 in particular, the definition of totality also allows interac-
tive programs that run indefinitely, such as servers and interactive loops, provided
they continue to produce intermediate results in finite time.

62 CHAPTER 3 Interactive development with types
A non-empty list, consisting of a head element and the rest of
the list.
infixr 7

DOCUMENTATION IN ATOM You can get documentation directly in Atom
by pressing Ctrl-Alt-D, with the cursor over the name for which you want
documentation.

For Bool, for example, :doc reveals that the constructors are False and True:

Idris> :doc Bool
Data type Prelude.Bool.Bool : Type

Boolean Data Type

Constructors:
False : Bool

True : Bool

Therefore, if you write a function that takes a Bool as an input, you can provide
explicit cases for the inputs False and True.

 For example, to write the exclusive OR operator, you could follow these steps:

1 Type—Start by giving a type:

xor : Bool -> Bool -> Bool

 2 Define—Press Ctrl-Alt-A with the cursor over xor to add a skeleton definition:

xor : Bool -> Bool -> Bool
xor x y = ?xor_rhs

 3 Define—Press Ctrl-Alt-C over the x to give the two possible cases for x:

xor : Bool -> Bool -> Bool
xor False y = ?xor_rhs_1
xor True y = ?xor_rhs_2

4 Refine—Complete the definition by filling in the right sides:

xor : Bool -> Bool -> Bool
xor False y = y
xor True y = not y

TYPE CHECKING IN ATOM While developing a function, and particularly when
writing clauses by hand rather than using interactive editing features, it can
be a good idea to type-check what you have so far. The Ctrl-Alt-R command
rechecks the current buffer using the running Idris process. If it loads suc-
cessfully, the Atom status bar will report “File loaded successfully.”

The Nat type, which represents unbounded unsigned integers, is also defined by prim-
itive constructors. In Idris, a natural number is defined as being either zero, or one
more than (that is, the successor of) another natural number.

Idris> :doc Nat
Data type Prelude.Nat.Nat : Type

Natural numbers: unbounded, unsigned integers which can be
pattern matched.

63Interactive editing in Atom
Constructors:
Z : Nat

Zero

S : Nat -> Nat
Successor

DATA TYPES AND CONSTRUCTORS Data types are defined in terms of their con-
structors, as you’ll see in detail in chapter 4. The constructors of a data type
are the primitive ways of building that data type, so in the case of Nat, every
value of type Nat must be either zero or the successor of another Nat. The
number 3, for example, is written in primitive form as S (S (S Z)). That is, it’s
the successor (S) of 2 (written as S (S Z)).

Therefore, if you write a function that takes a Nat as an input, you can provide explicit
cases for the number zero (Z) or a number greater than zero (S k, where k is any non-
negative number). For example, to write an isEven function that returns True if a nat-
ural number input is divisible by 2, and returns False otherwise, you could define it
recursively (if inefficiently) as follows:

1 Type—Start by giving a type:

isEven : Nat -> Bool

 2 Define—Press Ctrl-Alt-A to add a skeleton definition:

isEven : Nat -> Bool
isEven k = ?isEven_rhs

NAMING CONVENTIONS As a naming convention, Idris chooses k by default for
variables of type Nat. Naming conventions can be set by the programmer
when defining data types, and you’ll see how to do this in chapter 4. In any
case, it’s usually a good idea to rename these variables to something more
informative.

 3 Define—Press Ctrl-Alt-C over the k to give the two possible cases for k:

isEven : Nat -> Bool
isEven Z = ?isEven_rhs_1
isEven (S k) = ?isEven_rhs_2

To complete the definition, you have to explain what to return when the input
is zero (Z) or when the input is non-zero (if the input takes the form S k, then k
is a variable standing for a number that’s one smaller than the input).

4 Refine—Complete the definition by filling in the right sides:

isEven : Nat -> Bool
isEven Z = True
isEven (S k) = not (isEven k)

You’ve defined this recursively. Zero is an even number, so you return True for
the input Z. If a number is even, its successor is odd, and vice versa, so you
return not (isEven k) for the input S k.

64 CHAPTER 3 Interactive development with types
3.2 Adding precision to types: working with vectors
In chapter 1, we discussed how having types as a first-class language construct allows us
to define more-precise types. As one example, you saw how lists could be given more-
precise types by including the number of elements in a list in its type, as well as the
type of the elements. In Idris, a list that includes both the number and the type of ele-
ments in its type is called a vector, defined as the data type Vect. The following listing
shows some example vectors.

import Data.Vect

fourInts : Vect 4 Int
fourInts = [0, 1, 2, 3]

sixInts : Vect 6 Int
sixInts = [4, 5, 6, 7, 8, 9]

tenInts : Vect 10 Int
tenInts = fourInts ++ sixInts

Vect isn’t defined in the Prelude, but it can be made available by importing the
Data.Vect library module. Modules are imported with an import statement at the top
of a source file:

import Data.Vect

PACKAGES: PRELUDE AND BASE Idris modules can be combined into packages,
from which individual modules can be imported. The Prelude is defined in a
package called prelude, from which all modules are imported automatically.
Idris programs also have access to a package called base, which defines

Listing 3.2 Vectors: lists with lengths encoded in the type (Vectors.idr)

Mutually defined functions
Idris processes input files from top to bottom and requires types and functions to be
defined before use. This is necessary due to complications that arise with dependent
types, where the definition of a function can affect a type.

It’s nevertheless sometimes useful to define two or more functions in terms of each
other. This can be achieved in a mutual block. For example, you could define isEven
in terms of an isOdd function, and vice versa:

mutual
isEven : Nat -> Bool
isEven Z = True
isEven (S k) = isOdd k

isOdd : Nat -> Bool
isOdd Z = False
isOdd (S k) = isEven k

Appending vectors using ++
also adds their lengths in the
type of the result.

65Adding precision to types: working with vectors
several commonly useful data structures and algorithms including Vect, but
from which modules must be imported explicitly. Up-to-date documentation
for the packages distributed with Idris is available at www.idris-lang.org/
documentation.

3.2.1 Refining the type of allLengths

To see how Vect works, you can refine the type of the allLengths function from sec-
tion 3.1.2 to use a Vect instead of a List, and redefine the function.

 To do so, create a new source file called WordLength_vec.idr containing only the
line import Data.Vect, and load it into the REPL. You can then check the documenta-
tion for Vect:

*WordLength_vec> :doc Vect
Data type Data.Vect.Vect : Nat -> Type -> Type

Vectors: Generic lists with explicit length in the type

Constructors:
Nil : Vect 0 a

Empty vector

(::) : (x : a) -> (xs : Vect k a) -> Vect (S k) a
A non-empty vector of length S k, consisting of a head element
and the rest of the list, of length k.
infixr 7

Notice that it has the same constructors as List, but they have different types that give
explicit lengths. Lengths are given as Nat, because they can’t be negative:

 The type of Nil explicitly states that the length is Z (displayed as the numeric lit-
eral 0 here).

 The type of :: explicitly states that the length is S k, given an element and a tail
of length k.

The same syntactic sugar applies as for List, translating a bracketed list of values such
as [1, 2, 3] to a sequence of :: and Nil: 1 :: 2 :: 3 :: Nil, in this case. In fact, this
syntactic sugar applies to any data type with constructors called Nil and ::.

Overloading names
The constructor names for both List and Vect are the same, Nil and ::. Names
can be overloaded, provided that different things with the same name are defined in
separate namespaces, which in practice usually means separate modules. Idris will
infer the appropriate namespace from the context in which the name is used.

You can explicitly indicate which of List or Vect is required using the:

Idris> the (List _) ["Hello", "There"]
["Hello", "There"] : List String

Idris> the (Vect _ _) ["Hello", "There"]
["Hello", "There"] : Vect 2 String

66 CHAPTER 3 Interactive development with types
To define allLengths using a Vect, you can follow a similar procedure as when defin-
ing it using List. The difference is that you must consider how the lengths of the
input and output are related.

 Figure 3.2 shows how, in the output list, there’s always an entry corresponding to
an entry in the input list. Therefore, you can make it explicit in the type that the out-
put vector has the same length as the input vector:

allLengths : Vect len String -> Vect len Nat

The len that appears in the input is a variable at the type level, standing for the length
of the input. Because the output uses the same variable at the type level, it’s explicit in
the type that the output has the same length as the input. Here’s how you can write
the function:

1 Type—Create an Atom buffer with the following contents to import Data.Vect
and give the type of allLengths:

import Data.Vect

allLengths : Vect len String -> Vect len Nat

 2 Define—As before, create a skeleton definition with Ctrl-Alt-A:

allLengths : Vect len String -> Vect len Nat
allLengths xs = ?allLengths_rhs

 3 Define—As before, press Ctrl-Alt-C over the xs to tell Idris that you’d like to
define the function by pattern matching on xs:

allLengths : Vect len String -> Vect len Nat
allLengths [] = ?allLengths_rhs_1
allLengths (x :: xs) = ?allLengths_rhs_2

As before, it’s a good idea at this point to rename the variables x and xs to
something more meaningful:

allLengths : Vect len String -> Vect len Nat

(continued)
The underscore (_) in the preceding expressions indicates to Idris that you would like
it to infer a value for that argument. You can use _ in an expression whenever there’s
only one valid value that would stand for that expression. You’ll see more about this
in section 3.4.

"Hot" 3

Vect 4 String Vect 4 Nat

"Dog" 3

"Jumping" 7

"Frog" 4

Figure 3.2 Calculating the lengths of words in a
list. Notice that each input has a corresponding
output, so the length of the output vector is always
the same as the length of the input vector.

67Adding precision to types: working with vectors
allLengths [] = ?allLengths_rhs_1
allLengths (word :: words) = ?allLengths_rhs_2

 4 Type—If you now inspect the types of the holes allLengths_rhs_1 and
allLengths_rhs_2, you’ll see more information than in the List version,
because the types are more precise. For example, in allLengths_rhs_1 you can
see that the only valid result is a vector with zero elements:

allLengths_rhs_1 : Vect 0 Nat

In allLengths_rhs_2 you can see how the lengths of the pattern variables and
output relate to each other, given some natural number n:

word : String
k : Nat
words : Vect k String

allLengths_rhs_2 : Vect (S k) Nat

That is, in the pattern (word :: words), word is a String, words is a vector of
kStrings, and for the output you need to provide a vector of Nat of length 1 + k,
represented as S k.

 5 Refine—For allLengths_rhs_1, there’s only one vector that has length zero,
which is the empty vector, so there’s only one value you can use to refine the
definition by filling in the hole:

allLengths : Vect len String -> Vect len Nat
allLengths [] = []
allLengths (word :: words) = ?allLengths_rhs_2

 6 Refine—For allLengths_rhs_2, the required type is Vect (S k) Nat, so the
result must be a non-empty vector (using ::). Also, you can make a value of
type Vect k Nat by calling allLengths recursively. You can leave a hole for the
first element in the resulting list, refining the definition by hand as follows:

allLengths : Vect len String -> Vect len Nat
allLengths [] = []
allLengths (word :: words) = ?wordlen :: allLengths words

You still have one hole in this result, ?wordlen, which will be the length of the
first word:

word : String
k : Nat
words : Vect k String

wordlen : Nat

7 Refine—To complete the definition, fill in the remaining hole by calculating the
length of the word x:

allLengths : Vect len String -> Vect len Nat
allLengths [] = []
allLengths (word :: words) = length word :: allLengths words

68 CHAPTER 3 Interactive development with types
The more precise type, describing how the lengths of the input and output relate,
means that the interactive editing mode can tell you more about the expressions
you’re looking for. You can also be more confident that the program behaves as
intended by ruling out any program that doesn’t preserve length by type-checking.

NAT AND DATA STRUCTURES You might notice a direct correspondence
between the constructors of Vect and the constructors of Nat. When you add
an element to a Vect with ::, you add an S constructor to its length. In prac-
tice, capturing the size of data structures like this is a very common use of Nat.

To illustrate how the more precise type rules out some incorrect programs, consider
the following implementation of allLengths, using List instead of Vect:

allLengths : List String -> List Nat
allLengths xs = []

This is well typed and it will be accepted by Idris, but it won’t work as intended
because there’s no guarantee that the output list has an entry corresponding to each
entry in the input. On the other hand, the following program with the more precise
type is not well typed and will not be accepted by Idris:

allLengths : Vect n String -> Vect n Nat
allLengths xs = []

This results in the following type error, which states that an empty vector was given
when a vector of length n was needed:

WordLength_vec.idr:4:14:When checking right hand side of allLengths:
Type mismatch between

Vect 0 Nat (Type of [])
and

Vect n Nat (Expected type)

As with the previous List-based version of allLengths, you can check that your new
definition is total at the REPL:

*WordLength_vec> :total allLengths
Main.allLengths is Total

If, for example, you remove the case for the empty list, you have a definition that is
well typed but partial:

allLengths : Vect len String -> Vect len Nat
allLengths (word :: words) = length word :: allLengths words

When you check this for totality, you’ll see this:

*WordLength_vec> :total allLengths
Main.allLengths is not total as there are missing cases

69Adding precision to types: working with vectors
3.2.2 Type-directed search: automatic refining

After step 3 in the previous section, you had the patterns for allLengths and holes for
the right sides, which you provided by refining directly:

allLengths : Vect n String -> Vect n Nat
allLengths [] = ?allLengths_rhs_1
allLengths (word :: words) = ?allLengths_rhs_2

Take another look at the types and the local variables for the allLengths_rhs_1 and
allLengths_rhs_2 holes:

allLengths_rhs_1 : Vect 0 Nat

word : String
k : Nat
words : Vect k String

allLengths_rhs_2 : Vect (S k) Nat

By looking carefully at the types, you could see how to construct values to fill these
holes. But not only do you have more information here, so does Idris!

 Given enough information in the type, Idris can search for a valid expression that
satisfies the type. In Atom, press Ctrl-Alt-S over the allLengths_rhs_1 hole, and you
should see that the definition has changed:

allLengths : Vect n String -> Vect n Nat
allLengths [] = []
allLengths (word :: words) = ?allLengths_rhs_2

Because there’s only one possible value for a vector of length zero, Idris has refined
this automatically.

 You can also try an expression search on the allLengths_rhs_2 hole. Press Ctrl-
Alt-S with the cursor over allLengths_rhs_2, and you should see this:

Totality annotations
For added confidence in a function’s correctness, you can annotate in the source
code that a function must be total. For example, you can write this:

total allLengths : Vect len String -> Vect len Nat
allLengths [] = []
allLengths (word :: words) = length word :: allLengths words

The total keyword before the type declaration means that Idris will report an error
if the definition isn’t total. For example, if you remove the allLengths [] case, this
is what Idris will report:

WordLength_vec.idr:5:1:

Main.allLengths is not total as there are missing cases

70 CHAPTER 3 Interactive development with types
allLengths : Vect n String -> Vect n Nat
allLengths [] = []
allLengths (word :: words) = 0 :: allLengths words

The required type was Vect (S k) Nat so, as before, Idris realized that the only possi-
ble result would be a non-empty vector. It also realized that it could find a value of
type Vect k Nat by calling allLengths recursively on words.

 For the Nat at the head of the vector, Idris has found the first value that satisfies
the type, 0, but this isn’t exactly what you want, so you can replace it with a hole—
?vecthead:

allLengths : Vect n String -> Vect n Nat
allLengths [] = []
allLengths (word :: words) = ?vecthead :: allLengths words

Checking the type of ?vecthead confirms that you’re looking for a Nat:

word : String
k : Nat
words : Vect k String

vecthead : Nat

As before, you can complete the definition by filling this hole with length word. So,
not only does the more precise type give you more confidence in the correctness of
the program and give you more information when writing the program, it also gives
Idris some information, allowing it to write a good bit of the program for you.

3.2.3 Type, define, refine: sorting a vector

For all the functions you’ve written so far in this chapter, you’ve followed this process:

1 Write a type.
 2 Create a skeleton definition.
 3 Pattern match on an argument.
4 Fill in the holes on the right side with a combination of type-driven expression

search and refining holes by hand.

Usually, there’s a little more work to do, however. For example, you may find you need
to create additional helper functions, inspect intermediate results, or refine the type
you initially gave for a function.

 You can see this in practice by creating a function that returns a sorted version of
an input vector. You can use insertion sort, which is a simple sorting algorithm that’s
easily implemented in a functional style, informally described as follows:

 Given an empty vector, return an empty vector.
 Given the head and tail of a vector, sort the tail of the vector and then insert the

head into the sorted tail such that the result remains sorted.

71Adding precision to types: working with vectors
You can write this interactively, beginning with the skeleton definition shown in listing
3.3. Open an Atom buffer and put this code into a file called VecSort.idr. Remember
that you can create the skeleton definition of insSort from the type with Ctrl-Alt-A.

import Data.Vect

insSort : Vect n elem -> Vect n elem
insSort xs = ?insSort_rhs

As you work through this process, I recommend that you inspect the types of each of
the holes that arise using Ctrl-Alt-T, and ensure that you understand the types of the
variables and the holes.

DEVELOPMENT WORKFLOW It’s typically useful to have an Atom window open
for interactively editing a file, as well as a terminal window with a REPL open
for testing, evaluation, checking documentation, and so on.

Having written the type for this function, implement it by doing the following:

1 Define—Case-split on xs with Ctrl-Alt-C, leading to this:

insSort : Vect n elem -> Vect n elem
insSort [] = ?insSort_rhs_1
insSort (x :: xs) = ?insSort_rhs_2

 2 Refine—Try an expression search on ?insSort_rhs_1, leading to this:

insSort : Vect n elem -> Vect n elem
insSort [] = []
insSort (x :: xs) = ?insSort_rhs_2

A sorted empty vector is itself an empty vector, as expected.

 3 Refine—Trying an expression search on ?insSort_rhs_2 is, unfortunately, less
effective:

insSort : Vect n elem -> Vect n elem
insSort [] = []
insSort (x :: xs) = x :: xs

Although Idris knows how long the vector should be, and it has local variables
of the correct types, the overall type of insSort isn’t precise enough for Idris to
fill in the hole with the program you intend.

EXPRESSION SEARCH As this example demonstrates, although expression
search can often lead you to a valid function, it’s not a substitute for under-
standing how the program works! You need to understand the algorithm, but
you can use expression search to help fill in the details.

Listing 3.3 A skeleton definition of insSort on vectors with an initial type
(VecSort.idr)

This type explicitly states that the
output must have the same length as
the input. The element type, elem, is
given by a type-level variable, so it
stands for any type.

72 CHAPTER 3 Interactive development with types
 4 Define—When you’re writing a function over a recursive data type, it’s often
effective to make recursive calls to the recursive parts of the structure. Here,
you can sort the tail with a recursive call to insSort xs and bind the result to a
locally defined variable:

insSort : Vect n elem -> Vect n elem
insSort [] = []
insSort (x :: xs) = let xsSorted = insSort xs in

?insSort_rhs_2

 5 Type—In ?insSort_rhs_2 you’re going to insert the head x into the sorted tail,
xsSorted. Because this is going to be a little more complex, you can lift the
hole to a top-level definition by pressing Ctrl-Alt-L with the cursor over
?insSort_rhs_2, which leads to the following:

insSort_rhs_2 : (x : elem) -> (xs : Vect k elem) ->
(xsSorted : Vect k elem) ->
Vect (S k) elem

insSort : Vect n elem -> Vect n elem
insSort [] = []
insSort (x :: xs) = let xsSorted = insSort xs in

insSort_rhs_2 x xs xsSorted

This has created a new top-level function with a new type but no implementa-
tion, and it has replaced the hole with a call to the new function. The argu-
ments to the new function are the local variables that were in scope in the hole
?insSort_rhs_2.

 6 Refine—Once you realize that the job of the new function is to insert x into the
xsSorted vector, you can edit the name and type of insSort_rhs_2 to reflect
this. You can remove the arguments that you aren’t going to need:

insert : (x : elem) -> (xsSorted : Vect k elem) -> Vect (S k) elem

insSort : Vect n elem -> Vect n elem
insSort [] = []
insSort (x :: xs) = let xsSorted = insSort xs in

insert x xsSorted

LIFTING DEFINITIONS When lifting a definition with Ctrl-Alt-L, Idris will gener-
ate a new definition with the same name as the hole, using all of the local vari-
ables in the generated type. In this case, you know you aren’t going to need
all of them, so you can edit out the unnecessary xs argument.

 7 Define—You now have to define insert. Again, create a skeleton definition:

insert : (x : elem) -> (xsSorted : Vect k elem) -> Vect (S k) elem
insert x xsSorted = ?insert_rhs

Then case-split on xsSorted, leading to this:

insert : (x : elem) -> (xsSorted : Vect k elem) -> Vect (S k) elem
insert x [] = ?insert_rhs_1
insert x (y :: xs) = ?insert_rhs_2

73Adding precision to types: working with vectors
 8 Refine—An expression search on insert_rhs_1 leads to the following:

insert : (x : elem) -> (xsSorted : Vect k elem) -> Vect (S k) elem
insert x [] = [x]
insert x (y :: xs) = ?insert_rhs_2

This works because Idris knows it’s looking for a vector with one element of
type elem, and the only thing available with type elem is x.

 9 Refine—For the (y :: xs) case, with the hole ?insert_rhs_2, you have a prob-
lem. There are two cases to consider:

 If x < y, the result should be x :: y :: xs, because the result won’t be
ordered if x is inserted after y.

 Otherwise, the result should begin with y, and then have x inserted into the
tail xs.

Your problem is that you know nothing about the element type elem. You need
to constrain it so that you know you can compare elements of type elem. You
can refine the type of insert (and correspondingly insSort) so that you can
do the necessary comparison:

insert : Ord elem =>
(x : elem) -> (xsSorted : Vect k elem) -> Vect (S k) elem

insert x [] = [x]
insert x (y :: xs) = ?insert_rhs_2

insSort : Ord elem => Vect n elem -> Vect n elem
insSort [] = []
insSort (x :: xs) = let xsSorted = insSort xs in

insert x xsSorted

Remember from chapter 2 that you constrain generic types by placing con-
straints such as Ord elem before => in the type. You’ll see more about this in
chapter 7.

 10 Define—You now need to check x < y and act on the result. One way to do this
is with an if...then...else construct:

insert : Ord elem =>
(x : elem) -> (xsSorted : Vect k elem) -> Vect (S k) elem

insert x [] = [x]
insert x (y :: xs) = if x < y then x :: y :: xs

else y :: insert x xs

Alternatively, you can use interactive editing to give more structure to the defi-
nition, and insert a case construct to match on an intermediate result. Press
Ctrl-Alt-M with the cursor over ?insert_rhs_2. This introduces a new case
expression with a placeholder for the value to be inspected (so the function
won’t type-check yet):

insert : Ord elem =>
(x : elem) -> (xsSorted : Vect k elem) -> Vect (S k) elem

insert x [] = [x]

74 CHAPTER 3 Interactive development with types
insert x (y :: xs) = case _ of
case_val => ?insert_rhs_2

The _ stands for an expression you need to provide in order for the function to
type-check successfully. You’ll need to fill in the _ with the expression you want
to match:

insert : Ord elem =>
(x : elem) -> (xsSorted : Vect k elem) -> Vect (S k) elem

insert x [] = [x]
insert x (y :: xs) = case x < y of

case_val => ?insert_rhs_2

 11 Define—You can now case-split on case_val in the usual way, with Ctrl-Alt-C,
leading to this:

insert : Ord elem =>
(x : elem) -> (xsSorted : Vect k elem) -> Vect (S k) elem

insert x [] = [x]
insert x (y :: xs) = case x < y of

False => ?insert_rhs_1
True => ?insert_rhs_3

12 Refine—Finally, you complete the implementation by filling in the new holes
insert_rhs_1 and insert_rhs_3. Unfortunately, expression search won’t help
you much here because there’s not enough information in the type, so you
need to fill these in by hand:

insert : Ord elem =>
(x : elem) -> (xsSorted : Vect k elem) -> Vect (S k) elem

insert x [] = [x]
insert x (y :: xs) = case x < y of

False => y :: insert x xs
True => x :: y :: xs

Once the definition is complete, you can test it at the REPL, like this:

*VecSort> insSort [1,3,2,9,7,6,4,5,8]
[1, 2, 3, 4, 5, 6, 7, 8, 9] : Vect 9 Integer

Remember totality checking!
Don’t forget to check that insSort is total:

*VecSort> :total insSort
Main.insSort is Total

It’s a good habit to check that the functions you define are total. If a function is type-
correct, but not total, it might appear to work when you test it, but there might still
be a subtle error on some unusual inputs, such as a missing pattern or possible non-
termination.

75Example: type-driven development of matrix functions
To summarize, following the type-define-refine process, you’ve done the following:

1 Written a type for insSort.
 2 Tried to define insSort until you encountered the need to insert, which you

lifted to a new top-level definition with its own type.
 3 Tried to define insert until you encountered the need to compare, at which

point you refined the types to support the ordering constraint on elem.
4 Continued to define insert using the refined type, and hence completed the

implementation of insSort.

Exercises

To conclude this section, here are some exercises to test your understanding of the
interactive editing mode and pattern matching on List and Vect.

 The following functions, or some variant on them, are defined in the Prelude or in
Data.Vect:

1 length : List a -> Nat
 2 reverse : List a -> List a
 3 map : (a -> b) -> List a -> List b
4 map : (a -> b) -> Vect n a -> Vect n b

For each of them, define your own version using interactive editing in Atom. Note
that you’ll need to use different names (such as my_length, my_reverse, my_map) to
avoid clashing with the names in the Prelude. You can test your answers at the REPL as
follows:

*ex_3_2> my_length [1..10]
10 : Nat

*ex_3_2> my_reverse [1..10]
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1] : List Integer

ex_3_2> my_map (2) [1..10]
[2, 4, 6, 8, 10, 12, 14, 16, 18, 20] : List Integer

*ex_3_2> my_vect_map length ["Hot", "Dog", "Jumping", "Frog"]
[3, 3, 7, 4] : Vect 4 Nat

Don’t forget to check that your definitions are total!

3.3 Example: type-driven development of matrix functions
The main reason you might use vectors, with the length explicit in the type, as opposed
to lists, is to have the lengths of the vectors help guide you to a working function more
quickly. This can be particularly helpful when you work with two-dimensional vectors.
These, in turn, can be helpful for implementing operations on matrices, which have
several applications in programming, such as 3D graphics.

 A matrix, in mathematics, is a rectangular array of numbers arranged in rows and
columns. Figure 3.3 shows an example 3 × 4 matrix in both mathematical notation,

76 CHAPTER 3 Interactive development with types
and in Idris notation as a vector of vectors. Notice that when representing a matrix as
nested vectors, the dimensions of the matrix become explicit in the type.

3.3.1 Matrix operations and their types

When implementing operations on matrices, such as addition and multiplication, it’s
important to check that the dimensions of the vectors you’re working with are appro-
priate for the operations. For example:

 When adding matrices, each matrix must have exactly the same dimensions.
Addition works by adding corresponding elements in each matrix. For exam-
ple, you can add two 3 × 2 matrices as follows:

The following addition of a 2 × 2 matrix to a 3 × 2 matrix is invalid because
there are no corresponding elements in the third row:

So, the type of matrix addition could be as follows:

addMatrix : Num numType =>
 Vect rows (Vect cols numType) ->

 Vect rows (Vect cols numType) ->
 Vect rows (Vect cols numType)

In other words, for some numeric type numType, adding a rows × cols matrix to
a rows × cols matrix results in a rows × cols matrix.

 When multiplying matrices, the number of columns in the left matrix must be
the same as the number of rows in the right matrix. Then, multiplication works
as follows:

1 2 3 4
5 6 7 8
9 10 11 12

3 x 4 matrix Vect 3 (Vect 4 Int)

[1,

[5,

[9,

[2,

6,

10,

3,

7,

11,

 4],

 8],

12]]

Figure 3.3 Representation of a matrix as
two-dimensional vectors. On the left, the
matrix is in mathematical notation. The same
matrix is represented in Idris on the right.

1 2
3 4
5 6

 7 8

9 10
11 12

+
8 10
12 14
16 18

=

1 2
3 4
5 6

7 8
9 10

+ ???=

77Example: type-driven development of matrix functions

Here, multiplying a 3 × 2 matrix by a 2 × 4 matrix results in a 3 × 4 matrix. The
value in row x, column y in the result is the sum of the product of correspond-
ing elements in row x of the left input, and column y of the right input. So the
type of matrix multiplication could be as follows:

multMatrix : Num numType =>
Vect n (Vect m numType) -> Vect m (Vect p numType) ->
Vect n (Vect p numType)

In other words, for some numeric type numType, multiplying an n × m matrix by
an m × p matrix results in an n × p matrix.

3.3.2 Transposing a matrix

A useful operation when manipulating matrices is transposition, which converts rows
to columns and vice versa. For example, a 3 × 2 matrix becomes a 2 × 3 matrix:

You can write a transposeMat function that, in general, converts an m × n matrix into
an n × m matrix, representing matrices as nested vectors. As usual, you can write the
function interactively, where each step is broadly characterized as one of type, define,
or refine. From this point, I’ll generally assume you’re comfortable with the interac-
tive commands in Atom, and I’ll describe the overall type-driven process rather than
the specifics of building the function.

1 Type—Begin by giving a type for transposeMat:

transposeMat : Vect m (Vect n elem) -> Vect n (Vect m elem)

For matrix arithmetic, in the types of addMatrix and multMatrix, you need to
constrain the element type to be numeric. Here, though, the element type of
the matrix, elem, could be anything. You’re not going to inspect it or use it at
any point in the implementation of transposeMat; you merely change the rows
to columns and columns to rows.

× =
1
3
5

2
4
6

7
11

8
12

9
13

10
14

Row 2 column 3 of result = 3 × 9 + 4 × 13 = 79

29
65
101

32
72
112

35
79
123

38
86
134

1 2
3 4
5 6

 ... transposed to ...
1 3 5
2 4 6

78 CHAPTER 3 Interactive development with types
 2 Define—Create a skeleton definition, and then case-split on the input vector:

transposeMat : Vect m (Vect n elem) -> Vect n (Vect m elem)
transposeMat [] = ?transposeMat_rhs_1
transposeMat (x :: xs) = ?transposeMat_rhs_2

 3 Type—When Idris creates new holes, either from a case split or an incomplete
result of an expression search, it’s always a good idea to inspect the types of
those holes to get some insight into how to proceed. First, take a look at the
type of ?transposeMat_rhs_1:

elem : Type
n : Nat

transposeMat_rhs_1 : Vect n (Vect 0 elem)

Here, you’re trying to convert a 0 × n vector into an n × 0 vector, so you need to
create n copies of an empty vector. We’ll return to this case later; for now, you
can rename the hole to createEmpties and lift it to a top-level function with
Ctrl-Alt-L:

createEmpties : Vect n (Vect 0 elem)

transposeMat : Vect m (Vect n elem) -> Vect n (Vect m elem)
transposeMat [] = createEmpties
transposeMat (x :: xs) = ?transposeMat_rhs_2

 4 Type—Look at the type of ?transposeMat_rhs_2:

elem : Type
n : Nat
x : Vect n elem
k : Nat
xs : Vect k (Vect n elem)

transposeMat_rhs_2 : Vect n (Vect (S k) elem)

You have xs, which is a k × n matrix, and you need to make an n × (S k) matrix.

 5 Define—One insight you need here is that it’s likely easier to build an n × (S k)
matrix from an n × k matrix, because at least one of the dimensions is correct.
You can create such a matrix by transposing xs:

transposeMat (x :: xs) = let xsTrans = transposeMat xs in
?transposeMat_rhs_2

 6 Type—You can also lift ?transposeMat_rhs_2 to a top-level function, renaming
it transposeHelper. This results in the following:

transposeHelper : (x : Vect n elem) -> (xs : Vect k (Vect n elem)) ->
(xsTrans : Vect n (Vect k elem)) -> Vect n (Vect (S k) elem)

The type for transposeHelper is generated from the types of the local variables
you have access to: x, xs, and xsTrans. It will take these variables as inputs, and
produce a Vect n (Vect (S k) elem) as output.

79Example: type-driven development of matrix functions
 7 Type—At this stage, it’s good to look more closely at the types of the variables x,
xs, and xsTrans and try to use these types to visualize what you need to do to
complete transposeMat.

For the sake of visualization, let’s take n = 4 and k = 2. Figure 3.4 shows an
original two-dimensional vector, of the form (x :: xs), where x is the first row
and xs is the rest of the rows, built with these dimensions. It identifies the com-
ponents x and xs, and it shows the result of transposing xs and the expected
result of the whole operation.

What you need to do, therefore, is add each element of x to the vector in the
corresponding element of xsTrans; you won’t need xs in transposeHelper. If
you delete this by hand in the type of transposeHelper and the application in
transposeMat, you get this:

transposeHelper : (x : Vect n elem) -> (xsTrans : Vect n (Vect k elem)) ->
Vect n (Vect (S k) elem)

transposeMat : Vect m (Vect n elem) -> Vect n (Vect m elem)
transposeMat [] = createEmpties
transposeMat (x :: xs) = let xsTrans = transposeMat xs in

transposeHelper x xsTrans

 8 Define—To implement transposeHelper, you can add a skeleton definition,
pattern match on x and xsTrans, and then use expression search to complete
the definition. There’s enough information for Idris to fill in the details itself:

transposeHelper : (x : Vect n elem) -> (xsTrans : Vect n (Vect k elem)) ->
Vect n (Vect (S k) elem)

transposeHelper [] [] = []
transposeHelper (x :: xs) (y :: ys) = (x :: y) :: transposeHelper xs ys

Rather than typing this in directly, try to build it using the interactive com-
mands. It’s possible to write this function from the type using only Ctrl-Alt-A,
Ctrl-Alt-C, Ctrl-Alt-S, and cursor movements.

CASE SPLITTING ON VECTORS If you case-split on x and then case-split on
xsTrans, notice that Idris only gives one possible pattern for xsTrans. This is
because the types of x and xsTrans state that both must have the same length.

x

xs

[5,

[6,

[7,

[8,

9],

10],

11],

12]

]

[

xs_trans

[1,

[5,

[9,

[2,

6,

10,

3,

7,

11,

 4],

 8],

12]]

Result

[1,

[2,

[3,

[4,

[5,

6,

7,

8,

 9],

 10],

 11],

 12]]

Figure 3.4 The components of the vector you’re transposing (x and xs), along
with the result of transposing xs, and the expected overall result

80 CHAPTER 3 Interactive development with types
9 Define—All that remains is to implement createEmpties. You can implement
this using a library function, replicate:

*transpose> :doc Vect.replicate
Data.Vect.replicate : (n : Nat) -> (x : a) -> Vect n a

Repeat some value n times
Arguments:

n : Nat -- the number of times to repeat it
x : a -- the value to repeat

If you create a skeleton definition of createEmpties from its type, you’ll see the
following:

createEmpties : Vect n (Vect 0 elem)
createEmpties = ?createEmpties_rhs

You need to call replicate to build a vector of n empty lists. Unfortunately,
because there are no local variables available from the patterns on the left side,
the natural definition results in an error message:

createEmpties : Vect n (Vect 0 elem)
createEmpties = replicate n [] -- "No such variable n"

The problem is that n is a type-level variable, and not accessible to the defini-
tion of createEmpties. Shortly, in section 3.4, you’ll see how to handle type-
level variables in general, and how you might write createEmpties directly. For
the moment, because the type dictates that there’s only one valid value for the
length argument to replicate, you can use an underscore instead:

createEmpties : Vect n (Vect 0 elem)
createEmpties = replicate _ []

The implementation of transposeMat is now complete. For reference, the complete
definition is given in listing 3.4. You can test it at the REPL:

*transpose> transposeMat [[1,2], [3,4], [5,6]]
[[1, 3, 5], [2, 4, 6]] : Vect 2 (Vect 3 Integer)

createEmpties : Vect n (Vect 0 elem)
createEmpties = replicate _ []

transposeHelper : (x : Vect n elem) ->
(xsTrans : Vect n (Vect k elem)) ->
Vect n (Vect (S k) elem)

transposeHelper [] [] = []
transposeHelper (x :: xs) (y :: ys) = (x :: y) :: transposeHelper xs ys

transposeMat : Vect m (Vect n elem) -> Vect n (Vect m elem)
transposeMat [] = createEmpties
transposeMat (x :: xs) = let xsTrans = transposeMat xs in

transposeHelper x xsTrans

Listing 3.4 Complete definition of matrix transposition (Matrix.idr)

81Example: type-driven development of matrix functions
Exercises

1 Reimplement transposeMat using zipWith instead of transposeHelper.
You can test your answer at the REPL as follows:

*ex_3_3_3> transposeMat [[1,2], [3,4], [5,6]]
[[1, 3, 5], [2, 4, 6]] : Vect 2 (Vect 3 Integer)

 2 Implement addMatrix : Num a => Vect n (Vect m a) -> Vect n (Vect m a) -> Vect n
(Vect m a).

You can test your answer at the REPL as follows:

*ex_3_3_3> addMatrix [[1,2], [3,4]] [[5,6], [7,8]]
[[6, 8], [10, 12]] : Vect 2 (Vect 2 Integer)

 3 Implement a function for multiplying matrices, following the description given in
section 3.3.1.

Hint: This definition is quite tricky and involves multiple steps. Consider the fol-
lowing:

 You have a left matrix of dimensions n × m, and a right matrix of dimensions m × p.
A good start is to use transposeMat on the right matrix.

 Remember that you can use Ctrl-Alt-L to lift holes to top-level functions.
 Remember to pay close attention to the types of the local variables and the types

of the holes.
 Remember to use Ctrl-Alt-S to search for expressions, and pay close attention to

the types of any resulting holes.

You can test your answer at the REPL as follows:

*ex_3_3_3> multMatrix [[1,2], [3,4], [5,6]] [[7,8,9,10], [11,12,13,14]]
[[29, 32, 35, 38],
[65, 72, 79, 86],
[101, 112, 123, 134]] : Vect 3 (Vect 4 Integer)

Code reuse
When building a definition interactively using the type-define-refine process, it’s good
to look out for parts of the definition that could be made more generic, or that could
instead be implemented using existing library functions.

For example, transposeHelper has a structure very similar to the library function
zipWith, which applies a function to corresponding elements in two vectors and is
defined as follows:

zipWith : (a -> b -> c) -> Vect n a -> Vect n b -> Vect n c
zipWith f [] [] = []
zipWith f (x :: xs) (y :: ys) = f x y :: zipWith f xs ys

82 CHAPTER 3 Interactive development with types
3.4 Implicit arguments: type-level variables
You’ve now seen several definitions with variables at the type level that can stand
either for types or values. For example:

reverse : List elem -> List elem

Here, elem is a type-level variable standing for the element type of the list. It appears
twice, in the input type and the return type, so the element type of each must be the
same.

append : Vect n elem -> Vect m elem -> Vect (n + m) elem

Here, elem is again a type-level variable standing for the element type of the vectors. n
and m are type-level variables standing for the lengths of the input vectors, and they’re
used again in the output to describe how the length of the output relates to the length
of the inputs.

 These type-level variables aren’t declared anywhere else. Because types are first
class, type-level variables can also be brought into scope and used in definitions. These
type-level variables are referred to as implicit arguments to the functions reverse and
append. In this section, you’ll see how implicit arguments work, and how to use them
in definitions.

3.4.1 The need for implicit arguments

To illustrate the need for implicit arguments, let’s take a look at how you might define
append without them. You could make the elem, n, and m arguments to append
explicit, resulting in the following definition:

append : (elem : Type) -> (n : Nat) -> (m : Nat) ->
Vect n elem -> Vect m elem -> Vect (n + m) elem

append elem Z m [] ys = ys
append elem (S k) m (x :: xs) ys = x :: append elem k m xs ys

But if you did so, you’d also have to be explicit about the element type and lengths
when calling append:

*Append_expl> append Char 2 2 ['a','b'] ['c','d']
['a', 'b', 'c', 'd'] : Vect 4 Char

Given the types of the arguments ['a', 'b'] and ['c', 'd'], there’s only one possible
value for each of the arguments elem (which must be a Char), n (which must be 2,
from the length of ['a', 'b']), and m (which must also be 2, from the length of
['c','d']). Any other value for any of these would not be well typed.

 Because there is enough information in the types of the vector arguments, Idris
can infer the values for the a, n, and m arguments. You can therefore write this:

*Append> append _ _ _ ['a','b'] ['c','d']
['a', 'b', 'c', 'd'] : Vect 4 Char

83Implicit arguments: type-level variables
Using implicit arguments avoids the need for writing details explicitly that can be
inferred by Idris. Making elem, n, and m implicit in the type of append means that you
can refer to them directly in the type where necessary, without needing to give explicit
values when calling the function.

3.4.2 Bound and unbound implicits

Let’s take another look at the types of reverse and append, with implicit arguments:

reverse : List elem -> List elem
append : Vect n elem -> Vect m elem -> Vect (n + m) elem

The names elem, n, and m are called unbound implicits. This is because their names are
used directly, without being declared (or bound) anywhere else. You could also have
written these types as follows:

reverse : {elem : Type} -> List elem -> List elem
append : {elem : Type} -> {n : Nat} -> {m : Nat} ->

Vect n elem -> Vect m elem -> Vect (n + m) elem

Here, the implicit arguments have been explicitly bound in the type. The notation
{x : S} -> T denotes a function type where the argument is intended to be inferred by
Idris, rather than written directly by the programmer.

 When you write a type with unbound implicits, Idris will look for undefined names
in the type, and turn them internally into bound implicits. Consider this example:

append : Vect n elem -> Vect m elem -> Vect (n + m) elem

First, Idris identifies that elem, n, and m are undefined, so it internally rewrites the type
as follows:

append : {elem : _} -> {n : _} -> {m : _} ->
Vect n elem -> Vect m elem -> Vect (n + m) elem

Implicit values
An underscore (_) in a function call means that you want Idris to work out an implicit
value for the argument, given the information in the rest of the expression:

*Append> append _ _ _ ['a','b'] ['c','d']
['a', 'b', 'c', 'd'] : Vect 4 Char

Idris will report an error if it can’t:

*Append> append _ _ _ _ ['c','d']
(input):Can't infer argument n to append,

Can't infer explicit argument to append

Here, Idris reports that it can’t work out the length of the first vector, or the first vector
itself. Unlike holes, which stand for parts of expressions that aren’t yet written, under-
scores stand for parts of expressions for which there’s only one valid value. It’s an
error if Idris can’t infer a unique value for an underscore.

84 CHAPTER 3 Interactive development with types
Note that it has not attempted to fill in types for the new arguments, but instead has
given them as underscores in the hope that it will be able to infer them from some
other information in the rest of the type. Here, this results in the following:

append : {elem : Type} -> {n : Nat} -> {m : Nat} ->
Vect n elem -> Vect m elem -> Vect (n + m) elem

Normally, for conciseness, you leave implicits unbound, but in some situations, it’s
useful to use bound implicits instead:

 For clarity and readability, it can be useful to give explicit types to implicit
arguments.

 If there’s a dependency between an implicit argument and some other argu-
ment, you may need to use a bound implicit to make this clear to Idris.

3.4.3 Using implicit arguments in functions

Internally, Idris treats implicit arguments like any other argument, but with the nota-
tional convenience that the programmer doesn’t need to provide them explicitly. As a
result, you can refer to implicit arguments inside function definitions, and even case-
split on them.

 For example, how can you find the length of a vector? You could do this by case
splitting on the vector itself:

length : Vect n elem -> Nat
length [] = Z
length (x :: xs) = 1 + length xs

Because the length is part of the type, you could also refer to it directly:

length : Vect n elem -> Nat
length {n} xs = n

The notation {n} in a pattern brings the implicit argument n into scope, allowing you
to use it directly.

 More generally, you can give explicit values for implicit arguments by using the
notation {n = value}, where n is the name of an implicit argument:

Unbound implicit names
In practice, Idris will not treat every undefined name as an unbound implicit—only
names that begin with a lowercase letter and that appear either on their own or in a
function argument position. Given the following,

test : f m a -> b -> a

m appears in an argument position, as does a. b appears on its own, and f only
appears in a function position. As a result, m, a, and b are treated as unbound implic-
its. f isn’t treated as an unbound implicit, meaning that it must be defined elsewhere
for this type to be valid.

85Implicit arguments: type-level variables
*Append> append {elem = Char} {n = 2} {m = 3}
append : Vect 2 Char -> Vect 3 Char -> Vect 5 Char

Here, you’ve partially applied append to its implicit arguments only, giving a specialized
function for appending a vector of two Chars to a vector of three Chars.

 This notation can also be used on the left side of a definition to case-split on an
implicit argument. For example, to implement createEmpties in section 3.3.2, you
could have written it directly by case splitting on the length n after bringing it into
scope:

createEmpties : Vect n (Vect 0 a)
createEmpties {n} = ?createEmpties_rhs

If you case-split on n in Atom, you’ll see this:

createEmpties : Vect n (Vect 0 a)
createEmpties {n = Z} = ?createEmpties_rhs_1
createEmpties {n = (S k)} = ?createEmpties_rhs_2

Finally, you can complete the definition with an expression search for both of the
remaining holes:

createEmpties : Vect n (Vect 0 a)
createEmpties {n = Z} = []
createEmpties {n = (S k)} = [] :: createEmpties

Note that in the recursive call, createEmpties is sufficient. There’s no need to pro-
vide an explicit value for the length because only one value (k) would type-check. On
the other hand, if you try at the REPL without a value for the length, Idris will report
an error:

*transpose> createEmpties
(input):Can't infer argument n to createEmpties,

Can't infer argument a to createEmpties

You can solve this either by giving explicit values for n and elem, or giving a target type
for the expression:

*transpose> createEmpties {a=Int} {n=4}
[[], [], [], []] : Vect 4 (Vect 0 Int)

*transpose> the (Vect 4 (Vect 0 Int)) createEmpties
[[], [], [], []] : Vect 4 (Vect 0 Int)

Type and argument erasure
Because implicit arguments are, internally, treated the same as any other argument,
you might wonder what happens at runtime. Generally, you use implicit arguments to
give precise types to programs, so does this mean that type information has to be
compiled and present at runtime?

Fortunately, the Idris compiler is aware of this problem. It will analyze a program
before compiling it so that any arguments that are only used for type checking won’t
be present at runtime.

86 CHAPTER 3 Interactive development with types
3.5 Summary
 Functions in Idris are defined by collections of pattern-matching equations.
 Patterns arise from the constructors of a data type.
 The Atom text editor provides an interactive editing mode that uses the type to

help direct function implementation. Similar modes are available for Emacs
and Vim.

 Interactive editing commands provide natural tools for following the process of
type, define, refine.

 Interactive editing provides a command for searching for a valid expression
that satisfies the type of a hole.

 More-precise types, such as Vect, give more information to the compiler both
to help check that a function is correct, and to help constrain expression
searches.

 Matrices are two-dimensional vectors, with the dimensions encoded in the type.
Operations on matrices such as addition and multiplication can be given types
that precisely describe how the operations affect the dimensions.

 The type-define-refine process helps you to implement matrix operations with
precise types by using the type to direct the implementation of each subexpres-
sion and create appropriate helper functions.

 Type-level variables are implicit arguments to functions, which can be brought
into scope and used like any other arguments by enclosing them in braces {}.

User-defined data types
Type-driven development involves not only giving precise types to functions, as
you’ve seen so far, but also thinking about exactly how data is structured. In a sense,
programming (pure functional programming, in particular) is about transforming
data from one form to another. Types allow us to describe the form of that data,
and the more precise we make these descriptions, the more guidance the language
can give in implementing transformations on that data.

 Several useful data types are distributed as part of the Idris libraries, many of
which we’ve used so far, such as List, Bool, and Vect. Other than being defined
directly in Idris, there’s nothing special about these data types. In any realistic pro-
gram, you’ll need to define your own data types to capture the specific require-
ments of the problem you’re solving and the specific forms of data you’re working
with. Not only that, but there’s a significant payoff to thinking carefully about the
design of data types: the more precisely types capture the requirements of a prob-
lem, the more benefit you’ll get from interactive type-directed editing.

This chapter covers
 Defining your own data types

 Understanding different forms of data types

 Writing larger interactive programs in the type-
driven style
87

88 CHAPTER 4 User-defined data types
 In this chapter, therefore, we’ll look at how to define new data types. You’ll see the
various forms of data types in a number of small example functions. We’ll also start to
work on a larger example, an interactive data store, that we’ll extend in the coming
chapters. At first, we’ll store only strings, accessing them by an integer index, but even
in this small example you’ll see how user-defined types and dependent types can help
build an interactive interface, dealing safely with possible runtime errors.

4.1 Defining data types
Data types are defined by a type constructor and one or more data constructors. In fact,
you’ve already seen these when you used :doc to see the details of a data type. For
example, the following listing shows the output of :doc List, annotated to highlight
the type and data constructors.

Data type Prelude.List.List : (elem : Type) -> Type
Generic lists

Constructors:
Nil : List elem

Empty list

(::) : elem -> List elem -> List elem
A non-empty list, consisting of a head element and the rest of
the list.

Using data constructors is the canonical way of building the types given by the type
constructor. In the case of List, this means that every value with a type of the form
List elem is either Nil or takes the form x :: xs for some element x and the remain-
der of the list, xs.

 We’ll classify types into five basic groups, although they’re all defined with the
same syntax:

 Enumerated types—Types defined by giving the possible values directly
 Union types—Enumerated types that carry additional data with each value
 Recursive types—Union types that are defined in terms of themselves
 Generic types—Types that are parameterized over some other types
 Dependent types—Types that are computed from some other value

 In this section, you’ll see how to define enumerated types, union types, recursive
types, and generic types; we’ll discuss dependent types in the next section. If you’ve
programmed in a functional language before, or in any language that allows you to
define generic types, the types we discuss in this section should be familiar, even if the
notation is new.

Listing 4.1 Type and data constructors from :doc

The type constructor for
List has a function type,
which takes a Type as an
input and returns a Type.

The data constructor (::) takes two
arguments and returns a list.

The data constructor Nil takes no
arguments and returns an empty list.

89Defining data types
NAMING CONVENTIONS By convention, I’ll use an initial capital letter for both
type constructors and data constructors, and an initial lowercase letter for
functions. There’s no requirement to do so, but it gives a useful visual indica-
tion to the reader of the code.

4.1.1 Enumerations

An enumerated type is directly defined by giving the valid values for that type. The sim-
plest example is Bool, which is defined as follows in the Prelude:

data Bool = False | True

To define an enumerated data type, you give the data keyword to introduce the decla-
ration, and then give the name of the type constructor (in this case, Bool) and list the
names of the data constructors (in this case True and False).

 Figure 4.1 shows another example, defining an enumerated type for representing
the four cardinal points on a compass.

Data constructor names are separated by a vertical bar, |, and there’s no restriction
on how the declaration is laid out (other than the usual layout rule that all declara-
tions begin in precisely the same column). For example, they could each be on a dif-
ferent line:

data Direction = North
| East
| South
| West

Once you’ve defined a data type, you can use it to define functions interactively. For
example, you could define a turnClockwise function as follows, with the usual pro-
cess of type, define, refine:

1 Type—Write a function type with Direction as the input and output, and then
create a skeleton definition:

turnClockwise : Direction -> Direction
turnClockwise x = ?turnClockwise_rhs

 2 Define —Define the function by case splitting on x:

turnClockwise : Direction -> Direction
turnClockwise North = ?turnClockwise_rhs_1

data Direction = North | East | South | West

Name of the
type constructor

List of data constructor
names, separated by a |

Introduces a
new data type

Figure 4.1 Defining a Direction
data type (Direction.idr)

90 CHAPTER 4 User-defined data types
turnClockwise East = ?turnClockwise_rhs_2
turnClockwise South = ?turnClockwise_rhs_3
turnClockwise West = ?turnClockwise_rhs_4

3 Refine —Fill in the holes on the right sides:

turnClockwise : Direction -> Direction
turnClockwise North = East
turnClockwise East = South
turnClockwise South = West
turnClockwise West = North

4.1.2 Union types

A union type is an extension of an enumerated type in which the constructors of the
type can themselves carry data. For example, you could create an enumeration type
for shapes:

data Shape = Triangle | Rectangle | Circle

You may want to store more information with a shape, so that you can draw it, for
example, or calculate its area. This information will differ depending on the shape:

 For a triangle, you might want to know the length of its base and its height.
 For a rectangle, you might want to know its length and height.
 For a circle, you might want to know its radius.

To represent this information, each of the data constructors, Triangle, Rectangle,
and Circle, can be given argument types that carry this data using Doubles to repre-
sent dimensions. Figure 4.2 shows some example shapes and their representations.

You can represent shapes in this form as an Idris data type:

data Shape = Triangle Double Double
| Rectangle Double Double
| Circle Double

Triangle 4.0 2.5

2.5

4.0

Rectangle 4.0 2.5

Circle 2.0

2.5

4.0

2.0 Figure 4.2 Example shapes represented as
a union type. Triangle takes two
Doubles, for base and height; Rectangle
takes two Doubles, for width and height;
Circle takes a Double for radius.

91Defining data types
Listing 4.2 shows how you might define an area function that calculates the area of a
shape for each of these possibilities. As an exercise, rather than typing in this function
directly, try to construct it using the interactive editing tools in Atom.

data Shape = Triangle Double Double
| Rectangle Double Double
| Circle Double

area : Shape -> Double
area (Triangle base height) = 0.5 * base * height
area (Rectangle length height) = length * height
area (Circle radius) = pi * radius * radius

If you check the documentation for Shape using :doc, you can see how this data decla-
ration translates into type and data constructors:

*Shape> :doc Shape
Data type Main.Shape : Type

Constructors:
Triangle : Double -> Double -> Shape

Rectangle : Double -> Double -> Shape

Circle : Double -> Shape

When you define new data types, it’s also a good idea to provide documentation that
will be displayed with :doc, using documentation comments. In this case, it helps indi-
cate what each Double is for. Documentation comments are laid out in data declara-
tions by giving the comment before each constructor:

||| Represents shapes
data Shape = ||| A triangle, with its base length and height

Triangle Double Double
| ||| A rectangle, with its length and height

 Rectangle Double Double
| ||| A circle, with its radius

Circle Double

This is rendered as follows with :doc:

*Shape> :doc Shape
Data type Main.Shape : Type

Represents shapes

Constructors:
Triangle : Double -> Double -> Shape

A triangle, with its base length and height

Rectangle : Double -> Double -> Shape
A rectangle, with its length and height

Circle : Double -> Shape
A circle, with its radius

Listing 4.2 Defining a Shape type and calculating its area (Shape.idr)

pi is defined in the
Prelude as a constant.

92 CHAPTER 4 User-defined data types
4.1.3 Recursive types

Types can also be recursive, that is, defined in terms of themselves. For example, Nat is
defined recursively in the Prelude as follows:

data Nat = Z | S Nat

The Prelude also defines functions and notation to allow Nat to be used like any other
numeric type, so rather than writing S (S (S (S Z))), you can simply write 4. Never-
theless, in its primitive form it’s defined using data constructors.

Data type syntax
There are two forms of data declaration. In one, as you’ve already seen, you list the
data constructors and the types of their arguments:

data Shape = Triangle Double Double
 | Rectangle Double Double
 | Circle Double

It’s also possible to define data types by giving their type and data constructors
directly, in the form shown by :doc. You could define Shape as follows:

data Shape : Type where
Triangle : Double -> Double -> Shape
Rectangle : Double -> Double -> Shape
Circle : Double -> Shape

This is identical to the previous declaration. In this case, it’s a little more verbose,
but this syntax is more general and flexible. You’ll see more of this shortly when we
define dependent types.

I’ll use both syntaxes throughout the book. Generally, I’ll use the concise form,
unless I need the additional flexibility.

Nat and efficiency
It would be reasonable to be concerned about the efficiency of Nat given that it’s
defined in terms of constructors. There’s no need to worry, though, for three reasons:

 In practice, Nat is primarily used structurally, to describe the size of a data
structure such as Vect in its type, so the size of a Nat corresponds to the
size of the data structure itself.

 When a program is compiled, types are erased, so a Nat that appears at the
type level, such as in the length of a Vect, is erased.

 Internally, the compiler optimizes the representation of Nat so that it’s really
stored as a machine integer.

93Defining data types
You can use a recursive type to extend the Shape example from the previous section to
represent larger pictures. We’ll define a picture as being one of the following:

 A primitive shape
 A combination of two other pictures
 A picture rotated through an angle
 A picture translated to a different location

Note that three of these are defined in terms of pictures themselves. You could define
a picture type following the preceding informal description, as shown next.

data Picture = Primitive Shape
| Combine Picture Picture
| Rotate Double Picture
| Translate Double Double Picture

Figure 4.3 shows an example of the sort of picture you could represent with this data
type. For each of the primitive shapes, we’ll consider its location to be the top left of
an imaginary box that bounds the shape.

We know that there are three subpictures, so to represent this in code, you can begin
(define) by using Combine to put three subpictures together:

testPicture : Picture
testPicture = Combine ?pic1 (Combine ?pic2 ?pic3)

To continue, you know that each subpicture is translated to a specific position, so you
can fill in those details (refine), leaving holes for the primitive shapes themselves:

Listing 4.3 Defining a Picture type recursively, consisting of Shapes and smaller
Pictures (Picture.idr)

Uses the Shape type defined
earlier as the primitive

Builds a picture by combining
two smaller pictures

Builds a picture by rotating
another picture through an angle

Builds a picture by
moving a picture to
another location

Circle: radius 5,
at 35, 5

Triangle: base 10,
height 10, at 15, 25

Rectangle: base 20,
height 10, at 5, 5

Figure 4.3 An example picture
combining three shapes translated
to different positions

94 CHAPTER 4 User-defined data types
testPicture : Picture
testPicture = Combine (Translate 5 5 ?rectangle)

(Combine (Translate 35 5 ?circle)
(Translate 15 25 ?triangle))

Finally, you can fill in (refine) the details of the individual primitive shapes. One way
to do this is to use Ctrl-Alt-L in Atom to lift the holes to the top level (type), and then
fill in the definition, resulting in the following final definition.

rectangle : Picture
rectangle = Primitive (Rectangle 20 10)

circle : Picture
circle = Primitive (Circle 5)

triangle : Picture
triangle = Primitive (Triangle 10 10)

testPicture : Picture
testPicture = Combine (Translate 5 5 rectangle)

(Combine (Translate 35 5 circle)
(Translate 15 25 triangle))

As usual, you write functions over the Picture data type by case splitting. To write a
function that calculates the area of every primitive shape in a picture, you can begin
by writing a type:

pictureArea : Picture -> Double

Then, create a skeleton definition and case-split on its argument. You should reach
the following:

pictureArea : Picture -> Double
pictureArea (Primitive x) = ?pictureArea_rhs_1
pictureArea (Combine x y) = ?pictureArea_rhs_2
pictureArea (Rotate x y) = ?pictureArea_rhs_3
pictureArea (Translate x y z) = ?pictureArea_rhs_4

This has given you an outline definition, showing you the forms the input can take
and giving holes on the right side.

 The names of the variables x, y, and z, chosen by Idris when creating the patterns
for pictureArea, are not particularly informative. You can tell Idris how to choose bet-
ter default names using the %name directive:

%name Shape shape, shape1, shape2
%name Picture pic, pic1, pic2

Now, when Idris needs to choose a variable name for a variable of type Shape, it will
choose shape by default, followed by shape1 if shape is already in scope, followed by
shape2. Similarly, it will choose pic, pic1, or pic2 for variables of type Picture.

Listing 4.4 The picture from figure 4.3 represented in code (Picture.idr)

Because Rectangle is a data
constructor of Shape rather
than Picture, you need to build
the picture with a Primitive.

95Defining data types
 After adding %name directives, case splitting on the argument will lead to patterns
with more-informative variable names:

pictureArea : Picture -> Double
pictureArea (Primitive shape) = ?pictureArea_rhs_1
pictureArea (Combine pic pic1) = ?pictureArea_rhs_2
pictureArea (Rotate x pic) = ?pictureArea_rhs_3
pictureArea (Translate x y pic) = ?pictureArea_rhs_4

The completed definition is given in listing 4.5. For every Picture you encounter in
the structure, you recursively call pictureArea, and when you encounter a Shape, you
call the area function defined previously.

pictureArea : Picture -> Double
pictureArea (Primitive shape) = area shape
pictureArea (Combine pic pic1) = pictureArea pic + pictureArea pic1
pictureArea (Rotate x pic) = pictureArea pic
pictureArea (Translate x y pic) = pictureArea pic

It’s always a good idea to test the resulting definition at the REPL:

*Picture> pictureArea testPicture
328.5398163397473 : Double

4.1.4 Generic data types

A generic data type is a type that’s parameterized over some other type. Just like generic
function types, which you saw in chapter 2, generic data types allow you to capture
common patterns of data.

Listing 4.5 Calculating the total area of all shapes in a Picture (Picture.idr)

Uses the area function defined earlier to
calculate the area of a primitive shape

When two pictures are combined, the area
is the sum of the areas of those pictures.

When a picture is rotated, the area
is the area of the rotated picture.

When a picture is translated, the area
is the area of the translated picture.

Infinitely recursive types
Recursive data types, just like recursive functions, need at least one non-recursive
case in order to be useful, so at least one of the constructors needs to have a non-
recursive argument. If you don’t do this, you’ll never be able to construct an element
of that type. For example:

data Infinite = Forever Infinite

It is, however, possible to work with infinite streams of data using a generic Inf type,
which we’ll explore in chapter 11.

96 CHAPTER 4 User-defined data types

No
 To illustrate the need for generic data types, consider a function that returns the
area of the largest triangle in a Picture, as defined in the previous section. At first,
you might write the following type:

biggestTriangle : Picture -> Double

But what should it return if there are no triangles in the picture? You could return
some kind of sentinel value, like a negative size, but this would be against the spirit of
type-driven development because you’d be using Double to represent something that
isn’t really a number. Idris also doesn’t have a null value. Instead, you could refine
the type of biggestTriangle, introducing a new union type for capturing the possibil-
ity that there are no triangles:

data Biggest = NoTriangle | Size Double

biggestTriangle : Picture -> Biggest

I’ll leave the definition of biggestTriangle as an exercise.
 You might also want to write a type that represents the possibility of failure. For

example, you could write a safe division function for Double that returns an error if
dividing by zero:

data DivResult = DivByZero | Result Double

safeDivide : Double -> Double -> DivResult
safeDivide x y = if y == 0 then DivByZero

else Result (x / y)

Both Biggest and DivResult have the same structure! Instead of defining multiple
types of this form, you can define one single generic type. In fact, such a generic type
exists in the Prelude, called Maybe. The following listing shows the definition of Maybe.

data Maybe valtype =
Nothing

| Just valtype

In a generic type, we use type variables such as valtype here to stand for concrete
types. You can now define safeDivide using Maybe Double instead of DivResult,
instantiating valtype with Double:

safeDivide : Double -> Double -> Maybe Double
safeDivide x y = if y == 0 then Nothing

else Just (x / y)

Listing 4.6 A generic type, Maybe, that captures the possibility of failure

The name valtype here is a type-level variable
standing for any type you wish to use Maybe with.

thing indicates
that no value is

stored.
Just is a constructor that takes one argument
and indicates that a single value is stored.

97Defining data types
Generic data types can have more than one parameter, as illustrated in figure 4.4 for
Either, which is defined in the Prelude and represents a choice between two alterna-
tive types.

One useful example of a generic type is a binary tree structure. The following listing
shows the definition of binary trees, using a %name directive to give naming hints for
building definitions interactively.

data Tree elem = Empty
| Node (Tree elem) elem (Tree elem)

%name Tree tree, tree1

Listing 4.7 Defining binary trees (Tree.idr)

Definition of List
We’ve already written several functions with a generic type, List, which is defined
in the Prelude as follows:

data List elem = Nil | (::) elem (List elem)

data Either a b = Left a | Right b

Parameters

List of data constructor
names and their arguments

Name of the type
constructor

Figure 4.4 Defining
the Either data type

Generic types and terminology
You might hear people informally referring to “the List type” or “the Maybe type.”
It’s not strictly accurate to do this, however. List on its own is not a type, as you
can confirm at the REPL:

Idris> :t List
List : Type -> Type

Technically, List has a function type that takes a Type as a parameter and returns
a Type. Although List Int is a type because it has been applied to a concrete argu-
ment, List itself is not. Instead, we’ll informally refer to List as a generic type.

A tree with no data

A node with a left
subtree, a value,
and a right subtree

98 CHAPTER 4 User-defined data types
Binary trees are commonly used to store ordered information, where everything in a
node’s left subtree is smaller than the value at the node, and everything in a node’s
right subtree is larger than the value at the node.

 Such trees are called binary search trees, and you can write a function to insert a
value into such a tree, provided that you can order those values:

insert : Ord elem => elem -> Tree elem -> Tree elem
insert x tree = ?insert_rhs

To write this function, create a Tree.idr file containing the definition in listing 4.7,
and do the following:

1 Define—Case-split on the tree, giving the cases where the tree is Empty and
where the tree is a Node:

insert : Ord elem => elem -> Tree elem -> Tree elem
insert x Empty = ?insert_rhs_1
insert x (Node tree y tree1) = ?insert_rhs_2

Even with the %name directive, the names tree, y, and tree1 aren’t especially
informative, so let’s rename them to indicate that they’re the left subtree, the
value at the node, and the right subtree, respectively:

insert : Ord elem => elem -> Tree elem -> Tree elem
insert x Empty = ?insert_rhs_1
insert x (Node left val right) = ?insert_rhs_2

 2 Refine—For ?insert_rhs_1, you create a new tree node with empty subtrees:

insert : Ord elem => elem -> Tree elem -> Tree elem
insert x Empty = Node Empty x Empty
insert x (Node left val right) = ?insert_rhs_2

 3 Define —For ?insert_rhs_2, you need to compare the value you’re inserting, x,
with the value at the node, val. If x is smaller than val, you insert it into the left
subtree. If it’s equal, it’s already in the tree, so you return the tree unchanged.
If it’s greater than val, you insert it into the right subtree. To do this, you can
use the compare function from the Prelude, which returns an element of an
Ordering enumeration:

data Ordering = LT | EQ | GT

compare : Ord a => a -> a -> Ordering

You’ll perform a match on the intermediate result of compare x val. Press Ctrl-
Alt-M over insert_rhs_2:

insert : Ord elem => elem -> Tree elem -> Tree elem
insert x Empty = Node Empty x Empty
insert x (Node left val right) = case _ of

case_val => ?insert_rhs_2

 4 Define —The case expression won’t type-check until the _ is replaced with an
expression to test, so replace it with compare x val:

99Defining data types
insert : Ord elem => elem -> Tree elem -> Tree elem
insert x Empty = Node Empty x Empty
insert x (Node left val right) = case compare x val of

case_val => ?insert_rhs_2

5 Define—If you now case-split on case_val, you’ll get the patterns for LT, EQ, and
GT:

insert : Ord elem => elem -> Tree elem -> Tree elem
insert x Empty = Node Empty x Empty
insert x (Node left val right) = case compare x val of

LT => ?insert_rhs_1
EQ => ?insert_rhs_3
GT => ?insert_rhs_4

The following listing shows the complete definition of this function, after refining the
remaining holes.

insert : Ord elem => elem -> Tree elem -> Tree elem
insert x Empty = Node Empty x Empty
insert x (Node left val right)

= case compare x val of
LT => Node (insert x left) val right
EQ => Node left val right
GT => Node left val (insert x right)

There needs to be an Ord constraint on the generic variable elem in the type of
insert, because otherwise you wouldn’t be able to use compare. An alternative

Listing 4.8 Inserting a value into a binary search tree (Tree.idr)

x is less than the val at the
node, so return a new tree
with x inserted into the
left subtree.

x is already in the tree, because
it’s equal to val, so return the
original tree.

x is greater than the val at the node,
so return a new tree with x inserted

into the right subtree.

@ patterns
In insert, you might have noticed that in the EQ branch, the value you returned was
exactly the same as the pattern on the left side. As a notational convenience, you
can also name patterns:

insert x orig@(Node left val right)
= case compare x val of

LT => Node (insert x left) val right
EQ => orig
GT => Node left val (insert x right)

The notation orig@(Node left val right) gives the name orig to the pattern
Node left val right. It doesn’t change the meaning of the pattern match, but
it does mean that you can use the name orig on the right side rather than repeating
the pattern.

100 CHAPTER 4 User-defined data types
approach would be to capture the Ord constraint in the tree type itself, refining the
type to include this extra precision. The following listing shows how to do this by giv-
ing the type and data constructors directly.

data BSTree : Type -> Type where
Empty : Ord elem => BSTree elem
Node : Ord elem => (left : BSTree elem) -> (val : elem) ->

(right : BSTree elem) -> BSTree elem

insert : elem -> BSTree elem -> BSTree elem
insert x Empty = Node Empty x Empty
insert x orig@(Node left val right)

= case compare x val of
LT => Node (insert x left) val right
EQ => orig
GT => Node left val (insert x right)

PRECISION AND REUSE Putting a constraint in the tree structure itself makes
the type more precise, in that it can now only store values that can be com-
pared at the nodes, but at the cost of making it less reusable. This is a trade-
off you’ll often have to consider when defining new data types. There are var-
ious ways of managing this trade-off, such as pairing data with predicates that
describe the form of that data, as you’ll see in chapter 9.

Exercises

1 Write a function, listToTree : Ord a => List a -> Tree a, that inserts every ele-
ment of a list into a binary search tree.

You can test this at the REPL as follows:

*ex_4_1> listToTree [1,4,3,5,2]
Node (Node Empty 1 Empty)

2
(Node (Node Empty 3 (Node Empty 4 Empty))

5
Empty) : Tree Integer

 2 Write a corresponding function, treeToList : Tree a -> List a, that flattens a tree
into a list using in-order traversal (that is, all the values in the left subtree of a node
should be added to the list before the value at the node, which should be added
before the values in the right subtree).

If you have the correct answers to exercises 1 and 2, you should be able to run
this:

*ex_4_1> treeToList (listToTree [4,1,8,7,2,3,9,5,6])

Listing 4.9 A binary search tree with the ordering constraint in the type (BSTree.idr)

Name this type BSTree rather than
Tree because the type is explicitly for
representing binary search trees.

Put an Ord constraint on the data
constructors so you can’t have a search tree

containing values that aren’t ordered.

There’s no need for an Ord
constraint on insert because
there are already Ord
constraints on elem in
BSTree itself.

101Defining data types
[1, 2, 3, 4, 5, 6, 7, 8, 9] : List Integer

 3 An integer arithmetic expression can take one of the following forms:

 A single integer
 Addition of an expression to an expression
 Subtraction of an expression from an expression
 Multiplication of an expression with an expression

Define a recursive data type, Expr, that can be used to represent such expressions.
Hint: Look at the Picture data type and see how the informal description

mapped to the data declaration.

 4 Write a function, evaluate : Expr -> Int, that evaluates an integer arithmetic
expression.

If you have correct answers to 3 and 4, you should be able to try something like
the following at the REPL:

*ex_4_1> evaluate (Mult (Val 10) (Add (Val 6) (Val 3)))
90 : Int

 5 Write a function, maxMaybe : Ord a => Maybe a -> Maybe a -> Maybe a, that
returns the larger of the two inputs, or Nothing if both inputs are Nothing. For
example:

*ex_4_1> maxMaybe (Just 4) (Just 5)
Just 5 : Maybe Integer

*ex_4_1> maxMaybe (Just 4) Nothing
Just 4 : Maybe Integer

 6 Write a function, biggestTriangle : Picture -> Maybe Double, that returns the
area of the biggest triangle in a picture, or Nothing if there are no triangles.

For example, you can define the following pictures:

testPic1 : Picture
testPic1 = Combine (Primitive (Triangle 2 3))

(Primitive (Triangle 2 4))

testPic2 : Picture
testPic2 = Combine (Primitive (Rectangle 1 3))

(Primitive (Circle 4))

Then, test biggestTriangle at the REPL as follows:

*ex_4_1> biggestTriangle testPic1
Just 4.0 : Maybe Double

*ex_4_1> biggestTriangle testPic2
Nothing : Maybe Double

102 CHAPTER 4 User-defined data types

A veh
powe
by p
4.2 Defining dependent data types
A dependent data type is a type that’s computed from some other value. You’ve already
seen a dependent type, Vect, where the exact type is calculated from the vector’s
length:

Vect : Nat -> Type -> Type

In other words, the type of a Vect depends on its length. This gives us additional pre-
cision in the type, which we used to help direct our programming via the process of
type, define, refine. In this section, you’ll see how to define dependent types such as
Vect. The core of the idea is that, because there’s no syntactic distinction between
types and expressions, types can be computed from any expression.

 We’ll begin with a simple example to illustrate how this works, defining a type for
representing vehicles and their properties, depending on their power source, and
you’ll see how you can use this to constrain the valid inputs to a function to those that
make sense. You’ll then see how Vect itself is defined, along with some useful opera-
tions on it.

4.2.1 A first example: classifying vehicles by power source

Dependent types allow you to give more precise information about the data construc-
tors of a type, by adding more arguments to the type constructor. For example, you
might have a data type to represent vehicles (for example, bicycles, cars, and buses),
but some operations don’t make sense on all values in the type (for example, refueling
a bicycle wouldn’t work because there’s no fuel tank). We’ll therefore classify vehicles
into those powered by pedal and those powered by petrol, and express this in the type.

 The following listing shows how you could express this in Idris.

data PowerSource = Petrol | Pedal

data Vehicle : PowerSource -> Type where
Bicycle : Vehicle Pedal
Car : (fuel : Nat) -> Vehicle Petrol
Bus : (fuel : Nat) -> Vehicle Petrol

You can write functions that will work on all vehicles by using a type variable to stand
for the power source. For example, all vehicles have a number of wheels. On the other
hand, not all vehicles carry fuel, so it only makes sense to refuel a vehicle whose type
indicates it’s powered by Petrol. Both of these concepts are illustrated in the follow-
ing listing.

Listing 4.10 Defining a dependent type for vehicles, with their power source in the type
(vehicle.idr)

An enumeration type describing
possible power sources for a vehicle

A Vehicle’s type is annotated
with its power source.

icle
red

edal

A vehicle powered by petrol, with
a field for current fuel stocks

103Defining dependent data types

wheels : Vehicle power -> Nat
wheels Bicycle = 2
wheels (Car fuel) = 4
wheels (Bus fuel) = 4

refuel : Vehicle Petrol -> Vehicle Petrol
refuel (Car fuel) = Car 100
refuel (Bus fuel) = Bus 200

In general, you should define dependent types by giving the type constructor and the
data constructors directly. This gives you a lot of flexibility in the form that the con-
structors can take. Here, it has allowed you to define types where the data constructors
can each take different arguments. You can either write functions that work on all vehi-
cles (like wheels) or functions that only work on some subset of vehicles (like refuel).

DEFINING FAMILIES OF TYPES For Vehicle, you’ve actually defined two types
in one declaration (specifically, Vehicle Pedal and Vehicle Petrol).
Dependent data types like Vehicle are therefore sometimes referred to as
families of types, because you’re defining multiple related types at the same
time. The power source is an index of the Vehicle family. The index tells
you exactly which Vehicle type you mean.

Listing 4.11 Reading and updating properties of Vehicle

Use a type variable, power,
because this function works
for all possible vehicle types.

Refueling only makes sense for vehicles
that carry fuel, so restrict the input and
output type to Vehicle Petrol.

Asserting that inputs are impossible
If you try adding a case for refueling a Bicycle, Idris will report a type error, because
the input type is restricted to vehicles powered by petrol. If you use the interactive
tools, Idris won’t even give a case for Bicycle after a case split with Ctrl-Alt-C. Nev-
ertheless, it can sometimes aid readability to make it explicit that you know the
Bicycle case is impossible. You can write this:

refuel : Vehicle Petrol -> Vehicle Petrol
refuel (Car fuel) = Car 100
refuel (Bus fuel) = Bus 200
refuel Bicycle impossible

If you do this, Idris will check that the case you have marked as impossible would
produce a type error.

Similarly, if you assert a case is impossible but Idris believes it’s valid, it will report
an error:

refuel : Vehicle Petrol -> Vehicle Petrol
refuel (Car fuel) = Car 100
refuel (Bus fuel) impossible

Here, Idris will report the following:

vehicle.idr:15:8:refuel (Bus fuel) is a valid case

104 CHAPTER 4 User-defined data types
4.2.2 Defining vectors

In chapter 3, we looked at the ways we could use the length information in the type to
help drive development of functions on vectors. In this section, we’ll look at how Vect
is defined, along with some of the operations on it.

 It’s defined in the Data.Vect module, as shown in listing 4.12. The type construc-
tor, Vect, takes a length and an element type as arguments, so when you define the
data constructors, you state explicitly in their types what their lengths are.

data Vect : Nat -> Type -> Type where
Nil : Vect Z a
(::) : (x : a) -> (xs : Vect k a) -> Vect (S k) a

%name Vect xs, ys, zs

The Data.Vect library includes several utility functions on Vect, including concatena-
tion, looking up values by their position in the vector, and various higher-order func-
tions, such as map. Instead of importing this, though, we’ll use our own definition of
Vect and try writing some functions by hand. To begin, create a Vect.idr file contain-
ing only the definition of Vect in listing 4.12.

 Because Vect includes the length explicitly in its type, any function that uses some
instance of Vect will describe its length properties explicitly in its type. For example, if
you define an append function on Vect, its type will express how the lengths of the
inputs and output are related:

append : Vect n elem -> Vect m elem -> Vect (n + m) elem

TYPE-LEVEL EXPRESSIONS The expression n + m in the return type here is an
ordinary expression with type Nat, using the ordinary + operator. Because
Vect’s first argument is of type Nat, you should expect to be able to use any
expression of type Nat. Remember, types are first-class, so types and expres-
sions are all part of the same language.

Having written the type first, as always, you can define append by case splitting on the
first argument. You do this interactively as follows:

1 Define —Begin by creating a skeleton definition and then case splitting on the
first argument xs:

Listing 4.12 Defining vectors (Vect.idr)

The type constructor Vect states that a vector
constructor takes two arguments: a Nat, which is
its length, and a Type, which is its element type.

The data constructor Nil
explicitly states that an empty
vector has length Z.

The data constructor (::) explicitly states that
adding an element x to a vector of length k
results in a vector of length S k (that is, 1 + k).

Gives some default names to
use in case splits

105Defining dependent data types
append : Vect n elem -> Vect m elem -> Vect (n + m) elem
append [] ys = ?append_rhs_1
append (x :: xs) ys = ?append_rhs_2

2 Refine —Idris has enough information in the type to complete this definition by
an expression search on each of the holes, resulting in this:

append : Vect n elem -> Vect m elem -> Vect (n + m) elem
append [] ys = ys
append (x :: xs) ys = x :: append xs ys

Another common operation on vectors is zip, which pairs corresponding elements in
two vectors, as illustrated in figure 4.5.

Terminology: parameters and indices
Vect defines a family of types, and we say that a Vect is indexed by its length and
parameterized by an element type. The distinction between parameters and indices
is as follows:

 A parameter is unchanged across the entire structure. In this case, every ele-
ment of the vector has the same type.

 An index may change across a structure. In this case, every subvector has a
different length.

The distinction is most useful when looking at a function’s type: you can be certain
that the specific value of a parameter can play no part in a function’s definition. The
index, however, might, as you’ve already seen in chapter 3 when defining length for
vectors by looking at the length index, and when defining createEmpties for build-
ing a vector of empty vectors.

"one"1

Vect 4 StringVect 4 Nat

"two"2

"three"3

"four"

(1, "one")

Vect 4 (Nat, String)

zip [1, 2, 3, 4] ["one", "two", "three", "four"]

(2, "two")

(3, "three")

(4, "four")

4

Figure 4.5 Pairing corresponding elements of [1,2,3,4]
and ["one","two","three","four"] using zip

106 CHAPTER 4 User-defined data types
The name zip is intended to suggest the workings of a zip fastener, bringing two sides
of a bag or jacket together. Because the length of each input Vect is in the type, you
need to think about how the lengths of the inputs and output will correspond. A rea-
sonable choice for this would be to require the lengths of both inputs to be the same:

zip : Vect n a -> Vect n b -> Vect n (a, b)

Having a more precise type for Vect, capturing the length in the type, means that you
need to decide in advance how the lengths of the inputs to zip relate and express this
decision in the type. Also, it means you can safely assume that zip will only ever be
called with equal length lists, because if this assumption is violated, Idris will report a
type error.

 You can define zip, as usual, step by step:

1 Define —Again, you can begin to define this by a case split on the first argument:

zip : Vect n a -> Vect n b -> Vect n (a, b)
zip [] ys = ?zip_rhs_1
zip (x :: xs) ys = ?zip_rhs_2

 2 Refine —You can fill in ?zip_rhs_1 with an expression search, because the only
well-typed result is an empty vector:

zip : Vect n a -> Vect n b -> Vect n (a, b)
zip [] ys = []
zip (x :: xs) ys = ?zip_rhs_2

3 Refine —For the second case, ?zip_rhs_2, take a look at the type of the hole
and see if that gives you further information about what to do:

b : Type
a : Type
x : a
k : Nat
xs : Vect k a
ys : Vect (S k) b

zip_rhs_2 : Vect (S k) (a, b)

Notice that ys has length S k, meaning that there must be at least one element.
If you case-split on ys, Idris won’t give you a pattern for the empty list, because
it wouldn’t be a well-typed value:

zip : Vect n a -> Vect n b -> Vect n (a, b)
zip [] ys = []
zip (x :: xs) (y :: ys) = ?zip_rhs_1

After the case split, Idris has created a new hole, so let’s take a look at the types
of the local variables:

b : Type
a : Type
x : a
k : Nat

107Defining dependent data types
xs : Vect k a
y : b
ys : Vect k b

zip_rhs_1 : Vect (S k) (a, b)

Again, there’s enough information to complete the definition with an expres-
sion search:

zip : Vect n a -> Vect n b -> Vect n (a, b)
zip [] ys = []
zip (x :: xs) (y :: ys) = (x, y) :: zip xs ys

Idris has noticed that it needs to build a vector of length S k, that it can create
the appropriate vector of length k with a recursive call, and that it can create
the appropriate first element by pairing x and y.

4.2.3 Indexing vectors with bounded numbers using Fin

Because Vects carry their length as part of their type, the type checker has additional
knowledge that it can use to check that operations are implemented and used cor-
rectly. One example is that if you wish to look up an element in a Vect by its location
in the vector, you can know at compile time that the location can’t be out of bounds
when the program is run.

Deconstructing expression searches
To understand what expression search has done, it can be instructive to remove
some part of the result and replace it with a hole, to see what type expression search
was working with at that point. For example, you can remove the (x, y):

zip : Vect n a -> Vect n b -> Vect n (a, b)
zip [] ys = []
zip (x :: xs) (y :: ys) = ?element :: zip xs ys

Then, checking the type of the ?element hole, you’ll see that at this point, Idris was
looking for a pair of a and b:

b : Type
a : Type
x : a
k : Nat
xs : Vect k a
y : b
ys : Vect k b

element : (a, b)

The only way to make a pair of a and b at this point is to use x and y, so this is what
Idris used to construct the pair.

108 CHAPTER 4 User-defined data types
 The index function, defined in Data.Vect, is a bounds-safe lookup function whose
type guarantees that it will never access a location that’s outside the bounds of a vector:

index : Fin n -> Vect n a -> a

The first argument, of type Fin n, is an unsigned number that has a non-inclusive
upper bound of n. The name Fin suggests that the number is finitely bounded. So, for
example, when you look up an element by location, you can use a number within the
bounds of the vector:

Idris> :module Data.Vect
*Data/Vect> Vect.index 3 [1,2,3,4,5]

IMPORTING MODULES AT THE REPL In the element lookup example, you
import Data.Vect at the REPL using the :module command, to get access to
the index function. There are several functions in the Prelude called index
for indexing different list-like structures, so you have to disambiguate explic-
itly with Vect.index here.

But if you try to use a number outside the bounds, you’ll get a type error:

*Data/Vect> Vect.index 7 [1,2,3,4,5]
(input):1:14:When checking argument prf to function Data.Fin.fromInteger:

When using 7 as a literal for a Fin 5
7 is not strictly less than 5

INTEGER LITERAL NOTATION As with Nat, you can use integer literals for Fin,
provided that the compiler can be sure that the literal is within the bounds
stated in the type.

If you’re reading a number as user input that will be used to index a Vect, the num-
ber won’t always be within the bounds of the Vect. In practice, you’ll often need to
convert from an arbitrarily sized Integer to a bounded Fin.

 Importing Data.Vect gives you access to the integerToFin function, which con-
verts an Integer to a Fin with some bounds, provided the Integer is within bounds. It
has the following type:

integerToFin : Integer -> (n : Nat) -> Maybe (Fin n)

The first argument is the integer to be converted, and the second is the upper bound
on the Fin. Remember that a type Fin upper, for some value of upper, represents
numbers up to but not including upper, so 5 is not a valid Fin 5, but 4 is. Here are a
couple of examples:

*Data/Vect> integerToFin 2 5
Just (FS (FS FZ)) : Maybe (Fin 5)

*Data/Vect> integerToFin 6 5
Nothing : Maybe (Fin 5)

FIN CONSTRUCTORS FZ and FS are constructors of Fin, corresponding to Z and
S as constructors of Nat. Typically, you can use numeric literals, as with Nat.

109Defining dependent data types
Using integerToFin, you can write a tryIndex function that looks up a value in a
Vect by Integer index, using Maybe in the type to capture the possibility that the
result may be out of range. Begin by creating a TryIndex.idr file that imports
Data.Vect. Then, follow these steps:

1 Type —As ever, start by giving a type:

tryIndex : Integer -> Vect n a -> Maybe a

Note that this type gives no relationship between the input Integer and the
length of the Vect.

 2 Define —You can write the definition by using integerToFin to check whether
the input is within range:

tryIndex : Integer -> Vect n a -> Maybe a
tryIndex {n} i xs = case integerToFin i n of

case_val => ?tryIndex_rhs

Note that you need to bring n into scope so that you can pass it to integerTo-
Fin as the desired bound of the Fin.

 3 Define —Now, define the function by case splitting on case_val. If integerTo-
Fin returns Nothing, the input was out of bounds, so you return Nothing:

tryIndex : Integer -> Vect n a -> Maybe a
tryIndex {n} i xs = case integerToFin i n of

Nothing => Nothing
Just idx => ?tryIndex_rhs_2

4 Type —If you inspect the type of tryIndex_rhs_2, you’ll see that you now have a
Fin n and a Vect n a, so you can safely use index:

n : Nat
idx : Fin n
a : Type
i : Integer
xs : Vect n a

tryIndex_rhs_2 : Maybe a

The end result is as follows:

tryIndex : Integer -> Vect n a -> Maybe a
tryIndex {n} i xs = case integerToFin i n of

Nothing => Nothing
Just idx => Just (index idx xs)

This is a common pattern in dependently typed programming, which you’ll see more
often in the coming chapters. The type of index tells you when it’s safe to call it, so if
you have an input that’s potentially unsafe, you need to check. Once you’ve converted
the Integer to a Fin n, you know that number must be within bounds, so you don’t
need to check again.

110 CHAPTER 4 User-defined data types
Exercises

1 Extend the Vehicle data type so that it supports unicycles and motorcycles, and
update wheels and refuel accordingly.

 2 Extend the PowerSource and Vehicle data types to support electric vehicles (such
as trams or electric cars).

 3 The take function, on List, has type Nat -> List a -> List a. What’s an appropri-
ate type for the corresponding vectTake function on Vect?

Hint: How do the lengths of the input and output relate? It shouldn’t be valid to
take more elements than there are in the Vect. Also, remember that you can have
any expression in a type.

 4 Implement vectTake. If you’ve implemented it correctly, with the correct type, you
can test your answer at the REPL as follows:

*ex_4_2> vectTake 3 [1,2,3,4,5,6,7]
[1, 2, 3] : Vect 3 Integer

You should also get a type error if you try to take too many elements:

*ex_4_2> vectTake 8 [1,2,3,4,5,6,7]
(input):1:14:When checking argument xs to constructor Main.:::

Type mismatch between
Vect 0 a1 (Type of [])

and
Vect (S m) a (Expected type)

 5 Write a sumEntries function with the following type:

sumEntries : Num a => (pos : Integer) -> Vect n a -> Vect n a -> Maybe a

It should return the sum of the entries at position pos in each of the inputs if pos is
within bounds, or Nothing otherwise. For example:

*ex_4_2> sumEntries 2 [1,2,3,4] [5,6,7,8]
Just 10 : Maybe Integer

*ex_4_2> sumEntries 4 [1,2,3,4] [5,6,7,8]
Nothing : Maybe Integer

Hint: You’ll need to call integerToFin, but you’ll only need to do it once.

4.3 Type-driven implementation of
an interactive data store
To into practice put the ideas you’ve learned so far, let’s now take a look at a larger
example program, an interactive data store. In this section, we’ll set up the basic infra-
structure. We’ll revise this program in chapter 6, as you learn more about Idris, to sup-
port key-value pairs, with schemas for describing the form of the data.

 In our initial implementation, we’ll only support storing data as Strings, in mem-
ory, accessed by a numeric identifier. It will have a command prompt and support the
following commands:

111Type-driven implementation of an interactive data store
 add [String] adds a string to the document store and responds by printing an
identifier by which you can refer to the string.

 get [Identifier] retrieves and prints the string with the given identifier,
assuming the identifier exists, or an error message otherwise.

 quit exits the program.

A brief session might go as follows:

$./datastore
Command: add Even Old New York
ID 0
Command: add Was Once New Amsterdam
ID 1
Command: get 1
Was Once New Amsterdam
Command: get 2
Out of range
Command: add Why They Changed It I Can't Say
ID 2
Command: get 2
Why They Changed It I Can't Say
Command: quit

We’ll use the type system to guarantee that all accesses to the data store use valid iden-
tifiers, and all of our functions will be total so we’re sure that the program won’t abort
due to unexpected input.

 The overall approach we’ll take, at a high level, again follows the process of type,
define, refine:

 Type—Design a new data type for the representation of the data store. In type-
driven development, even at the highest level, types come first. Before we can
implement any part of a data store program, we need to know how we’re repre-
senting and working with the data.

 Define —Implement as much of a main program as we can, leaving holes for
parts we can’t write immediately, lifting these holes to top-level functions.

 Refine—As we go deeper into the implementation and improve our understand-
ing of the problem, we’ll refine the implementation and types as necessary.

