
Sold to
eastan.t@hotmail.ca

It is illegal to redistribute this digital book.

Please do not share this file via email, websites,

or any other means. Be mindful about where

you store it and who might gain access to it.

The digital format of this book is only

distributed via https://gumroad.com/l/CbfL. If

you have received this book through any other

means, please report it to

rbwhitaker@outlook.com.

https://gumroad.com/l/CbfL
mailto:rbwhitaker@outlook.com

Starbound Software

RB Whitaker

The C# Player’s Guide
Third Edition

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as

trademarks. Where those designations appear in this book, and the author and publisher were aware of

those claims, those designations have been printed with initial capital letters or in all capitals.

The author and publisher of this book have made every effort to ensure that the information in this book

was correct at press time. However, the author and publisher do not assume, and hereby disclaim any

liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such

errors or omissions result from negligence, accident, or any other cause.

Copyright © 2012-2017 by RB Whitaker

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying, recording, or by any information storage and retrieval

system, without written permission from the author, except for the inclusion of brief quotations in a

review. For information regarding permissions, write to:

RB Whitaker

rbwhitaker@outlook.com

ISBN-10: 0-9855801-3-5

ISBN-13: 978-0-9855801-3-1

1 Contents at a

Glance

 Acknowledgements xvii

 Introduction xix

Part 1: Getting Started

1. The C# Programming Language 3

2. Installing Visual Studio 6

3. Hello World: Your First C# Program 10

4. Comments 19

Part 2: The Basics

5. Variables 25

6. The C# Type System 31

7. Basic Math 42

8. User Input 48

9. More Math 53

10. Decision Making 60

11. Switch Statements 68

12. Looping 71

13. Arrays 77

14. Enumerations 83

15. Methods 86

16. Value and Reference Types 97

iv Contents at a Glance

Part 3: Object-Oriented Programming

17. Object-Oriented Basics 107

18. Making Your Own Classes 112

19. Properties 124

20. Tic-Tac-Toe 130

21. Structs 138

22. Inheritance 144

23. Polymorphism, Virtual Methods, and Abstract Classes 151

24. Interfaces 156

25. Using Generics 160

26. Making Generic Types 167

Part 4: Advanced Topics

27. Namespaces and Using Directives 175

28. Methods Revisited 180

29. Reading and Writing Files 190

30. Error Handling and Exceptions 194

31. Pattern Matching 201

32. Delegates 206

33. Events 212

34. Operator Overloading 219

35. Indexers 223

36. Extension Methods 226

37. Lambda Expressions 230

38. Query Expressions 236

39. Threads 245

40. Asynchronous Programming 251

41. Dynamic Objects 259

42. Unsafe Code 265

43. Other Features in C# 271

Part 5: Mastering the Tools

44. The .NET Platform 301

45. Getting the Most from Visual Studio 313

46. Dependencies and Multiple Projects 319

47. Handling Common Compiler Errors 326

48. Debugging Your Code 333

49. How Your Project Files are Organized 339

Contents at a Glance v

Part 6: Wrapping Up

50. Try It Out! 345

51. What’s Next? 351

 Glossary 354

 Tables and Charts 369

 Index 374

2 Table of Contents

 Acknowledgements xvii

 Introduction xix

The Player’s Guide xix

How This Book is Organized xx

Getting the Most from This Book xxii

I Genuinely Want Your Feedback xxiii

This Book Comes with Online Content xxiii

Part 1: Getting Started

1. The C# Programming Language 3

What is C#? 3

What is the .NET Platform? 4

C# and .NET Versions 5

2. Installing Visual Studio 6

Versions of Visual Studio 7

The Installation Process 7

C# Programming on Mac and Linux 9

3. Hello World: Your First C# Program 10

Creating a New Project 10

A Brief Tour of Visual Studio 11

Building Blocks: Projects, Solutions, and Assemblies 12

Modifying Your Project 13

Compiling and Running Your Project 14

A Closer Look at Your Program 16

 vii

Whitespace Doesn’t Matter 17

Semicolons 18

4. Comments 19

What is a Comment? 19

Why Should I Use Comments? 19

How to Make Comments in C# 20

How to Make Good Comments 21

Part 2: The Basics

5. Variables 25

What is a Variable? 25

Creating Variables 26

Assigning Values to Variables 27

Retrieving the Contents of a Variable 27

How Data is Stored 28

Multiple Declarations and Assignments 29

Good Variable Names 29

6. The C# Type System 31

An Introduction to the Type System 31

The ‘int’ Type 31

The ‘byte’, ‘short’, and ‘long’ Types 32

The ‘sbyte’, ‘ushort’, ‘uint’, and ‘ulong’ Types 32

The ‘char’ Type 33

The ‘float’, ‘double’, and ‘decimal’ Types 34

The ‘bool’ Type 36

The ‘string’ Type 36

Numeric Literal Variations 38

Type Inference 40

7. Basic Math 42

Operations and Operators 42

Addition, Subtraction, Multiplication, and Division 43

The Remainder Operator 44

Unary ‘+’ and ‘-‘ Operators 45

Operator Precedence and Parentheses 46

Why the ‘=‘ Sign Doesn’t Mean Equals 46

Compound Assignment Operators 47

8. User Input 48

User Input from the Console 48

Converting Types 48

A Complete Sample Program 49

viii Table of Contents

Escape Characters 51

String Interpolation 52

9. More Math 53

Integer Division 54

Working with Different Types and Casting 55

Division by Zero 56

Infinity, NaN, e, π, MinValue, and MaxValue 56

Overflow and Underflow 57

Incrementing and Decrementing 58

10. Decision Making 60

The ‘if ’ Statement 61

The ‘else’ Statement 62

‘else if ’ Statements 62

Curly Braces Not Always Needed 63

Relational Operators: ==, !=, <, >, <=, >= 63

Using ‘bool’ in Decision Making 65

The ‘!’ Operator 65

Conditional Operators: && and || (And and Or) 66

Nesting If Statements 66

The Conditional Operator ?: 67

11. Switch Statements 68

The Basics of Switch Statements 68

Types Allowed with Switch Statements 70

No Implicit Fall-Through 70

12. Looping 71

The While Loop 71

The Do-While Loop 73

The For Loop 73

Breaking Out of Loops 74

Continuing to the Next Iteration of the Loop 74

Nesting Loops 75

Still to Come: Foreach 76

13. Arrays 77

What is an Array? 77

Creating Arrays 78

Getting and Setting Values in Arrays 78

More Ways to Create Arrays 79

Array Length 79

Some Examples with Arrays 79

Arrays of Arrays and Multi-Dimensional Arrays 80

The ‘foreach’ Loop 81

 ix

14. Enumerations 83

The Basics of Enumerations 83

Why Enumerations are Useful 85

Underlying Types 85

Assigning Numbers to Enumeration Values 85

15. Methods 86

Creating a Method 87

Calling a Method 88

Returning Stuff from a Method 89

Passing Stuff to a Method 91

Passing in Multiple Parameters 91

Method Overloading 92

Revisiting the Convert and Console Classes 94

XML Documentation Comments 94

The Minimum You Need to Know About Recursion 95

16. Value and Reference Types 97

The Stack and the Heap 97

Memory Management and Garbage Collection 98

References 99

Value Types and Reference Types 99

Null: References to Nothing 101

Value and Reference Semantics 102

Part 3: Object-Oriented Programming

17. Object-Oriented Basics 107

Object Classes and Object Instances 107

Working with an Existing Class 108

Using an Instance 109

The Power of Objects 110

Classes are Reference Types 110

18. Making Your Own Classes 112

Creating a New Class 112

Instance Variables 114

Access Modifiers: private and public 114

Constructors 115

Methods 118

The ‘static’ Keyword 120

Using Our Class 121

The ‘internal’ Access Modifier 121

Class Design and Software Engineering 122

x Table of Contents

19. Properties 124

The Motivation for Properties 124

Creating Properties 125

Different Accessibility Levels 127

Auto-Implemented Properties 127

Object Initializer Syntax 128

Anonymous Types 129

20. Tic-Tac-Toe 130

Requirements 130

High-Level Design 131

Refactoring and Iterative Design 132

The Full Solution 132

21. Structs 138

Creating a Struct 138

Structs vs. Classes 139

Deciding Between a Struct and a Class 140

Prefer Immutable Value Types 141

The Built-In Types are Aliases 142

22. Inheritance 144

Base Classes 145

Derived Classes 145

Using Derived Classes 146

Constructors and Inheritance 147

The ‘protected’ Access Modifier 148

The Base Class of Everything: object 148

Sealed Classes 148

Partial Classes 149

C# Does Not Support Multiple Inheritance 150

23. Polymorphism, Virtual Methods, and Abstract Classes 151

Polymorphism 151

Revisiting the ‘base’ Keyword 153

Abstract Base Classes 154

The ‘new’ Keyword with Methods 154

24. Interfaces 156

What is an Interface? 156

Creating an Interface 157

Using Interfaces 158

Multiple Interfaces and Inheritance 159

25. Using Generics 160

The Motivation for Generics 160

What are Generics? 162

 xi

The List Class 162

The IEnumerable<T> Interface 164

The Dictionary Class 165

26. Making Generic Types 167

Creating Your Own Generic Types 167

Using Your Generic Type in Your Class 168

Generic Type Constraints 169

Generic Methods 171

The Default Operator 171

Part 4: Advanced Topics

27. Namespaces and Using Directives 175

Namespaces 175

Fully Qualified Names 176

Using Directives 176

The Error ‘The type or namespace X could not be found’ 176

Name Collisions 178

Static Using Directives 179

28. Methods Revisited 180

Local Functions 180

Optional Parameters 181

Named Parameters 182

Variable Number of Parameters 182

The ‘out’ and ‘ref ’ Keywords 183

Returning Multiple Values 186

29. Reading and Writing Files 190

The File Class 190

Text-Based Files 192

Binary Files 193

30. Error Handling and Exceptions 194

How Exception Handling Works 195

Catching Exceptions 196

Handling Different Exceptions in Different Ways 197

Throwing Exceptions 197

The ‘finally ’ Keyword 199

Exception Filters 200

Some Rules about Throwing Exceptions 200

31. Pattern Matching 201

Contrasted with Regular Expressions 201

The Pattern Concept 202

xii Table of Contents

Available Patterns 202

Using Patterns in C# 203

Expect Patterns to Expand 205

32. Delegates 206

Delegates: Treating Methods like Objects 206

Creating a Delegate 206

Using Delegates 207

The Delegate and MulticastDelegate Classes 208

Delegate Chaining 209

The Action and Func Delegates 211

33. Events 212

Defining an Event 213

Raising an Event 214

Attaching and Detaching Event Handlers 215

Common Delegate Types Used with Events 216

The Relationship between Delegates and Events 218

34. Operator Overloading 219

Overloading Operators 220

35. Indexers 223

How to Make an Indexer 223

Using Other Types as an Index 224

Index Initializer Syntax 225

36. Extension Methods 226

Creating an Extension Method 227

37. Lambda Expressions 230

The Motivation for Lambda Expressions 230

Lambda Expressions 232

Multiple and Zero Parameters 233

Type Inference Failures and Explicit Types 233

Statement Lambdas 233

Scope in Lambda Expressions 233

Expression-Bodied Members 234

Lambdas vs. Local Functions 235

38. Query Expressions 236

From Clauses 238

Select Clauses 239

Where Clauses 239

Multiple From Clauses 239

Let Clauses 240

Join Clauses 240

Orderby Clauses 240

 xiii

Group Clauses 241

Into Clauses 242

Group Joins 242

Query Syntax and Method Call Syntax 243

Queries are Lazy When Possible 243

39. Threads 245

Threading Code Basics 246

Using ParameterizedThreadStart 247

Thread Safety 249

40. Asynchronous Programming 251

What is Asynchronous Programming? 251

Approaches from the Early Days 252

The Task-based Asynchronous Pattern 255

The ‘async’ and ‘await’ Keywords 256

41. Dynamic Objects 259

Dynamic Type Checking 260

Dynamic Objects and the Dynamic Language Runtime 260

Emulating Dynamic Objects with Dictionaries 261

ExpandoObject 262

Extending DynamicObject 262

When to Use Dynamic Object Variations 264

42. Unsafe Code 265

Unsafe Contexts 265

Pointer Types 266

Stack Allocations 267

Fixed Statements 268

Fixed Size Arrays 269

Calling Native Code with Platform Invocation Services 270

43. Other Features in C# 271

Iterators and the Yield Keyword 272

Constants 273

Attributes 274

The ‘nameof ’ Operator 275

The ‘sizeof ’ Operator 276

Bit Fields 277

Reflection 280

Using Statements and the IDisposable Interface 280

Preprocessor Directives 281

Nullable Types 283

Simple Null Checks: Null Propagation Operators 283

xiv Table of Contents

Command Line Arguments 285

User-Defined Conversions 286

The Notorious ‘goto’ Keyword 287

Generic Covariance and Contravariance 290

Advanced Namespace Management 293

Checked and Unchecked Contexts 294

Volatile Fields 295

Part 5: Mastering the Tools

44. The .NET Platform 301

Overview of the .NET Platform 301

A Brief History of the .NET Platform 304

Binary, Assembly, and Compilers 304

Virtual Machines and the Common Language Runtime 306

The .NET Standard Library 308

The .NET Framework 309

.NET Core 310

Xamarin 310

App Models 311

45. Getting the Most from Visual Studio 313

Windows 313

The Options Dialog 315

Including and Excluding Files 315

Showing Line Numbers 316

IntelliSense 316

Basic Refactoring 317

Keyboard Shortcuts 317

46. Dependencies and Multiple Projects 319

Adding DLL References 320

NuGet Packages 321

Creating and Referencing Multiple Projects 323

47. Handling Common Compiler Errors 326

Understanding Compiler Errors 326

Compiler Warnings 326

Common Compiler Errors 327

General Tips for Handling Errors 331

48. Debugging Your Code 333

Launching Your Program in Debug Mode 333

Viewing Exceptions 334

Editing Your Code While Debugging 335

Breakpoints 336

 xv

Stepping Through Your Program 336

49. How Your Project Files are Organized 339

Visual Studio’s Projects Directory 340

The Solution Directory 340

The Project Directory 341

Part 6: Wrapping Up

50. Try It Out! 345

Message from Julius Caesar 346

Reverse It! 346

Pig Dice 347

Connect Four 347

Conway’s Game of Life 348

51. What’s Next? 351

Other Frameworks and Libraries 351

Other Topics 352

Make Some Programs 352

Where Do I Go to Get Help? 353

Parting Words 353

 Glossary 354

 Tables and Charts 369

 Index 374

3 Acknowledgements

The task of writing a book is like writing software. When you start, you’re sure it’s only going to take a few

weeks. It’ll be easy, you think. But as you start working, you start seeing that you’re going to need to make

changes, and lots of them. You need to rearrange entire chapters, add topics you hadn’t even thought

about, and you discover that there’s not even going to be a place in your book for that chapter called

Muppets of the Eastern Seaboard.

I couldn’t have ever finished this book without help. I’ll start by thanking Jack Wall, Sam Hulick, Clint

Mansell, and the others who wrote the music for Mass Effect. (You think I’m joking, don’t you?) I listened to

their music nearly incessantly as I wrote this book. Because of them, every moment of the creation of this

book felt absolutely epic.

I need to also thank the many visitors to my game development tutorials site, who provided feedback on

the early versions of this work. In particular, I want to thank Jonathan Loh, Thomas Allen, Daniel Bickler,

and Mete ÇOM, who went way above and beyond, spending hours of their own personal time, reading

through this book and provided detailed critique and corrections. With their help, this book is far more

useful and valuable.

I also need to thank my mom and dad. Their confidence in me and their encouragement to always do the

best I can has caused me to do things I never could have done without them.

Most of all, I want to thank my beautiful wife, who was there to lift my spirits when the weight of writing a

book became unbearable, who read through my book and gave honest, thoughtful, and creative feedback

and guidance, and who lovingly pressed me to keep going on this book, day after day. Without her, this

book would still be a random scattering of Word documents, buried in some obscure folder on my

computer, collecting green silicon-based mold.

To all of you, I owe you my sincerest gratitude.

-RB Whitaker

4 Introduction

The Player’s Guide

This book is not about playing video games. (Though programming is as fun as playing video games for

many people.) Nor is it about making video games, specifically. (Though you definitely can make video

games with C#.)

Instead, think of this book like a player’s guide, but for a programming language. A player’s guide is a

popular kind of book that is written to help game players:

 learn the basics of the game,

 prevent them from getting stuck,

 understand how the world they ’re playing in works,

 learn how to overcome the obstacles and enemies they face,

 point out common pitfalls they may face and locate useful items,

 and master the tools they’re given.

This book accomplishes those same goals for the C# programming language. I’ll walk you through the

language from the ground up, point out places where people get stuck, provide you with hands-on

examples to explore, give you quizzes to ensure you’re on the right track, and describe how to use the

tools that you’ll need to create programs. I’ll show you the ins and outs of the many features of C#,

describing why things work the way they do, rather than just simple mechanics and syntax.

In a Nutshell
 Describes the goals of this book, which is to function like a player ’s guide, not a

comprehensive cover-everything-that-ever-existed book.

 Breaks down how the book is organized from a high-level perspective, as well as pointing out

some of the extra “features” of the book.

 Provides some ideas on how to get the most out of this book for programmers, beginners,

and anyone who is short on time.

xx Introduction

My goal is to provide you with the “dungeon map” to direct you as you begin delving into C#, while still

allowing you to mostly explore whatever you want, whenever you want.

I want to point out that this book is intentionally not called Everything you Need to Know about C#, or The

Comprehensive Guide to C#. (Note that if books with those titles actually exist, I’m not referring to them

specifically, but rather, to just the general idea of an all-encompassing book.) I’m here to tell you, when

you’re done with this book, you’ll still have lots to learn about C#.

But guess what? That’s going to happen with any book you use, including those all-encompassing books.

Programming languages are complex creations, and there are enough dark corners and strange

combinations that nobody can learn everything there is to know about them. In fact, I’ve even seen the

people who designed the C# language say they just learned something new about it! For as long as you

use C#, you’ll constantly be learning new things about it, and that’s actually one of the things that makes

programming interesting.

I’ve tried to cover a lot of ground in this book, and with roughly 400 pages, anyone would expect that to

be quite a bit. And it is. But there are plenty of other books out there that are 800 or even 1200 pages

long. A book so heavy, you’ll need a packing mule to carry it anywhere. That, or permanently place it on

the central dais of an ancient library, with a single beam of dusty light shining in on it through a hole in

the marble ceiling. Instead of all that, the goal of this book is effectiveness and clarity, not

comprehensiveness. Something that will fit both on your shelf and in your brain.

It is important to point out that this book is focused on the C# programming language, rather than

libraries for building certain specific application types. So while you can build desktop applications, web

pages, and computer games with C#, we won’t be discussing WPF, ASP.NET, DirectX, or any other

platform- or framework-specific code. Instead, we’ll focus on core C# code, without bogging you down

with those additional libraries at first. Once you’ve got the hang of C#, heading into one of those areas will

be much easier.

How This Book is Organized

This book is divided into six parts. Part 1 describes what you need to get going. You’ll learn how to get set

up with the free software that you need to write code and make your first C# program.

Part 2 describes the basics of procedural programming—how to tell the computer, step-by-step, what to

do to accomplish tasks. It covers things like how information is stored (in variables), how to make

decisions, loop over things repeatedly, and put blocks of code that accomplish specific tasks into a

reusable chunk called a method. It also introduces the type system of the C# language, which is one of

the key pieces of C# programming.

Part 3 goes into object-oriented programming, introducing it from the ground up, but also getting into a

lot of the details that make it so powerful. Chapter 20, in my opinion, is the critical point of the book. By

Chapter 19, we’ve introduced all of the key concepts needed to make almost any C# program, including

classes, which is the most powerful way C# provides for building your own data types. Chapter 20

contains the task (and solution) to making a simple but complete game of Tic-Tac-Toe, which will put all of

the knowledge from the earlier chapters to the test. Everything we do after this chapter is simply fleshing

out details and giving you better tools to get specific jobs done faster.

Part 4 covers some common programming tasks, as well as covering some of the more advanced features

of C#. For the most part, these topics are independent of each other, and once you’ve made it past that

critical point in Chapter 20, you should be able to do these at any time you want.

How This Book is Organized xxi

Part 5 changes gears, and covers more details about Visual Studio, which you use to create C# programs,

additional information about the .NET Platform, and some tools, tricks, and information you can use as

you program.

Finally, Part 6 wraps up the book with some larger scale programs for you to try making, a chapter on

where to go next as you continue to learn C#, and a glossary of words that are defined throughout the

book, which you can use as a reference when you run across a word or phrase that you are unfamiliar

with or have forgotten about.

Try It Out!
Scattered throughout the book are a variety of sections labeled Try It Out! These sections give you simple

challenge problems and quizzes that give you a chance to play around with the new concepts in the

chapter and test your understanding. If this were a class, these would be the homework.

The purpose of these Try It Out! sections is to help you get some real world practice with the new

information. You can’t learn to drive a car by reading the owner ’s manual, and you can’t learn to program

without writing any code.

I strongly encourage you to spend at least a few minutes doing each of these challenges to help you

understand what you’re reading and ensure that you’ve learned what you needed to.

If you have something else you want to explore with the new concepts instead of the challenges I’ve

provided, all the better. The only thing better than playing around with this stuff is doing something with

it that you have a personal interest in. If you want to explore a different direction, go for it!

At the end of the book, in Chapter 50, I have an entire chapter full of larger, tougher challenge problems

for you to try out. These problems involve combining concepts from many chapters together into one

program. Going through some or all of these as you’re finishing up will be a great way to make sure you’ve

learned the most important things you needed to.

The most important thing to remember about these Try It Out! sections is that the answers are all online. If

you get stuck, or just want to compare your solution to someone else’s, you can see mine at

starboundsoftware.com/books/c-sharp/try-it-out/. I should point out that just because your solution

is different from mine (or anyone else’s) doesn’t necessarily mean it is wrong. That’s one of the best parts

about programming—there’s always more than one way to do something.

In a Nutshell
At the beginning of each chapter, I summarize what it contains. These sections are designed to do the

following:

 Summarize the chapter to come.

 Show enough of the chapter so that an experienced programmer can know if they already know

enough to skip the chapter or if they need to study it in depth.

 Review the chapter enough to ensure that you got what you needed to from the chapter. For

instance, imagine you’re about to take a test on C#. You can jump from chapter to chapter,

reading the In a Nutshell sections, and anything it describes that you didn’t already know, you can

then go into the chapter and review it.

In Depth
On occasion, there are a few topics that are not critical to your understanding of C#, but they are an

interesting topic that is related to the things you’re learning. You’ll find this information pulled out into In

Depth sections. These are never required reading, so if you’re busy, skip ahead. If you’re not too busy, I

think you’ll find this additional information interesting, and worth taking the time to read.

xxii Introduction

Glossary
As you go through this book, you’re going to learn a ton of new words and phrases. Especially if you’re

completely new to programming in general. At the back of this book is a glossary that contains the

definitions for these words. You can use this as a reference in case you forget what a word means, or as

you run into new concepts as you learn C#.

Getting the Most from This Book

For Programmers
If you are a programmer, particularly one who already knows a programming language that is related to

C# (C, C++, Java, Visual Basic .NET, etc.) learning C# is going to be relatively easy for you.

C# has a lot in common with all of these languages. In fact, it ’s fair to say that all programming languages

affect and are inspired by other languages, because they evolve over time. C# looks and feels like a

combination of Java and C++, both of which have roots that go back to the C programming language.

Visual Basic .NET (VB.NET) on the other hand, looks and feels quite different from C# (it’s based on Visual

Basic, and Basic before that) but because both C# and VB.NET are designed and built for the .NET

Platform, they have many of the same features, and there’s almost a one-to-one correspondence between

features and keywords.

Because C# is so closely tied to these other languages, and knowing that many people may already know

something about these other languages, you’ll see me point out how C# compares to these other

languages from time to time.

If you already know a lot about programming, you’re going to be able to move quickly through this book,

especially the beginning, where you may find very few differences from languages you already know. To

speed the process along, read the In a Nutshell section at the start of the chapter. If you feel like you

already know everything it describes, it’s probably safe to skip to the next chapter.

I want to mention a couple of chapters that might be a little dangerous to skip. Chapter 6 introduces the

C# type system, including a few concepts that are key to building types throughout the book. Also,

Chapter 16 is sort of a continuation on the type system, describing value and reference types. It ’s

important to understand the topics covered in those chapters. Those chapters cover some of the

fundamental ways that C# is different from these other languages, so don’t skip them.

For Busy People
One of the best parts about this book is that you don’t need to read it all. Yes, that’s right. It’s not all

mandatory reading to get started with C#. You could easily get away with only reading a part of this book,

and still understand C#. In fact, not only understand it, but be able to make just about any program you

can dream up. This is especially true if you already know a similar programming language.

At a minimum, you should start at the beginning and read through Chapter 20. That covers the basics of

programming, all the way up to and including an introduction to making your own classes. (And if you’re

already a programmer, you should be able to fly through those introductory chapters quickly.)

The rest of the book could theoretically be skipped, though if you try to use someone else’s code, you’re

probably going to be in for some surprises.

Once you’ve gone through those 20 chapters, you can then come back and read the rest of the book in

more or less any order that you want, as you have extra time.

For Beginners
If you’ve never done any programming before, be warned: learning a programming language can be hard

work. The concepts in the first 20 chapters of this book are the most important to understand. Take

I Genuinely Want Your Feedback xxiii

whatever time is necessary to really feel like you understand what you’re seeing in these chapters. This

gets you all of the basics, and gets you up to a point where you can make your own types using classes.

Like with the For Busy People section above, Chapter 20 is the critical point that you’ve got to get to, in

order to really understand C#. At that point, you can probably make any program that you can think of,

though the rest of the book will cover additional tools and tricks that will allow you to do this more easily

and more efficiently.

After reading through these chapters, skim through the rest of the book, so that you’re aware of what else

C# has. That’s an important step if you’re a beginner. It will familiarize you with what C# has to offer, and

when you either see it in someone else’s code or have a need for it, you’ll know exactly where to come

back to. A lot of these additional details will make the most sense when you have an actual need for it in a

program of your own creation. After a few weeks or a few months, when you’ve had a chance to make

some programs on your own, come back and go through the rest of the book in depth.

I Genuinely Want Your Feedback

Writing a book is a huge task, and no one has ever finished a huge task perfectly. There’s the possibility of

mistakes, plenty of chances to inadvertently leave you confused, or leaving out important details. I was

tempted to keep this book safe on my hard drive, and never give it out to the world, because then those

limitations wouldn’t matter. But alas, my wife wouldn’t let me follow Gandalf ’s advice and “keep it secret;

keep it safe,” and so now here it is in your hands.

If you ever find any problems with this book, big or small, or if you have any suggestions for improving it,

I’d really like to know. After all, books are a lot like software, and there’s always the opportunity for future

versions that improve upon the current one. Also, if you have positive things to say about the book, I’d

love to hear about that too. There’s nothing quite like hearing that your hard work has helped somebody.

To give feedback of any kind, please visit starboundsoftware.com/books/c-sharp/feedback.

This Book Comes with Online Content

On my website, I have a small amount of additional content that you might find useful. For starters, as

people submit feedback, like I described in the last section, I will post corrections and clarifications as

needed on this book’s errata page: starboundsoftware.com/books/c-sharp/errata.

Also on my site, I will post my own answers for all of the Try It Out! sections found throughout this book. If

you get stuck, or just want something to compare your answers with, you can visit this book’s site and see

a solution. To see these answers, go to: starboundsoftware.com/books/c-sharp/try-it-out/.

The website also contains some extra problems to work on, beyond the ones contained in this book. I’ve

been frequently asked to add more problems to the book than what it currently has. Indeed, this version

contains more than any previous version. But at the same time, most people don’t actually do these

problems. To avoid drowning out the actual content with more and more problems, I’ve provided

additional problems on the website. This felt like a good compromise. These can be found at

starboundsoftware.com/books/c-sharp/additional-problems.

Additional information or resources may be found at starboundsoftware.com/books/c-sharp.

Part 1
Getting Started

The world of C# programming lies in front of you, waiting to be explored. In Part 1 of this book, within

just a few short chapters, we’ll do the following:

 Get a quick introduction to what C# is (Chapter 1).

 Get set up to start making C# programs (Chapter 2).

 Write our first program (Chapter 3).

 Dig into the fundamental parts of C# programming (Chapters 3 and 4).

1
1 The C# Programming

Language

I’m going to start off this book with a very brief introduction to C#. If you’re already a programmer, and

you’ve read the Wikipedia pages on C# and the .NET Framework, skip ahead to the next chapter.

On the other hand, if you’re new to programming in general, or you’re still a little vague on what exactly

C# or the .NET Platform is, then this is the place for you.

I should point out that we’ll get into a lot of detail about how the .NET Platform functions, and what it

gives you as a programmer in Chapter 44. This chapter just provides a quick overview of the basics.

What is C#?

Computers only understand binary: 1’s and 0’s. All of the information they keep track of is ultimately

nothing more than a glorified pile of bits. All of the instructions they run and all of the data they process

are binary.

But humans are notoriously bad at doing anything with a giant pile of 1’s and 0’s. So rather than doing

that, we created programming languages, which are based on human languages (usually English) and

structured in a way that allows you to give instructions to the computer. These instructions are called

source code, and are simple text files.

When the time is right, your source code will be handed off to a special program called a compiler, which

is able to take it and turn it into the binary 1’s and 0’s that the computer understands, typically in the form

In a Nutshell
 Describes the general idea of programming, and goes into more details about why C# is a

good language.

 Describes the core of what the .NET Platform is.

 Gives some history on the C# programming language for context.

4 Chapter 1 The C# Programming Language

of an EXE file. In this sense, you can think of the compiler as a translator from your source code to the

binary machine instructions that the computer knows.

There are thousands, maybe tens of thousands of programming languages, each good at certain things,

and less good at other things. C# is one of the most popular. C# is a simple general-purpose

programming language, meaning you can use it to create pretty much anything, including desktop

applications, server-side code for websites, and even video games.

C# provides an excellent balance between ease of use and power. There are other languages that provide

less power and are easier to use (like Java) and others that provide more power, giving up some of its

simplicity (like C++). Because of the balance it strikes, it is the perfect language for nearly everything that

you will want to do, so it’s a great language to learn, whether it’s your first or your tenth.

What is the .NET Platform?

C# relies heavily on something called the .NET Platform. It is also commonly also called the .NET

Framework, though we’ll make a subtle distinction between the two later on. The .NET Platform is a large

and powerful platform, which we’ll discuss in detail in Chapter 44. You can go read it as soon as you’re

done with this chapter, if you want.

The .NET Platform is vast, with many components, but two stand out as the most central. The first part is

the Common Language Runtime, often abbreviated as the CLR. The CLR is a software program that takes

your compiled C# code and runs it. When you launch your EXE file, the CLR will start up and begin taking

your code and translating it into the optimal binary instructions for the physical computer that it is

running on, and your code comes to life.

In this sense, the CLR is a middle-man between your code and the physical computer. This type of

program is called a virtual machine. We’ll get into more of the specifics in Chapter 44. For now, it’s only

important to know that the .NET Platform itself, specifically the CLR runtime, play a key role in running

your application—and in making it so your application can run on a wide variety of computer

architectures and operating systems.

The second major component of the .NET Platform is the .NET Standard Library. The Standard Library is

frequently called the Base Class Library. The Standard Library is a massive collection of code that you can

reuse within your own programs to accelerate the development of whatever you are working on. We will

cover some of the most important things in the Standard Library in this book, but it is huge, and deserves

a book of its own. More detail on the Standard Library and the Base Class Library can be found in Chapter

44.

Built on top of the .NET Standard Library is a collection of app models. An app model is another large

library designed for a specific type of application. This includes things like WPF and Windows Forms for

GUI applications, ASP.NET for web development, and Xamarin for iOS and Android development. Game

frameworks or engines like MonoGame and Unity could also be considered app models, though these are

not maintained directly by Microsoft.

This book, unfortunately, doesn’t cover these app models to any serious extent. There are two reasons for

this. Each app model is gigantic. You could write multiple books about each of these app models (and

indeed, there are many books out there). Trying to pack them all into this book would make it a 5000 page

book.

Second, the app models are, true to their name, specific to a certain type of application. This means that

the things that are important to somebody doing desktop development are going to be wildly different

from somebody doing web development. This book focuses on the C# language itself, and the aspects of

C# and .NET Versions 5

the .NET Platform that are useful to everybody. Once you’ve finished this book, you could then proceed on

to other books that focus on specific app models. (Those books all generally assume you know C#

anyway.)

We will cover how the .NET Platform is organized and how it functions in depth in Chapter 44.

C# and .NET Versions

C# has gone through quite a bit of evolution over its history. The first release was in 2002, and established

the bulk of the language features C# still has today.

A little over a year later, in 2003, C# 2.0 was released, adding in a lot of other big and powerful features,

most of which will get quite a bit of attention in this book (generics, nullable types, delegates, static

classes, etc.)

C# 3.0 expanded the language in a couple of very specific directions: LINQ and lambdas, both of which get

their own chapters in this book.

The next two releases were somewhat smaller. C# 4.0 added dynamic typing, as well as named and

optional method arguments. C# 5.0 added greatly expanded support for asynchronous programming.

In the C# 5 era, a new C# compiler was introduced: Roslyn. This compiler has a number of notable

features: it’s open source, it’s written in C# (written in the language it’s for), and it is available while your

program is running (so you can compile additional code dynamically). Something about its construction

also allows for people to more easily tweak and experiment with new features, which led to the features

added in C# 6.0 and 7.0.

C# 6.0 and 7.0 added a whole slew of little additions and tweaks across the language. While previous

updates to the language could usually be summed up in a single bullet point or two, and are given their

own chapters in this book, the new features in C# 6.0 and 7.0 are small and numerous. I try to point out

what these new features are throughout this book, so that you are aware of them.

Alongside the C# language itself, both Visual Studio and the Standard Library have both been evolving

and growing. This book has been updated to work with Visual Studio 2017 and C# 7.0 at the time of

publishing.

Future versions will, of course, arrive before long. Based on past experience, it ’s a safe bet that everything

you learn in this book will still apply in future versions.

2
2 Installing Visual Studio

To make your own programs, people usually use a program called an Integrated Development Environment

(IDE). An IDE combines all of the tools you will commonly need to make software, including a special text

editor designed for editing source code files, a compiler, and other various tools to help you manage the

files in your project.

With C#, nearly everyone chooses to use some variation of Visual Studio, made by Microsoft. There are a

few different levels of Visual Studio, ranging from the free Community Edition, to the high-end Enterprise

Edition. In this chapter, I’ll guide you through the process of determining which one to choose.

As of the time of publication of this book, the latest version is the 2017 family. There will inevitably be

future releases, but the bulk of what’s described in this book should still largely apply in future versions.

While new features have been added over time, the fundamentals of Visual Studio have remained the

same for a very long time now.

There are three main flavors of Visual Studio 2017. Our first stop will be to look at the differences among

these, and I’ll point out one that is most likely your best choice, getting started. (It ’s free, don’t worry!) I’ll

then tell you how to download Visual Studio and a little about the installation process. By the end of this

chapter, you’ll be up and running, ready to start doing some C# programming!

In a Nutshell
 To program in C#, we will need a program that allows us to write C# code and run it. That

program is Microsoft Visual Studio.

 A variety of versions of Visual Studio exists, including the free Community Edition, as well as

several higher tiers that offer additional features at a cost.

 You do not need to spend money to make C# programs.

 This chapter walks you through the various versions of Visual Studio to help you decide which

one to use, but as you are getting started, you should consider the free Visual Studio 2017

Community Edition.

Versions of Visual Studio 7

Versions of Visual Studio

Visual Studio 2017 comes in three editions: Community, Professional, and Enterprise. While I’m ultimately

going to recommend the Community Edition (it’s free, and it still allows you to make and sell commercial

applications with it) it is worth briefly considering the differences between the three.

From a raw feature standpoint, Community and Professional are essentially the same thing. Enterprise

comes with some nice added bonuses, but at a significantly higher cost. These extra features generally

are non-code-related, but instead deal with the surrounding issues, like team collaboration, testing,

performance analysis, etc. While nice, these extra features are probably not a great use of your money as

you’re learning, unless you work for a company or attend school at a place that will buy it for you.

Now that I’ve pushed you away from Enterprise as a beginner, the only remaining question is what to

actually use. And to answer that, we need to compare the Community Edition to the Professional Edition.

Community and Professional are essentially the same product with a different license. Microsoft wants to

make Visual Studio available to everybody, but they still want to be able to bring in money for their

efforts. With the current licensing model, they ’ve managed to do that pretty well.

While Professional costs roughly $500, Community is free. But the license prevents certain people (the

ones with tons of money) from using it. While the following interpretation is not legally binding, the

general interpretation of the Community license is essentially this:

You can use it to make software, both commercially and non-commercially, as long as you don’t fit in one

of the following categories:

 You have 5+ Visual Studio developers in your company. (If you’re getting it for personal home use

or moonlighting projects, you don’t count the place you work for. You have 1 developer.)

 You have 250+ computers or users in your company.

 You have a gross income of $1,000,000.

If any of the above apply, you don’t qualify for the Community license, and you must buy Professional. But

then again, if any of those apply to you, you probably have the money to pay for Professional anyway.

There are a couple of exceptions to that:

 You’re a student or educator, using it solely for educational uses.

 You’re working solely on open source projects.

In short, for essentially everybody reading this book, you should be able to either use Community, or

you’re working somewhere that can afford to buy Professional or Enterprise for you.

This makes the decision simple: you will almost certainly want Visual Studio Community for now.

The Installation Process

Visual Studio can be downloaded from https://www.visualstudio.com/downloads. This will actually

install the Visual Studio Installer, which is a separate program from Visual Studio itself. (It sounds

complicated, but the Visual Studio Installer is a powerful and useful product in its own right.)

Once you get the installer downloaded and running, you will see a screen that looks similar to this:

https://www.visualstudio.com/downloads

8 Chapter 2 Installing Visual Studio

If instead of the above, you see a screen that lists Visual Studio Community, Professional, and Enterprise,

choose to install Visual Studio Community (or the option that is the one you need) and you will arrive at

this screen.

Visual Studio, with every single bit of functionality, is a lumbering behemoth of a product. Starting with

Visual Studio 2017, the product and the installer got a massive rewrite to allow you to install only the

components you actually care about. The screen that you see in the previous image is the part of the

installer that allows you to choose what components you want.

By default, nothing is checked, which would give you a very barebones Visual Studio. That ’s probably not

what you want. Instead, we need to check the items that we want to include.

For this book, you will want to check the box for .NET desktop development on the Workloads tab.

Feel free to look through the rest of the things and check anything else you might want to play around

with at some point.

The installer contains three tabs at the top. The Individual components tab lets you pick and choose

individual items that you might want a la carte. The Workloads tab will pre-select groups of items on the

Individual components tab, to give you groups of items that are well suited for making specific types of

applications. The Language packs tab is for choosing languages for Visual Studio. English is included by

default, but check the box on other languages if you want to be able to use a different language like

French or Russian.

When you have the components you want (at a minimum, .NET desktop development) hit the Install

button and your selected components will be installed for you.

You may get an icon for Visual Studio on your desktop, but you’ll also always be able to find Visual Studio

in your Start Menu under “Visual Studio 2017.”

Also, if you ever want to modify the components that you’ve installed (either to remove unused ones or

add new ones) you can find “Visual Studio Installer” on your start menu as well, and simply re-run it to

modify your Visual Studio settings and add or remove components.

Visual Studio will ask you to sign in with a Microsoft account at some point. If you don’t have one, you can

follow their instructions to make one.

Starting in the next chapter and throughout the rest of this book, we’ll cover all sorts of useful tips and

tricks on using Visual Studio. Towards the end of this book, in Part 5, we’ll get into Visual Studio in a little

C# Programming on Mac and Linux 9

more depth. Once you get through the next couple of chapters, you can jump ahead to that part

whenever you’re ready for it. You don’t have to read through the book in order.

This book will use screenshots from Visual Studio 2017 Community. You may see some slight differences

depending on which version of Visual Studio you’re using and what add-ons you have active. But all of the

things we talk about in this book will be available in all editions.

C# Programming on Mac and Linux

If you are interested in doing C# programming on a Mac or on Linux, you’re still in luck.

Your first option is Visual Studio Code, which can be grabbed from https://code.visualstudio.com. Visual

Studio Code is a lightweight version of Visual Studio that runs on Windows, Mac, and Linux. Visual Studio

Code is missing a number of significant features that this book talks about, but it does support the basics

of editing and compiling your code.

Your second option is Xamarin Studio (http://xamarin.com/studio), which works on macOS. Xamarin

Studio is a powerful, full IDE similar to Visual Studio. In fact, Microsoft is releasing Visual Studio for Mac,

but it is essentially just Xamarin Studio rebranded. (Xamarin is owned by Microsoft, so they ’re on the same

team.)

Try It Out!
Install Visual Studio. Take the time now to choose a version of Visual Studio and install it, so that

you’re ready to begin making awesome programs in the next chapter.

https://code.visualstudio.com/

3
3 Hello World: Your First C#

Program

In this chapter we’ll make our very first C# program. Our first program needs to be one that simply prints

out some variation of “Hello World!” or we’ll make the programming gods mad. It’s tradition to make your

first program print out a simple message like this whenever you learn a new language. It’s simple, yet still

gives us enough to see the basics of how the programming language works. Also, it gives us a chance to

compile and run a program, with very little chance for introducing bugs.

So that’s where we’ll start. We’ll create a new project and add in a single line to display "Hello World!" Once

we’ve got that, we’ll compile and run it, and you’ll have your very first program!

After that, we’ll take a minute and look at the code that you have written in more detail before moving on

to more difficult, but infinitely more awesome stuff in the future!

Creating a New Project

Let’s get started with our first C# program! Open up Visual Studio, which we installed in Chapter 2.

In a Nutshell
 Start a new C# Console Application by going to File > New > Project..., choosing the Console

Application template, and giving your project a name.

 Inside of the Main method, you can add code to write out stuff using a statement like

Console.WriteLine("Hello World!");

 Compile and run your program with F5 or Ctrl + F5.

 The template includes code that does the following:

 using directives make it easy to access chunks of previously written code in the

current program.

 The namespace block puts all of the contained code into a single collection.

 The code we actually write goes into the Program class in a method called Main,

which the C# compiler recognizes as the starting point for a program.

A Brief Tour of Visual Studio 11

When the program first opens, you will see the Start Page come up. To create a new project, select File >

New > Project... from the menu bar. (Note you can also search for the Console Application template on

the Start Page directly.)

Once you have done this, a dialog will appear asking you to specify a project type and a name for the

project. This dialog is shown below:

On the left side, you will see a few categories of templates to choose from. Depending on what version of

Visual Studio you have installed and what plugins and extensions you have, you may see different

categories here, but the one you’ll want to select is the Visual C# category, which will list all C#-related

templates that are installed.

Once that is selected, in the list in the top-center, find and select the Console Application (.NET

Framework) template. The Console Application template is the simplest template and it is exactly where

we want to start. For all of the stuff we will be doing in this book, this is the template to use.

As you finish up this book, if you want to start doing things like making programs with a graphical user

interface (GUI), game development, smart phone app development, or web-based development, you will

be able to put these other templates to good use.

At the bottom of the dialog, type in a name for your project. I’ve called mine “HelloWorld.” Your project

will be saved in a directory with this name. It doesn’t matter what you call a project, but a good name will

help you find it later. By default, Visual Studio tries to call your programs “ConsoleApplication1” or

“ConsoleApplication2.” If you don’t choose a good name, you won’t know what each of these do. By

default, projects are saved under your Documents directory (Documents/Visual Studio 2017/Projects/).

Finally, press the OK button to create your project!

A Brief Tour of Visual Studio

Once your project has loaded, it is worth a brief discussion of what you see before you. We’ll look in depth

at how Visual Studio works later on (Chapter 45) but it is worth a brief discussion right now.

12 Chapter 3 Hello World: Your First C# Program

By this point, you should be looking at a screen that looks something like this:

Depending on which version of Visual Studio you installed, you may see some slight differences, but it

should look pretty similar to this.

In the center should be some text that starts out with using System;. This is your program’s source code!

It is what you’ll be working on. We’ll discuss what it means, and how to modify it in a second. We’ll spend

most of our time in this window.

On the right side is the Solution Explorer. This shows you a big outline of all of the files contained in your

project, including the main one that we’ll be working with, called “Program.cs”. The *.cs file extension

means it is a text file that contains C# code. If you double-click on any item in the Solution Explorer, it will

open in the main editor window. The Solution Explorer is quite important, and we’ll use it frequently.

As you work on your project, other windows may pop up as they are needed. Each of these can be closed

by clicking on the ‘X’ in the upper right corner of the window.

If, by chance, you are missing a window that you feel you want, you can always open it by finding it on

either the View menu or View > Other Windows. For right now, if you have the main editor window open

with your Program.cs file in it, and the Solution Explorer, you should be good to go.

Building Blocks: Projects, Solutions, and Assemblies

As we get started, it is worth defining a few important terms that you’ll be seeing throughout this book. In

the world of C#, you’ll commonly see the words solution, project, and assembly, and it is worth taking the

time upfront to explain what they are, so that you aren’t lost.

These three words describe the code that you’re building in different ways. We’ll start with a project. A

project is simply a collection of source code and resource files that will all eventually get built into the

same executable program. A project also has additional information telling the compiler how to build it.

When compiled, a project becomes an assembly. In nearly all cases, a single project will become a single

assembly. An assembly shows up in the form of an EXE file or a DLL file. These two different extensions

represent two different types of assemblies, and are built from two different types of projects (chosen in

the project’s settings).

Modifying Your Project 13

A process assembly appears as an EXE file. It is a complete program, and has a starting point defined,

which the computer knows to run when you start up the EXE file. A library assembly appears as a DLL file.

A DLL file does not have a specific starting point defined. Instead, it contains code that other programs

can access and reuse on the fly.

Throughout this book, we’ll be primarily creating and working with projects that are set up to be process

assemblies that compile to EXE files, but you can configure any project to be built as a library assembly

(DLL) instead.

Finally, a solution will combine multiple projects together to accomplish a complete task or form a

complete program. Solutions will also contain information about how the different projects should be

connected to each other. While solutions can contain many projects, most simple programs (including

nearly everything we do in this book) will only need one. Even many large programs can get away with

only a single project.

Looking back at what we learned in the last section about the Solution Explorer, you’ll see that the

Solution Explorer is showing our entire solution as the very top item, which it labels “Solution ‘HelloWorld’

(1 project).” Immediately underneath that, we see the one project that our solution contains: “HelloWorld.”

Inside of the project are all of the settings and files that our project has, including the Program.cs file that

contains source code that we’ll soon start editing.

It’s important to keep the solution and project separated in your head. They both have the same name

and it can be a little confusing. Just remember the top node is the solution, and the one inside it is the

project.

Modifying Your Project

We’re now ready to make our program actually do something. In the center of your Visual Studio window,

you should see the main text editor, containing text that should look identical to this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace HelloWorld
{
 class Program
 {
 static void Main(string[] args)
 {
 }
 }
}

In a minute we’ll discuss what all of that does, but for now let’s go ahead and make our first change—

adding something that will print out the message “Hello World!”

Right in the middle of that code, you’ll see three lines that say static void Main(string[] args) then a

starting curly brace (‘{‘) and a closing curly brace (‘}’). We want to add our new code right between the two

curly braces.

Here’s the line we want to add:

Console.WriteLine("Hello World!");

So now our program’s full code should look like this:

14 Chapter 3 Hello World: Your First C# Program

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace HelloWorld
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 }
 }
}

We’ve completed our first C# program! Easy, huh?

Compiling and Running Your Project

Your computer doesn’t magically understand what you’ve written. Instead, it understands special

instructions that are composed of 1’s and 0’s called binary. Fortunately for us, Visual Studio includes a

thing called a compiler. A compiler will take the C# code that we’ve written and turn it into binary that the

computer understands.

So our next step is to compile our code and run it. Visual Studio will make this easy for us.

To start this process, press F5 or choose Debug > Start Debugging from the menu.

There! Did you see it? Your program flashed on the screen for a split second! (Hang on... we’ll fix that in a

second. Stick with me for a moment.)

We just ran our program in debug mode, which means that if something bad happens while your

program is running, it won’t simply crash. Instead, Visual Studio will notice the problem, stop in the middle

of what’s going on, and show you the problem that you are having, allowing you to debug it. We’ll talk

more about how to actually debug your code in Chapter 48.

So there you have it! You’ve made a program, compiled it, and executed it!

If it doesn’t compile and execute, double check to make sure your code looks like the code above.

Help! My program is running, but disappearing before I can see it!
You likely just ran into this problem when you executed your program. You push F5 and the program

runs, a little black console window pops up for a split second before disappearing again, and you have no

clue what happened.

There’s a good reason for that. Your program ran out of things to do, so it finished and closed on its own.

(It thinks it’s so smart, closing on its own like that.)

Try It Out!
Hello World! It’s impossible to understate how important it is to actually do the stuff outlined in this

chapter. Simply reading text just doesn’t cut it. In future chapters, most of these Try It Out! sections

will contain extra things to do, beyond the things described in the actual body of the chapter. But for

right now, it is very important that you simply go through the process explained in this chapter. The

chapter itself is a Try It Out! So follow through this chapter, one step at a time, and make sure you’re

understanding the concepts that come up, at least at a basic level.

Compiling and Running Your Project 15

But we’re really going to want a way to make it so that doesn’t happen. After all, we’re left wondering if it

even did what we told it to. There are two solutions to this, each of which has its own strengths and

weaknesses.

Approach #1: When you run it without debugging, console programs like this will always pause before

closing. So one option is to run it without debugging. This option is called Release Mode. We’ll cover this in

a little more depth later on, but the bottom line is that your program runs in a streamlined mode which is

faster, but if something bad happens, your program will just die, without giving you a chance to debug it.

You can run in release mode by simply pressing Ctrl + F5 (instead of just F5). Do this now, and you’ll see

that it prints out your “Hello World!” message, plus another message that says “Press any key to

continue...” which does exactly what it says and waits for you before closing the program. You can also

find this under Debug > Start Without Debugging on the menu.

But there’s a distinct disadvantage to running in release mode. We’re no longer running in debug mode,

and so if something happens with your program while it is running, your application will crash and die.

(Hey, just like all of the other “cool” programs out there!) Which brings us to an alternative approach:

Approach #2: Put another line of code in that makes the program wait before closing the program. You

can do this by simply adding in the following line of code, right below where you put the

Console.WriteLine("Hello World!"); statement:

Console.ReadKey();

So your full code, if you use this approach, would look like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace HelloWorld
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 Console.ReadKey();
 }
 }
}

Using this approach, there is one more line of code that you have to add to your program (in fact, every

console application you make), which can be a little annoying. But at least with this approach, you can still

run your program in debug mode, which you will soon discover is a really nice feature.

Fortunately, this is only going to be a problem with console apps. That’s what we’ll be doing in this book,

but before long, you’ll probably be making windows apps, games, or awesome C#-based websites, and

this problem will go away on its own. They work in a different way, and this won’t be an issue there.

Try It Out!
See Your Program Twice. I’ve described two approaches for actually seeing your program execute.

Take a moment and try out each approach. This will give you an idea of how these two different

approaches work. Also, try combining the two and see what you get. Can you figure out why you need

to push a key twice to end the program?

16 Chapter 3 Hello World: Your First C# Program

A Closer Look at Your Program

Now that we’ve got our program running, let’s take a minute and look at each line of code in the program

we’ve made. I’ll explain what each one does so that you’ll have a basic understanding of everything in your

simple Hello World program.

Using Directives
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

The first few lines of your program all start with the keyword using. A keyword is simply a reserved word,

or a magic word that is a built-in part of the C# programming language. It has special meaning to the C#

compiler, which it uses to do something special. The using keyword tells the compiler that there is a

whole other pile of code that someone made that we want to be able to access. (This is actually a bit of a

simplification, and we’ll sort out the details in Chapter 27.)

So when you see a statement like using System; you know that there is a whole pile of code out there

named System that our code wants to use. Without this line, the C# compiler won’t know where to find

things and it won’t be able to run your program. You can see that there are five using directives in your

little program that are added by default. We can leave these exactly the way they are for the near future.

Namespaces, Classes, and Methods
Below the using directives, you’ll see a collection of curly braces (‘{‘ and ‘}’) and you’ll see the keywords

namespace, class, and in the middle, the word Main. Namespaces, classes, and methods (which Main is

an example of) are ways of grouping related code together at various levels. Namespaces are the largest

grouping, classes are smaller, and methods are the smallest. We’ll discuss each of these in great depth as

we go through this book, but it is worth a brief introduction now. We’ll start at the smallest and work our

way up.

Methods are a way of consolidating a single task together in a reusable block of code. In other

programming languages, methods are sometimes called functions, procedures, or subroutines. We’ll get

into a lot of detail about how to make and use methods as we go, but the bulk of our discussion about

methods will be in Chapter 15, with some extra details in Chapter 28.

Right in the middle of the generated code, you’ll see the following:

static void Main(string[] args)
{
}

This is a method, which happens to have the name Main. I won’t get into the details about what

everything else on that line does yet, but I want to point out that this particular setup for a method makes

it so that C# knows it can be used as the starting point for your program. Since this is where our program

starts, the computer will run any code we put in here. For the next few chapters, everything we do will be

right in here.

You’ll also notice that there are quite a few curly braces in our code. Curly braces mark the start and end

of code blocks. Every starting curly brace (‘{‘) will have a matching ending curly brace (‘}’) later on. In this

particular part, the curly braces mark the start and end of the Main method. As we discuss classes and

namespaces, you’ll see that they also use curly braces to mark the points where they begin and end. From

looking at the code, you can probably already see that these code blocks can contain other code blocks to

form a hierarchy.

Whitespace Doesn’t Matter 17

When one thing is contained in another, it is said to be a member of it. So the Program class is a member

of the namespace, and the Main method is a member of the Program class.

Classes are a way of grouping together a set of data and methods that operate on that data into a single

reusable package. Classes are the fundamental building block of object-oriented programming. We’ll get

into this in great detail in Part 3, especially Chapters 17 and 18.

In the generated code, you can see the beginning of the class, marked with:

class Program
{

And later on, after the Main method it contains, you’ll see a matching closing curly brace:

}

Program is simply a name for the class. It could have been just about anything else. The fact that the

Main method is contained in the Program class indicates that it belongs to the Program class.

Namespaces are the highest level grouping of code. Many smaller programs may only have a single

namespace, while larger ones often divide the code into several namespaces based on the feature or

component that the code is used in. We’ll spend a little extra time detailing namespaces and using

directives in Chapter 27.

Looking at the generated code, you’ll see that our Program class is contained in a namespace called

“HelloWorld”:

namespace HelloWorld
{
 ...
}

Once again, the fact that the Program class appears within the HelloWorld namespace means that it

belongs to that namespace, or is a member of it.

Whitespace Doesn’t Matter

In C#, whitespace such as spaces, new lines, and tabs don’t matter to the C# compiler. This means that

technically, you could write any program on a single line! But don’t do that. That would be a bad idea.

Instead, you should use whitespace to help make your code more readable, both for other people who

may look at your code, or even yourself a few weeks from now, when you’ve forgotten what exactly your

code was supposed to do.

I’ll leave the decision about where to put whitespace up to you, but as an example, compare the following

pieces of code that do the same thing:

static void Main(string
[] args) { Console
.WriteLine (
 "Hello World!");}

static void Main(string[] args)
{
 Console.WriteLine("Hello World!");
}

For the sake of clarity, I’ll use a style like the bottom version throughout this book.

18 Chapter 3 Hello World: Your First C# Program

Semicolons

You may have noticed that the lines of code we added all ended with semicolons (‘;’).

This is how C# knows it has reached the end of a statement. A statement is a single step or instruction that

does something. We’ll be using semicolons all over the place as we write C# code.

This chapter may have seemed long, and we haven’t even accomplished very much. That’s OK, though. We

have to start somewhere, and this is where everyone starts. We have now made our first C# program,

compiled it, and executed it! And just as important, we now have a basic understanding of the starter

code that was generated for us. This really gets us off on the right foot. We’re off to a great start, but

there’s so much more to learn!

Try It Out!
Evil Computers. In the influential movie 2001: A Space Odyssey, an evil computer named HAL 9000

takes over a Jupiter-bound spaceship, locking Dave, the movie’s hero, out in space. As Dave tries to

get back in, to the ship, he tells HAL to open the pod bay doors. HAL’s response is "I’m sorry, Dave. I’m

afraid I can’t do that." Since we know not all computers are friendly and happy to help people, modify

your Hello World program to say HAL 9000’s famous words, instead of "Hello World!"

4
4 Comments

In this short chapter we’ll cover the basics of comments. We’ll look at what they are, why you should use

them, and how to do them. Many programmers (even many C# books) de-emphasize comments, or

completely ignore them. I’ve decided to put them front and center, right at the beginning of the book—

they really are that important.

What is a Comment?

At its core, a comment is text that is put somewhere for a human to read. Comments are ignored entirely

by the computer.

Why Should I Use Comments?

I mentioned in the last chapter that whitespace should be used to help make your code more readable.

Writing readable and understandable code is a running theme you’ll see in this book. Writing code is

actually far easier than reading it, or trying understanding what it does. And believe it or not, you’ll

actually spend far more time reading code than writing it. You will want to do whatever you can to make

your code easier to read. Comments will go a very long way towards making your code more readable

and understandable.

You should use comments to describe what you are doing so that when you come back to a piece of code

that you wrote after several months (or even just days) you’ll know what you were doing.

Writing comments—wait, let me clarify—writing good comments is a key part of writing good code.

Comments can be used to explain tricky sections of code, or explain what things are supposed to do. They

Quick Start
 Comments are a way for you to add text for other people (and yourself) to read. Computers

ignore comments entirely.

 Comments are made by putting two slashes (//) in front of the text.

 Multi-line comments can also be made by surrounding it with asterisks and slashes, like this:

/* this is a comment */

20 Chapter 4 Comments

are a primary way for a programmer to communicate with another programmer who is looking at their

code. The other programmer may even be on the other side of the world and working for a different

company five years later!

Comments can explain what you are doing, as well as why you are doing it. This helps other

programmers, including yourself, know what was going on in your mind at the time.

In fact, even if you know you’re the only person who will ever see your code, you should still put

comments in it. Do you remember what you ate for lunch a week ago today? Neither do I. Do you really

think that you’ll remember what your code was supposed to do a week after you write it?

Writing comments makes it so that you can quickly understand and remember what the code does, how it

does it, why it does it, and you can even document why you did it one way and not another.

How to Make Comments in C#

There are three basic ways to make comments in C#. For now, we’ll only really consider two of them,

because the third applies only to things that we haven’t looked at yet. We’ll look at the third form of

making comments in Chapter 15.

The first way to create a comment is to start a line with two slashes: //. Anything on the line following the

two slashes will be ignored by the computer. In Visual Studio the comments change color—green, by

default—to indicate that the rest of the line is a comment.

Below is an example of a comment:

// This is a comment, where I can describe what happens next...
Console.WriteLine("Hello World!");

Using this same thing, you can also start a comment at the end of a line of code, which will make it so the

text after the slashes are ignored:

Console.WriteLine("Hello World!"); // This is also a comment.

A second method for creating comments is to use the slash and asterisk combined, surrounding the

comment, like this:

Console.WriteLine("Hi!"); /* This is a comment that ends here... */

This can be used to make multi-line comments like this:

/* This is a multi-line comment.
 It spans multiple lines.
 Isn't it neat? */

Of course, you can do multi-line comments with the two slashes as well, it just has to be done like this:

// This is a multi-line comment.
// It spans multiple lines.
// Isn't it neat?

In fact, most C# programmers will probably encourage you to use the single line comment version instead

of the /* */ version, though it is up to you.

The third method for creating comments is called XML Documentation Comments, which we’ll discuss

later, because they’re used for things that we haven’t discussed yet. For more information about XML

Documentation Comments, see Chapter 15.

How to Make Good Comments 21

How to Make Good Comments

Commenting your code is easy; making good comments is a little trickier. I want to take some time and

describe some basic principles to help you make comments that will be more effective.

My first rule for making good comments is to write the comments for a particular chunk of code as soon

as you’ve got the piece more or less complete. A few days or a weekend away from the code and you may

no longer really remember what you were doing with it. (Trust me, it happens!)

Second, write comments that add value to the code. Here’s an example of a bad comment:

// Uses Console.WriteLine to print "Hello World!"
Console.WriteLine("Hello World!");

The code itself already says all of that. You might as well not even add it. Here’s a better version:

// Printing "Hello World!" is a very common first program to make.
Console.WriteLine("Hello World!");

This helps to explain why we did this instead of something else.

Third, you don’t need a comment for every single line of code, but it is helpful to have one for every

section of related code. It’s possible to have too many comments, but the dangers of over-commenting

code matter a whole lot less than the dangers of under-commented (or completely uncommented code).

When you write comments, take the time put in anything that you or another programmer may want to

know if they come back and look at the code later. This may include a human-readable description of

what is happening, it may include describing the general method (or algorithm) you’re using to accomplish

a particular task, or it may explain why you’re doing something. You may also find times where it will be

useful to include why you aren’t using a different approach, or to warn another programmer (or yourself!)

that a particular chunk of code is tricky, and you shouldn’t mess with it unless you really know what you’re

doing.

Having said all of this, don’t take it to an extreme. Good comments don’t make up for sloppy, ugly, or hard

to read code. Meanwhile nice, clean, understandable code reduces the times that you need comments at

all. (The code is the authority on what’s happening, not the comments, after all.) Make the code as

readable as possible first, then add just enough comments to fill in the gaps and paint the bigger picture.

When used appropriately, comments can be a programmer’s best friend.

Try It Out!
Comment ALL the things! While it’s overkill, in the name of putting together everything we’ve

learned so far, go back to your Hello World program from the last chapter and add in comments for

each part of the code, describing what each piece is for. This will be a good review of what the pieces

of that simple program do, as well as give you a chance to play around with some comments. Try out

both ways of making comments (// and /* */) to see what you like.

Part 2
The Basics

With a basic understanding of how to get started behind us, we’re ready to dig in and look at the

fundamentals of programming in C#.

It is in this part that our adventure really gets underway. We’ll start learning about the world of C#

programming, and learn about the key tools that we’ll use to get things done.

In this section, we cover aspects of C# programming that are called “procedural programming.” This

means we’ll be learning how to tell the computer, step-by-step, how to get things done.

We’ll look at how to:

 Store data in variables (Chapter 5).

 Understand the type system (Chapter 6).

 Do basic math (Chapters 7 and 9).

 Get input from the user (Chapter 8).

 Make decisions (Chapter 10).

 Repeat things multiple times (Chapter 12 and 13).

 Create enumerations (Chapter 14).

 Package related code together in a way that allows you to reuse it (Chapter 15).

5
5 Variables

In this chapter, we’re going to dig straight into one of the most important parts of programming in C#.

We’re going to discuss variables, which are how we keep track of information in our programs. We’ll look

at how you create them, place different values in them, and use the value that is currently in a variable.

What is a Variable?

A key part of any program you make, regardless of the programming language, is the ability to store

information in memory while the program is running. For example, you might want to store a player’s

score or a person’s name, so that you can refer back to it later or modify it.

You may remember discussing variables in math classes, but these are a little different.

In math, we talk about variables being an “unknown quantity” that you are supposed to

solve for. Variables in math are a specific value that you just need to figure out.

In programming, a variable is a place in memory where you can store information. It’s

like a little box or bucket to put stuff in. At any point in time, you can look up the

contents of the variable or rewrite the contents of the variable with new stuff. When

you do this, the variable itself doesn’t need to change, just the contents in the box.

Each variable has a name and a type. The name is what you’ll use in your program when you want to read

its contents or put new stuff in it.

In a Nutshell
 You can think of variables as boxes that store information.

 A variable has a name, a type, and a value that is contained in it.

 You declare (create) a variable by stating the type and name: int number;

 You can assign values to a variable with the assignment operator (’=’): number = 14;

 When you declare a variable, you can initialize it as well: int number = 14;

 You can retrieve the value of a variable simply by using the variable’s name in your code:

Console.WriteLine(number);

 This chapter also gives guidelines for good variable names.

26 Chapter 5 Variables

The variable’s type indicates what kind of information you can put in it. C# has a large assortment of types

that you can use, including a variety of integer types, floating point (real valued) types, characters, strings

(text), Boolean (true/false), and a whole lot more.

In C#, types are a really big deal. Throughout this book, we’ll spend a lot of time learning how to work with

different types, converting from one type to another, and ultimately building our own types from scratch.

In the next chapter, we’ll get into types in great detail. For now though, let’s look at the basics of creating a

variable.

Creating Variables

Let’s make our first variable. The process of creating a variable is called declaring a variable.

Let’s start by going to Visual Studio and creating a brand new console project, just like we did with the

Hello World project, back in Chapter 3. Inside of the Main method, add the following single line of code:

int score;

So your code should look something like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Variables
{
 class Program
 {
 static void Main(string[] args)
 {
 int score;
 }
 }
}

Congratulations! You’ve made your first variable! When you declare a variable, the computer knows that it

will need to reserve a place in memory for this variable.

As you can see, when you declare a variable, you need to indicate the variable’s name

and type. This one line has both of those parts on it. The first part you see here is int.

This is the variable’s type. We’ll look at the different types that are available in a

minute, but for now all we need to know is that the int type is for storing integers. (In

case you don’t remember from math class, integers are whole numbers and their

negatives, so 0, 1, 2, 3, 4, ..., and -1, -2, -3, -4,) Because we’ve made a variable that

stores integers, we know we could put the number 100 in it, or -75946. But we could not store the number

1.3483 (it’s not an integer), and we also could not store a word like “hamburger” (it’s not an integer either).

The variable’s type determines what kind of stuff we can put in it.

The second part of declaring a variable is giving it a name. It is important to remember that a variable’s

name is meant for humans. The computer doesn’t care what it is called. (In fact, once you hand it off to

the computer, it changes the name to a memory location anyway.) So you want to choose a name that

makes sense to humans, and accurately describes what you’re putting in it. In math, we often call

variables by a single letter (like x), but in programming we can be more precise and call it something like

score instead.

Assigning Values to Variables 27

As always, C# statements end with a ‘;’, telling the computer that it has reached the end of the statement.

After this line, we have made a new variable with the name score and a type of int which we can now use!

Assigning Values to Variables

The next thing we want to do is put a value in the variable. This is called assigning a value to the variable,

and it is done using the assignment operator: “=”. The line of code below assigns the value 0 to the score

variable we just created:

score = 0;

You can add this line of code right below the previous line we added.

This use of the equals sign is different than how it is used in math. In math, “=” indicates

that two things are the same, even though they may be written in different formats. In

C# and many other programming languages, it means we’re going to take the stuff on

the right side of the equals sign and place it in the variable that is named on the left.

You can assign any integer value to score, and you can assign different values over time:

score = 4;
score = 11;
score = -1564;

You can assign a value to a variable whenever you want, as long as it is after the variable has been

declared. Of course, we haven’t learned very powerful tools for programming yet, so “whenever you want”

doesn’t mean much yet. (We’ll get there soon, don’t worry!)

When we create a variable, we often want to give it a value right away. (The C# compiler is not a big fan of

you trying to see what’s inside an empty variable box.) While you can declare a variable and assign it a

value in separate steps, it is also possible to do both of them at the same time:

int theMeaningOfLife = 42;

This line creates a variable called theMeaningOfLife with the type int, and gives it a starting value of 42.

Retrieving the Contents of a Variable

As we just saw, we can use the assignment operator (‘=’) to put values into a variable. You can also see and

use the contents of a variable, simply by using the variable’s name. When the computer is running your

code and it encounters a variable name, it will go to the variable, look up the contents inside, and use that

value in its place.

For example, int the code below, the computer will pull the number out of the number variable and write

3 to the console window:

int number = 3;
Console.WriteLine(number); // Console.WriteLine prints lots of things, not just text.

When you access a variable, here’s what the computer does:

1. Locates the variable that you asked for in memory.

2. Looks in the contents of the variable to see what value it contains.

3. Makes a copy of that value to use where it is needed.

The fact that it grabs a copy of the variable is important. For one, it means the variable keeps the value it

had. Reading from a variable doesn’t change the value of the variable. Two, whatever you do with the

28 Chapter 5 Variables

copy won’t affect the original. (We’ll learn more about how this works in Chapter 16, when we learn about

value and reference types.)

For example, here is some code that creates two variables and assigns the value of one to the other:

int a = 5;
int b = 2;

b = a;
a = -3;

With what you’ve learned so far about variables, what value will a and b have after this code runs?

Right at the beginning of those four lines, we create two variables, one named a, and one named b. Both

can store integers, because we’re using the int type. We also assign the value 5 to a, and 2 to b. After the

first two lines, this is what we’re looking at:

We then use the assignment operator to take the value inside of a and copy it to b:

Finally, on the last line we assign a completely new value to a:

If we printed out a and b, we would see that a is -3 and b is 5 by the time this code is finished.

How Data is Stored

Before we move into a discussion about the C# type system, we need to understand a little about how

information is stored on a computer. This is a key part of what drives the need for types in the first place.

Try It Out!
Playing with Variables. Take the little piece of code above and make a program out of it. Follow the

same steps you did in Chapter 3 when we made the Hello World program, but instead of adding code

to print out “Hello World!”, add the lines above. Use Console.WriteLine, like we did before and print

out the contents of the two variables. Before you run the code, think about what you expect to be

printed out for the a and b variables. Go ahead and run the program. Is it what you expected?

Multiple Declarations and Assignments 29

It is important to remember that computers only work with 1’s and 0’s. (Technically, they ’re tiny electric

pulses or magnetic fields that can be in one of two states which we label 1 and 0.)

A single 1 or 0 is called a bit, and a grouping of eight of them is called a byte. If we do the math, this means

that a single byte can store up to a total of 256 different states.

To get more states than this, we need to put multiple bytes together. For instance, two bytes can store

65,536 possible states. Four bytes can store over 4 billion states, and eight bytes combined can store over

18 quintillion possible states.

But we need a way to take all of these states and make sense out of them. This is what the type system is

for. It defines how many bytes we need to store different things, and how those bits and bytes will be

interpreted by the computer, and ultimately, the user.

For example, let’s say we want to store letters. Modern systems tend to use two bytes to store letters.

Programmers have assigned each letter a specific pattern of bits. For instance, we assign the capital letter

‘A’ to the bit pattern 00000000 01000001. ‘B’ is one up from that: 00000000 01000010. Because we’re using

two bytes, we have 65,536 different possibilities. That’s enough to store every symbol in every language

that is currently spoken on Earth, including many ancient languages, and still have room to spare.

For each different type of data, we interpret the underlying bits and bytes in a different way. The int type

that we were using earlier works like this. The int type uses four bytes. For brevity, in this discussion, I’m

leaving off the first three bytes, which contain all zeros for the small sample numbers we’re using here.

The value 0 is represented with the bit pattern 00000000. The value 1 is represented with the bit pattern

00000001. 2 is represented with 00000010. 3 is 00000011. This is basically counting in a base two

numbering system, or a binary numbering system.

Other types will use their bits and bytes in other ways. We won’t get into the specifics about how they all

work, as that’s really beyond the scope of this book. I’ll just point out that the way C# interprets bits and

bytes uses the same standard representations as nearly every other language and computer.

Multiple Declarations and Assignments

Our earlier code for creating a variable and for assigning a value to a variable just did one per line. But

you can declare multiple variables at the same time using code like this:

int a, b, c;

If you do this, all variables must be of the same type (int in this case). We’ll talk about types in more depth

in Chapter 6.

You can also assign the same value to multiple different variables all at the same time:

a = b = c = 10;

Most cases will probably lead you to make and assign values individually, rather than simultaneously, but

it is worth knowing that this is an option.

Good Variable Names

Before we go on, let’s talk about how to choose good names for your variables. Not everybody agrees on

what makes a variable name good. But I’m going to give you the rules I follow, which you’ll discover are

pretty typical, and not too far off from what most experienced programmers do.

The purpose of a variable name is to give a human-readable label for the variable. Anyone who stumbles

across the variable name should be able to instantly know what information the variable contains.

30 Chapter 5 Variables

It’s easy to write code. It’s hard to write code that you can actually go back and read and understand. Like

comments, good variable names are an absolutely critical part of writing readable code, and it’s not

something that can be ignored. Here are my rules:

Rule #1: Meet C#’s Requirements. C# has a few requirements for variable names. All variable names

have to start with a letter (a-z or A-Z) or the underscore (‘_’) character, and can then contain any number

of other letters, numbers, or the underscore character. You also cannot name a variable the same thing

as one of the reserved keywords that C# defines. These keywords are highlighted in blue in Visual Studio,

but includes things like namespace, int, and public. Your code won’t compile if you don’t follow this rule.

Rule #2: Variable names should describe the stuff you intend on putting in it. If you are putting a

player’s score in it, call it score, or playerScore, or even plrscr if you have to, but don’t call it jambalaya,

p, or monkey. But speaking of plrscr...

Rule #3: Don’t abbreviate or remove letters. Looking at the example of plrscr, you can tell that it

resembles “player score.” But if you didn’t already know, you’d have to sit there and try to fill in the

missing letters. Is it “plural scar,” or “plastic scrabble”? Nope, it is “player score.” You just have to sit there

and study it. The one exception to this rule is common abbreviations or acronyms. HTML is fine.

Rule #4: A good name will usually be kind of long. In math, we usually use single letters for variable

names. In programming, you usually need more than that to accurately describe what you’re trying to do.

In most cases, you’ll probably have at least three letters. Often, it is 8 to 16. Don’t be afraid if it gets longer

than that. It’s better to be descriptive than to “save letters.”

Rule #5: If your variables end with a number, you probably need a better name. If you’ve got count1

and count2, there’s probably a better name for them. (Or perhaps an array, which we’ll talk about later.)

Rule #6: “data”, “text”, “number”, and “item” are usually not descriptive enough. For some reason,

people seem to fall back to these all the time. They’re OK, but they’re just not very descriptive. It’s best to

come up with something more precise in any situation where you can.

Rule #7: Make the words of the variable name stand out from each other. This is so it is easier to

read a variable name that is composed of multiple words. playerScore (with a capital ‘S’) and

player_score are both more readable than playerscore. My personal preference is the first, but both

work.

Answers: (1) name, type, value. (2) False. (3) 1. (4) answer, value1, delete_me, PI.

Try It Out!
Variables Quiz. Answer the following questions to check your understanding. When you’re done,

check your answers against the ones below. If you missed something, go back and review the section

that talks about it.

1. Name the three things all variables have.

2. True/False. You can use a variable before it is declared.

3. How many times must a variable be declared?

4. Out of the following, which are legal variable names? answer, 1stValue, value1, $message,

delete-me, delete_me, PI.

6
6 The C# Type System

An Introduction to the Type System

Now that we understand a bit about how the computer stores information and how raw bits and bytes

are interpreted, we can begin to look at the C# type system from a broader perspective.

In C#, there are tons of types that have been defined for you. In addition, as you go through this book,

you’ll see that C# gives you the option to create and use your own types.

In this introduction to types, we will cover all of the primitive types, or built-in types. These are types that

the C# compiler knows a whole lot about. The language itself makes it easy to work with these types

because they are so common. We’re going to cover a lot of ground, so as you read this, remember that

you don’t need to master it all in one reading. Get a feel for what types are available, and come back for

the details later.

The ‘int’ Type

We already saw the int type in the last chapter, but it is worth a little more detail here to start off our

discussion on types. The int type uses 4 bytes (32 bits) to keep track of integers. In the math world,

integers can be any size we want. There’s no limit to how big they can be. But on a computer, we need to

be able to store them in bytes, so the int type has to be artificially limited. The int type can store numbers

In a Nutshell
 It is important to understand the C# type system.

 Integral types (int, short, long, byte, sbyte, uint, ushort, ulong, and char) store integers

with various ranges.

 Floating point types (float, double, decimal) store floating point numbers with various levels

of precision and range.

 The bool type stores truth values (true/false).

 The string type stores text.

 Other types will be discussed in future chapters.

32 Chapter 6 The C# Type System

roughly in the range of -2 billion to +2 billion. In a practical sense, that’s a bigger range than you will need

for most things, but it is limited, and it is important to keep that in mind.

The ‘byte’, ‘short’, and ‘long’ Types

Speaking of limitations in the size of the int type, there are three other types that also store integers, but

use a different number of bytes. As a result, they have different ranges that they can represent. These are

the byte, short, and long types. The byte type is the smallest. It uses only one byte and can store values

in the range 0 to 255. The short type is larger, but still smaller than int. It uses two bytes, and can store

values in the range of about -32,000 to +32,000. The long type is the largest of the four, and uses 8 bytes.

It can store numbers roughly in the range of -9 quintillion to +9 quintillion. That is an absolutely massive

range, and it is only in very rare circumstances when that wouldn’t be enough.

Type Bytes Range

byte 1 0 to 255

short 2 -32,768 to 32,767

int 4 -2,147,483,648 to 2,147,483,647

long 8 -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

That’s four different types (byte, short, int, and long) that use a different numbers of bytes (1, 2, 4, and 8,

respectively). The larger they are, the bigger the number they can store. You can think of these different

types as different sizes of boxes to store different sizes of numbers in.

It is worth a little bit of an example to show you how you create variables with these types. It is done

exactly like earlier, when we created our first variable with the int type:

byte aSingleByte = 34;
aSingleByte = 17;

short aNumber = 5039;
aNumber = -4354;

long aVeryBigNumber = 395904282569;
aVeryBigNumber = 13;

The ‘sbyte’, ‘ushort’, ‘uint’, and ‘ulong’ Types

We’ve already talked about four different types that store integers of various sizes. Now, I’m going to

introduce four additional types that are related to the ones we’ve already discussed.

But first, we need to understand the difference between signed types and unsigned types. If a type is

signed, it means it can include a + or - sign in front of it. In other words, the values of a signed type can be

positive or negative. If you look back at the four types we already know about, you’ll see that short, int,

and long are all signed. You can store positive or negative numbers. The byte type, on the other hand,

has no sign. (It is typically assumed that no sign is the equivalent of being positive.)

For each of the signed types we have looked at, we could have an alternate version where we shift the

valid range to only include positive numbers. This would allow us to go twice as high, at the expense of

not being able to use negative values at all. The ushort, uint, and ulong types do just this. The ushort

type uses two bytes, just like the short type, but instead of going from -32,000 to +32,000, it goes from 0

to about 64,000. The same thing applies to the uint and ulong types.

The ‘char’ Type 33

Likewise, we can take the byte type, which is unsigned, and shift it so that it includes negative numbers as

well. Instead of going from 0 to 255, it goes from -128 to +127. This gives us the signed byte type, sbyte.

Not surprisingly, we can create variables of these types just like we could with the int type:

ushort anUnsignedShortVariable = 59485; // This could not be stored in a normal short.

We now know of eight total types,

all of which are designed to store

only integers. These types, as a

collection, are known as integral

types (sometimes “integer types”).

We can organize these types in the

hierarchy diagram to the right. As

we continue our discussion of types

throughout this chapter and this

book, we’ll continue to expand this chart. You may notice that we’re still missing one additional integral

type, which we’ll discuss shortly.

Each of the types we’ve discussed use a different number of bytes and store different ranges of values.

That means each of them is best suited for storing different types of information. So how do you know

what type to use? Here are three things to consider as you’re choosing a type for a particular variable:

 Do you need signed values? (Can things be negative?) If so, you can immediately eliminate all of

the unsigned types.

 How large can the values be? For example, if you are using a variable to store the population of a

country, you know you’ll need to use something bigger than a byte or a short.

 When in doubt, many programmers tend to default to the int type. This may be sort of a

Goldilocks thing (not too big, not too small, but just about right). As a result, sometimes int is

overused, but it may be a good starting point, at any rate.

The ‘char’ Type

We have one more integral type to discuss before we move on. This last type is called the char type, and

is used for storing single characters or letters, as opposed to numbers.

It is strange to think of characters as an integral type, which are all designed to store integers. Behind the

scenes though, each letter can basically be assigned to a single number, which is why it gets lumped in

among the integral types. However, when we use the char type, the computer will know to treat it as a

letter instead, so we’ll see it print out the letters instead of numbers. As we’ll see later, the close

association of the char type and the other integral types means that we can do most of the same things

with any of these types.

The char type is two bytes big, giving it over 64,000 possible values. It ’s enough to store every letter in

every language in the world (including some dead languages and some fictional languages like Klingon)

with room to spare. The numeric value assigned to each letter follows the widely used Unicode system.

You can create variables with the char type in a way that is very similar to the other types we’ve seen,

though you put the character you want to store inside single quotes:

char favoriteLetter = 'c'; // Because C is for cookie. That's good enough for me.
favoriteLetter = '&';

Later in this chapter, we’ll talk about storing text of any length.

34 Chapter 6 The C# Type System

To summarize where we’re at with the C# type system, we’ve learned 9 different integral types, including

four for signed integers, four for unsigned integers, and one for characters:

Type Bytes Range

byte 1 0 to 255

short 2 -32,768 to 32,767

int 4 -2,147,483,648 to 2,147,483,647

long 8 -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

sbyte 1 -128 to +127

ushort 2 0 to 65,535

uint 4 0 to 4,294,967,295

ulong 8 0 to 18,446,744,073,709,551,615

char 2 U+0000 to U+ffff (All Unicode characters)

The ‘float’, ‘double’, and ‘decimal’ Types

You’re probably sick of integral types by now, so let’s expand our discussion to include some additional

types to store what are called floating point numbers (“real numbers” in the math world). Floating point

numbers are able to store not just integer values, but also numbers with a decimal part. For example, the

number 1.2 is not an integer and can’t be stored by any of the integral types that we’ve talked about. But

it can be stored in any of the three floating point types that C# provides.