To begin, create an outline of a DataStore.idr file that contains a module header, an
import statement for Data.Vect, and an empty main function, as follows.

module Main

import Data.Vect

main : IO ()
main = ?main_rhs

Listing 4.13 Outline implementation of the data store (DataStore.idr)

Use Vect to store the data so you can keep
track of the size of the store in types

Initial implementation
of main is empty

112 CHAPTER 4 User-defined data types
We’ll start by defining a type to represent the store, and then we’ll write a main func-
tion that reads user input and updates the store according to user commands. As we
progress through the implementation, we’ll add new types and functions as necessary,
always guided by the Idris type checker.

4.3.1 Representing the store

The data store itself is, initially, a collection of strings. We’ll begin by defining a type
for the store, including the size of the store (that is, the number of stored items),
explicitly and using a Vect for the items, as shown in the following listing. You can add
this to DataStore.idr, above the initial empty definition of main.

data DataStore : Type where
MkData : (size : Nat) ->

(items : Vect size String) ->
DataStore

You can access the size and content of a data store by writing functions that pattern
match on the data store and extract the appropriate fields. These are shown in the fol-
lowing listing.

size : DataStore -> Nat
size (MkData size' items') = size'

items : (store : DataStore) -> Vect (size store) String
items (MkData size' items') = items'

In this listing, the length of the Vect in the type of items is calculated by a function,
size.

RECORDS A data type with one constructor, like DataStore, is essentially a
record with fields for its data. In chapter 6, you’ll see a more concise syntax
for records that avoids the need to write explicit projection functions such as
size and items.

You’ll also need to add new data items to the store, as in listing 4.16. This adds items
to the end of the store, rather than at the beginning using :: directly. The reason for
this is that we plan to access items by their integer index; if you add items at the begin-
ning, new items will always have an index of zero, and everything else will be shifted
along one place.

Listing 4.14 A data type for representing the data store (DataStore.idr)

Listing 4.15 Projecting out the size and content of a data store (DataStore.idr)

DataStore is the type constructor.

MkData is the data constructor, which gives the canonical
way of constructing a data store. You can think of its
arguments, size, and items as the fields of a record.

The type explicitly states that
the length of this Vect is the size
of the store.

The length in the
type of the Vect
projected out of the
store is given by the
size projected out of
the store.

113Type-driven implementation of an interactive data store

addToStore : DataStore -> String -> DataStore
addToStore (MkData size items) newitem = MkData _ (addToData items)

where
addToData : Vect old String -> Vect (S old) String
addToData [] = [newitem]
addToData (item :: items) = item :: addToData items

4.3.2 Interactively maintaining state in main

When you implement the main function for your data store, you’ll need to read input
from the user, maintain the state of the store itself, and allow the user to exit. In the
last chapter, we used the Prelude function repl to write a simple interactive program
that repeatedly read input, ran a function on it, and displayed the output:

repl : String -> (String -> String) -> IO ()

Unfortunately, this only allows simple interactions that repeat forever.
 For more-complex programs that maintain state, the Prelude provides another

function, replWith, which implements a read-eval-print loop that carries some state.
:doc describes it as follows:

Idris> :doc replWith
Prelude.Interactive.replWith : (state : a) ->

(prompt : String) ->
(onInput : a -> String -> Maybe (String, a)) -> IO ()

Listing 4.16 Adding a new entry to the data store (DataStore.idr)

You can use _ here, rather than giving the size
explicitly, because Idris can work out the new size at
compile time from the type of addToData.

This type states that addToData
always increases the length of
the store by 1.

In a where block, functions have access
to the pattern variables of the outer

function, so you can use newitem here.

Interactive editing in where blocks
The interactive editing tools work just as effectively in where blocks as they do at
the top level. For example, try implementing addToStore beginning at this point:

addToStore : DataStore -> String -> DataStore
addToStore (MkData size items) newitem

= MkData _ (addToData items)
where

addToData : Vect old String -> Vect (S old) String

You can use Ctrl-Alt-A to add a definition for addToData, and expression search with
Ctrl-Alt-S is aware that newitem is in scope.

114 CHAPTER 4 User-defined data types

Cast
if the
mus
whe

Initial
the l

with 0
the in

s

A basic read-eval-print loop, maintaining a state
Arguments:

state : a -- the input state

prompt : String -- the prompt to show

onInput : a -> String -> Maybe (String, a) -- the function to
run on reading input, returning a String to output and a new
state. Returns Nothing if the repl should exit

On each iteration through the loop, it calls the onInput argument, which itself takes
two arguments:

 The current state, of some generic type a
 The String entered at the prompt

The value the onInput function should return is of type Maybe (String, a), meaning
that it can be in one of the following forms:

 Nothing, if it wants the loop to exit
 Just (output, newState), if it wants to print some output and update the

state to newState for the next iteration

The next listing shows a simple example of this in action: an interactive program that
reads an integer from the console and displays a running total of the sum of the
inputs. If it reads a negative value, it will exit.

sumInputs : Integer -> String -> Maybe (String, Integer)
sumInputs tot inp

= let val = cast inp in
if val < 0

then Nothing
else let newVal = tot + val in

Just ("Subtotal: " ++ show newVal ++ "\n", newVal)

main : IO ()
main = replWith 0 "Value: " sumInputs

You can use replWith to refine the main function in the data store. At this stage you have

 A type for the data store (DataStore)
 A way of accessing the items in the store (items)
 A way of updating the store with new items (addToStore)

Listing 4.17 Interactive program to sum input values until a negative value is read
(SumInputs.idr)

s the input String to an Integer. Default value is 0
 input is not a valid number. Idris knows that val

t be an Integer because it’s used later in a context
re only Integer is well typed.

Negative input
received, so returns
Nothing, which
exits the loop

Calculates a new state
(newVal) and continues the

loop, giving the subtotal as an
output, and the new state

izes
oop
 as

itial
tate

115Type-driven implementation of an interactive data store
When you call replWith, you need to pass the initial data, a prompt, and a function to
process inputs as arguments. You can pass an initialized empty data store and a
prompt string, but you don’t yet have a function to process user input. Nevertheless,
you can refine your definition of main to the following, leaving a hole for the input-
processing function:

main : IO ()
main = replWith (MkData _ []) "Command: " ?processInput

Lifting processInput shows the type you have to work with:

processInput : DataStore -> String -> Maybe (String, DataStore)

main : IO ()
main = replWith (MkData _ []) "Command: " processInput

Following the type-driven approach, when you refined the definition of main with an
application of replWith, Idris was able to work out the necessary specialized type for
processInput.

4.3.3 Commands: parsing user input

To process the String input, you somehow have to work out which one of the com-
mands add, get, or quit has been entered. Rather than processing the input string
directly, it’s usually much cleaner to define a new data type that represents the possible
commands. This way, you can cleanly separate the parsing of commands from the
processing.

 You’ll therefore define a Command data type, which is a union type representing the
possible commands and their arguments. Put the following definition in DataStore.idr
above processInput:

data Command = Add String
| Get Integer
| Quit

AVOID USING STRINGS FOR DATA REPRESENTATION The user enters a String,
but only a certain number of Strings are valid input commands. Introduc-
ing the Command type makes the representation of commands more precise
in that only valid commands can be represented. If the user enters a String
that can’t be converted to a Command, the types force you to think about how
to handle the error. At first, you can leave a hole in the program for error
handling, but, ultimately, making a precise type leads to a more robust
implementation.

You need to convert the string input by the user into a Command. The input may be
invalid, however, so the type of the function to parse the command captures this possi-
bility in its type:

parse : (input : String) -> Maybe Command

116 CHAPTER 4 User-defined data types
You can write a simple parser for input commands by searching for the first space in
the input using the span function to establish which part of the input is the command
and which is the argument. The span function works as follows:

Idris> :t Strings.span
span : (Char -> Bool) -> String -> (String, String)

Idris> span (/= ' ') "Hello world, here is a string"
("Hello", " world, here is a string") : (String, String)

The first argument, (/= ' '), is a test that returns a Bool. This test returns True for
any character that’s not equal to a space. The second argument is an input string, and
span will split the string into two parts:

 The first part is the prefix of the input string, where all characters satisfy the
test.

 The second part is the remainder of the string. If all characters in the string sat-
isfy the test, this will be empty.

You can define parse with Ctrl-Alt-A and then refine its definition to the following:

parse : (input : String) -> Maybe Command
parse input = case span (/= ' ') input of

(cmd, args) => ?parseCommand

You can then lift parseCommand to a top-level function with the appropriate type, using
Ctrl-Alt-L:

parseCommand : (cmd : String) -> (args : String) -> (input : String) ->
Maybe Command

parse : (input : String) -> Maybe Command
parse input = case span (/= ' ') input of

(cmd, args) => parseCommand cmd args input

You won’t need the input argument because you’ll be parsing the input from cmd and
args alone, although Idris has added it because input is in scope. You can therefore
edit the type:

parseCommand : (cmd : String) -> (args : String) -> Maybe Command

parse : (input : String) -> Maybe Command
parse input = case span (/= ' ') input of

(cmd, args) => parseCommand cmd args

Also, you can see that args, if it’s not empty, will have a leading space, because the first
character that span encounters that doesn’t satisfy the test will be a space. You can
remove leading spaces with the ltrim : String -> String function, which returns its
input with leading whitespace characters removed:

parseCommand : (cmd : String) -> (args : String) -> Maybe Command

parse : (input : String) -> Maybe Command
parse input = case span (/= ' ') input of

(cmd, args) => parseCommand cmd (ltrim args)

117Type-driven implementation of an interactive data store
You can now write parseCommand by examining the cmd and args arguments. You’ll
need some Prelude functions to complete the definition of parseCommand:

 unpack : String -> List Char converts a String into a list of characters.
 isDigit : Char -> Bool returns whether a Char is one of the digits 0–9.
 all : (a -> Bool) -> List a -> Bool returns whether every entry in a list

satisfies a test.

Thus, the expression all isDigit (unpack val) returns whether the string val con-
sists entirely of digits.

DOCUMENTATION AND PRELUDE FUNCTIONS In general, remember that you can
use :doc at the REPL, or Ctrl-Alt-D in Atom, to check the documentation for
any names, no matter whether they are type constructors, data constructors,
or functions.

Listing 4.18 shows how parsing the input works. In particular, notice that pattern
matching is very general; as long as patterns are composed of primitive ways of con-
structing a type (data constructors and primitive values), they are valid. An under-
score is a match-anything pattern.

parseCommand : String -> String -> Maybe Command
parseCommand "add" str = Just (Add str)
parseCommand "get" val = case all isDigit (unpack val) of

False => Nothing
True => Just (Get (cast val))

parseCommand "quit" "" = Just Quit
parseCommand _ _ = Nothing

Now that you can parse a string into a Command, you can make more progress with
processInput, calling parse. If it fails, you display an error message and leave the
store as it is. Otherwise, you add a hole for processing the Command:

processInput : DataStore -> String -> Maybe (String, DataStore)
processInput store inp

= case parse inp of
Nothing => Just ("Invalid command\n", store)
Just cmd => ?processCommand

Listing 4.18 Parsing a command and argument string into a Command (DataStore.idr)

This pattern matches an
application where the first
argument is "add". The string
you add to the store will be
composed of the entire
second argument, str.

This pattern matches an
application where the first

argument is "get". The parse is
valid if the second argument

consists entirely of digits.
This matches any input. Pattern
matching works top to bottom;
if none of the previous patterns
have matched, then the input is
invalid, so there’s no Command.

118 CHAPTER 4 User-defined data types
4.3.4 Processing commands

One way to proceed with your implementation of processInput would be to case-split
on cmd and process the commands directly:

processInput : DataStore -> String -> Maybe (String, DataStore)
processInput store inp

= case parse inp of
Nothing => Just ("Invalid command\n", store)
Just (Add item) => ?processCommand_1
Just (Get pos) => ?processCommand_2
Just Quit => ?processCommand_3

You can refine the implementation by filling in the easier holes, in the cases for Add
item and Quit. The next listing shows how these holes are refined, leaving process-
Command_2 for the moment.

processInput : DataStore -> String -> Maybe (String, DataStore)
processInput store inp

= case parse inp of
Nothing => Just ("Invalid command\n", store)
Just (Add item) =>

Just ("ID " ++ show (size store) ++ "\n", addToStore store item)
Just (Get pos) => ?processCommand_2
Just Quit => Nothing

It’s always a good idea to inspect the types of holes Idris has generated to see what vari-
ables you have available, what their types are, and what type you need to build. For
?processCommand_2, you have this:

pos : Integer
store : DataStore
input : String

processCommand_2 : Maybe (String, DataStore)

This will be slightly more involved than the other cases. You need to do the following:

 Get the items from the store.
 Ensure that the position, pos, is in range.
 If it is, extract the item from the specified pos and return it along with the store

itself.

The type-define-refine process encourages you to write parts of definitions, step by
step, constantly type-checking as you go, and constantly inspecting the types of the
holes.

Listing 4.19 Processing the inputs Add item and Quit (DataStore.idr)

Returns a String that gives the position at which this
item was added and an updated store using addToStore

Quit command exits,
so return Nothing

119Type-driven implementation of an interactive data store
 Because there are a few details involved in filling the ?processCommand_2 hole,
we’ll rename it ?getEntry and lift it to a top-level function before implementing it
step by step:

1 Type —Lift getEntry to a new top-level function:

getEntry : (pos : Integer) -> (store : DataStore) -> (input : String) ->
Maybe (String, DataStore)

 2 Define —Create a new skeleton definition:

getEntry pos store input = ?getEntry_rhs

 3 Define —You’ll need the items in the store, so define a new local variable for
these:

getEntry pos store input = let store_items = items store in
?getEntry_rhs

Inspecting the type of getEntry_rhs tells you the type of store_items:

pos : Integer
store : DataStore
input : String
store_items : Vect (size store) String

getEntry_rhs : Maybe (String, DataStore)

 4 Refine —To retrieve an entry from a Vect, you can use index as you’ve previ-
ously seen:

index : Fin n -> Vect n a -> a

To extract an entry from store_items, which has type Vect (size store),
you’ll need a Fin (size store). Unfortunately, all you have available at the
moment is an Integer. Using integerToFin, as described in section 4.2.34.2.3,
you can refine the definition. If integerToFin returns Nothing, the input was
out of bounds.

getEntry : (pos : Integer) -> (store : DataStore) -> (input : String) ->
Maybe (String, DataStore)

getEntry pos store input
= let store_items = items store in

case integerToFin pos (size store) of
Nothing => Just ("Out of range\n", store)
Just id => ?getEntry_rhs_2

 5 Refine —If you inspect the type of getEntry_rhs_2 now, you’ll see that you have
the Fin (size store) you need:

store : DataStore
id : Fin (size store)
pos : Integer
input : String
store_items : Vect (size store) String

120 CHAPTER 4 User-defined data types
getEntry_rhs_2 : Maybe (String, DataStore)

You can now refine to a complete definition:

getEntry : (pos : Integer) -> (store : DataStore) -> (input : String)
Maybe (String, DataStore)

getEntry pos store input
= let store_items = items store in

case integerToFin pos (size store) of
Nothing => Just ("Out of range\n", store)
Just id => Just (index id store_items ++ "\n", store)

6 Refine —As a final refinement, observe that input is never used, so you can
remove this argument. Don’t forget to remove it from the application of get-
Entry in processInput too.

getEntry : (pos : Integer) -> (store : DataStore) ->
 Maybe (String, DataStore)

getEntry pos store
= let store_items = items store in

case integerToFin pos (size store) of
Nothing => Just ("Out of range\n", store)
Just id => Just (index id store_items ++ "\n", store)

By using a Vect for the store, with its size as part of the type, the type system can
ensure that any access of the store by index will be within bounds, because you have to
show that the index has the same upper bound as the length of the Vect.

 For reference, the complete implementation of the data store is given in the fol-
lowing listing, with all the functions we just worked through.

module Main

import Data.Vect

data DataStore : Type where
MkData : (size : Nat) -> (items : Vect size String) -> DataStore

size : DataStore -> Nat
size (MkData size' items') = size'

items : (store : DataStore) -> Vect (size store) String
items (MkData size' items') = items'

addToStore : DataStore -> String -> DataStore
addToStore (MkData size store) newitem = MkData _ (addToData store)
where
addToData : Vect oldsize String -> Vect (S oldsize) String
addToData [] = [newitem]
addToData (x :: xs) = x :: addToData xs

data Command = Add String
| Get Integer
| Quit

Listing 4.20 Complete implementation of a simple data store (DataStore.idr)

121Type-driven implementation of an interactive data store
parseCommand : String -> String -> Maybe Command
parseCommand "add" str = Just (Add str)
parseCommand "get" val = case all isDigit (unpack val) of

False => Nothing
True => Just (Get (cast val))

parseCommand "quit" "" = Just Quit
parseCommand _ _ = Nothing

parse : (input : String) -> Maybe Command
parse input = case span (/= ' ') input of

(cmd, args) => parseCommand cmd (ltrim args)

getEntry : (pos : Integer) -> (store : DataStore) ->
Maybe (String, DataStore)

getEntry pos store
= let store_items = items store in

case integerToFin pos (size store) of
Nothing => Just ("Out of range\n", store)
Just id => Just (index id (items store) ++ "\n", store)

processInput : DataStore -> String -> Maybe (String, DataStore)
processInput store input

= case parse input of
Nothing => Just ("Invalid command\n", store)
Just (Add item) =>

Just ("ID " ++ show (size store) ++ "\n", addToStore store item)
Just (Get pos) => getEntry pos store
Just Quit => Nothing

main : IO ()
main = replWith (MkData _ []) "Command: " processInput

Exercises

1 Add a size command that displays the number of entries in the store.
 2 Add a search command that displays all the entries in the store containing a given

substring.
Hint: Use Strings.isInfixOf.

 3 Extend search to print the location of each result, as well as the string.
You can test your solution at the REPL as follows:

*ex_4_3> :exec
Command: add Shearer
ID 0
Command: add Milburn
ID 1
Command: add White
ID 2
Command: size
3
Command: search Mil
1: Milburn

122 CHAPTER 4 User-defined data types
4.4 Summary
 Data types are defined in terms of a type constructor and data constructors.
 Enumeration types are defined by listing the data constructors of the type.
 Union types are defined by listing the data constructors of the type, each of

which may carry additional information.
 Generic types are parameterized over some other type. In a generic type defini-

tion, variables stand in place of concrete types.
 Dependent types can be indexed over any other value.
 Using dependent types, you can classify a larger family of types (such as vehi-

cles) into smaller subgroups (such as vehicles powered by petrol and those pow-
ered by pedal) in the same declaration.

 Dependent types allow safety checks to be guaranteed at compile time, such as
guaranteeing that all vector accesses are within the bounds of the vector.

 You can write larger programs in the type-driven style, creating new data types
where appropriate to help describe components of the system.

 Interactive programs that involve state can be written using the replWith function.

Interactive programs:
input and output processing
Idris is a pure language, meaning that functions don’t have side effects, such as
updating global variables, throwing exceptions, or performing console input or
output. Realistically, though, when we put functions together to make complete
programs, we’ll need to interact with users somehow.

 In the preceding chapters, we used the repl and replWith functions to write
simple, looping interactive programs that we can compile and execute without wor-
rying too much about how they work. For all but the simplest programs, however,
this approach is very limiting. In this chapter, you’ll see how interactive programs
work in Idris more generally. You’ll see how to process and validate user input, and
how you can write interactive programs that work with dependent types.

This chapter covers
 Writing interactive console programs

 Distinguishing evaluation and execution

 Validating user inputs to dependently typed
functions
123

124 CHAPTER 5 Interactive programs: input and output processing
 The key idea that allows us to write interactive programs in Idris, despite it being a
pure language, is that we distinguish between evaluation and execution. We write inter-
active programs using a generic type IO, which describes sequences of actions that are
then executed by the Idris runtime system.

5.1 Interactive programming with IO
Although you can’t write functions that interact with a user directly, you can write
functions that describe sequences of interactions. Once you have a description of a
sequence of interactions, you can pass it to the Idris runtime environment, which will
execute those actions.

 The Prelude provides a generic type, IO, that allows you to describe interactive pro-
grams that return a value:

Idris> :doc IO
IO : (res : Type) -> Type

Interactive programs, describing I/O actions and returning a
value.
Arguments:

res : Type -- The result type of the program

Thus, you distinguish in the type between functions that describe interactions with a
user, and functions that return a value directly.

 For example, consider the difference between the function types String -> Int
and String -> IO Int:

 String -> Int is the type of a function that takes a String as an input and
returns an Int without any user interaction or side effects.

 String -> IO Int is the type of a function that takes a String as an input and
returns a description of an interactive program that produces an Int.

These are a couple of examples of functions with these types:

 length : String -> Int, which is defined in the Prelude, returns the length
of the input String.

 readAndGetLength : String -> IO Int returns a description of interactive
actions that display the input String as a prompt, reads another String from
the console, and then returns the length of that String.

As you’ve seen in earlier chapters, the entry point to an Idris application is main : IO
(), and we’ve used this to write simple interactive loops using the repl and replWith
functions without worrying too much about the details of how these functions work.
It’s now time to look at IO in more detail, and to learn how to write more-complex
interactive programs.

 Listing 5.1 shows an example of an interactive program that returns a description
of the actions to display a prompt, read a user’s name, and then display a greeting.
We’ll cover the details of the syntax throughout this section, but for now, notice the
type of main : IO (). This type states that main takes no input and returns a descrip-
tion of interactive actions that produce an empty tuple.

125Interactive programming with IO

module Main

main : IO ()
main = do

putStr "Enter your name: "
x <- getLine
putStrLn ("Hello " ++ x ++ "!")

IO IN HASKELL AND IDRIS If you’re already familiar with Haskell, you’ll find
that programming with IO in Idris is very similar to writing interactive pro-
grams in Haskell. If you understand listing 5.1, you can safely move on to sec-
tion 5.3, where you’ll see how to validate user input and deal with errors in
interactive Idris programs. You may also want to look at section 5.2.2, which
discusses pattern-matching bindings.

In this section, you’ll learn how to write interactive programs like this using IO in Idris
and explore the distinction between evaluating expressions and executing programs,
which allows us to write interactive programs without compromising on purity.

5.1.1 Evaluating and executing interactive programs

Functions that return an IO type are still considered pure, because they merely describe
interactive actions. For example, the putStrLn function is defined in the Prelude and
returns the actions that output a given String, plus a newline character, to the console:

Idris> :t putStrLn
putStrLn : String -> IO ()

When you enter an expression at the REPL, Idris evaluates that expression. If that
expression is a description of interactive actions, then to perform those actions
requires an additional step, execution.

 Figure 5.1 illustrates what happens when the expression putStrLn (show (47 * 2))
is executed. First, Idris calculates that the interactive action is to display "94\n" on the
console (that is, the evaluator calculates the exact string that is to be displayed), and
then it passes that action to the runtime environment.

 You can see what happens by evaluating the expression putStrLn (show (47 * 2))
at the REPL. This merely shows a description of the actions that a runtime environ-
ment can execute. There’s no need to look closely at the exact form of the result here,
but you can at least see that the evaluation produces an expression with type IO ():

Idris> putStrLn (show (47 * 2))
io_bind (prim_write "94\n") (__bindx => io_return ()) : IO ()

Listing 5.1 A simple interactive program, reading a user’s name and displaying a greet-
ing (Hello.idr)

The keyword do introduces a
sequence of interactive actions. putStr displays a String

on the console.

getLine reads a String
from the console.

putStrLn displays a String on the
console with a trailing newline.

126 CHAPTER 5 Interactive programs: input and output processing
If you want to execute the resulting actions, you’ll need to pass this description to the
Idris runtime environment. You achieve this with the :exec command at the REPL:

Idris> :exec putStrLn (show (47 * 2))
94

In general, the :exec command, given an expression of type IO (), can be under-
stood to do the following:

1 Evaluate the expression, producing a description of the interactive actions to
execute. In figure 5.1, evaluating the expression produces a description of an
action: Write the string "94\n" to the console.

2 Pass the resulting actions to the runtime environment, which executes them. In
figure 5.1, executing the actions writes the string "94\n" to the console.

It’s also possible to compile to a standalone executable using the :c command at the
REPL, which takes the executable name as an argument and generates a program that
executes the actions described in main. For example, let’s go back to listing 5.1,
repeated here:

module Main

main : IO ()
main = do

putStr "Enter your name: "
x <- getLine
putStrLn ("Hello " ++ x ++ "!")

If you save this in a file, Hello.idr, and load it at the REPL, you can produce an execut-
able as follows:

*Hello> :c hello

This results in an executable file called hello (or, on Windows systems, hello.exe)
that can be run directly from the shell. For example:

$./hello
Enter your name: Edwin
Hello Edwin!

Evaluator

putStrLn (show (47 * 2))

Runtime environment

Write "94\n"
to console

Original expression

Description of interactions

Figure 5.1 Evaluating the expression
putStrLn (show (47 * 2)) and then
executing the resulting actions

127Interactive programming with IO
Here, main describes not just one action but a sequence of actions. In general, in
interactive programs you need to be able to sequence actions and have commands
react to user input. Therefore, Idris provides facilities for combining smaller interac-
tive programs into larger ones. We’ll begin by seeing how to do this using a Prelude
function, (>>=), and then we’ll look at the higher-level syntax we used earlier in listing
5.1, the do notation.

5.1.2 Actions and sequencing: the >>= operator

In the brief example in listing 5.1, we used three IO actions:

 putStr : String -> IO (), which is an action to display a String on the console
 putStrLn : String -> IO (), which is an action to display a String followed by a

newline on the console
 getLine : IO String, which is an action to read a String from the console

In order to write realistic programs, you’ll need to do more than just execute actions.
You’ll need to be able to sequence actions, and you’ll need to be able to process the
results of those actions.

 Let’s say, for example, you want to read a string from the console and then output
its length. There’s a length function in the Prelude, of type String -> Int, that you
can use to calculate the length of a string, but getLine returns a value of type IO
String, not String. The type IO String is a description of an action that produces a
String, not the String itself.

 In other words, you can get access to the string read from the console when the
actions resulting from the function are executed, but you don’t yet have access to it
when the function is evaluated. There’s no function of type IO String -> String. If
such a function existed, it would mean that it was possible to know which string was
read from the console without actually reading any string from the console!

 The Prelude provides a function called >>= (intended to be used as an infix opera-
tor) that allows the sequencing of IO actions, feeding the result of one action as input
into the next. It has the following type:

(>>=) : IO a -> (a -> IO b) -> IO b

Figure 5.2 shows an example application of >>=
to sequence two actions, feeding the output of
the first, getLine, as the input into the second,
putStrLn. Because getLine returns a value of
type IO String, Idris expects that putStrLn
takes a String as its argument.

 You can execute any sequence of actions
with type IO () at the REPL using the :exec
command, so you can execute the operations
in figure 5.2 as follows:

getLine >>= putStrLn

Has type
IO String

Has type
String -> IO ()

Has type IO ()

Figure 5.2 An interactive operation to
read a String and then echo its contents
using the >>= operator. The types of each
subexpression are indicated.

128 CHAPTER 5 Interactive programs: input and output processing
Idris> :exec getLine >>= putStrLn
Hello
Hello

To illustrate further, let’s try using >>= to write a printLength function that reads a
string from the console and then outputs its length. To do this, take the following
steps:

1 Type—Our printLength function takes no input and returns a description of IO
actions, so give it the following type:

printLength : IO ()

 2 Define—The function has a skeleton definition that takes no arguments:

printLength : IO ()
printLength = ?printLength_rhs

 3 Refine—Refine the printLength_rhs hole to call getLine for a description of
an action that reads from the console, and use >>= to pass the value produced
by getLine when it’s executed to the next action. Leave a hole in place of the
next action for the moment:

printLength : IO ()
printLength = getLine >>= ?printLength_rhs

 4 Type—If you inspect the type of ?printLength_rhs, you’ll see that it has a func-
tion type:

printLength_rhs : String -> IO ()

The String in the function type here is the value that will be produced by exe-
cuting getLine. This string will be available when the action is executed, and
you can use it to compute the remaining IO actions.

 5 Refine—An expression search on ?printLength_rhs will give you an anony-
mous function:

printLength : IO ()
printLength = getLine >>= \result => ?printLength_rhs1

The variable result is the String produced by the getLine action. Rename
this to something more informative, like input:

printLength : IO ()
printLength = getLine >>= \input => ?printLength_rhs1

 6 Refine—Because input is a String, you can use length to calculate its length as
a Nat. Use a let binding to store this in a local variable:

printLength : IO ()
printLength = getLine >>= \input => let len = length input in

?printLength_rhs1

Entered by the user
Output by the Idris runtime environment

129Interactive programming with IO
7 Refine—Finally, complete the definition using show to convert len to a String,
and putStrLn to give an action that displays the result:

printLength : IO ()
printLength = getLine >>= \input => let len = length input in

putStrLn (show len)

You can try this definition at the REPL with :exec printLength, telling Idris that
you’d like to execute the resulting actions rather than merely evaluate the expression:

*PrintLength> :exec printLength
test input
10

Listing 5.2 shows the complete definition, further refined by displaying a prompt. The
layout has also been adjusted in this definition to highlight the sequence of actions.

printLength : IO ()
printLength = putStr "Input string: " >>= _ =>

getLine >>= \input =>
let len = length input in
putStrLn (show len)

In principle, you can always use >>= to sequence IO actions, feeding the output of one
action as the input to the next. However, the resulting definitions are somewhat ugly,
and sequencing actions is particularly common. That’s why Idris provides an alterna-
tive syntax for sequencing IO actions, the do notation.

5.1.3 Syntactic sugar for sequencing with do notation

Interactive programs are, by their nature, typically imperative in style, with a sequence
of commands, each of which produces a value that can be used later. The >>= function
captures this idea, but the resulting definitions can be difficult to read.

Listing 5.2 A function to display a prompt, read a string, and then display its length,
using >>= to sequence IO actions (PrintLength.idr)

Entered by the user
Output by the Idris runtime environment

putStr returns IO (), so the
second argument of >>=
expects a value of type () as
its input. The underscore
indicates that this value is
ignored.getLine returns an IO String, so in

the rest of the definition, input
will have type String.

The type of >>=
If you check the type of >>= at the REPL, you’ll see a constrained generic type:

Idris> :t (>>=)
(>>=) : Monad m => m a -> (a -> m b) -> m b

In practice, this means that the pattern applies more generally than for IO, and you’ll
see more of this later. For now, just read the type variable m here as IO.

130 CHAPTER 5 Interactive programs: input and output processing
 Instead, you can sequence IO actions inside do blocks, which allow you list the
actions that will be run when a block is executed. For example, to print two things in
succession you’d do something like this:

printTwoThings : IO ()
printTwoThings = do putStrLn "Hello"

putStrLn "World"

Idris translates the do notation into applications of >>=. Figure 5.3 shows how this
works in the simplest case, where an action is to be executed, followed by more
actions.

The result of an action can be assigned to a variable. For example, to assign the result
of reading from the console with getLine to a variable x and then print the result, you
can write this:

printInput : IO ()
printInput = do x <- getLine

putStrLn x

The notation x <- getLine states that the result of the getLine action (that is, the
String produced by the action of type IO String) will be stored in the variable x,
which you can use in the rest of the do block. Sequencing actions and binding a vari-
able like this with do notation directly translates to applications of >>=, as illustrated in
figure 5.4.

do action
 more

action >>= _ => more

Action to be executed,
of type IO ty

More IO actions Transformed expression

Figure 5.3 Transforming do notation to
an expression using the >>= operator
when sequencing actions. The value
produced by the action, of type ty, is
ignored, as indicated by the underscore.

do x <- action
 more

action >>= \x => more

If action : IO ty
then x : ty

Action to be
executed, of
type IO ty

More IO actions, which
may use x : ty

Transformed expression

Figure 5.4 Transforming do
notation to an expression using the
>>= operator, when binding a
variable and sequencing actions

131Interactive programming with IO
You can also use let inside do blocks to assign a pure expression to a variable. The fol-
lowing listing shows how printLength could be written using do notation instead of
using >>= directly.

printLength : IO ()
printLength = do putStr "Input string: "

input <- getLine
let len = length input
putStrLn (show len)

Most interactive definitions in Idris are written using do notation to control sequenc-
ing. In larger programs, you’ll also need to respond to user input and direct program
flow. In the next section, we’ll look at various methods of reading and responding to
user input, and at how to implement loops and other forms of control flow in interac-
tive programs.

Exercises

1 Using do notation, write a printLonger program that reads two strings and then dis-
plays the length of the longer string.

2 Write the same program using >>= instead of do notation.
You can test your answers at the REPL as follows:

*ex_5_1> :exec printLonger
First string: short
Second string: longer
6

Listing 5.3 A function to display a prompt, read a string, and then display its length
using do notation to sequence IO actions (PrintLength.idr)

getLine has type IO String,
so input has type String.

“length input” has type Nat, so len
has type Nat; it was assigned using
let. Note that in do blocks, there’s no
“in” keyword after the assignment.

let and <- in do blocks
The printLength function in listing 5.3 uses two different forms for assigning to vari-
ables: using let and using <-. There’s an important difference between these two,
which again relies on the distinction between evaluation and execution:

 Use let x = expression to assign the result of the evaluation of an expression
to a variable.

 Use x <- action to assign the result of the execution of an action to a
variable.

In listing 5.3, getLine describes an action, so it needs to be executed and the result
assigned using <-, but length input doesn’t, so it’s assigned using let.

132 CHAPTER 5 Interactive programs: input and output processing
5.2 Interactive programs and control flow
You’ve seen how to write basic interactive programs by sequencing existing actions,
such as getLine to read input from the console and putStrLn to display text at the
console. But as programs get larger, you’ll need more control: you’ll need to be able
to validate and respond to user input, and you’ll need to express loops and other
forms of control.

 In general, control flow in functions describing interactive actions works exactly
the same way as control flow in pure functions, by pattern matching and recursion.
Functions that describe interactive actions are pure functions themselves, after all,
merely describing the actions that are to be executed later.

 In this section, we’ll look at some common patterns that are encountered in inter-
active programs: producing pure values by combining the results of interactive
actions, pattern matching on the results of interactive actions, and, finally, putting
everything together in an interactive program with loops.

5.2.1 Producing pure values in interactive definitions

As well as describing actions for execution by the runtime system, you’ll often want to
produce results from interactive programs. You’ve already seen getLine, for example:

getLine : IO String

The type IO String says that this is a function describing actions that produce a
String as a result.

 Often, you’ll want to write a function that uses an IO action such as getLine and
then manipulates its result further before returning it. For example, you might want
to write a readNumber function that reads a String from the console and converts it to
a Nat if the input consists entirely of digits. It produces a value of type Maybe Nat:

 If the input consists entirely of digits representing the number i, it produces
Just i. For example, on reading the string "1234", it produces Just 1234.

 Otherwise, it produces Nothing.

Listing 5.4 shows how to define readNumber. After reading an input using getLine, it
checks whether every character in the input is a digit. If so, it converts the input to a
Nat, producing a result using Just; otherwise, it produces Nothing.

readNumber : IO (Maybe Nat)
readNumber = do

input <- getLine
if all isDigit (unpack input)

then pure (Just (cast input))
else pure Nothing

Listing 5.4 Reading and validating a number (ReadNum.idr)

getLine has type IO String,
so input has type String.

Uses unpack to convert the input to
List Char, to check that each input
character is a digit

The pure function constructs an IO
action that produces a value, with no
other input or output effects.

133Interactive programs and control flow
The pure function is used to produce a value in an interactive program without hav-
ing any other input or output effects when it’s executed. Its purpose is to allow pure
values to be constructed by interactive programs, as shown by its type:

pure : a -> IO a

To understand the need for pure in readNumber, you can replace the then and else
branches of the if with holes, and inspect their types:

readNumber : IO (Maybe Nat)
readNumber = do

input <- getLine
if all isDigit (unpack input)

then ?numberOK
else ?numberBad

If you look at the type of ?numberOK, you’ll see that you need a value of type IO
(Maybe Nat):

input : String

numberOK : IO (Maybe Nat)

You can then refine the ?numberOK and ?numberBad holes using pure:

readNumber : IO (Maybe Nat)
readNumber = do

input <- getLine
if all isDigit (unpack input)

then pure ?numberOK
else pure ?numberBad

Now, if you look at the type of ?numberOK, you’ll see that you need a value of type
Maybe Nat instead, without the IO wrapper:

input : String

numberOK : Maybe Nat

Type of pure
As with >>=, if you check the type of pure at the REPL, you’ll see a constrained
generic type, rather than a type that uses IO specifically:

Idris> :t pure
pure : Applicative f => a -> f a

You can read the f here as IO. We’ll get to the exact meaning of Applicative and
Monad in chapter 7; you don’t need to understand the details to write interactive
programs.

134 CHAPTER 5 Interactive programs: input and output processing

Reads
input; n

has
Maybe
You can try readNumber at the REPL by executing it and passing the result on to
printLn (described in the sidebar, “Displaying values with printLn”):

*ReadNum> :exec readNumber >>= printLn
100
Just 100

*ReadNum> :exec readNumber >>= printLn
bad
Nothing

In the first case, the input is valid, so Idris produces the result Just 100. In the second
case, the input has nondigit characters, so Idris produces Nothing.

5.2.2 Pattern-matching bindings

When an interactive action produces a value of some complex data type, such as
readNumber, which produces a value of type Maybe Nat, you’ll often want to pattern-
match on the intermediate result. You can do this using a case expression, but this
can lead to deeply nested definitions. The following listing, for example, shows a func-
tion that reads two numbers from the console using readNumber, and produces a pair
of those numbers if both are valid inputs, or Nothing otherwise.

readNumbers : IO (Maybe (Nat, Nat))
readNumbers =

do num1 <- readNumber
case num1 of

Nothing => pure Nothing
Just num1_ok =>

do num2 <- readNumber
case num2 of

Nothing => pure Nothing
Just num2_ok => pure (Just (num1_ok, num2_ok))

This will only get worse as functions get longer and there are more error conditions to
deal with. To help with this, Idris provides some concise syntax for matching on inter-
mediate values in do notation. First, we’ll take a look at a simple example, reading a
pair of Strings from the console, and then we’ll revisit readNumbers and see how it
can be made more concise.

Listing 5.5 Reading and validating a pair of numbers from the console (ReadNum.idr)

Entered by the user
Output by Idris

Entered by the user
Output by Idris

Displaying values with printLn
printLn is a combination of putStrLn and show, and it’s convenient for displaying
values at the console directly. It’s defined in the Prelude:

printLn : Show a => a -> IO ()
printLn x = putStrLn (show x)

 first
um1
type
 Nat

num1 is an invalid input,
so produces Nothing

Reads second input; num2
has type Maybe Nat

num2 is an invalid input,
so produces Nothing

Both inputs are valid,
so produces a pair of

the inputs read

135Interactive programs and control flow
 You can write a function that reads two Strings and produces a pair as follows,
using pure to combine the two inputs:

readPair : IO (String, String)
readPair = do str1 <- getLine

str2 <- getLine
pure (str1, str2)

When you use the result produced by readPair, you’ll need to pattern-match on it to
extract the first and second inputs. For example, to read a pair of Strings using read-
Pair and then display both, you’d do this:

usePair : IO ()
usePair = do pair <- readPair

case pair of
(str1, str2) => putStrLn ("You entered " ++

str1 ++ " and " ++ str2)

To make these programs more concise, Idris allows the pattern match and the assign-
ment to be combined on one line, in a pattern-matching binding. The following pro-
gram has exactly the same behavior as the preceding one:

usePair : IO ()
usePair = do (str1, str2) <- readPair

putStrLn ("You entered " ++ str1 ++ " and " ++ str2)

A similar idea works for readNumbers. You can pattern-match directly on the result of
readNumber to check the validity of its result:

readNumbers : IO (Maybe (Nat, Nat))
readNumbers =

do Just num1_ok <- readNumber
Just num2_ok <- readNumber
pure (Just (num1_ok, num2_ok))

This works as you’d like when the user enters valid numbers:

*ReadNum> :exec readNumbers >>= printLn
10
20
Just (10, 20)

But, unfortunately, it doesn’t deal with the case where readNumber produces Nothing,
and therefore crashes on execution:

*ReadNum> :exec readNumbers >>= printLn
bad
*** ReadNum.idr:26:22:unmatched case in Main.case block in readNumbers
at ReadNum.idr:26:22 ***

Idris has noticed this when checking readNumbers for totality:

*ReadNum> :total readNumbers_v2
Main.readNumbers is possibly not total due to:

Main.case block in readNumbers at ReadNum.idr:26:22, which is
not total as there are missing cases

Entered by the user
Entered by the user
Output by Idris

Entered by the user

136 CHAPTER 5 Interactive programs: input and output processing

Conti

countd
REMEMBER TO CHECK TOTALITY! This incomplete definition of readNumbers
illustrates why it’s important to check that functions are total. Even though
readNumbers type-checks successfully, it could still fail at runtime due to the
missing cases.

Listing 5.6 shows how you can deal with the other possibilities in a pattern-matching
binding. As well as the binding itself, you provide alternative matches after a vertical
bar, showing how the rest of the function should proceed if the default match on Just
num1_ok or Just num2_ok fails. This function has exactly the same behavior as the ear-
lier function in listing 5.5.

readNumbers : IO (Maybe (Nat, Nat))
readNumbers =

do Just num1_ok <- readNumber | Nothing => pure Nothing
Just num2_ok <- readNumber | Nothing => pure Nothing
pure (Just (num1_ok, num2_ok))

Pattern-matching bindings of this form allow you to express the expected valid behav-
ior of a function in the default matches (Just num1_ok and Just num2_ok in listing 5.6),
dealing with the error cases in the alternative matches.

5.2.3 Writing interactive definitions with loops

Now that you can read, validate, and respond to user input, let’s put everything
together and write interactive definitions with loops.

 You can write loops by writing recursive definitions. The next listing, for example,
shows a countdown function that calculates a sequence of actions to display a count-
down, with a one-second pause between displaying each number.

module Main

import System

countdown : (secs : Nat) -> IO ()
countdown Z = putStrLn "Lift off!"
countdown (S secs) = do putStrLn (show (S secs))

usleep 1000000
countdown secs

Listing 5.6 Reading and validating a pair of numbers from the console, concisely
 (ReadNum.idr)

Listing 5.7 Display a countdown, pausing one second between each iteration (Loops.idr)

Reads first input. If it’s
invalid, produces Nothing as
a result of the computation.

Reads second input. If it’s invalid,
produces Nothing as a result of
the computation.

Both inputs are valid, so produces a
pair of the inputs read

The System module contains several
definitions for interacting with the
operating system and environment.
You import it here for usleep.

countdown is implemented by pattern
matching on Nat, so there are cases
for each constructor of Nat.

usleep describes an action that sleeps
for the given number of microseconds.

nues
the

own

137Interactive programs and control flow
If you try executing this at the REPL using :exec, you’ll see a countdown displayed:

*Loops> :exec countdown 5
5
4
3
2
1
Lift off!

You can also check whether this function is total, that is, guaranteed to produce a
result in finite time for all possible inputs:

*Loops> :total countdown
Main.countdown is Total

In general, you can write an interactive function that describes a loop by making a
recursive call to the function with its last action. In countdown, as long as the input
argument isn’t Z, the program when executed will print the argument and wait a sec-
ond before making a recursive call on the next smaller number. The number of itera-
tions of the loop is therefore determined by the initial input. Because this is finite,
countdown must terminate eventually, so Idris reports that it is total.

TOTALITY AND INTERACTIVE PROGRAMS Totality checking is based on evalua-
tion, not execution. The result of totality checking an IO program, therefore,
tells you whether Idris will produce a finite sequence of actions, but nothing
about the runtime behavior of those actions.

Sometimes, however, the number of iterations is determined by user input. For exam-
ple, you can write a function to keep executing countdown until the user wants to stop,
as shown next.

countdowns : IO ()
countdowns = do putStr "Enter starting number: "

Just startNum <- readNumber
| Nothing => do putStrLn "Invalid input"

countdowns
countdown startNum
putStr "Another (y/n)? "
yn <- getLine
if yn == "y" then countdowns

else pure ()

This function is not total, because there’s no guarantee that a user will ever enter any-
thing other than y, or even provide any valid input.

*Loops> :total countdowns
Main.countdowns is possibly not total due to recursive path:

Main.countdowns

Listing 5.8 Keep running countdown until the user doesn’t want to run it any more
(Loops.idr)

Uses readNumber to get
a valid input, or restart if

the input is not valid

Calls countdown with
the user’s input Makes a recursive call

if the user enters “y”

138 CHAPTER 5 Interactive programs: input and output processing
Interactive programs that might loop forever, such as countdowns (or, more realisti-
cally, servers or operating systems) are not total, at least if we limit the definition to ter-
minating programs. More precisely, a total function must either terminate or be
guaranteed to produce a finite prefix of some infinite input, within finite time. We’ll
discuss this further in chapter 11.

Exercises

1 Write a function that implements a simple “guess the number” game. It should have
the following type:

guess : (target : Nat) -> IO ()

Here, target is the number to be guessed, and guess should behave as follows:

 Repeatedly ask the user to guess a number, and display whether the guess is too
high, too low, or correct.

 When the guess is correct, exit.

Ideally, guess will also report an error message if the input is invalid (for example, if
it contains characters that are not digits or are out of range).

 2 Implement a main function that chooses a random number between 1 and 100 and
then calls guess.

Hint: As a source of random numbers, you could use time : IO Integer, defined
in the System module.

 3 Extend guess so that it counts the number of guesses the user has taken and dis-
plays that number before the input is read.

Hint: Refine the type of guess to the following:

guess : (target : Nat) -> (guesses : Nat) -> IO ()

 4 Implement your own versions of repl and replWith. Remember that you’ll need to
use different names to avoid clashing with the names defined in the Prelude.

5.3 Reading and validating dependent types
In previous chapters, you’ve seen several functions with dependent types, particularly
using Vect to express lengths of vectors in their types. This allows you to state assump-
tions about the form of inputs to a function in its type and guarantees about the form
of its output. For example, you’ve seen zip, which pairs corresponding elements of
vectors:

zip : Vect n a -> Vect n b -> Vect n (a, b)

The type expresses the following:

 Assumption—Both input vectors have the same length, n.
 Guarantee—The output vector will have the same length as the input vectors.

139Reading and validating dependent types

R

S

 Guarantee—The output vector will consist of pairs of the element type of the
first input vector and the element type of the second input vector.

Idris checks that whenever the function is called, the arguments satisfy the assumption
and the definition of the function satisfies the guarantee.

 So far, we’ve been testing functions such as zip at the REPL. Realistically, though,
inputs to functions don’t come from such a carefully controlled environment where
the Idris type checker is available. In practice, when a complete program is compiled
and executed, inputs to functions will originate from some external source: perhaps a
field on a web page, or user input at the console.

 When a program reads data from some external source, it can’t make any assump-
tions about the form of that data. Rather, the program has to check that the data is of
the necessary form. The type of a function tells you exactly what you need to check in
order to evaluate it safely.

 In this section, we’ll write a program that reads two vectors from the console, uses
zip to pair corresponding elements if the vectors are the same length, and then dis-
plays the result. Although this is a simple goal, it demonstrates several important
aspects of working with dependent types in interactive programs, and you’ll see many
more examples of this form later in this book. You’ll see, briefly, how the types of the
pure parts of programs tell you what you need to check in the interactive parts, and
how the type system guides you toward the parts where error checking is necessary.

5.3.1 Reading a Vect from the console

As a first step, you’ll need to be able to read a vector from the console. Because vectors
express their length in the type, you’ll need some way of describing the length of the
vector you intend to read. One way is to take the length as an input, such as in the fol-
lowing type:

readVectLen : (len : Nat) -> IO (Vect len String)

This type states that readVectLen takes an intended length as input, and returns the
sequence of actions that reads a vector of Strings of that length. The following listing
shows one way you could implement this function.

readVectLen : (len : Nat) -> IO (Vect len String)
readVectLen Z = pure []
readVectLen (S k) = do x <- getLine

xs <- readVectLen k
pure (x :: xs)

Listing 5.9 Reading a Vect of known length from the console (ReadVect.idr)

Nothing to read;
returns an empty vector

eads
one

tring

Reads the rest of the vector

Combines the string and
the rest of the vector

140 CHAPTER 5 Interactive programs: input and output processing
 You can try readVectLen at the REPL by executing it with a specific length, and
then printing the result with printLn:

*ReadVect> :exec readVectLen 4 >>= printLn
John
Paul
George
Ringo
["John", "Paul", "George", "Ringo"]

A problem with this approach is that you need to know in advance how long the vec-
tor should be, because the length is given as an input. What if, instead, you want to
read strings until the user enters a blank line? You can’t know in advance how many
strings the user will enter, so instead, you’ll need to return the length along with a vec-
tor of that length.

5.3.2 Reading a Vect of unknown length

If you read a vector from the console, terminated by a blank line, you can’t know how
many elements will be in the resulting vector. In this situation, you can define a new
data type that wraps not only the vector but also its length:

data VectUnknown : Type -> Type where
MkVect : (len : Nat) -> Vect len a -> VectUnknown a

In type-driven development, we aim to express what we know about data in its type; if
we can’t know something about data, we need to express this somehow too. This is the
purpose of VectUnknown; it contains both the vector and its length, meaning that the
length doesn’t have to be known in the type.

 You can construct an example at the REPL:

*ReadVect> MkVect 4 ["John", "Paul", "George", "Ringo"]
MkVect 4 ["John", "Paul", "George", "Ringo"] : VectUnknown String

In fact, you could leave an underscore in the expression instead of giving the length,
4, explicitly, because Idris can infer this from the length of the given vector:

*ReadVect> MkVect _ ["John", "Paul", "George", "Ringo"]
MkVect 4 ["John", "Paul", "George", "Ringo"] : VectUnknown String

Having defined VectUnknown, instead of writing a function that returns IO (Vect len
String), you can write a function that returns IO (VectUnknown String). That is, it
returns not only the vector, but also its length:

readVect : IO (VectUnknown String)

This type states that readVect is a sequence of interactive actions that produce a vec-
tor of some unknown length, which will be determined at runtime. The following list-
ing shows one possible implementation.

Entered by the user
Output by Idris

141Reading and validating dependent types

readVect : IO (VectUnknown String)
readVect = do x <- getLine

if (x == "")
then pure (MkVect _ [])
else do MkVect _ xs <- readVect

pure (MkVect _ (x :: xs))

To try this, you can define a convenience function, printVect, that displays the con-
tents and length of a VectUnknown at the console:

printVect : Show a => VectUnknown a -> IO ()
printVect (MkVect len xs)

= putStrLn (show xs ++ " (length " ++ show len ++ ")")

Then, you can try reading some input at the REPL:

*ReadVect> :exec readVect >>= printVect
John
Paul
George
Ringo

["John", "Paul", "George", "Ringo"] (length 4)

When dealing with user input, there’ll often be some properties of the data that you
can’t know until runtime. The length of a vector is one example: once you’ve read the
vector, you know its length, and from there you can check it and reason about how it
relates to other data. But you could have a similar problem with any dependent data
type that’s read from user input, and it would be better not to define a new type (like
VectUnknown) every time this happens. Instead, Idris provides a more generic solu-
tion, dependent pairs.

5.3.3 Dependent pairs

You’ve already seen tuples, introduced in chapter 2, which allow you to combine val-
ues of different types, as in this example:

mypair : (Int, String)
mypair = (94, "Pages")

A dependent pair is a more expressive form of this construct, where the type of the second
element in a pair can be computed from the value of the first element. For example:

anyVect : (n : Nat ** Vect n String)
anyVect = (3 ** ["Rod", "Jane", "Freddy"])

Listing 5.10 Reading a Vect of unknown length from the console (ReadVect.idr)

Reads the first line

If the line read is blank,
returns an empty vector
wrapped in MkVect. Idris

will infer its length.

Combines xs with
the first line (x) and
wraps it in MkVect

Reads the rest of the vector
and pattern-matches on the
result to extract xs

Entered by the user
Blank line entered by user

Output by Idris

142 CHAPTER 5 Interactive programs: input and output processing
Dependent pairs are written with the elements separated by **. Their types are written
using the same syntax as their values, except that the first element is given an explicit
name (n in the preceding example). Figure 5.5 illustrates the syntax for dependent
pair types.

You can also often omit the type of the first element, if Idris can infer it from the type
of the second element. For example:

anyVect : (n ** Vect n String)
anyVect = (3 ** ["Rod", "Jane", "Freddy"])

If you replace the value ["Rod", "Jane", "Freddy"] with a hole, you can see how the
first value, 3, affects its type:

anyVect : (n ** Vect n String)
anyVect = (3 ** ?anyVect_rhs)

Inspecting the type of ?anyVect_rhs reveals that the second element must specifically
be a vector of length 3, as specified by the first element:

anyVect_rhs : Vect 3 String

TYPES OF SUBEXPRESSIONS Remember that when trying to understand larger
program listings, you can replace subexpressions with a hole, like ?any-
Vect_rhs in the type-inference example, to find out their expected types
and the types of any local variables that are in scope.

Instead of defining VectUnknown as in the section 5.3.2, you can define a function that
reads vectors of unknown length by returning a dependent pair of the length, and a
vector of that length. The following listing shows how readVect could be defined
using dependent pairs.

readVect : IO (len ** Vect len String)
readVect = do x <- getLine

if (x == "")

Listing 5.11 Reading a Vect of unknown length from the console, returning a depen-
dent pair (DepPairs.idr)

anyVect : (n : Nat ** Vect n String)

Name of first element
defined here

Name of first element
used here

Type of first
element

Type of second
element, which may

refer to name of
first element

Figure 5.5 Dependent pair syntax. Notice that
the first element is given a name that can be
used in the type of the second element.

Returns actions that build a
dependent pair of some length,
and a vector of that length

143Reading and validating dependent types
then pure (_ ** [])
else do (_ ** xs) <- readVect

pure (_ ** x :: xs)

Again, you can try this at the REPL. You can use printLn to display the contents of the
dependent pair:

*DepPairs> :exec readVect >>= printLn
Rod
Jane
Freddy

(3 ** ["Rod", "Jane", "Freddy"])

Now that you have the ability to read vectors of arbitrary and user-defined lengths
from the console, we can complete our original goal of writing a program that reads
two vectors and zips them together if their lengths match.

5.3.4 Validating Vect lengths

Our goal, as stated at the beginning of this section, is to write a program that does the
following:

1 Read two input vectors, using readVect.
 2 If they have different lengths, display an error.
3 If they have the same lengths, display the result of zipping the vectors together.

The program will take its inputs from the user at the console and display its result on
the console. We’ll implement it as a zipInputs function, as follows:

1 Type—Because the input and output are entirely at the console, the type states
that zipInputs takes no arguments and returns interactive actions:

zipInputs : IO ()

 2 Define—The first step in defining the function is to read two inputs using read-
Vect. Leave a hole, ?zipInputs_rhs, for the rest of the definition:

zipInputs : IO ()
zipInputs = do putStrLn "Enter first vector (blank line to end):"

(len1 ** vec1) <- readVect
putStrLn "Enter second vector (blank line to end):"
(len2 ** vec2) <- readVect
?zipInputs_rhs

 3 Type—Looking at the type of ?zipInputs_rhs, you can see the types (and
hence the lengths) of the vectors that have been read:

len2 : Nat
vec2 : Vect len2 String
len1 : Nat
vec1 : Vect len1 String

zipInputs_rhs : IO ()

Returns a dependent
pair of zero (inferred by

Idris) and a Vect of
length zero

Returns a dependent pair of a
length inferred by Idris, and a
Vect combining x and xs

Entered by the user
Blank line entered by user

Output by Idris

144 CHAPTER 5 Interactive programs: input and output processing
vec1 has length len1, and vec2 has length len2; there’s no explicit relationship
between these lengths. Indeed, there shouldn’t be, because they were read
independently. But if you look at the type of zip, you’ll see that the lengths
must be the same before you can use it:

zip : Vect n a -> Vect n b -> Vect n (a, b)

 4 Refine—Before you can make progress, you’ll need to check that the length of
the second vector is the same as the length of the first. As a first attempt, you
might try the following:

if len1 == len2
then ?zipInputs_rhs1
else ?zipInputs_rhs2

Unfortunately, this doesn’t help. If you look at the type of ?zipInputs_rhs1,
you’ll see that nothing has changed:

len1 : Nat
len2 : Nat
vec2 : Vect len2 String
vec1 : Vect len1 String

zipInputs_rhs1 : IO ()

The problem is that the type of len1 == len2, Bool, tells you nothing about the
meaning of the operation itself. As far as Idris is concerned, the == operation
could be implemented in any way (you’ll see in chapter 7 how == can be
defined) and doesn’t necessarily guarantee that len1 and len2 really are equal.

Instead, you can use the following function defined in Data.Vect:

exactLength : (len : Nat) -> (input : Vect m a) -> Maybe (Vect len a)

This function takes a length, len, and a vector, input, of any length. If the
length of the input vector turns out to be len, it returns Just input, with its
type updated to Vect len a. Otherwise, it returns Nothing.

IMPLEMENTING EXACTLENGTH To implement exactLength, you need a more
expressive type than Bool for representing the result of an equality test.
You’ll see how to do this in chapter 8, and we’ll discuss the limitations of Bool
in general.

Using exactLength, you can refine the definition as follows:

zipInputs : IO ()
zipInputs = do putStrLn "Enter first vector (blank line to end):"

(len1 ** vec1) <- readVect
putStrLn "Enter second vector (blank line to end):"
(len2 ** vec2) <- readVect
case exactLength len1 vec2 of

Nothing => ?zipInputs_rhs_1
Just vec2' => ?zipInputs_rhs_2

145Reading and validating dependent types
 5 Refine—For zipInputs_rhs_1, the inputs are different lengths, so you display
an error:

case exactLength len1 vec2 of
Nothing => putStrLn "Vectors are different lengths"
Just vec2' => ?zipInputs_rhs_2

6 Refine—For zipInputs_rhs_2, you have a new vector, vec2', which is the same
as vec2 but with its length now guaranteed to be the same as the length of vec1,
as you can confirm by looking at the type:

len1 : Nat
vec2' : Vect len1 String
len2 : Nat
vec2 : Vect len2 String
vec1 : Vect len1 String

zipInputs_rhs_2 : IO ()

You can therefore complete the definition by calling zip with vec1 and vec2',
and then printing the result:

case exactLength len1 vec2 of
Nothing => putStrLn "Vectors are different lengths"
Just vec2' => printLn (zip vec1 vec2')

For reference, the complete definition is given in the following listing.

zipInputs : IO ()
zipInputs = do putStrLn "Enter first vector (blank line to end):"

(len1 ** vec1) <- readVect
putStrLn "Enter second vector (blank line to end):"
(len2 ** vec2) <- readVect
case exactLength len1 vec2 of

Nothing => putStrLn "Vectors are different lengths"
Just vec2' => printLn (zip vec1 vec2')

Exercises

In these exercises, you’ll find the following Prelude functions useful, in addition to
the functions discussed earlier in the chapter: openFile, closeFile, fEOF, fGetLine,
and writeFile. Use :doc to find out what each of these do. Also, see the sidebar,
“Handling I/O errors.”

1 Write a function, readToBlank : IO (List String), that reads input from the
console until the user enters a blank line.

 2 Write a function, readAndSave : IO (), that reads input from the console until
the user enters a blank line, and then reads a filename from the console and
writes the input to that file.

Listing 5.12 Complete definition of zipInputs (DepPairs.idr)

146 CHAPTER 5 Interactive programs: input and output processing
3 Write a function, readVectFile : (filename : String) -> IO (n ** Vect n
String), that reads the contents of a file into a dependent pair containing a
length and a Vect of that length. If there are any errors, it should return an
empty vector.

5.4 Summary
 Idris provides a generic IO type for describing interactive actions.
 Idris distinguishes between evaluation of pure functions and execution of inter-

active actions. The :exec command at the REPL executes interactive actions.
 You can sequence interactive actions using do notation, which translates to

applications of the >>= operator.
 You can produce pure values from interactive definitions by using the pure

function.
 Idris provides a concise notation for pattern-matching on the result of an inter-

active action.
 Dependent types express assumptions about inputs to functions, so you need to

validate user inputs to check that they satisfy those assumptions.
 Dependent pairs allow you to pair two values, where the type of the second

value is computed from the first value.
 You can use dependent pairs to express that a type’s argument, such as the

length of a vector, will not be known until the user enters some input.

Handling I/O errors
Many of the functions in the Exercises may return errors using Either. At first, you
can assume the result is successful using a pattern-matching binding, as described
in section 5.2.2:

do Right h <- openFile filename Read
Right line <- fGetLine h
{- rest of code -}

Then, to make the function total, handle errors using the notation described in the
same section:

do Right h <- openFile filename Read
| Left err => putStrLn (show err)

Right line <- fGetLine h
| Left err => putStrLn (show err)

{- rest of code -}

Programming with
first-class types
In Idris, as you’ve seen several times now, types can be manipulated just like any
other language construct. For example, they can be stored in variables, passed to
functions, or constructed by functions. Furthermore, because they’re truly first-class,
expressions can compute types, and types can also take any expression as an argu-
ment. You’ve seen several uses of this concept in practice, in particular the ability to
store additional information about data in its type, such as the length of a vector.

 In this chapter, we’ll explore more ways of taking advantage of the first-class
nature of types. You’ll see how type-level functions can be used to give alternative
names to types and also to calculate the type of a function from some other data. In

This chapter covers
 Programming with type-level functions

 Writing functions with varying numbers of
arguments

 Using type-level functions to calculate the
structure of data

 Refining larger interactive programs
147

148 CHAPTER 6 Programming with first-class types
particular, you’ll see how you can write a type-safe formatted output function, printf.
For printf, the type (and even number) of arguments to the function are calculated
from a format string provided as its first argument. This technique, calculating the type
of some data (in this case, the arguments to printf) based on some other data (in this
case, the format string) is often useful. Here are a couple of examples:

 Given an HTML form on a web page, you can calculate the type of a function to
process inputs in the form.

 Given a database schema, you can calculate types for queries on that database.

As an example of this concept, you’ll see how to use type-level functions to refine the
data store we implemented at the end of chapter 4. Previously, you could only store
data as Strings, but for more flexibility you might want the form of the data to be
described by a user rather than hardcoded into the program. Using type-level func-
tions, you’ll extend the data store with a schema that describes the form of the data,
and you’ll use that schema to calculate appropriate types for functions to parse and
display user data. In doing so, you’ll learn more about using holes to help correct
errors when refining larger programs.

 To begin, we’ll look at how to use functions at the type level to calculate types.

6.1 Type-level functions: calculating types
One of the most fundamental features of Idris is that types and expressions are part of
the same language—you use the same syntax for both. You’ve already seen in chapter 4
that expressions can appear in types. For example, in the type of append on Vect, we
have n and m (both Nats), and the resulting length is n + m:

append : Vect n elem -> Vect m elem -> Vect (n + m) elem

Here, n, m, and n + m all have type Nat, which can also be used in ordinary expressions.
Similarly, you can use types in expressions and therefore write functions that calculate
types. There are two common situations where you might want to do this:

 To give more meaningful names to composite types—For example, if you have a type
(Double, Double) representing a position as a 2D coordinate, you might prefer
to call the type Position to make the code more readable and self-documenting.

 To allow a function’s type to vary according to some contextual information—For exam-
ple, the type of a value returned by a database query will vary depending on the
database schema and the query itself.

In the first case, you can define type synonyms, which give alternative names to types. In
the second case, you can define type-level functions (of which type synonyms are a special
case) that calculate types from some input. In this section, we’ll take a look at both.

149Type-level functions: calculating types
6.1.1 Type synonyms: giving informative names to complex types

Let’s say you’re writing an application that deals with complex polygons, such as a
drawing application. You might represent a polygon as a vector of the coordinates of
each corner. A triangle, for example, might be initialized as follows:

tri : Vect 3 (Double, Double)
tri = [(0.0, 0.0), (3.0, 0.0), (0.0, 4.0)]

The type, Vect 3 (Double, Double) says exactly what the form of the data will be,
which is useful to the machine, but it doesn’t give any indication to the reader what
the purpose of the data is. Instead, you can refine the type using a type synonym for a
position represented as a 2D coordinate:

Position : Type
Position = (Double, Double)

Here, you have a function called Position that takes no arguments and returns a
Type. This is an ordinary function; there’s nothing special about the way it’s declared
or implemented. Now, anywhere you can use a Type, you can use Position to calcu-
late that type. For example, the triangle can be defined with a refined type as follows:

tri : Vect 3 Position
tri = [(0.0, 0.0), (3.0, 0.0), (0.0, 4.0)]

This kind of function is a type synonym because it provides an alternative name for
some other type.

NAMING CONVENTION By convention, we usually use an initial capital letter for
functions that are intended to compute types.

Because they’re ordinary functions, they can also take arguments. For example, the
following listing shows how you can use type synonyms to express more clearly that the
Vect is intended to represent a polygon.

import Data.Vect

Position : Type
Position = (Double, Double)

Polygon : Nat -> Type
Polygon n = Vect n Position

tri : Polygon 3
tri = [(0.0, 0.0), (3.0, 0.0), (0.0, 4.0)]

Because Polygon is an ordinary function, you can evaluate it at the REPL:

*TypeSynonyms> Polygon 3
Vect 3 (Double, Double) : Type

Listing 6.1 Defining a polygon using type synonyms (TypeSynonym.idr)

A type synonym for describing
positions as (x, y) coordinates

A type synonym for describing
polygons with n corners

150 CHAPTER 6 Programming with first-class types
Also, notice that if you evaluate tri at the REPL, Idris will display tri’s type in the eval-
uated form. In other words, evaluation at the REPL evaluates both the expression and
the type:

*TypeSynonyms> tri
[(0.0, 0.0), (3.0, 0.0), (0.0, 4.0)] : Vect 3 (Double, Double)

Using :t, on the other hand, displays tri’s type:

*TypeSynonyms> :t tri
Polygon 3

Finally, you can see what happens when you try to define tri interactively using
expression search in Atom. Enter the following into an Atom buffer, along with the
previous definition of Polygon:

tri : Polygon 3
tri = ?tri_rhs

The interactive editing tools in general, and expression search in particular, are aware
of how type synonyms are defined, so if you try an expression search on tri_rhs, you’ll
get the same result as if the type were written directly as Vect 3 (Double, Double):

tri : Polygon 3
tri = [(?tri_rhs1, ?tri_rhs2), (?tri_rhs3, ?tri_rhs4),
 (?tri_rhs5, ?tri_rhs6)]

The type synonyms defined in this section, Position and Polygon, are really just ordi-
nary functions that happen to be used to compute types. This gives you a lot of flexi-
bility in how you describe types, as you’ll see in the rest of this chapter.

6.1.2 Type-level functions with pattern matching

Type synonyms are a special case of type-level functions, which are functions that can be
used anywhere Idris is expecting a Type. There isn’t anything special about type-level
functions as far as Idris is concerned; they’re ordinary functions that happen to return
a Type, and they can use all of the language constructs available elsewhere. Neverthe-
less, it’s useful to consider them separately, to see how they work in practice.

 Because type-level functions are ordinary functions that return a type, you can
write them by case splitting. For example, the following listing shows a function that
calculates a type from a Boolean input. You saw this function in chapter 1, although in
a slightly different form.

StringOrInt : Bool -> Type
StringOrInt False = String
StringOrInt True = Int

Listing 6.2 A function that calculates a type from a Bool (TypeFuns.idr)

151Type-level functions: calculating types
Using this, you can write a function where the return type is calculated from or depends
on an input. Using StringOrInt, you can write functions that return either type,
depending on a Boolean flag.

 As a small example, you can write a function that takes a Boolean input and
returns the string "Ninety four" if it’s False, or the integer 94 if it’s True. Begin with
the type:

1 Type—Begin by giving a type declaration, using StringOrInt:

getStringOrInt : (isInt : Bool) -> StringOrInt isInt
getStringOrInt isInt = ?getStringOrInt_rhs

If you look at the type of getStringOrInt_rhs now, you’ll see this:

isInt : Bool

getStringOrInt_rhs : StringOrInt isInt

 2 Define—Because isInt appears in the required type for getStringOrInt_rhs,
case splitting on isInt will cause the expected return type to change according
to the specific value of isInt for each case. Case splitting on isInt leads to this:

getStringOrInt : (isInt : Bool) -> StringOrInt isInt
getStringOrInt False = ?getStringOrInt_rhs_1
getStringOrInt True = ?getStringOrInt_rhs_2

 3 Type—Looking at the types of the newly created holes, you can see how the
expected type is changed in each case:

getStringOrInt_rhs_1 : String

getStringOrInt_rhs_2 : Int

In getStringOrInt_rhs_1, the type is refined to StringOrInt False because
the pattern for isInt is False, which evaluates to String. Then, in getString-
OrInt_rhs_2, the type is refined to StringOrInt True, which evaluates to Int.

4 Refine—To complete the definition, you need to provide values of different
types in each case:

getStringOrInt : (isInt : Bool) -> StringOrInt isInt
getStringOrInt False = "Ninety four"
getStringOrInt True = 94

DEPENDENT PATTERN MATCHING The getStringOrInt example illustrates a
technique that’s often useful when programming with dependent types:
dependent pattern matching. This refers to a situation where the type of one
argument to a function can be determined by inspecting the value of (that is,
by case splitting) another. You’ve already seen an example of this when defin-
ing zip in chapter 4, where the form of one vector restricted the valid forms
of the other, and you’ll see a lot more.

152 CHAPTER 6 Programming with first-class types
Type-level functions can be used anywhere a Type is expected, meaning that they can
be used in place of argument types too. For example, you can write a function that
converts either a String or an Int to a canonical String representation, according to
a Boolean flag. This function will behave as follows:

 If the input is a String, it returns the String with leading and trailing space
removed using trim.

 If the input is an Int, it converts the input to a String using cast.

DOCUMENTATION Remember that you can use :t and :doc to check the
types of functions that are unfamiliar (such as trim) at the REPL.

You can define this function with the following steps:

1 Type—Begin by writing a type for valToString, again using StringOrInt, but
this time to calculate the input type:

valToString : (isInt : Bool) -> StringOrInt isInt -> String
valToString isInt y = ?valToString_rhs

Inspecting the type of valToString_rhs, you’ll see the following:

isInt : Bool
y : StringOrInt isInt

valToString_rhs : String

 2 Define—You can define this by case splitting on isInt. The type of y is calcu-
lated from isInt, so if you case-split on isInt, you should see refined types for
y in each resulting case:

valToString : (isInt : Bool) -> StringOrInt isInt -> String
valToString False y = ?valToString_rhs_1
valToString True y = ?valToString_rhs_2

 3 Type—Inspecting the types of valToString_rhs_1 and valToString_rhs_2
shows how the type of y is refined in each case:

y : String

valToString_rhs_1 : String

y : Int

valToString_rhs_2 : String

4 Refine—To complete the definition, fill in the right side to convert y to a
trimmed String if it was a String, or a string representation of the number if it
was an Int:

valToString : (isInt : Bool) -> StringOrInt isInt -> String
valToString False y = trim y
valToString True y = cast y

153Type-level functions: calculating types
The simple examples in this section, getStringOrInt and valToString, illustrate a
technique that can be used more widely in practice. You’ll see some more practical
examples later in this chapter: using a format string to calculate a type for formatted
output, and a larger example allowing users to calculate a schema, extending the data
store you saw in chapter 4.

 There’s more that you can achieve with type-level expressions, however. The fact
that types are first-class means not only that types can be computed like any other
value, but also that any expression form can appear in types.

6.1.3 Using case expressions in types

Any expression that can be used in a function can also be used at the type level, and
vice versa. For example, you can leave holes in types while your understanding of a
function’s requirements develops, or you can use more-complex expression forms
such as case. Let’s briefly take a look at how this can work by using a case expression
in the type of valToString instead of a separate StringOrInt function:

1 Type—Start by giving a type for valToString, but because you don’t immedi-
ately know the input type, you can leave a hole:

valToString : (isInt : Bool) -> ?argType -> String

 2 Define—Even though you have an incomplete type, you can still proceed with
the definition by case splitting on isInt, because you at least know that isInt is
a Bool:

valToString : (isInt : Bool) -> ?argType -> String
valToString False y = ?valToString_rhs_1
valToString True y = ?valToString_rhs_2

 3 Type—Inspecting the types of valToString_rhs_1 and valToString_rhs_2 will,
however, reveal that you don’t know the type of y yet:

y : ?argType

valToString_rhs_1 : String

 4 Refine—At this stage, you need to refine the type with more details of ?argType.
You can fill in ?argType with a case expression:

valToString : (isInt : Bool) -> (case _ of
case_val => ?argType) -> String

valToString False y = ?valToString_rhs_1
valToString True y = ?valToString_rhs_2

 5 Refine—Remember that when Idris generates a case expression, it leaves an
underscore in place of the value the case expression will branch on. You’ll
need to fill this in before the program will compile. You can compute the argu-
ment type from the input isInt:

valToString : (isInt : Bool) -> (case isInt of
case_val => ?argType) -> String

154 CHAPTER 6 Programming with first-class types
valToString False y = ?valToString_rhs_1
valToString True y = ?valToString_rhs_2

 6 Refine—Case splitting on case_val gives you the two possible values isInt can
take:

valToString : (isInt : Bool) -> (case isInt of
False => ?argType_1
True => ?argType_2) -> String

valToString False y = ?valToString_rhs_1
valToString True y = ?valToString_rhs_2

You can then complete the type in the same way as your implementation of
StringOrInt, refining ?argType_1 with String and ?argType_2 with Int:

valToString : (isInt : Bool) -> (case isInt of
False => String
True => Int) -> String

valToString False y = ?valToString_rhs_1
valToString True y = ?valToString_rhs_2

 7 Type—Inspecting ?valToString_rhs_1 and ?valToString_rhs2 now will show
you the new types for the input y, calculated from the first argument:

y : String

valToString_rhs_1 : String

y : Int

valToString_rhs_2 : String

8 Refine—Finally, now that you know the type of the input y in each case, you can
complete the definition as before:

valToString : (isInt : Bool) -> (case isInt of
False => String
True => Int) -> String

valToString False y = trim y
valToString True y = cast y

Totality and type-level functions
In general, it’s best to consider type-level functions in exactly the same way as ordi-
nary functions, as we’ve done so far. This isn’t always the case, though. There are a
couple of technical differences that are useful to know about:

 Type-level functions exist at compile time only. There’s no runtime representa-
tion of Type, and no way to inspect a Type directly, such as pattern matching.

 Only functions that are total will be evaluated at the type level. A function that
isn’t total may not terminate, or may not cover all possible inputs. Therefore,
to ensure that type-checking itself terminates, functions that are not total are
treated as constants at the type level, and don’t evaluate further.

155Defining functions with variable numbers of arguments
6.2 Defining functions with variable numbers of arguments
You can use type-level functions to calculate types based on some other known input.
Given that function types are themselves types, this means that you can write functions
with a different number of arguments depending on some other input. This is similar
to some other languages that support variable-length argument lists, but with addi-
tional precision in the type because you use the value of one argument to compute the
types of the others.

 In this section, we’ll see a couple of examples of how this can work:

 As an introductory example, we’ll write a function that adds a sequence of num-
bers, where the first argument is a number used to calculate the type of a func-
tion that takes that many inputs.

 We’ll use the same technique to write a variant of the printf function that pro-
duces a formatted output String using a format specifier in its first argument to
describe the form of later arguments.

6.2.1 An addition function

First, we’ll define an addition function that adds
together a sequence of numbers given directly as
function arguments. Its behavior is characterized by
the three examples shown in figure 6.1. An expres-
sion of the form adder numargs val calculates a
function that takes numargs additional arguments,
which are added to an initial value val.

 As usual in type-driven development, you’ll
begin writing adder by writing its type, but in this
case the type is not something you can construct
directly; the type of adder is different depending on
the value of the first argument. For the examples
shown in figure 6.1, you’re looking for the following
types:

adder 0 : Int -> Int
adder 1 : Int -> Int -> Int
adder 2 : Int -> Int -> Int -> Int
...

Because types are first-class, and this type differs depending on some value, you’ll be
able to compute it using a type-level function. You can write an AdderType function
with the required behavior. The name AdderType follows the convention that type-
level functions are given names with an initial capital letter, and it indicates that it’s
used to compute the type of adder.

Additional
arguments

Number of additional
arguments

0 10 = 10

1 10 15 = 25

2 10 15 20 = 45

adder

adder

adder

Initial value

Figure 6.1 Behavior of an addition
function with a variable number of
arguments

156 CHAPTER 6 Programming with first-class types
 You can use a Nat to give the length of the argument list, both because you can
case-split on it conveniently, and because it would be meaningless to have a negative
length argument list. The following listing gives the definition of AdderType.

AdderType : (numargs : Nat) -> Type
AdderType Z = Int
AdderType (S k) = (next : Int) -> AdderType k

The type of adder can now be computed by passing its first argument to AdderType.
The second argument is the initial value, which we’ll call acc as an abbreviation for
“accumulator”:

adder : (numargs : Nat) -> (acc : Int) -> AdderType numargs

Because you calculate the type by case splitting on numargs in AdderType, you can
write the definition of adder with a corresponding structure by case splitting on
numargs, so that AdderType will be refined for each case. You can implement it with
the following steps:

1 Define—Add a skeleton definition, and then case-split on the first argument:

adder : (numargs : Nat) -> (acc : Int) -> AdderType numargs
adder Z acc = ?adder_rhs_1
adder (S k) acc = ?adder_rhs_2

 2 Refine—Where the number of additional arguments, numargs, is Z, return the
accumulator directly:

adder : (numargs : Nat) -> (acc : Int) -> AdderType numargs
adder Z acc = acc
adder (S k) acc = ?adder_rhs_2

 3 Type—For adder_rhs_2, inspecting the type of the hole shows that you need to
provide a function:

k : Nat
acc : Int

adder_rhs_2 : Int -> AdderType k

This is a function type because in AdderType when numargs matches a nonzero
Nat, the expected type is a function type.

4 Refine—The only way you have of producing something of type AdderType k in
general is by calling adder with k as the first argument, so this type hints that
you need to make a recursive call to adder. This is the complete definition:

Listing 6.3 A function to calculate a type for adder n (Adder.idr)

No further
function arguments

Returns a function that takes a single integer
and constructs the rest of the adder type,

which takes k further arguments

157Defining functions with variable numbers of arguments
adder : (numargs : Nat) -> (acc : Int) -> AdderType numargs
adder Z acc = acc
adder (S k) acc = \next => adder k (next + acc)

Now that you have a complete and working definition, it’s a good idea to think about
how you might refine either the type or the definition itself. For example, adder could
be made generic in the type of numbers it adds.

 Listing 6.4 shows a slightly refined version of the adder function that works with
any numeric type, not just Int. It does this by passing an additional Type argument to
AdderType, and then constraining that to numeric types in the type of adder.

AdderType : (numargs : Nat) -> Type -> Type
AdderType Z numType = numType
AdderType (S k) numType = (next : numType) -> AdderType k numType

adder : Num numType =>
(numargs : Nat) -> numType -> AdderType numargs numType

adder Z acc = acc
adder (S k) acc = \next => adder k (next + acc)

The adder function illustrates the basic pattern for defining functions with variable
numbers of arguments: you’ve written an AdderType function to calculate the desired
type of adder, given one of adder’s inputs. The pattern can also be applied for larger
definitions, as you’ll now see when we define a function for formatting output.

6.2.2 Formatted output: a type-safe printf function

A larger example of a function with a variable number of arguments is printf, found
in C and some other languages. It produces formatted output given a format string
and a variable number of arguments, as determined by the format string. The format
string essentially gives a template string to be output, populated by the remaining
arguments. In essence, printf has the same overall structure as adder, using the for-
mat string to calculate the types of the later arguments.

 Figure 6.2 shows some examples that characterize the printf behavior. Note that
rather than producing output to the console, our version of printf returns a String.

Listing 6.4 A generic adder that works for any numeric type (Adder.idr)

The Type here is the type of
arguments you’ll be adding together.

Constrains the types you can add to
numeric types, using Num numType and

then passing numType to AdderType

Additional
arguments

Format string describing
additional arguments

"Hello!" = "Hello!"

"Answer : %d" 42 = "Answer : 42"

"%s number %d" "Page" 94 = "Page number 94"

printf

printf

printf
Figure 6.2 Behavior of a printf
function with different format strings

158 CHAPTER 6 Programming with first-class types

foll
t

In these format strings, the directive %d stands for an Int; %s stands for a String; and
anything else is printed literally.

 Following our usual process of type, define, refine, we’ll begin by thinking about a
type for printf. As with adder, we’ll start with the types of the characteristic examples
and then work out how to write a function that computes these types. These are the
types of the examples in figure 6.2:

printf "Hello!" : String
printf "Answer: %d" : Int -> String
printf "%s number %d" : String -> Int -> String

FORMAT STRINGS In a full implementation of printf as provided by C,
there are far more directives available than %d and %s. Furthermore, the
directives can be modified in various ways to indicate further how the output
should be formatted (such as leading zeroes in a number). Such details
don’t add anything to this discussion of type-level functions, however, so we’ll
omit them here.

To get the type of printf, you’ll need to use the format string to build the expected
types of the arguments. Instead of processing the string directly, you can write a data
type describing the possible formats, as follows.

data Format = Number Format
| Str Format
| Lit String Format
| End

This gives a clean separation between the parsing of the format string and the process-
ing, much as we did when parsing the commands to the data store in chapter 4. For
example, Str (Lit " = " (Number End)) would represent the format string "%s = %d",
as illustrated in figure 6.3.

Listing 6.5 Representing format strings as a data type (Printf.idr)

This represents %d, followed by the
rest of the format specifier.

This represents %s, followed by
the rest of the format specifier.

A literal string,
owed by the rest of
he format specifier

An empty format specifier

Marks the
end of string"%s = %d"

Str (Lit " = " (Number End))

Figure 6.3 Translating a format string
to a Format description

159Defining functions with variable numbers of arguments

Th
ac
w
th

For the moment, we’ll work directly with Format; we’ll define a conversion from
String to Format later. The following listing shows how you can compute the type of
printf from a Format specifier.

PrintfType : Format -> Type
PrintfType (Number fmt) = (i : Int) -> PrintfType fmt
PrintfType (Str fmt) = (str : String) -> PrintfType fmt
PrintfType (Lit str fmt) = PrintfType fmt
PrintfType End = String

Listing 6.7 defines a helper function for building a String from a Format, along with
any necessary additional arguments as calculated by PrintfType. This works like
adder, using an accumulator to build the result.

printfFmt : (fmt : Format) -> (acc : String) -> PrintfType fmt
printfFmt (Number fmt) acc = \i => printfFmt fmt (acc ++ show i)
printfFmt (Str fmt) acc = \str => printfFmt fmt (acc ++ str)
printfFmt (Lit lit fmt) acc = printfFmt fmt (acc ++ lit)
printfFmt End acc = acc

Listing 6.6 Calculating the type of printf from a Format specifier
(extending Printf.idr)

Listing 6.7 Helper function for printf, building a String from a Format specifier
(Printf.idr)

Intermediate types
In the type-driven development process, we often think about functions in terms of
transformations between data types. As such, we often define intermediate types,
such as Format in this section, to describe intermediate stages of a computation.
There are two main reasons for doing this:

 The meaning of String is not obvious from the type alone. The function type
Format -> Type has a more precise meaning than the function type String
-> Type because it’s clear that the input must be a format specification
rather than any String.

 Defining an intermediate data type gives us access to more interactive edit-
ing features, particularly case splitting.

The Number directive means that your printf
function will need another Int argument.

The Str directive means that your printf
function will need another String argument.

No additional argument is needed here
because you have a literal string. You can
calculate the type from the rest of the Format.

This gives the return type of printf.

e String is an
cumulator, in

hich you build
e String to be

returned.

At the end, there are no further
arguments to read and no further literal
inputs, so return the accumulator.

PrintfType calculates a function
type from Number fmt, so you
need to build a function here.

160 CHAPTER 6 Programming with first-class types
REMEMBER INTERACTIVE EDITING! For examples such as those in listings 6.6
and 6.7, don’t just type them in directly. Instead, use the interactive editing
tools in Atom to try to reconstruct them yourself. While doing so, make sure
you take a look at the types of any holes, and see how far expression search
can take you.

Finally, to implement a printf that takes a String as a format specifier rather than a
Format structure, you’ll need to be able to convert a String into a Format. The follow-
ing listing defines the top-level printf function that does this conversion.

toFormat : (xs : List Char) -> Format
toFormat [] = End
toFormat ('%' :: 'd' :: chars) = Number (toFormat chars)
toFormat ('%' :: 's' :: chars) = Str (toFormat chars)
toFormat ('%' :: chars) = Lit "%" (toFormat chars)
toFormat (c :: chars) = case toFormat chars of

Lit lit chars' => Lit (strCons c lit) chars'
fmt => Lit (strCons c "") fmt

printf : (fmt : String) -> PrintfType (toFormat (unpack fmt))
printf fmt = printfFmt _ ""

Exercises

1 An n x m matrix can be represented by nested vectors of Double. Define a type syn-
onym: Matrix : Nat -> Nat -> Type.

You should be able to use it to define the following matrix:

testMatrix : Matrix 2 3
testMatrix = [[0, 0, 0], [0, 0, 0]]

 2 Extend printf to support formatting directives for Char and Double.
You can test your answer at the REPL as follows:

*ex_6_2> :t printf "%c %f"
printf "%c %f" : Char -> Double -> String

*ex_6_2> printf "%c %f" 'X' 24
"'X' 24.0" : String

 3 You could implement a vector as nested pairs, with the nesting calculated from the
length, as in this example:

TupleVect 0 ty = ()
TupleVect 1 ty = (ty, ())
TupleVect 2 ty = (ty, (ty, ()))
...

Listing 6.8 Top-level definition of printf, with a conversion from String to Format
(Printf.idr)

Use List Char rather than String here so that
you can easily match on individual characters.

strCons builds a String from an initial
character and the rest of the string.

Use an underscore (_) for the format,
because Idris can infer from the type
that it must be toFormat (unpack fmt).

161Enhancing the interactive data store with schemas
Define a type-level function, TupleVect, that implements this behavior. Remember
to start with the type of TupleVect.

When you have the correct answer, the following definition will be valid:

test : TupleVect 4 Nat
test = (1,2,3,4,())

6.3 Enhancing the interactive data store with schemas
In the interactive data store we developed in chapter 4, you were able to add Strings
to an in-memory store and retrieve them by index. But what if you want to store more-
complex data? And what if you’d like the form of the data to be determined by the
user before entering any data, rather than by hardcoding it in the program itself?

 In the rest of this chapter, we’ll extend the data store by adding schemas to describe
the form of the data. We’ll determine the schema by user input, and we’ll use type-level
functions to compute the correct type for the data. Figure 6.4 shows two different data
stores, with different schemas, that we’ll be able to represent with our extended system.
Schema 1, at the top, shows a store that requires the data to be of type (Int, String),
and schema 2, below, shows a store that requires the data to be of type (String,
String, Int). In contrast, in the data store developed in chapter 4, the schema was
effectively always String.

A typical interaction with the extended system might proceed as follows. Note that
we’re describing the schema before entering any data.

Command: schema String String Int
OK
Command: add "Rain Dogs" "Tom Waits" 1985
ID 0
Command: add "Fog on the Tyne" "Lindisfarne" 1971
ID 1
Command: get 1
"Fog on the Tyne", "Lindisfarne", 1971
Command: quit

Schema 1: (Int, String)

0 (11, "Armstrong, Aldrin and Collins")

1 (17, "Cernan, Evans and Schmitt")

2 (8, "Borman, Lovell and Anders")

Schema 2: (String, String, Int)

0 ("Rain Dogs", "Tom Waits", 1985)

1 ("Fog on the Tyne", "Lindisfarne", 1971)

2 ("Flood", "They Might Be Giants", 1990)

Figure 6.4 Two different data
stores, with different schemas.
Schema 1 requires the data to be
of type (Int, String), and
schema 2 requires the data to be
of type (String, String, Int)

162 CHAPTER 6 Programming with first-class types
Rather than starting from scratch, we’ll begin with the existing data store we imple-
mented in chapter 4 and refine the overall system as necessary. We’ll take this
approach:

1 Refine the representation of DataStore to include schema descriptions. This
refinement will inevitably mean that our program no longer type-checks.

 2 Correct any errors, introducing holes for any more-complex errors.
3 Fill in the holes to complete the implementation, and add any further features

that are now supported as a result of refining the type.

6.3.1 Refining the DataStore type

At the moment, the DataStore only supports storing Strings. We implemented it in
chapter 4 using the following type:

data DataStore : Type where
MkData : (size : Nat) -> (items : Vect size String) -> DataStore

Instead of using a Vect size String for the items in the store, we’d like to be flexible
in the types of these items. One natural way to do this might be to refine this to a
generic version of DataStore, parameterizing it over a schema that gives the type of
data in the store:

data DataStore : Type -> Type where
MkData : (size : Nat) -> (items : Vect size schema) -> DataStore schema

COMMENTING OUT CODE SECTIONS While you’re working on the refined
DataStore, you’ll inevitably break the rest of the program, which will no lon-
ger type-check. Therefore, I’d suggest commenting out the rest of the code
(placing it between {- and -}) until you’ve finished the new DataStore type
and you’re ready to move on.

We want the user to be able to describe and possibly even update the schema, but if we
parameterize over a schema type, the schema will be fixed in the type. Instead, we’ll
create a data type for describing schemas, and a type-level function for translating
schema descriptions (possibly given by a user at runtime) into concrete types. The fol-
lowing listing shows an outline of a refined DataStore type.

data Schema

SchemaType : Schema -> Type

data DataStore : Type where
MkData : (schema : Schema) ->

Listing 6.9 Outline of the refined DataStore type, with the Schema description and
the translation of Schema to concrete types left undefined (DataStore.idr)

A data declaration without a body stands for a type
that hasn’t been defined yet, much like a hole
stands for a function that hasn’t been defined yet.

Once you’ve defined Schema, you’ll
be able to fill in this hole to convert
a Schema to a concrete type.

Store the schema description
itself in the data store.

163Enhancing the interactive data store with schemas

A
con
(size : Nat) ->
(items : Vect size (SchemaType schema)) ->
DataStore

We’ll define Schemas as being some combination of Strings and Ints, according to a
definition given by the user. The user will provide a Schema, and we’ll translate the
Schema to some concrete type using a type-level function, SchemaType.

 The next listing shows how you can describe Schemas and convert them into Idris
Types using a type-level function, SchemaType.

infixr 5 .+.

data Schema = SString

| SInt

| (.+.) Schema Schema

SchemaType : Schema -> Type

SchemaType SString = String

SchemaType SInt = Int

SchemaType (x .+. y) = (SchemaType x, SchemaType y)

You can try this for defining schemas for the two example stores shown in figure 6.4
earlier:

*DataStore> SchemaType (SInt .+. SString)
(Int, String) : Type

*DataStore> SchemaType (SString .+. SString .+. SInt)
(String, String, Int) : Type

Listing 6.10 Defining Schema, and converting a Schema to a concrete type

Calculate the required
type of the items in the
store from the schema.

Idris allows us to introduce new operators
(see the sidebar, “Declaring operators”).

 schema
taining
a single

String

A schema containing a single Int
A schema combining two smaller schemas

A type-level function for converting
a Schema to a concrete type

Declaring operators
You can define new operators by giving their fixity and precedence. In listing 6.10 you
had this:

infixr 5 .+.

This introduces a new right-associative infix operator (infixr) with precedence level
5. In general, operators are introduced with the keyword infixl (for left-associative
operators), infixr (for right-associative operators) or infix (for non-associative
operators), followed by a precedence level and a list of operators.

Even the arithmetic and comparison operators are defined this way, rather than being
built-in syntax. They’re introduced as follows in the Prelude:

infixl 5 ==, /=
infixl 6 <, <=, >, >=
infixl 7 <<, >>

164 CHAPTER 6 Programming with first-class types
The new DataStore type allows you to store not only the size and the contents of the
store, but also a description of the structure of the contents of the store, as a schema.
Previously, each entry was always a String, but now the form is determined by the user.

 Now, because you’ve changed the definition of DataStore, you’ll also need to
change the functions that access it.

6.3.2 Using a record for the DataStore

In order to be able to use the updated DataStore type, you’ll need to redefine the
functions size and items to project the relevant fields out of the structure.

 The definition of size is similar to the previous definition:

size : DataStore -> Nat
size (MkData schema' size' items') = size'

To define items, however, you’ll also need to write a function to project a schema out
of the store, because you need to know the schema description in order to know the
type of the items in the store.

schema : DataStore -> Schema
schema (MkData schema' size' items') = schema'

items : (store : DataStore) -> Vect (size store) (SchemaType (schema store))
items (MkData schema' size' items') = items'

Writing projection functions like these, which essentially extract fields from records,
can get tedious very quickly. Instead, Idris provides a notation for defining records,
which leads to automatically generated functions for projecting fields from a record.
You can define DataStore as follows.

record DataStore where
constructor MkData
schema : Schema
size : Nat
items : Vect size (SchemaType schema)

Listing 6.11 Implementing DataStore as a record, with automatically generated
projection functions

(continued)
infixl 8 +, -
infixl 9 *, /

The :: and ++ operators on lists are also defined in the Prelude and are declared as
follows:

infixr 7 ::, ++

Names the data constructor for DataStore
Declares fields, which automatically
generate projection functions with
the same name

165Enhancing the interactive data store with schemas
A record declaration introduces a new data type, much like a data declaration, but
with two differences:

 There can be only one constructor.
 The fields give rise to projection functions, automatically generated from the

types of the fields.

In the case of DataStore, you can see the types of the MkData data constructor and the
projection functions generated from the fields by using :doc:

*DataStore> :doc DataStore
Record DataStore

Constructor:
MkData : (schema : Schema) ->

(size : Nat) ->
(items : Vect size (SchemaType schema)) -> DataStore

Projections:
schema : (rec : DataStore) -> Schema

size : (rec : DataStore) -> Nat

items : (rec : DataStore) ->
Vect (size rec) (SchemaType (schema rec))

You can try this by creating a simple test record at the REPL:

*DataStore> :let teststore = (MkData (SString .+. SInt) 1 [("Answer", 42)])
*DataStore> :t teststore
teststore : DataStore

Next, you can project the schema, the size, and the list of items from this test record:

*DataStore> schema teststore
SString .+. SInt : Schema

*DataStore> size teststore
1 : Nat

*DataStore> items teststore
[("Answer", 42)] : Vect 1 (String, Int)

Records are actually much more flexible than can be seen in this small example. As
well as projecting out the values of fields, Idris provides a syntax for setting fields and
updating records. You’ll learn more about records when we discuss working with state
in chapter 12.

6.3.3 Correcting compilation errors using holes

Now that you have a new definition of DataStore, your old program that uses it will no
longer type-check because it relies on the old definition. The next step in refining
your data store program, then, is to update the definitions so that the whole program

166 CHAPTER 6 Programming with first-class types
type-checks again. This doesn’t necessarily mean completing the program; at this
stage, it’s fine to resolve type errors by inserting holes that you’ll fill in later.

 Earlier, I suggested temporarily commenting out the code after the definition of
DataStore so that you could work on the refined definition without worrying about
compilation errors. Now, we’ll work through the remainder of the program, uncom-
menting definitions bit by bit and repairing them, guided by the type errors Idris
gives us.

 First, let’s uncomment addToStore, defined previously as follows:

addToStore : DataStore -> String -> DataStore
addToStore (MkData size store) newitem = MkData _ (addToData store)

where
addToData : Vect oldsize String -> Vect (S oldsize) String
addToData [] = [newitem]
addToData (item :: items) = item :: addToData items

On reloading, either by using Ctrl-Alt-R in Atom or the :r command at the REPL, Idris
reports as follows:

DataStore.idr:21:1-11:
When checking left hand side of addToStore:
When checking an application of Main.addToStore:

Type mismatch between
Vect size (SchemaType schema) ->
DataStore (Type of MkData schema size)

and
DataStore (Expected type)

The first problem here is that you’ve added an argument to MkData; it now requires a
schema as well as a size and a vector of items. You can correct this by adding a schema
argument to MkData:

addToStore : DataStore -> String -> DataStore
addToStore (MkData schema size store) newitem

= MkData schema _ (addToData store)
where

addToData : Vect oldsize String -> Vect (S oldsize) String
addToData [] = [newitem]
addToData (item :: items) = item :: addToData items

Idris now reports

Type mismatch between
Vect size (SchemaType schema) (Type of store)

and
Vect size String (Expected type)

The problem is that the data store no longer stores merely Strings, but stores a type
described by the schema. You can correct this by changing the types of addToStore
and addToData so that they work with the correct type. A type-correct definition of
addToStore is shown in the following listing.

167Enhancing the interactive data store with schemas

e
e
e

,

.

addToStore : (store : DataStore) -> SchemaType (schema store) -> DataStore
addToStore (MkData schema size store) newitem

= MkData schema _ (addToData store)
where

addToData : Vect oldsize (SchemaType schema) ->

Vect (S oldsize) (SchemaType schema)
addToData [] = [newitem]
addToData (item :: items) = item :: addToData items

If you continue uncommenting definitions one at a time, the next error you’ll
encounter is in getEntry. It’s currently defined as follows, with the erroneous line
marked.

getEntry : (pos : Integer) -> (store : DataStore) ->
Maybe (String, DataStore)

getEntry pos store
= let store_items = items store in

case integerToFin pos (size store) of
Nothing => Just ("Out of range\n", store)
Just id => Just (index id (items store)

 ++ "\n", store)

The problem is in the last line, where you extract an item from the store, because
you’re treating the store as a Vect containing Strings. Here’s what Idris reports:

When checking an application of function Data.Vect.index:
Type mismatch between

Vect (size store)
(SchemaType (schema store)) (Type of items store)

and
Vect (size store) String (Expected type)

The problem is in the application of index, which no longer returns a String. You
can correct this error, temporarily, by inserting a hole to convert the result of index
into a String, as follows.

getEntry : (pos : Integer) -> (store : DataStore) ->
Maybe (String, DataStore)

getEntry pos store
= let store_items = items store in

case integerToFin pos (size store) of
Nothing => Just ("Out of range\n", store)
Just id => Just (?display (index id (items store)) ++ "\n",

store)

Listing 6.12 A corrected definition of addToStore using the refined DataStore type

Listing 6.13 Old version of getEntry, with an error in the application of index

Listing 6.14 Correcting getEntry by inserting a hole to convert the contents of the
store to a displayable String

Calculates the type of the item you’r
adding using SchemaType, from th

schema defined in the stor

The name schema here
refers to the name bound
in the preceding clause

There’s an error in the
application of index
because the store no
longer represents items as
a Vect containing Strings.

The ?display hole, when filled in
will be a function that converts

the result of index, which is a
SchemaType (schema store), into

a String that can be displayed

168 CHAPTER 6 Programming with first-class types
If you check the type of display, you’ll see the type of the function you need to fill in
the hole, converting a SchemaType (schema store) into a String:

store : DataStore
id : Fin (size store)
pos : Integer
store_items : Vect (size store) (SchemaType (schema store))

display : SchemaType (schema store) -> String

We’ll return to ?display shortly. For the moment, getEntry type-checks again. The
next error is in processInput. Here’s the current definition.

processInput : DataStore -> String -> Maybe (String, DataStore)
processInput store input

= case parse input of
Nothing => Just ("Invalid command\n", store)
Just (Add item) =>

Just ("ID " ++ show (size store) ++ "\n", addToStore store item)
Just (Get pos) => getEntry pos store
Just Quit => Nothing

This definition has an error similar to getEntry, showing that you have a String but
Idris expected a SchemaType (schema store):

When checking an application of function Main.addToStore:
Type mismatch between

String (Type of item)
and

SchemaType (schema store) (Expected type)

One possible fix is, as with getEntry, to add a hole for converting the String to an
appropriate SchemaType (schema store) in processInput:

Just ("ID " ++ show (size store) ++ "\n", addToStore store (?convert item))

Alternatively, you could refine the definition of Command so that it only represents valid
commands, meaning that any user input that’s invalid would lead to a parse error.
We’ll take this approach, because it involves defining a more precise intermediate
type, so you’ll check the validity of the input as early as possible.

 To achieve this, parameterize Command by the schema description, and change the
Add command so that it takes a SchemaType rather than the String input directly.
Here’s the refined definition of Command.

Listing 6.15 Old version of processInput, with an error in the application of
addToStore

There’s an error in the application of addToStore
here, because you’re passing it a String and it now
expects an entry as described by the schema type.

169Enhancing the interactive data store with schemas

data Command : Schema -> Type where
Add : SchemaType schema -> Command schema
Get : Integer -> Command schema
Quit : Command schema

You can now change parse to take an explicit schema description, and add a hole
where necessary to convert String input to SchemaType schema. A new definition of
parse that type-checks is shown here.

parseCommand : (schema : Schema) -> String -> String -> Maybe (Command schema)
parseCommand schema "add" rest = Just (Add (?parseBySchema rest))
parseCommand schema "get" val = case all isDigit (unpack val) of

False => Nothing
True => Just (Get (cast val))

parseCommand schema "quit" "" = Just Quit
parseCommand _ _ _ = Nothing

parse : (schema : Schema) ->
(input : String) -> Maybe (Command schema)

parse schema input = case span (/= ' ') input of
(cmd, args) => parseCommand schema cmd (ltrim args)

The resulting hole has a type that explains that it converts a String to an appropriate
instance of the SchemaType schema:

schema : Schema
rest : String

parseBySchema : String -> SchemaType schema

There’s still a problem here, however! This function can’t be total because not every
String is going to be parsable as a valid instance of the schema. Nevertheless, your
goal at the moment is merely to make the overall program type-check again. We’ll
return to this problem shortly.

 You’ve refined the type of Command, added the schema argument to parse, and
inserted holes for displaying entries (?display) and converting user input into
entries (?parseBySchema). All that remains is to update processInput and main to
use the new definitions. These are minor changes, shown in the next listing. In
processInput, you pass the current schema to parse, and in main you set the initial
schema to simply accept Strings.

Listing 6.16 Command, refined to be parameterized by the schema in the data store

Listing 6.17 Updating parseCommand so that it parses inputs that conform to the
schema

Command is parameterized by the Schema
description, which gives the form of
entries that can be added to the store.

The type of Add now
makes it explicit that only
inputs that conform to
the schema can be added.

Adds a hole for converting the
String input to the required

SchemaType schema

Adds an explicit schema argument that can be passed
to parseCommand to tell it the form of valid inputs

170 CHAPTER 6 Programming with first-class types

processInput : DataStore -> String -> Maybe (String, DataStore)
processInput store input

= case parse (schema store) input of
Nothing => Just ("Invalid command\n", store)
Just (Add item) =>

Just ("ID " ++ show (size store) ++ "\n", addToStore store item)
Just (Get pos) => getEntry pos store
Just Quit => Nothing

main : IO ()
main = replWith (MkData SString _ [])

"Command: " processInput

To recap, you’ve updated the DataStore type to allow user-defined schemas, defining
it using a record to get field access functions for free, and you’ve updated the remain-
der of the program so that it now type-checks, inserting holes temporarily for the parts
that are more difficult to correct immediately.

6.3.4 Displaying entries in the store

You now have two holes to fill in before you can execute this program. The first is
?display, which converts an entry in the store into a String, where the schema in the
store gives the form of the data:

store : DataStore
id : Fin (size store)
pos : Integer
store_items : Vect (size store) (SchemaType (schema store))

display : SchemaType (schema store) -> String

In this case, using Ctrl-Alt-L to lift the hole to a top-level function gives you a lot of
information that you don’t need to implement display. All you really need is a
schema description and the data.

 Instead, you can implement display by hand as follows:

1 Type—First, you can write a more generic type than Idris suggested. Rather than
specifically using a schema extracted from a store, you can display data accord-
ing to any schema:

display : SchemaType schema -> String

 2 Define—In order to define this function, you need to know about the schema
itself. Otherwise, you won’t know what form the data is in. Add a skeleton defi-
nition, and then bring the implicit argument schema into scope:

display : SchemaType schema -> String
display {schema} item = ?display_rhs

Listing 6.18 Updated processInput and main, with a default schema

Adds an extra argument to parse so that it
knows which schema to use to parse the data

Because item has type SchemaType (schema store)
here, it’s fine to call addToStore as before.

Sets the initial schema as SString,
representing only Strings. We’ll
add a way for users to set the
schema shortly.

171Enhancing the interactive data store with schemas
 3 Define—You can define the function by case splitting on schema. Because the
type of item is SchemaType schema, case splitting on schema will give you more
information about the expected type of item:

display : SchemaType schema -> String
display {schema = SString} item = ?display_rhs_1
display {schema = SInt} item = ?display_rhs_2
display {schema = (x .+. y)} item = ?display_rhs_3

 4 Type—Inspecting each of the resulting holes (?display_rhs_1, ?display_
rhs_2 and ?display_rhs_3) tells you what item must be in each case:

item : String

display_rhs_1 : String

item : Int

display_rhs_2 : String

x : Schema
y : Schema
item : (SchemaType x, SchemaType y)

display_rhs_3 : String

5 Refine—For ?display_rhs_1 and ?display_rhs_2 you can complete the defini-
tion by directly converting item to a String. For ?display_rhs_3, you can case-
split on item and recursively display each entry:

display : SchemaType schema -> String
display {schema = SString} item = show item
display {schema = SInt} item = show item
display {schema = (x .+. y)} (iteml, itemr)

= display iteml ++ ", " ++ display itemr

Once this definition is complete and the file is reloaded into the Idris REPL, there
should be one remaining hole, ?parseBySchema.

6.3.5 Parsing entries according to the schema

The remaining hole, ?parseBySchema, is intended to convert the String the user
entered into an appropriate type for the schema. You can see what’s expected by look-
ing at its type:

rest : String
schema : Schema

parseBySchema : String -> SchemaType schema

As you saw earlier, not every String will lead to a valid SchemaType schema, so you can
refine this type slightly and create a top-level function that returns a Maybe (Schema-
Type schema) to reflect the fact that parsing the input might fail, additionally making
schema explicit:

parseBySchema : (schema : Schema) -> String -> Maybe (SchemaType schema)

172 CHAPTER 6 Programming with first-class types
Then, you can edit parseCommand to use this new function. If parseBySchema fails
(that is, returns Nothing), parseCommand should also return Nothing:

parseCommand schema "add" rest = case parseBySchema schema rest of
Nothing => Nothing
Just restok => Just (Add restok)

To parse complete inputs as described by schemas, you’ll need to be able to parse por-
tions of the input according to a subset of the schema. For example, given a schema
(SInt .+. SString) and an input 100 "Antelopes", you’ll need to be able to parse the
prefix 100 as SInt, followed by the remainder, "Antelopes", as SString.

 You can therefore define your parser with the following two components:

 parsePrefix reads a prefix of the input according to the schema and returns
the parsed input, if successful, paired with the remainder of the text.

 parseBySchema calls parsePrefix with some input and ensures that once it has
parsed the input according to the schema, there’s no input remaining.

The next listing shows the top-level implementation of parseBySchema and the type of
the parsePrefix helper function.

parsePrefix : (schema : Schema) -> String -> Maybe (SchemaType schema, String)

parseBySchema : (schema : Schema) -> String -> Maybe (SchemaType schema)
parseBySchema schema input = case parsePrefix schema input of

Just (res, "") => Just res
Just _ => Nothing
Nothing => Nothing

Let’s take a look at the outline of parsePrefix, following the type-define-refine
approach and see how the structure of the schema gives us hints about how to proceed
with each part of the implementation:

1 Define—You already have the type, so begin by providing a skeleton definition:

parsePrefix : (schema : Schema) -> String ->
 Maybe (SchemaType schema, String)
parsePrefix schema item = ?parsePrefix_rhs

 2 Define—If you case-split on schema, Idris will generate cases for each possible
form of the schema:

parsePrefix : (schema : Schema) -> String ->
 Maybe (SchemaType schema, String)
parsePrefix SString input = ?parsePrefix_rhs_1

Listing 6.19 Outline implementation of parseBySchema, using an undefined
parsePrefix function to parse a prefix of an input according to a schema

Parsing succeeds when
parsePrefix succeeds and the

remainder of the input is empty.
If parsePrefix succeeds but there’s input
remaining, parsing overall should fail because
there’s more input than required by the schema.

parsePrefix failed,
so parsing overall
should fail.

173Enhancing the interactive data store with schemas
parsePrefix SInt input = ?parsePrefix_rhs_2
parsePrefix (x .+. y) input = ?parsePrefix_rhs_3

 3 Type—Looking at the types of the holes tells you what the return types must be
for each form of the schema. For example, in ?parsePrefix_rhs_2 you need to
convert the input into a Int, if possible, paired with the rest of the input:

input : String

parsePrefix_rhs_2 : Maybe (Int, String)

 4 Refine—For ?parsePrefix_rhs_2, if the prefix of the input contains digits, you
can convert them to an Int and return the resulting Int and the remainder of
the String. You can refine it to the following:

parsePrefix SInt input = case span isDigit input of
("", rest) => Nothing
(num, rest) => Just (cast num, ltrim rest)

If the prefix of the input that contains digits is empty, then it’s not a valid Int,
so return Nothing. Otherwise, you can convert the prefix to an Int and return
the rest of the input, with leading spaces trimmed using ltrim.

 5 Refine—You can refine ?parsePrefix_rhs_1 similarly, looking for an opening
quotation mark and then reading the string until you reach the closing quota-
tion mark. You’ll see the complete definition shortly in listing 6.20.

6 Refine—The type of ?parsePrefix_rhs_3 shows that you need to parse two sub-
schemas and combine the results:

x : Schema
y : Schema
input : String

parsePrefix_rhs_3 : Maybe ((SchemaType x, SchemaType y), String)

It’s a good idea to give x and y more-meaningful names before proceeding:

parsePrefix (schemal .+. schemar) input = ?parsePrefix_rhs_3

To refine parsePrefix_rhs_3, you can recursively parse the first portion of the
input according to schemal, and if that succeeds, parse the rest of the input
according to schemar. Parse the first portion:

parsePrefix (schemal .+. schemar) input
= case parsePrefix schemal input of

Nothing => Nothing
Just (l_val, input') => ?parsePrefix_rhs_2

If parsePrefix on the first part of the schema fails, the whole thing will fail.
Otherwise, you have a new hole:

schemal : Schema
l_val : SchemaType schemal
input' : String

174 CHAPTER 6 Programming with first-class types
schemar : Schema
input : String

parsePrefix_rhs_2 : Maybe ((SchemaType schemal, SchemaType schemar), String)

KEEP RELOADING! While following this type-driven approach, you always have
a file that type-checks as far as possible. Here, rather than filling the hole
completely, you’ve written a small part of it with a new hole, and checked that
what you have type-checks before proceeding.

 7 Refine—Finally, you can complete this case by parsing the remaining input
according to schemar:

parsePrefix (schemal .+. schemar) input
= case parsePrefix schemal input of

Nothing => Nothing
Just (l_val, input') =>

case parsePrefix schemar input' of
Nothing => Nothing
Just (r_val, input'') =>

 Just ((l_val, r_val), input'')

NESTED CASE BLOCKS These nested case blocks we’ve used may seem a little
verbose. In section 6.3.7 you’ll see one way of writing these more concisely.

The following listing shows the complete implementation of parsePrefix, filling in
the remaining details, including parsing quoted strings. You now have a complete
implementation that can compile and run.

parsePrefix : (schema : Schema) -> String -> Maybe (SchemaType schema, String)
parsePrefix SString input = getQuoted (unpack input)
where
getQuoted : List Char -> Maybe (String, String)
getQuoted ('"' :: xs)
= case span (/= '"') xs of

(quoted, '"' :: rest) => Just (pack quoted, ltrim (pack rest))
_ => Nothing

getQuoted _ = Nothing

parsePrefix SInt input = case span isDigit input of
("", rest) => Nothing
(num, rest) => Just (cast num, ltrim rest)

Listing 6.20 Parsing a prefix of an input according to a specific schema

Parses a prefix of the input as a quoted
string. If the input doesn’t begin with a
quote character, parsing should fail.

getQuoted returns a quoted prefix
of a String, with the input broken

down into characters as a List Char.

Uses ltrim to remove any
leading whitespace from the
remainder of the input. Parses a prefix of the input as an

integer: it takes the prefix of the string
that consists entirely of digits. If there

are no digits, parsing should fail.

175Enhancing the interactive data store with schemas

ing
e
er
il.

e
parsePrefix (schemal .+. schemar) input
= case parsePrefix schemal input of

Nothing => Nothing
Just (l_val, input') =>

case parsePrefix schemar input' of
Nothing => Nothing
Just (r_val, input'') => Just ((l_val, r_val), input'')

6.3.6 Updating the schema

Although you now have a complete implementation, it still has no more functionality
than the previous version, because the schema is initialized as SString in main, and
you haven’t yet implemented any way to update this:

main : IO ()
main = replWith (MkData SString _ []) "Command: " processInput

You can, at least, try out different schemas by updating main and recompiling. For
example, you could try a schema that accepts two Strings and an Int:

main : IO ()
main = replWith (MkData (SString .+. SString .+. SInt) _ [])

"Command: " processInput

You can compile and run this using :exec at the REPL, and try a couple of example
entries:

*DataStore> :exec
Command: add "Bob Dylan" "Blonde on Blonde" 1965
ID 0
Command: add "Prefab Sprout" "From Langley Park to Memphis" 1988
ID 1
Command: get 0
"Bob Dylan", "Blonde on Blonde", 1965

It would be preferable, however, to allow users to define their own schemas, rather
than hardcoding them into main. To achieve this, you can add a new command for set-
ting a new schema, updating the Command data type.

data Command : Schema -> Type where
SetSchema : (newschema : Schema) -> Command schema
Add : SchemaType schema -> Command schema
Get : Integer -> Command schema
Quit : Command schema

You’ll also need functions to do the following:

 Update the DataStore type to hold the new schema. This should only work
when the store is empty, because when you change the schema type, it invali-
dates the current contents of the store.

 Parse a schema description from user input.

Listing 6.21 The Command data structure with a new command for updating the schema

Parses a prefix of the string accord
to schemal, and then the rest of th
string according to schemar. If eith
part fails, parsing overall should fa

New command to set a new
schema. Note that the typ
expresses no relationship
between newschema and
the existing schema.

176 CHAPTER 6 Programming with first-class types

Parse
input wh

the
wor

“Stri
You’ll also need to update parseCommand and processInput to deal with parsing and
processing the new command. These new functions are implemented using the same
process you followed so far in implementing the extended data store. Listing 6.22
shows how parsing the new command works. It adds a user command, schema, fol-
lowed by a list of String and Int, and translates this into the SetSchema command.

parseSchema : List String -> Maybe Schema
parseSchema ("String" :: xs)

= case xs of
[] => Just SString
_ => case parseSchema xs of

Nothing => Nothing
Just xs_sch => Just (SString .+. xs_sch)

parseSchema ("Int" :: xs)
= case xs of

[] => Just SInt
_ => case parseSchema xs of

Nothing => Nothing
Just xs_sch => Just (SInt .+. xs_sch)

parseSchema _ = Nothing

parseCommand : (schema : Schema) -> String -> String -> Maybe (Command schema)
{- ... rest of definition as before ... -}
parseCommand schema "schema" rest

= case parseSchema (words rest) of
Nothing => Nothing
Just schemaok => Just (SetSchema schemaok)

parseCommand _ _ _ = Nothing

Listing 6.23 shows how updating the schema works once the new command has been
parsed. As a design choice, it will only allow the schema to be updated when the store
is empty, because there is no general way of updating the contents of the data store
with an arbitrarily updated schema (an alternative would be to empty the store when
the user changes the schema).

setSchema : (store : DataStore) -> Schema -> Maybe DataStore
setSchema store schema = case size store of

Z => Just (MkData schema _ [])
S k => Nothing

processInput : DataStore -> String -> Maybe (String, DataStore)
processInput store input

= case parse (schema store) input of
Nothing => Just ("Invalid command\n", store)
Just (Add item) =>

Listing 6.22 Parsing a Schema description, and extending the parser for Command to
support setting a new schema

Listing 6.23 Processing the SetSchema command, updating the schema description
in the DataStore

Parsing a schema description
may fail if the arguments are
invalid, so return something of
type Maybe Schema.

s an
ere

first
d is

ng”.

Parses an input where
the first word is “Int”.

Parses the schema
description by separating
the rest of the input into a
list of words.

Setting a new schema may fail
if there are entries in the

store, so return Maybe
DataStore to capture the

possibility of failure.

177Enhancing the interactive data store with schemas
Just ("ID " ++ show (size store) ++ "\n", addToStore store item)
Just (SetSchema schema') =>

case setSchema store schema' of
Nothing => Just ("Can't update schema\n", store)
Just store' => Just ("OK\n", store')

Just (Get pos) => getEntry pos store
Just Quit => Nothing

Finally, you can compile and run this program and try setting a new schema from user
input:

*DataStore> :exec
Command: schema Int String
OK
Command: add 99 "Red balloons"
ID 0
Command: add 76 "Trombones"
ID 1
Command: schema String String Int
Can't update schema when entries in store
Command: get 1
76, "Trombones"

In the end, using a data type to describe the schema and using that schema to calcu-
late the types of the operations on the data store has a few consequences:

 On reading user input, you can’t add the input to the store if it’s not valid
according to the schema.

 If you change the schema type, you can’t invalidate the contents of the store
because the type of the store’s contents prevents it. Changing the schema type
requires you to have an empty store.

 When writing the parser for user input, you can use the description of the
schema to guide the implementation of the parser and to build the correct type
for the input.

6.3.7 Sequencing expressions with Maybe using do notation

In the data store program, there are several places where we’ve used a case block to
check the result of a function that returns something with a Maybe type, and passed
that result on. For example:

parseCommand schema "schema" rest
= case parseSchema (words rest) of

Nothing => Nothing
Just schemaok => Just (SetSchema schemaok)

Here, parseCommand, which returns something of type Maybe (Command schema), has
called parseSchema, which returns something of type Maybe Schema, and has used a
case expression to check the result of the call to parseSchema.

Updating the
schema failed,

so report an
error and keep

the old store.

Updating the schema
succeeded, so report
success and update
to the new store.

178 CHAPTER 6 Programming with first-class types
 If parseSchema fails, parseCommand also fails. Similarly, if parseSchema succeeds,
then parseCommand also succeeds.

 You can see a similar pattern in the maybeAdd function in the following listing,
which adds two values of type Maybe Int, returning Nothing if either input is Nothing.

maybeAdd : Maybe Int -> Maybe Int -> Maybe Int
maybeAdd x y = case x of

Nothing => Nothing
Just x_val => case y of

Nothing => Nothing
Just y_val => Just (x_val + y_val)

You can try maybeAdd on a few examples, and you’ll see that it adds its inputs if both
are of the form Just val for some concrete value val, and that it returns Nothing if
either of the inputs is Nothing:

*Maybe> maybeAdd (Just 3) (Just 4)
Just 7 : Maybe Int

*Maybe> maybeAdd (Just 3) Nothing
Nothing : Maybe Int

*Maybe> maybeAdd Nothing (Just 4)
Nothing : Maybe Int

A common pattern is found here, in parseCommand, and in several other places
throughout the data store implementation:

1 Evaluate an expression of type Maybe ty. The result is either Nothing or Just x,
where x has type ty.

 2 If the result is Nothing, the result of the entire computation is Nothing.
3 If the result is Just x, pass x to the rest of the computation.

When you see a common pattern, it’s a good idea to try to capture that pattern in a
higher-order function. In fact, you’ve already seen an operator that implements a sim-
ilar pattern in chapter 5, when sequencing IO operations:

(>>=) : IO a -> (a -> IO b) -> IO b

The same operator works for sequencing Maybe computations, when defined as follows:

(>>=) : Maybe a -> (a -> Maybe b) -> Maybe b
(>>=) Nothing next = Nothing
(>>=) (Just x) next = next x

Listing 6.24 Adding two Maybe Ints (Maybe.idr)

First input was Nothing, so entire
computation returns Nothing

Second input was Nothing,
so entire computation

returns Nothing
Both inputs of form Just val, so
add x_val and y_val and return

their sum, wrapped in a Just

179Enhancing the interactive data store with schemas
 Effectively, it takes the output of the first computation, if successful (that is, return-
ing a Just), and passes it on as input to the second. It captures a common pattern of
evaluating an expression with a Maybe type.

Using (>>=) as an infix operator, you can rewrite maybeAdd more concisely, if some-
what cryptically, as in the following listing.

maybeAdd : Maybe Int -> Maybe Int -> Maybe Int
maybeAdd x y = x >>= \x_val =>

y >>= \y_val =>

Just (x_val + y_val)

In chapter 5, you saw that Idris provides a special notation for sequencing computa-
tions using (>>=), introduced by the keyword do. You can use the same notation here,
and write maybeAdd as follows.

maybeAdd : Maybe Int -> Maybe Int -> Maybe Int
maybeAdd x y = do x_val <- x

y_val <- y
Just (x_val + y_val)

Figure 6.5 shows how an expression using do notation is translated into an expression
using (>>=). This works exactly the same way as the translation of IO programs written
using do notation. Just like the translation of list syntax into Nil and (::), this transla-
tion is purely syntactic. As a result, if you define the (>>=) operator in some other con-
text, Idris will allow you to use do notation in that context.

Listing 6.25 Adding two Maybe Ints using (>>=) rather than direct case analysis

Listing 6.26 Adding two Maybe Ints using do notation rather than using (>>=)
directly

Type of (>>=)
Remember from chapter 5 that if you check the type of (>>=) at the REPL, you’ll see
a constrained generic type:

Idris> :t (>>=)
(>>=) : Monad m => m a -> (a -> m b) -> m b

In general, the >>= operator can be used to sequence computations. You’ll see how
this works in chapter 7 when we discuss interfaces.

If Idris evaluates the second operand of
>>= here, the definition of >>= means
that x must have the value Just x_val.If Idris evaluates the

second operand of >>=
here, y must have the

value Just y_val.

If x has the form Just x_val,
computation continues;
otherwise, it returns Nothing.

If y has the form Just y_val,
computation continues;
otherwise, it returns Nothing.

180 CHAPTER 6 Programming with first-class types
With do notation, you could have written the "schema" case for parseCommand as fol-
lows, letting the do notation, via (>>=), take care of the handling of Nothing so that
you could focus on the successful case of Just schemaok:

parseCommand schema "schema" rest
= do schemaok <- parseSchema (words rest)

Just (SetSchema schemaok)

Exercises

1 Update the data store program to support Chars in the schema.
You can test your solution at the REPL as follows:

*ex_6_3> :exec
Command: schema Char Int
OK
Command: add x 24
ID 0
Command: add y 17
ID 1
Command: get 0
'x', 24

 2 Modify the get command so that, if given no arguments, it prints the entire con-
tents of the data store.

For example:

*ex_6_3> :exec
Command: schema Char Int
OK
Command: add x 24
ID 0
Command: add y 17
ID 1
Command: get
0: 'x', 24
1: 'y', 17

 3 Update the data store program so that it uses do notation rather than nested case
blocks, where appropriate.

do x <- expr
 result

expr >>= \x => result

If expr has the form
Just val : Maybe ty
then x : ty = val

Expression to
be tested, of
type Maybe ty

Result of the computation,
which may use x : ty

Transformed expression
Figure 6.5 Transforming do
notation to an expression using
the (>>=) operator

181Summary
6.4 Summary
 Type synonyms are alternative names for existing types, which allow you to give

more-descriptive names to types.
 Type-level functions are functions that can be used anywhere that Idris is

expecting a Type. Type synonyms are a special case of type-level functions.
 Type-level functions can be used to compute types, and they allow you to write

functions with varying numbers of arguments, such as printf.
 You can represent a schema for a data store as a type, and then use type-level

functions to calculate the types of operations, such as parsing and displaying
entries in the data store from the schema description.

 A record is a data type with only one constructor, and with automatically gener-
ated functions for projecting fields from the record.

 After refining a data type, you can use holes to correct compilation errors tem-
porarily.

 Using do notation, you can sequence computations that use Maybe to capture
the possibility of errors.

Interfaces: using
constrained generic types
In chapter 2, you saw that generic function types with type variables could be con-
strained so that the variables stood for a more limited set of types. For example, you
saw the following function for doubling a number in any numeric type:

double : Num a => a -> a
double x = x + x

The type of double includes a constraint, Num a, which states that a can only stand
for numeric types. Therefore, you can use double with Int, Nat, Integer, or any
other numeric type, but if you try to use it with a non-numeric type, such as Bool,
Idris will report an error.

 You’ve seen a few such constraints, such as Eq for types that support equality
tests and Ord for types that support comparisons. You’ve also seen functions that

This chapter covers
 Constraining generic types using interfaces

 Implementing interfaces for specific contexts

 Using interfaces defined in the Prelude
182

183Generic comparisons with Eq and Ord
rely on other constraints that we haven’t discussed in detail, such as map and >>=,
which rely on Functor and Monad, respectively. We haven’t yet discussed how these
constraints are defined or introduced.

 In this chapter, we’ll discuss how to define and use constrained generic types using
interfaces. In the type declaration for double, for example, the constraint Num a is
implemented by an interface, Num, which describes arithmetic operations that will be
implemented in different ways for different numeric types.

TYPE CLASSES IN HASKELL If you know Haskell, you’ll be familiar with Has-
kell’s concept of type classes. Interfaces in Idris are similar to type classes in
Haskell and are often used in the same way, though there are some differ-
ences. The most important are, first, that interfaces in Idris can be parameter-
ized by values of any type, and are not limited to types or type constructors,
and, second, interfaces in Idris can have multiple implementations, though
we won’t go into the details in this chapter.

From the perspective of type-driven development, interfaces allow us to give the nec-
essary level of precision to generic types. In general, an interface in Idris describes a
collection of generic operations that can be implemented in different ways for differ-
ent concrete types. For example:

 You could define an interface for operations that serialize and load generic
data to and from JSON.

 A graphics library could provide an interface for operations that draw represen-
tations of data.

The Prelude includes a wide range of interfaces, and we’ll concentrate on these in this
chapter. We’ll begin by looking in detail at two of the most important.

7.1 Generic comparisons with Eq and Ord
To begin, we’ll look at two interfaces that define generic comparisons, both of which
are defined in the Prelude:

 Eq, which supports comparing values for equality or inequality.
 Ord, which supports comparing values to determine which is larger.

In doing so, you’ll learn how to declare interfaces, how to implement those interfaces
in specific contexts, and how different interfaces can relate to each other.

7.1.1 Testing for equality with Eq

As you saw in chapter 2, Idris provides an operator for testing values for equality, ==,
with a constrained generic type:

Idris> :t (==)
(==) : Eq ty => ty -> ty -> Bool

184 CHAPTER 7 Interfaces: using constrained generic types
 In other words, you can compare two values of some generic type ty for equality,
returning a result as a Bool, provided that ty satisfies the Eq constraint. Similarly,
there’s an operator for testing for inequality:

Idris> :t (/=)
(/=) : Eq ty => ty -> ty -> Bool

Any time you use either of these operators, you must know that its operands are of a
type that can be compared for equality. Let’s say, for example, you want to write a
function that counts the number of occurrences of a specific value, of some generic
type ty, in a list. We’ll create a function called occurrences in a file, Eq.idr:

1 Type—As always, begin by giving a type for the function and creating a skeleton
definition:

occurrences : (item : ty) -> (values : List ty) -> Nat
occurrences item xs = ?occurrences_rhs

 2 Define, refine—You can define the function by case splitting on the input list, xs,
and refining the hole generated in each case. If it’s an empty list, there can be
no occurrences of item, so return 0:

occurrences : (item : ty) -> (values : List ty) -> Nat
occurrences item [] = 0
occurrences item (value :: values) = ?occurrences_rhs_2

 3 Refine—If the input is a non-empty list, try testing the value at the start of the
list and item for equality:

occurrences : (item : ty) -> (values : List ty) -> Nat
occurrences item [] = 0
occurrences item (value :: values) = case value == item of

case_val => ?occurrences_rhs_2

Unfortunately, Idris reports an error:

Eq.idr:3:13:
When checking right hand side of occurrences with expected type

Nat

Can't find implementation for Eq ty

Specifying multiple constraints
In the example in this section, I’ve specified exactly one constraint, Eq ty. You can
also list multiple constraints as a comma-separated list. For example, the following
function type specifies that ty needs to satisfy the Num and Show constraints:

addAndShow : (Num ty, Show ty) => ty -> ty -> String

You’ll see more examples later, in section 7.2.2.

185Generic comparisons with Eq and Ord
This problem is similar to the one we encountered in chapter 3 when defining
ins_sort. In this case, value and item have type ty, but there’s no constraint
that values of type ty are comparable for equality.

4 Refine—The solution, as with ins_sort, is to refine the type by adding a constraint:

occurrences : Eq ty => (item : ty) -> (values : List ty) -> Nat

The constraint Eq ty means that you can now use the == operator and complete
the definition as follows:

occurrences : Eq ty => (item : ty) -> (values : List ty) -> Nat
occurrences item [] = 0
occurrences item (value :: values) = case value == item of

False => occurrences item values
True => 1 + occurrences item values

The final type of occurrences says that it takes a ty and a List ty as inputs, provided
that the type variable ty stands for a type that can be compared for equality.

 This works fine for built-in types such as Char and Integer:

*Eq> occurrences 'b' ['a','a','b','b','b','c']
3 : Nat

*Eq> occurrences 100 [50,100,100,150]
2 : Nat

But what if you have user-defined types? Let’s say you have a user-defined type named
Matter, also defined in Eq.idr:

data Matter = Solid | Liquid | Gas

You’d hope to be able to count the number of occurrences of Liquid in a list. Unfor-
tunately, if you try this, Idris reports an error:

*Eq> occurrences Liquid [Solid, Liquid, Liquid, Gas]
Can't find implementation for Eq Matter

This error message means that Idris doesn’t know how to compare values in the user-
defined Matter type for equality. To correct this, we’ll need to take a look at how the
Eq constraint is defined, and how to explain to Idris how user-defined types such as
Matter can satisfy it.

7.1.2 Defining the Eq constraint using interfaces and implementations

Constraints such as Eq are defined in Idris using interfaces. An interface definition
contains a collection of related functions (called methods of the interface) that can be
given different implementations for specific contexts. The Eq interface is defined in the
Prelude, containing the methods (==) and (/=).

186 CHAPTER 7 Interfaces: using constrained generic types

interface Eq ty where
(==) : ty -> ty -> Bool
(/=) : ty -> ty -> Bool

Defining an interface introduces new top-level functions
for each method of the interface. The interface declara-
tion in listing 7.1 introduces the top-level functions (==)
and (/=). If you check the types of these functions,
you’ll see the Eq ty constraint explicit in their types:

(==) : Eq ty => ty -> ty -> Bool
(/=) : Eq ty => ty -> ty -> Bool

Figure 7.1 shows the components of the interface decla-
ration. The parameter, ty in this case, is assumed to have
type Type by default, and stands for the generic argu-
ment that’s to be constrained. The parameter must
appear in each of the method declarations.

PARAMETER NAMING CONVENTIONS The parameters of an interface (ty here)
are typically generic type variables, so I typically give them short, generic,
names. The name ty indicates that the parameter could be any type. When
there are more parameters, or where the interface has a more specific pur-
pose, I give more-specific names.

An interface declaration, then, provides the types for related functions with a parame-
ter standing for a generic argument. To define these functions for specific cases, you
need to provide implementations.

 To write an implementation, you give the interface and a parameter, along with
definitions for each of the methods. The following listing shows an implementation
for the Eq interface, which explains how the Matter type satisfies the constraint.

Eq Matter where

(==) Solid Solid = True

(==) Liquid Liquid = True

(==) Gas Gas = True

(==) _ _ = False

(/=) x y = not (x == y)

Listing 7.1 The Eq interface (defined in the Prelude)

Listing 7.2 Implementation of Eq for Matter (Eq.idr)

An interface declaration introduces
a new interface that can be used to
constrain generic functions.

Method declarations introduce
functions that must be defined by
implementations of the interface.

An implementation declaration, here explaining how
to satisfy the Eq constraint for the Matter type

Implementation of the (==)
method for Matter

Implementation of the (/=)
method for Matter

interface Eq ty where

Interface name

Interface parameter,
of type Type

Figure 7.1 The Eq interface
declaration

187Generic comparisons with Eq and Ord
INTERACTIVE DEVELOPMENT OF IMPLEMENTATIONS As you’ll see shortly, you can
use Ctrl-Alt-A to provide a skeleton implementation of Eq Matter, as with
function definitions.

If you add this implementation to the file in which you defined occurrences and
Matter, you’ll now be able to use occurrences with a List Matter:

*Eq> occurrences Liquid [Solid, Liquid, Liquid, Gas]
2 : Nat

This provides implementations of the two methods, (==) and (/=), which are
required to be implemented in order to be able to compare elements of type Matter
for equality and inequality. Note that the implementation doesn’t contain any type
declarations, because these are given in the interface declaration.

You can build the implementation interactively in Atom as follows:

1 Type—Start by giving the implementation header on its own:

Eq Matter where

Interface documentation
If you use :doc on an interface at the REPL, or Ctrl-Alt-D over an interface name in
Atom, Idris will show documentation for the interface including its parameters, meth-
ods, and a list of the known implementations. For example, here’s what it looks like
for Eq:

Idris> :doc Eq
Interface Eq

The Eq interface defines inequality and equality.

Parameters:
ty

Methods:
(==) : Eq ty => ty -> ty -> Bool

infixl 5

The function is Total
(/=) : Eq ty => ty -> ty -> Bool

infixl 5

The function is Total
Implementations:

Eq ()
Eq Int
Eq Integer
Eq Double
[...]

188 CHAPTER 7 Interfaces: using constrained generic types
This a Type step because it instantiates the types of (==) and (/=), with Matter
standing for the parameter a.

 2 Define—You can also use the interactive editing tools in Atom to build imple-
mentations of interfaces. With the cursor over Eq, press Ctrl-Alt-A, and Idris
will add skeleton definitions for (==) and (/=) with generic names for the
arguments:

Eq Matter where
(==) x y = ?Eq_rhs_1
(/=) x y = ?Eq_rhs_2

 3 Type—If you check the type of ?Eq_rhs_1, you’ll see confirmation that x and y
are of type Matter:

x : Matter
y : Matter

Eq_rhs_1 : Bool

 4 Define—You can begin by defining (==) by case splitting on x:

Eq Matter where
(==) Solid y = ?Eq_rhs_3
(==) Liquid y = ?Eq_rhs_4
(==) Gas y = ?Eq_rhs_5

(/=) x y = ?Eq_rhs_2

 5 Refine—Each value of type Matter is only equal to itself, so you can refine the
definition as follows, with a catchall case to handle when the inputs aren’t
equal:

Eq Matter where
(==) Solid Solid = True
(==) Liquid Liquid = True
(==) Gas Gas = True
(==) _ _ = False

(/=) x y = ?Eq_rhs_2

Remember that the order of cases is important, and Idris will try to match the
clauses in order, so the catchall case must be at the end.

6 Refine—To complete the implementation, you need to define (/=). The sim-
plest definition is to use (==) and then invert the result:

Eq Matter where
(==) Solid Solid = True
(==) Liquid Liquid = True
(==) Gas Gas = True
(==) _ _ = False

(/=) x y = not (x == y)

189Generic comparisons with Eq and Ord
When you declare an interface, you introduce a collection of related new generic
functions, known as methods, that can be overloaded for specific situations. When you
define an implementation of the interface, you must provide definitions for all its
methods. So, when you defined the Eq instance for Matter, you had to provide defini-
tions for both (==) and (/=).

7.1.3 Default method definitions

Interfaces define a collection of related methods, such as (==) and (/=). In some
cases, methods are so closely related that you can define them in terms of other meth-
ods in the interface. For example, you’d always expect the result of x /= y to be the
opposite of the result of x == y, no matter what the values or even types of x and y.

 For this situation, Idris allows you to provide a default definition for a method. If an
implementation doesn’t provide a definition for a method that has a default defini-
tion, Idris uses that default. For example, the Eq interface provides defaults for both
(==) and (/=), each defined in terms of the other, as follows.

interface Eq a where
(==) : a -> a -> Bool
(/=) : a -> a -> Bool

(==) x y = not (x /= y)
(/=) x y = not (x == y)

You can therefore provide an implementation of Eq for Matter by providing only a
definition of (==), and using the default method implementation for (/=):

Eq Matter where
(==) Solid Solid = True
(==) Liquid Liquid = True
(==) Gas Gas = True
(==) _ _ = False

The default method definitions mean that when you’re defining an implementation
of Eq, you can provide definitions for either or both of (==) and (/=).

7.1.4 Constrained implementations

When writing implementations for generic types, you may discover the need for addi-
tional constraints on the parameters of the generic types. For example, to check
whether two lists are equal, you’ll need to know how to compare the element types for
equality.

 In chapter 4, you saw the generic type of binary trees, defined as follows in tree.idr:

data Tree elem = Empty
| Node (Tree elem) elem (Tree elem)

Listing 7.3 Eq interface with default method definitions

Default method instance, used if the
method isn’t present in a specific
implementation of an interface

190 CHAPTER 7 Interfaces: using constrained generic types
To check whether two trees are equal, you’ll also need to be able to compare the ele-
ment types. Let’s see what happens if you try to define an implementation of Eq for
Trees with a generic element type:

1 Type—Begin by writing the implementation header, stating the interface you
wish to implement and the type for which you’re implementing it:

Eq (Tree elem) where

 2 Define—Add a skeleton definition that gives template definitions for all the
methods of the interface:

Eq (Tree elem) where
(==) x y = ?Eq_rhs_1
(/=) x y = ?Eq_rhs_2

You can use the default definition for (/=), so you can delete the second
method:

Eq (Tree elem) where
(==) x y = ?Eq_rhs_1

 3 Define—As with the Eq implementation for Matter, you can define (==) by case
splitting on each argument and using a catchall case for cases where the inputs
are unequal. You know that Empty equals itself, Nodes are equal if all their argu-
ments are equal, and everything else is not equal:

Eq (Tree elem) where
(==) Empty Empty = True
(==) (Node left e right) (Node left' e' right') = ?Eq_rhs_3
(==) _ _ = False

For the moment, you’ve left a hole, ?Eq_rhs_3, for the details of comparing
Nodes.

 4 Refine—You’d expect to be able to complete the definition by refining the
?Eq_rhs_3 hole to say that you can compare each corresponding argument:

Eq (Tree elem) where
(==) Empty Empty = True
(==) (Node left e right) (Node left' e' right')

= left == left' && e == e' && right == right'
(==) _ _ = False

But, unfortunately, Idris reports a problem:

Can't find implementation for Eq elem

You can compare left and left' for equality, and correspondingly right and
right', because they’re of type Tree elem, and the implementation can be
recursive; you’re currently defining equality for Tree elem. But e and e' are of
type elem, a generic type, and you don’t necessarily know how to compare elem
for equality.

191Generic comparisons with Eq and Ord
5 Refine—The solution is to refine the implementation declaration by constraining
it to require that elem also has an implementation of Eq available:

Eq elem => Eq (Tree elem) where
(==) Empty Empty = True
(==) (Node left e right) (Node left' e' right')

= left == left' && e == e' && right == right'
(==) _ _ = False

The constraint appears to the left of the arrow,
=>, the same way as constraints appear in type
declarations. Figure 7.2 shows the compo-
nents of this interface header.

 You can read this header as stating that
generic trees can be compared for equal-
ity, provided that their element type can
also be compared for equality. You can
introduce interface constraints like this
anywhere you introduce a type variable, if
you need to constrain that type variable
further.

LIMITATIONS ON IMPLEMENTATION PARAMETERS You’ve now seen implementa-
tions of Eq parameterized by Matter and by Tree elem, both of which are of
type Type. But you can’t parameterize implementations by everything of type
Type. You’re limited to names introduced by either a data or record decla-
ration, or primitive types. In particular, this means you can’t parameterize
implementations by type synonyms or functions that compute types.

You’ve already seen constraints on type declarations, and here you’ve seen one in an
implementation definition. In the same way, you can place constraints on interface
definitions themselves.

7.1.5 Constrained interfaces: defining orderings with Ord

If you place a constraint on an interface definition, you’re effectively extending an
existing interface. In the Prelude, for example, there’s an Ord interface, shown in the
next listing, that extends Eq to support ordering of values.

interface Eq ty => Ord ty where
compare : ty -> ty -> Ordering
(<) : ty -> ty -> Bool
(>) : ty -> ty -> Bool
(<=) : ty -> ty -> Bool
(>=) : ty -> ty -> Bool
max : ty -> ty -> ty
min : ty -> ty -> ty

Listing 7.4 The Ord Interface, which extends Eq (defined in the Prelude)

Declares the Ord interface and states
that an implementation of Ord ty
requires an implementation of Eq ty

Ordering is defined in the
Prelude as either LT, EQ, or GT.

Returns
the larger
of the two

inputs
Returns the smaller of the two inputs

Eq elem => Eq (Tree elem) where

Implementation
constraint

Implementation
being defined

Figure 7.2 Constrained implementation header

192 CHAPTER 7 Interfaces: using constrained generic types
All methods, except compare, have default definitions, some of which are written
in terms of compare, and some of which use the (==) method provided by the Eq
interface.

 If you have an implementation of Ord for some data type, you can sort lists contain-
ing that type:

sort : Ord ty => List ty -> List ty

For example, you might have a data type representing a music collection, with records
containing a title, artist, and year of release, and you may wish to sort them first by art-
ist name, then by year of release, and then by title. The following listing gives a defini-
tion of this data type with some examples.

record Album where
constructor MkAlbum
artist : String
title : String
year : Integer

help : Album
help = MkAlbum "The Beatles" "Help" 1965

rubbersoul : Album
rubbersoul = MkAlbum "The Beatles" "Rubber Soul" 1965

clouds : Album
clouds = MkAlbum "Joni Mitchell" "Clouds" 1969

hunkydory : Album
hunkydory = MkAlbum "David Bowie" "Hunky Dory" 1971

heroes : Album
heroes = MkAlbum "David Bowie" "Heroes" 1977

collection : List Album
collection = [help, rubbersoul, clouds, hunkydory, heroes]

If you try sorting the collection as it stands, Idris will report that it doesn’t know how
to order values of type Album:

*Ord> sort collection
Can't find implementation for Ord Album

Listing 7.6 shows how you can explain to Idris how to order Albums. First, you need to
give an Eq implementation, because the constraint on the Ord interface requires that
implementations of Ord are also implementations of Eq. The Eq implementation
checks that each field has the same value; the Ord implementation compares by artist
name, and then by year, and then by title if the first two are equal.

Listing 7.5 A record data type and a collection to be sorted (Ord.idr)

A record declaration (see chapter 6, section 6.3.2)

Record fields, which give rise to the
artist, title and year projection functions

193Generic comparisons with Eq and Ord

Eq Album where
(==) (MkAlbum artist title year) (MkAlbum artist' title' year')

= artist == artist' && title == title' && year == year'

Ord Album where
compare (MkAlbum artist title year) (MkAlbum artist' title' year')

= case compare artist artist' of
EQ => case compare year year' of

EQ => compare title title'
diff_year => diff_year

diff_artist => diff_artist

Implementing Ord for Album means that you can use the usual comparison operators
on values of type Album:

*Ord> heroes > clouds
False : Bool

*Ord> help <= rubbersoul
True : Bool

It also means that you can use any function with an Ord constraint, such as sort. For
example, you can sort the collection and list the titles in sorted order:

*Ord> map title (sort collection)
["Hunky Dory", "Heroes", "Clouds", "Help", "Rubber Soul"] : List String

Giving constraints on interfaces, like the Eq constraint on Ord, allows you to define
hierarchies of interfaces. So, for example, if there’s an implementation of Ord for some
type, you know it’s safe to assume that there’s also an implementation of Eq for that
type. The Prelude defines several interfaces, some arranged into hierarchies, and we’ll
look at some of the most important in the next section.

Exercises

For these exercises, you’ll use the Shape type defined in chapter 4:

data Shape = Triangle Double Double
| Rectangle Double Double
| Circle Double

Listing 7.6 Implementations of Eq and Ord for Album

The Eq implementation is necessary beca
of the Eq constraint on the Ord interface

Compares artists, which are
represented as Strings, so it uses
the String implementation of Ord

If the artists are the same,
compares by year

If the years are the same,
compares by title

The years are different, so return the
result of comparing them directly.

The artists are different, so return
the result of comparing them directly.

194 CHAPTER 7 Interfaces: using constrained generic types
1 Implement Eq for Shape.
You can test your answer at the REPL as follows:

*ex_7_1> Circle 4 == Circle 4
True : Bool

*ex_7_1> Circle 4 == Circle 5
False : Bool

*ex_7_1> Circle 4 == Triangle 3 2
False : Bool

2 Implement Ord for Shape. Shapes should be ordered by area, so that shapes
with a larger area are considered greater than shapes with a smaller area.

You can test this by trying to sort the following list of Shapes:

testShapes : List Shape
testShapes = [Circle 3, Triangle 3 9, Rectangle 2 6, Circle 4,

Rectangle 2 7]

You should see the following when sorting the list at the REPL:

*ex_7_1> sort testShapes
[Rectangle 2.0 6.0,
Triangle 3.0 9.0,
Rectangle 2.0 7.0,
Circle 3.0,
Circle 4.0] : List Shape

7.2 Interfaces defined in the Prelude
The Idris Prelude provides several commonly used interfaces, in addition to Eq
and Ord, as you’ve just seen. In this section and the next, I’ll briefly describe some of
the most important. We’ve encountered several in passing already: Show, Num, Cast,
Functor, and Monad. Here, you’ll see how these interfaces are defined, where they
might be used, and some examples of how you can write implementations of them for
your own types.

 The parameters of an interface (in other words, the variables given in the interface
header) can have any type. If there’s no explicit type given in the interface header for
a parameter, it’s assumed to be of type Type. In this section, we’ll look at some inter-
faces that are parameterized by Types.

7.2.1 Converting to String with Show

In chapter 2, you saw the show function, which converts a value to a String. This is a
method of the Show interface, defined in the Prelude and shown in the following list-
ing. Both the show and showPrec methods have default implementations, each
defined in terms of the other. Here, we’ll only consider show.

195Interfaces defined in the Prelude

interface Show ty where
show : (x : ty) -> String
showPrec : (d : Prec) -> (x : ty) -> String

PRECEDENCE CONTEXTS The purpose of showPrec is to be able to display
complex expressions in parentheses if necessary. This might be useful if, say,
you have a representation of arithmetic formulae, where precedence rules say
that some subexpressions need to be parenthesized. By default, showPrec
calls show directly, and for most display purposes this is entirely adequate. If
you wish to investigate further, take a look at the documentation using :doc.

The Prelude provides two functions that use show to convert a value to a String and
then output it to the console, with or without a trailing newline character:

printLn : Show ty => ty -> IO ()
print : Show ty => ty -> IO ()

You can define a simple Show implementation for the Album type:

Show Album where
show (MkAlbum artist title year)

= title ++ " by " ++ artist ++ " (released " ++ show year ++ ")"

Then, you can print an Album to the console using printLn. For example:

*Ord> :exec printLn hunkydory
Hunky Dory by David Bowie (released 1971)

The Show interface is primarily used for debugging output, to display values of com-
plex data types in a human-readable form.

7.2.2 Defining numeric types

The Prelude provides a hierarchy of interfaces with methods for numeric operations.
These interfaces divide operators into several groups:

 The Num interface—Contains operations that work on all numeric types, includ-
ing addition, multiplication, and conversion from integer literals

 The Neg interface—Contains operations that work on numeric types that can be
negative, including negation, subtraction, and absolute value

 The Integral interface—Contains operations that work on integer types
 The Fractional interface—Contains operations that work on numeric types that

can be divided into fractions

The following listing shows how these interfaces are defined.

Listing 7.7 The Show interface (defined in the Prelude)

Direct conversion of a value to a String

ty is the parameter of the interface
and is a variable of type Type.

Conversion of a
value to a String in a
precedence context

196 CHAPTER 7 Interfaces: using constrained generic types

interface Num ty where
(+) : ty -> ty -> ty
(*) : ty -> ty -> ty
fromInteger : Integer -> ty

interface Num ty => Neg ty where
negate : ty -> ty
(-) : ty -> ty -> ty
abs : ty -> ty

interface Num ty => Integral ty where
div : ty -> ty -> ty
mod : ty -> ty -> ty

interface Num ty => Fractional ty where
(/) : ty -> ty -> ty
recip : ty -> ty

recip x = 1 / x

It’s useful to know which operations are available on which types. Table 7.1 summarizes
the numeric interfaces and the implementations that exist for each in the Prelude.

One method that’s particularly worth noting is fromInteger. All integer literals in
Idris are implicitly converted to the appropriate numeric type using fromInteger. As a
result, as long as there’s an implementation of Num for a numeric type, you can use
integer literals for that type.

 By making new implementations of Num and related interfaces, you can use standard
arithmetic notation and integer literals for your own types. For example, listing 7.9 shows
an Expr data type that represents arithmetic expressions, including an “absolute value”
operation and an eval function that calculates the result of evaluating an expression.

data Expr num = Val num
| Add (Expr num) (Expr num)
| Sub (Expr num) (Expr num)
| Mul (Expr num) (Expr num)

Listing 7.8 The numeric interface hierarchy (defined in the Prelude)

Table 7.1 Summary of numeric interfaces and their implementations

Interface Description Implementations

Num All numeric types Integer, Int, Nat, Double

Neg Numeric types that can be negative Integer, Int, Double

Integral Integer types Integer, Int, Nat

Fractional Numeric types that can be divided into
fractions

Double

Listing 7.9 An arithmetic expression data type and an evaluator (Expr.idr)

Values of all numeric types can
be added and multiplied.

Converts from an integer literal
to the numeric type

Numeric types that can have negative
values additionally support subtraction,
negation, and absolute value.

Numeric types that are integers
additionally support integer
division and modulus (remainder).

Numeric types that can be divided
into fractions additionally support
division and taking a reciprocal.

Expressions are parameterized
by the type of numeric literals.

197Interfaces defined in the Prelude
| Div (Expr num) (Expr num)
| Abs (Expr num)

eval : (Neg num, Integral num) => Expr num -> num
eval (Val x) = x
eval (Add x y) = eval x + eval y
eval (Sub x y) = eval x - eval y
eval (Mul x y) = eval x * eval y
eval (Div x y) = eval x `div` eval y
eval (Abs x) = abs (eval x)

To construct an expression, you need to apply the constructors of Expr directly. For
example, to represent the expression 6 + 3 * 12, and to evaluate it, you’ll need to write
it as follows:

*Expr> Add (Val 6) (Mul (Val 3) (Val 12))
Add (Val 6) (Mul (Val 3) (Val 12)) : Expr Integer

*Expr> eval (Add (Val 6) (Mul (Val 3) (Val 12)))
42 : Integer

If, on the other hand, you make a Num implementation for Expr, you’ll be able to use
standard arithmetic notation (with +, *, and integer literals) to build values of type
Expr. If, furthermore, you make a Neg implementation, you’ll be able to use negative
numbers and subtraction. The following listing shows how you can do this.

Num ty => Num (Expr ty) where
(+) = Add
(*) = Mul
fromInteger = Val . fromInteger

Neg ty => Neg (Expr ty) where
negate x = 0 - x
(-) = Sub
abs = Abs

Listing 7.10 Implementations of Num and Neg for Expr (Expr.idr)

You need num to be
negatable, because the
evaluator subtracts,
and also to support
integer division.

You need the constraint Num ty
because you’re using the ty
implementation of fromInteger.

The (.) function allows you
to compose functions.

Function composition
The (.) function gives you a concise notation for composing two functions. It has
the following type and definition:

(.) : (b -> c) -> (a -> b) -> a -> c
(.) func_bc func_ab x = func_bc (func_ab x)

In the example in listing 7.10, you could have written this:

fromInteger x = Val (fromInteger x)

The (.) function allows you instead to write this:

fromInteger x = (Val . fromInteger) x

198 CHAPTER 7 Interfaces: using constrained generic types
To construct an expression and evaluate it, you can use standard notation:

*Expr> the (Expr _) (6 + 3 * 12)
Add (Val 6) (Mul (Val 3) (Val 12)) : Expr Integer

*Expr> eval (6 + 3 * 12)
42 : Integer

In the first case, you need to use the to make it clear that the numeric expression should
be interpreted as an Expr, rather than the default, which would be an Integer. In the
second case, Idris infers from the type of eval that the argument must be an Expr.

7.2.3 Converting between types with Cast

In chapter 2, you saw the cast function, which is used to convert values between dif-
ferent, compatible types. If you look at the type of cast, you’ll see that it has a con-
strained generic type that uses a Cast interface:

Idris> :t cast
cast : Cast from to => from -> to

Unlike the interfaces we’ve seen so far, Cast has two parameters rather than one. The
next listing gives its definition. Interfaces in Idris can have any number of parameters
(even zero!).

interface Cast from to where
cast : (orig : from) -> to

As we observed in chapter 2, conversions using cast may be lossy. Idris defines casts
between Double and Integer, for example, which may lose precision. The purpose of
cast is to provide a convenient generic function, with an easy-to-remember name, for
conversions.

 To define an implementation of an interface with more than one parameter, you
need to give both concrete parameters. For example, you could define a cast from
Maybe elem to List elem, because you can think of Maybe elem as being a list of either
zero or one elems:

Cast (Maybe elem) (List elem) where
cast Nothing = []
cast (Just x) = [x]

Listing 7.11 The Cast interface (defined in the Prelude)

(continued)
Finally, rather than have the x as an argument on both sides, you can use partial
application:

fromInteger = Val . fromInteger

Cast has two parameters, from and to,
both of which are of type Type.

199Interfaces parameterized by Type -> Type
You could also define a cast in the other direction, from List elem to Maybe elem, but
this would potentially lose information, because you’d need to decide which element
to take if the list had more than one element.

Exercises

1 Implement Show for the Expr type defined in section 7.2.2.
Hint: To keep this simple and avoid concerns about precedence, assume all sub-

expressions can be written in parentheses.
You can test your answer at the REPL as follows:

*ex_7_2> show (the (Expr _) (6 + 3 * 12))
"(6 + (3 * 12))" : String

*ex_7_2> show (the (Expr _) (6 * 3 + 12))
"((6 * 3) + 12)" : String

 2 Implement Eq for the Expr type. Expressions should be considered equal if their
evaluation is equal. So, for example, you should see the following:

*Expr> the (Expr _) (2 + 4) == 3 + 3
True : Bool

*Expr> the (Expr _) (2 + 4) == 3 + 4
False : Bool

Hint: Start with the implementation header Eq (Expr ty) where, and add constraints
as you discover you need them.

3 Implement Cast to allow conversions from Expr num to any appropriately con-
strained type num.

Hint: You’ll need to evaluate the expression, which should tell you how num needs
to be constrained.

You can test your answer at the REPL as follows:

*ex_7_2> let x : Expr Integer = 6 * 3 + 12 in the Integer (cast x)
30 : Integer

7.3 Interfaces parameterized by Type -> Type
In all the interfaces we’ve seen so far, the parameters have been Types. There is, how-
ever, no restriction on what the types of the parameters can be. In particular, it’s com-
mon for interfaces to have parameters of Type -> Type. For example, you’ve already
seen the following functions with constrained types:

map : Functor f => (a -> b) -> f a -> f b
pure : Applicative f => a -> f a
(>>=) : Monad m => m a -> (a -> m b) -> m b

In each case, the parameter f or m stands for a parameterized type, such as List or IO.
You’ve seen map in the context of List, and pure and (>>=) in the context of IO.

200 CHAPTER 7 Interfaces: using constrained generic types
 In this section, we’ll look at how these and other operations are defined generi-
cally in the Prelude using interfaces, along with some examples of how to apply them
to your own types.

7.3.1 Applying a function across a structure with Functor

In chapter 2 you saw the map function, which applies a function to every element in a
list:

Idris> map (*2) [1,2,3,4]
[2, 4, 6, 8] : List Integer

I noted, however, that map isn’t limited to lists, but rather has a constrained generic
type using the Functor interface. Functors allow you to apply a function uniformly
across a generic type. The preceding example applied the “multiply by two” function
uniformly across a list of Integers.

 The following listing shows the definition of the Functor interface, which contains
map as its only method, and its implementation for List, as defined in the Prelude.

interface Functor (f : Type -> Type) where
map : (func : a -> b) -> f a -> f b

Functor List where
map func [] = []
map func (x::xs) = func x :: map func xs

So far, the interfaces we’ve seen have been parameterized by a variable with type
Type. But the parameter of Functor is itself a parameterized type (such as List).
When the parameter has any type other than Type, you need to give the parameter’s
type explicitly.

 It’s often useful to provide an implementation of Functor for collection data struc-
tures. For example, the following listing shows how to define a Functor implementa-
tion for binary trees, uniformly applying a function across every element that appears
at a Node.

data Tree elem = Empty
| Node (Tree elem) elem (Tree elem)

Functor Tree where
map func Empty = Empty
map func (Node left e right)

= Node (map func left)
(func e)
(map func right)

Listing 7.12 The Functor interface and an implementation for List
(defined in the Prelude)

Listing 7.13 Implementation of Functor for Tree (Tree.idr)

Gives the type of f explicitly,
because it’s not Type

Applies func uniformly
across the left subtree

Applies func to the element at the Node

Applies func uniformly across
the right subtree

201Interfaces parameterized by Type -> Type
The Prelude provides Functor implementations for all types with a single type param-
eter, where possible, including List, Maybe, and IO. If you import Data.Vect, there’s
also a Functor implementation for Vect n, as follows.

Functor (Vect n) where
map func [] = []
map func (x :: xs) = func x :: map func xs

The parameter in the implementation’s header, Vect n, means that you’re defining an
implementation of Functor for vectors of any length. The usual rules for implicit
arguments apply, as described in chapter 3: any name beginning with a lowercase let-
ter in a function argument position is treated as an implicit argument. Therefore, n is
treated as an implicit argument here.

7.3.2 Reducing a structure using Foldable

If you write down a list of numbers in the form 1 :: 2 :: 3 :: 4 :: [], you can compute
the sum of the numbers by applying the following rules:

1 Replace each :: with a + (giving 1 + 2 + 3 + 4 + []).
 2 Replace the [] with a 0 (giving 1 + 2 + 3 + 4 + 0).
3 Calculate the value of the resulting expression (giving 10).

 Or you can compute the product of the numbers by applying the following rules:

1 Replace each :: with a * (giving 1 * 2 * 3 * 4 * []).
 2 Replace the [] with a 1 (giving 1 * 2 * 3 * 4 * 1).
3 Calculate the value of the resulting expression (giving 24).

In general, we’re reducing the contents of the list to a single value by replacing the []
with a default, or initial, value, and replacing :: with a function of two arguments,
which combines each value with the result of reducing the rest of the list. Idris pro-
vides two higher-order functions, called folds to suggest folding the structure into a sin-
gle value, to do exactly this:

foldr : (elem -> acc -> acc) -> acc -> List elem -> acc
foldl : (acc -> elem -> acc) -> acc -> List elem -> acc

The distinction between foldr and foldl is in how the resulting expression is bracketed.
In our first example, foldr would calculate the result as 1 + (2 + (3 + (4 + 0))), whereas
foldl would calculate the result as (((0 + 1) + 2) + 3) + 4. In other words, foldr pro-
cesses the elements left to right, and foldl processes the elements right to left.

TYPE VARIABLES IN FOLDL AND FOLDR The names of the variables in the types
of foldl and foldr suggest their purpose: elem is the element type of the
list and acc is the type of the result. The name acc suggests the type of an
accumulating parameter, in which the eventual result is computed.

Listing 7.14 Implementation of Functor for vectors (defined in Data.Vect)

The n here is an implicit argument and
means that this implementation works
for vectors of any length.

202 CHAPTER 7 Interfaces: using constrained generic types
In each case, the first argument is the function (or operator) to apply, and the second
argument is the initial value. So, you can calculate the two previous examples as follows:

Idris> foldr (+) 0 [1,2,3,4]
10 : Integer

Idris> foldr (*) 1 [1,2,3,4]
24 : Integer

Or you could use a fold to calculate the total length of the Strings in a List String.
For example, the total length of ["One", "Two", "Three"] should be 11.

 Let’s write this interactively, using foldr, in a file named Fold.idr:

1 Type, define—You can begin with a type and a candidate definition, and apply
foldr to the input list, xs, but leave holes for the function and initial value so
their types can give you hints as to how to proceed:

totalLen : List String -> Nat
totalLen xs = foldr ?sumLength ?initial xs

 2 Type, refine—The type of ?initial tells you that the initial value must be a Nat:

xs : List String
t : Type -> Type
elem : Type

initial : Nat

You can initialize it with 0, because the total length of an empty list of strings is 0:

totalLen : List String -> Nat
totalLen xs = foldr ?sumLength 0 xs

3 Type, refine—The type and context of ?sumLength tells you that you need to pro-
vide a function:

xs : List String
t : Type -> Type
elem : Type

sumLength : String -> Nat -> Nat

The function you need to provide takes a String (standing for the string at a
given position in the list) and a Nat (standing for the result of folding the rest
of the list), and returns a Nat (standing for the total length). You can complete
the definition as follows:

totalLen : List String -> Nat
totalLen xs = foldr (\str, len => length str + len) 0 xs

You can test the resulting function at the REPL:

*Fold> totalLen ["One", "Two", "Three"]
11 : Nat

203Interfaces parameterized by Type -> Type

,

t

In the preceding example, I gave a type for foldr that was specific to List. But if you look
at the type at the REPL, you’ll see a constrained generic type using a Foldable interface:

foldr : Foldable t => (elem -> acc -> acc) -> acc -> t elem -> acc

An implementation of Foldable for a structure explains how to reduce that structure
to a single value using an initial value and a function to combine each element with
an overall folded structure. The following listing gives the interface definition.
There’s a default definition for foldl, written in terms of foldr, so only foldr need
be implemented.

interface Foldable (t : Type -> Type) where
foldr : (elem -> acc -> acc) -> acc -> t elem -> acc
foldl : (acc -> elem -> acc) -> acc -> t elem -> acc

The next listing shows how Foldable is implemented in the Prelude for List. Note in
particular the distinction between the implementations of foldr and foldl.

Foldable List where
foldr func acc [] = acc
foldr func acc (x :: xs) = func x (foldr func acc xs)

foldl func acc [] = acc
foldl func acc (x :: xs) = foldl func (func acc x) xs

Because our Tree data type is a generic type containing a collection of values, you
should be able to provide a Foldable implementation:

1 Type—Begin by providing an implementation header and a skeleton definition
of foldr. You can use the default definition for foldl:

Foldable Tree where
foldr func acc tree = ?Foldable_rhs_1

 2 Define, refine—Case-split on the tree. If the tree is Empty, you return the initial
value:

Foldable Tree where
foldr func acc Empty = acc
foldr func acc (Node left e right) = ?Foldable_rhs_3

3 Refine—In the Node case, because foldr works left to right, you begin by folding
the left subtree recursively. Figure 7.3 illustrates this with an example, assuming
an initial accumulator of 0.

Listing 7.15 The Foldable interface (defined in the Prelude)

Listing 7.16 Implementation of Foldable for List (defined in the Prelude)

Folds a structure, working
from left to right

Folds a structure, working from right
to left. Implementing foldl is optional.

Applies the function to the
first element and the result
of folding the tail of the list

Recursively folds the tail
updating the initial value
by applying the function
to it and the first elemen

204 CHAPTER 7 Interfaces: using constrained generic types
In code, it looks like this:

Foldable Tree where
foldr func acc Empty = acc
foldr func acc (Node left e right)

= let leftfold = foldr func acc left in
?Foldable_rhs_3

 4 Refine—Next, take the result of folding the left subtree (leftfold) and use it as
the initial value when folding the right subtree. Figure 7.4 illustrates this on the
same example.

In code, it looks like this:

Foldable Tree where
foldr func acc Empty = acc
foldr func acc (Node left e right)

= let leftfold = foldr func acc left
rightfold = foldr func leftfold right in
?Foldable_rhs_3

5 Refine—Finally, apply func to the value at the node e and the result of folding
the right subtree:

Foldable Tree where
foldr func acc Empty = acc
foldr func acc (Node left e right)

= let leftfold = foldr func acc left
rightfold = foldr func leftfold right in
func e rightfold

In the example, this gives you the result 4 + 24 = 28.

2

1 3

6

5 7

4

6

6

5 7

4

Figure 7.3 Fold the left
subtree with the initial
accumulator. This gives you 0
+ 1 + 2 + 3 = 6.

6

5 7

4

24

4

6

6

5 7

4

Figure 7.4 Fold the right
subtree, initialized with the result
of folding the left subtree. This
gives you 6 + 5 + 6 + 7 = 24.

205Interfaces parameterized by Type -> Type
7.3.3 Generic do notation using Monad and Applicative

There are two other interfaces that are useful to know about, and which you’ve
already seen in practice: Monad and Applicative. In most cases, you’re unlikely to
need to provide your own implementations, but they do appear throughout the Pre-
lude and base libraries, so it’s useful to know their capabilities, and particularly which
functions they provide.

 In chapter 5, you saw how the (>>=) function was used to sequence IO operations:

(>>=) : IO a -> (a -> IO b) -> IO b

Then, in chapter 6, you saw how the (>>=) function was used to sequence Maybe com-
putations, abandoning the sequence if any computation returned Nothing:

(>>=) : Maybe a -> (a -> Maybe b) -> Maybe b

Given that these two functions have similar types (directly replacing IO with Maybe)
and similar purposes (sequencing either interactive actions or computations that
might fail), you might expect them to be defined in a common interface. The follow-
ing listing shows the Monad interface that provides (>>=), along with a join method
that combines nested monadic structures.1

interface Applicative m => Monad (m : Type -> Type) where
(>>=) : m a -> (a -> m b) -> m b
join : m (m a) -> m a

Both (>>=) and join have default definitions, so you can define a Monad implementa-
tion in terms of either. Here, we’ll concentrate on (>>=).

 In chapter 6, you saw a definition of (>>=) for Maybe. In practice, it’s defined in the
Prelude as follows:

Monad Maybe where
(>>=) Nothing next = Nothing
(>>=) (Just x) next = next x

You’ve also seen the pure function, particularly in the context of IO programs to pro-
duce a value in an IO computation without describing any actions:

pure : a -> IO a

As with (>>=), pure also works in the context of Maybe, applying Just to its argument:

Idris> the (Maybe _) (pure "driven snow")
Just "driven snow" : Maybe String

Listing 7.17 The Monad interface (defined in the Prelude)

1 We won’t go into detail on join here, but it allows you to define a Monad implementation for List by con-
catenating lists of lists, among other things.

The Applicative interface supports function
application inside a generic type.

206 CHAPTER 7 Interfaces: using constrained generic types
Again, given that pure works in several contexts, you might expect it to be defined in
an interface. The following listing shows the definition of the Applicative interface,
which provides pure and a (<*>) function that applies a function inside a structure.
You’ll see an example of Applicative in chapter 12.

interface Functor f => Applicative (f : Type -> Type) where
pure : a -> f a
(<*>) : f (a -> b) -> f a -> f b

There are several practical uses of Monad and Applicative, although as a user of a
library, you’ll usually just need to know whether there are Monad and Applicative
instances for the provided types, and particularly what the effect of the (>>=) operator is.

 One interesting implementation of Monad in the Prelude is for List. The (>>=)
function for List passes every value in the input list to the next function in sequence,
and combines the results into a new list. I won’t go into this in detail in this book, but
you can use it to write nondeterministic programs.

 There’s much more to be said on the subject of interfaces, particularly the hierar-
chy we’ve looked at briefly in this section covering Functor, Foldable, Applicative,
and Monad. A deep discussion is beyond the scope of this book, but the interfaces
we’ve discussed in this chapter are the ones you’ll encounter most often at first.

Exercises

1 Implement Functor for Expr (defined in section 7.2.2).
You can test your answer at the REPL as follows:

*Expr> map (*2) (the (Expr _) (1 + 2 * 3))
Add (Val 2) (Mul (Val 4) (Val 6)) : Expr Integer

*Expr> map show (the (Expr _) (1 + 2 * 3))
Add (Val "1") (Mul (Val "2") (Val "3")) : Expr String

2 Implement Eq and Foldable for Vect.
Hint: If you import Data.Vect, these implementations already exist, so you’ll

need to define Vect by hand to try this exercise.
You can test your answers at the REPL as follows:

*ex_7_3> foldr (+) 0 (the (Vect _ _) [1,2,3,4,5])
15 : Integer

*ex_7_3> the (Vect _ _) [1,2,3,4] == [1,2,3,4]
True : Bool

*ex_7_3> the (Vect _ _) [1,2,3,4] == [5,6,7,8]
False : Bool

Listing 7.18 The Applicative interface (defined in the Prelude)

207Summary
7.4 Summary
 Generic types can be constrained using interfaces, which describe groups of

functions that can be applied in a specific context.
 The Eq interface provides functions for comparing values for equality and

inequality.
 The Ord interface provides functions for comparing two values to see which is

smaller or larger.
 Implementations of interfaces describe how interfaces can be evaluated in spe-

cific contexts.
 Interfaces and implementations can themselves have constraints. Constraints

say which interfaces must be implemented for a definition to be valid.
 The Prelude provides several standard interfaces, including Show for converting

values to a String, Num for arithmetic operations and numeric literals, and Cast
for converting between types.

 Interfaces can be parameterized by values of any type. Several in the Prelude
are parameterized by values of type Type -> Type.

 An implementation of Functor for a structure allows a uniform action to be
applied to each element in the structure.

 An implementation of Foldable allows a structure to be reduced to a single
value.

 An implementation of Monad allows you to use do notation to sequence compu-
tations on a structure.

Equality: expressing
relationships between data
You’ve now seen several ways in which first-class types increase the expressivity of
the type system, and the precision of the types we give to functions. You’ve seen
how to use increased precision in types (along with holes) to help write functions,
and how to write functions to calculate types. Another way you can use first-class
types to increase the precision of your types, and to increase confidence in func-
tions behaving correctly, is to write types specifically to express properties of data
and the relationships between data.

 In this chapter, we’ll look at a simple property, using types to express guarantees
that values are equal. You’ll also see how to express guarantees that values are not
equal. Properties such as equality and inequality are sometimes required when

This chapter covers
 Expressing properties of functions and data

 Checking and guaranteeing equalities between
data

 Showing when cases are impossible with the
empty type Void
208

209Guaranteeing equivalence of data with equality types
you’re defining more-complex functions with dependent types, where the relation-
ship between values might not be immediately obvious to Idris. For example, as you’ll
see when we define reverse on vectors, the input and output vector lengths must be
the same, so we’ll need to explain to the compiler why the length is preserved.

 We’ll start by looking at a function we’ve already used, exactLength, and see in
some detail how to build it from first principles.

8.1 Guaranteeing equivalence of data with equality types
When you want to compare values for equality, you can use the == operator, which
returns a value of type Bool, given two values in a type ty for which there’s an imple-
mentation of the Eq interface:

(==) : Eq ty => ty -> ty -> Bool

But if you look closely at this type, what does it tell you about the relationships
between the inputs (of type ty) and the output (of type Bool)?

 In fact, it tells you nothing at all! Without looking at the specific implementation,
you don’t know exactly how == will behave. Any of the following would be reasonable
behavior for an implementation of == in the Eq interface, at least as far as the type is
concerned:

 Always returning True
 Always returning False
 Returning whether the inputs are not equal

It would be surprising to programmers if == behaved in any of these ways, but as far as
the Idris type checker is concerned, it can make no assumptions other than those
given explicitly in the type. If you want to compare values at the type level, therefore,
you’ll need something more expressive.

 In fact, you’ve already seen an example of a situation where you might want to do
this: at the end of chapter 5 you used the exactLength function to check whether a
Vect had a specific length:

exactLength : (len : Nat) -> (input : Vect m a) -> Maybe (Vect len a)

You used this function to check whether two vectors entered by a user had exactly
the same length. Given a specific length, len, and a vector of length, m, it returns the
following:

 Nothing, if len is not the same as m
 Just input, if len is the same as m

In this section, we’ll look at how to implement exactLength by representing equality
as a type, and you’ll see in more detail why == isn’t sufficient. We’ll start by trying to
implement it using == and see where we run into limitations.

210 CHAPTER 8 Equality: expressing relationships between data
8.1.1 Implementing exactLength, first attempt

Rather than importing Data.Vect, which defines exactLength, we’ll begin by defin-
ing Vect by hand and giving a type and a skeleton definition of exactLength. The fol-
lowing listing shows our starting point, in a file named ExactLength.idr.

data Vect : Nat -> Type -> Type where
Nil : Vect Z a
(::) : a -> Vect k a -> Vect (S k) a

exactLength : (len : Nat) -> (input : Vect m a) -> Maybe (Vect len a)
exactLength len input = ?exactLength_rhs

You should expect to be able to implement exactLength by comparing the length of
input with the desired length, len. If they’re equal, then input has length len, so its
type should be considered equivalent to Vect len a, and you can return it directly.
Otherwise, you return Nothing.

 As a first attempt, you can try the following steps:

1 Define—Because m doesn’t appear on the left side of the skeleton definition,
you’ll need to bring it into scope explicitly in order to compare len and m. You
can do this by updating the definition to the following:

exactLength {m} len input = ?exactLength_rhs

Recall from chapter 3 that an implicit argument such as m can be used in the
definition if it’s written inside braces on the left side.

 2 Define—You can now compare m and len for equality using == and inspect the
result in a case statement:

exactLength : (len : Nat) -> (input : Vect m a) -> Maybe (Vect len a)
exactLength {m} len input = case m == len of

False => ?exactLength_rhs_1
True => ?exactLength_rhs_2

 3 Refine—For ?exactLength_rhs_1, the lengths are different, so you return
Nothing:

exactLength {m} len input = case m == len of
False => Nothing
True => ?exactLength_rhs_2

 4 Refine—For ?exactLength_rhs_2, you’d like to return Just input because the
lengths are equal. You can start with Just:

exactLength : (len : Nat) -> (input : Vect m a) -> Maybe (Vect len a)
exactLength {m} len input = case m == len of

False => Nothing
True => Just ?exactLength_rhs_2

Listing 8.1 A definition of Vect and the type and skeleton definition of exactLength
(ExactLength.idr)

211Guaranteeing equivalence of data with equality types

5 Type—Then, you can take a look at the types of the variables in scope, and the
type required to fill in the ?exactLength_rhs_2 hole:

a : Type
m : Nat
len : Nat
input : Vect m a

exactLength_rhs_2 : Vect len a

Even though you’ve checked that m and len are equal using ==, you can’t fill in
the hole with input because it has type Vect m a, and the required type is Vect
len a. The problem, as when defining zipInputs at the end of chapter 5, is that
the type of == isn’t informative enough to guarantee that m and len are equal,
even if it returns True.

You will, therefore, need to consider alternative approaches to implementing
exactLength, using a more informative type when comparing m and len.

A variable’s type tells Idris what possible values a variable can have, but it says nothing
about where the value has come from. If a variable has type Bool, Idris knows that it
can have either of the values True or False, but nothing about the computation that
has produced the value. There are lots of possible computations that could produce a
result of type Bool other than testing for equality. Furthermore, equality is defined by
the Eq interface, and there are no guarantees in the type about how that interface
might be implemented.

 Instead, you’ll need to create a more precise type for the equality test, where the
type guarantees that a comparison between two inputs can only be successful if the
inputs really are identical. In the rest of this section, you’ll see how to do this from first
principles, and how to use the new equality type to implement exactLength.

8.1.2 Expressing equality of Nats as a type

Listing 8.2 shows a dependent type, EqNat. It has two numbers as arguments, num1 and
num2. If you have a value of type EqNat num1 num2, you know that num1 and num2 must
be the same number because the only constructor, Same, can only build something
with a type of the form EqNat num num, where the two arguments are the same.

data EqNat : (num1 : Nat) -> (num2 : Nat) -> Type where
 Same : (num : Nat) -> EqNat num num

With dependent types, you can use types such as EqNat to express additional informa-
tion about other data, in this case expressing that two Nats are guaranteed to be equal.
This is a powerful concept, as you’ll soon see, and can take some time to fully appreci-
ate. We’ll therefore look at representing and checking equalities in some depth.

Listing 8.2 Representing equal Nats as a type (EqNat.idr)

The only constructor, Same,
constructs evidence that num
is equal to itself.

212 CHAPTER 8 Equality: expressing relationships between data
 First, to see how EqNat works, let’s try a few examples at the REPL:

*EqNat> Same 4
Same 4 : EqNat 4 4

*EqNat> Same 5
Same 5 : EqNat 5 5

*EqNat> the (EqNat 3 3) (Same _)
Same 3 : EqNat 3 3

*EqNat> Same (2 + 2)
Same 4 : EqNat 4 4

Whatever you try, the argument in the type is repeated. It is, nevertheless, perfectly
valid to write a type with unequal arguments:

*EqNat> EqNat 3 4
EqNat 3 4 : Type

But if you try to construct a value with this type, you can’t succeed and will always get a
type error:

*EqNat> the (EqNat 3 4) (Same _)
(input):1:5:When checking argument value to function Prelude.Basics.the:

Type mismatch between
EqNat num num (Type of Same num)

and
EqNat 3 4 (Expected type)

Specifically:
Type mismatch between

0
and

1

This error message indicates that 3 and 4 need to be the same, because they both
need to be instantiated for num in the type of Same. The type EqNat 3 4 is an empty type,
meaning that there are no values of that type.

SPECIFICITY IN ERROR MESSAGES You’ll notice that in error messages, Idris
often reports the error in two ways. The first part gives an overall type mis-
match. This can become quite large, however, so Idris also reports the specific
part of the expression that didn’t match. Here, it reports a mismatch between
0 and 1 because of the way Nat is defined in terms of Z and S. The overall
mismatch is between S (S (S Z)) and S (S (S (S Z))), for which the specific
difference is between Z and S Z.

8.1.3 Testing for equality of Nats

We’ll use EqNat to help implement exactLength. Because EqNat num1 num2 is essen-
tially a proof that num1 must be equal to num2, we’ll write a function that checks
whether the input lengths are equal, and, if they are, express that equality as an
instance of EqNat.

213Guaranteeing equivalence of data with equality types
 We’ll begin by writing a checkEqNat function that either returns a proof that its
inputs are the same, in the form of EqNat, or Nothing if the inputs are different. It has
the following type:

checkEqNat : (num1 : Nat) -> (num2 : Nat) -> Maybe (EqNat num1 num2)

Once implemented, it will behave as in the following examples:

*EqNat> checkEqNat 5 5
Just (Same 5) : Maybe (EqNat 5 5)

*EqNat> checkEqNat 1 2
Nothing : Maybe (EqNat 1 2)

Because we can only have a value of type EqNat num1 num2 for a specific num1 and num2
if num1 and num2 are identical, the type of checkEqNat guarantees that if it’s successful
(that is, returns a value of the form Just p), then its inputs really must be equal.

 You can implement the function as follows:

1 Type—Begin with a type and a skeleton definition:

checkEqNat : (num1 : Nat) -> (num2 : Nat) -> Maybe (EqNat num1 num2)
checkEqNat num1 num2 = ?checkEqNat_rhs

 2 Define—You can define the function by case splitting on both Nat inputs. First,
case-split on num1:

checkEqNat : (num1 : Nat) -> (num2 : Nat) -> Maybe (EqNat num1 num2)
checkEqNat Z num2 = ?checkEqNat_rhs_1
checkEqNat (S k) num2 = ?checkEqNat_rhs_2

 3 Define—Then, case-split on num2 in both cases:

checkEqNat : (num1 : Nat) -> (num2 : Nat) -> Maybe (EqNat num1 num2)
checkEqNat Z Z = ?checkEqNat_rhs_3
checkEqNat Z (S k) = ?checkEqNat_rhs_4
checkEqNat (S k) Z = ?checkEqNat_rhs_1
checkEqNat (S k) (S j) = ?checkEqNat_rhs_5

 4 Refine—If you take a look at the type of the ?checkEqNat_rhs_3 hole, you’ll see
that you need to provide evidence that 0 is the same as itself, so you can fill this
in with Just (Same 0). For ?checkEqNat_rhs_4 and ?checkEqNat_rhs_1, you
can’t provide any evidence that 0 is the same as a non-zero number, so return
Nothing. You now have this:

checkEqNat : (num1 : Nat) -> (num2 : Nat) -> Maybe (EqNat num1 num2)
checkEqNat Z Z = Just (Same 0)
checkEqNat Z (S k) = Nothing
checkEqNat (S k) Z = Nothing
checkEqNat (S k) (S j) = ?checkEqNat_rhs_5

 5 Refine—The result for ?checkEqNat_rhs_5 depends on whether k is equal to j,
which you can determine by making a recursive call and then case splitting on
the result:

214 CHAPTER 8 Equality: expressing relationships between data
checkEqNat (S k) (S j) = case checkEqNat k j of
case_val => ?checkEqNat_rhs_5

 6 Define—Case splitting on case_val leads to cases for when k and j aren’t equal
(Nothing) and when they are equal (Just x). You can rename the Just x pro-
duced by the case split to something more informative, and fill in the case
where the recursive call produces Nothing:

checkEqNat (S k) (S j) = case checkEqNat k j of
Nothing => Nothing
Just eq => ?checkEqNat_rhs_2

 7 Type—Looking at the type of checkEqNat_rhs_2 gives you some information
about how to proceed:

k : Nat
j : Nat
eq : EqNat k j

checkEqNat_rhs_2 : Maybe (EqNat (S k) (S j))

The type of eq is EqNat k j, and you’re looking for something of type Maybe
(EqNat (S k) (S j)).