We’ll start off with the float type. The float type uses four bytes to store floating point numbers. With the

float type, you get seven digits of precision. The largest values you can store are very large: about 3.4 x

1038. This is much higher than any of the integral types. But even these floating point types are limited in

their own way. Because it only has seven digits of precision, the computer can’t tell 1,000,000,000 and

1,000,000,001 apart. (Though it can tell 1000 and 1001 apart.) Of course, maybe you don’t care about that

kind of a difference either, because it’s so small compared to their magnitude. It may be close enough for

all practical purposes. Note that the integral values don’t have this problem. Within the range that they

can store, integral types are always exact.

There is also a limit to how small (as in, “close to zero”) the float type can store, and that is about ±1.5 x

10-45—a very tiny number.

The double type uses 8 bytes—twice as many as the float type (hence the name “double”). This has 15 or

16 digits of precision, and can store values as small as ±5 x 10-324 or as large as ±1.7 x 10308. If you thought

the float type had a huge range, think again. This dwarfs what the float type can hold, albeit at the

expense of taking up twice as much space.

The ‘float’, ‘double’, and ‘decimal’ Types 35

Creating variables with either of these types is pretty straightforward as well:

double pi = 3.14159265358979323846;
float anotherPi = 3.1415926f;

Take a close look at those two numbers. Obviously, the double version has more digits, which it can

handle. But do you see what’s hanging out there at the end of the number we’ve used for the float?

There’s a letter ‘f ’.

In code, whenever we write out a value directly it is called a literal. When we say a = 3; the 3 is an integer

literal. Here, when we put 3.1415926, it’s a floating point literal. When we use a floating point literal like

this, the compiler assumes it is the double type. But knowing that the double type is a much bigger “box”

that uses 8 bytes, we can’t just stuff that in a variable that is using the float type. It’s too big. Sticking the

letter ‘f ’ on the end of a floating point literal tells the C# compiler to treat is as a literal of the float type,

instead of the double type. Note that we could use lower case ‘f ’ or capital ‘F’ and get the same results.

While we’re on the subject, I want to point out that if we’re working with an integer literal, we can put

lower case ‘l’ or upper case ‘L’ on the end to indicate that it is a long integer literal. Though, I’d recommend

that you always use the upper case version (‘L’) because lower case ‘l’ and the number ‘1’ look too much

alike. So you could do this if you want:

long aBigNumber = 39358593258529L;

You are also able to stick a ‘u’ or ‘U’ on the end of an integer literal to show that it is supposed to be an

unsigned integer literal:

ulong bigOne = 2985825802805280508UL;

Anyway, back to the float and double types. Both of these types follow standards that have been around

for decades (see the IEEE 754 floating point arithmetic standard) and are a native part of many computers ’

circuitry and programming languages.

C# provides another type, though, that doesn’t conform to “ancient” standards. It’s the decimal type. This

type was built with the idea of using it for calculations involving money. Because it doesn’t have the same

hardware-level support that float and double have, doing math with it is substantially slower, but it

doesn’t have the same issues with losing accuracy that float and double have. This type allows for the

range ±1.0 x 10-28 up to ±7.9 x 1028, but has 28 or 29 significant digits. Essentially, a smaller range overall,

but much higher precision.

You can create variables using the decimal type in a way that is very similar to all of the other types that

we’ve talked about. Similar to the float type, you’ll need to put an ‘m’ or ‘M’ at the end of any literals that

you want to have be treated as the decimal type:

decimal number = 1.495m;
number = 14.4m;

Type Bytes Range Digits of Precision

float 4 ±1.0e-45 to ±3.4e38 7

double 8 ±5e-324 to ±1.7e308 15-16

decimal 16 ±1.0 × 10e-28 to ±7.9e28 28-29

36 Chapter 6 The C# Type System

The ‘bool’ Type

Finally moving away from number-based types, the bool type is used to store Boolean or “truth” values.

They can either be true or false. Boolean values are named after Boolean logic, which in turn was named

after its inventor, George Boole. At first glance, this type may not seem very useful, but in a few chapters

we’ll begin to talk about decision making (Chapter 10) and these will become very important.

You can create or assign values to a variable with the bool type like this:

bool itWorked = true;
itWorked = false;

Note that both true and false are considered Boolean literals.

In many other languages, bool is treated like a special case of an integral type, where 0 represents false

and 1 represents true. (In fact, in many of those languages, 0 represents false and anything but 0 is true.)

While the C# bool type uses 0 and 1 to store true and false behind the scenes, bool values and numbers

are completely separated. For example, you cannot assign 1 to a bool variable, or true to an integer.

While a bool type only keeps track of two states, and could theoretically be stored by a single bit, the bool

type uses up a whole byte, because single bytes are the smallest unit of memory that can be addressed.

The ‘string’ Type

The last type we are going to talk about here is the string type. Behind the scenes, this type is actually

very different from all of the other types that we’ve discussed so far, but we won’t get into the details

about why or how until Chapter 16.

The ‘string’ Type 37

The string type is used to store text of any length. The name “string” comes from the field of formal

languages, where a string is defined as a sequence of symbols chosen from a set of specific symbols. In

our case, that set of symbols is the set of all Unicode characters, which we discussed with the char type.

To create or assign values to string type variables, you follow the same pattern as all of the other types

we’ve seen. String literals are marked with double quotes:

string message = "Hello World!";
message = "Purple Monkey Dishwasher";

When you see this, you’ll probably think back to the Hello World program we made, because we saw a

very similar thing there. It turns out, when we used the line Console.WriteLine("Hello World!"); we were

using a string there as well!

In this section, we’ve covered a lot of types, and I know it can be a bit overwhelming. Don’t worry too

much. This chapter will always be here as a reference for you to come back to later.

There are a lot more to types than we’ve discussed here (beyond the built-in types) but this has given us a

good starting point. As we continue to learn C#, we’ll learn even more about the C# type system. The

following diagram shows all of the types we’ve discussed so far. You can see that we’re still missing a few

pieces, but we’ll pick those up as we go.

Try It Out!
Variables Everywhere. Create a new console application and in the Main method, create one

variable of every type we’ve discussed here. That’s 13 different variables. Assign each of them a value.

Print out the value of each variable.

38 Chapter 6 The C# Type System

Answers: (1) false. (2) true. (3) byte, short, int, long. (4) false. (5) uint. (6) float, double, decimal. (7) double.

(8) decimal. (9) Double quotes indicate a string literal. (10) bool.

Numeric Literal Variations

Earlier, we talked about the various integral types that C# supports, including int, long, uint, ulong, etc.

We also talked about how when we write out a number directly in code, it is called a literal. So for

example, the 3 below is an integral (integer) literal:

int x = 3;

Before we walk away from the subject of different variable types in C#, there are a few nifty tricks that we

can do when defining numeric literals that are worth mentioning.

Scientific Notation or E Notation
In many scientific and mathematical fields, you sometimes deal with gigantic or tiny numbers. As a

programmer, you will sometimes have to deal with these numbers as well. Consider a statement like this:

“There are 602,200,000,000,000,000,000,000 hydrogen atoms in a single gram of hydrogen.”

That very quickly becomes too big to want to write out. So scientists decided they could (and should) use

a different way to write that number out, which is called scientific notation. Using scientific notation, you

would write gigantic or tiny numbers with an exponent instead, and shift the decimal point around.

Instead of that earlier number, you might write 6.022×1023.

Even that isn’t so great in situations where you can’t clearly write an exponent as a superscript (which is

true in code, as well as other places). So in some cases, this same number is written as 6.022e23, or

6.022E23.

We are quickly veering outside of stuff that is truly relevant for this book, but it is worth mentioning that

floating point literals can be written out this way in your C# code, using a small e or a capital E:

double avogadrosNumber = 6.022e23; // The official name of this number.

Depending on the field you’re working in, you may or may not see this much. It’s a different notation that

can take a little getting used to. But I think it’s safe to say that if you’re in a field where this is common,

Try It Out!
Types Quiz. Answer the following questions to check your understanding. When you’re done, check

your answers against the ones below. If you missed something, go back and review the section that

talks about it.

1. True/False. The int type can store any possible number.

2. True/False. The char type is an integral type.

3. Order the following by how large of numbers they can store, from smallest to largest: short,

long, int, byte.

4. True/False. The byte type is a signed type.

5. Which can store higher numbers, int or uint?

6. What three types can store floating point numbers?

7. Which of the options in question 6 can store the largest numbers?

8. Which of the options in question 6 is considered the most precise?

9. In the following, should myVariable have the type int, char, or string, based on the literal

value on the right hand side? [type] myVariable = "8";

10. What type is used to store true or false values?

Numeric Literal Variations 39

you’ll probably get plenty of practice with converting to and from scientific notation, and if you’re not in a

field like this, you probably won’t ever have much of a need to write numbers like this in code.

Binary Literals
Like with scientific notation, there are certain programming scenarios in which it is easier to write out

your numbers in binary than in the normal decimal system.

Like with scientific notation, this doesn’t apply in all fields. You’re more likely to use this if you are dealing

with low-level things like device drivers and parsing network packets than if you’re making a non-

networked game or a simple data manipulation project. Depending on the type of projects you work on,

you may never use this, or you may use it frequently.

To write a binary literal, start your number with a 0b. For example:

int thirteen = 0b00001101;

There is no requirement to pad the number with leading 0’s, though you are allowed to do so, and is

somewhat common to show full, complete bytes.

Hexadecimal Literals
We’ve now talked about how to write things in base 10, which is the normal format. Base 10 has 10 total

digits (0 through 9). We have also talked about how to write values out that are in base 2, or binary, with

two total digits: 0 and 1.

The final way to write integer literals is by using base 16, or hexadecimal, often just called simply hex. With

a hexadecimal number, you have 16 different digits that you can use. You start at 0, and go through 9 like

the normal, standard decimal system. But then the next number greater than 9 is actually the number A.

Then B. Letters are used through F. At this point, you finally roll over to the next digit.

So for example, to count in hexadecimal (base 16) you would go: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10,

11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, 1B, 1C, 1D, 1E, 1F, 20, 21… F8, F9, FA, FB, FC, FD, FE, FF, 100, 101…

To write out a literal in hexadecimal, you preface it with 0x.

int theColorMagenta = 0xFF00FF;

This example points out one of the times that hexadecimal is sometimes used: to represent colors. On a

computer, colors are frequently represented as a byte for the red, green, and blue (and sometimes

alpha/transparency) channels. Two hexadecimal “characters” cover a full byte, and so these are frequently

used to indicate how bright or how “on” each color channel is, with 00 being completely off and FF being

completely on.

In addition to colors, hex is also frequently used when working with low-level byte manipulation and

display.

The 0x notation for a hexadecimal number is incredibly common. If you haven’t seen it around before,

keep your eyes open. Now that you know what it is and what to look for, you’ll start seeing it pop up in

random places on your computer.

All integer literals—normal, binary, or hexadecimal—will be treated as an int if the value can fit into an

int, then a uint if that fails, then a long, then a ulong. (You can put the ‘U’ and ‘L’ characters at the end of

any integer literal to automatically promote them to the bigger type.) If you want the literal to fit in a

smaller type, like a byte or a short, you will need to cast to that type (Chapter 9).

40 Chapter 6 The C# Type System

The Digit Separator
The last trick is that of the digit separator. When writing long numbers, humans frequently use a special

separator character to break apart a large number to make it easier to read and understand. For example,

in the USA and other parts of the world, a comma is often used to separate blocks of digits (e.g.,

562,988,142) though other parts of the world use periods (e.g., 562.988.142) or spaces (e.g., 562 988 142).

C# 7 has taken a page from many other languages, and has chosen to use the underscore character (_) to

be a digit separator for your numeric literals:

int bigNumber = 1_000_000_000;

You don’t need do use digit separators. Ever. This is a C# 7 feature, so C# developers went for 15 years

without having this feature and survived. But it can make numbers more readable in some instances.

Interestingly, the digit separator can go almost anywhere in your number. All of the following are allowed:

int a = 123_456_789;
int b = 12_34_56_78_9;
int c = 1_2__3___4____5;
double d = 1_000.000_001;

You can see that you have a lot of flexibility in terms of how you arrange your digit separators. That ’s by

design. The purpose of the digits separator is to allow the programmer to make numbers easier to read

and understand. Different scenarios will dictate different schemes.

For example, you could use the digit separator to separate different bytes in a binary literal:

long x = 0b0010010_00100110_00001101_01011111;

Or with the hex literals, you might use the digit separator to demarcate related chunks:

uint color = 0xFF_FF_D1_00;

But there are a few restrictions on where you can place a digit separator. These restrictions generally can

be summed up with the principle that you can’t place them at the start or end of a literal, nor can it be

immediately before or after any special character or symbol within a literal.

These special characters or symbols include the decimal point, the e in exponential notation for floating

point types, the 0x and 0b used for hex and binary literals, or the U’s, L’s, F’s, and M’s that indicate specific

types (unsigned, long, floats, decimals). So none of the following will actually compile:

// COMPILER ERRORS WITH THE DIGIT SEPARATOR!
int a = _1; // Can't start with an underscore.
int b = 1_; // Can't end with an underscore.
int c = 0_b_10101; // Can't place an underscore before or after the 'b' in a binary literal...
int d = 0_xFFDDA0; // ... or the 'x' in a hex literal.
double e = 1_e3; // Can't place one before or after the 'e' in exponential notation.
float f = 3.14_f; // Or around the characters used to mark the type, like the 'f' here...
ulong g = 1_U_L; // ... or the U or L here.
double h = 1_.3; // Can't place an underscore immediately before or after the decimal point.

Type Inference

As we’ve seen, in C#, every variable has a type. This type is a key part of a variable. Things of one type

can’t go into variables of another type without being converted over to it first. Because of that, type

names like int and string will appear all across your code.

Type Inference 41

The C# compiler is very smart, and has a powerful feature within it called type inference. Type inference is

the idea that the compiler can infer or determine the type of something based on clues in the code

around it.

The compiler will use type inference to make your life easier. We’ll see type inference come up again in

the future, but our first encounter is here with the var keyword.

A variable can be declared using the var keyword, instead of one of the other types we’ve talked about.

For example:

var message = "Hello World!";

This code is identical to the version earlier in the chapter that explicitly stated that it was a string.

The compiler is smart enough to pick up on the clues around it that this variable must be a string. In

particular, this line of code is assigning a string literal (“Hello World!”) to the variable, so that really leaves

string as the only option here.

It’s important to point out that var does not mean anything can go in the variable. It is not a catch-all.

Types are important to C#, and var doesn’t erase all of that.

In Visual Studio, in places where you use the var keyword, you can use the mouse and hover over the var.

The popup that appears when you do this will state the type that it has inferred.

There are some definite advantages and drawbacks to var that are worth pointing out. In terms of

advantages, var is a very short name, meaning there are few characters to type. Every other type will be

as long or longer. This is actually magnified greatly when we start defining our own types in a few

chapters. Our own types tend to have longer names. (12 or 20 characters is fairly normal, and 30 or 40 is

not uncommon either.) So the brevity is a big selling point.

The real drawback to var is that it can reduce code clarity, which is a big deal. The var message example

doesn’t illustrate this very well, but there are plenty of scenarios where the compiler can easily infer the

right type, but where the human programmer has a much harder time. Just because the compiler can

infer the correct type does not necessarily mean you should make humans infer it as well.

Different programmers have wildly different takes on if and when to use var. Some programmers feel you

should use var whenever you can. Others banish it from their code entirely. Others will only allow it in

places where a human can quickly and clearly infer the correct type. These are largely personal

preferences. There is not a definitive correct answer.

In this book, I’m going to avoid var when possible. That is because there is no compiler in the book to

help you infer the types. To eliminate confusion, I will use specific named types.

7
7 Basic Math

With a basic understanding of variables behind us, we’re ready to get in to some deeper material: math.

This math is all pretty easy. The basic arithmetic you learned in elementary school. Computers love math.

In fact, it is basically all they can do. (Well, that and push bytes around.) But they do it incredibly fast.

In this chapter, we’ll cover how to do basic arithmetic in C#. We’ll start with addition and subtraction,

move up through multiplication and division, a lesser known operator called the remainder operator,

positive and negative numbers, operator precedence and associativity, and conclude with some

compound assignment operators, which do math and assign a value all at once.

Operations and Operators

Let’s start with a quick introduction to operations and operators. Whether you know it or not, you’ve been

working with operations since you first learned how to add. In math, an operation is a calculation that

takes two (usually) numbers and does something with them to get a result. Addition is an example of an

In a Nutshell
 Arithmetic in C# is very similar to virtually every other programming language out there.

 Addition: a = 3 + 4;

 Subtraction: b = 7 - 2;

 Multiplication: c = 4 * 3;

 Division: d = 21 / 7;

 The remainder operator (‘%’) gets the remainder of a division operation like this: e = 22 % 7; In

this case, the variable e will contain the value 1.

 You can combine multiple operations into one, and use other variables too: f = 3 * b - 4;

 Operator precedence (order of operations) and operator associativity are rules that govern

which operations happen before others in an expression that contains multiple operations.

These rules can be overridden by grouping things in parentheses.

 Compound assignment operators (+=, -=, /=, *=, and %=) do the desired operation and assign

it to the variable on the left. So for instance a += 3; is the same as a = a + 3;

 Chapter 9 covers additional math stuff.

Addition, Subtraction, Multiplication, and Division 43

operation, as is multiplication. Operations usually have two pieces to them: an operator (like the ‘+’ sign)

and operands. Operand is just a fancy name for the thing that the operator works on. So if we look at the

operation 2 + 3, the numbers 2 and 3 are operands.

Interestingly, not all operators require two operands. Those that do are called binary operators. These are

probably the ones you are most familiar with. We’ll also see some that only need one operand. These are

called unary operators. C# also has an operator that requires three operands. It’s a ternary operator.

Because of what it does, it won’t make sense to discuss it yet. We’ll look at it in Chapter 10.

Addition, Subtraction, Multiplication, and Division

Doing the basic operations of addition, subtraction, multiplication, and division is pretty straightforward.

Let’s start with a simple math problem. The following code adds the numbers 3 and 4 and stores it into

the variable called a:

int a = 3 + 4;

The same thing works for subtraction:

int b = 5 - 2;

While both of the above examples show doing math on the same line as a variable declaration (which is

why we see the variable’s type listed), all of these operations that we’ll look at can be done anywhere, not

just when a variable is first declared. So this would work too:

int a; // Declaring the variable a.
a = 9 - 2; // Assigning a value to a, using some math.
a = 3 + 3; // Another assignment.

int b = 3 + 1; // Declaring b and assigning a value to b all at once.
b = 1 + 2; // Assigning a second value to b.

Remember that a variable must be declared before you can use it, as shown in the above code. You can

also use any previously existing variables in your math. You don’t just have to use numbers:

int a = 1;
int b = a + 4;
int c = a - b;

Don’t rush by that last part too quickly. The fact that you can use variables on the right hand side of an

equation is how you’ll be able to calculate one thing based on another, step-by-step. As your program is

running, the computer will figure out the result of the calculation on the right side of the equals sign and

stick that value in the variable on the left.

You can also chain many operations together on one line:

int result = 1 + 2 - 3 + 4 - 5 + a - b + c - d;

Multiplication and division work in the exact same way, though there’s a few tricks we need to watch out

for if we do division with integers. We’ll look at that more in Chapter 9, but for now, we’ll just use the float

or double type for division instead of integers. The sign for multiplication in C# is the asterisk (*) and the

sign for division in C# is the forward slash (/).

float totalCost = 22.54f;
float tipPercent = 0.18f; // Remember, this is the same as 18%
float tipAmount = totalCost * tipPercent;

44 Chapter 7 Basic Math

double moneyMadeFromGame = 100000;
double totalProgrammers = 4;
double moneyPerPerson = moneyMadeFromGame / totalProgrammers; // We're rich!

Below is a more complicated example that calculates the area of a circle based on its radius.

// The formula for the area of a circle is pi * r ^ 2
float radius = 4;
float pi = 3.1415926536f; // The 'f' makes it a float literal instead of a double literal.
float area = pi * radius * radius;

// Using the + operator with strings results in "concatenation".
Console.WriteLine("The area of the circle is " + area + ".");

In the above code, we have variables for the radius of a circle, the value of the number π, and the area,

which we calculate using a standard formula from geometry class. We then display the results.

Notice that we can use the ‘+’ operator with strings (text) and numbers. This is a cool feature of C#. It

knows that you can’t technically add a string and a number in a mathematical sense, but there is an

intelligent way of handling it. It knows that it can turn the number into a string (the text representation of

the number) and then it knows of a way to add or combine strings together: concatenation. It sticks one

piece of text at the end of the other to create a new one. If you run this code, you will see that the

program outputs, “The area of the circle is 50.26548.”

By the way, back in Chapter 3, we defined what a statement was. At this point, it is worth defining another

related term: expression. An expression is something that evaluates to a single value. Something like 3 + 4

is an expression, because it can get turned into the value 7. (3 * 2 - 17 + 8 / 4.0) is also an expression. It’s

quite a bit more complex, but it can still be evaluated to a single value. You’ll see as we go through this

book that expressions and statements can get very large.

The Remainder Operator

Do you remember in elementary school, not too long after you first learned division, how you always did

things like: “23 divided by 7 is 3 remainder 2”? Well in programming, calculating the remainder has its own

operator. This operator is called the remainder operator, though it is sometimes called the modulo

operator, or mod for short. This operator only gives you back the remainder, not the division result. The

sign for this operator is the percent sign (‘%’). So it is important to remember that in C#, ‘%’ does not

mean “percent,” it means “get the remainder of.”

Try It Out!
Area of a Triangle. Following the example above for calculating the area of a circle, create your own

program that calculates the area of a triangle. The formula for this is:

𝐴 =
1

2
𝑏ℎ

A is the area of the triangle, b is the base of the triangle, and h is the height of the triangle.

You will want to create a variable in your program for each variable in the equation. Print out your

results. Run through a few different values for b and h to make sure that it is working. For instance,

check to make sure that if b is 5 and h is 6, the result is 15, and that if b is 1.5 and h is 4, you get 3.

Unary ‘+’ and ‘-‘ Operators 45

At first glance, the remainder operator seems like an operator that’s not very useful, but if you know how

to use it, you will find ways to put it to use. For example, the remainder operator can be used to

determine if a value is a multiple of another value. If it is, then the remainder operator will give us 0.

int remainder = 20 % 4; // This will be 0, which tells us 20 is a multiple of 4.

Unary ‘+’ and ‘-‘ Operators

Let’s now turn our attention to a couple of unary operators. Remember, these only have one operand that

they work on. You’ve already sort of seen these operators, but it is worth going into them a little bit more.

The two operators that we want to talk about here are the unary “+” and unary “-” operators. (We’re using

the same sign as addition and subtraction, but it’s technically a different operator.) You have probably

seen these before in math. They indicate whether the number right after them is positive or negative.

// These are the unary '+' and '-' operators. They only work on the number right after them.
int a = +3;
int b = -44;

// These are the binary '+' and '-' operators (addition and subtraction) that operate on two numbers.
int a = 3 + 4;
int b = 2 - 66;

The unary “+” and unary “-“ indicate the sign of the number (+ or -) that they are in front of. Or looking at it

a different way, the “+” operator will take the value immediately after it and produce a new value that is

exactly equal to it, while the “-“ operator will take the value immediately after it and produce the negative

of it as a result. (So b = -a; takes the value in a, creates a negative version of it, and stores it in b.)

In Depth
Remainders Refresher. I know some people haven’t done much with remainders since elementary

school, so as a refresher, remainders work like this. For 23 % 7, we know that 7 goes in to 23 a total of

3 whole times. But since 7 * 3 is 21, there will be two left over. In this case, 2 is our remainder.)

Say you have 23 apples, and 7 people want the apples, this means everyone gets 3, and there are 2

remaining, or left over. This little example would look like this in C#:

int totalApples = 23;
int people = 7;
int remainingApples = totalApples % people; // this will be 2.

Try It Out!
Remainders. Create a simple program to write out the results of a division operation. Create two

integer variables called a and b. Create a third integer variable called quotient (the result of a

division) that stores the result of the division of a and b, and another integer variable called

remainder that stores the remainder (using the % operator). Write out the results using

Console.WriteLine or Console.Write to write out the results in the following form: if a = 17 and b = 4,

print the following:

 17/4 is 4 remainder 1

For bonus points check your work. Create another variable and store in it b * quotient + remainder.

Print this value out as well. This value should be the same as a in all cases.

Edit your code to try multiple values for a and b to ensure it’s working like it should.

46 Chapter 7 Basic Math

Operator Precedence and Parentheses

Perhaps you remember operator precedence, a.k.a. “order of operations” from math classes. This is the

idea that when many operators appear mixed together in a single expression, some should be done

before the others. This same thing applies in the programming world. All C# operators have a certain

precedence that determine the order you do things in. C# follows the same rules that you learned in

math class. That means, for example, that multiplication, division, and remainder operations happen

before addition and subtraction.

If you want your operations to happen in a different order than the default order of operations, you can

modify it by enclosing the operations you want done first in parentheses. For instance:

// Some simple code for the area of a trapezoid (http://en.wikipedia.org/wiki/Trapezoid)

double side1 = 5.5;
double side2 = 3.25;
double height = 4.6;

double areaOfTrapezoid = (side1 + side2) / 2 * height;

In math, if you have an especially complicated formula with lots of parentheses, sometimes square

brackets (‘[‘ and ‘]’) and curly braces (‘{‘ and ‘}’) are used as “more powerful” parentheses. In C#, like most

programming languages, that’s not how it’s done. Instead, you put in multiple sets of nested parentheses

like below. Be careful with multiple sets of parentheses to ensure everything lines up correctly.

// This isn't a real formula for anything. I'm just making it up for an example.
double a =3.2;
double b = -4.3;
double c = 42;
double d = -91;
double e = 4.343;

double result = (((a + b) * (c - 4)) + d) * e;

Operators also have a concept called associativity which indicate how multiple operations of the same

precedence are grouped together. What value will the variable x below contain?

int x = 5 - 3 - 1; // Is this (5 – 3) – 1`, or 5 – (3 – 1)?

Subtraction is left associative (or left-to-right associative), which means you work from left to right. (5 – 3)

– 1 is the correct way to process this, so x will have a value of 1. The opposite of left associativity is right

(or right-to-left) associativity.

C# stays true to mathematical rules of precedence and associativity, so there aren’t a lot of surprises in

this regard. In the very back of the book, in the Tables and Charts section, the Operators table shows all

C# operators, as well as their precedence and associativity.

Why the ‘=‘ Sign Doesn’t Mean Equals

I mentioned in Chapter 5 that the ‘=‘ sign doesn’t mean that the two things equal each other. Not directly.

Instead, it is an assignment operator, meaning that the stuff on the right gets calculated and put into the

variable on the left side of the ‘=‘ sign.

Watch how this works:

int a = 5;
a = a + 1; // the variable a will have a value of 6 after running this line.

Compound Assignment Operators 47

If you’ve done a lot of math, you may notice how strange that looks. From a math standpoint, it is

impossible for a variable to equal itself plus 1. It’s nonsense.

But from a programming standpoint, it makes complete sense, because what we are really saying is, “take

the value currently in a (5), add one to it (to get 6), and assign that value back into the variable a.” So after

running that line, we’ve taken a and added one to it, replacing the old value of 5.

It’s important to remember that the ‘=’ sign indicates assignment, rather than equality.

Compound Assignment Operators

It turns out that what I just described (taking the current value of a variable, making a change to it, and

updating the variable with the new value) is very common. So much so that there is a whole set of other

operators that make it easy to do this. These operators are called compound assignment operators,

because they perform a math function and assign a value all at once.

For instance, here’s the compound assignment operator that does addition:

int a = 5;
a += 3; // This is the same as a = a + 3;

There are also equivalent ones for subtraction, multiplication, division, and the remainder operator:

int b = 7;
b -= 3; // This is the same as b = b - 3; At this point b would be 4.
b *= 5; // This is the same as b = b * 5; At this point b would be 20.
b /= 4; // This is the same as b = b / 4; At this point b would be 5.
b %= 2; // This is the same as b = b % 2; At this point b would be 1.

We’ve covered a lot of math, and there’s still more to come. But before we dig into even more math, we’re

going to take a little break in the next chapter and do something a little different. We’ll look at how to

allow the user to type in stuff for you to use in your program. We’ll come back and discuss more math

related things in Chapter 9.

8
8 User Input

In this short chapter, we’ll take a look at two additional pieces of code that we’ll need to create a simple

program that has some actual value.

We’ll first learn how to get input from the user through the console window, then how to convert between

the data types that we learned about in Chapter 6, so that you can change string-based user input to

anything else.

User Input from the Console

We can get input from the user by using a statement like the following:

string whatTheUserTyped = Console.ReadLine();

This looks a lot like Console.WriteLine, which we’ve been using up to this point. Both ReadLine and

WriteLine are methods. Methods are little blocks of reusable code. We’ll get into methods in detail later

(Chapter 15). For now, all we need to know is that we can use them to make things happen—read and

write lines of text in this particular case. Console.ReadLine() will grab an entire line of text from the user

(up until the <Enter> key is pressed) and place it in the whatTheUserTyped variable.

Converting Types

But simply grabbing the user’s input and sticking it in a string variable frequently doesn’t get the input

into the right data type for our needs. For instance, what if we need the user to type in a number? When

we put it into a string, we can’t do math with it. We’ll need to convert it to the right type of data first. To

convert to the right data type, we’re going to use another method that converts any of the built-in data

types to another. For example, to convert this string to an integer, we do this:

In a Nutshell
 You can get input from the user with Console.ReadLine();

 Convert it to the type you need with various methods from the Convert class. For example,

Convert.ToInt32 converts to the int type, Convert.ToDouble converts to the double type,

etc.

A Complete Sample Program 49

int aNumber = Convert.ToInt32(whatTheUserTyped);

There are similar methods for each of the other data types. For instance, ToInt16 is for the type short,

ToBoolean is for the type bool, ToDouble is for double, and so on. The one for the float type is tricky:

ToSingle. Contrasted with the double type, the float type is said to have “single” precision.

These Convert.ToWhatever methods convert things besides just strings. Any of the built-in types can be

converted to any of the other built-in types. For instance, you could do the following to change a double

to a float, or a bool to an int using the code below:

bool b = false;
int i = Convert.ToInt32(b);

double d = 3.4;
float f = Convert.ToSingle(d);

A Complete Sample Program

We now know enough to make a program that does something real: getting information from the user,

doing basic stuff with it, and printing the results. Our next step is to actually make a real program. Even if

you’ve been skipping the Try It Out! sections, take a few minutes and do the one below. While most of

these Try It Out! sections have example code online, as I described in the Introduction, I’ve actually put my

sample code for this particular problem here in the book as well.

Spend some time and actually write the program below. When you’ve got it complete, or if you get hung

up on it, go down and compare what you’ve got with my code below. (Just because yours is different from

the code below, doesn’t mean it is wrong. There are always more than one way to get things done.)

Once you’ve given the program above a shot, take a look at my code to accomplish this task below:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace CylinderCalculator

Try It Out!

Cylinders: A Complete Program. We’re going to create a simple program that will tell the user

interesting information about a cylinder. A cylinder is usually defined by a height (h) and radius of the

base (r). Create a program that allows the user to type in these two values. We’ll do some math with

those values to figure out the volume of that cylinder, as well as the surface area. (Don’t worry about

the formulas; I’ll provide them to you.) The program will then output the results to the user.

The formula for the volume of a cylinder is this:
𝑉 = 𝜋𝑟2ℎ

The formula for the surface area of a cylinder is this:
𝑆𝐴 = 2𝜋𝑟(𝑟 + ℎ)

In both of these equations, r is the radius of the cylinder, h is the height of the cylinder, and of

course, π≈ 3.1415926.

50 Chapter 8 User Input

{
 class Program
 {
 static void Main(string[] args)
 {
 // Print a greeting message. After all, why not?
 Console.WriteLine("Welcome to Cylinder Calculator 1.0!");

 // Read in the cylinder's radius from the user
 Console.Write("Enter the cylinder's radius: ");
 string radiusAsAString = Console.ReadLine();
 double radius = Convert.ToDouble(radiusAsAString);

 // Read in the cylinder's height from the user
 Console.Write("Enter the cylinder's height: ");
 string heightAsAString = Console.ReadLine();
 double height = Convert.ToDouble(heightAsAString);

 double pi = 3.141592654; // We'll learn a better way to do PI in the next chapter.

 // These are two standard formulas for volume and surface area of a cylinder.
 // You can find them on Wikipedia: http://en.wikipedia.org/wiki/Cylinder_(geometry)
 double volume = pi * radius * radius * height;
 double surfaceArea = 2 * pi * radius * (radius + height);

 // Now we output the results
 Console.WriteLine("The cylinder's volume is: " + volume + " cubic units.");
 Console.WriteLine("The cylinder's surface area is: " + surfaceArea + " square units.");

 // Wait for the user to respond before closing...
 Console.ReadKey();
 }
 }
}

Let’s look at this a little at a time. The first part, with the using directives, is all template code that we

discussed in Chapter 3.

The first thing we add is a simple welcome message to the user.

// Print a greeting message. After all, why not?
Console.WriteLine("Welcome to Cylinder Calculator 1.0!");

This is basically just the Hello World program we did earlier. No surprises here.

Next, we prompt the user to enter the cylinder ’s radius and height and turn them into the right data type

using the things we learned in this chapter:

// Read in the cylinder's radius from the user
Console.Write("Enter the cylinder's radius: ");
string radiusAsAString = Console.ReadLine();
double radius = Convert.ToDouble(radiusAsAString);

// Read in the cylinder's height from the user
Console.Write("Enter the cylinder's height: ");
string heightAsAString = Console.ReadLine();
double height = Convert.ToDouble(heightAsAString);

The first line is just simple output. We then read in the user’s text and store it in a string. The third line

uses more stuff we learned in this chapter and turns it into the correct data type. I used the double type,

but float or decimal would accomplish the same task with no meaningful difference. (You would just use

Convert.ToSingle or Convert.ToDecimal instead.) We repeat the process with the cylinder’s height.

Escape Characters 51

We then define the value of PI and use the math operations from the last chapter to calculate the volume

and surface area of the cylinder.

double pi = 3.141592654; // We'll learn a better way to do PI in the next chapter...

// These are two standard formulas for volume and surface area of a cylinder.
// You can find them on Wikipedia: http://en.wikipedia.org/wiki/Cylinder_(geometry)
double volume = pi * radius * radius * height;
double surfaceArea = 2 * pi * radius * (radius + height);

Finally, we output the results to the user, again using stuff from our first Hello World program:

// Now we output the results
Console.WriteLine("The cylinder's volume is: " + volume + " cubic units.");
Console.WriteLine("The cylinder's surface area is: " + surfaceArea + " square units.");

And finally, we end the program by waiting for the user to press any key:

// Wait for the user to respond before closing...
Console.ReadKey();

And there we have it! Our first useful C# program!

Escape Characters

When working with strings, we often run into things called escape characters. Escape characters (or escape

sequences) are special sequences of characters that have a different interpretation than face value. These

escape characters are designed to make it easy to represent things that don’t normally appear on the

keyboard, or that the compiler would otherwise interpret as a part of the language itself.

For example, how could you print out an actual quotation mark character? Console.WriteLine("""); won’t

work. The first quotation mark indicates the beginning of the string, and the compiler will interpret the

middle one as the end of the string. That leaves the third quotation mark, which it can’t make sense of.

To handle this, we can take advantage of escape characters. In C#, you start an escape sequence with the

backslash character (‘\’). Inside of a string literal, you can use a backslash, followed by a quotation mark, to

get it to recognize it as a quotation mark that belongs inside of the string, as opposed to one that

indicates the end of the string:

Console.WriteLine("\"");

It is worth pointing out that even though \" is visually two characters, it is treated as only one.

C# has many different escape characters that you’ll find useful. For example, \t is the tab character, and

\n is the newline character. You can see how this works in the following example:

Console.WriteLine("Text\non\nmore\nthan\none\nline.");

This will print out:

Text
on
more
than
one
line.

What happens if you want to print out an actual backslash character? By default, the computer will try to

take \ and combine it with the next letter to represent an escape character, since it marks the beginning of

an escape sequence. To print out the backslash character, you will need to use two backslashes:

52 Chapter 8 User Input

Console.WriteLine("C:\\Users\\RB\\Desktop\\MyFile.txt");

This will print out:

C:\Users\RB\Desktop\MyFile.txt

If you find that all of these extra slashes are kind of annoying, you can put the ‘@’ symbol before the text

(called a verbatim string literal) which tells the computer to ignore escape characters in the string. The

following line is equivalent to the previous one:

Console.WriteLine(@"C:\Users\RB\Desktop\MyFile.txt");

String Interpolation

It’s common when you display something to the user to mix together text with some code. Earlier in this

chapter, we did this by concatenating the strings and code together with a “+”:

Console.WriteLine("The cylinder's volume is: " + volume + " cubic units.");

C# 6.0 introduced a feature called string interpolation. This feature lets you write this same thing in a

much more concise and readable way:

Console.WriteLine($"The cylinder's volume is: {volume} cubic units.");

String interpolation requires two steps. First, before the string, place a “$”. This tells the C# compiler that

this isn’t just a normal string. It’s one that has code embedded within it that needs to be evaluated. Within

the string, when you want to use code, you simply surround it with curly braces.

This translates to the same code as our first pass, but this is usually more readable, so it ’s usually

preferred. The curly braces can contain any valid C# expression. It ’s not limited to just a single variable.

That means you can do things like perform some simple math, or call a method, etc. You’ll even get Visual

Studio auto-completion and syntax highlighting inside the curly braces.

There’s obviously a practical limit to how much you can stuff inside the curly braces before it becomes

unreadable. At some point, the logic gets complicated and long enough that you lose track of how it ’s

being formatted. At that point, it’s better to pull the logic out onto a separate line and store it in a variable.

9
9 More Math

We’re back for Round 2 of math. There’s so much math that computers can do—in fact, it is all computers

can do. But this will be our last math-specific chapter. We’ll soon move on to much cooler things.

There are still quite a few things we need to discuss. The things we’re going to talk about in this chapter

are not very closely related to each other. Each section is its own thing. This means that if you already

know and understand one topic, you can just jump down to the next.

Here are the basic things we’re going to discuss in this chapter. We’ll start by talking about doing division

with integers (“integer division”) and an interesting problem that comes up when we do that. We’ll then

talk about converting one type of data to another (called typecasting or simply casting). Next we’ll talk

about dividing by zero, and what happens in C# when you attempt this. We’ll then talk about a few cool

In a Nutshell
 Division with integer types uses integer division; fractional leftovers are discarded.

 Casting can convert one type to another type. Many types are implicitly cast from narrow

types to wider types. Wider types can be explicitly cast to certain narrower types using the

type you want in parentheses in front: float a = (float)3.4445;

 Division by zero causes an error (Chapter 30) to be thrown for integer types, and results in

infinity for floating point types.

 NaN, PositiveInfinity, and NegativeInfinity are defined for the float and double types

(float.NaN or double.PositiveInfinity, for example).

 MaxValue and MinValue are defined for essentially all of the numeric types, which indicate

the maximum and minimum values that a particular type can contain.

 π and e are defined in the Math class, and can be accessed like this: float area = Math.PI *

radius * radius;

 Mathematical operations can result in numbers that go beyond the range of the type the

value is being stored in. For integral types, this results in truncation (and wrapping around).

For floating point types, it results in PositiveInfinity or NegativeInfinity.

 You can use the increment and decrement operators (++ and --) to add one or subtract one

from a variable. For example, after the following, a will contain a 4: int a = 3; a++;

54 Chapter 9 More Math

special numbers in C#, like infinity, NaN, the number e, and π. Then we’ll take a look at overflow and

underflow, and finish up with incrementing and decrementing numbers.

It’s probably not required to read all of this if you’re in a rush, but don’t skip the section on casting or the

section on incrementing and decrementing.

There’s a lot to learn here. Don’t worry if you don’t catch it all your first time. You can always come back

later. In fact, having some experience behind you will probably help make it clearer.

Integer Division

Let’s start this section off with an experiment to illustrate a specific problem that arises when you do

division with integers. In your head, figure out what 7 / 2 is. Got it? Your answer was probably 3.5, or

maybe 3 remainder 1. Both are correct.

Now go into C#, and write the following, and see what ends up in result:

int a = 7;
int b = 2;
int result = a / b;
Console.WriteLine(result);

The computer thinks it is 3! Not 3.5, or 3 remainder 1. What we’re doing isn’t the normal division you

learned in elementary school, but rather, a thing called integer division. In integer division, there’s no such

thing as fractional numbers.

Integer division works by taking only the integer part of the result, leaving off any fractional or decimal

part. This is true no matter how close it is to the next higher number. For example, 99 / 100 is 0, even

though from a math standpoint, it is 0.99, which is really close to 1.

Integer division is used when you do division with any of the integral data types, but not when you use the

floating point types.

For comparison purposes, check out the following piece of code:

int a = 7;
int b = 2;
int c = a / b; // results in 3. Uses integer division.

float d = 7.0f;
float e = 2.0f;
float f = d / e; // results in 3.5. Uses "regular" floating point division.

This gets especially tricky when you mix different data types like this:

int a = 7;
int b = 2;
float c = 4;
float d = 3;
float result = a / b + c / d;

Here, the a / b part becomes 3 (like before), but the c / d part does floating point division (the normal

division) and gives us 1.33333. Adding the two gives us 4.33333.

It is important to keep in mind that integer types will always use integer division. This may seem like a

problem, but you can actually leverage integer division to your advantage. The key is to remember when it

happens, so that you aren’t surprised by it.

If you don’t want integer division, you’ll need to convert it to floating point values, as we’ll discuss in the

next section.

Working with Different Types and Casting 55

Working with Different Types and Casting

Typically, when you do math with two things that have the same type (adding two ints for example) the

result is the same type as what you started with. But what if you do math with two different types? For

example, what if you add an int with a long? The computer basically only knows how to do math on two

things with the same type. So to get around this problem, types can be changed to different types on the

fly to allow the operation to be done. This conversion is called typecasting or simply casting.

There are two types of casting in C#. One is implicit casting, meaning it happens for you without you

having to say so, while the other is explicit casting, meaning you have to indicate that you want to do it.

Generally speaking, implicit casting happens for you whenever you go from a narrower type to a wider

type. This is called a widening conversion, and it is the kind of conversion that doesn’t result in any loss of

information. To help explain, remember that an int uses 32 bits, while a long uses 64 bits. Because of this,

the long type can hold all values that the int type can handle plus a whole lot more. Because of this, we

say that the int type is narrower, and the long type is wider. C# will happily cast the narrower int to the

wider long when it sees a need, without having to be told. It will implicitly cast from int to long.

So for instance, you can do the following:

int a = 4049;
long b = 284404039;
long sum = a + b;

When you do the addition operation, the value is pulled from a, implicitly cast into a long, and added to b.

This is a widening conversion. There’s no risk of losing information because the wider type (a long) can

always contain any value of the narrower type (the int). Because there’s no risk of losing data, the

conversion is safe to do.

Floating point types are considered wider than integral types, so when there’s a need, C# will convert

integral types to floating point types. For example:

int a = 7;
float b = 2; // this converts the integer value 2 to the floating point value 2.0

// The value in `a` below will get implicitly cast to a float to do this division because `b` is a float.
// This results in floating point division, rather than integer division.
float result = a / b;

On the other hand, there are also times that we will want to change from a wider type to a narrower type.

This is done with an explicit cast, meaning we need to actually state, “Hey, I want to turn this type into

another type.” Explicit casts usually turn a value from a wider type into a narrower type, which leaves the

possibility of data loss.

To do an explicit cast, you simply put the type you want to convert to in parentheses in front of the value

you want to convert. For instance, look at this example, which turns a long into an int:

long a = 3;
int b = (int)a;

Casting doesn’t just magically convert anything to anything else. Not all types can be converted to other

types. The compiler will give you an error if you are trying to do an explicit cast to something that it can’t

do. If you’re trying to cast from one thing to another and the compiler won’t allow it, the

Convert.ToWhatever() methods might still be able to make the conversion (Chapter 8).

56 Chapter 9 More Math

Casting is considered an operator (the conversion operator) like addition or multiplication, and fits into

the order of operations. Casting has a higher precedence than the arithmetic operators like addition and

multiplication. For example, if you have the following code:

float result = (float)(3.0/5.0) + 1;

The following will happen:

1. The stuff in parentheses is done first, taking 3.0 and dividing it by 5.0 to get 0.6 as a double.

2. The conversion/casting will be done next, turning the 0.6 as a double into a 0.6 as a float.

3. To prepare for addition with 0.6 as a float, and an integer 1, the 1 will be implicitly cast to a float.

4. Addition will be done with the 0.6 as a float and the 1.0 as a float, resulting in 1.6 as a float.

5. The 1.6 as a float will be assigned back into the result variable.

Division by Zero

You probably remember from math class that you can’t divide by zero. It doesn’t make sense

mathematically. Bad things happen. You rip holes in the fabric of space-time, sucking you into a vortex of

eternal doom, where you’re forced to turn trees into toothpicks using nothing but one of those plastic

sporks that you get at fast food restaurants.

So let’s take a moment and discuss what happens when you divide by zero in C#. If you divide by zero

with integral types, a strange thing happens. An exception is “thrown.” That’s a phrase we’ll come back to

in more detail later when we talk about exceptions (Chapter 30), but for now, it is enough to know that an

exception is simply an error. Your program will die instantly if you are running without debugging. On the

other hand, if you are running with debugging, Visual Studio will activate right at the line that the

exception occurred at, allowing you to attempt to fix the problem. (For more information on what to do if

this happens, see Chapter 48.)

Interestingly, if you are using a floating point type like double or float, it doesn’t crash. Instead, you’ll get

the resulting value of Infinity. Integer types don’t define a value that means Infinity, so they don’t have

this option. We’ll look at Infinity and other special numbers in the next section.

Infinity, NaN, e, π, MinValue, and MaxValue

Infinity
There are a few special values that are worth discussing. Let’s start off by looking at infinity. Both the

double and the float type define special values to represent positive and negative infinity (+∞ and -∞). In

the math world, doing stuff with infinity often results in some rather unintuitive situations. For example, ∞

+ 1 is still ∞, as is subtracting 1: ∞ - 1 = ∞.

To use these directly, you can do something like the following:

Try It Out!
Casting and Order of Operations. Using the above as an example, outline the process that will be

done with the following statements:

 double a = 1.0 + 1 + 1.0f;

 int x = (int)(7 + 3.0 / 4.0 * 2);

 Console.WriteLine((1 + 1) / 2 * 3);

If this is confusing, try putting the code into Visual Studio and running it. You can try breaking out

parts of it into different lines and debug it if you want. (Chapter 48 discusses debugging in depth.)

Overflow and Underflow 57

double a = double.PositiveInfinity;
float b = float.PositiveInfinity;

NaN (Not a Number)
NaN is another special value with the meaning “not a number.” Like infinity, this can come up when you

do something crazy, like ∞/∞. This can be accessed like this:

double a = double.NaN;
float b = float.NaN;

E and π
The numbers e and π are two special numbers that may be used frequently (or not) depending on what

you are working on. Regardless of how often you might use them, they ’re worth knowing about. You can

always do what we did a few chapters back, and create a variable to store those values, but why do that

when there’s already a pre-defined variable that does the same thing?

To use these, we’ll use the Math class. (We’re still going to talk about classes a lot more, starting in

Chapter 17.) You can do this with the following code:

double radius = 3;
double area = Math.PI * radius * radius;

// You'll likely find more uses for pi than e.
double eSquared = Math.E * Math.E;

We don’t need to create our own pi variable anymore, because it has already been done for us!

MinValue and MaxValue
Finally, let’s talk quickly about MinValue and MaxValue. Most of the numeric types define a MinValue

and MaxValue inside of them. These can be used to see the minimum or maximum value that the type

can hold. You access these like NaN and infinity for floating point types:

int maximum = int.MaxValue;
int minimum = int.MinValue;

Overflow and Underflow

Think about this. A short can have a maximum value of up to 32767. So what if we do this?

short a = 30000;
short b = 30000;
short sum = (short)(a + b); // The sum will be too big to fit into a short. What happens?

First of all, I should point out that when you do math with the byte or short type, it will automatically

convert them to the int type. So in the code above, I’ve had to do an explicit cast to get it back to a short.

Try out that code, and print out the sum variable at the end and see what you get.

Mathematically speaking, it should be 60000, but the computer gives a value of -5536.

When a mathematical operation causes something to go beyond the allowed range for that type, we get a

thing called overflow. What happens is worth paying attention to. For integer types (byte, short, int, and

long), the most significant bits (which overflowed) get dropped. This is especially strange, because the

computer then interprets it as wrapping around. This is why we end up with a negative value in our

example. You can easily see this happening if you start with the maximum value for a particular type (for

example, short.MaxValue) and adding 1 to it. You’ll end up at the minimum value.

58 Chapter 9 More Math

For the floating point types, things happen differently. Because they have PositiveInfinity and

NegativeInfinity defined, instead of wrapping around, they become infinity.

You actually have more control than what is described above. In Chapter 43 we’ll revisit this and flesh out

overflow a bit more.

Another similar condition called underflow that can occur sometimes with floating point types. Imagine

you have a very large floating point number. Something like 1,000,000,000,000. A float can store that

number. Now let’s say you have a very small number, like 0.00000001. You can store that as a float as

well. However, if you add the two together, a float cannot store the result: 1,000,000,000,000.00000001.

A float just simply cannot be that big and that precise at the same time. Instead, the addition would result

in 1,000,000,000,000 again. This is perhaps close enough for most things. But still, potentially valuable

information is lost. Floating point types have a certain number of digits of accuracy. Starting at the first

digit that matters, it can only keep track of so many other digits before it just can’t keep track of any more.

Underflow is not nearly as common as overflow; you may never encounter a time where it matters.

Incrementing and Decrementing

Perhaps you’ve noticed that lots and lots of times in this book, I’ve added 1 to a value. We’ve already seen

two ways of doing this:

int a = 3;
a = a + 1; // Normal addition operator, and then assign it to the variable.

And:

int a = 3;
a += 1; // The compound addition/assignment operator.

Here’s yet another way of adding 1 to a value:

int a = 3;
a++;

This is called incrementing, and “++” is called the increment operator. Before long, we’ll see many places

where we can use this.

As its counterpart, you can use “--” to subtract one from a number. This is called decrementing, and “--” is

called the decrement operator.

Incidentally, the “++” in the name of the well-known C++ programming language comes from this very

feature. C++ was designed to be the “next step” or “one step beyond” the programming language C, hence

the name C++. (C, C++, and Java all have the increment operator too.)

The increment and decrement operators can be written in one of two ways. You can write a++;, or you can

write ++a;. (Likewise, you can write a--; and --a;.) With the ++ at the end, it is called postfix notation, and

with it at the beginning, it is called prefix notation.

There’s a subtle difference between prefix and postfix notation. To understand the difference, it is

important to realize that this operation, like many others, “returns a value.” This is a phrase that we’ll

frequently see later on, but it is a concept we have already been working with. Take the addition operator,

for instance. When we do 2 + 1, the math happens and we’re left with a specific result (3).

As it happens, using the increment or decrement operators will also return a result, aside from just

modifying the variable involved. With postfix notation (a++;) the original value of a is returned. With prefix

notation (++a;) the new, incremented value is returned. Here’s an example:

Incrementing and Decrementing 59

int a = 3;
int b = ++a; // Both 'a' and 'b' will now be 4.

int c = 3;
int d = c++; // The original value of 3 is assigned to 'd', while 'c' is now 4.

a++ means, “give me the value in a, then increment a,” while ++a means, “increment a first, then give me

the resulting value.”

Using this operator to both modify a variable and return a result can be confusing. Even experienced

programmers often don’t readily remember the subtle differences between postfix and prefix notations

without looking it up. It is more common to split the logic across two lines, which sidesteps the confusion:

int a = 3;
a++;
int b = a;

int c = 3;
int d = c;
c++;

10
10 Decision Making

Any program that does real work will have to make decisions. These decisions are made based on

whether a particular condition holds true or not. Sections of code can be ran conditionally. The central

piece of decision making is a special C# statement called an if statement. We’ll start by looking at the if

statement, along with a few related statements. Then we’ll look at a variety of ways to compare two

values. We’ll then look at a few other special operators (“logical operators”) that help us make more

sophisticated conditions.

In a Nutshell
 Decision making is the ability for a program to make choices and do different things

conditionally.

 The if statement is the cornerstone of decision making in C#, and can optionally include else

statements and else-if statements to create more sophisticated behavior:

if(condition)
{
 // ...
}
else if(another condition)
{
 // ...
}
else
{
 // ...
}

 In an if statement’s condition block, you can use the operators ==, !=, <, >, <=, and >= to check

if something is “equal to”, “not equal to”, “less than”, “greater than”, “less than or equal to”, or

“greater than or equal to” the second side.

 The ! operator reverses Boolean types.

 The operators && (and operator) and || (or operator) allow you to check multiple things in an

if statement.

 if statements can be nested.

The ‘if’ Statement 61

The ‘if’ Statement

Imagine a simple scenario where a teacher is assigning grades and wants to know what grade a student

should get based on their test score.

Grading systems vary throughout the world, but a pretty typical one is to give out the letters A, B, C, D,

and F, where A represents a very high level of competence, F represents a failure, and B, C, and D

represent varying levels in between.

The basic process is for the teacher to take a look at the student’s score, and if it’s 90 or higher, the

student gets an ‘A’. If they’re lower than that, but still at 80 or higher, then they get a ‘B’, and so on, down

to a failing grade. In order to figure out what grade a student should get, you need to make decisions

based on some condition. We do things conditionally—meaning it only happens some of the time. We only

give some students A’s, while others get B’s, and others fail.

As we start talking about decision making, let’s go through the process of building a program that will

determine a student’s grade, based on their score.

Let’s start at the beginning. In C#, decision making will always start with an if statement. A simple if

statement can check if two things are equal, like the code below:

if(score == 100)
{
 // Code between the curly braces is only executed when the condition in the parentheses is true.
 Console.WriteLine("Perfect score!");
}

That should be fairly straightforward. There are a few parts to a basic if statement. We start off by using

the if keyword. Then in parentheses, we put the condition we’re checking for.

There are many ways to define a condition, but for now, we simply use the == operator. The == operator is

called the equality operator. It evaluates to true when the two things on each side are equal to each other.

We then use the curly braces (‘{‘ and ‘}’) to show a code block that should only be run when the condition

is true—the student’s score was 100, in this particular case.

So to put this in the context of a complete program, here is what this might look like in your code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace DecisionMaking
{
 class Program
 {
 static void Main(string[] args)
 {
 // Everything up here, before the if-statement will always be executed.
 int score;

 Console.WriteLine("Enter your score: ");
 string scoreAsText = Console.ReadLine();
 score = Convert.ToInt32(scoreAsText);

 if (score == 100)
 {
 // Code between the curly braces is executed when the condition is true.
 Console.WriteLine("Perfect score! You win!");

62 Chapter 10 Decision Making

 }

 // Everything down here, after the if-statement will also always be executed.
 Console.ReadKey();
 }
 }
}

Remember back in Chapter 7, that I said the “=” operator doesn’t mean equals, like we find in math?

Neither does the equality operator (“==”) that we see here, though it is much closer. In math, to say that

two things are equal is an assertion that the two are exactly equivalent to each other, just written in

different forms. The equality operator in C# is a little different, in that it is a check, or a query to see if two

things currently have the same value. If they do, the comparison evaluates to true, and if not, the

comparison evaluates to false.

The ‘else’ Statement

So what if you want to do something in one case, but otherwise, do something else? For instance, what if

you want to print out “You win!” if the student got 100, but “You lose!” if they didn’t? That’s easy to do

using an else block immediately after the if block:

if(score == 100)
{
 // This code gets executed when the condition is met.
 Console.WriteLine("Perfect score! You win!");
}
else
{
 // This code gets executed when it is not.
 Console.WriteLine("Not a perfect score. You lose.");
}

The thing to remember here (and use it to your advantage) is that one or the other block of code will be

executed, but not both. If it does one, it won’t do the other, but it will for sure do one of them.

‘else if’ Statements

You can also get more creative with if and else, stringing together many of them:

if(score == 100)
{
 Console.WriteLine("Perfect score! You win!");
}
else if(score == 99)
{
 Console.WriteLine("Missed it by THAT much."); // Get Smart reference, anyone?
}
else if(score == 0)
{
 Console.WriteLine("You must have been TRYING to get that bad of a score.");
}
else
{
 Console.WriteLine("Ah, come on! That's just boring. Next time get a more interesting score.");
}

In this code, one (and only one) of the blocks will get executed, based on the score.

While most of the if and else blocks that we’ve looked at so far have had only one statement in them,

that’s not a requirement. You can have as much code inside of each set of curly braces as you want.

Curly Braces Not Always Needed 63

Curly Braces Not Always Needed

So far, our examples have always had a block of code after the if or else statement, surrounded by curly

braces. If you have exactly one statement, then you don’t actually need the curly braces. So we could have

written the previous code like this:

if(score == 100)
 Console.WriteLine("Perfect score! You win!");
else if(score == 99)
 Console.WriteLine("Missed it by THAT much."); // Get Smart reference, anyone?
else if(score == 0)
 Console.WriteLine("You must have been TRYING to get that bad of a score.");
else
 Console.WriteLine("Ah, come on! That's just boring. Next time get a more interesting score.");

On the other hand, if you have multiple statements, you will always need the curly braces.

In a lot of cases, if it’s just a single line, it can be more readable to leave off the curly braces, which have a

tendency to add a lot of mental weight to the code. The code feels lighter without them.

It’s important to remember one maintenance problem when you leave off the curly braces. There’s a

danger that as you make changes to your code later on, you might accidentally add in the new lines and

forget to add the curly braces. This completely change the way the code is executed, as shown here:

if(score == 100)
 Console.WriteLine("Perfect score! You win!");
 Console.WriteLine("That's awesome!"); // Inadvertently executed every time.

Remember, whitespace doesn’t matter in C#, so even though that last statement looks like it belongs in

the if statement, it actually isn’t in there. The middle line will only be executed when the condition is met,

but the last line will always be executed, because it isn’t in the if statement.

Just be careful as you modify if statements so that you don’t make this mistake. If you’re adding a second

line to the the if statement, make sure you’ve also added in the curly braces as well.

Relational Operators: ==, !=, <, >, <=, >=

Let’s take a look at some better and more powerful ways to specify conditions. So far, we’ve only used the

== operator to check if two things are exactly equal, but there are many others.

The == operator that we just saw is one of many relational operators, which is a fancy way of saying “an

operator that compares two things.” There are several others.

For instance, the != operator checks to see if two things are not equal to each other. You use this in the

same way that we use ==, but it does the opposite:

if(score != 100)
{
 // This code will be executed, as long as the score is not 100.
}

Then there’s the > and < operators, which determine if something is greater than or less than something

else. These work just like they do in math:

if(score > 90)
{
 // This will only be executed if the score is more than 90.
 Console.WriteLine("You got an 'A'!");
}

64 Chapter 10 Decision Making

if(score < 60)
{
 // This will only be executed if the score is less than 60.
 Console.WriteLine("You got an 'F'. Sorry.");
}

Of course, you may have noticed that the code above isn’t exactly what we set out to do in the original

problem statement. We wanted to give an A if they scored at least 90. In the above code, 90 doesn’t result

in an A, because 90 is not greater than 90.

Which brings us to the last two relational operators >= and <=. These two mean “greater than or equal to”

and “less than or equal to” respectively.

if(score >= 90)
{
 // This will only be executed if the score is 90 or higher...
 // Subtly different than the above example, because it also picks up 90.
 Console.WriteLine("You got an 'A'!");
}

In math, we would use the symbols ≤ and ≥, but since those aren’t on the keyboard, C# and most other

programming languages will use <= and >= instead.

This gives us everything we need to write the full program we set out to do:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace DecisionMaking
{
 class Program
 {
 static void Main(string[] args)
 {
 int score;

 Console.Write("Enter your score: ");
 string scoreAsText = Console.ReadLine();
 score = Convert.ToInt32(scoreAsText);

 // This if-statement is separate from the rest of them. Not because of the blank
 // line between this statement and the next block, but because that starts all
 // over with a brand new if-statement.
 if (score == 100)
 Console.WriteLine("Perfect score! You win!");

 // This checks each condition in turn, until it finds the first one that
 // is true, at which point, it executes the chosen code block, then jumps down
 // to after the end of the whole if/else code.
 if (score >= 90)
 Console.WriteLine("You got an A.");
 else if (score >= 80)
 Console.WriteLine("You got a B.");
 else if (score >= 70)
 Console.WriteLine("You got a C.");
 else if (score >= 60)
 Console.WriteLine("You got a D.");
 else
 Console.WriteLine("You got an F.");

 Console.ReadKey();
 }

Using ‘bool’ in Decision Making 65

 }
}

Using ‘bool’ in Decision Making

Remember when we first discussed data types in Chapter 6 that I told you about the bool type, and that it

would turn out to be useful? We’re there now. You can use variables with the bool type in making

decisions; in fact, it is very common to do so. For instance, check out this block of code, which determines

if a player has enough points to pass the level:

int score = 45; // Ideally, this would change as the player progresses through the game.

int pointsNeededToPass = 100;

bool levelComplete;

if(score >= pointsNeededToPass)
 levelComplete = true;
else
 levelComplete = false;

if(levelComplete)
{
 // We'll be able to do more here later, as we learn more C#
 Console.WriteLine("You've beaten the level!");
}

Note that relational operators return or “give back” a bool value—meaning you can use a relational

operator like == or > to directly assign a value to a bool:

int score = 45; // Ideally, this would change as the player progresses through the game.

int pointsNeededToPass = 100;

// The parentheses below are optional.
bool levelComplete = (score >= pointsNeededToPass);

if(levelComplete)
{
 // We'll be able to do more here later, as we learn more C#
 Console.WriteLine("You've beaten the level!");
}

The ‘!’ Operator

For helping with conditions and conditional logic, C# also has the ‘!’ operator, which returns the logical

opposite of what is supplied to it. A true becomes a false, and a false becomes a true. For instance:

bool levelComplete = (score >= pointsNeededToPass);

if(!levelComplete) // If the level is NOT complete...
 Console.WriteLine("You haven't won yet. Better keep trying...");

Try It Out!
Even and Odd. In Chapter 7, we talked about the remainder operator (%). This can be used to

determine if a number is even or odd. If you take a number and divide it by 2 and the remainder is 0,

the number is even. If the remainder is 1, the number is odd. Write a program that asks the user for a

number and displays whether the number is even or odd.

66 Chapter 10 Decision Making

You can also combine this with all of the conditional operators that we’ve talked about, but the ! operator

has higher precedence than the relational operators, so it happens first. If you want to do the comparison

first and then negate it, you have to use parentheses. To illustrate:

if(!(score > oldHighScore))
{
}

// That's effectively the same as:
if(score <= oldHighScore)
{
}

Conditional Operators: && and || (And and Or)

There are a lot of ways your conditions could become more complicated. For instance, imagine you are

making a game where the player controls a spaceship that has both shields and armor, and the player

only dies when both shields and armor are gone. You will need to check both things, rather than just one.

Here’s where conditional operators come in to play. C# has an and operator, which looks like this: &&, and

an or operator that looks like this: ||. (The ‘|’ key is above the <Enter> key on most keyboards and

requires pushing <Shift>.) You can use these to check multiple things at once:

int shields = 50;
int armor = 20;

if(shields <= 0 && armor <= 0)
 Console.WriteLine("You're dead.");

This can be read as, “if shields are less than or equal to zero, and armor is less than or equal to zero.”

With the && operator, both parts of the condition must be true in order for the whole expression to be

true.

The || operator works in a similar way, though if either one is true, then the whole thing becomes true.

int shields = 50;
int armor = 20;

if(shields > 0 || armor > 0)
 Console.WriteLine("You're still alive! Keep going!");

One thing worth mentioning is that with either of these, the computer will do lazy evaluation. This means

that it won’t check the second part unless it needs to. So in the example above, the computer will always

check to see if shields is greater than 0, but it only bothers checking if armor is greater than 0 if shields is

less than or equal to 0.

You can combine lots of these together, and along with parentheses, make some pretty crazy conditions.

Anything you want is possible, though readability may quickly become an issue. Which leads us to the

next section, which might provide an alternative approach that may be more readable.

Nesting If Statements

You can also put if statements (and if-else statements) inside of other if statements. This is called nesting

them. For example:

if(shields <= 0)
{
 if(armor <= 0)
 Console.WriteLine("Your shields and armor are both zero! You're dead!");
 else

The Conditional Operator ?: 67

 Console.WriteLine("Shields are gone, but armor is keeping you alive!");
}
else
{
 Console.WriteLine("You still have shields left. The world is safe.");
}

It doesn’t have to end there, either. You could nest if statements inside of if statements inside of if

statements inside of even more if statements. However, the fact that it is doable doesn’t necessarily make

it a good idea. Lots of nesting means the code is less readable. Use it when there’s a need for it (and there

will be) but don’t overdo it.

The Conditional Operator ?:

Now that we know a little about logic, I want to bring up another operator in C#. Remember when we first

talked about operators in Chapter 7, how we discussed unary and binary operators? Unary operators only

work on one thing, (for example, the negative sign) while binary operators work on two things (addition or

subtraction). I’m going to introduce a new operator, which is a ternary operator. This means it operates on

three parts. This might seem kind of strange to you. It probably ought to. It’s not a very normal thing to

see in math or programming (though this specific operator is in many languages).

This operator is called the conditional operator, and it works quite a bit like an if-else statement. It uses

the ? and : characters like this:

(boolean condition) ? value if true : value if false

A practical example might look like this:

Console.WriteLine((score > 70) ? "You passed!" : "You failed.");

Everything that you do with the conditional operator could have been done without it. But it is a nice

shorthand way to do things that can be very readable. On the other hand, it can also reduce readability,

so it isn’t always a better choice. Just an alternative that you may find helpful.

Try It Out!
Positive or Negative? One thing that a lot of people have trouble with is doing multiplication when

negative numbers are involved. They typically run into trouble when trying to figure out if the result

should be positive or negative.

You’re going to write a program to help them! But there’s a catch. In this example, you’re banned from

actually doing the multiplication to figure out the answer. (It would be all too easy to take two

numbers and multiply them, and then check if the result is greater than or less than zero.) Instead,

you will follow the same logic that a human has to follow to get your answer.

When you’re multiplying two numbers together, if the two numbers have the same sign (both positive

or both negative) the result is positive. If they have different signs, the result is negative.

Write a program that asks the user for two numbers and then, using the rule above, prints out

whether the result should be positive or negative.

11
11 Switch Statements

In the previous chapter, we looked at basic if statements and decision making. C# has another type of

statement that is very similar to if statements. These statements are called switch statements. In this

case, think of a switch like a railroad switch, which determines which track a train will travelling down.

We’ll take a look at when we’d want to use switch statements, how to do them, and then wrap up with a

couple of extra details about switch statements.

Anything you can do with a switch statement can also be done with an if statement. While there may be

some small performance tradeoffs with using switch vs. if-else (switch is usually considered as fast or

faster, depending on the situation) it is usually not enough to overtake readability concerns. It is usually

best to pick whichever version produces the most readable code.

The Basics of Switch Statements

It is pretty common to have a variable and want to do something different depending on the value of that

variable. For instance, let’s say we have a menu with five choices (1-5). The user types in their choice,

which we store in a variable. We want to do something different depending on which value they chose.

Using only the tools that we already know, we’d probably think about a sophisticated if-else statement. Or

rather, an if/else-if/else-if/else-if/else-if/else statement. Something like this:

int menuChoice = 3;

if (menuChoice == 1)

In a Nutshell
 switch statements are an alternative to if statements, especially if they involve a lot of “else if

X... else if Y... else if Z...” kind of stuff.

 You can use the following types in a switch statement: bool, string, and all integral types.

 You can also use enumerations (Chapter 14).

 You can’t fall through from one case block to another. You always need a break (or return) at

the end of a block.

The Basics of Switch Statements 69

 Console.WriteLine("You chose option #1.");
else if (menuChoice == 2)
 Console.WriteLine("You chose option #2. I like that one too!");
else if (menuChoice == 3)
 Console.WriteLine("I can't believe you chose option #3.");
else if (menuChoice == 4)
 Console.WriteLine("You can do better than 4....");
else if (menuChoice == 5)
 Console.WriteLine("5? Really? That's what you went with?");
else
 Console.WriteLine("Hey! That wasn't even an option!");

That gets the job done, but this could also be done with a switch statement.

To make an equivalent switch statement, we’ll use the switch keyword, and a case keyword for each of

the various “cases” or options that we have. We’ll also use the break and default keywords, but we’ll talk

about those more in a second. The if statement we had above would look like this as a switch statement:

int menuChoice = 3;

switch (menuChoice)
{
 case 1:
 Console.WriteLine("You chose option #1");
 break;
 case 2:
 Console.WriteLine("You chose option #2. I like that one too!");
 break;
 case 3:
 Console.WriteLine("I can't believe you chose option #3.");
 break;
 case 4:
 Console.WriteLine("You can do better than 4....");
 break;
 case 5:
 Console.WriteLine("5? Really? That's what you went with?");
 break;
 default:
 Console.WriteLine("Hey! That wasn't even an option!");
 break;
}

As you can see, we start out with the switch statement, and in parentheses, we put the variable we are

going to base our “switch” on.

Then we have a sequence of case statements (sometimes called case labels), which indicate that if the

variable matches the value in the case statement, the flow of execution enters the following code block.

It is important to note that the flow of execution will go into exactly one of the case labels, so you will

never end up in a situation where more than one case block gets executed.

At the end of each case block, you must put the break keyword, which sends the flow of execution back

outside of the entire switch statement, and down to the next part of the code.

We can also have a default label, which indicates where the flow of execution should go if no other case

label is a match. The default label doesn’t need to be the last one, but it is typical and good practice to do

so. The default block works as a sort of catch-all for anything other than the specific situations of the

other case labels. Note that this is like the final else block in our original, giant if statement.

Switch statements do not allow arbitrary logic in a case condition. That is, with an if statement, we can

write something like if(x < 10), there is no equivalent to this for a switch statement. You can’t write case <

10: or case x < 10:. If you want arbitrary logic, then you will have to fall back to an if statement instead.

70 Chapter 11 Switch Statements

Types Allowed with Switch Statements

In our above example, we see that you can use the int type in a switch statement. Not all types can be

used in a switch, but many can. Here’s the list of types that can be used: bool, string, and any of the

integral types (including char). We haven’t talked about enumerations yet (Chapter 14) but those can also

be used in a switch statement.

No Implicit Fall-Through

C++ and Java have a little trick where if you leave out the break statement, you can have one case block

“fall through” to the next case block. But this is banned in C#:

switch (menuChoice) // This DOES NOT work in C#
{
 case 1:
 Console.WriteLine("You chose 1.");
 case 2:
 Console.WriteLine("You chose 2. Or maybe you chose 1.");
 break;
}

Because there’s no break in the case 1 block, the code there would be executed, and then continue on

down into the case 2 block. This isn’t allowed in C#. Every case block needs a break statement.

The reason for requiring this is that people accidentally ended up doing this far more often than they

intentionally do it. They leave off the break statement by accident, resulting in a bug that is usually tricky

to resolve. To prevent this, C# won’t allow you to skip the break statement and fall through.

However, there is one situation where you can do this: multiple case blocks with no code in between it:

switch (menuChoice) // This DOES work in C#
{
 case 1:
 case 2:
 Console.WriteLine("You chose option 1 or 2.");
 break;
}

In this case, both 1 and 2 end up in the same case block. While case 1 doesn’t have a break statement, it

also doesn’t need it, because we’re simply stating the two are the equal. You can write the same thing with

an if statement as well, using the || operator.

Try It Out!
Making a Calculator. We’re going to make a simple calculator. Ask the user to type in two numbers

and then to type in a math operation to perform on the two numbers.

Use a switch statement to handle the different operations in different ways. Allow the user to type in

’+’ for addition, ’-’ for subtraction, ’*’ for multiplication, ’/’ for division, and ’%’ for remainder. For bonus

points, allow the user to type in ’^’ for a power. (You can compute this using the Math.Pow method.

For example, the following does x2: Math.Pow(x, 2);)

Print out the results for the user to see.

12
12 Looping

In this chapter we’ll discuss yet another very powerful feature in the C# language: loops. Loops allow you

to repeat sections of code multiple times. We’ll discuss three types of loops in this chapter, and cover a

fourth type in the next chapter when we discuss arrays. (It will make a lot more sense there.)

The While Loop

The first kind of loop we’re going to talk about is the while loop. A while loop will repeat certain code over

and over, as long as a certain condition is true. While loops are constructed in a way that looks a whole lot

like an if statement:

while(condition)
{
 // This code is repeated as long as the condition is true.
}

Let’s start with a really simple example that counts to ten:

int x = 1;
while(x <= 10)
{
 Console.WriteLine(x);
 x++;
}

In a Nutshell
 while loops, do-while loops, and for loops all allow you to repeat things in various ways.

while(condition) { /* ... */ }

do { /*... */ } while(condition);

for(initialization; condition; update) { /* ... */ }

 You can break out of a loop at any time with the break keyword and advance to the next

iteration of the loop with the continue keyword.

 The foreach loop is not discussed here, but will be in the next chapter.

72 Chapter 12 Looping

Let’s take a minute and look at what the computer does when it runs into this code. This starts with the

variable x being 1. The program then checks the condition in the while loop and asks, “is x less than or

equal to 10?” This is true, so the stuff inside the while loop gets executed. It writes out the value of x,

which is 1, then increments x (adds 1 to it). When it hits the end curly brace, it has finished the while loop

and goes back up to the beginning of the loop, checking the condition again. This time however, x has

changed. It is now 2. The condition is still true (2 is still less than or equal to 10) and the loop repeats

again, printing out “2” and incrementing x to 3. This will happen 10 times total, until x gets incremented to

11. When the program checks to see if 11 is less than or equal to 10, the condition is no longer true, and

the flow of execution jumps down past the end of the loop.

One thing to keep in mind is that it is easy to end up with a bug in your code that makes it so the

condition of a loop is never met. Imagine if the x++; line wasn’t there. The program would keep repeating

the loop, and each time x would still be 1. The program would never end! This problem is common

enough to be given its own name: an infinite loop. I promise you, by the time you’re done making your first

real program, you will be the proud writer of at least one infinite loop. It happens.

To fix the problem, you may need to pause your program’s execution, see where it is getting stuck, close

your program, fix the problem in your code, and restart. The process of debugging your program like this

is discussed in Chapter 48.

While we’re on the subject of infinite loops, I’m going to mention that sometimes people make them on

purpose. It sounds strange, I know. But it is easy to do:

while(true)
{
 // Depending on what goes in here, you'll never end...
}

Depending on what you put inside the loop (like a break statement, which we’ll discuss in detail later in

this chapter) you can actually still get out of the loop.

I’ve occasionally heard an infinite loop that was done intentionally be called a “forever loop” instead. It’s

not a term all programmers will be familiar with, but there is some value in distinguishing intentional

infinite loops from the accidental ones.

Moving on, here’s a more complicated (and more useful) example which repeats over and over until the

user enters a number between 0 and 10:

int playersNumber = -1;

while(playersNumber < 0 || playersNumber > 10)
{
 // This code will get repeated until the player types in a number between 0 and 10.

 Console.Write("Enter a number between 0 and 10: ");
 string playerResponse = Console.ReadLine();
 playersNumber = Convert.ToInt32(playerResponse);
}

One important thing to remember with a while loop is that it checks the condition before even going into

the loop. So if the condition is not met right from the get-go, it doesn’t ever go in the loop. In the example

above, it is important that we initialize playersNumber to -1, because if we had started it at 0, the flow of

execution would have jumped right over the while loop block, and the player would have never been able

to choose a number.

Like with if statements, if you only have one statement inside of a while loop (or any of the other loops

we’ll discuss here) the curly braces are optional.

The Do-While Loop 73

The Do-While Loop

The next type of loop we’ll look at is a slight variation on the while loop. It is the do-while loop.

Remember that a while loop will first check the condition to see if it is met, and if not, it could potentially

skip the loop entirely. (This isn’t a bad thing; it’s just something to remember. Most of the time, that’s

exactly how you want it.)

In contrast, the do-while loop will always be executed at least once. This is useful if you are trying to set

up some stuff the first time through the loop, and you know it needs to be executed at least once.

Let’s revisit that last example, because it is a prime candidate for a do-while loop. Remember, we needed

to set up the player’s number to -1, to force it to go through the loop at least once? Doing this as a do-

while loop solves the need for that:

int playersNumber;

do
{
 Console.Write("Enter a number between 0 and 10: ");
 string playerResponse = Console.ReadLine();
 playersNumber = Convert.ToInt32(playerResponse);
}
while (playersNumber < 0 || playersNumber > 10);

To form a do-while loop, we put the do keyword at the start of the loop, and at the end, we put the while

keyword. Also notice that you need a semicolon at the end of the while line. Everything else is the same,

but this time, you don’t need to initialize the playersNumber variable because we know that the loop will

be executed at least once before the condition is checked.

The For Loop

Now let’s take a look at a slightly different kind of loop: the for loop. For loops are very common in

programming. They are an easy way of doing counting-type loops, and we’ll see how useful they are again

in the next chapter with arrays. For loops are a bit more complicated to set up, because they require three

components inside of the parentheses, whereas while and do-while loops only require one. It is

structured like this:

for(initial condition; condition to check; action at end of loop)
{
 //...
}

There are three parts separated by semicolons. The first part sets up the initial state, the second part is

the condition (the same thing that was in the while and do-while loops), and the third part is an action

that is performed at the end of the loop. An example will probably make this clearer, so let’s do the

counting to ten example as a for loop:

for(int x = 1; x <= 10; x++)
{
 Console.WriteLine(x);
}

Note that we can declare and initialize a variable right in the for loop like we do here, with int x = 1;.

One of the reasons why this kind of loop is so popular is because it separates the looping logic from what

you’re actually doing with the number. Rather than having the x++ statement inside of the loop and

74 Chapter 12 Looping

declaring the variable before the loop, all of that stuff gets packed into the loop control mechanism,

making the stuff you’re actually trying to accomplish clearer.

One other cool thing to point out is that anything you can do with one type of loop you can do with the

other two as well. Often, one type of loop is cleaner and easier to understand than the others, but they

can all do the same stuff. If suddenly the C# world ran out of while keywords, and all you had left was

fors, you’d be fine. Because of this, you should pick the looping mechanism that creates the code that is

easiest to understand.

Breaking Out of Loops

Another cool thing you can do with a loop is break out of it any time you want. Sometimes, as you’re

working through a loop, you get to a point where you know there’s no point in continuing with the loop.

You can jump out of a loop whenever you want with the break keyword like this:

int numberThatCausesProblems = 54;

for(int x = 1; x <= 100; x++)
{
 Console.WriteLine(x);

 if(x == numberThatCausesProblems)
 break;
}

This code will only go until it hits 54, at which point the if statement catches it and sends it out of the loop.

This is not a very practical example, but it is a good illustration of how you might use the break

command. When we start the loop, we’re fully expecting to get to 100, but then we realize at some point

that there’s a critical problem (or alternatively, we’ve found the result we were looking for) and we can

ignore the rest of the loop.

By the way, this is the kind of thing that makes forever loops actually worth something:

while(true)
{
 Console.Write("What is thy bidding, my master? ");
 string input = Console.ReadLine();

 if(input == "quit" || input == "exit")
 break;
}

Before we leave the topic of forever loops, I should say that you rarely truly need to write one. We could

have restructured the code above to not need it. (By moving the input variable outside of the loop and

converting the if statement to be the condition in the while loop.) But occasionally, the code will be more

readable this way, so it is good to know about.

Continuing to the Next Iteration of the Loop

Similar to the break command, there’s another command that, rather than getting out of the loop

altogether, jumps back to the start of the loop and checks the condition again. In other words, it

continues on to the next iteration of the loop without finishing the current one.

This is done with the continue keyword:

for(int x = 1; x <= 10; x++)
{
 if(x == 3)
 continue;

Nesting Loops 75

 Console.WriteLine(x);
}

In this code sample, all of the numbers will get printed out with one exception. 3 gets skipped because of

the continue statement. When it hits that point, it jumps back up, runs the x++ part of the loop, checks

the x < 10 condition again, and continues on with the next cycle through the loop.

Nesting Loops

Like with if statements it is possible to nest loops. And to put if statements inside of loops and loops

inside of if statements. You can go absolutely crazy with all of this control!

Let’s go through a couple more complete examples.

I’m going to repeat a really simple example that I remember from when I first started learning to program.

(Back then, it was C++, not C#, and we had to walk uphill both ways to school, and define our own true

and false!) The task was to write a loop that would print out the following (you were only allowed to have

the ‘*’ character in your program once):

The code below accomplishes this:

for(int row = 0; row < 5; row++)
{
 for(int column = 0; column < 10; column++)
 Console.Write("*");

 Console.WriteLine(); // This makes it wrap around to the beginning of the line.
}

Let’s try a harder one. If we want to do this:

*
**

The code would be:

for(int row = 0; row < 10; row++)
{
 for(int column = 0; column < row + 1; column++)
 Console.Write("*");

 Console.WriteLine();
}

Notice how tricky we were, using row in the condition of the for loop with the column variable.