 8 Refine—If k and j are equal, you know that S k and S j must be equal, so you
can return a value constructed with Just:

checkEqNat (S k) (S j) = case checkEqNat k j of
Nothing => Nothing
Just eq => Just ?checkEqNat_rhs_2

9 Refine—To complete the definition, rename the remaining hole, and lift it to a
top-level definition, which you’ll implement in the next section.

sameS : (eq : EqNat k j) -> EqNat (S k) (S j)

checkEqNat : (num1 : Nat) -> (num2 : Nat) -> Maybe (EqNat num1 num2)
checkEqNat Z Z = Just (Same Z)
checkEqNat Z (S k) = Nothing
checkEqNat (S k) Z = Nothing
checkEqNat (S k) (S j) = case checkEqNat k j of

Nothing => Nothing
Just eq => Just (sameS eq)

You can see from the type of the lifted definition, sameS, that it’s a function that takes
evidence that k and j are equal, and returns evidence that S k and S j are equal. By
expressing equality between numbers as a dependent data type, EqNat, you’re able to
write functions like sameS that take an instance of EqNat as an input and manipulate
them, essentially deducing additional information about equalities.

215Guaranteeing equivalence of data with equality types
8.1.4 Functions as proofs: manipulating equalities

It’s impossible to create an instance of EqNat k j when k and j are different, which
means you can think of sameS as a proof that if k and j are equal, S k and S j are also
equal.

 Let’s now try implementing sameS. For clarity, we’ll make the Nat arguments
explicit:

sameS : (k : Nat) -> (j : Nat) -> (eq : EqNat k j) -> EqNat (S k) (S j)
sameS k j eq = ?sameS_rhs

You can implement sameS with the following steps:

1 Define—Begin by creating a skeleton definition:

sameS : (k : Nat) -> (j : Nat) -> (eq : EqNat k j) -> EqNat (S k) (S j)
sameS k j eq = ?sameS_rhs

 2 Define—Next, in Atom, ask to case-split on eq:

sameS : (k : Nat) -> (j : Nat) -> (eq : EqNat k j) -> EqNat (S k) (S j)
sameS k k (Same k) = ?sameS_rhs_1

Notice that k appears three times on the left side of this definition! Because
you’ve expressed a relationship between k and j using eq in the type of sameS,
and you’ve case-split on eq, Idris has noticed that both Nat inputs must be the
same. Not only that, if you try to give a different value, it will report an error. If,
instead, you write this,

sameS k j (Same k) = ?sameS_rhs_1

then Idris will report the following:

EqNat.idr:15:7:When checking left hand side of sameS:
Type mismatch between

j (Inferred value)
and

k (Given value)

In other words, because the type states that both Nat inputs must be the same,
Idris isn’t happy that they’re different. So, revert to the left side that Idris gener-
ated after the case split on eq:

sameS : (k : Nat) -> (j : Nat) -> (eq : EqNat k j) -> EqNat (S k) (S j)
sameS k k (Same k) = ?sameS_rhs_1

 3 Type—If you check the type of ?sameS_rhs_1, you’ll see that you need to pro-
vide evidence that S k is the same as itself:

k : Nat

sameS_rhs_1 : EqNat (S k) (S k)

4 Refine—You can therefore complete the definition as follows:

sameS : (k : Nat) -> (j : Nat) -> (eq : EqNat k j) -> EqNat (S k) (S j)
sameS k k (Same k) = Same (S k)

216 CHAPTER 8 Equality: expressing relationships between data

S
u

PROOFS IN IDRIS In principle, you can state and try to prove complex proper-
ties of any function in Idris. For example, you could write a function whose
type states that reversing a list twice yields the original list. In practice, how-
ever, you’ll rarely need to manipulate equalities much more complex than the
implementation of sameS. Nevertheless, you’ll see a bit more about manipu-
lating equalities, and where they arise when defining functions, in section 8.2.

Listing 8.3 gives the complete definition of checkEqNat, using the version of sameS
with explicit arguments. You could also write this function without using sameS,
instead using a case split on eq. You could also use do notation, as described at the end
of chapter 6, to make the definition more concise. As exercises, try reimplementing it
in each of these ways.

sameS : (k : Nat) -> (j : Nat) -> (eq : EqNat k j) -> EqNat (S k) (S j)
sameS k k (Same k) = Same (S k)

checkEqNat : (num1 : Nat) -> (num2 : Nat) -> Maybe (EqNat num1 num2)
checkEqNat Z Z = Just (Same 0)
checkEqNat Z (S k) = Nothing
checkEqNat (S k) Z = Nothing
checkEqNat (S k) (S j) = case checkEqNat k j of

Nothing => Nothing
Just eq => Just (sameS _ _ eq)

Unlike ==, checkEqNat expresses the relationship between its inputs and its output
precisely in its type. Using this, we can make another attempt to implement exact-
Length.

8.1.5 Implementing exactLength, second attempt

Earlier, we reached the following point in implementing exactLength, before estab-
lishing that a Boolean comparison wasn’t sufficient:

exactLength : (len : Nat) -> (input : Vect m a) -> Maybe (Vect len a)
exactLength {m} len input = case m == len of

False => ?exactLength_rhs_1
True => ?exactLength_rhs_2

Instead of using the Boolean comparison operator == to compare m and len, you can
try using checkEqNat m len. This will return a value of type Maybe (EqNat m len), so if
m and len are equal, you’ll have some additional information in the type that states the
meaning of the result of the comparison precisely. In this second attempt, you can
implement the function as follows:

1 Define—As before, begin with a type and a skeleton definition, bringing m into
scope on the left side:

exactLength : (len : Nat) -> (input : Vect m a) -> Maybe (Vect len a)
exactLength {m} len input = ?exactLength_rhs

Listing 8.3 Testing for equality of Nats with EqNat (EqNat.idr)

Z and S are the canonical
constructors for Nat and
can never be equal.

 k and S j are equal if k and j are equal. You
se sameS to provide evidence for this.

217Guaranteeing equivalence of data with equality types
 2 Define—Instead of defining the function by case splitting on the result of m ==
len, case-split on the result of checkEqNat:

exactLength : (len : Nat) -> (input : Vect m a) -> Maybe (Vect len a)
exactLength {m} len input = case checkEqNat m len of

Nothing => ?exactLength_rhs_1
Just eq_nat => ?exactLength_rhs_2

 3 Refine—If checkEqNat returns Nothing, the inputs were different, so the input
vector is the wrong length:

exactLength : (len : Nat) -> (input : Vect m a) -> Maybe (Vect len a)
exactLength {m} len input = case checkEqNat m len of

Nothing => Nothing
Just eq_nat => Just ?exactLength_rhs_2

 4 Type—If checkEqNat returns Just eq_nat, the lengths are equal, and eq_nat
provides evidence that they’re equal. For ?exactLength_rhs_2, you have this:

m : Nat
len : Nat
eq_nat : EqNat m len
a : Type
input : Vect m a

exactLength_rhs_2 : Maybe (Vect len a)

 5 Define—As before, you still need to provide a result of type Maybe (Vect len a),
and all you have available is input of type Vect m a. But you also have eq_nat,
which provides evidence that m and len are equal. If you case-split on eq_nat,
you’ll get the following:

exactLength : (len : Nat) -> (input : Vect m a) -> Maybe (Vect len a)
exactLength {m} len input = case checkEqNat m len of

Nothing => Nothing
Just (Same len) => ?exactLength_rhs_1

Then, when inspecting the type of the new hole, ?exactLength_rhs_1, you’ll
see this:

m : Nat
a : Type
input : Vect len a

exactLength_rhs_1 : Maybe (Vect len a)

Because eq_nat can only take the form Same len, and the type of Same len
forces m to be identical to len, Idris has refined the required type to be Maybe
(Vect len a).

6 Refine—From here, it’s easy to complete the definition:

exactLength : (len : Nat) -> (input : Vect m a) -> Maybe (Vect len a)
exactLength {m} len input = case checkEqNat m len of

Nothing => Nothing
Just (Same len) => Just input

218 CHAPTER 8 Equality: expressing relationships between data
This isn’t exactly the definition used in the Prelude, however. Instead, the Prelude
uses a generic equality type, built into Idris.

8.1.6 Equality in general: the = type

Rather than defining a specific equality type and function for every possible type
you’ll need to compare, such as Nat with EqNat and checkEqNat here, Idris provides a
generic equality type. This is built into Idris’s syntax, so you can’t define this yourself
(because = is a reserved symbol), but conceptually it would be defined as follows.

data (=) : a -> b -> Type where
Refl : x = x

The name Refl is short for reflexive, a mathematical term that (informally) means that
a value is equal to itself. As with EqNat, you can try some examples at the REPL:

Idris> the ("Hello" = "Hello") Refl
Refl : "Hello" = "Hello"

Idris> the (True = True) Refl
Refl : True = True

If you give more-complex expressions as part of the type, Idris will evaluate them. For
example, if you give the expression 2 + 2 as part of a type, 2 + 2 = 4, Idris will evaluate
it:

Idris> the (2 + 2 = 4) Refl
Refl : 4 = 4

As before, if you try to use Refl to build an instance of an equality type using two
unequal values, you’ll get an error:

Idris> the (True = False) Refl
(input):1:5:When checking argument value to function Prelude.Basics.the:

Type mismatch between
x = x (Type of Refl)

and
True = False (Expected type)

Specifically:
Type mismatch between

True
and

False

Using the built-in equality type, rather than EqNat, you can define checkEqNat as
follows.

Listing 8.4 Conceptual definition of a generic equality type

= takes two arguments: one of
some generic type a, and the
other of some generic type b.

Like Same, but x is an
implicit argument

219Guaranteeing equivalence of data with equality types

checkEqNat : (num1 : Nat) -> (num2 : Nat) -> Maybe (num1 = num2)
checkEqNat Z Z = Just Refl
checkEqNat Z (S k) = Nothing
checkEqNat (S k) Z = Nothing
checkEqNat (S k) (S j) = case checkEqNat k j of

Nothing => Nothing
Just prf => Just (cong prf)

Exercises

1 Implement the following function, which states that if you add the same value onto
the front of equal lists, the resulting lists are also equal:

same_cons : {xs : List a} -> {ys : List a} ->
xs = ys -> x :: xs = x :: ys

Because this function represents an equality proof, it’s sufficient to know that your
definition type-checks and is total:

*ex_8_1> :total same_cons
Main.same_cons is Total

 2 Implement the following function, which states that if two values, x and y, are equal,
and two lists, xs and ys, are equal, then the two lists x :: xs and y :: ys must also be
equal:

same_lists : {xs : List a} -> {ys : List a} ->
x = y -> xs = ys -> x :: xs = y :: ys

Again, it’s sufficient to know that your definition type-checks.

 3 Define a type, ThreeEq, that expresses that three values must be equal.
Hint: ThreeEq should have the type a -> b -> c -> Type.

4 Implement the following function, which uses ThreeEq:

allSameS : (x, y, z : Nat) -> ThreeEq x y z -> ThreeEq (S x) (S y) (S z)

What does this type mean?

Listing 8.5 Checking equality between Nats using the generic equality type
(CheckEqMaybe.idr)

cong is a generic
version of sameS.

Congruence
In listing 8.5, you used cong to convert a value of type k = j to a value of type S
k = S j. It has the following type:

cong : {func : a -> b} -> x = y -> func x = func y

In other words, given some (implicit) function, func, if you have two values that are
equal, then applying func to those values gives an equal result. This does the same
job as sameS, using the generic equality type.

220 CHAPTER 8 Equality: expressing relationships between data
8.2 Equality in practice: types and reasoning
Equality proofs, and functions that manipulate them, can be useful when defining
functions with dependent types. You saw a small example of this when implementing
checkEqNat, where you wrote a sameS function to show that adding one to equal num-
bers results in equal numbers.

 Reasoning about equality often becomes necessary when writing functions on
types that are indexed by numbers. For example, when manipulating vectors, you
might need to prove the equivalence between two expressions with natural numbers
that appear in the types of the vectors. To see how this can happen and how to deal
with it, we’ll look at how to implement a function that reverses a Vect.

8.2.1 Reversing a vector

If you import Data.Vect, you’ll get access to a function that reverses a vector, with the
following type:

reverse : Vect n elem -> Vect n elem

The type states that reversing a vector preserves the length of the input vector. You’d
expect it to be fairly straightforward to implement this function using the following
rules:

 If the input vector is empty, return an empty vector.
 If the input vector isn’t empty and has a head x and a tail xs, reverse xs and

append x.

Let’s see what happens if we try to implement our own version, myReverse, in the file
ReverseVec.idr:

1 Type, define—Begin with a type and a skeleton definition, and case-split on the
input:

myReverse : Vect n elem -> Vect n elem
myReverse [] = ?myReverse_rhs_1
myReverse (x :: xs) = ?myReverse_rhs_2

 2 Refine—For ?myReverse_rhs_1, return an empty vector:

myReverse : Vect n elem -> Vect n elem
myReverse [] = []
myReverse (x :: xs) = ?myReverse_rhs_2

3 Refine failure—For ?myReverse_rhs_2, you’d like to be able to reverse xs and
append x, as follows, but unfortunately this fails:

myReverse : Vect n elem -> Vect n elem
myReverse [] = []
myReverse (x :: xs) = myReverse xs ++ [x]

The error message tells you that Idris has found a mismatch between the type of
the value you’ve given, Vect (k + 1), and the expected type, Vect (S k):

This line has
a type error

221Equality in practice: types and reasoning
ReverseVec.idr:6:12:
When checking right hand side of myReverse with expected type

Vect (S k) elem

Type mismatch between
Vect (k + 1) elem (Type of myReverse xs ++ [x])

and
Vect (S k) elem (Expected type)

This seems surprising, because our knowledge of the behavior of addition sug-
gests that S k and k + 1 will always evaluate to the same result, whatever the value
of k.

We’ll postpone the completion of this definition and take a closer look at how type
checking works in Idris in order to understand what has gone wrong and how we
might correct it.

8.2.2 Type checking and evaluation

When Idris type-checks an expression, it will look at the expected type of the expression,
and check that the type of the given expression matches it, after evaluating both. The
following code fragment will type-check:

test1 : Vect 4 Int
test1 = [1, 2, 3, 4]

test2: Vect (2 + 2) Int
test2 = test1

Even though test1 and test2 have different expressions in their types, these expres-
sions evaluate to the same result, so you can define test2 to return test1.

 You can see at the REPL how the Idris type checker evaluates types containing type
variables by using an anonymous function (explained in chapter 2) to introduce vari-
ables with unknown values. Consider this example:

*ReverseVec> \k, elem => Vect (1 + k) elem
\k => \elem => Vect (S k) elem : Nat -> Type -> Type

Here, Idris has evaluated 1 + k in the type to S k. But if you try swapping the argu-
ments to +, you’ll get a different result:

*ReverseVec> \k, elem => Vect (k + 1) elem
\k => \elem => Vect (plus k 1) elem : Nat -> Type -> Type

Here, Idris has evaluated k + 1 to plus k 1, where plus is the Prelude function that
implements addition on Nat. To see the reason for the difference, you need to look at
the definition of plus. You can do this using the REPL command :printdef, which
prints the pattern-matching definition of the function given as its argument:

*ReverseVec> :printdef plus
plus : Nat -> Nat -> Nat
plus 0 right = right
plus (S left) right = S (plus left right)

222 CHAPTER 8 Equality: expressing relationships between data
Because plus is defined by pattern-matching on its first argument, Idris can’t evaluate
plus k 1 any further. To do so, it would need to know what form k takes, but at the
moment, neither of the clauses for plus matches.

 Returning to our problem with defining myReverse, let’s take a look at the current
state:

myReverse : Vect n elem -> Vect n elem
myReverse [] = []
myReverse (x :: xs) = myReverse xs ++ [x]

If you rewrite the definition using let to build each component of the result, and
leave a hole for the return value, you can see in more detail what problem you have to
solve:

myReverse : Vect n elem -> Vect n elem
myReverse [] = []
myReverse (x :: xs) = let rev_xs = myReverse xs

result = rev_xs ++ [x] in
?myReverse_rhs_2

Checking the type of ?myReverse_rhs_2 shows the type of each component and the
required type of the result:

elem : Type
x : elem
k : Nat
xs : Vect k elem
rev_xs : Vect k elem
result : Vect (plus k 1) elem

myReverse_rhs_2 : Vect (S k) elem

For the intended result, you have an expression with type Vect (k + 1) elem, but you
need an expression with type Vect (S k) elem.

 You know, from trying the evaluation at the REPL previously, that Vect (1 + k) elem
would evaluate to the type you need, so you need to be able to explain to Idris that 1 + k
is equal to k + 1; or, when evaluated, that S k is equal to plus k 1. The Idris library pro-
vides a function that can help you:

plusCommutative : (left : Nat) -> (right : Nat) -> left + right = right + left

If you check the type of plusCommutative at the REPL with values 1 and k for left and
right, respectively, you’ll see exactly the equality you need:

*ReverseVec> :t \k => plusCommutative 1 k
\k => plusCommutative 1 k : (k : Nat) -> S k = plus k 1

You can think of this expression’s type as a “rewrite rule” that allows you to replace
one value with another. If you can find a way to apply this rule to rewrite the expected
type to Vect (plus k 1) a, you’ll be able to complete the definition.

This line has
a type error

223Equality in practice: types and reasoning
8.2.3 The rewrite construct: rewriting a type using equality

We’ll resume our definition of myReverse at the following point, using let to name
the result we’d like to return:

myReverse : Vect n elem -> Vect n elem
myReverse [] = []
myReverse (x :: xs) = let result = myReverse xs ++ [x] in

?myReverse_rhs_2

At this stage, these are the types:

elem : Type
x : elem
k : Nat
xs : Vect k elem
result : Vect (plus k 1) elem

myReverse_rhs_2 : Vect (S k) elem

In order to complete the definition, you can use the information given by plus-
Commutative 1 k to rewrite the type of ?myReverse_rhs_2. You’ll want to replace any
S k in the type of ?myReverse_rhs_2 with plus k 1, so that you can return result. Idris
provides a syntax for using equality proofs to rewrite types, illustrated in figure 8.1.

You can therefore implement myReverse using the rewrite construct to update the
type of ?myReverse_rhs_2, taking the following steps:

1 Define—Before rewriting the type using plusCommutative 1 k, you’ll need to
bring k into scope, and k arises from pattern matching on the length of the
input vector:

myReverse : Vect n elem -> Vect n elem
myReverse [] = []
myReverse {n = S k} (x :: xs)

= let result = myReverse xs ++ [x] in
?myReverse_rhs_2

 2 Refine, type—Now, you can apply the rewriting rule:

myReverse : Vect n elem -> Vect n elem
myReverse [] = []
myReverse {n = S k} (x :: xs)

rewrite plusCommutative 1 k in ?my_reverse_rhs_2

Rewrite rule replaces S k with
plus k 1 in this hole's type

Rewrite rule with
type S k = plus k 1

Figure 8.1 Rewriting a type
using an equality proof

224 CHAPTER 8 Equality: expressing relationships between data
= let result = myReverse xs ++ [x] in
rewrite plusCommutative 1 k in ?myReverse_rhs_2

If you look at the resulting type for ?myReverse_rhs_2, you can see the effect
the rewrite has had:

elem : Type
k : Nat
x : elem
xs : Vect k elem
result : Vect (plus k 1) elem
_rewrite_rule : plus k 1 = S k

myReverse_rhs_2 : Vect (plus k 1) elem

3 Refine—Finally, you can complete the definition using expression search:

myReverse : Vect n elem -> Vect n elem
myReverse [] = []
myReverse {n = S k} (x :: xs)

= let result = myReverse xs ++ [x] in
rewrite plusCommutative 1 k in result

Using rewrite, you’ve replaced an expression in the type (S k) with an equivalent
expression (plus k 1), which allows you to use result. But although this has allowed
you to write the function, this definition still leaves something to be desired: the part
of the definition that computes the result (myReverse xs ++ [x]) has become rather
lost in the details of the proof. You can improve this by delegating the details of the
proof, using a hole.

8.2.4 Delegating proofs and rewriting to holes

Instead of applying the rewrite inside the definition of myReverse, you can use a hole
along with interactive editing to generate a helper function that contains the details of
the proof. Let’s start again, with our initial (failing) definition of myReverse:

myReverse : Vect n elem -> Vect n elem
myReverse [] = []
myReverse (x :: xs) = myReverse xs ++ [x]

You can correct this definition using the following steps:

1 Refine, type—Add a hole to the right side, which takes the initial attempt as an
argument:

myReverse : Vect n elem -> Vect n elem
myReverse [] = []
myReverse (x :: xs) = ?reverseProof (myReverse xs ++ [x])

If you check the type of ?reverseProof, you’ll see exactly how you need to
rewrite the type for this definition to be accepted:

elem : Type
x : elem
k : Nat

225Equality in practice: types and reasoning
xs : Vect k elem

reverseProof : Vect (plus k 1) elem -> Vect (S k) elem

 2 Type—Using Ctrl-Alt-L in Atom, lift ?reverseProof to a top-level function:

reverseProof : (x : elem) -> (xs : Vect k elem) ->
Vect (k + 1) elem -> Vect (S k) elem

myReverse : Vect n elem -> Vect n elem
myReverse [] = []
myReverse (x :: xs) = reverseProof x xs (myReverse xs ++ [x])

 3 Define—Define reverseProof as follows, using the same application of rewrite
as in your previous definition of myReverse:

reverseProof : (x : elem) -> (xs : Vect k elem) ->
Vect (k + 1) elem -> Vect (S k) elem

reverseProof {k} x xs result = rewrite plusCommutative 1 k in result

4 Refine—Finally, because you don’t use x or xs in reverseProof, and because
reverseProof will only be used by myReverse, you can tidy up the definition as
follows:

myReverse : Vect n elem -> Vect n elem
myReverse [] = []
myReverse (x :: xs) = reverseProof (myReverse xs ++ [x])

where
reverseProof : Vect (k + 1) elem -> Vect (S k) elem
reverseProof {k} result = rewrite plusCommutative 1 k in result

By introducing the hole ?reverseProof, you’ve been able to keep the relevant com-
putation part of myReverse separate from the details of the proof.

8.2.5 Appending vectors, revisited

You can often avoid the need for rewriting in types by taking care in how you write
function types. For example, in chapter 4, you saw how to define a function that
appends vectors with the following type:

append : Vect n elem -> Vect m elem -> Vect (n + m) elem

The order of arguments to the + operator in the return type turns out to be important
because of the definition of +. If you begin to implement this (in the file AppendVec
.idr) by creating a skeleton definition and then case splitting on the first argument,
you’ll reach the following state:

append : Vect n elem -> Vect m elem -> Vect (n + m) elem
append [] ys = ?append_rhs_1
append (x :: xs) ys = ?append_rhs_2

Then, if you check the type of ?append_rhs_1, you’ll see the following:

elem : Type
m : Nat
ys : Vect m elem

226 CHAPTER 8 Equality: expressing relationships between data

append_rhs_1 : Vect m elem

In this case, the first argument, [], has type Vect 0 elem, and the second argument, ys,
has type Vect m elem. According to the return type of append, ?append_rhs_1 should
have type Vect (0 + m) elem, which reduces to Vect m elem by the definition of +.

 Take a look at what happens if you swap the arguments n and m, as follows:

append : Vect n elem -> Vect m elem -> Vect (m + n) elem
append [] ys = ?append_rhs_1
append (x :: xs) ys = ?append_rhs_2

You now see a different type for ?append_rhs_1:

elem : Type
m : Nat
ys : Vect m elem

append_rhs_1 : Vect (plus m 0) elem

As in the definition of myReverse, Idris can’t reduce plus m 0 any further, because plus
is defined by pattern-matching on its first argument, and the form of m is unknown.
Because of this, you can’t simply return ys for this case, and you’ll need to rewrite the
type of append_rhs_1. You’ll have a similar problem for append_rhs_2; the following
listing shows the definition of append, with holes in place of the necessary rewrites.

append : Vect n elem -> Vect m elem -> Vect (m + n) elem
append [] ys = ?append_nil ys
append (x :: xs) ys = ?append_xs (x :: append xs ys)

The next listing shows a completed definition of append, with definitions of
append_nil and append_xs that rewrite the types for each case.

append_nil : Vect m elem -> Vect (plus m 0) elem
append_nil {m} xs = rewrite plusZeroRightNeutral m in xs

append_xs : Vect (S (m + k)) elem -> Vect (plus m (S k)) elem
append_xs {m} {k} xs = rewrite sym
 (plusSuccRightSucc m k) in xs

append : Vect n elem -> Vect m elem -> Vect (m + n) elem
append [] ys = append_nil ys
append (x :: xs) ys = append_xs (x :: append xs ys)

Listing 8.6 Implementing append on vectors with the arguments to + swapped in the
return type (AppendVec.idr)

Listing 8.7 Completing append on vectors by adding rewriting proofs for append_nil
and append_xs (AppendVec.idr)

?append_nil stands for a proof
that it’s valid to return ys here. ?append_xs stands

for a proof that it’s
valid to return x ::
append xs ys here.

sym is a function
that reverses the
direction of
a rewrite.

227The empty type and decidability
These rewrites use several definitions from the Prelude. Two of them assist with rewrit-
ing expressions using Nat:

plusZeroRightNeutral : (left : Nat) -> left + 0 = left
plusSuccRightSucc : (left : Nat) -> (right : Nat) ->

S (left + right) = left + S right

The third, sym, allows you to apply a rewrite rule in reverse:

sym : left = right -> right = left

Essentially, plusZeroRightNeutral and plusSuccRightSucc together explain that the
behavior of plus is identical if the arguments are given in the opposite order.

Exercises

1 Using plusZeroRightNeutral and plusSuccRightSucc, write your own version of
plusCommutes:

myPlusCommutes : (n : Nat) -> (m : Nat) -> n + m = m + n

Hint: Write this by case splitting on n. In the case of S k, you can rewrite with a recur-
sive call to myPlusCommutes k m, and rewrites can be nested.

2 The implementation of myReverse you wrote earlier is inefficient because it needs
to traverse the entire vector to append a single element on every iteration. You can
write a better definition as follows, using a helper function, reverse', that takes an
accumulating argument to build the reversed list:

myReverse : Vect n a -> Vect n a
myReverse xs = reverse' [] xs

where reverse' : Vect n a -> Vect m a -> Vect (n+m) a
reverse' acc [] = ?reverseProof_nil acc
reverse' acc (x :: xs)

= ?reverseProof_xs (reverse' (x::acc) xs)

Complete this definition by implementing the holes ?reverseProof_nil and
?reverseProof_xs.

You can test your answer at the REPL as follows:

*ex_8_2> myReverse [1,2,3,4]
[4, 3, 2, 1] : Vect 4 Integer

8.3 The empty type and decidability
You can use the equality type, =, to write functions with types that state that two values
are guaranteed to be equal, and then use this guarantee elsewhere in the program.
This works because the only way to construct a value with an equality type is to use
Refl, and Refl will only construct a value with a type of the form x = x:

Idris> :t Refl
Refl : x = x

228 CHAPTER 8 Equality: expressing relationships between data
Idris> Refl {x = 94}
Refl : 94 = 94

But what if you want to say the opposite, that two values are guaranteed not to be
equal? When you construct a value in a type, you’re effectively giving evidence that an
element of that type exists. To show that two values x and y are not equal, you need to
be able to give evidence that an element of the type x = y can’t exist.

 In this section, you’ll see how to use the empty type, Void, to express that something
is impossible. If a function returns a value of type Void, that can only mean that it’s
impossible to construct values of its inputs (or, logically, that the types of its inputs
express a contradiction.) We’ll use Void to express guarantees in types that values can’t
be equal, and then use it to write a more precise type for checkEqNat, which guaran-
tees that

 If its inputs are equal, it will produce a proof that they are equal
 If its inputs are not equal, it will produce a proof that they are not equal

 First, let’s take a look at how Void is defined and used in the simplest case.

8.3.1 Void: a type with no values

In order to express that something can’t happen, the Prelude provides a type with no
values, Void. The complete definition of Void is as follows:

data Void : Type where

You can’t write values of type Void directly, because there aren’t any! As a result, if you
have a function that returns something of type Void, it must be because one of its
arguments is also impossible to construct.

 Just as you can use = to write functions that express facts about how functions do
behave, you can use Void to express facts about how functions don’t behave. For exam-
ple, you can show that 2 + 2 doesn’t equal 5.

 Let’s write a function in a file named Void.idr:

1 Type—Begin by writing the appropriate type:

twoPlusTwoNotFive : 2 + 2 = 5 -> Void

You can read this “if 2 + 2 = 5, then return an element of the empty type.”

 2 Define—Adding a skeleton definition gives you this:

twoPlusTwoNotFive : 2 + 2 = 5 -> Void
twoPlusTwoNotFive prf = ?twoPlusTwoNotFive_rhs

If you look at the type of prf, you’ll see that it’s a proof that 4 = 5:

prf : 4 = 5

twoPlusTwoNotFive_rhs : Void

229The empty type and decidability
3 Define—You can try to define the function by a case split on prf. Idris produces
this:

twoPlusTwoNotFive : 2 + 2 = 5 -> Void
twoPlusTwoNotFive Refl impossible

This definition is now complete. Idris has produced one case, and noticed that the only
possible input, Refl, can never be valid. Recall from chapter 4 that the impossible key-
word means that the pattern clause must not type-check.

Similarly, you can write a function that shows that a number can never be equal to its
successor:

valueNotSuc : (x : Nat) -> x = S x -> Void
valueNotSuc _ Refl impossible

If you were able to provide a value of the empty type, you’d be able to produce a value
of any type. In other words, if you have a proof that an impossible value has happened,
you can do anything. The Prelude provides a function, void, that expresses this:

void : Void -> a

It may seem strange, and of little practical use, to be writing functions merely to show
that something can’t happen. But if you know that something can’t happen, you can
use this knowledge to express limitations about what can happen. In other words, you
can express more precisely what a function is intended to do.

8.3.2 Decidability: checking properties with precision

Previously, when you wrote checkEqNat, you used Maybe for the result:

checkEqNat : (num1 : Nat) -> (num2 : Nat) -> Maybe (num1 = num2)

Void and total functions
It’s important to check that a function that returns Void is a total function, if you
really want to believe that it takes an impossible input:

*Void> :total twoPlusTwoNotFive
Main.twoPlusTwoNotFive is Total

Otherwise, you could write a function that claims to return Void by looping forever:

loop : Void
loop = loop

This function isn’t total, so you can’t believe that it really does produce an element
of Void. Idris reports the following:

*Void> :total loop
Main.loop is possibly not total due to recursive path:

Main.loop

230 CHAPTER 8 Equality: expressing relationships between data
So, if checkEqNat returns a value of the form Just p, you can be certain that num1 and
num2 are equal, and that p represents a proof that they’re equal. But you can’t say the
opposite: that if checkEqNat returns Nothing, then num1 and num2 are guaranteed not
to be equal.

 The following definition would, for example, be perfectly valid, though not very
useful:

checkEqNat : (num1 : Nat) -> (num2 : Nat) -> Maybe (num1 = num2)
checkEqNat num1 num2 = Nothing

Instead, to make this type more precise, you’d need a way of stating that for any pair
of numbers, num1 and num2, you’ll always be able to produce either a proof that
they’re equal (of type num1 = num2) or a proof that they’re not equal (of type num1 =
num2 -> Void). That is, you’d like to state that checking whether num1 = num2 is a decid-
able property.

DECIDABILITY A property of some values is decidable if you can always say
whether the property holds or not for specific values. For example, checking
equality on Nat is decidable, because for any two natural numbers you can
always decide whether they are equal or not.

Listing 8.8 shows the Dec generic type, which is defined in the Prelude. Like Maybe,
Dec has a constructor (Yes) that carries a value. Unlike Maybe, it also has a constructor
(No) that carries a proof that no value of its argument type can exist.

data Dec : (prop : Type) -> Type where
Yes : (prf : prop) -> Dec prop
No : (contra : prop -> Void) -> Dec prop

For example, you can construct a proof that 2 + 2 = 4, so you’d use Yes:

*Void> the (Dec (2 + 2 = 4)) (Yes Refl)
Yes Refl : Dec (4 = 4)

But it’s impossible to construct a proof that 2 + 2 = 5, so you’d use No and provide your
evidence, twoPlusTwoNotFive, that it’s impossible:

*Void> the (Dec (2 + 2 = 5)) (No twoPlusTwoNotFive)
No twoPlusTwoNotFive : Dec (4 = 5)

Let’s rewrite checkEqNat using Dec instead of Maybe for the result type. In doing so,
we’ll have two guarantees verified by the Idris type checker:

Listing 8.8 Dec: precisely stating that a property is decidable

The type Dec prop states that you can
decide whether prop is either
guaranteed to hold, or guaranteed to
be impossible.

contra is a proof that the property,
prop, doesn’t hold, because it’s a

function that returns a value of the
empty type Void, given a prop.

prf is a proof
that the
property,
prop, holds.

231The empty type and decidability
 If the inputs num1 and num2 are equal, checkEqNat is guaranteed to produce a
result of the form Yes prf, where prf has type num1 = num2.

 If the inputs num1 and num2 are not equal, checkEqNat is guaranteed to produce
a result of the form No contra, where contra has type num1 = num2 -> Void.

These are guarantees because the type of checkEqNat gives a direct link between the
inputs and the output type:

checkEqNat : (num1 : Nat) -> (num2 : Nat) -> Dec (num1 = num2)

You can write this function interactively, in a new file called CheckEqDec.idr:

1 Define, refine—You can mostly follow the same steps as earlier, when you defined
checkEqNat using Maybe. But instead of Just, use Yes, and instead of Nothing,
use No. No requires proofs that the inputs are unequal, so you can leave holes
for these for the moment:

checkEqNat : (num1 : Nat) -> (num2 : Nat) -> Dec (num1 = num2)
checkEqNat Z Z = Yes Refl
checkEqNat Z (S k) = No ?zeroNotSuc
checkEqNat (S k) Z = No ?sucNotZero
checkEqNat (S k) (S j) = case checkEqNat k j of

Yes prf => Yes (cong prf)
No contra => No ?noRec

You can test this at the REPL, even without the proofs, though you may see holes
in the results:

*CheckEqDec> checkEqNat 3 3
Yes Refl : Dec (3 = 3)

*CheckEqDec> checkEqNat 3 4
No ?noRec : Dec (3 = 4)

*CheckEqDec> checkEqNat 3 0
No ?sucNotZero : Dec (3 = 0)

 2 Type—If you look at the types of the holes, you’ll see what you need to prove to
complete the definition, as in this example:

k : Nat

zeroNotSuc : (0 = S k) -> Void

 3 Define, refine—You can lift ?zeroNotSuc and ?sucNotZero to top-level defini-
tions with Ctrl-Alt-L and implement them using case splitting and impossible,
as with twoPlusTwoNotFive in the previous section, because it’s never possible
for zero to be equal to a nonzero number:

zeroNotSuc : (0 = S k) -> Void
zeroNotSuc Refl impossible

sucNotZero : (S k = 0) -> Void
sucNotZero Refl impossible

232 CHAPTER 8 Equality: expressing relationships between data
 4 Type, define—For ?noRec, you can take a look at the type to see what you need to
show:

k : Nat
j : Nat
contra : (k = j) -> Void

noRec : (S k = S j) -> Void

The type of contra tells you that k is guaranteed not to be equal to j. Given
that, you have to show that S k can’t equal S j. Again, you can lift this to a top-
level definition with Ctrl-Alt-L:

noRec : (contra : (k = j) -> Void) -> (S k = S j) -> Void
noRec contra prf = ?noRec_rhs

 5 Define—The type of noRec says that if you have a proof that k = j is impossible,
and a proof that S k = S j, you can produce an element of the empty type. Logi-
cally, the two inputs contradict each other. You can write this function by case
splitting on prf:

noRec : (contra : (k = j) -> Void) -> (S k = S j) -> Void
noRec contra Refl = ?noRec_rhs_1

 6 Type—The only possible value prf can take is Refl, and the only way it can take
the value Refl is if S k and S j are equal, and therefore k and j are equal. Rec-
ognizing this, Idris refines the type of contra, as you can see by inspecting the
type of noRec_rhs_1:

j : Nat
contra : (j = j) -> Void

noRec_rhs_1 : Void

7 Refine—To complete the definition, you can use contra to produce an element
of the empty type; an expression search will find this:

noRec : (contra : (k = j) -> Void) -> (S k = S j) -> Void
noRec contra Refl = contra Refl

The following listing shows the complete definition of checkEqNat, including the
helper functions zeroNotSuc, sucNotZero, and noRec.

zeroNotSuc : (0 = S k) -> Void
zeroNotSuc Refl impossible

sucNotZero : (S k = 0) -> Void
sucNotZero Refl impossible

noRec : (contra : (k = j) -> Void) -> (S k = S j) -> Void
noRec contra Refl = contra Refl

Listing 8.9 Checking whether Nats are equal, with a precise type (CheckEqDec.idr)

Given a proof that zero equals a nonzero
number, produce a value of the empty type.

Given a proof that a nonzero number equals
zero, produce a value of the empty type.

Given a proof that two numbers aren’t equal,
and a proof that their successors are equal,

produce a value of the empty type.

233The empty type and decidability
checkEqNat : (num1 : Nat) -> (num2 : Nat) -> Dec (num1 = num2)
checkEqNat Z Z = Yes Refl
checkEqNat Z (S k) = No zeroNotSuc
checkEqNat (S k) Z = No sucNotZero
checkEqNat (S k) (S j) = case checkEqNat k j of

Yes prf => Yes (cong prf)
No contra => No (noRec contra)

PROVING INPUTS ARE IMPOSSIBLE WITH VOID When you run checkEqNat, you
aren’t really going to produce a value of the empty type using zeroNotSuc,
sucNotZero, or noRec. Essentially, a function that produces a value of type
Void can be seen as a proof that its arguments can’t all be provided at the
same time. In the case of noRec, the type of the functions says that if you can
provide both a proof that k doesn’t equal j and a proof that S k = S j, then
there’s a contradiction, and you can therefore have a value of type Void.

By using Dec, you’ve been able to write explicitly in the type what checkEqNat is sup-
posed to do: return either a proof that the inputs are equal or a proof that they’re not.
The real benefit of this comes not in checkEqNat itself, however, but in the functions
that use it, because they not only have the result of the equality test, but also a proof
that the equality test has worked correctly.

 Being able to guarantee that two values are equal (or different) is commonly use-
ful in type-driven development, because showing relationships between larger struc-
tures depends on showing relationships between the individual components. Because
of this, the Idris Prelude provides an interface, DecEq, with a generic function, decEq,
for deciding equality.

8.3.3 DecEq: an interface for decidable equality

Rather than providing specific functions like checkEqNat for each type, the Idris Pre-
lude provides an interface, DecEq. The next listing shows how DecEq is defined. There
are implementations for all of the types defined in the Prelude.

interface DecEq ty where
decEq : (val1 : ty) -> (val2 : ty) -> Dec (val1 = val2)

Instead of defining and using a special-purpose function, checkEqNat, to define exact-
Length, you could use decEq. The following listing shows how to do this, and it’s the
definition of exactLength used in Data.Vect.

exactLength : (len : Nat) -> (input : Vect m a) -> Maybe (Vect len a)
exactLength {m} len input = case decEq m len of

Yes Refl => Just input
No contra => Nothing

Listing 8.10 The DecEq interface (defined in the Prelude)

Listing 8.11 Implementing exactLength using decEq (ExactLengthDec.idr)

Given two values, val1 and val2, return either a proof
that they are equal or a proof that they are different.

234 CHAPTER 8 Equality: expressing relationships between data
Using decEq rather than the Boolean equality operator, ==, gives you a strong guaran-
tee about how the equality test works. You can be sure that if decEq returns a value of
the form Yes prf, then the inputs really are structurally equal.

 In the next chapter, you’ll see how to describe relationships between larger data
structures (such as showing that a value is an element of a list) and how to use decEq
to build proofs of these relationships.

Exercises

1 Implement the following functions:

headUnequal : DecEq a => {xs : Vect n a} -> {ys : Vect n a} ->
(contra : (x = y) -> Void) -> ((x :: xs) = (y :: ys)) -> Void

tailUnequal : DecEq a => {xs : Vect n a} -> {ys : Vect n a} ->
(contra : (xs = ys) -> Void) -> ((x :: xs) = (y :: ys)) -> Void

The first states that if the first elements of two vectors are unequal, then the vectors
must be unequal. The second states that if there are differences in the tails of two
vectors, then the vectors must be unequal.

If you have a correct solution, both headUnequal and tailUnequal should type-
check and be total:

*ex_8_3> :total headUnequal
Main.headUnequal is Total

*ex_8_3> :total tailUnequal
Main.tailUnequal is Total

2 Implement DecEq for Vect. Begin with the following implementation header:

DecEq a => DecEq (Vect n a) where

Hint: You’ll find headUnequal and tailUnequal useful here. Remember to check
the types of the holes as you write the definition. You should also use your own defi-
nition of Vect rather than importing Data.Vect, because the library provides a
DecEq implementation.

You can test your answer at the REPL as follows:

*ex_8_3> decEq (the (Vect _ _) [1,2,3]) [1,2,3]
Yes Refl : Dec ([1, 2, 3] = [1, 2, 3])

8.4 Summary
 You can write a type to express a proof that two values must be equal.
 You can write functions that take equality types as inputs to prove additional

properties of data.
 Using Maybe, you can test for equality of values at runtime.
 The generic = type allows you to describe equality between values of any type.
 Proof requirements arise naturally when programming with dependent types,

such as to show that lengths are preserved when reversing a vector.

235Summary
 The rewrite construct allows you to update a type using an equality proof.
 Using holes and interactive editing, you can delegate the details of rewriting

types to a separate function.
 Void is a type with no values, used to show that inputs to a function can’t all

occur at once.
 A property is decidable if you can always say whether the property holds for

some specific values.
 Using Dec, you can compute at runtime whether a property is guaranteed to

hold or guaranteed not to hold.

Predicates: expressing
assumptions and
contracts in types
Dependent types like EqNat and =, which you saw in the previous chapter, are used
entirely for describing relationships between data. These types are often referred to
as predicates, which are data types that exist entirely to describe a property of some
data. If you can construct a value for a predicate, then you know the property
described by that predicate must be true.

 In this chapter, you’ll see how to express more-complex relationships between
data using predicates. By expressing relationships between data in types, you can be
explicit about the assumptions you’re making about the inputs to a function, and
have those assumptions checked by the type checker when those functions are

This chapter covers
 Describing and checking membership of a vector

using a predicate

 Using predicates to describe contracts for
function inputs and outputs

 Reasoning about system state in types
236

237Membership tests: the Elem predicate
called. You can even think of these assumptions as expressing compile time contracts
that other arguments must satisfy before anything can call the function.

 In practice, you’ll often write functions that make assumptions about the form of
some other data, having (hopefully!) checked those assumptions beforehand. Here
are a few examples:

 A function that reads from a file assumes that the file handle describes an open
file.

 A function that processes data it has received from a network assumes that the
data follows the appropriate protocol.

 A function that retrieves user data (say, for a customer on a website) assumes
that the user has successfully authenticated.

You need to ensure that you check any necessary assumptions before you call these
functions, particularly when security or user privacy is at stake. In Idris, you can make
this kind of assumption explicit in a type, and have the type checker ensure that you’ve
properly checked the assumption in advance. An advantage of expressing assumptions
in types is that they are guaranteed to hold, even as a system evolves over time.

 In this chapter, we’ll take an in-depth look at a specific small example: removing a
value from a vector if that value is contained within the vector. We’ll look at how to
express in a type that a vector contains a specific element, how to test this property at
runtime, and how to use such properties in practice to write a larger program with
some aspects of its behavior expressed in its types.

9.1 Membership tests: the Elem predicate
Using =, Void, and Dec, you can describe properties that your programs satisfy in their
types, making the types precise as a result. Typically, you’ll use =, Void, and Dec as
building blocks for describing and checking relationships between pieces of data.
Describing relationships in types allows you to state assumptions that functions make
and, more importantly, it allows Idris to check whether those assumptions are satisfied
or violated.

 For example, you might want to

 Remove an element from a vector only under the assumption that the element
is present in the vector

 Search for a value in a list only under the assumption that the list is ordered
 Run a database query only under the assumption that the inputs have been

validated
 Send a message to a machine on the network only under the assumption that

you have an open connection

In this section, we’ll examine the first of these in more detail. We’ll begin by trying to
write a function that removes an element from a vector, and then we’ll see how we can
refine the type to state and check any necessary assumptions that make the type more
precise. Finally, we’ll use the function in a simple interactive program.

238 CHAPTER 9 Predicates: expressing assumptions and contracts in types
9.1.1 Removing an element from a Vect

If you have a Vect containing a number of elements, you’d expect the following of a
removeElem function that removes a specific element from that vector:

 The input vector should have at least one element.
 The output vector’s length should be one less than the input vector’s length.

Because Vect is parameterized by the element type contained in the vector and is
indexed by the length of the vector, you can (indeed, you must) express these length
properties in the type of removeElem. Your first attempt might look like this:

removeElem : (value : a) -> (xs : Vect (S n) a) -> Vect n a

Let’s see what happens if you try to write this function:

1 Define—If you add a skeleton definition and case-split on xs, Idris will give you
only one pattern, because xs can’t be an empty vector:

removeElem : (value : a) -> (xs : Vect (S n) a) -> Vect n a
removeElem value (x :: xs) = ?removeElem_rhs_1

 2 Refine—If the value you’re looking for is equal to x, you can remove it from the
list, returning xs. You’ll need to refine the type before you can compare value
and x; you can use decidable equality so that you can be certain that the equal-
ity test is accurate. This is the refined type:

removeElem : DecEq a => (value : a) -> (xs : Vect (S n) a) -> Vect n a

 3 Refine—You can now use decEq to compare value and x, and discard x if they’re
equal:

removeElem : DecEq a => (value : a) -> (xs : Vect (S n) a) -> Vect n a
removeElem value (x :: xs) = case decEq value x of

Yes prf => xs
No contra => ?removeElem_rhs_3

4 Refine failure—For ?removeElem_rhs_3, you might hope to be able to remove
value from xs recursively, but if you try this, you’ll get an error:

removeElem : DecEq a => (value : a) -> (xs : Vect (S n) a) -> Vect n a
removeElem value (x :: xs) = case decEq value x of

Yes prf => xs
No contra => x :: removeElem value xs

Idris reports the following:

When checking right hand side of Main.case block in removeElem
at removeelem.idr:4:35 with expected type

Vect n a

When checking argument xs to Main.removeElem:
Type mismatch between

Vect n a (Type of xs)
and

Vect (S k) a (Expected type)

239Membership tests: the Elem predicate
The problem is that removeElem requires a vector that’s guaranteed to be non-
empty, but xs may be empty! You can see this from its type, Vect n a: the n could
stand for any natural number, including zero.

This problem arises because there’s no guarantee that value will appear in
the vector, so it’s possible to reach the end of the vector without encountering
it. If this happens, there’s no value to remove, so you can’t satisfy the type.

You’ll need to refine the type further in order to be able to write this function. You
can try one of the following:

 Rewrite the type so that removeElem returns Maybe (Vect n a), returning Nothing
if the value doesn’t appear in the input.

 Rewrite the type so that removeElem returns a dependent pair, (newLength **
Vect newLength a).

 Express a precondition on removeElem that the value is guaranteed to be in the
vector.

You’ve already seen how to express possible failure with Maybe (in chapter 4), and how
to express an unknown length using dependent pairs (in chapter 5). The third
option, however, would express the purpose of removeElem precisely. To achieve this,
you’ll need to write a type that describes the relationship between a value and a vector
that contains that value.

 If you can describe in a type that a vector contains a specific element, you’ll be able
to use that type to express a contract on removeElem expressing that you can only use it
if you know the element is in the vector. In the rest of this section, you’ll implement
this type, Elem, use it to make the type of removeElem more precise, and learn more
about how to use Elem in practice.

9.1.2 The Elem type: guaranteeing a value is in a vector

In the previous chapter, you saw how to express that two values are guaranteed to be
equal by using either a specific EqNat type or the generic = type. The existence of a
value in one of these types is, essentially, a proof that two values are equal. You can do
something similar to guarantee that a value is in a vector.

 Our goal is to define a type, Elem, with the following type constructor:

Elem : (value : a) -> (xs : Vect k a) -> Type

If we have a value, and a vector, xs, that contains that value, we should be able to construct
an element of the type Elem value xs. For example, we should be able to construct the
following:

oneInVector : Elem 1 [1,2,3]
maryInVector : Elem "Mary" ["Peter", "Paul", "Mary"]

We should also be able to construct functions of the following types, which show that a
specific value is not contained in a vector:

240 CHAPTER 9 Predicates: expressing assumptions and contracts in types
fourNotInVector : Elem 4 [1,2,3] -> Void
peteNotInVector : Elem "Pete" ["John", "Paul", "George", "Ringo"] -> Void

The following listing shows how the Elem dependent type is defined in Data.Vect.

data Elem : a -> Vect k a -> Type where
Here : Elem x (x :: xs)
There : (later : Elem x xs) -> Elem x (y :: xs)

The value Here can be read as a proof that a value is the first value in a vector, as in this
example:

oneInVector : Elem 1 [1,2,3]
oneInVector = Here

The constructor There, given an argument that shows a value x is in the vector xs, can
be read as a proof that x must also be in the vector y :: xs for any value y.

 To illustrate this, let’s try to write maryInVector:

maryInVector : Elem "Mary" ["Peter", "Paul", "Mary"]

1 Define—Create a skeleton definition with a hole for the right side:

maryInVector : Elem "Mary" ["Peter", "Paul", "Mary"]
maryInVector = ?maryInVector_rhs

 2 Refine, type—You can’t use Here, because "Mary" isn’t the first element of the
vector, so try using There and leaving a hole for its argument:

maryInVector : Elem "Mary" ["Peter", "Paul", "Mary"]
maryInVector = There ?maryInVector_rhs

If you check the type of ?maryInVector_rhs, you’ll see that you now have a
smaller problem:

maryInVector_rhs : Elem "Mary" ["Paul", "Mary"]

 3 Refine, type—If you do the same again, applying There and leaving a hole for its
argument, you get the following program:

maryInVector : Elem "Mary" ["Peter", "Paul", "Mary"]
maryInVector = There (There ?maryInVector_rhs)

You also now have a simpler type for ?maryInVector_rhs:

maryInVector_rhs : Elem "Mary" ["Mary"]

Listing 9.1 The Elem dependent type, expressing that a value is guaranteed to be
contained in a vector (defined in Data.Vect)

Here states that x is the first value
in a vector of the form x :: xs. There states that if you

know that x occurs in a
vector xs, then x must also
occur in a vector y :: xs.

241Membership tests: the Elem predicate
4 Refine—"Mary" is now the first element in the vector, so you can refine ?mary-
InVector_rhs using Here:

maryInVector : Elem "Mary" ["Peter", "Paul", "Mary"]
maryInVector = There (There Here)

EXPRESSION SEARCH An expression search with Ctrl-Alt-S will successfully
find the definition of maryInVector, and it’s often useful for constructing
values of dependent types like Elem and =.

You can use Elem and types like it that describe relationships between data to express
contracts on the form of data expected as input to a function. These contracts, being
expressed as types, can be verified by Idris using type checking; if a function call vio-
lates a contract, the program will not compile.

 More constructively, if you express the types of your functions precisely enough,
with contracts expressed using types like Elem, you know that once your program com-
piles, every contract must be satisfied. You can use Elem to express a contract on
removeElem that specifies when the inputs are valid.

9.1.3 Removing an element from a Vect: types as contracts

The difficulty we had when writing removeElem was that we couldn’t make a recursive
call on the tail of the vector because we couldn’t guarantee that the element we were
trying to remove was in the vector. We’ll therefore refine the type of removeElem, add-
ing an argument that expresses the contract that the element to be removed must be
in the vector. The following listing shows our starting point.

removeElem : (value : a) ->

(xs : Vect (S n) a) ->

(prf : Elem value xs) ->

Vect n a

removeElem value xs prf = ?removeElem_rhs

In type-driven development, we aim to use more-precise types to help direct the
implementation of functions. Here, the input prf gives more precision to the input
type of removeElem, and you can even case-split on it to see what you learn about the
inputs value and xs from the relationship specified between them by prf.

 You can write the function as follows:

1 Define—Begin with the case split on prf:

removeElem : (value : a) -> (xs : Vect (S n) a) ->
 (prf : Elem value xs) ->

Vect n a
removeElem value (value :: ys) Here = ?removeElem_rhs_1
removeElem value (y :: ys) (There later) = ?removeElem_rhs_2

Listing 9.2 Removing an element from a vector, with a contract specified in the type
using Elem (RemoveElem.idr)

The value to be removed
The vector to remove the value from

A proof that the value is present
in the vector, expressing a
contract for the caller to satisfy

242 CHAPTER 9 Predicates: expressing assumptions and contracts in types
 2 Refine—For the first case, ?removeElem_rhs_1, you can see from the patterns
that Idris has generated that value must be the first element in the vector if the
proof has the form Here. You can therefore refine this case to remove value:

removeElem : (value : a) -> (xs : Vect (S n) a) ->
 (prf : Elem value xs) ->

Vect n a
removeElem value (value :: ys) Here = ys
removeElem value (y :: ys) (There later) = ?removeElem_rhs_2

 3 Type—If you look at the type of ?removeElem_rhs_2, you’ll see that it appears
you have the same problem as before, in that ys has length n, and removeElem
requires a vector of length S n for the recursive call:

a : Type
value : a
y : a
n : Nat
ys : Vect n a
later : Elem value ys

removeElem_rhs_2 : Vect n a

But you have some further information that you didn’t have available earlier:
you know from the variable later that value must occur in ys, and this means
that ys must have a nonzero length. But how can you use this knowledge?

 4 Define—Given that the length n must be nonzero, the trick is to case-split on n
(by bringing it into scope using braces on the left side of the definition) and
show that it’s impossible for it to be zero:

removeElem : (value : a) -> (xs : Vect (S n) a) ->
 (prf : Elem value xs) ->

Vect n a
removeElem value (value :: ys) Here = ys
removeElem {n = Z} value (y :: ys) (There later) = ?removeElem_rhs_1
removeElem {n = (S k)} value (y :: ys) (There later) = ?removeElem_rhs_3

 5 Refine—Now, you can complete ?removeElem_rhs_3. You now know the length
of ys is nonzero, so you can make a recursive call:

removeElem : (value : a) -> (xs : Vect (S n) a) -> (prf : Elem value xs) ->
Vect n a

removeElem value (value :: ys) Here = ys
removeElem {n = Z} value (y :: ys) (There later) = ?removeElem_rhs_1
removeElem {n = (S k)} value (y :: ys) (There later)

= y :: removeElem value ys later

Note that you need to pass later to the recursive call, as evidence that value is
contained within ys.

 6 Type, define—For the remaining hole, ?removeElem_rhs_1, take a look at its type
and what variables are available:

243Membership tests: the Elem predicate
a : Type
value : a
y : a
ys : Vect 0 a
later : Elem value ys

removeElem_rhs_2 : Vect 0 a

You’re looking for an empty vector. That empty vector, if you look at the vari-
ables on the left side, should be a vector resulting from removing value from
ys. This doesn’t make sense, because ys is an empty vector!

You can make this more clear by case splitting on ys. Idris produces only one
case:

removeElem : (value : a) -> (xs : Vect (S n) a) -> (prf : Elem value xs) ->
Vect n a

removeElem value (value :: ys) Here = ys
removeElem {n = Z} value (y :: []) (There later) = ?removeElem_rhs_1
removeElem {n = (S k)} value (y :: ys) (There later)

= y :: removeElem value ys later

Looking at the type of the new hole, ?removeElem_rhs_1, shows the following:

a : Type
value : a
y : a
later : Elem value []

removeElem_rhs_1 : Vect 0 a

Previously, you’ve used the impossible keyword to rule out a case that doesn’t
type-check. This case does type-check, so you can’t use impossible. But there’s
no way you’ll ever have a value of type Elem value [] as an input, because
there’s no way to construct an element of this type.

7 Refine—You can complete the definition using a function, absurd, defined in
the Prelude. It has the following type:

absurd : Uninhabited t => t -> a

The Uninhabited interface, described in the sidebar, can be implemented for
any type that has no values (as you saw with twoplustwo_not_five in chapter 8).
So, you can refine ?remove_Elem_rhs_1 as follows:

removeElem : (value : a) -> (xs : Vect (S n) a) -> (prf : Elem value xs) ->
Vect n a

removeElem value (value :: ys) Here = ys
removeElem {n = Z} value (y :: []) (There later) = absurd later
removeElem {n = (S k)} value (y :: ys) (There later)

= y :: removeElem value ys later

244 CHAPTER 9 Predicates: expressing assumptions and contracts in types
The additional argument to removeElem, of type Elem value xs, means that
removeElem can work under the assumption that value is in the vector xs. It also
means that you must provide a proof that value is in xs when calling the function.

9.1.4 auto-implicit arguments: automatically constructing proofs

If you try running removeElem with some specific values for the element and the vec-
tor, you’ll find you need to provide an additional argument for the proof. Sometimes
it might be a proof that’s possible to construct:

*RemoveElem> removeElem 2 [1,2,3,4,5]
removeElem 2 [1, 2, 3, 4, 5] : Elem 2 [1, 2, 3, 4, 5] -> Vect 4 Integer

Sometimes it might not:

*RemoveElem> removeElem 7 [1,2,3,4,5]
removeElem 7 [1, 2, 3, 4, 5] : Elem 7 [1, 2, 3, 4, 5] -> Vect 4 Integer

In the first case, you can call removeElem by explicitly providing a proof of Elem 2
[1,2,3,4,5]:

*RemoveElem> removeElem 2 [1,2,3,4,5] (There Here)
[1, 3, 4, 5] : Vect 4 Integer

The need to provide proofs explicitly like this can add a lot of noise to programs and
can harm readability. Idris provides a special kind of implicit argument, marked with
the keyword auto, to reduce this noise.

 You can define a removeElem_auto function:

removeElem_auto : (value : a) -> (xs : Vect (S n) a) ->
{auto prf : Elem value xs} -> Vect n a

removeElem_auto value xs {prf} = removeElem value xs prf

The Uninhabited interface
If a type has no values, like 2 + 2 = 5 or Elem x [], you can provide an imple-
mentation of the Uninhabited interface for it. Uninhabited is defined in the Pre-
lude as follows:

interface Uninhabited t where
uninhabited : t -> Void

There’s one method, which returns an element of the empty type. For example, you
can provide an implementation of Uninhabited for 2 + 2 = 5:

Uninhabited (2 + 2 = 5) where
uninhabited Refl impossible

Using uninhabited, the Prelude defines absurd as follows, using void:

absurd : Uninhabited t => (h : t) -> a
absurd h = void (uninhabited h)

245Membership tests: the Elem predicate
The third argument, named prf, is an auto-implicit argument. Like the implicit argu-
ments you’ve already seen, an auto-implicit argument can be brought into scope by
writing it in braces, and Idris will attempt to find a value automatically. Unlike ordi-
nary implicits, Idris will search for a value for an auto implicit using the same machin-
ery it uses for expression search with Ctrl-Alt-S in Atom.

 When you run removeElem_auto with arguments for value and xs, Idris will try to
construct a proof for the argument marked auto:

*RemoveElem> removeElem_auto 2 [1,2,3,4,5]
[1, 3, 4, 5] : Vect 4 Integer

If it can’t find a proof, it will report an error:

*RemoveElem> removeElem_auto 7 [1,2,3,4,5]
(input):1:17:When checking argument prf to function Main.removeElem_auto:

Can't find a value of type
Elem 7 [1, 2, 3, 4, 5]

Alternatively, the following listing shows how you could define removeElem using an
auto implicit directly.

removeElem : (value : a) -> (xs : Vect (S n) a) ->
{auto prf : Elem value xs} ->
Vect n a

removeElem value (value :: ys) {prf = Here} = ys
removeElem {n = Z} value (y :: []) {prf = There later} = absurd later
removeElem {n = (S k)} value (y :: ys) {prf = There later}

= y :: removeElem value ys

In general, though, you won’t know the specific values you’re passing to removeElem.
They could be values read from a user or constructed by another part of the program.
We’ll therefore need to consider how you can use removeElem when the inputs are
unknown until runtime.

 Just as you wrote a checkEqNat function to decide whether two numbers are equal,
and later generalized it to decEq using an interface, you’ll need a function to decide
whether a value is contained in a vector.

9.1.5 Decidable predicates: deciding membership of a vector

As you saw in the last chapter, a property is decidable if you can always say whether the
property holds for some specific values. Using the following function, you can see that
Elem value xs is a decidable property for specific values of value and xs, so Elem is a
decidable predicate:

isElem : DecEq ty => (value : ty) -> (xs : Vect n ty) -> Dec (Elem value xs)

Listing 9.3 Defining removeElem using an auto-implicit argument (RemoveElem.idr)

prf is an auto-implicit argument. Idris will try
to find a value automatically for each call,
using expression search.

Matches on prf by bringing
it into scope using braces

Idris will find the value (later) for
the proof in this call automatically.

246 CHAPTER 9 Predicates: expressing assumptions and contracts in types
The type of isElem states that as long as you can decide equality of values in some type
ty, you can decide whether a value with type ty is contained in a vector of types ty.
Remember that Dec has the following constructors:

 Yes, which takes as its argument a proof that the predicate holds. In this case,
that’s a value of type Elem value xs for whichever value and xs are passed as
inputs to isElem.

 No, which takes as its argument a proof that the predicate doesn’t hold. In this
case, that’s a value of type Elem value xs -> Void.

isElem is defined in Data.Vect, but it’s instructive to see how to write it yourself. The
following listing shows our starting point, defining Elem by hand in a file named Elem-
Type.idr.

data Elem : a -> Vect k a -> Type where
Here : Elem x (x :: xs)
There : (later : Elem x xs) -> Elem x (y :: xs)

isElem : DecEq a => (value : a) -> (xs : Vect n a) -> Dec (Elem value xs)

1 Define, refine—Define the function by case splitting on the input vector xs:

isElem : DecEq a => (value : a) -> (xs : Vect n a) -> Dec (Elem value xs)
isElem value [] = ?isElem_rhs_1
isElem value (x :: xs) = ?isElem_rhs_2

 2 Refine—For ?isElem_rhs_1, value is clearly not in the empty vector, so you can
return No. Remember that No takes as an argument a proof that you can’t con-
struct the predicate. You can leave a hole for this argument for the moment:

isElem : DecEq a => (value : a) -> (xs : Vect n a) -> Dec (Elem value xs)
isElem value [] = No ?notInNil
isElem value (x :: xs) = ?isElem_rhs_2

If you check the type of ?notInNil, you’ll see that to fill in this hole, you need
to provide a proof that there can’t be an element of the empty vector:

a : Type
value : a
constraint : DecEq a

notInNil : Elem value [] -> Void

We’ll return to this hole shortly.

 3 Refine—For ?isElem_rhs_2, if value and x are equal, you’ve found the value
you’re looking for. You can use decEq, case-split on the result, and if the result is
of the form Yes prf, return Yes with a hole for the proof that the value is the
first in the vector:

isElem : DecEq a => (value : a) -> (xs : Vect n a) -> Dec (Elem value xs)

Listing 9.4 Defining Elem and isElem by hand (ElemType.idr)

247Membership tests: the Elem predicate
isElem value [] = No ?notInNil
isElem value (x :: xs) = case decEq value x of

Yes prf => Yes ?isElem_rhs_1
No notHere => ?isElem_rhs_3

 4 Type, refine—You might like to fill the ?isElem_rhs_1 hole with Here, but if you
check its type, you’ll see that you can’t quite use Here yet:

a : Type
value : a
x : a
prf : value = x
k : Nat
xs : Vect k a
constraint : DecEq a

isElem_rhs_1 : Elem value (x :: xs)

You can’t use Here because the type you’re looking for isn’t of the form Elem
value (value :: xs). But prf tells you that value and x must be the same, so if
you case-split on prf, you’ll get this:

isElem value (x :: xs) = case decEq value x of
Yes Refl => Yes ?isElem_rhs_2
No notHere => ?isElem_rhs_3

The type of the newly created hole, ?isElem_rhs_2, is now in the form you
need:

a : Type
value : a
k : Nat
xs : Vect k a
constraint : DecEq a

isElem_rhs_2 : Elem value (value :: xs)

You can fill in the ?isElem_rhs_2 using expression search in Atom:

isElem : DecEq a => (value : a) -> (xs : Vect n a) -> Dec (Elem value xs)
isElem value [] = No ?notInNil
isElem value (x :: xs) = case decEq value x of

Yes Refl => Yes Here
No notHere => ?isElem_rhs_3

 5 Refine—For ?isElem_rhs_3, value and x aren’t equal (you know this because
decEq value x has returned a proof), so you can search recursively in xs:

isElem : DecEq a => (value : a) -> (xs : Vect n a) -> Dec (Elem value xs)
isElem value [] = No ?notInNil
isElem value (x :: xs) = case decEq value x of

Yes Refl => Yes Here
No notHere => case isElem value xs of

Yes prf => Yes ?isElem_rhs_1
No notThere => No ?isElem_rhs_2

248 CHAPTER 9 Predicates: expressing assumptions and contracts in types
Expression search will find the necessary proof for ?isElem_rhs_1. You can
leave a hole for the No case for now:

isElem : DecEq a => (value : a) -> (xs : Vect n a) -> Dec (Elem value xs)
isElem value [] = No ?notInNil
isElem value (x :: xs) = case decEq value x of

Yes Refl => Yes Here
No notHere => case isElem value xs of

Yes prf => Yes (There prf)
No notThere => No ?notInTail

At this stage, you can test the definition at the REPL. If a value is in a vector,
you’ll see Yes and a proof:

*ElemType> isElem 3 [1,2,3,4,5]
Yes (There (There Here)) : Dec (Elem 3 [1, 2, 3, 4, 5])

If not, you’ll see No, with a hole for the proof that the element is missing:

*ElemType> isElem 7 [1,2,3,4,5]
No ?notInTail : Dec (Elem 7 [1, 2, 3, 4, 5])

To complete the definition, you’ll need to complete notInNil and notInTail.

 6 Define, refine—You can complete ?notInNil by lifting it to a top-level function
with Ctrl-Alt-L and then case splitting on its argument. Idris notices that neither
input is possible:

notInNil : Elem value [] -> Void
notInNil Here impossible
notInNil (There _) impossible

 7 Define—You can complete ?notInTail similarly, but you’ll need to work a bit
harder to show that each case is impossible. Lifting to a top-level definition and
then case splitting on the argument leads to the following:

notInTail : (notThere : Elem value xs -> Void) ->
(notHere : (value = x) -> Void) ->

 Elem value (x :: xs) -> Void
notInTail notThere notHere Here = ?notInTail_rhs_1
notInTail notThere notHere (There later) = ?notInTail_rhs_2

For each hole, remember to check its type and the type of its local variables,
because these will often give a strong hint as to how to proceed.

8 Refine—For each case, you can use either notHere or notThere to produce the
value of type Void that you need:

notInTail : (notThere : Elem value xs -> Void) ->
 (notHere : (value = x) -> Void) ->
 Elem value (x :: xs) -> Void
notInTail notThere notHere Here = notHere Refl
notInTail notThere notHere (There later) = notThere later

249Membership tests: the Elem predicate
Here’s the completed definition, for reference.

notInNil : Elem value [] -> Void
notInNil Here impossible
notInNil (There _) impossible

notInTail : (notThere : Elem value xs -> Void) ->
(notHere : (value = x) -> Void) -> Elem value (x :: xs) -> Void

notInTail notThere notHere Here = notHere Refl
notInTail notThere notHere (There later) = notThere later

isElem : DecEq a => (value : a) -> (xs : Vect n a) -> Dec (Elem value xs)
isElem value [] = No notInNil
isElem value (x :: xs)

= case decEq value x of
Yes Refl => Yes Here
No notHere => case isElem value xs of

Yes prf => Yes (There prf)
No notThere => No (notInTail notThere notHere)

For comparison, listing 9.6 shows how you could define a Boolean test for checking
vector membership. Here, I’ve used the Eq interface, so we don’t have any guarantees
from the type about how the equality test behaves. Nevertheless, elem follows a struc-
ture similar to decElem.

elem : Eq ty => (value : ty) -> (xs : Vect n ty) -> Bool
elem value [] = False
elem value (x :: xs) = case value == x of

False => elem value xs
True => True

Both definitions have a similar structure, but more work is required in isElem to show
that the impossible cases are really impossible. As a trade-off, there’s no need for any
tests for isElem, because the type is sufficiently precise that the implementation must
be correct.

Exercises

1 Data.List includes a version of Elem for List that works similarly to Elem for Vect.
How would you define it?

2 The following predicate states that a specific value is the last value in a List:

data Last : List a -> a -> Type where
LastOne : Last [value] value
LastCons : (prf : Last xs value) -> Last (x :: xs) value

So, for example, you can construct a proof of Last [1,2,3] 3:

last123 : Last [1,2,3] 3

Listing 9.5 Complete definition of isElem (ElemType.idr)

Listing 9.6 A Boolean test for whether a value is in a vector (ElemBool.idr)

250 CHAPTER 9 Predicates: expressing assumptions and contracts in types
last123 = LastCons (LastCons LastOne)

Write an isLast function that decides whether a value is the last element in a List.
It should have the following type:

isLast : DecEq a => (xs : List a) -> (value : a) -> Dec (Last xs value)

You can test your answer at the REPL as follows:

*ex_9_1> isLast [1,2,3] 3
Yes (LastCons (LastCons LastOne)) : Dec (Last [1, 2, 3] 3)

9.2 Expressing program state in types: a guessing game
In practice, the need for predicates like Elem and functions like removeElem arises nat-
urally when we write functions that express characteristics of system state, such as vec-
tor length, in their types. To conclude this chapter, we’ll look at a small example of
where this happens: using the type system to encode simple properties of a word-
guessing game, Hangman.

 In Hangman, a player tries to guess a word by guessing one letter at a time. If they
guess all the letters in the word, they win. Otherwise, they’re allowed a limited num-
ber of incorrect guesses, after which they lose.

9.2.1 Representing the game’s state

Listing 9.7 shows how we can represent the current state of a word game as a data
type, WordState, in Idris. There are two important parts of the state that capture the
features of the game, and they’re written as parts of the type:

 The number of guesses the player has remaining
 The number of letters the player still has to guess

data WordState : (guesses_remaining : Nat) -> (letters : Nat) -> Type where
MkWordState : (word : String) ->

(missing : Vect letters Char) ->
WordState guesses_remaining letters

A game is finished if either the number of guesses remaining is zero (in which case
the player has lost) or the number of letters remaining is zero (in which case the
player has won). Listing 9.8 shows how we can represent this in a data type. We can be
certain that this captures only games that are won or lost, because we’re including the
number of guesses and the number of letters remaining as arguments to WordState.

Listing 9.7 The game state (Hangman.idr)

The word the player
is trying to guess

Letters in the word that
have not yet been
guessed correctly

guesses_remaining is an implicit
argument of MkWordState, which

we’ll keep track of in the type.

251Expressing program state in types: a guessing game

data Finished : Type where
Lost : (game : WordState 0 (S letters)) -> Finished
Won : (game : WordState (S guesses) 0) -> Finished

The WordState dependent type stores the core data required by the game. By includ-
ing the core components of the rules—the number of guesses and number of let-
ters—as arguments to WordState, we’ll be able to see exactly how any function that
uses a WordState implements the rules of the game.

9.2.2 A top-level game function

We’ll take a top-down approach, defining a top-level function that implements a com-
plete game. The following listing gives the starting point.

game : WordState (S guesses) (S letters) -> IO Finished
game st = ?game_rhs

The type of game states that a game can proceed if there’s at least one guess remaining
(S guesses) and at least one letter still to guess (S letters). It returns IO Finished,
meaning that it performs interactive actions that produce game data in a Finished
state.

 To implement the game, you’ll need to read a single letter from the user (any
other input is invalid), check whether the letter input by the user is in the target word
in the game state, update the game state, and loop if the game isn’t complete. You can
update the state in one of the following ways:

 The letter is in the word, in which case you continue the game with the same
number of guesses and one fewer letter.

 The letter isn’t in the word, in which case you continue the game with one
fewer guess and the same number of letters.

The numbers of guesses and letters used and remaining are explicitly recorded in the
game state’s type. The next step, therefore, is to write a function that captures these
state updates in its type.

9.2.3 A predicate for validating user input: ValidInput

You can read user input using the IO action getLine:

getLine : IO String

Listing 9.8 Defining precisely when a game is in a finished state (Hangman.idr)

Listing 9.9 Top-level game function (Hangman.idr)

A game is lost if zero
guesses remain.

A game is won if zero letters
remain to be guessed.

?game_rhs needs to read a letter and updates
the game state according to the guess.

252 CHAPTER 9 Predicates: expressing assumptions and contracts in types

R
strin
the
But because the user is guessing a letter, the only inputs that are valid are those that
consist of exactly one character. For precision, you can make the notion of a valid
input explicit in a predicate. Because String is a primitive, it’s difficult to reason
about its individual components in a type, so you can use a List Char to represent the
input in the predicate and convert as necessary:

data ValidInput : List Char -> Type where
Letter : (c : Char) -> ValidInput [c]

To check whether a String is a valid input, you can write the following function,
which returns either a proof that the input is valid, or a proof that it can never be
valid, using Dec:

isValidString : (s : String) -> Dec (ValidInput (unpack s))

You’ll see the definition of isValidString shortly, in section 9.2.5. As an exercise, you
can try writing it yourself, beginning with the following helper function:

isValidInput : (cs : List Char) -> Dec (ValidInput cs)

Then, instead of using getLine, write a readGuess function that returns the user’s
guess, along with an instance of a predicate that guarantees the user’s guess is a valid
input:

readGuess : IO (x ** ValidInput x)

readGuess returns a dependent pair, where the first element is the input read from
the console, and the second is a predicate that the input must satisfy.

CONTRACTS ON RETURN VALUES By returning a value paired with a predicate
on that value, the type of readGuess is expressing a contract that the return
value must satisfy.

The following listing gives the definition of readGuess.

readGuess : IO (x ** ValidInput x)
readGuess = do putStr "Guess:"

x <- getLine
case isValidString (toUpper x) of

Yes prf => pure (_ ** prf)
No contra => do putStrLn "Invalid guess"

readGuess

By using readGuess, you can be certain that any valid string read from the console is
guaranteed to contain exactly one character.

Listing 9.10 Read a guess from the console, which is guaranteed to be valid
(Hangman.idr)

eads a
g from

console
Converts the input to
uppercase so that you can treat
inputs as non-case-sensitive

If it’s a valid input,
returns the input

and the proof If it’s not a valid input,
tries again

253Expressing program state in types: a guessing game
9.2.4 Processing a guess

Processing a guess will return a game state with one type if the guess is correct, and a
different type if the guess is incorrect. You can use the Either generic type to repre-
sent this. Remember that Either is a generic type defined in the Prelude that carries a
value of two possible types:

data Either a b = Left a | Right b

Either is often used to represent the result of a computation that might fail, carrying
information about the error if it does fail. By convention, we use Left for the error
case and Right for the success case.1 You can think of an incorrect guess as being the
error case, so the next listing shows the type you’ll use for a function that processes a
guess.

processGuess : (letter : Char) ->
WordState (S guesses) (S letters) ->
Either (WordState guesses (S letters))

(WordState (S guesses) letters)

This type states that, given a letter and an input game state, it will either produce a
new game state where the number of guesses remaining has decreased (the guess was
incorrect), or where the number of letters remaining has decreased (the guess was
correct.)

TYPES AS ABSTRACT STATE A value of type WordState guesses letters
holds concrete information about system state, including the exact word to be
guessed and exactly which letters are still missing. The type itself expresses
abstract information about the game state (guesses remaining and number of
missing letters), which allows you to express the rules in function types like
processGuess.

You can implement processGuess as follows:

1 Define—You need to inspect the input game state, so you can case-split on the
input state:

processGuess : (letter : Char) ->
WordState (S guesses) (S letters) ->
Either (WordState guesses (S letters))

(WordState (S guesses) letters)
processGuess letter (MkWordState word missing) = ?guess_rhs_1

1 “Right” also being a synonym of “correct.”

Listing 9.11 Type of a function that processes a user’s guess (Hangman.idr)

Input game state, with at least
one guess remaining and at
least one letter to guess

Correct guess (Right
case), so remove a

letter to guess

Incorrect guess
(Left case), so remove
an available guess

254 CHAPTER 9 Predicates: expressing assumptions and contracts in types
 2 Define—If the guessed letter is correct, it’ll be in the missing vector, and you’ll
need to remove it. You can use isElem to find whether it’s there and define the
function by case splitting on the result of isElem:

processGuess letter (MkWordState word missing)
= case isElem letter missing of

Yes prf => ?guess_rhs_2
No contra => ?guess_rhs_3

 3 Refine—If the letter is in the vector of missing letters, you’ll return a new state
with one fewer letters to guess. Otherwise, you’ll return a new state with one
fewer guess available:

processGuess letter (MkWordState word missing)
= case isElem letter missing of

Yes prf => Right (MkWordState word ?nextVect)
No contra => Left (MkWordState word missing)

You have a hole, ?nextVect, for the updated vector of missing letters.

4 Type, refine—The type of ?nextVect shows that you need to remove an element
from the vector:

word : String
letter : Char
letters : Nat
missing : Vect (S letters) Char
prf : Elem letter missing
guesses : Nat

nextVect : Vect letters Char

You can complete the definition by using removeElem to remove letter from
missing, and Idris will find the necessary proof, prf, as an auto implicit. This
completes the definition:

processGuess : (letter : Char) ->
WordState (S guesses) (S letters) ->
Either (WordState guesses (S letters))

(WordState (S guesses) letters)
processGuess letter (MkWordState word missing)

= case isElem letter missing of
Yes prf => Right (MkWordState word (removeElem letter missing))
No contra => Left (MkWordState word missing)

EXPLICIT ASSUMPTIONS In the game state, you assume that the number of let-
ters still to guess is the same as the length of the vector of missing letters. By
putting this in the type of WordState and the type of processGuess, you
can be sure that if you ever violate this assumption, your program will no lon-
ger compile.

You can complete the definition of game using processGuess to update the game state
as necessary.

255Expressing program state in types: a guessing game
9.2.5 Deciding input validity: checking ValidInput

Before completing the implementation of game, you’ll need to complete your imple-
mentation of isValidString, which decides whether a string entered by the user is a
valid input or not.

data ValidInput : List Char -> Type where
Letter : (c : Char) -> ValidInput [c]

isValidNil : ValidInput [] -> Void
isValidNil (Letter _) impossible

isValidTwo : ValidInput (x :: y :: xs) -> Void
isValidTwo (Letter _) impossible

isValidInput : (cs : List Char) -> Dec (ValidInput cs)
isValidInput [] = No isValidNil
isValidInput (x :: []) = Yes (Letter x)
isValidInput (x :: (y :: xs)) = No isValidTwo

isValidString : (s : String) -> Dec (ValidInput (unpack s))
isValidString s = isValidInput (unpack s)

You can test this definition at the REPL by using >>= to take the output of readGuess,
matching on the first component of the dependent pair, and passing it on to printLn:

*Hangman> :exec readGuess >>= \(x ** _) => printLn x

Guess: badguess

Invalid guess

Guess:

Invalid guess

Guess: f

['F']

Now that you have the ability to read input that’s guaranteed to be in a valid form, and
the ability to process guesses to update the game state, you can complete the top-level
game implementation.

9.2.6 Completing the top-level game implementation

The next listing shows one possible (if basic) way to complete the implementation of
game. It uses processGuess to check the user’s input and reports whether a guess is
correct or incorrect until the player has won or lost.

Listing 9.12 Showing that an input string must be either a valid or invalid input
(Hangman.idr)

An input with one character is valid.
Remember that [c] desugars to c :: [].

None of the constructors of ValidInput
have the type ValidInput [].

None of the constructors of
ValidInput have a type of the
form ValidInput (x :: y :: xs).

The only valid case,
because a constructor
of ValidInput has a
type of the form
ValidInput (x :: []).

Entered by the user
Putput by readGuess
Entered by the user
Output by readGuess
Entered by the user
Output by readGuess

256 CHAPTER 9 Predicates: expressing assumptions and contracts in types

game : WordState (S guesses) (S letters) -> IO Finished
game {guesses} {letters} st

= do (_ ** Letter letter) <- readGuess
case processGuess letter st of

Left l => do putStrLn "Wrong!"
case guesses of

Z => pure (Lost l)
S k => game l

Right r => do putStrLn "Right!"
case letters of

Z => pure (Won r)
S k => game r

By including the number of guesses and number of letters remaining in the type,
you’ve essentially written an important rule of the game in the type of the guess func-
tion. As a result, certain kinds of errors in the implementation can’t happen. For
example, as long as you always use the guess function to update the game state, you
avoid the following potential problems:

 It’s impossible to test the wrong variable (guesses or letters) before continu-
ing the game.2 Doing so would cause a type error.

 It’s impossible to continue a completed game, because there must be at least
one guess remaining and at least one letter to guess.

 It’s impossible to finish a game prematurely, when there are both missing letters
and guesses still available.

The following listing shows a possible implementation of main that sets up a game
with a target word, "Test", so requiring a player to guess the letters 'T', 'E', and 'S'.

main : IO ()
main = do result <- game {guesses=2}

 (MkWordState "Test" ['T', 'E', 'S'])
case result of

Lost (MkWordState word missing) =>
putStrLn ("You lose. The word was " ++ word)

Won game =>
putStrLn "You win!"

Listing 9.13 Top-level game function (Hangman.idr)

2 I really did make this mistake when writing this example!

Listing 9.14 A main program to set up a game (Hangman.idr)

You’ll need to check guesses and
letters to find out if the player has
won or lost, so bring them into scope.

Extract the letter by
pattern-matching on the
ValidInput predicate.

The guess was wrong;
check whether there
are any guesses left,
and continue if so.

The guess was correct;
check whether there
are any letters left, and
continue if so.

Sets up a
new game
with 2 wrong
guesses
allowed and
a target
word, “Test”

257Summary
9.3 Summary
 You can write types that express assumptions about how values relate.
 The Elem dependent type is a predicate that expresses that a value must be con-

tained in a vector.
 By passing a predicate as an argument to a function, you can express a contract

that the inputs to the function must follow.
 You can write a function to show that a predicate is decidable, using Dec.
 Idris will attempt to find values for arguments marked auto by expression

search.
 You can capture properties of a system’s state (such as the rules of a game) in a

type.
 Predicates can describe the validity of user input and ensure that the user input

is validated when necessary.

Views: extending
pattern matching
In type-driven development, our approach to implementing functions is to write a
type, define the structure of the function by case splits on its arguments, and refine
the function by filling in holes. In the define step in particular, we use the structure
of the input types to drive the structure of the function as a whole.

 As you learned in chapter 3, when you case-split on a variable, the patterns arise
from the variable’s type. Specifically, the patterns arise from the data constructors
that can be used to build values of that type. For example, if you case-split on an
items variable of type List elem, the following patterns will arise:

 []—Represents the empty list
 (x :: xs)—Represents a non-empty list with x as the first element and xs as

the list of the remaining elements

This chapter covers
 Defining views, which describe alternative forms of

pattern matching

 Introducing the with construct for working with views

 Describing efficient traversals of data structures

 Hiding the representation of data behind views
258

259Defining and using views
Pattern matching, therefore, deconstructs variables into their components. Often,
though, you’ll want to deconstruct variables in different ways. For example, you might
want to deconstruct an input list into one of the following forms:

 A list of all but the last element, and then the last element
 Two sublists—the first half and the second half of the input

In this chapter, you’ll see how to extend the forms of patterns you can use by defining
informative data types, called views. Views are dependent types that are parameterized
by the data you’d like to match, and they give you new ways of observing that data. For
example, views can do the following:

 Describe new forms of patterns, such as allowing you to match against the last
element of a list rather than the first

 Define alternative ways of traversing data structures, such as traversing a list in
reverse, or by repeatedly splitting the list into halves

 Hide complex data representations behind an abstract interface while still sup-
porting pattern-matching on that data

We’ll start by looking at how, using views, we can define alternative ways of matching
on lists, such as processing the last element first. We’ll then look at defining efficient
traversals of lists and guaranteeing that they terminate, and we’ll look at some traversals
provided by the Idris library. Finally, we’ll use views to help with data abstraction by
hiding the structure of data in a separate module and matching and traversing the
data using a view.

10.1 Defining and using views
When you write a (x :: xs) pattern for matching a list, x will take the value of the
first element of the list and xs will take the value of the tail of the list. You saw the fol-
lowing function in chapter 3 to describe how a list was constructed, illustrated again
in figure 10.1:

describeList : List Int -> String
describeList [] = "Empty"
describeList (x :: xs) = "Non-empty, tail = " ++ show xs

x = 1

x = 2

xs = []

1 :: [] "Non-empty, tail = []"

2 :: 3 :: 4 :: 5 :: [] "Non-empty, tail = [3,4,5]"

xs = 3 :: 4 :: 5 :: []

Figure 10.1 Matching the pattern (x :: xs) for inputs [1] and [2,3,4,5]

260 CHAPTER 10 Views: extending pattern matching
As a result, matching lists using the pattern (x :: xs) means that you’ll always traverse
the list forwards, processing x first, and then processing the tail, xs. But sometimes it’s
convenient to be able to traverse the list backwards, processing the last element first.

 You can add a single element to the end of a list using the ++ operator:

Idris> [2,3,4] ++ [5]
[2, 3, 4, 5] : List Integer

It would be nice to be able to match patterns of the form (xs ++ [x]), where x takes
the value of the last element of the list and xs takes the value of the initial segment of
the list. That is, you might like to be able to write a function of the following form, as
illustrated in figure 10.2:

describeListEnd : List Int -> String
describeListEnd [] = "Empty"
describeListEnd (xs ++ [x]) = "Non-empty, initial portion = " ++ show xs

Unfortunately, if you try to implement describeListEnd, it will fail with the following
error:

DLFail.idr:3:19:
When checking left hand side of describeListEnd:
Can't match on describeListEnd (xs ++ [x])

The problem is that you’re trying to pattern-match on the result of a function, ++, and
in general there’s no way for Idris to automatically deduce the inputs to an arbitrary
function from its output. You can, however, extend the forms of the patterns you can
use by defining informative data types called views. In this section, you’ll see how to
define views, and I’ll introduce the with construct, which provides a concise notation
for defining functions that use views.

10.1.1 Matching the last item in a list

You can’t write describeListEnd directly because you can’t match a pattern of the
form (xs ++ [x]) directly. You can, however, take advantage of dependent pattern
matching to deduce that a particular input must have the form (xs ++ [x]). You saw

This line does not type check

xs = []

xs = 2 :: 3 :: 4 :: []

x = 1

1 :: [] "Non-empty, initial portion = []"

2 :: 3 :: 4 :: 5 :: [] "Non-empty, initial portion = [2,3,4]"

x = 5

Figure 10.2 Matching the pattern (xs ++ [x]) for inputs [1] and [2,3,4,5]

261Defining and using views
dependent pattern matching in chapter 6, where inspecting the value of one argument
(that is, case-splitting on that argument) can tell you about the form of another. Using
dependent pattern matching, you can describe alternative patterns for lists.

 The following listing shows the ListLast dependent type, which describes two pos-
sible forms a List can take. A list is either empty, [], or constructed from the initial
portion of a list and its final element.

data ListLast : List a -> Type where
Empty : ListLast []
NonEmpty : (xs : List a) -> (x : a) -> ListLast (xs ++ [x])

Using ListLast, along with dependent pattern matching, you can define describe-
ListEnd. You’ll start by defining a helper function that takes an input list, input, and
an extra argument, form, that says whether the list is empty or non-empty:

1 Type—Begin with the type. You’ll use ListLast to describe the possible forms
that input can take:

describeHelper : (input : List Int) -> (form : ListLast input) -> String
describeHelper input form = ?describeHelper_rhs

 2 Define—You want to describe input, so you’ll need to inspect its form somehow.
Previously, when defining a function to inspect the form of an input, you’ve
case-split on that input. Here, the intention of the form argument is to tell you
more about input, so case-split on that instead:

describeHelper : (input : List Int) -> (form : ListLast input) -> String
describeHelper [] Empty = ?describeHelper_rhs_1
describeHelper (xs ++ [x]) (NonEmpty xs x) = ?describeHelper_rhs_2

Notice that the case split on form has told you more about the form of input. In
particular, the type of NonEmpty means that if form has the value NonEmpty xs x,
then input must have the value (xs ++ [x]).

3 Refine—Complete the definition by describing the patterns as in our initial
attempt at describeListEnd:

describeHelper : (input : List Int) -> ListLast input -> String
describeHelper [] Empty = "Empty"
describeHelper (xs ++ [x]) (NonEmpty xs x)

= "Non-empty, initial portion = " ++ show xs

ListLast is a view of lists because it provides an alternative means of viewing the data.
It’s an ordinary data type, though, and in order to use ListLast in practice, you’ll
need to be able to convert an input list, xs, into a value of type ListLast xs.

Listing 10.1 The ListLast dependent type, which gives alternative patterns for a list
(DescribeList.idr)

An empty list has
the form [].

A non-empty list has an initial
portion, xs, and a last item, x.

262 CHAPTER 10 Views: extending pattern matching
10.1.2 Building views: covering functions

The next listing shows listLast, which converts an input list, xs, into an instance of a
view, ListLast xs, which gives access to the last element of xs.

total
listLast : (xs : List a) -> ListLast xs
listLast [] = Empty
listLast (x :: xs) = case listLast xs of

Empty => NonEmpty [] x
NonEmpty ys y => NonEmpty (x :: ys) y

listLast is the covering function of the ListLast view. A covering function of a view
describes how to convert a value (in this case the input list) into a view of that value
(in this case, an xs list and a value x, where xs ++ [x] = input).

NAMING CONVENTION FOR COVERING FUNCTIONS By convention, covering func-
tions are given the same name as the view type, but with an initial lowercase
letter.