76 Chapter 12 Looping

I should probably mention (because I’m sure you’re wondering) that programmers seem to love 0-based

indexing, meaning we love to start counting at 0. (There’s actually a good reason for this, which we’ll look

at a little bit more when we look at arrays in the next chapter.)

You’ll see that I’ve done this frequently in these samples. I start with row and column at 0, and go up to

the amount I want (10 in this case), but not including it. That does it 10 times. You could do it starting at 1,

and use row <= 10 instead, but what I wrote is more typical of a programmer.

Still to Come: Foreach

It is worth mentioning that we have one more type of loop to discuss, which we’ll do in the next chapter:

the foreach loop. I only bring that up because a full discussion of loops has to include this type of loop.

But the foreach loop makes the most sense in conjunction with arrays, which we’ll be talking about next.

Try It Out!
Print-a-Pyramid. Like the star pattern examples that we saw earlier, create a program that will print

the following pattern:

 *

If you find yourself getting stuck, try recreating the two examples that we just talked about in this

chapter first. They’re simpler, and you can compare your results with the code included above.

This can actually be a pretty challenging problem, so here is a hint to get you going. I used three total

loops. One big one contains two smaller loops. The bigger loop goes from line to line. The first of the

two inner loops prints the correct number of spaces, while the second inner loop prints out the

correct number of stars.

Try It Out!
FizzBuzz. We now know everything we need to be able to do a popular test problem in programming:

the FizzBuzz problem. This is a simple little toy problem that many people who claim to know a

particular programming language still seem to struggle with.

If you can complete this problem, you’re probably better off than half of the other people in the

world who claim to know C#. It’s actually a sad state of affairs, because the problem is so simple, but

even still, it is a fact than many people who claim to know C# (or another language) can’t even write

this simple program in it. (Admittedly, they are frequently asked to do this on a whiteboard in a job

interview and don’t have a compiler to check their work, which makes the problem harder.)

The challenge is to print out all of the numbers from 1 to 100. Except if a number is a multiple of 3,

print out the word “Fizz” instead. If the number is a multiple of 5, print out “Buzz”. If a number is a

multiple of both 3 and 5 (like 15 or 30) then print out “FizzBuzz”. For example, “1 2 Fizz 4 Buzz Fizz 7 8

Fizz Buzz…”

A couple of things to remember that seem to derail people: Be sure you’re going through the

numbers 1-100, not 0-99, and you’ll likely use the remainder operator (%) which can be used to

determine if something is a multiple of another number.

13
13 Arrays

In this chapter, we’ll take a look at arrays. Arrays are a variable type that allows us to group multiple items

of the same type together into a single collection. This chapter discusses how to make and use arrays, a

few samples of using them, how to make multi-dimensional arrays, and then wrap up with a discussion of

the last type of loop that we didn’t discuss in the previous chapter.

What is an Array?

An array is a way of keeping track of a group of many related things of the same type in a single collection.

Imagine that you have a high score board in a game, with 10 high scores on it. Using only the tools we

know so far, you could create one variable for every score that you want to keep track of. For example:

int score1 = 100;
int score2 = 95;
int score3 = 92;
// Keep going to 10...

That’s one way to do it. But what if you had 10,000 scores? All of a sudden, creating that many variables to

store scores becomes overwhelming.

In a Nutshell
 Arrays store collections of related objects of the same type.

 To declare an array, you use the square brackets: int[] numbers;

 To create an array, you use the new keyword: int[] scores = new int[10];

 You can also use collection initializer syntax: int[] scores = new int[] { 1, 2, 3, 4, 5 };

 You can access and modify values in an array with square brackets as well:

int firstScore = scores[0]; and scores[0] = 44;

 Indexing of arrays is 0-based, so 0 refers to the first element in the array.

 You can create arrays of anything, including arrays of arrays: int[][] grid;

 You can also create multi-dimensional arrays: int[,] grid = new int[5, 4];

 You can use the foreach loop to easily loop through an array and do something with each

item in the array: foreach(int score in scores) { /* ... */ }

78 Chapter 13 Arrays

This brings us to arrays. Arrays are perfect for keeping track of things like this, since they could store 10

scores or 10,000 scores in a way that is both easy to create and easy to work with.

Creating Arrays

Declaring an array is very similar to declaring any other variable. You give it a type and a name, and you

can initialize it at the same time if you want. You declare an array using square brackets ([and]).

int[] scores;

The square brackets here indicate that this is an array, not just a single int. This declares an array variable

which can contain multiple ints. Like with all other types that we’ve discussed so far, this is basically just a

named location in memory to stick stuff. To actually create a new array and place it in the variable, use the

new keyword and specify the number of elements that you’ll have in the array:

int[] scores = new int[10];

In the first example, we had not yet assigned a value to the array variable. We had just declared it,

reserving a spot for it. In this second example, our array now exists and has room for 10 items in it.

Once we have set a size for an array, we can’t change it. You can change the individual values in the array

(we’re still coming to that) but not the size. You can, however, create a new array with a different size, copy

the values over into part of the new, larger array, and then assign that back in to your array variable. The

variable itself doesn’t care how large the array is specifically.

On the other hand, if you truly want resizable collections, you should use the List type, which we’ll talk

about in Chapter 25.

By the way, this is the first time we’re seeing the new keyword, but it won’t be the last. We use this

keyword to create things that aren’t just simple primitive data types. We’ll see this come back in a big way

later, when we start looking at classes in Chapter 17.

Arrays aren’t limited to ints. You can make arrays of anything. For example, here’s an array of strings:

string[] names = new string[10];

(For those coming from a C++ background, you may be wondering if there is a delete keyword, and when

and how to clean things up. While C++ requires you to clean up memory that you are no longer using with

delete, C# doesn’t require or even allow this. C# uses managed memory, and uses garbage collection to

clean up things that are no longer in use. We’ll look at this in more detail in Chapter 16.)

Getting and Setting Values in Arrays

Now that we have an array declared and created, we can assign values to specific spots in the array. To

access a specific spot in the array, we use the square brackets again, along with what is called a subscript

or an index, which is a number that tells the computer which of the elements (things in an array) to access.

For example, to put a value in the first spot of an array, we would use the following:

scores[0] = 99;

You can see here that the first spot in the array is number 0. It is very important to remember that array

indexing is 0-based. If you forget about 0-based indexing, and start with 1, you’ll run into what are called

“off-by-one” errors, because you’re on the wrong number.

You can access any value in an array by using the same technique:

More Ways to Create Arrays 79

int fourthScore = scores[3];
int eighthScore = scores[7];

If you try to access something beyond the end of the array (for example, scores[54] in an array with only

10 items in it), your program will crash, telling you the index was out of the bounds of the array.

More Ways to Create Arrays

There are a couple of other ways of initializing an array that are worth discussing here. You can also

create an array by giving it specific values right from the get-go, by putting the values you want inside of

curly braces, separated by commas:

int[] scores = new int[10] { 100, 95, 92, 87, 55, 50, 48, 40, 35, 10 };

When you create an array this way, you don’t even need to state the number of items that will be in the

array (the ‘10’ in the brackets, in this case). You can leave that out:

int[] scores = new int[] { 100, 95, 92, 87, 55, 50, 48, 40, 35, 10 };

In fact, because of type inference, in these cases, you can even leave off the type name as long as all of

the items are the same literal type:

int[] scores = new [] { 100, 95, 92, 87, 55, 50, 48, 40, 35, 10 };

Array Length

We can tell how long an array is by using the Length property. We haven’t talked about properties at all

yet (we will cover them in depth in Chapter 19), but the code for doing this is useful enough and simple

enough that it is worth taking the time to point out. For instance, the code below grabs an array ’s Length

property and uses it to print out the length of an array:

int totalThingsInArray = scores.Length;
Console.WriteLine("There are " + totalThingsInArray + " things in the array.");

Some Examples with Arrays

Now that we know the basics of how arrays work, let’s look at a couple of examples using arrays.

Side Note
0-based Indexing. I know it seems kind of strange if you’re new to programming, but there’s a very

good reason for 0-based indexing. The array itself has a specific spot in memory—a specific memory

address. This address is called the base address.

For any particular array, the size of each slot in the array may be a different size based on the size of

the type you’re putting into the array. An array of ints will have slots that are 4 bytes big, since ints

are 4 bytes. An array of longs will have slots that are 8 bytes big.

Because the computer knows the base memory address, and how big each slot is, it is easy for it to

calculate the memory location of any particular index in the array using the simple formula:

𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 𝑏𝑎𝑠𝑒 + 𝑖𝑛𝑑𝑒𝑥 × 𝑠𝑖𝑧𝑒

If we didn’t use 0-based indexing (perhaps using 1-based indexing instead) the math here would

become more complicated.

80 Chapter 13 Arrays

Minimum Value in an Array
In our first example, we’ll calculate the minimum value in an array, using a for loop.

The basic process will require looking at each item in the array in turn. We’ll create a variable to store the

value that we know is the minimum that we’ve seen so far. As we go down the array, if we find one that is

less than our current known minimum, we update the known minimum to the new one.

int[] array = new int[] { 4, 51, -7, 13, -99, 15, -8, 45, 90 };

int currentMinimum = Int32.MaxValue; // We start high, so that any element in the array will be lower.

for(int index = 0; index < array.Length; index++)
{
 if(array[index] < currentMinimum)
 currentMinimum = array[index];
}

// At this point, currentMinimum contains the minimum value in the array.

Average Value in an Array
Let’s try a similar but different task: finding the average value in an array. We’ll follow the same basic

pattern as in the last example, but this time we’re going to total up the numbers in the array. When we’re

done doing that, we’ll divide by the total number of things in the array to get the average.

int[] array = new int[] { 4, 51, -7, 13, -99, 15, -8, 45, 90 };

int total = 0;

for (int index = 0; index < array.Length; index++)
 total += array[index];

float average = (float)total / array.Length;

Arrays of Arrays and Multi-Dimensional Arrays

You can have arrays of anything. ints, floats, bools. Even arrays of arrays! This is one way that you can

create a matrix. (A matrix is simply a grid or table of numbers with rows and columns.)

To create an array of arrays, one option is to use the following notation:

int[][] matrix = new int[4][];
matrix[0] = new int[4];
matrix[1] = new int[5];
matrix[2] = new int[2];
matrix[3] = new int[6];

Try It Out!
Copying an Array. Write code to create a copy of an array. First, start by creating an initial array. (You

can use whatever type of data you want.) Let’s start with 10 items. Declare an array variable and

assign it a new array with 10 items in it. Use the things we’ve discussed to put some values in the

array.

Now create a second array variable. Give it a new array with the same length as the first. Instead of

using a number for this length, use the Length property to get the size of the original array.

Use a loop to read values from the original array and place them in the new array. Also print out the

contents of both arrays, to be sure everything copied correctly.

The ‘foreach’ Loop 81

matrix[2][1] = 7;

Notice that each of my arrays within the main array has a different length. You could of course make them

all the same length (there’s a better way to do this that we’ll see in a second). When each array within a

larger array has a different length, it is called a jagged array. If they’re all the same length, it is often called

a square array or a rectangular array.

There’s another way to work with arrays of arrays, assuming you want a rectangular array (which is often

the case). This is called a multi-dimensional array.

To do this, you put multiple indices inside of one set of square brackets like this:

int[,] matrix = new int[4, 4];
matrix[0, 0] = 1;
matrix[0, 1] = 0;
matrix[3, 3] = 1;

It is worth briefly describing how you might go about looking at each element in these more complicated

arrays. For an array of arrays, or a jagged array, this might look like this:

int[][] matrix = new int[4][];
matrix[0] = new int[2];
matrix[1] = new int[6];
// Continue filling in values for the jagged array...

for(int row = 0; row < matrix.Length; row++)
{
 for(int column = 0; column < matrix[row].Length; column++)
 Console.Write(matrix[row][column] + " "); // Each item in the row separated by spaces

 Console.WriteLine(); // Rows separated by lines
}

Or with a multi-dimensional array:

int[,] matrix = new int[4,4];
// Fill in contents for multi-dimensional array

// Note: GetLength gives back the size of the multi-dimensional array for a specific index.
for(int row = 0; row < matrix.GetLength(0); row++)
{
 for(int column = 0; column < matrix.GetLength(1); column++)
 Console.Write(matrix[row, column] + " ");

 Console.WriteLine();
}

The ‘foreach’ Loop

To wrap up our discussion of arrays, let’s go back to what was mentioned in the last chapter about loops.

There’s one final type of loop that works really well when working with collections such as arrays. This

type of loop is called the foreach loop (as in, “do this particular task for each element in the array”).

To use a foreach loop, you use the foreach keyword with an array, specifying the name of the variable to

use inside of the loop:

int[] scores = new int[10];

foreach (int score in scores)
 Console.WriteLine("Someone had this score: " + score);

82 Chapter 13 Arrays

Inside of the loop, you can use the score variable. One key thing to note is that inside of the loop, you

have no way of knowing what index you are currently at. (You don’t know if you are on scores[2] or

scores[4].) In many cases, that’s no big deal. You don’t care what index you’re at, you just want to do

something with each item in the array.

If you need to know what index you’re at, your best bet is to use a for loop instead:

int[] scores = new int[10];

for(int index = 0; index < scores.Length; index++)
{
 int score = scores[index];
 Console.WriteLine("Score #" + index + ": " + score);
}

Compared to a for loop, a foreach loop has a tendency to be more readable. There is not as much

overhead clutter inside of the parentheses. Also, in many cases the first thing you do a for loop is use the

index to get the correct item out of the array. This is bypassed with a foreach loop.

But foreach loops are somewhat slower, simply as a result of their internal mechanics. If you’re

discovering that a particular foreach loop is taking way more time than you’d like, converting it to a for

loop is an easy way to get a little extra speed out of it.

This leaves us with a final question: when can foreach loops be used? The short answer (which won’t

make much sense just yet) is that it can be used on anything that implements the IEnumerable interface.

We haven’t talked about interfaces at all yet, but virtually every container or collection across the .NET

Platform uses it. That means that foreach can be used on almost anything that has multiple items in it.

Try It Out!
Minimum and Averaging Revisited. Earlier in this chapter, I presented code to go through an array

and find the minimum value contained in it. I also presented code to average the values in an array.

Using that code as a starting point, rewrite them to use foreach loops instead.

14
14 Enumerations

Enumerations (or enumeration types, or enums for short) are a cool way to define your own type of variable.

This is the first of many ways we’ll see to create your own.

The word enumeration comes from the word enumerate, which means “to count off, one after the other,”

which is the intent of enumerations. We’ll start by looking at the kinds of situations where enumerations

might be useful. We’ll then look at how to create your own enumeration and use it. We’ll take a look at a

few additional important features of enumerations before wrapping up the chapter.

The Basics of Enumerations

Let me start off with an example of when enumerations may be used. Let’s say you are keeping track of

something that has a known, small, specific set of possible values that you can use—for instance, the days

in the week. One way you could do this is to assign numbers to each of these in your head. Sunday would

be 1, Monday would be 2, Tuesday would be 3, and so on. Your code could look something like this:

int dayOfWeek = 3;

if(dayOfWeek == 3)
 Console.WriteLine("It's Tuesday!");

In a Nutshell
 Enumerations are a way of defining your own type of variable so that it has specific values.

 Enumerations are defined like this: public enum DaysOfWeek { Sunday, Monday, Tuesday,

Wednesday, Thursday, Friday, Saturday };

 Enumerations are usually defined directly in a namespace, outside of any classes or other

type definitions.

 The fact that an enumeration can only take on the values that you explicitly listed means that

you won’t end up with bad or meaningless data (unless you force it by casting).

 You can assign your own numeric values to the items in an enumeration: public enum

DaysOfWeek { Sunday = 5, Monday = 6, Tuesday = 7, Wednesday = 8, Thursday = 9, Friday

= 10, Saturday = 11 };

84 Chapter 14 Enumerations

For the sake of readability, you might decide to create a variable to store each of these days:

int sunday = 1;
int monday = 2;
int tuesday = 3;
int wednesday = 4;
int thursday = 5;
int friday = 6;
int saturday = 7;

int dayOfWeek = tuesday;

if(dayOfWeek == tuesday)
 Console.WriteLine("It's Tuesday!");

This kind of situation is exactly what enumerations are for. You create an enumeration, and list the

possible values it can have.

When we create an enumeration, we’re defining a new type. We’ve discussed a wide variety of types

before, but this is the first experience we’ll have creating our own type. When we define a new type, we

put them directly inside of the namespace. You use the enum keyword, give your enumeration a name,

and list the values that your enumeration can have inside of curly braces:

public enum DaysOfWeek { Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday };

Remember, enumerations are placed directly inside of the namespace (outside of other classes or types

you might have, including the Program class that we’ve been using). This is shown in context below:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Enumerations
{
 // You define enumerations directly in the namespace.
 enum DaysOfWeek { Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday };

 public class Program
 {
 static void Main(string[] args)
 {
 }
 }
}

Alternatively, enumerations can be defined in their own file. We’ll see how to do this when we learn about

classes in Chapter 18.

Inside of your Main method, you can now create variables that have your new DaysOfWeek type, instead

of just the built-in types that we’ve been working with. We’ve defined a brand new type! Creating a

variable with your new type works just like any other variable:

DaysOfWeek today; // Indicate the type, and give it a name.

To assign it a value, you will use the ‘.’ operator (usually read “dot operator”, but more formally called the

“member access operator”). We’ll discuss the ‘.’ operator more later, but for now what you need to know is

that it is used for member access. This means that you use the ‘.’ operator to use something that is a part

of something else. The values are a part of the enumeration, so we use this operator.

today = DaysOfWeek.Tuesday;

Why Enumerations are Useful 85

This works like any other variable, even for things like comparison in an if statement:

DaysOfWeek today = DaysOfWeek.Sunday;

if(today == DaysOfWeek.Sunday)
{
 // ...
}

Why Enumerations are Useful

There’s a very good reason to use enumerations. Let’s go back to where we first started this chapter—

doing days of the week with the int type. Remember how we had defined dayOfWeek = 3; which meant

Tuesday? What if someone put dayOfWeek = 17;? As far as the computer knows, this should be valid.

After all, dayOfWeek is just an int variable. Why not allow it to be 17? But for what we’re doing, 17 doesn’t

make any sense. We are only using 1 through 7.

Enumerations force the computer (and programmers) to use only specific, named (“enumerated”) values.

It prevents tons of errors, and makes your code more readable. For example, dayOfWeek =

DaysOfWeek.Sunday is immediately clear what it means, while dayOfWeek = 1 is not.

Underlying Types

Before moving on, it is worth looking at a couple of additional details about enumerations. Under the

surface, C# is simply wrapping our enumeration around an underlying type. By default, this underlying

type is the int type, though it is possible to choose a different integer type. Enumerations are, at their

core, just numbers, though done in a way that ensures that only the right numbers can be used. When

you create an enumeration, each item you list is assigned a number, starting at 0. In the enumeration that

we created, Sunday has a value of 0, Monday is 1, and so on.

This means that you can cast to and from an int like this:

int dayAsInt = (int)DaysOfWeek.Sunday;
DaysOfWeek today = (DaysOfWeek)dayAsInt; // Both of these require an explicit cast.

By default, enumerations make sure that only valid values are used. However, if you use an explicit cast to

convert an invalid number to an enumeration, you can break this:

DaysOfWeek today = (DaysOfWeek)17; // Legal, but a bad idea...

Because of this, you should be very cautious about casting to an enumeration type.

Assigning Numbers to Enumeration Values

When you create an enumeration, you can additionally assign it specific values if you want:

enum DaysOfWeek { Sunday=5, Monday=6, Tuesday=7, Wednesday=8, Thursday=9, Friday=10, Saturday=11 };

Try It Out!
Months of the Year. Using the DaysOfWeek enumeration as an example, create an enumeration to

represent the months of the year. Assign them the values 1 through 12. Write a program to ask the

user for a number between 1 and 12. Check to be sure that they gave you a value in the right range

and use an explicit cast to convert the number to your month enumeration. Then, using a switch

statement or if statement to print out the full name of the month they entered.

15
15 Methods

Think about how much code goes into a program like Microsoft Word or a game like the latest Assassin’s

Creed. They’re enormous! Especially when compared to the little programs that we’ve been making so far.

How do you think you could manage all of that code? Where would you look if there was a bug?

As programmers, we’ve learned that when you have a large program, the best way to manage it is by

breaking it down into smaller, more manageable pieces. This even gives us the ability to reuse these

pieces. This basic concept of breaking things down into smaller pieces is called divide and conquer, and it

is one we’ll see over and over again.

C# provides us with a feature that allows us to break down our program into small manageable pieces.

These small, reusable building blocks of code are called methods. Methods are sometimes called functions,

subroutines, or procedures in other programming languages.

The concept of a method is to take a piece of your code and place it inside of a special block and give it a

name, allowing you to run it from anywhere else in your program. We can re-run (“invoke” or “call”) a

method as many times as we want, which means we don’t have to retype it, saving ourselves time.

In this chapter, we’ll look at how to create and use methods, as well as how to get data to and from a

method. We’ll also look at overloading methods, which is giving two or more methods the same name.

We’ll then revisit the Console and Convert classes from earlier chapters, armed with the new knowledge

we have about methods. We’ll wrap up our discussion about methods with a quick look at a powerful (but

sometimes confusing) trick that you can use with methods called recursion.

In a Nutshell
 Methods are a way of creating a chunk of reusable code.

 You can return stuff from a method by putting the return type in the method definition, and

then using the return keyword inside of the method anywhere you want to return a value.

 Parameters are passed to a method by listing them in parentheses after the method’s name.

 Methods can share the same name (“overloading”) as long as their signatures are different.

 Recursion is where you call a method from inside itself, and requires a base case to prevent

the flow of execution from continuing into deeper and deeper method calls.

Creating a Method 87

Creating a Method

Let’s get started by creating our first method. If you start with a brand new project, you’ll start with code

that looks like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Methods
{
 public class Program
 {
 static void Main(string[] args)
 {
 }
 }
}

If you remember from the Hello World program we made back in Chapter 3, this template code already

defines a method (the Main method) for us. At the time, we only had a basic idea of what a method was,

but we know more now. You can see from the template code that the Main method is contained inside of

a class called Program. (We’re still getting to classes.) When it comes down to it, we’ve already been using

a method, without even really thinking about it.

All methods belong to a type. A class is one specific example of a type. Most of the types we create will be

classes, but methods can belong to the handful of other types that we will look at over the course of this

book. Because the method belongs to the class, it is a member of that class.

When we create a method, we need to place it inside of a type. They can’t just be floating around on their

own. For now, we’ve already got the Program class where our Main method is, which is a perfect spot for

our new methods.

So let’s go ahead and make our first method. Let’s make a method that simply prints out the numbers 1

through 10. This new method looks like the following:

static void CountToTen()
{
 for(int index = 1; index <= 10; index++)
 Console.WriteLine(index);
}

Placing this in the rest of our program might look like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Methods
{
 public class Program
 {
 static void Main(string[] args)
 {
 }

 static void CountToTen()
 {

88 Chapter 15 Methods

 for (int index = 1; index <= 10; index++)
 Console.WriteLine(index);
 }
 }
}

This code won’t do anything yet. Remember, our program will run everything in the Main method by

default, and we have nothing in the Main method for the time being. Before we’re done, we’ll need to

have our Main method “call” our newly created CountToTen() method, but we’ll do that in a second. First,

let’s discuss the piece of code that we’ve just added.

There are just a few pieces in play here. The first piece is the static keyword. We’ll talk about this a little

more when we start creating our own classes. (See Chapter 18.) For now, we’ll assume that it’s just

needed for what we’re doing.

The second thing we added is the keyword void. We’ll talk more about this in a second, when we discuss

returning stuff from a method, but basically, the void keyword tells us our method doesn’t produce any

results.

The next part is the method’s name: CountToTen. Like with variables, you can name your method all sorts

of things. Giving methods descriptive names will make it easier to explain what it does. While it is not

required, the standard convention in C# is to have method names start with an upper case letter, while

variables usually start with a lower case letter.

Next we have the parentheses. Right now, there’s nothing inside of our parentheses, but we’ll soon see

that we can put stuff in here, allowing us to hand stuff off to a method.

Lastly, we have a set of curly braces where we put the body or implementation of the method. This is

where we put the code that the method executes when called. Up until now, we have been putting all of

our code in the body of the Main method. As of this chapter, we’ll start putting our code in the body of

different methods to organize our code into separate, reusable tasks.

We can see that in the body of our method, we have a simple for loop. Any of the code that we’ve written

before can go inside of a method, including loops, if statements, math, and variable declarations.

The order that methods appear within a class doesn’t matter. In the example above, we could have put

CountToTen above Main and it wouldn’t have made a difference. The C# compiler is smart enough to

scan through your file and find all of the methods that exist in it.

Calling a Method

Now that we’ve got our method created, we want to be able to use it. Doing this is really easy. Inside of

your Main method, you do the following:

CountToTen();

So your complete code would look like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Methods
{
 public class Program
 {
 static void Main(string[] args)
 {

Returning Stuff from a Method 89

 CountToTen();
 }

 static void CountToTen()
 {
 for (int index = 1; index <= 10; index++)
 Console.WriteLine(index);
 }
 }
}

Now you can run your program (which automatically starts in the Main method) and see that it jumps

over to the CountToTen method and does everything inside of it. When it reaches the end of a method, it

goes back to where it came from. So looking at this code:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Methods
{
 public class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("I'm about to go into a method.");

 DoSomethingAwesome();

 Console.WriteLine("I'm back from the method.");
 }

 static void DoSomethingAwesome()
 {
 Console.WriteLine("I'm inside of a method! Awesome!");
 }
 }
}

This will result in the following output:

I'm about to go into a method.
I'm inside of a method! Awesome!
I'm back from the method.

It is also worth mentioning that you can call a method from inside of any other method, so you can go

crazy creating and calling methods all over in your program. (In fact, that’s essentially what software

engineering is! Creating and calling methods in a way that minimizes the craziness.)

Returning Stuff from a Method

Methods are created to do some specific task. Often, that task involves figuring something out, and we

want to be able to know the results. A method has the option of giving something back. (How generous of

them!) This is called returning something. (Even if it doesn’t return anything, like the first method we wrote

a second ago, people still talk about “returning from a method.”)

So far, all of the methods we’ve looked at haven’t returned anything. We’ve always been using the void

keyword. This means that the method doesn’t return anything. By changing that, our method can return

something. To do this, instead of the void keyword, we simply place a different type there, like int, float,

or string. This makes it so our method can (and must) return a value of that particular type.

90 Chapter 15 Methods

Then inside of the method, we use the return keyword to return a specific value. This is followed by the

value we want to return. A very simple example of returning a value is this:

static float GetRandomNumber()
{
 return 4.385f; // Obviously very random.
}

You can see that we start off by stating the return type (float in this case, meaning we’re going to return

something of the type float), and inside of the method, we simply use the return keyword, along with the

actual value we want to return. Obviously, this is not a very useful example, but it illustrates the point.

Let’s do something more practical. In this book, there have been many times that we’ve done things like

ask the user to type in a number. The code below creates a method that asks the user for a number

between 1 and 10, and keeps asking until they finally give us something that works. At that point, we’ll

return the number the user gave us.

static int GetNumberFromUser()
{
 int usersNumber = 0;

 while(usersNumber < 1 || usersNumber > 10)
 {
 Console.Write("Enter a number between 1 and 10: ");
 string usersResponse = Console.ReadLine();
 usersNumber = Convert.ToInt32(usersResponse);
 }

 return usersNumber;
}

If your method returns nothing (void), you don’t need a return statement. But if it does return something,

we’re required to have a return statement.

If a method returns something, we can grab the value returned by the method and do something with it,

like put it in a variable or do some math with it. For instance, the code below will take the value that is

returned by the GetNumberFromUser method and store it in a variable:

int usersNumber = GetNumberFromUser();

As it turns out, we’ve been doing stuff like that all along! But now we can better understand what’s going

on. For instance, when we’ve written things like string usersResponse = Console.ReadLine();, we’re just

calling a method (ReadLine) that belongs to the Console class and getting the value returned by it!

While the return statement is often the last line in a method, it doesn’t have to be. For instance, you can

have an if statement in the middle of a method that returns “early” before the end of the method:

static int CalculatePlayerScore()
{
 int livesLeft = 3;
 int underlingsDestroyed = 17;
 int minionsDestroyed = 4;
 int bossesDestroyed = 1;

 // If the player is out of lives, they lose all of their points.
 if(livesLeft == 0)
 return 0;

 // Otherwise, the player gets 10 points per underling destroyed, 100 points
 // per minion, and 1000 points per boss.
 return underlingsDestroyed*10 + minionsDestroyed*100 + bossesDestroyed*1000;
}

Passing Stuff to a Method 91

If your method’s return type is void, you don’t need the return keyword anywhere, but it can still be used

alone to return early:

static void DoSomething()
{
 int aNumber = 1;

 if(aNumber == 2)
 return;

 Console.WriteLine("This only gets printed if the 'return' statement wasn't executed.");
}

As soon as a return statement is hit, the flow of execution immediately goes back to where the method

was called from—nothing more gets executed in the method.

You can’t make the return type of a method be var. You must always explicitly state the type.

Passing Stuff to a Method

Sometimes, we want a method to do stuff with certain pieces of information. We can hand stuff off to a

method by putting what we want it to work with inside of the parentheses. Earlier, we made a method

that was called CountToTen, which simply printed out the numbers 1 through 10. We can create an

alternate method that requires you to supply a number to count to. The method could then be used to

count to 10, 25, 1000, or anything else.

To do this, we need a way to hand off information for the method to use. This is done by putting a list of

variables inside of the parentheses when we’re defining the method. Our modified version of the

CountToTen method, which works for any number, might look like this:

static void Count(int numberToCountTo)
{
 for(int current = 1; current <= numberToCountTo; current++)
 Console.WriteLine(current);
}

Where you define the method, you identify the variable’s type and give it a name to use throughout the

method. This particular kind of variable is called a parameter. The variable numberToCountTo is a

parameter.

When you call a method that has a parameter, you “pass in” or hand off a value to the method by putting

it in the parentheses:

Count(5);
Count(15);

This code, in conjunction with the example before it, will first print out the numbers 1 through 5, and then

it will print out the numbers 1 through 15.

Like with the return value, a parameter must have an explicit type. You cannot use var.

Passing in Multiple Parameters

You can also create a method that passes in multiple parameters. All of the parameters listed—everything

inside of the parentheses—is called the parameter list. The code below is a simple example of passing two

numbers into a Multiply method that multiplies them together, and returns the result:

static int Multiply(int a, int b)
{

92 Chapter 15 Methods

 return a * b;
}

Having multiple parameters like this is extremely common. There’s a technical limit to how many

parameters you can have (just over 65,500) but the practical limit is far lower. Most programmers will start

complaining about the number of parameters a method has well before you even reach 10. If you need

that many parameters, you should spend some time trying to come up with an approach that lets you

break the task down into smaller tasks, where each task requires fewer pieces of data to work on.

Method Overloading

One cool, but potentially confusing thing that you can do with methods is create multiple methods with

the same name. This is called method overloading or simply overloading.

Try It Out!
Reversing an Array. Let’s make a program that uses methods to accomplish a task. Let’s take an

array and reverse the contents of it. For example, if you have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, it would

become 10, 9, 8, 7, 6, 5, 4, 3, 2, 1.

To accomplish this, you’ll create three methods: one to create the array, one to reverse the array, and

one to print the array at the end.

Your Main method will look something like this:

static void Main(string[] args)
{
 int[] numbers = GenerateNumbers();
 Reverse(numbers);
 PrintNumbers(numbers);
}

The GenerateNumbers method should return an array of 10 numbers. (For bonus points, change

the method to allow the desired length to be passed in, instead of just always being 10.)

The PrintNumbers method should use a for or foreach loop to print out each item in the array.

The Reverse method will be the hardest. Give it a try and see what you can make happen. If you get

stuck, here’s a couple of hints:

Hint #1: To swap two values, you will need to place the value of one variable in a temporary location

to make the swap:

// Swapping a and b.
int a = 3;
int b = 5;

int temp = a;
a = b;
b = temp;

Hint #2: Getting the right indices to swap can be a challenge. Use a for loop, starting at 0 and going

up to the length of the array / 2. The number you use in the for loop will be the index of the first

number to swap, and the other one will be the length of the array minus the index minus 1. This is to

account for the fact that the array is 0-based. So basically, you’ll be swapping array[index] with

array[arrayLength – index – 1].

Method Overloading 93

While two methods can have the same name, they can’t have the same signature. A method’s signature is

defined as the combination of the method name and the types and order of the parameters that get

passed in. Note that this does not include the parameters’ names, just their types.

To help illustrate what a method signature is, take the following example:

static int Multiply(int a, int b)
{
 return a * b;
}

This has a signature that looks like this: Multiply(int, int).

You can only overload a method if you use a different signature. So for example, the following works:

static int Multiply(int a, int b)
{
 return a * b;
}

static int Multiply(int a, int b, int c)
{
 return a * b * c;
}

This works because the two multiply methods have a different number of parameters, and as a result, a

different signature. We could also define a Multiply method that has no parameters (int Multiply()), or

one parameter (int Multiply(int)), though in this particular case, I can’t imagine how either of those two

methods would do multiplication with zero or one thing. (Hey, it’s just an example!) Likewise, you could

define a Multiply method with eight or ten parameters, if there was a need for it.

Also, you can have the same number of parameters, if their types are different:

static int Multiply(int a, int b)
{
 return a * b;
}

static double Multiply(double a, double b)
{
 return a * b;
}

This works because the two Multiply methods each have their own signature (Multiply(int, int) and

Multiply(double, double)).

The following does not work:

static int Multiply(int a, int b)
{
 return a * b;
}

static int Multiply(int c, int d) // This won't work. It has the same signature.
{
 return c * d;
}

The magic of method overloading is that you can have many methods that do very similar work on

different types of data (like the int multiplication and the double multiplication above) without needing a

completely different method name. With different signatures, the C# compiler can easily determine which

of the overloaded methods to use.

94 Chapter 15 Methods

You should only overload methods when you are trying to do the exact same kind of thing with different

kinds of data. If two methods have the same name, they should perform essentially the same task. If you

know what one does, it should be obvious what the other does, even if it uses slightly different data. If

that’s not the case, you should use a different method name altogether to avoid confusion.

Revisiting the Convert and Console Classes

With a basic understanding of how methods work in C#, it is worth a second discussion about some of the

classes that we’ve already been using. For instance, in the Console class, we’ve done things like this:

Console.WriteLine("Hello World!");

With our new knowledge of methods, we can see that there is a Console class, which has a method

named WriteLine that we call. The WriteLine method has one parameter, which is a string. We pass in

the string “Hello World!” and the method runs off and does its job.

This is a perfect example of why we use methods. Because someone already made a WriteLine method

that writes stuff to the console window, we don’t need to write it ourselves, nor do we need to worry

about how it actually goes about its job. All we care about is that it does it, and that it is easy to use. This

frees us up to worry about the more unique or interesting parts of our programs.

We see similar things with the Convert class, which we have used several times as well:

int number = Convert.ToInt32("42");

The Convert class has a ton of methods that let you convert many types to other types. In the example

above, we see a method called ToInt32, which takes a string as a parameter. This class uses method

overloading extensively, because it has a ToInt32 method that takes a string, one that takes a double,

one that takes a short, and so on.

XML Documentation Comments

In Chapter 4, we introduced the idea of comments. I mentioned that there is one additional way to do

comments that we couldn’t really talk about back then. We’re ready to discuss it here.

It is a good idea to add a comment by a method to describe what it does. This way, when you or

somebody else wants to use it, they can easily figure out what it does, and how to make it work. This is

especially important because methods are designed to be reused.

You can add comments to a method using any of the methods we discussed in Chapter 4, but there is one

additional way that works really well if you are trying to describe what a method does. (By the way, this

also applies to classes, structs, enumerations, and other things that we’ll discuss shortly.) This additional

way is called XML documentation comments.

Let’s say you have a Multiply method like we were talking about a second ago:

public static int Multiply(int a, int b)
{
 return a * b;
}

To add XML documentation comments, go just above the method, and type three forward slashes: ///

As soon as you hit that third forward slash, Visual Studio will pop in a big comment that looks like this:

/// <summary>
///
/// </summary>

The Minimum You Need to Know About Recursion 95

/// <param name="a"></param>
/// <param name="b"></param>
/// <returns></returns>

This is your XML documentation comment. In between the <summary> and </summary> lines, you can

add a description of what the method does. In between the param tags, you can describe what each

parameter of your method does, and in the returns tags, you can add what the return value should be. A

completely filled in example of this might look like this:

/// <summary>
/// Takes two numbers and multiplies them together, returning the result.
/// </summary>
/// <param name="a">The first number to multiply</param>
/// <param name="b">The second number to multiply</param>
/// <returns>The product of the two input numbers</returns>

The nice thing about adding in an XML documentation comment is that Visual Studio’s IntelliSense will

immediately start showing it as we work on our code (Chapter 45).

The Minimum You Need to Know About Recursion

There’s one additional trick people use with methods that I think is worth bringing up here. It’s kind of a

complicated trick, so right now you don’t need to master it. But it is worth mentioning, so you know what

it is when it comes up, and so you can start thinking about how it might be useful.

The trick is called recursion, and it is where you call a method from inside itself. Here’s a trivial example

(which happens to break when you run it):

static void MethodThatUsesRecursion()
{
 MethodThatUsesRecursion();
}

This example is going to break on you because it just keeps going into deeper and deeper method calls.

Eventually, it will run out of memory to make more method calls, and the program will crash.

The problem with this first example, is that there is no base case. Recursion always needs a state where it

doesn’t call itself again, and each time it calls itself, it should be getting closer and closer to that base case.

If not, it will never get to a point where it is done, and can start returning from the method calls back up to

the starting point.

One of the classic examples of when you could use recursion is the mathematical factorial function.

Perhaps you remember from math classes that factorial, written as an exclamation mark by a number,

means to take it and multiply it by all smaller numbers. For example, 7! means 7 * 6 * 5 * 4 * 3 * 2 * 1.

72! would be 72 * 71 * 70 * 69 * ... * 3 * 2 * 1. (With factorial, by the way, you really quickly run into the

overflow issues that we were talking about back in Chapter 9.)

In this case, we know that 1! is 1. This can serve as a base case. The factorial of any other number can be

thought of as the number multiplied by the factorial of the number smaller than it. 7! is the same as 7 *

6!.

This sets up a great opportunity for recursion:

static int Factorial(int number)
{
 // We establish our "base case" here. When we get to this point, we're done.
 if(number == 1)
 return 1;

96 Chapter 15 Methods

 return number * Factorial(number - 1);
}

Try It Out!
The Fibonacci Sequence. If you’re up for a good challenge involving recursion, try out this challenge.

The Fibonacci sequence is a sequence of numbers where the first two numbers are 1 and 1, and

every other number in the sequence after it is the sum of the two numbers before it. So the third

number is 1 + 1, which is 2. The fourth number is the 2nd number plus the 3rd, which is 1 + 2. So the

fourth number is 3. The 5th number is the 3rd number plus the 4th number: 2 + 3 = 5. This keeps

going forever.

The first few numbers of the Fibonacci sequence are: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

Because one number is defined by the numbers before it, this sets up a perfect opportunity for using

recursion.

Your mission, should you choose to accept it, is to create a method called Fibonacci, which takes in a

number and returns that number of the Fibonacci sequence. So if someone calls Fibonacci(3), it

would return the 3rd number in the Fibonacci sequence, which is 2. If someone calls Fibonacci(8), it

would return 21.

In your Main method, write code to loop through the first 10 numbers of the Fibonacci sequence and

print them out.

Hint #1: Start with your base case. We know that if it is the 1st or 2nd number, the value will be 1.

Hint #2: For every other item, how is it defined in terms of the numbers before it? Can you come up

with an equation or formula that calls the Fibonacci method again?

16
16 Value and Reference

Types

We’re going to change gears a little and spend a chapter in pure learning mode, instead of coding mode.

We’re going to discuss a few topics that are going to be important to understanding types and how classes

work. This chapter is probably the most technical chapter in the book, but trust me when I say it is both

important and useful.

The Stack and the Heap

When your program first starts, the operating system gives it a pile of memory for it to work with. Your

program splits that up into several areas that it uses for different things, but most of it is used by two

sections for storing data as your program runs. These two sections are the stack and the heap. The stack

and the heap are used for slightly different things, and they ’re organized in different ways.

In a Nutshell
 Your program’s memory is divided into several sections including the stack and the heap.

 The stack is used to keep track of your program’s state and local variables.

 The heap is used to store data that is accessible anytime from anywhere.

 The CLR manages memory in the heap for you. It cleans up dead memory using garbage

collection.

 Value types store their data directly inside of the variable. Reference types store a reference

to a location in the heap, where the rest of the data is stored.

 Value types have value semantics, which means that when you assign one variable the

contents of another, the entire contents of the variable are copied, so you get a complete

copy in the other variable. Reference types have reference semantics, which means when you

assign one variable to another, only the reference is copied, and the two are referencing the

same object. Changes to one affects the other.

98 Chapter 16 Value and Reference Types

The stack is used to keep track of the current state of

the program, including all of the local variables that

you have. The stack behaves like a stack of

containers. Whenever we enter a method, we place a

new container on the top of the stack. These

containers on the stack are called frames. All of the

local variables (including parameters) for a particular

method go in a single frame.

Additionally, a frame will include information to keep

track of the program’s current state of execution, like

what line of code the program was at just before

entering the new method. In fact, one of the primary

purposes of the stack is to keep track of the

program’s current state of execution.

Like with a stack of containers, you can readily access

the contents of the frame on the top of the stack, but

you can’t really get to the containers lower down.

When we return from a method, the top frame is

taken off the stack and discarded, and we go back

down to the frame beneath it.

Interestingly, the debugger that is built into Visual Studio can inspect the entire stack, including the buried

frames, and show them to you. (This is called a stack trace.)

The heap, on the other hand, is not

concerned at all about keeping track of

the program’s state. Instead, it is only

focused on storing data. The heap is

organized in a way where it is easy to get

access to things any time you need. It’s

easy for the program to grab some space

in the heap and start using it to store the

information it needs. There’s not

necessarily any logical organization to

what gets stored where on the heap, so it

is easy to think of it as just a pile of individual blocks of data.

If you have a multi-threaded application (Chapter 39) each thread will have its own stack, but all threads in

the program will share the same heap.

Memory Management and Garbage Collection

A program needs to manage the memory it is using. In particular, it needs to clean up old memory that is

no longer being used. For the stack, this is easy. Any time it returns from a method, it knows it can throw

the top frame away and reuse that space immediately.

The heap is a little more complicated. Back in the day, when you put stuff in the heap, you needed to

remember it, and when you were done using it you had to tell the computer you were done with it. This

would allow you to reuse that space again.

References 99

If you were putting something on the heap for just a moment, and then getting rid of it right after, this

was easy to do. But this was not so simple when what you were putting on the heap needed to stay there

a while before being cleaned up. It was very easy to forget that it was even there, and even if you

remembered, it was usually all too easy to fail to free that memory correctly. You’d end up with garbage in

the heap that you no longer wanted, but the computer didn’t know it could reuse. This is called a memory

leak, and if you had one (or many) then your program was eventually going to run out of space and die.

Fortunately for us, C# uses an approach where the .NET Platform manages your heap’s memory for you. If

you’re starting to run low on memory for your program, a part of the .NET Platform called the garbage

collector will run through and get rid of any old, unused stuff on your heap, freeing it up to be reused. If

you’ve never had to manage your own program’s memory, it may be hard to see this, but garbage

collection is a huge deal, and it saves you lots of time, worry, and customer complaints.

References

Since data on the heap is sort of scattered about rather than structured like the stack is, you will need a

way to keep track of the variable or data you are interested in.

Outside of C#’s automatic memory management, you would access things in the heap using a pointer,

which is special variable type that stores a memory address in the heap, rather than the actual data. You

can then use this memory address to hunt down the data you want from the heap as needed.

With C#, the heap’s memory is managed for you. This “managed”-ness primarily means two things to you.

First, when objects on the heap are no longer in use (nothing in your program can reach it anymore) the

runtime’s garbage collector will automatically free up the memory for you. Second, the garbage collector

will move things around from one memory location to another to keep things organized and ensure that

there are always large, contiguous blocks of memory available for the next memory allocation.

Because the garbage collector can move stuff around on you, pointers containing a raw memory address

won’t work for you. The data may get moved to a different memory location without you even knowing.

Instead, C# uses a thing called a reference, which is conceptually similar to a pointer, but the reference to

the data is also maintained for you by the garbage collector. Even when data gets moved around in

memory, the reference will still be able to get you to the data you want.

It is helpful to think of a reference as an arrow pointing you to a specific item or variable within the heap.

But technically speaking, references are more of a unique identifier that tells the computer where to find

the rest of the data within the heap.

Value Types and Reference Types

In C#, all types are divided into two broad categories: value types and reference types. With our

discussion on the stack vs. the heap, and what we now know about references, we’re ready to dig into the

difference between these two. This is one of the biggest stumbling blocks or misunderstandings for both

new programmers and experienced programmers, so take the time to make sure you understand how

these two different categories of types work.

Value and reference types are one of the biggest things that make C# stand out from C++, Java, and other

programming languages, which do things in a completely different way.

Here is the key difference: with a value type, the actual contents of the variable live where the variable

lives. With a reference type, the contents of the variable live on the heap, and the variable itself contains

only a reference to the actual content.

100 Chapter 16 Value and Reference Types

Go back and read that last paragraph again a time or two to make sure you understand it.

It turns out we have already been using both value and reference types. The string type is a reference

type, and arrays are references as well (though the contents of the array can be either reference or value

types). All of the simple types that we’ve discussed before, as well as enumerations (Chapter 14) are all

value types.

As we get started with Part 3 of this book, we’re going to learn how you can create your own custom value

or reference types, and finish filling in our type system diagram.

Let’s pick this apart a little more and get into some details and examples. We’ll start with reference types.

Look at the following code:

string message = "Hello!";

Since the string type is a reference type, the actual “Hello!” text will always be stored in the heap, and the

message variable will simply contain a reference to that text. As a local variable or parameter, the

message variable will be stored on the stack somewhere, and contain a reference to that actual text on

the heap.

Depending on how things are set up, reference type variables can also live on the heap, so you could have

references from one part of the heap pointing to other parts of the heap. This would be the case if you

have an array of strings, both of which are reference types. For instance, look at the following:

string[] messages = new string[3] { "Hello", "World", "!" };

This might look like this:

Null: References to Nothing 101

A local messages variable on the stack has a reference to the string array, but that actual array lives on

the heap. Within that array, each item contains another reference to other parts of the heap—the strings

that go in the array in this case. Taking this further, it is entirely possible to have huge networks of

references spread throughout the heap.

On the other hand, value types are stored entirely at the place that the variable exists. If they ’re local

variables or parameters, this means they ’re stored entirely on the stack. We’ve seen this with nearly all of

the built-in types that we’ve been working with so far, like int and double. The variable doesn’t contain a

reference, just the actual value.

This still holds true, even when the value type is defined on the heap. Value typed variables will always

contain their data right there where the variable is at. Arrays give us a great example of how this works.

Let’s say you had an array of value types, like this: int[] numbers = new int[3] { 2, 3, 4 };. This would end

up looking something like this:

Note that the items in the array don’t point to elsewhere like they did with our string array earlier. The

numbers exist right where the variable exists.

That covers the basics of how value and reference types work. In a minute, we’ll come back and take a

look at what that means for us, when we talk about value and reference semantics. But first, a little bit of

a detour to cover something else that we need to know about reference types.

Null: References to Nothing

One interesting thing about reference types is that you can have them reference nothing at all. This is

called a null reference. Assigning a reference type a value of null can be done with the null keyword:

string message = null;
int[] numbers = new int[] { 2, 4, 6, 8 };
numbers = null;

With the middle line, we create a new array, which is placed on the heap, and then we immediately

reassign numbers to null. At this point, the numbers variable isn’t referencing that array anymore, and

since nothing else is referencing it either, it has become inaccessible, and isolated on the heap. Because it

is inaccessible, eventually it will be garbage collected.

If a reference type has a value of null, it means there’s no data at the other end. If you inadvertently try to

actually do something with it, your program is going to crash:

int[] numbers = null;
numbers[3] = 6; // This crashes, since numbers doesn't reference anything.

To address this, you can do a simple check to see if a reference type is null first:

102 Chapter 16 Value and Reference Types

if(numbers != null)
 numbers[3] = 6;

Value types cannot be assigned a value of null.

Checking for null is incredibly common. While the approach above covers you in all cases, C# 6 introduced

a new pair of operators that allow you to check for null using much more concise syntax. For more

information on this other syntax, see the section called Simple Null Checks: Null Propagation Operators in

Chapter 43.

Value and Reference Semantics

If the only difference between value and reference types was whether they stored their data “on site” or

off elsewhere in the heap, I wouldn’t normally worry about that kind of detail for an introductory book like

this. However, there’s more to it. Because of this difference, we get different behavior.

Reference types have what’s called reference semantics, and value types have value semantics or copy

semantics. Let’s compare these two with an example, using the int type (a value type) and an array of ints

(the array is a reference type, even though it contains things that are value types). Let’s say you have the

following code:

int a = 3;
int b = a;
b++;

We’ve created two variables with the int type. We place the value 3 inside a. We then assign the contents

of a to b. Doing this means reading the contents of a (which is 3) and putting that value into b. Next, we

modify b by incrementing it so b is now 4. But a is still the original value of 3. When we assign the

contents of a to b, we made a new copy for b. Whatever happens with the b variable won’t affect the

original a variable.

Interestingly, the exact same thing happens with reference types, but because the variable contains only a

reference instead of the actual value, we get different behavior entirely. Take a look at this example:

int[] a = new int[] { 1, 2, 3 };
int[] b = a;
b[0] = 17;
Console.WriteLine(a[0]); // This will print out 17.

When we create our array, the entire contents of the array are placed in the heap. While a may be stored

on the stack, it will contain a reference to the array out in the heap. When we assign the value of a to the

variable b, we read the value from a, which is a reference, and

copy it into b. But copying a reference gives b a reference to the

same object on the heap. At this point, both of our variables

are referencing the same array in the heap. We then modify

that array by going through the b variable, but since the two

things reference the same memory location in the heap, a has

been modified as well.

This same thing happens as you send things to methods as parameters. For value types, the value is

copied over to the parameter. Inside the method, we have a copy of the data. Changing the variable there

won’t affect the original, back in the calling method.

With reference types, while you’re still technically passing a copy of the variable’s contents, it is a copy of a

reference, so inside of the method, the parameter is referencing the exact same thing on the heap.

Making changes to it inside of the method affects the thing back in the calling method.

Value and Reference Semantics 103

This is often done intentionally, handing an array or other reference type to a method with the specific

task of modifying it in some way. But of course, if you hand a reference type to a method, expecting it to

remain unchanged, and the method makes changes, you’ll be in for a surprise.

This can be a useful thing or a liability, but it is a fact. You have to understand the differences between

value types and reference types, or it will come back to haunt you repeatedly. Surprisingly, there are a lot

of talented programmers who claim to know C# that haven’t figured this heap vs. stack and value vs.

reference type stuff yet. If you don’t understand these differences, you will be constantly running into

strange problems that just don’t seem to make sense.

Answers: (1) False. (2) True. (3) True. (4) False. (5) True. (6) False. (7) False. (8) True. (9) False.

Try It Out!
Value and Reference Types Quiz. Answer the following questions to check your understanding.

When you’re done, check your answers against the ones below. If you missed something, go back and

review the section that talks about it.

1. True/False. Anything on the stack can be accessed at any time.

2. True/False. The stack keeps track of local variables.

3. True/False. The contents of a value type can be placed in the heap.

4. True/False. The contents of a value type are always placed in the heap.

5. True/False. The contents of reference types are always placed in the heap.

6. True/False. The garbage collector cleans up old, unused space on both the heap and stack.

7. True/False. You can assign null to value types.

8. True/False. If a and b are reference types, and both reference the same object, modifying a

will affect b as well.

9. True/False. If a and b are value types with the same value, modifying a will affect b as well.

Part 3
Object-Oriented

Programming

C# is an object-oriented programming language, meaning that the code we write is typically organized

into little blocks that are modeled after real-world objects. We define what kind of data those objects

have and what those objects can do.

The object-oriented aspect of C# is a key part of the language. Without knowing how to create and

use classes, our understanding of the language is far from complete.

Part 3 is all about designing and building your own types in C#. Building your own reusable types and

assembling them together is how you’ll be able to make truly amazing software.

We’ll dig straight to the heart of object-oriented programming. We’ll look at the following:

 Introduce what object-oriented programming is about (Chapter 17).

 Discuss how to make your own classes (Chapter 18) and structs (Chapter 21).

 Create easy access to data in your own custom types with properties (Chapter 19).

 A single chapter devoted to a large Try It Out problem: Tic-Tac-Toe (Chapter 20).

 Make classes that are special types of other classes with inheritance (Chapter 22).

 Making special types that can do the same tasks in their own way (Chapters 23 and 24).

 Make generic types (Chapters 25 and 26).

17
17 Object-Oriented Basics

We’ve worked with a lot of different types so far: int, string, arrays, etc. We even learned how to define

our own simple enumeration types. The next step in our journey is to begin to work with and make our

own custom types from scratch. Custom types are defined by assembling data that defines the

information that the type has, as well as methods that operate on that data. These custom-made types

form the fundamental building block of “object-oriented programming.” This chapter will primarily focus

on concepts of this important programming style, and get us some practice with using classes and

objects. We’ll begin making our own class types in the next chapter.

Object Classes and Object Instances

Over the many years that people have been programming, we’ve come to learn that one of the best ways

to structure code is to mimic the way the real world works. It helps to break things down into manageable

pieces, and presents an intuitive way for programmers to work with their code. This concept of making

our code mimic real-world objects is called object-oriented programming.

Read that last paragraph again. It’s important.

In object-oriented programming, there are two ways of thinking about the objects that exist. The first is to

think in terms of categories or types of objects. For example, in the real world, we have houses, and cars,

and planets. These are all general categories of objects. Or we could say that these are “classes” of

objects.

In a Nutshell
 Object-oriented programming is a programming style where you create chunks of code that

are modeled after real world objects.

 Classes in C# define what an entire “class” of objects can do (what all players can do, or what

any car can do), including what kind of data it stores and the tasks that it can do.

 Classes are reference types.

 Creating a class is the most powerful way C# has of defining your own new types.

 You can create a new object with something like this: Random random = new Random();.

This creates a new Random object, which is used to generate random numbers.

108 Chapter 17 Object-Oriented Basics

Additionally, there are specific occurrences or “instances” of these object classes. This house, that house,

the White House, and that weird house that is painted pink on the next block over.

Each category or class of objects have certain properties in common, or share certain functionality. For

example, when talking about a house, we know all houses have a size or a color. Each specific house will

have its own unique size measurement or color, but we know all houses will have a size measurement

and a color of some sort.

Here is another example that might be more applicable in a game development scenario. An Asteroids

clone needs to deal with asteroids. We know all asteroids in the game will have a position in the game

world and a size. Each individual asteroid will have its own unique position and its own unique size. We

can talk about asteroids in the general sense (the entire class of asteroid-type things) and we can also talk

about specific asteroids. One over here is at (60, 121) and has a size of 15, and another one over here is at

(542, 97) and has a size of 5.

With object-oriented programming, we can define a blueprint for a specific type or category of object by

defining a class. This is a new, custom type that we make, similar to when we made our own enumeration

types.

These class definitions allow us to specify what data a particular class of object has in common. If we were

defining an Asteroid class for example, we would probably want to indicate that asteroids have a position

and a size.

In addition to data, a class definition will also allow us to define behavior that all things that belong to the

class can perform. Continuing with the Asteroids game theme, if we had a Ship class that represented

what the player controlled, this might include the ability to Fire a bullet, or Warp to a different location.

These behaviors are defined as methods (Chapter 15), and they can use and also modify the data that

belongs to the class.

Based on a class definition, we can then create specific instances of the class within our programs. For

example, our Asteroids clone could create a dozen different instances of the Asteroid class and different

locations and with different sizes. And it could then create one or two Ship instances for a one or two

player game. Each instance has its own position. Each ship can warp or fire separately from the others,

but because all ships “belong to” the same Ship class or category, we know they all have the capability to

fire or warp. Different instances of a class are independent of each other. They have their own set of data

and asking them to perform an action or method is for a specific instance, rather than for the whole class

of objects. But if two instances are of the same class, we know we can interact with them in the same way

because they share the same blueprint.

People frequently use the term instance and object interchangeably to mean a specific occurrence, with its

own unique data.

These two concepts—the idea that classes of objects share the same blueprint, and that unique instances

of a certain type are independent of other instances of the same type but can be interacted with in the

same way—form the foundation of object-oriented programming.

Working with an Existing Class

We will soon turn our attention to defining our own classes, but before we do, let ’s start by using a simple

class that already exists: the Random class. The Random class lets you create random numbers. For

example, you could use this class to simulate rolling dice, or to shuffle a deck.

Using an Instance 109

We can use the Random class in a way that is very similar to any other type:

Random random = new Random();

In this case, we specify Random as our variable’s type and give our variable a name (random). Like with

any other variable, we can assign a value by using the assignment operator (=).

But after that, we’ll see a couple of things that we haven’t really seen. You can see the new keyword there.

This tips us off to the fact that we’re going to create a new instance of the Random class—an object with

the Random type.

The Random() part might look like a method call to you, and it kind of is. In fact, it is a special kind of

method called a constructor. A constructor is placed in a class and describes how to create or build a new

instance of that type. This particular constructor has no parameters (hence the empty parentheses) but it

is possible to have constructors with parameters, like any other method.

When that line is finished executing, our variable called random will contain a reference to a brand new

instance with the type Random.

Using an Instance

Now that we have a working object, we can do stuff with it. If you remember, an object has state, and it

has behaviors. In the specific case of the Random object we just created, internally, it is keeping track of

its state, but it doesn’t expose any of that to us.

So while we can’t modify a Random object’s state, we can use its behaviors, defined by its methods. A

different type might expose some of its state and provide methods that allow us to request changes to

that state (like our Ship’s Fire and Warp methods).

We can access our object’s behaviors through the methods it has defined in it. For starters, there’s the

Next method. We call this method by using the dot operator (“.”):

Random random = new Random();
int aRandomNumber = random.Next();

The dot operator is used for member access. In other words, to access something that belongs to

something else. Here, we use it to say, “Look in random to find the method called Next.” Things that

belong to an object, like variables and methods, are called members of the type and are accessible with

the dot operator.

In Depth
Computers and Randomness. Generally speaking, random numbers on a computer aren’t truly

random. They are actually chosen using an algorithm that simply appears random. They need to be

initialized, starting with a number chosen by the programmer. This number is called a seed. If you

start with the same seed, you will get the same sequence of random numbers, over and over again.

Since the vast majority of the time, this is not something you want, programmers will often seed the

random number generator with the current time, accurate to the millisecond. This makes it so that a

different sequence is generated every time you run the program.

The Random class that we’re using here will automatically seed the random number generation with

the current time, but you can also specify a seed if you would like.

110 Chapter 17 Object-Oriented Basics

The Next method is overloaded (Chapter 15), so there are multiple versions of the Next method,

including one that lets us choose a range to use:

Random random = new Random();
int dieRoll = random.Next(6) + 1; // Add one, because Next(6) gives us 0 to 5.

The Random class also has a NextDouble method, which returns floating point numbers between 0 and

1. This allows you to do things like random probabilities and so on.

Once you have created an object like this, you can use any of its methods in any order, at any time.

The Power of Objects

Classes are a core part of object-oriented programming languages like C#. In fact, you could argue they

are the core part. Classes and instances are the fundamental building blocks of programming in these

languages. In C#, all of your code will belong to a particular class (or another custom-made type). In fact,

all of the code we’ve been writing so far has been inside of a Program class! (Starting in the next chapter

though, we’re going to be building our own classes, and putting code elsewhere.)

Classes of objects and specific instances of objects are an idiom borrowed from the real world, which is

something programmers have plenty of experience with. This idiom allows you to build large programs by

breaking the sum total of the functionality down into smaller pieces that each do a very small subset of

the total. By modeling pieces of your program after real-world objects or conceptual components to a

solution, it becomes easier to see how a vast program made up of many small pieces is combined

together in the right way to get the desired behavior.

Classes are Reference Types

Anything that is defined as a class is a reference type. This means that everything we learned in Chapter

16 about reference types applies to classes. For example, you can assign null to it:

Random random = null;

And two variables that are assigned the same reference will affect each other, because they use reference

semantics:

Random random1 = new Random();
Random random2 = random1;
// random1 and random2 are actually referencing the same Random object now.

And like all reference types, this applies even as you pass the contents of a variable to a method as a

parameter. If you pass an instance of a class to a method, the parameter inside of the method will

reference the exact same instances as whatever was passed in. This means changing the object from

Try It Out!
Die Rolling. Tons of games use dice. The Random class gives us the ability to simulate die rolling.

Many games give the player the task of rolling multiple six-sided dice and adding up the results.

We’re going to write a program that makes life easier for the player of a game like this. Start the

program off by asking the player to type in a number of dice to roll. Create a new Random object and

use the Random.Next method to simulate that many die rolls. Add the total up and print the result

to the user. (You should only need one Random object for this.)

For bonus points, keep looping and handle new numbers until they enter “quit” or “exit.”

Classes are Reference Types 111

inside of the method will affect variables that reference the same instance in the calling method, for

better or worse.

public static void Main(string[] args)
{
 Random random = new Random();
 DoSomething(random);
}

public static void DoSomething(Random r)
{
 // The variable 'r' references the same instance as 'random' in Main. Two references, same instance.
 Console.WriteLine(r.Next());
}

18
18 Making Your Own Classes

In the previous chapter we learned the basics of classes and instances. We’ll now start to make our own

classes in this chapter.

The ability to create your own classes is very important. As you write your own programs in C#, you will

make many, many classes. That’s because building your own classes allows you to break your whole

program into manageable pieces that you can work with.

While we cover a lot of ground in this chapter, this is the end of the beginning. By the end of this chapter,

you will know enough of the fundamentals to program in C#! While there is more to cover, it is possible to

write almost any program you want after this chapter.

Creating a New Class

We’re now ready to create our very first class. Remember from the last chapter that a class works as a

blueprint for what an entire class or category of things can do and keep track of. Through this chapter,

we’ll create and use a simple Book class, which can be used to represent a book in a program.

While you are allowed to put multiple classes in a single file, it is a good idea to put each new class into its

own file. This helps keep your files to a manageable size, and makes it easier to find things.

In a Nutshell
 Classes typically go in their own file (though C# doesn’t require it).

 Anything that is a part of a class (or other type) is called a member. This includes instance

variables, methods, and constructors.

 Variables can be added to a class—these are called instance variables.

 You can add as many constructors to a class as you want.

 You can add methods to a class, which operate on the instance variables that the class has.

 A private method or instance variable is only visible from inside the class.

 A public method or instance variable can be seen from anywhere, inside or outside the class.

 This chapter also covers scope, name hiding, and the this keyword.

Creating a New Class 113

Our first step is to create a new file inside of our project. To do this, in the Solution Explorer, right-click on

your project. The very top level item in the Solution Explorer is your solution, which is simply a collection

of related projects. That’s not the one you want. Your solution probably only has one project right now,

and it likely has the same name as the solution. So in most cases, this means you’ll be clicking on the

second item in your Solution Explorer. After right-clicking, choose Add > Class....

This will bring up the Add New Item dialog, with the Class template already selected. At the bottom, type

in the name of your new class. I’ve called mine Book.cs, so my class will be called Book. Press the Add

button, and your new file will be created.

When your new file is created, you’ll see that Visual Studio generated some template code for you.

Book.cs will contain code that looks something like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace CreatingClasses // Your namespace will likely be different here.
{
 class Book // Whatever name you chose will appear here as the class name.
 {
 }
}

114 Chapter 18 Making Your Own Classes

The class that was generated for us is completely empty. Our task now will be to fill in the class with the

things it needs. Anything that is a part of a class is called a member of the class. As we define a new class,

we will be adding three main types of members to it: the data it has (as variables), the things it can do

(methods), and ways to initialize new instances of the class (constructors). We’ll now go through the

process of adding each of these to our new class.

Instance Variables

The first thing we’ll do is add variables to store the data that this object class will have for each instance.

The variables we place in a class define what type of data any instance of the class will have. The class

serves as the blueprint for all instances of the type. While we define what data instances of the class

should have, each instance will actually get its own copy of the variables and data to work with, rather

than sharing the data across all instances. (Though there’s a way to do that too.)

Because of this, the variables that we add directly to a class are called instance variables.

For our simple Book class, we’re going to keep track of the book’s title, author, number of pages, and the

word count. There is undoubtedly more information we could store about a book (publisher, publication

date, etc.) but these four pieces of data are enough to illustrate the point.

Instance variables are made by placing them directly in the class, not in a method like we’ve done before:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace CreatingClasses
{
 class Book
 {
 private string title;
 private string author;
 private int pages;
 private int wordCount;
 }
}

Each instance variable above starts with the private modifier, which we’ll discuss in a second. The rest is

just like creating any other variable—we state the type of variable, followed by its name. (Note that you

can’t use var for instance variables. You must explicitly specify the type.)

These variables are a little different from what we’ve seen up until now, in terms of how they ’re used. All

of our earlier variables have been either local variables or parameters, both of which can only be used

within the scope of a single method. (Parameters are defined as a part of the method’s signature, and are

filled in by the calling method, whereas local variables are not. Instance variables on the other hand belong

to the instance as a whole. These can be used from any method (including constructors) across the entire

class. They aren’t limited to just a single method.

Access Modifiers: private and public

Let’s go back to that private keyword. Everything in a class has an accessibility level. An accessibility level

indicates where it can be accessed from. The private keyword makes it only accessible (both to retrieve

and set new values) from inside the class. Anything outside of the class doesn’t even know it exists.

Constructors 115

By contrast, the public accessibility level means that it can be seen or used from anywhere, including

outside of the class. We could have made these variables public. The problem with doing this is that it

makes it too easy for “outsiders” to modify our class’s data in ways that shouldn’t be allowed. For example,

somebody could intentionally or accidentally modify wordCount to be negative, which is meaningless.

A class should protect the integrity of its own data. This is a concept called encapsulation. In general, a

class should keep its internal data private but then allow for public mechanisms to request the current

state of that data or to request applying new values for that data. This allows our class itself, through

those mechanisms, to act as a gatekeeper, and make sure that only reasonable changes are performed.

By the way, if you don’t put an access modifier, these variables would be private by default; private is the

default accessibility level for all members of a class. Because of this, it wasn’t technically necessary to use

private in this case, but I think it’s a good idea to put it in anyway, to make it obvious.

Constructors

Now that we’ve got instance variables ready, our second step is to indicate how you can create new

instances of our class. This is done by adding in special methods called constructors.

When making constructors, we want to think about what we need to do to get our newly created instance

into a valid starting state. This is usually determined in large part by the instance variables that our class

contains. We frequently want constructors that will allow users of the class to supply initial values for

these instance variables.

For instance, it probably doesn’t make sense to create a book without a title. The same thing probably

holds true for an author as well. So we’ll probably want to make a constructor that allows the user to

specify both of these as parameters. The code below adds a constructor that does this to our Book class:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace CreatingClasses
{
 class Book
 {
 private string title;
 private string author;
 private int pages;
 private int wordCount;

 public Book(string title, string author)
 {
 this.title = title;
 this.author = author;
 }
 }
}

You can see from the above code that constructors look very much like methods, but with a few subtle

differences. The first key difference here is that a constructor must share the same name as the class,

while a normal method is forbidden from doing this. (This is, in fact, the way that the C# compiler

distinguishes the two.)

The second difference is that constructors do not (and cannot) specify a return type. Not even void. By

contrast, methods are required to specify a return type.

116 Chapter 18 Making Your Own Classes

You can also see that we’ve made our constructor public, instead of private like our instance variables.

By making this public, it allows code outside of the class to be able to create instances of the Book class.

Had we made it private, it could only be reachable from inside the class. Since we nearly always want to

be able to create instances of a class from outside the class, constructors will usually be public, though

this isn’t a requirement by any means.

In all other regards, a constructor is the same as a method. You can put any arbitrary code in there, like

we’ve done with other methods, including things like loops and if statements. The constructor is also

allowed to have parameters, like any other method. The variables defined by the parameters are usable

throughout the method.

By the way, if you don’t put any constructors in your class, the C# compiler will put one in for you. That

constructor is parameterless. This is called the default parameterless constructor. Placing any other

constructor of your own in a class will prevent the default parameterless constructor from being added

automatically. If you wrote the default parameterless constructor by hand, it would look like this:

public Book()
{
}

The body of our constructor probably brings up some additional questions. Specifically, what is that this

thing doing in there? To answer that question, we’re going go through a series of important concepts that

shape how both constructors and normal methods work when placed inside of a class.

Variable Scope
With the introduction of instance variables that live directly inside of a class (contrasted with local

variables and parameters, that all live within a single method) we need to talk about an important concept

called scope or variable scope. The scope of a variable refers to the places in the code that a variable is

accessible.

There are generally three main “levels” of scope that we concern ourselves with:

 If something has class scope, it means it is accessible across an entire class.

 If something has method scope, it means it is accessible across an entire single method, but not

before the line on which it is declared.

 If something has block scope or inner block scope, then it is accessible within just a section of a

method. A for loop or foreach loop, for example, can declare a variable for use in the loop itself.

These variables “go out of scope” at the end of the loop.

While not perfect, as a general rule, you can let the curly braces be your guide.

Here is a simple example of scope:

public void DoSomething()
{
 int a = 0;

 for(int x = 0; x < 10; x++)
 Console.WriteLine(x);

 x = -5; // This won't compile--the variable 'x' is "out of scope".
}

In this method, the variable a has method scope, but the variable x has block scope. The a variable on the

other hand can be used throughout the method, because it has method scope. The variable x can be

used within the loop itself, but not after the loop. It won’t even compile. It has fallen out of scope.

Constructors 117

Interestingly, we can create a second for loop, reusing the same variable name (x) for a different variable,

and the two won’t conflict:

public void DoSomething()
{
 for(int x = 0; x < 10; x++)
 Console.WriteLine(x);

 for(int x = 50; x < 60; x++)
 Console.WriteLine(x);
}

Going back to our Book constructor, each of the four instance variables that we’ve defined in the class

have class scope. They are accessible throughout the class, including from within the constructor. The

title and author parameters defined at the top of the Book class, by contrast, have method scope.

Name Hiding
Related to the previous topic on variable scope, in some cases, it is possible for a nested scope to name

something the same as something in the broader parent scope that contains it. Our constructor here is a

perfect example of this. We had an instance variable called author that has class scope, and we created a

parameter by the same name that has method scope.

When this happens, the variable in the smaller scope “hides” the variable in the larger scope. This is a

situation called name hiding. That is, while both the class-level author variable and the method-level

author variable both officially exist, within the context of the constructor, the local author variable hides

the class-level author variable, making it inaccessible through direct means.

What do we do about this?

Well one solution is to just always name local variables and parameters something different than the

class-level instance variable.

If you choose to solve this problem this way, I strongly recommend establishing a naming convention. I’ve

seen people be inconsistent about names like this and it causes a great deal of pain. For example, if you

make bookAuthor and title your class-level variables, but author and theTitle your method-level

variables, you’re going to always be confused about which variable belongs to the class and which are

local to the method.

Many C# programmers will prefix the class-level instance variables with either an “m_” or just a plain “_”.

(In this case, the “m” is for “member”.) In other words, we could make our instance variables m_author,

m_title, etc.

This approach solves our name hiding problem by simply avoiding name hiding systematically. The only

real drawback to this is that placing “m_” or even just “_” does have an impact on readability, especially

when you’re literally reading it out loud. (This is more common than you might think, because of how

often programmers will discuss code in pairs or groups.) “Em underscore title” is a whole lot more to say

than just simply “title”. But in the grand scheme of things, this isn’t so bad.

There is another solution to this problem though. There is a way that we can directly reference things in

the class scope, regardless of what local variables might be hiding it. We’ll discuss this in the next section.

The ‘this’ Keyword
At any point in time, you can get access to the current instance and the things in the class scope with the

this keyword that our constructor illustrated. this is a special reference to the current instance that a

method or constructor is running in. It’s a quick and easy way to reach up into the class scope and work

with instance variables and even methods that belong to the class.

118 Chapter 18 Making Your Own Classes

This allows us to sidestep nearly all name hiding issues, and is what I showed in our constructor:

public Book(string title, string author)
{
 this.title = title;
 this.author = author;
}

Because there is a local variable called title that name hides the class-level title variable, when we refer

directly to title, it will always refer to the method-level title variable. But if we start with “this.”, then we

can reach back up to the class-level directly, and reference the title instance variable.

This is a clean and simple way to avoid name hiding problems while still giving all variables simple, easy to

understand names.

Multiple Constructors
A class can have as many constructors as you want to place in it.

Keep in mind that the goal of a constructor is to ensure that new instances of the class are put into a valid

starting state. This state can be modified later through method calls, but the constructor should ensure

that it always starts in a “safe” state.

As an example, it might make sense with our Book class to provide a second constructor that allows the

user to additionally specify the pages and word count. If we wanted to add this, we might include a

second constructor that looks like this:

public Book(string title, string author, int pages, int wordCount)
{
 this.title = title;
 this.author = author;
 this.pages = pages;
 this.wordCount = wordCount;
}

Methods

The last major category of things to add to a class is an appropriate set of methods. Methods allow

outside code to make requests of the instance. There is no limit to what these requests can entail. It just

depends on what the class is capable of and what other pieces of the system will need from it.

A few possibilities include things like requesting the current state of some part of its data, a request to

change the current state of its data to a new value, or asking it to perform some sort of task.

In this section, we’ll tackle three simple methods, one in in each of those categories. But a full-fledged

Book class might want many more methods than this. A class doesn’t really have a limit to the number of

methods it has (or constructors or instance variables for that matter) but at some point, as the number

gets bigger and bigger, it is probably a sign that the class is responsible for too much, and should be

broken down into smaller pieces.

The three methods we’ll add here are:

1. A method to retrieve the current title for a book.

2. A method to specify a new title for the book.

3. A method that supplies the text of the book and updates the word count accordingly.

This is obviously not a comprehensive list of all methods our Book class could possibly ever want. It is

merely illustrative of how you add methods to a class.

The following code shows a possible implementation for these three methods:

Methods 119

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace CreatingClasses
{
 class Book
 {
 private string title;
 private string author;
 private int pages;
 private int wordCount;

 public Book(string title, string author)
 {
 this.title = title;
 this.author = author;
 }

 public Book(string title, string author, int pages, int wordCount)
 {
 this.title = title;
 this.author = author;
 this.pages = pages;
 this.wordCount = wordCount;
 }

 public string GetTitle()
 {
 return title;
 }

 public void SetTitle(string title)
 {
 this.title = title;
 }

 public void AssignWordCountFromText(string text)
 {
 wordCount = text.Split(' ').Length;
 }
 }
}

We’ve made all of these methods public, which means they can be called from both inside and outside

the Book class. If somebody has a Book instance, then they’ll be able to invoke these methods on it. This

was by design here, but we can have private methods as well, which can be called only from inside the

class. In this case, these become utility methods of the class itself.

You’ll also notice that we have a method that starts with Get and another that starts with Set. These

retrieve (“get”) the value of some piece of data (title in this particular case) and request a new value be

assigned to the data. These are called “getters” and “setters”, and they’re a very common thing to see in a

class. (So much so that we’ll talk about a more powerful way of doing this in Chapter 19). While we only

made a GetTitle and SetTitle, you can easily imagine having a GetAuthor and SetAuthor, a GetPages

and a SetPages, and so on.

You can see that for the GetTitle and SetTitle methods above, they simply pass through to the instance

variable. In this case, you might be tempted to say, “Let’s just make title public, and let people just directly

read from or write to that variable.” The syntax there would definitely be cleaner. But remember that

classes should protect their own data. This protection means keeping the instance variables private in

120 Chapter 18 Making Your Own Classes

most scenarios, and providing alternative means (getters and setters) to make requests instead. This

allows us to change our logic (for example, preventing you from setting the title to null) without breaking

any code that uses the method.

You may have noticed that these methods are missing the static keyword that we’ve been using in the

past. In the next section, we’ll learn what static means and why we didn’t use it here.

The ‘static’ Keyword

In the past, we’ve been putting static on the methods we create, but in the previous section, we

specifically skipped it. So what does static actually mean?

In object-oriented programming, we have classes, which define general behavior for an entire category of

objects, and then we have instances, which are individual occurrences of the category.

If something is marked static, then it means it belongs to the class as a whole—it is shared across all

instances. In fact, in Visual Basic.NET, C#’s evil twin language, they actually use the keyword Shared for

this concept instead, which is a much better way of describing this concept, in my opinion.

While we’ve been using static quite a bit in the past, now that we’re introducing classes, we’re going to

stop using it in most places. In most cases, we don’t actually want to make things static and share them

across all instances of the class.

The static keyword can be applied to any class member, which slight variations in meaning or usage. The

rest of this section will discuss the various ways to use static and its implications.

Static Variables
For a class-level variable, marking it with static means that rather than every instance have its own

variable as defined by a template, there is only a single variable that is shared by all instances and owned

by the class as a whole. Because it is shared, if one instance changes the value of the variable, it will affect

all other instances as well. Applying static to a class-level variable means it is no longer an instance

variable, but a static class variable, or class variable for short. It belongs to the class as a whole, not to any

particular instance of it.

Static Methods
If a method is static then it can be accessed through the class name directly, rather than through any

particular instance of the class, since it belongs to the class as a whole, instead of an instance. To

illustrate, here is how you use a “normal” non-static method:

Book book = new Book("Rendezvous with Rama");
book.AssignWordCountFromText("Sooner or later, it was bound to happen.");

We have an actual instance of the Book class (stored in the book variable) and to invoke the normal non-

static method, we use the dot operator and call the method from the instance itself.

But if a method is static, then we don’t use an instance. We access it through the class as a whole. We saw

this with the Console class:

Console.WriteLine("Hello World!");

WriteLine is a static method, so we don’t need to create an instance of the Console class. We just invoke

the method directly from the class itself.

There is a time and place for both static and non-static methods. While we’ve been mostly doing static

methods up to this point, normal non-static methods are going to become the new normal. But that

doesn’t completely negate the usefulness of static methods.

Using Our Class 121

A static method does not have access to instance variables, nor can it invoke instance methods.

Static Classes
 You can also apply the static keyword to a class. If you do this, then it can’t contain any instance variables

or methods. Everything inside it must be static. Furthermore, if a class is static, then you can’t create an

instance of it either. The compiler will enforce all of this. The Console, Convert, and Math classes are all

static classes. In this sense, static classes are simply a way to group a related collection of utility code.

Static Constructors
While far less useful than some of the other static things we’ve talked about, it is also possible to make a

static constructor. While normal constructors are meant to get a brand new instance into a valid starting

state, a static constructor is meant to get the class as a whole into a valid starting state. This largely only

applies in cases where you have a bunch of static class variables that need to be initialized. (Note that

you can only have one static constructor in a class.) Here is an example:

public class Something
{
 public static int sharedNumber;

 static Something()
 {
 sharedNumber = 3;
 }
}

When your class is first used, the CLR runtime that is executing your code will pause for a second and look

to see if a class has a static constructor. If it does, it will run it (once and never again during the

application’s lifetime).

Using Our Class

Now that we’ve created a Book class and walked through some of the nuances of creating a class, we

should also look at how to actually use our new class. We saw some of this in the last chapter. Our Book

class is used similarly to the Random class we saw there. In your Main method, you can create an

instance of your Book class, and work with it like this:

Book book = new Book("Harry Potter", "J.K. Rowling");

// Changed my mind. Let's use the full name.
book.SetTitle("Harry Potter and the Half-Blood Prince.");

// Now I forgot. What was the title again?
Console.WriteLine(book.GetTitle());

This is a simple, almost trivial example, but it grows and expands from here. We can use our newly

created class like any other type of data. We create a new instance any time we need to represent a new

book in our system. For any instance, we can call its methods to make requests and interact with it.

Our system will begin to grow. More class definitions will define additional pieces of the larger system.

Instances of the different classes can be combined together to form a cohesive whole, where each class

and each instance is only concerned with a tiny piece of the complete puzzle.

The ‘internal’ Access Modifier

In addition to making things public and private, we can also make things have an “internal” accessibility

level by applying the internal access modifier. The internal modifier is similar to public. It means it can

122 Chapter 18 Making Your Own Classes

be used inside and outside of the class. By contrast though, it indicates that it is only accessible in the

assembly it is defined in. We talked about assemblies back in Chapter 3, but the general idea is that if

something is internal, then it is only accessible in the project that it is defined in.

This is important because things placed directly in a namespace (like a class) default to the internal

accessibility level if nothing else is specified. When we made the Book class in a new file, our class

definition looked like this:

class Book // Or any other name…
{

This class has the internal accessibility level. If you want to be able to use the class outside of the project

where it is defined, you will have to specifically mark it with the public access modifier:

public class Book
{

(I’d also recommend explicitly stating that a class is internal if you truly mean for it to be internal, rather

than ever just leaving it off and being implicitly internal.)

You can also make class members like instance variables and methods internal as well, if the situation is

right.

So when do you use which accessibility level?

The short answer is, you should make everything as restricted (private over internal, and internal over

public) as possible while still allowing things to get done.

The longer answer is a bit more nuanced. Data that belongs to a class should generally be protected by

the class, and so class-level variables should usually be made private.