Now that you can describe any List in the form ListLast, you can complete the defi-
nition of describeListEnd:

describeHelper : (input : List Int) -> ListLast input -> String
describeHelper [] Empty = "Empty"
describeHelper (xs ++ [x]) (NonEmpty xs x)

= "Non-empty, initial portion = " ++ show xs

describeListEnd : List Int -> String
describeListEnd xs = describeHelper xs (listLast xs)

This works as we intended in our initial attempt at describeListEnd, with the original
patterns in describeHelper. Given that you’re using a different notion of pattern
matching than the default, you should expect to have to use some additional notation
to explain how to match the pattern (xs ++ [x]), but the overall definition still feels
quite verbose.

 Because dependent pattern matching in this way is a common programming
idiom in Idris, there’s a construct for expressing extended pattern matching more
concisely: the with construct.

10.1.3 with blocks: syntax for extended pattern matching

Using views to generate informative patterns like (xs ++ [x]) can help the readability
of functions and increase your confidence in their correctness because the types tell
you exactly what form the inputs must take. But these functions can be a little more
verbose because you need to create an extra helper function (like describeHelper) to

Listing 10.2 Describing a List in the form ListLast (DescribeList.idr)

The total flag means Idris will
report an error if listLast is not
fully defined, ensuring that
listLast will work for every list.

You need to traverse the entire
list to find the last element, so
make a recursive call.

263Defining and using views
do the necessary pattern matching. The with construct provides a notation for using
views more concisely.

 Using with blocks, you can add extra arguments to the left side of a definition, giv-
ing you more arguments to case-split. The easiest way to see how this works is by exam-
ple, so let’s take a look at how you can use a with block to define describeListEnd:

1 Type—Begin with a top-level type that takes a List Int and returns a String:

describeListEnd : List Int -> String
describeListEnd input = ?describeListEnd_rhs

 2 Define—Press Ctrl-Alt-W with the cursor on the line with the hole ?describe-
ListEnd_rhs. This adds a new pattern clause as follows (it won’t yet type-
check):

describeListEnd : List Int -> String
describeListEnd input with (_)

describeListEnd input | with_pat = ?describeListEnd_rhs

 3 Define—The with syntax adds a new argument to the left side of the definition.
The brackets after with give the value of that argument, and the (indented)
clause beneath contains the extra argument, after a vertical bar. Here, you’ll
match on the result of listLast input, so replace the _ with listLast input:

describeListEnd : List Int -> String
describeListEnd input with (listLast input)

describeListEnd input | with_pat = ?describeListEnd_rhs

 4 Type—If you check the type of ?describeListEnd_rhs, you can see more detail
about how with works, looking specifically at the type of with_pat:

input : List Int
with_pat : ListLast input

describeListEnd_rhs : String

The value of with_pat is the result of listLast input. Figure 10.3 shows the
components of the syntax for the with construct. Note that the scope of the
with block is managed by indentation.

describe_list_end input with (listLast input)
 describe_list_end input | with_pat = ?describe_list_end_rhs

Value to match

Additional
argument with
value of listLast
input

Vertical bar
appears before
additional
argument

Extra
indentation

Figure 10.3 Syntax for
the with construct

264 CHAPTER 10 Views: extending pattern matching
 5 Define—Notice that the types of input and with_pat are exactly the same as the
types of the inputs to describeHelper earlier. And as in the definition of
describeHelper, if you case-split on with_pat, you’ll learn more about the
form of input:

describeListEnd : List Int -> String
describeListEnd input with (listLast input)

describeListEnd [] | Empty = ?describeListEnd_rhs_1
describeListEnd (xs ++ [x]) | (NonEmpty xs x)

= ?describeListEnd_rhs_2

6 Refine—Complete the definition as before, with the description of the patterns:

describeListEnd : List Int -> String
describeListEnd input with (listLast input)

describeListEnd [] | Empty = "Empty"
describeListEnd (xs ++ [x]) | (NonEmpty xs x)

= "Non-empty, initial portion = " ++ show xs

Effectively, the with construct has allowed you to use an intermediate pattern match,
on the result of listLast input, without needing to define a separate function like
describeHelper. In turn, matching on the result of listLast input gives you more-
informative patterns for input.

THE DIFFERENCE BETWEEN WITH AND CASE The purpose of the with construct
is similar to that of a case block in that it allows matching on intermediate
results. There’s one important difference, however: with introduces a new
pattern to match on the left side of a definition. As a result, you can use depen-
dent pattern matching directly. In describeListEnd, for example, matching
on the result of listLast input told you about the form input must take.

You can’t use just any expression in a pattern because it isn’t possible, in general, to
decide what the inputs to a function must be, given only its result. Idris therefore
allows patterns only when it can deduce those inputs, which is in the following cases:

 The pattern consists of a data constructor applied to some arguments. The
arguments must also be valid patterns.

 The value of the pattern is forced by some other valid pattern. In the case of
describeListEnd, the value of the pattern (xs ++ [x]) is forced by the valid
pattern NonEmpty xs x.

10.1.4 Example: reversing a list using a view

Once you have the ability to pattern-match in different ways using views, you can tra-
verse data structures in new ways. Rather than always traversing a list from left to right,
for example, you can use listLast to traverse a list from right to left, inspecting the
last element first.

 You can reverse a list in this way:

 To reverse an empty list [], return [].
 To reverse a list in the form xs ++ [x], reverse xs and then add x to the front of

the list.

265Defining and using views
You can implement this algorithm fairly directly using the ListLast view:

1 Type—Call the function myReverse because there’s already a reverse function
in the Prelude:

myReverse : List a -> List a
myReverse input = ?myReverse_rhs

 2 Define—You’ll define the function by inspecting the last element of the input
first, so you can use listLast to match on a value of type ListLast input. Press
Ctrl-Alt-W to insert a with block, and add listLast input as the value to
inspect:

myReverse : List a -> List a
myReverse input with (listLast input)

myReverse input | with_pat = ?myReverse_rhs

 3 Define—Next, case-split on with_pat to give the relevant patterns for input:

myReverse : List a -> List a
myReverse input with (listLast input)

myReverse [] | Empty = ?myReverse_rhs_1
myReverse (xs ++ [x]) | (NonEmpty xs x) = ?myReverse_rhs_2

4 Refine—Finally, you can complete the definition as follows:

myReverse : List a -> List a
myReverse input with (listLast input)

myReverse [] | Empty = []
myReverse (xs ++ [x]) | (NonEmpty xs x) = x :: myReverse xs

This is a fairly direct implementation of the algorithm, traversing the list in reverse
and constructing a new list by adding the last item of the input as the first item of the
result. There are, nevertheless, two problems:

 The definition is inefficient because it constructs ListLast input on every
recursive call, and constructing ListLast input requires traversing input.

 Idris can’t decide whether the definition is total or not:

*Reverse> :total myReverse
Main.myReverse is possibly not total due to:

possibly not total due to recursive path:
with block in Main.myReverse, with block in Main.myReverse

See the sidebar for a brief discussion on totality checking in Idris.

The first problem is important to address, because it’s possible to write myReverse in
linear time, traversing the input list only once. The second problem is important from
the type-driven development perspective: as I discussed in chapter 1, if Idris can deter-
mine that a function is total, you have a strong guarantee that the type accurately
describes what the function will do. If not, you only have a guarantee that the function
will produce a value of the given type if it terminates without crashing. Furthermore, if
Idris can’t determine that a function is total, it can’t determine that any functions that
call it are total, either.

266 CHAPTER 10 Views: extending pattern matching
 We’ll look at how to address each of these problems, with only minor alterations to
myReverse itself, in section 10.2.

10.1.5 Example: merge sort

Views allow you to describe matching on data structures any way you like, with as many
patterns as you like, provided you can implement a covering function for the view. As
a second example of a view, we’ll implement the merge sort algorithm on Lists.

 Merge sort, at a high level, works as follows:

 If the input is an empty list, return an empty list.
 If the input has one element, it’s already sorted, so return the input.
 In all other cases, split the list into two halves (differing in size by at most one),

recursively sort those halves, and then merge the two sorted halves into a sorted
list (see figure 10.4).

Totality checking
Idris tries to decide whether a function is always terminating by checking two things:

 There must be patterns for all possible well-typed inputs.
 When there is a recursive call (or a sequence of mutually recursive calls),

there must be a decreasing argument that converges toward a base case.

To determine which arguments are decreasing, Idris looks at the patterns for the
inputs in a definition. If a pattern is in the form of a data constructor, Idris considers
the arguments in that pattern to be smaller than the input. In myReverse, for exam-
ple, Idris doesn’t consider xs to be smaller than (xs ++ [x]), because (xs ++
[x]) is not in the form of a data constructor.

This restriction keeps the concept of decreasing argument simple for Idris to check.
In general, Idris can’t tell whether the inputs to a function will always be smaller than
the result.

As you’ll see in section 10.2, you can work around this restriction by defining recur-
sive views.

3 5 1 2 6 4

3 5 1 2 6 4

1 3 5 2 4 6

1 2 3 4 5 6

Original list

Split into halves

Sort each half

Merge sorted halves

Figure 10.4 Sorting a list using merge
sort: split the list into two halves, sort
the halves, and then merge the sorted
halves back together

267Defining and using views
If you have two sorted lists, you can merge them together using the merge function
defined in the Prelude:

Idris> :doc merge
Prelude.List.merge : Ord a => List a -> List a -> List a

Merge two sorted lists using the default ordering for the type
of their elements.

Note that it has a generic type and requires the Ord interface to be implemented for
the element type of the list.

 Assuming that the two input lists are sorted, merge will produce a sorted list of the
elements in the input lists. For example, the lists in figure 10.4 would be merged as
follows:

Idris> merge [1,3,5] [2,4,6]
[1, 2, 3, 4, 5, 6] : List Integer

Listing 10.3 shows how you might ideally like to write a mergeSort function that sorts a
list using the merge sort algorithm. Unfortunately, as it stands, this won’t work
because (lefts ++ rights) isn’t a valid pattern.

mergeSort : Ord a => List a -> List a

mergeSort [] = []

mergeSort [x] = [x]

mergeSort (lefts ++ rights)

= merge (mergeSort lefts) (mergeSort rights)

Given an input list matched against a pattern, (lefts ++ rights), Idris can’t in gen-
eral deduce what lefts and rights must be; indeed, there could be several reason-
able possibilities if the input list has one or more elements. Here are a couple of
examples:

 [1] could match against (lefts ++ rights) with lefts as [1] and rights as [],
or lefts as [] and rights as [1].

 [1,2,3] could match against (lefts ++ rights) with lefts as [1] and rights
as [2,3], or lefts as [1,2] and rights as [3], among many other possibilities.

To match the patterns we want, as shown in listing 10.3, you’ll need to create a view of
lists, SplitList, that gives the patterns you want. The following listing shows the defi-
nition of SplitList and gives the type for its covering function, splitList.

Listing 10.3 Initial attempt at mergeSort with an invalid pattern (MergeSort.idr)

An empty list is already sorted.
A singleton list is already sorted.

This pattern isn’t valid because ++ isn’t a
data constructor, but you’d like to extract
the left and right halves of the input.

Recursively sorts the left and
right halves of the list, and
then merges the results into a
complete sorted list

268 CHAPTER 10 Views: extending pattern matching

data SplitList : List a -> Type where
SplitNil : SplitList []
SplitOne : SplitList [x]
SplitPair : (lefts : List a) -> (rights : List a) ->

SplitList (lefts ++ rights)

splitList : (input : List a) -> SplitList input

I’ll give a definition of the covering function, splitList, shortly. For now, note that as
long as the implementation of splitList is total, you can be sure from its type that it
gives valid patterns for empty lists, singleton lists, or concatenations of two lists. You
don’t, however, have any guarantees in the type about how a list is split into pairs; in
this case, you need to rely on the implementation to ensure that lefts and rights dif-
fer in size by at most one.

PRECISION OF SPLITPAIR In principle, you could make the type of SplitPair
more precise and carry a proof that lefts and rights differ in size by at
most one. In fact, the Idris library module Data.List.Views exports such a
view, called SplitBalanced.

You can implement mergeSort using the SplitList view as follows:

1 Type—Begin with the type and a skeleton definition:

mergeSort : Ord a => List a -> List a
mergeSort input = ?mergeSort_rhs

 2 Define—To get the patterns you want, you’ll need to use the SplitList view
you’ve just created. Add a with block and use the splitList covering function:

mergeSort : Ord a => List a -> List a
mergeSort input with (splitList input)

mergeSort input | with_pat = ?mergeSort_rhs

 3 Define—If you case-split on with_pat, you’ll get appropriate patterns for input
arising from the types of the constructors to SplitList:

mergeSort : Ord a => List a -> List a
mergeSort input with (splitList input)
mergeSort [] | SplitNil = ?mergeSort_rhs_1
mergeSort [x] | SplitOne = ?mergeSort_rhs_2
mergeSort (lefts ++ rights) | (SplitPair lefts rights) = ?mergeSort_rhs_3

4 Refine—You can complete the definition by filling in the right sides for each
pattern, directly following the high-level description of the merge sort algo-
rithm I gave at the start of this section:

mergeSort : Ord a => List a -> List a
mergeSort input with (splitList input)

mergeSort [] | SplitNil = []
mergeSort [x] | SplitOne = [x]

Listing 10.4 A view of lists that gives patterns for empty lists, singleton lists, and
concatenating lists (MergeSort.idr)

269Defining and using views
mergeSort (lefts ++ rights) | (SplitPair lefts rights)
= merge (mergeSort lefts) (mergeSort rights)

Before you can test mergeSort, you’ll need to implement the covering function
splitList. The next listing gives a definition of splitList that returns a description
of the empty list pattern, a singleton list pattern, or a pattern consisting of the concat-
enation of two lists, where those lists differ in length by at most one.

total
splitList : (input : List a) -> SplitList input
splitList input = splitListHelp input input

where
splitListHelp : List a -> (input : List a) -> SplitList input
splitListHelp _ [] = SplitNil
splitListHelp _ [x] = SplitOne
splitListHelp (_ :: _ :: counter) (item :: items)

= case splitListHelp counter items of
SplitNil => SplitOne
SplitOne {x} => SplitPair [item] [x]
SplitPair lefts rights => SplitPair (item :: lefts) rights

splitListHelp _ items = SplitPair [] items

You build two (approximately) equally sized lists by using a second reference to the
input list as a counter in a helper function, splitListHelp, as follows:

 On each recursive call, the counter steps through two elements of the list. The
pattern (_ :: _ :: counter) matches any list with at least two elements, where
counter is a list containing all but the first two elements.

 When the counter reaches the end of the list (that is, fewer than two elements
remain), you must have traversed half of the input.

You can now try splitList and mergeSort at the REPL:

*MergeSort> splitList [1]
SplitOne : SplitList [1]

*MergeSort> splitList [1,2,3,4,5]
SplitPair [1, 2] [3, 4, 5] : SplitList [1, 2, 3, 4, 5]

*MergeSort> mergeSort [3,2,1]
[1, 2, 3] : List Integer

*MergeSort> mergeSort [5,1,4,3,2,6,8,7,9]
[1, 2, 3, 4, 5, 6, 7, 8, 9] : List Integer

Listing 10.5 Defining a covering function for SplitList (MergeSort.idr)

Adds the “total” flag so Idris
checks that the definition is total

Uses a second reference to the list
as a counter, which steps through

the list two elements at a time

The input is empty, so return
SplitNil, which gives a

pattern for the empty list.

The input has one element, so
return SplitOne, which gives a
pattern for the singleton list.

Recursively splits the list,
moving the counter along
two places in the list, and

then adds the first element,
item, to the first half

There are fewer than two elements
in the counter list, so put the

remaining items in the second list.

270 CHAPTER 10 Views: extending pattern matching
By defining a view that gives possible cases for the input list in terms of how it can be
split in half, you can write a definition of mergeSort that directly implements the high-
level description of the algorithm.

 Like myReverse, however, Idris can’t tell whether mergeSort is total:

*MergeSort> :total mergeSort
Main.mergeSort is possibly not total due to:

possibly not total due to recursive path:
with block in Main.mergeSort, with block in Main.mergeSort

Again, the problem is that Idris can’t tell that the recursive calls are guaranteed to be
on smaller lists than the original input. In the next section, you’ll see how to address
this problem by defining recursive views that describe the recursive structure of a
function, as well as the patterns that define a function.

Exercises

1 The TakeN view allows traversal of a list several elements at a time:

data TakeN : List a -> Type where
Fewer : TakeN xs
Exact : (n_xs : List a) -> TakeN (n_xs ++ rest)

takeN : (n : Nat) -> (xs : List a) -> TakeN xs

The Fewer constructor covers the case where there are fewer than n elements.
Define the covering function takeN.

To check that your definition works, you should be able to run the following
function, which groups lists into sublists with n elements each:

groupByN : (n : Nat) -> (xs : List a) -> List (List a)
groupByN n xs with (takeN n xs)

groupByN n xs | Fewer = [xs]
groupByN n (n_xs ++ rest) | (Exact n_xs) = n_xs :: groupByN n rest

Here’s an example:

*ex_10_1> groupByN 3 [1..10]
[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10]] : List (List Integer)

2 Use TakeN to define a function that splits a list into two halves by calculating its
length:

halves : List a -> (List a, List a)

If you have implemented this correctly, you should see the following:

*ex_10_1> halves [1..10]
([1, 2, 3, 4, 5], [6, 7, 8, 9, 10]) : (List Integer, List Integer)

*ex_10_1> halves [1]
([], [1]) : (List Integer, List Integer)

Hint: Use div for dividing a Nat.

271Recursive views: termination and efficiency
10.2 Recursive views: termination and efficiency
The purpose of views is to give us new ways to match on data, using the with construct
for a more concise syntax. When you write a function with a view, you use the follow-
ing components:

 The original input data
 A view of the input data, where the view data type is parameterized by the input

data
 A covering function for the view, which constructs an instance of the view for the

input data

Then, using the with construct, you can pattern-match on the view. Dependent pat-
tern matching gives you informative patterns for the original data. You’ve seen two
examples of this in the previous section: reversing a list, and splitting a list in half for
merge sort. In both cases, however, Idris couldn’t tell that the resulting function was
total. Moreover, when you reverse a list, the resulting function is inefficient because it
has to reconstruct the view on every recursive call.

 In this section, we’ll look at how to solve both these problems by defining recursive
views for describing traversals of data structures. Furthermore, once we’ve defined a
view, we can reuse it for any function that uses the same recursion pattern. The Idris
library provides a number of useful views for traversals of data structures, and we’ll
look at some example functions with some of these. First, though, we’ll improve the
definition of myReverse.

10.2.1 “Snoc” lists: traversing a list in reverse

A snoc list is a list where elements are added to the end of the list, rather than the
beginning. We can define them as follows, as a generic data type:

data SnocList ty = Empty | Snoc (SnocList ty) ty

SNOC LIST TERMINOLOGY The name snoc list arises because the traditional
name (originating with Lisp) for the operator that adds an element to the
beginning of a list is cons. Therefore, the name for the operator that adds an
element to the end of a list is snoc.

Using SnocList, you traverse the elements in reverse order, because the element (of
type ty) appears after the list (of type SnocList ty). You can easily produce a List
from a SnocList where the elements are in reverse order:

reverseSnoc : SnocList ty -> List ty
reverseSnoc Empty = []
reverseSnoc (Snoc xs x) = x :: reverseSnoc xs

You can show the relationship between SnocList and List more precisely by parame-
terizing SnocList over the equivalent List. The following listing shows how to define
SnocList in this way.

272 CHAPTER 10 Views: extending pattern matching

data SnocList : List a -> Type where
Empty : SnocList []
Snoc : (rec : SnocList xs) -> SnocList (xs ++ [x])

snocList : (xs : List a) -> SnocList xs

This is very similar in structure to ListLast, which you defined in the previous sec-
tion. The difference is that Snoc takes a recursive argument of type SnocList xs.

 Here, SnocList is a recursive view, and snocList is its covering function. We’ll come
to the definition of snocList shortly; first, let’s see how you can use this to implement
myReverse:

1 Type—Begin by defining a helper function that takes a list, input, and its equiv-
alent SnocList:

myReverseHelper : (input : List a) -> SnocList input -> List a
myReverseHelper input snoc = ?myReverseHelper_rhs

 2 Define—If you case-split on snoc, you’ll get corresponding patterns for input:

myReverseHelper : (input : List a) -> SnocList input -> List a
myReverseHelper [] Empty = ?myReverseHelper_rhs_1
myReverseHelper (xs ++ [x]) (Snoc rec) = ?myReverseHelper_rhs_2

 3 Refine—If the input is empty, you’ll return the empty list:

myReverseHelper : (input : List a) -> SnocList input -> List a
myReverseHelper [] Empty = []
myReverseHelper (xs ++ [x]) (Snoc rec) = ?myReverseHelper_rhs_2

 4 Refine, type—Otherwise, you’ll recursively reverse xs and add the item x to the
front:

myReverseHelper : (input : List a) -> SnocList input -> List a
myReverseHelper [] Empty = []
myReverseHelper (xs ++ [x]) (Snoc rec) = x :: myReverseHelper xs ?snocrec

There’s still a hole, ?snocrec, for the second argument in the recursive call. If
you inspect it, you’ll see that you need the SnocList that represents xs:

a : Type
xs : List a
rec : SnocList xs
x : a

snocrec : SnocList xs

Listing 10.6 The SnocList type, parameterized over the equivalent List
(SnocList.idr)

Empty is equivalent to
the list represented by [].

Given a SnocList equivalent to a
list, xs, and an implicit value, x,

Snoc builds a SnocList
equivalent to xs ++ [x].

Given a list, xs, snocList
builds a SnocList that is

equivalent to xs.

273Recursive views: termination and efficiency
 5 Refine—Fortunately, you already have a value, rec, of type SnocList xs, so you
can use it directly to complete the definition:

myReverseHelper : (input : List a) -> SnocList input -> List a
myReverseHelper [] Empty = []
myReverseHelper (xs ++ [x]) (Snoc rec) = x :: myReverseHelper xs rec

6 Define—Finally, you can define myReverse by building a SnocList and calling
myReverseHelper:

myReverse : List a -> List a
myReverse input = myReverseHelper input (snocList input)

You can’t test this yet because you haven’t implemented snocList, but for now notice
how this contrasts with the implementation of myReverse in section 10.1.4, using
ListLast. The similarity is that you find the patterns for the input list by matching on
a view of input. The difference is that the view is recursive, meaning that you don’t
have to rebuild the view on each recursive call; you already have access to it.

 The definition of myReverseHelper is total, because the SnocList argument is
decreasing on each recursive call:

*SnocList> :total myReverseHelper
Main.myReverseHelper is Total

It now remains to implement snocList. As long as you can implement snocList by
traversing the list only once, you’ll have an implementation of myReverse that runs in
linear time. The following listing shows an implementation of snocList that traverses
the list only once, using a helper function with an accumulator to build the SnocList
by adding one element at a time.

snocListHelp : (snoc : SnocList input) -> (rest : List a) ->
SnocList (input ++ rest)

snocListHelp {input} snoc [] = rewrite appendNilRightNeutral input in snoc
snocListHelp {input} snoc (x :: xs)

= rewrite appendAssociative input [x] xs in
snocListHelp (Snoc snoc {x}) xs

snocList : (xs : List a) -> SnocList xs
snocList xs = snocListHelp Empty xs

The definition of snocList is slightly tricky, involving the rewrite construct (which
you saw in chapter 8) to get the types in the correct form for building the SnocList.
You’ll rewrite with the following functions from the Prelude:

Listing 10.7 Implementing the covering function snocList

Appends an empty list to a
SnocList representing input

Appends an element, x, to a
SnocList representing input,

and then appends the
remaining elements, xs

Initializes the SnocList as Empty
and then calls snocListHelp to

add xs an element at a time

274 CHAPTER 10 Views: extending pattern matching
appendNilRightNeutral : (l : List a) -> l ++ [] = l
appendAssociative : (l : List a) -> (c : List a) -> (r : List a) ->

l ++ (c ++ r) = (l ++ c) ++ r

As with any complex definition, it’s a good idea to try to understand it by replacing
subexpressions of the definition with holes, and seeing what the types of those holes
are. In this case, it’s also useful to remove the rewrite constructs and replace them
with holes, to see how the types need rewriting:

snocListHelp : SnocList input -> (xs : List a) -> SnocList (input ++ xs)
snocListHelp {input} snoc [] = ?rewriteNil snoc
snocListHelp {input} snoc (x :: xs)

= ?rewriteCons (snocListHelp (Snoc snoc {x}) xs)

You should see the following types for rewriteNil and rewriteCons:

rewriteNil : SnocList input -> SnocList (input ++ [])
rewriteCons : SnocList ((input ++ [x]) ++ xs) -> SnocList (input ++ x :: xs)

The good news is that once you’ve defined snocList, you can reuse it for any function
that needs to traverse a list in reverse. Furthermore, as you’ll see shortly, a SnocList
view is also defined in the Idris library, along with several others.

10.2.2 Recursive views and the with construct

You now have an implementation of myReverse that runs in linear time, because it tra-
verses the list once to build the SnocList view and then traverses the SnocList view
once to build the reversed list. You can also confirm that Idris believes it’s total:

*SnocList> :total myReverse
Main.myReverse is Total

The resulting definition isn’t quite as concise as the previous definition of myReverse,
however, because it doesn’t use the with construct:

myReverseHelper : (input : List a) -> SnocList input -> List a
myReverseHelper [] Empty = []
myReverseHelper (xs ++ [x]) (Snoc rec) = x :: myReverseHelper xs rec

myReverse : List a -> List a
myReverse input = myReverseHelper input (snocList input)

Let’s see what happens if you try to do so:

1 Type, define—Begin with the following skeleton definition:

myReverse : List a -> List a
myReverse input with (snocList input)

myReverse input | with_pat = ?myReverse_rhs

 2 Define—You can write the function by case splitting on with_pat to get the pos-
sible patterns for input:

myReverse : List a -> List a
myReverse input with (snocList input)

275Recursive views: termination and efficiency
myReverse [] | Empty = ?myReverse_rhs_1
myReverse (xs ++ [x]) | (Snoc rec) = ?myReverse_rhs_2

 3 Refine—Fill in the right side as before:

myReverse : List a -> List a
myReverse input with (snocList input)

myReverse [] | Empty = []
myReverse (xs ++ [x]) | (Snoc rec) = x :: myReverse xs

Unfortunately, this calls the top-level reverse function, which rebuilds the view
using snocList input, so you have the same problem as before:

*SnocList> :total myReverse
Main.myReverse is possibly not total due to:

possibly not total due to recursive path:
with block in Main.myReverse, with block in Main.myReverse

4 Refine—Instead, when you make the recursive call, you can make the call
directly to the with block, using the | notation on the right side:

myReverse : List a -> List a
myReverse input with (snocList input)

myReverse [] | Empty = []
myReverse (xs ++ [x]) | (Snoc rec) = x :: myReverse xs | rec

The call to myReverse xs | rec recursively calls myReverse, but bypasses the
construction of snocList input and uses rec directly. The resulting definition
is total, building the SnocList representation of input, and traversing that:

*SnocList> :total myReverse
Main.myReverse is Total

This also has the effect of making myReverse run in linear time.

In practice, when you use the with construct, Idris introduces a new function defini-
tion for the body of the with block, like the definition of myReverseHelper that you
implemented manually earlier.

 When you write myReverse xs | rec, this is equivalent to writing myReverseHelper
xs rec in the earlier definition. But by using the with construct instead, Idris gener-
ates an appropriate type for the helper function.

 By using the with construct, you can pattern-match and traverse data structures in
different ways, with the structure of the matching and traversal given by the type of a
view. Moreover, because the views themselves are data structures, Idris can be sure that
functions that traverse views are total.

10.2.3 Traversing multiple arguments: nested with blocks

When you write pattern-matching definitions, you often want to match on several
inputs at once. So far, using the with construct, you’ve only been matching one value.
But like any language construct, with blocks can be nested.

276 CHAPTER 10 Views: extending pattern matching
 To see how this works, let’s define an isSuffix function:

isSuffix : Eq a => List a -> List a -> Bool

The result of isSuffix should be True if the list in the first argument is a suffix of the
second argument. For example:

*IsSuffix> isSuffix [7,8,9,10] [1..10]
True : Bool

*IsSuffix> isSuffix [7,8,9] [1..10]
False : Bool

You can define this function by traversing both lists in reverse, taking the following
steps:

1 Define—Start with the skeleton definition:

isSuffix : Eq a => List a -> List a -> Bool
isSuffix input1 input2 = ?isSuffix_rhs

 2 Define, refine—Next, match on the first input, using snocList so that you pro-
cess the last element first:

isSuffix : Eq a => List a -> List a -> Bool
isSuffix input1 input2 with (snocList input1)

isSuffix [] input2 | Empty = ?isSuffix_rhs_1
isSuffix (xs ++ [x]) input2 | (Snoc rec) = ?isSuffix_rhs_2

You can rename rec to xsrec, to indicate that it’s a recursive view of xs when
reversed. Then, if the first list is empty, it’s trivially a suffix of the second list:

isSuffix : Eq a => List a -> List a -> Bool
isSuffix input1 input2 with (snocList input1)

isSuffix [] input2 | Empty = True
isSuffix (xs ++ [x]) input2 | (Snoc xsrec) = ?isSuffix_rhs_2

 3 Define—Next, match on the second input, again using snocList to process the
last element first. With the cursor over ?isSuffix_rhs_2, press Ctrl-Alt-W to
add a nested with block:

isSuffix : Eq a => List a -> List a -> Bool
isSuffix input1 input2 with (snocList input1)

isSuffix [] input2 | Empty = True
isSuffix (xs ++ [x]) input2 | (Snoc xsrec) with (snocList input2)

isSuffix (xs ++ [x]) [] | (Snoc xsrec) | Empty = ?isSuffix_rhs_2
isSuffix (xs ++ [x]) (ys ++ [y]) | (Snoc xsrec) | (Snoc ysrec)

= ?isSuffix_rhs_3

4 Refine—A non-empty list can’t be a suffix of an empty list, and if the last two ele-
ments of a list are equal, you’ll recursively check the rest of the list:

isSuffix : Eq a => List a -> List a -> Bool
isSuffix input1 input2 with (snocList input1)

isSuffix [] input2 | Empty = True
isSuffix (xs ++ [x]) input2 | (Snoc rec) with (snocList input2)

277Recursive views: termination and efficiency
isSuffix (xs ++ [x]) [] | (Snoc rec) | Empty = False
isSuffix (xs ++ [x]) (ys ++ [y]) | (Snoc rec) | (Snoc z)

= if x == y then isSuffix xs ys | xsrec | ysrec
else False

Note that when you call isSuffix recursively, you pass both of the recursive view
arguments, xsrec and ysrec, to save recomputing them unnecessarily.

You can confirm that this definition is total by asking Idris at the REPL:

*IsSuffix> :total isSuffix
Main.isSuffix is Total

10.2.4 More traversals: Data.List.Views

In order to help you write total functions, the Idris library provides a number of views
for traversing data structures. The Data.List.Views module provides several, includ-
ing the SnocList view you’ve just seen.

 For example, listing 10.8 shows the SplitRec view, which allows you to recursively
traverse a list, processing one half at a time. This is similar to the SplitList view you
saw in section 10.1.5, but with recursive traversals on the halves of the list.

data SplitRec : List a -> Type where
SplitRecNil : SplitRec []
SplitRecOne : SplitRec [x]
SplitRecPair : (lrec : Lazy (SplitRec lefts)) ->

(rrec : Lazy (SplitRec rights)) ->
SplitRec (lefts ++ rights)

total splitRec : (xs : List a) -> SplitRec xs

Listing 10.8 The SplitRec view from Data.List.Views

The Lazy annotation
means that the recursive
argument will only be
constructed when needed.

SplitRecPair constructs
two halves of the input
list, recursively.

The covering function is total, so you can
use the view to write total functions.

The Lazy generic type
The Lazy type allows you to postpone a computation until the result is needed. For
example, a variable of type Lazy Int is a computation that, when evaluated, will
produce a value of type Int. Idris has the following two functions built-in:

Delay : a -> Lazy a
Force : Lazy a -> a

When type-checking, Idris will insert applications of Delay and Force implicitly, as
required. Therefore, in practice, you can treat Lazy as an annotation that states that
a variable will only be evaluated when its result is required. You’ll see the definition
of Lazy in more detail in chapter 11.

278 CHAPTER 10 Views: extending pattern matching
You can use SplitRec to reimplement mergeSort from section 10.1.5 as a total func-
tion. The following listing shows our starting point.

import Data.List.Views

mergeSort : Ord a => List a -> List a
mergeSort input = ?mergeSort_rhs

You can implement mergeSort using the SplitRec view by taking the following steps:

1 Define—Begin by adding a with block, to say you’d like to write the function by
using the SplitRec view:

mergeSort : Ord a => List a -> List a
mergeSort input with (splitRec input)

mergeSort [] | SplitRecNil = ?mergeSort_rhs_1
mergeSort [x] | SplitRecOne = ?mergeSort_rhs_2
mergeSort (lefts ++ rights) | (SplitRecPair lrec rrec)

= ?mergeSort_rhs_3

 2 Refine—The inputs [] and [x] are already sorted:

mergeSort : Ord a => List a -> List a
mergeSort input with (splitRec input)

mergeSort [] | SplitRecNil = []
mergeSort [x] | SplitRecOne = [x]
mergeSort (lefts ++ rights) | (SplitRecPair lrec rrec)

= ?mergeSort_rhs_3

3 Refine—For the (lefts ++ rights) case, you can sort lefts and rights recur-
sively, and then merge the results:

mergeSort : Ord a => List a -> List a
mergeSort input with (splitRec input)

mergeSort [] | SplitRecNil = []
mergeSort [x] | SplitRecOne = [x]
mergeSort (lefts ++ rights) | (SplitRecPair lrec rrec)

= merge (mergeSort lefts | lrec)
(mergeSort rights | rrec)

The | says that, in the recursive calls, you want to bypass constructing the view,
because you already have appropriate views for lefts and rights.

You can confirm that the new definition of mergeSort is total, and test it on some
examples:

*MergeSortView> :total mergeSort
Main.mergeSort is Total

*MergeSortView> mergeSort [3,2,1]
[1, 2, 3] : List Integer

*MergeSortView> mergeSort [5,1,4,3,2,6,8,7,9]
[1, 2, 3, 4, 5, 6, 7, 8, 9] : List Integer

Listing 10.9 Starting point for a total implementation of mergeSort, using SplitRec
(MergeSortView.idr)

Imports Data.List.Views
to get access to SplitRec

279Recursive views: termination and efficiency
Exercises

These exercises use views defined in the Idris library in the modules
Data.List.Views, Data.Vect.Views, and Data.Nat.Views. For each view mentioned
in the exercises, use :doc to find out about the view and its covering function.

 For each of these exercises, make sure Idris considers your solution to be total.

1 Implement an equalSuffix function using the SnocList view defined in
Data.List.Views. It should have the following type:

equalSuffix : Eq a => List a -> List a -> List a

Its behavior should be to return the maximum equal suffix of the two input
lists. Here’s an example:

*ex_10_2> equalSuffix [1,2,4,5] [1..5]
[4, 5] : List Integer

*ex_10_2> equalSuffix [1,2,4,5,6] [1..5]
[] : List Integer

*ex_10_2> equalSuffix [1,2,4,5,6] [1..6]
[4, 5, 6] : List Integer

 2 Implement mergeSort for vectors, using the SplitRec view defined in
Data.Vect.Views.

 3 Write a toBinary function that converts a Nat to a String containing a binary
representation of the Nat. You should use the HalfRec view defined in
Data.Nat.Views.

If you have a correct implementation, you should see this:

*ex_10_2> toBinary 42
"101010" : String

*ex_10_2> toBinary 94
"1011110" : String

Hint: It’s okay to return an empty string if the input is Z.

4 Write a palindrome function that returns whether a list is the same when tra-
versed forwards and backwards, using the VList view defined in Data

.List.Views.
If you have a correct implementation, you should see the following:

*ex_10_2> palindrome (unpack "abccba")
True : Bool

*ex_10_2> palindrome (unpack "abcba")
True : Bool

*ex_10_2> palindrome (unpack "abcb")
False : Bool

Hint: The VList view allows you to traverse a list in linear time, processing the
first and last elements simultaneously and recursing on the middle of the list.

280 CHAPTER 10 Views: extending pattern matching
10.3 Data abstraction: hiding the structure
of data using views
The views you’ve seen so far in this chapter allow you to inspect and traverse data
structures in ways beyond the default pattern matching, focusing in particular on
List. In a sense, views allow you to describe alternative interfaces for building pattern-
matching definitions:

 Using SnocList, you can see how a list is constructed using [] and by adding a
single element with ++, rather than using [] and ::.

 Using SplitRec, you can see how a list is constructed as an empty list, a single-
ton list, or a concatenation of a pair of lists.

That is, you can find out how a value was constructed by looking at the view, rather
than by looking directly at the constructors of that value. In fact, you often won’t need
to know what the data constructors of a value are to be able to use a view of a value.

 With this in mind, one use of views in practice is to hide the representation of data in
a module, while still allowing interactive type-driven development of functions that
use that data, by case splitting on a view of that data.

THE ORIGIN OF VIEWS The idea of views was proposed by Philip Wadler for
Haskell in 1987, in his paper “Views: a way for pattern matching to cohabit
with data abstraction.” The example in this section is in the spirit of Wadler’s
paper, which contains several other examples of using views in practice. Views
as a programming idiom, using dependent types and a notation similar to
the with notation in Idris, was later proposed by Conor McBride and James
McKinna in their 2004 paper, “The view from the left.”

To conclude this chapter, we’ll look at this idea in action. We’ll revisit the data store
example that we implemented in chapters 4 and 6, hide the representation of the data
in an Idris module, and export only the following:

 Schema descriptions, explaining the form of data in the store
 A function for initializing a data store, empty
 A function for adding an entry to the store, addToStore
 A view for traversing the contents of the store, StoreView, along with its cover-

ing function, storeView

None of these require users of the module to know anything about the structure of
the store itself or the structure of the data contained within it.

 Before you implement a module and export the relevant definitions, though, we’ll
need to discuss briefly how Idris supports data abstraction in modules.

10.3.1 Digression: modules in Idris

With the exception of a small example in chapter 2, the programs you’ve written in this
book have been self-contained in a single main module. As you write larger applications,

281Data abstraction: hiding the structure of data using views
however, you’ll need a way to organize code into smaller compilation units, and to con-
trol which definitions are exported from those units.

 The following listing shows a small Idris module that defines a Shape type and
exports it, along with its data constructors and a function to calculate the area of a
shape.

module Shape

public export
data Shape = Triangle Double Double

| Rectangle Double Double
| Circle Double

private
rectangle_area : Double -> Double -> Double
rectangle_area width height = width * height

export
area : Shape -> Double
area (Triangle base height) = 0.5 * rectangle_area base height
area (Rectangle length height) = rectangle_area length height
area (Circle radius) = pi * radius * radius

Each name defined in this module has an export modifier that explains whether that
name is visible to other modules. An export modifier can be one of the following:

 private—The name is not exported at all.
 export—The name and type are exported, but not the definition. In the case of

a data type, this means the type constructor is exported, but the data construc-
tors are private.

 public export—The name, type, and complete definition are exported. For
data types, this means the data constructors are exported. For functions, this
means the functions’ definitions are exported.

If there’s no export modifier on a function or data type definition, Idris treats it as
private. In the preceding example, this means that a module that imports Shape can
use the names Shape, Triangle, Rectangle, Circle, and area, but not rectangle_
area.

EXPORTING FUNCTION DEFINITIONS Exporting a function’s definition as well as
its type (via public export) is important if you want to use the function’s
behavior in a type. In particular, this is important for type synonyms and type-
level functions, which we first used in chapter 6.

The next listing shows an alternative version of the Shape module that keeps the
details of the Shape data type abstract, exporting the type but not its constructors.

Listing 10.10 A module defining shapes and area calculations (Shape.idr)

Exports modifiers,
saying whether the
names are visible
outside this module

282 CHAPTER 10 Views: extending pattern matching

module Shape_abs

export
data Shape = Triangle Double Double

| Rectangle Double Double
| Circle Double

export
triangle : Double -> Double -> Shape
triangle = Triangle

export
rectangle : Double -> Double -> Shape
rectangle = Rectangle

export
circle : Double -> Shape
circle = Circle

Here, we’ve exported the functions triangle, rectangle, and circle for building
Shape. Rather than using the data constructors directly, other modules will need to
use these functions and won’t be able to pattern-match on the Shape type, because the
constructors aren’t exported.

 Using export modifiers, you can implement a module that implements the fea-
tures of a data store but only exports functions for creating a store, adding items, and
traversing the store, without exporting any details about the structure of the store.

10.3.2 The data store, revisited

To illustrate the role of views in data abstraction, we’ll create a module that implements
a data store, exporting functions for constructing the store. We’ll also implement a view
for inspecting and traversing the contents of the store.

 The following listing shows the DataStore.idr module. This is a slight variation
on the DataStore record you implemented in chapter 6.

module DataStore

import Data.Vect

infixr 5 .+.

public export
data Schema = SString | SInt | (.+.) Schema Schema

public export
SchemaType : Schema -> Type
SchemaType SString = String
SchemaType SInt = Int
SchemaType (x .+. y) = (SchemaType x, SchemaType y)

Listing 10.11 Exporting Shape as an abstract data type (Shape_abs.idr)

Listing 10.12 Data store, with a schema (DataStore.idr)

Exports the Shape data type,
but not its constructors

Exports functions for
building shapes, rather
than their constructors

Exports Schema and all
of its data constructors

The Schema type was defined
for the data store
implementation in chapter 6,
along with SchemaType,
which translates a Schema
into an Idris type.

Exports SchemaType
and its definition

283Data abstraction: hiding the structure of data using views
export
record DataStore (schema : Schema) where

constructor MkData
size : Nat
items : Vect size (SchemaType schema)

Rather than storing the schema as a field in the record, here you parameterize the
record by the data’s schema because you don’t intend to allow the schema to be
updated:

export
record DataStore (schema : Schema) where

constructor MkData
size : Nat
items : Vect size (SchemaType schema)

The syntax for a parameterized record declaration is similar to the syntax for an inter-
face declaration, with the parameters and their types listed after the record name.
This declaration gives rise to a DataStore type constructor with the following type:

DataStore : Schema -> Type

It also gives rise to functions for projecting the size of the store (size) and the entries
in the store (items) out of the record. The functions have the following types:

size : DataStore schema -> Nat
items : (rec : DataStore schema) -> Vect (size rec) (SchemaType schema)

Because the record has the export modifier export, the DataStore data type is visible
to other modules, but the size and items projection functions aren’t.

 Listing 10.13 shows three functions that other modules can use to create a new,
empty store with a specific schema (empty), or add a new entry to a store (addTo-
Store). Each of these functions has the export modifier export, meaning that other
modules can see their names and types but have no access to their definitions.

export
empty : DataStore schema
empty = MkData 0 []

export
addToStore : (value : SchemaType schema) -> (store : DataStore schema) ->

DataStore schema
addToStore value (MkData _ items) = MkData _ (value :: items)

To be able to use this module effectively, you’ll also need to traverse the entries in the
store. You can build the contents of a store using empty to create a new store and
addToStore to add a new entry. It would therefore be convenient to be able to use

Listing 10.13 Functions for accessing the store (DataStore.idr)

Exports DataStore, but not its
constructor or any of its fields

The DataStore record is parameterized
by the data schema.

284 CHAPTER 10 Views: extending pattern matching
these as patterns to match the contents of a store. When you match on a store, you’ll
need to deal with the following two cases:

 An empty case that matches a store with no contents
 An addToStore value store case that matches a store where the first entry is

given by value, and the remaining items in the store are given by store

To match these cases, you can write a view of DataStore.

10.3.3 Traversing the store’s contents with a view

Listing 10.14 shows a StoreView view and its covering function, storeView. They allow
you to traverse the contents of a store by seeing how the store was constructed, either
with empty or addToStore.

public export
data StoreView : DataStore schema -> Type where

SNil : StoreView empty
SAdd : (rec : StoreView store) -> StoreView (addToStore value store)

storeViewHelp : (items : Vect size (SchemaType schema)) ->
StoreView (MkData size items)

storeViewHelp [] = SNil
storeViewHelp (val :: xs) = SAdd (storeViewHelp xs)

export
storeView : (store : DataStore schema) -> StoreView store
storeView (MkData size items) = storeViewHelp items

The StoreView view gives you access to the contents of the store by pattern matching
but hides its internal representation. To use the store, and to traverse its contents, you
don’t need to know anything about the internal representation.

 To illustrate this, let’s set up some test data and write some functions to inspect it.
The next listing defines a store and populates it with some test data, mapping planet
names to the name of the space probe that first visited the planet and the year of the
visit.1

import DataStore

testStore : DataStore (SString .+. SString .+. SInt)
testStore = addToStore ("Mercury", "Mariner 10", 1974)

(addToStore ("Venus", "Venera", 1961)

Listing 10.14 A view for traversing the entries in a store (DataStore.idr)

Listing 10.15 A datastore populated with some test data (TestStore.idr)

1 We won’t, however, get into any debates about whether Pluto is a planet here.

You want to match on the constructors
of StoreView when using the view, so
export the data constructors.

There’s no export annotation,
so Idris considers
storeViewHelp to be private.

Exports the covering
function so that
other modules can
build the view

285Data abstraction: hiding the structure of data using views

g
(addToStore ("Uranus", "Voyager 2", 1986)
(addToStore ("Pluto", "New Horizons", 2015)
empty)))

The following listing shows a basic traversal of the data store, returning a list of entries
in the store.

listItems : DataStore schema -> List (SchemaType schema)
listItems input with (storeView input)

listItems empty | SNil = []
listItems (addToStore value store) | (SAdd rec)

= value :: listItems store | rec

If you call showItems with the test data, you’ll see the following result:

*TestStore> listItems testStore
[("Mercury", "Mariner 10", 1974),
("Venus", "Venera", 1961),
("Uranus", "Voyager 2", 1986),
("Pluto", "New Horizons", 2015)] : List (String, String, Int)

More interestingly, you might want to write functions that traverse the data store and
filter out certain entries. For example, suppose you want to get a list of the planets
that were first visited by a space probe during the twentieth century. You could do this
by writing the following function:

filterKeys : (test : SchemaType val_schema -> Bool) ->
DataStore (SString .+. val_schema) -> List String

You can think of a schema of the form (SString .+. val_schema) as giving a key-value
pair, where the key is a String and val_schema describes the form of the values.

Listing 10.16 A function to convert the store’s contents to a list of entries
(TestStore.idr)

The application operator $
When expressions get deeply nested, as in the testStore definition, it can be dif-
ficult to keep track of the bracketing. The $ operator is an infix operator that applies
a function to an argument, and you can use it to reduce the need for bracketing.

Using it, you can write the following:

testStore = addToStore ("Mercury", "Mariner 10", 1974) $
addToStore ("Venus", "Venera", 1961) $
addToStore ("Uranus", "Voyager 2", 1986) $
addToStore ("Pluto", "New Horizons", 2015) $
empty

Writing $ is therefore equivalent to putting the rest of the expression in brackets. For
example, writing f x $ y z is exactly equivalent to writing f x (y z).

The | rec bypasses the buildin
of the view on the recursive
call, because rec is already a
view of the rest of the store.

286 CHAPTER 10 Views: extending pattern matching
Then, filterKeys will apply a function to the value in the pair, and if it returns True,
it will add the key to a list of String. This can find the planets that a probe visited
before the year 2000:

*TestStore> filterKeys (\x => snd x < 2000) testStore
["Mercury", "Venus", "Uranus"] : List String

You can implement filterKeys using StoreView by taking the following steps:

1 Type, define—Begin with a type and a skeleton definition:

filterKeys : (test : SchemaType val_schema -> Bool) ->
DataStore (SString .+. val_schema) -> List String

filterKeys test input = ?filterKeys_rhs

 2 Define—You’ll define the function by traversing the store using StoreView, so
you can use the with construct to build the view, and case-split on it:

filterKeys : (test : SchemaType val_schema -> Bool) ->
DataStore (SString .+. val_schema) -> List String

filterKeys test input with (storeView input)
filterKeys test empty | SNil = ?filterKeys_rhs_1
filterKeys test (addToStore value store) | (SAdd rec)

= ?filterKeys_rhs_2

 3 Refine—If the store is empty, there’s no value to apply the test to, so return an
empty list:

filterKeys : (test : SchemaType val_schema -> Bool) ->
DataStore (SString .+. val_schema) -> List String

filterKeys test input with (storeView input)
filterKeys test empty | SNil = []
filterKeys test (addToStore value store) | (SAdd rec)

= ?filterKeys_rhs_2

4 Refine—Otherwise, because of the schema of the data store, entry must itself be
a key-value pair:

filterKeys : (test : SchemaType val_schema -> Bool) ->
DataStore (SString .+. val_schema) -> List String

filterKeys test input with (storeView input)
filterKeys test empty | SNil = []
filterKeys test (addToStore (key, value) store) | (SAdd rec)

= ?filterKeys_rhs_2

You’ll apply test to the value. If the result is True, you’ll keep the key and
recursively build the rest of the list. If the result is False, you’ll omit the key and
build the rest of the list:

filterKeys : (test : SchemaType val_schema -> Bool) ->
DataStore (SString .+. val_schema) -> List String

filterKeys test input with (storeView input)
filterKeys test empty | SNil = []
filterKeys test (addToStore (key, value) store) | (SAdd rec)

= if test value

287Data abstraction: hiding the structure of data using views
then key :: filterKeys test store | rec
else filterKeys test store | rec

You can try this function with some test filters:

*TestStore> filterKeys (\x => fst x == "Voyager 2") testStore
["Uranus"] : List String

*TestStore> filterKeys (\x => snd x > 2000) testStore
["Pluto"] : List String

*TestStore> filterKeys (\x => snd x < 2000) testStore
["Mercury", "Venus", "Uranus"] : List String

For both showItems and filterKeys, you’ve written a function that traverses the con-
tents of the data store without knowing anything about the internal representation of
the store. In each case, you’ve used a view to deconstruct the data, rather than decon-
structing the data directly. If you were to change the internal representation in the
DataStore module, and correspondingly the implementation of storeView, the
implementations of showItems and filterKeys would remain unchanged.

Exercises

1 Write a getValues function that returns a list of all values in a DataStore. It should
have the following type:

getValues : DataStore (SString .+. val_schema) ->
List (SchemaType val_schema)

You can test your definition by writing a function to set up a data store:

testStore : DataStore (SString .+. SInt)
testStore = addToStore ("First", 1) $

addToStore ("Second", 2) $
empty

If you’ve implemented getValues correctly, you should see the following:

*ex_10_3> getValues testStore
[1, 2] : List Int

2 Define a view that allows other modules to inspect the abstract Shape data type in
listing 10.11. You should be able to use it to complete the following definition:

area : Shape -> Double
area s with (shapeView s)

area (triangle base height) | STriangle = ?area_rhs_1
area (rectangle width height) | SRectangle = ?area_rhs_2
area (circle radius) | SCircle = ?area_rhs_3

If you have implemented this correctly, you should see the following:

*ex_10_3> area (triangle 3 4)
6.0 : Double
*ex_10_3> area (circle 10)
314.1592653589793 : Double

288 CHAPTER 10 Views: extending pattern matching
10.4 Summary
 A view is a dependent type that describes the possible forms of another data

type. Views take advantage of dependent pattern matching to allow you to
extend the forms of patterns you can use.

 A covering function builds a view of a value. By convention, its name is the
name of the view with an initial lowercase letter.

 The with construct allows you to use views directly, without defining an inter-
mediate function.

 You can use views to define alternative traversals of data structures, such as
extracting the last element of a list instead of the first.

 Recursive views help you write functions that are guaranteed to terminate, by
writing recursive functions that pattern-match on the view.

 Idris provides several views for alternative traversals of List in the
Data.List.Views library. Similar libraries exist for Vect, Nat, and String.

 You can hide the structure of data in a module, while still supporting interactive
type-driven programming with that data, by exporting views for traversing data
structures.

Part 3

Idris and the real world

In part 2, you gained experience in developing programs interactively,
guided by types, and you learned about all of the core features of Idris. Now, it’s
time to apply what you’ve learned to some more practical examples.

 First, in chapter 11, you’ll learn about writing programs that deal with poten-
tially infinite structures such as streams. You’ve learned about the importance of
writing total functions, but in chapter 11 you’ll see that totality is about more
than termination. A function is also total if it produces some portion of a poten-
tially infinite result, which means you can write interactive systems such as serv-
ers and read-eval-print loops that run forever, but which are nevertheless total.

 Chapters 12–14 deal with state. Real-world programs usually need to deal
with global state somehow, and you’ll see both how to represent state and how to
describe properties of state in such a way that you can guarantee that programs
follow protocols accurately. If you’re implementing a system with important
security properties, such as an ATM for a bank, you can use type-driven develop-
ment to ensure that those properties are satisfied.

 Finally, chapter 15 provides an extended example of type-driven develop-
ment, showing how to implement a library for concurrent programming with
types. You’ll start by writing a simple type to capture a specific concurrent pro-
gramming problem, and then gradually refine it to capture more of the import-
ant properties of concurrent programs.

Streams and processes:
working with infinite data
The functions we’ve written in this book so far have worked in batch mode, process-
ing all of their inputs and then returning an output. In the previous chapter, we
also spent some time discussing why termination is important, and you learned how
to use views to help you write programs that are guaranteed to terminate.

 But input data doesn’t always arrive in a batch, and you’ll often want to write
programs that don’t terminate, running indefinitely. For example, it can be conve-
nient to think of input data to an interactive program (such as keypresses, mouse
movements, and so on) as a continuous stream of data, processed one element at a
time, leading to a stream of output data. In reality, many programs are, in effect,
stream processors:

This chapter covers
 Generating and processing streams of data

 Distinguishing terminating from productive total
functions

 Defining total interactive processes using infinite
streams
291

292 CHAPTER 11 Streams and processes: working with infinite data
 A read-eval-print loop, such as the Idris environment, processes a potentially
infinite stream of user commands, giving an output stream of responses.

 A web server processes a potentially infinite stream of HTTP requests, giving an
output stream of responses to be sent over the network.

 A real-time game processes a potentially infinite stream of commands from a
controller, giving an output stream of audiovisual actions.

Furthermore, even when you’re writing pure functions that don’t interact with exter-
nal data sources or devices, streams allow you to write reusable program components
by separating the production of data from the consumption of data. For example, sup-
pose you’re writing a function to determine the square root of a number. You can do
this by producing an infinite list of successively closer approximations to a solution,
and then writing a separate function to consume that list, finding the first approxima-
tion within the desired bounds.

PRODUCING AND CONSUMING DATA A common theme in this chapter is the dis-
tinction between programs that consume (or process) data, and programs that
produce data. All the functions you’ve seen in this book so far have been con-
sumers of data, and in the last chapter we looked at using views to help us
write functions that are guaranteed to terminate when consuming data.
When you’re writing terminating functions, however, consuming data is only
part of the story: a function that generates an infinite stream is never going to
terminate, after all. As you’ll see, Idris checks that functions that generate
streams are guaranteed to be productive, so that any function that consumes
the output of a stream generator will always have data to process.

The kinds of programs we write in practice often have a terminating component, pro-
cessing and responding to user input, and a nonterminating component, which is an
infinite loop that repeatedly invokes the terminating component. In this chapter,
you’ll see how to write programs that manage this distinction, both producing and
consuming potentially infinite data. We’ll start with one of the most common infinite
structures, streams, and later look at how to define total functions describing interac-
tive functions that execute indefinitely.

11.1 Streams: generating and processing infinite lists
Streams are infinite sequences of values, and you can process one value at a time. In
this section, you’ll see how to write functions that produce an infinite sequence of data,
as required, and how to write functions that consume finite portions of data produced
as a stream.

 As a first example, to illustrate the ideas behind streams, we’ll look at how to gen-
erate an infinite sequence of numbers, 0, 1, 2, 3, 4, ..., and how to process them as
needed to label elements in a list, as illustrated in figure 11.1.

293Streams: generating and processing infinite lists
You might use such a function after sorting some data, for example, to attach an
explicit index to the data. As you’ll see, you can use streams to cleanly separate the
production of an infinite list of labels from the consumption of the labels you need
for a specific input list.

 As well as showing you how to define potentially infinite data types, I’ll also intro-
duce the Stream data type, provided by the Prelude, and we’ll briefly look at some
functions on Streams. Finally, we’ll look at a larger example using a stream of random
numbers to implement an arithmetic game.

11.1.1 Labeling elements in a List

Suppose you want to write a function that labels every element of a List with an inte-
ger indicating its position in the list, as in figure 11.1. That is, something like this:

label : List a -> List (Integer, a)

Running this function on some examples should give the following results:

*Streams> label ['a', 'b', 'c']
[(0, 'a'), (1, 'b'), (2, 'c')] : List (Integer, Char)

*Streams> label ["Anderson", "Botham", "Willis", "Trueman"]
[(0, "Anderson"),
(1, "Botham"),
(2, "Willis"),
(3, "Trueman")] : List (Integer, String)

The following listing shows one way to write label by writing a helper function,
labelFrom that takes the label for the first element of the list, and then labels the
remainder of the list, incrementing the label.

0, 1, 2, 3, 4, ...

[Anderson, Botham, Willis, Trueman]

[(0, Anderson), (1, Botham), (2, Willis), (3, Trueman)]

Initial portion
of stream

Unused remainder
of stream

Labeled list

Initial list

Figure 11.1 Labeling the elements of a List by taking elements from an infinite
stream of numbers. The stream contains an infinite number of elements, but you only
take as many as you need to label the elements in the finite list.

294 CHAPTER 11 Streams and processes: working with infinite data

Initiali
the la

a

labelFrom : Integer -> List a -> List (Integer, a)
labelFrom lbl [] = []
labelFrom lbl (val :: vals) = (lbl, val) :: labelFrom (lbl + 1) vals

label : List a -> List (Integer a)
label = labelFrom 0

This works as required, but the definition of labelFrom combines two components:
labeling each element, and generating the label itself. An alternative way of writing
label would allow you to reuse these two components separately—you could write
two functions:

 countFrom—Generates an infinite stream of numbers, counting upwards from a
given starting point.

 labelWith—Takes an infinite stream of labels, and pairs each label with a corre-
sponding element in a finite list. It therefore only consumes as much of the
infinite stream as necessary to label the elements in the list.

A natural way to try to write countFrom might be to generate a List of Integer from a
given starting point:

countFrom : Integer -> List Integer
countFrom n = n :: countFrom (n + 1)

When Idris runs a compiled program, however, it fully evaluates the arguments to a
function before it evaluates the function itself. So, unfortunately, if you try to pass the
result of countFrom to a function that expects a List, that function will never run
because the result of countFrom will never be fully evaluated. If you ask Idris whether
this definition of countFrom is total, it will tell you that there’s a problem:

*StreamFail> :total countFrom
Main.countFrom is possibly not total due to recursive path:

Main.countFrom, Main.countFrom

You can see that countFrom will never terminate, because it makes a recursive call for
every input, but to write labelWith you’ll only need a finite portion of the result of
countFrom. What you really need to know about countFrom, therefore, is not that it
always terminates, but rather that it will always produce as many numbers as you need.
That is, you need to know that it’s productive and is guaranteed to generate an indefi-
nitely long sequence of numbers.

 As you’ll see in the next section, you can use types to distinguish between those
expressions for which evaluation is guaranteed to terminate and those expressions for
which evaluation is guaranteed to keep producing new values, marking arguments to
a data structure as potentially infinite.

Listing 11.1 Labeling each element of a list with an integer (Label.idr)

Labels the first element of
the list, and then

recursively labels the tail

zes
bel
t 0

295Streams: generating and processing infinite lists
11.1.2 Producing an infinite list of numbers

To generate an infinite list of numbers and consume only the finite portion of the list
that you need, you can use a new data type, Inf, for marking the potentially infinite
parts of the structure.

 You’ll see more details of how Inf works shortly. First, though, let’s take a look at a
data type of infinite lists that uses Inf.

data InfList : Type -> Type where
(::) : (value : elem) -> Inf (InfList elem) -> InfList elem

%name InfList xs, ys, zs

InfList is similar to the List generic type, with two significant differences:

 There’s no Nil constructor, only a (::) constructor, so there’s no way to end
the list.

 The recursive argument is wrapped in a new data type, Inf, that marks the argu-
ment as potentially infinite.

To manipulate potentially infinite computations, you can use the Delay and Force
functions. Listing 11.3 gives the types of Delay and Force. The idea is that you can use
Delay and Force to control exactly when a subexpression is evaluated, so that you only
calculate the finite portion of an infinite list that’s required for a specific function.

Inf : Type -> Type

Delay : (value : ty) -> Inf ty
Force : (computation : Inf ty) -> ty

The following listing shows how you can define countFrom, generating an infinite list
of Integers from a given starting value.

countFrom : Integer -> InfList Integer
countFrom x = x :: Delay (countFrom (x + 1))

Listing 11.2 A data type of infinite lists (InfList.idr)

Listing 11.3 The Inf abstract data type, for delaying potentially infinite computations

Listing 11.4 Defining countFrom as an infinite list (InfList.idr)

There’s no Nil constructor,
so no end to the list.

The Inf generic type marks
the InfList elem argument

as potentially infinite.

Name hints for interactive editing.

Inf is a generic type of potentially
infinite computations.

Delay is a function that states that
its argument should only be
evaluated when its result is forced.

Force is a function that returns the
result from a delayed computation.

The Delay means that the
remainder of the list will only
be calculated when explicitly
requested using Force.

296 CHAPTER 11 Streams and processes: working with infinite data
If you try evaluating countFrom 0 at the REPL to generate an infinite list counting
upwards from 0, you’ll see the effect of the Delay:

*InfList> countFrom 0
0 :: Delay (countFrom 1) : InfList Integer

You can see that the Idris evaluator has left the argument to Delay unevaluated. The
evaluator treats Force and Delay specially: it will only evaluate an argument to Delay
when explicitly requested to by a Force. As a result, despite there being a recursive call
to countFrom on every input, evaluation at the REPL still terminates. Idris even agrees
that it’s total:

*InfList> :total countFrom
Main.countFrom is Total

TERMINOLOGY: RECURSION AND CORECURSION, DATA AND CODATA You may hear
Idris programmers referring to functions such as countFrom as corecursive
rather than recursive, and infinite lists as codata rather than data. The distinc-
tion between data and codata is that data is finite and is intended to be con-
sumed, whereas codata is potentially infinite and is intended to be produced.
Whereas recursion operates by taking data and breaking it down toward a base
case, corecursion operates by starting at a base case and building up codata.

It may seem surprising that Idris considers countFrom to be total, given that it pro-
duces an infinite structure. Before we continue discussing how to work with infinite
lists, therefore, it’s worth investigating in more detail what it means for a function to
be total.

11.1.3 Digression: what does it mean for a function to be total?

If a function is total, it will never crash due to a missing case (that is, all well-typed
inputs are covered), and it will always return a well-typed result within a finite time.
The functions you’ve written in previous chapters have all taken finite data as inputs,
so they’re total as long as they terminate for all inputs. But now that you’ve seen the
Inf type, you’re able to write functions that produce infinite data, and these functions
don’t terminate! We’ll therefore need to refine our understanding of what it means
for a function to be total.

 Functions that produce infinite data can be used as components of terminating
functions, provided they’ll always produce a new piece of data on request. In the case
of countFrom, it will always produce a new Integer before making a delayed recursive
call.

 Figure 11.2 illustrates the structure of countFrom. The delayed recursive call to
countFrom is an argument to (::), meaning that countFrom will always produce at
least one element of an infinite list before making a recursive call. Therefore, any
function that consumes the result of countFrom will always have data to work with.

297Streams: generating and processing infinite lists

Idris considers a function to be total if there are patterns that cover all well-typed
inputs, and it can determine that one of the following conditions holds:

 When there’s a recursive call (or a sequence of mutually recursive calls), there’s
a decreasing argument that converges toward a base case.

 When there’s a recursive call as an argument to Delay, the delayed call will
always be an argument to a data constructor (or sequence of nested data con-
structors) after evaluation, for all inputs.

We discussed the first of these conditions in the previous chapter. The second condi-
tion allows us to use functions like countFrom in a terminating function. To illustrate
this further, it’s helpful to see how the resulting infinite list is used. As an example,
let’s write a function that consumes a finitely long prefix of an InfList.

11.1.4 Processing infinite lists

A function that generates an InfList is total provided that it’s guaranteed to keep
producing data whenever data is required. You can see how this works by writing a
program that calculates a finite list from the prefix of an infinite list:

getPrefix : (count : Nat) -> InfList ty -> List ty

countFrom n = n :: Delay (countFrom (n + 1))

Produced value

Delayed
recursive call

Figure 11.2 Producing values of an infinite
structure. The Delay means that Idris will only
make the recursive call to countFrom when
it’s required by Force.

Total functions defined
A total function is a function that, for all well-typed inputs, does one of the following:

 Terminates with a well-typed result
 Produces a non-empty finite prefix of a well-typed infinite result in finite time

We can describe total functions as either terminating or productive. The halting prob-
lem is the difficulty of determining whether a specific program terminates or not, and,
thanks to Alan Turing, we know that it’s impossible in general to write a program that
solves the halting problem. In other words, Idris can’t determine whether one of these
conditions holds for all total functions. Instead, it makes a conservative approxima-
tion by analyzing a function’s syntax.

298 CHAPTER 11 Streams and processes: working with infinite data
getPrefix returns a List consisting of the first count items from an infinite list. It
works by recursively taking the next element from the infinite list as long as it needs
more elements. You can define it with the following steps:

1 Define—First, case-split on the count argument:

getPrefix : (count : Nat) -> InfList a -> List a
getPrefix Z xs = ?getPrefix_rhs_1
getPrefix (S k) xs = ?getPrefix_rhs_2

 2 Refine—If you’re taking zero elements from the infinite list, return an empty
list:

getPrefix : (count : Nat) -> InfList a -> List a
getPrefix Z xs = []
getPrefix (S k) xs = ?getPrefix_rhs_2

 3 Define—If you’re taking more than one element, you’ll case-split on the infinite
list and then add the first value in the infinite list as the first element of the
result.

getPrefix : (count : Nat) -> InfList a -> List a
getPrefix Z xs = []
getPrefix (S k) (value :: xs) = value :: ?getPrefix_rhs_1

4 Type, refine—If you look at the type of the hole, ?getPrefix_rhs_1, you’ll see
the following:

a : Type
k : Nat
value : a
xs : Inf (InfList a)

getPrefix_rhs_1 : List a

You can see from the type of xs that it’s an infinite list that has not yet been
computed, because it’s an infinite list wrapped in an Inf. To complete the defi-
nition, you can Force the computation of xs and recursively get its prefix:

getPrefix : (count : Nat) -> InfList a -> List a
getPrefix Z xs = []
getPrefix (S k) (value :: xs) = value :: getPrefix k (Force xs)

The resulting definition is total, according to Idris:

*InfList> :total getPrefix
Main.getPrefix is Total

Even though one of the inputs is potentially infinite, getPrefix will only evaluate as
much as is necessary to retrieve count elements from the infinite list. Because count is
a finite number, getPrefix will always terminate as long as the InfList is guaranteed
to continue producing new elements.

 In practice, you can omit calls to Delay and Force and let Idris insert them where
required. If, during type checking, Idris encounters a value of type Inf ty when it

299Streams: generating and processing infinite lists
requires a value of type ty, it will add an implicit call to Force. Similarly, if it encounters
a ty when it requires an Inf ty, it will add an implicit call to Delay. The following listing
shows how you can define countFrom and getPrefix using implicit Force and Delay.

countFrom : Integer -> InfList Integer
countFrom x = x :: countFrom (x + 1)

getPrefix : Nat -> InfList a -> List a
getPrefix Z x = []
getPrefix (S k) (x :: xs) = x :: getPrefix k xs

You can therefore treat Inf as an annotation on a type, mark the parts of a data struc-
ture that may be infinite, and let the Idris type checker manage the details of when
computations must be delayed or forced.

 Now that you’ve seen how to separate the production of data, using countFrom to
generate an infinite list of numbers, from the consumption of data, using a function
like getPrefix, we can revisit the definition of label. Rather than using our own
InfList data type and countFrom, we’ll use a data type defined in the Prelude for this
purpose: Stream.

11.1.5 The Stream data type

Listing 11.6 shows the definition of Stream in the Prelude. It has the same structure as
the definition of InfList you saw in the previous section. Additionally, the Prelude
provides several useful functions for building and manipulating Streams, some of
which this listing also shows.

data Stream : Type -> Type where
(::) : (value : elem) -> Inf (Stream elem) -> Stream elem

repeat : elem -> Stream elem
take : (n : Nat) -> (xs : Stream elem) -> List elem
iterate : (f : elem -> elem) -> (x : elem) -> Stream elem

You can see the functions repeat, take, and iterate in action at the REPL. For exam-
ple, repeat generates an infinite sequence of an element, delayed until specifically
requested:

Idris> repeat 94
94 :: Delay (repeat 94) : Stream Integer

Listing 11.5 Taking a finite portion of an infinite list, with implicit Force and Delay
(InfList.idr)

Listing 11.6 The Stream data type and some functions, defined in the Prelude

The Idris type checker implicitly inserts
the Delay required for the recursive call.

The Idris type checker implicitly
inserts the Force required for xs.

Generates an
infinite list of a
specific element

Takes a specific number of elements
from the start of a stream

Generates a stream by
repeatedly applying a function

300 CHAPTER 11 Streams and processes: working with infinite data
Like getPrefix on InfList, take takes a prefix of a Stream of a specific length:

Idris> take 10 (repeat 94)
[94, 94, 94, 94, 94, 94, 94, 94, 94, 94] : List Integer

iterate applies a function repeatedly, generating a stream of the results. For exam-
ple, starting at 0 and repeatedly applying (+1) leads to a sequence of increasing inte-
gers, like countFrom:

Idris> take 10 (iterate (+1) 0)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] : List Integer

Putting all of this together, the following listing shows how to define label using
iterate to generate an infinite sequence of integer labels, and a labelWith function
that consumes enough of an infinite sequence of labels to attach a label to each ele-
ment of a List.

labelWith : Stream labelType -> List a -> List (labelType, a)
labelWith lbs [] = []
labelWith (lbl :: lbls) (val :: vals) = (lbl, val) :: labelWith lbls vals

label : List a -> List (Integer, a)
label = labelWith (iterate (+1) 0)

Listing 11.7 Labeling each element of a List using a Stream (Streams.idr)

Syntactic sugar for stream generation
Idris provides a concise syntax for generating streams of numbers, similar to the syn-
tax for lists:

Idris> take 10 [1..]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] : List Integer

The syntax [1..] generates a Stream counting upwards from 1. This works for any
countable numeric type, as in the following example:

Idris> the (List Int) take 10 [1..]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] : List Int

You can also change the increment:

Idris> the (List Int) (take 10 [1,3..])
[1, 3, 5, 7, 9, 11, 13, 15, 17, 19] : List Int

Uses a generic type variable, labelType, because
labelWith never inspects the label itself

Nothing left to label, so
returns an empty list

Labels the first element of the
list with the first element in

the stream of labels

301Streams: generating and processing infinite lists
In this definition, you separate the two components of generating the labels and
assigning labels to each element of the list.

 You can even give a more generic type to labelWith, taking a Stream labelType
rather than a Stream Integer, and allow labeling by any type for which you can gener-
ate a Stream. For example, the cycle function generates a Stream that repeats a given
sequence:

*Streams> take 10 $ cycle ["a", "b", "c"]
["a", "b", "c", "a", "b", "c", "a", "b", "c", "a"] : List String

Using cycle to generate a Stream, you could label each element of a List with a
cycling sequence of labels, repeated as many times as necessary to label the entire list:

*Streams> labelWith (cycle ["a", "b", "c"]) [1..5]
[("a", 1), ("b", 2), ("c", 3), ("a", 4), ("b", 5)] : List (String, Integer)

11.1.6 An arithmetic quiz using streams of random numbers

You can use a Stream in any situation where you need a source of data but don’t know
in advance how much data you’ll need to generate. For example, you could write an
interactive arithmetic quiz that takes a source of numbers for the questions. The fol-
lowing listing shows how you might do this.

quiz : Stream Int -> (score : Nat) -> IO ()
quiz (num1 :: num2 :: nums) score

= do putStrLn ("Score so far: " ++ show score)
putStr (show num1 ++ " * " ++ show num2 ++ "? ")
answer <- getLine
if cast answer == num1 * num2

then do putStrLn "Correct!"
quiz nums (score + 1)

else do putStrLn ("Wrong, the answer is " ++ show (num1 * num2))
quiz nums score

The quiz function takes an infinite source of Ints and the score so far, and then
returns an IO action that displays the score and a question, reads an answer from the
user, and repeats. The questions arise directly from the input stream, so you could try
with a sequence of increasing numbers:

*Arith> :exec quiz (iterate (+1) 0) 0
Score so far: 0
0 * 1? 0
Correct!
Score so far: 1
2 * 3? 6
Correct!

Listing 11.8 An arithmetic quiz, taking a Stream of numbers for the questions
 (Arith.idr)

Takes two numbers from
an infinite source of Ints

Correct answer; continues
with an increased score

Wrong answer; displays the correct
answer and continues with the same score

302 CHAPTER 11 Streams and processes: working with infinite data
Score so far: 2
4 * 5? 20
Correct!
Score so far: 3

ABORTING EXECUTION Execution of a repeatedly looping program will con-
tinue until some external event causes the program to exit. You can abort exe-
cution at the REPL by pressing Ctrl-C.

So far, this isn’t especially interesting because you know in advance what the questions
will be. Instead, you could write a function that generates a stream of pseudo-random
Ints generated from an initial seed. The following listing shows one way to generate a
random-looking stream of numbers using a linear congruential generator.

randoms : Int -> Stream Int
randoms seed = let seed' = 1664525 * seed + 1013904223 in

(seed' `shiftR` 2) :: randoms seed'

PSEUDO-RANDOM NUMBER GENERATION The randoms function in listing 11.9
generates a random-looking, but predictable, stream of numbers from an ini-
tial seed, using a linear congruential generator. This is one of the oldest tech-
niques for pseudo-random number generation. It suits our purposes for this
example, but it’s not suitable for situations where high-quality randomness is
required, such as cryptographic applications, due to the distribution and pre-
dictability of the generated numbers.

You could try running quiz with a stream of numbers generated by randoms:

*Arith> :exec quiz (randoms 12345) 0
Score so far: 0
1095649041 * -2129715532? no idea
Wrong, the answer is -765659660
Score so far: 0

Earlier, the questions were too predictable, but now they’re perhaps a little too hard
for most of us! Furthermore, in the preceding example, the result has even over-
flowed the bounds of an Int, so the reported answer is incorrect. Instead, the next list-
ing shows one way to process the results of randoms so that they’re within reasonable
bounds for an arithmetic quiz.

import Data.Primitives.Views

arithInputs : Int -> Stream Int
arithInputs seed = map bound (randoms seed)

Listing 11.9 Generating a stream of pseudo-random numbers from a seed (Arith.idr)

Listing 11.10 Generating suitable inputs for quiz (Arith.idr)

Multiplies the current seed by one
constant, and adds another

shiftR bitwise-shifts an integer
right by a given number of places

You need to import this
for the Divides view

303Streams: generating and processing infinite lists
where
bound : Int -> Int
bound num with (divides num 12)

bound ((12 * div) + rem) | (DivBy prf) = rem + 1

You can use arithInputs as a source of random inputs for quiz and be sure that all
the questions will use numbers between 1 and 12. Here’s an example:

*Arith> :exec quiz (arithInputs 12345) 0
Score so far: 0
2 * 1? 2
Correct!
Score so far: 1
6 * 2? 18
Wrong, the answer is 12
Score so far: 1
11 * 10? 110
Correct!
Score so far: 2

You’ve successfully used a source of random Ints as inputs to the quiz, and because
randoms (and hence arithInputs) produces an infinite sequence of numbers, you’ll
be able to generate new numbers as long as you need to.

 There is, however, one remaining problem, which is that quiz itself is not total:

*Arith> :total quiz
Main.quiz is possibly not total due to recursive path:

Main.quiz, Main.quiz

This shouldn’t really surprise you, because there’s nothing in the definition of quiz
that allows it to terminate. Instead, like countFrom, randoms, and arithInputs, it’s
reading user input and continually producing an infinite sequence of IO actions.

Matches on num by describing it
in terms of a dividend and
remainder when divided by 12

Safe division with the Divides view
You can reduce an arbitrary Int to a value between 1 and 12 by dividing by 12 and
checking the remainder. Dividing isn’t necessarily safe, since division by 0 is unde-
fined on Int, so instead you can use a view of Int that explains that a number is
either 0 or composed of a multiplication plus a remainder:

data Divides : Int -> (d : Int) -> Type where
DivByZero : Int.Divides x 0
DivBy : (prf : rem >= 0 && rem < d = True) ->

Int.Divides ((d * div) + rem) d

divides : (val : Int) -> (d : Int) -> Divides val d

Note that in the DivBy case, you also have a proof that the remainder is guaranteed
to have a value between 0 and the divisor by using the equality type = introduced in
chapter 8.

304 CHAPTER 11 Streams and processes: working with infinite data
 In practice, interactive programs often have an outer loop, which you can run
indefinitely, invoking specific commands, each of which you’d like to terminate so
that you can issue the next command. The way to write interactive programs that run
indefinitely, therefore, is to distinguish the types of interactive programs that describe
terminating sequences of actions (commands in our main loop) from the types of inter-
active programs that describe possibly infinite sequences of actions (the main loop
itself). We’ll explore this further in the next section.

Exercises

1 Write an every_other function that produces a new Stream from every second ele-
ment of an input Stream.

If you’ve implemented this correctly, you should see the following:

*ex_11_1> take 10 (every_other [1..])
[2, 4, 6, 8, 10, 12, 14, 16, 18, 20] : List Integer

 2 Write an implementation of Functor (as described in section 7.3.1) for InfList.
If you’ve implemented this correctly, you should see the following, using count-

From and getPrefix as defined in section 11.1.4:

*ex_11_1> getPrefix 10 (map (*2) (countFrom 1))
[2, 4, 6, 8, 10, 12, 14, 16, 18, 20] : List Integer

 3 Define a Face data type that represents the faces of a coin: heads or tails. Then,
define this:

coinFlips : (count : Nat) -> Stream Int -> List Face

This should return a sequence of count coin flips using the stream as a source of
randomness. If you’ve implemented this correctly, you should see something like
the following:

*ex_11_1> coinFlips 6 (randoms 12345)
[Tails, Heads, Tails, Tails, Heads, Tails] : List Face

Hint: It will help to define a function, getFace : Int -> Face.

 4 You can define a function to calculate the square root of a Double as follows:

1 Generate a sequence of closer approximations to the square root.
2 Take the first approximation that, when squared, is within a desired bound from

the original number.

Write a function that generates a sequence of approximations:

square_root_approx : (number : Double) -> (approx : Double) -> Stream Double

Here, you’re looking for the square root of number, starting from an approximation,
approx. You can generate the next approximation using this formula:

next = (approx + (number / approx)) / 2

305Infinite processes: writing interactive total programs
If you’ve implemented this correctly, you should see the following:

*ex_11_1> take 3 (square_root_approx 10 10)
[10.0, 5.5, 3.659090909090909] : List Double

*ex_11_1> take 3 (square_root_approx 100 25)
[25.0, 14.5, 10.698275862068964] : List Double

3 Write a function that finds the first approximation of a square root that’s within a
desired bound, or within a maximum number of iterations:

square_root_bound : (max : Nat) -> (number : Double) -> (bound : Double) ->
(approxs : Stream Double) -> Double

This should return the first element of approxs if max is zero. Otherwise, it should
return the first element (let’s call it val) for which the difference between val x val
and number is smaller than bound.

If you’ve implemented this correctly, you should be able to define square_root
as follows, and it should be total:

square_root : (number : Double) -> Double
square_root number = square_root_bound 100 number 0.00000000001

(square_root_approx number number)

You can test it with the following values:

*ex_11_1> square_root 6
2.449489742783178 : Double

*ex_11_1> square_root 2500
50.0 : Double

*ex_11_1> square_root 2501
50.009999000199954 : Double

11.2 Infinite processes: writing interactive total programs
When you write a function to generate a Stream, you give a prefix of the Stream and
generate the remainder recursively. This is similar to quiz in that you give the initial
IO actions to run and then generate the remainder of the IO actions recursively. So,
you can think of an interactive program as being a program that produces a potentially
infinite sequence of interactive actions.

 In chapter 5, you wrote interactive programs using the IO generic type, where IO
ty is the type of terminating interactive actions giving a result of type ty. In this sec-
tion, you’ll see how to write nonterminating, but productive (and therefore total),
interactive programs by defining an InfIO type for representing infinite sequences of
IO actions.

 Because InfIO describes infinite sequences of actions, the functions must be pro-
ductive, so you can be certain that the resulting programs continue to produce new IO
actions for execution while continuing to run forever. But InfIO merely describes
sequences of interactive actions, so you’ll also need to write a function to execute those
actions.

306 CHAPTER 11 Streams and processes: working with infinite data
 Overall, we’ll take the following approach to writing interactive total programs:

1 Define a type InfIO that describes infinite sequences of interactive actions.
 2 Write nonterminating but productive functions using InfIO.
3 Define a run function that converts InfIO programs to IO actions.

Your first implementation of run will not, itself, be total. You’ll then see how to refine
the definition so that even run is total, using a data type to describe how long execu-
tion should continue. First, though, you’ll need to see how to describe infinite pro-
cesses by defining InfIO.

11.2.1 Describing infinite processes

The following listing shows how to define the InfIO type. It’s similar to Stream, except
that, in an interactive program, you may want the value produced by the first action to
influence the rest of a computation.

data InfIO : Type where
Do : IO a

-> (a -> Inf InfIO)
-> InfIO

There are two arguments to Do:

 A description of an IO action to execute
 The remainder of the infinite sequence of actions. Because its type is a -> Inf

InfIO, it can use the result produced by the first action to compute the remain-
ing actions.

By using Inf to mark the remainder of the sequence as infinite, you’re telling Idris
that you expect functions that return a value of type InfIO to be productive. In other
words, as with functions on Stream, delayed recursive calls that produce an InfIO
must be arguments to a constructor. The following listing shows how this works in a
recursive program that repeatedly displays a message.

loopPrint : String -> InfIO
loopPrint msg = Do (putStrLn msg)

(_ => loopPrint msg)

The recursive call to loopPrint is an argument to the constructor Do, and loopPrint
is guaranteed to produce a constructor (Do) as a finite prefix of its result. This satisfies
the definition of a productive total function from section 11.1.3, so Idris is happy that
loopPrint is total:

Listing 11.11 Infinite interactive processes (InfIO.idr)

Listing 11.12 An infinite process that repeatedly displays a message (InfIO.idr)

An IO action that produces
a value of type a

Given a value of type a, calculates
an infinite sequence of IO actions

Displays a message
using an IO action

Continues producing an infinitely
long sequence of actions

307Infinite processes: writing interactive total programs
*InfIO> :total loopPrint
Main.loopPrint is Total

Recall from chapter 5 that IO is a generic type describing interactive actions and that
it will be executed by the runtime system. If you try evaluating loopPrint at the REPL,
you’ll see a description of the first IO action that will be executed and the delayed
remainder of the infinite sequence of actions:

*InfIO> loopPrint "Hello"
Do (io_bind (prim_write "Hello!\n") (__bindx => io_return ()))

(\underscore => Delay (loopPrint "Hello")) : InfIO

Just as with IO, for this to be useful in practice, you’ll also need to be able to execute
infinite sequences of actions.

11.2.2 Executing infinite processes

In chapter 5, you learned how the Idris runtime system will execute programs of type
IO ty, where ty is the type of value produced by an interactive computation. So, in
order to execute a value of type InfIO, you’ll need to start by converting it to an IO ().
Here’s one way to do this.

run : InfIO -> IO ()
run (Do action cont) = do res <- action

run (cont res)

Using run, you can convert your function that repeatedly prints a message to an IO
action, and execute it using :exec:

*InfIO> :exec run (loopPrint "on and on and on...")
on and on and on...
on and on and on...
on and on and on...

Because this runs indefinitely, at least until you abort it by pressing Ctrl-C, you should
perhaps not be surprised to find that Idris doesn’t consider run to be total:

*InfIO> :total run
Main.run is possibly not total due to recursive path:

Main.run, Main.run

You know that loopPrint will continue to produce new IO actions to execute, because
it’s total. This is valuable because a program that continues to execute IO actions is
going to continue to make visible progress (at least assuming those actions produce
some output, which we’ll consider further in section 11.3.2). It would be nice if run
were also total, so that you’d at least know that all possible IO actions are processed and

Listing 11.13 Converting an expression of type InfIO to an executable IO action
(InfIO.idr)

The first action to execute
is the first argument to Do.

Continues execution by passing
the result of the action, res, to
the rest of the computation, cont

Continues indefinitely

308 CHAPTER 11 Streams and processes: working with infinite data

F
defines

length
tim

proc
can r
that there isn’t any unexpected nontermination caused by the implementation of run
itself.

 This would seem to be impossible: the only way to have a total, nonterminating
function is to use the Inf type, and IO is a type of terminating action that doesn’t use
Inf. And, indeed, if you want functions to execute indefinitely at runtime, you’ll need
at least some way to escape from total functions. You can, however, try to make the
escape as quietly as possible.

 To achieve this, we’ll begin by making a terminating version of run that takes as an
argument an upper bound on the number of actions it’s willing to execute.

11.2.3 Executing infinite processes as total functions

Earlier, in section 11.1.4, you wrote a getPrefix function that retrieved a finite por-
tion of an infinite list:

getPrefix : (count : Nat) -> InfList a -> List a

You can think of the count argument as being the “fuel” that allows you to continue
processing the infinite list. Once you run out of fuel, you can’t process any more of
the list. You can do something similar for run, giving it an additional argument stand-
ing for the number of iterations it will run.

 The following listing defines a Fuel data type and gives a new, total, definition of
run that will execute actions as long as fuel remains.

data Fuel = Dry | More Fuel

tank : Nat -> Fuel
tank Z = Dry
tank (S k) = More (tank k)

run : Fuel -> InfIO -> IO ()
run (More fuel) (Do c f) = do res <- c

run fuel (f res)
run Dry p = putStrLn "Out of fuel"

Now, run is total:

*InfIO> :total run
Main.run is Total

Unfortunately, you still have a problem because you now need to specify an explicit
maximum number of actions a program is allowed to execute, so you don’t really have
indefinitely running processes anymore! For example:

*InfIO> :exec run (tank 5) (loopPrint "vroom")
vroom
vroom

Listing 11.14 Converting an expression of type InfIO to an executable IO action
running for a finite time (InfIO.idr)

uel
the
 of
e a
ess
un.

Generates an amount of fuel. Defines
a new type for Fuel instead of using
Nat—you’ll see why shortly.

Consumes one drop of fuel
and continues execution

No more fuel;
abandons execution

309Infinite processes: writing interactive total programs
vroom
vroom
vroom
Out of fuel

It’s valuable to ensure that run is total, because it guarantees that the implementation
of run itself won’t be the cause of any unexpected nontermination. If you still want
programs to run indefinitely, though, you’ll need to find a way to generate fuel indefi-
nitely. You can achieve this by using the Lazy data type.

11.2.4 Generating infinite structures using Lazy types

If you have a means of generating infinite Fuel, you can run interactive programs
indefinitely. Listing 11.15 shows how you can do this using a single nontotal function,
forever. You also need to change the definition of Fuel so that it’s explicit in the type
that you only generate Fuel when it’s required.

data Fuel = Dry | More (Lazy Fuel)

forever : Fuel
forever = More forever

FOREVER AND NONTERMINATION It’s necessary for forever to be nontotal
because it (deliberately) introduces nontermination. Fortunately, this is
the only nontotal function you need in order to be able to execute programs
forever.

The purpose of Lazy is to control when Idris evaluates an expression. As the name
Lazy implies, Idris won’t evaluate an expression of type Lazy ty until it’s explicitly
requested by Force, which returns a value of type ty. The Prelude defines Lazy simi-
larly to Inf, which you defined in section 11.1.2:

Lazy : Type -> Type

Delay : (value : ty) -> Lazy ty
Force : (computation : Lazy ty) -> ty

Also, like Inf, Idris inserts calls to Delay and Force implicitly. In fact, Inf and Lazy are
sufficiently similar that they’re implemented internally using the same underlying
type, as the next listing shows. The only difference in practice between Inf and Lazy is
the way the totality checker treats them, as explained in the sidebar.

data DelayReason = Infinite | LazyValue

data Delayed : DelayReason -> Type -> Type where
Delay : (val : ty) -> Delayed reason ty

Listing 11.15 Generating infinite fuel (InfIO.idr)

Listing 11.16 Internal definition of Inf and Lazy

Lazy, explained shortly, means that
the value of the argument will only
be calculated when needed.

Generates fuel as needed

A computation is delayed either
because it may be infinite, or
because it’s to be evaluated later.

310 CHAPTER 11 Streams and processes: working with infinite data
Inf : Type -> Type
Inf ty = Delayed Infinite ty

Lazy : Type -> Type
Lazy ty = Delayed LazyValue ty

Force : Delayed reason ty -> ty

You’ve implemented three functions: loopPrint, which is the interactive program;
run, which executes interactive programs given fuel; and forever, which provides an
indefinite quantity of fuel. To summarize:

 loopPrint is a total function because it continues to produce IO actions indefi-
nitely.

 run is a total function because it will consume IO actions, executing them as
long as there is Fuel available.

 forever is a nontotal (or partial) function because it will never terminate and
doesn’t produce any data inside an Inf type.

By writing a version of run that will process data as long as fuel is available, Idris can
guarantee that run is total, consuming fuel as it goes. You still have an “escape hatch”
that allows you to run interactive programs indefinitely, in the form of the forever
function. Nevertheless, forever is the only function that’s not total.

 You can still improve the definition of loopPrint itself. When we wrote interactive
programs in chapter 5, we used do notation to help make interactive programs more
readable, but we haven’t been able to do so using InfIO. You can, however, extend do
notation to support your own data types, like InfIO.

Inf is a type synonym for a
delayed infinite value.

Lazy is a type synonym for
a delayed lazy value.

Force causes a delayed
value to be evaluated.

Totality checking with Inf and Lazy
At runtime, Inf and Lazy behave the same way. The key difference between them is
the way the totality checker treats them. Idris detects termination by looking for argu-
ments that converge toward a base case, so it needs to know whether an argument
to a constructor is smaller (that is, closer to a base case) than the overall constructor
expression:

 If the argument has type Lazy ty, for some type ty, it’s considered smaller
than the constructor expression.

 If the argument has type Inf ty, for some type ty, it’s not considered smaller
than the constructor expression, because it may continue expanding indefi-
nitely. Instead, Idris will check that the overall expression is productive, as
discussed in section 11.1.3.

If you used Inf for Fuel, rather than Lazy, run would no longer be total because the
argument, fuel, wouldn’t be considered smaller than the expression More fuel.

311Infinite processes: writing interactive total programs
11.2.5 Extending do notation for InfIO

As you saw in chapter 5, do notation translates to applications of the (>>=) operator,
as illustrated again in figure 11.3.

You’ve seen this transformation for IO in chapter 5, for Maybe in chapter 6, and in gen-
eral for implementations of the Monad interface in chapter 7. In fact, the transforma-
tion is purely syntactic, so you can define your own implementations of (>>=) to use
do notation for your own types. The following listing shows how you can define do
notation for InfIO.

(>>=) : IO a -> (a -> Inf InfIO) -> InfIO
(>>=) = Do

loopPrint : String -> InfIO
loopPrint msg = do putStrLn msg

loopPrint msg

Idris translates the do block to applications of (>>=) and decides which version of
(>>=) to use by looking at the required type. Here, because the required type of the
overall expression is InfIO, it uses the version of (>>=) that produces a value of type
InfIO.

 The InfIO type allows you to describe infinitely running interactive programs, and
by defining a (>>=) operator, you can write those programs in much the same way as
programs with IO, provided that the final action is to call a function of type InfIO.

 Now that you've seen that you can write productive interactive programs using do
notation, we can revisit the arithmetic quiz from section 11.1.6.

11.2.6 A total arithmetic quiz

To conclude this section, we’ll update the arithmetic quiz so that it’s a total function,
and you’ll see how you can incorporate this in a complete Idris program. Listing 11.18
shows our starting point, setting up the InfIO type and run function, as you’ve seen
earlier in this section. You’ll need Data.Primitives.Views for generating the stream
of random numbers. You’ll also import the System module for the time function,
which you’ll use to help initialize the stream of random numbers.

import Data.Primitives.Views
import System

Listing 11.17 Defining do notation for infinite sequences of actions

Listing 11.18 Setting up InfIO (ArithTotal.idr)

do x <- action
 result

action >>= \x => result

Figure 11.3 Transforming do notation
to an expression using the >>=
operator when sequencing actions

Defines the (>>=) operator by
using Do from InfIO directly

Idris translates this do block to
applications of the (>>=) operator.

You’ll need this for the time function, which
you’ll use to seed the random stream.

312 CHAPTER 11 Streams and processes: working with infinite data
%default total

data InfIO : Type where
Do : IO a -> (a -> Inf InfIO) -> InfIO

(>>=) : IO a -> (a -> Inf InfIO) -> InfIO
(>>=) = Do

data Fuel = Dry | More (Lazy Fuel)

run : Fuel -> InfIO -> IO ()
run (More fuel) (Do c f) = do res <- c

run fuel (f res)
run Dry p = putStrLn "Out of fuel"

Listing 11.19 shows the next step, implementing quiz using InfIO. Because InfIO is
an infinite sequence of IO actions, you can write quiz as before, with the final step
being a recursive call. In fact, the definition is identical to the earlier definition; only
the type has changed.

quiz : Stream Int -> (score : Nat) -> InfIO
quiz (num1 :: num2 :: nums) score

= do putStrLn ("Score so far: " ++ show score)
putStr (show num1 ++ " * " ++ show num2 ++ "? ")
answer <- getLine
if (cast answer == num1 * num2)

then do putStrLn "Correct!"
quiz nums (score + 1)

else do putStrLn ("Wrong, the answer is " ++ show (num1 * num2))
quiz nums score

Listing 11.19 Defining a total quiz function (ArithTotal.idr)

This compiler directive means that
all functions are, unless otherwise
stated, expected to be total.

The %default total directive
Idris supports a number of compiler directives that change certain details about the
language. In listing 11.18, the %default total directive means that Idris will report
an error if there are any functions that it can’t guarantee to be total.

You can override this for individual functions with the partial keyword. For example,
forever is not total:

partial
forever : Fuel
forever = More forever

It’s a good idea to use %default total in your programs, because if Idris can’t deter-
mine that a function is either terminating or productive, this can be a sign that there’s
a problem with the function’s definition. Furthermore, explicitly marking which func-
tions are partial means that if there’s a problem with nontermination, or a program
that crashes due to missing input, you’ve minimized the number of functions that
could cause the problem.

The last step is a
recursive call to quiz.

These calls are
productive, because

they each follow a
sequence of IO actions.

313Infinite processes: writing interactive total programs
Because you’re using the %default total annotation, you can be sure that quiz is
total. There are two recursive calls to quiz, and Idris can determine that each one is
guaranteed to be prefixed by a sequence of IO actions, so quiz is guaranteed to keep
producing IO actions indefinitely.

 The final step is to write a main function that calls run to execute quiz with a
stream of Ints. Here are the remaining parts of the implementation.

randoms : Int -> Stream Int
randoms seed = let seed' = 1664525 * seed + 1013904223 in

(seed' `shiftR` 2) :: randoms seed'

arithInputs : Int -> Stream Int
arithInputs seed = map bound (randoms seed)

where
bound : Int -> Int
bound x with (divides x 12)

bound ((12 * div) + rem) | (DivBy prf) = abs rem + 1

partial
forever : Fuel
forever = More forever

partial
main : IO ()
main = do seed <- time

run forever (quiz (arithInputs (fromInteger seed)) 0)

You’ve used randoms and arithInputs, as defined in section 11.1.6, to generate the
stream of Ints. By using the system time to initialize the stream, you’ll get different
questions every time you run the program.

 In the whole implementation, the only functions that aren’t total are forever and
main, the latter only because it needs to use forever to generate an indefinite amount
of fuel for run. Because you used the %default total annotation, you needed to mark
these as partial explicitly. That means you can be sure that the only possible cause of
nontermination in the program is the fact that you’ve deliberately said that the pro-
gram should run forever.

 Other than forever, you know that the individual components will be one of the
following:

 Productive—Such as quiz continuing to produce IO actions for interpretation
and randoms continuing to produce new random numbers when required

 Terminating—Such as the individual IO commands and the generation of the
next random number from a seed

This distinction is useful for writing realistic programs such as servers and REPLs, which
you want to run indefinitely while being sure that each individual action the program
executes terminates. Often, though, you’ll want more flexibility. At the moment, for
example, you have no way to quit the quiz cleanly. We’ll return to this in the next section.

Listing 11.20 Completing the implementation with main (ArithTotal.idr)

forever needs to be
marked partial explicitly

because it doesn’t
terminate and doesn’t
use Inf, and you used

%default total.

main needs to be
marked partial
because it uses forever. You can use the system time

to initialize the stream of
random numbers.

314 CHAPTER 11 Streams and processes: working with infinite data
Exercise

The repl function defined in the Prelude isn’t total because it’s an IO action that
loops indefinitely. Implement a new version of repl using InfIO:

totalREPL : (prompt : String) -> (action : String -> String) -> InfIO

If you’ve implemented this correctly, totalREPL should be total, and you should be
able to test it as follows:

*ex_11_2> :total totalREPL
Main.totalREPL is Total

*ex_11_2> :exec run forever (totalREPL "\n: " toUpper)

: Hello [user input]
HELLO
: World [user input]
WORLD

11.3 Interactive programs with termination
Using Inf, you can explicitly control when you want data to be produced, or when you
want it to be consumed. As a result, you have a choice between programs that always
terminate and programs that continue running forever. To write complete applica-
tions, though, you’ll need more control. After all, although you want a server to run
indefinitely, you’d like to be able to shut it down cleanly when you want to.

 So far, the types you’ve defined using Inf have had only one constructor, so they’ve
required you to produce infinite sequences. Instead, you can mix infinite and finite
components in a single data type, which means you can describe processes that can
run indefinitely, but which are also allowed to terminate. In this section, you’ll see
how to refine the InfIO type to support processes that terminate cleanly. Moreover,
you’ll see how to introduce more precision into the type, and define a type of pro-
cesses specifically for console I/O.

11.3.1 Refining InfIO: introducing termination

Using InfIO, you can write total interactive programs that are guaranteed to keep pro-
ducing IO actions, running indefinitely. The following listing shows a small example of
the form you saw in the previous section. This program repeatedly asks for the user’s
name and displays a greeting.

greet : InfIO
greet = do putStr "Enter your name: "

name <- getLine
putStrLn ("Hello " ++ name)
greet

Listing 11.21 Repeatedly greeting a user, running forever (Greet.idr)

315Interactive programs with termination
Typically, when you write interactive programs, you’ll want to provide a means for the
user to quit. Unfortunately, the only way a user can quit greet is by pressing Ctrl-C.
There’s no way to write a function in InfIO that quits any other way!

 Fortunately, you can solve this with a small variation on InfIO. The Inf type marks
a value as potentially infinite, rather than guaranteeing that the value is infinite, and
you can introduce extra data constructors for potentially infinite types. You can define
a new RunIO type, shown in the next listing, that adds a Quit constructor to describe
programs that exit, producing a value.

data RunIO : Type -> Type where
Quit : a -> RunIO a
Do : IO a -> (a -> Inf (RunIO b)) -> RunIO b

(>>=) : IO a -> (a -> Inf (RunIO b)) -> RunIO b
(>>=) = Do

Using RunIO, you can write a version of greet, shown in the following listing, that
quits when the user gives an empty input.

greet : RunIO ()
greet = do putStr "Enter your name: "

name <- getLine
if name == ""

then do putStrLn "Bye bye!"
Quit ()

else do putStrLn ("Hello " ++ name)
greet

Depending on the input, greet is either terminating or productive. The totality
checker accepts greet as total, because it satisfies the definition from section 11.1.3
that a total function either terminates or is productive for all well-typed inputs.

 Before you can execute greet, you’ll need to write a new version of run that trans-
lates a program in RunIO to a sequence of IO actions for the runtime system to exe-
cute. Previously, run would only terminate on running out of Fuel, but now there are
two possible reasons for termination:

 Running out of Fuel, as before
 Exiting cleanly, with a result, if the process being executed invokes Quit

Listing 11.22 The RunIO type, describing potentially infinite processes with an
additional Quit command (RunIO.idr)

Listing 11.23 Repeatedly greets a user, exiting on empty input (RunIO.idr)

RunIO is parameterized by the type
of value produced by an interactive
process, if it terminates. Quits, producing

a value
A process consisting of a
single IO action, followed
by a potentially infinite
process

Implements (>>=) to support
do notation for RunIO programs

The input was empty, so
displays a message and exits.
Here, greet is terminating.

There was input, so greets the user and
continues. The recursive call follows IO
actions, so greet is productive.

316 CHAPTER 11 Streams and processes: working with infinite data
You can distinguish these results in the type:

run : Fuel -> RunIO a -> IO (Maybe a)

The possible results of run correspond to the two possible reasons for termination:

 If run runs out of Fuel, it returns Nothing.
 If run executes an action of the form Quit value, it returns Just value.

The following listing gives the new definition of run for RunIO.

run : Fuel -> RunIO a -> IO (Maybe a)
run fuel (Quit value) = pure (Just value)
run (More fuel) (Do c f) = do res <- c

run fuel (f res)
run Dry p = pure Nothing

Finally, you can write a main program that executes greet and discards the result:

partial
main : IO ()
main = do run forever greet

pure ()

Because run now creates an IO action that produces a value of type Maybe () when
invoked with greet, and main is expected to create an action that produces a value of
type (), you need to finish by calling pure (). When you execute main at the REPL, you
can now exit cleanly by entering an empty string:

*RunIO> :exec main
Enter your name: Edwin
Hello Edwin
Enter your name:
Bye bye!

With RunIO, you’ve refined InfIO with the ability to terminate a process cleanly when
required. This gives you more freedom to write interactive programs, but there’s

Listing 11.24 Converting an expression of type RunIO ty to an executable action of
type IO ty (RunIO.idr)

Interactive programs and infinite types
Using a potentially infinite data type like RunIO is not unique to Idris. A similar idea
was described by Peter Hancock and Anton Setzer in their 2004 paper “Interactive
programs and weakly final coalgebras in dependent type theory,” following on from
their earlier work in describing interactive programs with dependent types.

The generic type Inf that you use in the type of potentially infinite structures follows
a similar idea used in the Agda programming language, described by Nils Anders Dan-
ielsson in his 2010 paper “Total Parser Combinators.”

Terminates due to invoking the Quit
command, so it returns Just value

Terminates due to running out
of fuel, so it returns Nothing

Empty string

317Interactive programs with termination
another way in which RunIO arguably gives you too much freedom. Specifically, a pro-
cess described by RunIO is a sequence of arbitrary IO actions, giving you several possi-
bilities, including these:

 Reading from and writing to the console
 Opening and closing files
 Opening network connections
 Deleting files

For the programs you’ve written in this chapter, you’re only interested in the first of
these. The others are not only unnecessary, but lead to the possibility of remote secu-
rity vulnerabilities in the third case, and potentially destructive errors in the fourth.

 One of the principles of type-driven development, which we discussed in chapter 1,
is that we should aim to write types that describe as precisely as possible the values that
inhabit that type. To conclude this chapter, therefore, we’ll look at how we can refine
the RunIO type to describe only the actions that are necessary to implement the arith-
metic quiz.

11.3.2 Domain-specific commands

You only need two IO actions when implementing the arithmetic quiz: reading from
and writing to the console. Instead of allowing interactive programs in RunIO to exe-
cute arbitrary actions, therefore, you can restrict them to only the actions you need.
That is, you can prevent your program from executing any interactive action that’s
outside the problem domain in which you’re working.

 The next listing shows a refined ConsoleIO type that describes interactive pro-
grams that support only reading from and writing to the console.

data Command : Type -> Type where
PutStr : String -> Command ()
GetLine : Command String

data ConsoleIO : Type -> Type where
Quit : a -> ConsoleIO a
Do : Command a -> (a -> Inf (ConsoleIO b)) -> ConsoleIO b

(>>=) : Command a -> (a -> Inf (ConsoleIO b)) -> ConsoleIO b
(>>=) = Do

Effectively, Command defines an interactive interface that ConsoleIO programs can use.
You can think of it as defining the capabilities or permissions of interactive programs,
eliminating any unnecessary actions.

 You now need to refine the implementation of run to be able to execute ConsoleIO
programs.

Listing 11.25 Interactive programs supporting only console I/O (ArithCmd.idr)

Defines the IO commands that
are available, parameterized by
the commands’ return types.

Only IO operations defined in Command
are allowed in ConsoleIO programs.

318 CHAPTER 11 Streams and processes: working with infinite data

runCommand : Command a -> IO a
runCommand (PutStr x) = putStr x
runCommand GetLine = getLine

run : Fuel -> ConsoleIO a -> IO (Maybe a)
run fuel (Quit val) = do pure (Just val)
run (More fuel) (Do c f) = do res <- runCommand c

run fuel (f res)
run Dry p = pure Nothing

DOMAIN-SPECIFIC LANGUAGES A domain-specific language (DSL) is a language
that’s specialized for a particular class of problems. DSLs typically aim to pro-
vide only the operations that are needed when working in a specific problem
domain in a notation that’s accessible to experts in that domain, while elimi-
nating any redundant operations.

In a sense, ConsoleIO defines a DSL for writing interactive console pro-
grams, in that it restricts the programmer to only the interactive actions that
are needed and eliminates unnecessary actions such as file processing or net-
work communication.

Listing 11.27 shows how you can modify quiz to run as a ConsoleIO program. By look-
ing at the type of quiz and the definitions of ConsoleIO and run, you have a guaran-
tee that quiz will only execute console I/O actions. There’s no way it can open or
close files, communicate over a network, or perform any other kind of interactive
operation.

quiz : Stream Int -> (score : Nat) -> ConsoleIO Nat
quiz (num1 :: num2 :: nums) score

= do PutStr ("Score so far: " ++ show score ++ "\n")
PutStr (show num1 ++ " * " ++ show num2 ++ "? ")
answer <- GetLine
if toLower answer == "quit" then Quit score else

if (cast answer == num1 * num2)
then do PutStr "Correct!\n"

quiz nums (score + 1)
else do PutStr ("Wrong, the answer is " ++

show (num1 * num2) ++ "\n")
quiz nums score

To complete the implementation, you’ll need to implement a main function. The fol-
lowing listing shows a new implementation of main that executes the quiz and then
displays the player’s final score after they enter quit.

Listing 11.26 Executing a ConsoleIO program (ArithCmd.idr)

Listing 11.27 The arithmetic quiz, written as a ConsoleIO program (ArithCmd.idr)

Runs a console I/O command by
using the corresponding IO action

Uses runCommand to
execute the IO action
given by the command c

You’ll allow the player to quit, so quiz
returns the player’s score on exit.

PutStr and GetLine are valid
Commands in ConsoleIO.

Entering “quit”
will exit the quiz.

319Interactive programs with termination

e

r.

partial
main : IO ()
main = do seed <- time

Just score <- run forever (quiz (arithInputs (fromInteger seed)) 0)
| Nothing => putStrLn "Ran out of fuel"

putStrLn ("Final score: " ++ show score)

You can still refine the definition of quiz slightly. As functions get larger, it’s good
practice to break them down into smaller functions, each with clearly defined roles.
Here, for example, you can lift out functions for reporting whether an answer is cor-
rect or wrong, as in the following listing. These functions must themselves be either
productive (finishing by calling quiz, as they do here) or terminating if quiz is to
remain total.

mutual
correct : Stream Int -> (score : Nat) -> ConsoleIO Nat
correct nums score

= do PutStr "Correct!\n"
quiz nums (score + 1)

wrong : Stream Int -> Int -> (score : Nat) -> ConsoleIO Nat
wrong nums ans score

= do PutStr ("Wrong, the answer is " ++ show ans ++ "\n")
quiz nums score

quiz : Stream Int -> (score : Nat) -> ConsoleIO Nat
quiz (num1 :: num2 :: nums) score

= do PutStr ("Score so far: " ++ show score ++ "\n")
PutStr (show num1 ++ " * " ++ show num2 ++ "? ")
answer <- GetLine
if toLower answer == "quit" then Quit score else

if (cast answer == num1 * num2)
then correct nums score
else wrong nums (num1 * num2) score

After quiz type-checks successfully, you can make several guarantees about its behav-
ior by looking at the types and checking for totality:

 It will execute no interactive action other then putStr and getLine.
 It will either exit immediately or execute at least one interactive action, because

it is productive.
 Every action executed will return a result in finite time, because it is total.

Listing 11.28 A main function that executes the quiz and displays the final score
(ArithCmd.idr)

Listing 11.29 Lifting out components of quiz into separate functions (ArithCmd.idr)

This won’t happen because you used
forever, but it’s good practice to cover
all possible results of run, nevertheless.

Displays the score
produced from the
result of quiz

In a mutual block (se
chapter 3), definitions
can refer to each othe
You need mutual
because correct and
wrong both call quiz,
and vice versa.

320 CHAPTER 11 Streams and processes: working with infinite data

A co
th

ret
11.3.3 Sequencing Commands with do notation

In implementing quiz, you used two types to construct the function: Command and
ConsoleIO:

 Command describes single commands, which terminate.
 ConsoleIO describes sequences of terminating commands, which might be

infinite.

So, you can have single, finite commands, or sequences of infinite commands. But it would
also be useful to be able to construct composite commands; that is, sequences of com-
mands that are guaranteed to terminate. For example, you might like to write a com-
posite command that displays a prompt, and then reads and parses user input. The
next listing shows a type that represents possible user inputs, and a skeleton definition
of a function to read and parse input.

data Input = Answer Int
| QuitCmd

readInput : (prompt : String) -> Command Input
readInput prompt = ?readInput_rhs

To write this function, you need to do the following:

1 Display the prompt.
 2 Read an input from the console.
3 Convert the input string to Input and return it.

Because Command currently supports only single commands, you’ll need to extend it to
support sequences of commands. The next listing shows the extended definition,
including two new data constructors, Pure and Bind, and a correspondingly updated
definition of runCommand.

data Command : Type -> Type where
PutStr : String -> Command ()
GetLine : Command String

Pure : ty -> Command ty
Bind : Command a -> (a -> Command b) -> Command b

runCommand : Command a -> IO a
runCommand (PutStr x) = putStr x
runCommand GetLine = getLine
runCommand (Pure val) = pure val
runCommand (Bind c f) = do res <- runCommand c

runCommand (f res)

Listing 11.30 Defining a type for representing user input, and a composite command
for reading and parsing input (ArithCmdDo.idr)

Listing 11.31 Extending Command to allow sequences of commands (ArithCmdDo.idr)

An input is either a number that answers
the question or a quit command.

The return type, Command
Input, means that readInput
will not loop indefinitely.

mmand
at does

nothing,
urning a

value

A sequence of two commands,
taking the output of the first
and passing it to the second

Runs the first command,
then runs the second with
the output of the first

321Interactive programs with termination
You might also want to define (>>=) to support do notation for sequencing com-
mands, but the following definition doesn’t work as you might expect:

(>>=) : Command a -> (a -> Command b) -> Command b
(>>=) = Bind

If you try this, Idris will complain that (>>=) is already defined, because you’ve
defined do notation for ConsoleIO:

ArithCmdDo.idr:22:7:Main.>>= already defined

Idris allows multiple definitions of the same function name, as long as they’re in sepa-
rate namespaces. You’ve already seen this with List and Vect, for example, where each
has constructors called Nil and (::) that Idris disambiguates according to the con-
text in which you use them.

 The namespace is given by the module where you define functions. Namespaces
are also hierarchical, so you can introduce further namespaces inside a module. You
can have multiple definitions of functions called (>>=) in one module by introducing
new namespaces for each. The following listing shows how you can define new name-
spaces for each (>>=).

namespace CommandDo
(>>=) : Command a -> (a -> Command b) -> Command b
(>>=) = Bind

namespace ConsoleDo
(>>=) : Command a -> (a -> Inf (ConsoleIO b)) -> ConsoleIO b
(>>=) = Do

If you check the type of (>>=) at the REPL, you’ll see all the definitions of (>>=) in
their respective namespaces, with their types:

*ArithCmdDo> :t (>>=)
Main.CommandDo.(>>=) : Command a ->

(a -> Command b) -> Command b
Main.ConsoleDo.(>>=) : Command a ->

(a -> Inf (ConsoleIO b)) -> ConsoleIO b
Prelude.Monad.(>>=) : Monad m => m a -> (a -> m b) -> m b

Listing 11.32 Creating two definitions of (>>=) in separate namespaces
(ArithCmdDo.idr)

Introduces a new,
nested namespace

Defining a Monad implementation for Command
You could also define an implementation of the Monad interface for Command, as
described in chapter 7. When possible, this is often preferable because the Prelude
and base libraries define several functions that work generically with Monad imple-
mentations. To do this, you’d also need to define implementations of Functor and
Applicative. You’ll see an example of how to do this for a similar type in the next
chapter.

322 CHAPTER 11 Streams and processes: working with infinite data
Using CommandDo.(>>=) to provide do notation, you can complete the definition of
readInput.

readInput : (prompt : String) -> Command Input
readInput prompt = do PutStr prompt

answer <- GetLine
if toLower answer == "quit"

then Pure QuitCmd
else Pure (Answer (cast answer))

Finally, you can use readInput in the main quiz function to encapsulate the details of
displaying a prompt and parsing the user’s input, shown in the final definition.

quiz : Stream Int -> (score : Nat) -> ConsoleIO Nat
quiz (num1 :: num2 :: nums) score

= do PutStr ("Score so far: " ++ show score ++ "\n")
input <- readInput (show num1 ++ " * " ++ show num2 ++ "? ")
case input of

Answer answer => if answer == num1 * num2
then correct nums score
else wrong nums (num1 * num2) score

QuitCmd => Quit score

In this final definition, you distinguish between terminating sequences of commands
(using Command), and potentially nonterminating console I/O programs (using
ConsoleIO). Syntactically, you write functions the same way in each, but the type tells
you whether the function is allowed to run indefinitely, or whether it must eventually
terminate.

Exercises

1 Update quiz so that it keeps track of the total number of questions and then returns
the number of correct answers and the number of questions attempted. A sample
run might look something like this:

Listing 11.33 Implementing readInput by sequence Command (ArithCmdDo.idr)

Listing 11.34 Defining quiz using readInput as a composite command to display a
prompt and read user input (ArithCmdDo.idr)

(continued)
You can’t, however, define an implementation of Monad for ConsoleIO, because the
type of ConsoleDo.(>>=) doesn’t fit the type of the (>>=) method in the Monad
interface.

You can case-split on input because
readInput has parsed it as a more
informative type than simply a String.

323Summary
*ex_11_3> :exec
Score so far: 0 / 0
9 * 11? 99
Correct!
Score so far: 1 / 1
6 * 9? 42
Wrong, the answer is 54
Score so far: 1 / 2
10 * 2? 20
Correct!
Score so far: 2 / 3
7 * 2? quit
Final score: 2 / 3

 2 Extend the Command type from section 11.3.2 so that it also supports reading and
writing files.

Hint: Look at the types of readFile and writeFile in the Prelude to decide what
types your data constructors should have.

 3 Use your extended Command type to implement an interactive “shell” that supports
the following commands:

 cat [filename], which reads a file and displays its contents
 copy [source] [destination], which reads a source file and writes its contents

to a destination file
 exit, which exits the shell

11.4 Summary
 You can generate infinite data using Inf to state which parts of a structure are

potentially infinite.
 A total function either terminates with a well-typed input or produces a prefix

of a well-typed infinite result in finite time.
 You can process infinite structures by using finite data to determine how much

of the infinite structure to use.
 The Prelude defines a Stream data type for constructing infinite lists.
 You can define processes as infinite sequences of IO actions.
 To execute an infinite process, you define a function that takes an argument

stating how long the process should run.
 The partial function forever allows processes to run indefinitely by generating

an infinite amount of Fuel, using the Lazy type.
 By implementing (>>=), you can extend do notation for your own data types to

make programs easier to read and write.
 You can mix finite and infinite structures within the same data type to define

potentially infinite processes that may also terminate.

Writing programs with state
Idris is a pure language, so variables are immutable. Once a variable is defined with
a value, nothing can update it. This might suggest that writing programs that
manipulate state is difficult, or even impossible, or that Idris programmers in gen-
eral aren’t interested in state. In practice, the opposite is true.

 In type-driven development, a function’s type tells you exactly what a function
can do in terms of its allowed inputs and outputs. So, if you want to write a function
that manipulates state, you can do that, but you need to be explicit about it in the
function’s type. In fact, we’ve already done this in earlier chapters:

 In chapter 4, we implemented an interactive data store using global state.
 In chapter 9, we implemented a word-guessing game using global state to

hold the target word, the letters guessed, and the number of guesses still
available.

 In chapter 11, we implemented an arithmetic game using global state to hold
the user’s current score.

This chapter covers
 Using the State type to describe mutable state

 Implementing custom types for state management

 Defining and using records for global system state
324

325Working with mutable state
 In each case, we implemented state by writing a recursive function that took the
current state of the overall program as an argument.

 Almost all real-world applications need to manipulate state to some extent. Some-
times, as in the previous examples, state is global and is used throughout an applica-
tion. Sometimes, state is local to an algorithm; for example, a graph-traversal
algorithm will hold the nodes it has visited in local state to avoid visiting nodes more
than once. In this chapter, we’ll look at how we can manage mutable state in Idris,
both for state that’s local to an algorithm, and for representing overall system state.

STATE MANAGEMENT AND DEPENDENT TYPES We won’t use many dependent
types in this chapter; using dependent types in state introduces some compli-
cations, as well as opportunities for precision in describing state transition sys-
tems and protocols. We’ll consider these opportunities in the next two chapters,
but we’ll begin here by looking at how state works in general.

Previously, we’ve used types to describe interactive programs in terms of sequences of
commands, using IO in chapter 5 and ConsoleIO in chapter 11. Stateful programs can
work in the same way, using types to describe the operations a stateful program can
perform. We’ll begin by looking at the generic State type defined in the Idris library
and then at how we can define types like State ourselves. Finally, we’ll look at how we
can structure a complete application with state, refining the arithmetic quiz from
chapter 11.

12.1 Working with mutable state
Even though Idris is a pure language, it’s often useful to work with state. It’s particu-
larly useful, when writing functions with a complex data structure, such as a tree or a
graph, to be able to read and write local state as you’re traversing the structure. In this
section, you’ll see how to manage mutable state.

COMPARING STATE IN IDRIS AND HASKELL This section describes the State
type for capturing local mutable state in Idris. If you’re familiar with Haskell,
you’ll find that you can use State in Idris in the same way as Haskell, by
importing Control.Monad.State. If you’re familiar with the State type in
Haskell, you can safely move ahead to section 12.2, where I’ll describe a cus-
tom implementation of State.

In the previous chapter, you wrote a function to attach labels to elements of a list, tak-
ing the labels from a Stream. It’s repeated for reference here.

labelWith : Stream labelType -> List a -> List (labelType, a)
labelWith lbs [] = []
labelWith (lbl :: lbls) (val :: vals) = (lbl, val) :: labelWith lbls vals

Listing 12.1 Labeling each element of a List using a Stream (Streams.idr)

For every label in the stream, pair it with
the corresponding element of the list.

326 CHAPTER 12 Writing programs with state

A tr
with

a left
an
In this section, you’ll implement a function similar to label a binary tree. First, you’ll
see how to implement mutable state by hand, with each function returning a pair that
stores an updated state along with the result of a computation. You’ll then see how to
encapsulate the state using a State type defined in the Idris base library. First, though,
I’ll describe the example of tree traversal in more detail.

12.1.1 The tree-traversal example

Figure 12.1 shows the result of a function that labels a binary tree, and we’ll use this as
a running example throughout this section. This function labels the nodes depth first,
left to right, so the deepest, leftmost node takes the first label, and the deepest, right-
most node takes the last label.

The following listing gives the definition of binary trees that we’ll use for labeling,
along with testTree, a representation of the specific tree we’ll label (from the exam-
ple in figure 12.1).

data Tree a = Empty
| Node (Tree a) a (Tree a)

testTree : Tree String
testTree = Node (Node (Node Empty "Jim" Empty) "Fred"

(Node Empty "Sheila" Empty)) "Alice"
(Node Empty "Bob" (Node Empty "Eve" Empty))

flatten : Tree a -> List a
flatten Empty = []
flatten (Node left val right) = flatten left ++ val :: flatten right

It’s convenient to define flatten so that you can easily see the ordering in which the
labels should be applied:

*TreeLabel> flatten testTree
["Jim", "Fred", "Sheila", "Alice", "Bob", "Eve"] : List String

Listing 12.2 Definition of binary trees, and an example (TreeLabel.idr)

1, Jim 3, Sheila

2, Fred

4, Alice

6, Eve

5, Bob

Jim Sheila

Fred

Alice

Eve

Bob

Figure 12.1 Labeling a tree, depth first. Each node is labeled with an integer.

ee node
 a value,
subtree,
d a right
subtree

An empty binary tree

A representation of the example tree

Converts the tree to a list by traversing
the tree, depth first, left to right

327Working with mutable state
Once you’ve written a treeLabel function that labels the nodes in the tree according
to the elements in a stream, you should be able to run it as follows:

*TreeLabel> flatten (treeLabel testTree)
[(1, "Jim"),
(2, "Fred"),
(3, "Sheila"),
(4, "Alice"),
(5, "Bob"),
(6, "Eve")] : List (Integer, String)

When you wrote the function to label lists, in listing 12.1, you had a direct correspon-
dence between the structure of the stream of labels and the list you were labeling.
That is, for every (::) in the List, you could take the first element of the stream as
the label, and then recursively label the rest of the list. With Tree, it’s a bit more com-
plicated, because when you label the left subtree, you don’t know in advance how
many elements you’ll need to take from the stream. Figure 12.2 illustrates labeling the
subtrees in this example.

Before labeling the right subtree, you need to know how many elements you took
from the stream when labeling the left subtree. Not only does the labeling function
need to return the labeled tree, it also needs to return some information about where
to start labeling the rest of the tree.

 A natural way to do this might be for the labeling function to take the stream of
labels as an input, as before, and to return a pair, containing

 The labeled tree
 A new stream of labels that you can use to label the rest of the tree

We’ll begin by implementing tree labeling this way, using a pair to represent the result
of the operation and the state of the labels. Then, you’ll see how the State type
defined in the Idris library encapsulates the state management details in this kind of
algorithm.

1, Jim 3, Sheila

2, Fred

4, Alice

6, Eve

5, Bob

Figure 12.2 Labeling subtrees. The left
subtree is labeled from 1 to 3, and the right
subtree is labeled from 5 to 6.

328 CHAPTER 12 Writing programs with state
12.1.2 Representing mutable state using a pair

Listing 12.3 defines a helper function to label a tree with a stream of labels, and uses a
pair to represent the state of the stream after each subtree is labeled. The helper func-
tion returns the unused part of the stream of labels, so that when you’ve labeled one
subtree, you know where to start labeling the next subtree.

treeLabelWith : Stream labelType -> Tree a ->
(Stream labelType, Tree (labelType, a))

treeLabelWith lbls Empty = (lbls, Empty)
treeLabelWith lbls (Node left val right)

= let (lblThis :: lblsLeft, left_labelled) = treeLabelWith lbls left
(lblsRight, right_labelled) = treeLabelWith lblsLeft right

in
(lblsRight, Node left_labelled (lblThis, val) right_labelled)

treeLabel : Tree a -> Tree (Integer, a)
treeLabel tree = snd (treeLabelWith [1..] tree)

If you try labeling the example tree, you’ll see that the labels are applied in the order
you expect:

*TreeLabel> flatten (treeLabel testTree)
[(1, "Jim"),
(2, "Fred"),
(3, "Sheila"),
(4, "Alice"),
(5, "Bob"),
(6, "Eve")] : List (Integer, String)

You can check that labeling also preserves the structure of the tree by omitting the call
to flatten:

*TreeLabel> treeLabel testTree
Node (Node (Node Empty (1, "Jim") Empty)

(2, "Fred")
(Node Empty (3, "Sheila") Empty))

(4, "Alice")
(Node Empty

(5, "Bob")
(Node Empty (6, "Eve") Empty)) : Tree (Integer, String)

In the current definition of treeLabelWith, you need to keep track of the state of the
stream of labels. Labeling a subtree not only gives you a tree with labels attached to
the nodes, it also gives you a new stream of labels for labeling the next part of the tree.

Listing 12.3 Labeling a Tree with a stream of labels (TreeLabel.idr)

Returns the unused portion of the
stream, as well as the labeled tree

Labels the left subtree,
which gives you a new

subtree and a new
stream. Uses the first

element, lblThis, to label
the current node.

Labels the right subtree,
using the stream returned
after labeling the left subtree

Returns the stream
given by labeling the
right subtree, and a

labeled node

Initializes with a stream of
integers, and returns only
the labeled tree using snd

329Working with mutable state
 As you traverse the tree, you keep track of the state of the stream by passing it as an
argument, and returning the updated state. Essentially, the function uses local mutable
state, with the state explicitly threaded through the definition. Although this works,
there are two problems with this approach:

 It’s error-prone because you need to ensure that the correct state is propagated
correctly to the recursive calls. Notice that left_labelled and right_labelled
have the same type, for example, so it’s easy to use the wrong one!

 It’s hard to read because the details of the algorithm are hidden behind the
details of state management.

It’s often useful to have local mutable state, and like any concept you use regularly, it’s
a good idea to create an abstraction that captures the concept. You can improve the
definition of treeLabel, making it less error-prone and more readable, by using a
type that captures the concept of state explicitly.

12.1.3 State, a type for describing stateful operations

The only reason you’re passing the stream of labels around in the definition of tree-
LabelWith is that when you encounter a value at a node, you need to associate it with
a label value. In an imperative language, you might pass a mutable variable to tree-
LabelWith and update it as you encounter each node. Because Idris is a purely func-
tional language, you don’t have mutable variables, but the base library does provide a
type for describing sequences of stateful operations, in the Control.Monad.State
module. Control.Monad.State exports the following relevant definitions.

State : (stateType : Type) -> (ty : Type) -> Type
runState : State stateType a -> stateType -> (a, stateType)

get : State stateType stateType
put : stateType -> State stateType ()

(>>=) : State stateType a -> (a -> State stateType b) -> State stateType b

Just as a value of IO ty describes a sequence of interactive operations that produce a
value of type ty, a value of type State Nat ty describes a sequence of operations that
read and write a mutable state of type Nat. Listing 12.5 gives a small example of a func-
tion that works with mutable state. It reads the state using get and then updates it
using put, increasing the Nat state by the given value.

Listing 12.4 State and associated functions, defined in Control.Monad.State

A type describing sequences of stateful
operations with a state of type stateType,
producing a result of type ty

Runs a sequence of stateful
operations, producing a pair of

the result and the final state

Reads the current state, producing
a result of type stateType

Writes a new state,
producing a result of type ()

Sequences get and put with do notation.
There’s a Monad implementation for

State that defines (>>=).

330 CHAPTER 12 Writing programs with state

import Control.Monad.State

increase : Nat -> State Nat ()

increase inc = do current <- get

put (current + inc)

A value of type State Nat () is a description of stateful operations using a state of type
Nat. You can execute it using runState by passing it the operations and an initial state.
For example, you can execute increase 5 with an initial state of 89:

*State> runState (increase 5) 89
((), 94) : ((), Nat)

The result is a pair of the value produced by the stateful operations, in this case the unit
value (), and the final state, in this case 94. There are also two variants of runState:

 evalState—Returns only the value produced by the sequence of operations:

*State> :t evalState
evalState : State stateType a -> stateType -> a

*State> evalState (increase 5) 89
() : ()

 execState—Returns only the final state after the sequence of operations:

*State> :t execState
execState : State stateType a -> stateType -> stateType

*State> execState (increase 5) 89
94 : Nat

Listing 12.5 A stateful function that increases a state by a given value (State.idr)

Needed for the State type

Assigns the value of the state to current
Updates the value of the state

Generic types of State
If you check the types of get and put, you’ll see that they use constrained generic
types:

*TreeLabelState> :t get
get : MonadState stateType m => m stateType

*TreeLabelState> :t put
put : MonadState stateType m => stateType -> m ()

This gives library authors more flexibility in defining stateful programs. The details of
the MonadState interface are beyond the scope of this book, but you can read more
in the Idris library documentation (http://idris-lang.org/documentation). In this exam-
ple, you can read m as State stateType.

Although State encapsulates sequences of stateful operations, internally it’s
defined using pure functions. Essentially, it encapsulates the implementation pattern
you used to pass the state around in treeLabelWith.

331Working with mutable state
Using State, you can reimplement treeLabelWith, hiding the internal details of state
management and only reading and updating the stream of labels when necessary.

12.1.4 Tree traversal with State

The next listing shows how you can define treeLabelWith by keeping the stream of
labels as state, reading it to get the next label for a node.

treeLabelWith : Tree a -> State (Stream labelType) (Tree (labelType, a))
treeLabelWith Empty = pure Empty
treeLabelWith (Node left val right)

= do left_labelled <- treeLabelWith left
(this :: rest) <- get
put rest
right_labelled <- treeLabelWith right
pure (Node left_labelled (this, val) right_labelled)

In this definition, you can see the details of the labeling algorithm more clearly than
in the previous definition. Here, you leave the internal details of state management to
the implementation of State.

 In order to run this function and actually carry out the tree labeling, you’ll need to
provide an initial state. The following listing defines a treeLabel function that initial-
izes the state with an infinite stream of integers, counting upwards from 1.

treeLabel : Tree a -> Tree (Integer, a)
treeLabel tree = evalState (treeLabelWith tree) [1..]

As before, you can test this at the REPL. It behaves the same way as the previous imple-
mentation of treeLabel on the test input:

*TreeLabelState> flatten (treeLabel testTree)
[(1, "Jim"),
(2, "Fred"),
(3, "Sheila"),
(4, "Alice"),
(5, "Bob"),
(6, "Eve")] : List (Integer, String)

Like IO, which you first encountered in chapter 5, State gives you a way of writing
functions with side effects (here, modifying mutable state) by describing sequences of
operations and executing them separately:

Listing 12.6 Defining treeLabelWith as a sequence of stateful operations
(TreeLabelState.idr)

Listing 12.7 Top-level function to label tree nodes, depth first, left to right
(TreeLabelState.idr)

Gets the current stream of labels. You’ll use
the first label, this, to label the current node.

Sets the new stream of labels to be
the tail of the current stream, rest

evalState discards the
final state, so it returns
only the labeled tree.

332 CHAPTER 12 Writing programs with state
 A value of type IO ty is a description of a sequence of interactive actions pro-
ducing a result of type ty. It’s executed by the runtime system by compilation,
or by :exec at the REPL.

 A value of type State stateType ty is a description of a sequence of actions that
read and write a state of type stateType, producing a result of type ty. It’s exe-
cuted by using one of runState, execState, or evalState.

Many interesting programs follow this pattern, defining a type for describing
sequences of commands and a separate function for executing those commands.
Indeed, you’ve already seen one in chapter 11, when you defined the ConsoleIO type
for describing indefinitely running interactive programs. You’ll see more examples in
the remaining chapters, so in the rest of this chapter we’ll look at how to implement
custom types for representing state and interaction.

Exercises

1 Write a function that updates a state by applying a function to the current state:

update : (stateType -> stateType) -> State stateType ()

You should be able to use update to reimplement increase:

increase : Nat -> State Nat ()
increase x = update (+x)

You can test your answer at the REPL as follows:

*ex_12_1> runState (increase 5) 89
((), 94) : ((), Nat)

 2 Write a function that uses State to count the number of occurrences of Empty in a
tree. It should have the following type:

countEmpty : Tree a -> State Nat ()

You can test your answer at the REPL with testTree as follows:

*ex_12_1> execState (countEmpty testTree) 0
7 : Nat

 3 Write a function that counts the number of occurrences of both Empty and Node in a
tree, using State to store the count of each in a pair. It should have the following
type:

countEmptyNode : Tree a -> State (Nat, Nat) ()

You can test your answer at the REPL with testTree as follows:

*ex_12_1> execState (countEmptyNode testTree) (0, 0)
(7, 6) : (Nat, Nat)

333A custom implementation of State
12.2 A custom implementation of State
In the previous section, you saw that the State type gives you a generic way of imple-
menting algorithms that use state. You used it to maintain a stream of labels as local
mutable state, which you could access by reading (using get) and writing (using put)
as necessary. Like IO, which separates the description of an interactive program from its
execution at runtime, State separates the description of a stateful program from its
execution with a concrete state.

 We’ll look at more examples of the same pattern, separating the description of a
program from its execution, in the remaining chapters, so before we go any further,
let’s explore how we can define the State type ourselves, along with runState for exe-
cuting stateful operations. In this section, you’ll see one way of defining State, and
how to provide implementations of some interfaces for State: Functor, Applicative,
and Monad. By implementing these interfaces, you’ll be able to use some generic
library functions with State.

12.2.1 Defining State and runState

The following listing shows one way you could define State by hand, with a Get data
constructor for describing the operation that reads state, and a Put data constructor
for describing the operation that writes state.

data State : (stateType : Type) -> Type -> Type where
Get : State stateType stateType
Put : stateType -> State stateType ()

Pure : ty -> State stateType ty
Bind : State stateType a -> (a -> State stateType b) -> State stateType b

Listing 12.8 A type for describing stateful operations (TreeLabelType.idr)

Describes the operation
that gets the current state

Describes the operation
that puts a new state

An operation that
produces a value

Sequences stateful operations, passing the
result of the first as the input to the next

Naming conventions reminder
Remember that, by convention, type and data constructor names in Idris begin with
a capital letter. I won’t deviate from this convention here, so if you want the same
names as those exported by Control.Monad.State, you’ll need to define the fol-
lowing functions:

get : State stateType stateType
get = Get

put : stateType -> State stateType ()
put = Put

pure : ty -> State stateType ty
pure = Pure

334 CHAPTER 12 Writing programs with state

Lab
the
subt
You can support do notation for State by defining (>>=). You can do this either by
implementing the Monad interface for (>>=), or by defining (>>=) directly:

(>>=) : State stateType a -> (a -> State stateType b) -> State stateType b
(>>=) = Bind

Using this version of State, and defining the functions get, put, and pure, which
directly use the data constructors, listing 12.9 shows how you can define treeLabel-
With. This version is exactly the same as the previous one, as you’d expect, because it
uses the same names for the functions that manipulate the state.

treeLabelWith : Tree a -> State (Stream labelType) (Tree (labelType, a))
treeLabelWith Empty = Pure Empty
treeLabelWith (Node left val right)

= do left_labelled <- treeLabelWith left
(this :: rest) <- get
put rest
right_labelled <- treeLabelWith right
pure (Node left_labelled (this, val) right_labelled)

In order to run it, you’ll need to define a function that converts the description of the
stateful operations into the tree-labeling function. The following listing shows the
definition of runState, which takes a description of a stateful program and an initial
state, and returns the value produced by the stateful program and a final state.

runState : State stateType a -> (st : stateType) -> (a, stateType)
runState Get st = (st, st)
runState (Put newState) st = ((), newState)

Listing 12.9 Defining treeLabelWith as a sequence of stateful operations
(TreeLabelType.idr)

Listing 12.10 Running a labeling operation (TreeLabelType.idr)

Implementing interfaces for State
Defining (>>=) means that you can use do notation for programs in State. As you
saw in chapter 7, (>>=) is also a method of the Monad interface, which also
requires implementations of the Functor and Applicative interfaces. It’s
defined here as a standalone function to avoid the need to implement Functor and
Applicative first for this example.

Where possible, it’s a very good idea to implement the Monad interface instead,
because that gives you access to several constrained generic functions defined by
the Idris library. For example, you’d be able to use the when function, which executes
an operation when a condition is met, and traverse, which applies a computation
across a structure. You’ll see how to do this for State in section 12.2.2.

els
left
ree Gets the next label for labeling

the node from the stream

Labels the
right subtree

Returns a pair of the value produced by the
stateful operations, and the final state

Put produces the unit value and
updates the state to the new value.

Get produces the
current state and

leaves the state
unchanged.

335A custom implementation of State

e

e

runState (Pure x) st = (x, st)
runState (Bind cmd prog) st = let (val, nextState) = runState cmd st in

runState (prog val) nextState

When you run sequences of stateful operations, defined using Bind, you need to take
the nextState state returned by running cmd, and pass it to runState when executing
the rest of the operations. You calculate the rest of the operations by taking the val
returned by running cmd and passing it to prog. This encapsulates the state manage-
ment that you had to implement by hand (three times!) in your first implementation
of treeLabelWith, and it’s similar to the way the Control.Monad.State module
implements State itself.

 The following listing shows a definition of treeLabel that uses the new implemen-
tation of treeLabelWith, initializing the stream with [1..].

treeLabel : Tree a -> Tree (Integer, a)
treeLabel tree = fst (runState (treeLabelWith tree) [1..])

12.2.2 Defining Functor, Applicative,
and Monad implementations for State

Implementing (>>=) for State means that you can use do notation, which gives a
clear, readable notation for writing functions that describe sequences of operations.
But do notation is all it gives us.

 Rather than defining (>>=) as a standalone function, it’s a good idea to implement
the Functor, Applicative, and Monad interfaces for State. In addition to providing
do notation via the Monad interface, this will give you access to generic functions
defined in the library. For example, when and traverse are generic functions. In the
context of IO, they behave as follows:

 when evaluates a computation if a condition is True. It could be used to run
some IO actions only on a specific user input.

 traverse is similar to map and applies a computation across a structure. For
example, you could print every element of a List to the console.

You can find out more about these functions, especially their types, with :doc. The fol-
lowing listing shows them in action in the context of an IO computation.

crew : List String
crew = ["Lister", "Rimmer", "Kryten", "Cat"]

Listing 12.11 The tree-labeling function, which calls run with an initial stream of labels
(TreeLabelType.idr)

Listing 12.12 Using when and traverse (Traverse.idr)

Runs the first stateful command and then runs
the rest of the program with the updated state

and the output of the first command

Uses fst to extract th
labeled tree and
discard the final stat

336 CHAPTER 12 Writing programs with state

R
wheth
integ
succe
main : IO ()
main = do putStr "Display Crew? "

x <- getLine
when (x == "yes") $

do traverse putStrLn crew
pure ()

putStrLn "Done"

If you implement Functor, Applicative, and Monad for State, you’ll be able to use
these and other similar functions in functions that use State. The next listing shows an
example of what you can do, giving a function that adds Integers from a list to a run-
ning total, provided the Integer is positive. At the moment, this will fail to type-check.

addIfPositive : Integer -> State Integer Bool

addIfPositive val = do when (val > 0) $

do current <- get

put (current + val)

pure (val > 0)

addPositives : List Integer -> State Integer Nat

addPositives vals = do added <- traverse addIfPositive vals

pure (length (filter id added))

This will fail because you don’t have implementations of Functor or Applicative for
State:

StateMonad.idr:42:15:
When checking right hand side of addIfPositive with expected type

State Integer Bool

When checking an application of function Main.>>=:
Can't find implementation for Applicative (State Integer)

Listing 12.13 Adding positive integers from a list to a state (StateMonad.idr)

Evaluates the computation after
$ only if this condition is true. $
is the application operator.

For everything in the crew
list, evaluates putStrLn

The application operator $
Remember from chapter 10 that the $ operator is an infix operator that applies a
function to an argument. Its primary purpose is to reduce the need for bracketing. In
listing 12.12, you could also have written the application of when with explicit brack-
ets, as follows:

when (x == "yes")
(do traverse putStrLn crew

pure ())

Increments the state with the
given value, if it’s positive

eturns
er the
er was
ssfully
added

For every integer in vals, the value in
added corresponds to whether that
integer was added to the state.

filter id added gives the elements of added
that are True, so this returns the number of

successfully added Integers.

337A custom implementation of State
Your ultimate goal here is to implement Monad for State, which also requires imple-
mentations of Functor and Applicative. The next listing shows the Monad interface,
as defined in the Prelude.

interface Applicative m => Monad (m : Type -> Type) where
(>>=) : m a -> (a -> m b) -> m b
join : m (m a) -> m a

Both methods, (>>=) and join, have default definitions, so you can implement Monad
by defining one or both of these. Here, we’ll only use (>>=).

 If you want to provide an implementation for Monad, you also need to implement
Applicative, because it’s a parent interface of Monad. Similarly, Applicative has a
parent interface, Functor. The following listing shows both interfaces as defined in
the Prelude.

interface Functor (f : Type -> Type) where
map : (func : a -> b) -> f a -> f b

interface Functor f => Applicative (f : Type -> Type) where
pure : a -> f a
(<*>) : f (a -> b) -> f a -> f b

Listing 12.14 The Monad interface

Listing 12.15 The Functor and Applicative interfaces

Passes the output of the first
operation as the input to the second

“Flattens” a nested
structure. See the sidebar.

The join method
We haven’t looked at join in detail, but you can use it to flatten nested structures
into a single structure. For example, there are implementations of Monad for List
and Maybe, so you can try join on examples of each:

Idris> join [[1,2,3], [4,5,6]]
[1, 2, 3, 4, 5, 6] : List Integer

Idris> join (Just (Just "One"))
Just "One" : Maybe String

Idris> join (Just (Nothing {a=String}))
Nothing : Maybe String

For List, join will concatenate the nested lists. For Maybe, join will find the sin-
gle value nested in the structure, if any.

Applies a function to an
argument, where the function and
argument are inside a structure

338 CHAPTER 12 Writing programs with state

A

di
The (<*>) method allows you to, for example, have a stateful function that returns a
function (of type a -> b), have another stateful function that returns an argument (of
type a), and apply the function to the argument.

 You can begin by implementing Functor as follows:

1 Type, define—Write the implementation header and create a skeleton definition
of map. Remember that you can create skeleton definitions for interface meth-
ods by pressing Ctrl-Alt-A with the cursor over the interface name:

Functor (State stateType) where
map func x = ?Functor_rhs_1

 2 Type, refine—The type of the ?Functor_rhs_1 hole tells you that x is a stateful
computation:

stateType : Type
b : Type
a : Type
func : a -> b
x : State stateType a

Functor_rhs_1 : State stateType b

You can continue the definition by extracting the value from the computation x
using Bind:

Functor (State stateType) where
map func x = Bind x (\val => ?Functor_rhs_1)

3 Refine—To complete the definition, pass val to func, and use Pure to convert
the result to a stateful computation:

Functor (State stateType) where
map func x = Bind x (\val => Pure (func val))

Listing 12.16 shows the definitions of Applicative and Monad for State. You imple-
ment Applicative in a way similar to Functor, using Bind to extract the values you
need from stateful computations.

Applicative (State stateType) where
pure = Pure
(<*>) f a = Bind f (\f' =>

Bind a (\a' =>
Pure (f' a')))

Monad (State stateType) where
(>>=) = Bind

You’ve used Bind in the implementations of Functor and Applicative because you
don’t have do notation available yet. You need a Monad implementation to provide it,

Listing 12.16 Implementing Applicative and Monad for State (StateMonad.idr)

Gets the function
to apply from f

Gets the argument to pass
to the function from a

Applies the function to the
argument and creates a stateful
computation containing the result

pplies
Bind

rectly

339A custom implementation of State

A

and you need to have Functor and Applicative implementations to have a Monad
implementation.

 But you could use do notation by defining all the implementations together, in a
mutual block, as listing 12.17 shows. In a mutual block, definitions can refer to each
other, so the implementations of Functor and Applicative can rely on the imple-
mentation of Monad.

mutual
Functor (State stateType) where

map func x = do val <- x
pure (func val)

Applicative (State stateType) where
pure = Pure
(<*>) f a = do f' <- f

a' <- a
pure (f' a')

Monad (State stateType) where
(>>=) = Bind

Now that you’ve implemented these interfaces, you can try the earlier definition of
addPositives from listing 12.13:

*StateMonad> runState (addPositives [-4, 3, -8, 9, 8]) 0
(3, 20) : (Nat, Integer)

You’ve now seen how to encapsulate the details of state manipulation by describing
sequences of stateful operations as State, and executing them using runState. You’ve
also seen how to implement Functor, Applicative, and Monad for State.

Listing 12.17 Defining Functor, Applicative, and Monad implementations together
(StateMonad.idr)

do notation implementation
given by (>>=) from Monad.

pure given
by

definition
from

pplicative.

Each implementation needs to begin in the same
column to be within the scope of the mutual block.

The Effects library: combining State, IO, and other side effects
Given that you have Monad implementations for State and IO, sequencing stateful
computations and interactive computations respectively, it’s reasonable to wonder
whether you can sequence both at once, in the same function—what about interac-
tive programs that also manipulate state?

You’ll see one way to do this in the next section. As a more general solution, though,
Idris provides a library called Effects that supports combining different kinds of
side effects like State and IO in types, as well as other effects such as exceptions
and nondeterminism. You can find more details in the Effects library tutorial
(http://idris-lang.org/documentation/effects).

340 CHAPTER 12 Writing programs with state
 The states you’ve used in the examples so far have been fairly small: a single stream
of labels, or a single Integer. More generally, state can get fairly complex:

 State may consist of several complex components, stored as a record. We’ll dis-
cuss this in the rest of this chapter, where you’ll see how to write a complete
interactive program with state.

 You might want to use a dependent type in your State, in which case updating
the state will also update its type! For example, if you add an element to a Vect
8 Int, it would become a Vect 9 Int. We’ll discuss this in the next chapter.

An advantage of writing a type that expresses sequences of commands, along with a
function for running those commands, is that you can make the command type as
precise as you need. As you’ll see in the next section, you can describe precisely the set
of commands you need for a specific application, including commands for interaction
at the console and commands for reading and writing components of the applica-
tion’s state. In the next chapter, you’ll see how you can precisely describe in its type the
effect each command has on a system’s state.

12.3 A complete program with state: working with records
In the previous chapter, you implemented an arithmetic quiz that presented multipli-
cation problems to the user and kept track of the numbers of correct answers and
questions asked. In this section, we’ll write a refined version, with the following
improvements:

 We’ll add a difficulty setting, which specifies the largest number allowed when
generating questions.

 Instead of passing the current score as an argument to the quiz function, main-
taining the state by hand, we’ll extend the Command type with commands for giv-
ing access to the current score and the difficulty setting.

To write this refined version, we’ll need to rethink how to represent the game’s state.
We’ll do this using record types. You’ve already seen some the use of records to repre-
sent the data store in chapter 6, with similar examples in chapters 7 and 10. As an
application’s state grows, though, it can make sense to divide its state into several hier-
archical records.

 You’ll see how to define and use nested records, how to update records with a con-
cise syntax, and how to use a record to store the state of the interactive quiz program.
First, though, we’ll revisit the Command type from chapter 11 and see how you can
extend it to support reading and writing system state, in a way similar to the custom
State type defined in the previous section.

12.3.1 Interactive programs with state: the arithmetic quiz revisited

In chapter 11, you defined a Command data type, representing the commands you could
use in console I/O programs, and a ConsoleIO type, representing possibly infinite
interactive processes. You used this to implement an arithmetic quiz, presenting

341A complete program with state: working with records

)
multiplication problems for a user to answer. Like State, which describes the opera-
tions Get and Put for reading and writing state, Command describes the operations Get-
Line and PutStr for reading from and writing to the console. The following listing
recaps the definitions of Command and ConsoleIO.

data Command : Type -> Type where
PutStr : String -> Command ()
GetLine : Command String

Pure : ty -> Command ty
Bind : Command a -> (a -> Command b) -> Command b

data ConsoleIO : Type -> Type where
Quit : a -> ConsoleIO a
Do : Command a -> (a -> Inf (ConsoleIO b)) -> ConsoleIO b

namespace CommandDo
(>>=) : Command a -> (a -> Command b) -> Command b
(>>=) = Bind

namespace ConsoleDo
(>>=) : Command a -> (a -> Inf (ConsoleIO b)) -> ConsoleIO b
(>>=) = Do

IMPLEMENTING MONAD FOR COMMAND As with State, you could implement
Functor, Applicative, and Monad for Command instead of implementing
(>>=) directly. As an exercise, try providing implementations of each. As I
noted in the last chapter, however, you can’t provide a Monad implementa-
tion for ConsoleIO because the type of ConsoleDo.(>>=) doesn’t fit.

Like runState, which takes a description of stateful operations and returns the result
of executing those operations with an initial state, run takes a description of interac-
tive operations and executes them in IO. Listing 12.19 recaps the run function.
Remember that you limit how long interactive programs can run by using the Fuel
type, and you add a nontotal function, forever, that allows a total interactive program
to run indefinitely, while only introducing a single nontotal function.

data Fuel = Dry | More (Lazy Fuel)

forever : Fuel
forever = More forever

runCommand : Command a -> IO a
runCommand (PutStr x) = putStr x
runCommand GetLine = getLine
runCommand (Pure val) = pure val
runCommand (Bind c f) = do res <- runCommand c

runCommand (f res)

Listing 12.18 Interactive programs supporting only console I/O (ArithState.idr)

Listing 12.19 Running interactive programs (ArithState.idr)

Defines the valid commands
for an interactive program

Interactive programs
that either produce a
result with Quit, or loop
indefinitely

Defines (>>=
to support do
notation for
Command and
ConsoleIO

Executes an
interactive command

342 CHAPTER 12 Writing programs with state
run : Fuel -> ConsoleIO a -> IO (Maybe a)
run fuel (Quit val) = do pure (Just val)
run (More fuel) (Do c f) = do res <- runCommand c

run fuel (f res)
run Dry p = pure Nothing

If you want your interactive programs to be able to read and write state, in addition to
reading from and writing to the console, you can extend the Command type with addi-
tional commands for manipulating state, and process those commands just as you did
with State. For the arithmetic game, we’ll need to do the following:

 Get random numbers for the questions, given the game’s difficulty setting.
 Read the current game state so that you can display the score.
 Update the game state so that you can update the score according to the user’s

answers.

The next listing shows how you can extend the Command data type to include these com-
mands. There’s no need to update ConsoleIO, because it merely sequences Commands.

GameState : Type

data Command : Type -> Type where

PutStr : String -> Command ()

GetLine : Command String

GetRandom : Command Int

GetGameState : Command GameState

PutGameState : GameState -> Command ()

Pure : ty -> Command ty

Bind : Command a -> (a -> Command b) -> Command b

GameState is undefined for the moment, so you can’t yet complete run or runCommand.
You can, however, add pattern clauses with holes for the extra commands so that the
totality checker is satisfied:

runCommand : Command a -> IO a
runCommand (PutStr x) = putStr x
runCommand GetLine = getLine
runCommand (Pure val) = pure val
runCommand (Bind c f) = do res <- runCommand c

runCommand (f res)
runCommand (PutGameState x) = ?runCommand_rhs_1
runCommand GetGameState = ?runCommand_rhs_2
runCommand GetRandom = ?runCommand_rhs_3

ADDING MISSING CASES After you’ve added constructors to Command, you can
use Ctrl-Alt-A with the cursor over runCommand in the type declaration to add
the new pattern clauses for runCommand.

Listing 12.20 Extending the Command type to support game state (ArithState.idr)

Executes an interactive
program as long as
fuel remains

This is a placeholder. You’ll
define GameState shortly.

Returns a random number based on
the game’s current difficulty level

Returns the current game state

Sets the game state

343A complete program with state: working with records
You’ll use the GameState type to store the game’s state. Before you implement the
refined quiz, therefore, you’ll need to consider how to define GameState.

12.3.2 Complex state: defining nested records

In the refined quiz implementation, you’ll use GameState to store the following:

 The current score, consisting of the number of questions answered correctly
and the number attempted

 The difficulty setting

When there are several components to a program’s state like this, it often makes sense
to use a record type. Records are convenient because they give rise to projection func-
tions, which allow you to inspect the fields of the record. You can also nest records;
the following listing shows how you can represent the current score as a record, and
the overall game state as a record, including the nested score record as a field.

record Score where
constructor MkScore
correct : Nat
attempted : Nat

record GameState where
constructor MkGameState
score : Score
difficulty : Int

initState : GameState
initState = MkGameState (MkScore 0 0) 12

Defining Score and GameState as records automatically generates projection func-
tions for each field: correct, attempted, score, and difficulty. For example, you
can get the difficulty level like this:

*ArithState> difficulty initState
12 : Int

Or you can get the number of correct answers so far:

*ArithState> correct (score initState)
0 : Nat

Listing 12.21 Representing a game state as nested records (ArithState.idr)

Current score has fields for the
number of correct answers and
attempted questions

The game state record includes the
score record as a field in that record.

The initial game state is a score of 0
out of 0, with a difficulty of 12.

Records and namespaces
When you define a record, the projection functions are defined in their own name-
space, given by the name of the record. For example, the score function is defined
in a new GameState namespace, as you can see with :doc at the REPL:

*ArithState> :doc score
Main.GameState.score : (rec : GameState) -> Score

344 CHAPTER 12 Writing programs with state
The following listing shows how you can use projection functions to define an imple-
mentation of Show for GameState.

Show GameState where
show st = show (correct (score st)) ++ "/" ++

show (attempted (score st)) ++ "\n" ++
"Difficulty: " ++ show (difficulty st)

You can try this at the REPL, using printLn to display the initial game state:

*ArithState> :exec printLn initState
0/0
Difficulty: 12

Records, therefore, give you a convenient notation for inspecting field values, but when
you write programs that use records to hold state, you’ll also need to update fields. In
the quiz, for example, you’ll need to increment the score and the number of ques-
tions attempted.

12.3.3 Updating record field values

Idris is a pure functional language, so you won’t update record fields in-place. Instead,
when we say we’re updating a record, we really mean that we’re constructing a new
record containing the contents of the old record with a single field changed. For
example, the following listing shows one way to return a new record with the difficulty
field updated, using pattern matching.

Listing 12.22 Show implementation for GameState (ArithState.idr)

(continued)
This allows the same field name to be used multiple times within the same module.
For example, you can use a field called title in two different records in the same
file, Record.idr:

record Book where
constructor MkBook
title : String
author : String

record Album where
constructor MkAlbum
title : String
tracks : List String

Idris will decide which version of title to use, according to context:

*Record> title (MkBook "Breakfast of Champions" "Kurt Vonnegut")
"Breakfast of Champions" : String

345A complete program with state: working with records

setDifficulty : Nat -> GameState -> GameState
setDifficulty newDiff (MkGameState score _) = MkGameState score newDiff

If the record has a lot of fields, this can get unwieldy very quickly, because you’d need to
write update functions for every field. Not only that, if you were to add a field to a record,
you’d need to modify all of the update functions. Idris therefore provides a built-in syn-
tax for updating fields in records. Here’s an implementation of setDifficulty using
record-update syntax.

setDifficulty : Nat -> GameState -> GameState
setDifficulty newDiff state = record { difficulty = newDiff } state

Figure 12.3 shows the components of the record-update syntax. Note in particular
that the record-update syntax itself is first-class, where record is a keyword that begins
a record update, so the record update has a type. Here, the update has a function
type, GameState -> GameState, so you can also implement setDifficulty as follows:

setDifficulty : Nat -> GameState -> GameState
setDifficulty newDiff = record { difficulty = newDiff }

You can update nested record fields in a similar way, by giving the path to the field
you’d like to update. The following listing shows how you can write the correct and
wrong functions, which update the score.

addWrong : GameState -> GameState
addWrong state

= record { score->attempted = attempted (score state) + 1 } state

addCorrect : GameState -> GameState
addCorrect state

Listing 12.23 Setting a record field by pattern matching (ArithState.idr)

Listing 12.24 Setting a record field using record-update syntax (ArithState.idr)

Listing 12.25 Setting nested record fields using record-update syntax (ArithState.idr)

record { difficulty = newDiff } state

Field to
update

New
value

Record
to update

Function to update
a record field, of type
GameState -> GameState

Figure 12.3 Syntax for returning a
new record with a field updated

Updates the number of attempted
questions by adding 1 to the current value

346 CHAPTER 12 Writing programs with state
= record { score->correct = correct (score state) + 1,
score->attempted = attempted (score state) + 1 } state

The score->attempted notation gives the path to the field you’d like to update, with
the outermost field name first. So, in this example, you’d like to update the attempted
field of the score field of the state record.

12.3.4 Updating record fields by applying functions

The record-update syntax offers a concise notation for specifying a path to a particu-
lar record field. It’s still a little inconvenient, though, because you’ve needed to
explicitly write the path to each field twice, in different notations:

 First, to find the field to update, using the score->correct path notation
 Second, to find the old value, using a function application, correct (score state)

Idris therefore provides a notation for updating record fields by directly applying a
function to the current value of the field. The next listing shows a concise way of
updating the nested record fields in GameState.

addWrong : GameState -> GameState
addWrong = record { score->attempted $= (+1) }

addCorrect : GameState -> GameState
addCorrect = record { score->correct $= (+1),

score->attempted $= (+1) }

UPDATING RECORDS WITH $= You saw the $ operator, which applies a function
to an argument, in chapter 10. The $= syntax arises from a combination of
the function application operator $ and the record-update syntax.

This syntax gives you a concise and convenient way of writing functions that update
nested record fields, which makes it easier to write programs that manipulate state.
Moreover, because it doesn’t use pattern matching, it’s independent of any other
fields in a record, so even if you add fields to the GameState record, addWrong and
addCorrect will work without modifications.

12.3.5 Implementing the quiz

Using your new Command type and the GameState record, you can implement the arith-
metic quiz by reading and updating the state as necessary. The next listing shows an
outline of the quiz implementation, leaving holes for correct and wrong, which,
respectively, process a correct answer and a wrong answer.

Listing 12.26 Updating nested record fields by directly applying functions to the
current value of the field (ArithState.idr)

You can update multiple fields in one go,
separating the updates with a comma.

Updates the number of correct answers
by adding 1 to the current value

The $= operator in the field
update means that the new
field value is calculated by
applying the function (+1) to
the current value.

347A complete program with state: working with records

Cont

th

mutual
correct : ConsoleIO GameState
correct = ?correct_rhs

wrong : Int -> ConsoleIO GameState
wrong ans = ?wrong_rhs

readInput : (prompt : String) -> Command Input

quiz : ConsoleIO GameState
quiz = do num1 <- GetRandom

num2 <- GetRandom
st <- GetGameState
PutStr (show st ++ "\n")

input <- readInput (show num1 ++ " * " ++ show num2 ++ "? ")
case input of

Answer answer => if answer == num1 * num2
then correct
else wrong (num1 * num2)

QuitCmd => Quit st

This is similar to the implementation of quiz at the end of chapter 11, but instead of
passing the stream of random numbers and the score as arguments, you treat each of
them as state that you read and write as required. This simplifies the definition of
quiz, at the cost of making the definition of ConsoleIO more complex.

 The next listing shows how you can implement correct and wrong, each modify-
ing the state using addCorrect and addWrong, respectively, as defined in the previous
section.

correct : ConsoleIO GameState
correct = do PutStr "Correct!\n"

st <- GetGameState
PutGameState (addCorrect st)
quiz

wrong : Int -> ConsoleIO GameState
wrong ans = do PutStr ("Wrong, the answer is " ++ show ans ++ "\n")

st <- GetGameState
PutGameState (addWrong st)
quiz

At this stage, you have a complete description of an interactive arithmetic quiz that
retrieves random numbers and the current score from the state. It’s also total:

*ArithState> :total quiz
Main.quiz is Total

Listing 12.27 Implementing the arithmetic quiz (ArithState.idr)

Listing 12.28 Processing correct and wrong answers by updating the game state
(ArithState.idr)

readInput was defined at
the end of chapter 11. It
displays a prompt and reads
and parses user input.

Gets the next random
number from the state

Gets the game
state so you

can display the
current score
and difficulty Processes a

correct answer

Processes a
wrong answer

Sets a new game state with
an updated record

inues
with

e quiz
Sets a new game state with
an updated record

348 CHAPTER 12 Writing programs with state

Ta
first r

numb
the stre

con
to a n

betwee
the d
But to run quiz, you’ll need to extend runCommand to support your new commands.

12.3.6 Running interactive and stateful programs: executing the quiz

As with the runState function you wrote for processing operations in the custom
State type in section 12.2, the updated run function will need to process the current
game state. It will also need to read from a stream of random numbers (for Get-
Random) and perform console I/O. The following listing shows how these are all cap-
tured in a new type for runCommand.

runCommand : Stream Int ->
GameState ->
Command a ->
IO (a, Stream Int, GameState)

runCommand = ?runCommand_rhs

Listing 12.30 gives the complete definition of runCommand. Note that, in each case, you
need to return the result of the command as well as show how each command affects
the random number stream and the game state.

runCommand : Stream Int -> GameState -> Command a ->
IO (a, Stream Int, GameState)

runCommand rnds state (PutStr x) = do putStr x
pure ((), rnds, state)

runCommand rnds state GetLine = do str <- getLine
pure (str, rnds, state)

runCommand (val :: rnds) state GetRandom
= pure (getRandom val (difficulty state), rnds, state)

where
getRandom : Int -> Int -> Int
getRandom val max with (divides val max)

getRandom val 0 | DivByZero = 1
getRandom ((max * div) + rem) max | (DivBy prf) = abs rem + 1

runCommand rnds state GetGameState
= pure (state, rnds, state)

runCommand rnds state (PutGameState newState)
= pure ((), rnds, newState)

Listing 12.29 A new type and skeleton definition for runCommand (ArithState.idr)

Listing 12.30 The complete definition of runCommand (ArithState.idr)

The stream of available random
numbers, before running the command

The game state,
before running
the command The command to run

Returns the result of the
command and an updated
stream of random numbers
and game state

No change to
the random
number
stream or
game state

kes the
andom

er from
am and
verts it
umber

n 1 and
ifficulty

level

Remember to import
Data.Primitives.Views
to be able to use
divides.

The result of the command
is the current game state.

The argument to PutGameState
becomes the new game state.

349A complete program with state: working with records
runCommand rnds state (Pure val)
= pure (val, rnds, state)

runCommand rnds state (Bind c f)
= do (res, newRnds, newState) <- runCommand rnds state c

runCommand newRnds newState (f res)

Similarly, you need to update run to take a stream of random integers and an initial
game state. Like runCommand, run also returns the result of running the program,
along with the updated stream and game state. Here’s the new implementation of
run, which supports the game state.

run : Fuel -> Stream Int -> GameState -> ConsoleIO a ->
IO (Maybe a, Stream Int, GameState)

run fuel rnds state (Quit val) = do pure (Just val, rnds, state)
run (More fuel) rnds state (Do c f)

= do (res, newRnds, newState) <- runCommand rnds state c
run fuel newRnds newState (f res)

run Dry rnds state p = pure (Nothing, rnds, state)

As in chapter 11, you use Fuel to say how long you’re willing to allow a potentially
infinite interactive program to run, so the portion of the return type that represents
the result of running the program, of type ConsoleIO a, has type Maybe a, to capture
the possibility of running out of Fuel.

 Finally, the next listing shows how you update the main program to initialize the
stream of random numbers and the game state.

randoms : Int -> Stream Int
randoms seed = let seed' = 1664525 * seed + 1013904223 in

(seed' `shiftR` 2) :: randoms seed'

partial
main : IO ()
main = do seed <- time

(Just score, _, state) <-
run forever (randoms (fromInteger seed)) initState quiz

| _ => putStrLn "Ran out of fuel"
putStrLn ("Final score: " ++ show state)

As with the implementation of quiz at the end of chapter 11, you separate terminat-
ing sequences of commands (using the Command type) from possible nonterminating
sequences of console I/O operations (using the ConsoleIO type). In addition, you
extend the Command type to allow reading and writing of the game’s state much like

Listing 12.31 Running a ConsoleIO program consisting of a potentially infinite
stream of Command (ArithState.idr)

Listing 12.32 A main program that initializes the arithmetic quiz with a random number
stream and an initial state (ArithState.idr)

No change to the random
number stream or game state

Takes the states from running
the first command and passes
them on to the next command

Generates an infinite stream of random numbers

Needed because you use forever

Remember to import System to be able to use time.

350 CHAPTER 12 Writing programs with state
the implementation of State. If you define a specific type for the commands that an
application can execute, you can make that type as precise as you need, possibly
describing the effect of each operation on an abstraction of a system’s state. You’ll see
more of what you can achieve by following this pattern and the guarantees you can
make about stateful, interactive programs in the next chapter.

Exercises

1 Write an updateGameState function with the following type:

updateGameState : (GameState -> GameState) -> Command ()

You can test it by using it in the definitions of correct and wrong instead of Get-
GameState and PutGameState. For example:

correct : ConsoleIO GameState
correct = do PutStr "Correct!\n"

updateGameState addCorrect
quiz

 2 Implement the Functor, Applicative, and Monad interfaces for Command.
 3 You could define records for representing an article on a social news website as fol-

lows, along with the number of times the article has been upvoted or downvoted:

record Votes where
constructor MkVotes
upvotes : Integer
downvotes : Integer

record Article where
constructor MkArticle
title : String
url : String
score : Votes

initPage : (title : String) -> (url : String) -> Article
initPage title url = MkArticle title url (MkVotes 0 0)

Write a function to calculate the overall score of a given article, where the score is
calculated from the number of downvotes subtracted from the number of upvotes.
It should have the following type:

getScore : Article -> Integer

You can test it with the following example articles:

badSite : Article
badSite = MkArticle "Bad Page" "http://example.com/bad" (MkVotes 5 47)

goodSite : Article
goodSite = MkArticle "Good Page" "http://example.com/good" (MkVotes 101 7)

At the REPL, you should see the following:

*ex_12_3> getScore goodSite
94 : Integer

351Summary
*ex_12_3> getScore badSite
-42 : Integer

 4 Write addUpvote and addDownvote functions that modify an article’s score up or
down. They should have the following types:

addUpvote : Article -> Article
addDownvote : Article -> Article

You can test these at the REPL as follows:

*ex_12_3> addUpvote goodSite
MkArticle "Good Page"

"http://example.com/good"
(MkVotes 102 7) : Article

*ex_12_3> addDownvote badSite
MkArticle "Bad Page"

"http://example.com/bad"
(MkVotes 5 48) : Article

*ex_12_3> getScore (addUpvote goodSite)
95 : Integer

12.4 Summary
 Many algorithms read and write state. For example, when labeling the nodes of

a tree in depth-first order, you can keep track of the state of the labels while tra-
versing the tree.

 You can manage state by using the generic State type to describe operations on
the state along with a runState function to execute those operations.

 You can define your own State type as a sequence of Get and Put operations.
 Defining Functor, Applicative, and Monad for the State type gives you access

to several generic functions from the Idris library.
 When writing interactive programs with state, you can define a Command type to

describe an interface consisting of console I/O and state management operations.
 Record types can represent more complex nested state.
 Idris provides a concise syntax for assigning new values to fields in nested

records.
 Idris also provides a syntax (using $=) for updating a field in a nested record by

applying a function to the value in that field.

State machines:
verifying protocols in types
In the previous chapter, you saw how to manage mutable state by defining a type
for representing sequences of commands in a system, and a function for running
those commands. This follows a common pattern: the data type describes a sequence
of operations, and the function interprets that sequence in a particular context. For
example, State describes sequences of stateful operations, and runState inter-
prets those operations with a specific initial state.

 In this chapter, we’ll look at one of the advantages of using a type for describing
sequences of operations and keeping the execution function separate. It allows you
to make the descriptions more precise, so that certain operations can only be run
when the state has a specific form. For example, some operations require access to
a resource, such as a file handle or database connection, before they’re executed:

This chapter covers
 Specifying protocols in types

 Describing preconditions and postconditions of
operations

 Using dependent types in state
352

353State machines: tracking state in types
 You need an open file handle to read from a file successfully.
 You need a connection to a database before you can run a query on the data-

base.

When you write programs that work with resources like this, you’re really working with
a state machine. A database client might have two states, such as Closed and Connected,
referring to its connection status to a database. Some operations (such as querying the
database) are only valid in the Connected state; some (such as connecting to the data-
base) are only valid in the Closed state; and some (such as connecting and closing)
also change the state of the system. Figure 13.1 illustrates this system.

State machines like the one illustrated in figure 13.1 exist, implicitly, in lots of real-
world systems. When you’re implementing communicating systems, for example,
whether over a network or using concurrent processes, you need to make sure each
party is following the same communication pattern, or the system could deadlock or
behave in some other unexpected way. Each party follows a state machine where send-
ing or receiving a message puts the overall system into a new state, so it’s important
that each party follows a clearly defined protocol. In Idris, we have an expressive type
system, so if there’s a model for a protocol, it’s a good idea to express that in a type, so
that you can use the type to help implement the protocol accurately.

 In this chapter, you’ll see how to make state machines like the one illustrated in fig-
ure 13.1explicit in types. In this way, you can be sure that any function that correctly
describes a sequence of actions follows the protocol defined by a state machine. Not
only that, you can take a type-driven approach to defining sequences of actions using
holes and interactive development. We’ll begin with some fairly abstract examples to
illustrate how you can describe state machines in types, modeling the states and oper-
ations on a door and a vending machine.

13.1 State machines: tracking state in types
You’ve previously implemented programs with state by defining a type that describes
commands for reading and writing state. With dependent types, you can make the
types of these commands more precise and include any relevant details about the state
of the system in the type itself.

 For example, let’s consider how to represent the state of a door with a doorbell. A
door can be in one of two states, open (represented as DoorOpen) or closed (repre-
sented as DoorClosed), and we’ll allow three operations:

ConnectedClosed

Connect

Query

Close

Figure 13.1 A state transition diagram showing the high-level operation of
a database. It has two possible states, Closed and Connected. Its three
operations, Connect, Query, and Close, are only valid in specific states.

354 CHAPTER 13 State machines: verifying protocols in types
 Opening the door, which moves the system from the DoorClosed state to the
DoorOpen state

 Closing the door, which moves the system from the DoorOpen state to the Door-
Closed state

 Ringing the doorbell, which we’ll only allow when the door is in the Door-
Closed state

Figure 13.2 is a state transition diagram that shows the states the system can be in and
how each operation modifies the overall state.

If you can define these state transitions in a type, then a well-typed description of a
sequence of operations must correctly follow the rules shown in the state transition
diagram. Furthermore, you’ll be able to use holes and interactive editing to find out
which operations are valid at a particular point in a sequence.

 In this section, you’ll see how to define state machines like the door in a depen-
dent type. First, we’ll implement a model of the door, and then we’ll model more-
complex states in a model of a simplified vending machine. In each case, we’ll focus
on the model of the state transitions, rather than a concrete implementation of the
machine.

13.1.1 Finite state machines: modeling a door as a type

The state machine in figure 13.2 describes a protocol for correct use of a door by saying
which operations are valid in which state, and how those operations affect the state.
Listing 13.1 shows one way to represent the possible operations. This also includes a
(>>=) constructor for sequencing and a Pure constructor for producing pure values.

data DoorCmd : Type where
Open : DoorCmd ()
Close : DoorCmd ()
RingBell : DoorCmd ()

Pure : ty -> DoorCmd ty
(>>=) : DoorCmd a -> (a -> DoorCmd b) -> DoorCmd b

REMINDER: (>>=) AND DO NOTATION Remember that do notation translates
into applications of (>>=).

Listing 13.1 Representing operations on a door as a command type (Door.idr)

DoorOpenDoorClosed

Open

RingBell

Close

Figure 13.2 A state transition
diagram showing the states and
operations on a door

Changes the state of the door
from DoorClosed to DoorOpen

Changes the state of the door
from DoorOpen to DoorClosed

355State machines: tracking state in types
With DoorCmd, you can write functions like the following, which describes a sequence
of operations for ringing a doorbell and opening and then closing the door, correctly
following the door-usage protocol:

doorProg : DoorCmd ()
doorProg = do RingBell

Open
Close

Unfortunately, you can also describe invalid sequences of operations that don’t follow
the protocol, such as the following, where you attempt to open a door twice, and then
ring the doorbell when the door is already open:

doorProgBad : DoorCmd ()
doorProgBad = do Open

Open
RingBell

You can avoid this, and limit functions with DoorCmd to valid sequences of operations
that do follow the protocol, by keeping track of the door’s state in the type of the
DoorCmd operations. The following listing shows how to do this, describing exactly the
state transitions represented in figure 13.2 in the types of the commands.

data DoorState = DoorClosed | DoorOpen

data DoorCmd : Type ->
DoorState ->
DoorState ->
Type where

Open : DoorCmd () DoorClosed DoorOpen
Close : DoorCmd () DoorOpen DoorClosed
RingBell : DoorCmd () DoorClosed DoorClosed

Pure : ty -> DoorCmd ty state state
(>>=) : DoorCmd a state1 state2 ->

(a -> DoorCmd b state2 state3) ->
DoorCmd b state1 state3

Each command’s type takes three arguments:

 The type of the value produced by the command
 The input state of the door; that is, the state the door must be in before you can

execute the operation
 The output state of the door; that is, the state the door will be in after you exe-

cute the operation

Listing 13.2 Modeling the door state machine in a type, describing state transitions in
the types of the commands (Door.idr)

Defines the two possible
states of a door

The type of the result of the operation
The state of the door before the operation
The state of the door after the operation

Produces a value without
affecting the state

Sequences two operations. The
output state of the first gives
the input state of the second.

Combined operation goes from the input
state of the first operation to the output
state of the second

356 CHAPTER 13 State machines: verifying protocols in types
An implementation of the following function would therefore describe a sequence of
actions that begins and ends with the door closed:

doorProg : DoorCmd () DoorClosed DoorClosed

ARGUMENT ORDER IN DOORCMD Notice that the type that a sequence of opera-
tions produces is the first argument to DoorCmd, and it’s followed by the
input and output states. This is a common convention when defining types
for describing state transitions, and it will become important in chapter 14
when we look at more-complex state machines that deal with errors and feed-
back from the environment.

In general, if you have a value of type DoorType ty beforeState afterState, it
describes a sequence of door actions that produces a value of type ty; it begins with
the door in the state beforeState; and it ends with the door in the state afterState.

13.1.2 Interactive development of sequences of door operations

To see how the types in DoorCmd can help you write sequences of operations correctly,
let’s reimplement doorProg. We’ll write this in the same way as before: ring the door-
bell, open the door, and close the door.

 If you write it incrementally, you’ll see how the type shows the changes in the state
of the door throughout the sequence of actions:

1 Define—Begin with the skeleton definition:

doorProg : DoorCmd () DoorClosed DoorClosed
doorProg = ?doorProg_rhs

 2 Refine, type—Add an action to ring the doorbell:

doorProg : DoorCmd () DoorClosed DoorClosed
doorProg = do RingBell

?doorProg_rhs

If you check the type of ?doorProg_rhs now, you’ll see that it should be a
sequence of actions that begins and ends with the door in the DoorClosed state:

doorProg_rhs : DoorCmd () DoorClosed DoorClosed

 3 Refine, type—Next, add an action to open the door:

doorProg : DoorCmd () DoorClosed DoorClosed
doorProg = do RingBell

Open
?doorProg_rhs

If you check the type of ?doorProg_rhs now, you’ll see that it should begin with
the door in the DoorOpen state instead:

doorProg_rhs : DoorCmd () DoorOpen DoorClosed

357State machines: tracking state in types
 4 Refine failure—If you add an extra Open now, with the door already in the
DoorOpen state, you’ll get a type error:

doorProg : DoorCmd () DoorClosed DoorClosed
doorProg = do RingBell

Open
Open
?doorProg_rhs

The error says that the type of Open is an operation that starts in the DoorClosed
state, but the expected type starts in the DoorOpen state:

Door.idr:20:15:
When checking right hand side of doorProg with expected type

DoorCmd () DoorClosed DoorClosed

When checking an application of constructor Main.>>=:
Type mismatch between

DoorCmd () DoorClosed DoorOpen (Type of Open)
and

DoorCmd a DoorOpen state2 (Expected type)

Specifically:
Type mismatch between

DoorClosed
and

DoorOpen

5 Refine—Instead, complete the definition by closing the door:

doorProg : DoorCmd () DoorClosed DoorClosed
doorProg = do RingBell

Open
Close

Defining preconditions and postconditions in types
The type of doorProg includes input and output states that give preconditions and
postconditions for the sequence (the door must be closed both before and after the
sequence). If the definition violates either, you’ll get a type error.

For example, you might forget to close the door:

doorProg : DoorCmd () DoorClosed DoorClosed
doorProg = do RingBell

Open

In this case, you’ll get a type error:

Door.idr:18:15:
When checking right hand side of doorProg with expected type

DoorCmd () DoorClosed DoorClosed

When checking an application of constructor Main.>>=:
Type mismatch between

DoorCmd () DoorClosed DoorOpen (Type of Open)

358 CHAPTER 13 State machines: verifying protocols in types
By defining DoorCmd in this way, with the input and output states explicit in the type,
you’ve defined what it means for a sequence of door operations to be valid. And by writ-
ing doorProg incrementally, with a sequence of steps and a hole for the rest of the defi-
nition, you can see the state of the door at each stage by looking at the type of the hole.

 The door has exactly two states, DoorClosed and DoorOpen, and you can describe
exactly when you change states from one to the other in the types of the door opera-
tions. But not all systems have an exact number of states that you can determine in
advance. Next, we’ll look at how you can model systems with an infinite number of
possible states.

13.1.3 Infinite states: modeling a vending machine

In this section, we’ll model a vending machine using type-driven development, writing
types that explicitly describe the input and output states of each operation. As a sim-
plification, the machine accepts only one type of coin (a £1 coin) and dispenses one
product (a chocolate bar). Even so, there could be an arbitrarily large number of
coins or chocolate bars in the machine, so the number of possible states is not finite.

 Table 13.1 describes the basic operations of a vending machine, along with the
state of the machine before and after each operation.

As with the door example, each operation has a precondition and a postcondition:

 Precondition—The number of coins and amount of chocolate that must be in
the machine before the operation

Table 13.1 Vending machine operations, with input and output states represented as Nat

Coins (before) Chocolate (before) Operation Coins (after) Chocolate (after)

pounds chocs Insert coin S pounds chocs

S pounds S chocs Vend chocolate pounds chocs

pounds chocs Return coins Z chocs

(continued)
and

DoorCmd () DoorClosed DoorClosed (Expected type)

Specifically:
Type mismatch between

DoorOpen
and

DoorClosed

The error refers to the final step and says that Open moves from DoorClosed to
DoorOpen, but the expected type is to move from DoorClosed to DoorClosed.

359State machines: tracking state in types
 Postcondition—The number of coins and amount of chocolate in the machine
after the operation.

You can represent the state of the machine as a pair of two Nats, the first representing
the number of coins in the machine and the second representing the number of
chocolates:

VendState : Type
VendState = (Nat, Nat)

The next listing shows a representation of the vending machine state as an Idris type,
with the state transitions from table 13.1 explicitly written in the types of the
MachineCmd operations.

VendState : Type
VendState = (Nat, Nat)

data MachineCmd : Type ->
VendState ->

VendState ->

Type where
InsertCoin : MachineCmd () (pounds, chocs) (S pounds, chocs)
Vend : MachineCmd () (S pounds, S chocs) (pounds, chocs)
GetCoins : MachineCmd () (pounds, chocs) (Z, chocs)

To complete the model, you’ll need to be able to sequence commands. You’ll also
need to be able to read user input: the commands you’re defining describe what the
machine does, but there’s also a user interface that consists of the following:

 A coin slot
 A vend button, for dispensing chocolate
 A change button, for returning any unused coins

You can model these operations in a data type for describing possible user inputs. List-
ing 13.4 shows the complete model of the vending machine, including additional
operations for displaying a message (Display), refilling the machine (Refill), and
reading user actions (GetInput).

data Input = COIN
| VEND
| CHANGE
| REFILL Nat

Listing 13.3 Modeling the vending machine in a type, describing state transitions in the
types of commands (Vending.idr)

Listing 13.4 The complete model of vending machine state (Vending.idr)

A type synonym for the machine state:
a pair of the number of £1 coins and
the number of chocolates

Machine state before the
operation (precondition)

Machine state after the
operation (postcondition)

Defines the possible
user inputs

360 CHAPTER 13 State machines: verifying protocols in types

R
mach

valid
no c

Disp
m

doesn
th

cou
s

data MachineCmd : Type -> VendState -> VendState -> Type where
InsertCoin : MachineCmd () (pounds, chocs) (S pounds, chocs)
Vend : MachineCmd () (S pounds, S chocs) (pounds, chocs)
GetCoins : MachineCmd () (pounds, chocs) (Z, chocs)
 Refill :(bars : Nat) ->

MachineCmd () (Z, chocs) (Z, bars + chocs)

Display : String -> MachineCmd () state state
GetInput : MachineCmd (Maybe Input) state state

Pure : ty -> MachineCmd ty state state
(>>=) : MachineCmd a state1 state2 ->

 (a -> MachineCmd b state2 state3) ->
MachineCmd b state1 state3

data MachineIO : VendState -> Type where
Do : MachineCmd a state1 state2 ->

(a -> Inf (MachineIO state2)) -> MachineIO state1

namespace MachineDo
(>>=) : MachineCmd a state1 state2 ->

(a -> Inf (MachineIO state2)) -> MachineIO state1
(>>=) = Do

13.1.4 A verified vending machine description

Listing 13.5 shows the outline of a function that describes verified sequences of opera-
tions for a vending machine using the state transitions defined by MachineCmd. As long
as it type-checks, you know that you’ve correctly sequenced the operations, and you’ll
never execute an operation without its precondition being satisfied.

mutual
vend : MachineIO (pounds, chocs)
vend = ?vend_rhs

refill : (num : Nat) -> MachineIO (pounds, chocs)
refill = ?refill_rhs

machineLoop : MachineIO (pounds, chocs)
machineLoop =

do Just x <- GetInput
| Nothing => do Display "Invalid input"

machineLoop
case x of

COIN => do InsertCoin
machineLoop

VEND => vend

Listing 13.5 A main loop that reads and processes user input to the vending machine
(Vending.idr)

efilling the
ine is only

if there are
oins in the

machine.

laying a
essage

’t affect
e state.