When it comes to deciding between public and internal, it all comes down to how widely used you

expect the class to be. If you think a class is reusable across many projects, then you might as well make it

public from the beginning. If you mean for the type to be used only inside a single project, it should be

internal. The same rule applies to methods as well.

Class Design and Software Engineering

This chapter has described the basics of building classes. Defining new types like this is the key aspect of

building large products. But while the basic rules of designing and building classes is straightforward,

mastering class design and using it to build complicated software takes a lifetime to master.

The rest of this book will continue to provide you with new tools and techniques for building more

powerful and more interesting classes. But the real learning will take place over the next weeks, months,

and even years as you get more practice and experience with building larger systems out of individual

classes and instances.

As you begin to explore class design, you will sometimes make mistakes and organize your code into the

wrong set of classes. It’s OK to get the design wrong. No matter how much experience you have with class

design, and no matter how many rules and “best practices” you’ve learned, you will still sometimes get it

wrong.

A good programmer will be able to recognize when they ’ve accidentally structured their code into the

wrong classes and will refactor and rearrange it so that it is better. As you get more practice, this will

become rarer, but it will never go away completely.

By the time you’ve written 10000 classes, you will have become quite skilled at designing classes.

Class Design and Software Engineering 123

Answers: (1) True. (2) Classes, instance. (3) Instance variables, methods, constructors. (4) True. (5) Constructor. (6) Only

within the class. (7) Anywhere. (8) Anywhere inside of the project it is contained in.

Try It Out!
Designing and Building Classes. Try creating the two classes below, and make a simple program to

work with them, as described below.

Create a Color class:

 On a computer, colors are typically represented with a red, green, blue, and alpha

(transparency) value, usually in the range of 0 to 255. Add these as instance variables.

 A constructor that takes a red, green, blue, and alpha value.

 A constructor that takes just red, green, and blue, while alpha defaults to 255 (opaque).

 Methods to get and set the red, green, blue, and alpha values from a Color instance.

 A method to get the grayscale value for the color, which is the average of the red, green and

blue values.

Create a Ball class:

 The Ball class should have instance variables for size and color (the Color class you just

created). Let’s also add an instance variable that keeps track of the number of times it has

been thrown.

 Create any constructors you feel would be useful.

 Create a Pop method, which changes the ball’s size to 0.

 Create a Throw method that adds 1 to the throw count, but only if the ball hasn’t been

popped (has a size of 0).

 A method that returns the number of times the ball has been thrown.

Write some code in your Main method to create a few balls, throw them around a few times, pop a

few, and try to throw them again, and print out the number of times that the balls have been thrown.

(Popped balls shouldn’t have changed.)

Try It Out!
Classes Quiz. Answer the following questions to check your understanding. When you’re done, check

your answers against the ones below. If you missed something, go back and review the section that

talks about it.

1. True/False. Classes are reference types.

2. (Classes/Instances) define what a particular type of thing can do and store, while a/an

(class/instance) is a specific object that contains its own set of data.

3. Name three types of members that can be a part of a class.

4. True/False. If something is static, it is shared by all instances of a particular type.

5. What is a special type of method that sets up a new instance called?

6. Where can something private be accessed from?

7. Where can something public be accessed from?

8. Where can something internal be accessed from?

19
19 Properties

In the last chapter, we saw how it is common to have an instance variable and then getter and setter

methods that allow outside code to retrieve and request new values for the variable. This leads to lots of

GetSomething and SetSomething methods. This is so common that C# provides a very powerful feature

that makes it easy to access the value of an instance variable called properties. This chapter will discuss

why properties are so helpful, and several ways to create them.

The Motivation for Properties

Imagine you are creating a simple class to represent a player in a video game, which looks like this so far:

In a Nutshell
 Properties provide a cleaner approach to creating getters and setters for instance variables.

 You can create a property with code like the following:

public int Score
{
 get
 {
 return score;
 }
 set
 {
 score = value;
 if (score < 0)
 score = 0;
 }
}

 Not all properties need both a setter and a getter.

 Getters and setters can have different accessibility levels.

 Auto-implemented properties can be created that allow you to quickly define a simple

property with default behavior (public int Score { get; set; }).

 Auto-implemented properties can have a default value: public int Score { get; set; } = 10;

Creating Properties 125

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Properties
{
 class Player
 {
 private int score;
 }
}

Let’s say that you want to be able to have something outside of the class be able to get and set the value

of the player’s score.

In the last chapter, we learned a way to accomplish this might be by creating a GetScore and a SetScore

method. These two methods can do any special checking that they might need (like ensuring that the

score being set isn’t negative). This might look like this:

public int GetScore()
{
 return score;
}

public void SetScore(int score)
{
 this.score = score;
 if(this.score < 0)
 score = 0;
}

But the need for getter and setter methods is extremely common, and making getter and setter methods

is a little cumbersome. Plus, using these methods (e.g., player.SetScore(10);) is rather wordy.

It is tempting to just make our score instance variable public instead of private. Then you could simply

say player.score = 10. That would be very convenient, except for one problem: now the instance variable

is public, and outsiders can intentionally or accidentally put bad data in there. The SetScore method kept

the data protected.

C# has a feature that solves all of these issues, creating a clean way to get or set the value of an instance

variable without publicly exposing it. This feature is called a property.

Creating Properties

A property is simply an easy way to create get and set methods, while still maintaining a high level of

readability. Instead of the two methods that we showed in that last example, we could do this instead:

public int Score
{
 get
 {
 return score;
 }
 set
 {
 score = value;
 if (score < 0)
 score = 0;
 }
}

126 Chapter 19 Properties

This creates a Score property. We can see that it is public, so anyone can use it (though we could also use

private if we had wanted). We also specify the type of the property, which in this case is an int. Then we

give it a name.

We then use the get and set keywords to show what should happen when someone tries to read the

value of the property or set the value of the property. The code inside of the curly braces is nearly the

same code that was in the GetScore() and SetScore(int) methods.

With a normal setter method (like SetScore) we would normally have a single parameter that is the new

value being set. In a property, we can’t list parameters. Instead, we’re given exactly one, which we can

access with the keyword value. This takes on the value that the caller is trying to set. The type of value is

the same type as the property. We can call our property using something like this:

Player player = new Player();
int currentScore = player.Score;
player.Score = 50;

When we try to read from the Score property, the code inside of the property’s get block is executed and

returned. When we assign a value to the Score property, the code inside of the set block gets executed. In

this case, the value 50 gets put into the value keyword inside of the set block.

Properties are the best of both worlds. Outsiders get nice clean syntax for getting or setting the data, but

the data isn’t exposed publicly, and is funneled through our logic that allows us to do a sanity check on

the request, rather than blindly allowing outside code to directly manipulate the data.

Interestingly, properties are just syntactic sugar. Behind the scenes, the C# compiler is just turning these

back into normal methods.

Whenever we have a property that gets or sets the value of a specific instance variable, that instance

variable is called a backing field of the property. In our example above, the Score property uses the score

instance variable as its backing field.

Properties are not required to have a backing field. Let’s look at another example where a property does

not have a backing field:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Properties
{
 class Time
 {
 private int seconds;

 public int Seconds
 {
 get
 {
 return seconds; // Seconds is the backing field here...
 }
 set
 {
 seconds = value;
 }
 }

 public int Minutes
 {

Different Accessibility Levels 127

 get
 {
 return seconds / 60; // But there's no 'minutes' backing field here.
 }
 }
 }
}

You can see here that we have a seconds instance variable, along with a Seconds property that uses it as

a backing field. (By the way, using lower case names for instance variables, and upper case names for the

matching property is very common.)

In addition, we also have a Minutes property that doesn’t have a backing field at all. Instead, we just do

some other work—in this case, return the number of seconds divided by 60.

Another thing this example shows us is that we don’t necessarily need both set and get blocks for a

property. You can have one or the other or both. If you only have a get block, then the property is read-

only, because you can’t set it. This is the case with the Minutes property we just saw. If you have only a

set block, the property would be write-only. (Though write-only properties are rarely actually useful.)

Different Accessibility Levels

So far, our properties have all been public. This means that both the getter and the setter are accessible

to everyone. However, it is possible to make the two have different accessibility levels from each other.

For example, we might want the getter to be public, so that everyone can read it, while making the setter

private, so that it can only be changed from within the class.

To make this happen, you can specify an access modifier before the get or set keywords, like this:

public int Score
{
 get // This is public by default, because the property is marked 'public'.
 {
 return score;
 }
 private set // This, however, is now private.
 {
 score = value;
 }
}

Auto-Implemented Properties

You will probably find yourself making a lot of things that look something like this:

private int score;

public int Score
{
 get
 {
 return score;
 }
 set
 {
 score = value;
 }
}

If you have no extra logic that you need to perform in the getter or setter, C# has a feature called an auto-

implemented property that does this same thing with far less effort:

128 Chapter 19 Properties

public int Score { get; set; }

This creates a backing field behind the scenes, and simple get and set code. You won’t have direct access

to the backing field in this case. This is a nice shorthand way to create very simple properties.

Read-Only Auto-Implemented Properties
You can also create read-only auto-implemented properties. These can only be written to in a constructor

(or with a default value, which we’ll look at next). After that, their value cannot be changed:

public class Vector2
{
 public double X { get; }
 public double Y { get; }

 public Vector2(double x, double y)
 {
 X = x;
 Y = y;
 }
}

It may seem a little odd to restrict a property from being written to. But making all data of a type be read-

only after creation (making the type “immutable”) has certain advantages. For instance, you know that if

you’ve got a shared copy of the object that nobody is going to change its values without you knowing

because they simply can’t be changed. Immutability is a broader topic than just read-only properties, and

we’ll discuss it again later through this book.

The key point to remember here is that you can make your auto-implemented property read-only by

simply having only a getter with no setter. This causes it to be writeable while the object is being created,

but not afterwards.

Default Values
For an auto-implemented property, you can also assign a default value to the property:

public class Vector2
{
 public double X { get; set; } = 0;
 public double Y { get; set; } = 0;
}

Of course, the default value of any number will always be 0, so in this case we haven’t actually changed

anything, but it conveys the idea and the syntax correctly.

You can also supply default values for the read-only properties we just described in the last section.

A default value is assigned before the constructor actually runs. That means that the default value will

already be set by the time the constructor begins, and setting a new value in the constructor will overwrite

the default value.

Object Initializer Syntax

When you’re using an object with properties, you can set values for the properties one at a time. You

frequently do this just after creating a new object. For example:

Book book = new Book();
book.Title = "Frankenstein";
book.Author = "Mary Shelley";

Anonymous Types 129

But C# provides a way to set properties like this more concisely, using a thing called object initializer

syntax. This syntax looks like this:

Book book = new Book() { Title = "Frankenstein", Author = "Mary Shelley" };

The properties all get set on the same line as the object is created. This is frequently more readable than

the earlier option, but not in all cases. Choose the one that makes your code most readable for any given

situation.

Going a bit further, if you use object initializer syntax and you use a parameterless constructor, the

parentheses are (weirdly) optional.

Book book = new Book { Title = "Frankenstein", Author = "Mary Shelley" };

Anonymous Types

Now that we understand properties, we can introduce a more advanced (but only occasionally used)

concept called an anonymous type: a class that doesn’t have an actual formal name. To create an instance

of an anonymous type, you use the new keyword, and then make use of the object initializer syntax that

we just looked at:

var anonymous = new { Name = "Steve", Age = 34 };
Console.WriteLine($"{anonymous.Name} is {anonymous.Age} years old.");

This code creates a new instance of an unnamed class with two properties: Name and Age.

Since an anonymous type is anonymous and doesn’t have a name, a variable that stores one of these

must use the var type, as shown above.

It’s also worth pointing out that you can only specify properties for an anonymous type at creation time.

You can’t add more after creation. It is a fixed, unchangeable type, just like any other class we make, just

without the name.

You can’t use an anonymous type anywhere that a type name is required. This includes return values and

parameter types. That means anonymous types can only be used inside of a single method, and can’t be

passed into another, or returned from one.

Giving types names is usually greatly preferred. But on occasion, you have something simple and short-

lived enough (contained to a single method or smaller) where an anonymous type could be a decent

solution. We’ll see a few places where this is the case as we continue through this book. Notably, query

expressions (Chapter 38) are a common place to use anonymous types.

Try It Out!
Playing with Properties. At the end of the last chapter, we created a couple of classes as practice. Go

back to those classes and add properties for the various instance variables that they have. While

doing so, make sure you try at least one auto-implemented property.

20
20 Tic-Tac-Toe

We now have all of the knowledge needed to start tackling some larger programs. That is what we will do

in this chapter: make a working game of Tic-Tac-Toe. This particular problems is notably more complicated

than the Try It Out! problems we’ve done so far.

If this book were a course, this would be the mid-term project. If this book were a game, this would be the

Mini-Boss.

Because this is larger than what we’ve done so far, it’s OK if it takes longer to sort through the details and

get it working. (I don’t think you’d be wasting your time if you even spent up to 20 hours working through

this problem if you’re new to programming.)

My solution to this problem is included, along with an analysis of why I did it the way I did, right here in

this chapter. Feel free to peek through what I’ve done as you’re working on your own solution to get some

ideas or help.

Your solution doesn’t need to be the same as mine to be correct. I’ve just made a possible solution. Yours

will inevitably be very different in at least one major way, and slightly different in many more minor ways.

As long as you’ve satisfied the requirements for the Tic-Tac-Toe game listed below, you’re in good shape,

even if it doesn’t match my solution.

You can also download the complete source code for my solution from the book’s website here:

http://starboundsoftware.com/books/c-sharp/try-it-out/tic-tac-toe.

Requirements

The following list contains the requirements for Tic-Tac-Toe:

 The game is console-based. (No requirements for a GUI.)

 Two human players take turns using the same keyboard.

In a Nutshell
 This chapter contains a single big project: making a functioning game of Tic-Tac-Toe, including

defining the requirements for the game and my own solution to use as a reference.

High-Level Design 131

 The players are able to designate which square they want to play in next using the keyboard.

o One possible approach would be to number the squares in the 3x3 board with the digits

1 through 9, like the number pad on the keyboard. If a player enters the number 7, then

the top left corner of the board is chosen.

 The game should ensure that only legal moves are made.

o You cannot play in a square that already has something.

o The wrong player cannot take a turn.

o If the player makes an illegal move, the board should remain unchanged.

 The game needs to be able to detect when either player wins, or when a draw (“cat”) happens (the

board is full).

 Upon detecting that the game is over the outcome is displayed to the user.

 Only a single round of play is required.

You might consider something like the following for display of the state of a game:

 | X |
---+---+---
 | O | X
---+---+---
 O | |

High-Level Design

A Tic-Tac-Toe game is not a huge project compared to some, but it is large enough we can’t (or at least

shouldn’t) dump it all into a single class.

Our first task is to start identifying individual pieces or components in our system that we can turn into

classes. As a general rule, each class we make should have only a single responsibility. It should be doing

only a single thing.

So what kinds of data structures is our game going to need? And what sort of algorithms is our game

going to need?

Here is the high-level breakdown of what I identified myself as candidates for being turned into classes in

the system:

A State Enumeration. Not a class per se, but a type that needs to exist. It makes sense to me to create an

enumeration that lists the states that a single square can be in: X, O, and Undecided (empty). This will be

a helpful building block in the rest of our game.

A Position Class. It made sense to me to make a simple class that could be used to represent a location on

the board, with Row and Column properties.

A Board Class. This class is the fundamental, central data structure for the game as a whole. It contains a

3x3 array of State values to represent the board, along with ways to request the current state of a

position on the board and request placing a new value on the board. In my particular implementation, I

Try It Out!
Tic-Tac-Toe. Create a Tic-Tac-Toe game that meets the requirements listed in this section. You should

spend a minimum of 20 minutes on this problem (no matter how stuck you get). This is a much bigger

problem than any other Try It Out! so far, so plan on it taking more time. If you find yourself stuck

beyond recovery, read ahead and see if part or all of my solution can help you get unstuck enough to

continue on.

132 Chapter 20 Tic-Tac-Toe

also kept track of whose turn it was and made sure that only the right player could take a turn at any

point in time.

A Player Class. A class that is designed to translate input from the player into a board position to play on.

In our particular case, this will be handling keyboard input, but it isn’t a big stretch to imagine creating

alternate variations of the player that can handle mouse input, a computer AI, or even receiving

instructions over a network. This class will have only one method that will basically be something like:

public Position GetPosition(Board currentState).

A WinChecker Class. This class has the responsibility of analyzing a board and determining if it has

resulted in a win for a player or not yet. It will have a method that looks like this: public State

Check(Board currentState). It will also have a public bool IsDraw(Board currentState) that returns

whether the game has reached a draw. The board itself could probably technically have a method that

does these things, but I elected to pull this logic out into a separate class.

A Renderer Class. This class has the responsibility of drawing the game’s current state, including displaying

the final results of the game when it is over. The Board class could have a method that does this too, but

once again, I chose to pull it out so that I could swap the rendering mechanism (perhaps for a GUI)

without affecting any other part of the code.

A Driver Program. The last piece we’ll need is something that can assemble a functioning game out of all of

these pieces and tie them all together to make it work. This is logic that could technically be done in yet

another class, but in this particular case, I’ve chosen to do this in the Main method in the default

Program class.

Refactoring and Iterative Design

Having enumerated the classes that I put into my own Tic-Tac-Toe implementation, I should state that this

is the final design, not the initial one. It didn’t change drastically, but I did rearrange some pieces and

handle things in different ways than I initially imagined.

Changing the design as you go is not only allowed, it is required. No design will survive first contact with

the codebase. The act of writing code teaches you things about the solution that you hadn’t considered.

Always be prepared to change your code as you go.

This process of reshaping and reforming the code is called refactoring, and is a key part of software

development. Your initial design will never be quite right. Plan on going through several iterations to

refine your design, even though that sometimes means working on code refactoring instead of adding

new features. It is just part of life as a software developer.

The Full Solution

We now shift away from the high level design to the specifics of each type in our Tic-Tac-Toe game. Each of

the following sections starts with the code I made for the piece indicated by its title. Following that is a

brief description on some of the complexities as well as a bit of information on why I implemented it the

way I did.

The State Enumeration
The following is the code for the State enumeration:

public enum State { Undecided, X, O };

This enumeration is straightforward, and just lists the options available. I put Undecided first because

that makes it the default value, which simplifies the board initialization later on.

The Full Solution 133

The Position Class
The following is the code for the Position class:

public class Position
{
 public int Row { get; }
 public int Column { get; }

 public Position(int row, int column)
 {
 Row = row;
 Column = column;
 }
}

This class is also quite simple. It just defines Row and Column properties. I have intentionally made this

class immutable—everything in it is read-only, once it gets past creation time. Immutability has a number

of advantages, including knowing that you can be certain nobody is going to modify it after the fact. (They

can create a new instance to place in a variable, but cannot modify an instance.)

This class doesn’t bother verifying that the row and column are legitimate locations on the board. It

wouldn’t be unreasonable to do so, but I opted not to.

The Board Class
The Board class is substantially trickier:

public class Board
{
 private State[,] state;
 public State NextTurn { get; private set; }

 public Board()
 {
 state = new State[3, 3];
 NextTurn = State.X;
 }

 public State GetState(Position position)
 {
 return state[position.Row, position.Column];
 }

 public bool SetState(Position position, State newState)
 {
 if (newState != NextTurn) return false;
 if (state[position.Row, position.Column] != State.Undecided) return false;

 state[position.Row, position.Column] = newState;
 SwitchNextTurn();
 return true;
 }

 private void SwitchNextTurn()
 {
 if (NextTurn == State.X) NextTurn = State.O;
 else NextTurn = State.X;
 }
}

The central aspect of this class is the State[,] state instance variable. Everything else is built around that.

(The other property in this class is the NextTurn property, which determines whose turn is next.)

134 Chapter 20 Tic-Tac-Toe

Since we don’t want other parts of the system to be able to reach in and directly manipulate the current

state of the board, we provide a getter and setter method for the state of any spot on the board. I would

have used a property, but I needed to know what position on the board we were asking about. Properties

don’t support supplying a parameter like that, so I had to fall back to plain getter and setter methods with

the position supplied directly as a parameter.

The SetState method is somewhat tricky. If you are trying to go out of turn, it rejects you. If you are trying

to play in a square that is already filled, it rejects you. Besides just setting the new state, this method also

does maintenance work to make sure that it flips the next turn over to the other player.

The WinChecker Class
The WinChecker class has the logic to determine if (a) either X or O has won, and (b) if the board is full,

resulting in a draw:

public class WinChecker
{
 public State Check(Board board)
 {
 if (CheckForWin(board, State.X)) return State.X;
 if (CheckForWin(board, State.O)) return State.O;
 return State.Undecided;
 }

 private bool CheckForWin(Board board, State player)
 {
 for (int row = 0; row < 3; row++)
 if (AreAll(board, new Position[] {
 new Position(row, 0),
 new Position(row, 1),
 new Position(row, 2) }, player))
 return true;

 for (int column = 0; column < 3; column++)
 if (AreAll(board, new Position[] {
 new Position(0, column),
 new Position(1, column),
 new Position(2, column) }, player))
 return true;

 if (AreAll(board, new Position[] {
 new Position(0, 0),
 new Position(1, 1),
 new Position(2, 2) }, player))
 return true;

 if (AreAll(board, new Position[] {
 new Position(2, 0),
 new Position(1, 1),
 new Position(0, 2) }, player))
 return true;

 return false;
 }

 private bool AreAll(Board board, Position[] positions, State state)
 {
 foreach(Position position in positions)
 if (board.GetState(position) != state) return false;

 return true;
 }

The Full Solution 135

 public bool IsDraw(Board board)
 {
 for (int row = 0; row < 3; row++)
 for (int column = 0; column < 3; column++)
 if (board.GetState(new Position(row, column)) == State.Undecided) return false;

 return true;
 }
}

This code isn’t quite as bad as it looks. The bulk of it is in checking to see if a win has been reached along

the rows, the columns, and then the diagonals. This same logic is reused for both X and O, so it is called

from the main Check method for each player. I pulled out the logic to actually iterate through all positions

to see if they’re equal to a separate method (AreAll).

The IsDraw method at the bottom simply computes whether there the board is a draw or not yet, which

is defined as it not being a draw if we can find a single cell that isn’t full. If we can’t, it is a draw.

The Renderer Class
The following code is for the Renderer class:

public class Renderer
{
 public void Render(Board board)
 {
 char[,] symbols = new char[3, 3];
 for (int row = 0; row < 3; row++)
 for (int column = 0; column < 3; column++)
 symbols[row, column] = SymbolFor(board.GetState(new Position(row, column)));

 Console.WriteLine($" {symbols[0, 0]} | {symbols[0, 1]} | {symbols[0, 2]} ");
 Console.WriteLine("---+---+---");
 Console.WriteLine($" {symbols[1, 0]} | {symbols[1, 1]} | {symbols[1, 2]} ");
 Console.WriteLine("---+---+---");
 Console.WriteLine($" {symbols[2, 0]} | {symbols[2, 1]} | {symbols[2, 2]} ");
 }

 private char SymbolFor(State state)
 {
 switch(state)
 {
 case State.O: return 'O';
 case State.X: return 'X';
 default: return ' ';
 }
 }

 public void RenderResults(State winner)
 {
 switch (winner)
 {
 case State.O:
 case State.X:
 Console.WriteLine(SymbolFor(winner) + " Wins!");
 break;
 case State.Undecided:
 Console.WriteLine("Draw!");
 break;
 }
 }
}

There are two public methods in this, and one utility method. Render builds a 3x3 array of what symbols

should be used for each slot in the display, then uses a heavy dose of string interpolation to draw the

136 Chapter 20 Tic-Tac-Toe

board. RenderResults just prints out who won. They both draw on the SymbolFor utility method, which

simply converts a State to a char. Interestingly, this allows me to change the symbols for X and O in only

one place. (We could play 1’s and 0’s instead of X’s and O’s, for example.)

The Player Class
The following is the code for the Player class:

public class Player
{
 public Position GetPosition(Board board)
 {
 int position = Convert.ToInt32(Console.ReadLine());
 Position desiredCoordinate = PositionForNumber(position);
 return desiredCoordinate;
 }

 private Position PositionForNumber(int position)
 {
 switch (position)
 {
 case 1: return new Position(2, 0); // Bottom Left
 case 2: return new Position(2, 1); // Bottom Middle
 case 3: return new Position(2, 2); // Bottom Right
 case 4: return new Position(1, 0); // Middle Left
 case 5: return new Position(1, 1); // Middle Middle
 case 6: return new Position(1, 2); // Middle Right
 case 7: return new Position(0, 0); // Top Left
 case 8: return new Position(0, 1); // Top Middle
 case 9: return new Position(0, 2); // Top Right
 default: return null;
 }
 }
}

In a nutshell, this simply gets a number from the user (ignoring bad input) and then converts a digit to a

Position object. The positions are arranged like the number pad on a keyboard.

It is worth noting that the GetPosition method never actually uses the board parameter it is given, and

could have been skipped. I opted to include it, partly because I’m thinking about how we could extend the

game to include other types of players, especially a computer AI player. An AI would definitely make use

of this parameter, since it can’t see the screen to make its decisions. Structuring my Player class and its

GetPosition method this way allows me to switch to a completely different implementation of Player

without requiring the rest of the program to change how they interact with it. (We haven’t talked about

interfaces yet (Chapter 24) but I’d be using one here if we had.

The Driver Program
The last part is the driver program, which assembles everything else together and runs the game:

public class Program
{
 static void Main(string[] args)
 {
 Board board = new Board();
 WinChecker winChecker = new WinChecker();
 Renderer renderer = new Renderer();
 Player player1 = new Player();
 Player player2 = new Player();

 while(!winChecker.IsDraw(board) && winChecker.Check(board) == State.Undecided)
 {
 renderer.Render(board);

The Full Solution 137

 Position nextMove;
 if (board.NextTurn == State.X)
 nextMove = player1.GetPosition(board);
 else
 nextMove = player2.GetPosition(board);

 if (!board.SetState(nextMove, board.NextTurn))
 Console.WriteLine("That is not a legal move.");
 }

 renderer.Render(board);
 renderer.RenderResults(winChecker.Check(board));

 Console.ReadKey();
 }
}

The first block of lines sets up the pieces of our game: a board, a win checker, a renderer, and two players.

The second piece is the “game loop” that makes our game tick. It draws the board, asks for a move from

the current player, and updates the board. When the game has become a draw or a win for somebody,

the loop ends, the results are displayed, and the program terminates.

This could have been a separate class, and would probably make sense to do so if we wanted to be able

to play multiple rounds or configure rounds differently (like giving the player the option of playing a two-

player game with two humans, or a one player game against the computer).

Wrapping Up
This covers my implementation of this Tic-Tac-Toe problem. The full solution can be found on the book’s

website if you want to download and run it: http://starboundsoftware.com/books/c-sharp/try-it-

out/tic-tac-toe.

Again, my solution is one possible solution. It is not meant to be definitive, only to help you get unstuck if

you run into problems, or illustrate a second alternative approach.

21
21 Structs

A few chapters ago we introduced classes. These are complex reference types that you can define and

build from the ground up. C# has a feature call structs or structures which look very similar to classes

organizationally, but they are value types instead of reference types.

In this chapter, we’ll take a look at how to create a struct, as well as discuss how to decide if you need a

struct or a class. We’ll also discuss something that may throw you for a loop: all of the built-in types like

bool, int, and double, are actually all aliases for structures (or a class in the case of the string type).

Creating a Struct

Creating a struct is very similar to creating a class. The following code defines a simple struct, and an

identical class that does the same thing:

struct TimeStruct
{
 private int seconds;

 public int Seconds
 {
 get { return seconds; }
 set { seconds = value; }
 }

 public int CalculateMinutes()
 {
 return seconds / 60;

In a Nutshell
 A struct or structure is similar to a class in terms of the way it is organized, but a struct is a

value type, not a reference type.

 Structs should be used to store compound data (composed of more than one part) that does

not involve a lot of complicated methods and behaviors.

 All of the simple types are structs.

 The primitive types are all aliases for certain pre-defined structs and classes.

Structs vs. Classes 139

 }
}

class TimeClass
{
 private int seconds;

 public int Seconds
 {
 get { return seconds; }
 set { seconds = value; }
 }

 public int CalculateMinutes()
 {
 return seconds / 60;
 }
}

You can see that the two are very similar—in fact the same code is used in both, with the single solitary

difference being the struct keyword instead of the class keyword.

Structs vs. Classes

Since the two are so similar in appearance, you’re probably wondering how the two are different.

The answer to this question is simple: structs are value types, while classes are reference types. If you

didn’t fully grasp that concept back when we discussed it in Chapter 16, it is probably worth going back

and taking a second look.

While this is a single difference in theory, this one change makes a world of difference. For example, a

struct uses value semantics instead of reference semantics. When you assign the value of a struct from

one variable to another, the entire struct is copied. The same thing applies for passing one to a method as

a parameter, and returning one from a method.

Let’s say we’re using the struct version of the TimeStruct we just saw, and did this:

public static void Main(string[] args)
{
 TimeStruct time = new TimeStruct();
 time.Seconds = 10;

 UpdateTime(time);
}

public static void UpdateTime(TimeStruct time)
{
 time.Seconds++;
}

In the UpdateTime method, we’ve received a copy of the TimeStruct. We can modify it if we want, but

this hasn’t changed the original version, back in the Main method. We’ve modified a copy, and the original

still has a value of 10 for seconds.

Had we used TimeClass instead, handing it off to a method copies the reference, but that copied

reference still points the same actual object. The change in the UpdateTime method would have affected

the time variable back in the Main method.

Like I said back when we were looking at reference types, this can be a good thing or a bad thing,

depending on what you’re trying to do, but the important thing is that you are aware of it.

140 Chapter 21 Structs

Interestingly, while we get a copy of a value type as we move it around, it doesn’t necessarily mean we’ve

completely duplicated everything it is keeping track of. Let’s say you had a struct that contained within it a

reference type, like an array, as shown below:

struct Wrapper
{
 public int[] numbers;
}

And then we used it like this:

public static void Main(string[] args)
{
 Wrapper wrapper = new Wrapper();
 wrapper.numbers = new int[3] { 10, 20, 30 };
 UpdateArray(wrapper);
}

public void UpdateArray(Wrapper wrapper)
{
 wrapper.numbers[1] = 200;
}

We get a copy of the Wrapper type, but for our numbers instance variable, that’s a copy of the reference.

The two are still pointing to the same actual array on the heap.

Tricky little things like this are why if you don’t understand value and reference types, you’re going to get

bit by them. If you’re still fuzzy on the differences, it’s worth a second reading of Chapter 16.

There are other differences that arise because of the value/reference type difference:

 Structs can’t be assigned a value of null, since null indicates a reference to nothing.

 Because structs are value types, they’ll be placed on the stack when they can. This could mean

faster performance because they ’re easier to get to, but if you’re passing them around or

reassigning them a lot, the time it takes to copy them could slow things down.

Another big difference between structs and classes is that in a struct, you can’t define your own

parameterless constructor. For both classes and structs, if you don’t define any constructors at all, one

still exists: a default parameterless constructor. This constructor has no parameters, and is the simplest

way to create new objects of a given type, assuming there’s no special setup logic required.

With classes, you can create your own parameterless constructor, which then allows you to replace the

default one with your own custom logic. This cannot be done with structs. The default parameterless

constructor creates new objects where everything is zeroed out. All numbers within the struct start at 0,

all bools start at false, all references start at null, etc. While you can create other constructors in your

struct, you cannot create a parameterless one to replace this default one.

Deciding Between a Struct and a Class

Despite the similarities in appearance, structs and classes are made for entirely different purposes. When

you create a new type, which one do you choose? Here are some things to think about as you decide.

For starters, do you have a particular need to have reference or value semantics? Since this is the primary

difference between the two, if you’ve got a good reason to want one over the other, your decision is

basically already made.

If your type is not much more than a compound collection of a small handful of primitives, a struct might

be the way to go. For instance, if you want something to keep track of a person’s blood pressure, which

Prefer Immutable Value Types 141

consists of two integers (systolic and diastolic pressures) a struct might be a good choice. On the other

hand, if you think you’re going to have a lot of methods (or events or delegates, which we’ll talk about in

Chapters 32 and 33) then you probably just want a class.

Also, structs don’t support inheritance which is something we’ll talk about in Chapter 22, so if that is

something you may need, then go with classes.

In practice, classes are far more common, and probably rightly so, but it is important to remember that if

you choose one way or the other, and then decide to change it later, it will have a huge ripple effect

throughout any code that uses it. Methods will depend on reference or value semantics, and to change

from one to the other means a lot of other potential changes. It’s a decision you want to make

consciously, rather than just always defaulting to one or the other.

Prefer Immutable Value Types

In programming, we often talk about types that are immutable, which means that once you’ve set them

up, you can no longer modify them. (As opposed to mutable types, which you can modify parts of its data

on the fly.) Instead, you would create a new copy that is similar, but with the changes you want to make.

All of the built-in types (including the string type, which is a reference type) are immutable.

There are definite benefits to making both value and reference types immutable, but especially so with

structs. This is because we think of value types like structs as a cohesive specific value. Because it has

value semantics (copies of the whole thing are made, rather than just making a second reference to the

same actual bytes in memory) we end up duplicating value types all over the place.

If we aren’t careful, with a mutable, changeable value type, we might think we’re modifying the original,

but are instead modifying the original.

For example, what will the following code output?

struct S
{
 public int Value { get; set; }
}

class Program
{
 static void Main(string[] args)
 {
 S[] values = new S[10]; // New array of structs with default values is created here.
 S item = values[0]; // Danger! Copy is made here.
 item.Value++; // Copy is modified here.
 Console.WriteLine(values[0].Value); // Original, unmodified value is printed here.
 }
}

It actually prints out 0. This might come as a surprise. This is because the line that says S item =

values[0]; produces a copy for the assignment. So when you do item.Value++, you are modifying the

copy, not the original. (This would not be true if S were a class instead of a struct.)

If we make S immutable so you can’t modify its Value property at all, then the only way to produce a new

version with the correctly incremented value would be to create a new S object, populated with the

correct value at construction time. (You would want to define a constructor that allows you to specify

value at creation time if you do this.)

At this point, that item.Value++ line would have to become item = new S(item.Value + 1);, and the error

becomes much more obvious to spot.

142 Chapter 21 Structs

Making things in general immutable has many benefits, but for structs, you should definitely have a

preference for making them immutable. (Sometimes the overhead performance cost associated with

creating lots of objects will supersede the usefulness of immutable types, for example.)

The Built-In Types are Aliases

Back in Chapter 6, we took a look at all of the primitive or built-in types that C# has. This includes things

like int, float, bool, and string. In Chapter 16, we looked at value types vs. reference types, and we

discovered that these primitive types are value types, except for string, which is a reference type.

In fact, more than just being value types, they are actually structs! This means that everything we’ve been

learning about structs also applies to these built-in types.

Even more, all of the primitive types are aliases for other structs (or class, in the case of the string type).

We’ve been working with things like the int type. But behind the scenes the C# compiler is simply

changing this over to a struct that is defined in the same kind of way that we’ve seen here. In this case, it

is the Int32 struct (System.Int32).

So while we’ve been writing code that looks like this:

int x = 0;

We could have also used this:

Int32 x = new Int32();
Int32 y = 0; // Or combined.
int z = new Int32(); // Or combined another way. It's all the same thing.
int w = new int(); // Yet another way...

The following table identifies the aliases for each of the built-in types:

Primitive Type Alias For:

bool System.Boolean

byte System.Byte

sbyte System.SByte

char System.Char

decimal System.Decimal

double System.Double

float System.Single

int System.Int32

uint System.UInt32

long System.Int64

ulong System.UInt64

object System.Object

short System.Int16

ushort System.UInt16

string System.String

With only a few of exceptions, the “real” struct name is the same as the keyword version, just with

different capitalization. Keywords in C# are all lowercase by convention, but nearly everybody will

capitalize type names, which explains that difference.

The Built-In Types are Aliases 143

You’ll also see that instead of short, int, and long, the structs use Int followed by the number of bits they

use. It explicitly states exactly how many bits are in each type, which gives some clarity.

Additionally, float becomes Single rather than Float. Technically, float, double, and decimal are all

floating point types. But double has twice the bits as float, so the term “single” is a more specific (and

therefore technically more accurate) name for it. The C# language designers stuck with float because

that’s the keyword that is used for this data type in many other languages.

Answers: (1) Value types. (2) False. (3) False. (4) False. (5) False. string and object are reference types.

Try It Out!
Structs Quiz. Answer the following questions to check your understanding. When you’re done, check

your answers against the ones below. If you missed something, go back and review the section that

talks about it.

1. Are structs value types or reference types?

2. True/False. It is easy to change classes to structs, or structs to classes.

3. True/False. Structs are always immutable.

4. True/False. Classes are never immutable.

5. True/False. All primitive/built-in types are structs.

22
22 Inheritance

Imagine that you are trying to keep track of geometric polygons, like triangles, rectangles, squares,

pentagons, and so on. You can probably imagine creating a Polygon class that stores the number of sides

the polygon has, and maybe a way to represent the positions of the vertices (corners) of the polygon.

Your Polygon class could be used to represent any of these polygons, but let’s imagine that for a square,

you want to be able to do some extra things with it. For example, you might want to create one using only

a size (since the width and height are the same length in a square), or maybe you want to add a method

that returns the area of the square.

One approach would be to create a Square class that duplicates everything in the Polygon class, plus

adds the extra stuff you want as well. The problem with this is that now you have two entirely different

classes, and if you want to make a change in the way people work with polygons, you’ll also need to make

a change in the way they work with squares. More than that, while you could create an array of polygons

(Polygon[] polygons) you couldn’t put squares in that list, even though in your head, they are polygons,

and should be able to be treated as polygons.

After all, a square is just a special type of a polygon.

And in fact, that is getting right to the heart of what we’re going to discuss in this chapter. A square is a

polygon, but more specifically, it is a special type of polygon that has its own special things. Anything a

polygon can do, a square can do too, because a square is a polygon.

In a Nutshell
 Inheritance is a way to reuse classes by expanding them into more specific types of classes.

For instance, a Square class can be derived from (or inherit from) a Polygon class, giving it all

of the features that the Polygon class has.

 Any class can be used as a base class, except for sealed classes.

 To indicate a class is derived from another, you use the colon followed by the base class

name. For example class Square : Polygon { /* ... */ }.

 The protected access modifier means that anything within the class can use it, as well as

anything in any derived class.

Base Classes 145

This is what programmers call an is-a relationship, or an is-a-special-type-of relationship. It is so common

that object-oriented programming languages have a special way to facilitate this kind of thing.

This is called inheritance. Inheritance allows us to create a Polygon class, and a Square class that is based

on Polygon, This makes it inherit (or reuse) everything from the Polygon class that it is based on. Any

changes we make to the Polygon class will also be automatically changed in the Square class.

Classes support inheritance, but structs and other types do not. It is a key difference between the two.

Base Classes

A base class (or superclass or parent class) is any normal class that happens to be used by another for

inheritance. In our discussion, the Polygon class would be a base class.

For instance, we could have a class that looks like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Inheritance
{
 // Nothing special about this class. It will be used as the base class.
 class Polygon
 {
 public int NumberOfSides { get; set; }

 public Polygon()
 {
 NumberOfSides = 0;
 }

 public Polygon(int numberOfSides)
 {
 NumberOfSides = numberOfSides;
 }
 }
}

Derived Classes

A derived class (or subclass) is one that is based on, and expands upon another class. In our example, the

Square class is a derived class that is based on the Polygon class. We would say that the Square class is

derived from the Polygon class.

You can create a derived class just like any other class with one small addition to indicate which class is its

base class. To indicate that the Square class is derived from the Polygon class, we use the colon (‘:‘) and

name the base class:

class Square : Polygon // Inheritance!
{
 //...
}

Inside of the class, we simply indicate any new stuff that the Square class has that the Polygon class

doesn’t have. Our completed Square class might look like this:

using System;
using System.Collections.Generic;
using System.Linq;

146 Chapter 22 Inheritance

using System.Text;

namespace Inheritance
{
 class Square : Polygon
 {
 public float Size { get; set; }

 public Square(float size)
 {
 Size = size;
 NumberOfSides = 4;
 }
 }
}

So now a square will have a Size property, but in addition, it inherits instance variables, properties, and

methods that were in the Polygon class. So the Square class also has a NumberOfSides property that it

inherits from the Polygon class.

One other thing that we should mention here is that a class can inherit from a class that inherits from

another class. You’re allowed to have as many layers of inheritance as you want. (Though deep hierarchies

have their own set of problems.)

Using Derived Classes

Derived classes are just like any other class, and can be used as a type just like any other class. From a

basic perspective, there’s nothing special about how you use them:

Polygon polygon = new Polygon(3); // a triangle
Square square = new Square(4.5f); // a square, which is a polygon with 4 sides of length 4.5.

But here’s the interesting thing. Because the computer knows that a Square is just a special type of

Polygon, you can actually use the Square type anywhere that you could use a Polygon type. After all, a

Square is a Polygon!

Polygon polygon = new Square(4.5f);

As the program is running, when we’re using the polygon variable, we only have access to the stuff that a

Polygon has. So we can check to see the NumberOfSides it has. But as the program is running, we can

only treat it as a Polygon. There’s a chance that it is a Square (or another derived class), but the computer

won’t assume it is. So we won’t be able to automatically use stuff created in the Square class in this

particular case. Because our variable uses the Polygon type, we can only work with the things the

Polygon type defines.

While we can put a Square in a variable with the Polygon type, you can’t go the other way around. You

can’t assign a Polygon object to a variable with the type Square, like this:

Square square = new Polygon(3); // Does not compile.

This is because while all squares are polygons, not all polygons are squares.

Checking an Object’s Type and Casting
As I just described, it is possible to be actually using an instance of a derived type like the Square, but only

know that it is a Polygon. Sometimes we want to be able to figure out what type an object is specifically,

and work with it differently.

It is possible to check to see if an object is a specific type, with the is keyword and casting:

Constructors and Inheritance 147

Polygon polygon = new Square(4.5f);

if (polygon is Square)
{
 Square square = (Square)polygon;
 // We can now do what we want with the square.
}

The ‘as’ Keyword
In addition to casting, there is another way we can convert one object type to another. This is done by

using the as keyword, which looks like this:

Polygon polygon = new Square(4);
Square square = polygon as Square;

There are a couple of differences between using the as keyword and casting, and it turns out, using the as

keyword in this type of a situation is usually a better choice.

To fully understand this, let’s assume that in addition to the Polygon and Square classes we’ve been

looking at, there is a Triangle class as well. Let’s say we have a variable with the Polygon type, and assign

it a new Triangle instance, but then we inadvertently try to turn it into a Square:

Polygon polygon = new Triangle();
Square square = (Square)polygon;

In this case, the program will crash, giving us an error that says it was an invalid cast. On the other hand, if

we used the as keyword, instead of crashing, we would get null, which we can then respond to:

Polygon polygon = new Triangle();
Square square = polygon as Square;

if(square != null)
{
 // ...
}

Using Inheritance in Arrays
In light of what we’ve just been discussing, it is worth mentioning that you can create an array of the base

class and put any derived class inside of it. This is just like what we already saw with variables that weren’t

arrays, so it shouldn’t be too surprising:

Polygon[] lotsOfPolygons = new Polygon[5];
lotsOfPolygons[2] = new Square(2.1f);
lotsOfPolygons[3] = new Triangle();

In any case where a base class can be used, you can always substitute a derived class.

Constructors and Inheritance

I mentioned earlier that in a derived class, all properties, instance variables, and methods are inherited.

Constructors, on the other hand, are not.

You can’t use the constructors in the base class to create a derived class. For instance, our Polygon class

has a constructor that takes an int that is used for the polygon’s number of sides. You can’t create a

Square using that constructor. And for good reason. Remember, constructors are special methods that

are designed to outline how to build new instances of a particular type. With inheritance, a constructor in

the base class doesn’t have any clue how to set up the new parts of the derived class. To create an

instance of a class, you must use one of the constructors that are defined in that specific class.

148 Chapter 22 Inheritance

When a derived class defines a constructor, it needs to call one of the constructors from the base class. By

default, a constructor in the derived class will use the base class’s parameterless constructor. (Remember,

if you don’t define any constructor yourself, a default parameterless constructor will be created for you.) If

the base class doesn’t have a parameterless constructor, or if you would like a constructor in the derived

class to use a different one, you will need to indicate which constructor to use. This is done by using a

colon and the base keyword along with the parameters for the constructor we want to use, like this:

public Square(float size) : base(4) // Uses the Polygon(int numberOfSides) constructor in the base class.
{
 Size = size;
}

The ‘protected’ Access Modifier

In the past, we discussed the private and public access modifiers. To review, remember that public

meant anyone could get access to the member (variable, method, property, etc.), while private means

that you only have access to it from inside of the class that it belongs to.

With inheritance we add another option: protected. If a member of the class uses the protected

accessibility level, then anything inside of the class can use it, as well as any derived class. It ’s a little

broader than private, but still more restrictive than public.

If the Polygon class made the NumberOfSides property protected instead of public, then you could

access it from anywhere in the Polygon class, as well as the Square class, and any other derived class, but

not from outside of those.

The Base Class of Everything: object

Without specifying any class to inherit from, any class you make still is derived from a special base class

that is the base class of everything. This is the object class. All classes are derived from this class by

default, unless you state a different class. But even if you state a different class as the base class, that

class will be derived from the object class. If you go up the inheritance hierarchy, everything always gets

back to the object class eventually.

You can use this type in your code using the object keyword (which is an alias for System.Object).

Remember what I said earlier about how you can store a derived class in a base type like the code below?

Polygon polygon = new Square(4.5f);

You can also put it in the object type:

object anyOldObject = new Square(4.5f);

Since the object type is the base class for all classes, any and every type of object can be stored in it.

Sealed Classes

There may come a time where you want to prevent a class from being inherited. This might happen if you

want to ensure that no one derives anything from a specific class.

You can use the sealed keyword to make it so nothing can inherit from a specific class by adding it to your

class definition:

sealed class Square : Polygon
{
 // ...
}

Partial Classes 149

Sealing a class can also result in a performance boost.

Partial Classes

A class can be split across multiple files or sections using the partial keyword:

public partial class SomeClass
{
 public void DoSomething()
 {
 }
}

public partial class SomeClass
{
 public void DoSomethingElse()
 {
 }
}

Even if the two parts are in different files, they ’ll be combined into one when you compile your program.

You can also use the partial keyword on structs and interfaces (Chapter 24).

While you can use partial classes to split up a very large class into more manageable files, this is not the

purpose of partial classes. In those cases, you should look for ways to split it into multiple classes.

The real purpose of partial classes is to split along “owner” boundaries. For example, UI frameworks will

frequently have a GUI design tool, where you drag and drop buttons, checkboxes, etc. onto an editable

canvas. The design tool might then be responsible for one part, leaving another part for the programmer

to work in. The design tool won’t ever accidentally overwrite stuff the programmer did, or vice versa.

Partial Methods
While practical uses are very limited, you can also have partial methods. These are interesting because a

partial method is defined in one portion of the class, but is then optionally implemented elsewhere.

The code below illustrates how this works, though like with any partial class, in practice, the two pieces

likely live in separate files, unlike the code below shows:

public partial class SomeClass
{
 partial void Log(string message);
}

public partial class SomeClass
{
 partial void Log(string message)
 {
 Console.WriteLine(message);
 }
}

It shouldn’t be a surprise to hear that partial methods can only go inside partial classes or structs.

It also shouldn’t be a surprise that the signatures must match (same number of parameters and same

type of parameters in the same order, as well as the same method name and return type).

What might be a little weird is that you cannot put an access modifier (like public or private) on the

method—they are implicitly private, and can’t be changed from that.

Also noteworthy is that their return type must be void. That is related to what a partial method does,

which we’ll discuss in just a moment.

150 Chapter 22 Inheritance

Remember that partial methods are optionally implemented. That means that the following code will also

compile:

public partial class SomeClass
{
 partial void Log(string message);
}

public partial class SomeClass
{
 // Intentionally missing implementation of Log.

 public void DoStuff()
 {
 Log("I did stuff."); // But invoking the partial method anyway.
 }
}

Does that seem weird? It probably should. At least a little.

What if it is never implemented, but gets called somewhere, like in the code above? What happens then?

This is where the purpose of partial methods comes into play: if a partial method is not implemented,

then it gets cut out at compile time. Any place that invokes it is skipped by the compiler. Flat out removed.

The purposes for this are rather limited. It requires a scenario in which parts of the class are defined by

one thing (typically some auto-generated partial class from Visual Studio) and wants to be able to expect

certain methods are available to call, but where it doesn’t want another thing (typically you, the

programmer) to be required to implement it. You will rarely encounter the need for a partial method, and

virtually never need to write both pieces of the partial method.

C# Does Not Support Multiple Inheritance

Some object-oriented programming languages (C++, for example) allowed you to choose more than one

base class to derive from. There are some benefits to this, because it allows one type of object to have an

is-a relationship with more than one other type. For example, you could have a PocketKnife class that is-

a Knife and is-a-really-crappy Saw, among other things.

Unfortunately, having multiple inheritance complicates things, and leads to situations where it is

ambiguous how the class should behave. Because of this, C# does not to allow multiple inheritance. You

must pick only one base class.

You can sometimes mimic multiple inheritance by using interfaces, which we’ll talk about in Chapter 24.

Answers: (1) True. (2) False. Not private members. (3) False. (4) True. (5) True. (6) True.

Try It Out!
Inheritance Quiz. Answer the following questions to check your understanding. When you’re done,

check your answers against the ones below. If you missed something, go back and review the section

that talks about it.

1. True/False. A derived class adds functionality on to a base class.

2. True/False. Everything that is in a base class can be accessed by the derived class.

3. True/False. Structs support inheritance.

4. True/False. All classes are derived from the object class.

5. True/False. A class can be a derived class and a base class at the same time.

6. True/False. You can prevent a class from being used as a base class.

23
23 Polymorphism, Virtual

Methods, and Abstract

Classes

In the last chapter, we talked about how it is possible to create a class that is based on another, adding

more stuff to it. It turns out inheritance lets us do a lot more than just add new things to an existing class.

In this chapter, we’ll look at how a derived class can provide its own implementation for a method that

was defined in the base class, allowing it to handle the same task in its own way.

Polymorphism

“We do things differently around here.” Maybe you’ve heard people say things like that before. What

they ’re implying is they do the same kind of thing as somebody else, but it is done in a better way.

In a Nutshell
 Polymorphism means that you can create derived classes that implement the same method

in different ways from each other. This allows different classes to do the same task in their

own custom way.

 A method in a base class can be marked virtual, allowing derived classes to use the override

keyword and provide an alternative implementation.

 Classes can be marked as abstract, making it so you can’t actually create an instance of the

class. You have to create an instance of a derived class instead.

 In an abstract class, you can mark methods as abstract as well, and then leave out the

method implementation. Derived classes will need to provide an implementation for any

abstract methods.

 The new keyword, when attached to a method, means that a new method is being created,

unrelated to any methods in the base class with the same name, resulting in two methods

with the same name, with the one in the base class being hidden.

152 Chapter 23 Polymorphism, Virtual Methods, and Abstract Classes

Take a web search for instance. Everybody knows about Google, but there are plenty of other web-based

search engines, like Bing and Yahoo! Search. All of them do the same basic task, but each of them do it in

their own way. You give them a word, they go off and dig around in their notes that ’s they’ve been

furiously taking as they frantically searched for the end of the Internet, and give you back a list of anything

that could be useful.

This is an excellent example of something programmers call polymorphism, a fancy Greek word meaning

“many forms.” Polymorphism is a feature that allows derived classes to override or change the way the

base class does things, and do them in their own way. Alternatively, instead of changing the way the base

class does things, the base class may not even have a way to do things, forcing derived classes to find

their own way to do things. But when all is said and done, these derived classes will have a different way

of doing things from the base class and from each other. The fact that these classes can do the same task

differently (while still calling the same method) is what gives us “many forms” and polymorphism.

In the last chapter, with our basic inheritance model, derived classes could only add things to a type. With

polymorphism, we can do more than just add stuff. We can also alter how the derived class will handle

the things the base class supplies.

Going with our search engine example, we might have a SearchEngine class like this:

class SearchEngine
{
 public virtual string[] Search(string findThis)
 {
 return new string[0]; // I'm terrible at searching... I give up.
 }
}

Our SearchEngine class happens to define a single method. Here in the base class, we’ve provided a

default (and terrible) implementation of the Search method.

You’ll also notice the virtual keyword. This is what gives derived classes permission to change the way this

method works. If you want to allow a derived class to change the way a method is used, you simply need

to stick this on your method. (This also can be used for properties, as well as indexers and events, which

we haven’t discussed yet.)

In a derived class, we now have the option to provide an alternative implementation for the method:

class GoogleSearch : SearchEngine
{
 public override string[] Search(string findThis)
 {
 // Google Search is, of course, way better than 3 hard-coded results like this...
 return new string[] {
 "Here are some great results.",
 "Aren't they neat?",
 "I found 1.2 billion things, but you will only look at the first 10." };
 }
}

To change the implementation for the derived class, we simply create a new copy of the method, along

with our new custom-made implementation, and add in the override keyword.

If the base class didn’t use the virtual keyword for a method you want to override, you can’t override it.

The virtual keyword is the base class’s way of saying “I give you permission to do something different

with this method,” while the override keyword is the derived class’s way of saying “You gave me

permission, so I’m going to use it and take things in a different direction.”

Revisiting the ‘base’ Keyword 153

You don’t need to override virtual methods, you’re just allowed to. And if a class has more than one virtual

method, you can override some and not others.

Naturally, you can make any number of derived classes that do things their own way:

class RBsSearchEngine : SearchEngine
{
 public override string[] Search(string findThis)
 {
 return new string[] {
 "I found something.", // Thanks EDI
 "I found this for you." // Thanks SIRI
 };
 }
}

Here’s where it gets interesting. Because our derived classes RBsSearchEngine and GoogleSearch are

inherited from the SearchEngine class, we can use them anywhere a SearchEngine object is required:

SearchEngine searchEngine1 = new SearchEngine(); // The plain old original one.
SearchEngine searchEngine2 = new GoogleSearch();
SearchEngine searchEngine3 = new RBsSearchEngine();

But now we can use that Search method, and depending on the actual type, the various implementations

will be called:

string[] defaultResults = searchEngine1.Search("hello");
string[] googleResults = searchEngine2.Search("hello");
string[] rbsResults = searchEngine3.Search("hello");

We’ll get different results for each of these methods, because each of these three types define the

method differently. The default SearchEngine class provides a default implementation of the method but

the GoogleSearch and RBsSearchEngine “alter the deal” and override the original implementation,

swapping it out for their own. The CLR is smart enough to know which method to use at the right time.

This type of setup, where calling the same method signature results in different methods actually being

executed, is the crux of polymorphism. Polymorphism means “many forms,” and in this situation, we can

see that calling the same method results in different behaviors or forms.

Revisiting the ‘base’ Keyword

Last chapter, when we looked at creating constructors in a derived class, we saw the base keyword, which

lets you access the constructors from the base class. We can also use the base keyword elsewhere to

access non-private things from the base class, including its methods and properties.

While most of the time, you can directly access things in the base class without actually needing to use the

base keyword, when you override a method, you’ll be able to use the base keyword to still get access to

the original implementation of the method.

This is convenient for the cases in which you want to override a method by doing everything the old

method did, and then a little more. For example:

public override string[] Search(string findThis)
{
 // Calls the version in the base class.
 string[] originalResults = base.Search(findThis);

 if(originalResults.Length == 0)
 Console.WriteLine("There are no results.");

154 Chapter 23 Polymorphism, Virtual Methods, and Abstract Classes

 return originalResults;
}

Abstract Base Classes

Let’s go back to our SearchEngine example. The SearchEngine class indicates that any and every

SearchEngine type object has the ability to search. But looking back at our code, our base SearchEngine

class didn’t do anything intelligent. We provided a dummy implementation that didn’t do anything besides

waste time writing useless code.

In cases like this, instead of providing a dummy implementation, we have an option to provide no

implementation whatsoever. With no implementation or body for a method, the method in question

becomes abstract.

To accomplish this in code, we need to add the keyword abstract to our class, as well as to any methods

that we wish to keep unimplemented in the base class:

public abstract class SearchEngine
{
 public abstract string[] Search(string findThis);
}

When a class is abstract, it is allowed to include abstract methods. Abstract methods cannot go inside of

regular, non-abstract classes. When a class is marked abstract, you can’t create any instances of that

class directly. Instead, you need to create an instance of a derived class that isn’t abstract.

So with the code above, you won’t be able to actually create an instance of SearchEngine. Instead, you’d

need to create an instance of one of the derived classes, like GoogleSearch or RBsSearchEngine.

In the code above, you can also see that the method is marked with abstract as well. In this case, the

method doesn’t need a method body, and isn’t even allowed to have one. Instead of providing an

implementation in curly braces below it, you simply put a semicolon at the end of the line.

Abstract classes can also have as many virtual or normal methods as you want.

In a derived class, to provide an implementation for an abstract method, you use the override keyword in

the exact same way as we did with virtual methods.

The ‘new’ Keyword with Methods

There’s one other topic that a lot of people seem to get tangled up with all of this override and virtual

stuff, and that is putting the new keyword on a method.

You are allowed to use the new keyword on a method like this:

public new string[] Search(string findThis)
{
 //...
}

When you use the new keyword like this, what you are saying is, “I’m making a brand new method in the

derived class that has absolutely nothing to do with any methods by the same name in the base class.” In

this example, this Search method is completely unrelated to the Search method in the SearchEngine

class.

This is usually a bad idea because it means that you now have two unrelated methods with the same

name and same signature. This name conflict can be resolved, but it is best to just avoid it altogether.

The ‘new’ Keyword with Methods 155

People often get this new keyword confused with overriding virtual and abstract methods for two

reasons. One, it looks similar. The new keyword here gets used in the exact same way as override.

Second, if you forget to put anything in at all (new or override) when you use the same method

signature, you’ll get a compiler warning that tells you to add the new or override keyword. (Or in some

cases, it only mentions the new keyword.) People see the warning and think, “Hmm... I guess I should add

the new keyword to get the warning to go away.”

The bottom line is, you rarely want to use the new keyword. It’s just not what you’re looking for. If you

really are trying to make a new unrelated method, consider using a different name instead.

Answers: (1) True. (2)True. (3) False. (4) False. (5) True. (6) True. (7) True. (8) False.

Try It Out!
Polymorphism Quiz. Answer the following questions to check your understanding. When you’re

done, check your answers against the ones below. If you missed something, go back and review the

section that talks about it.

1. True/False. Polymorphism allows derived classes to provide different implementations of

the same method.

2. True/False. The override keyword is used to indicate that a method in a derived class is

providing its own implementation of a method.

3. True/False. The new keyword is used to indicate that a method in a derived class is

providing its own implementation of a method.

4. True/False. Abstract methods can be used in a normal (non-abstract) class.

5. True/False. Normal (non-abstract) methods can be used in an abstract class.

6. True/False. Derived classes can override methods that were virtual in the base class.

7. True/False. Derived classes can override methods that were abstract in the base class.

8. True/False. In a derived class, you can override a method that was neither virtual nor

abstract in the base class.

24
24 Interfaces

In this chapter, we’ll cover a feature of C# called an interface, which outlines certain things that something

provides. Interfaces are a fairly straightforward concept compared to some of the things we’ve been

looking at in the last few chapters. We’ll outline what an interface does, how to create one, and how to set

up a class or struct to use one.

What is an Interface?

At a conceptual level, an interface is basically just the boundary it shares with the outside world. Your TV,

for instance, probably has several buttons on it (and if it is really old, maybe even a dial or two). Each of

these things allows the outside world to interact with it. That’s its interface.

Interfaces are everywhere in the real world. They point out to users of the object how it can be used or

controlled and also provides feedback on its current status. A couple of examples are in order here.

Cars (all vehicles in general) have a specific interface that they present to their users (the driver). While

there are some nuances and details that we’ll skip over, the key components are a steering wheel, a gas

pedal, and a brake pedal. A car will also provide certain bits of feedback information to the driver on the

dashboard, including the vehicle’s ground speed and engine speed, as well as its fuel level.

In a Nutshell
 Interfaces define the things that something makes available to the outside world.

 Interfaces in C# define a set of methods, properties, events, and indexers that any class that

uses the interface are required to provide.

 Interfaces are built in way that looks like classes or structs: public interface InterfaceName

{ /* Define members in here. */ }

 Members of an interface are implicitly public and abstract, and are required to be so.

 A class indicates that it implements an interface in the same way it shows it has a base class:

public class AwesomeClass : InterfaceName { /* Implementation Here */ }

 You can implement multiple interfaces at the same time. You can also implement interfaces

and declare a base class at the same time.

Creating an Interface 157

Likewise, the keys on a piano are an interface that a pianist can access to make music. While pianos come

in different forms (grand pianos, upright pianos, player pianos, electronic keyboards, etc.) they present a

similar interface to the user of the system.

Let’s take a moment and pick out a few key principles that apply to interfaces in the real world, like the car

and keyboard interfaces. We’ll soon see that C# interfaces provide these same key principles.

1. Interfaces define how outside users make requests to the system. By rotating the steering wheel

on a car clockwise, we’re making a request to turn the vehicle to the right. By pressing Middle C

key on the piano’s keyboard, we’re asking the piano to make a sound at a particular pitch.

2. Interfaces define the ways in which feedback is presented to the user.

This interface defines how other objects can interact with the car, without prescribing the details of how it

works behind the scenes. For example, in very old cars, this was all done in a purely mechanical way.

Newer cars have things like power steering, and perform some of their feedback to the user digitally. And

consider an electric car, which has a “gas” (acceleration) pedal but drives the vehicle using an electric

motor instead of a gas motor.

You can even go to an amusement park and find bumper cars and speedway/raceway type rides that use

an identical interface to control vehicles. One of the nice things about this shared interface is that as soon

as you understand how to use one object through the interface, you generally understand how to use all

objects that share the same interface.

Interfaces work both ways. When something presents a particular interface to the user, the user assumes

that it’s capable of doing the things the interface promises. When you’ve got a brake pedal in a car, you

assume it will let you stop the vehicle quickly. When the brake pedal doesn’t fulfill the promised interface,

bad things happen. It’s why it is frustrating when an elevator has a “Close Door” button, that doesn’t

actually close the door. The elevator presents an interface that promises the ability to close the door, but

fails to actually do so.

The broader lesson here is that interfaces define a specific set of functionality. Users of the interface can

know what to expect of the object from the interface, without having to know the details of how the object

actually makes it work, and in fact, as long as the interface remains intact, the details on the inside could

be swapped out and the user wouldn’t have to change anything.

C# has a construct called an interface that fills the same role as these interfaces in the real world. It

defines a set of members (specifically methods, properties, events (Chapter 33) and indexers (Chapter 35))

that any type claiming to have the interface must provide.

Creating an Interface

Creating an interface is very similar to creating a class or a struct. As an example, let’s say our program

has a need to write out files (see Chapter 29) but you want to write to lots of different file formats. We can

create a different class to handle the nuances of each file type. But they are all going to be used in the

same way as far as the calling code is concerned. They all have the same interface.

To model this, we can define an interface in C# for file writers. It is worth pointing out that Visual Studio

has a template for creating new interfaces. This can be accessed by going to the Solution Explorer and

right-clicking on the project or folder that you want to add the new interface to, and choosing Add > New

Item, bringing up the Add New Item dialog box. In the list of template categories on the left side, choose

Visual C#, which will show the list of all C# templates in the middle of the dialog. Up near the top, you’ll

see a template called Interface. This will get you set up with a new interface in a manner similar to how

the Class template got us set up with a new class.

158 Chapter 24 Interfaces

Interfaces are structured in a way that looks very much like a class or struct, but instead of the class or

struct keyword, you will use the interface keyword:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace AwesomeProgram
{
 public interface IFileWriter
 {
 string Extension { get; }

 void Write(string filename);
 }
}

You can also see that all of the members of our interface have no actual implementation. They look like

the abstract methods that we talked about in the last chapter. But also notice that we didn’t use the

abstract keyword here. Nor do we say that it is public (or private or protected for that matter). All

members of an interface are public and abstract by default, and cannot be altered into anything else. You

cannot add a method body, nor can you use a different accessibility level.

I also want to point out that I started the name of my interface with the capital letter I. It is incredibly

common in the C# world to start names of interfaces with the letter I. People do this because it makes it

easy to pick out what things are interfaces, and what things are classes. Not everyone does this, and you

don’t need to either if you don’t want, but it is fairly widespread so expect to encounter it.

Using Interfaces

Now we can go ahead and create classes that use this interface. For example, we might create a

TextFileWriter class, which knows how to write to a text file. Because we want it to do the things that any

IFileWriter can do, we’ll want to signify that this class implements the IFileWriter interface that we just

defined. This can be done like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace AwesomeProgram
{
 public class TextFileWriter : IFileWriter
 {
 public string Extension
 {
 get { return ".txt"; }
 }

 public void Write(string filename)
 {
 // Do your file writing here...
 }
 }
}

To make a class use or implement an interface, we use the same notation that we used for deriving from a

base class. We use the colon (‘:’) followed by the name of the interface that we’re using.

Multiple Interfaces and Inheritance 159

If a class implements an interface like this, we are required to include an implementation for all of the

members that the interface specifies. The class can also include a lot more than that, but at a minimum, it

will need to implement the things in the interface. Note, however, that you do not use the override

keyword when implementing an interface method.

In most ways, an interface will work in the same way that a base class does. For instance, we can have an

array of our IFileWriter interface, and put different implementations of IFileWriter in it:

IFileWriter[] fileWriters = new IFileWriter[3];
fileWriters[0] = new TextFileWriter();
fileWriters[1] = new RtfFileWriter();
fileWriters[2] = new DocxFileWriter();

foreach(IFileWriter fileWriter in fileWriters)
 fileWriter.Write("path/to/file" + fileWriter.Extension);

Multiple Interfaces and Inheritance

As I mentioned at the end of the Chapter 24, C# doesn’t allow you to inherit from more than one base

class. However, you are allowed to implement more than one interface. Having your type implement

multiple interfaces just means your type will need to include all of the methods for all of the interfaces

that you are trying to implement.

In addition to implementing multiple interfaces, you can also still derive from a base class (and only one).

C# limits you to a single base class because allowing two or more base classes tends to make the

language, the overall structure of your code much more complicated and unintuitive.

To indicate that a class should implement more than one interface, list the interfaces you want after the

class name, separated by commas, in any order. (But base classes must come first.)

public class AnyOldClass : RandomBaseClass, IInterface1, IInterface2
{
 // ...
}

Answers: (1) interface. (2) Public. (3) False. (4) True. (5) False. (6) True.

Try It Out!
Interfaces Quiz. Answer the following questions to check your understanding. When you’re done,

check your answers against the ones below. If you missed something, go back and review the section

that talks about it.

1. What keyword is used to define an interface?

2. What accessibility level are members of an interface?

3. True/False. A class that implements an interface does not have to provide an

implementation for all of the members of the interface.

4. True/False. A class that implements an interface is allowed to have other members that

aren’t defined in the interface.

5. True/False. A class can have more than one base class.

6. True/False. A class can implement more than one interface.

25
25 Using Generics

In this chapter, we’ll take a look at a powerful feature in C# called generics. We’ll start by taking a look at

why generics even exist in the first place, looking at the actual problem they solve. We’ll then look at a few

classes that come with .NET Platform that use generics. These classes are the List and Dictionary classes,

as well as the IEnumerable<T> interface. These types have many uses, and as we make software, we’ll

definitely be putting them and other generic types to good use.

We’ll look at how to make your own generic classes in the next chapter.

The Motivation for Generics

Before we can really discuss generics, we need to discuss why they exist in the first place. So I’m going to

start by having you think about the underlying problem that generics solve.

Let’s say you wanted to make a class to store a list of numbers. While an array could do this, perhaps we

could make a class that wraps an array and creates a new larger one when we run out of space, making it

a “growable” list. (Note that there is a List class that already does this. You should use this and not write

your own. But for now, pretend it doesn’t exist. We’ll revisit List before the end of this chapter.)

Imagine what you’d need to do to make a class to accomplish this task. For example:

public class ListOfNumbers
{
 private int[] numbers;

 public ListOfNumbers()

In a Nutshell
 Generics in C# are a way to create type-safe classes and structs without needing to commit to

a specific data type at design time.

 When you create an instance of a type that uses generics, you must fill in the generic type

parameters in angle brackets (’<’ and ’>’): List<string> listOfStrings = new List<string>();

 This chapter also covers some of the details of using the List class, the IEnumerable

interface, and the Dictionary class, all of which use generics.

The Motivation for Generics 161

 {
 numbers = new int[0];
 }

 public void AddNumber(int newNumber)
 {
 // Add some code in here to make a new array, slightly larger
 // than it already was, and add your number in.
 }

 public int GetNumber(int index)
 {
 return numbers[index];
 }
}

This isn’t complete, but you get the idea. You make the class and use the int type all over the place.

But now let’s say you want a list of strings. Isn’t it a shame that you can’t use your ListOfNumbers class,

and put strings in it?

So what now? Any ideas?

I suppose we could make a very similar class called ListOfStrings, right? It would end up looking basically

the same as our ListOfNumbers class, only with the string type instead of the int type. In fact, we could

go crazy making all sorts of ListOf... classes, one for every type imaginable. But that’s kind of annoying,

because we could have almost a limitless number of those classes. Lists of ints, lists of strings, lists of

lists....

Maybe there’s another way. What if we simply made a list of objects? Remember how object is the base

class of everything?

We could create just a simple List class that uses the object type:

public class List
{
 private object[] objects;

 public List()
 {
 objects = new object[0];
 }

 public void AddObject(object newObject)
 {
 // Add some code in here to make a new array, slightly larger
 // than it already was, and add your object in.
 }

 public object GetObject(int index)
 {
 return objects[index];
 }
}

Now we can put any type of object we want in it. We only need to create one class (just the List class) for

any type of object we want.

This might seem to work at first glance, but it’s got a few problems as well. For instance, any time you

want to do anything with it, you’ll need to cast stuff to the type you’re working with. If we have a list has

only strings, when we want to call the GetObject method, we’ll need to cast it like this:

string text3 = (string)list.GetObject(3);

162 Chapter 25 Using Generics

Casting takes time to execute, so it slows things down a bit. Worse than that, this is less readable.

There’s a bigger problem here though. Let’s assume we’re sticking strings in our list. We can cast all we

want, but since it’s a list of objects, we could theoretically put anything in the list, not just strings.

There’s nothing preventing us from accidentally putting something else in there. After all, the compiler

can’t tell that there’s anything wrong with saying list.AddObject(new Random()) even though we

intended it to be a list for only strings. We could try to be extremely careful and make sure that we don’t

make that mistake, but there are no guarantees. And even if we are careful ourselves, other people using

the code might make that mistake.

We can never know for sure what type of object we’re pulling out. We’ll always have to check and make

sure that it’s the type we think it is, because it might possibly be something else. Programmers have a

name for this by the way. They say it isn’t type safe. Type safety is where you always know what type of

object you are working with.

Type safety wasn’t a problem in our first approach because we weren’t using object. We were using a

specific type, like string. We knew exactly what we were working with, so we could ensure that we were

using the right thing all the time. There was no need for casting, and no possibility of mistakes.

So we’ve got two bad choices here. Either we make lots of type safe classes of lists, one for each kind of

thing we want to put in it, or we make a single class of plain old objects that isn’t type safe, but doesn’t

require making lots of different versions.

Here is where generics come in to save the day, fixing this tricky dilemma for us.

What are Generics?

Generics are a clever way for you to define special generic types (classes or structs) which save a spot to

place a specific type in later. It is a template of sorts, where some types used within your class are filled in

when the class gets used, not when the class gets defined.

The template is filled in with the actual types to use when the generic type is used, not when the type is

defined. At one time you’ll say, “This time I need a list of ints,” and another time you’ll say, “Now I want a

list of Hamburger objects.”

In short, generics provide a way to define type-safe classes, without having to actually commit to any

particular type when you create the class.

In the next chapter, I’ll show you how to actually create your own generic types, but right now, we’ll start

by taking a look at a few generic types that already exist in the .NET Standard Library that you’ll find very

useful. We’ll start with the List class, which is the “official” version of what we’ve been describing up until

now in this chapter. Then we’ll look at a generic interface (IEnumerable) which is an interface that allows

you to look at all items in a collection, one at a time, and is used by nearly all collection classes. Finally,

we’ll look at the Dictionary class, which is a bit more advanced and shows off a few more of the features

that generics offer.

The List Class

The .NET Platform already includes an implementation of a generic List class, which is a growable,

ordered collection of items (unlike arrays, which can’t be resized). The List class is a great, simple example

that shows us how to use generics in general, but it is also just a useful class to know about, and you’ll use

it frequently as you do C# programming. For both of these reasons, we’ll start our discussion on generics

with the List class.

The List Class 163

This class is called List, so you might think you can create a list like this:

List listOfStrings = new List(); // This doesn't quite work...

But that doesn’t quite work. This is because the List class uses generics, and has a generic type parameter.

Having generic type parameters is what makes a type generic. What it means is that we are going to need

to fill in some types to be used when we attempt to use it. These generic type parameters are filled in by

specifying the types to use inside of angle brackets (‘<‘ and ‘>‘). For a list of strings, you do this:

List<string> listOfStrings = new List<string>();

You now have a list containing strings!

I should point out that the List<T> generic type (as well as IEnumerable<T> and Dictionary<K, V> that

we’ll talk about next) are all in the System.Collections.Generic namespace, so if your file doesn’t have a

using directive at the top of the file for that, you’ll want to add it (Chapter 27). (By default, it is included

though.)

With a generic type like this, the generic type parameter gets filled in across the class. In the above case,

we’ve filled in the string type in many places for this particular instance, and the compiler will be able to

ensure only strings are used to interact with this particular List instance.

As an example, the List class has an Add method, which allows you to put new items in the list:

listOfStrings.Add("Hello World!");

Because we’ve specified that we’re using string for the type parameter, the signature of this Add method

now requires that we give it a string. If we had made it a List<int>, then the Add method would require

that it be given an int. Yet the generic List class was only defined once. We’ve gotten the best of both

worlds: type safety, but without needing to make lots of different class definitions.

Let’s look at a few more examples of using the List class.

If adding items to the end isn’t what you need, you can use the Insert method, which allows you to supply

the index to add the item at, pushing everything else back:

listOfStrings.Insert(0, "text3");

Remember that indices typically start at 0, so the above code inserts at the front of the list.

You can also get an item out of the list using the ElementAt method.

string firstItem = listOfStrings.ElementAt(0);

You can also use the square brackets ([and]) with the List class to get and set values at specific indexes,

just like an array. (This is done through an indexer, which we’ll see in Chapter 35.) For example:

string secondItem = listOfStrings[1]; // Get a value.
listOfStrings[0] = "New Value!"; // Set a value.

Also, the RemoveAt method allows you to remove items from the list:

listOfStrings.RemoveAt(2);

While we’re talking about deleting stuff, you can remove everything from the list with the Clear method:

listOfStrings.Clear();

While arrays have the Length property to determine how many items are in the array, the List class has a

Count property instead. (There’s no Length property; the inconsistency is rather unfortunate.)

164 Chapter 25 Using Generics

int itemsInList = listOfStrings.Count;

If we’re using a List, but we want to get a copy of the contents as an array, there’s an easy way to do this.

There’s a ToArray method that will make this conversion for us, copying our generic List instance into an

array of the appropriate type:

List<int> someNumbersInAList = new List<int>();
someNumbersInAList.Add(14);
someNumbersInAList.Add(24);
someNumbersInAList.Add(37);

int[] numbersInArray = someNumbersInAList.ToArray();

We are also able to loop over all of the items in a List, just like with arrays:

List<int> someNumbersInAList = new List<int>();
someNumbersInAList.Add(14);
someNumbersInAList.Add(24);
someNumbersInAList.Add(37);

foreach(int number in someNumbersInAList)
{
 // ...
}

Since the List class is generic, you can create an instance of the List class using any other type you want.

And when you do, all of the methods like Add and ElementAt will work only for the type that you are

using, keeping it type safe like we wanted.

Using Collection Initializer Syntax
When we first introduced arrays, we also discussed collection initializer syntax (or simply a collection

initializer) that allowed us to set up an array using simplified syntax:

int[] numbers = new int[] { 1, 2, 3, 4, 5 };

We can do this same thing with the List<T> class as well. The earlier code that added multiple items to a

list could be simplified using collection initializer syntax:

List<int> someNumbersInAList = new List<int>() { 14, 24, 37 };

This trick works on anything that implements the IEnumerable<T> interface (see the next section) and

has an Add method. The C# compiler simply turns that into calls to Add.

The IEnumerable<T> Interface

One of the generic types that you’ll encounter the most is the IEnumerable<T> interface. If you recall

from the chapter on enumerations, the definition of the world “enumerate” means to count off, one-by-

one, each item in a group or collection. This is essentially what the IEnumerable<T> interface is for. It

allows a collection to give others the ability to look at each item contained in it, one at a time.

Nearly every collection class that you encounter in the .NET world will implement this interface. In that

sense, it serves as the base or lowest level of defining a collection. Both the List class and Dictionary

class that we’ll see next implement it. Even arrays implement IEnumerable<T>.

IEnumerable<T> provides the foundation for all sorts of interesting and important features in C#. In

Chapter 13 when we were talking about arrays and the foreach loop, we saw that if something

implements IEnumerable<T>, it can be used in a foreach loop. And IEnumerable<T> is used as the

foundation for LINQ queries, which we’ll talk about in Chapter 38.

The Dictionary Class 165

All sorts of things implement IEnumerable<T>. If all you care about is the ability to do something with

each item in a collection, you can get away with treating it as simply an IEnumerable<T>:

IEnumerable<int> numbers = new int[3] { 1, 2, 3 };

You’ll see some methods returning IEnumerable<T> if they don’t want you to know the actual concrete

type being used (it could be an array or a List or something else) and if they want you to have the ability

to loop through the items, but not modify the collection.

The Dictionary Class

To wrap up our introduction on using generics, let’s look at another generic class that is slightly more

complex than List: the Dictionary class. This class isn’t quite as versatile as the List class, but you’ll

definitely find uses for it, so it is a good choice to look at.

Let’s start by describing what the Dictionary class actually is. A physical dictionary has a set of words that

you use to look up a definition that belongs to each word. One piece of information is used to look up

another piece of information.

The Dictionary class does this same thing. We use one piece of information (the key) to store and look up

another piece of information (the value). So it is a mapping of key/value pairs. Because the class is generic,

we’re not limited to strings. We can use any type that we want.

For example, let’s look at how you could use a Dictionary to create a phone book. Since Dictionary is a

generic class, we can use it with any type we want. In the case of a phone book, we might use a string

name for the key to look up our own custom-made PhoneNumber class. (Though these are just

examples, and we could use anything else too.)

The Dictionary class has two generic type parameters, one for the key and one for the value. That tells us

we can pick our own type for both keys (we’re not just limited to strings) and also for values. For this

sample, we’ll use string for the keys and PhoneNumber for the values:

Dictionary<string, int> phoneBook = new Dictionary<string, int>();

The Dictionary class allows us to use the indexing operator (‘[‘ and ‘]’) to get or set values in it:

phoneBook["Gates, Bill"] = new PhoneNumber("5550100");
phoneBook["Zuckerberg, Mark"] = new PhoneNumber("5551438");

PhoneNumber billsNumber = phoneBook["Gates, Bill"];

When you go to use a generic type, you fill in values (type names) for each of the generic type arguments

it defines. Most generic types will have one or two generic type parameters that you can fill in, but there

isn’t a limit on the number of generic type arguments that a type can have.

As you can see from the above example, when you fill in the generic type arguments with specific types,

you can mix and match. There’s no requirement for them to all be string or anything of that nature.

There is quite a bit more that the Dictionary class can do, though we won’t get into the details here. Feel

free to explore and see what else is there.

166 Chapter 25 Using Generics

Answers: (1) Type safety without creating many similar types. (2) List<string> strings = new List<string>(); (3) Two: the key

type and the value type. (4) False. (5) Add. (6) RemoveAt and Clear.

Try It Out!
Generics Quiz. Answer the following questions to check your understanding. When you’re done,

check your answers against the ones below. If you missed something, go back and review the section

that talks about it.

1. Describe the problem generics address.

2. How would you create a list of strings, using the generic List class?

3. How many generic type parameters does the Dictionary class have?

4. True/False. When a generic class has multiple type parameters, they must all match.

5. What method is used to add items to a List object?

6. Name two methods that cause items to be removed from a List.

26
26 Making Generic Types

In the last chapter, we saw how to use a generic type. In this chapter we will look at how to define your

own generic types. Classes, structs, and interfaces can all use generic type parameters.

In this chapter, we’ll outline how to make our own generic PracticeList class. While the List class already

exists (we saw it in the previous chapter) this is a good, simple example that will help us see how to make

generic types. Obviously, you should use the List class and not the one we make here for “real” programs.

Creating Your Own Generic Types

To add generic type parameters to a type, you add the generic type parameter names to the type’s

definition, as shown below:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

In a Nutshell
 You can create your own class that uses generics by placing the generic type in angle brackets

after the class definition: public class PracticeList<T> { /* ... */ }.

 Using single capital letters for generic types is common, so T is a common in generic classes.

 You can have multiple generic types: public class PracticeDictionary<K, V> { /* ... */ }.

 When you include generic type parameters in a type definition, you can use that type name as

a placeholder throughout the type (return types, parameter types, instance variable types,

etc.) to indicate where it will be used.

 Placing constraints on a generic type variable restrict the kinds of types that can be used, but

you know more about the generic type and can do more with it.

Try It Out!
Building Your Own Generic List Class. To help you get a hold of the idea of generics, follow through

the contents of this chapter and build your own PracticeList class that uses generics.

168 Chapter 26 Making Generic Types

using System.Threading.Tasks;

namespace Generics // Your namespace might be different.
{
 public class PracticeList<T>
 {
 }
}

You can see that this is the same as a normal class, with the exception of having that <T> in there. This is

what allows the class to use generics.

This gives a name (T) to our generic type parameter. This type can then be used across the type for return

types, method parameter types, instance variable types, property types, etc. We’ll see examples of this

very soon, in the upcoming sections.

Generic type names can be any legal identifier, but two patterns are common: using single capital letters

(T, K, V, etc.), and using some simple name, prepended with a T (like TKey and TValue). In places that

need just a single generic parameter, most people tend to just use T.

If you want multiple generic type arguments, you can simply place them in the same place by naming

them inside the angle brackets, separated by commas. For example: <TKey, TValue>.

Using Your Generic Type in Your Class

Now that we’ve created a class with a generic type parameter, we can use this type throughout our class.

For instance, since this is a list, we probably want to store the items of our list somewhere. So we can add

the following as an instance variable:

private T[] items;

We create a private array called items, but you’ll see that the type of that array is T—our generic

parameter type, rather than a “real” type. So whenever someone uses our PracticeList class, they’ll

choose what type to use, and the type they choose will go in here. If they create a new

PracticeList<int>() then this will become an array of ints (private int[] items) for that instance.

We probably also want a constructor that will set up our array to have 0 items in it to start:

public PracticeList()
{
 items = new T[0];
}

This is straightforward enough. We create a new array that uses our generic type parameter T with 0

items in it. Yes, having an array with 0 items in it is pretty worthless, but we’ll expand it as we add items.

How about a method that returns the item in the list at a particular index?

public T GetItem(int index)
{
 return items[index];
}

In this case, the return type is our generic type parameter T. If we had a PracticeList<int>, then this

would return an int. If it was a PracticeList<double>, it would return a double.

How about a method that adds an item to the list? This is a little more complicated because it needs to

resize the array (technically making a new slightly larger array and then copying the items over to the new

array).

Generic Type Constraints 169

public void Add(T newItem)
{
 // Make a new bigger array with room to store the new item.
 T[] newItems = new T[items.Length + 1];

 // Copy all of the old items over to the new array.
 for (int index = 0; index < items.Length; index++)
 newItems[index] = items[index];

 // Put the new item at the end.
 newItems[newItems.Length - 1] = newItem;

 // Update our instance variable to hold this new array instead of the old array.
 items = newItems;
}

Once again, we are putting our generic type parameter to use. This time, it is used as an input to the

method (we only want to be able to add items of the type that matches the list) and also to create the new

array that we copy everything to.

Our completed class will look something like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Generics
{
 public class PracticeList<T>
 {
 private T[] items;

 public PracticeList()
 {
 items = new T[0];
 }

 public T GetItem(int index)
 {
 return items[index];
 }

 public void Add(T newItem)
 {
 T[] newItems = new T[items.Length + 1];

 for (int index = 0; index < items.Length; index++)
 newItems[index] = items[index];

 newItems[newItems.Length - 1] = newItem;

 items = newItems;
 }
 }
}

Generic Type Constraints

So far, our generic type parameters reserve a spot for another type to be used, and literally any type can

be placed in it. This allows people to use anything they want for the generic type in question. It’s usually a

good thing.

170 Chapter 26 Making Generic Types

But it does have one problem: within the generic type, you know next to nothing about the objects that it

is using. The only thing you can guarantee is that it is an object, so the only members you use with

instances of the generic type are ones that belong to object (Equals, ToString, GetHashCode, etc.)

Many scenarios don’t require us to do anything specific with our generic type parameters. For example, a

collection just needs to keep track of it. It doesn’t have to interact with it. In these cases, the above

limitation is not a problem.

But if you do need to be able to do some work with the generic type parameter, you may find that you

want to constrain what actual types can be used for the generic type parameter. If you do this, then you

limit what types can be filled in at the time of use, but you also know much more about your generic type.

As an example, the following shows how you would require that the generic type parameter must be filled

in by something that implements the IComparable interface:

public class PracticeList<T> where T : IComparable
{
 //...
}

If we put a generic type constraint in place like this, we will no longer be able to make instances of

PracticeList where the type parameter is filled in with something that doesn’t implement IComparable.

But in exchange, we could now use IComparable methods within the class, because we can be certain

that T is at least that.

Multiple constraints for a single type can be added by separating them with commas, and if you have

multiple generic types, you can specify type constraints for each of them using a new where keyword.

public class PracticeDictionary<K, V> where K : SomeBaseClass, SomeRandomInterface
 where V : SomeOtherInterface
{
 //...
}

You can also specify a parameterless constructor constraint, which requires that the type used has a

public parameterless constructor. This is done by adding new() as a constraint:

public class PracticeList<T> where T : new()
{
 //...
}

With this, we know that our type parameter T has a parameterless constructor and we can invoke it:

T newObject = new T();

Interestingly, you cannot add “parameterful” constructor constraints. (You can’t say where T : new(int), or

anything like that.)

You can also specify that a type must be a value or reference type with the struct or class constraint:

public class PracticeList<T> where T : class // Must be a reference type.
{
 //...
}

Or:

public class PracticeList<T> where T : struct // Must be a value type.
{
 //...
}

Generic Methods 171

You can also indicate that one type parameter must be derived from another type parameter:

public class GenericClass<T, U> where T : U
{
 //...
}

Generic Methods

In addition to generic classes, you can have individual methods that use generics as well. These can be a

part of any class or struct, generic or regular. Like with generic classes, this is useful when you want to

have a set of methods that are identical, except for the type that it works on. To do this, you simply list the

generic type parameters after the method name but before the parentheses like this:

public T LoadObject<T>(string fileName) { ... }

Like with classes, you can use as many generic type parameters as you want, apply generic constraints,

and also use the generic type parameters in the method’s parameter list and return type:

public T Convert<T, U>(T item) where T : class
{
 // ...
}

To use a generic method, you would do the following:

Person person = LoadObject<Person>("person1.txt");

The Default Operator

C# includes an operator that will produce the default value for any specific type. This looks like this:

int value = default(int);

In short, the default value for a type is as close to 0 in meaning as possible. Specifically:

 For all of the integer and floating point types, that’s a value of 0.

 For bool, it’s false.

 For a char, it is the character whose numeric value is 0—that is the NULL control character.

 For an enum, it will be a 0. This applies even if you’ve assigned non-zero values to all of your

enum members.

 For a class, including string and arrays, it will be null.

 For a struct, each element will take on the default value for its type.

The default operator is useful when you are using generics and need to assign a value to a variable of a

generic type. If you don’t know much about the generic type, then it’s hard to do this. For example, if you

don’t know if something is a value or reference type, then you can’t do something like this:

T returnValue = null;

You can’t assign it null, because it might not be a reference type. Likewise, you can’t assign it a value of 0

or anything else.

In these cases, all you can do is assign it the default value:

T returnValue = default(T);

172 Chapter 26 Making Generic Types

Unfortunately, this sounds more useful than it actually probably is. If you didn’t know enough to assign it

a real value in the first place, then you still won’t know what was created by the default operator. You

aren’t going to be able to do anything with it (short of returning it) once it has been created. There is also

no way in C# to define what the default value should be for your class (or struct) either.

So I bring this up because it is an actual operator and keyword in the C# language, and because it does

have its uses, but it is not the most powerful of tools you’ll find.

In most cases, you will probably want to use the generic type constraints from earlier in this chapter, or

come up with a different strategy for creating actual objects rather than using the default value. (There

are many approaches to this, though this subject is beyond the scope of this book. But if you do a web

search for “creational patterns” you’ll find a number of approaches for getting objects of different types

created that go far beyond C#’s default operator.)

Answers: (1) In angle brackets by the class name. (2) False. (3) True. (4) True.

Try It Out!
Making Generics Quiz. Answer the following questions to check your understanding. When you’re

done, check your answers against the ones below. If you missed something, go back and review the

section that talks about it.

1. How do you indicate that a class has a generic type parameter?

2. True/False. Generic classes can only have one generic type parameter.

3. True/False. Generic type constraints limit what can be used for the generic type.

4. True/False. Constraints let you use the methods of the thing you are constraining to.

Part 4
Advanced Topics

We’ve covered much of the C# language. Much of the things you might want to do, you can do now,

and much of what you see you’ll be able to understand.

In Part 4, we’ll look topic-by-topic at more advanced features of the C# language, and tackle some

common tasks that you will likely need to do before too long. This includes:

 More about namespaces and using directives (Chapter 27).

 More about methods (Chapter 28).

 Reading from and writing to files (Chapter 29).

 Handling errors using exceptions (Chapter 30).

 Patterns (Chapter 31).

 Delegates (Chapter 32).

 Events (Chapter 33).

 Overloading operators (Chapter 34) and creating indexers (Chapter 35).

 Creating extension methods for existing types (Chapter 36).

 Lambda expressions (Chapter 37) and query expressions (Chapter 38).

 Multi-threading your application (Chapters 39 and 40).

 Dynamic objects (Chapter 41).

 Unsafe (unmanaged) code (Chapter 42).

 A quick pass at a few other features in C# that are worth knowing a bit about (Chapter 43).

Do not feel like you need to read these chapters in order, or even right away. Feel free to jump

around and read them as you feel you have a need for these topics.

27
27 Namespaces and Using

Directives

Back in Chapter 3, when we made our Hello World program, we first saw using directives and the

namespace keyword. At the time, I mentioned that there’s more to understanding these two closely

related concepts, but that it was a discussion for another day. That day has arrived!

In this chapter, we’ll take a look at what a namespace is, and look in-depth at the use of type names,

spread throughout your program. We’ll then look at what using directives actually do. All of this will give

you a much better idea of what is going on with these two important parts of your code.

Namespaces

In a program, it is possible to have two types with the exact same name. Consider this: How many Point

classes do you think exist out there in the world?

Lots. OpenGL libraries (a very common 3D graphics library) will often have one, every UI framework (like

Windows Forms and WPF) has one. The list goes on and on.

You might be thinking, why can’t they all just use the same class? Reuse code, and all of that good

software engineering mumbo-jumbo.

In a Nutshell
 Namespaces are collections of (usually related) types that are assigned a name collectively.

 A type’s fully qualified name is the combination of the namespace name and the type name.

You can always use a type’s fully qualified name.

 using directives indicate which namespace to look in for unqualified type names.

 Name collisions are when the compiler is aware of two different types with the same name.

They can be resolved by either using fully qualified names or by using an alias.

 A using static directive can be added for any static class, allowing you to use the method

without needing the class name: using static System.Console; and later: WriteLine(x);

176 Chapter 27 Namespaces and Using Directives

That’s a good thought. In theory. But each of these different libraries needs different things from their

Point class. Some want it in 2D, others want it in 3D. Some want to use floats while others want doubles.

And they each want their Point class to be able to do different things. They’re fundamentally different

types, which just happen to have the same name.

And here’s where namespaces come in to play.

A namespace is simply a grouping of names.

Usually, people will put related code in the same namespace, so you can also think of a namespace as a

module or package for related code. Namespaces are a little like last names. They separate one type with

a certain name from other types with the same name.

Fully Qualified Names

Looking back at that Point class, the Windows Forms Point class is in the System.Drawing namespace.

The WPF version is in the System.Windows namespace. The namespace allows you to distinguish which

of the two you have.

When combined, the namespace name and the class name is called a fully qualified name.

System.Drawing.Point is a fully qualified name, as is System.Windows.Point. There’s no mistaking

which of the two you mean.

Up until now, we haven’t been using fully qualified names. But we could have been. For example, every

place that we’ve used the Math class, we could have used the fully qualified name System.Math. We

could have written it System.Math.PI and System.Math.Sin(1.2).

Using Directives

You can always use a fully qualified name, but in most cases, that’s just too much typing, and it tends to

make your code less readable.

In any particular file, we have the ability to point out a namespace and say, “I’m using the stuff in that

namespace, so if I don’t use a fully qualified name, that’s where you’ll find it.” This is done by putting in a

using directive, which we’ve been doing since the beginning.

At the top of a file, we can list all of the names of the namespaces that we will be frequently using. With a

using directive for System (using System;) we can use the name of anything in the System namespace

without needing to use the fully qualified name. (This particular using directive, along with a few others, is

added to our file for us when we create a new file in Visual Studio.)

This is the reason that we’ve been able to get away with just saying Math.PI all along, instead of

System.Math.PI. Our program already had a using System; statement at the top of the file.

The Error ‘The type or namespace X could not be found’

If you try to use the unqualified name for a type, leaving out the namespace, and you don’t have an

appropriate using directive, you’ll run into the following error:

The type or namespace 'X' could not be found (are you missing a using directive or an assembly reference?)

This lists two possible causes for the problem: missing a using directive or missing an assembly

reference. The first part of that is usually what’s happening. (Missing assembly references are covered in

Chapter 46.) This can easily be solved by simply adding the appropriate using directive. (Or use the fully

qualified name instead.)

The Error ‘The type or namespace X could not be found’ 177

There are two ways you can add a missing using directive. First, you could scroll up to the top of the file

and manually type in a using directive for the right namespace. That works, but it has a few small

problems. If you don’t know what namespace you actually need, you have to hunt around the Internet to

figure it out, which takes time and pulls you away from whatever task you were doing.

There’s a shortcut that is much easier.

To illustrate, I’ve gone into my program and deleted the using System; statement in my program, so that

C# doesn’t know what to do with Math anymore.

Once you type something like this:

double pi = Math.PI;

Visual Studio will underline Math in red, because it doesn’t know what to do with it:

When this happens, use the mouse to hover over the underlined word, and two extra pieces of UI will pop

up: a lightbulb icon and a message describing the error with a link to show possible fixes.

By either clicking on the lightbulb or clicking the link to show potential fixes, you’ll get a list of ways this (or

any other) problem could be resolved.

Clicking on using System; will automatically add a using directive for you. (Clicking on the second option

there will automatically change your code to use the fully qualified name.)

This makes it so you don’t have to memorize or hunt down the namespace that things are in because

Visual Studio figures it out for you. You don’t even need to leave what you were working on to do it.

There’s a keyboard shortcut to get this to pop up: Ctrl + . (the period key).

If you are using a type name that is in multiple namespaces, the little drop down box may have multiple

choices in it. If so, you’ll need to be sure to choose the right one. Accidentally choosing the wrong one is a

quick way to a wasted hour and a bad headache.

178 Chapter 27 Namespaces and Using Directives

Name Collisions

On a few rare occasions, you’ll add using directives for two namespaces that both contain a type with the

same name. This is called a name collision because the unqualified name is ambiguous. In this case, even

though you have using directives for an unqualified name, it still can’t figure it out.

One solution to this is to just go back to fully qualified names. That tends to be my preferred solution. It

keeps things clear and unambiguous. But there’s another way to deal with name collisions: aliases.

Using Aliases to Solve Name Collisions
You can also use an alias to solve the problem of a name collision. An alias is a way to create a new name

for an existing type name. You can think of it like a nickname.

To illustrate, imagine you have the following code, which won’t compile because C is a name collision:

using N1;
using N2;

namespace N1
{
 public class C { }
}

namespace N2
{
 public class C { }
}

namespace NamespaceExample
{
 class Program
 {
 static void Main(string[] args)
 {
 C c = new C(); // Compiler can't tell if you're using N1.C or N2.C.
 }
 }
}

You can define an alias with the using keyword (yes, there’s a lot of uses for the using keyword):

using CFromN1 = N1.C;

This line is placed among your other using directives, though most people put namespace aliases after

normal using directives:

using N1;
using N2;
using CFromN1 = N1.C; // The name here is arbitrary. You could even reuse the name 'C'.

namespace N1
{
 public class C { }
}

namespace N2
{
 public class C { }
}

namespace NamespaceExample
{
 class Program

Static Using Directives 179

 {
 static void Main(string[] args)
 {
 CFromN1 c = new CFromN1();
 }
 }
}

When the compiler is resolving unqualified type names, an alias like this will always take precedence over

looking through the things contained in a normal using directive, which helps resolves name collisions.

Avoiding name collisions in the first place is preferred. But failing that, you’ll have to choose between

using fully qualified type names and aliases. Both have pros and cons, and both are commonly used.

Static Using Directives

In Chapter 18, we discussed static classes. For a static class, there is a variation on using directives that

allow you to make the members of that class available without even needing the class name. That is done

by using a static using directive. (Ironically, the syntax reverses the ordering of those words.) As an example

of this, the following code creates a static using directive for both System.Math and System.Console,

which makes it so you can refer to Console.WriteLine as just WriteLine, Math.PI as just PI, etc.:

using static System.Math;
using static System.Console;

namespace StaticUsingDirectives
{
 public static class Program
 {
 public static void Main(string[] args)
 {
 double x = PI;
 WriteLine(Sin(x));
 ReadKey();
 }
 }
}

This is a bit of a double-edged sword. On one hand, it’s more concise, which is a good thing. On the other

hand, when people see a “bare” method reference (like WriteLine) the first assumption is that it lives

elsewhere in the class, which isn’t necessarily true with a static using directive. So use it when it makes

things easier to understand, and avoid it when it makes things harder to understand.

Answers: (1) False. (2) True. (3) True. (4) True. (5) Use fully qualified names or aliases. (6) using static System.Math;

Try It Out!
Namespaces Quiz. Answer the following questions to check your understanding. When you’re done,

check your answers against the ones below. If you missed something, go back and review the section

that talks about it.

1. True/False. using directives make previously inaccessible code accessible.

2. True/False. using directives make it so you do not need to use fully qualified names.

3. True/False. Two types are allowed to have the same name.

4. True/False. A name collision is when two types have the same name.

5. Name two ways to resolve a name collision.

6. What using directive would need to be added so that you can use System.Math’s Abs

(absolute value) method as Abs(x) instead of Math.Abs(x)?

28
28 Methods Revisited

We first looked at methods in Chapter 15. We’ll now take a second look at methods and discuss a few

more advanced features, because we’re ready for it now.

Local Functions

We’ve spent a lot of time defining methods that belong directly to a class, struct or other type. As it turns

out, we can actually define a method directly inside of another method.

To clarify, we should probably formalize our terminology here. Generally speaking, a function is a section

of reusable code that optionally takes inputs (parameters) and optionally produces (“returns”) a result.

A method is a specific sub-type of function that is owned by a class or other type. As a member of a class,

the method also has access to class-level instance variables and the other functions or methods defined

in the class. All methods are functions, but not all functions are methods.

Some other languages allow “bare” functions that live outside of any class or type. They ’re just defined at

the top level. These functions would not be considered methods because they aren’t members of a class.

C# does not allow these types of functions.

But C# does allow you to define local functions, which are defined inside of another method or function,

rather than directly inside of a class or other type. Here is a simple example:

In a Nutshell
 Local functions can be defined inside of another method.

 Parameters can be made optional by providing a default value for the parameter: public void

DoSomething(int x = 6) { ... }

 When calling a method, you can name your parameters: DoSomethingElse(x: 4, z: 2, y:1);

When doing this, you can put the parameters in any order.

 By using the params keyword, methods can have a variable number of parameters.

 The ref and out keyword can be used on a method parameter to pass the actual variable,

rather than just the contents of the variable, allowing the called method to modify the

contents of variables in the calling method.

Optional Parameters 181

public class Program
{
 public static void Main(string[] args)
 {
 int Add(int a, int b)
 {
 return a + b;
 }

 Console.WriteLine(Add(1, 1));
 Console.WriteLine(Add(2, 2));
 Console.WriteLine(Add(3, 7));
 }
}

The syntax is mostly the same as you’d expect from a normal method. There are a few caveats worth

mentioning. You can’t specify an accessibility modifier (like public or private). Local functions are actually

more constrained than private. They are only accessible within the scope of a single method. You also

can’t make a local function static.

You can define local functions anywhere within another method. The code above defined it at the start of

the method. You could alternatively define it at the end, or in the middle. No matter where you put it, you

can call the method from anywhere else inside of the method just fine. So this code compiles as well:

void AnyMethod()
{
 int Subtract(int x, int y) { return x - y; }

 Console.WriteLine(Add(1, 2) + " " + Subtract(6, 4)); // Outputs "3 2"

 int Add(int a, int b) { return a + b; }
}

This code has two local functions: a Subtract method at the top and an Add method at the bottom, with

code that calls both in the middle.

But while you can place them anywhere within a method and call them from anywhere else in the

method, you will be doing yourself a big favor if you pick some convention (like always putting local

functions first) rather than just scattering them randomly throughout the parent method.

Local functions can be used to separate out logical chunks of a larger method without making those

chunks accessible to any other part of the class. (If you want the rest of the class to be able to reuse it,

make it a private method in the class instead.) A local function can be invoked repeatedly from inside the

containing method, so it allows for code reuse without making it accessible beyond the method.

Optional Parameters

Let’s say you are making a method that simulates a die roll by picking a random number between 1 and

the number of sides on the die. Suppose your class contained something like this:

private Random random = new Random();

public int RollDie(int sides)
{
 return random.Next(sides) + 1;
}

It’s entirely possible that 99% of the time, you’re going to be passing in 6 for the sides parameter. It will be

kind of annoying to always need to say RollDie(6). C# provides a way to specify a default value for a

parameter, making it optional as long as you’re OK with the default. Doing this is pretty easy:

182 Chapter 28 Methods Revisited

public int RollDie(int sides = 6)
{
 return random.Next(sides) + 1;
}

With this code, you can now call RollDie() and the value of 6 will be used, or you can still fall back to

putting a value in if you would like:

RollDie(); // Uses the default value of 6.
RollDie(20); // Uses 20 instead of the default.

While you can have as many optional parameters as you want, and can mix and match them with non-

optional parameters, all optional parameters must come at the end after all of the “normal” parameters.

Named Parameters

Occasionally, you’ll go to use a method, but you don’t remember what order the parameters are in. This is

especially true when the method requires several parameters of the same type. As an example, look at

the method below, which takes an input value and clamps it to a particular range, returning the result:

public int Clamp(int value, int min, int max)
{
 if(value < min) { return min; } // Bump the value up to the min if too low.
 if(value > max) { return max; } // Move the value down to the max if too high.
 return value; // Otherwise, we're good with the original value.
}

When you go to use this method, you might see something that looks like this:

Clamp(20, 50, 100);

When you see this, you always need to do a little digging to figure out what’s going on. Is it going to clamp

the value of 100 to the range 20 to 50? Or clamp the value of 20 to the range 50 to 100?

To avoid this ambiguity, C# allows you to supply names for parameters. This is done by putting the

parameter name, followed by a colon, followed by the value for that parameter:

Clamp(min: 50, max: 100, value: 20);

With named parameters, it is very clear what value belongs to which parameter. Furthermore, as long as

the compiler can figure out where everything goes, this allows you to put the parameters in any order,

making it so that you don’t need to worry about the official ordering, as long as they all have a value.

When you call a method, you can use regular unnamed parameters, or named parameters, but all regular

parameters must come first, and each variable must be assigned to only once.

You can also combine optional parameters with named parameters.

One side effect of this feature is that parameter names are now a part of your program’s public interface.

Changing a parameter’s name, can break code that calls the method using named parameters.

Variable Number of Parameters

Let’s say you want to average some numbers together. We can write a method to average two numbers:

public static double Average(int a, int b)
{
 return (a + b) / 2.0;
}

The ‘out’ and ‘ref’ Keywords 183

What if you want to average three numbers? You could write a similar method for that:

public static double Average(int a, int b, int c)
{
 return (a + b + c) / 3.0;
}

What if you wanted 5? Or 10? You could keep adding more and more methods, but it gets unwieldy fast.

C# provides a way to supply a variable number of parameters to a method, by using the params keyword

with an array variable:

public static double Average(params int[] numbers)
{
 double total = 0;

 foreach (int number in numbers)
 total += number;

 return total / numbers.Length;
}

To the outside world, the params keyword makes it look like you can supply any number of parameters:

Average(2, 3);
Average(2, 5, 8);
Average(41, 49, 29, 2, -7, 18);

However, behind the scenes, the C# compiler will turn these into an array to use in the method call.

It is also worth pointing out that you can directly pass in an array to this type of method:

int[] numbers = new int[5] { 5, 4, 3, 2, 1 };
Average(numbers);

You can combine a params argument with other parameters, but the params argument must be the last

one, and there can be only one of them.

The ‘out’ and ‘ref’ Keywords

Back in Chapter 16, we talked about value and reference semantics. We looked at how whenever you pass

something into a method as a parameter, the contents of the variable are copied. With value types, this

meant we got a complete copy of the original data. For reference types, we got a copy of the reference,

which was still pointing to the same object in the heap.

Methods have the option of handing off the actual variable, rather than copying its contents, by using the

ref or out keyword. Doing this means that the called method is working with the exact same variable that

existed in the calling method.

This sort of creates the illusion that value types have been turned into reference types, and sort of takes

reference types to the next level, where it feels like you’ve got a reference to a reference.

To do this, you add either the ref keyword or the out keyword to a particular parameter.

public void MessWithVariables(out int x, ref int y)
{
 x = 3;
 y = 17;
}

We can then call this code like this:

184 Chapter 28 Methods Revisited

int banana = 2;
int turkey = 5;

MessWithVariables(out banana, ref turkey);

At the end of this code, the banana variable will contain a value of 3, and the turkey variable will contain

a value of 17.

If you look at this code, you’ll see that you need to put out or ref when you call the method as well.

There’s a good reason for this. Handing off the actual variables from one method to another is a risky

game to play. By requiring these keywords in both the called method and the calling method, we can

ensure that the variables were handed off intentionally.

There is a small difference between using ref and out, and that difference has to do with whether the

calling method or the called method is responsible for initializing the variable. With the ref keyword, the

calling method needs to initialize the variable before the method call. This allows the called method to

assume that it is already initialized. These are sometimes called reference parameters.

With the out keyword, the compiler ensures that the called method initializes the variable before

returning from the method. These are sometimes called output parameters.

Using reference or output parameters does a couple of things. Because we’re passing the actual variable,

instead of just the contents of the variable, value types won’t need to be completely copied when passed

into a method. This can speed things up because it could save us from copying a lot of value types.

You can also use this to get back multiple values from a method. You can technically only return one value

from a method, but additional values can be returned as an output parameter instead. (More on this later

in this chapter.)

Sending the actual variable to a method, instead of just the contents of the variable is a dangerous thing

to do. We’re giving another method control over our variables, and if used carelessly, it causes a lot of

trouble. Use it sparingly and wisely.

Inline Declarations for Output Parameters
It is possible to simultaneously declare a variable for an output parameter in the same location as the

method invocation. To illustrate, look at the double.TryParse method, which illustrates a pretty common

use of an output parameter:

if (double.TryParse("3.14", out double newValue))
 return newValue * newValue;
else return double.NaN;

The double.TryParse method takes a string and parses it (analyzes the text to determine the numeric

value that matches the text representation), but it does so conditionally. It returns a bool that indicates

whether it was successful or not. If it can’t parse it (for example, if the string contained “Jabba the Hutt”

instead of “3.14”) then rather than blowing up on us, it will simply return false, rather than true. Since the

return value is used to indicate whether it was successful or not, the method does not return the parsed

value. Instead, it gives that back via the output parameter.

Our earlier example showed declaring the variable on a separate line. While that’s always an option, this

last example shows that an output parameter can also be defined inline, which tends to produce cleaner

code. (This is a C# 7 feature, so if you’re using an older version, you will need to declare the variable on an

earlier line.)

Ref Return Types and Ref Local Variables
In addition to using ref on parameters, ref can also be used for local variables and return values.

The ‘out’ and ‘ref’ Keywords 185

Consider a scenario from the game development world. While there are many ways you can structure

your game, let’s say you have a game where the state of the game is represented as a collection of many

starships. Suppose you declare a Ship struct that looks like this (being a struct instead of a class is

important here):

public struct Ship
{
 public double X { get; set; }
 public double Y { get; set; }
 public int PlayerIndex { get; set; }
}

And then suppose you’ve defined your game’s current state along these lines:

public class GameState
{
 private Ship[] ships;

 public Ship GetShip(int index) // BROKEN!
 {
 return ships[index];
 }
}

(Please note that I’m not saying this is the best way to organize your game’s code. I’m not even suggesting

it’s a good way. But it does serve to illustrate the point.)

What problem do you get when you attempt to use a value returned from that GetShip method to adjust

a ship’s position?

The issue goes back to the difference between value types and reference types. Note that Ship is a struct,

which means it has value semantics. When we call GetShip, a Ship instance is returned, but it’s a copy

(because of the value semantics) of the intended one.

If somebody tries to modify the ship using code like this, it will fail:

Ship ship = gameState.GetShip(2);
ship.X += 0.1;

Instead of modifying the one in the game state’s ships array, we are modifying a copy.

An easy way around this is to use a ref return value, which passes the result back by reference, instead of

by value, in a manner similar to what we saw with a ref parameter or an out parameter:

public class GameState
{
 private Ship[] ships;

 public ref Ship GetShip(int index)
 {
 return ref ships[index];
 }
}

This can then be called like so:

ref Ship ship = ref gameState.GetShip(2);
ship.X += 0.1;

Like before, you will need the ref keyword on both sides of the method (where we return the value, as

well as where we store the value when it comes back). This helps establish a clear understanding that you

are messing with somebody else’s data—that you have a reference to something that will modify

186 Chapter 28 Methods Revisited

somebody else’s data. If that is the intent, you’re fine. If it’s not the intent, the ref keyword should make

that obvious very quickly.

You’ll also note that the local variable that stores the returned value must also be marked with ref as well.

So ref return types and ref local variables go hand-in-hand. You’ll see them together frequently.

There are other options here. We could have made Ship a class instead of a struct. This would have

immediately given us reference semantics in all cases. That would have probably made this particular

sample simpler.

We also could have simply asked the GameState class to do the ship position change through a method

instead. Something like void GameState.MoveShip(int shipIndex, double xAmount, double

yAmount).

Like usual, choose the one that produces the most understandable and maintainable code.

Answers: (1) y and z. (2) x=1,y=2,z=4. (3) x=2,y=3,z=9. (4) True. (5) True. (6) b, c, d. (7) True. (8) True. (9)True. (10) False.

Returning Multiple Values

Generally speaking, methods should only return one value. Returning multiple values is a sign that the

method might be doing too much and should be broken down into multiple different methods. But there

are certain scenarios where multiple return values are legitimately needed.

One example of this is wanting to be able to compute both the quotient and remainder of an integer

division operation. Perhaps you remember doing this in school, where 26 / 5 is 5 remainder 1. In this case,

we can compute both the quotient (plain old 26 / 5, which results in 5 because of integer division) and the

Try It Out!
Methods Revisited Quiz. Answer the following questions to check your understanding. When you’re

done, check your answers against the ones below. If you missed something, go back and review the

section that talks about it.

For questions 1-3, consider the following code: void DoSomething(int x, int y = 3, int z = 4) { ... }

1. Which parameters are optional?

2. What values do x, y, and z have if called with DoSomething(1, 2);

3. What values do x, y, and z have if called with the following: DoSomething(x : 2, z : 9);

4. True/False. Optional parameters must be after all required parameters.

5. True/False. A parameter that has the params keyword must be the last parameter.

6. Given the method void DoSomething(int x, params int[] numbers) { ... } which of the

following are allowed?

 a. DoSomething();

 b. DoSomething(1);

 c. DoSomething(1, 2, 3, 4, 5);

 d. DoSomething(1, new int[] { 2, 3, 4, 5 });

7. True/False. Parameters that are marked with out result in handing off the actual variable

passed in, instead of just copying the contents of the variable.

8. True/False. Parameters that are marked with ref result in handing off the actual variable

passed in, instead of just copying the contents of the variable.

9. True/False. Parameters that are marked with out must be initialized inside the method.

10. True/False. Parameters that are marked with ref must be initialized inside the method.

Returning Multiple Values 187

remainder using the % operator (26 % 5 is 1). We could make a method to compute both the quotient and

the remainder as a pair.

We’re going to use the problem above—the simultaneously computing the division and remainder

together—as a sample for the rest of this section. But having said that, the Math class actually has a static

method (Math.DivRem) that does this very thing. In other words, you don’t need to write your own. You

can reuse the existing method.

Output Parameters
One way to return multiple values is with output parameters, as discussed in the previous section. The

syntax with ref and out is kind of ugly, but it does give you an easy way to pass values back out using a

parameter to do so.

public static int DivRem(int dividend, int divisor, out int remainder)
{
 remainder = dividend % divisor;
 return dividend / divisor;
}

This is used like this:

int division = DivRem(26, 5, out int remainder);
Console.WriteLine(division + " remainder " + remainder);

Custom Return Type
Traditionally, return values are meant for values computed by the method, while parameters are meant

for values provided to the method. So using a parameter as output goes against the conceptual pattern.

As an alternative to using output parameters, you can take multiple values and package them up into a

single type (a class or struct, though this is a good fit for a struct). Perhaps something like this:

public struct DivRemResults
{
 public int Division { get; }
 public int Remainder { get; }

 public DivRemResults(int division, int remainder) { Division = division; Remainder = remainder; }
}

With a custom return type, our DivRem method might look like this:

public static DivRemResults DivRem(int divisor, int dividend)
{
 return new DivRemResults(divisor / dividend, divisor % dividend);
}

Our calling code would then look more like this:

DivRemResults results = DivRem(26, 5);
Console.WriteLine(results.Division + " remainder " + results.Remainder);

This version uses return values and parameters more traditionally, but it does require creating a unique

type (like DivRemResults) any time you do this.

Using Tuples
A variation on the last option is to use a class (or struct) that can use generics to store these one-off

classes. The .NET Platform has one such class (technically a group of similarly named classes) that can do

this for you: the Tuple classes.

188 Chapter 28 Methods Revisited

There is not just a single Tuple class, but a whole family of them. The Tuple classes are simple generic

containers for a specific number of items. There is a 2-item tuple (Tuple<T1, T2>) a 3-item tuple

(Tuple<T1, T2, T3>) and so on, up to 7 items.

Since these are generic, you can substitute in whatever type you need. So rather than creating the

DivRemResults class in the last section, we could have used a Tuple<int, int>:

public static Tuple<int, int> DivRem(int divisor, int dividend)
{
 return new Tuple<int, int>(divisor / dividend, divisor % dividend);
}

Which could be called like this:

Tuple<int, int> results = DivRem(26, 5);
Console.WriteLine(results.Item1 + " remainder " + results.Item2);

In theory, you could almost get away with using Tuple for pretty much all of your data in your program. In

practice, that’s a bad idea. Aside from the usefulness of being able to add your own methods, properties,

etc., the naming going on inside the Tuple classes is awful. The type name, Tuple, tells you nothing about

what kind of data it stores, and the properties for each individual item in the tuple (Item1, Item2, etc.) is

worse. Giving names to your data is extremely beneficial, and Tuple doesn’t allow that.

There are places where it will make more sense to make custom classes with good names, while other

places might be better off just using Tuple. There is a place for both of these options.

ValueTuples and Language-Level Support of Tuples
Our final option for returning multiple values is a new feature of C# 7. Some changes were made to the

language that give new syntax for creating and working with tuples. Of greatest importance is that the

language now (mostly) has a way to directly return multiple values, or at least the appearance of that.

Behind the scenes, a tuple is being created and returned instead, like we saw in the last section.

This language-level support for tuples was not applied to the existing Tuple classes, but to new

ValueTuple structs instead. The language designers felt that it would be better to do multiple return

values with a value type (hence the ValueTuple structs) instead of with a reference type (like the older

Tuple classes).

Overall, ValueTuple functions the same as Tuple, just as a struct (value type) instead of a class (reference

type). There are multiple versions with a different number of arguments, all of which are generic.

There is a rather significant catch to the ValueTuple structs. Your project does not reference the thing

that contains ValueTuple by default. It has to be added before anything in this section will work.

Adding references to other packages like this is discussed in Chapter 46. In fact, that chapter specifically

uses this ValueTuple package as its example. You should feel free to jump ahead and read Chapter 46 (or

anything in Part 5, for that matter) whenever you want, including right now, so that you can get your

hands on ValueTuple to explore and use it in your projects in the future. Specifically, you will want to read

the section called “NuGet Packages”, which will walk you through adding the System.ValueTuple package.

The simplest way to use the ValueTuple structs is just like the Tuple classes that we saw in the last

section:

public static ValueTuple<int, int> DivRem(int divisor, int dividend)
{
 return new ValueTuple<int, int>(divisor / dividend, divisor % dividend);
}

Which could be called like this:

Returning Multiple Values 189

ValueTuple<int, int> results = DivRem(26, 5);
Console.WriteLine(results.Item1 + " remainder " + results.Item2);

But what’s really cool is the language level support for creating and working with ValueTuples. Consider

this code:

public static (int division, int remainder) DivRem(int divisor, int dividend)
{
 return (divisor / dividend, divisor % dividend);
}

Which can be invoked like this:

(int division, int remainder) = DivRem(26, 5);
Console.WriteLine(division + " remainder " + remainder);

This code is functionally the same as our earlier code, just with better, cleaner syntax. In the DivRem

method, we can get a ValueTuple<int, int> created by simply placing our two int values in parentheses.

Similarly, our return type is specified as (int division, int remainder), which is also a shorthand way of

indicating we return a ValueTuple<int, int>. Perhaps more importantly, this actually allows us to override

the names of the tuple members from Item1 and Item2 to division and remainder.

You can also see on the other side that even though it is technically a ValueTuple being returned, we can

immediately unpack it into separate, named variables: (int division, int remainder). These names don’t

have to match the names provided by the method definition, but probably frequently will.

You can omit the names of the return types if you want:

public static (int, int) DivRem(string value)

If you do this, you can still unpack it to named local variables after returning, like we did before, though in

this case, if you store the results in a ValueTuple directly, the names of the items will be Item1 and

Item2.

Furthermore, you’re allowed to use the nice language-level syntax for working with ValueTuple on one

side of the return, but keep it as a ValueTuple on the other side as shown below:

ValueTuple<int, int> results = DivRem(26, 5);
Console.WriteLine(results.Item1 + " remainder " + results.Item2);

Same the other way around. If you define DivRem like this:

public static ValueTuple<int, int> DivRem(int divisor, int dividend)

You can still use this code:

(int division, int remainder) = DivRem(26, 5);
Console.WriteLine(division + " remainder " + remainder);

Using ValueTuples is a convenient and powerful way to return multiple values from a method. In most

cases, this will probably be the best option if you find yourself truly needing to return multiple values.

ValueTuples do not eliminate the usefulness of the previous options we discussed. It ’s a great option, but

every option listed earlier will be easier to read or better in different scenarios. Pick the one that least to

the most understandable and most maintainable code.

And always remember: needing to return multiple values is frequently an indication that a method is

doing too much. Before plotting how to return multiple values, first make sure that it ’s the right move.

29
29 Reading and Writing Files

Working with files is a very common task in programming. Reading from and writing to files is often called

file input and file output respectively, or simply file I/O.

There is a collection of types that will make it very easy to work with files. In this chapter, we’ll look at how

to write to a file or read from a file all in one step. We’ll then look at how to work with files doing a little

reading or writing at a time, in both text and binary formats.

The File Class

Writing the File
There are two simple ways to write a bunch of stuff to a file all at once. These ways are defined in the File

class, which is going to be the starting point for all of our file I/O.

To write a bunch of text to a file, we can use the File class’s static WriteAllText method:

string informationToWrite = "Hello persistent file storage world!";
File.WriteAllText("C:/Place/Full/Path/Here.txt", informationToWrite); // Can also be a relative path.

Note that the File class is in the System.IO namespace which isn’t included by default, so you’ll have to

add a using directive (using System.IO;) in as we described back in Chapter 27.

Alternatively, we can take an array of strings and write them out to a file, with each item in the array

placed on its own line in the file, using the WriteAllLines method:

In a Nutshell
 The File class is a key part to any file I/O.

 You can write out data to a file all in one go, using File.WriteAllText or File.WriteAllLines.

 You can read the full contents of a file all at once using File.ReadAllText or File.ReadAllLines.

 You can read/write a file a little at a time by getting a FileStream object from File.OpenRead

or OpenWrite, and wrap that in a TextReader/TextWriter or BinaryReader/BinaryWriter.

 You need to ensure that unmanaged resources are cleaned up when using FileStreams.

The File Class 191

string[] arrayOfInformation = new string[2];
arrayOfInformation[0] = "This is line 1";
arrayOfInformation[1] = "This is line 2";
File.WriteAllLines("C:/Place/Full/Path/Here2.txt", arrayOfInformation); // Can also be a relative path.

Both of these require the path (absolute or relative) to the file to write to, along with the text to write out.

Reading the File
Reading a file back in is just as easy:

string fileContents = File.ReadAllText("C:/Place/Full/Path/Here.txt");
string[] fileContentsByLine = File.ReadAllLines("C:/Place/Full/Path/Here2.txt");

This does the same thing, but in reverse. In the first part, the entire contents of the file are “slurped” into

the fileContents variable. On the second line, the whole thing is pulled in as an array of strings, where

each line in the file is a different item in the string array.

Assembling and Parsing File Contents
Using File.ReadAllText or File.ReadAllLines is simple and easy to work with, but your work doesn’t

usually end there. A string, or an array of strings is often not the final format of our information.

As an example, let’s say you have a file that contains high scores for a game. Our file might look like the

following, with a header line and each entry on a separate line below that, with values separated by

commas. (This format is called a CSV file, and can actually be created in Excel, as well as a text editor.)

Name,Score
Arwen,2778
Gimli,140
Bilbo,129
Aragorn,88

Let’s say we have a matching HighScore class that we created with a Name property and a Score

property:

public class HighScore
{
 public string Name { get; set; }
 public int Score { get; set; }
}

To go from our program’s internal representation (e.g., HighScore[]) to a file, we might this:

public void SaveHighScores(HighScore[] highScores)
{
 string allHighScoresText = "Name,Score\n";
 foreach(HighScore score in highScores)
 allHighScoresText += $"{score.Name},{score.Score}\n"; // String interpolation again.

 File.WriteAllText("highscores.csv", allHighScoresText);
}

To read the file back in and reassemble your high scores list, you could read in the entire text of the file,

then parse (the process of breaking something into smaller, more meaningful components) the text and

turn it back into our list of high scores. The following code reads in the high scores file we just created and

turns it back into a high scores list:

public HighScore[] LoadHighScores(string fileName)
{
 string[] highScoresText = File.ReadAllLines(fileName);

192 Chapter 29 Reading and Writing Files

 HighScore[] highScores = new HighScore[highScoresText.Length];

 for (int index = 1; index < highScoresText.Length; index++)
 {
 string[] tokens = highScoresText[index].Split(',');

 string name = tokens[0];
 int score = Convert.ToInt32(tokens[1]);

 highScores[index] =new HighScore() { Name = name, Score = score };
 }

 return highScores;
}

The Split method is going to be our friend when we read stuff from a file. This breaks one string into

smaller strings, splitting it where it runs into a particular character (the commas in this case).

The Convert class has lots of different methods to convert to different types, so pick the ones you need

to convert the incoming strings into the types that you need.

Text-Based Files

We can also work with text files without doing it all at once, giving us more control over the process.

Writing the File
We’ll start with the File class again, but this time, instead of writing out the entire file all at once, we’ll just

open the file for writing. In doing so, we’ll end up with a FileStream object, which we’ll wrap in a

TextWriter object to simplify the process, and use that to write out stuff as needed.

FileStream fileStream = File.OpenWrite("C:/Place/Full/Path/Here3.txt");
StreamWriter writer = new StreamWriter(fileStream);

writer.Write(3);
writer.Write("Hello");

writer.Close();

The OpenWrite method returns a FileStream object. We could use FileStream directly, but it is very low

level, and requiring work with individual bytes. Since we don’t want to spend our lives pushing bytes

around, we wrap the FileStream object in a StreamWriter object, which works at a higher level. We can

then ask it to directly write strings, ints, and other things with the Write method.

When we’re done writing, we call the Close method to release any connections we have to the file.

Reading the File
Reading a file this way is actually more troublesome than writing it was. The problem is that when we

write stuff out to a file, there’s no real way to know how it was structured. We lose our context when we

write to a file this way. We could fall back to File.ReadAllLines (and that’s preferred in many cases). But it

is worth showing how you could use StreamReader to mirror how we write our file out in the first place.

FileStream fileStream = File.OpenRead("C:/Place/Full/Path/Here3.txt");
StreamReader reader = new StreamReader(fileStream);

char nextCharacter = (char)reader.Read(); // Read a single character at a time.

char[] bufferToPutStuffIn = new char[2]; // Read multiple characters at a time.
reader.Read(bufferToPutStuffIn, 0, 2);
string whatWasReadIn = new string(bufferToPutStuffIn);

string restOfLine = reader.ReadLine(); // Read a full line at a time.

Binary Files 193

reader.Close();

We start by opening the file, this time with the OpenRead method. We then wrap the FileStream object

in a TextReader, and then we’re ready to start reading.

To read in a single character, you can use the Read() method. It returns an int, so you’ll need to cast it to a

char. (-1 is returned if the end of the file has been reached.)

There is another overload of the Read method that allows you to read in many characters at once, if you

know how many you want to read in. You can see from the above example that to do this, you need to

create a char array to store the characters in. (The 0 and 2 that are passed in to Read are the spot in the

buffer to start writing at and the number of characters to read total.) This char array can then be turned

into a string, as the example shows.

The TextReader class has a few other methods that you may find valuable, so if you really want to go this

route, take a look at what other methods it has.

When we’re done, we call the Close method to make sure that we are no longer connected to the file.

Binary Files

Instead of writing a text-based file, another choice is to write a binary file. In binary format, you won’t be

able to open the file in a simple text editor and make sense of it.

Binary files have a couple of advantages. First, binary files usually take up less space than text-based files.

Second, the data is “encrypted” to some extent. (I’m using that term very loosely here, since this isn’t true

encryption.) Since it isn’t text, people can’t just open it and read it. It sort of protects your data.

Writing the File
You’ll see that this is very similar to the text-based version in the previous section. The code to write to a

binary file is the same, with the exception of using a BinaryWriter instead of a StreamWriter:

FileStream fileStream = File.OpenWrite("C:/Place/Full/Path/Here4.txt");
BinaryWriter writer = new BinaryWriter(fileStream);

writer.Write(3);
writer.Write("Hello");

writer.Close();

Like before, we open a FileStream that’s connected to the file we want with OpenWrite. This time

though, we wrap it in a BinaryWriter instead of a TextWriter.

We then do as many Write calls as needed. When done, we call Close to release our file connection.

Reading the File
Reading a binary file is actually quite a bit simpler to work with than the text-based version was.

FileStream fileStream = File.OpenRead("C:/Place/Full/Path/Here4.txt");
BinaryReader reader = new BinaryReader(fileStream);

int number = reader.ReadInt32();
string text = reader.ReadString();

reader.Close();

In this scenario, data is read in through BinaryReader’s various ReadBlah methods (ReadInt32,

ReadString, etc.). When done, we call Close to release our hold on the file.

30
30 Error Handling and

Exceptions

We’ve spent the entirety of this book so far pretending that everything in our program went according to

plan. But that never happens in real life. Sometimes a method is running, trying to do its job, when it

discovers that something has gone terribly wrong.

As an example, think back to Chapter 15, where we looked at a method that was designed to get a

number from the user that was between 1 and 10. That initial version of the code looked like this:

In a Nutshell
 Exceptions are C#’s built-in error handling mechanism.

 Exceptions package up information about a problem in an object. They are “thrown” from the

method that discovered the problem. The exception goes up the call stack until it is handled

by something or until it reaches the top of the call stack unhandled, and kills the program.

 If you know you are running code that could potentially cause a problem, you wrap it in a try-

catch block, putting the type of exception in the parentheses of the catch block: try { /*

exception thrown here? */ } catch(Exception e) { /* handle problem here */}

 You can catch Exception or any type derived from Exception (e.g., FormatException).

Catching a more specific type will catch only that type of error, letting others be handled

elsewhere.

 You can string together multiple catch blocks, going from most specific to least specific types

of exceptions: try { } catch(FormatException e) { /* handle format errors here */ }

catch(Exception e) { /* handle all other errors here */ }

 You can create your own types of exceptions by deriving from the Exception class.

 If your code discovers a problem, you can start an exception with the throw keyword: throw

new Exception("An error has occurred.");

 Exception filters allow you to catch an exception only if certain conditions are met, letting

others go on to another catch clause: catch(Exception e) if(e.Message == "Message")

How Exception Handling Works 195

static int GetNumberFromUser()
{
 int usersNumber = 0;

 while(usersNumber < 1 || usersNumber > 10)
 {
 Console.Write("Enter a number between 1 and 10: ");
 string usersResponse = Console.ReadLine();
 usersNumber = Convert.ToInt32(usersResponse);
 }

 return usersNumber;
}

This code works perfectly, as long as the user enters a number. But what if they enter “asdf” instead?

When we get to the point where we call Convert.ToInt32, things fall apart. We’re asking it to do

something that is an exception to the normal circumstances: turn text that has nothing to do with

numbers into a number. Not surprisingly, Convert.ToInt32 is going to fail at this task. If we don’t find a

way to successfully handle this error, it will ultimately bring down our whole application.

C# provides a powerful way to trap or “catch” these errors and recover from them gracefully. C# uses an

approach called exception handling. It is similar to many other languages, like C++, Java, and VB.NET.

How Exception Handling Works

When an error occurs, the code that discovered the problem will package up all of the information it

knows about the problem into a special object called an exception. These exceptions are either an instance

of the Exception class or a class derived from the Exception class.

Since the method that discovered the error does not know how to recover from it (otherwise it would just

handle it itself, without creating an exception), it takes this Exception object and throws it up to the

method that called it, hoping it knows how to resolve the issue. When this happens, it is important to

know that once an exception is thrown, the rest of the method will not get executed.

Hopefully, the calling method will know what to do in the event that this particular problem occurs. If it

does, it will catch the exception, and find a way to recover from the problem. If this method isn’t able to

provide a solution, the exception bubbles up to the next method, farther and farther up the call stack.

If the exception makes it all the way back to the top of the call stack (usually the Main method) without

catching and handling the exception, the program will crash and terminate. This is called an unhandled

exception. Clearly, you want to avoid unhandled exceptions whenever possible, but from a practical

standpoint, some inevitably get missed.

In debug mode, Visual Studio intercepts these unhandled exceptions at the last minute. This is actually

really convenient. Worst case scenario, this works a little like an autopsy. You’ll be able to dig around and

see what the actual conditions were when the problem occurred, so that you can know what changes you

need to make to fix the problem. In some cases, you can even make the needed change and tell the

program to continue running, which might be successful after your fix. This is like being able to change a

flat tire on a car as it is still racing down the highway. (Debugging is the focus of Chapter 48.)

Through the rest of this chapter, we’ll look at what C# code you need to catch exceptions, handle different

types of exceptions in different ways, and how to throw your own exceptions if you discover a problem

yourself. Lastly, we’ll discuss the finally keyword, and how it ties in to exception handling.

196 Chapter 30 Error Handling and Exceptions

Catching Exceptions

Before we can catch exceptions, we have to be aware that they could occur. In other words, we need to

know that what we’re doing may cause problems that we could handle and recover from.

To catch exceptions, we take potentially dangerous code and place it in a try block. After the try block, we

place a catch block that identifies the exceptions we can handle, and how to resolve them.

Going back to our earlier example of getting a number between 1 and 10 from the user, there are two

potential problems that could arise. First, as we already discussed, the user could type in text instead.

Second, they could type in a number that is so large that it can’t actually be converted into something that

fits into an int.

To catch these errors, we can add in code that looks like this:

static int GetNumberFromUser()
{
 int usersNumber = 0;

 while(usersNumber < 1 || usersNumber > 10)
 {
 try
 {
 Console.Write("Enter a number between 1 and 10: ");
 string usersResponse = Console.ReadLine();
 usersNumber = Convert.ToInt32(usersResponse);
 }
 catch(Exception e)
 {
 Console.WriteLine("That is not a valid number. Try again.");
 }
 }

 return usersNumber;
}

Inside of the try block, we put the potentially dangerous code. After the try block is a catch block that

handles the exception if it goes wrong. This particular catch block will catch any and all exceptions that

occur, because the type specified in the catch block is Exception, which serves as the base class of all

exception types. In general, any code in this book can go in either the try or the catch block.

In this particular case, we “handle” the exception by simply telling the user that what they entered didn’t

make any sense. Because the usersNumber variable wasn’t ever updated, it will still be 0, and the while

loop will cause the flow of execution to loop back around and ask for another number.

In the code above, the information about the exception is captured in a variable named e that has the

type Exception. You can use that variable inside of the catch block as needed. It’s just a normal variable.

If you don’t actually use the variable in the catch block, you can actually leave the variable name off:

try
{
 //...
}
catch(Exception) // this Exception variable has no name
{
 //...
}

Without a name, you can’t actually use the exception variable, but it leaves the name available for other

things, and you won’t get the compiler warning that says, “The variable e is declared but never used.”

Handling Different Exceptions in Different Ways 197

Handling Different Exceptions in Different Ways

I mentioned earlier that exceptions are packaged up into an instance of the Exception class (or a derived

class). Different types of exceptions are represented with different classes derived from Exception (and

nearly always include Exception in the name). With our earlier examples of catch blocks, we catch every

type of exception without fail. That catch block will catch them all, regardless of what the actual error was.

(I like to call this “Pokémon exception handling.”) In most cases, it is better to handle different types of

errors in different ways—you will nearly always have different courses of action to different types of

errors. For example, the following code handles three different types of errors in three different ways:

try
{
 int number = Convert.ToInt32(userInput);
}
catch (FormatException e)
{
 Console.WriteLine("You must enter a number.");
}
catch (OverflowException e)
{
 Console.WriteLine("Enter a smaller number.");
}
catch (Exception e)
{
 Console.WriteLine("An unknown error occured.");
}

When you do this, only one of the catch blocks will actually be executed. Once the exception is handled, it

will skip the rest of the catch blocks. So if a FormatException is thrown, it enters the first catch block

and run the code there to fix the problem, but the catch(Exception e) block will not get executed, even

though the exception was technically of the type Exception. It was already handled.

Doing this makes it so you can handle different types of exceptions in different ways. You just need to be

sure to put the more specific type—the derived type—before the more general, base type. If your first

block was the catch(Exception e) block, it would catch everything, and nothing would ever get into the

FormatException or OverflowException blocks. So ordering is important.

You don’t need to catch all exceptions that might come up. You can build your catch blocks in a way that

some are handled while others are allowed to propagate further up the call stack, possibly to a catch

block in another method, or possibly to the point where it kills the program. A single try/catch block does

not have to handle all possible errors that could occur.

Throwing Exceptions

It’s time to look at the other side of this equation: creating and throwing exceptions yourself! Don’t get

carried away with throwing exceptions. If the method that discovers a problem knows the solution to the

problem, don’t bother throwing anything. Just handle the problem and continue on. To generalize that

statement, the closer you handle an error to the place it was detected the better.

To throw an exception, simply use the throw keyword with an instance of some Exception class:

public void CauseTrouble() // Always up to no good...
{
 throw new Exception("Just doing my job!");
}

198 Chapter 30 Error Handling and Exceptions

It kind of feels like the return statement, but it throws exceptions instead of returning a value. You create

the Exception object, just like any other object, with the new keyword, and away it goes.

You’re not limited to using the Exception class. (It’s preferable not to.) There are many options already

defined. For instance, here’s a small list of some common exceptions and what they’re for:

 NotImplementedException: Used to indicate that a method hasn’t been implemented yet.

Visual Studio will frequently put this in when you use it to automatically generate a method.

 IndexOutOfRangeException: Used when you access an index beyond the size of a collection.

 InvalidCastException: Used when you try to cast to a type that wasn’t the right kind of object.

 FormatException: Used when text was not in the right format for converting to something else.

 NotSupportedException: You tried to do an operation that wasn’t supported. For instance, make

a method call at a time that didn’t allow it.

 NullReferenceException: A reference type contained null instead of an actual object.

 StackOverflowException: You see this when you run out of space on the stack. This is usually a

result of recursion that went bad.

 DivideByZeroException: You tried to divide by zero and got caught.

 ArgumentNullException: One of the arguments or parameters that you gave to a method was

null, but the method requires something besides null.

 ArgumentOutOfRangeException: An argument contained a value that the method couldn’t

intelligently deal with (e.g., it required a number between 1 and 10, but you gave it 13).

If you can’t find an existing exception type that fits, you can create your own. All you need to do is create a

class that is derived from Exception or from another exception class. This will look something like this:

public class AteTooManyHamburgersException : Exception
{
 public int HamburgersEaten { get; set; }

 public AteTooManyHamburgersException(int hamburgersEaten)
 {
 HamburgersEaten = hamburgersEaten;
 }
}

With this class, you can now say:

throw new AteTooManyHamburgersException(125);

And:

try
{
 EatSomeHamburgers(32);
}
catch(AteTooManyHamburgersException e)
{
 Console.WriteLine($"{e.HamburgersEaten} is too many hamburgers.");
}

As a general rule, you should throw different exception types whenever the calling code would want to

handle the errors in different ways. If your method could fail in two different ways, you should be

throwing two different exception types. This allows people to use different catch blocks to handle them

differently. If there’s no good pre-made exception type for you to use, make your own.

I bring this up because it is really easy to get lazy and start always throwing just the plain old Exception

type. Don’t get lazy; use the right exception types, even if that means creating your own.

The ‘finally’ Keyword 199

The ‘finally’ Keyword

When you throw an exception, the flow of execution stops going through the method immediately. What if

you had done something with significant side effects, like having a file open?

If everything had gone according to plan, you would have been able to close the file in an intelligent way,

but since a problem came up and an exception is being thrown, that cleanup code wouldn’t ever be

executed, leaving our file open. The finally keyword allows us to address this problem.

At the end of a try-catch block, you can have a finally block (making it a try-catch-finally block). The

code inside of the finally section will get executed no matter what. If it ran through the try block without

errors, it will get executed. If it ran into a return statement, it will get executed. If there was an exception,

it will get executed (just before jumping up to the calling method with the exception).

Here’s an example of how this works:

try
{
 // Do some stuff that might throw an exception here
}
catch (Exception)
{
 // Handle the exception here
}
finally
{
 // This code will always get execute, regardless of what happens in the try-catch block.
}

This is important, so let me repeat myself: the stuff in the finally block gets executed no matter how you

leave the try-catch block. Error, return statement, reaching the end. It doesn’t matter.

Related to this, you’re not allowed to put return statements inside of finally blocks. We may already be

returning when we hit the finally block, or we may be in the process of handling an exception. Allowing

return statements here just doesn’t make any sense, so it’s banned.

This brings up an interesting point. finally blocks are not just for exception handling. It does have plenty

of value in those situations, but it can also be used by itself, with no mention of throwing or catching

exceptions:

private static int numberOfTimesMethodHasBeenCalled = 0;

public static int RandomMethod(int input)
{
 try
 {
 if(input == 0) return 17;
 if(input == 1) return -2;
 if(input == 2) return -11;

 return 5;
 }
 finally
 {
 numberOfTimesMethodHasBeenCalled++;
 }
}

In this case, no matter how we return from the method, the code in the finally block will always get

executed. (There’s a lot of better ways to write this particular code, but it illustrates the point.)

200 Chapter 30 Error Handling and Exceptions

Exception Filters

Sometimes, exception types are not quite fine-grained enough. For example, some libraries will reuse the

same exception class, but include an error code or use different text in the Message property of the

exception to indicate subtly different errors. If all of these errors are the same type, it gets harder to

separate out the different error types to handle (or not handle) in different ways.

One option is to catch the exception, check for certain conditions and handle the things you want, and

then rethrow anything left over:

try
{
 throw new Exception("Message");
}
catch(Exception e)
{
 if (e.Message == "Message") { Console.WriteLine("I caught an exception."); }
 else { throw; }
}

The above is called “rethrowing the exception.” It allows you to throw the exact same exception that was

caught, with one caveat. The exception’s stack trace ends up changing, so that its location now refers to

the location where it was rethrown, rather than where it was thrown from originally. This can make it

tough to track down the original problem.

The other way to handle this is with exception filters. Exception filters allow you to add a bit of code to a

catch block that can be used to filter whether an exception is actually caught or not. The syntax is similar

to an if-statement, but uses the when keyword instead:

try
{
 throw new Exception("Message");
}
catch(Exception e) when (e.Message == "Message")
{
 Console.WriteLine("I caught an exception.");
}

This approach is preferable to filtering by placing an if-statement inside of the catch block. The exception

filter syntax is usually clearer, and does not cause the exception’s stack trace to be changed.

Some Rules about Throwing Exceptions

When you are throwing exceptions, there are a few guiding principles that you should try to follow.

Throwing exceptions can really do some crazy things to the flow of execution in your program, and so we

want to take care to prevent bad things from happening when you do so.

At a bare minimum, you should not leave resources open that were opened before the exception was

thrown. They should be closed or cleaned up first. This can usually be handled in a finally clause. But at a

minimum, make sure that your program is still in a safe state.

Second, you want to revert back to the way things were before the problem occurred, so that once the

error has been handled, people know the system is still in a valid state. A finally block can do this too.

Lastly, if you can avoid throwing an exception in the first place, that is what you should do.

31
31 Pattern Matching

C# 7 introduced a concept called pattern matching. It is a concept that has been floating around in other

languages (primarily functional programming languages like F#) for a while, and C# has it now as well.

This chapter outlines what patterns are at a conceptual level, identifies the patterns that are available in

C#, and illustrates where patterns can be used in C#: switch statements and with the is keyword.

Contrasted with Regular Expressions

Before diving into patterns, I want to disambiguate the C# language feature of patterns and pattern

matching with another useful tool called regular expressions, which are also sometimes referred to as

patterns or pattern matching. A C# pattern is not the same thing as a regular expression. The two are

conceptually related, and C# is capable of doing regular expression searches, but the two are different.

While regular expressions are not on topic for this book (it’s a whole other mini-language) a brief overview

is probably in order. It’s a useful (if not complicated) tool for performing text searches. They are defined

by a special syntax or language where you specify a pattern to look for (like a valid email address, a phone

number, a credit card, etc.) which can then be applied to strings to detect those patterns in it. They ’re a

powerful tool, and if you end up doing a lot of text searching, it will be worth your time to learn it.

In a Nutshell
 A pattern is a syntactic element that allows for conditional execution of code.

 A pattern has four parts:

 An input value.

 A rule or condition that determines whether the pattern is a “match” or not.

 A section of code that is executed when the pattern is a match.

 An output value or result that is produced from the pattern.

 C# supports three patterns:

 The constant pattern, which matches when the input equals a specific constant.

 The type pattern, which matches when the input is of a specific type.

 The var pattern, which always matches.

 C# allows you to use patterns in two places: switch statements and with the is keyword.

202 Chapter 31 Pattern Matching

C# is quite capable of using regular expressions. There’s a whole namespace that handles regular

expression searching (System.Text.RegularExpressions). Microsoft has a pretty good overview of this here:

https://msdn.microsoft.com/en-us/library/ms228595.aspx.

If you’re not familiar with regular expressions but want to be, here’s a pretty good website that could

serve as a starting point: http://www.regular-expressions.info/quickstart.html.

But enough about regular expressions. That’s not what this chapter is about.

The Pattern Concept

A pattern is a small syntactic element—a small chunk of code—that allows for conditional execution of

some code based on a rule or logical condition.

There are four major pieces to the pattern concept:

1. An input. Patterns operate on some input data that will be evaluated for a match.

2. A rule. Patterns are defined by some sort or rule. This is a chunk of logic that can be executed,

and boils down to a true or false value that indicates whether the pattern was a match or not. A

match means that the rule evaluated to true for the given input.

3. An action. A pattern will provide some specific additional logic—an action, a return value, or a

side effect—that is to be performed only when the rule matches.

4. An output. When a rule matches, the action is executed and an output is produced.

The following diagram illustrates how these pieces work together:

That’s all fairly abstract. The coming examples should help illustrate the point more clearly.

As of C# 7, there are only three patterns that are available, and only two places where patterns can be

used. Though even just that small sampling of patterns is enough to begin to illustrate the power of

patterns, and give us a glimpse into the future of C#.

Available Patterns

There are three patterns available in C# 7. In this section, we will cover those patterns briefly. But those

patterns will probably make a lot more sense when we actually put them to use in the next section. So

we’ll skip some of the details until after the practical examples later on.

The Constant Pattern
The simplest pattern is the constant pattern. When you see this pattern, it will show up as a compile-time

constant, like 0.0, 42, null, true, etc. This pattern will evaluate to true—that is, it will “match”—when the

input equals the constant specified.

The Type Pattern
The second pattern is called the type pattern. This is a pattern that matches when the input is of a specific

type. This pattern has the form T x, where T is some type name, and x is some variable name. For

example, all of the following could be a valid fit for the type pattern: int n, string message, or Point p. It

http://www.regular-expressions.info/quickstart.html

Using Patterns in C# 203

looks a bit like a variable declaration (and in some senses kind of is a variable declaration) but the context

will make it clear if something is a variable declaration or the type pattern. When the type pattern

matches, it produces a new variable with the type and name specified, which can be used afterwards.

This pattern is a little more useful than the constant pattern, and does a little better job of illustrating the

value of patterns in the first place. This is probably single most useful pattern that C# has.

We’ll see practical uses of this pattern in a minute.

The Var Pattern
The final pattern is the var pattern, or the variable pattern. This pattern will be written with the var

keyword and a variable name, similar to the type pattern. For example, var n, var message, or var p.

Unlike the type pattern, the var pattern always evaluates to true, and essentially just copies the input

value into a new variable with the name supplied in the pattern. Because of this, the var pattern is often

called a wildcard pattern, because it will always be a match.

Using Patterns in C#

Having introduced the three patterns in C#, it’s time to get into some more practical examples, and look at

how we would actually use these patterns. C# allows patterns to be used in two places: switch statements

(Chapter 11) and with the is keyword (Chapter 22). We’ll look at examples of both of these.

Patterns in Switch Statements
The first place we’ll look at is with switch statements. Back in Chapter 11, when we first saw switch

statements, we looked at code that used the constant pattern in switch statements. Consider the code

below, which gets a value back from some method and prints out different results based on that value:

int number = GetNumberFromSomewhere();
switch(number)
{
 case 0:
 Console.WriteLine("The number was 0");
 break;
 case 1:
 Console.WriteLine("The number was 1");
 break;
}

The code marked above (the 0 and the 1) are both actually uses of the constant pattern. A switch

statement is actually just a way to evaluate patterns one after another, until one of them matches.

Let’s extend our example and make it so it is operating on an object, rather than an int. This will allow us

to also apply the type pattern and the var pattern as well.

object value = GetValueFromSomewhere();
switch(value)
{
 case 0:
 Console.WriteLine("The value was the number 0");
 break;
 case 1:
 Console.WriteLine("The value was the number 1");
 break;
 case int number:
 Console.WriteLine("The value was another number: " + number);
 break;
 case string text:
 Console.WriteLine("The value was the following text: " + text);
 break;

204 Chapter 31 Pattern Matching

 case var unknownType:
 Console.WriteLine("The value was of an unknown type: " + value.ToString());
 break;
}

This example goes much further in illustrating exactly how patterns work. Each element after a case label

is a different pattern.

In the first two case statements, they are constant patterns, where the constant is 0 and 1 respectively.

In the next two case statements, we use the type pattern (int number and string text). Remember, with

the type pattern, the pattern will only match if the input is of the correct type. Before the switch

statement, we only know that value is of type object. We don’t know which (if any) derived type it might

be. It could be an int, a string, a double, or anything else. If it turns out to be an int, then that third case

statement (case int number) will be a match, and that block will be executed. The input value is placed in

an int type variable called number. The block of code for that case statement can then use that variable.

In the event that the value is not an int, the third case statement will not match, and the next case

statement will be evaluated. That one is another type pattern, this time looking for strings. If the value is

a string, then it will match and the value will be put into a string typed variable named text.

If all four of the first switch statements fail, it falls down to the last one, which is the var pattern.

Remember that the var pattern always matches, which makes it kind of a default value. (Speaking of that,

we could have used a default: label here like we did in Chapter 11 with the same functionality.) Because it

always matches, this block will be entered if none of the earlier case statements were a match. Like

before, you can see that our unknownType variable is usable in the code block that follows it. The

unknownType variable will have the same type as the input value (object in this case).

If you put other case statements after this var pattern, they would never execute. That is because only

one block in the case statement will run. Since the var pattern always matches and the case expressions

are evaluated in order, the var pattern will gobble up everything that makes it that far.

On a related note, the type pattern matches with any value of the correct type. So if we had put the case

int number before the case 0 and case 1, it would have matched first, and nothing would have gotten in

to the constant patterns.

The general rule in a switch statement is that you should progress from more specific patterns to more

general patterns.

Patterns with the ‘is’ Keyword
The second place that patterns can be used is with the is keyword. We already saw one way that you can

use the is keyword, which is a direct way to check that something is of a specific type like so:

if(someVariable is Point)
{
 // ...
}

You may notice this is almost the type pattern, but not quite. (Using a type with no variable name is not a

pattern and can’t be used in switch statements, for example. It’s a unique feature of the is keyword.)

But using the type pattern with the is keyword looks pretty similar:

if(someVariable is Point p) // Using the type pattern.
{
 Console.WriteLine(p.X + ", " + p.Y);
}

Expect Patterns to Expand 205

In fact, this is a very useful way to do the task of both checking if something is a specific type and if so,

getting it into a variable of that type. The type pattern performs the check and the transformation to the

new type in a single step. Without patterns, you would have to do both of those things as separate

operations, perhaps something more like this:

if(someVariable is Point) // Not using a pattern
{
 Point p = (Point)someVariable; // Casting is required to transform the type.
 Console.WriteLine(p.X + ", " + p.Y);
}

Or maybe this code, which uses the as keyword instead:

Point p = someVariable as Point; // Using the as keyword,
if(p != null) // which requires a null check.
 Console.WriteLine(p.X + ", " + p.Y);

You can see that the earlier version that uses the type pattern is way more succinct and understandable.

The type pattern is the most useful pattern with the is keyword, but the other patterns could be used

here as well. For example, here is the constant pattern:

if(someVariable is null) { /* ... */ }

We could have used the == operator instead with the same functionality (and == works for things that

aren’t compile time constants as well.) You may find you prefer one syntax over the other in different

cases. Like usual, prefer the one that makes the code the most understandable and easy to work with.

The var pattern also works with the is keyword, though because it always matches, it isn’t very practical:

if(someVariable is var x) // var pattern works, but...
 Console.WriteLine(x); // this could have been `Console.WriteLine(someVariable);` instead.

Expect Patterns to Expand

Patterns are a new concept in C# 7, but they ’ve been around in other programming languages for quite a

while. Because patterns are so new, the current stuff only really gives you a small taste of what patterns

could be in future versions of the language.

You should expect patterns to expand in future versions of C#, both in regard to the types of patterns

available as well as the places that patterns can be used.

Answers: (1) input, rule, action, output. (2) constant, type, and var patterns. (3) Switch statements, is keyword. (4) False.

(5) True.

Try It Out!
Patterns Quiz. Answer the following questions to check your understanding. When you’re done,

check your answers against the ones below. If you missed something, go back and review the section

that talks about it.

1. Name the four parts to a pattern.

2. Name three patterns that are available in C#.

3. Name two places that a pattern can be used in C#.

4. True/False. The type pattern always matches.

5. True/False. The var pattern always matches.

32
32 Delegates

Delegates: Treating Methods like Objects

We’ve done just about everything you can think of with variables. We’ve put numbers in them, words in

them, and true/false values in them. We’ve created enumerations to define all possible values a variable

can take on, and we’ve created structs and classes to store complicated variables with multiple parts,

including methods to operate on that data.

Now we’re going to take it a step further. What if we had a type of variable that we could put a method in?

What if we could assign a method to a variable and pass it around, just like we’ve done with all of our

other types of data? C# has this feature, and it is called a delegate. Treating methods like data may seem

kind of strange at first, but there are many good uses for it.

Creating a Delegate

Having laid out the background, it is time to take a look at how you’d actually create a delegate. Not all

methods are interchangeable with others. With regular data, when we have this problem, we simply use

different data types. Methods have similar limitations, and delegates will have to account for that. When

we create a delegate, we’re going to say, “This type of delegate can store any method that has these

parameters, and this return type.”

In a Nutshell
 A delegate type can store methods directly, allowing you to treat methods like an object.

 To create a delegate, you use the delegate keyword, like this: public delegate float

MathDelegate(float a, float b);. This delegate can now be used to keep track of any method

with the same return type and the same parameter list.

 You can then use a delegate in a way that is very similar to a variable: MathDelegate

mathOperation = Add;

 You can also call the method that is being stored in the delegate variable: float result =

mathOperation(5, 7);

Using Delegates 207

Setting up a delegate is relatively straightforward. Defining a delegate is considered defining a new type,

and as such, it is typically placed directly inside of a namespace, like we do with classes and structs.

This will probably make more sense with an example, so let’s do that by creating a MathDelegate, which

can be used to keep track of any method that can take two ints as input, and return an int. This could be

used for things like an Add method, which takes two numbers, adds them together, and returns the

result. Or a Multiply method, which takes the two numbers and multiplies them.

So to start, we’d create a brand new file for our delegate with a matching name. (If we’re going to call our

delegate MathDelegate, we’d call the file MathDelegate.cs, like usual.) In that file, to create a delegate,

we’d simply put something like the following in there:

public delegate int MathDelegate(int a, int b);

So our whole MathDelegate.cs file should look something like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Delegates
{
 public delegate int MathDelegate(int a, int b);
}

Looking at this, you can probably see that this has a lot of similarities to declaring a method, with the

exception of adding in the delegate keyword. As we’ll soon see, we’ll be able to create variables that use

this delegate type (MathDelegate) to store any method that has this same parameter list and return type.

(That is, requires two int parameters and returns an int.)

Using Delegates

The first thing we need to use a delegate is some methods that match the delegate’s requirements: two

int parameters and returns an int. I’ve gone back to my main Program class, where the Main method is

located, and created these three methods, all of which match the requirements of the delegate:

public static int Add(int a, int b)
{
 return a + b;
}

public static int Subtract(int a, int b)
{
 return a - b;
}

public static int Power(int baseNumber, int exponent)
{
 return (int)Math.Pow(baseNumber, exponent);
}

To create a delegate-typed object, we simply create a variable with a delegate type, like the

MathDelegate type we just created. Like with a normal variable, we can assign it a value, but in this case,

that value will be the name of a method that matches the delegate:

MathDelegate mathOperation = Add;

int a = 5;

208 Chapter 32 Delegates

int b = 7;

int result = mathOperation(a, b);

On the last line, you see we can also use the variable, invoking whatever method it happens to be storing

at that particular point in time. Doing this looks like a normal method call, except that it “delegates to” or

hands off execution to whatever method happened to be stored in the delegate variable at the time.

If you’ve never seen anything like this before, it may look kind of strange. But I hope you can start to

imagine how delegates could be helpful, allowing you to dynamically change which method is called at

runtime. As we move through the next few chapters, we’ll see how they can be used as a part of events

(Chapter 33), lambda expressions (Chapter 37), and query expressions (Chapter 38). They will be the

foundation for a lot of really powerful features in C#.

The Delegate and MulticastDelegate Classes

Now that we’ve got a basic understanding of C#’s syntax when dealing with delegates, it’s time to look

under the hood and see what the C# compiler does with a delegate that you define. This will help explain

some of the nuances of delegates, and should help you see delegates from another perspective.

A delegate is just syntactic sugar around a class. The .NET Platform defines a Delegate class. When you

create a delegate, the C# compiler will turn it into a class that is derived from Delegate. Specifically, it will

be derived from MulticastDelegate, which is derived from Delegate.

You are not allowed to create a class that directly derives from either of these manually (class MyClass :

MulticastDelegate is not legal code). Only the compiler is allowed to derive from these special classes.

The Delegate and MulticastDelegate classes define the core functionality of delegates. On top of that,

the C# language itself heaps a thick slab of magic and a pile of syntactic sugar on top to provide

programmers with cleaner syntax for working with delegates.

The key thing to learn from this is that it’s just a class, like the many other classes that we’ve now dealt

with. This has several implications that are worthy of mention:

 You can declare a new delegate type anywhere you can declare a new class.

 A variable that stores a delegate can contain null.

 Before invoking the delegate, you should check for null first if there is any possibility that the

variable actually contains a null reference.

When you create a delegate type, the class that the C# compiler will generate is derived from

MulticastDelegate. As an example, the MathDelegate delegate we made in the last section is converted

into something that looks like this:

public class MathDelegate : System.MulticastDelegate
{
 // Constructor
 public MathDelegate(Object object, IntPtr method);

 // This key method matches the definition of the delegate.
 public virtual int Invoke(int a, int b);

 // Two methods to allow the code to be called asynchronously.
 public virtual IAsyncResult BeginInvoke(int a int b);
 public virtual void EndInvoke(IAsyncResult result);
}

The constructor defined there allows the system to create a new instance of this delegate class. The

second parameter of the constructor, with the type IntPtr, references the method that you’re trying to

Delegate Chaining 209

put into the delegate. If the method is an instance method (not static) the object parameter will contain

the instance it is called with. If you create a delegate from a static method, this will be null.

Earlier, we had code that did this:

MathDelegate mathOperation = Add;

The compiler will roughly translate this into something like this:

MathDelegate mathOperation = new MathDelegate(null, Add);

That’s just an approximation, and there’s a lot of hand waving in there. I’m completely skipping over the

part where the compiler turns the method name of Add into an actual IntPtr, but that information just

isn’t available at the C# language level. It’s only known by the compiler.

Earlier, we called the delegate method by simply using parentheses and putting our parameters inside:

int result = mathOperation(3, 4);

In this case, the C# compiler will turn this into a call to the Invoke method it created:

int result = mathOperation.Invoke(3, 4);

Written this way, it’s a little easier to see why you might want to check for null before invoking the

method, just in case the mathOperation variable is null.

While most C# programmers like the first version of calling a delegate (without the Invoke) the second

version is both legal (the C# compiler will let you directly call Invoke if you want) and is also preferred by

some C# programmers. So feel free to use it if it seems preferable or more readable to you.

We’ll see more of this syntactic sugar in the next section when we look at chaining.

Delegate Chaining

With a name like “multicast,” you’d imagine there’d be a way to have a delegate work with multiple

methods. And you’re right!

Things get a little complicated when our delegate returns a value, so let’s come up with another example

instead of the MathDelegate we were looking at earlier. This time, one that doesn’t return a value. It just

does something with some input.

Let’s design a really basic logging framework. We can start with a simple LogEvent class that has a Text

property. Obviously, a real logging framework would probably have quite a bit more than this, but let ’s

keep it simple. We’re just trying to do some delegate stuff here.

public class LogEvent
{
 public string Text { get; }
 public LogEvent(string text)
 {
 Text = text;
 }
}

We’ll also define a simple delegate type to handle or process these LogEvents in various ways:

public delegate void LogEventHandler(LogEvent logEvent);

We could easily imagine all sorts of things we could do with an event handler method. Writing things to

the console is an obvious first choice. We could also write them to a file or to a database. If we added a

210 Chapter 32 Delegates

Severity property to our LogEvent class, we might even set something up so that if a Fatal level log event

came in, we’d send an email somewhere.

Let’s just stick with the low hanging fruit here and write a method that can write a LogEvent to the

console and another one that can write it to a file:

private static void LogToConsole(LogEvent logEvent)
{
 Console.WriteLine(logEvent.Text);
}

private static void LogToFile(LogEvent logEvent)
{
 File.AppendAllText("log.txt", logEvent.Text + "\n");
}

These don’t have to be static of course, but since they don’t rely on any instance variables or methods, I’ve

made them static.

The first method simply writes to the console, which we’ve done a million times now.

The second one writes to a file using the static AppendAllText method on the File class. It writes to a file

called log.txt, and since it’s a relative path, you’ll find it right next to the application’s EXE file. I also stuck a

new line character (‘\n’) at the end of that so that each log event will show up on its own line. In the case of

the console version, WriteLine always appends a new line character at the end by default anyway, so we

don’t need to do that there.

OK, on to the good stuff. Multicast delegates.

Before, when we wanted the delegate to use just a single method, we assigned it the method like this:

LogEventHandler logHandlers = LogToConsole;

So how do we get a second method in there as well?

The easiest way is with the += operator:

LogEventHandler logHandlers = LogToConsole;
logHandlers += LogToFile;

Now when we invoke the delegate, both methods in the delegate will be called:

logHandlers(new LogEvent("Message"));

Since both the LogToConsole method and LogToFile method have been added to the delegate, both

things will happen, and we’ll get the message pumped to the console and to the file.

Taking a particular method out of a delegate is simply a matter of using the -= operator:

logHandlers -= LogToFile;

It’s useful to keep in mind that what we’re doing here with the += and -= operators is syntactic sugar, built

around some static methods that belong to the Delegate class. These methods are the Combine and

Remove methods respectively. The following two lines of code are functionally equivalent:

logHandlers += LogToFile;
logHandlers = (LogEventHandler)Delegate.Combine(logHandlers, new LogEventHandler(LogToFile));

Likewise, the following two lines are also equivalent and remove a method from the delegate chain:

logHandlers -= LogToFile;
logHandlers = (LogEventHandler)Delegate.Remove(logHandlers, new LogEventHandler(LogToFile));

The Action and Func Delegates 211

Generally speaking, the simplified version using += or -= is clearer and simpler, so it is preferred.

Side Effects of Delegate Chaining
Adding multiple methods to a delegate literally creates a chain of objects, linked together by references.