Reading user input
doesn’t affect the state.
Returns Maybe Input to

account for possible
invalid inputs.

An infinite sequence of machine
state transitions. The type gives the
starting state of the machine.

Supports do notation for infinite
sequences of machine state transitions

vend and refill need to
check their preconditions
are satisfied.

User input
ld be invalid,
o check here.

A pattern-matching
binding alternative (see
chapter 5). This branch
is executed if GetInput
returns Nothing.

361State machines: tracking state in types
CHANGE => do GetCoins
Display "Change returned"
machineLoop

REFILL num => refill num

There are holes for vend and refill. In each case, you need to check that the num-
ber of coins and chocolates satisfy their preconditions. If you try to Vend without
checking the precondition, Idris will report an error:

vend : MachineIO (pounds, chocs)
vend = do Vend

Display "Enjoy!"
machineLoop

Idris will report an error because you haven’t checked whether there’s a coin in the
machine and a chocolate bar available, so the precondition might not be satisfied:

Vending.idr:67:13:
When checking right hand side of vend with expected type

MachineIO (pounds, chocs)

When checking an application of function Main.MachineDo.>>=:
Type mismatch between

MachineCmd ()
(S pounds1, S chocs2)
(pounds1, chocs2) (Type of Vend)

and
MachineCmd () (pounds, chocs) (pounds1, chocs2) (Expected type)

Specifically:
Type mismatch between

S chocs1
and

chocs

The error says that the input state must be of the form (S pounds1, S chocs2), but
instead it’s of the form (pounds, chocs).

 You can solve this problem by pattern matching on the implicit arguments, pounds
and chocs, to ensure they’re in the right form, or display an error otherwise. The fol-
lowing listing shows definitions of vend and refill that do this.

vend : MachineIO (pounds, chocs)
vend {pounds = S p} {chocs = S c}

= do Vend
Display "Enjoy!"
machineLoop

vend {pounds = Z}
= do Display "Insert a coin"

machineLoop
vend {chocs = Z}

= do Display "Out of stock"

Listing 13.6 Adding definitions of vend and refill that check that their precondi-
tions are satisfied (Vending.idr)

Doesn’t type-check because there may not
be coins or chocolate in the machine

A coin and a chocolate are
available, so vend and continue.

No money in the machine; can’t vend

No chocolate in the machine; can’t vend

362 CHAPTER 13 State machines: verifying protocols in types
machineLoop

refill : (num : Nat) -> MachineIO (pounds, chocs)
refill {pounds = Z} num

= do Refill num
machineLoop

refill _ = do Display "Can't refill: Coins in machine"
machineLoop

With both the door and the vending machine, we’ve used types to model the states of a
physical system. In each case, the type gives an abstraction of the state a system is in
before and after each operation, and values in the type describe the valid sequences of
operations. We haven’t implemented a run function to execute the state transitions
for either DoorCmd or MachineCmd, but in the code accompanying this book, which is
available online, you’ll find code that implements a console simulation of the vending
machine.

 In the next section, you’ll see a more concrete example of tracking state in the
type, implementing a stack data structure. I’ll use this example to illustrate how you
can execute commands in practice.

Exercises

1 Change the RingBell operation so that it works in any state, rather than only when
the door is closed. You can test your answer by seeing that the following function
type-checks:

doorProg : DoorCmd () DoorClosed DoorClosed
doorProg = do RingBell

Open
RingBell
Close

 2 The following (incomplete) type defines a command for a guessing game, where
the input and output states are the number of remaining guesses allowed:

data GuessCmd : Type -> Nat -> Nat -> Type where
Try : Integer -> GuessCmd Ordering ?in_state ?out_state

Pure : ty -> GuessCmd ty state state
(>>=) : GuessCmd a state1 state2 ->

(a -> GuessCmd b state2 state3) ->
GuessCmd b state1 state3

The Try command returns an Ordering that says whether the guess was too high,
too low, or correct, and that changes the number of available guesses. Complete the
type of Try so that you can only make a guess when there’s at least one guess
allowed, and so that guessing reduces the number of guesses available.

If you have a correct answer, the following definition should type-check:

threeGuesses: GuessCmd () 3 0
threeGuesses = do Try 10

Refill only allows
restocking with chocolate
when there are no coins
in the machine.

363Dependent types in state: implementing a stack
Try 20
Try 15
Pure ()

Also, the following definition shouldn’t type-check:

noGuesses : GuessCmd () 0 0
noGuesses = do Try 10

Pure ()

 3 The following type defines the possible states of matter:

data Matter = Solid | Liquid | Gas

Define a MatterCmd type in such a way that the following definitions type-check:

iceSteam : MatterCmd () Solid Gas
iceSteam = do Melt

Boil

steamIce : MatterCmd () Gas Solid
steamIce = do Condense

Freeze

Additionally, the following definition should not type-check:

overMelt : MatterCmd () Solid Gas
overMelt = do Melt

Melt

13.2 Dependent types in state: implementing a stack
You’ve seen how to model state transitions in a type for two abstract examples: a door
(representing whether it was open or closed in its type) and a vending machine (rep-
resenting its contents in its type). Storing this abstract information in the type of the
operations is particularly useful when you also have concrete data that relates to that
abstract data. For example, if you’re describing data of a specific size, and the type of
an operation tells you how it changes the size of the data, you can use a Vect as a con-
crete representation. You’ll know the required length of the input and output Vect
from the type of each operation.

 In this section, you’ll see how this works by implementing operations on a stack
data structure. A stack is a last-in, first-out data structure where you can add items to
and remove them from the top of the stack, and only the top item is ever accessible. A
stack supports three operations:

 Push—Adds a new item to the top of the stack
 Pop—Removes the top item from the stack, provided that the stack isn’t empty
 Top—Inspects the top item on the stack, provided that the stack isn’t empty

Like the operations on the vending machine, each of these operations has a precondi-
tion that describes the necessary input state and a postcondition describing the out-
put state. Table 13.2 describes these, giving the required stack size before each
operation and the resulting stack size after the operation.

364 CHAPTER 13 State machines: verifying protocols in types

You’ll express the preconditions and postconditions in the types of each operation.
Once you’ve defined the operations on a stack, you’ll implement a function to run
sequences of stack operations using a concrete representation of a stack with its
height in its type. Because you’re using the stack’s height in the state transitions, a
good concrete representation of a stack is a Vect. You know, for example, that a stack
of Integer of height 10, contains exactly 10 integers, so you can represent this as a
value of type Vect 10 Integer.

 Finally, you’ll see an example of a stack in action, implementing a stack-based
interactive calculator.

13.2.1 Representing stack operations in a state machine

As with DoorCmd and MachineCmd in section 13.1, we’ll describe operations on a stack
in a dependent type and put the important properties of the input and output states
explicitly in the type. Here, the property of the state that interests us is the height of
the stack.

 Listing 13.7 shows how you can express the operations in table 13.2 in code,
describing how each operation affects the height of the stack. For this example, you’ll
only store Integer values on the stack, but you could extend StackCmd to allow
generic stacks by parameterizing over the element type in the stack.

import Data.Vect

data StackCmd : Type -> Nat -> Nat -> Type where
Push : Integer -> StackCmd () height (S height)
Pop : StackCmd Integer (S height) height
Top : StackCmd Integer (S height) (S height)

Pure : ty -> StackCmd ty height height
(>>=) : StackCmd a height1 height2 ->

(a -> StackCmd b height2 height3) ->
StackCmd b height1 height3

Table 13.2 Stack operations, with input and output stack sizes represented as Nat

Stack size (before) Operation Stack size (after)

height Push element S height

S height Pop element height

S height Inspect top element S height

Listing 13.7 Representing operations on a stack data structure with the input and out-
put heights of the stack in the type (Stack.idr)

You’ll use a Vect to represent the
stack, so import Data.Vect here.

Push increases the height
of the stack by 1.

Pop requires there to be at least one
element on the stack, and it decreases the
height of the stack by 1.

Top requires there to be at
least one element on the

stack, and it preserves the
height of the stack.

365Dependent types in state: implementing a stack
You’re using a Vect to represent the stack, so every time you add an element to the
vector or remove an element, you’ll change the vector’s type. You’re therefore repre-
senting dependently typed mutable state by putting the relevant arguments to the
type (the length of the Vect) in the StateCmd type itself.

 Using StackCmd, you can write sequences of stack operations where the input and
output heights of the stack are explicit in the types. For example, the following func-
tion pushes two integers, pops two integers, and then returns their sum:

testAdd : StackCmd Integer 0 0
testAdd = do Push 10

Push 20
val1 <- Pop
val2 <- Pop
Pure (val1 + val2)

The types of the constructors in StackCmd ensure that there will always be an element
on the stack when you try to Pop. For example, if you only push one integer in
testAdd, Idris will report an error:

testAdd : StackCmd Integer 0 0
testAdd = do Push 10

val1 <- Pop
val2 <- Pop
Pure (val1 + val2)

When you try to define testAdd like this, Idris reports an error:

Stack.idr:27:22:
When checking right hand side of testAdd with expected type

StackCmd Integer 0 0

When checking an application of constructor Main.>>=:
Type mismatch between

StackCmd Integer (S height) height (Type of Pop)
and

StackCmd a 0 height2 (Expected type)

Specifically:
Type mismatch between

S height
and

0

This error, and particularly the mismatch between S height and 0, means that you
have a stack of height 0, but Pop needs a stack that contains at least one element.

 This approach is similar to the stateful functions defined in chapter 12, here using
Push and Pop to describe how you’re modifying and querying the state. As with the
earlier descriptions of sequences of stateful operations, you’ll need to write a separate
function to run those sequences.

There’s only one element on the
stack, so Pop doesn’t type-check.

366 CHAPTER 13 State machines: verifying protocols in types
13.2.2 Implementing the stack using Vect

Listing 13.8 shows how to implement a function that executes stack operations. This is
similar to runState, which you saw in chapter 12, but here you take an input Vect of
the correct height as the contents of the stack.

runStack : (stk : Vect inHeight Integer) ->
StackCmd ty inHeight outHeight ->
(ty, Vect outHeight Integer)

runStack stk (Push val) = ((), val :: stk)
runStack (val :: stk) Pop = (val, stk)
runStack (val :: stk) Top = (val, val :: stk)

runStack stk (Pure x) = (x, stk)
runStack stk (cmd >>= next)

= let (cmdRes, newStk) = runStack stk cmd in
runStack newStk (next cmdRes)

If you try runStack with testAdd, passing it an initial empty stack, you’ll see that it
returns the sum of the two elements that you push, and that the final stack is empty:

*Stack> runStack [] testAdd
(30, []) : (Integer, Vect 0 Integer)

You can also define functions like the following, which adds the top two elements on
the stack, putting the result back onto the stack:

doAdd : StackCmd () (S (S height)) (S height)
doAdd = do val1 <- Pop

val2 <- Pop
Push (val1 + val2)

The input state S (S height) means that the stack must have at least two elements on
it, but, otherwise, it could be any height. If you try executing doAdd with an initial
stack containing two elements, you’ll see that it results in a stack containing a single
element that’s the sum of the two input elements:

*Stack> runStack [2,3] doAdd
((), [5]) : ((), Vect 1 Integer)

If the input state contains more than two elements, you’ll see that it results in a stack
with a height one smaller than the input height. For example, an input stack of [2, 3,
4] results in an output stack with the value [2 + 3, 4]:

*Stack> runStack [2,3,4] doAdd
((), [5, 4]) : ((), Vect 2 Integer)

Listing 13.8 Executing a sequence of actions on a stack, using a Vect to represent
the stack’s contents

The length of
the input
vector is the
input height
of the stack.

The length of the
output vector is
the output height
of the stack.

The length of the output
vector is the output
height of the stack.

367Dependent types in state: implementing a stack
You can add the two elements on the resulting stack with another call to doAdd:

*Stack> runStack [2,3,4] (do doAdd; doAdd)
((), [9]) : ((), Vect 1 Integer)

But trying one more doAdd would result in a type error, because there’s only one ele-
ment left on the stack:

*Stack> runStack [2,3,4] (do doAdd; doAdd; doAdd)
(input):1:34:When checking an application of constructor Main.>>=:

Type mismatch between
StackCmd () (S (S height)) (S height) (Type of doAdd)

and
StackCmd ty 1 outHeight (Expected type)

Specifically:
Type mismatch between

S height
and

0

This error means that you needed S (S height) elements on the stack (that is, at least
two elements) but you only had S height (that is, at least one, but not necessarily any
more). By putting the height of the stack in the type, therefore, you’ve explicitly spec-
ified the preconditions and postconditions on each operation, so you get a type error
if you violate any of these.

13.2.3 Using a stack interactively: a stack-based calculator

If you add commands for reading from and writing to the console, you can write a
console application for manipulating the stack and implement a stack-based calcula-
tor. A user can either enter a number, which pushes the number onto the stack, or
add, which adds the top two stack items, pushes the result onto the stack, and displays
the result. A typical session might go as follows:

*StackIO> :exec
> 3
> 4
> 5

> add
9
> add
12
> add
Fewer than two items on the stack

Figure 13.3 shows how each of the valid inputs in this session affects the contents of
the stack. Every time the user enters an integer, the stack size grows by one, and every
time the user enters add, the stack size decreases by one, as long as there are two items
to add.

User pushes three values
onto the stack: 3, 4 and 5

Adds the top two stack items,
displays and pushes the result

Error, because there’s only one item (12) on the

368 CHAPTER 13 State machines: verifying protocols in types
To implement this interactive stack program, you’ll need to extend StackCmd to sup-
port reading from and writing to the console. The following listing shows StackCmd in
a new file, StackIO.idr, extended with two commands: GetStr and PutStr.

data StackCmd : Type -> Nat -> Nat -> Type where
Push : Integer -> StackCmd () height (S height)
Pop : StackCmd Integer (S height) height
Top : StackCmd Integer (S height) (S height)

GetStr : StackCmd String height height
PutStr : String -> StackCmd () height height

Pure : ty -> StackCmd ty height height
(>>=) : StackCmd a height1 height2 ->

(a -> StackCmd b height2 height3) ->
StackCmd b height1 height3

DEPENDENT STATES IN THE EFFECTS LIBRARY I mentioned the Effects library in
chapter 12, which allows you to combine effects like state and console I/O
without having to define a new type, like StackCmd here. The Effects library
supports descriptions of state transitions and dependent state as in Stack-
Cmd. I won’t describe the Effects library further in this book, but learning
about the principles of dependent state here will mean that you’ll be able to
learn how to use the more flexible Effects library more readily.

You’ll also need to update runStack to support the two new commands. Because Get-
Str and PutStr describe interactive actions, you’ll need to update the type of run-
Stack to return IO actions. Here’s the updated runStack.

runStack : (stk : Vect inHeight Integer) ->
StackCmd ty inHeight outHeight ->
IO (ty, Vect outHeight Integer)

runStack stk (Push val) = pure ((), val :: stk)

Listing 13.9 Extending StackCmd to support console I/O with the commands GetStr
and PutStr (StackIO.idr)

Listing 13.10 Updating runStack to support the interactive commands GetStr and
PutStr (StackIO.idr)

3User input:

3Resulting stack:

4

4

3

5

5

4

3

add

9

3

add

12

Figure 13.3 How each user
input affects the contents of
the stack

Neither GetStr nor PutStr use
the stack, so the height remains
the same.

369Dependent types in state: implementing a stack
runStack (val :: stk) Pop = pure (val, stk)
runStack (val :: stk) Top = pure (val, val :: stk)
runStack stk GetStr = do x <- getLine

pure (x, stk)
runStack stk (PutStr x) = do putStr x

pure ((), stk)
runStack stk (Pure x) = pure (x, stk)
runStack stk (x >>= f) = do (x', newStk) <- runStack stk x

runStack newStk (f x')

As with the vending machine, you’ll describe infinite sequences of StackCmd opera-
tions in total functions by defining a separate StackIO type for describing infinite
streams of stack operations. The following listing shows how you can define StackIO
and how to run StackIO sequences, given an initial state for the stack.

data StackIO : Nat -> Type where
Do : StackCmd a height1 height2 ->

(a -> Inf (StackIO height2)) -> StackIO height1

namespace StackDo
(>>=) : StackCmd a height1 height2 ->

(a -> Inf (StackIO height2)) -> StackIO height1
(>>=) = Do

data Fuel = Dry | More (Lazy Fuel)

partial
forever : Fuel
forever = More forever

run : Fuel -> Vect height Integer -> StackIO height -> IO ()
run (More fuel) stk (Do c f)

= do (res, newStk) <- runStack stk c
run fuel newStk (f res)

run Dry stk p = pure ()

The interactive calculator follows a similar pattern to the implementation of the vend-
ing machine. The next listing shows an outline of the main loop, which reads an
input, parses it into a command type, and processes the command if the input is valid.

data StkInput = Number Integer
| Add

strToInput : String -> Maybe StkInput

mutual
tryAdd : StackIO height

stackCalc : StackIO height
stackCalc = do PutStr "> "

input <- GetStr

Listing 13.11 Defining infinite sequences of interactive stack operations (StackIO.idr)

Listing 13.12 Outline of an interactive stack-based calculator (StackIO.idr)

The Nat argument is
the initial height of
the stack for the
infinite sequence.

Supports do
notation for
StackIO

forever allows you to run a total program
indefinitely by giving an infinite supply of
Fuel. See chapter 11 for the full details.

The input Vect must have a
number of items given by

the initial stack height.

Describes possible user inputs:
entering a number or the add

Parses the input read from the console.
Returns Maybe because input could be invalid.

Adds two numbers at the top of the
stack, if present, and then loops

Main loop of the interactive calculator

370 CHAPTER 13 State machines: verifying protocols in types

Empty
is consid

in

Con
w

ma
case strToInput input of
Nothing => do PutStr "Invalid input\n"

stackCalc
Just (Number x) => do Push x

stackCalc
Just Add => tryAdd

main : IO ()
main = run forever [] stackCalc

You still need to define strToInput, which parses user input, and tryAdd, which adds
the two elements on the top of the stack, if possible. The following listing shows the
definition of strToInput.

strToInput : String -> Maybe RPNInput
strToInput "" = Nothing
strToInput "add" = Just Add
strToInput x = if all isDigit (unpack x)

then Just (Number (cast x))
else Nothing

Finally, the next listing shows the definition of tryAdd. Like vend and refill in the
vending machine implementation, you need to match on the initial state to make sure
that there are enough items on the stack to add.

tryAdd : StackIO height
tryAdd {height = (S (S h))}

= do doAdd
result <- Top
PutStr (show result ++ "\n")
stackCalc

tryAdd

= do PutStr "Fewer than two items on the stack\n"
stackCalc

You can check that stackCalc is total at the REPL:

*StackIO> :total stackCalc
Main.stackCalc is Total

By separating the looping component (StackIO) from the terminating component
(StackCmd), and by giving precise types to the operations, you can be sure that stack-
Calc has at least the following properties, as long as it’s total:

Listing 13.13 Reading user input for the stack-based calculator (StackIO.idr)

Listing 13.14 Adding the top two elements on the stack, if they’re present (StackIO.idr)

input
ered

valid.

If the input is the string “add”,
parse as the Add command.

If the input consists entirely of
digits, parse as Number.

Adding is only valid if there are at
least two elements on the stack.

doAdd, defined earlier, has a precondition in its
type that there are two elements on the stack.

Inspects the top item on the stack so
that you can display it as the result

tinues
ith the
in loop

If the earlier case doesn’t match, there
aren’t enough items on the stack to add.

371Summary
 It will continue running indefinitely.
 It will never crash due to user input that isn’t handled.
 It will never crash due to a stack overflow.

Exercises

1 Add user commands to the stack-based calculator for subtract and multiply. You
can test these as follows:

*ex_13_2> :exec
> 5
> 3
> subtract
2
> 8
> multiply
16

 2 Add a negate user command to the stack-based calculator for negating the top item
on the stack. You can test this as follows:

> 10
> negate
-10

 3 Add a discard user command that removes the top item from the stack. You can
test this as follows:

> 3
> 4
> discard
Discarded 4
> add
Fewer than two items on the stack

 4 Add a duplicate user command that duplicates the top item on the stack. You can
test this as follows:

> 2
> duplicate
Duplicated 2
> add
4

13.3 Summary
 Data types can model state machines by using each data constructor to describe

a state transition.
 You can describe how a command changes the state of a system by giving the

input and output states of the system as part of the command’s type.
 Developing sequences of state transitions interactively, using holes, means you

can check the required input and output states of a sequence of commands.

372 CHAPTER 13 State machines: verifying protocols in types
 Types can model infinite state spaces as well as finite states.
 Sequences of commands give verified sequences of state transitions because a

sequence of commands will only type-check if it describes a valid sequence of
state transitions.

 You can represent mutable dependently typed state by putting the arguments to
the dependent type in the state transitions. For example, you can use the length
of a vector to represent the height of a stack.

Dependent state machines:
handling feedback and errors
As you saw in the previous chapter, you can describe the valid state transitions of a
state machine in a dependent type, indexed by the required input state of an oper-
ation (its precondition) and the output state (its postcondition). By defining valid
state transitions in the type, you can be sure that a program that type-checks is guar-
anteed to describe a valid sequence of state transitions.

 You saw two examples, a description of a door and a simulation of a vending
machine, and in each case we gave precise types to the operations to describe how
they affected the state. But we didn’t consider the possibility that any of the opera-
tions could fail:

 What if, when you try to open the door, it’s jammed? What if, even though
you’ve run the Open operation, it’s still in the DoorClosed state?

This chapter covers
 Handling errors in state transitions

 Developing protocol implementations interactively

 Guaranteeing security properties in types
373

374 CHAPTER 14 Dependent state machines: handling feedback and errors
 What if, when you insert a coin in the vending machine, the machine rejects the
coin?

In almost any realistic setting, when you try to give precise types to describe a state
machine, you’ll need to consider the possibility of the operation failing, or of an unex-
pected response:

 Like the DoorState, you might represent the state of a file handle (open or
closed) in a type, but if you try to open a file, the file might not exist or you
might not have permission to open it.

 You might represent a secure communication protocol in a state machine, but
whether you can progress in the protocol depends on receiving valid responses
from the network to any request you send.

 You might represent the state of a bank’s automated teller machine (ATM) in a
type (waiting for a card, waiting for PIN entry, and so on), but you can only
move to a state where the machine can dispense cash if checking the user’s PIN
is successful.

In these cases, you’re not in complete control of how the system state changes. You
can request a change in the state (opening a file, sending a message, and so on) but
whether and how the state changes in practice depends on the response you receive
from the environment. In this chapter, you’ll see how to deal with the possibility of an
operation failing by allowing a state transition to depend on the result of an operation.

 You’ll also see how to deal with state changes that might depend on user input—
we’ll look at the state transitions involved in modeling an ATM, where user input
determines whether the machine can dispense cash. We’ll begin by revisiting the
model of the door from chapter 13 and see how to deal with the possibility that the
door might jam, so the Open operation fails.

14.1 Dealing with errors in state transitions
In the previous chapter, you defined a DoorCmd data type for modeling state transi-
tions on a door, as illustrated by the state transition diagram in figure 14.1.

 Listing 14.1 recaps the definition of DoorCmd, which models the state transition sys-
tem in figure 14.1.

DoorOpenDoorClosed

Open

RingBell

Close

Figure 14.1 A state transition
diagram showing the states and
operations on a door

375Dealing with errors in state transitions

data DoorState = DoorClosed | DoorOpen

data DoorCmd : Type -> DoorState -> DoorState -> Type where
Open : DoorCmd () DoorClosed DoorOpen
Close : DoorCmd () DoorOpen DoorClosed
RingBell : DoorCmd () DoorClosed DoorClosed

Pure : ty -> DoorCmd ty state state
(>>=) : DoorCmd a state1 state2 ->

(a -> DoorCmd b state2 state3) ->
DoorCmd b state1 state3

In this model, you’re in complete control of how each operation moves from one state
to another. For example, the type of Open states that it always starts with a door in the
DoorClosed state, and it always ends with a door in the DoorOpen state:

Open : DoorCmd () DoorClosed DoorOpen

Reality is not always so accommodating, however! If you were to implement this with
some real hardware, such as a sliding door operated by pressing a button, you’d need
to consider the possibility of hardware problems such as the door jamming. In this sec-
tion, we’ll refine the door model to capture this possibility of failure, and see how this
affects the implementation of programs that follow the protocol.

14.1.1 Refining the door model: representing failure

Open could fail due to the door being jammed, so we need a way to represent whether
it was successful. We could define an enumeration type to describe the possible results
of opening the door:

data DoorResult = OK | Jammed

Then, instead of producing the unit value, Open could return a DoorResult. We might
try the following type for Open:

Open : DoorCmd DoorResult DoorClosed DoorOpen

Unfortunately, this isn’t quite right because it still says that opening the door causes
the door to be in the DoorOpen state, whatever happens. Somehow, we need to express
that Open causes the door to be in either the DoorClosed or DoorOpen state, depend-
ing on the value of the DoorResult it produces. Figure 14.2 illustrates the state
machine we’d like to implement.

Listing 14.1 Modeling the door state machine in a type

376 CHAPTER 14 Dependent state machines: handling feedback and errors

You can achieve this by changing the type of DoorCmd to allow the output state to be
calculated from the return value. Figure 14.3 illustrates how you can refine the type of
DoorCmd to achieve this.

Here, you’ve given a name to the return type of the operation, ty, and said that the
output state is computed by a function that takes a ty as an input. Now, when you
define the type of Open (and indeed all of the DoorCmd operations), you give an expres-
sion for the output state, explaining how the output state is computed from the return
value, of type DoorResult:

Open : DoorCmd DoorResult DoorClosed
(\res => case res of

OK => DoorOpen
Jammed => DoorClosed)

This encodes exactly what the state transition diagram in figure 14.2 illustrates. That
is, the output state of Open can be one of the following:

 DoorOpen—If Open returns OK
 DoorClosed—If Open returns Jammed

Although you won’t know the value of res until you run the operation, you can at least
use the type to explain the possible states the door will be in given the result of Open.
Listing 14.2 shows the complete DoorCmd type declaration after this refinement. It also
adds Display, so you can display logging messages if necessary.

DoorOpenDoorClosed

Open(OK)

RingBell

Open(Jammed)

Close

Figure 14.2 A state transition diagram
showing the states and operations on a
door, where opening the door might fail

data DoorCmd : (ty : Type) -> DoorState -> (ty -> DoorState)

Result of the
operation

Input state

Output state calculated from
the result of the operation

Figure 14.3 New type for DoorCmd, where the output state of an operation
is computed from the return value of the operation

377Dealing with errors in state transitions

data DoorCmd : (ty : Type) -> DoorState -> (ty -> DoorState) -> Type where
Open : DoorCmd DoorResult DoorClosed

(\res => case res of
OK => DoorOpen
Jammed => DoorClosed)

Close : DoorCmd () DoorOpen (const DoorClosed)
RingBell : DoorCmd () DoorClosed (const DoorClosed)

Display : String -> DoorCmd () state (const state)

Pure : (res : ty) -> DoorCmd ty (state_fn res) state_fn
(>>=) : DoorCmd a state1 state2_fn ->

((res : a) -> DoorCmd b (state2_fn res) state3_fn) ->
DoorCmd b state1 state3_fn

In the previous definition of DoorCmd, in listing 14.1, you used the (>>=) operator to
explain that the output state of the first operation should be the input state of the
second:

(>>=) : DoorCmd a state1 state2 -> (a -> DoorCmd b state2 state3) ->
DoorCmd b state1 state3

It’s now slightly more complicated, because the return value of the first operation
affects the input state of the second:

(>>=) : DoorCmd a state1 state2_fn ->
((res : a) -> DoorCmd b (state2_fn res) state3_fn) ->
DoorCmd b state1 state3_fn

Listing 14.2 The refined DoorCmd type, allowing the output state of each operation to
be computed from the return value of the operation (DoorJam.idr)

Calculates the output state from
the return value of Open

You use const to say that the output state
is not dependent on the return value.

This type for Pure means that the value
res can be used to compute the output
state of a sequence of operations.

The (>>=) operator needs
to compute the intermediate
state from the output of the
first operation.

Calculating output state with const
This is the type of const, defined in the Prelude:

*DoorJam> :t const
const : a -> b -> a

It ignores its second argument and returns its first. So, if you say const Door-
Closed for the output state of an operation, that gives you a function that ignores
the result of the function and always returns DoorClosed.

378 CHAPTER 14 Dependent state machines: handling feedback and errors
This works as follows:

1 The first operation returns a value of type a, and the output state is computed
from a state2_fn function once you know the result of the operation.

 2 When you come to the second operation, you’ll know the result of the first
operation, named res, so it has an input state of state2_fn res.

3 The combined operation has an input state of state1 (the input state of the
first operation) and an output state computed from the result of the second
operation, using state3_fn.

Defining DoorCmd this way gives you more precision in defining the state transitions,
and it means that when you define functions using DoorCmd, the types of the opera-
tions require you to execute any necessary checks before continuing. For example,
after you try to Open a door, you can’t execute any further door operations until you’ve
checked the result. We’ll look at how this works by revisiting our earlier example,
doorProg.

14.1.2 A verified, error-checking, door-protocol description

In chapter 13, you implemented a function using DoorCmd as a sequence of actions to
ring the bell, and open and then close the door, and you used the types to verify that
the sequence of actions was valid. You wrote doorProg as follows:

doorProg : DoorCmd () DoorClosed DoorClosed
doorProg = do RingBell

Open
Close

Now that you’ve refined the type of DoorCmd so that the output state is computed from
the result of the operation, you’ll need to write the type differently:

doorProg : DoorCmd () DoorClosed (const DoorClosed)

That is, the output state isn’t affected by the result, so you use const, which ignores its
second argument and returns its first unchanged. But if you try implementing door-
Prog as before, without checking the result of Open, you’ll get an error:

doorProg : DoorCmd () DoorClosed (const DoorClosed)
doorProg = do RingBell

Open
Close

The error happens when you try to use Close. Its type requires that the input state is
DoorOpen, but in fact its input state is computed from the result of Open:

When checking an application of constructor Main.>>=:
Type mismatch between

DoorCmd () DoorOpen (const DoorClosed) (Type of Close)
and

DoorCmd ()
((\res =>

379Dealing with errors in state transitions
case res of
OK => DoorOpen
Jammed => DoorClosed) _)

(\value => DoorClosed) (Expected type)

To see how to avoid this problem, you can develop doorProg interactively, beginning
from the following point:

doorProg : DoorCmd () DoorClosed (const DoorClosed)
doorProg = do RingBell

Open
?doorProg_rhs

DEBUGGING TYPE ERRORS USING HOLES If you get a type error that’s hard to
understand on its own, it’s often a good idea to replace the offending part of
the program with a hole (as we did by replacing Close with ?door-
Prog_rhs), to see what the expected type is, along with any local variables in
scope.

1 Type, refine—If you check the type of ?doorProg_rhs, you’ll see this:

doorProg_rhs : DoorCmd ()

(case _ of
OK => DoorOpen
Jammed => DoorClosed)

(\value => DoorClosed)

The output state you see here arises from the definition of const in the Pre-
lude, and it’s a function that ignores its argument value and returns Door-
Closed. The input state you’re looking for is calculated from some value, _.
This value is the result of Open, which you haven’t named. Let’s call it jam:

doorProg : DoorCmd () DoorClosed (const DoorClosed)
doorProg = do RingBell

jam <- Open
?doorProg_rhs

 2 Type—You’ll now see that the input state of the next operation is calculated
from the value of jam:

jam : DoorResult

doorProg_rhs : DoorCmd ()

(case jam of
OK => DoorOpen
Jammed => DoorClosed)

(\value => DoorClosed)

 3 Define, type—Because the input state depends on the value of jam, you can make
progress by inspecting the value of jam:

doorProg : DoorCmd () DoorClosed (const DoorClosed)
doorProg = do RingBell

jam <- Open

380 CHAPTER 14 Dependent state machines: handling feedback and errors
case jam of
case_val => ?doorProg_rhs

You’ll now see that the input state depends on the value of case_val:

case_val : DoorResult
jam : DoorResult

doorProg_rhs : DoorCmd ()

(case case_val of
OK => DoorOpen
Jammed => DoorClosed)

(\value => DoorClosed)

 4 Define, type—If you case-split on case_val, you should see that each branch of
the case has a different type, calculated from the specific value of case_val:

doorProg : DoorCmd () DoorClosed (const DoorClosed)
doorProg = do RingBell

jam <- Open
case jam of

OK => ?doorProg_rhs_1
Jammed => ?doorProg_rhs_2

In ?doorProg_rhs_1, for example, jam has the value OK, so the door must have
successfully opened:

jam : DoorResult

doorProg_rhs_1 : DoorCmd () DoorOpen (\value => DoorClosed)

In ?doorProg_rhs_2, on the other hand, the door is jammed, so it’s still in the
DoorClosed state:

jam : DoorResult

doorProg_rhs_2 : DoorCmd () DoorClosed (\value => DoorClosed)

5 Refine—To complete the definition, you can display a log message in each case,
and if the door is open, close it again:

doorProg : DoorCmd () DoorClosed (const DoorClosed)
doorProg = do RingBell

jam <- Open
case jam of

OK => do Display "Glad To Be Of Service"
Close

Jammed => Display "Door Jammed"

The type of Open means that you need to check the state of the door before you exe-
cute any further operations that need to know the door’s state. In particular, you can’t
Close the door unless you’ve successfully opened it. You don’t have to check immedi-
ately, though. For example, you can display a message between opening the door and
checking the result:

381Dealing with errors in state transitions
doorProg : DoorCmd () DoorClosed (const DoorClosed)
doorProg = do RingBell

jam <- Open
Display "Trying to open the door"
case jam of

OK => do Display "Glad To Be Of Service"
Close

Jammed => Display "Door Jammed"

This is valid, because the precondition on Display doesn’t require the door to be in a
specific state; any will do, and Display won’t change the state.

 Using pattern-matching bindings, which you first saw in chapter 5, you can also
define doorProg more concisely, as follows:

doorProg : DoorCmd () DoorClosed (const DoorClosed)
doorProg = do RingBell

OK <- Open | Jammed => Display "Door Jammed"
Display "Glad To Be Of Service"
Close

This gives a default path through the sequence of actions, when Open returns OK, and
an alternative action when Open returns Jammed. Using pattern-matching bindings
makes it easier to write longer sequences of actions, where some of the actions might
fail. For example, you can open and close the door twice and abandon the sequence if
either fails:

doorProg : DoorCmd () DoorClosed (const DoorClosed)
doorProg = do RingBell

OK <- Open | Jammed => Display "Door Jammed"
Display "Glad To Be Of Service"
Close
OK <- Open | Jammed => Display "Door Jammed"
Display "Glad To Be Of Service"
Close

This example describes a protocol in the type, and it explicitly says where an operation
might fail. In doorProg, the type of Open means that you need to check its result
before you can proceed with any further operations that change the state.

The type of Pure
The type of Pure in DoorCmd allows you to define functions like the following, where
the call to Pure changes the state:

logOpen : DoorCmd DoorResult DoorClosed
(\res => case res of

OK => DoorOpen
Jammed => DoorClosed)

logOpen = do Display "Trying to open the door"
OK <- Open | Jammed => do Display "Jammed"

Pure Jammed
Display "Success"
Pure OK

382 CHAPTER 14 Dependent state machines: handling feedback and errors
You now have a definition of DoorCmd that precisely describes the protocol for open-
ing and closing doors, capturing the possibility of failure. But you haven’t yet seen
how the corresponding run function works, which is where the result of an Open oper-
ation would be produced in practice. We’ll look at this next, in the context of a larger
example: an ATM. We’ll also look at how state can change according to user input.

14.2 Security properties in types: modeling an ATM
You can use explicit states in the types of operations to guarantee, by type checking,
that a system will only execute security-critical operations when it’s in a valid state to
do so. For example, an ATM should only dispense cash when a user has inserted their
card and entered a correct PIN. This is a typical sequence of operations on an ATM:

1 A user inserts their bank card.
 2 The machine prompts the user for their PIN, to check that the user is entitled to

use the card.
3 If PIN entry is successful, the machine prompts the user for an amount of

money, and then dispenses cash.

If the user enters the correct PIN, the machine will be in a state to dispense cash; oth-
erwise, it won’t be. In this section, we’ll define a model for an ATM and see how to
change the state of the machine, in its type, based on user input.

SECURITY PROPERTY OF THE ATM In this model, we’ll omit some of the finer
details of banking, such as accessing and updating the user’s bank account, and
checking the PIN securely, which would be done with separate state machines.
We’ll focus on one important security property we want to maintain: the
machine must only dispense cash when there is a validated card in the machine.

As with the door model, we’ll begin by defining the possible states of the ATM and
the operations that can change the ATM’s state. Once we know how the operations

(continued)
If you replace the last line, Pure OK, with a hole, ?pure_ok, you’ll see that it has
an input state of DoorOpen, and the output state (of the entire logOpen function)
needs to be a function that computes its output state:

pure_ok : DoorCmd DoorResult DoorOpen
(\res => case res of

OK => DoorOpen
Jammed => DoorClosed)

The type of Pure is designed to work in this situation:

Pure : (res : ty) -> DoorCmd ty (state_fn res) state_fn

Here, state_fn is the function containing the case block, and Pure must take OK
as an argument to have the correct input state for ?pure_ok.

383Security properties in types: modeling an ATM
affect the state, we can define a data type for representing the operations on the
machine.

14.2.1 Defining states for the ATM

An ATM is either waiting for a user to begin an interaction, waiting for the user to
enter their PIN, or ready to dispense cash after validating a PIN. So an ATM, in our
model, can be in one of the following states:

 Ready—The ATM is ready and waiting for a card to be inserted.
 CardInserted—There is a card inside the ATM, but the system has not yet

checked a PIN entry against the card.
 Session—There is a card inside the ATM and the user has entered a valid PIN

for the card, so a validated session is in progress.

We’ll validate the card by checking that the user inputs a correct PIN. In the vending
machine in chapter 13, you also had to check that an input was valid, but in that case
you could check the command locally. Here, we’ll assume that there’s an external ser-
vice to check the PIN, so we won’t know until runtime which inputs will result in
which states.

 The machine supports the following basic operations, each of which may have pre-
conditions and postconditions on the state of the machine:

 InsertCard—Waits for a user to insert a card
 EjectCard—Ejects a card from the machine, as long as there’s a card in the

machine
 GetPIN—Reads a user’s PIN, as long as there’s a card in the machine
 CheckPIN—Checks whether an entered PIN is valid
 Dispense—Dispenses cash as long as there’s a validated card in the machine
 GetAmount—Reads from the user an amount to dispense
 Message—Displays a message to the user

Figure 14.4 illustrates how these operations affect the state of the machine.

CardInserted

Session

Ready

EjectCard

Dispense

GetPIN,
CheckPIN (Incorrect)

InsertCard

EjectCard CheckPIN (Correct)

Figure 14.4 A state machine describing the states and operations on an ATM. This omits
operations (such as GetAmount) that are valid in all states.

384 CHAPTER 14 Dependent state machines: handling feedback and errors

A P
exactly
charac
Having defined the states and seen how the high-level operations that the machine
performs can affect the states, we’re now in a position to define a type for the ATM
that describes the state transitions illustrated in figure 14.4.

14.2.2 Defining a type for the ATM

Listing 14.3 defines an ATMCmd type that represents the state transitions of operations
on an ATM in Idris code. It also includes GetAmount and Message, which are valid in all
states and don’t affect the state, and the usual operations Pure and (>>=). The type of
EjectCard is slightly simplified; we’ll refine this in section 14.2.4.

import Data.Vect

PIN : Type
PIN = Vect 4 Char

data ATMState = Ready | CardInserted | Session

data PINCheck = CorrectPIN | IncorrectPIN

data ATMCmd : (ty : Type) -> ATMState -> (ty -> ATMState) -> Type where
InsertCard : ATMCmd () Ready (const CardInserted)
EjectCard : ATMCmd () state (const Ready)
GetPIN : ATMCmd PIN CardInserted (const CardInserted)

CheckPIN : PIN -> ATMCmd PINCheck CardInserted
(\check => case check of

CorrectPIN => Session
IncorrectPIN => CardInserted)

GetAmount : ATMCmd Nat state (const state)

Dispense : (amount : Nat) -> ATMCmd () Session (const Session)

Message : String -> ATMCmd () state (const state)
Pure : (res : ty) -> ATMCmd ty (state_fn res) state_fn
(>>=) : ATMCmd a state1 state2_fn ->

((res : a) -> ATMCmd b (state2_fn res) state3_fn) ->
ATMCmd b state1 state3_fn

Using ATMCmd, you can write a function that describes a session on an ATM, from the
user inserting a card to the machine dispensing cash. Listing 14.4 shows the begin-
ning of an atm function that waits for a user to insert a card, prompts for a PIN, and
then checks the result. I’ve left a hole for the rest of the sequence, in which we’ll
check the PIN and dispense cash if the PIN is valid.

Listing 14.3 A type for representing the commands of an ATM, and how they affect the
ATM’s state (ATM.idr)

IN is
 four
ters.

The possible
states of the ATM

The possible results
of checking a PIN:
valid or invalid

This isn’t quite right, because it allows the
card to be ejected even if there’s no card
in the machine. We’ll refine it shortly.

The machine will only
dispense money if there’s a

validated card in the machine.

Only moves to the Session state
if the PIN check succeeds

385Security properties in types: modeling an ATM

atm : ATMCmd () Ready (const Ready)
atm = do InsertCard

pin <- GetPIN
pinOK <- CheckPIN pin
?atm_rhs

You can complete atm as follows:

1 Type, define —If you check the type of the ?atm_rhs hole, you’ll see that you
begin in a state that depends on the value of pinOK, and you need to end in the
Ready state:

pin : Vect 4 Char
pinOK : PINCheck

atm_rhs : ATMCmd ()

(case pinOK of
CorrectPIN => Session
IncorrectPIN => CardInserted)

(\value => Ready)

The type here suggests you can proceed by checking the value of pinOK:

atm : ATMCmd () Ready (const Ready)
atm = do InsertCard

pin <- GetPIN
pinOK <- CheckPIN pin
case pinOK of

CorrectPIN => ?atm_rhs_1
IncorrectPIN => ?atm_rhs_2

 2 Type—If you check ?atm_rhs_1 and ?atm_rhs_2, you’ll see that the state is dif-
ferent in each case. In ?atm_rhs_1, the PIN was found to be valid, so you have a
validated session:

pinOK : PINCheck
pin : Vect 4 Char

atm_rhs_1 : ATMCmd () Session (\value => Ready)

In ?atm_rhs_2, on the other hand, the PIN was found to be invalid, so you’re
still in the CardInserted state:

pinOK : PINCheck
pin : Vect 4 Char

atm_rhs_2 : ATMCmd () CardInserted (\value => Ready)

 3 Refine—In ?atm_rhs_1, you can now dispense cash, so you can prompt for an
amount and dispense that:

case pinOK of
CorrectPIN => do cash <- GetAmount

Dispense cash

Listing 14.4 An atm function describing a sequence of operations on an ATM (ATM.idr)

Checks whether the PIN is valid.
The next state of the machine
depends on the value of pinOK.

386 CHAPTER 14 Dependent state machines: handling feedback and errors
?atm_rhs_1
IncorrectPIN => ?atm_rhs_2

 4 Type, refine—The input state of ?atm_rhs_1 is still Session, so before you finish
you need to get back to the Ready state:

pin : Vect 4 Char
pinOK : PINCheck
cash : Nat

atm_rhs_1 : ATMCmd () Session (\value => Ready)

You can achieve this by ejecting the card:

case pinOK of
CorrectPIN => do cash <- GetAmount

Dispense cash
EjectCard

IncorrectPIN => ?atm_rhs_2

5 Refine—For ?atm_rhs_2, the PIN was invalid, so the simplest thing to do is eject
the card, leading to the following completed definition:

atm : ATMCmd () Ready (const Ready)
atm = do InsertCard

pin <- GetPIN
pinOK <- CheckPIN pin
case pinOK of

CorrectPIN => do cash <- GetAmount
Dispense cash
EjectCard

IncorrectPIN => EjectCard

There are other ways you could define atm. For example, it would be helpful to dis-
play messages to the user. Also, in practice, ATMs typically don’t check the PIN until
just before dispensing cash. The next listing shows this alternative way of implement-
ing atm.

atm : ATMCmd () Ready (const Ready)
atm = do InsertCard

pin <- GetPIN
cash <- GetAmount
pinOK <- CheckPIN pin
Message "Checking Card"
case pinOK of

CorrectPIN => do Dispense cash
EjectCard
Message "Please remove your card and cash"

IncorrectPIN => do Message "Incorrect PIN"
EjectCard

Listing 14.5 An alternative implementation of atm, including messages to the user and
checking the PIN later (ATM.idr)

You haven’t checked the PIN yet, or the
state of pinOK, but these commands are
valid because they don’t require the
machine to be in a specific state.

387Security properties in types: modeling an ATM
As long as you only execute actions when the machine is in the appropriate state, and as
long as you make sure that every path through the actions in atm ends in the Ready state,
you can implement the details however you like. If atm type-checks, you can be certain
that you’ve maintained the important security property: the machine will only dispense
cash when there’s a card in the machine and the PIN has been entered correctly.

14.2.3 Simulating an ATM at the console: executing ATMCmd

To try the atm function, you can write a console simulation of an ATM that produces
IO actions for an ATMCmd description:

runATM : ATMCmd res inState outState_fn -> IO res

Given a sequence of ATMCmd that produces a result of type res, begins in state inState,
and computes the result state with outState_fn, runATM gives a sequence of IO actions
that produces a result, res. Let’s hardcode a single valid PIN for this simulation:

testPIN : Vect 4 Char
testPIN = ['1', '2', '3', '4']

The following listing shows a console simulation of an ATM that uses this hardcoded
PIN. In this simulation, many of the commands prompt for an input on the console
and return the value read.

readVect : (n : Nat) -> IO (Vect n Char)
readVect Z = do discard <- getLine

pure []
readVect (S k) = do ch <- getChar

chs <- readVect k
pure (ch :: chs)

runATM : ATMCmd res inState outState_fn -> IO res
runATM InsertCard = do putStrLn "Please insert your card (press enter)"

x <- getLine
pure ()

runATM EjectCard = putStrLn "Card ejected"
runATM GetPIN = do putStr "Enter PIN: "

readVect 4
runATM (CheckPIN pin) = if pin == testPIN

then pure CorrectPIN
else pure IncorrectPIN

runATM GetAmount = do putStr "How much would you like? "
x <- getLine
pure (cast x)

runATM (Dispense amount) = putStrLn ("Here is " ++ show amount)

runATM (Message msg) = putStrLn msg
runATM (Pure res) = pure res
runATM (x >>= f) = do x' <- runATM x

runATM (f x')

Listing 14.6 A console simulation of an ATM (ATM.idr)

readVect reads a line, keeping
the prefix of a specific length
and discarding the rest.

Simulates waiting for a card to be
inserted by waiting for any input

Checks the given pin
against the hardcoded
PIN. The value returned
here determines the new
state of the machine.

388 CHAPTER 14 Dependent state machines: handling feedback and errors
You’ve now defined the ATM as a type, with commands describing each of the state
transitions on the ATM, and a separate runATM function that interprets those com-
mands in the IO context. By separating the description from the implementation, you
can write different interpreters for different contexts, as required. In particular, you
wouldn’t want to hardcode a PIN on a real device!

14.2.4 Refining preconditions using auto-implicits

One feature of the state machine in figure 14.4 that ATMCmd type doesn’t quite capture
is that ejecting the card should only be allowed when there’s a card in the machine.
Instead, you have the following type:

EjectCard : ATMCmd () state (const Ready)

That is, you can try to eject a card in any input state, even when there’s no card in the
machine. But there are only two states when it’s okay to eject a card: CardInserted
and Session. You shouldn’t be able to write the following function, because the
machine is ejecting a card in the Ready state:

badATM : ATMCmd () Ready (const Ready)
badATM = EjectCard

Somehow, you need both of the following types to work for EjectCard:

EjectCard : ATMCmd () CardInserted (const Ready)
EjectCard : ATMCmd () Session (const Ready)

A data constructor like EjectCard can’t have two different types. You can, however,
define a predicate on ATMState that will allow you to restrict the possible input states of
EjectCard to those that are valid. We discussed predicates in chapter 9, and you can
define a HasCard predicate that describes the states in which a machine contains a card:

data HasCard : ATMState -> Type where
HasCI : HasCard CardInserted
HasSession : HasCard Session

You can only construct a value of type HasCard state when state is one of Card-
Inserted or Session, so you can refine the type of EjectCard as follows:

EjectCard : HasCard state -> ATMCmd () state (const Ready)

If you do this, you’ll need to give values of type HasCard explicitly when using Eject-
Card. For example:

insertEject : ATMCmd () Ready (const Ready)
insertEject = do InsertCard

EjectCard HasCI

Having to write explicit values for the predicate will get tedious very quickly. Instead,
you can use an auto implicit for the predicate, which you also saw in chapter 9:

EjectCard : {auto prf : HasCard state} -> ATMCmd () state (const Ready)

389Security properties in types: modeling an ATM
Now, you can use EjectCard as before, and let Idris find the correct value for the
predicate by searching through the possible data constructors for HasCard to see if
any of them are valid:

insertEject : ATMCmd () Ready (const Ready)
insertEject = do InsertCard

EjectCard

For badATM, Idris shouldn’t be able to find a suitable value:

badATM : ATMCmd () Ready (const Ready)
badATM = EjectCard

In this case, Idris will report an error, saying that it needs to find a value of type HasCard
Ready for the predicate to EjectCard, but it can’t find one:

When checking argument prf to constructor Main.EjectCard:
Can't find a value of type

HasCard Ready

All of your other previous definitions, including the two versions of atm and the exe-
cution function runATM, will work without any alteration using this refined version of
EjectCard.

Exercises

1 The following type outlines a security system in which a user can log in with a pass-
word and then read a secret message, although there are some gaps:

data Access = LoggedOut | LoggedIn
data PwdCheck = Correct | Incorrect

data ShellCmd : (ty : Type) -> Access -> (ty -> Access) -> Type where
Password : String -> ShellCmd PwdCheck ?password_in ?password_out
Logout : ShellCmd () ?logout_in ?logout_out
GetSecret : ShellCmd String ?getsecret_in ?getsecret_out

PutStr : String -> ShellCmd () state (const state)
Pure : (res : ty) -> ShellCmd ty (state_fn res) state_fn
(>>=) : ShellCmd a state1 state2_fn ->

((res : a) -> ShellCmd b (state2_fn res) state3_fn) ->
ShellCmd b state1 state3_fn

Fill in the holes in the following types:

 Password—Reads a password and changes the state to LoggedIn or LoggedOut,
depending on whether the password was correct

 Logout—Changes the state from LoggedIn to LoggedOut
 GetSecret—Reads a secret message as long as the state is LoggedIn

The following function should type-check if you have the correct answer:

session : ShellCmd () LoggedOut (const LoggedOut)
session = do Correct <- Password "wurzel"

390 CHAPTER 14 Dependent state machines: handling feedback and errors
| Incorrect => PutStr "Wrong password"
msg <- GetSecret
PutStr ("Secret code: " ++ show msg ++ "\n")
Logout

The following functions should not type-check:

sessionBad : ShellCmd () LoggedOut (const LoggedOut)
sessionBad = do Password "wurzel"

msg <- GetSecret
PutStr ("Secret code: " ++ show msg ++ "\n")
Logout

noLogout : ShellCmd () LoggedOut (const LoggedOut)
noLogout = do Correct <- Password "wurzel"

| Incorrect => PutStr "Wrong password"
msg <- GetSecret
PutStr ("Secret code: " ++ show msg ++ "\n")

 2 When inserting a coin into the vending machine defined in chapter 13, the
machine could reject the coin. You can represent this by changing the types of
MachineCmd and InsertCoin. An operation in MachineCmd can change the state
based on its result:

data MachineCmd : (ty : Type) -> VendState -> (ty -> VendState) -> Type

Then, InsertCoin can return whether or not the coin insertion was successful and
change the state accordingly:

InsertCoin : MachineCmd CoinResult (pounds, chocs)
(\res => case res of

Inserted => (S pounds, chocs)
Rejected => (pounds, chocs))

Define the CoinResult type, and then make this change to MachineCmd in Vending
.idr. Also, refine the types of the other commands and the implementation of
machineLoop as necessary.

14.3 A verified guessing game: describing rules in types
As a concluding example in this chapter, we’ll look at how you can use a type to repre-
sent the rules of a game precisely, and be sure that any implementation of the game
follows the rules correctly. We’ll revisit an example from chapter 9, the word-guessing
game Hangman.

 To recap how this worked, you defined a WordState type to represent the state of
the game. WordState was defined as follows, including the number of guesses and let-
ters remaining as arguments:

data WordState : (guesses : Nat) -> (letters : Nat) -> Type where
MkWordState : (word : String)

-> (missing : Vect letters Char)
-> WordState guesses_remaining letters

Target word, to be
guessed by the player

Letters still to
be guessed by
the player

391A verified guessing game: describing rules in types

,
You also defined a Finished type to express when a game was complete, either
because there were no letters left to guess in the word (so the player won), or there
were no guesses remaining (so the player lost):

data Finished : Type where
Lost : (game : WordState 0 (S letters)) -> Finished
Won : (game : WordState (S guesses) 0) -> Finished

Given these, you defined a main loop called game, which took a WordState with both
guesses and letters remaining, and looped until the game was complete:

game : WordState (S guesses) (S letters) -> IO Finished

In the implementation, you used the type to help direct you to a working implementa-
tion. But you could also have written an incorrect implementation of the game using
this type. For example, the following implementation of game would also be well
typed, but wrong, because it returns a losing game state in all cases:

game : WordState (S guesses) (S letters) -> IO Finished
game state = pure (Lost (MkWordState "ANYTHING" ['A']))

Although the type allows you to express the game state precisely and helps you give
types to intermediate operations (such as processing a guess), it doesn’t guarantee
that the implementation follows the rules of the game correctly. In the preceding
implementation, it’s impossible for the player to win!

 In this section, instead of defining a WordState type and then trusting that game
will follow the rules of the game correctly, we’ll define the rules of the game precisely
in a state type. Just as DoorCmd expresses when we can execute operations on a door,
and ATMCmd expresses when we can execute operations on an ATM, we can define a
dependent GameCmd type that expresses when it’s valid to execute particular opera-
tions in a game, and what the effect on those operations will be. As with the door and
ATM examples, we’ll begin by defining the states and the operations that can be exe-
cuted on those states.

14.3.1 Defining an abstract game state and operations

First, we’ll think about how we can define the rules of the game in abstract terms,
without worrying about the details of the implementation. A game can be in one of
the following states:

 NotRunning—There is no game currently in progress. Either the game hasn’t
started and there’s no word yet to guess, or the game is complete.

 Running—There is a game in progress, and the player has a number of guesses
remaining and letters still to guess.

In the case of Running, we’ll annotate the state with the number of guesses and letters
remaining, just as we did with WordState earlier, because this means we’ll be able to

No guesses left, so
player has lost

No letters left to guess
so player has won

392 CHAPTER 14 Dependent state machines: handling feedback and errors

Repo
error
defin

are no
describe precisely when a game has been won (no letters to guess) or lost (no guesses
remaining). We can express the possible states in the following data type:

data GameState : Type where
NotRunning : GameState
Running : (guesses : Nat) -> (letters : Nat) -> GameState

Then, we’ll support some basic operations for manipulating the game state:

 NewGame—Initializes a game with a word for the player to guess
 Guess—Allows the player to guess a letter
 Won—Declares that the player has won the game
 Lost—Declares that the player has lost the game

Figure 14.5 illustrates how these basic operations affect the game state. There are
additional preconditions on Won and Lost: we can only declare that the player has
won the game if there are no letters left to guess, and we can only declare that the
player has lost if there are no guesses remaining.

The next step is to represent these state transitions precisely in a dependent type,
including the specific rules about the number of guesses and letters required for each
operation to be valid.

14.3.2 Defining a type for the game state

We’ll define a GameCmd type that describes the possible operations you can run that
affect GameState.

 The next listing shows the types of NewGame, Won, and Lost from figure 14.5. As
usual, Pure and (>>=) are included so that you can introduce pure values and
sequence operations.

import Data.Vect

%default total

data GameCmd : (ty : Type) -> GameState -> (ty -> GameState) -> Type where

Listing 14.7 Beginning to define GameCmd (Hangman.idr)

RunningNotRunning

NewGame

Guess

Lost(guesses = 0)

Won(letters = 0)

Figure 14.5 State transition diagram for Hangman. The Running state also
holds the number of letters and guesses remaining. Won requires the number of
letters to be zero, and Lost requires the number of guesses to be zero.

You’ll use Vect later to
represent missing letters.

rts an
 if any
itions
t total

393A verified guessing game: describing rules in types

ect.
NewGame : (word : String) ->
GameCmd () NotRunning

 (const (Running 6 (length (letters word))))
Won : GameCmd () (Running (S guesses) 0)

(const NotRunning)
Lost : GameCmd () (Running 0 (S guesses))

(const NotRunning)

Pure : (res : ty) -> GameCmd ty (state_fn res) state_fn
(>>=) : GameCmd a state1 state2_fn ->

((res : a) -> GameCmd b (state2_fn res) state3_fn) ->
GameCmd b state1 state3_fn

You can get the different letters in a word using letters, which converts the word to
uppercase, then converts it to a List Char, and finally removes any duplicate elements:

letters : String -> List Char
letters str = nub (map toUpper (unpack str))

Listing 14.8 adds a Guess operation to GameCmd. The type of Guess has a precondition
and a postcondition that explain how the guess affects the game:

 As a precondition, there must be at least one guess available (S guesses) and at
least one letter still to guess (S letters), or attempting to guess a letter won’t
type-check.

 As a postcondition, the number of guesses will reduce if the guess was incorrect,
and the number of letters will reduce if the guess was correct.

data GuessResult = Correct | Incorrect

data GameCmd : (ty : Type) -> GameState -> (ty -> GameState) -> Type where
NewGame : (word : String) ->

GameCmd () NotRunning
 (const (Running 6 (length (letters word))))

Won : GameCmd () (Running (S guesses) 0)
 (const NotRunning)

Lost : GameCmd () (Running 0 (S guesses))
(const NotRunning)

Guess : (c : Char) ->
GameCmd GuessResult

(Running (S guesses) (S letters))

Listing 14.8 Adding a Guess operation (Hangman.idr)

You can only start a new game if
you’re not currently playing a game. Allows six guesses and

counts the number of
letters to guess

You can assert that the player has won, as
long as there are no letters to guess, and
move into the NotRunning state.

You can assert that the player has
lost, as long as there are no

guesses remaining.

nub is defined in the Prelude;
it removes duplicate elements
from a list.

The result of a Guess is either Correct or Incorr

You can only guess if
there are guesses and
letters remaining.

394 CHAPTER 14 Dependent state machines: handling feedback and errors
(\res => case res of
Correct => Running (S guesses) letters
Incorrect => Running guesses (S letters))

Pure : (res : ty) -> GameCmd ty (state_fn res) state_fn
(>>=) : GameCmd a state1 state2_fn ->

((res : a) -> GameCmd b (state2_fn res) state3_fn) ->
GameCmd b state1 state3_fn

Finally, in order to be able to implement the game with a user interface, you’ll need to
add commands for displaying the current game state, displaying any messages, and
reading a guess from the user:

data GameCmd : (ty : Type) -> GameState -> (ty -> GameState) -> Type where
{- Continued from Listing 14.8 -}
ShowState : GameCmd () state (const state)
Message : String -> GameCmd () state (const state)
ReadGuess : GameCmd Char state (const state)

Displaying the game state should display the known letters in the target word and the
number of guesses remaining. For example, if the target word is TESTING and you’ve
already guessed T, with six guesses remaining, ShowState should display the following:

T--T---

6 guesses left

When you actually implement the game, it’s useful to support indefinitely long game
loops. For example, once you finish a game, a player might want to start a new game.
The next listing defines a GameLoop type, using Inf to note that execution might con-
tinue indefinitely.

namespace Loop
data GameLoop : (ty : Type) -> GameState -> (ty -> GameState) -> Type where

(>>=) : GameCmd a state1 state2_fn ->
((res : a) -> Inf (GameLoop b (state2_fn res) state3_fn)) ->
GameLoop b state1 state3_fn

Exit : GameLoop () NotRunning (const NotRunning)

You can use the operations in GameLoop and GameCmd to define the following function,
which implements a game loop:

gameLoop : GameLoop () (Running (S guesses) (S letters)) (const NotRunning)

Once you have a well-typed, total implementation of gameLoop, you’ll know that it’s a
valid implementation of the rules. Neither the game nor the player will be able to

Listing 14.9 A type for describing potentially infinite game loops (Hangman.idr)

Correct, so there’s one
fewer letter to guess

Incorrect, so there’s one
fewer guess remaining

You can’t Exit a game
that’s still running.

Introduces a new namespace,
because you’re overloading (>>=)

395A verified guessing game: describing rules in types
cheat by breaking the rules as they’re defined in GameCmd. You can only call gameLoop
on a properly initialized game, with a word to guess, and any implementation must be
a complete implementation of the game because the only way to finish a GameLoop is
by calling Exit, which requires a game to be in the NotRunning state.

14.3.3 Implementing the game

We’ll implement gameLoop interactively and see how the state of the game progresses
by checking types as we go.

 To begin, you can create a skeleton definition, bringing guesses and letters
from the type into scope, because you’ll need to inspect them to check the player’s
progress later:

gameLoop : GameLoop () (Running (S guesses) (S letters)) (const NotRunning)
gameLoop {guesses} {letters} = ?gameLoop_rhs

To implement gameLoop, take the following steps:

1 Refine—At the start of each iteration of gameLoop, you’ll display the current
state of the game using ShowState, read a guess from the user, and then check
whether it was correct:

gameLoop : GameLoop () (Running (S guesses) (S letters)) (const NotRunning)
gameLoop {guesses} {letters} = do

ShowState
g <- ReadGuess
ok <- Guess g
?gameLoop_rhs

 2 Type, define—If you check the type of ?gameLoop_rhs now, you’ll see that the
current state of the game depends on whether the guess was correct or not:

letters : Nat
guesses : Nat
g : Char
ok : GuessResult

gameLoop_rhs : GameLoop ()

(case ok of
Correct => Running (S guesses) letters
Incorrect => Running guesses (S letters))

(\value => NotRunning)

To make progress, you’ll need to inspect ok to establish which state the game is in:

gameLoop : GameLoop () (Running (S guesses) (S letters)) (const NotRunning)
gameLoop {guesses} {letters} = do

ShowState
g <- ReadGuess
ok <- Guess g
case ok of

Correct => ?gameLoop_rhs_1
Incorrect => ?gameLoop_rhs_2

396 CHAPTER 14 Dependent state machines: handling feedback and errors
 3 Type, define—In ?gameLoop_rhs_1, the guess was correct, so the number of let-
ters remaining is reduced, as you can see by checking its type:

ok : GuessResult
letters : Nat
guesses : Nat
g : Char

gameLoop_rhs_1 : GameLoop ()

(Running (S guesses) letters)
(\value => NotRunning)

You can only continue with gameLoop if there are both letters and guesses
remaining, because its input state is Running (S guesses) (S letters). To
decide how to continue, you’ll need to check the current value of letters:

case ok of
Correct => case letters of

Z => ?gameLoop_rhs_3
S k => ?gameLoop_rhs_4

Incorrect => ?gameLoop_rhs_2

 4 Refine—In ?gameLoop_rhs_3, there are no letters left to guess, so the player has
won. You can declare that the player has won with Won, moving to the Not-
Running state. Then display the final state and exit:

case ok of
Correct => case letters of

Z => do Won
ShowState
Exit

S k => ?gameLoop_rhs_4
Incorrect => ?gameLoop_rhs_2

You need to Exit explicitly, because Exit is the only way to break out of a
GameLoop. You can only Exit a game in the NotRunning state.

5 Refine—In ?gameLoop_rhs_4, there are still letters to guess, so you can display a
message and continue with gameLoop:

case ok of
Correct => case letters of

Z => do Won
ShowState
Exit

S k => do Message "Correct"
gameLoop

Incorrect => ?gameLoop_rhs_2

The Incorrect case works similarly, checking whether guesses are still available and
declaring that the player has lost if not. The following listing gives the complete defi-
nition, for reference.

397A verified guessing game: describing rules in types

gameLoop : GameLoop () (Running (S guesses) (S letters)) (const NotRunning)
gameLoop {guesses} {letters} = do

ShowState
g <- ReadGuess
ok <- Guess g
case ok of

Correct => case letters of
Z => do Won

ShowState
Exit

S k => do Message "Correct"
gameLoop

Incorrect => case guesses of
Z => do Lost

ShowState
Exit

(S k) => do Message "Incorrect"
gameLoop

You’ll also need to initialize the game. For example, you could write a function to set
up a new game, and then initiate the gameLoop:

hangman : GameLoop () NotRunning (const NotRunning)
hangman = do NewGame "testing"

gameLoop

So far, you’ve only defined a data type that describes the actions in the game. The
gameLoop function describes sequences of actions in a valid game of Hangman that fol-
lows the rules. In order to run the game, you’ll need to define a concrete representation
of the game state and a function that translates a GameLoop to a sequence of IO actions.

14.3.4 Defining a concrete game state

In the stack example in chapter 13, we had an abstract state of the stack (the number
of items on the stack), and a concrete state represented by a Vect of an appropriate
length. Similarly, GameState is the abstract state of a game, describing only whether a
game is running, and if so, how many guesses and letters are remaining.

 In order to run a game, you’ll need to define a corresponding concrete game state
that includes the specific target word and which specific letters are still to be guessed.
The following listing defines a Game type with a GameState argument, representing the
concrete data associated with an abstract game state.

data Game : GameState -> Type where

GameStart : Game NotRunning

GameWon : (word : String) -> Game NotRunning

Listing 14.10 A complete implementation of gameLoop (Hangman.idr)

Listing 14.11 Representing the concrete game state (Hangman.idr)

Game is NotRunning because
it hasn’t started yet

Game is NotRunning because
the player has won

398 CHAPTER 14 Dependent state machines: handling feedback and errors

Th
gam
GameLost : (word : String) -> Game NotRunning

InProgress : (word : String) -> (guesses : Nat)
-> (missing : Vect letters Char)
-> Game (Running guesses letters)

It’s convenient to define a Show implementation for Game so that you can easily display
a string representation of a game’s progress.

Show (Game g) where
show GameStart = "Starting"
show (GameWon word) = "Game won: word was " ++ word
show (GameLost word) = "Game lost: word was " ++ word
show (InProgress word guesses missing)

= "\n" ++ pack (map hideMissing (unpack word))
++ "\n" ++ show guesses ++ " guesses left"

where hideMissing : Char -> Char
hideMissing c = if c `elem` missing then '-' else c

You can use Game to keep track of the concrete game state. When you execute a
GameLoop, you’ll take a concrete game state as input, and return a result along with
the updated game state:

data Fuel = Dry | More (Lazy Fuel)

run : Fuel ->
Game instate ->
GameLoop ty instate outstate_fn ->
IO (GameResult ty outstate_fn)

You use Fuel, because run potentially loops. In particular, when you read a Guess
from the player, the only valid input is a single alphabetical character, so you’ll need
to keep asking for input until it’s valid.

 If you run out of fuel, the GameResult needs to say that execution failed. Other-
wise, it needs to store the result of the operation and the new state. Crucially, the type
of the new state might depend on the result; for example, the number of guesses avail-
able is different depending on whether Guess returns Correct or Incorrect. A
GameResult, therefore, is one of the following:

 A pair of the result produced by executing the game and the output state, with
a type calculated from the result

 An error, if run ran out of fuel

You can define GameResult as follows:

data GameResult : (ty : Type) -> (ty -> GameState) -> Type where
OK : (res : ty) -> Game (outstate_fn res) ->

GameResult ty outstate_fn
OutOfFuel : GameResult ty outstate_fn

Listing 14.12 A Show implementation for Game (Hangman.idr)

Game is NotRunning
because the player has lost

Game is in progress,
with guesses and
letters remaining

Only displays the
characters that the
player has successfully
guessed

e input
e state

A command to
update the
game state

GameResult, defined
shortly, pairs the result
value and the output state.

As in the definition of
GameCmd, the argument
to Game is calculated
from the result, res.

399A verified guessing game: describing rules in types

,

e).
outstate_fn is included in the type of GameResult because then you’re explicit in the
type about how you’re calculating the output state of Game.

 Now that you have a data type to represent the concrete state of a game—which
takes the abstract state as an argument—along with a representation of the result,
you’re ready to implement run.

14.3.5 Running the game: executing GameLoop

The next listing outlines the definition of run for GameLoop. This uses another function,
runCmd, to execute GameCmd. There’s a hole for the definition of runCmd for the moment.

runCmd : Fuel ->
Game instate -> GameCmd ty instate outstate_fn ->
IO (GameResult ty outstate_fn)

runCmd fuel state cmd = ?runCmd_rhs

run : Fuel -> Game instate -> GameLoop ty instate outstate_fn ->
IO (GameResult ty outstate_fn)

run Dry _ _ = pure OutOfFuel
run (More fuel) st (cmd >>= next)

= do OK cmdRes newSt <- runCmd fuel st cmd
| OutOfFuel => pure OutOfFuel

run fuel newSt (next cmdRes)
run (More fuel) st Exit = pure (OK () st)

In run, when it’s successful, you use pure to return a pair of the result and the new
state. Because you’ll often return a result in this form when executing a command,
you can define a helper function, ok, to make this more concise:

ok : (res : ty) -> Game (outstate_fn res) ->
IO (GameResult ty outstate_fn)

ok res st = pure (OK res st)

Using ok, you can refine the last clause of run to the following:

run (More fuel) st Exit = ok () st

Listing 14.14 gives an outline definition of runCmd, leaving holes for the Guess and
ReadGuess cases. In the other cases, you use ok to update the state as required by the
type and execute IO actions as necessary.

runCmd : Fuel -> Game instate -> GameCmd ty instate outstate_fn ->
IO (GameResult ty outstate_fn)

runCmd fuel state (NewGame word)
= ok () (InProgress (toUpper word) _ (fromList (letters word)))

Listing 14.13 Running the game loop (Hangman.idr)

Listing 14.14 Outline definition of runCmd (Hangman.idr)

Runs a command. We’ll leave a
hole for this, and define in shortly.

When successful
run returns the
result of the
operation
(cmdRes here)
and an updated
state (newSt her

First command
ran out of fuel

Creates a new in-progress game, using letters
to extract unique letters from the word

400 CHAPTER 14 Dependent state machines: handling feedback and errors
runCmd fuel (InProgress word _ missing) Won
= ok () (GameWon word)

runCmd fuel (InProgress word _ missing) Lost
= ok () (GameLost word)

runCmd fuel state (Guess c) = ?runCmd_rhs_4
runCmd fuel state ShowState = do printLn state

ok () state
runCmd fuel state (Message str) = do putStrLn str

ok () state
runCmd fuel state ReadGuess = ?runCmd_rhs_7

runCmd fuel state (Pure res) = ok res state
runCmd fuel st (cmd >>= next)

= do OK cmdRes newSt <- runCmd fuel st cmd
| OutOfFuel => pure OutOfFuel

runCmd fuel newSt (next cmdRes)

When a game is in progress, the game state uses the InProgress constructor of Game,
which has the following type:

*Hangman> :t InProgress
InProgress : String ->

(guesses : Nat) ->
Vect letters Char -> Game (Running guesses letters)

The third argument is a vector of the letters that are still to be guessed. So, in the
Guess case, you check whether the guessed character is in the vector of missing letters:

runCmd fuel (InProgress word _ missing) (Guess c)
= case isElem c missing of

Yes prf => ok Correct (InProgress word _ (removeElem c missing))
No contra => ok Incorrect (InProgress word _ missing)

You defined removeElem interactively in chapter 9 in the earlier implementation of
Hangman. For convenience, I’ll repeat it here:

removeElem : (value : a) -> (xs : Vect (S n) a) ->
{auto prf : Elem value xs} ->
Vect n a

removeElem value (value :: ys) {prf = Here} = ys
removeElem {n = Z} value (y :: []) {prf = There later} = absurd later
removeElem {n = (S k)} value (y :: ys) {prf = There later}

= y :: removeElem value ys

Updates to the
NonRunning game state

Prints a message
and continues with
current state

As with run, you execute the first
command and continue with the
result and state it produces.

Correct, so remove the letter from
the vector of missing letters

Returns a proof of whether c is
in the vector of missing letters

Incorrect. The guesses argument
to InProgress is inferred from

the type, and decreases.

401A verified guessing game: describing rules in types
Finally, you need to define the ReadGuess case, which reads a character from the
player. The input is only valid if it’s an alphabetical character, so you loop until the
player enters a valid input:

runCmd (More fuel) st ReadGuess = do
putStr "Guess: "
input <- getLine
case unpack input of

[x] => if isAlpha x
then ok (toUpper x) st
else do putStrLn "Invalid input"

runCmd fuel st ReadGuess
_ => do putStrLn "Invalid input"

runCmd fuel st ReadGuess
runCmd Dry _ _ = pure OutOfFuel

This case might loop indefinitely if the user continues to enter invalid input, so
runCmd takes Fuel as an argument and consumes fuel whenever there’s an invalid
input. As a result, runCmd itself remains total because it either consumes fuel or pro-
cesses a command on each recursive call. It’s important for runCmd to be total, because
it means you know that executing a GameCmd will continue to make progress as long as
there are commands to execute.

 You’re now in a position to write the main program, using forever to ensure that,
in practice, run never runs out of fuel. Add the following to the end of Hangman.idr:

%default partial

forever : Fuel
forever = More forever

main : IO ()
main = do run forever GameStart hangman

pure ()

You should now be able to execute the game at the REPL. Here’s an example:

*Hangman> :exec

6 guesses left
Guess: t
Correct

T--T---
6 guesses left
Guess: x
Incorrect

T--T---
5 guesses left
Guess: g
Correct

Reads a single alphabetical
character, so input is valid

Invalid input, so
prompt again but
with reduced fuel

Needed to catch the case where
ReadGuess runs out of fuel

Analogous to %default total, this
means that all following definitions
are allowed to be partial.

Initializes with the GameStart state,
meaning that no game is running

402 CHAPTER 14 Dependent state machines: handling feedback and errors
T--T--G
5 guesses left
Guess: bad
Invalid input
Guess:

In this example, we’ve separated the description of the rules, in GameCmd and GameLoop,
from the execution of the rules, in runCmd and run. Essentially, GameCmd and GameLoop
define an interface for constructing a valid game of Hangman, correctly following the
rules. Any well-typed total function using these types must be a correct implementa-
tion of the rules, or it wouldn’t have type-checked!

14.4 Summary
 You can get feedback from the environment by using the result of an operation

to compute the output state of a command.
 A system might be in a different state after running a command, depending on

whether the command was successful.
 Defining preconditions on operations allows you to express security properties

in types, such as when it’s valid for an ATM to dispense cash.
 A system might change state according to whether a user’s input is valid in the

current environment, such as whether a PIN or password is correct.
 Predicates and auto implicits help you describe valid input states of operations

precisely.
 You can describe the rules of a game precisely in a type, so that a function that

type-checks must be a valid implementation of the rules.
 You use an abstract state type to describe what operations do, and a concrete

state, depending on the abstract state, to describe their corresponding imple-
mentations.

Type-safe concurrent
programming
In Idris, a value of type IO () describes a sequence of actions for interacting with
the user and operating system, which the runtime system executes sequentially. That
is, it only executes one action at a time. You can refer to a sequence of interactive
actions as a process.

 As well as executing actions in sequence in a single process, it’s often useful to
be able to execute multiple processes at the same time, concurrently, and to allow
those processes to communicate with each other. In this chapter, I’ll introduce con-
current programming in Idris.

MESSAGE PASSING Concurrent programming is a large topic, and there
are several approaches to it that would fill books of their own. We’ll look
at some small examples of message-passing concurrency, where processes

This chapter covers
 Using concurrency primitives

 Defining a type for describing concurrent processes

 Using types to ensure concurrent processes
communicate consistently
403

404 CHAPTER 15 Type-safe concurrent programming
interact by sending messages to each other. Message passing is supported as a
primitive by the Idris runtime system. In effect, sending a message to a pro-
cess and receiving a reply corresponds to calling a method that returns a
result in an object-oriented language.

Concurrent programming has several advantages:

 You can continue to interact with a user while a large computation runs. For
example, a user can continue browsing a web page while a large file downloads.

 You can display feedback on the progress of a large computation running in
another process, such as displaying a progress bar for a download.

 You can take full advantage of the processing power of modern CPUs, dividing
work between multiple processes running on separate CPU cores.

This chapter presents a larger example of type-driven development. First, I’ll intro-
duce the primitives for concurrent programming in Idris, and describe the problems
that can arise in concurrent processes in general. Then, I’ll present an initial attempt
at a type for describing concurrent processes. This initial attempt will have some
shortcomings, so we’ll refine it and arrive at a type that allows processes to communi-
cate with each other safely and consistently.

15.1 Primitives for concurrent programming in Idris
The Idris base library provides a module, System.Concurrency.Channels, that con-
tains primitives for starting concurrent processes and for allowing those processes to
communicate with each other. This allows you, in theory, to write applications that
make efficient use of your CPUs and that remain responsive even when executing
complex calculations.

 But despite its advantages, concurrent programming is notoriously error-prone.
The need for multiple processes to interact with each other greatly increases a pro-
gram’s complexity. For example, if you’re displaying a progress bar while a file down-
loads, the process downloading the file needs to coordinate with the process
displaying the progress bar so that it knows how much of the file is downloaded. This
complexity leads to new ways in which programs can fail at runtime:

 Deadlock—Two or more processes are waiting for each other to perform some
action before they can continue.

 Race conditions—The behavior of a system depends on the ordering of actions in
multiple concurrent processes.

The effect of a deadlock is that the processes concerned freeze, no longer accepting
input or giving output. Two concurrent processes—let’s call them client and
server—could deadlock if client is waiting to receive a message from server at the
same time that server is waiting to receive a message from client. If this happens,
both client and server will freeze.

405Primitives for concurrent programming in Idris
 Race conditions can be harder to identify. The pseudocode in figure 15.1 for client
and server illustrates a race condition, where the value of the shared variable var
depends on the order in which the concurrent operations execute. We’ll assume that
the Read and Write operations respectively read and write the value of a shared mutable
variable, so Read var reads the value of the shared variable var.

Here, client and server execute concurrently, and the final value of var depends on
the order in which the operations A, B, C, and D are executed. A will always run before
B, and C before D, but otherwise there are six possible orderings for the operations.
Table 15.1 lists these orderings and the resulting value of var in each case, assuming
an initial value of 1.

As the table shows, with an initial value for var of 1, there are two possible results for
var, depending on the order in which the Read and Write operations run. Here, there
are only two processes with two operations each. As programs grow, the likelihood of
this kind of nondeterministic result becomes much larger.

 Later in this chapter, using a variety of techniques that we’ve discussed earlier in
this book, you’ll see how to write concurrent programs in Idris, avoiding problems
such as deadlock and race conditions. But first, you need to understand the primitives

Table 15.1 Value of var for each sequence of operations
in figure 15.1, given an initial value of 1 for var

Operation order Value of var

A, B, C, D 3

A, C, B, D 2

A, C, D, B 2

C, A, B, D 2

C, A, D, B 2

C, D, A, B 3

var

client

do val <- Read var -- A
 Write var (val + 1) -- B

server

do val <- Read var -- C
 Write var (val + 1) -- D

Figure 15.1 Pseudocode for client and server, in which each process
reads and writes a shared variable, var. This could lead to an unexpected
result if lines A and C are executed before lines C and D.

406 CHAPTER 15 Type-safe concurrent programming
that the Idris base library provides for concurrent programming and see the kinds of
problems you’ll encounter when writing processes that need to coordinate with each
other.

15.1.1 Defining concurrent processes

In a complete Idris program, the main function, which has type IO (), describes the
actions that the runtime system will execute when the program is run. The main func-
tion, therefore, describes the actions that are executed in a single process.

 The actions we’ve used have described console and file I/O operations, but the
runtime system also supports actions for starting new processes and sending messages
between processes. There are primitive operations for the following actions:

 Creating a new process. Each process is associated with a unique process identifier
(PID).

 Sending a message to a process identified by its PID.
 Receiving a message from another process.

Figure 15.2 illustrates one way we can use message passing to write concurrent pro-
cesses that communicate with each other. In this figure, main and adder are two Idris
processes, running concurrently, where each can send a message to the other.

 The message that main sends to adder uses the following type:

data Message = Add Nat Nat

In this example, after main sends the message Add 2 3 to the adder process, it expects
to receive a reply with the result of adding 2 and 3. In this way, you can use concurrently
running processes to implement services that respond to requests sent by other pro-
cesses. Here, we have a service that performs addition, running in a separate process.

Concurrent processes
in Idris coordinate
through messages.

main adder

Add 2 3

5

Time

Figure 15.2 Message-passing
between processes. A main process
sends an Add 2 3 message to an
adder process, which replies by
sending a 5 message back to main.

407Primitives for concurrent programming in Idris
 I’ll use this as a running example of concurrent processes. Next, you’ll see how to
use the concurrency primitives that Idris provides to implement an adder service in a
separate process, and how to use that service from main.

15.1.2 The Channels library: primitive message passing

The System.Concurrency.Channels module, in the base library, defines data types
and actions that allow Idris processes to create new processes and communicate with
each other. It defines the following types:

 PID—Represents a process identifier. Every process is associated with a PID that
allows you to set up a communication channel with the process.

 Channel—A link between two processes. It defines a communication channel
along which you can send messages.

The System.Concurrency.Channels module also defines the following functions for
creating new processes and setting up communication channels:

 spawn—Creates a new process for executing a sequence of actions of type IO (),
and if successful returns its PID.

 connect—Initiates a communication channel to a running process.
 listen—Waits for another process to initiate a communication. When another

process connects, it sets up a communication channel with that process.

Finally, the module defines operations for sending and receiving messages on a
Channel. We’ll come to the type definitions in System.Concurrency.Channels
shortly, but first let’s look at how the processes and channels are set up for the main
and adder processes. The main process works as follows:

1 Starts the adder process using spawn
 2 Sets up a communication channel to adder using connect
 3 Sends an Add 2 3 message on the channel
4 Receives a reply on the channel with the result

Correspondingly, the adder process works as follows:

1 Waits for another process to initiate a communication using listen and sets up
a new communication channel when another process connects

 2 Receives a message on the channel containing the numbers to be added
 3 Sends a message on the channel with the result
4 Returns to step 1, waiting for the next request

The adder process provides a long-running service that waits for incoming requests
and sends replies to those requests. Once main has started the adder process, any
other process can also send requests to adder, as long as it knows adder’s PID.

 The first listing shows the type declarations for channels and PIDs in System
.Concurrency.Channels and the functions you can use to create processes and set up
communication channels.

408 CHAPTER 15 Type-safe concurrent programming

If th
in

con
after 1

data PID : Type
data Channel : Type

spawn : (process : IO ()) -> IO (Maybe PID)

connect : (pid : PID) -> IO (Maybe Channel)
listen : (timeout : Int) -> IO (Maybe Channel)

When you listen for a connection or connect to another process, there’s no guaran-
tee that you’ll succeed in setting up a communication channel. There may be no
incoming connection, or the process you’re connecting to may no longer be running.
So, to capture the possibility of failure, connect and listen return a value of type
Maybe Channel.

 You can use spawn, listen, and connect to set up adder and main as separate pro-
cesses. The following listing outlines a program that sets up the processes, leaving
holes for the parts of the processes that send messages to each other.

import System.Concurrency.Channels

adder : IO ()
adder = do Just sender_chan <- listen 1

| Nothing => adder
?adder_rhs

main : IO ()
main = do Just adder_id <- spawn adder

| Nothing => putStrLn "Spawn failed"
Just chan <- connect adder_id

| Nothing => putStrLn "Connection failed"
?main_rhs

Now that you’ve set up the processes and channels, main can send a message to adder,
and adder can reply. You can use the following primitives:

 unsafeSend—Sends a message of any type
 unsafeRecv—Receives a message of an expected type

As the names imply, these primitives are unsafe, because they don’t provide a way of
checking that the sender and receiver are expecting messages to be sent in a specific

Listing 15.1 Channels and PIDs (defined in System.Concurrency.Channels)

Listing 15.2 Outline of a program that sets up an adder process (AdderChannel.idr)

A PID is a process identifier that one process
can use to initiate communication with another.

A Channel is a link between two processes,
allowing them to communicate.

Starts a new concurrent process,
returning a Maybe PID. Returns
Nothing if it can’t create the process.

Initiates a session for communicating
with a process with identifier pid

Initiates a session by waiting
for another process to connect

Waits 1 second for an incoming connection.
sender_chan is the name of the channel to
receive messages from the sender.

ere’s no
coming
nection
second,

loops
Creates a new process
for executing adder

spawn might fail if there aren’t
enough system resources, so
checks the result

Creates a channel
for sending
messages to adder

If connect returns
Nothing, the adder
process is no longer
running.

409Primitives for concurrent programming in Idris
order, or that they’re sending and receiving messages of consistent types. Neverthe-
less, for the moment we’ll use them to complete the implementations of main and
adder. Later, in section 15.2, you’ll see how to make safe versions that ensure that pro-
cesses send and receive messages with a consistent protocol.

WHY SUPPORT AN UNSAFE CHANNEL TYPE? It might seem surprising that Idris,
a language that’s designed to support type-driven development, supports
such unsafe concurrency primitives rather than something more sophisti-
cated. The reason is that there are many possible methods for implementing
safe concurrent programs in a type-driven way, and by providing unsafe
underlying primitives, Idris is not limited to only one of them. You’ll see one
such method shortly.

The following listing shows the type declarations for these primitive operations,
defined in System.Concurrency.Channels.

unsafeSend : Channel -> (val : a) -> IO Bool
unsafeRecv : (expected : Type) -> Channel -> IO (Maybe expected)

In the next listing, you can complete the definition of adder by receiving a request
from the sender and then sending a reply. With unsafeRecv, you assert that the
request is of type Message.

data Message = Add Nat Nat

adder : IO ()
adder = do Just sender_chan <- listen 1

| Nothing => adder
Just msg <- unsafeRecv Message sender_chan

| Nothing => adder
case msg of

Add x y => do ok <- unsafeSend sender_chan (x + y)
adder

Similarly, the following listing shows the complete definition of main, which sends a
message using unsafeSend and receives a reply of type Nat with unsafeRecv.

main : IO ()
main = do Just adder_id <- spawn adder

| Nothing => putStrLn "Spawn failed"
Just chan <- connect adder_id

| Nothing => putStrLn "Connection failed"
ok <- unsafeSend chan (Add 2 3)
Just answer <- unsafeRecv Nat chan

Listing 15.3 Primitive message passing
(defined in System.Concurrency.Channels)

Listing 15.4 Complete definition of adder (AdderChannel.idr)

Listing 15.5 Complete definition of main (AdderChannel.idr)

Message is the type that
adder expects to receive.

Waits for a message on
the channel you’ve just
created, of type MessageSends a reply on

the channel, with
the sum of the

inputs of type Nat

Sends a message on the
channel you’ve just
created, of type Message

Waits for a reply
on the channel,

of type Nat

410 CHAPTER 15 Type-safe concurrent programming
| Nothing => putStrLn "Send failed"
printLn answer

If you compile and execute main using :exec at the REPL, you’ll see that it receives the
result 5 from adder:

*AdderChannel> :exec main
5

This only works because you’ve ensured that main and adder agree on a communica-
tion pattern. When main sends a message on a channel, the adder process is expecting
to receive a message on its corresponding channel, and vice versa.

15.1.3 Problems with channels: type errors and blocking

Channels provide a primitive method of setting up links between processes and send-
ing messages across those links. The types of unsafeSend and unsafeRecv don’t, how-
ever, provide any kind of guarantees about how processes coordinate with each other.
As a result, it’s easy to make a mistake.

 For example, adder sends a Nat in reply to main, but what if main is expecting to
receive a String?

main : IO ()
main = do Just adder_id <- spawn adder

| Nothing => putStrLn "Spawn failed"
Just chan <- connect adder_id

| Nothing => putStrLn "Connection failed"
ok <- unsafeSend chan (Add 2 3)
Just answer <- unsafeRecv String chan

| Nothing => putStrLn "Send failed"
printLn answer

In this case, executing main will behave unpredictably, and will most likely crash,
because at runtime there’s an inconsistency between the type of the message received
and the expected type. Nothing in the types of unsafeSend and unsafeRecv explains
how the sends and receives are coordinated between the two processes, so Idris is
happy to accept main as valid even though the coordination is, in this case, incorrect.

 A different problem occurs if the unsafeSend and unsafeReceive operations
don’t correspond in each process. For example, main might send a second message on
the same channel and expect a reply:

main : IO ()
main = do Just adder_id <- spawn adder

| Nothing => putStrLn "Spawn failed"
Just chan <- connect adder_id

| Nothing => putStrLn "Connection failed"
ok <- unsafeSend chan (Add 2 3)
Just answer <- unsafeRecv Nat chan

| Nothing => putStrLn "Send failed"
printLn answer

ok <- unsafeSend chan (Add 3 4)

Prints the result received from adder

main expects a
String, but adder
sends a Nat, so
behavior here is
undefined.

main executes successfully
up to here.