(If you’re familiar with the concept of a linked list, that’s essentially how it’s implemented.) This has a

couple of side effects that are worth noting.

The first thing is a multicast delegate’s return value. Earlier, we sidestepped that question by using a

delegate with a void return type, but it should be stated that the return value of a multicast delegate is

the result of the final method. All of the other results are completely ignored. This makes multicast

delegates somewhat less useful for non-void return values. In practice, multicast delegates are generally

only used for signatures with a void return type anyway. (You can technically go digging into a delegate’s

invocation list and gather return values, but there is no easy way to do that, so it’s rarely done.)

The second catch is in exception handling. If a method invoked by a delegate throws an exception, none

of the handlers further down the chain will be invoked. For this reason, you should do everything you can

to avoid throwing exceptions in methods that get attached to a delegate.

The Action and Func Delegates

You can make your own delegate types whenever you need to, but in practice, this is rare. Included with

the .NET Platform is a collection of delegates that are already defined for you. These delegates are

generic, so they are very flexible, and cover most situations. These are the Action and Func delegates.

The Action delegates all have a void return type, while the Func delegates have a generic return type.

There’s a whole set of these that are each a little different. For instance, there’s the plain old simple

Action delegate, which looks like this:

public delegate void Action();

Then there’s a version that has one generic parameter, two generic parameters, three generic

parameters, and so on, up to 16. (That’s crazy talk, right there!)

public delegate void Action<T>(T arg);
public delegate void Action<T1, T2>(T1 arg1, T2 arg2);
public delegate void Action<T1, T2, T3>(T1 arg1, T2 arg2, T3 arg3);

So as an example, if your method has a void return type, and requires two ints as parameters, you could

use the Action delegate with two parameters, putting int in for both type parameters:

Action<int, int> myDelegate = MethodThatRequiresTwoInts;
myDelegate(3, 4);

If you need to return something, you can use one of the Func delegates instead. These have a similar

pattern, but return a value (of a generic type):

public delegate TResult Func<TResult>();
public delegate TResult Func<T, Result>(T arg);
public delegate TResult Func<T1, T2, Result>(T1 arg1, T2 arg2);

Again, this goes up to 16 input type parameters, plus the generic result parameter. So instead of our little

MathDelegate that we made, we could have used Func<int, int, int> instead:

Func<int, int, int> mathOperation = Add;
int a = 5;
int b = 7;
int result = mathOperation(a, b);

33
33 Events

One of the coolest things about C# is a feature called events. Events allow classes to notify others when

something specific happens. This is extremely common in GUI-based applications where there are things

like buttons and checkboxes. These things have the ability to indicate when something of interest

happens, like the button was pressed, or the user checked the checkbox other objects can be notified of

the change and can handle the event in whatever way they need to.

User interfaces are not the only use for events. Any time that you have one class that has interesting

things happening, other classes will want to know about it. Events are very useful in these situations. It

keeps the two classes separated and allows the “client” or listener to attach itself to events generated by

another object when they ’re interested, and detach itself when it doesn’t care anymore.

This is similar to how we use things like Twitter or an RSS reader to subscribe to blogs. When there is

something out there with updates that we are interested in, we subscribe to it. While we’re subscribed, we

see any new updates they have. When we discover that what we were paying attention to was sacked by

llamas and there won’t be any more notifications that we care about, we unsubscribe and move on. The

blog or Twitter account will continue making notifications for the sake of anyone still listening.

The advantage of this kind of a model is that the object that is raising events doesn’t need to know or care

about who is attached or listening to any particular event, nor is it responsible for getting listeners

registered or unregistered. The listener makes its own decisions about when to start and stop listening.

In a Nutshell
 Events allow one section of code to notify other sections that something has happened.

 Events rely on delegates to do their work.

 To create an event inside of a class, you would use code similar to this: public event

EventHandler PointChanged;. In this case, EventHandler is the name of the delegate event

handlers must use, and PointChanged is the name of the event.

 You raise events by first checking to make sure that there are event handlers attached then

raising the event: if(PointChanged != null) { PointChanged(this, EventArgs.Empty); }

 Attach methods to an event with the += operator: PointChanged += HandlerMethod;

 Detach methods from an event with the -= operator: PointChanged -= HandlerMethod;

Defining an Event 213

In the previous chapter, we talked about delegates. Delegates are going to be a key part of events, so it is

important to understand the basics of how they work before jumping into events.

Defining an Event

Our first step will be to create an event. Let’s say we have a class that represents a point in two

dimensions. So it has an x-coordinate and a y-coordinate. This class might look like this:

using System;

namespace Events
{
 public class Point
 {
 private double x;
 private double y;

 public double X
 {
 get { return x; }
 set { x = value; }
 }

 public double Y
 {
 get { return y; }
 set { y = value; }
 }
 }
}

To define an event inside a class, we’ll need to add a single line of code as a member of the class:

public event EventHandler PointChanged;

So now our code should look like this:

using System;

namespace Events
{
 public class Point
 {
 private double x;
 private double y;

 public double X
 {
 get { return x; }
 set { x = value; }
 }

 public double Y
 {
 get { return y; }
 set { y = value; }
 }

 public event EventHandler PointChanged;
 }
}

Like other members (properties, methods, and instance variables) we can use public, internal,

protected, or private for events, though events are usually public or internal.

214 Chapter 33 Events

The event keyword is what makes this particular member an event that others can attach to.

We also specify the delegate type of methods that can be attached to the event. Remembering how

delegates work, this means that all listener methods will be required to have a specific set of parameters,

as well as a specific return type (though with events, it is almost invariably void). In this case, we use the

EventHandler delegate, which is a pre-defined delegate specifically made for really simple events. This

delegate has a return type of void and has two parameters, an object, which is the “sender” of the event,

and an EventArgs object. The EventArgs object stores some basic information about the event itself.

Any delegate type can be used here. You’re not just limited to EventHandler.

Raising an Event

Now that we have an event, we need to add in code to raise the event in the right circumstances.

Don’t add this into your code quite yet, but consider the following code, which raises an event:

if(PointChanged != null)
 PointChanged(this, EventArgs.Empty);

This little bit of code is pretty simple. We check to see if the event is null. If the event is null, there are no

event handlers attached to the event. (In a second, we’ll see how to attach event handlers.) Raising an

event with no event handlers results in a NullReferenceException, so we need to check this before we

raise the event.

Once we know the event has event handlers attached to it, we can raise the event by calling the event with

the parameters required by the delegate—in this case, a reference to the sender (this) and an EventArgs

object (though we’re just using the static EventArgs.Empty object in this case).

While this code to raise an event can technically go anywhere, I usually put it in its own method. It is very

common to name these methods the same as the event, but with the word “On” at the beginning:

OnPointChanged, in our particular case.

So we can add the following method to our code:

public void OnPointChanged()
{
 if(PointChanged != null)
 PointChanged(this, EventArgs.Empty);
}

When we detect that the conditions of the event have been met, we call this method to raise the event.

In this particular case, since we want to raise the event any time the point changes, we’ll want to call this

method when the value of X or Y gets set. To accomplish this, we’ll add a method call to the setters of

both of these properties:

public double X
{
 get { return x; }
 set
 {
 x = value;
 OnPointChanged();
 }
}

public double Y
{
 get { return y; }
 set

Attaching and Detaching Event Handlers 215

 {
 y = value;
 OnPointChanged();
 }
}

Our completed code, including everything to add and raise the event, looks like this:

using System;

namespace Events
{
 public class Point
 {
 private double x;
 private double y;

 public double X
 {
 get { return x; }
 set
 {
 x = value;
 OnPointChanged();
 }
 }

 public double Y
 {
 get { return y; }
 set
 {
 y = value;
 OnPointChanged();
 }
 }

 public event EventHandler PointChanged;

 public void OnPointChanged()
 {
 if(PointChanged != null)
 PointChanged(this, EventArgs.Empty);
 }
 }
}

Attaching and Detaching Event Handlers

Now that we’ve got our Point class set up with an event for whenever it changes, we need to know how to

attach a method as an event handler for the event we’ve created.

The way we attach something to an event is by giving the event a method to call when the event occurs.

The method we attach is sometimes called an event handler. Because events are based on delegates we’ll

need a method that has the same return type and parameter types as the delegate we’re using—

EventHandler in this case. The EventHandler delegate we’re using requires a void return type, and two

parameters, an object that represents the sender (the thing sending the event) and an EventArgs object,

which has specific information about the event being raised.

Anywhere that we want, we can create a method to handle the event that looks something like this:

public void HandlePointChanged(object sender, EventArgs eventArgs)
{

216 Chapter 33 Events

 // Do something intelligent when the point changes. Perhaps redraw the GUI,
 // or update another data structure, or anything else you can think of.
}

It is a simple task to actually attach an event handler to the event. Again, the following code can go

anywhere you need it to go, where the method is in scope (accessible):

Point point = new Point();

point.PointChanged += HandlePointChanged;

// Now if we change the point, the PointChanged event will be raised and HandlePointChanged is called.
point.X = 3;

The key line there is the one that attaches the handler to the event: point.PointChanged +=

HandlePointChanged;. The += operator can be used to add the HandlePointChanged method to our

event. If you try to attach a method that doesn’t match the needs of the event’s delegate type, you’ll get an

error when you go to compile your program.

You can attach as many event handlers to an event as you want. In theory, all event handlers attached to

an event will be executed. However, if one of the event handlers throws and exception that isn’t handled,

the remaining handlers won’t get called. For this reason, event handlers shouldn’t throw any exceptions.

It is also possible to detach event handlers from an event, which you should do when you no longer care

to be notified about the event. This is an important step. Without detaching old event handlers, it’s easy to

end up with tons of event handlers attached to a method, or even the same event handler attached to an

event multiple times. In the best case scenario, things slow down a lot. In the worst case scenario, things

may not even function correctly.

Note that you rarely want the same event handler method attached to an event more than once, but this

is allowed. The method will be called twice, because it is attached twice.

To detach an event, you simply use the -= operator in a manner similar to attaching events:

point.PointChanged -= HandlePointChanged;

After this executes, HandlePointChanged will not be called when the PointChanged event occurs.

Common Delegate Types Used with Events

When using events, the event can use any delegate type imaginable. Having said that, there are a few

delegate types that seem to be most common, and those are worth a bit of attention.

The first common delegate is one of the Action delegates, which we talked about in the last chapter. For

instance, if you want an event that simply calls a parameterless void method when the event occurs (a

simple notification that something happened, without including any data to the listener) you could use

plain old Action:

public event Action PointChanged;

You could subscribe the method below to that event:

private void HandlePointChanged()
{
 // Do something in response to the point changing.
}

If you need to get some sort of information to the subscriber, you could use one of the other variants of

Action that has generic type parameters. For example, we might want to pass in the point that changed

Common Delegate Types Used with Events 217

to the subscribers. So we could change the event declaration to use the generic Action that has an extra

type parameter to include the point:

public event Action<Point> PointChanged;

Then we subscribe to the event with a method like this:

private void HandlePointChanged(Point pointThatChanged)
{
 // Do something in response to the point changing.
}

Using different versions of Action, we can pass any number of parameters to the event handlers.

Another common option is a delegate that works along these lines:

public delegate void EventHandler(object sender, EventArgs e);

In this example, we get a reference to the sender, who initiated the event, as well as an EventArgs object,

which stores any interesting information about the event inside it. In other cases, you may be interested

in using a more specialized type, derived from EventArgs, with even more information.

In this case, instead of using your own special delegate, you can use the EventHandler<TEventArgs>

event handler. (To use this, you must use EventArgs or another type that is derived from it.)

So let’s say you have an event that is keeping track of a change in a number, and in the notification

process, we want to see the original number and what it was changed to. We can make a class derived

from the EventArgs class like this:

public class NumberChangedEventArgs : EventArgs
{
 public int Original { get; }
 public int New { get; }
 public NumberChangedEventArgs(int originalValue, int newValue)
 {
 Original = originalValue;
 New = newValue;
 }
}

Then we’d define our event like this:

public event EventHandler<NumberChangedEventArgs> NumberChanged;

This event would be raised like we saw earlier, usually in a method called OnNumberChanged:

public void OnNumberChanged(int oldValue, int newValue)
{
 if(NumberChanged != null)
 NumberChanged(this, new NumberChangedEventArgs(oldValue, newValue));
}

Methods that want to handle this event would then look like this:

public void HandleNumberChanged(object sender, NumberChangedEventArgs args)
{
 Console.WriteLine($"The original value of {args.Original} is now {args.New}.");
}

You’re not restricted to using any of these delegates (events can use any delegate you want) but most

scenarios won’t actually require you to build a custom delegate type for an event if you don’t want to.

218 Chapter 33 Events

The Relationship between Delegates and Events

It’s a common misconception among C# programmers that events are just delegates that can be attached

to multiple methods, or that an event is just an array of delegates. Both of these ideas are wrong, though

it’s an easy mistake to make.

In the vast majority of cases, delegates are not used to call more than one method at a time, while events

quite often are. So many C# programmers don’t see delegates that reference more than one method at a

time, and make the incorrect assumption that they can’t handle it at all.

A more accurate way to think of it is more along the lines of an event being a property-like wrapper

around a delegate. Specifically, what we’ve seen up until now is similar to an auto-implemented property.

Let’s look back at our earlier example with our NumberChanged event:

public event EventHandler<NumberChangedEventArgs> NumberChanged;

The compiler expands this into code that looks something like this:

private EventHandler<NumberChangedEventArgs> numberChanged; // The wrapped delegate.

public event EventHandler<NumberChangedEventArgs> NumberChanged
{
 add { numberChanged += value; } // Defines behavior when a method subscribes.
 remove { numberChanged -= value; } // Defines behavior when unsubscribing.
}

Wrapping the delegate like this prevents people from outside of the class from invoking the delegate

directly (in other words, you can’t raise an event from outside of the class that it exists in) as well as from

mucking with the methods that are contained in the delegate chain.

Interestingly, the code above is actually completely legal code. If you don’t like the default implementation

of an event, you can write code that looks like the previous sample and do something different with it. In

practice, it’s rare to actually need to deviate from the standard pattern, but it is allowed.

One complication with explicitly implementing the add and remove parts for an event like this is that you

can no longer invoke the event directly. Instead, you have to invoke the delegate that it wraps

(numberChanged instead of NumberChanged, in this specific case). That’s because you’ve created

custom behavior for what it means to add or remove a method to an event and the normal rules aren’t

guaranteed to apply. For instance, it’s possible that the event doesn’t even wrap a delegate at all anymore,

or that it subscribes or unsubscribes from multiple delegates. Since the compiler can’t guarantee what it

means to raise the event anymore, the programmer must determine what it means.

Answers: (1) True. (2) True. (3) True. (4) False. (5) False.

Try It Out!
Delegates and Events Quiz. Answer the following questions to check your understanding. When

you’re done, check your answers against the ones below. If you missed something, go back and

review the section that talks about it.

1. True/False. Delegates allow you to assign methods to variables.

2. True/False. You can call and run the method currently assigned to a delegate variable.

3. True/False. Events allow one object to notify another object when something occurs.

4. True/False. Any method can be attached to a specific event.

5. True/False. Once attached to an event, a method cannot be detached from an event.

34
34 Operator Overloading

Throughout the course of this book, we’ve seen a lot of different operators. They all have built-in

functionality that does certain specific things. Mostly, these are defined by math, going back thousands of

years. In a few cases, we’ve seen some not-so-normal uses for these operators, like using the ‘+’ operator

for concatenating (sticking together) two strings (as in string text = "Hello" + "World";). In math, there’s

no way to add words together, but in C# we can do it.

When you create your own types, you can also define how some of these operators should work for them.

For example, if you create a class called Cheese, you may define what the ‘+’ operator should do, allowing

you to add two Cheese objects together (Though if you do that, Pepper Jack and Colby better result in

Colby-Jack!) This is called operator overloading, and it is a powerful feature of C#.

In a minute, we’ll look at how to actually overload these operators, but let’s start by discussing what

operators you’re even allowed to overload. Many but not all operators can be overloaded. The creators of

C# tried to allow you to overload as many as possible, but some would be too dangerous allow. These

operators can be overloaded: +, -, *, /, %, ++, --, ==, !=, >=, <=, >, and <. The compound assignment

operators (+=, -=, /=, *=, %=, etc.) can’t be directly overloaded, but overloading + allows += to be used,

overloading * allows *= to be used, and so on.

In a Nutshell
 Operator overloading allows us to define how some operators work for types that we create.

 Operator overloading works for these operators: +, -, *, /, %, ++, --, ==, !=, >=, <=, >, and <.

 Operator overloading does not work for these operators: ’&&’ and ’||’, the assignment

operator ’=’, the dot operator ’. ’, or the new operator (keyword).

 An example of overloading the ’+’ operator looks like this: public static Vector operator

+(Vector v1, Vector v2) { return new Vector(v1.X + v2.X, v1.Y + v2.Y); }

 All operators must be public and static.

 The relational operators must be done in pairs. (== and !=, < and >, <= and >=.)

 Only overload operators when there is a single, unambiguous way to use the operation.

220 Chapter 34 Operator Overloading

The relational operators must be overloaded in pairs—if you overload the == operator, you must also

overload the != operator, and if you overload the > operator, you must also overload the < operator as

well, and so on.

On the other hand, the following operators cannot be overloaded: the logical operators && and ||, the

assignment operator (=), the dot operator (.), and the new operator. Being able to overload these

operators would just be too dangerous and confusing to anyone trying to use them. Take the assignment

operator, for example. We use it for things like int x = 3;. If you could make it do something else besides

putting the value of 3 into the variable x, it could cause some serious issues.

Note that the array indexing operator ([and]) can be overloaded, but it is done using indexers, which we’ll

look at in the next chapter.

Unfortunately, you can’t define your own brand new operator with operator overloading.

Overloading Operators

You can overload operators for any of your own types, but for the sake of simplicity, I’m going to pick a

class that should make some sense for overloading operators. I’ll show operator overloading for a Vector

class, which stores an x and y coordinate. Vectors show up all over in math and physics, but if you’re fuzzy

on the concept, you can think of a vector as a point (in this case, a 2D point).

So let’s start with the basic class as a starting point:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace OperatorOverloading
{
 public class Vector
 {
 public double X { get; set; }
 public double Y { get; set; }

 public Vector(double x, double y)
 {
 X = x;
 Y = y;
 }
 }
}

Let’s say you want to add two vectors together. In math and physics, when we add two vectors, the result

is another vector, but with the x and y components added together. For example, if you add the vector (2,

3) to the vector (4, 1), you get (6, 4), because 2 + 4 = 6, and 3 + 1 = 4.

To overload the + operator, we simply add the following code as a member of the Vector class:

public static Vector operator +(Vector v1, Vector v2)
{
 return new Vector(v1.X + v2.X, v1.Y + v2.Y);
}

So now your Vector class might look something like this at this point:

using System;
using System.Collections.Generic;
using System.Linq;

Overloading Operators 221

using System.Text;
using System.Threading.Tasks;

namespace OperatorOverloading
{
 public class Vector
 {
 public double X { get; set; }
 public double Y { get; set; }

 public Vector(double x, double y)
 {
 X = x;
 Y = y;
 }

 public static Vector operator +(Vector v1, Vector v2)
 {
 return new Vector (v1.X + v2.X, v1.Y + v2.Y);
 }
 }
}

All operator overloads must be public and static. This should make sense, since we want to have access

to the operator throughout the program, and since it belongs to the type as a whole, rather than a specific

instance of the type. We then specify a return type, Vector in this case. We use the operator keyword,

along with the operator that we’re overloading. We then have two parameters, which are the two sides of

the + operator.

For a unary operator like - (the negation operator or negative sign) we only have one parameter:

public static Vector operator -(Vector v)
{
 return new Vector(-v.X, -v.Y);
}

Notice, too, that we can have multiple overloads of the same operator:

public static Vector operator +(Vector v, double scalar)
{
 return new Vector(v.X + scalar, v.Y + scalar);
}

Now you can add a vector and a scalar (just a plain old number). Though from a math standpoint, this has

little practical value.

The relational operators can be overloaded in the exact same way, only they must return a bool:

public static bool operator ==(Vector v1, Vector v2)
{
 return ((v1.X == v2.X) && (v1.Y == v2.Y));
}

public static bool operator !=(Vector v1, Vector v2)
{
 return !(v1 == v2); // Just return the opposite of the == operator.
}

Remember that the relational operators must be overloaded in pairs, so if you overload ==, you must also

overload !=, as shown here.

If you look closely at these operator overloads, you can see that they just look like a method. (The only

real difference is the operator keyword.) The C# compiler converts this to a method behind the scenes.

222 Chapter 34 Operator Overloading

Overloading operators is done primarily to make our code look cleaner. It is what’s called syntactic sugar.

Anything that you can do with an operator, you could have done with a method. Overloading an operator

is sometimes more readable though.

Just because you can overload operators, doesn’t mean you should. Imagine that you overload an

operator to have it do something totally unexpected. If it isn’t clear what your overloaded operator does,

you’ll cause yourself and others lots of problems. It’s for this reason that Java and other languages, erring

on the side of being overly cautious, have chosen to not even allow operator overloading. The rule to

follow is to only overload operators that have a single, clear, intuitive, and widely accepted use.

With our operators defined, we can use them with the same syntax that we’ve seen before:

Vector a = new Vector(5, 2);
Vector b = new Vector(-3, 4);
Vector result = a + b; // We use the operator overload here.
// At this point, result is <2, 6>.

Answers: (1) True. (2) False. (3) False. (4) True. (5) True.

Try It Out!
3D Vectors. Make a Vector class like the one we’ve created here, but instead of just x and y, also add

in z. You’ll need to add another property, and the constructor will be a little different. Add operators

that do the following:

 Add two 3D vectors together. (1, 2, 3) + (3, 3, 3) should be (4, 5, 6).

 Subtract one 3D vector from another. (1, 2, 3) - (3, 3, 3) should be (-2, -1, 0).

 Negate a 3D vector. For example, using the negative sign on (2, 0, -4) should be (-2, 0, 4).

 Multiply a vector by a number (scalar) so (1, 2, 3) * 4 should be (4, 8, 12).

 Divide a vector by a number (scalar) so (2, 4, 6) / 2 should be (1, 2, 3).

Additionally, write some code to run some tests on your newly created 3D vector class and check to

see if everything is working.

Try It Out!
Operator Overloading Quiz. Answer the following questions to check your understanding. When

you’re done, check your answers against the ones below. If you missed something, go back and

review the section that talks about it.

1. True/False. Operator overloading means providing a definition for what the built-in

operators do for your own types.

2. True/False. You can define your own, brand new operator using operator overloading.

3. True/False. All operators in C# can be overloaded.

4. True/False. Operator overloads must be public.

5. True/False. Operator overloads must be static.

35
35 Indexers

In the previous chapter, we talked about how to overload operators. In this chapter, we’ll talk about

indexers, which are essentially a way to overload the indexing operator ([and]).

How to Make an Indexer

Defining an indexer is almost like a cross between overloading an operator and a property. It is pretty

easy to do, so we’ll just start with some code that does this. This code could be added as a member of the

Vector class that we made in the last chapter, though this same setup works in any class as well.

public double this[int index]
{
 get
 {
 if(index == 0) { return X; }
 else if(index == 1) { returnY; }
 else { throw new IndexOutOfRangeException(); }
 }
 set
 {
 if (index == 0) { X = value; }
 else if (index == 1) { Y = value; }
 else { throw new IndexOutOfRangeException(); }
 }
}

In a Nutshell
 An indexer is a way to overload the indexing operator ([and]).

 Defining an indexer works like a cross between operator overloading and a property: public

double this[int index] { get { /* get code here */ } set { /* set code here */ } }

 Indexers can use any type as a parameter.

 You can have multiple indices by simply listing multiple things where you define the indexer:

double this[string someTextIndex, int numericIndex].

224 Chapter 35 Indexers

We first specify the access level of the indexer—public in our case—along with the type that it returns.

(Note that we don’t have to use public and static, unlike overloading other operators.) We then use the

this keyword, and the square brackets ([and]), which indicate indexing. Inside of the brackets we list the

type and name of the indexing variable that we’ll use inside of this indexer.

Then, like a property, we have a get and a set block. Note that we do not need to have both of these if we

don’t want. We can get away with just one. Inside of the get and set blocks, we can use our index

variable, and like properties, we can use the value keyword in the setter to refer to the value that is being

assigned.

In this example, I’m making it so that people can refer to the x and y components of the vector using the 0

and 1 index respectively. With this in place, we would now be able to do this:

Vector v = new Vector(5, 2);
double xComponent = v[0]; // Use indexing to set the x variable.
double yComponent = v[1]; // Use indexing to set the y variable.

This is much clearer than if we had been forced to do it with methods. (xComponent = v.GetIndex(0);)

Using Other Types as an Index

 We’re not stuck with just using ints as an index. We can use any type we want. For example, strings:

public double this[string component]
{
 get
 {
 if (component == "x") { return X; }
 if (component == "y") { return Y; }
 throw new IndexOutOfRangeException();
 }

 set
 {
 if (component == "x") { X = value; }
 if (component == "y") { Y = value; }
 throw new IndexOutOfRangeException();
 }
}

This code is very similar to what we just saw, except that we’re using a string for indexing. If they ask for

“x”, we return the x-component. If they ask for “y”, we return the y-component.

So now we’d be able to do this:

Vector v = new Vector(5, 2);
double xComponent = v["x"]; // Indexing operator with strings.
double yComponent = v["y"];

There’s still more! We can do indexing with multiple indices. Adding in multiple indices is as simple as

listing all of them inside of the square brackets when you define your indexer:

public double this[string component, int index]
{
 get
 {
 return 0; // Do some work here to return a value from the two indices 'component' and 'index'.
 }
 set
 {
 // Do the logic to assign the value passed in. `value` contains the value being set.
 components.Find(component).AtIndex(index) = value;

Index Initializer Syntax 225

 }
}

Indexers can be very powerful, and allow us to make indexing or data access look more natural when

working with our own custom made types. Like with operator overloading, we should take advantage of it

when it makes sense, but be cautious about overusing it.

Index Initializer Syntax

We’ve talked throughout this book about a lot of ways to initialize things. In Chapter 18 we introduced the

simple constructor, where you pass in parameters to get things set up (new Vector(10, -5)), there’s object

initializer syntax (Chapter 19) that additionally lets you assign values to the object’s properties on the

same line at the same time (new Vector () { X = 10, Y = -5 }), there’s collection initializer syntax that is

used for setting up an array (Chapter 13) or a collection (Chapter 25) (new Vector[] { new Vector(0, 0),

new Vector(10, 5), new Vector(-2, -8) }) and now we’ll introduce one final option.

If a class defines an indexer, you can use index initializer syntax (or an index initializer). Going off of the Try

It Out! problem above, with your own custom dictionary class, you could fill it up like this:

Dictionary dictionary = new Dictionary()
{
 ["apple"] = "A particularly delicious pomaceous fruit of the genus Malus.",
 ["broccoli"] = "The 7th most flavorless vegetable on the planet."
 // ...
};

This gets translated into direct use of the indexer, so the above code could be written like the code below

without using index initializer syntax:

Dictionary dictionary = new Dictionary();
dictionary["apple"] = "A particularly delicious pomaceous fruit of the genus Malus.";
dictionary["broccoli"] = "The 7th most flavorless vegetable on the planet."
// ...

Because index initializer syntax can be used any time the type defines an indexer, and because lots of

classes define indexers, there are quite a few places this can be used. Sometimes index initializer syntax is

more readable, while other times it’s not. Choose the option that is most readable.

Try It Out!
Creating a Dictionary. Create a class that is a dictionary, storing words (as a string) and their

definition (also as a string). Use an indexer to allow users of the dictionary to add, modify, and

retrieve definitions for words.

You should be able to add a word like this: dictionary["apple"] = "A particularly delicious

pomaceous fruit of the genus Malus.";

You should be able to change a definition by reusing the same “key” word: dictionary["apple"] = "A

fruit of the genus Malus that often times rots and is no longer delicious.";

You should also be able to retrieve a definition using the indexer: string definitionOfApple =

dictionary["apple"];

Note that the .NET Platform already defines a Dictionary class, which uses generics and in the real

world could be used to do what we’re trying to do here, plus a whole lot more. But we’re trying to get

the hang of indexers here, so don’t use that class while doing this challenge.

36
36 Extension Methods

Let’s say that you are using a class that someone else made. Perhaps one of the classes that comes with

the .NET Platform, like the string type.

What if you’re using that type, and you wish it had a method that it doesn’t have? Particularly, if you don’t

have the ability to modify it? If it’s one of your own classes, you can simply add it in. But if it’s not one that

you can modify, what then?

The string type has a ToUpperCase() method and a ToLowerCase() method, but what if we want to

create a method to convert it to a random case, so each letter is randomly chosen to be upper case or

lower case? (SomEtHIng LiKE tHiS.) Writing the method is relatively easy, but wouldn’t it be nice if we

could make it so that we can say something like myString.ToRandomCase() just like we can do with

myString.ToUpperCase();? Without having access to the class, we wouldn’t normally have the ability to

add our ToRandomCase() method as a new method in the class.

Normally.

But there’s a way in C#. It is called an extension method. Basically, we’ll create a static method in a static

class, along with the this keyword, and we can make a method that appears as though it were a member

of the original class, even though it’s technically not.

In a Nutshell
 Extension methods let you define a method that feels like it belongs to a class that you don’t

have control over.

 Extension methods are defined as static classes as static methods. The first parameter of the

method is the type of the class that you want to add the extension method to, and it must be

marked with the this keyword: public static class StringExtensions { public static string

ToRandomCase(this string text) { /* Implementation here... */ } }

 Once an extension method has been created, you can call it as though it is a part of the class:

string text = "Hello World!"; randomCaseText = text.ToRandomCase();

 Extension methods are syntactic sugar to make your code look cleaner. The C# compiler

rewrites into a direct call of the static method.

Creating an Extension Method 227

Creating an Extension Method

Creating an extension method is as simple as I just described; we’ll make a static class, and put a static

method in it that does what we want for the extension method.

We start by adding a new class file to your project (see Chapter 18). While it is not required, I typically call

my class something like StringExtensions if I’m creating extension methods for the string class, or

PointExtensions, if I’m creating extension methods for a Point class.

In addition, we want to stick the static keyword on our class, to make the whole class a static class. To

start, our class will look something like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ExtensionMethods
{
 public static class StringExtensions
 {
 }
}

To define our extension method, we simply create a static method here. The first parameter must be of

the type that we’re creating the extension method for (string, in our case), marked with the this keyword:

public static string ToRandomCase(this string text)
{
 // The method implementation will go here in a second...
}

We can indicate a return type, and in addition to the first parameter that is marked with the this keyword,

we could also have any other parameters we want.

Like with operator overloading and indexers, this is basically just syntactic sugar. The C# compiler will

rework any place that we call our extension method. So when we’re done, we’ll be able to say:

string title = "Hello World!"
string randomCaseTitle = title.ToRandomCase();

But the compiler will rework the code above to look like this:

string title = "HelloWorld";
string randomCaseTitle = StringExtensions.ToRandomCase(title);

The extension method looks nicer and it feels like a real method of the string class, which is a nice thing.

But this can be a double-edged sword. The method feels like it is a part of the original class, but officially,

it’s not. For instance, you may move from one project to another, only to discover that what you thought

was a part of the original class turned out to be an extension method written by someone else, and you

can no longer use it.

Also, if your extension method is in a different namespace than the original class, you may have problems

where the actual type is recognized, but the extension method can’t be found. To get all of the pieces to

come together, you may need to add in multiple using directives (Chapter 27).

Just be aware of the limitations an extension method has.

We can now finish up our example by completing the body of the ToRandomCase method:

228 Chapter 36 Extension Methods

string result = "";

for (int index = 0; index < text.Length; index++)
{
 if (random.Next(2) == 0) // We still need to create the random object.
 result += text.Substring(index, 1).ToUpper();
 else
 result += text.Substring(index, 1).ToLower();
}

return result;

This goes through the original string one character at a time, chooses a random number (0 or 1), and if it

is 0, it makes it upper case. If it is 1, it makes it lower case. So we end up with a random collection of

upper and lower case letters, giving us the desired result.

So our complete code for the extension method class is this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ExtensionMethods
{
 public static class StringExtensions
 {
 private static Random random = new Random();

 public static string ToRandomCase(this string text)
 {
 string result = "";

 for (int index = 0; index < text.Length; index++)
 {
 if (random.Next(2) == 0)
 result += text.Substring(index, 1).ToUpper();
 else
 result += text.Substring(index, 1).ToLower();
 }

 return result;
 }
 }
}

As we mentioned earlier, if your program is aware of the extension method, you can now do this:

string message = "I'm sorry, Dave. I'm afraid I can't do that.";
Console.WriteLine(message.ToRandomCase());

We can now use the extension method as though it is a part of the original type.

Try It Out!
Word Count. Create an extension method for the string class that counts the total number of words

in the string. You can make use of the Split method, which works like this: text.Split(' ');. This returns

an array of strings, split up into pieces using the character passed in as the split point.

For bonus points, take this a step further and split on all whitespace characters, including space (' '),

the newline character ('\n'), the carriage return character ('\r'), the tab character ('\t'). For even more

bonus points, ensure that words of length 0, don’t get counted.

Creating an Extension Method 229

Try It Out!
Sentence and Paragraph Count. Following the example of the Word Count problem above, create

additional extension methods to count the number of sentences and paragraphs in a string. You can

assume that a sentence is delimited (ended/separated) by the period (’. ’) symbol, and paragraphs are

delimited with the carriage return symbol ('\n').

For tons of bonus points, put together a simple program that will read in a text file (see Chapter 29)

and print out the number of words, sentences, and paragraphs the file contains.

Try It Out!
Lines of Code. Going even further, let’s make a program that will count the number of lines of code a

program has.

It is often interesting to know how big a particular program is. One way to measure this is in the total

lines of code it contains. (There is some debate about how useful this really is, but it is always fun to

know and watch as your program grows larger.)

Create a simple program that, given a particular file, counts the number of lines of code it has. For

bonus points, ignore blank lines.

If you’re up for a real big challenge, modify your program to start with a particular directory and

search it for all source code files (*.cs) and add them all up to see how big an entire project is.

37
37 Lambda Expressions

The Motivation for Lambda Expressions

Lambda expressions are a relatively simple concept. The trick to understanding lambda expressions is in

understanding what they’re actually good for. So that’s where we’re going to start our discussion.

For this discussion, let’s say you had the following list of numbers:

// Collection initializer syntax (see Chapter 25).
List<int> numbers = new List<int>(){ 1, 7, 4, 2, 5, 3, 9, 8, 6 };

Let’s also say that somewhere in your code, you want to filter out some of them. Perhaps you want only

even numbers. How do you do that?

The Basic Approach
Knowing what we learned way back in some of the early chapters about methods and looping, perhaps

we could create something like this:

In a Nutshell
 Lambda expressions are methods that appear “in line” and do not have a name.

 Lambda expressions have different syntax than normal methods, which for simple lambda

expressions makes it very readable. The expression: x => x < 5 is the equivalent of the

method bool AMethod(int x) { return x < 5; }.

 Multiple parameters can be used: (x, y) => x * x + y * y

 As can zero parameters: () => Console.WriteLine("Hello World!")

 The C# compiler can typically infer the types of the variables in use, but if not, you can

explicitly provide those types: (int x) => x < 5.

 If you want more than one expression, you can use a statement lambda instead, which has

syntax that looks more like a method: x => { bool lessThan5 = x < 5; return lessThan5; }

 Lambda expressions can use variables that are in scope at the place where they are defined.

 Expression syntax can be used to define normal, named methods, properties, indexers, and

operators as well: bool AMethod(int x) => x < 5;

The Motivation for Lambda Expressions 231

public static List<int> FindEvenNumbers(List<int> numbers)
{
 List<int> onlyEvens = new List<int>();

 foreach(int number in numbers)
 {
 if(number % 2 == 0) // checks if it is even using mod operator
 onlyEvens.Add(number);
 }

 return onlyEvens;
}

We could then call that method and get back our list of even numbers. But that’s a lot of work for a single

method that may only ever be used once.

The Delegate Approach
Fast forward to Chapter 32, where we learned about delegates. For this particular task, delegates will

actually be able to go a long way towards helping us.

As it so happens, there’s a method called Where that is a part of the List class (actually, it is an extension

method) that uses a delegate. Using the Where method looks like this:

IEnumerable<int> evenNumbers = numbers.Where(MethodMatchingTheFuncDelegate);

The Func delegate that the Where method uses is generic, but in this specific case, must return the type

bool, and have a single parameter that is the same type that the List contains (int, in this example). The

Where method goes through each element in the array and calls the delegate for each item. If the

delegate returns true for the item, it is included in the results, otherwise it isn’t.

Let me show you what I mean with an example. Instead of our first approach, we could write a simple

method that determines if a number is even or not:

public static bool IsEven(int number)
{
 return (number % 2 == 0);
}

This method matches the requirements of the delegate the Where method uses in this case (returns

bool, with exactly one parameter of type int).

IEnumerable<int> evenNumbers = numbers.Where(IsEven);

That’s pretty readable and fairly easy to understand, as long as you know how delegates work. But let’s

take another look at this.

Anonymous Methods
While what we’ve done with the delegate approach is a big improvement over crafting our own method to

do all of the work, it has two small problems. First, a lot of times that we do something like this, the

method is only ever used once. It seems like overkill to go to all of the trouble of creating a whole method

to do this, especially since it starts to clutter the namespace. We can no longer use the name IsEven for

anything else within the class. That may not be a problem, but it might.

Second, and perhaps more important, that method is located somewhere else in the source code. It may

be elsewhere in the file, or even in a completely different file. This separation makes it a bit harder to truly

understand what’s going on when you look at the source code. It our current case, this is mostly solved by

calling the method something intelligent (IsEven) but you don’t always get so lucky.

232 Chapter 37 Lambda Expressions

This issue is common enough that back in C# 2.0, they added a feature called anonymous methods to deal

with it. Anonymous methods allow you to define a method “in line,” without a name.

I’m not going to go into a whole lot of detail about anonymous methods here, because lambda

expressions mostly replaced them.

To accomplish what we were trying to do with an anonymous method, instead of creating a whole

method named IsEven, we could do the following:

numbers.Where(delegate(int number) { return (number % 2 == 0); });

If you take a look at that, you can see that we’re basically taking the old IsEven method and sticking it in

here, “in line.”

This solves our two problems. We no longer have a named method floating around filling up our

namespace, and the code that does the work is now at the same place as the code that needs the work.

I know, I know. You’re probably saying, “But that code is not very readable! Everything’s just smashed

together!” And you’re right. Anonymous methods solved some problems, while introducing others. You

would have to decide which set of problems works best for you, depending on your specific case.

But this finally brings us to lambda expressions.

Lambda Expressions

Basically, a lambda expression is simply a method. More specifically, it is an anonymous method that is

written in a different form that (theoretically) makes it a lot more readable. Lambda expressions were new

in C# 3.0.

Creating a lambda expression is quite simple. Returning to the IsEven problem from earlier, if we want to

create a lambda expression to determine if a variable was even or odd, we would write the following:

x => x % 2 == 0

The lambda operator (=>) is read as “goes to” or “arrow.” (So, to read this line out loud, you would say “x

goes to x mod 2 equals 0” or “x arrow x mod 2 equals 0.”) The lambda expression is basically saying to

take the input value, x, and mod it with 2 and check the result against 0.

You may also notice with a lambda expression, we didn’t use return. The code on the right side of the =>

operator must be an expression, which evaluates to a single value. That value is returned, and its type

becomes the return type of the lambda expression.

This version is the equivalent of all of the other versions of IsEven that we wrote earlier in this chapter.

Speaking of that earlier code, this is how we might use this along with everything else:

IEnumerable<int> evens = numbers.Where(x => x % 2 == 0);

It may take a little getting used to, but generally speaking it is much easier to read and understand than

the other techniques that we used earlier.

In Depth
The Name “Lambda.” The name “lambda” comes from lambda calculus, which is the mathematical

basis for programming languages. It is basically the programming language people used before there

were computers at all. (Which is kind of strange to think about.) “Lambda” would really be spelled

with the Greek letter lambda (λ) but the keyboard doesn’t have it, so we just use “lambda.”

Multiple and Zero Parameters 233

Multiple and Zero Parameters

Lambda expressions can have more than one parameter. To use more than one parameter, you simply

list them in parentheses, separated by commas:

(x, y) => x * x + y * y

The parentheses are optional with one parameter, so in the earlier example, I’ve left them off.

This example above could have been written instead as a method like the following:

public int HypoteneuseSquared(int x, int y)
{
 return x * x + y * y;
}

Along the same lines, you can also have a lambda expression that has no parameters:

() => Console.WriteLine("Hello World!")

Type Inference Failures and Explicit Types

The C# compiler’s type inference is smart enough to look at most lambda expressions and figure out what

variable types and return type you are working with, but in some cases, the type inference fails, and you

have to fall back to explicitly stating the types in use, or the code won’t compile.

If this happens, you’ll need to explicitly put in the type of the variable, like this:

(int x) => x % 2 == 0;

Using explicit types in your lambda expressions is always an option, not just when the compiler can’t infer

the type. Most C# programmers will generally take advantage of type inference when possible in a

lambda, but if you like the syntax better or if it makes some specific situation clearer, feel free to use a

named type instead of just using type inference, even if it isn’t required.

Statement Lambdas

As you’ve seen by now, most methods are more than one line long. While lambda expressions are

particularly well suited for very short, single line methods, there will be times that you’ll want a lambda

expression that is more than one line long. This complicates things a little bit, because now you’ll need to

add in semicolons, curly braces, and a return statement, but it can still be done:

(int x) => { bool isEven = x % 2 == 0; return isEven; }

The form we were using earlier is called an expression lambda, because it had only one expression in it.

This new form is called a statement lambda. As a statement lambda gets longer, you should probably

consider pulling it out into its own method.

Scope in Lambda Expressions

From what we’ve seen so far, lambda expressions have basically behaved like a normal method, only

embedded in the code and with a different, cleaner syntax. But now I’m going to show you something that

will throw you for a loop.

Inside of a lambda expression, you can access the variables that were in scope at the location of the

lambda expression. Take the following code, for example:

234 Chapter 37 Lambda Expressions

int cutoffPoint = 5;
List<int> numbers = new List<int>(){ 1, 7, 4, 2, 5, 3, 9, 8, 6 };

IEnumerable<int> numbersLessThanCutoff = numbers.Where(x => x < cutoffPoint);

If our lambda expression had been turned into a method, we wouldn’t have access to that cutoffPoint

variable. (Unless we supplied it as a parameter.) This actually adds a ton of power to the way lambda

expressions can work, so it is good to know about.

(For what it’s worth, anonymous methods have the same feature.)

Expression-Bodied Members

Lambda expressions were introduced to C# in version 3.0, and as I mentioned earlier, one of the big

draws to it is that the syntax is much more concise. That’s great for short methods that would otherwise

require a lot of overhead to define.

C# 6.0 extends this a little, allowing you to use the same expression syntax to define normal non-lambda

methods within a class. For example, consider the method below:

public int ComputeSquare(int value)
{
 return value * value;
}

Now that we know about lambda expressions and the syntax that goes with them, it makes sense to point

out that this method could also be implemented with the same expression syntax:

public int ComputeSquare(int value) => value * value;

This only works if the method can be turned into a single expression. In other words, we can use the

expression lambda syntax, but not the statement lambda syntax. If we need a statement lambda, we

would just write a normal method.

This syntax is not just limited to methods. Any method-like member of a type can use the same syntax. So

that includes indexers, operator overloads, and properties (though this only applies to read-only

properties where your expression defines the getter and the property has no setter). The following simple

class shows all four of these in operation:

public class SomeSortOfClass
{
 // These two private instance variables are used by the methods below.
 private int x;
 private int[] internalNumbers = new int[] { 1, 2, 3 };

 // Property (read-only, no setter allowed)
 public int X => x;

 // Operator overload
 public static int operator +(SomeSortOfClass a, SomeSortOfClass b) => a.X + b.X;

 // Indexer
 public int this[int index] => internalNumbers[index];

 // Normal method
 public int ComputeSquare(int value) => value * value;
}

.

Lambdas vs. Local Functions 235

Lambdas vs. Local Functions

In all cases where you might use a lambda, you could also use a local function, which was introduced in

Chapter 28. The scenarios in which you might use a lambda are also good fits for local functions, and the

two can even be combined together, using an expression-bodied local function. To illustrate, consider the

following three methods which are all equivalent in terms of functionality:

public static IEnumerable<int> FindEvenNumbers1(List<int> numbers)
{
 return numbers.Where(x => x % 2 == 0); // Plain lambda expression.
}

public static IEnumerable<int> FindEvenNumbers2(List<int> numbers)
{
 bool IsEven(int number) // Local function.
 {
 return number % 2 == 0;
 }

 return numbers.Where(IsEven);
}

public static IEnumerable<int> FindEvenNumbers3(List<int> numbers)
{
 bool IsEven(int number) => number % 2 == 0; // Expression-bodied local function.

 return numbers.Where(IsEven);
}

Each of the three above options are functionally equivalent, but with rather different syntax. The first is a

plain lambda expression. This is probably the most concise of the three, and for somebody comfortable

with lambda expressions, is quite readable.

The second is a local function. It isn’t nearly as concise, but has the advantage of giving a name to the

functionality.

The third is a local function with an expression body. This is something of a compromise of the two.

Each of the above can be the best option in different scenarios. All have their place. Pick the one that

produces the most readable code for any given situation.

Answers: (1) True. (2) False. (3) Lambda operator (=>). (4) x => x < 0. (5) False. (6) True.

Try It Out!
Lambda Expressions Quiz. Answer the following questions to check your understanding. When

you’re done, check your answers against the ones below. If you missed something, go back and

review the section that talks about it.

1. True/False. Lambda expressions are a special type of method.

2. True/False. A lambda expression can be given a name.

3. What operator is used in lambda expressions?

4. Convert the following to a lambda expression: bool IsNegative(int x) { return x < 0; }

5. True/False. Lambda expressions can only have one parameter.

6. True/False. Lambda expressions have access to the local variables in the method they

appear in.

38
38 Query Expressions

A common programming task that you’ll have is one where you must take a collection of data, extract

certain parts, and return it in a certain shape or organized in a specific way. This data extraction and

transformation is often called a query.

Here are some sample queries:

 In a real estate system, you might need to find houses that cost less than $300,000 but that also

have at least two bathrooms and at least three bedrooms.

 In a project management tool, you might need to search through all tasks in a certain project to

find ones assigned to people who are on a specific team.

 In a video game, you might need to find all objects in the game world within a certain distance of

an explosion that can take damage.

LINQ Queries and Declarative Programming
The syntax of C#’s query expressions is inspired by SQL, which is a database query language. C#’s query

syntax is called a Language Integrated Query, or LINQ for short. It’s actually quite different from a lot of the

rest of C#’s syntax. Nine keywords are used for LINQ queries that aren’t used elsewhere.

In a Nutshell
 Query expressions are a special type of statement in C# that allows you to extract certain

pieces from a collection of data and return it in a specific format or organization.

 Query expressions are made of multiple clauses:

 A from clause indicates the collection that is being queried.

 A select clause indicates the specific data that is to be returned.

 A where clause performs filtering in the query.

 A let clause allows you to give a name to a part of a query for later reference.

 A join clause allows you to combine multiple collections together.

 An orderby clause allows you to choose the order of the results.

 A group clause allows you to group or partition a set of data into related chunks.

 An into clause continues the query when it otherwise would have terminated.

 All queries can be done using query syntax or with normal method calls instead.

Lambdas vs. Local Functions 237

But LINQ queries are not complicated. Indeed, the syntax makes queries easy to read and understand.

The primary difference between query expressions and other C# code is that query expressions are

declarative, rather than procedural. With the procedural programming that we’ve gotten used to, we

specify step-by-step how something should be done. With declarative programming, we don’t specify

how—we simply state (“declare”) what we want and let the computer figure out how it gets it on its own.

Anything we might want to do with a query expression could have also been done procedurally with loops

and if statements. But query expressions are often far more readable than their procedural counterparts.

IEnumerable<T> is the Starting Point for Queries
All LINQ queries operate on collections of data. It’s important to point out that when we say “collections”

here, we’re referring specifically to the IEnumerable<T> interface that was introduced in Chapter 25.

Virtually all container types implement this interface, making it so that query expressions can operate on

virtually any data collection. This includes arrays, List<T>, even Dictionary<K, V>, and many others.

For the purposes of this chapter, when I say “collection” or “sequence,” I'm referring to any type that

implements IEnumerable<T>.

Query expressions always produce an IEnumerable<T> as output. If you store the results of a query

expression in a variable, it will need to be of type IEnumerable<T>.

In the event that you need the results in an array or a List<T>, the IEnumerable<T> interface has a

couple of extension methods called ToArray() and ToList() that will convert it to a T[] or a List<T>

respectively.

The Structure of a LINQ Query
A query expression is composed of multiple clauses. A clause is a chunk of syntax smaller than a full

expression that has meaning, but requires other clauses around it to be complete.

The structure of a LINQ query is this:

 All LINQ queries start with a from clause.

 This is followed by any number of where, join, orderby, let, and additional from clauses.

 A LINQ query terminates with either a select clause or a group clause.

 A LINQ query that would otherwise be terminated can be continued with an into clause, allowing

you to go back to the beginning.

We’ll get into the specifics of each of these clause types through the rest of this chapter.

Sample Classes
Before we dive in, it’s worth defining a few sample classes to use with our queries. The following three

classes give us some sample data to play with through this chapter. You might find some classes like this

in a video game. The GameObject class might serve as a base class for other specialized objects to derive

from (like the stubbed-out Ship class), while the Player class defines some basic properties of a player in

a multi-player game.

public class GameObject
{
 public int ID { get; set; }
 public double X { get; set; }
 public double Y { get; set; }
 public double MaxHP { get; set; }
 public double CurrentHP { get; set; }
 public int PlayerID { get; set; }
}

238 Chapter 38 Query Expressions

public class Ship : GameObject { }

public class Player
{
 public int ID { get; set; }
 public string UserName { get; set; }
 public string TeamColor { get; set; } // A Color class might be better than string here.
}

As you explore the topics in this chapter, you might find it useful to recreate these classes in your own

project. Create a List<GameObject> and a List<Player> and fill the lists with some sample data. This will

give you something to run queries on to compare and explore the results. The following might serve as a

starting point for that:

List<GameObject> gameObjects = new List<GameObject>();
gameObjects.Add(new Ship { ID = 1, X = 0, Y = 0, CurrentHP = 50, MaxHP = 100, PlayerID = 1 });
gameObjects.Add(new Ship { ID = 2, X = 4, Y = 2, CurrentHP = 75, MaxHP = 100, PlayerID = 1 });
gameObjects.Add(new Ship { ID = 3, X = 9, Y = 3, CurrentHP = 0, MaxHP = 100, PlayerID = 2 });

List<Player> players = new List<Player>();
players.Add(new Player { ID = 1, UserName = "Player 1", TeamColor = "Red" });
players.Add(new Player { ID = 2, UserName = "Player 2", TeamColor = "Blue" });

From Clauses

All queries start with a from clause. A from clause is a generator of sorts, which creates a range variable

over the elements in a sequence (any IEnumerable).

There's nothing too exciting about them, other than defining a source of information to query.

A from clause is always used to start a query expression and can be used in the middle of a query to

introduce additional sources of information. But a lonely from clause doesn’t form a complete query

expression. The following doesn’t compile, but it serves the purpose of illustrating the structure of a

simple from clause:

from o in gameObjects

A from clause introduces a range variable. This is a local variable that can be accessed throughout the rest

of the query. In many ways, a range variable is like the variable in a foreach loop. The variable will take on

each value in the sequence, one at a time, as the query is evaluated.

A from clause is composed of the from keyword, followed by the name of the range variable, followed by

the in keyword, and then finally the sequence that the range variable belongs to—the data set that will be

looked at in this query.

In this from clause, the range variable will have the same type as the collection. So if gameObjects is a

collection of GameObject, then the range variable o will also be of type GameObject.

There is another variation for a from clause where you can specify the type of the range variable like this:

from Ship s in gameObjects

This type can be a more base type or a more derived type as the collection itself. So for example, we could

have done from object o in gameObjects. That would simply mean we don't care about any

GameObject specific code, and are OK falling back to a base class.

But as you can see in the example above, we can also specify a more derived type; we've used Ship

instead of GameObject. This will actually work correctly up until the point where the execution of the

Select Clauses 239

query encounters something that isn't a Ship. So even if gameObjects is a List<GameObject> or an

IEnumerable<GameObject>, this code only has problems if it encounters something that isn’t a Ship.

A from clause gets the query expression started, but isn't a full query expression on its own. So let's

continue on to the select clause, and start putting together full query expressions.

Select Clauses

A select clause is one of two ways to end a query expression (the other being a group clause). A select

clause identifies the portion of an object (including the whole object) to be produced as the final results of

a query expression.

A minimal (but rather useless) complete query expression combining our from clause with a simple

select clause might look like this:

IEnumerable<GameObject> allObjects = from o in gameObjects
 select o;

This is about as simple as a query expression gets, resulting in our full gameObjects collection,

completely unchanged. So let’s do another example that is a bit more exciting:

IEnumerable<string> results = from o in gameObjects
 select o.CurrentHP + "/" + o.MaxHP;

A select clause is a powerful tool on its own, allowing you to produce new values from existing ones.

Where Clauses

While we're able to make query expressions with just from and select clauses, another key type of clause

is the where clause. A where clause is used to filter elements in a collection, based on some condition.

Consider the where clause we've introduced below, which makes it so we filter to only objects that are

“alive” (their CurrentHP is greater than 0):

IEnumerable<GameObject> aliveObjects = from o in gameObjects
 where o.CurrentHP > 0
 select o;

A query statement must start with a from clause and must end with a select clause (or a group clause)

but in the middle, you can have any number of where clauses.

Multiple From Clauses

A query statement must start with a from clause, but is also allowed to contain additional from clauses

anywhere in the middle as well. The effect of this is similar to two nested foreach loops and essentially

produces a sub-query within the main query.

Consider the code below:

IEnumerable<string> intersections = from o1 in gameObjects
 from o2 in gameObjects
 where (o1.Intersects(o2)) // Assumes we have an Intersects method.
 select $"{o1.ID} intersects {o2.ID}.";

The where clause will be performed for each pairing of o1 with each o2.

Multiple from clauses can use the same collection again, or pull in a second collection.

240 Chapter 38 Query Expressions

Let Clauses

A let clause is like a select clause in that it defines a new range variable, but does so by producing it from

previous range variables. This makes it a “derived” range variable, computed from other range variables.

The primary purpose of a let clause is to allow you to define something that is used in multiple places

later on in the query expression, or to give a name to a complex operation to make the code more

readable. This can be used later in the query expression. For example:

IEnumerable<string> statuses = from o in gameObjects
 let percentHealth = Math.Round(o.CurrentHP / o.MaxHP * 100)
 select $"{o.ID} is at {percentHealth}%.";

Join Clauses

The join clause is a powerful tool that will allow us to combine two collections together, pairing them up

based on a rule provided by the programmer.

The sample classes we defined earlier included a gameObjects and a players collection, which we can

join together. The game objects themselves know the ID of the player they belong to, but not any other

player specific data like the user name or color for a specific player. At some point, we might want to

combine our gameObjects collection with our players collection, and a join clause does just that:

var objectColors = from o in gameObjects
 join p in players on o.PlayerID equals p.ID
 select new { o.ID, p.TeamColor };

A join clause is one of the more complex clauses in the LINQ world, but also one of the more useful ones.

A join clause is also a prime place to use an anonymous type, which we first looked at in Chapter 19. The

example above is a good example of when an anonymous type might be useful. If these results don’t have

to be returned from the method, it is simple enough to just work with it as an anonymous type.

A join clause has some similarities with a from clause. It also introduces a range variable. But contrasted

with using a second join clause, which simply produces all pairings of every item in one collection with

every item in the other, a join will only produce the pairs that meet some criteria, specified by the on X

equals Y portion of the join clause.

In order for a join to work at all, there must be some part of the two sequences that are equal to each

other. (Note that the equals keyword translates to the == operator. If you have overloaded == for a given

type, then you can use that type in a join clause.) You can’t use another comparison operator like < or >=.

The placement of the two sides of the equals keyword is critical. The left side of the equals must

reference an earlier range variable, while the right side may only reference the new range variable.

This is what database people call an inner join. In order for an object in either collection to show up in the

results, there must be a match found for it in the other collection. If there is no player found for a specific

game object, the game object will not be found in the resulting collection. Likewise, if a player has no

corresponding game objects, you won’t see the player in the resulting collection either.

Orderby Clauses

An orderby clause takes the given sequence and produces a new sequence that has been ordered in a

particular way. For example, you could sort all Player objects using a simple orderby clause like this:

Group Clauses 241

IEnumerable<Player> sortedPlayers = from p in players
 orderby p.UserName
 select p;

The default sort order is ascending order, though the ordering can be specified with either the ascending

or descending keyword at the end of the clause.

IEnumerable<Player> sortedPlayers = from p in players
 orderby p.UserName descending
 select p;

Note that you don't have to just stick with the name of a property for an orderby clause. You can sort on

the whole object (which makes more sense you’re using a type that has a natural sorting order like int or

string) or you can put in a more complicated expression in there as well.

You can also perform multi-level sorts by separating additional sort criteria with commas. For example:

IEnumerable<GameObject> sortedGameObjects = from o in gameObjects
 orderby o.PlayerID ascending, o.MaxHP descending
 select o;

This will sort by PlayerID first, from lowest to highest, then by MaxHP from highest to lowest.

Group Clauses

A group clause is another extremely powerful clause, though perhaps not quite as common. A group

clause is one that allows you to take a single sequence and bundle the elements into groups based on

criteria you supply. For example, the following query will take all game objects and separate them into

groups based on the PlayerID that each object belongs to:

IEnumerable<IGrouping<int, GameObject>> groups = from o in gameObjects
 group o by o.PlayerID;

This is the first query that we’ve seen that doesn't end with a select clause. A group clause is the other

way to terminate a query expression. But you’ll also notice that the variable type that we store these

results in is quite a bit different, and quite a bit more complex than what we've seen before. (This nesting

of generic types is one of the reasons some people like var, because they don't have to type all that out.)

Rather than a simple IEnumerable<SomeType>, our type is IEnumerable<IGrouping<GroupType,

ObjectType>>. The IGrouping<TKey, TElement> interface defines what a group looks like. It is just a

simple collection object that contains the items in the group, and also has a Key property that holds the

group ID. So for example, in the previous code, each group's key would be the player ID that all items in

the group had, and the items in the group would be all of the game objects that belonged to that

particular player.

To illustrate how these groups are structured, the code below prints the groups from the previous sample:

foreach(IGrouping<int, GameObject> group in groups)
{
 Console.WriteLine(group.Key);
 foreach(GameObject o in group)
 Console.WriteLine(" " + o.ID);
}

The results of a group clause is essentially a collection of collections, where each collection can be

identified by its key.

You won’t get empty groups from a simple group statement.

242 Chapter 38 Query Expressions

Into Clauses

While a query expression ends with a select or group clause, it doesn’t actually have to end when you

encounter one. An into clause, sometimes called a continuation clause, allows you to take the results of a

select or group clause and put the value into another range variable. This is a little like a let clause in that

regard. Additional query clauses can follow an into clause:

var objectCountPerPlayer = from o in gameObjects
 group o by o.PlayerID
 into playerGroup
 select new { ID = playerGroup.Key, Count = playerGroup.Count() };

You can see that the into clause above allows us to continue past the group clause and do more work.

In this particular example, because the into follows a group clause, the type will be some sort of

IGrouping. We create another anonymous type that has an ID, based on the player that the group is for,

and a Count property that is the total number of game objects that belong to each player.

An into clause can follow both group and select clauses.

Group Joins

There is one final type of clause, assembled from other clause keywords, that is both powerful and

somewhat convoluted. This is the group join, which is something of a hybrid between a group clause and

a join clause. (Bet you didn’t see that coming!)

Similar to a join clause, a group join combines together two other sequences of data.

A normal join clause will take two collections and pair up elements that belong to each other, as defined

by sharing some key. After the join clause, you are able to access the matching object from each

collection together, at the same time. A caveat to this is that if an object in either sequence didn't match

something in the other, then you will never see it as a result. A group join is a little different in this regard.

Similar to a join, a group join operates on two collections, and objects are matched together. But more

precisely, with a group join, all items in the second collection are bundled together into a group that

belongs to a single item in the first collection. This applies even if there were no items in the second

collection that belonged to an item in the first collection (which results in an empty group).

With a normal join clause, what you have to work with is the two objects that matched. After a group join,

you have the object from the first collection, followed by a (possibly empty) IEnumerable of the items

that belonged to it from the second list.

A group join will make more sense with an actual example, so here is one:

var playerObjects = from p in players
 join o in gameObjects on p.ID equals o.PlayerID into objectsOwnedByPlayer
 select new { Player = p, Objects = objectsOwnedByPlayer };

foreach(var objects in playerObjects)
{
 Console.WriteLine(objects.Player.UserName + " has the following objects:");
 foreach(GameObject o in objects.Objects)
 Console.WriteLine($" {o.ID} {o.CurrentHP}/{o.MaxHP}");
}

First thing's first: the syntax. A group join is performed by a somewhat normal join clause, followed

immediately by an into clause.

Query Syntax and Method Call Syntax 243

After the group join, you can access the item from the first collection with the same name as before, and

the matching items from the second collection through the name indicated by the into clause.

The above group join starts with all of the game objects and bundles them into groups based on IDs from

the first collection (players). Each player ends up with a group, even if it is an empty group. (Game objects

that didn’t match with any player are left out of the results.) The code at the end iterates through the

results and prints it out, to show how you might interact with data that comes out of a group join.

Query Syntax and Method Call Syntax

A key component of query expressions is that, in addition to the query syntax that we’ve been learning

here, there is a second syntax for writing these queries. This second syntax is called method call syntax,

and—surprise, surprise—it is done through simple method invocations.

For every type of clause we’ve seen above, there is a method that is available that does the exact same

thing. All of these methods are extension methods (see Chapter 36) on the type IEnumerable<T>.

The following list outlines how the above clauses are turned into the method call syntax:

 from clauses turn into the collection object that you want to begin invoking methods on.

 select clauses turn into invocations of the Select method.

 where clauses turn into invocations of the Where method.

 let clauses do not have exact translations.

 join clauses turn into invocations of the Join method.

 orderby clauses turn into invocations of OrderBy, OrderByDescending, ThenBy, and

ThenByDescending.

 group clauses turn into invocations of the GroupBy method.

 Group joins turn into invocations of the GroupJoin method.

These methods make heavy use of lambda expressions, which we saw in Chapter 37. As a simple

example, the following code shows the same functionality in both query syntax and method call syntax:

IEnumerable<int> aliveIDs1 = from o in gameObjects
 where o.CurrentHP > 0
 select o.ID;

IEnumerable<int> aliveIDs2 = gameObjects.Where(o => o.CurrentHP > 0).Select(o => o.ID);

There are quite a few other query-related methods that exist on the IEnumerable<T> interface that have

no query syntax equivalent. We won’t go through those here, but taking a peek at them someday will

probably be worth your time.

Queries are Lazy When Possible

It should be pointed out that queries (both syntaxes) are “lazy,” meaning only the bare minimum is

performed for any given result. For example, consider the following query expression and foreach loop:

IEnumerable<GameObject> aliveObjects = from o in gameObjects
 where o.CurrentHP > 0
 select o;

foreach(GameObject o in aliveObjects)
 Console.WriteLine($"{o.ID} is alive.");

After the query is built and assigned to aliveObjects, but before the foreach, absolutely none of the code

in the query expression has been executed.

244 Chapter 38 Query Expressions

As the foreach loop begins looping over the items in aliveObjects, just enough of the query is executed

to produce the next item.

For example, the first time through the foreach loop, only enough items from the original gameObjects

collection will be looked at to find one where its CurrentHP is more than 0.

Lazy evaluation can be bad or good. On one hand, if you never actually walk through the entire result set,

then the query doesn’t have to process every single item. Since queries can get quite complicated and

data sets can be very large, this can save a lot of time.

On the other hand, if you end up evaluating a query more than once, it can be quite costly. This can be

solved by converting the results to an array or list, using the ToArray() or ToList() methods respectively.

Either of these will cause the query to be evaluated fully once, but then caches the results in the array or

list, preventing you from needing to reevaluate it again the second time.

Answers: (1) from clause. (2) select and group. (3) where clause. (4) True. (5) join clause.

Try It Out!
Full Health. Based on the GameObject class defined earlier in this chapter, you could say that a

particular GameObject is at full health if its CurrentHP was equal to its MaxHP. Based on this

definition of full health, write query expressions that return the following:

1. A collection of all game objects that have full health.

2. A collection of the IDs of all game objects that have full health.

Try It Out!
Percent Health. Write a query to produce game objects grouped by their owner (PlayerID) and

ordered based on the percent health (CurrentHP / MaxHP).

Try It Out!
Back to Procedural Programming. Take the query expression below and rewrite it without using any

LINQ methods or any LINQ keywords, just by using if statements and loops.

IEnumerable<GameObject> aliveObjects = from o in gameObjects
 where o.CurrentHP > 0
 select o;

Try It Out!
Query Expressions Quiz. Answer the following questions to check your understanding. When you’re

done, check your answers against the ones below. If you missed something, go back and review the

section that talks about it.

1. What type of clause (or what keyword) is used to start a query expression?

2. What two types of clauses can terminate a query expression?

3. What clause is used to filter data?

4. True/False. You can order by multiple criteria in a single orderby clause.

5. What clause is used to combine two related sets of data together?

39
39 Threads

Back in the day, all computers had one processor. Nowadays, they usually have a lot more than one.

(More specifically, this is usually done by having multiple cores that are all a part of the same processor

chip.) I’m currently working on a computer with four processors, each of which is “hyper-threaded,”

making it appear that I have a total of eight processors. And this computer isn’t even all that fancy. There

are machines out there that have 16 or 32 processors, or even hundreds or thousands, all working

together. (Turns out, they’re kind of expensive.) You could even set up a program to hand off work to

other computers across the network, giving you an unlimited number of processors at your disposal.

Computers have a lot of power, but unless you intentionally structure your code to run on multiple

processors, it will only ever use one. Think of all of that raw computing power going to waste!

In this chapter, we’re going to take a look at threading. The basic process of threading is that we can take

chunks of code that are independent of each other and make them run in separate threads. A thread is

almost like its own program, in that the computer will run multiple threads all at the same time on

different processors. (For the record, a thread is not its own program. It still shares memory with the

program/process that created it.)

When many threads are running, each processor will run a thread for a while, and then suddenly switch it

out for a different one. The computer gets to decide when it is time to make the switch and which thread

In a Nutshell
 Threading allows you to run sections of code simultaneously.

 Starting a new thread: Thread thread = new Thread(MethodNameHere); thread.Start();

 In the above code, the method must have a void return type with no parameters.

 Alternatively, ParameterizedThreadStart lets you pass in a parameter (object) to the

method.

 You can wait for a thread to finish with the Join method: thread.Join();

 If you need to worry about thread safety (preventing problems when multiple threads are

modifying the same data), you can use the lock keyword: lock(aPrivateObject) { /* code in

here is thread safe */ }.

246 Chapter 39 Threads

to switch to, but it does a pretty good job, so that’s one less thing we need to worry about. This switching

is called a context switch.

All threads will be treated fairly equally, but they will get switched around from time to time. It’s

something that you need to be aware of, and even write your code in a way that can handle it. If you fail

to do it correctly, you can end up with strange intermittent errors that only appear to happen on Tuesdays

where you ate tacos for lunch and the moon is waxing. We’ll talk more about dealing with this in the

section about Thread Safety.

There’s a lot that goes into threading, and we simply don’t have enough time to discuss all of the ins and

outs of it here. So we won’t. Instead, we’ll take a look at the basics of threading, and I’ll allow you to dig

further into threading as you need it.

Threading Code Basics

We’ll start out with a very simple example of how to start a new thread. To get started, let’s say we have

some work we want to do on a separate thread. This can really be anything, but let ’s say it is this:

public static void CountTo100()
{
 for (int index = 0; index < 100; index++)
 Console.WriteLine(index + 1);
}

To run this in a separate thread, you will need to create a new thread, tell it what method to run, and then

start it. The following code does this:

Thread thread = new Thread(CountTo100);
thread.Start();

You’ll also need to add a new using directive to get access to the Thread class (using System.Threading;)

like we discussed back in Chapter 27.

The first line creates a new Thread object, but take a look at that constructor. We’ve passed in the method

that we want it to run as a parameter. This is using a delegate. (Another good use of delegates!) This

happens to be the ThreadStart delegate, which has a void return type and no parameters, so the

method we use needs to match that.

After we call the Start method, a new thread will be created and will start executing the method we told it

to run (CountTo100). At that point, we have two threads: the original thread, and the new one that

running in CountTo100.

To have the original thread wait at some point for this new thread to terminate, we use the Join method:

thread.Join();

When a thread runs into this statement, it freezes and waits there until the other thread finishes up,

effectively joining the execution of the two threads.

You can create as many threads as you want. As I mentioned earlier, they ’ll all get their fair share of the

total processor time. (Though you don’t want to have too many threads, because it takes time to create

them all, and more threads means more frequent context switches, which take time.)

For example, here is some code that runs two threads and waits for them to finish:

using System;
using System.Threading;

Using ParameterizedThreadStart 247

namespace Threading
{
 class Program
 {
 static void Main(string[] args)
 {
 Thread thread1 = new Thread(CountTo100);
 thread1.Start();

 Thread thread2 = new Thread(CountTo100);
 thread2.Start();

 thread1.Join();
 thread2.Join();

 Console.ReadKey();
 }

 public static void CountTo100()
 {
 for (int index = 0; index < 100; index++)
 Console.WriteLine(index + 1);
 }
 }
}

Try running this code. There are two threads that are both going to print out the numbers 1 through 100.

Typically, you’ll see one thread active for a little while, and then the other active. So you might see the

numbers 1-24 printed out, and then that thread will stop and the other thread will print out, say, 1-52, and

then the first one will print out 25-87, and so on, until they both finish up.

You’ll never get the exact same output the second time around. Things will be a little bit different because

the operating system is doing context switches as it sees fit. That ’s an important point to remember about

threads: the timing and ordering is unpredictable. This can be a big pain when you’re trying to debug a

problem in a multi-threaded program, and it is worth considering before you decide to run things on

separate threads.

One other thing that I should point out is that you can make the current thread “sleep” for a certain

amount of time. This is useful when you know one thread needs to wait a while for another thread to do

something. To make the current thread sleep, you can call the static Sleep method in the Thread class:

Thread.Sleep(1000);

The parameter that you pass in is the amount of time to sleep for, measured in milliseconds. So 1000 is 1

second. The code above will cause the current thread to stop execution for one second, while other

threads have a chance to run.

Using ParameterizedThreadStart

In the code we were using above, we used the ThreadStart delegate. This meant the method we ran

could have no parameters, which meant that we couldn’t pass any information to the method we were

calling, which is somewhat limited.

There is an alternative that allows us to use methods that take a single parameter instead. To do this, we

use the ParameterizedThreadStart delegate instead. This delegate has a return type of void and a

single parameter of type object. Because the parameter is of type object, we can basically use it for

anything, as long as we cast it correctly to the right type.

For example, consider this variation of our CountTo100 method, which counts to any number you want:

248 Chapter 39 Threads

public static void CountToNumber(object input)
{
 int n = (int)input;
 for (int index = 0; index < n; index++)
 Console.WriteLine(index + 1);
}

This has a parameter of type object, which we cast to an int, and use through the rest of our method.

Because this method matches the ParameterizedThreadStart delegate, we can create a new thread,

with a reference to this method, and start it with a parameter, which gets passed along into our method:

Thread thread = new Thread(CountToNumber);
thread.Start(50);

Using object allows us to use any type imaginable, as long as we’re willing to cast. It’s unfortunate that

there isn’t a version of ParameterizedThreadStart that uses generics, but there isn’t. Furthermore, while

the ParameterizedThreadStart doesn’t allow you to return information, you could easily construct an

object that has a property that can store what would have been returned.

To illustrate, below is a simple little program that will do division on a separate thread (yeah, it ’s overkill):

using System;
using System.Threading;

namespace Threading
{
 public class DivisionProblem
 {
 public double Dividend { get; set; } // the top
 public double Divisor { get; set; } // the bottom
 public double Quotient { get; set; } // the result (normally would be returned)
 }

 class Program
 {
 static void Main(string[] args)
 {
 Thread thread = new Thread(Divide);

 DivisionProblem problem = new DivisionProblem();
 problem.Dividend = 8;
 problem.Divisor = 2;

 thread.Start(problem);
 thread.Join();

 Console.WriteLine("Result: " + problem.Quotient);

 Console.ReadKey();
 }

 public static void Divide(object input)
 {
 DivisionProblem problem = (DivisionProblem)input;
 problem.Quotient = problem.Dividend / problem.Divisor;
 }
 }
}

Thread Safety 249

Thread Safety

We’ve covered the basics of threading, but it is worth looking at another, more advanced threading topic.

Not all situations need to be worried about this, but some do, so it is worth knowing a little about.

In the examples that we’ve done so far, each thread has been working with its own data. But what if there

was something that they had to share? Remember that threads get swapped out whenever the operating

system decides, and a thread may actually be in the middle of something important when that context

switch hits.

To help explain the concept of thread safety, I’m going to draw on a real-world example. Imagine you’re

driving your car down a road that has three lanes. You’re on the outside lane (the black car), and another

car is on the inside lane (the white car):

You want to change lanes to the middle. The normal process is that you look over into that other lane,

make sure it is clear, and if so, you move over. But what if the white car was doing the same thing, without

you knowing it? The other driver looked as well, saw that the lane was clear, and moved over. Unless one

of you realizes the problem, you’re headed for a crash.

Like with the cars, when you have multiple threads that are using any of the same resources, if you aren’t

careful, two threads can run into each other and cause problems.

Imagine even the simple problem of adding one to a variable. To do this, the computer will do the

following steps:

 Read the current value from the variable.

 Do the math to figure out the result of adding 1 to the value.

 Store the new value back in the variable.

Now, imagine that two separate threads are both given the task of adding 1 to the variable. In a normal

“happy” scenario, this variable should get incremented twice.

Try It Out!
Frog Racing. Let’s make a little simulator for a frog race. The idea is that there are multiple frogs that

are lined up and competing against each other to jump across a finish line. In order to finish the race,

a frog needs to jump a total of 10 times. Each frog runs on its own thread, and we’ll have three total.

To do this, create a method that matches the ParameterizedThreadStart delegate. As input, the

object that is passed in will be the frog’s number. Inside of that method, use a loop to print out “Frog

#X jumped” and then use Thread.Sleep and a Random object to have the frog/thread sleep for a

random amount of time between 0 and 1 seconds. When the frog/thread has jumped ten times and

the loop ends, print out “Frog #X finished.” (Generating random numbers is discussed in Chapter 16.)

Start the frog race by creating three separate threads and starting them all with different numbers.

Wait for each thread to finish using the Join method.

250 Chapter 39 Threads

But let’s see how things could go bad with multiple threads. Let’s say our variable starts with a value of 1.

In theory, both threads should increment the variable, and it should end up with a value of 3. But the

following could happen as well:

 Thread #1 reads the current value from the variable (1).

 Thread #1 does the math to figure out the result of adding 1 to the value (2).

 Thread #2 reads the current value from the variable (which is still set to 1).

 Thread #2 does the math to figure out the result of adding 1 to the value (getting 2 also).

 Thread #2 stores the new value back into the variable (2 gets assigned back).

 Thread #1 stores the new value back into the variable (once again, 2 is assigned back).

Both threads did the work they were supposed to do, but because the two are running at the same time

(or because of a context switch) things didn’t turn out the way they should, and the variable is left with a

value of 2, instead of 3 like it should be.

This example is kind of a toy problem, but the reality is that any time you have more than one thread

modifying some specific data, you’re likely to run into problems like this.

We want to be able to address this problem and make certain sections of code that we know might be

problematic be thread safe, meaning that the code can prevent bad things like this from happening when

multiple threads want to use it.

If we have a certain block of code that modifies data that could be accessed by other threads, we call that

section a critical section. We will want to make it so that only one thread can get inside it at a time. This

principle of only allowing one thread in at a time is called mutual exclusion and the mechanism that is

used to enforce this is often called a mutex.

To enter a critical section, we require that the thread that is entering the section acquire the mutual

exclusion lock for a specific object. When the thread has this lock, it can enter the critical section and

execute the code. When it’s done, it releases the lock, freeing it up for the next thread. If a thread shows

up and tries to grab the lock that is already taken, the thread will be suspended until the lock is released.

Doing this in code is pretty simple. The first step is to create some sort of object that is accessible to

anything that needs access to the critical section, which can act as the lock. Often, this is best done with a

private instance variable in the same class as the data that is being modified:

private object threadLock = new object(); // Nothing special needed. Any object will do.

You could alternatively use a static variable instead of an instance variable if you need thread safety

across all instances of the class.

To actually make a block of code thread safe, you simply add a block surrounding the critical section with

the lock keyword:

lock(threadLock)
{
 // Code in here is now thread safe. Only one thread at a time can be in here.
 // Everyone else will have to wait at the "lock" statement.
}

That’s the basics of threading in C#. There is a lot that goes on in multi-threaded applications, and there

are entire books dedicated to the subject. We can only cover the basics here, but it should give you an

idea of the fundamentals.

40
40 Asynchronous Programming

In this chapter, we’re going to continue what we started in the previous chapter, and introduce the best

way to do most asynchronous things in C#. This uses the async and await keywords that were introduced

into the C# language in C# 5.0.

Asynchronous programming is hard. There’s not enough space in this chapter to cover every single detail

and strange corner case. Rather, the goal of this chapter is to introduce you to the syntax surrounding

calling code asynchronously, and get you to a point where it’s not a deep, dark mystery, but something

you feel comfortable with doing, while leaving some of the finer points of asynchronous programming for

a later point in time.

In this chapter, we’ll start by defining what asynchronous programming is and why you might use it. Then

we’ll take a look at how asynchronous programming has evolved in C# over time. We’ll finally introduce

the Task-based Asynchronous Pattern and the async and await keywords, which serve as the basis of

modern asynchronous programming in C#.

What is Asynchronous Programming?

Asynchronous programming means taking a piece of code and running it on a separate thread, freeing up

the original thread to continue on and do other things while the task completes.

In a Nutshell
 Asynchronous programming is where you take a particular task or chunk of code and run it

on a separate thread, outside of the main flow of execution.

 C# has used many ways of achieving asynchronous programming in the past.

 The Task-based Asynchronous Pattern (TAP) uses the Task and Task<TResult> class to

represent a chunk of work that is running asynchronously.

 Tasks can be awaited with the await keyword (if the method is marked with async), allowing

you simple syntax for scheduling additional work that happens once the task has been

completed: HighScores = await highScoreManager.LookupScores();

252 Chapter 40 Asynchronous Programming

The typical use case is when you start something that you know is going to take a while to happen. “A

while” is measured in computer time, so we may be talking only a few milliseconds (or not). Some

common scenarios include making a request to a server or a website, making requests to the file system,

while running a particularly large or long running algorithm that you’re using, or any other time where you

know a particular piece of code is going to take some work to get done.

Modern computers have a lot of computational power, and users are expecting responsive user

interfaces. Those two combined mean asynchronous programming is becoming more and more

necessary and important to know.

The opposite of asynchronous programming (sometimes called “asynchrony”) is synchronous

programming, and it’s what we’ve been doing up until now.

Approaches from the Early Days

There have been many approaches to doing asynchronous programming in C#’s past. While no longer

recommended or preferred, those older approaches are worth mention because they illustrate the

complexity of the problem, the beauty of the final solution, and the decade long journey it took to get

there.

Throughout this section, we’ll stick with a recurring example of getting a list of high scores for a game

from a web server. This will help us see the trade-offs of the various approaches that we’ll see.

A Synchronous Approach
Let’s start by looking at how we might do this task (looking up high scores) using a traditional synchronous

approach. That means blocking and waiting for the results to come back before moving on. Obviously, this

defeats the purpose of what this chapter is talking about, but it is a worthwhile exercise anyway. The

biggest thing we’ll gain from this is an example of what “ideal” code looks like here. Synchronous requests

are straightforward, and the method calls are clean and simple.

To do our high score lookup in a synchronous fashion, we might use code like this:

Score[] highScores = highScoreManager.LookupScores();

That’s relatively straightforward. We just call the method directly, which returns the results upon

completion, and we store them in an array.

I’m skipping the actual implementation of the LookupScores method. I know that is going to be a

disappointment to some people, but it’s irrelevant to the current discussion. The point is, it doesn’t matter

what the work is, just that it’s some sort of long running task that we really don’t want to sit around

waiting for. (But if you’re dying of curiosity, one possible way to do this might be with an HTTP request

using C#’s WebClient class, which returns the results in a text stream of some sort, which could then be

parsed and turned into a list of scores.)

While that code is short and easy to understand, it’s not asynchronous.

Creating Threads Directly
Having seen a synchronous version of our high scores lookup problem, let’s turn our attention to doing

this in an asynchronous way.

Our first option is to create a thread like we did in the last chapter. It’s using the most basic building block

(starting a thread directly) but it certainly fits the definition of asynchronous programming.

Based on what we learned before, this might look something like this:

Approaches from the Early Days 253

Thread thread = new Thread(() =>
{
 Score[] highScores = highScoreManager.LookupScores();
 // Do something with the results.
 HighScores = highScores;
});

thread.Start();

That code isn’t so terrible. It gets the job done for sure. But as we’ll soon see, there are better ways of

structuring this code.

Using the ThreadPool
While directly creating a thread was our approach in the last chapter, it has long been discouraged. One

obvious problem with this approach has been that it’s pretty easy to end up with so many threads that

you drown the CPU. You spend far too much of your time switching between threads, and far too little

doing real work.

C# has the concept of a thread “pool”, wrapped up in the ThreadPool class. The idea here is that the .NET

runtime can provide a collection of threads that already exist (you don’t need to create them yourself) that

can then be reused to run any generic task. The ThreadPool class has the smarts to maintain the optimal

number of threads.

When you have a chunk of work that you need done asynchronously, you can just hand it off to the

thread pool. This is done by using the static QueueUserWorkItem method:

ThreadPool.QueueUserWorkItem(data =>
{
 Score[] highScores = highScoreManager.LookupScores();
 HighScores = highScores;
}, null);

This is pretty close to what we had in the previous iteration. This code uses a lambda statement. We could

have used a named method instead, but this type of thing is a perfect use for lambda statements, so I

went with that approach here in the sample code as well.

This gets us over the problem of not knowing when we should create new threads and when we should

reuse an old thread, and we were also able to ditch the Thread.Start call.

You’ll notice with this approach that the method required a parameter (data), which I filled in with null.

This is more along the lines of the ParameterizedThreadStart that we talked about in the last chapter.

At any rate, this is a bit simpler than what we had before. Using the thread pool is preferable to not using

it, but it’s also still not our final solution. So let’s keep looking.

Event-Based Asynchrony
The idea with the event-based asynchronous approach is that you call a method that is known to take a

long time and it returns immediately. When the method completes asynchronously, an event on the class

is raised.

Using Event-based asynchrony like this, we have to subscribe to the right event, and in most cases, the

asynchronous method will end with the word Async:

HighScoreManager highScoreManager = new HighScoreManager();
highScoreManager.HighScoresLoaded += OnHighScoresLoaded;
highScoreManager.LookupScoresAsync();

 And elsewhere we define our event handler method:

254 Chapter 40 Asynchronous Programming

private void OnHighScoresLoaded(Score[] highScores)
{
 // Do something with the results.
 HighScores = highScores;
}

In the past, this has been a rather common approach to long running tasks. As you explore the .NET

Standard Library that C# offers, you’ll inevitably see methods that end with Async like this, which expect

you to subscribe to a related event, and put your code for dealing with the results in the event handler.

While it works, it’s definitely a little annoying that you’ve now separated your code into two separate

pieces. You have the part that sets up and calls the method, and then in a different location, you have the

method for dealing with the results. You’ll see this same problem in the next few iterations as well.

A second problem we introduce with this is the event subscription. The second time we make this

request, it’s easy to forget that we may already have subscribed to the event (with the +=) and we may

accidentally subscribe again. We can work around that but it does create more things you have to

remember to do as a developer.

The AsyncResult Pattern
Moving along in our tour of asynchrony, our next option is the AsyncResult pattern. This approach is

similar to various fast food restaurants and other places where you make your order or request, and

you’re given a ticket of some sort. When it’s done, you can return the ticket to get your order (the results).

Or you can take your ticket and stand at the counter waiting impatiently.

Using this pattern, you typically start with a synchronous method (let ’s call it X). You then add a BeginX

method and EndX method to the mix. The Begin method starts the synchronous method running in an

asynchronous way and returns your “ticket” in the form of an object that implements the IAsyncResult

interface. You can use this object to periodically check if the asynchronous task is completed or not, or

you can call the End method, passing in the IAsyncResult that you got from calling the Begin method,

which will block, and cause the thread to do nothing else until the results come back.

This sometimes shows up in the form of three distinct named methods (X, BeginX, and EndX) but the

easiest way to implement this is by using some functionality on the Delegate class:

HighScoreManager highScoreManager = new HighScoreManager();
Func<Score[]> scoreLookupDelegate = highScoreManager.LookupScores; // Synchronous version.

IAsyncResult asyncResult = scoreLookupDelegate.BeginInvoke(null, null);

HighScores = scoreLookupDelegate.EndInvoke(asyncResult);

In that second line, we store the LookupScores method in a delegate type. Remember from the chapter

on delegates (Chapter 32) that we can usually get away with some variation of Action or Func, and that’s

what we’ve done in this case. (Func<Score[]> is a delegate for any method that has no parameters and

returns an array of Score.)

Once stored in the delegate, we can start off the process by calling BeginInvoke. The two null values are

for a callback method that should be called when the asynchronous task is completed, and a parameter

that can be passed into the callback method.

If the method we were trying to make asynchronous had any parameters, we’d be able to list them in

BeginInvoke before those two parameters.

In the last line of that code, we stop and wait for the task to complete with EndInvoke. That obviously

defeats the purpose of making it asynchronous in the first place, but in a more realistic scenario, you

The Task-based Asynchronous Pattern 255

wouldn’t call EndInvoke immediately. Instead, you’d continue on to other things, and you could use the

IAsyncResult that comes back to keep track of the asynchronous task’s progress.

The best part about this delegate approach is that you can use it on any method. There are no limitations

on it. It’s a pattern that’s infinitely reusable.

Unlike the event-based version, you don’t have to worry about subscribing and unsubscribing correctly.

There’s no way to make that mistake with this approach.

At this point, you might be starting to feel like this async stuff just seems to be getting uglier and uglier,

and more and more complicated. I definitely think that’s the case so far. But let’s keep going. It gets better

from here.

Callback Methods
One of the cleanest ways we could structure an asynchronous call is to have our method run

asynchronously, but include a parameter that allows the programmer to supply a method that will be

called on completion. The method you pass in (in the form of a delegate) is called a callback method.

public void LookupScores(Action<Score[]> callbackMethod)

This can be called like this, using a lambda statement:

highScoreManager.LookupScores(scores => { HighScores = scores; });

We used a lambda here, but it could have been a normal named method as well.

This code is actually fairly readable. It’s not quite as good as the original synchronous version, but it’s the

cleanest version we’ve seen so far. It probably seems strange that LookupScores has a parameter that’s a

delegate, until you realize that this is a callback method. We’re definitely making progress though.

The Task-based Asynchronous Pattern

As you can see, asynchronous programming has been a mess in C# in the past. And it’s not just C#. Every

language and every programmer has struggled with this. Obviously we need a better solution that what

we’ve seen so far.

C# 4.0 introduced yet another pattern for solving this problem: the Task-based Asynchronous Pattern

(TAP). TAP doesn’t magically solve our code clarity problems, but it lays the foundation for what came in

C# 5.0, which does (for the most part).

TAP introduced two new classes: Task and Task<TResult>. Task represents a long running asynchronous

chunk of work, while Task<TResult> is a generic variant that additionally serves as a promise of a

resulting value when the task is completed. Task is used when the asynchronous task doesn’t return a

value or when you don’t care to do anything with the returned value. When you care about the result, you

would use the generic version, which has the option of grabbing the result from the task upon completion

and doing something more with it.

Let’s look at how we’d implement our high score lookup using the TAP approach:

public Task<Score[]> LookupScores()
{
 return Task.Run(() => {
 // Do the real work here, in a synchronous fashion.
 return new Score[10];
 });
}

256 Chapter 40 Asynchronous Programming

Instead of directly returning the score array, we return a Task that contains it. More accurately, we return

a task that promises to give us an array of scores when it completes. In this case, because we want to do

something with the result, we want to use the generic version of Task, which promises a resulting value

upon completion.

Outside of this class, we can handle a Task return value in a few different ways. The first way would be to

just ignore it. If it were an asynchronous task that is “fire and forget,” we could just ignore the return

value.

The second option is to take the task and call Wait() on it:

Task<Score[]> scoresTask = highScoreManager.LookupScores();
scoresTask.Wait();
HighScores = scoresTask.Result; // Calling Result will actually also block, as though you had called Wait.

Wait causes the current thread to block, doing nothing else until the task finishes. This isn’t the desired

effect because it forces the main thread to suspend. It’s not happening asynchronously anymore.

Which leads us to the third option: ContinueWith.

Task<Score[]> scoresTask = highScoreManager.LookupScores();
scoresTask.ContinueWith(task => HighScores = task.Result);

ContinueWith specifies a second method (another lambda expression in this case) that should execute

when the task finishes. That code doesn’t happen when the flow of execution reaches that line in the

code. Rather, the continuation is only scheduled then, and executed when the task actually completes at

some later point in time.

The ‘async’ and ‘await’ Keywords

We’re now ready for the latest and greatest in asynchronous programming in C#. Building off of the TAP

pattern, C# 5.0 made this far simpler and easy to read by integrating it into the language itself. It does this

by adding two keywords to the language: async and await.

The Task and Task<TResult> classes still function as the core building block of asynchronous

programming with these new keywords. You’ll still create a new Task or Task<TResult> using Task.Run,

like in the previous section. The real difference happens when you get a Task returned to you from a

method, where you can do something when the task completes or do something with the result the task

gives you upon completion:

Score[] highScores = await highScoreManager.LookupScores();

Before looking at what that code actually does, let’s compare it to the synchronous version, right at the

start of this chapter. Remember this guy?

Score[] highScores = highScoreManager.LookupScores();

It’s surprisingly similar. And yet, it is asynchronous. While previous approaches to asynchronous

programming have been convoluted, using Task or Task<TResult>, combined with the new await

keyword, everything seems to fall in place and we get a clean solution.

So what does that await keyword do exactly?

Well let’s start by rounding that piece of code out a little bit. I’m going to put some Console.WriteLine

statements in there and wrap it in a method:

public async void GrabHighScores()
{

The ‘async’ and ‘await’ Keywords 257

 // Preliminary work...
 Console.WriteLine("Initializing asynchronous lookup of high scores.");

 // Start something asynchronously.
 Score[] highScores = await highScoreManager.LookupScores();

 // Work to be done after completion of the asynchronous task.
 Console.WriteLine("Completed asynchronous lookup of high scores.");
}

Let’s start there in the middle, with the await keyword, since it’s the central point of this whole discussion.

That LookupScores method returns a Task<Score[]>—an uncompleted task with the promise of having a

Score[] when finished. Any time a method returns a task, you can optionally “await” it with the await

keyword, which creates a situation similar to the ContinueWith that we saw in the previous section.

The preliminary code before the await happens immediately, by the thread that called the method.

Once an await is reached, the thread that called the method jumps out of the method and continues

merrily on its way to something else. The asynchronous code will either happen on a separate thread (if

you use Task.Run) or perhaps by no thread at all (if it’s waiting for the network or file system to complete

some work).

But everything after the await is scheduled to happen when the task finishes. The await effectively slices

the method in two while still using syntax that is easy to understand.

You’ll notice from the previous code sample that the await keyword also extracts the value out of the

Task<Score[]>. We don’t have to call Task.Result to get it. If a method returns a generic Task<TResult>,

then the await keyword will do that for you. In other words, it extracts the promised value out of the task

upon completion.

If a method returns just a Task, the non-generic version which doesn’t have a promise value, you can still

await it. It just has to be structured as a statement, rather than an assignment.

Console.WriteLine("Before await.");
await SomeMethodThatReturnsTask();
Console.WriteLine("After await.");

The await keyword can’t be used just anywhere. It can only be called inside a method that is marked with

the async keyword. You can see that I added that in the earlier code:

public async void GrabHighScores()

You can’t put the async keyword on just any method. There are some limitations. The official rule is that

you can put async on anything that has a void return type, or a valid “awaitable”. The rules that define

what a valid awaitable is are kind of complicated, so we’ll skip the details here. In short though, you’ll

nearly always use either the non-generic Task class, the generic Task<TResult>, or more rarely, the

generic ValueTask<TResult> struct. In the extremely unlikely event that none of these suit your purposes,

you can look up the rules for making a custom awaitable, and make your own.

When do you use each of the four standard options?

 An async method with a void return type implies a fire-and-forget nature; you don’t care when it

finishes, just that it happens asynchronously.

 An async method with a Task for the return type implies you care about when it finishes,

including scheduling stuff after the task completes (with await) but that the task itself doesn’t

return any meaningful data.

258 Chapter 40 Asynchronous Programming

 An async method that returns the generic Task<TResult> implies the task returns a value (it

promises a value upon completion) and allows you to grab it when it ’s done.

 ValueTask<TResult> is used in similar instances as Task<TResult>, with the difference being

ValueTask<TResult> is a value type instead of a reference type like Task<TResult>. (ValueTask is

not accessible out of the box. You must add a reference to the System.Threading.Tasks.Extensions

NuGet package as described in Chapter 46.)

Asynchronous programming can be tricky. This chapter has hopefully demystified it to a large extent, but

it takes a lot of time and practice to get good at asynchronous programming (in any language). But at least

we’ve now gotten that particular adventure off on the right foot.

Answers: (1) Running code on a separate thread, usually to improve responsiveness or speed. (2) A: Yes. B: No. C: Yes. (3)

async. (4) await. (5) void, Task, Task<TResult>, ValueTask<TResult>, etc. (6) False. (7) B, A, C.

Try It Out!
Asynchronous Programming Quiz. Answer the following questions to check your understanding.

When you’re done, check your answers against the ones below. If you missed something, go back

and review the section that talks about it.

1. Define asynchronous programming.

2. Indicate which of the following could benefit from asynchronous programming:

a. A computationally expensive process like copying all pixels from one image to

another.

b. A small math operation, like an addition or multiplication.

c. An operation that does little work of its own, besides waiting for a server to respond

across the Internet.

3. What keyword is used to indicate that a method may complete some of its work

asynchronously after returning?

4. What keyword is used to indicate that code further down the method should not be

executed until an asynchronous task has finished?

5. Identify at least 3 return types that can be used with the async keyword.

6. True/False. Code is always faster when ran asynchronously.

7. Matching. Match the asynchronous return type on the left with the correct option on the

right:

____ void

____ Task

____ Task<TResult>

A. You care when the task finishes, but it does not have a

specific result to return.

B. You don’t care when the asynchronous task finishes; fire-

and-forget.

C. The asynchronous task has a specific result that it

returns.

41
41 Dynamic Objects

Types are a big deal in C#. We spend a lot of time defining what a new class or struct will look like. We

worry about getting inheritance hierarchies right. We carefully cast to and from types, and make sure that

everything is of the type it ought to be when assigning variables and calling methods.

Throughout the bulk of the C# world, types are considered “static” at run-time. (Not to be confused with

the static keyword.) That is, you define a class, add properties and methods, and work with the class in

the rest of your code. But the type can’t change while the program is executing. Methods can’t be added

while the program is running. New properties can’t be defined on the fly. This puts C# in the category of

statically typed languages. Or it could be said that the compiler does static type checking.

There are some advantages and disadvantages to this. The primary advantage is that the compiler can

guarantee that everything you do is “safe.” If you attempt to call a method on an object, the compiler

makes sure that the method exists. Reading a value from a property will work, because you know it will be

there. Any errors of this nature are caught when you try to compile your program.

On the other hand, having the flexibility to add new methods, properties, and other elements at run-time

is a powerful proposition. This is called dynamic typing, and a number of languages (Python, Ruby,

JavaScript, Lua, etc.) allow this on any object. To be clear, with dynamic typing, the system still makes sure

that the member is there when used; it just does so at run-time instead of at compile time. This is called

dynamic type checking.

In a Nutshell
 Dynamic type checking happens at run-time, not compile time.

 The dynamic type tells the compiler to do dynamic type checking for the variable.

 Dynamic objects allow you to add and remove members at run-time.

 IDynamicMetaObjectProvider tells the dynamic language runtime how to look up members

dynamically.

 ExpandoObject allows for simple, growable dynamic objects.

 Deriving from DynamicObject allows for greater control over dynamic members.

260 Chapter 41 Dynamic Objects

Back in C# 4.0, C# added the ability specify that certain variables should be checked at run-time instead of

at compile time (dynamic type checking). It also added support for dynamic objects—objects where

properties, methods, and other members could be determined or modified while running. This chapter

covers how to utilize both dynamic type checking and dynamic objects in your C# code.

Dynamic Type Checking

With the familiar statically typed variables, you know its type, and can perform operations on it. The

compiler can verify that operations that you do with it are safe at compile time. For example, in the

following code, it can verify that the string type actually has a Length property, or that Console actually

has a WriteLine method.

string text = "Hello World!";
Console.WriteLine(text.Length);

On the other hand, C# also has a dynamic type. Any variable or object can be stored in this type.

dynamic text = "Hello World!";
Console.WriteLine(text.Length);

Making something dynamic tells the compiler that it should not do static type checking. That is, it will not

check to make sure that methods, properties, operators, etc. actually exist on the type at compile time,

but rather, wait until run-time to check it. For example, look at the various operations that we attempt to

do on the text variable in the following code:

dynamic text = "Hello World!";
text += Math.PI;
text *= 13;
Console.WriteLine(text.PurpleMonkeyDishwasher);

None of these are things that can be done with a string. Indeed, if we had left the type of text as string,

this wouldn’t compile. But when the variable is made dynamic, we are telling the compiler, “Don’t verify

that the methods we attempt to use on this actually exist at compile time. Wait until the program is

running and you reach that code.” Since text has a type of dynamic, this code compiles. But because

string doesn't have the ability to add a double, multiply by an int, or have a PurpleMonkeyDishwasher

property, any of these will fail at run-time with a RuntimeBinderException.

When there is a dynamic variable, the compiler won’t fail just because it can’t find a needed member of

the type. Instead, it records some information about what is being requested in that particular spot

(particularly the name of the member being used) so that at runtime, it can dig through that information

and use it to figure out if the member exists or not.

While the code above shows that any object can be assigned to a dynamic variable (which we did with a

string) doing so just isn’t very practical unless the object is actually dynamic itself—that is, in some form

or fashion, the type can either change at run-time, or you don’t know what members it will have at

compile time.

Dynamic Objects and the Dynamic Language Runtime

C# allows you to define objects that are modifiable or constructed while the program is actually running.

Where this is the case, these objects are considered dynamic objects.

Dynamic objects were introduced in C# 4.0, when the Dynamic Language Runtime was added to the .NET

platform. The Dynamic Language Runtime, or DLR for short, is a component that provides all of the

tooling and infrastructure needed to enable dynamic typing and dynamic objects to the .NET platform.

Emulating Dynamic Objects with Dictionaries 261

The primary goal here was to allow dynamic languages such as Ruby (IronRuby) and Python (IronPython)

to be able to run on the .NET platform itself. A side product of that was the introduction of the dynamic

type and dynamic objects to C# as well.

Any type can be a dynamic object by implementing the IDynamicMetaObjectProvider interface. By

implementing this interface, you can tell the DLR how it should look up dynamic properties, methods, and

other members for a given type.

Unfortunately, IDynamicMetaObjectProvider is extremely low level, requiring you to do

“metaprogramming,” which requires your code to analyze other code and reason about it, and does so at

the expression and statement level. This is both tedious and error prone.

Fortunately, you will almost never need to implement IDynamicMetaObjectProvider unless you’re doing

something crazy like adding another new dynamic language to the .NET Platform. Instead, there are two

much simpler and more fun options: ExpandoObject and DynamicObject. We’ll talk about both of these

in some depth to illustrate how to use these, and skip the details of IDynamicMetaObjectProvider

(which deserves its own book).

Emulating Dynamic Objects with Dictionaries

The first thing we should talk about is how we might get dynamic-like behavior without using actual

dynamic objects. The reason for this is that is serves as a good frame of reference. All dynamic objects are

actually implemented in a similar way to what we’ll talk about here, just with better syntax.

If you wanted to emulate a dynamic object, where properties and methods can be added or removed on

the fly, one option is to use the Dictionary class (Chapter 25). Specifically, a Dictionary<string, object>

would allow us to add new data by name (much like a property name, just as a string instead).

For example:

Dictionary<string, object> poorMansDynamicObject = new Dictionary<string, object>();
poorMansDynamicObject["Name"] = "George";
poorMansDynamicObject["Age"] = 21;

By comparison, you could imagine having a normal class to represent the above with a Name and Age

property. But on the other hand, using a dictionary like this allows us to add in any new “property” that we

want on the fly. It doesn’t have to be determined before compiling. That gives us a lot of flexibility.

You could also add something that resembles a method in a similar way using delegates:

poorMansDynamicObject["HaveABirthday"] = new Action(() =>
 poorMansDynamicObject["Age"] = (int)poorMansDynamicObject["Age"] + 1);

(Note that we're using the Action type here, which we talked about in Chapter 32.) While the syntax is a

bit awkward, you can invoke delegates directly. We could call this method like so:

 ((Action)poorMansDynamicObject["HaveABirthday"])();

In that code, we pull the Action object out of the dictionary, cast it to an Action, and then invoke it (the

parentheses at the end).

Interestingly, with a dictionary, we could even remove elements dynamically using the Remove method.

These examples show how we could make something with dynamic-like features using a dictionary,

though the syntax is quite awkward. We’ll fix that by using actual dynamic objects, but keep in mind that

behind the scenes is usually something similar to the dictionary approach we just saw.

262 Chapter 41 Dynamic Objects

ExpandoObject

The first option we have for true dynamic objects is a class called ExpandoObject. ExpandoObject is

effectively just the Dictionary<string, object> that we just saw, but it also implements

IDynamicMetaObjectProvider which means we get much better syntax for working with it.

Below is code that uses ExpandoObject to do the same stuff as the previous section with a dictionary:

dynamic expando = new ExpandoObject(); // Requires a 'using System.Dynamic;' directive in your file.
expando.Name = "George";
expando.Age = 21;
expando.HaveABirthday = new Action(() => expando.Age++);

expando.HaveABirthday();

You can that the syntax here is drastically improved. Adding properties is as simple as just assigning a

value to them. Our method for incrementing age became far cleaner. And even our method call at the

end is very readable, and looks like a normal method call.

This is all thanks to the magic of dynamic typing. ExpandoObject implements

IDynamicMetaObjectProvider, and because of that, it defines how the dynamic type system should look

up members like properties and methods at run-time, producing very clean syntax as shown above.

Interestingly, ExpandoObject actually implements IDictionary<string, object>, though it does so

“implicitly.” But that means if you cast an ExpandoObject to IDictionary<string, object> you can do

some additional cool things like enumerate all members that an ExpandoObject currently has or even

delete a member:

IDictionary<string, object> expandoAsDictionary = (IDictionary<string, object>)expando;

foreach(string memberName in expandoAsDictionary.Keys)
 Console.WriteLine(memberName);

expandoAsDictionary.Remove("Age"); // Remove the `Age` property.

After this code runs, if you attempt to access Age again, it will fail with a RuntimeBinderException.

This begins to illustrate the power of dynamic objects in general, and ExpandoObject specifically. Having

an object where you can add and remove members like properties and methods is extremely powerful.

Extending DynamicObject

A second option for dynamic objects is to derive from the DynamicObject class. Contrasted with

ExpandoObject, which is fairly light-weight, DynamicObject is a bit trickier, but gives you more control

over the details. DynamicObject is a more powerful tool.

DynamicObject is an abstract class with a pile of virtual methods that can be overridden. While you can’t

create an instance of DynamicObject itself, you can derive a new class from DynamicObject and then

override the methods it contains to add the functionality you want it to have.

Each of these methods allow you to do customize the behavior of one aspect of your dynamic type. For

example, how it should retrieve property values, how it should set property values, how it should invoke

methods, etc. The way DynamicObject is structured, you only have to override the methods that you

care to have function.

The example below illustrates how you might override DynamicObject to support a supplied set of

dynamic string typed properties:

Extending DynamicObject 263

public class CustomPropertyObject : DynamicObject // Requires a 'using System.Dynamic;' directive.
{
 private Dictionary<string, string> data;

 public CustomPropertyObject(string[] names, string[] values)
 {
 data = new Dictionary<string, string>();

 for (int index = 0; index < names.Length; index++)
 data[names [index]] = values[index];
 }

 public override bool TryGetMember(GetMemberBinder binder, out object result)
 {
 if (data.ContainsKey(binder.Name))
 {
 result = data[binder.Name];
 return true;
 }
 else
 {
 result = null;
 return false;
 }
 }

 public override bool TrySetMember(SetMemberBinder binder, object value)
 {
 if (!data.ContainsKey(binder.Name))
 return false;

 data[binder.Name] = value.ToString(); // ToString(), in case it isn't already a string.
 return true;
 }
}

You can see that this type derives from DynamicObject, and overrides the TryGetMember and

TrySetMember properties. These two pieces are the crux of making a DynamicObject-based

implementation.

You can also see that—like with many things of a dynamic nature—a dictionary was used to store the

existing properties and their values.

The constructor is relatively straightforward. It takes the two input arrays (the names of the properties

and their values) and constructs a dictionary out of the pairings.

The overrides for TryGetMember and TrySetMember define how the dynamic runtime should handle

property getters and setters. You can see a bit of a pattern there. Each has a binder parameter that

defines what member is being looked at (binder.Name). In the getter, we use the name to look up the

right value from the dictionary. In the setter, we update the dictionary with the new value.

In both cases, if the property being requested doesn’t exist, we return false. This tells the dynamic

runtime that the member being requested doesn’t actually exist. At least with the setter, we could have

added the new property and set it (dynamically adding the property, like what happens with

ExpandoObject.) But in this particular sample, I chose to not do that. When false is returned, the DLR can

do a number of things with a failed member access. In the C# world, this generally is going to result in a

RuntimeBinderException.

There are many other methods that are a part of DynamicObject that can be overridden, depending on

what you’re trying to accomplish:

264 Chapter 41 Dynamic Objects

 GetDynamicMemberNames: Allows the dynamic object to list all dynamic members it contains.

 TryUnaryOperation and TryBinaryOperation: Allow you to overload operators.

 TryConvert: Allows you to include user-defined conversions.

 TryGetIndex and TrySetIndex: Let you provide an indexer for your type. There is also a

TryDeleteIndex, but that doesn’t work in the C# world, only other languages (like Python).

 TryInvokeMember: Allows you to provide dynamic methods.

 TryInvoke: Allows you to treat the object itself as a method, as though it were a delegate.

 TryCreateInstance: Allows you to create dynamic constructors, but this can’t be done in C#.

 TryDeleteMember: Could be used to delete members, though no C# syntax for it.

When to Use Dynamic Object Variations

In this final section, we’ll discuss when you should prefer each of the variations of dynamic objects.

To start, I should point out that dynamic objects should only be used when necessary. Static type checking

is extremely useful, and you should only revert to dynamic type checking when you absolutely need either

objects whose members can’t be determined until run-time, or whose members can change at run-time.

If you need this, then using dynamic objects is fine. Otherwise, stick to normal classes and structs.

You should also consider whether just using a dictionary to store your data would be a simpler option.

Using dynamic objects requires a different thought pattern than the “normal” statically typed objects that

C# programmers are accustomed to. In some situations, just using a dictionary will be easier than going

with full-blown dynamic objects.

If you do need actual dynamic objects, then your options are using ExpandoObject, deriving from

DynamicObject, and reimplementing IDynamicMetaObject.

ExpandoObject is perfect for simple scenarios where you need to be able to add properties (and less

frequently methods) on the fly.

Deriving from DynamicObject is better for situations where there are rules that govern what properties,

methods, and other members should exist for the type. The fact that you can program the rules into the

object make it so you can’t add things that shouldn’t be there, which isn’t the case with ExpandoObject.

Additionally, DynamicObject allows you to customize virtually every aspect of your type, including

operators and indexers, which ExpandoObject doesn’t support.

You should generally avoid implementing IDynamicMetaObject from scratch. It is very difficult to do,

hard to debug, and very error-prone. Unless you’ve become a dynamic object guru and need to optimize

the tiny nuances of the dynamic language runtime, or are trying to add a new dynamic language to the

.NET Platform, steer clear of implementing IDynamicMetaObject. Stick with ExpandoObject or

DynamicObject instead.

Try It Out!
Dynamic CSV Importer. Review the section in Chapter 29 that describes the CSV file format, and how

it was used there to store high scores.

Create a project that will use code similar to the previous DynamicObject code sample to read in

data from a CSV file and produce dynamic objects with properties that match the headers in the file.

Then write out the data to the screen in a format like, “[Player] had a score of [Score].”

42
42 Unsafe Code

Before you read this chapter, I should warn you that you probably don’t need this chapter at all, and

should probably skip it. At least until it becomes clear that you do.

One of the key features of the C# language and the .NET Platform is that it manages memory for you. You

don’t have to manually allocate or free memory. Earlier languages like C and C++ didn’t have this feature.

This is an extremely desirable feature, and one of the biggest selling points of C#. But sometimes, you

find the need to interoperate with code that doesn’t have this feature—code that does direct memory

allocation and manipulation. Working with C and C++ code is a prime example of this. In these cases, you

may find that you have to leave the managed memory world and enter the unmanaged, “unsafe” world.

If you aren’t doing this in your projects, then I strongly advise skipping (or just skimming) this chapter.

Working with unsafe or unmanaged code can be tricky. There are many ways that you can shoot yourself

in the foot. Going through the ins and outs of unsafe code deserves an entire book, and I can’t do it justice

here. But this gives you a starting point in the event that you find yourself diving into unsafe code.

Unsafe Contexts

Most C# code does not need to jump out of the realm of managed code and managed memory. However,

C# does support certain “unsafe operations”—data types, operators, and other actions that allow you to

directly reference, modify, and allocate memory when needed.

In a Nutshell
 “Unsafe code” allows you to directly reference and manipulate memory locations.

 Unsafe code is primarily used for interoperating with native code.

 Avoid unsafe code when possible; most applications won’t have any need for it.

 Unsafe code can only be used in unsafe contexts, determined by the unsafe keyword.

 Pointers allow you to reference a specific memory location.

 fixed can be used to “pin” managed references in place so a pointer can reference them.

 The stackalloc keyword allows you to define arrays whose data is stored on the stack.

 You can invoke native/unmanaged code using Platform Invocation Services (P/Invoke).

266 Chapter 42 Unsafe Code

These unsafe operations can only be done in an unsafe context. This is done to ensure that programmers

don’t inadvertently use these unsafe operations unintentionally.

The name “unsafe” is somewhat misleading. Unsafe code doesn’t mean the code is truly dangerous, just

that the code is unverifiable—the compiler can’t guarantee safety.

It is easy to make a chunk of code an unsafe context by wrapping it in an unsafe block like so:

public void DoSomethingUnsafe()
{
 unsafe
 {
 // You can now do unsafe stuff here.
 }
}

Inside of the unsafe block, you will be able to use pointer types (which we’ll discuss soon) and other direct

memory manipulation tasks. In effect, an unsafe context is a little like being able to write a small chunk of

C or C++ code directly within your C# application.

You can make a whole method an unsafe context by adding the unsafe keyword to the method signature:

public unsafe void DoSomethingUnsafe()
{
}

A type such as a struct, class, or interface can be marked with the unsafe keyword as well, which makes it

so every method inside is an unsafe context:

public unsafe class C
{
}

But creating an unsafe context is not quite enough. You also have to tell the compiler that you want to

allow unsafe code in your project. This can be done by using the /unsafe compiler option on the

command line, or by configuring your project to allow for unsafe code within Visual Studio itself.

To set up a project to allow unsafe code, follow these steps:

1. Right-click on the project in the Solution Explorer and choose Properties.

2. Select the Build tab on the left.

3. Check the box that says, “Allow unsafe code”.

Without this, you will get the error “CS0227: Unsafe code may only appear if compiling with /unsafe.”

Pointer Types

In an unsafe context, you can create variables that are pointer types. A pointer type is a variable that

identifies a specific memory address where another object lives. This is conceptually similar to the

reference types that we’ve been working with throughout this book, but has some huge differences on a

practical level. While both pointers and references both direct you to some other object, a pointer

contains a raw memory address, while a reference is indirect, and maintained by the garbage collector.

The garbage collector is the part of the CLR that is responsible for managing objects that are alive in RAM.

This includes rearranging the data for efficiency and freeing up discarded objects to free up the memory.

As the garbage collector moves data around, it also maintains references. But the garbage collector does

not control pointers, so those are not updated.

You declare a pointer type with a * by the type:

Stack Allocations 267

int* p; // A pointer to an integer.

You can create a pointer to any of the numeric types, bool, enumerations, any pointer types (pointers to

pointers) and any structs that you’ve made, as long as they don’t contain references.

C# has borrowed three operators from C++ for working with pointer types: The address-of operator (&)

for getting the address of a variable, the indirection operator (*) for dereferencing a pointer to access the

object it points to, and the pointer member access operator, for accessing members such as properties,

methods, etc. on a pointer type object. These are shown below:

int x;
unsafe
{
 // Address-Of Operator. Gets the memory address of something else and returns it.
 // This puts the address of `x` and puts it in pointerToX.
 int* pointerToX = &x;

 // Indirection Operator: Dereferences the pointer, giving you the object at the location pointed to
 // by a pointer. This puts a 3 in the memory location pointerToX points at (the original x variable).
 *pointerToX = 3;

 // Pointer Member Access Operator: Allows you to access members through a pointer.
 pointerToX->GetType();
}

Pointer types are the third and final major category of data types available in C#, next to value and

reference types, completing our type hierarchy chart that we introduced in Chapter 6.

Stack Allocations

Because normal C# arrays are reference types, the array data is placed in the heap somewhere. An array

variable stores a reference to it, rather than the data itself (see Chapter 16). Look at the following code:

public void DoSomething()
{

268 Chapter 42 Unsafe Code

 int[] numbers = new int[10];
}

When this method is first called, a new frame is placed on the stack with enough memory allocated to

store local variables—numbers in this case. This will be a reference to an array, so 4 bytes are allocated

for this. When the new int[10]; part is executed, the memory for the array contents is created in the heap

(10 * 4 bytes for an int = 40 total bytes). When this is assigned to the numbers variable, the reference for

this new memory is placed in the numbers variable itself.

When the method returns and the frame for it on the stack is removed, the 4 bytes for numbers is

immediately cleaned up, but the 40 bytes in the heap remains for a while. If there are no other references

to it in the system, the garbage collector will clean it up eventually.

This behavior is usually not just tolerable, but desirable. But sometimes, in order to interoperate with

native code or if you just have to get that memory cleaned up the instant we return from the method, C#

allows us to force the array contents to be placed in the stack itself with the stackalloc keyword:

public unsafe void DoSomething()
{
 int* numbers = stackalloc int[10];
}

Now when you call this method, the 40 bytes for the array are allocated on the stack, and not in the heap.

The garbage collector doesn’t need to clean this up. When the method terminates, the method’s stack

frame is removed, along with all memory for it, which now includes the 40 bytes of data. The garbage

collector doesn’t have to deal with it, and it is immediately cleaned up.

stackalloc can only be used for local variables, and only in an unsafe context.

Fixed Statements

When working with unsafe code, one of the things you have to deal with is that in a managed

environment, the garbage collector can move data around in memory to optimize it. When you’re using a

managed reference, those movements are abstracted away from you. It is OK if something moves on you

because the reference is maintained, and will point to the new location as expected.

On the other hand, when we use pointers, we are using a raw memory address that aren’t managed. If we

are trying to work with a managed object in our unmanaged, unsafe code, it is possible that the object

we're pointing at gets moved out from under us without us knowing. This would cause huge problems.

Fortunately, there’s a way to tell the garbage collector to (temporarily) not move a specific object. Suppose

we have a Point class defined with public instance variables like this:

public class Point
{
 public double X;
 public double Y;
}

If we want to get a pointer to an object's X field, we would want to make sure that the garbage collector

doesn’t try to move the Point object itself until we’re done using it. To do this, you can use a fixed

statement to “pin” a managed object in place as you’re getting its address, like the following:

Point p = new Point();

fixed(double* x = &p.X)
{

Fixed Size Arrays 269

 (*x)++;
}

Doing this will pin p in place for the duration of the fixed block.

A few minor points to mention with fixed statements:

 You must declare the pointer variable in the fixed statement. You can’t use a pre-existing one.

 You can declare multiple pointer variables of the same type in a single fixed statement by

separating them by commas.

 You can nest multiple fixed statements inside each other.

 Pointer variables created in a fixed block can’t be modified to point to something else.

 After the fixed block, the pointer variable (x in the above code) is out of scope and can’t be used.

Fixed Size Arrays

In C#, an array variable can reference arrays of different lengths during its lifetime:

int[] numbers = new int[10];
numbers = new int[1000];

In some languages like C and C++, this isn’t possible; the array length is baked into the variable’s type. If

you are interoperating with code that expects fixed size arrays, the mismatch is a problem.

Fortunately, C# does allow you to declare arrays that are fixed size, to facilitate working with code that

requires it. You can only declare them in a struct, but this limitation is not very limiting, as this is the exact

scenario where you would want them anyway.

To shed a little more light on why you would even want fixed size arrays, consider the following struct:

public struct S
{
 public int Value1;
 public int Value2;
 public int[] MoreValues;
}

How many bytes will this struct be? If we try to pass this to native, unmanaged code, what would be sent?

This struct would be 12 bytes in size: 4 bytes for Value1, 4 bytes for Value2, and 4 bytes for the reference

that is contained in MoreValues. The array data is not contained in a struct instance. A reference to the

data is instead. (It is a reference type, after all.)

When you call native code that stores array data in place, normal C# arrays won’t be compatible.

But C# allows you to declare fixed size arrays (sometimes called fixed size buffers) to facilitate working with

native code that requires it. The following code sample illustrates making a fixed size array:

public unsafe struct S
{
 public int Value1;
 public int Value2;
 public fixed int MoreValues[10];
}

To make an array a fixed size array, you put the fixed keyword before the type. The size of the array goes

at the end of the variable name inside of square brackets, and note that the type is int instead of int[].

270 Chapter 42 Unsafe Code

With this declaration, the struct itself will contain the data for the array, rather than a reference to data

that lives elsewhere. This means that the size of this version of S will now be 48 bytes instead of 12: 4 for

Value1, 4 for Value2, and then 4 * 10 = 40 for MoreValues.

A struct must be marked with the unsafe keyword in order to use fixed size arrays in it.

It is important to point out that the runtime does not perform any sort of index bounds checking on

these. If you created an instance of S, you could access MoreValues[33] and access some other arbitrary

memory location beyond the array, which is a dangerous toy to be playing with. (Which is why it can only

appear in an unsafe context).

Calling Native Code with Platform Invocation Services

Platform Invocation Services, or P/Invoke for short, allows your managed C# code to call native code

directly. This is powerful because there is a lot of native code out there that you can utilize, including

native C or C++ libraries, operating system calls, or your own C++ code.

The managed C# world and the unmanaged world are quite different from each other. Conversions

between managed references and unmanaged pointers and the nuances of marshalling the data across

this boundary, means P/Invoke can get complicated.

A simple example is in order here. Let’s assume that you have some C++ code that defines an add

method to add two integers together. In your C++ code, you would make sure this method is exported

from your DLL (a C++ topic for a different book). In your C# code, you would then be able to import this

add method using the DLLImport attribute and the extern keyword:

public static class DllWrapper
{
 [DllImport("MyDLL.dll", EntryPoint="add")]
 static extern int Add(int a, int b);
}

When you use the extern keyword, you do not provide a body for the method. That is because the actual

code for it is defined externally, in your native code library.

Additionally, all extern methods must also be static.

The DllImport attribute tells the compiler that it needs to transform calls to this method into a P/Invoke

call. This attribute specifies the information needed to perform the correct P/Invoke call. At a minimum,

the name of the DLL (MyDLL.dll) must be included. The EntryPoint (function name) must also be

included if the two don’t share the exact same name. DLLImport has some additional properties not

shown here, which can be used to manage the nuances of calling the native code.

With this setup, calls to DllWrapper.Add(3, 4) will now jump over to the unmanaged DLL library and

invoke the native add method, and return with the computed result.

This is a trivial example of calling native code, and real examples can get much more complicated. In

particular, getting the signatures right and configuring the DllImport attribute properties correctly can be

a huge headache. The website http://www.pinvoke.net can be very helpful in getting this just right.

43
43 Other Features in C#

In this chapter, we’re going to cruise through a variety of features and tricks that we haven’t talked about

yet. Some of these are very useful but aren’t big enough for their own chapter. Others are less useful, so

we’ll just cover their basics, and let you to explore it in depth if you feel the need.

There is a lot in this chapter and I don’t expect you to become a master of it all overnight. Some of these

topics are so big that it you could write books about it. Many of these topics may not ever apply to you.

There are two real purposes to this chapter. One is to open your eyes to the possibilities with C#. The

other is to make it so that when you see these things, instead of being completely blindsided by it, you’ll

at least be able to say, “Hey, I remember reading something about this!”

In a Nutshell
 This chapter covers a large collection of random advanced topics. The purpose of this chapter

is to ensure that you know they exist.

 yield return produces an enumerator without creating a container like a List.

 const and readonly define compile-time and runtime constants that can’t be changed.

 Attributes let you apply metadata to types and their members.

 The nameof operator gets a string representation of a type or member.

 The sizeof operator returns the size of a type.

 The bit shift operators let you play around with individual bits in your data.

 Reflection allows you to inspect code while your program is running.

 IDisposable lets you run custom logic on an object before being garbage collected.

 C# defines a variety of preprocessor directives to give instructions to the compiler.

 Nullable types allow value types to take on a value of null.

 The ?. and ?[] operators let you perform succinct null checks: a?.Property?.Method();

 You can read in command line arguments from the command prompt.

 You can make your own user-defined conversions between types.

 The (dangerous) goto keyword allows you to instantly jump to another location in a method.

 Generic variance governs how a type parameter ’s inheritance affect the generic type itself.

 Checked contexts will throw exceptions when they overflow. Unchecked contexts do not.

272 Chapter 43 Other Features in C#

You don’t necessarily need the stuff in this chapter to write C# programs. Everything we’ve covered up

until now will go a very long way. This chapter will help tie together some of the loose ends.

Iterators and the Yield Keyword

Way back in Chapter 13, we first introduced foreach loops. In Chapter 25 we introduced the

IEnumerable<T> interface, and stated that anything that implements IEnumerable<T> can be used in a

foreach loop. Remember, an IEnumerable is simply anything where you can examine multiple values in

a container or collection, one at a time. This capability makes types that implement this interface iterators.

In addition to a direct IEnumerable implementation, you can additionally define an iterator using the

yield keyword. This would look something like this:

class IteratorExample : IEnumerable<int>
{
 public IEnumerator<int> GetEnumerator()
 {
 for (int index = 0; index < 10; index++)
 yield return index;
 }

 IEnumerator IEnumerable.GetEnumerator()
 {
 return GetEnumerator();
 }
}

Much of this code should make sense by now. We’re simply implementing the IEnumerable<int>

interface, which requires us to have the GetEnumerator method that you see. And since the

IEnumerable<T> interface is derived from the non-generic IEnumerable interface, we also need to

define that second method, which just simply calls the first method.

The part that will likely seem strange to you is the yield return. As we’re iterating, the method will be

called multiple times, and each time, it will return the next item that is “yielded.” Unlike a normal return

statement, when we use yield return, we’re saying, “pause what you’re doing here and return this value,

but when you come back, start up again here.” That is very powerful. For example:

public IEnumerator<int> GetEnumerator()
{
 yield return 0;
 yield return 1;
 yield return 4;
 yield return 6;
}

Interestingly, the compiler isn’t simply turning all yielded values into a list. It is happening one at a time.

This means you could theoretically create an iterator that never ends:

public IEnumerator<int> GetEnumerator()
{
 int number = 0;
 while(true)
 {
 yield return number;
 number++;
 }
}

The calling code could keep calling the iterator forever, or stop when it has completed its job.

Constants 273

The yield return syntax cannot be used anywhere, just inside of methods that return IEnumerator<T>

or IEnumerable<T> and their non-generic counterparts.

Named Iterators
There’s a second way to do iterators. Instead of implementing the IEnumerable<T> interface and adding

a GetEnumerator method, you can create a method that returns an IEnumerable<T>. You can then use

this method in a foreach loop whenever you want. This approach lets you have multiple iterators for a

single data collection class, and it lets you have parameters for those methods:

class Counter
{
 public IEnumerable<int> CountUp(int start, int end)
 {
 int current = start;
 while (current < end)
 {
 yield return current;
 current++;
 }
 }

 public IEnumerable<int> CountDown(int start, int end)
 {
 int current = start;
 while (current > end)
 {
 yield return current;
 current--;
 }
 }
}

You then call these iterators like this:

Counter counter = new Counter();

foreach (int number in counter.CountUp(5, 50))
 Console.WriteLine(number);

foreach (int number in counter.CountDown(100, 90))
 Console.WriteLine(number);

Constants

We’ve spent a lot of time talking about variables. True to their name, the contents of a variable can...

well... vary. But there are times where we want to assign a value to something and prevent it from ever

changing again. C# provides two ways of addressing this: the const and readonly keywords.

If you mark a variable with either of these, then you will not be allowed to change the value of the variable

later on. The two are subtly different. Let’s start with the const keyword. In this book, we’ve used Math.PI

several times. If we made our own Math.PI variable, we could use the const keyword to define PI like this:

public const double PI = 3.1415926;

Adding in const tells the compiler that we’re assigning it a value and it will never change. In fact, if we try

to assign a value to it at some point in our program, we’ll get a compiler error. If you have a value that you

know will never change, it is a good idea to make it into a constant by adding the const keyword to it. That

way, no one will mess it up on accident.

274 Chapter 43 Other Features in C#

Anything marked with const is automatically treated as though it were static. Because this is assumed

(and required) you don’t need to (and can’t) make it static yourself.

The readonly keyword is similar to this, but has an important difference. Anything that is marked const

must be assigned a value right up front, when the program is being compiled. As such, they are often

called compile-time constants. Things that are marked with readonly can still be assigned a value in a

constructor or at the same place it is declared, and not after. These are called runtime constants.

A runtime constant isn’t known at compile time, but once it has been assigned a value, it can’t be

modified. For example, we could create a Point class that stores an x- and y-coordinate in such a way that

once it has been created, it is impossible to change the values.

public class Point
{
 private readonly double x;
 private readonly double y;

 public double X { get { return x; } } // We could have also just used a readonly property
 public double Y { get { return y; } } // for these, but this illustrates the point well.

 public Point(double x, double y)
 {
 this.x = x;
 this.y = y;
 }
}

We can then use this class, creating two point with different values, but both are unchangeable:

Point p1 = new Point(5, -2);
Point p2 = new Point(-3, 7);

This, by the way, is an excellent way of building immutable types like we discussed in Chapter 21.

Attributes

Attributes allow you to add metadata to an element of your code. They can be added to types that you

create or their members. They can even be applied to a method’s parameters and return types.

These attributes can be detected by the compiler, external code tools like unit testing frameworks, or

even detected while your code is running, using reflection. (We’ll talk about reflection in a second.)

There are hundreds of attribute types that come with the .NET Platform. We can’t cover them all. When

you learn a tool that uses attributes, they ’ll walk you through the attributes that you’ll need to know.

But to illustrate the basics of how attributes are used, we’ll look at one specific but simple attribute called

the Obsolete attribute. You can use this to mark classes and methods that are out of date, and should no

longer be used. To apply an attribute to a method, you put the attribute name in square brackets ([and])

above the element:

[Obsolete]
private void OldDeadMethod()
{
}

Depending on what namespace the attribute lives in, they may require an additional using directive.

The compiler uses this particular attribute to detect calls to obsolete methods and warn the programmer

about it. If you use a method with this attribute on it, you’ll see a warning in the Error List telling you so.

Many attributes have certain parameters that you can set as well, including the Obsolete attribute:

The ‘nameof’ Operator 275

[Obsolete("Use NewDeadMethod instead.", true)]
private void OldDeadMethod()
{
}

In this case, the first parameter is text that will be displayed in the warning message, and the second

indicates whether the compiler should treat the problem as an error rather than a warning.

Attributes are simply classes that are derived from the Attribute class, and you can make your own.

When we use an attribute, we’re essentially calling a constructor for that class.

Multiple attributes can be applied to an element:

[Attribute1]
[Attribute2]
[Attribute3]
public class MagicClass
{
}

When creating an attribute, people often put Attribute at the end of the name for their attribute (e.g.

ObsoleteAttribute). In these cases, you can use either [Obsolete] or the longer [ObsoleteAttribute].

For specific instructions on how to create your own attributes, see: http://msdn.microsoft.com/en-

us/library/84c42s56.aspx.

The ‘nameof’ Operator

It’s quite common to want to do something with the name of a property, method, type, or other bit of

code. Among other things, this is useful in debugging and when you’re doing data binding in a UI

framework like WPF or Windows Forms, where property names are frequently used.

Let’s consider a really simple example related to debugging, where we want to print out an object ’s

properties and their values. Let’s say we’ve got a Book class like the following:

class Book
{
 public string Title { get; set; }
 private string Author { get; set; }
 private int Pages { get; set; }
 private int WordCount { get; set; }

 public Book(string title)
 {
 this.Title = title;
 }
}

Let’s say we want to override the ToString method to display the values of each of these properties:

public override string ToString()
{
 return $"[Book Title={Title} Author={Author} Pages={Pages} WordCount={WordCount}]";
}

This lets us see the details of a book either by writing it to the console window or in Visual Studio’s

debugger, revealing the values of all of the properties. It will appear like this:

[Book Title=There and Back Again Author=Bilbo Baggins Pages=118 WordCount=54386]

276 Chapter 43 Other Features in C#

That’s all fine and good, but what happens when we decide we want to change the name of something?

For example, let’s say we decide to rename WordCount to Words to mirror the Pages property. It’s easy

to refactor a property name like this (Ctrl + R, Ctrl + R), but in this case, our text remains unchanged. We’ll

still print out the same text, which is now misnamed.

This is where the nameof operator comes in. The nameof operator allows you to refer to a variable, type,

or member, and the compiler will turn it into a string that matches the name. For example, consider the

following uses of the nameof operator:

Book book = new Book("There and Back Again") { Author = "Bilbo Baggins", Pages = 118, WordCount = 54386 };
Console.WriteLine(nameof(Book));
Console.WriteLine(nameof(book));
Console.WriteLine(nameof(Book.Pages));

This results in the following output:

Book
book
Pages

Look carefully at how that works. Microsoft has gone out of its way to make sure it works in an intuitive

way. For a type, it gives you the name of the type without the namespace. For the name of a variable, it

gives you the name of the variable. When you access a property like Book.Pages, you get the name of the

property. That syntax is special because you normally can’t access a class’s properties like that unless

they ’re static properties (which this isn’t).

If we update our ToString override from earlier in this section to use the nameof operator, we can make

it much more resilient to changes in our code:

public override string ToString()
{
 return $"[{nameof(Book)} {nameof(Title)}={Title} {nameof(Author)}={Author} " +
 $"{nameof(Pages)}={Pages} {nameof(WordCount)}={WordCount}]";
}

Now any changes to variable, property, or class names will be reflected correctly in this code.

The ‘sizeof’ Operator

The sizeof operator is quite a bit like the nameof operator. To nobody’s great surprise, it returns the size

in bytes of a specific type.

For example, if you do sizeof(int), it will return 4, because the int type is four bytes big. This is actually a

quick and convenient way to determine the size of any of the built-in types if you forget and don’t have a

handy reference (like the one in the tables in the back of this book).

This tends to be most useful when you are doing byte manipulation in your code, which doesn’t apply to

all applications you could make. But it does have its uses.

For example, the following code will create a byte array big enough to hold six integers:

byte[] byteArray = new byte[sizeof(int) * 4];

The sizeof operator is considered a constant value for most of the built-in types, with exceptions for

decimal and string. (That is, byte, short, int, long, sbyte, ushort, uint, ulong, float, double, char and

bool all have a known, pre-defined value and those values are swapped out at compile time.)

Any other type theoretically can be used with the sizeof operator, but the size is more complicated. For

one, it is not a constant. That means it can’t be placed in a const. It must be determined at runtime. And

Bit Fields 277

because of some optimizations done by the host machine at the last second, it may not always return the

same value on every computer you run it on. It also must be done in an unsafe context, as we talked

about earlier in Chapter 42.

The above limitations do make sizeof somewhat less useful, but if a calculation actually does require

using the size of some datatype, using something like sizeof(long) is better than a hardcoded 8 because it

conveys why it is that value.

Bit Fields

We usually work with variables at a relatively high level, thinking of them as containers for numbers,

strings, or complicated classes. Behind the scenes, though, they are essentially little containers to store a

pile of bits. Every type of data that we’ve talked about is represented as bits.

To illustrate, let’s briefly look at how a byte stores its values. Remember, a byte can hold the values 0 to

255 in a single byte (8 bits). These values are stored using binary counting. So the number 0 is stored with

the bits 00000000, the number 1 is stored with the bits 00000001, the number 2 is stored with the bits

00000010, and so on.

There’s a lot to know about counting in binary, and if you haven’t had any exposure to it before, it is

probably worth taking some time to learn how it works.

There are a few cases where we actually want to sort of fall back down to that low of a level, and work with

individual bits and bytes. In fact, you may use this extensively in certain types of projects.

One of the popular ways of using the raw bits of data is a bit field. Let’s start our discussion with a brief

explanation of why people are even interested in bit fields. Let’s say you’re creating an online discussion

board or a forum. You’ll have lots of users, each with different permissions and abilities. Some people

may be able to delete posts, edit posts, add comments, etc., while others may not.

Knowing what we’ve discussed before, we can easily imagine storing each of these values as a bool. And

that gets the job done. But each bool variable takes up 1 full byte, and if you have dozens of settings per

user, and millions of users, that adds up very quickly.

One popular solution to this is to have multiple Boolean values be packed into a single byte, or a single

int. In one single byte, you can store eight Boolean values, with one in each bit. For each bit, a 1

represents a true value, and a 0 represents a false value. Something like this:

0 0 1 0 0 0 1 1

(Not used)
Account

Suspended

Create

threads

Delete

others’

posts

Edit

others’

posts

Vote on

posts

Edit own

posts

Create

posts

Doing this kind of trick is actually very widespread, especially if you’re talking about things like very large

data sets, operating systems, and sending things across the network.

Even though we’re treating our byte as a pile of Boolean values here, C# is going to want to present it to

you as the byte type, with a single value for the entire collection. The bit field above will be shown to you

as the number 35. Of course, since we don’t care about it as a complete number, but as a collection of

Boolean values or Boolean flags, we’ll need some tools to help us work with the raw bits in a bit field.

Fortunately, C# has those tools built in for us.

278 Chapter 43 Other Features in C#

Bit Shift Operators
There are two operators that will take the bits in a byte or other integral type, and move them over a

certain number of slots. These two operators are called bit shift operators. The left bit shift operator is

two less than signs together (<<) while the right bit shift operator is two greater than signs together (>>).

These operators look like little arrows that tell you which way the bits will be shifted.

To use the bit shift operators, you would do something like this:

int result = 0b00001101 >> 2; // Binary literal 13

In the above case, all of the bits get moved to the right two spots, giving us a result of 0b00000011

(decimal value of 3). Notice that as things are shifted, some bits drop off one end, which are just gone,

and 0’s are added to fill in empty spots on the other end.

The left bit shift operator works the same way:

int result = 0b00001101 << 2; // Turns into 0b00110100 or 52.

Bitwise Logical Operators
Think back to when we first discussed the logical && and || operators. Remember that && evaluates to

true if and only if both sides are true, and || evaluates to true if either side is true. There are a couple of

related operators that work on bits themselves, and do a similar thing. As we look at this, think of 1 as

being true, and 0 as being false.

The bitwise and operator is a single ampersand (&) and the bitwise or operator is a single vertical bar (|).

These operators go down the bits, one at a time, and do an and or or operation on each bit. This will

probably make more sense with an example. Imagine the two binary numbers:

01010101
11111111

If you use the bitwise and operator, the program will look at the first bit in each number. The top number

has a 0, while the bottom one has a 1. That’s like having a false and a true, which if they are combined

together with and result in false, or a 0.

01010101
11111111
0

Then you look at the next value in each number. They are both 1, which is like having a true and a true,

which when combined with and, would result in true, or a 1.

01010101
11111111
01

You continue down the entire sequence, doing this for each bit:

01010101
11111111
01010101

The bitwise or operator does the same thing, but combines the two numbers with or instead.

In code, these two operators look like this:

int a = 0b00000101;
int b = 0b00000011;
int combinedWithAnd = a & b; // results in 0b00000001, or 1.
int combinedWithOr = a | b; // results in 0b00000111, or 7.

Bit Fields 279

There’s a third bitwise operator that is the exclusive or operator. (This is sometimes called xor, pronounced

“ex-or.”) The “normal” or operator returns true if either of the two parts are true. This still applies where

both are true. The exclusive or operator is only true if exactly one is true. If they are both true, then it

evaluates to false. The exclusive or operator is the caret symbol (^), which looks like this:

int combinedWithXor = a ^ b; // results in 0b00000110, or 6.

One final, similar operator is the bitwise complement operator (~), which is a little like the ! operator we

saw when we first looked at logical operators. This takes each bit and changes it to the opposite:

int number = 0b11001000;
int bitwiseComplement = ~number; // 0b00110111.

There is a compound assignment operator that you can use for all of these:

int number = 0b00001000;
number <<= 1; // equivalent of number = number << 1;
number >>= 1; // number = number >> 1;
number &= 32; // number = number & 32;
number |= 32; // number = number | 32;
number ^= 32; // number = number ^ 32;

Enumeration Flags
While it is possible to work with the byte, int, or another type to accomplish what we’ve seen in this

section, this kind of stuff is typically done with an enumeration in C#, to make the whole thing more

readable. (Enumerations were introduced in Chapter 14.) Before we can use an enumeration for this, we

must add the Flags attribute and assign the right values to each member of the enumeration:

[Flags] // Don't forget to add the Flags attribute.
public enum ForumPrivileges
{
 CreatePosts = 1 << 0, // 1 or 00000001
 EditOwnPosts = 1 << 1, // 2 or 00000010
 VoteOnPosts = 1 << 2, // 4 or 00000100
 EditOthersPosts = 1 << 3, // 8 or 00001000
 DeletePosts = 1 << 4, // 16 or 00010000
 CreateThreads = 1 << 5, // 32 or 00100000
 Suspended = 1 << 6, // 64 or 01000000

 // Note we can also add in "shortcuts" here:
 None = 0,
 BasicUser = CreatePosts | EditOwnPosts | VoteOnPosts,
 Administrator = BasicUser | EditOthersPosts | DeletePosts | CreateThreads
}

A Practical Example
Before you start thinking, “Well that’s completely useless,” let me show you why these are so useful. The |

operator can be used to “turn on” a bit in the bit field:

ForumPrivileges privileges = ForumPrivileges.BasicUser;
privileges |= ForumPrivileges.Suspended; // Turn on the 'suspended' field

The & operator can be used to check if a particular flag is set, using some trickery:

bool isSuspended = (privileges & ForumPrivileges.Suspended) == ForumPrivileges.Suspended;

The trick is that if we do a bitwise and operation with something that only has one bit set to true, it will

either become all 0’s, which indicates that the field was not set. If the bit was set, we’ll get back the value

of the field we were checking for, turning all other fields to 0.

Using a combination of the & and the ~ operators, we can turn off a particular field:

280 Chapter 43 Other Features in C#

privileges &= ~ForumPrivileges.Suspended;

You can also toggle a field using the ^ operator:

privileges ^= ForumPrivileges.DeletePosts;

Reflection

C# has the ability to inspect elements of executable code, and explore what types are in an assembly.

They can see the methods, properties, and variables it contains, even while your program is running. The

ability to have code analyze the structure of other code is called reflection.

The biggest use for reflection is when you want to look at an unknown assembly or object. Not every

program has a use for this. Most won’t. Doing this is always slower than directly accessing the code.

Having said that, there are still times where it is useful. To name a few examples, a unit testing framework

might want to dig through an assembly to find any method that ends with the word “Test” or have a Test

attribute applied to them, or a plugin system might want to find all classes in a DLL that implements a

specific interface. Reflection can also be used to bend the rules, like calling a private method from outside

the type it belongs to (a great way to shoot yourself in the foot).

The core class used in reflection is the Type class, which represents a compiled type like a class, struct, or

enumeration.

For any given type, you can use the typeof keyword to get the Type object that represents it:

Type type = typeof(int);
Type typeOfClass = typeof(MyClass);

You can alternatively get a type from an object:

MyClass myObject = new MyClass();
Type type = myObject.GetType();

You can figure out what members a type has defined. For example:

ConstructorInfo[] contructors = type.GetConstructors();
MethodInfo[] methods = type.GetMethods();

If you’re looking for a member of the type with a particular name and parameter list, you can do that too:

ConstructorInfo constructor = type.GetConstructor(new Type[] { typeof(int) });
MethodInfo method = type.GetMethod("MethodName", new Type[] { typeof(int) });

In all of these cases, if what you’re looking for doesn’t exist, an empty array or null will be returned.

Once you have the constructor, method, or whatever thing you asked for, you can execute that code with

the Invoke method that they have. Doing so with constructors will return an object that was created by

the constructor, and doing so with a method or property will return the result of the method (or null if

the method’s return type is void):

object newObject = constructor.Invoke(new object[] { 17 });
method.Invoke(newObject, new object[] { 4 });

Using Statements and the IDisposable Interface

Back in Chapter 16 when we first talked about the heap, we talked about garbage collection. One of the

big things that the .NET runtime does for us is get rid of memory that we’re no longer using. Our

program’s memory is managed for us. Occasionally though, the task we’re trying to accomplish requires

Preprocessor Directives 281

using unmanaged memory and resources. When we do this, we can no longer count on garbage

collection to clean up those resources and memory.

There may be times where we create our own unmanaged memory, but it is more common to use a pre-

existing type that uses unmanaged memory. As an example, when we open a file (Chapter 29) we need to

access unmanaged memory to get to the file system. Back then, we simply used the Close method when

we were done with a file to free unmanaged memory and resources, but there’s a better way.

Typically, types that access unmanaged memory will implement the IDisposable interface. These classes

have a Dispose method which cleans up any unmanaged memory the object is using. We could directly

call this method (in fact, the Close method we used with files does that) but there are some tricky issues

that come up. For instance, if an exception is thrown while the file is open, the Close method may not get

called, leaving the file open. Using what we already know, it is possible to write code to handle this, but C#

provides a simpler way to handle this: the using statement.

A using statement (not to be confused with a using directive) will look something like this:

using (FileStream fileStream = File.OpenWrite("filename"))
{
 // Do work here...
}

When the ending curly brace is reached, the object inside of the parentheses in the using statement is

disposed (the Dispose method is called) even if an exception is thrown in the middle of the block.

As you write code, be on the lookout for types that implement the IDisposable interface and dispose of

them correctly when you’re done using them. A using statement like this is a very readable and simple

solution for doing this.

Preprocessor Directives

Many languages, including C#, give you the ability to include instructions for the compiler within your

code. These instructions are called preprocessor directives. (The C# compiler doesn’t have a preprocessor

like some languages, but it treats these preprocessor directives as though there is.)

These preprocessor directives all start with the # symbol, which tips you off to the fact that something is a

preprocessor directive.

#warning and #error
Two simple preprocessor directives are the #warning and #error directives, which give you the ability to

make the compiler emit a warning or error with a specific message. While the compiler typically only

generates errors or warnings when it detects a problem, this allows you to force it to happen.

You’re probably wondering why you’d ever do that, and that’s a great question. I sometimes will put in a

#warning directive to remind myself that I need to still fix something. Because it shows up any time I

compile, it’s unlikely I’d forget about it. (There are plenty of other ways to do this, by the way.)

To add in a #warning or #error directive, you’d simply add something like this to your code:

#warning Enter whatever message you want after.
#error This text will show up in the Errors list if you try to compile.

#region and #endregion
The #region and #endregion directives allow you to add little regions to your code, which Visual Studio

then allows you to collapse and expand. This is one potential way to group related methods or instance

variables (or anything else) within a type, and allow you to collapse and hide each group on the fly.

282 Chapter 43 Other Features in C#

To add a region, you’d do something like this:

#region Any region name you want here
public class AwesomeClass
{
 // ...
}
#endregion

With a region defined, you can collapse and expand the entire region with the outlining feature in Visual

Studio. This can be done by clicking the little ‘+’ and ‘-’ icons on the left hand side of your code:

You can nest regions.

#if, #else, #elif, #endif, #define, and #undef
There is a whole collection of other useful compiler directives, but before I get into them, I need to discuss

compilation symbols briefly. Compilation symbols are special names that can be defined (turned on) or

undefined (turned off—the default). For example, there’s a DEBUG symbol that is defined when you

compile in debug mode, but not when you compile in release mode. You can define your own symbols,

which I’ll explain in a second.

The #if, #else, #elif, and #endif directives work very much like an if statement, except they ’re

instructions for the compiler to follow, and don’t end up in your final program. You could add the

following to your program, and the parts between the #if and #else only get compiled if DEBUG is

defined.

public static void Main(string[] args)
{
#if DEBUG
 Console.WriteLine("Running in debug mode.");
#else
 Console.WriteLine("Running in release mode.");
#endif
}

If you’re running in debug mode, the compiled program would be equivalent to this:

public static void Main(string[] args)
{
 Console.WriteLine("Running in debug mode.");
}

And of course, if you’re running in release mode, it’s this:

public static void Main(string[] args)
{
 Console.WriteLine("Running in release mode.");
}

Despite this example, it is dangerous to have things run differently in the final release version than it does

in testing, because you may not discover all of the bugs it has until the program has been released.

#elif is short for “else if” and can be used to chain together a sequence of conditional blocks.

Nullable Types 283

You can use the && and || operators with symbols as well.

You can also define a symbol with #define, and undefine it with #undef, right at the top of a file:

#undef DEBUG
#define MAGIC

This block would “undefine” or unset the DEBUG symbol, and define your own special MAGIC symbol.

Since you can’t determine the ordering of files, using #undef and #define only apply to a single file.

Alternatively, you can define a symbol for the entire compilation process (much like how DEBUG will be

set in every file, unless you turn it off with #undef). To do this, right-click on your project in the Solution

Explorer and choose Properties. Select the Build tab, and at the top, under Conditional Compilation

Symbols, enter the list of symbols you wish to define for all files, separated by spaces.

Nullable Types

Value types are not allowed to be assigned a value of null. This is a fundamental feature of value types,

but there are times where you wish you could bend the rules a little. For example, bool is a value type and

can only store true and false. But occasionally, we have a need to represent true, false, or unknown.

The concept of nullable types addresses this. A nullable type is simply one that uses the Nullable<T>

generic type:

Nullable<bool> nullableBool = true; // We can assign true or false...
nullableBool = null; // but also null.

Even better, C# provides a shorthand way of doing this:

bool? nullableBool = true;

You can use the HasValue property to figure out whether the nullable type is null or contains a real value,

and you can use the Value property to grab the value, assuming that HasValue is true:

if(nullableBool.HasValue)
 bool actualValue = nullableBool.Value;

You can use the null-coalescing operator (??) to assign a default or fallback value if a nullable type is null.

(The null-coalescing operator works on null references as well.)

bool actualValue = nullableBool ?? false;

The actualValue variable will contain the value of nullableBool if it has a value, or if it’s null, it will be

false.

Nullable types can’t be created from reference types, but that’s OK because they already support null.

It is interesting to note that while Nullable<T> nominally makes value types be able to have a value of

null, Nullable<T> is still a value type, and can’t even contain a null reference itself. Instead, it associates

an additional bool value with the rest of the data. If this is extra value is true, then the normal value is

assumed to be good. If it’s false, then Nullable<T> will throw exceptions when trying to access the data.

The ability to treat it as though it can take on a null value is just compiler magic.

Simple Null Checks: Null Propagation Operators

C# 6.0 introduced another new feature called null propagation, succinct null checking, or the null propagator

operator that is quite powerful. One of the greatest annoyances of programming in many programming

languages, especially object-oriented languages like C# is null checking.

284 Chapter 43 Other Features in C#

Let’s say we have a HighScoreManager class that has a Scores property that contains an array of items in

order from highest to lowest. Each score is represented with an instance of the HighScore class, which

has a reference to the player that got the score, which has the player ’s name. (I know, that’s kind of a

mouthful.) To get the player’s name that has the highest score, your code might look like this:

private string GetTopPlayerName()
{
 return highScoreManager.Scores[0].Player.Name;
}

That’s all fine and good until you realize that there are five things in this statement that might be null. If

any of those pieces are null, you’ll get a NullReferenceException, which could bring your program to a

crashing halt and veiled threats about sending you on a “vacation” to the Spice Mines of Kessel. (Some

users take their crashes a little too seriously.)

The point is, checking for null in your code is a good idea. If there is any chance that something could be

null, checking to make sure it’s not is good defensive coding practice.

So what does that do to our code?

private string GetTopPlayerName()
{
 if(highScoreManager == null) return null;
 if(highScoreManager.Scores == null) return null;
 if(highScoreManager.Scores[0] == null) return null; // Could still fail if empty.
 if(highScoreManager.Scores[0].Player == null) return null;

 return highScoreManager.Scores[0].Player.Name;
}

Ouch. That’s a ton of code just to make things safe for use. That’s four whole lines of null checking!

C# 6.0 introduced two new operators called the null propagator operators (or simply, the null propagators)

that makes it easy to do these null checks without causing your code to get ugly. These two operators are

closely related, and are the conditional member access operator (?.) and the conditional indexer access

operator (?[]). The following shows the conditional member access operator in action:

return highScoreManager?.Scores[0].Player.Name;

This operator checks if the thing before it was null. If it was, it simply evaluates to a null result. If not, it

continues on and evaluates whatever is beyond the operator. You could say that this line of code turns

into the following:

HighScoreManager manager = highScoreManager;
if(manager == null) return null;
return manager.Scores[0].Player.Name;

That’s one null check down. Four more to go. We can string these together to get the result we want:

return highScoreManager?.Scores?[0]?.Player?.Name;

This shows us the conditional indexer access operator (the part that says Scores?[0]), and includes more

conditional member access operators through the whole statement.

With all of these null propagators, if any of the objects involved (immediately before a null propagator)

turn out to be null, the expression will short circuit and evaluate to null. Otherwise, it will keep going down

the chain and evaluate the next part.

There are three nuances with these null propagators that deserve more discussion.

Command Line Arguments 285

First, when you use a null propagator, it actually copies the object before it into a new variable. (The

earlier code that shows what a null propagator turns into illustrates this by copying highScoreManager

into the local manager variable.) This prevents situations where a value might become null after the null

check, but before using it. This can happen in a multi-threaded application if the variable in question is

shared by multiple threads. We make a local cached copy instead, and use that afterwards.

Second, when these operators “fail,” they produce a null value. This is fine if you’re working with a

reference type, because those can handle a null value just fine. But it causes problems if we’re using a

value type. Imagine if we were trying to get the score (an int) instead of the name, as shown below:

int? score = highScoreManager?.Scores?[0]?.Score;

Because the null propagators might return null, this expression doesn’t evaluate to a plain int, but rather

a nullable int. (We discussed nullable types in the previous section.)

If we want to make sure it gets turned back into a non-null value, we would simply use the null-coalescing

operator (??) from the previous section to turn nulls into some other specific value:

int score = highScoreManager?.Scores?[0]?.Score ?? 0;

In this case, we either get the score we wanted or we get the fallback value of 0 if we encounter any nulls.

The third point of note is that while there is a ?. and a ?[] null propagator, there is no ?() operator. The

following won’t work:

Func<string, string> delegateMethod = null;
string resultOfMethod = delegateMethod?("3"); // Invalid...

The workaround is to invoke the delegate with the Invoke method, instead of directly invoking the object:

Func<string, string> delegateMethod = null;
string resultOfMethod = delegateMethod?.Invoke("3"); // Valid...

Here is a second example with an event:

public class SimpleClassWithAnEvent
{
 public event EventHandler<EventArgs> SomethingHappened;
 public void OnSomethingHappened()
 {
 SomethingHappened?.Invoke(this, EventArgs.Empty);
 }
}

This is actually a better and more concise way to write our event raising code than we learned about in

Chapter 33, because it handles the situation where the event itself is just about to become null. (The ?.

operator makes a local copy to protect against that exact scenario.)

Command Line Arguments

Not all programs have a user sitting in front of them typing commands or pushing buttons. A second

option is to allow the program to take command line arguments, supplied to the program at the time of

launch. This allows you to put your program in scripts, and run it as a part of a larger automated task.

Let’s say you have a program called Add.exe that adds two numbers together. Instead of asking the user

to type in two numbers, as an alternative, the user can specify those numbers on the command line when

they start the Add.exe program. From a command prompt, this might look like this:

C:\Users\RB\Documents>Add.exe 3 5

286 Chapter 43 Other Features in C#

These values on the end are pulled into your program as command line arguments. If you look at your

Main method, you’ll see that it has a string[] args parameter. Command line arguments arrive in this:

static void Main(string[] args)
{
 int a = Convert.ToInt32(args[0]);
 int b = Convert.ToInt32(args[1]);

 Console.WriteLine(a + b);
}

User-Defined Conversions

Way back in Chapter 9, we looked at typecasting, which allows you to do things like convert a float into a

double, or a double into a float, even though they’re different types.

We briefly discussed implicit casting and explicit casting. Implicit conversions happen without asking,

usually from a narrower type to a wider type. (For example, from int to double, because a double can

store anything an int can store.) Explicit conversions do not happen automatically, but do allow for

conversion between two types with the typecasting operator: int a = (int)3.14;

Casting works great for the built-in types. It also works well in an inheritance hierarchy. But C# also allows

you to define conversions between types you’ve defined. Let’s say you’ve got a simple class like the

MagicNumber class below, where you have basically a number with an extra property:

public class MagicNumber
{
 public int Number { get; set; }
 public bool IsMagic { get; set; }
}

If you want to convert this to and from an int, you could always add methods to do this like this:

public int ToInt()
{
 return Number;
}

public static MagicNumber FromInt(int number)
{
 return new MagicNumber { Number = number, IsMagic = false };
}

This works, but isn’t nearly as clean as we’ve seen with conversions between the built-in types. We can fix

that by defining our own conversion operators:

public static implicit operator MagicNumber(int value)
{
 return new MagicNumber() { Number = value, IsMagic = false };
}

This is defined in essentially the same way as any other operator (Chapter 34). Like with all other

operators, this must be static and public.

For a user-defined conversion, we must specify whether it is implicit or explicit. In this case, we’ve

chosen implicit. The “name” of the operator will be whatever we are converting to. The body of the

custom conversion does whatever work we need to do to produce the transformed value. With this added

to our MagicNumber class, we can simply convert from ints to MagicNumbers:

int aNumber = 3;
MagicNumber magicNumber = aNumber;

The Notorious ‘goto’ Keyword 287

We can also create an explicit cast in the same way. The following code defines an explicit cast from our

MagicNumber type to int. (Any time we lose information in a conversion, we should always use an

explicit cast.)

static public explicit operator int(MagicNumber magicNumber)
{
 return magicNumber.Number;
}

Now, elsewhere in our code, we can use this conversion, though this time, we’ll need to use a typecast:

MagicNumber magicNumber = new MagicNumber() { Number = 3, IsMagic = true };
int aNumber = (int)magicNumber;

One gotcha with user-defined conversions is that they will always produce a new, separate instance. You

can see the new keyword even popping up in our earlier implicit cast. The trick is that it ’s not always

obvious that we’ve produced a new object, especially when the cast is implicit. For example:

TypeA a = new TypeA();
TypeB b = a; // Converted with an implicit user-defined conversion

b.DoSomething(); // Affects b, but not a, because b is a different object because of the implicit cast.

Because of weird errors like this, it may be easier to just use ToWhatever() methods (a la ToString(),

which everything has). When you do this, it is much easier to see that you’re working with a separate

object:

TypeA a = new TypeA();
TypeB b = a.ToTypeB();
b.DoSomething();

User-defined conversions have their place, but it is always also worth considering if defining

ToWhatever() methods or adding new constructors to do the conversion might be better in any

particular case.

The Notorious ‘goto’ Keyword

C# has a goto keyword that allows the flow of execution to jump or “go to” an arbitrary other location in a

method to continue execution. Before I go further, I should caution you that the second you mention

using goto, you will literally have programmers crash through your wall yelling, “Don't use goto!”

Give it a try. When you’re near some other programmers, look at your code studiously for a few seconds,

scratch your chin, and say, “Maybe I'll use a goto here.”

As we’ll soon see, there are good reasons that programmers react so quickly and so harshly to goto. But if

C# had hand grenades in it, I'd still want to teach you about C# hand grenades, so that if you stumble into

a live one, you understand it well enough to react to it. For the same reason, I'm going to cover goto here.

How ‘goto’ Works
Conceptually, goto is pretty straightforward. It is a statement that causes the flow of execution to jump to

another location, with some limitations.

A goto requires two parts:

1. A label, or a labeled statement. These are the targets for a goto statement.

2. A goto statement that identifies which label to jump to.

288 Chapter 43 Other Features in C#

The following code is slightly complicated, but that's where you usually see goto. “Slightly complex” is

goto’s natural habitat.

/// Look for one number in a multi-dimensional array of numbers.
public void FindNeedleInHaystack(int[,,] haystack, int needle)
{
 int locationX, locationY, locationZ;

 for(int x = 0; x < haystack.GetLength(0); x++)
 {
 for(int y = 0; y < haystack.GetLength(1); y++)
 {
 for(int z = 0; z < haystack.GetLength(2); z++)
 {
 if(haystack[x, y, z] == needle)
 {
 locationX = x; locationY = y; locationZ = z;
 goto Found;
 }
 }
 }
 }

 goto End;

 Found:
 Console.WriteLine($"Found at {locationX}, {locationY}, {locationZ}.");

 End:
 ;
}

This block of code illustrates all of the major mechanics of goto. In the heart of those nested loops is a

goto statement, which identifies the label to jump to. (Found, in this case.) If that line is reached, the flow

of execution will immediately leave where it is at and jump directly to the label it references: the Found:

label towards the bottom.

This code also has a second goto. If the flow of execution never gets to that first goto, it will eventually

complete the search and fall out of the loops normally. To skip the “Found at” message, the code includes

another goto statement to skip past it to the end of the method.

Here are a few more of the finer points of goto:

 Labels can be any legal identifier. It has the same restrictions as any variable or method name.

 A label must always precede a statement. If nothing else, you can put an empty statement (a

lonely semicolon) as shown after the End label.

 Encountering a label does not interfere with the flow of execution. goto Something; jumps you to

the location of the label, but encountering a Something label does not.

 A goto can only take you up or down within the current scope (as is shown with goto End;), or up

to a parent scope (as is shown with goto Found;). It cannot take you into a child scope, or into a

different child scope of a parent (for example, out of one for loop and into another).

 A goto cannot take you between methods.

This code illustrates an example of where goto has potential value. Breaking out of multiple loops without

a goto is not exactly trivial. That doesn't necessarily mean you should use it here. There are some definite

good reasons to avoid goto here or anywhere. But if there were ever a time for a goto statement, this

would be a good candidate.

The Notorious ‘goto’ Keyword 289

Why You Should Avoid ‘goto’
There is probably no programming concept that will evoke such an extreme negative reaction as using

goto. But what makes it so bad?

The answer is that goto is that it has a profoundly negative effect on code readability and maintainability.

The earlier code sample is probably goto at its best. Here's an example of goto at its worst:

public void FindNeedleInHaystack(int[,,] haystack, int needle)
{
 int x = 0;

 Top:
 int y = 0;

 TryAgain:
 int z = 0;

 Next:
 if (z >= haystack.GetLength(2))
 {
 y++;
 goto TryAgain;
 }

 if (haystack[x, y, z] == needle) goto Found;

 z++;
 goto Next;

 y++;
 if (y < haystack.GetLength(1)) goto TryAgain;

 x++;

 if (x < haystack.GetLength(0)) goto Top;

 goto End;

 Found:
 Console.WriteLine($"Found at {x}, {y}, {z}.");

 End:
 ;
}

Pop Quiz: Does this code have the same functionality as before?

It is supposed to. I just unrolled the loops into goto statements, but in theory, kept the same functionality.

But I’m having a hard time verifying that it still produces the correct results. And I wrote the thing!

The massive drop in readability is also a maintainability killer. Once a goto has been added, it tends to

become impossible to extract. It's like a tick or a leech. One does not simply remove it.

Furthermore, gotos are contagious. One goto begets more gotos. In the original goto code, the mostly

reasonable goto Found; produced a second less reasonable goto End;. This is commonplace with gotos.

The above code is an especially bad example, but once goto pops up, it morphs into this pretty quickly.

The reality is, by applying refactorings like extracting pieces into methods and just reorganizing confusing

code, you can always rewrite goto code in a way that doesn’t require goto. And nearly every experienced

developer will tell you that taking this approach will save you a lot of pain in the long term.

290 Chapter 43 Other Features in C#

Many teams will just simply forbid goto in their codebase. It’s probably for the better.

At a minimum though, I would strongly recommend pretending goto doesn’t even exist for at least the

first year of your development life. That will get you practice with different (better) approaches and make

you far wiser before you start unknowingly inflicting damage on your code quality.

Generic Covariance and Contravariance

When you have inheritance and you mix derived types with base types, the rule is that you can substitute

the derived class any time the base class is expected. As a frame of reference for this discussion, let’s

assume we have the following two classes, which form a small inheritance hierarchy:

public class GameObject // Any object in the game world.
{
 public float X { get; set; }
 public float Y { get; set; }
}

public class Ship : GameObject
{
 public void Fire() { /* ... */ }
}

Recall that you can assign an instance of the derived class to a variable whose type is the base class:

GameObject newObject = new Ship();

Or consider the method below, which expects a GameObject:

void Add(GameObject toAdd) { /* ... */ }

You can invoke this with the derived object:

Add(new Ship());

The derived class can be used any time that the base class is expected, because the derived class is, in

fact, also the base type. A Ship is a special type of GameObject, but that makes it a GameObject too.