411Defining a type for safe message passing
Just answer <- unsafeRecv Nat chan
| Nothing => putStrLn "Send failed"

printLn answer

Even though this type-checks successfully, when you attempt to execute it, it will print
the first reply from adder but block while waiting for the second. After adder creates
the channel using listen, it only replies to one message on that channel.

 Although channels themselves are unsafe, you can use them as a primitive for
defining type-safe communication. We’ll define a type for describing the coordination
between communicating processes, and then write a run function that executes the
description using the unsafe primitives. Even though, ultimately, you’ll need to use
the primitives, you can encapsulate all the details in a single, descriptive type that you
can then use for type-driven development of communicating systems.

15.2 Defining a type for safe message passing
In the Idris runtime system, concurrent processes run independently of each other.
There’s no shared memory, and the only way processes can communicate with each
other is by sending messages to each other. Because there’s no shared memory, there
are no race conditions caused by accessing shared state simultaneously, but there are
several other problems to consider:

 How can you ensure that the type of the message that main sends is the same
type that adder expects to receive?

 What happens if main sends a message to adder, but adder doesn’t reply?
 What happens if adder has stopped running when main sends a message?
 How can you prevent the situation where main and adder are both waiting for a

message from each other?

In this section, you’ll see how to solve these problems by defining a Process type,
which allows you to describe well-typed communicating processes.

Execution blocks here, because
adder only replies to the first
message on the channel.

Types and concurrent programming
Support for types in concurrent programming has generally been quite limited in main-
stream programming languages, with some exceptions, such as typed channels in Go.
One difficulty is that, as well as the types of messages that a channel can carry, you
also need to think about the protocol for message passing. In other words, as well
as what to send (the type), you also need to think about when to send it (the protocol).

There has, nevertheless, been significant research into types for concurrent program-
ming, most notably the study of session types that began with Kohei Honda’s 1993
paper “Types for Dyadic Interaction.” The type we’ll implement in this section is an
instance of a session type with a minimal protocol where a client sends one message
and then receives one reply. If you’re interested in exploring further, a recent (2016)
paper, “Certifying Data in Multiparty Session Types” by Bernardo Toninho and Nobuko
Yoshida, describes a more sophisticated way of using types in concurrent programs.

412 CHAPTER 15 Type-safe concurrent programming

A p
con
of a
IO
We won’t get this implementation right on the first try, however. As is often the case in
type-driven development, we’ll find that we need to refine the type to address the
problems that become apparent after our first attempt. We’ll start by defining a type
that’s specific to the adder service, and later refine it to support generic services that
are guaranteed to respond to requests indefinitely.

15.2.1 Describing message-passing processes in a type

Earlier, I described two problems with the primitive Channel type that make concur-
rent programming, in this primitive form, unsafe:

 There’s no way to check that a response to a request has the correct type.
 There’s no way to check the correspondence between sending and receiving

messages in communicating processes.

We’ll solve both of these problems by defining a type for describing processes and
then refining it as necessary to support the message-passing features we need.

 To start, you can define a process type that supports IO actions, constructing pure
values, and sequencing.

data Process : Type -> Type where
Action : IO a -> Process a
Pure : a -> Process a
(>>=) : Process a -> (a -> Process b) -> Process b

run : Process t -> IO t
run (Action act) = act
run (Pure val) = pure val
run (act >>= next) = do x <- run act

run (next x)

USING IO IN ACTION By using IO in Action, you can include arbitrary IO
actions in processes, such as writing to the console or reading user input. This
is a bit too general, because IO actions include, among other things, the
unsafe communication primitives. You could restrict this by defining a more
precise command type (see chapter 11 for an example), but we’ll stick with
IO for this example.

At the moment, Process is nothing more than a wrapper for sequences of IO actions.
The next step is to extend it to support spawning new processes. You can define a data
type for representing processes that can receive a Message, using PID from System
.Concurrency.Channels:

data MessagePID = MkMessage PID

Next, you can add a constructor to Process that describes an action that spawns a new
process and returns the MessagePID of that process, if it was successful:

Spawn : Process () -> Process (Maybe MessagePID)

Listing 15.6 A type for describing processes (Process.idr)

rocess
sisting
 single
 action

A process with no action,
producing a pure value

Sequences two
subprocesses,
and supports
do notationExecutes a Process

description as a
sequence of IO actions

413Defining a type for safe message passing
You also need to extend run to be able to execute the new Spawn command. This
spawns a new process using the spawn primitive and then returns a MessagePID con-
taining the new PID:

run (Spawn proc) = do Just pid <- spawn (run proc)
| Nothing => pure Nothing

pure (Just (MkMessage pid))

ADDING NEW CONSTRUCTORS Remember that after you’ve added the Spawn
constructor, you can add the missing cases to run in Atom by pressing Ctrl-
Alt-A with the cursor over the name run.

Next, you can add commands to allow processes to send messages to each other. In
the previous examples, the main process sent requests of type Message and waited for
corresponding replies of type Nat. You can encapsulate this behavior in a single
Request command:

Request : MessagePID -> Message -> Process (Maybe Nat)

The reason for returning Maybe Nat, rather than Nat, is that you don’t have any guar-
antee that the process to which MessagePID refers is still running. When you run a
Request, you’ll need to connect to the process that services the request, send it a mes-
sage, and then wait for the reply:

run (Request (MkMessage process) msg)
= do Just chan <- connect process

| _ => pure Nothing
ok <- unsafeSend chan msg
if ok then do Just x <- unsafeRecv Nat chan

| Nothing => pure Nothing
pure (Just x)

else pure Nothing

ENCAPSULATING PRIMITIVES IN THE PROCESS TYPE You still need to use
unsafeSend and unsafeRecv, but by encapsulating them in the Process
data type, you know there’s only one place in your program where you use the
unsafe primitives. You need to be careful to get this definition right, but once
you do, you know that any message-passing program implemented in terms of
the Process type will follow the message-passing protocol correctly.

The adder process waited for an incoming message, calculated a result, and sent a
response back to the requester. You can encapsulate this behavior in a single Respond
command:

Respond : ((msg : Message) -> Process Nat) -> Process (Maybe Message)

This takes a function as an argument, which, when given a message received from a
requester, calculates the Nat to send back. It returns a value of type Maybe Message,
which is either Nothing, if it didn’t process an incoming message, or of the form Just

Connects to the server process

Connecting
failed, so no

result

Connecting succeeded, so sends the request

No reply received,
so no resultReply successfully

received Sending the message
failed, so no result

414 CHAPTER 15 Type-safe concurrent programming

Co
wa
re
msg, if it processed an incoming message (msg). This is useful if you need to do any
further processing with the incoming message, even after sending a response.

 When you run the Respond command, you’ll wait for one second for a message and
then, if there is a message, calculate the response and send it back:

run (Respond calc)
= do Just sender <- listen 1

| Nothing => pure Nothing

Just msg <- unsafeRecv Message sender
| Nothing => pure Nothing

res <- run (calc msg)
unsafeSend sender res
pure (Just msg)

ALTERNATIVE IMPLEMENTATIONS FOR RESPOND This implementation of the
Respond case waits for 1 second if there’s no incoming message. An alterna-
tive, and more flexible, implementation might allow the user to specify a
timeout. For example, if there’s no incoming request, it might not make
sense to continue waiting if a process has other work to do.

Listing 15.7 shows how you can define adder and main using Process. We’ll call them
procAdder and procMain to distinguish them from the earlier versions. In procAdder,
you use Respond to explain how to respond to a Message, and in procMain you use
Request to send a message to a spawned process.

procAdder : Process ()
procAdder = do Respond (\msg => case msg of

Add x y => Pure (x + y))
procAdder

procMain : Process ()
procMain = do Just adder_id <- Spawn procAdder

| Nothing => Action (putStrLn "Spawn failed")
Just answer <- Request adder_id (Add 2 3)

| Nothing => Action (putStrLn "Request failed")
Action (printLn answer)

You can try this at the REPL, using run to translate procMain to a sequence of IO
actions:

*Process> :exec run procMain
5

Unlike the previous version, procMain can’t expect to receive a String rather than a
Nat, because the type of Request doesn’t allow it. You’ve also encapsulated the

Listing 15.7 Implementing a type-safe adder process (Process.idr)

Waits for 1 second for an incoming connection

No incoming connection, so does nothing
No message
received, so

does nothing

Calculates the response to the message
Sends the response, of type Nat,
back to the requesting process

Responds to a
message of the
form Add x y by
sending the
response x + y

ntinues
iting for
sponses

Spawns a process that must send and receive
messages according to the Process protocol

Sends a request. If successful,
the response is given by answer.

415Defining a type for safe message passing
communication protocol on a channel using Request and Respond, so you know that
you won’t send or receive too many messages after creating a channel.

 As a first attempt, this is an improvement over the primitive implementation with
Channel, but there are a number of ways you can improve it. For example, procAdder
is not total:

*Process> :total procAdder
Main.procAdder is possibly not total due to recursive path:

Main.procAdder

This is potentially a problem, because a process that isn’t total may not successfully
respond to requests. As a first refinement, you can modify the Process type, and cor-
respondingly the definition of run, so that indefinitely running processes like proc-
Adder are total.

15.2.2 Making processes total using Inf

As you saw in chapter 11, you can mark parts of data as potentially infinite using Inf:

Inf : Type -> Type

You can then say a function is total if it produces a finite prefix of constructors of a well-
typed infinite result in finite time. In practice, this means that any time you use a value
with an Inf type, it needs to be an argument to a data constructor or a nested
sequence of data constructors.

 You’ve seen various ways to use Inf to define potentially infinite processes in chap-
ters 11 and 12. Here, you can use it to explicitly mark the parts of a process that loop
by adding the following constructor to Process:

Loop : Inf (Process a) -> Process a

For reference, the next listing shows the current definition of Process, including
Loop, defined in a new file, ProcessLoop.idr.

data Message = Add Nat Nat

data MessagePID = MkMessage PID

data Process : Type -> Type where
Request : MessagePID -> Message -> Process (Maybe Nat)
Respond : ((msg : Message) -> Process Nat) -> Process (Maybe Message)
Spawn : Process () -> Process (Maybe MessagePID)
Loop : Inf (Process a) -> Process a
Action : IO a -> Process a
Pure : a -> Process a
(>>=) : Process a -> (a -> Process b) -> Process b

Listing 15.8 New Process type, extended with Loop (ProcessLoop.idr)

The type of messages that a process can send

PIDs for processes that can respond to messages

Descriptions of processes that
can loop indefinitely

Explicitly loops,
executing a potentially
infinite process

416 CHAPTER 15 Type-safe concurrent programming
Using Loop, you can define procAdder as follows, explicitly noting that the recursive
call to procAdder is a potentially infinite process:

procAdder : Process ()
procAdder = do Respond (\msg => case msg of

Add x y => Pure (x + y))
Loop procAdder

This version of procAdder is total:

*ProcessLoop> :total procAdder
Main.procAdder is Total

By using an explicit Loop constructor, you can mark the infinite parts of a Process so
that you can at least be sure that any infinite recursion is intended. Moreover, as you’ll
see in the next section, it will allow you to refine Process further so that you can con-
trol exactly when a process is allowed to loop.

 You’ll also need to extend run to support Loop. The simplest way is to execute the
action directly:

run (Loop act) = run act

Unfortunately, this new definition of run isn’t total because the totality checker (cor-
rectly!) doesn’t believe that act is a smaller sequence than Loop act:

*ProcessLoop> :total run
Main.run is possibly not total due to recursive path:

Main.run, Main.run, Main.run

As with the infinite processes in chapter 11, you can define a Fuel data type to give an
explicit execution limit to run. Every time you Loop, you reduce the amount of Fuel
available. The following listing shows how you can extend run so that it terminates
when it runs out of Fuel, following the pattern you’ve already seen in chapter 11.

data Fuel = Dry | More (Lazy Fuel)

run : Fuel -> Process t -> IO (Maybe t)
run Dry _ = pure Nothing
run fuel (Request (MkMessage process) msg)

= do Just chan <- connect process
| _ => pure (Just Nothing)

ok <- unsafeSend chan msg
if ok then do Just x <- unsafeRecv Nat chan

| Nothing => pure (Just Nothing)
pure (Just (Just x))

else pure (Just Nothing)
run fuel (Respond calc)

= do Just sender <- listen 1
| Nothing => pure (Just Nothing)

Just msg <- unsafeRecv Message sender
| Nothing => pure (Just Nothing)

Listing 15.9 New run function, with an execution limit (ProcessLoop.idr)

Returns Nothing when
the process is out of fuel

Uses Just
when the
process still
has fuel

417Defining a type for safe message passing
Just res <- run fuel (calc msg)
| Nothing => pure Nothing

unsafeSend sender res
pure (Just (Just msg))

run (More fuel) (Loop act) = run fuel act
run fuel (Spawn proc) = do Just pid <- spawn (do run fuel proc

pure ())
| Nothing => pure Nothing

pure (Just (Just (MkMessage pid)))
run fuel (Action act) = do res <- act

pure (Just res)
run fuel (Pure val) = pure (Just val)
run fuel (act >>= next) = do Just x <- run fuel act

| Nothing => pure Nothing
run fuel (next x)

Remember that you can generate an infinite amount of Fuel and allow processes to
run indefinitely by using a single partial function, forever:

partial
forever : Fuel
forever = More forever

Using a single forever function to say how long an indefinite process is allowed to
run means that you minimize the number of nontotal functions you need. Because
run is total, you know that it will continue executing process actions as long as there
are actions to execute. For convenience, you can also define a function for initiating a
process and discarding its result:

partial
runProc : Process () -> IO ()
runProc proc = do run forever proc

pure ()

Then, you can try executing procMain as follows, which will display the answer 5 as
before:

*ProcessLoop> :exec runProc procMain
5

Using Loop, you can write processes that loop forever and that are total by being
explicit about when they loop. Unfortunately, though, there’s still no guarantee that a
looping process will respond to any messages at all. For example, you could define
procAdder as follows:

procAdderBad1 : Process ()
procAdderBad1 = do Action (putStrLn "I'm out of the office today")

Loop procAdderBad1

Or even like this:

procAdderBad2 : Process ()
procAdderBad2 = Loop procAdderBad2

When you run
recursively, you
need to check
that the result
was valid before
continuing.

The process consumes
fuel on every Loop.

418 CHAPTER 15 Type-safe concurrent programming
Both of these programs type-check, and are both checked as total, but neither will
respond to any messages because there’s no Respond command. In the case of proc-
AdderBad2, it’s total because the recursive call to procAdderBad2 is an argument to the
Loop constructor, so it will produce a finite prefix of constructors. Being total using
Loop is, therefore, not enough to guarantee that a process will respond to a request.

THE MEANING OF TOTALITY, IN PRACTICE Totality means that you’re guaranteed
that a function behaves in exactly the way described by its type, so if the type
isn’t precise enough, neither is the guarantee! With Process, the type isn’t
precise enough to guarantee that a process contains a Respond command
before any Loop.

Furthermore, the Process type is specific to the problem of writing a concurrent ser-
vice to add numbers. What if you want to write different services? You don’t want to have
to write a different Process type for every kind of service you might want to Spawn.

 To solve these problems, you’ll need to refine the Process type in two more ways:

 In section 15.2.3, you’ll refine it to ensure that a server process responds to
requests on every iteration of a Loop.

 In section 15.2.4, you’ll see how to use first-class types to allow Process to
respond to any kind of message.

15.2.3 Guaranteeing responses using a state machine and Inf

In chapter 13, you saw how to guarantee that systems would execute necessary actions
in the correct order by representing a state machine in a type. A server process like
adder could be in one of several states, depending on whether or not it has received
and processed a request:

 NoRequest—It has not yet serviced any requests.
 Sent—It has sent a response to a request.
 Complete—It has completed an iteration of a loop and is ready to service the

next request.

Figure 15.3 illustrates how the Respond and Loop commands affect the state of a process.

SentNoRequest
Respond

Respond

Loop

Complete

Figure 15.3 A state transition diagram showing the states and operations in
a server process. A process begins in the NoRequest state and must end in
the Complete state, meaning that it has responded to at least one request.

419Defining a type for safe message passing

ed
d

If you have a process that begins in the NoRequest state and ends in the Complete
state, you can be certain that it has replied to a request, because the only way to reach
the Complete state is by calling Respond. You can also be certain that it’s continuing to
receive requests, because the only way to reach the Complete state is by calling Loop.
By expressing the state of a process in its type, you can then make stronger guarantees
about how that process behaves.

 You can refine the type of Process to represent the states before and after the pro-
cess is executed:

data ProcState = NoRequest | Sent | Complete

data Process : Type ->

(in_state : ProcState) ->

(out_state : ProcState) ->

Type

The states in the type give the preconditions and postconditions of a process. For
example:

 Process () NoRequest Complete is the type of a process that responds to a
request and then loops.

 Process () NoRequest Sent is the type of a process that responds to one or
more requests and then terminates.

 Process () NoRequest NoRequest is the type of a process that responds to no
requests and then terminates.

Listing 15.10 shows the refined Process, where the type of each command explains
how it affects the overall process state. In this definition, where there’s no precondi-
tion on the state and no change in the state, the input and output states are both st.

data Process : Type ->
(in_state : ProcState) ->
(out_state : ProcState) ->
Type where

Request : MessagePID -> Message -> Process Nat st st
Respond : ((msg : Message) -> Process Nat NoRequest NoRequest) ->

Process (Maybe Message) st Sent
Spawn : Process () NoRequest Complete ->

Process (Maybe MessagePID) st st

Listing 15.10 Annotating the Process type with its input and output states
(ProcessState.idr)

The type of the result
of the process

The state of the process before it’s execut
The state of the process after it’s execute

Request now returns a Nat
rather than a Maybe Nat.

When processing, stays in the
NoRequest state to ensure you don’t

start processing a new response
before completing this one

You can respond to a request
at any time, and the resulting
state is Sent.

You can only spawn a
process if it’s a looping
process (that is, it goes
from NoRequest to
Complete).

420 CHAPTER 15 Type-safe concurrent programming
Loop : Inf (Process a NoRequest Complete) ->
Process a Sent Complete

Action : IO a -> Process a st st
Pure : a -> Process a st st
(>>=) : Process a st1 st2 -> (a -> Process b st2 st3) ->

Process b st1 st3

RETURN TYPE OF REQUEST Earlier, you sent requests of type Message and
received responses of type Maybe Nat. You used Maybe because you had no
guarantee that the service was still running, so the request could fail. Now
you’ve set up the Process state so that services will always respond to
requests. If you send a request, you’re guaranteed a response of type Nat in
finite time.

When you use this new definition, there’s no way for a function to invoke Loop unless
the function can satisfy the precondition that it has sent a response to a request. More-
over, Loop is also the only way for a process to reach the Complete state. As a result,
you can only invoke Loop on a process that’s guaranteed to be looping, because the
process must begin in the NoRequest state and end in the Complete state.

 You can still define procAdder as before, because each command satisfies the pre-
condition, and its type now states that it must respond to a request and then loop:

procAdder : Process () NoRequest Complete
procAdder = do Respond (\msg => case msg of

Add x y => Pure (x + y))
Loop procAdder

The two incorrect versions defined earlier, however, no longer type-check, because
the commands don’t satisfy the preconditions given by Process when you attempt to
use them. For example, you can try the following definition:

procAdderBad1 : Process () NoRequest Complete
procAdderBad1 = do Action (putStrLn "I'm out of the office today")

Loop procAdder

Idris reports an error because there’s no Respond before the Loop:

ProcessState.idr:63:21:
When checking right hand side of procAdderBad1 with expected type

Process () NoRequest Complete

When checking an application of constructor Main.>>=:
Type mismatch between

Process a Sent Complete (Type of Loop _)
and

Process () NoRequest Complete (Expected type)

Specifically:
Type mismatch between

You can only loop
with a process
that goes from
NoRequest to
Complete.

You can only Loop after sending a message, and a
Loop puts the process into the Complete state.

Sequences operations, going from
the input state of the first operation
to the output state of the second

421Defining a type for safe message passing
Sent
and

NoRequest

This error message means that when you call Loop, the process is supposed to be in
the Sent state, but at this point it’s in the NoRequest state, not having sent any
response yet. You’ll get a similar error message for the same reason with the following
definition:

procAdderBad2 : Process () NoRequest Complete
procAdderBad2 = Loop procAdderBad2

In order to execute programs using the refined Process, you’ll need to modify run
and runProc. First, you need to modify their types:

run : Fuel -> Process t in_state out_state -> IO (Maybe t)
runProc : Process () in_state out_state -> IO ()

The definitions mostly remain the same as the previous versions. The one change is in
the definition of the Request case in run, now that you know a Request will always
receive a reply in finite time:

run fuel (Request (MkMessage process) msg)
= do Just chan <- connect process

| _ => pure Nothing
ok <- unsafeSend chan msg
if ok then do Just x <- unsafeRecv Nat chan

| Nothing => pure Nothing
pure (Just x)

else pure Nothing

RETURN VALUE OF RUN If run fails for any reason, it returns Nothing. Up to
now, this could only happen if it ran out of Fuel. You’ve now set up Process
so that senders and receivers are coordinated, so, at least in theory, communi-
cation can’t fail. If communication does fail, there’s either an error in the
implementation of run or a more serious runtime error, so you can also
return Nothing in this case.

You’ll also need to modify the type of procMain, to be consistent with the refined
Process type. This type explicitly states that procMain isn’t intended to respond to
any incoming requests because it ends in the NoRequest state:

procMain : Process () NoRequest NoRequest

It’s convenient to define type synonyms for clients, like procMain, and for services, like
procAdder. They both use Process, but they differ in how they affect the state of the
process:

Service : Type -> Type
Service a = Process a NoRequest Complete

Client : Type -> Type
Client a = Process a NoRequest NoRequest

If communication
fails, abandons
execution

422 CHAPTER 15 Type-safe concurrent programming
The following listing shows the refined definitions of procAdder and procMain using
these type synonyms for client and server processes.

procAdder : Service ()
procAdder = do Respond (\msg => case msg of

Add x y => Pure (x + y))
Loop procAdder

procMain : Client ()
procMain = do Just adder_id <- Spawn procAdder

| Nothing => Action (putStrLn "Spawn failed")
answer <- Request adder_id (Add 2 3)
Action (printLn answer)

If you try this at the REPL, you’ll see that it displays 5 as before:

*ProcessState> :exec runProc procMain
5

You now have a definition of Process with the following guarantees, ensured by the
preconditions and postconditions in the definition of Process:

 All requests of type Message are sent responses of type Nat.
 Every process started with Spawn is guaranteed to loop indefinitely and respond

to requests on every iteration.
 Therefore, every time a process sends a Request to a service started with Spawn,

it will receive a response in finite time as long as the service is defined by a total
function.

This means you can write type-safe concurrent programs that can’t deadlock, because
every request is guaranteed to receive a response eventually. But at this stage, it only
allows you to write one kind of service—one that receives a Message and sends back a
Nat. It would be far more useful if you could define generic message-passing processes
with user-defined interactions between the sender and receiver. As you’ll see, you can
achieve this with a final small refinement to Process.

15.2.4 Generic message-passing processes

When a process receives a request of the form Add x y, it sends back a response of type
Nat. You can express this relationship between the request and the response types in a
type-level function:

AdderType : Message -> Type
AdderType (Add x y) = Nat

This function describes the interface that Process supports: if it receives a message of
the form Add x y, it will send a response of type Nat. You could define other interfaces

Listing 15.11 Refined definitions of procAdder and procMain (ProcessState.idr)

A Client is a Process that begins
and ends in the NoRequest state.

A Service is a Process that begins in the
NoRequest state and ends in the Complete state.

423Defining a type for safe message passing
this way; for example, the following listing gives a description of an interface to a pro-
cess that responds to requests to perform operations on lists.

data ListAction : Type where
Length : List elem -> ListAction
Append : List elem -> List elem -> ListAction

ListType : ListAction -> Type
ListType (Length xs) = Nat
ListType (Append {elem} xs ys) = List elem

In general, an interface to a process is a function like AdderType or ListType that cal-
culates a response type from a request. Instead of defining a specific type that pro-
cesses can send and receive, you can include the interface as part of a process’s type by
adding an additional argument for the interface, as figure 15.4 shows.

REQUEST TYPE OF PROCESS The iface argument to Process includes a type
variable, reqType. This is an implicit argument, and it defines the type of mes-
sages the process can receive. Idris will infer reqType from the iface argu-
ment. For example, in procAdder, iface is AdderType, so reqType must
be Message.

We’ll come to the refined definition of Process shortly. Once it’s defined, the proc-
Adder service will respond to an interface defined by AdderType:

procAdder : Process AdderType () NoRequest Complete

Some processes, like procMain, don’t respond to any requests. You can make this
explicit in the type by defining their interfaces as follows:

NoRecv : Void -> Type
NoRecv = const Void

Listing 15.12 Describing an interface for List operations

The type of messages received
by a process that manipulates
lists concurrently

Getting the length of a list results in a Nat.

Appending two lists with element
type elem results in a List elem.

data Process : (iface : reqType -> Type) -> Type
 -> (in_state : ProcState) -> (out_state : ProcState) -> Type

Interface process
responds to

Input state
of process

Output state
of process

Return type
of process

Figure 15.4 A refined Process type, including the interface that the
process responds to as part of the type

424 CHAPTER 15 Type-safe concurrent programming

Th
proce

interface
by se
Remember from chapter 8 that Void is the empty type, with no values. Because you
can never construct a value of type Void, a process that provides a NoRecv interface
can never receive a request. You can use it in the following type for procMain:

procMain : Process NoRecv () NoRequest NoRequest

You’ll also need to redefine the type synonyms Service and Client to include the
interface description. A Service has an interface, but a Client receives no requests:

Service : (iface : reqType -> Type) -> Type -> Type
Service iface a = Process iface a NoRequest Complete

Client : Type -> Type
Client a = Process NoRecv a NoRequest NoRequest

When you create a new process, you get a PID for the new process as a MessagePID. You
should only send messages to a process when the messages match the interface of that
process, so you can refine MessagePID to include the interface it supports in its type:

data MessagePID : (iface : reqType -> Type) -> Type where
MkMessage : PID -> MessagePID iface

Now, if you have a PID of type MessagePID AdderType, you know that you can send it
messages of type Message, because that’s the input type of AdderType.

 Putting all of this together, you can refine Process to describe its own interface
and to be explicit about when it’s safe to send a request of a particular type to another
Process. The next listing shows the refined types for Request, Respond, and Spawn.

data ProcState = NoRequest | Sent | Complete

data Process : (iface : reqType -> Type) ->
Type ->
(in_state : ProcState) ->
(out_state : ProcState) ->
Type where

Request : MessagePID service_iface ->
(msg : service_reqType) ->
Process iface (service_iface msg) st st

Respond : ((msg : reqType) ->
Process iface (iface msg) NoRequest NoRequest) ->

Process iface (Maybe reqType) st Sent
Spawn : Process service_iface () NoRequest Complete ->

Process iface (Maybe (MessagePID service_iface)) st st
{-- continued in Listing 15.14 --}

Listing 15.13 Refining Process to include its interface in the type, part 1
(ProcessIFace.idr)

e PID for a
ss with an
 described
rvice_iface

The req has type
service_reqType, and
service_iface has type
service_reqType -> Type.

The reply from the service will be
calculated by applying service_iface to the
request to ensure that the reply type
corresponds with the request.

If you spawn a server with an interface
described by service_iface, the PID has

type MessagePID service_iface.

If you receive a req message, the required
response type is calculated by iface req.

425Defining a type for safe message passing
The following listing completes the refined definition of Process, adding Loop,
Action, Pure, and (>>=). In each case, all you need to do is add an iface argument to
Process.

data Process : (iface : reqType -> Type) ->
Type ->
(in_state : ProcState) ->
(out_state : ProcState) ->
Type where

{-- continued from Listing 15.13 --}
Loop : Inf (Process iface a NoRequest Complete) ->

Process iface a Sent Complete
Action : IO a -> Process iface a st st
Pure : a -> Process iface a st st
(>>=) : Process iface a st1 st2 -> (a -> Process iface b st2 st3) ->

Process iface b st1 st3

Finally, you need to update run and runProc for the refined Process definition. List-
ing 15.15 shows the changes you need to make to run. You need only modify the cases
for Request and Respond to be explicit about the types of messages a process expects
to receive.

run : Fuel -> Process iface t in_state out_state -> IO (Maybe t)
run fuel (Request {service_iface} (MkMessage process) msg)

= do Just chan <- connect process
| _ => pure Nothing

ok <- unsafeSend chan msg
if ok then do Just x <- unsafeRecv (service_iface msg) chan

| Nothing => pure Nothing
pure (Just x)

else pure Nothing
run fuel (Respond {reqType} f)

= do Just sender <- listen 1
| Nothing => pure (Just Nothing)

Just msg <- unsafeRecv reqType sender
| Nothing => pure (Just Nothing)

Just res <- run fuel (f msg)
| Nothing => pure Nothing

unsafeSend sender res
pure (Just (Just msg))

For runProc, you need only change its type to add the iface argument to Process:

partial
runProc : Process iface () in_state out_state -> IO ()

Listing 15.14 Refining Process to include its interface in the type, part 2
(ProcessIFace.idr)

Listing 15.15 Updating run for the refined Process (ProcessIFace.idr)

In Loop and (>>=), the
type explicitly states that the

interface does not change.

Brings service_iface into scope so that you
can calculate the expected response type

Calculates the expected response
type from the message you sent

Brings reqType into scope
so that you can say it’s the
expected type of received
messagesYou expect to

receive a
message that

satisfies the
interface.

426 CHAPTER 15 Type-safe concurrent programming
runProc proc = do run forever proc
pure ()

When designing data types, especially types that express strong guarantees like
Process, it’s often a good idea to begin by trying to solve a specific problem before
moving on to a more general solution. Here, we started with a type for Process that
only supported specific message and response types (Message and Nat). Only after
that worked did we use type-level functions to make a generic Process type.

15.2.5 Defining a module for Process

Once you’ve defined a generic type, it’s useful to define a new module to make that
type and its supporting functions available to other users. We’ll define a new module,
ProcessLib.idr, that defines Process and supporting definitions and exports them
as necessary.

 The next listing shows the overall structure of the module, omitting the definitions
but adding export modifiers to each declaration.

module ProcessLib

import System.Concurrency.Channels

%default total

export
data MessagePID : (iface : reqType -> Type) -> Type where

public export
data ProcState = NoRequest | Sent | Complete

public export
data Process : (iface : reqType -> Type) ->

Type ->
(in_state : ProcState) ->
(out_state : ProcState) ->
Type where

public export
data Fuel

The complete definitions are the same as those you’ve already seen for MessagePID,
ProcState, Process, and Fuel. Remember from chapter 10 that for data declarations,
an export modifier can be one of the following:

 export—The type constructor is exported but not the data constructors.
 public export—The type and data constructors are exported.

The following listing shows how you can export the supporting functions.

Listing 15.16 Defining Process in a module, omitting definitions (ProcessLib.idr)

Unless stated otherwise, all
definitions in the file must be total.

Exports the MessagePID type but
not the constructors

Exports the remaining types
and their constructors

427Defining a type for safe message passing

export partial
forever : Fuel

export
run : Fuel -> Process iface t in_state out_state -> IO (Maybe t)

public export
NoRecv : Void -> Type

public export
Service : (iface : reqType -> Type) -> Type -> Type

public export
Client : Type -> Type

export partial
runProc : Process iface () in_state out_state -> IO ()

For functions, an export modifier can be one of the following:

 export—The type is exported but not the definition.
 public export—The type and definition are exported.

Unless there’s a specific reason to export a definition as well as a type, it’s better to use
export, hiding the details of the definition. Here, you use public export for Client
and Service because these are type synonyms, and other modules will need to know
that these are defined in terms of Process.

 Now that you’ve defined Process and a separate ProcessLib module that exports
the relevant definitions, we can try more examples. To conclude this section, we’ll
look at two examples of implementing concurrent programs using this generic
Process type. First, we’ll implement a process using ListType, which was defined ear-
lier in listing 15.12, and then we’ll look at a larger example using concurrency to run
a process in the background to count words in a file.

15.2.6 Example 1: List processing

To demonstrate how you can use Process to define services other than procAdder,
we’ll start with a service that responds to requests to carry out functions on List. The
interface of the service is defined by a ListType function. It provides two operations:
Length and Append.

data ListAction : Type where
Length : List elem -> ListAction
Append : List elem -> List elem -> ListAction

ListType : ListAction -> Type
ListType (Length xs) = Nat
ListType (Append {elem} xs ys) = List elem

Listing 15.17 Supporting function types for Process, omitting definitions
(ProcessLib.idr)

Exports the
types of run
and runProc
but not their
definitions

Exports the
types and
definitions of
the remaining
functions

428 CHAPTER 15 Type-safe concurrent programming
We’ll define a procList service that responds to requests on this interface. It has the
following type:

procList : Service ListType ()

You can define procList incrementally, taking the following steps:

1 Define, type—As with procAdder, you can implement procList as a loop that
responds to a request on each iteration:

procList : Service ListType ()
procList = do Respond (\msg => ?procList_rhs)

Loop procList

Looking at the ?procList_rhs type here, you can see that the type you need to
produce is calculated from the msg you receive:

msg : ListAction

procList_rhs : Process ListType (ListType msg) NoRequest NoRequest

 2 Define—Because the type you need to produce depends on the value of msg, you
can continue the definition with a case statement, inspecting msg:

procList : Service ListType ()
procList = do Respond (\msg => case msg of

case_val => ?procList_rhs)
Loop procList

Case splitting on case_val produces this:

procList : Service ListType ()
procList = do Respond (\msg => case msg of

Length xs => ?procList_rhs_1
Append xs ys => ?procList_rhs_2)

Loop procList

 3 Type, refine—For ?procList_rhs_1, if you check the type, you’ll see that you
need to produce a Nat for the result of Length xs:

msg : ListAction
a : Type
xs : List elem

procList_rhs_1 : Process ListType Nat NoRequest NoRequest

You can refine ?procList_rhs_1 as follows:

procList : Service ListType ()
procList = do Respond (\msg => case msg of

Length xs => Pure (length xs)
Append xs ys => ?procList_rhs_2)

Loop procList

4 Refine—To refine ?procList_rhs_2, you need to provide a List elem, and you
can complete the definition as follows:

429Defining a type for safe message passing
procList : Service ListType ()
procList = do Respond (\msg => case msg of

Length xs => Pure (length xs)
Append xs ys => Pure (xs ++ ys))

Loop procList

Having completed procList, you can try it by spawning it in a process and sending it
requests. The following listing defines a process that sends two requests to an instance
of procList and displays their results.

procMain : Client ()
procMain = do Just list <- Spawn procList

| Nothing => Action (putStrLn "Spawn failed")
len <- Request list (Length [1,2,3])
Action (printLn len)

app <- Request list (Append [1,2,3] [4,5,6])
Action (printLn app)

You can try this at the REPL as follows:

*ListProc> :exec runProc procMain
3
[1, 2, 3, 4, 5, 6]

Like procAdder, procList loops, waiting for incoming requests, and processes them
as necessary, but it doesn’t do any other computation while waiting for a request. Con-
current processes become far more useful if, rather than spending their time idling
and waiting for requests from other processes, they also do some computation. In the
next example, you’ll see how to do this.

15.2.7 Example 2: A word-counting process

When you define services, you can define separate requests for initiating an action
and getting the result of that action. For example, if you’re defining a word-count ser-
vice, you could allow a client to take the following steps:

1 Send a request to a word-count service to load a file and count the number of
words in the file.

 2 While the word-count service is processing, the client continues its own work,
such as reading input and producing output.

3 Send a second request to the word-count service to ask how many words were in
the file.

In this example, you’ll define the word-count service around the WCData record and
doCount function defined in listing 15.19. This function takes the contents of a file, in
a String, and produces a structure containing the numbers of words and lines in that
content.

Listing 15.18 A main program that uses the procList service (ListProc.idr)

Sets up the procList process

Invokes the
Length

command,
returning a Nat Invokes the Append

command, returning
a List Integer

430 CHAPTER 15 Type-safe concurrent programming

import ProcessLib

record WCData where
constructor MkWCData
wordCount : Nat
lineCount : Nat

doCount : (content : String) -> WCData
doCount content = let lcount = length (lines content)

wcount = length (words content) in
MkWCData lcount wcount

You can see an example of this in action at the REPL:

*WordCount> doCount "test test\ntest"
MkWCData 2 3 : WCData

The goal is to implement a process that provides word counting as a service. Rather than
loading and counting the words in a single request, you can provide two commands:

 CountFile—Given a filename, loads that file and counts the number of words
in it

 GetData—Given a filename, returns the WCData structure for that file, as long as
the file has already been processed with CountFile

Rather than returning the WCData structure itself, CountFile will return immediately
and continue loading the file in a separate process. That is, one request begins the
task and another retrieves the result. This will allow the requester to continue its own
work while the word-count service is processing the file. The following listing shows
the interface and a skeleton definition for the word-count service.

data WC = CountFile String
| GetData String

WCType : WC -> Type
WCType (CountFile x) = ()
WCType (GetData x) = Maybe WCData

wcService : (loaded : List (String, WCData)) ->

Service WCType ()
wcService loaded = ?wcService_rhs

We’ll come to the definition of wcService in a moment. The next listing shows how
you can invoke it and continue to execute interactive actions in the foreground while
wcService is processing a file in the background.

Listing 15.19 A small function to count the number of words and lines in a String
(WordCount.idr)

Listing 15.20 Interface for the word-count service (WordCount.idr)

Imports this so that you can create a
concurrent word-counting process

See chapter 12 for more on records. This record contains
fields for the number of words and lines in a file.

Returns a structure
containing the number
of words and lines in
the content

Returns () because it
merely initiates the
processing of a file

Returns Maybe WCData
because it will fail if the
given file has not yet
been processed

wcService loops indefinitely
and takes a list of loaded files
as an argument.

431Defining a type for safe message passing

procMain : Client ()
procMain = do Just wc <- Spawn (wcService [])

| Nothing => Action (putStrLn "Spawn failed")
Action (putStrLn "Counting test.txt")
Request wc (CountFile "test.txt")

Action (putStrLn "Processing")
Just wcdata <- Request wc (GetData "test.txt")

| Nothing => Action (putStrLn "File error")
Action (putStrLn ("Words: " ++ show (wordCount wcdata)))
Action (putStrLn ("Lines: " ++ show (lineCount wcdata)))

Listing 15.22 presents an incomplete implementation of wcService that shows how it
responds to the commands CountFile and GetData. Two parts of the definition are
missing:

 Loading and processing the requested file
 Looping, with the new file information added to the input, loaded

wcService : (loaded : List (String, WCData)) -> Service WCType ()
wcService loaded

= do Respond (\msg => case msg of
CountFile fname => Pure ()
GetData fname =>

Pure (lookup fname loaded))
?wcService_rhs

To process the input, you can look at the return value from Respond. Remember that
Respond has the following type:

Respond : ((msg : reqType) ->
Process iface (iface msg) NoRequest NoRequest) ->

Process iface (Maybe reqType) st Sent

The return value from Respond, of type Maybe reqType, tells you which message, if any,
was received. If wcService received a CountFile command, it could load and process
the necessary file before processing its next input.

 The next listing shows a further refinement of wcService, still including a hole for
the function that processes the file.

Listing 15.21 Using the word-count service (WordCount.idr)

Listing 15.22 Responding to commands in wcService (WordCount.idr)

Starts a new
process for the
word-count
service

Initiates the word count for a file

Does some work while the
word-count process is running

Gets the result of the
word count of the file

Returns () immediately so that the
requester can continue processing

Looks up the word-count data in
the existing list of processed files

432 CHAPTER 15 Type-safe concurrent programming

wcService : List (String, WCData) -> Service WCType ()
wcService loaded

= do msg <- Respond (\msg => case msg of
CountFile fname => Pure ()
GetData fname =>

Pure (lookup fname loaded))
newLoaded <- case msg of

Just (CountFile fname) =>
?countFile loaded fname

_ => Pure loaded
Loop (wcService newLoaded)

To see what you need to do to complete wcService, you can check the type of
?countFile:

loaded : List (String, WCData)
fname : String
msg2 : Maybe WC
st2 : ProcState
a : Type

countFile : List (String, WCData) ->

String -> Process WCType (List (String, WCData)) Sent Sent

countFile needs to be a function that takes the current list of processed file data and
a filename, and then returns an updated list of processed file data. The next listing
shows how to define it using doCount, defined earlier, to process the file’s contents.

countFile : List (String, WCData) -> String ->
Process WCType (List (String, WCData)) Sent Sent

countFile files fname =
do Right content <- Action (readFile fname)

| Left err => Pure files
let count = doCount content
Action (putStrLn ("Counting complete for " ++ fname))
Pure ((fname, doCount content) :: files)

UPDATING THE HOLE FOR COUNTFILE Remember that you need to define
countFile before you use it in wcService. Once you’ve defined count-
File, don’t forget to replace the ?countFile hole with a call to countFile.

Listing 15.23 Incomplete implementation of wcService (WordCount.idr)

Listing 15.24 Loading a file and counting words (WordCount.idr)

Respond returns the msg
received, which you can
now process further.

Calculates the new list of loaded
file data, given the msg received

If asked to process a file,
process it here. We’ll

define countFile shortly.
Continues with the

new list of loaded files

Reading the file
failed, so doesn’t
update the files list

Prints a message to the console when
processing of the file is complete

Adds the data for the
newly processed file
to the files list

433Summary
Now that you’ve defined countFile, you can try executing procMain, which starts
wcService, asks to count the words in a file, test.txt, and then displays the result.
You’ll need to create a test.txt file with content like the following:

test test
test
test test test
test

You can execute procMain at the REPL as follows:

*WordCount> :exec runProc procMain
Counting test.txt
Processing
Counting complete for test.txt
Words: 4
Lines: 7

With Process, you’ve defined a type that allows you to describe concurrently execut-
ing processes and to explain how processes can send each other messages safely, fol-
lowing a protocol:

 A service must respond to every message it receives, on a specific interface, and
continue responding in a loop.

 A client can then send a message to a process, with the correct interface, and be
sure of receiving a reply of the correct type.

This doesn’t solve all possible concurrent programming problems, but you’ve defined
a type that encapsulates the behavior of one kind of concurrent program. If a func-
tion describing a Process type-checks and is total, you can be confident that it won’t
deadlock and that all requests will receive replies. If you later refine Process further,
such as by allowing more-sophisticated descriptions of interactions between processes,
you’ll be able to implement more-sophisticated models of concurrent programs.

15.3 Summary
 Concurrent programming involves multiple processes executing simultane-

ously.
 Processes in Idris cooperate with each other by sending messages.
 The System.Concurrency.Channels library provides primitive, but unsafe,

operations for message passing.
 Primitive operations are unsafe because they provide no guarantees about

when processes send and receive messages, or about the correspondence
between the types of sent and received messages.

 You can define a type for describing safe message-passing processes, imple-
mented using Channel as a primitive.

 Using Inf, you can guarantee that looping processes continue to perform IO
actions.

Displayed by procMain before
requesting to process test.txt

Displayed by procMain while wcService is processing

Displayed by wcService when it
has finished processing

434 CHAPTER 15 Type-safe concurrent programming
 By defining a state machine in the type, you can be sure that a process will
respond to messages on every iteration of a loop.

 The type of a process can be generic and describe the types of messages to
which a process will respond.

appendix A
Installing Idris

and editor modes

This appendix explains how to install Idris. There are prebuilt binary distributions
for Mac and Windows, or you can install from source on any Unix-like operating
system. It also describes how to install the Idris mode in the Atom text editor.

The Idris compiler and environment
At the time of writing, Idris is available as a binary distribution for Windows and
Mac OS from http://idris-lang.org/download. This includes the compiler and
REPL, along with the Prelude, base libraries, and a variety of contributed libraries
that support various data structures, networking, and programming with side
effects.

 In the following sections, I’ll describe how to install Idris either as binaries or
from source. In either case, to check that Idris has installed successfully, you can
run idris --version, which reports which Idris version is installed:

$ idris --version
1.0

Mac OS

The latest version of Idris is always available as a binary package, downloadable at
http://idris-lang.org/pkgs/idris-current.pkg. To be able to compile it and run your
programs, you’ll also need to install Xcode, which is available from the App Store.

435

436 APPENDIX A Installing Idris and editor modes
 To install Idris, therefore, you can follow these steps:

1 Download idris-current.pkg.
 2 Ensure that Xcode is installed from the App Store.
3 Open idris-current.pkg and follow the instructions. This will install the Idris

binary to /usr/local/bin/idris.

You can also install the latest version via Homebrew (http://brew.sh/):

$ brew install idris

Windows

Prebuilt binaries of Idris are available from https://github.com/idris-lang/Idris-dev/
wiki/Windows-Binaries. These binaries include everything necessary for compiling
and running Idris programs.

Unix-like platforms, installing from source

Idris is implemented in Haskell, and a source distribution is available from the Has-
kell package manager, Hackage (http://hackage.haskell.org/). This is a good option
if you’re using an operating system for which there are no binary releases available, or
if you need more control over how Idris is set up.

 To install it, follow these steps:

1 Install the Haskell Platform, available from www.haskell.org/downloads.
2 The Haskell Platform includes a command-line tool, cabal, for installing appli-

cations and libraries from the central Hackage repository. Assuming you’re in a
Unix-like environment, you can install Idris to an executable at /usr/local/
bin/idris with the following commands:

$ cabal update
$ cabal install idris --program-prefix=/usr/local

Editor modes
In this section, I’ll describe how to install the Idris mode for type-driven interactive
editing in the Atom text editor, used throughout this book. I’ll also give you some
pointers to editor modes for Emacs and Vim.

Atom

Atom is available for all major platforms from http://atom.io/. You can install the
extension for editing Idris programs as follows:

1 Go to Preferences.
 2 Go to the Install tab.
 3 Search for the language-idris package.
 4 There should be one search result. Click the Install button for this result.

437APPENDIX A Installing Idris and editor modes
 5 You’ll need to tell the language-idris package where the Idris binary is
installed. To do this, first go to the Packages tab.

 6 Click on Settings in the language-idris box.
7 Under the Settings heading, enter the path where the Idris binary is installed.

On this page, you can also change the keyboard shortcuts and various other fea-
tures.

Other editors

At the time of writing, editor modes are also available for Vim and Emacs:

 Vim extension—https://github.com/idris-hackers/idris-vim
 Emacs mode—https://github.com/idris-hackers/idris-mode

In each case, installation, configuration, and usage instructions are provided.

438

appendix B
Interactive editing commands

Throughout the book, I describe the interactive construction of Idris programs via
editing commands in Atom. The following table summarizes these commands for
easy reference.

Table 1 Interactive editing commands in Atom

Shortcut Command Description

Ctrl-Alt-A Add definition Adds a skeleton definition for the name under the
cursor

Ctrl-Alt-C Case split Splits a definition into pattern-matching clauses
for the name under the cursor

Ctrl-Alt-D Documentation Displays documentation for the name under the
cursor

Ctrl-Alt-L Lift hole Lifts a hole to the top level as a new function dec-
laration

Ctrl-Alt-M Match Replaces a hole with a case expression that
matches on an intermediate result

Ctrl-Alt-R Reload Reloads and type-checks the current buffer

Ctrl-Alt-S Search Searches for an expression that satisfies the type
of the hole name under the cursor

Ctrl-Alt-T Type-check name Displays the type of the name under the cursor

Ctrl-Alt-W with block insertion Adds a with block after the current line, contain-
ing a new pattern-matching clause with an extra
argument

appendix C
REPL commands

The Idris read-eval-print loop (REPL) provides several commands for evaluating
and inspecting expressions and types, compiling programs, and searching docu-
mentation, among other things. I introduce several of these throughout the book;
the following table lists the most commonly used commands, but there are several
others available. For more details, type :? at the REPL.

Table 1 Idris REPL commands

Command Arguments Description

<expression> None Displays the result of evaluating the expression. The
variable it contains the result of the most recent
evaluation.

:t <expression> Displays the type of the expression.

:total <name> Displays whether the function with the given name is
total.

:doc <name> Displays documentation for name.

:let <definition> Adds a new definition.

:exec <expression> Compiles and executes the expression. If none is
given, compiles and executes main.

:c <output file> Compiles to an executable with the entry point main.

:r None Reloads the current module.

:l <filename> Loads a new file.

:module <module name> Imports an extra module for use at the REPL.
439

440 APPENDIX C REPL commands
:printdef <name> Displays the definition of name.

:apropos <word> Searches function names, types, and documentation
for the given word.

:search <type> Searches for functions with the given type.

:browse <namespace> Displays the names and types defined in the given
namespace.

:q None Exits the REPL.

Table 1 Idris REPL commands (continued)

Command Arguments Description

appendix D
Further reading

This appendix lists several other resources through which you can learn more
about functional programming, types, and Idris’ theoretical foundations. The
resources are grouped by topic, with a brief comment on each.

Functional programming in Haskell
Idris is heavily inspired by Haskell, including its syntax, language features, and
many of its standard libraries. In particular, Idris interfaces are closely related to
Haskell type classes. If you’d like to learn about Haskell in more depth, you can
take a look at the following books:

 Learn Haskell by Will Kurt (Manning, 2017) covers Haskell and functional
programming concepts, including several practical examples, with particular
emphasis on Haskell’s type system.

 Programming in Haskell, 2nd ed. by Graham Hutton (Cambridge University
Press, 2016) introduces the core features of Haskell and pure functional pro-
gramming, and it covers many of the more advanced features of Haskell.

 Thinking Functionally with Haskell by Richard Bird (Cambridge University
Press, 2014) teaches programming from first principles using Haskell, partic-
ularly emphasizing techniques for reasoning mathematically about programs.

Other languages and tools
with expressive type systems
Several other languages have arisen as a result of academic research into using
types to reason about program correctness. These are some examples:
441

442 APPENDIX D Further reading
 Agda (http://wiki.portal.chalmers.se/agda/pmwiki.php)—Supports type-driven dev-
elopment using dependent types in the same way as Idris, but with a stronger
emphasis on theorem proving.

 F* (www.fstar-lang.org/)—A functional programming language that aims to sup-
port program verification using refinement types, which are types augmented
with a predicate that describes properties of values in that type.

 Coq (https://coq.inria.fr/)—A proof management system based on dependent
types with support for extracting functional programs from proofs.

Theoretical foundations
Idris is based on decades of research in dependent type theory. You can learn more
about the theoretical foundations from the following sources:

 Type Theory and Functional Programming by Simon Thompson (Addison Wesley,
1991). This book is now out of print, but it’s available online from the author’s
website (www.cs.kent.ac.uk/people/staff/sjt/TTFP/). It provides an accessible
introduction to type theory, including its foundations and applications.

 Software Foundations by Benjamin Pierce et al. (2016; www.cis.upenn.edu/
~bcpierce/sf/current/index.html). This is a course on the mathematical
underpinnings of software, from first principles, using Coq. It’s instructive to
reproduce the examples in Idris!

 Types and Programming Languages by Benjamin Pierce (MIT Press, 2002). This
textbook provides a comprehensive introduction to type systems and the basic
theory of programming languages.

 “Propositions as Types” by Philip Wadler (Communications of the ACM, Decem-
ber 2015; http://cacm.acm.org/magazines/2015/12/194626-propositions-as-
types). This paper gives a deep but accessible account of the relationship
between logic and programming languages, and in particular the idea that a
type in a programming language corresponds to a logical proposition and that a
program corresponds to a proof of that proposition.

Total functional programming
Throughout this book, I talk about the value of writing total functions, and in chapter
10 I introduce views, which provide one way of writing total functions. There are sev-
eral other techniques, some of which are described in the following papers:

 “Elementary Strong Functional Programming” by David Turner (Lecture Notes in
Computer Science 1022 (1995):1–13). In this paper, David Turner argues in favor
of writing total functions, describing many of the benefits and giving some basic
techniques for writing total functions.

 “Why Dependent Types Matter” by Thorsten Altenkirch, Conor McBride and
James McKinna (2004). This paper, available online (www.cs.nott.ac.uk/~psztxa/
publ/ydtm.pdf), describes an earlier dependently typed language, Epigram,
emphasizing the importance of totality in dependently typed programming.

443APPENDIX D Further reading
 “Modelling general recursion in type theory” by Ana Bove and Venanzio
Capretta (Mathematical Structures in Computer Science 15 (2005):671–708). Here,
the authors describe a way to formalize recursive programs by defining a data
type to describe the computational structure of the program.

Types for concurrency
Chapter 15 presents a way of implementing type-safe concurrent programs, but it uses
a very simplified form of concurrent program. You can learn more about types for
concurrent programming by reading about session types, first described by Kohei
Honda in 1993. There are many sources, but the following papers provide a starting
point:

 “Types for Dyadic Interaction” by Kohei Honda (Lecture Notes in Computer Science
715 (1993):509–523). This paper introduced the concept of session types,
describing a type system for encoding interactions between two processes.

 “Multiparty Asynchronous Session Types” by Kohei Honda, Nobuko Yoshida,
and Marco Carbone (Principles of Programming Languages, 2008). This paper
extends the idea of session types to communicating systems with more than two
participants.

index

Symbols

_ (underscore) 66, 83, 160
:: operator 88, 104, 164
:printdef command 221
:r command 166
. function 197
/= method 186, 189
%default total annotation

312–313
+ operator 225
++ operator 164, 260
= type 218–219
== operator 183, 185, 209
>>= operator 127–129
$ operator 285, 336
$= operator 346

A

absurd function 243
accumulating parameter 201
Add command 168
addCorrect 346
addDownvote function 351
adder function 157, 406–407
AdderType function 155–156
addition function 155–157
addPositives 339
addToData function 166
addToStore function 166,

280, 283
addUpvote function 351
addWrong function 346
allLengths function, refining

type of 65–69
anonymous functions 38–39

Append operation 427
AppendVec.idr file 225
Applicative interface

defining for State 335–340
generic do notation using

205–206
arguments

auto-implicit 244–245
defining functions with

variable numbers of
155–161

addition function
155–157

printf function 157
arithInputs 303, 313
arithmetic notation 197
arithmetic quiz example

infinite lists 301–304
infinite processes 311–313
state 340–351

executing quiz 348–350
implementing quiz

346–348
nested records 343–344
updating record field

values 344–346
updating record fields by

applying functions
346

ATM example 382–390
defining states 383–384
defining type for 384–387
refining preconditions

using auto-implicits
388–389

simulating at console
387–388

ATMCmd type 387–388

Atom 56–64, 436–437
commands 57
data types and patterns

61–64
defining functions by pat-

tern matching 57–61
auto keyword 244
auto-implicits

overview 245
refining preconditions

using 388–389

B

Bind constructor 320
Bool type 209
Booleans 30
bound implicit arguments

83–84
bracketing 336
built-in types 26, 185

C

cabal tool, Haskell 436
canonical constructors 216
case block 177
case expressions, using in

types 153–154
case splitting 188, 274, 428
case statement 210
cast function 28, 198
Cast interface, converting

between types with
198–199

catchall case 190
445

446 INDEX
Channels library 407–410
character literals 29–30
checkEqNat function 216–217,

229, 231, 245
Closed state 353
Command type 340
comments 47–48
communication pattern 410
composite types 40–45

lists
functions with 43–45
overview 41–42

tuples 40–41
concurrent programming 9–10
connect 407–408
Connected state 353
ConsoleIO programs 317–318
constants 154
constrained generic types

comparisons with Eq and
Ord 183–194

constrained implemen-
tations 189–191

default method definitions
189

defining Eq constraint
185–189

Ord 191–193
testing for equality with Eq

183–185
interfaces defined in Prelude

194–199
Cast 198–199
defining numeric types

195–198
Show 194–195

interfaces parameterized by
Type -> Type 199–206

Foldable 201–204
Functor 200–201
Monad and Applicative

205–206
constrained types 35–36
control flow 132–138

pattern-matching bindings
134–136

producing pure values in
interactive definitions
132–134

writing interactive definitions
with loops 136–138

Control.Monad.State 325, 333
correct function 345
CountFile command 430–432
countFrom function 294, 296

covering function 262, 277
cycle function 301

D

data abstraction 280–287
data store 282–284
Traversing store's contents

with views 284–287
Data.List.Views module

277–278
Data.Primitives.Views 311, 348
DataStore type

refining 162–164
using records for 164–165

deadlock 404
Dec type 229–233
decEq function 233–234
decidability 245–249

Dec 229–233
DecEq 233–234

decreasing argument 266
Delay function 295, 309
dependent state machines

describing rules in types
390–402

defining abstract game
state and operations
391–392

defining concrete game
state 397–399

defining type for game
state 392–395

implementing game
395–397

running game 399–402
errors in state transitions

374–382
security properties in types

382–390
defining states 383–384
defining type 384–387
refining preconditions

using auto-implicits
388–389

simulating at console
387–388

dependent types 11–12
defining 102–110

defining vectors 104–107
indexing vectors with

bounded numbers
107–109

vehicle classification
example 102–103

reading and validating
138–146

dependent pairs 141–143
reading vectors from

console 139–140
reading vectors of unknown

length 140–141
validating vector

lengths 143–145
describeHelper function 262,

264
describeListEnd 260–261, 263
DivBy 303
Do constructor 306
do keyword 179
do notation 129–131, 311, 334

extending for infinite
processes 311

sequencing commands with
320–322

sequencing expressions with
Maybe type 177–180

using Monad and Applicative
205–206

doAdd 366
doCount function 429
door operations example

interactive development of
sequences of operations
356–358

modeling door as a type
354–356

representing failure 375–378
verified, error-checking, door-

protocol description
378–382

DoorClosed state 353, 358, 375
DoorCmd type 355, 374, 378
DoorOpen state 354, 358, 375
doorProg 356, 379
DoorResult type 375
DoorState 374

E

Effects library 339
Elem predicate 237–250

auto-implicit arguments
244–245

deciding membership of
vectors 245–249

guaranteeing a value is in
vectors 239–241

removing elements from
Vect 238–239, 241–244

447INDEX
Emacs mode 437
empty function 283
empty type 212, 228–229
enumerated types, defining

89–90
Eq constraint 182
Eq interface 211

constrained implementations
189–191

default method definitions
189

defining using interfaces and
implementations
185–189

testing for equality 183–185
Eq ty constant 186
EqNat type 211, 239
equal expressions 199
equality types

decidability
Dec 229–233
DecEq 233–234

empty type 228–229
guaranteeing equivalence of

data with 209–219
= type 218–219
exactLength 210–211,

216–218
expressing equality of Nats

as a type 211–212
manipulating equalities

215–216
testing for equality of Nats

212–214
reasoning about equality

220–227
appending vectors

225–227
delegating proofs and

rewriting to holes
224–225

reversing vectors 220–221
rewrite construct 223–224
type checking and

evaluation 221–222
equalSuffix function 279
evalState 330–331
exactLength function 209–211,

216–218, 233
ExactLength.idr file 210
execState 330
export modifier 281
Expr type 196

F

Face type 304
False value 211
filterKeys 286–287
Fin argument, indexing with

bounded numbers
107–109

Finished type 391
finite prefix 415
first-class types 22–24

defining functions with vari-
able numbers of
arguments 155–161

addition function 155–157
printf function 157

schemas 161–180
DataStore type 162–165
displaying entries in store

170–171
holes 165–170
parsing entries according

to 171–175
sequencing expressions

with Maybe using do
notation 177–180

updating 175–177
type-level functions 148–154

type synonyms 149–150
using case expressions in

types 153–154
with pattern matching

150–153
Foldable interface, reducing

structure using
201–204

Force function 295, 309
forever function 310, 312, 417
format string 148
Format type 159
Fractional interface 195
fromInteger method 196
Fuel type 308, 341
function definitions

local 39–40
overview 31–33

functions 30–40, 75–81
anonymous 38–39
defining by pattern matching

57–61
defining with variable num-

bers of arguments
155–161

addition function 155–157
Formatted output, a type-

safe printf function 157

higher-order 36–38
local definitions 39–40
partial 16–17
partially applying 33
total 16–17, 296–297,

308–309
type-level 148–154

type synonyms 149–150
using case expressions in

types 153–154
with pattern matching

150–153
types of 31

constrained 35–36
overview 31–33
variables in 33–34

using implicit arguments in
84–85

writing generic 33–36
Functor interface 200, 337

applying functions across
structure with 200–201

defining for State 335–340

G

GameLoop type 251, 391,
399–402

GameState 342–343
generic types, defining 95–100
get command 180
GetData command 430–431
getEntry command 167–168
GetLine command 318, 341
getPrefix function 298–299,

308
GetRandom 348
GetStr command 368
getStringOrInt 151
getValues function 287
global state 325
greet function 315
guess function 256
guessing game example

390–402
defining abstract game state

and operations
391–392

defining concrete game state
397–399

defining type for game state
392–395

implementing 395–397
running 399–402

448 INDEX
H

Hangman guessing game
example 250

completing top-level game
implementation 255

deciding input validity 255
predicate for validating user

input 251–252
processing guesses 253–254
representing game's

state 250–251
top-level game function 251

Haskell 436
headUnequal 234
helper function 328
Here value 240
hierarchical namespaces 321
higher-order functions 36–38
holes 20–21

correcting compilation
errors using 165–170

delegating proofs and rewrit-
ing to 224–225

Homebrew 436

I

Idris programming language
17–24

as pure functional program-
ming language 13–17

partial and total functions
16–17

purity and referential
transparency 13–14

side-effecting programs
14–15

checking types 18–19
comments 47–48
compiling and running

programs 19–20
composite types 40–45

functions with lists 43–45
lists 41–42
tuples 40–41

editor modes 436–437
Atom 436–437
other editors 437

first-class types 22–24
functions 30–40

anonymous 38–39
higher-order 36–38
local definitions 39–40
partially applying 33

types and definitions of
31–33

writing generic with con-
strained types 35–36

writing generic with vari-
ables in types 33–34

holes 20–21
installing compiler and

environment 435–436
Mac OS 435–436
Unix-like platforms 436
Windows 436

interactivity 48–50
REPL (read-eval-print

loop) 17–18
types 26–30

Booleans 30
characters and strings

29–30
converting 28
numeric 27–28

whitespace 46
implicit arguments 82–85

bound and unbound 83–84
need for 82–83
using in functions 84–85

impossible keyword 229
Inf ty type 298
Inf type 295–296, 308

guaranteeing responses
using state machine
and 418–422

making processes total using
415–418

infinite lists 292–305
arithmetic quiz

example 301–304
labeling elements in 293–294
processing 297–299
producing 295–296
Stream data type 299–301
total functions 296–297

infinite processes 305–314
arithmetic quiz example

311–313
describing 306–307
executing 307–308
extending do notation for

311
generating infinite struc-

tures using Lazy
types 309–310

InfIO type 305
infix operator 163, 336
InfList 295

input and output processing
control flow 132–138

pattern-matching bindings
134–136

producing pure values in
interactive definitions
132–134

writing interactive defini-
tions with loops
136–138

IO generic type 124–131
>>= operator 127–129
do notation 129–131
evaluating and executing

interactive
programs 125–127

reading and validating
dependent types
138–146

dependent pairs 141–143
reading vectors from

console 139–140
reading vectors of

unknown length
140–141

validating vector lengths
143–145

input function 272
Integral interface 195
interactive data store 110–121

interactively maintaining
state in main 113–115

parsing user input 115–117
processing commands

118–120
representing store 112–113

interactive operations 329
interactive programming

control flow 132–138
reading and validating

dependent types
138–146

with IO generic type
124–131

interface declarations 186
interfaces

defined in Prelude 194–199
Cast 198–199
defining numeric types

195–198
Show 194–195

generic comparisons
183–194

constrained implementa-
tions 189–191

449INDEX
interfaces, generic comparisons
(continued)

default method definitions
189

defining Eq using inter-
faces and implementa-
tions 185–189

Ord 191–193
testing for equality with

Eq 183–185
parameterized by Type ->

Type 199–206
Foldable 201–204
Functor 200–201
Monad and Applicative

205–206
IO actions 301, 305, 397
IO Finished 251
IO generic type 124–131

>>= operator 127–129
do notation 129–131
evaluating and executing

interactive programs
125–127

isInt 153
isList function 250
isSuffix function 276–277
isValidString 252, 255
it variable 439
items function 164
iterate function 299

J

join method 205

L

labelFrom function 293–294
labelWith function 294, 300
language-idris package 437
Lazy annotation 277
Lazy types, generating infinite

structures using
309–310

Length operation 427
let construct 39–40
linear congruential generator

302
List Char 160
List elem 198
listen 407–408
ListLast 261, 272
lists 41–42

functions with 43–45

matching last item in
260–261

reversing 264–266
snoc 271–274

ListType function 427
local mutable state 329
local state 325
logOpen function 382
Loop constructor 416
loopPrint function 306–307,

310
loops, writing interactive defini-

tions with 136–138

M

MachineCmd 360, 362
main function

interactively maintaining
state in main 113–115

overview 318, 406
map function 200
matrices

arithmetic involving 6–7
functions 75–81
operations and types 76–77
transposing 77–81

Matter type 185
Maybe elem 198
Maybe type, using do notation

177–180
maybeAdd function 178–179
membership tests 237–250

auto-implicit arguments
244–245

deciding membership of
vectors 245–249

guaranteeing a value is in
vectors 239–241

removing elements from
Vect 238–239, 241–244

merge sorting 266–270
mergeSort function 267, 269,

278
MessagePID 412
method declarations 186
MkData 165
MkWordState argument 250
modules, in Idris 280–282
Monad interface

defining for State 335–340
generic do notation using

205–206
MonadState interface 330

mutable state 325–332
representing using pairs

328–329
State type 329–331
tree-traversal example

326–327
tree-traversal with State

331–332
mutual block 339
myReverse function 222–224,

265
myReverseHelper function 273

N

namespaces 321
Nats

expressing equality of as a
type 211–212

overview 156, 227, 413
testing for equality of

212–214
Neg interface 195
nextState 335
Nil constructor 295
nondeterministic programs

206
nonterminating component

292
noRec function 233
NoRecv interface 424
NoRequest state 420
notInNil 248
notInTail 248
NotRunning state 391
Num interface 195
numargs 155–156
numeric types

and values 27–28
defining 195–198

O

occurrences function 184
Ord interface

defining orderings with
191–193

overview 182, 267

P

pairs, representing mutable
state 328–329

palindrome function 279

450 INDEX
parameterized types 199
parseBySchema 172
parseCommand 169, 172
parsePrefix 172
partial functions 16–17
partially application of

functions 33
pattern matching

extending with views
data abstraction 280–287
defining and using views

259–270
recursive views 271–279

syntax for extended 262–264
type-level functions with

150–153
pattern-matching bindings

134–136
PID (process identifier)

406–407
plus function 221
plusCommutative type 222
plusSuccRightSucc 227
plusZeroRightNeutral 227
Polygon function 149
Position function 149–150
predicates

Elem predicate 237–250
auto-implicit arguments

244–245
deciding membership of

vectors 245–249
guaranteeing a value is in

vectors 239–241
removing elements from

Vect 238–239, 241–244
Hangman guessing game

example 250
completing top-level game

implementation 255
deciding input validity 255
predicate for validating

user input 251–252
processing guesses

253–254
representing game's state

250–251
top-level game function

251
primitives, for concurrent

programming 404–411
Channels library 407–410
defining concurrent pro-

cesses 406–407
type errors and blocking

410–411

printf function 148, 155, 157
PrintfType 159
printLn 195, 344
problem domain 317
procAdder 415–416
process identifier. See PID
processInput 176
ProcessLib module 427
procMain 414, 421
ProcState 426
public export 281
Pure constructor 320, 354
pure function 205
pure functional programming

languages 13–17
partial and total functions

16–17
purity 13–14
referential transparency

13–14
side-effecting programs

14–15
See also Idris programming

language
purity 13–14
PutStr command 318, 341, 368

Q

Quit command 316
quiz function 301–302, 313,

319, 340

R

race conditions 404–405
randoms function 302, 313
Read operation 405
readGuess function 252
readInput 320, 322
record declaration 165
recursion 296
recursive types, defining 92–95
recursive views 271–279

Data.List.Views module
277–278

nested with blocks 275–277
snoc lists 271–274
with construct 274–275

referential transparency 13–14
Refl (reflexive) 218
removeElem function 238–239
repeat function 299
REPL (read-eval-print loop)

17–18, 439

repl function 314
Respond command 414
return values 377
reverse function 265
rewrite construct 223–224, 235,

273
rewriteCons 274
rewriteNil 274
RingBell operation 362
run function 306–307, 310,

362, 382, 411
runCommand 342, 399
RunIO type 315
Running state 391
runProc 421
runState function 330, 333–334,

341, 351, 366

S

sameS function 214–215, 220
schemas 161–180

correcting compilation errors
using holes 165–170

DataStore type
refining 162–164
using records for 164–165

displaying entries in store
170–171

overview 148
parsing entries according

to 171–175
sequencing expressions with

Maybe using do
notation 177–180

updating 175–177
SchemaType function 163, 169
Sent state 421
setDifficulty 345
SetSchema command 176
Shape type 194
show function 194
Show interface, converting to

String with 194–195
showPrec function 194
ShowState 394
side-effecting programs 14–15
size function 164
sort function 193
sorting vectors 70–75
spawn 407–408
SplitList 267
SplitNil 269
SplitOne 269

451INDEX
SplitRec 278
SplitRecPair 277
stack-based calculator example

367–371
StackCmd 364, 368
stacks 363–371

implementing using Vect
366–367

representing operations
364–365

stack-based calculator
example 367–371

state
arithmetic quiz 340–351

defining nested records
343–344

executing 348–350
implementing 346–348
updating record field

values 344–346
updating record fields by

applying functions 346
custom implementation of

333–340
defining Functor, Applica-

tive, and Monad
interfaces 335–340

defining State and
runState 333

mutable state 325–332
representing using pairs

328–329
State type 329–331
tree-traversal example

326–327
tree-traversal with State

331–332
state machines

dependent
describing rules in types

390–402
errors in state transitions

374–382
security properties in types

382–390
guaranteeing responses

using Inf and 418–422
implementing stacks

363–371
representing operations

364–365
stack-based calculator

example 367–371
using Vect 366–367

tracking state in types
353–363

door operations example
354–358

vending machine example
358, 360–362

State Nat ty type 329
State type 329–331

defining 333
tree-traversal with 331–332

storeView function 280
StoreView view 284
Stream data type 299–301
Stream type 293
streams, infinite lists 292–305

arithmetic quiz example
301–304

labeling elements in
293–294

processing 297–299
producing 295–296
Stream data type 299–301
total functions 296–297

string literals 29–30
StringOrInt 151, 154
strToInput 370
sucNotZero function 232
System module 311
System.Concurrency.Channels

module 404, 407

T

tailUnequal 234
take function 299
takeN function 270
termination 314–323

domain-specific commands
317–319

sequencing commands with
do notation 320–322

testAdd 365
testStore 285
testTree 326
There constructor 240
ThreeEq type 219
time function 311
toBinary function 279
total functions

executing infinite processes
as 308–309

overview 16–17, 296–297
totalREPL 314
traverse function 335

Tree data type 203
Tree elem 191
treeLabel function 327
treeLabelWith 328–329
tree-traversal example

overview 326–327
with State 331–332

trim function 152
True value 211
Try command 362
tuples 40–41
TupleVect type 161
Type -> Type parameterized

interfaces 199–206
applying functions across

structure with Functor
200–201

generic do notation using
Monad and Applicative
205–206

reducing structure using
Foldable 201–204

type synonyms 148–150
type-checking 277
type-driven development 5–13

automated teller machine
example 7–9

concurrent programming
9–10

dependent types 11–12
matrices, arithmetic

involving 6–7
process of 10–11
types, defined 4–5

type-level functions 147
types 26–30

Booleans 30
calculating 148–154

type synonyms 149–150
type-level functions with

pattern matching
150–153

using case expressions in
types 153–154

characters and strings 29–30
checking 18–19
checking and evaluation

of 221–222
composite 40–45

lists 41–45
tuples 40–41

constrained generic
comparisons with Eq and

Ord 183–194
interfaces defined in

Prelude 194–199

452 INDEX
types, constrained generic
(continued)

interfaces parameterized
by Type -> Type
199–206

converting 28
defined 4–5
dependent 11–12
describing rules in 390–402

defining abstract game
state and operations
391–392

defining concrete game
state 397–399

defining type for game
state 392–395

implementing game
395–397

running game 399–402
empty 228–229
equality

decidability 229–234
empty type 228–229
guaranteeing equivalence

of data with 209–219
reasoning about equality

220–227
first-class 22–24

defining functions with
variable numbers of
arguments 155–161

schemas 161–180
type-level functions

148–154
function 31–33

constrained 35–36
variables in 33–34

in Atom 61–64
numeric 27–28, 195–198
security properties in

382–390
defining states 383–384
defining type 384–387
refining preconditions

using auto-
implicits 388–389

simulating at console
387–388

tracking state in 353–363
door operations example

354–358
vending machine example

358, 360–362
user-defined

defining 88–101

defining dependent
102–110

interactive data store
110–121

type-safe concurrent program-
ming

primitives for 404–411
Channels library 407–410
defining concurrent

processes 406–407
type errors and blocking

410–411
type for safe message passing

411–433
defining module 426–427
describing processes

412–415
generic processes 422–426
guaranteeing responses

using state machine
and Inf 418–422

list processing example
427–429

making processes total
using Inf 415–418

word-counting process
example 429–433

U

unbound implicit arguments
83–84

underscore (_) 66, 83, 160
Uninhabited interface 243
union types, defining 90–92
unsafeReceive 408–410
unsafeSend 408, 410
updateGameState function 350
user-defined data types

defining 88–101
enumerated types 89–90
generic types 95–100
recursive types 92–95
union types 90–92

defining dependent 102–110
defining vectors 104–107
indexing vectors with

bounded numbers
107–109

vehicle classification
example 102–103

interactive data store
110–121

interactively maintaining
state in main 113–115

parsing user input
115–117

processing commands
118–120

representing store 112–113

V

ValidInput predicate
deciding input validity 255
overview 251–252

valToString 152–153
Vect size String 162
Vect type, implementing stacks

using 366–367
vectors 64–75

appending 225–227
automatic refining 69–70
deciding membership of

245–249
defining 104–107
guaranteeing a value is in

239–241
indexing with bounded num-

bers using Fin 107–109
reading

from console 139–140
of unknown length

140–141
refining type of allLengths

function 65–69
removing elements

from 238–239, 241–244
reversing 220–221
sorting 70–75
validating lengths 143–145

vending machine example
modeling vending machine

358
verified description 360–362

views
data abstraction 280–287

data store 282–284
modules in Idris 280–282
traversing store's contents

284–287
defining and using 259–270

building views 262
matching last item in list

260–261
merge sorting 266–270
reversing lists 264–266
with blocks 262–264

recursive 271–279

453INDEX
views, recursive (continued)
Data.List.Views module

277–278
nested with blocks

275–277
snoc lists 271–274
with construct 274–275

Vim extension 437
VList view 279
Void type

empty type 228–229
overview 228, 424

W

WCData 430
wcService 430–431
when function 335
where construct 39–40
whitespace 46
with blocks

nested 275–277
overview 263
syntax for extended pattern

matching 262–264

with construct 260, 274–275
WordState type 250–251, 390
Write operation 405
wrong function 345

Z

zeroNotSuc function 232
zipInputs 211

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Functional Programming in Scala
by Paul Chiusano and Rúnar Bjarnason

ISBN: 9781617290657
320 pages
$44.99
September 2014

Functional Programming in Java
How functional techniques improve
your Java programs
by Pierre-Yves Saumont

ISBN: 9781617292736
472 pages
$49.99
January 2017

Functional Programming in JavaScript
How to improve your JavaScript programs using
functional techniques
by Luis Atencio

ISBN: 9781617292828
272 pages
$44.99
June 2016

For ordering information go to www.manning.com

MORE TITLES FROM MANNING

Reactive Design Patterns
by Roland Kuhn

with Brian Hanafee and Jamie Allen

ISBN: 9781617291807
392 pages
$49.99
February 2017

Functional and Reactive Domain Modeling
by Debasish Ghosh

ISBN: 9781617292248
320 pages
$59.99
October 2016

The Joy of Clojure, Second Edition
by Michael Fogus and Chris Houser

ISBN: 9781617291418
520 pages
$49.99
May 2014

For ordering information go to www.manning.com

MORE TITLES FROM MANNING

Java 8 in Action
Lambdas, streams, and functional-style
programming
by Raoul-Gabriel Urma, Mario Fusco,

and Alan Mycroft

ISBN: 9781617291999
424 pages
$49.99
August 2014

Akka in Action
by Raymond Roestenburg, Rob Bakker,

and Rob Williams

ISBN: 9781617291012
448 pages
$49.99
September 2016

Grokking Algorithms
An illustrated guide for programmers
and other curious people
by Aditya Y. Bhargava

ISBN: 9781617292231
256 pages
$44.99
May 2016

For ordering information go to www.manning.com

Atom commands used for the interactive construction of Idris
projects featured in this book are detailed below.

Shortcut Command Description

Ctrl-Alt-A Add definition Adds a skeleton definition for the name under the
cursor

Ctrl-Alt-C Case split Splits a definition into pattern-matching clauses
for the name under the cursor

Ctrl-Alt-D Documentation Displays documentation for the name under the
cursor

Ctrl-Alt-L Lift hole Lifts a hole to the top level as a new function dec-
laration

Ctrl-Alt-M Match Replaces a hole with a case expression that
matches on an intermediate result

Ctrl-Alt-R Reload Reloads and type-checks the current buffer

Ctrl-Alt-S Search Searches for an expression that satisfies the type
of the hole name under the cursor

Ctrl-Alt-T Type-check name Displays the type of the name under the cursor

Ctrl-Alt-W with block insertion Adds a with block after the current line, contain-
ing a new pattern-matching clause with an extra
argument

Edwin Brady

S
top fi ghting type errors! Type-driven development is an
approach to coding that embraces types as the foundation
of your code—essentially as built-in documentation your

compiler can use to check data relationships and other
assumptions. With this approach, you can defi ne specifi cations
early in development and write code that’s easy to maintain,
test, and extend. Idris is a Haskell-like language with fi rst-
class, dependent types that’s perfect for learning type-driven
programming techniques you can apply in any codebase.

Type-Driven Development with Idris teaches you how to im-
prove the performance and accuracy of your code by taking
advantage of a state-of-the-art type system. In this book, you’ll
learn type-driven development of real-world software, as well
as how to handle side-effects, interaction, state, and concur-
rency. By the end, you’ll be able to develop robust and verifi ed
software in Idris and apply type-driven development methods
to other languages.

What’s Inside
● Understanding dependent types
● Types as fi rst-class language constructs
● Types as a guide to program construction
● Expressing relationships between data

Written for programmers with knowledge of functional
programming concepts.

Edwin Brady leads the design and implementation of the Idris
language.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/type-driven-development-with-idris

$49.99 / Can $65.99 [INCLUDING eBOOK]

Type-Driven Development with Idris

SOFTWARE DEVELOPMENT

M A N N I N G

“This book will turn your
approach to software

upside-down,
in the best way.”

—Ian Dees, New Relic

“Highly recommended
for anyone developing
software with serious

 safety requirements.”
—Arnaud Bailly, GorillaSpace

“After reading this book,
TDD took on a new
 meaning for me.”—Giovanni Ruggiero, Eligotech

“A clear and complete view
of type-driven development

that reveals the power
 of dependent types.”

—Nicolas Biri
Luxembourg Institute of Science

and Technology

SEE INSERT

	Type-Driven Development with Idris
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	Roadmap
	Code conventions and downloads
	Author Online
	Other online resources

	about the author
	about the cover illustration
	Part 1 Introduction
	1 Overview
	1.1 What is a type?
	1.2 Introducing type-driven development
	1.2.1 Matrix arithmetic
	1.2.2 An automated teller machine
	1.2.3 Concurrent programming
	1.2.4 Type, define, refine: the process of type-driven development
	1.2.5 Dependent types

	1.3 Pure functional programming
	1.3.1 Purity and referential transparency
	1.3.2 Side-effecting programs
	1.3.3 Partial and total functions

	1.4 A quick tour of Idris
	1.4.1 The interactive environment
	1.4.2 Checking types
	1.4.3 Compiling and running Idris programs
	1.4.4 Incomplete definitions: working with holes
	1.4.5 First-class types

	1.5 Summary

	2 Getting started with Idris
	2.1 Basic types
	2.1.1 Numeric types and values
	2.1.2 Type conversions using cast
	2.1.3 Characters and strings
	2.1.4 Booleans

	2.2 Functions: the building blocks of Idris programs
	2.2.1 Function types and definitions
	2.2.2 Partially applying functions
	2.2.3 Writing generic functions: variables in types
	2.2.4 Writing generic functions with constrained types
	2.2.5 Higher-order function types
	2.2.6 Anonymous functions
	2.2.7 Local definitions: let and where

	2.3 Composite types
	2.3.1 Tuples
	2.3.2 Lists
	2.3.3 Functions with lists

	2.4 A complete Idris program
	2.4.1 Whitespace significance: the layout rule
	2.4.2 Documentation comments
	2.4.3 Interactive programs

	2.5 Summary

	Part 2 Core Idris
	3 Interactive development with types
	3.1 Interactive editing in Atom
	3.1.1 Interactive command summary
	3.1.2 Defining functions by pattern matching
	3.1.3 Data types and patterns

	3.2 Adding precision to types: working with vectors
	3.2.1 Refining the type of allLengths
	3.2.2 Type-directed search: automatic refining
	3.2.3 Type, define, refine: sorting a vector

	3.3 Example: type-driven development of matrix functions
	3.3.1 Matrix operations and their types
	3.3.2 Transposing a matrix

	3.4 Implicit arguments: type-level variables
	3.4.1 The need for implicit arguments
	3.4.2 Bound and unbound implicits
	3.4.3 Using implicit arguments in functions

	3.5 Summary

	4 User-defined data types
	4.1 Defining data types
	4.1.1 Enumerations
	4.1.2 Union types
	4.1.3 Recursive types
	4.1.4 Generic data types

	4.2 Defining dependent data types
	4.2.1 A first example: classifying vehicles by power source
	4.2.2 Defining vectors
	4.2.3 Indexing vectors with bounded numbers using Fin

	4.3 Type-driven implementation of an interactive data store
	4.3.1 Representing the store
	4.3.2 Interactively maintaining state in main
	4.3.3 Commands: parsing user input
	4.3.4 Processing commands

	4.4 Summary

	5 Interactive programs: input and output processing
	5.1 Interactive programming with IO
	5.1.1 Evaluating and executing interactive programs
	5.1.2 Actions and sequencing: the >>= operator
	5.1.3 Syntactic sugar for sequencing with do notation

	5.2 Interactive programs and control flow
	5.2.1 Producing pure values in interactive definitions
	5.2.2 Pattern-matching bindings
	5.2.3 Writing interactive definitions with loops

	5.3 Reading and validating dependent types
	5.3.1 Reading a Vect from the console
	5.3.2 Reading a Vect of unknown length
	5.3.3 Dependent pairs
	5.3.4 Validating Vect lengths

	5.4 Summary

	6 Programming with first-class types
	6.1 Type-level functions: calculating types
	6.1.1 Type synonyms: giving informative names to complex types
	6.1.2 Type-level functions with pattern matching
	6.1.3 Using case expressions in types

	6.2 Defining functions with variable numbers of arguments
	6.2.1 An addition function
	6.2.2 Formatted output: a type-safe printf function

	6.3 Enhancing the interactive data store with schemas
	6.3.1 Refining the DataStore type
	6.3.2 Using a record for the DataStore
	6.3.3 Correcting compilation errors using holes
	6.3.4 Displaying entries in the store
	6.3.5 Parsing entries according to the schema
	6.3.6 Updating the schema
	6.3.7 Sequencing expressions with Maybe using do notation

	6.4 Summary

	7 Interfaces: using constrained generic types
	7.1 Generic comparisons with Eq and Ord
	7.1.1 Testing for equality with Eq
	7.1.2 Defining the Eq constraint using interfaces and implementations
	7.1.3 Default method definitions
	7.1.4 Constrained implementations
	7.1.5 Constrained interfaces: defining orderings with Ord

	7.2 Interfaces defined in the Prelude
	7.2.1 Converting to String with Show
	7.2.2 Defining numeric types
	7.2.3 Converting between types with Cast

	7.3 Interfaces parameterized by Type -> Type
	7.3.1 Applying a function across a structure with Functor
	7.3.2 Reducing a structure using Foldable
	7.3.3 Generic do notation using Monad and Applicative

	7.4 Summary

	8 Equality: expressing relationships between data
	8.1 Guaranteeing equivalence of data with equality types
	8.1.1 Implementing exactLength, first attempt
	8.1.2 Expressing equality of Nats as a type
	8.1.3 Testing for equality of Nats
	8.1.4 Functions as proofs: manipulating equalities
	8.1.5 Implementing exactLength, second attempt
	8.1.6 Equality in general: the = type

	8.2 Equality in practice: types and reasoning
	8.2.1 Reversing a vector
	8.2.2 Type checking and evaluation
	8.2.3 The rewrite construct: rewriting a type using equality
	8.2.4 Delegating proofs and rewriting to holes
	8.2.5 Appending vectors, revisited

	8.3 The empty type and decidability
	8.3.1 Void: a type with no values
	8.3.2 Decidability: checking properties with precision
	8.3.3 DecEq: an interface for decidable equality

	8.4 Summary

	9 Predicates: expressing assumptions and contracts in types
	9.1 Membership tests: the Elem predicate
	9.1.1 Removing an element from a Vect
	9.1.2 The Elem type: guaranteeing a value is in a vector
	9.1.3 Removing an element from a Vect: types as contracts
	9.1.4 auto-implicit arguments: automatically constructing proofs
	9.1.5 Decidable predicates: deciding membership of a vector

	9.2 Expressing program state in types: a guessing game
	9.2.1 Representing the game’s state
	9.2.2 A top-level game function
	9.2.3 A predicate for validating user input: ValidInput
	9.2.4 Processing a guess
	9.2.5 Deciding input validity: checking ValidInput
	9.2.6 Completing the top-level game implementation

	9.3 Summary

	10 Views: extending pattern matching
	10.1 Defining and using views
	10.1.1 Matching the last item in a list
	10.1.2 Building views: covering functions
	10.1.3 with blocks: syntax for extended pattern matching
	10.1.4 Example: reversing a list using a view
	10.1.5 Example: merge sort

	10.2 Recursive views: termination and efficiency
	10.2.1 “Snoc” lists: traversing a list in reverse
	10.2.2 Recursive views and the with construct
	10.2.3 Traversing multiple arguments: nested with blocks
	10.2.4 More traversals: Data.List.Views

	10.3 Data abstraction: hiding the structure of data using views
	10.3.1 Digression: modules in Idris
	10.3.2 The data store, revisited
	10.3.3 Traversing the store’s contents with a view

	10.4 Summary

	Part 3 Idris and the real world
	11 Streams and processes: working with infinite data
	11.1 Streams: generating and processing infinite lists
	11.1.1 Labeling elements in a List
	11.1.2 Producing an infinite list of numbers
	11.1.3 Digression: what does it mean for a function to be total?
	11.1.4 Processing infinite lists
	11.1.5 The Stream data type
	11.1.6 An arithmetic quiz using streams of random numbers

	11.2 Infinite processes: writing interactive total programs
	11.2.1 Describing infinite processes
	11.2.2 Executing infinite processes
	11.2.3 Executing infinite processes as total functions
	11.2.4 Generating infinite structures using Lazy types
	11.2.5 Extending do notation for InfIO
	11.2.6 A total arithmetic quiz

	11.3 Interactive programs with termination
	11.3.1 Refining InfIO: introducing termination
	11.3.2 Domain-specific commands
	11.3.3 Sequencing Commands with do notation

	11.4 Summary

	12 Writing programs with state
	12.1 Working with mutable state
	12.1.1 The tree-traversal example
	12.1.2 Representing mutable state using a pair
	12.1.3 State, a type for describing stateful operations
	12.1.4 Tree traversal with State

	12.2 A custom implementation of State
	12.2.1 Defining State and runState
	12.2.2 Defining Functor, Applicative, and Monad implementations for State

	12.3 A complete program with state: working with records
	12.3.1 Interactive programs with state: the arithmetic quiz revisited
	12.3.2 Complex state: defining nested records
	12.3.3 Updating record field values
	12.3.4 Updating record fields by applying functions
	12.3.5 Implementing the quiz
	12.3.6 Running interactive and stateful programs: executing the quiz

	12.4 Summary

	13 State machines: verifying protocols in types
	13.1 State machines: tracking state in types
	13.1.1 Finite state machines: modeling a door as a type
	13.1.2 Interactive development of sequences of door operations
	13.1.3 Infinite states: modeling a vending machine
	13.1.4 A verified vending machine description

	13.2 Dependent types in state: implementing a stack
	13.2.1 Representing stack operations in a state machine
	13.2.2 Implementing the stack using Vect
	13.2.3 Using a stack interactively: a stack-based calculator

	13.3 Summary

	14 Dependent state machines: handling feedback and errors
	14.1 Dealing with errors in state transitions
	14.1.1 Refining the door model: representing failure
	14.1.2 A verified, error-checking, door-protocol description

	14.2 Security properties in types: modeling an ATM
	14.2.1 Defining states for the ATM
	14.2.2 Defining a type for the ATM
	14.2.3 Simulating an ATM at the console: executing ATMCmd
	14.2.4 Refining preconditions using auto-implicits

	14.3 A verified guessing game: describing rules in types
	14.3.1 Defining an abstract game state and operations
	14.3.2 Defining a type for the game state
	14.3.3 Implementing the game
	14.3.4 Defining a concrete game state
	14.3.5 Running the game: executing GameLoop

	14.4 Summary

	15 Type-safe concurrent programming
	15.1 Primitives for concurrent programming in Idris
	15.1.1 Defining concurrent processes
	15.1.2 The Channels library: primitive message passing
	15.1.3 Problems with channels: type errors and blocking

	15.2 Defining a type for safe message passing
	15.2.1 Describing message-passing processes in a type
	15.2.2 Making processes total using Inf
	15.2.3 Guaranteeing responses using a state machine and Inf
	15.2.4 Generic message-passing processes
	15.2.5 Defining a module for Process
	15.2.6 Example 1: List processing
	15.2.7 Example 2: A word-counting process

	15.3 Summary

	appendix A Installing Idris and editor modes
	The Idris compiler and environment
	Mac OS
	Windows
	Unix-like platforms, installing from source

	Editor modes
	Atom
	Other editors

	appendix B Interactive editing commands
	appendix C REPL commands
	appendix D Further reading
	Functional programming in Haskell
	Other languages and tools with expressive type systems
	Theoretical foundations
	Total functional programming
	Types for concurrency

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