Generics and the Type Hierarchy
This substitution relationship between derived and base classes is a useful one, but generics complicate

the picture. While you can do this:

GameObject newObject = new Ship();

You cannot do this:

List<GameObject> newObjects = new List<Ship> { new Ship(), new Ship(), new Ship() };

While there is a relationship between GameObject and Ship, there is not an equivalent relationship

between List<GameObject> and List<Ship>. The hierarchy relationship is not magically bestowed on

generic types that utilize the types in the hierarchy. List<T> is instead derived from plain old object.

In fact, if this were allowed, it would cause serious problems. Consider the consequences of this code:

List<GameObject> objects = new List<Ship>();
objects.Add(new Asteroid());

That second line would seem reasonable (assuming Asteroid is another class derived from GameObject).

We're simply adding an Asteroid to a collection that can hold any type of GameObject. Yet the actual List

type being used is a list of Ship. You shouldn’t be able to put Asteroid in a list of Ship.

Generic Covariance and Contravariance 291

But still, sometimes it could be nice to allow generic types to leverage the relationships of their type

parameters.

Variance: Defining Hierarchy-Like Relationships with Generic Types
In C#, you actually have control over how the hierarchy relationship transfers over to a generic type that

uses it. The rules that govern if and how this relationship is applied is called variance.

If you remember from Chapter 26, whenever you define a generic type, you specify a list of generic type

parameters that can be used elsewhere in the class. For example, in the code below, we have a generic

interface (called IGeneric) with two generic type parameters that called T1 and T2:

public interface IGeneric<T1, T2> { /* ... */ }

For each of these generic type parameters, you can specify what form of variance you want it to use.

There are three variance options available.

The first is invariance, and is the default. This means that the type hierarchy relationship is ignored

entirely. This is what we saw with how List<Ship> could not be supplied when List<GameObject> was

required. When something is invariant, you must use the exact type specified.

The second is covariance. This means that the type hierarchy relationship is preserved. If you have a

covariant generic type parameter, then you could assign a derived version when the base version is

specified, which we might have hoped for with List<T>, had it not caused problems:

Covariant<GameObject> thing = new Covariant<Ship>();

Covariance only works if the generic type parameter is used solely as output from the class. That is, it is

used as return values for methods (including property getters and indexers). It cannot be used as input to

the class (the type of a method parameter or a setter for a property or indexer). This is exactly the reason

why List<Ship> can't be stored in a List<GameObject>. The Add method requires passing in something

of type T, so it can’t be covariant.

On the other hand, IEnumerable<T> is covariant. IEnumerable<T> was introduced in Chapter 25. This is

an interface that allows you to simply iterate over a collection, or run through a collection and view it, one

item at a time. Because IEnumerable<T> doesn't define any methods that require the generic type as

input, it can be covariant.

Also, since List<T> implements the IEnumerable<T> interface, the following is possible:

IEnumerable<GameObject> gameObjects = new List<Ship> { new Ship(), new Ship(), new Ship() };

A List<Ship> implements IEnumerable<Ship>, which is assignable to IEnumerable<GameObject>.

The third option is contravariance. While covariance preserves the type hierarchy relationship,

contravariance actually inverts it. If a generic type parameter is contravariant, we can do this:

Contravariant<Ship> thing = new Contravariant<GameObject>();

This might seem strange at first, but it is related to the fact that contravariance can only work if the

generic type argument is only used on inputs to the class.

The best practical example of contravariance is the Action<T> delegate type that we introduced in

Chapter 32. Action<T> is a delegate type that matches any method that has a single parameter of the

generic type T and a void return type. For example, if we had a delegate that looked like this:

Action<Ship> processShipDelegate;

292 Chapter 43 Other Features in C#

We could assign either of these methods to it:

public void LogShip(Ship s) { /* ... */ }
public void DrawShip(Ship s) { /* ... */ }

But Action<T> is contravariant. That means that we could also assign these to it:

public void LogGameObject(GameObject o) { /* ... */ }
public void DrawGameObject(GameObject o) { /* ... */ }

The type isn't a perfect match, but contravariance allows Action<GameObject> (which these are) to be

assigned to Action<Ship>.

But contravariance will only work if the generic type parameter is solely used for inputs.

Based on our earlier example, you can start to get a feel for how and why that works. If we assign void

DrawGameObject(GameObject o) to that processShipDelegate variable, we can then turn around and

invoke it with a Ship:

processShipDelegate = DrawGameObject;
processShipDelegate.Invoke(new Ship());

We’re calling a method that expects the base type (GameObject) but passing in the derived type (Ship).

Specifying Variance in Code
We’ve covered how variance works at a conceptual level, as well as some examples of how to actually use

covariant and contravariant generic type parameters. Now it’s time to look at how to actually make

something of your own creation covariant or contravariant.

Variance can be specified on generic interfaces and delegate types. (Notably not on generic classes.)

To specify variance, you simply put the out (for covariance) or in (for contravariance) keywords just before

the generic type parameter where you define the type:

public interface IVariance<out TCovariant, in TContravariant>
{
 TCovariant ProduceAValue();
 void ConsumeAValue(TContravariant value);
}

While these keywords don’t do a great job at helping you remember the terms “covariant” and

“contravariant,” they do a good job of helping you remember where they can be used.

If you’ve marked something as covariant with the out keyword, the compiler will enforce that it is only

used as an output. If you attempt to use it as an input, it will not compile. The same applies with

contravariance and the in keyword. If you make something contravariant, but then try to use it as a return

value, the compiler will catch it.

Invariance is the default. If you leave in or out off, then the generic type parameter will be invariant. You

will be able to use it as both an input and an output, at the cost of losing variance.

It is good practice to make types covariant or contravariant if the intent is to only use it as input or output.

Mixing and Matching
Every generic type parameter is allowed to have its own variance. You could have five generic type

parameters, one of which is invariant, two of which are covariant, and two that are contravariant.

You don’t have to look far in the Standard Library to find a type that does some mixing and matching.

Recall that the Func family of delegates specifies some number of generic inputs and a generic return

value. For example, there is this one:

Advanced Namespace Management 293

public delegate TResult Func<in T1, in T2, in T3, out TResult>(T1 arg1, T2 arg2, T3 arg3);

The three generic type arguments that are used as inputs (T1, T2, and T3) all are marked with that in

keyword, making them contravariant. The one that is used as an output (TResult) is marked with out,

making it covariant.

To further illustrate the variance point, what this means is that if you have a variable that looks like this:

private Func<Ship, Ship, Ship, GameObject> shipMuxer;

You can assign it any of the following functions as a value:

private GameObject DoStuff(Ship a, Ship b, Ship c) { /* ... */ }
private Ship ReturnAShip(Ship a, Ship b, Ship c) { /* ... */ }
private GameObject ExpectGameObjects(GameObject a, GameObject b, GameObject c) { /* ... */ }
private Ship ExpectObjectsAndReturnAShip(object a, object b, object c) { /* ... */ }

Advanced Namespace Management

In Chapter 27 we discussed namespaces in depth. There are a few weird corner cases that we ignored in

that chapter, simply because they have few practical uses. But since they are a part of the language, these

corner cases are worth a brief mention here in this chapter.

In certain cases where names of classes and namespaces get reused, the C# compiler may get confused

about what you're referring to. For example, while we're familiar with the Console class in the System

namespace, imagine if you made a class called System that had a method called Console in it. At this

point, System.Console is ambiguous.

The first rule here is, “Don’t do that.” Avoid name collisions between classes and namespaces whenever

possible. It's not just confusing to the compiler, but to humans as well. So avoid it wherever possible.

On the other hand, sometimes the mess was caused by the exact wrong combination of third party

libraries, and you have no choice.

To resolve these scenarios, use the global keyword with the namespace alias operator (::) shown below:

global::System.Console.WriteLine("Hello World!");

The global:: indicates that the compiler should start searching for names (namespaces or type names)

starting all the way up at the top of the system. (This top level is called the global namespace.)

On a related note, there are a few occasions in which you need to reference two versions of the same

assembly or dependency. This, too, should be avoided whenever possible.

But when it's unavoidable, the way to deal with it is with an extern alias. An extern alias allows you to bring

in the code in a DLL under a separate “root” namespace, alongside the global namespace, with a different

name of your own choosing.

To do this, you must do two things. First, you must apply a namespace alias to the DLL that you're

referencing. This is not hard to do:

1. In the Solution Explorer, in your project, under the References element, find the assembly that

you want to give an alias to.

2. Right-click on it and select Properties.

3. Look for the property called Aliases. By default, this will say “global”. Simply change this to

another value. For example, “MyAlias”.

In code files that want to use this alias, put code similar to the following at the very top of the file:

294 Chapter 43 Other Features in C#

extern alias MyAlias;

Note that extern aliases must go before anything else in the file, including the rest of your using

directives.

At this point, everything in your new aliased namespace is accessible like you’re used to, with your alias

prepended to the front. So you can add using directives for it, reference types in it with fully qualified

names, etc.

Additionally, you can access stuff in this namespace using the namespace alias operator (::) as well:

MyAlias::My.Namespace.MyClass. This helps illustrate that your extern alias is not under the global

namespace, but is at the root level beside it.

Remember: these are situations that are best avoided. If you have a different way around needing to use

the global:: namespace reference or extern alias, you should. But it is good to know that things are in

place to work through the problem if it becomes unavoidable.

Checked and Unchecked Contexts

In Chapter 9 we discussed overflow errors. To recap, when you do some math that causes your integral

numbers to go beyond their allowed limits, you run into overflow. By default, the value is “truncated” and

the number wraps around. For example, the following code outputs -2147483648, which is int.MinValue.

int x = int.MaxValue;
x++;
Console.WriteLine(x);

The code above, by default, wraps around when we exceed the maximum value. (Note that this does not

apply to floating point numbers. They just become infinity instead.)

Most scenarios won’t push you into overflow at all. If it’s a threat, you upgrade to a larger data type, like

using long instead of int, or int instead of short. In other cases, if you do wrap around, it’s not that big of

a deal. But in some cases, wrapping around causes huge problems. Suddenly the number goes from a big

number to a small one. If that’s the balance of your bank account, you’re going to be sad that it changed

like that without you even being told.

This is because by default, C# code runs in an unchecked context. That is a way of saying the runtime

doesn’t care if something overflows. It doesn’t even check for it. It just allows the bits to be reinterpreted

as the truncated value.

On the other hand, you can specify in your C# code that some math operation should be ran in a checked

context instead.

int x = int.MaxValue;
checked
{
 x++;
}
Console.WriteLine(x);

If you do this, then instead of wrapping around, an OverflowException will be thrown. When this

happens, you can optionally catch it and handle it however you feel you need to, as we discussed back in

Chapter 30.

Likewise, you can also specify that a section of code should always be done in an unchecked context:

int x = int.MaxValue;
unchecked

Volatile Fields 295

{
 x++;
}
Console.WriteLine(x);

Unchecked is the default. So why have a keyword that specifies this?

It turns out you can set the entire application to be either checked or unchecked by default by setting an

option on the compiler. If you have set up the application to be checked by default, then being able to

specify that a certain computation must be unchecked is useful.

To specify that an application (or a single project) should be checked, you can either add the /checked+

compiler command line argument (or /checked- to turn it off) or if you prefer to do this in the UI itself:

 Right-click on a particular project in your Solution Explorer.

 Choose Properties.

 Select the Build tab.

 Push the Advanced button.

 In the Advanced Build Settings dialog that comes up, check or uncheck the box that is labelled

“Check for arithmetic overflow/underflow”.

Whether something is checked or unchecked is not usually something you need to worry about. Usually

you don’t care because you won’t run into a place where overflow can even happen or you don’t care that

it wraps around as the default behavior. But in cases where it matters, it is nice to know that you have

options to control it.

Volatile Fields

In this section, we are going to talk about C#'s volatile keyword and some related concepts that help to

paint a picture of what it does and why.

This topic is another one of those dark corners of C#, and of programming in general.

Program Order and Out-of-Order Execution
The first point of interest here is to describe two closely related concepts called program order of

instructions and out-of-order execution. When you look at a chunk of source code like the following, you

make the assumption that things will happen in the order you see it:

int x = 3;
x += 7;
int z = 10;

This is a key tenet of procedural programming. Things happen one after the next.

As it so happens, sometimes either the compiler or the hardware itself is able to see that it can get more

things done faster if it can rearrange the order of some of the instructions, or run the instructions in

parallel. The last line in the above code is a good example of this. The int z = 10; could actually be

completed (or at least started) before the x += 7 completes.

The value in allowing the hardware to rearrange instructions or interleave instructions is clearer when you

recall that each line of C# code that you write tends to compile down to multiple binary instructions.

The ability for hardware to reorder instructions is called out-of-order execution. It is a key way that

hardware can run code more quickly. When performing out-of-order execution, the hardware still

guarantees that any changes it makes will still appear as though it were executed in program order.

296 Chapter 43 Other Features in C#

Here’s the catch: the hardware generally makes the assumption that only a single thread is running. When

two or more threads (or processes) share memory, this out-of-order execution can occasionally cause

problems. To illustrate, consider the following two chunks of code.

Thread #1 is running this:

value = 42;
complete = true;

And Thread #2 is running this:

while(!complete) { }
Console.WriteLine(value);

What will Thread #2 write out?

Under normal rules, you would assume that it prints 42. But because of out-of-order execution, it is

possible that the ordering in Thread #1 could get reversed and something besides 42 could appear

instead.

In this context, you may hear people talking about the results of one memory operation (a read or a write)

being “visible” to other threads. You could say an operation is visible if, from the perspective of all threads

that have access to the memory location, all changes to the memory it affects have completed.

In our code above, it's possible that setting complete to true might be visible before the change of value

to 42, at least from Thread #2’s perspective.

Memory Barriers
Obviously, with a problem like what we’re describing, you'd assume that there's a solution of some sort.

The answer here is something called a memory barrier. A memory barrier is a special instruction at the

hardware level that indicates that pending reads or writes must complete before continuing past the

memory barrier. There are two ways that this can work:

1. Acquire Semantics: If an operation has acquire semantics, then it will be visible before later

instructions.

2. Release Semantics: If an operation has release semantics, then earlier instructions will be visible

before it.

Creating Volatile Fields
In C#, fields (both static fields and instance variables) can be marked with the volatile keyword. The

volatile keyword is intended to help sort out issues that come up when multiple threads have access to

the field, and you're not using another mechanism for thread safety (like a lock).

In particular, reading from a volatile field is a “volatile read,” which means it has acquire semantics. It is

guaranteed to occur before any references to memory that occur after it in program order.

Additionally, writing to a volatile field is a “volatile write,” which means it has release semantics. It is

guaranteed to occur after any references to memory that occur before it in program order.

If we defined our original complete variable like this:

private bool complete;

We could make it volatile like so:

private volatile bool complete;

This now means that when Thread #1 runs this code:

Volatile Fields 297

value = 42;
complete = true;

We can guarantee that complete won’t be set to true until after value = 42; has completed, from the

perspective of any thread. That fixes our issue.

So when should you use volatile?

If you only have one thread, you do not need volatile, and shouldn’t use it for performance reasons. You

also don’t need it if the variable is always accessed through some other thread-safe mechanism.

But any time where two threads might access it without another thread-safe mechanism, you will likely

want to make the field volatile.

Part 5
Mastering the

Tools

In order to master C#, you need to thoroughly understand the development tools that you use. We’ve

spent the bulk of this book looking at how to write C# code, but in order to truly understand how a

program works, you’ll need to learn the details of how C# and the .NET Platform function, and how to

use Visual Studio effectively. In this section, we’ll look in depth at how these things work, and we’ll pay

particular attention to how to debug your code and fix common problems.

We’ll cover:

 The .NET Platform in more depth (Chapter 44).

 A detailed look at Visual Studio and useful features it has (Chapter 45).

 How to work with multiple projects and dependencies, including NuGet (Chapter 46).

 Dealing with common compiler errors (Chapter 47).

 How to debug your code (Chapter 48).

 A behind-the-scenes guide through the way Visual Studio organizes and manages your code

and other assets in a project or solution (Chapter 49).

44
44 The .NET Platform

The .NET Platform, often called the .NET Framework or simply “.NET”, is the system that your C#

applications run on. The .NET Platform has a lot of interconnected pieces with an interesting history. To

make sense of this, we’ll start with an overview of what the .NET Platform is. Then we’ll cover a brief

history of .NET, which shows how we got where we’re at and shed some light on where it’s heading. We

will then go through the individual pieces that comprise the .NET Platform in more depth.

Overview of the .NET Platform

The .NET Platform, also called the .NET Framework (though we’ll draw some distinctions between those

two terms later) is a vast software platform, designed to make software development faster and easier.

The goals is to let programmers focus on the unique aspects of their program, without needing to worry

about “boilerplate” code that is common to all applications.

The .NET Platform architecture diagram below shows the current state of the .NET Platform. This has been

evolving at a fast rate, and will continue to change in the future.

In a Nutshell
 The .NET Platform is the system on which C# runs.

 C# code is compiled to CIL instructions by the C# compiler, and to binary instructions at run-

time by the JIT compiler.

 The Common Language Runtime is an application virtual machine that runs your program.

 The .NET Standard Library defines the collection of types that are available for you to reuse in

your program.

 There are several stacks that you can utilize that run on different hardware platforms and

operating systems:

 The .NET Framework is the oldest and most popular, and runs on Windows devices.

 The .NET Core is the newcomer, and can run on macOS, Windows, and Linux.

 The Xamarin stack primarily targets mobile devices (iOS and Android).

 The .NET Platform also contains app models for creating specific application types (desktop

apps, web, mobile apps, games, etc.).

302 Chapter 44 The .NET Platform

The .NET Platform can be thought of as three different layers. The bottom layer is a collection of shared

infrastructure. This includes the languages themselves (the specification for each language) the compilers

for the languages, the Common Intermediate Language (CIL) that the compilers emit, the Common

Language Runtime (CLR) that runs .NET applications, along with supporting tools and components.

Built on top of that is the .NET Standard Library (often called the Base Class Library, though the two are

subtly different). This is a vast collection of reusable code that takes care of common tasks or solves

common problems, including things like networking, file system access, and collections. Your C#

Overview of the .NET Platform 303

application (or any other .NET language) can use anything in The Standard Library. It is common code that

any type of application—web, desktop GUI, console, game—can utilize.

You can see that the top level is split into three different sections. Each of these can be called a different

stack, flavor, or implementation of the .NET Platform. Sometimes, each of these are even called a .NET

platform (contrasted with The .NET Platform with a capital ‘P’, which is the label I’m applying to the entire

ecosystem, including all of the stacks).

The three stacks shown in the diagram are not meant to be a complete list of all possible flavors of .NET,

though these are the three biggest and most widely used stacks. Each of these stacks represent a unique

configuration of .NET. Some of the infrastructure pieces (like the Common Language Runtime or the C#

compiler) are swapped out for compatible replacements. In different stacks, even the .NET Standard

Library can be swapped for a completely different implementation.

Each stack is carefully crafted for different unique purposes. For instance, the .NET Framework is the

biggest and oldest of the stacks. It’s primarily suited to Windows machines. The .NET Core stack is much

newer and much smaller, but can also target Linux and Mac. The Xamarin stack is aimed primarily at

mobile development, including iOS and Android.

Each stack supports a number of different app models. An app model is primarily a library dedicated to

building some specific type of application. For example, the Windows Presentation Foundation (WPF) app

model is a framework for building desktop GUI applications. ASP.NET is a framework for building web

applications (generally in conjunction with JavaScript, CSS, and HTML on the front-end). In addition to

providing a library of code specific to a certain type of application, app models can also provide

infrastructure as well: things like security models and deployment models.

Terminology: .NET Platform and the .NET Framework
The terminology here gets a little confusing. This is because of history. Out of all of the stacks, the .NET

Framework was the first. Because of this, other stacks have also been frequently called implementations

of the .NET Framework. You might hear people say, “.NET Core is an implementation of the .NET

Framework that also runs on Linux and OSX.” The term “.NET Framework” then basically has three

definitions that depend on context:

1. A label applied to the entire ecosystem (what I’m referring to as the .NET Platform in this book).

2. The specific .NET Framework stack, excluding .NET Core, Xamarin, and other stacks.

3. A template of what a stack should look like, of which, .NET Core, Xamarin, etc. simply re-

implement.

The Internet and other material will use all three of these definitions at different times. When you come

across the term, you should stop and think about which of these definitions the author is referring to. In

this book, I will always call #1 either “.NET” or “The .NET Platform”, with a “The” at the front and a capital

“P”. When I say “.NET Framework”, I’m always using definition #2: the specific .NET Framework stack. And if

I mean #3, I will refer to them simply as stacks, or possibly .NET platforms, with a lowercase “p”.

Specifications and Implementations
One important thing to point out about .NET is that it is a system of specifications and implementations.

For many components, there is a specification of how it should work, and then one or more

implementation of that specification. The C# compiler is a good example of this. The C# language itself

has a specification about how it should work and what it should compile to. While there is a default, built-

in compiler (the Roslyn compiler) that particular component can be replaced with another compiler in a

different stack. As long as the compiler sticks to the specification, it is fine to replace it.

304 Chapter 44 The .NET Platform

The .NET Standard Library is an even better example of this. The .NET Standard Library is actually not a

shared, single implementation, but a specification. Each stack has a different implementation of this

specification. The specification for this library is titled the .NET Standard. The .NET Standard defines what

things should be in the shared class library available to all platforms, and each stack can have a different

implementation that conforms to this standard. (Each stack additionally adds their own unique pieces to

the library as well.)

The Common Language Runtime also has a specification, and each stack has its own implementation.

These specifications allow different stacks or variations of stacks to be able to swap pieces in and out for

different implementations to get the behavior and structure they need. They can be tailored to fit their

specific needs.

A Brief History of the .NET Platform

While the previous section focused on how the .NET Platform is currently organized, a different facet of

the .NET Platform is its history, which is valuable because it sheds light on some of the reasons it is

organized the way it is and also some of the confusing names that are floating around.

 Early 2002: The first version of .NET is released, which only included the .NET Framework stack. It

includes the Base Class Library as its standard library. C# and .NET are mostly still what they were

when first introduced.

 Late 2002: A second stack, the .NET Compact Framework, is released. This targets platforms such

as phones that have storage, memory, and CPU constraints.

 2004: The Mono open source project is started as an alternate implementation of the .NET

Framework intended to run on more platforms than just Windows. This is spearheaded by a

company called Xamarin. This is the beginning of the Xamarin stack.

 2004 - 2014: The stacks continue evolving. New content is added to their respective class libraries,

which begin to diverge from each other. New app models such as WPF (2006) continue to be

added.

 2012: Portable Class Libraries are introduced in an attempt to make it easier to write code that

works on different stacks.

 2014: Microsoft begins to work on a way to make ASP.NET run on Linux machines and Nano

Server. This becomes .NET Core.

 February 2016: Xamarin is purchased by Microsoft, and becomes a subsidiary of Microsoft.

 June 2016: .NET Core 1.0 is released.

 September 2016: .NET Standard is introduced, replacing Portable Class Libraries as a solution to

writing code that works on multiple stacks and in multiple app models. This defines how the

middle layer of the .NET architecture diagram should function, giving motivation for the different

stacks’ class libraries to become more similar to each other instead of more different.

 November 2016: .Net Core 1.1 is released.

That brings us to the present—or at least to the time of publishing this book. The .NET Platform as a

whole has grown and changed greatly over time, and the rate of change seems to be accelerating, not

slowing down. More changes are certainly coming in the future.

Binary, Assembly, and Compilers

Now that we’ve outlined the high-level design of .NET and gone through a bit of its history, it ’s time to go

back and revisit the components in the .NET Platform in greater depth. We’ll start at the bottom and work

our way upwards.

Binary, Assembly, and Compilers 305

To do that, we should probably start with some conceptual topics first: binary languages, assembly

languages, and compilers.

Computers can only understand binary: 1’s and 0’s. The instructions they follow are all coded in binary

sequences, and the data the read and write is all stored in binary representations. For example, here is a

sequence of three binary instructions:

00100100 00001000 00000000 00000010
00100100 00001001 00000000 00000010
00000001 00001001 01010000 00100000

Can you tell what that does? Turns out, it adds 2 and 2, and stores the result. While it is easy for a

computer to understand this, humans can’t easily make sense of it. But there was a time when humans

controlled computers by manipulating individual bits like this. Of course, that era didn’t last long; it’s just

too error prone and difficult to juggle in our brains.

So humans started building layers on top of binary. The first step to this is a low-level language called

assembly language, or assembler, which can be thought of as a human-readable form of binary:

li $t0, 2
li $t1, 2
add $t2, $t0, $t1

Immediately, you’ll see that this is far more readable than the earlier binary. For example, we can now

actually see the 2’s in there, and the add instruction on the last line. It’s far clearer what’s happening, and

typos or logical mistakes are much easier to see.

Assembly code directly mirrors binary. Each line of assembly is turned into a single instruction in binary

code (with a small handful of exceptions). You can think of assembly as a human-readable form of binary.

Of course, the computer isn’t going to be able to directly run assembly code. We need a way to translate

assembly into binary. This is what a compiler is: a program that translates from a higher-level language to

a lower-level language. In this case, we simply need to create an assembly-to-binary compiler, and we

never have to write in binary again!

But we’re already running into a problem. Not every CPU is made the same. They don’t all use the same

set of 1’s and 0’s to represent the same instruction, and not all CPUs even have the same set of

instructions available. This starts to become a problem for our compiler. This problem leads to the rise of

multiple flavors of assembly, and multiple compilers for the different types of systems we might want to

run on. The plot thickens!

Of course, there’s no need to stop at assembly. It’s more readable than binary, but it’s still not that

readable or concise. Simply doing 2 + 2 took three lines and 25 characters. There’s obviously room for

improvement. So we started making higher-level programming languages like FORTRAN and C++ where

single statements could be translated into many lines of assembly or binary code. Each of these

languages need their own compiler to translate from their own unique syntax to assembly or binary.

Different lines of thought, different use cases, and different users (the programmers) led to an explosion

in the number of programming languages available, some general purpose (Java, C#, Python), some

tailored to a specific task (R, MatLab), and others just plain weird (Ook).

Higher-level languages make life simpler for programmers because less code does more work. But we still

have our original problem that every computer we want to run on is unique, with different instructions

and representations of those instructions. The compilers can handle this, but it means a different

executable .EXE (or equivalent) file for different target machines.

306 Chapter 44 The .NET Platform

This organizational pattern is the traditional compilation model: Source code written in a particular

language is turned to binary code by a compiler. The compiler must know and understand a lot about any

targeted hardware platform in order to make instructions for that particular machine. This leads to either

a large number of compilers, or to a large number of configurations for single, complicated compilers.

The traditional compilation model has its problems, but it is a good model that has served many

programming languages and many programmers well for decades.

Virtual Machines and the Common Language Runtime

More recently, a variation on traditional compilation has arisen. This alternate approach doesn’t strictly

replace traditional compilation; they both have their place. But this second approach has seen a surge in

popularity, and is the approach C# and the .NET Platform takes.

This alternative approach is driven by two fundamental problems of traditional compilation. The first of

these is the sheer number of compilers that need to exist to target each of the different hardware

platforms and their nuances. The second is that compiler programmers need to be not just experts in

their language, but also in every hardware platform they want their language to work on.

A solution to this problem is that of a virtual machine. The term “virtual machine” has a couple of

meanings, depending on the context. In this context, we’re referring to a process virtual machine, which is a

software program that runs another software program (your program) in a way that is independent of the

hardware itself. (This is in contrast to an application virtual machine, which is a software application that

simulates an entire computer, including hardware, operating system, and multiple running applications.)

The .NET Platform’s virtual machine is called the Common Language Runtime, or CLR. Like with many things

in .NET, there is a specification for the CLR, and multiple implementations of it. Each different stack tends

to have its own implementation. The CLR implementation for the main .NET Framework stack is simply

called the CLR. The .NET Core’s implementation is called CoreCLR, while Xamarin uses the Mono Runtime.

A real hardware machine can perform specific instructions, and has binary (and assembly) code that

corresponds to it. similarly, a virtual machine like the CLR has its own instructions that it can perform.

If an application wants to target the CLR virtual machine, rather than compiling to instructions for any

physical machine, it needs to compile to the instruction set that is supported by the CLR. The CLR then

has the responsibility of turning those “virtual” instructions into the “real” instructions for the physical

machine that it is running on.

Effectively, the compilation is split into two steps. The first step is to transform source code into this

virtual instruction set. This is done by the language compiler. Then, as the program is running, the virtual

machine (the CLR) has the responsibility of doing a final compilation step to transform the virtual

instructions into ones that the underlying physical machine can execute. The CLR has its own compiler to

do just this. This compiler is called the Just-In-Time compiler or the JIT compiler. Under normal scenarios,

the JIT compiler translates methods (Chapter 15) one at a time, the first time they are called. This means

nothing gets translated more than once and methods that are never used don’t get JIT compiled.

This compilation pattern solves our two earlier problems. The compilers themselves are only concerned

with one thing. The “main” compiler just has to translate from C# or another language to the virtual

instruction set, and the JIT compiler doesn’t need to care about the specifics of any language but the

virtual instruction set and translating it to the hardware instructions. This also means that compiler

programmers no longer need to be experts in many physical machine architectures, just in the CLR’s

instruction set.

Virtual Machines and the Common Language Runtime 307

Common Intermediate Language
The virtual instruction set that a virtual machine has is referred to as an intermediate language. It can be

represented in a binary format as well as in a text-based format that is essentially the assembly language

for the virtual machine.

For the .NET Platform, the intermediate language is called Common Intermediate Language (CIL). In the

past, it was called Microsoft Intermediate Language (MSIL) and you still see that term used regularly.

Most Intermediate languages tend to be higher level than “normal” binary or assembly languages. For

example, CIL instructions contain concepts about object-oriented programming (all of Part 3) such as

casting, creating objects, and type checking. It also contains information about exception handling

(Chapter 30).

The C# compiler only needs to convert C# source code into CIL instructions, disregarding the specifics of

which computer you intend the application to run on. (It’s targeting the virtual machine, after all.) When

the CLR is running your code, the JIT compiler will convert the CIL instructions to their final form as binary

instructions for the actual physical machine.

Advantages of a Virtual Machine
There are certain advantages and disadvantages to using a virtual machine like the CLR. This section and

the next will dig a little into the good and bad.

Separation of Concerns

Probably the single most important benefit of using a two stage compilation process with a virtual

machine in the middle is the idea of separating concerns. This has been touched on repeatedly in this

chapter. By separating the hardware-specific concerns away from the language-specific concerns, you

allow the C# compiler programmers to not have to worry about the details of many different hardware

platforms, and you also allow the JIT compiler to not worry about any specific language.

Cross-Language Libraries

Because the code targets a virtual machine, you open up the door for any language that targets the

virtual machine to be able to reuse the code without any additional work. For example, the entire .NET

Standard Library is accessible by every language in the .NET Platform, including C#, VB.NET, F#,

IronPython, and IronRuby. If you made your own language and compiled to CIL, you could get access to

the Standard Library for free. And you can write a C# library that is works in all of these languages as well.

Memory Management

The CLR also performs memory management. C# and other .NET languages do not require you allocate

memory for your objects, nor do you have to clean it up when you’re done (in most cases). The CLR will

manage what memory is used, and what isn’t, and move things around to keep things organized. Memory

management is like having a personal assistant whose job is to take care of these things for you, freeing

you up to work on the interesting parts of your program.

There are a few times where you go beyond the bounds of the CLR’s managed memory (Chapter 42), and

when you do, you’ll need to take extra care to clean things up correctly yourself.

Security

Because C# code is running on a virtual machine, it has a high level of control over what code can access

the hard drive, the network, and other hardware. And because it is running inside a virtual machine, a

program can’t gain access to the memory of other programs. This prevents code from doing a whole slew

of dangerous, virus-like activities.

308 Chapter 44 The .NET Platform

The Drawbacks of Virtual Machines
Virtual machines are great inventions, but they don’t come without a few strings attached. In many cases,

the advantages outweigh the problems, but it is still important to understand these tradeoffs when it

comes time to pick a language to use.

Performance

The primary drawback of a virtual machine is performance. Code running on a virtual machine is

generally considered to be somewhat slower than code running without one.

But this isn’t as bad as it seems.

For starters, in many applications, speed isn’t an issue. Think about a GUI application, like a word

processor or a web browser. As much as these applications do, the computer spends most of its time

waiting for the user to press a key or click a button. The holdup is the user, not the computer. In these

cases, a virtual machine won’t hurt anything.

Additionally, it is technically possible for code running on a virtual machine to be faster. This may seem

strange at first, knowing the overhead that the virtual machine needs, but it is possible. Without a virtual

machine, the compiler makes the final decision about what machine instructions are actually going to be

used. That happens on the developer’s machine. With a virtual machine, the final compilation step

happens at run-time, on the computer that will actually run it. The JIT compiler has more information to

work with, so it has the potential to make better decisions about what to actually use. Despite this, in

practice, .NET code does tend to run just a bit slower than its unmanaged counterpart.

Additionally, C# has the capacity to invoke unmanaged non-CLR code if needed (Chapter 42). This allows

you to use C# code for the bulk of your application, and then call your own C or C++ code for the

performance-critical pieces if needed.

Bad for Low-Level Coding

Obviously, there are just some things that can’t be done in a virtual machine, because it has to run as an

application on another computer. So you obviously aren’t going to be writing an operating system using

C#. Nor would you write something like a device driver to talk to actual hardware in C#. These things are

just too low level. For things like this, you must use a different programming language, such as C or C++.

Your Code is More Visible

I occasionally hear people expressing concern about how compiled C# code is easier to decompile and

reverse engineer than other languages. It’s true that CIL code is higher level than raw binary or assembly.

Because it is higher level, it is slightly easier to determine what the code is doing and reverse engineer it.

But CIL is only slightly more readable than non-CIL assembly code. Plus, this can largely be solved by using

a code obfuscator on your compiled projects before shipping them to customers.

The .NET Standard Library

We’ve now thoroughly dissected the bottom layer of the .NET Platform architecture, and we’re going to

move up to the next level: the .NET Standard Library. The .NET Standard Library is a vast collection of

reusable code that can be utilized in any .NET application. While it is considered a “class library”, that term

is a general term; the .NET Standard Library contains not just classes, but structs, interfaces, delegates,

enumerations, etc. that provide things that any type of application might want to leverage. This includes

things like the primitive types (int, string, double, etc.), collections (lists, dictionaries, stacks, queues),

networking, file system access, multi-threading, and much, much more.

The .NET Framework 309

While this book is more about C# as a language, and not the .NET Standard Library, many of the most

important and useful types in the .NET Standard Library are covered throughout the book.

The .NET Standard Library is actually not just a single implementation. Like many things, it has a

specification called the .NET Standard, and each stack has its own implementation of this standard. The

.NET Standard defines the Application Programming Interface (API) of the .NET Standard Library. This API

specifies the types that need to exist and the members (methods, properties, events, etc.) that each type

should have, as well as the expected behavior of those types and those members.

The .NET Standard is actually not a single standard, but consists of multiple tiers, specified as version

numbers. Each version contains everything that lower version numbers contain, and then some.

For example, .NET Standard 1.0 includes the Action and Func types. .NET Standard 1.1 also contains

these because the version number is higher. .NET Standard 1.1 contains additional types not included

with .NET Standard 1.0. For example, it includes ZipArchive. If something only supports .NET Standard

1.0, then it won’t include this.

The higher the version number, the more types and members it includes, but the harder it is to

implement. Different individual stacks or platforms within the .NET ecosystem will support different levels

of the .NET Standard. They’re all striving to have as high of a version number as they can, but there’s a lot

to implement. New platforms in particular will take time to come online.

As of the time of publishing this book, there are 7 levels of the .NET Standard, comprising version 1.0, 1.1,

1.2, etc., up to 1.6. Version 2.0 is nearing completion. More versions in the future will inevitably come as

well.

What this means for you, as a C# programmer, is that you can use more or less of the .NET Standard by

choosing a .NET Standard version. The lower the number, the more broadly distributable your code will

be. The higher the number, the more things you’ll have available to you, but the narrower your

distribution will be. Chapter 46 will discuss how to make your own libraries target the different versions of

the .NET Standard Library.

The .NET Framework

We now move up to the top layer in the .NET Platform architecture diagram presented at the beginning of

this chapter and discuss the different stacks and app models in more detail.

Our starting point is the stack that is the .NET Framework: the oldest, biggest, and most widely used stack

of them all.

The .NET Framework itself includes quite a bit of additional code for you to leverage that isn’t included in

the .NET Standard. (.NET Standard 2.0 should cover much of this though, and as other stacks implement

.NET Standard 2.0, they’ll be mostly caught up.) This additional code is only available if you limit yourself

to targeting just the .NET Framework. For example, if you’re targeting .NET Core or Xamarin, you won’t be

able to use this additional code. (That goes in reverse for .NET Core or Xamarin specific things.)

The Base Class Library
Long before the .NET Standard was defined, the .NET Framework existed, and had the Base Class Library

(BCL). You can think of this as the .NET Standard Library before there was a need for there to be any

standardization at all. (Remember that the .NET Standard Library is a recent development, driven by the

need for cross-platform libraries due to the rise of additional stacks like .NET Core and Xamarin.)

310 Chapter 44 The .NET Platform

There have been many versions of the .NET Framework and its Base Class Library over the years. As of the

time of publishing this book, the highest version number available is 4.6.2, released in late 2016. You will

continue to see new versions of the .NET Framework come out in the future.

The Base Class Library is the .NET Framework stack’s implementation of the .NET Standard, but because it

actually pre-dates the .NET Standard (by well over a decade) it has a weird relationship to it. The .NET

Standard is actually trying to catch up to the things currently included in the Base Class Library. This is in

stark contrast to the other implementations of the .NET Standard Library, which are working to catch up

to the .NET Standard.

The .NET Framework version 4.6.2 implements the .NET Standard 1.6. But it also contains a whole lot of

additional reusable code as well. (Much more in line with the upcoming .NET Standard 2.0.) Earlier

versions of the .NET Framework cover lower versions of the .NET Standard. For example, version 4.6.1

implements the .NET Standard 1.5 (along with a pile of other unique things). Version 4.6.0 implements

.NET Standard 1.4 (plus unique things).

The fact that the .NET Framework’s BCL contains things above and beyond the .NET Standard means you

can also make your code target specific versions of the .NET Framework. This allows you to take

advantage of the extra content in the BCL, but at the cost of losing portability to other stacks.

The Framework Class Library
Closely related to the Base Class Library, the Framework Class Library (FCL) is the total set of all reusable

code that ships as a part of the .NET Framework. It includes the entirety of the Base Class Library

(including everything in the .NET Standard Library and more) as well as the libraries for the various app

models that exist in the .NET Framework stack, such as WPF and ASP.NET.

In some contexts, people use this term interchangeably with the Base Class Library to generally refer to

reusable .NET Framework code, though the two names are technically different.

.NET Core

The .NET Core is the second stack that we’ll look at here. This is a comparatively recent stack that is aimed

at reaching macOS and Linux. Development on .NET Core was started in 2014, with version 1.0 coming

out in June 2016, and 1.1 being released in November 2016. .NET Core is in heavy active development, so

you should expect more updates to this.

The .NET Core stack supports the .NET Standard Library, and meets .NET Standard 1.6 at the time of

publishing this book. Future versions should support .NET Standard 2.0 when it becomes available.

Contrasted with the .NET Framework stack, .NET Core doesn’t have nearly as many unique APIs beyond

the .NET Standard Library. (And beyond the app models it supports.)

Xamarin

The final stack that we’ll discuss is the Xamarin stack, which targets mobile devices like iOS and Android.

This is a stack is built on the open-source Mono project, which is an open-source implementation of the

.NET Framework. The Xamarin stack is designed primarily for mobile devices, especially for iOS and

Android. This stack, as well as Mono itself, has largely been implemented by the company Xamarin, which

was bought out by Microsoft in February of 2016, and is now a subsidiary of Microsoft.

This change has made Xamarin now a part of Visual Studio, which means that Xamarin development is

now just a part of your Visual Studio license. If you’re using Visual Studio Community, you get it for free. If

you’ve paid for Visual Studio Professional or Visual Studio Enterprise, it is included there as well.

App Models 311

The Xamarin platform supports .NET Standard 1.5, and will support .NET Standard 2.0 in the future.

App Models

The .NET Platform supports a wide variety of app models. An app model is an additional library for

creating a specific type of application. In addition to additional reusable code, app models tend to also

provide additional infrastructure, such as security and deployment models as well.

While the .NET Standard Library contains code that is useful for all types of applications, the code

contained in a specific app model is usually only relevant for a single specific type of application. Stated

differently, while the .NET Standard Library is worth learning no matter what kind of work you’re doing in

C#, there’s little value in learning the details of any specific app model besides the ones you are actually

putting to use.

This book doesn’t cover any of the app models in any great depth with the exception of console apps,

which probably doesn’t truly count as an app model. There are two reasons for this. First is just the sheer

scope of the different app models. You could produce long tomes for each individual app model. (You

don’t have to look far to find books about WPF that are 1500+ pages long, and that assume you already

know how to program in C#.) This book just simply can’t do justice to any of the app models, much less all

of the app models.

The second reason is that app models are compartmentalized. This book is intended to be useful for all

C# programmers. You will probably eventually go on and learn about at least one app model in depth

later on, but you almost certainly won’t go learn all of the app models. For any specific app model, the

majority of C# programmers will never need to use it.

GUI App Models: WinForms, WPF, and UWP
The .NET ecosystem supports a number of GUI applications (GUI being a “Graphical User Interface” with

buttons, checkboxes, list boxes, etc.). The oldest of these is Windows Forms (WinForms) and was

introduced in the very early days of .NET. Windows Forms is now in maintenance mode, meaning bug

fixes are still being performed on it, but no new features are currently expected for Windows Forms.

Windows Presentation Foundation (WPF) is a newer GUI app model that is somewhat more complicated

than WinForms, but significantly more powerful and flexible. Generally speaking, WPF (or UWP) is

preferred to Windows Forms for new UI development.

The Universal Windows Platform (UWP) is a third GUI app model. It has a lot in common with WPF (most

of the same controls and the same XAML markup language). UWP is perhaps not quite as powerful as

WPF, but is designed to be able to target a wide variety of platforms (hence the “universal” part of its

name) including Windows desktops, laptops, tablets, phones, the Xbox One, Internet of Things devices,

and HoloLens. If you know you only need to target Windows PCs, then WPF might be a better choice for

you. If you know you want to reach these other platforms, then UWP makes more sense.

Windows Forms and WPF are only available in the .NET Framework stack. UWP works in the .NET

Framework as well as with .NET Core.

ASP.NET and ASP.NET Core
If you are making a web application with C#, then ASP.NET is probably the app model to look at. The

ASP.NET app model is a part of the .NET Framework stack, but ASP.NET Core is an alternative

implementation that runs on the .NET Core stack. The two have some small differences, but are currently

becoming more aligned, rather than different.

312 Chapter 44 The .NET Platform

ASP.NET allows you to do web development with C# on the backend, and JavaScript, HTML, and CSS on

the frontend.

iOS and Android App Models
The Xamarin stack supports iOS and Android app models. These allow you to make C# code that runs on

these devices. The Xamarin stack itself contains quite a bit of code beyond the .NET Standard Library that

is Xamarin specific. This is done to reduce the amount of iOS or Android specific stuff in your mobile apps.

But Xamarin’s app models do allow for and support features unique to just Android and just iOS for

making these specific app types.

Visual Studio Components and Project Types

The last item we should talk about here is a brief discussion on how to begin actually making applications

using the different stacks or the different app models. This book doesn’t get into the details of these

different app models. But I do want to point out that in order to utilize them, you will need to get them

installed (re-running the installer and look for the stack or app model in the list of components to install)

and then create a project of the right type to begin working with a particular app model.

Installing every single stack and every single app model will take up a lot of space. If you’ve got the space,

you can install everything. Otherwise, it makes more sense to just install the workflows and components

that you are actually using.

45
45 Getting the Most from

Visual Studio

Visual Studio is a very sophisticated program. It is impossible to fit everything that is worth knowing about

Visual Studio into a single chapter in a book. Like many other topics that we’ve talked about, you could

write books about this. In this chapter, we’ll cover some of the most important and most useful features

of Visual Studio. There is a lot more to learn beyond what I describe in this and the next few chapters, but

these things will get you started.

Windows

The Visual Studio user interface is essentially composed of a collection of windows or views that allow you

to interact with your code in different ways. Each window has its own specific task, and there are lots of

windows to choose from.

The Code Window
The main code window, where you have been typing in all of your code for all of your projects, is the most

important window. This window has a lot of settings that you can customize, which I’ll outline in the

section below, about the Options Dialog.

In a Nutshell
 Outlines the windows that are visible in Visual Studio.

 You can exclude files that you do not want in a project without deleting them.

 You can show line numbers in your source code, which helps in debugging.

 Describes how to use IntelliSense.

 Outlines some basic refactoring techniques.

 Points out some useful and interesting keyboard shortcuts.

314 Chapter 45 Getting the Most from Visual Studio

While this window is pretty straightforward, I want to point out that at the top of the window, just under

the tabs to select which file to view, there are some drop down boxes that you can use to quickly jump to

a specific type or member of a type in the current file. The middle drop down box lets you jump to a

specific type within the file (you’ll usually only have one) and the right one lets you jump to a member of

the type, like a method or instance variable.

Speaking of jumping to a type or member, there are a few keyboard shortcuts that are well worth knowing

here, as you work on code. If you select something and press F12, you’ll automatically jump to where that

thing is defined. If that happens to be in another file, that file will be opened.

Going the other way, if you press Shift + F12, Visual Studio will find all of the places in the code where the

current selection is used. This works for any type, method, variable, or nearly anything else. These two

shortcuts are convenient for quickly navigating through your code.

The Solution Explorer
This shows a high level view of how your solution and projects are

organized. The Code Window and the Solution Explorer are the two

most commonly used windows.

At the top of the Solution Explorer, you will see an item for your

entire solution. A solution can contain multiple projects, but by

default, when you create a new project you will get a solution with

one project, and both will have the same name. You can always add

more projects to a solution if you need.

Under each project, you’ll see a Properties node, which you can use

to modify a variety of properties about your project.

You’ll also see that each project has its own References node, which

you can use to manage the other projects or DLLs that the project

needs access to. (This is described in detail in Chapter 46.)

Your code is typically organized into namespaces, which are usually placed in separate folders under your

project, and each new type that you create is usually in its own .cs file.

The Options Dialog 315

The Properties Window
You can right-click on any item in the Solution Explorer and choose

Properties to view properties of that file, project, solution, etc.

Doing so will open up the Properties window.

The Properties window shows you various properties about what

you have selected. As you select different things, the properties

window will update to reflect the current selection.

This window becomes even more useful as you start to build GUI

applications, because you’ll be able to use a designer to lay out your

user interface, and by selecting buttons, checkboxes, or other UI

controls, you’ll be able to modify various properties and settings that those items have.

The Error List
The Error List shows you the problems that occurred when you last compiled your program, making it

easy to track down the problems and fix them.

You can double click on any item in the list, and the Code Window will open up to the place where the

problem occurred in your code. You can show or hide all errors, warnings, or messages at the top by

clicking on the appropriate button.

Other Windows
Visual Studio has many other windows as well. To see what other views you can access, look for them

under the View menu. Even the windows that are described above can be opened from here.

The Options Dialog

Visual Studio has tons of settings that you can modify. There are far too many to try to cover here, other

than a few of the most popular ones. To get to these settings, on the menu, click on Tools > Options,

which will bring up the Options Dialog. Like many other programs, these settings are organized into

various pages, and the pages are organized by category in the tree on the left. Selecting different items in

the tree will present different options to configure.

Including and Excluding Files

Sometimes you have a file that is not being used in your project. You may want to remove it from your

project so that you don’t keep seeing it in your Solution Explorer. One option is to simply delete the file

(right-click on it and choose Delete) but sometimes, you don’t actually want to delete the file, just stop it

from being included in your solution.

To exclude a file from your project, simply right-click and choose Exclude From Project. When you do

this, the file will disappear from your Solution Explorer, but it is not permanently deleted.

You can also add a file back in to your solution. This is also helpful if you create a file outside of Visual

Studio and save it in your project directory. To do this, right click on your project (not the solution at the

316 Chapter 45 Getting the Most from Visual Studio

very top) and choose Add > Existing Item.... Browse to find the file you want to add and press Add. The

file will now be included in your project.

Showing Line Numbers

Being able to see line numbers is very important. A lot of times, when something goes wrong, the error

message will tell you what file and line number the problem occurred on, but if you have to manually

count every line to get down to line 937, that information would be pretty useless.

Visual Studio has a way to turn on the display of line numbers. To do this, on the menu, choose Tools >

Options. This opens the Options dialog box:

In the panel on the left, click on the node that is under Text Editor > C#. When you click on this, the panel

on the right will show several options. At the bottom under Settings, check the box that says “Line

numbers.” Once you have done this, you will see line numbers on the left side of your code:

In my opinion, it is unfortunate that showing line numbers isn’t the default, but it’s not.

IntelliSense

Visual Studio has an incredibly powerful tool called IntelliSense (also called AutoComplete in other

programs or IDEs) that makes typing what you want much faster, as well as providing you with quick and

easy access to documentation about code that you are using. You have probably seen this by now. It

usually pops up when you start typing stuff, like this:

Basic Refactoring 317

IntelliSense will highlight the item in the list that is most recently used, making it so that you can simply

press <Enter> to choose it. This means that even if you give a variable a long name, you may only need to

type the first few letters and press <Enter>. This feature makes it easy to give things descriptive names

without needing to worry about how hard it will be to type it all in later.

There are several things that cause IntelliSense to pop up automatically. This includes when you first start

typing a word, when you type a “.” (the member access operator) or parentheses. You can get IntelliSense

to go away by pressing <Esc>, and you can bring up IntelliSense whenever you want it by pressing <Ctrl>

+ <Space>.

IntelliSense also shows you the comments that have been provided for any type or its members. This

includes your own comments, so it is very helpful to write XML documentation comments for your code

as we discussed in Chapter 15.

Basic Refactoring

Refactoring is the process of changing the way code is organized without changing how it functions. The

idea with refactoring is to make it so that your code is better organized and cleaner, making it easier to

add new features in the future. There are books written on the best way to refactor code, but it is worth

pointing out that Visual Studio provides a small set of refactoring tools.

If you really want refactoring power, you should consider a Visual Studio add-on called ReSharper

(http://www.jetbrains.com/resharper/). It’s not cheap, but provides a massive amount of refactoring

support among many other useful features.

Visual Studio has a few basic refactoring tools that are worth pointing out though. For starters, if you have

something that you want to rename, rather than manually typing the new name everywhere, simply select

it in the Code Window, right-click, and choose Rename (F2). Also, if you have a block of code that you

want to pull out into its own method, you can select the code, right-click, and choose Quick Actions, then

Extract Method.

Keyboard Shortcuts

Before finishing up here, there are several keyboard shortcuts that are worth pointing out.

 F5: Compile and run your program in debug mode.

 Ctrl + F5: Compile and run your program in release mode.

 Ctrl + Shift + B: Compile your project without attempting to run it.

 Ctrl + Space: Bring up IntelliSense.

 Ctrl + . : Show Quick Actions.

 Ctrl + G: Go to a specific line number.

 Ctrl +]: Go to the matching other curly brace ({ or }).

http://www.jetbrains.com/resharper/

318 Chapter 45 Getting the Most from Visual Studio

 F12: Go to the declaration of a variable, method or class.

 Shift + F12: Locates all places where something is referenced, throughout the project.

 Ctrl + R then Ctrl + R: Rename an element of code.

 Ctrl + R then Ctrl + M: Extract selected code into its own method.

 Ctrl + -: Move back to the last place you were at.

 Ctrl + Shift + -: Move forward to the place you were at before moving back.

 Ctrl + F: Find in the current document.

 Ctrl + Shift + F: Find in the entire solution.

 Ctrl + H: Find and replace in the current document.

 Ctrl + Shift + H: Find and replace in the entire solution.

46
46 Dependencies and

Multiple Projects

Most of the projects that we’ve done in this book have been relatively small. All of the code can live

together in a single place, and you don’t intend on reusing any of it elsewhere. Furthermore, we haven’t

really done many things that require using code beyond your own, or the things that just come as a part

of the .NET Standard Library. But that’s not going to last forever.

Your source code is placed into various projects, which show up in the Solution Explorer in Visual Studio.

Once compiled, all source code in a single project is placed together into a single compiled file called an

assembly or sometimes called a package. These assemblies will either take the form of an EXE file (if the

code has a defined entry/start point) or a DLL file (if it has no entry point, and is just meant for reuse).

Most of our code in this book will compile to an EXE file, but it is possible to organize reusable pieces into

separate projects that compile to a DLL instead.

Perhaps more importantly, other people have already packaged up chunks of reusable code for you to

reuse. You can use these libraries in your own projects so that you don’t have to redo their work yourself.

When you write code that utilizes some other library, your code is said to “depend on” the other code. Or

you could say that the other code is a dependency of your code.

This chapter will focus on how you can add dependencies to your own projects, including stuff that you’ve

created in the past, as well as things others have created. We’ll first talk about how to set up your project

to reference other existing code. This comes in several different flavors:

In a Nutshell
 A project can reference other projects that you have made, DLLs, or other parts of the .NET

Platform. This gives you access to large piles of previously created code.

 You can add DLL references directly to a project.

 You can inter-link multiple projects within a single solution together.

 NuGet is a powerful and convenient way to reference 3rd party reusable packages of code.

320 Chapter 46 Dependencies and Multiple Projects

1. Adding a reference to a plain DLL, including one of the .NET Platform DLLs.

2. Adding a reference to a NuGet package, which is the preferred way to package code for reuse,

and the preferred way to reference this existing code (rather than directly referencing a DLL that

you downloaded from the Internet or something).

You can also split a solution into multiple projects. This allows you group related code together into high-

level sections. When you do this, you can reuse chunks of your code in other programs you make. This

chapter will discuss how to add separate projects to your solution and then cross-reference them.

Adding DLL References

The starting point for adding any reference is the project’s References node in the Solution Explorer:

Each project in your solution will contain a References node. You can expand this to see what your

project is currently referencing. (There are a number of things that are referenced by default for each

different project template.)

This node is the starting point for adding any type of reference to your project. Once something has been

referenced, you will be able to start using it in your code.

To add a reference to a DLL, right-click on this References node and choose Add Reference…. This will

open a dialog window that will allow you to locate the DLL you are interested in adding as a dependency:

On the left side, you can pick from a number of categories of ways to add a reference. For example, if

there is a library that you want to add that is a part of the .NET Platform itself, you can click on

NuGet Packages 321

Assemblies > Framework. This will display a list of .NET Platform components, which you can then check

to add as a dependency for your project.

If you want to add a reference to a DLL that you have on your file system, you can hit the Browse button

at the bottom of the dialog and hunt it down. Once you’ve chosen the dependency, you can click the OK

button to close the dialog. If it was added correctly, the dependency will now show up under the

References node in the Solution Explorer as a new item.

NuGet Packages

While the last section described how to add a reference to any DLL on your file system, this is typically not

the preferred way to handle this in the .NET world. The better approach is to use NuGet packages instead.

The Dependency Management Problem
Copying around individual DLLs can create a lot of headaches for you. This is especially so when the DLLs

you want to use have their own dependencies that they rely on. Your one single dependency might need

17 other DLLs in order to function. Or perhaps it only needs one, but that one has a dependency on one

other thing, which has a dependency on one other thing, which has a dependency on one other thing. The

dependency tree can be very wide, very deep, or both.

It gets worse when versions are added to the mix. When something is dependent on version 1.7.3 of

another package, but you can only find 1.8.0.

This particular problem is lovingly called “dependency hell” or “DLL hell” by those who have faced it.

The NuGet Package Manager
To help solve this problem, many systems and frameworks utilize a tool called a package manager. A

package manager is designed to work through these types of issues for you by arranging dependencies

into packages with supporting metadata for it.

The package manager most commonly used by the .NET Platform is called NuGet. (It’s a play on words!

Like the candy confection nougat! Get it?). NuGet itself is a whole collection of tools, but the primary

points of interest are a command line tool and a Visual Studio extension that ships with Visual Studio.

Most NuGet packages contain only a single DLL, though they aren’t limited to that. A NuGet package could

contain multiple DLLs, tools for the NuGet command line itself to run, random additional files that get

added to a project, etc. But in general, most NuGet packages you might use will just be a single DLL.

NuGet has a ton of third party libraries that you can use in your program. If you think somebody else

might have already made some code to do some particular task, it’s always worth a quick search through

the available NuGet packages to see if there isn’t already something that you could reuse without having

to write your own. The search can be done in Visual Studio itself (the next section) or on nuget.org.

Adding Dependencies with NuGet
In this section, I’ll walk you through how to add a NuGet package to your project as a dependency.

Our discussion here could use any NuGet package, but I’ve chosen to walk through this with the

System.ValueTuple package specifically. This package allows you to use the language-level support for

tuples that C# 7 introduced. The details of value tuples are discussed in Chapter 28. Here we will focus

solely on getting a NuGet package added as a dependency to your project.

The Visual Studio extension for NuGet makes it easy to add new NuGet packages to a project. Adding

NuGet packages is done at the project level, not the solution level. (This is true of all dependencies, not

just NuGet.) If multiple projects need the dependency, you will need to add it to each one.

322 Chapter 46 Dependencies and Multiple Projects

1. In the Solution Explorer, right-click on the project that you want to add the NuGet package for.

2. Select Manage NuGet Packages from the context menu. This will open up a new window that

will allow you to manage NuGet packages for this solution. (You would also come back here if you

want to update or delete a dependency from a project.)

3. At the top of this window, you will see tabs for Browse, Installed, and Updates. Select Browse.

4. Search for the name (or keywords) of the NuGet package you are looking for. For our particular

example, searching for “ValueTuple” should find the result you need.

5. In some cases, you may want to look for pre-release packages, not just ones that are considered

official or final. If this is the case, check the box for it next to the search box.

6. As you begin typing, search results will begin to fill in left side of the panel.

7. Look for the NuGet package that you want to add (System.ValueType in our specific case.)

Creating and Referencing Multiple Projects 323

8. The panel on the right side will show you details for the selected NuGet package, including the

license it uses (make sure it’s compatible with what you want to do with it), a description, and any

additional dependencies it may have. If it has other dependencies, NuGet will install those as well.

9. When you’re ready to install your dependency into your project, click the Install button towards

the top on the right side panel, and the dependency will be added to your project.

10. It might ask you to choose between the older packages.config and the newer PackageReference

format for storing NuGet packages. Either one works, but the newer PackageReference version is

probably better if your whole team is using Visual Studio 2017.

11. At this point, you can close this entire tab unless you want to add more NuGet packages.

12. You can verify that a package has been added by finding it under the References node for your

project in the Solution Explorer. If you see it there, it has been added and you can start using it.

Creating and Referencing Multiple Projects

In this section, we’ll talk about how to add extra projects to your solution, how to reference one project

from another, and how to specify that a project should utilize a specific version of the .NET Framework or

a specific level of the .NET Standard (Chapter 44).

Before we get into the specifics of how to do this, it’s worth discussing why you would do this. Compiled

code is grouped at the project level. Each project produces a single DLL or EXE file, regardless of how

many source code files, folders, or namespaces there are in it. Separating code out into different projects,

which results in different DLLs, allows you to reuse those pieces separately from the other pieces.

Imagine your company Wayne Enterprises is making a networked game called BatRPG that you want to

run on PCs, the Xbox One, and iPhones. You might have quite a few projects for this game. For example:

 WayneEnterprises.BatRPG.Core: Contains the core functionality of the game. The server can run

this, but so could a client that isn’t playing online.

 WayneEnterprises.BatRPG.PC: The PC client for your game.

 WayneEnterprises.BatRPG.XboxOne: The Xbox One client for your game.

 WayneEnterprises.BatRPG.IPhone: The iPhone client for your game.

 WayneEnterprises.Physics: Contains the physics of your game, but is reusable in other games.

 WayneEnterprises.GUI: A GUI library that you’ve built yourself for your games.

324 Chapter 46 Dependencies and Multiple Projects

Obviously this is just an example, not instructions on exactly how to structure your game, but it illustrates

the point. This example has pulled out certain pieces that are meant for reuse in many games. And it

separates the core of the game out into another project to be reused by many clients and the server.

Adding Additional Projects
Creating another project in your solution is not hard. Go to the Solution Explorer and right-click on the

top-level solution node. Select Add > New Project… from the context menu. This will bring up the New

Project dialog, which is what you also see when you create a brand new project and solution.

You can add any type of project that Visual Studio has. There are no limitations on mixing and matching.

So add whatever you feel you need. But generally speaking, you will frequently be adding a separate class

library to your solution. Class libraries are meant to be reusable, and not the primary executable.

Depending on what components you have installed in Visual Studio, you will have several different Class

Library type projects to choose from. For example, you might have one called “Class Library (.NET

Framework)”, one called “Class Library (.NET Core)”, and one called “Class Library (.NET Standard)”. Recall

from our discussion in Chapter 44 what these mean.

If you choose the .NET Framework class library, then it will have a dependency itself on the .NET

Framework, which makes it not portable to other stacks. The same goes for the .NET Core class library.

This is good and bad; it allows you to utilize code that only that stack has available, but comes at the

expense of not being able to port it over to the other stacks.

On the other hand, if you choose the .NET Standard class library, you will be able to port the code across

any stack, but only be able to utilize stuff in the .NET Standard.

It’s not impossible to convert a class library from one thing to another, but it ’s not exactly trivial either. It’s

usually best to get it right in the first place.

After choosing the type of the project you want to add to your solution, give it a name at the bottom and

click OK to add it to the solution. Once you do this, you should see your new project appear in the

Solution Explorer, next to the original project.

Referencing Projects
Once your additional project has been added, you will need to reference it in order to use the things it

contains in another project. Projects in a solution don’t all automatically cross-reference each other. To

make a project reference another, we’ll return to our original approach for adding references to projects.

Right-click on the project that needs a new dependency and choose Add > Reference (or right-click on the

References node and choose Add Reference). In the groups on the left, choose Projects > Solution. This

will bring up a list of the other projects in the solution. You can check the box by any project that you need

to add as a dependency, and then click OK when done.

Once you’ve done this, you will be able to utilize code in the dependency.

Namespaces and Using Directives
When you start putting code in another project, the namespace will likely be different than your main

project. You can change namespaces manually, and you can also change the default namespace for a

particular project, but the reality is, you do usually want a separate namespace for different projects. (And

for other dependencies like NuGet and directly referencing a DLL, you won’t even have the option of

manually changing namespaces.)

As you start working with multiple projects, you will want to add in using directives for the namespaces

that are contained in the library you’re referencing. Chapter 27 covers this in detail.

Creating and Referencing Multiple Projects 325

If you want to change the default namespace for a new project, you can do so on the project ’s property

page. This is accessible by right-clicking on the project and choosing Properties. On the Application tab,

there is a box labeled Default namespace which you can change to whatever you want it to be.

Specifying API Levels
When you make a class library, you choose whether it is a .NET Standard class library, a .NET Framework

class library, a .NET Core class library, etc.

But each of these stacks have different version numbers. You have the ability to choose which version or

level you want your project to be.

This is especially important if your project is a .NET Standard class library, because the level directly

determines how broadly distributable the library is. (The lower it is, the more broadly distributable it is.

But the higher it is, the more classes and other types are available to your own code to utilize.)

Whether you are targeting the .NET Standard or one of the specific stacks, you can choose the API level by

going to the project’s properties (right-click on the project and choose Properties) and on the Application

tab, look for the drop down labeled Target framework. For a .NET Standard class library, you will see the

various .NET Standard versions: 1.0, 1.1, etc. For a .NET Framework class library, you will instead see

versions of the .NET Framework (4.5, 4.5.1, 4.5,2, 4.6.2, etc.).

For a class library that is intended to be reused by other people, you will probably want to prefer the

lowest value you can, without giving up useful classes that you want to leverage. This allows more people

to be able to reuse it. (Don’t just jump immediately to the highest level just because it is there.)

47
47 Handling Common

Compiler Errors

As you are writing code, you’re bound to write some that just doesn’t compile. When this happens, C# will

point out the problems that came up so you can fix them. There are hundreds of different types of errors,

each with a variety of possible causes, so we clearly can’t cover everything here (or anywhere). But it is

worth taking some time to look at the most common errors. Additionally, we’ll take a look at a few general

guidelines for fixing these compiler errors.

Understanding Compiler Errors

When you compile your code before you run it, the compiler will need to work its way through your code

and try to make sense of it, before it can turn it into IL code. If you made a mistake in your code, the

compiler will notice the error and report it. This is called a compiler error, or a compile-time error.

Fortunately, this type of problem is relatively easy to solve. The compiler can tell you exactly what went

wrong, and can often even point out how you might be able to fix it.

Compiler errors are shown to you in the Error List, which I described in Chapter 45. The Error List can be

opened at any time by choosing View > Error List from the main menu.

Compiler Warnings

Instead of an error, sometimes you’ll get a more minor problem called a warning. But warnings can

sometimes be more dangerous than an error.

In a Nutshell
 Outlines common compiler errors, what causes them, and how to fix them.

 Compiler errors are shown in the Error List window.

 If you don’t know what a compiler error means, take the time to understand what it is telling

you, fix what errors you do understand, and go to the web for help if all else fails.

Common Compiler Errors 327

Errors mean that the compiler was completely unable to make sense of what you wrote, so it didn’t finish

compiling. When you get a warning, it means is that the compiler noticed something odd, but it still found

a way to compile your source code. Sometimes, warnings are harmless. A lot of times they come up

because you’re only halfway done with a piece of code, and so things are naturally a little out of place.

But in general, a warning is an indication of a genuine problem in your code. But because the compiler

still produces an executable program to run, it makes you think you can sneak by it. But if the compiler is

pointing it out, it is almost always a real problem, and will eventually bite you, just at run-time instead of

compile time.

Because of this problem, it is best to always try to treat compiler warnings as errors, and eliminate them

as soon as you can. Don’t let dozens (or hundreds) of warnings pile up. Fixing warnings up front will save

you a great deal of trouble down the road.

Common Compiler Errors

We’ll now take some time to look through some of the most common compiler errors, see what they

mean, and look at how to fix them. Of course, we won’t be able to cover all errors, so when we’re through,

I’ll give you some basic principles for fixing other errors that we haven’t been able to discuss.

“The name ‘x’ doesn’t exist in the current context”
Sometimes, you’ll get an error that says that a variable name doesn’t exist in a particular context, meaning

it either can’t find the name anywhere, or if it can find it, it’s in a different place, making it unusable in the

spot it is currently at. One common time that this comes up is if you accidentally misspell a variable name.

If so, that’s an easy fix.

If it’s not a spelling problem, then what this usually means is that you forgot to declare your variable.

You’ll see this if you do something like this:

static void Main(string[] args)
{
 int b = x + 7;
}

You’ve used the variable x without ever declaring it. This can be fixed by simply declare it first:

static void Main(string[] args)
{
 int x = 3;
 int b = x + 7;
}

There are times when you may think you’ve already declared a variable. In fact, you can even see the

declaration! This is where that “in the current context” part comes into play. You may have declared it, but

not in the context that you’re using it.

This gets right down to the heart of variable scope, which I described in Chapter 18. If you’re sure the

variable has been declared and you’re still getting this error, you’ll want to make sure that the variable in

question is still in scope at the place that you’re trying to use it. This may mean moving the variable in

question to a bigger scope.

One example in particular that I think is worth looking at is one where you have a variable that is declared

at block scope, but you try to use it after the block (but still within the method) like this:

static void Main(string[] args)
{
 for(int index = 0; index < 10; index++)

328 Chapter 47 Handling Common Compiler Errors

 {
 // ...
 }

 index = 10; // Can't use this here. It has block scope, and doesn't exist after the loop.
}

Here, the variable index can’t be used beyond the scope of the for loop. If you want to use this variable

outside of the loop, you also need to declare it outside of the loop:

static void Main(string[] args)
{
 int index;

 for(index = 0; index < 10; index++)
 {
 // ...
 }

 index = 10; // You can use it here, now.
}

“) expected”, “} expected”, or “; expected”
It is very common to see errors that say a parenthesis, closing curly brace, or semicolon is expected.

Interestingly, the solution isn’t always to add), }, or ; at the spot that the compiler is complaining about.

(Sometimes, but not always.) It just means that the compiler was unable to figure out where the end of a

statement or block was.

In fact, the compiler sometimes thinks the error is in a location that is very different from where the

problem actually lies! This is because the compiler only realizes there’s a problem when it eventually runs

into a place where it no longer makes sense to still think you’re in the same block or statement.

It’s kind of like driving down the road and missing your turn, only to discover the error ten minutes later

when you see you’re leaving the city limits. You don’t know when you missed the turn specifically, just that

at some point along the line, you went too far. That’s exactly what the compiler does, and so you

potentially get the error much later than when it actually occurred.

Take this code, for instance:

namespace Example
{
 class Program
 {
 static void Main(string[] args)
 {
 for(int index = 0; index < 10; index++)
 {
 // missing curly brace here...
 }
 }
} // error shows up here...

We’re missing our closing curly brace for the for loop, which is pretty obvious when we’ve formatted the

code this way. But the compiler doesn’t care about whitespace, so it tries to match the next curly brace it

sees with the end of the for loop, the one after that with the end of the Main method, and the last one

for the end of the Program class. But then it reaches the end of the file, and it knows it should have come

across one more curly brace. Adding the right missing curly brace, bracket, parenthesis, or semicolon will

fix this problem, though sometimes you need to study your code a bit to find out where you went wrong.

Common Compiler Errors 329

It is also worth pointing out that sometimes, missing a single parenthesis, semicolon, or curly brace will

cause a whole pile of errors to show up in the Errors List, because the compiler can’t figure out where

things begin and end. Simply fixing the one problem will often fix lots of errors.

Cannot convert type ‘x’ to ‘y’
There’s a category of data type conversion errors that you’re bound to see at some point or another. This

can come in one of several flavors, like these, below:

 Cannot implicitly convert type ‘x’ to ‘y’.

 Cannot convert type ‘x’ to ‘y’.

 Cannot implicitly convert type ‘x’ to ‘y’. An explicit conversion exists (are you missing a cast?)

What this error means is that you are trying to take one type of data and turn it into another, and the

compiler doesn’t know what to do with it. If you fit in the category of that third error, and you are sure you

want to change from one type to another, it is an easy solution. Just put in a cast to the correct type:

int a = 4;
short b = (short)a; // The cast tells the compiler you know what's happening here.

Whenever you’re required to use an explicit cast, it means there’s the potential to lose data, so you really

should be sure of the explicit cast before doing it.

On the other hand, if you’re running into one of the other errors, it means the C# compiler doesn’t know

of any way to get from the type you have to the type you want. If your intention was truly to convert

between types, there are usually easy ways around that. In most cases, you can simply write a method

that will convert from one type to another, passing in one type as a parameter, and returning the

converted result from it.

Other times this means you made an entirely different mistake in your code. If you weren’t intending to

convert from one type to another, then this error means there was something else wrong here. For

example, it may just mean you didn’t finish typing all of the code you needed. For instance, if you have a

Point class, with X and Y properties, casting is probably not what you wanted in this case:

Point p = new Point(4, 3);
int x = p; // Fails because the compiler has no clue how to convert Point to int.

Instead, you want to just change your code to get the X property of the point:

Point p = new Point(4, 3);
int x = p.X;

So the true error may not be that the compiler can’t convert from one type to another, but that you

accidentally forgot a part of the code that left the compiler thinking you were trying to convert types.

“not all code paths return a value”
If you see an error that says something along the lines of [Namespace].[Type]. MethodName(): not all

code paths return a value, it simply means that it is possible for the program to go through your code in

a way that reaches the end of the method without ever returning anything.

The code below is perhaps overly simple, but it gets to the heart of what ’s going on:

public int DoSomething(int a)
{
 if (a < 10)
 return 0;
}

330 Chapter 47 Handling Common Compiler Errors

The method is supposed to return an int. If the value of a is less than 10, a value is returned (0). But if a is

10 or higher, it skips that return statement and gets to the end of the method without returning

anything.

To solve this problem, you need to analyze your code to find what paths through your code are failing to

return a value, and add it in. One possible way to fix the problem from the code above is this:

public int DoSomething(int a)
{
 if (a < 10)
 return 0;

 return a;
}

“The type or namespace name ‘x’ could not be found”
As soon as you start trying to use someone else’s code or code in other projects that you’ve created, or

even just putting things in different folders or namespaces, you’re going to run into this error.

You’ll see this error with something like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Example
{
 class Program
 {
 static void Main(string[] args)
 {
 MissingClass c = new MissingClass(); // Error here
 }
 }
}

This means is that the compiler is running into a type name (MissingClass, in this case) that it can’t find.

It’s possible that you just misspelled something. Easy fix.

It is also possible that it is spelled correctly, and that the problem is a little deeper. When you get this

error, you’ll see that it also says “(are you missing a using directive or an assembly reference?)”. The

compiler is pointing you at the two most common causes of this problem.

It is either a missing using directive or a missing assembly/DLL reference. To tell the two apart, think

about where the code is that you are trying to refer to. Is it something you wrote? Something in the

project that you’re currently working on? If so, then it is probably just missing a using directive. The details

about what’s going on with missing using directives and how to fix them are covered in Chapter 27, but in

short, all you need to do is figure out what namespace the missing type is in and add a new using

directive at the top of your file:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using BlackHole.CodeEatingGravity; // Add the appropriate namespace here

namespace Example
{

General Tips for Handling Errors 331

 class Program
 {
 static void Main(string[] args)
 {
 MissingClass c = new MissingClass();
 }
 }
}

If you don’t think the compiler knows where the code is because it is in a different project, DLL, or library

that you haven’t told it about, you’ll need to add a reference to the missing assembly, which is discussed

in Chapter 46. Even after you’ve added a reference to the project, you’ll also need to add in a using

directive to access the type in most cases.

“No overload for method ‘X’ takes N arguments”
If you see this error, it means that you’re not calling a method with the correct number of arguments.

Keep in mind that a method could be overloaded, meaning that there are multiple methods with the

same name. You’ll want to make sure you get the one you want. Double-check to see what parameters

are needed for the method you are trying to call.

In some cases, you may also see this error if you’ve got parentheses in the wrong spot or if they’re

missing, so if you think you’ve supplied the right number of parameters, double-check your parentheses.

“The best overloaded method match for ‘X’ has some invalid arguments”
Like the previous error, this means you’re not calling a method correctly. Unlike the previous error, this

one means that you’ve got the right number of parameters, but they aren’t the right types. Go back and

check that the types of all of your parameters match.

Sometimes, to fix this problem, all you need to do is add in a cast to the correct type.

General Tips for Handling Errors

We can’t cover all possible compiler errors here. There are just too many of them. Microsoft lists over 800

different compiler errors that could come up! And that doesn’t even begin to look at the many root causes

and possible fixes for those problems.

One of the key parts of making software is knowing how to find and fix your own problems. Think about

it; you’re making software that no one else has ever made before! That’s cool, but that means you’re going

to run into problems that no one else has ran into before. So it is critical that you know how to deal with

any and every error that comes up in your code.

So in this section, I’ll outline a few guiding principles that should keep you going, even when you have no

clue how to fix the problem.

Ensure that You Understand What the Error Says
Look at the error message. Does each word in the error make sense, or is there something there that you

don’t understand? Do you understand each of the phrases in the error? For instance, take the following

error message:

Access modifiers are not allowed on static constructors

When you see this, stop and think: do you know what an access modifier is? (If not, see Chapter 18) Do

you know what a static constructor is? (Also Chapter 18.) Once you know what all of the pieces mean, the

solution is often pretty straightforward as well. This error is saying you need to remove the public

keyword from this:

332 Chapter 47 Handling Common Compiler Errors

public static MyClass()
{
 // initialize the class here...
}

Fix the Errors You Do Understand
There are times that a single actual problem causes lots of errors to show up in the list. If you get a large

pile of errors, look through the list and fix one or two that you understand and recompile. Doing so might

get rid of all of the errors.

Compiling happens in parts. If the compiler can’t get through one part because of an error and you fix it, it

is also possible that when the compiler advances to the next part, additional errors are might come up.

Because of this, don’t worry if by fixing one error, extra errors appear to pop up. The error count shown to

you doesn’t necessarily show the actual number of problems in your code.

The Error May be in a Different Spot
Just because the error list takes you to a particular location, doesn’t mean that the error is actually right

there. When you double-click on an error in the Error List, it takes you to the place that it realized there’s a

problem. That does not necessarily mean that the error is actually on that line. Look around for other

things that look out of place if nothing stands out to you.

Use Microsoft’s Documentation
It used to be that documentation for programming languages and their code libraries were really cryptic

and poorly done. But Microsoft has done an excellent job describing everything that they’ve done with C#

and the .NET Platform. They’re an excellent source for figuring out what your error means. Check it out

here: http://msdn.microsoft.com/en-us/library

Use Other Programmers for Help
Programmers are usually willing to help each other when they run into problems. Programmers, by

nature, like finding problems and fixing things. They ’re usually willing and interested in helping beginners

(or pros) to learn, grow, and solve the problems they ’re running into.

I can’t help but recommend stackoverflow.com as one of the best sites for overcoming software

development problems. It’s extremely well put together, and it is designed specifically for programming.

In fact, in 99% of all cases, you won’t even need to ask a question, because the question has already been

asked. (Just be sure to read the FAQs before asking questions, because they sometimes throw a fit when

you ask a question that isn’t a “good fit.”)

If all else fails, there’s always the good old-fashioned Google search. Whatever problem you’re running

into, someone else out there has probably come across a similar problem before, and they ’ve probably

posted about it on the Internet. (Another thing programmers love doing.)

48
48 Debugging Your Code

Once you get through any compiler errors like we discussed in the previous chapter, you can run your

program. Even though we’ve gotten rid of all of the compiler errors, sometimes things go horribly wrong

while your program is running. This could be a crash, or just that your program isn’t doing what you

thought it would. These are called runtime errors, and we’ll talk about how to deal with them here.

Visual Studio gives us the ability to dig into our program while it is running to see what’s going on, so that

we can fix it. This feature is called debugging.

Debugging is extremely powerful and useful when things are going wrong. Your program is unique, so no

one else can tell you what’s going wrong specifically, but I can show you how to use the debugging tools

so that you can find the problems yourself.

Launching Your Program in Debug Mode

The first step is to make sure you start your program in debug mode. When the program is compiled and

ran in debug mode (as opposed to “release” mode) it includes a whole lot of extra information in the EXE

file. This extra information allows Visual Studio can keep track of what is currently being executed. This

extra information slows down your program and makes the EXE file significantly larger, but it makes

finding problems in your code much easier. Of course, when you’re done constructing your program and

you know it is bug free, you can build it in release mode and sell it!

Your program has to be compiled in debug mode or you won’t be able to easily debug it.

In a Nutshell
 Debugging your code allows you to take a detailed look at how your program is executing.

This gives you an easy way to see how things are going wrong.

 Describes the difference between running in debug mode and running in release mode.

 Describes how to analyze exceptions that occur while your code is running.

 Shows how to modify your code while you the program is running.

 Describes how to set breakpoints in your code, which suspend the program when reached.

 Outlines how to step through your code to see how things change.

334 Chapter 48 Debugging Your Code

When we first made a program back in Chapter 3, we discussed how you could start your program by

pushing F5 or Ctrl + F5. If you want to be able to debug your program, it will be important to use F5, or

choose Debug > Start Debugging... from the menu. If you start it in release mode (Ctrl + F5) you won’t be

able to debug.

Viewing Exceptions

When your program is running in debug mode, if an unhandled exception is thrown, rather than dying,

your program will pause and the computer will switch back to Visual Studio for you to take a look at it.

You’ve probably seen this by now, but below is a screenshot that shows what this looks like:

Visual Studio will mark the line that the exception or error occurred at in yellow, and it will bring up the

Exception popup. On this popup, you’ll see the specific name of the exception that occurred

(DivideByZeroException, in the screenshot above) along with the text description of the problem. Ideally,

this text would have a lot of useful details, but unfortunately, it’s often kind of vague.

The dialog also gives you the option to View Details, which will allow you to dig through the actual

Exception instance to see what it contains.

When the Exception dialog comes up, Visual Studio is giving you a chance to take a detailed look at the

problem so that you can figure out what went wrong and fix it. All of the tools that are available in debug

mode are there to assist you in doing this. Sometimes, you’ll be able to edit your code while the program

is still running, fix the problem, and continue on. In other cases though, once you reach this point, the

computer won’t be able to continue on and you’ll need to restart to check your fixes.

Looking at Local Variable Values
When the program is stopped, you’ll have the chance to see what state your program is currently in. One

of the most useful features available is that you can hover over any variable and see its current value.

Editing Your Code While Debugging 335

If the value is a composite type like a class or struct, you’ll be able to dig down and look at all of the

properties and instance variables that it has.

Note that this information is also available in the Locals Window. In many cases, this window will already

be open for you, down towards the bottom, where the Error List is. If you don’t see it anywhere in Visual

Studio, you can open it up by going to Debug > Windows > Locals.

The Call Stack
The call stack is one of the most useful tools that you’ll have to help you figure out what happened. The

call stack tells you what method called the current method. And yes, this is directly related to the stack

that we described in Chapter 16.

The problem is sometimes caused, not by the method that you are inside of, but by the calling method

instead. You can use the Call Stack Window to see what methods have been called to get you to there.

The Call Stack Window is usually open by default when you’re debugging, but it can be opened by

choosing Debug > Windows > Call Stack from the menu. The Call Stack Window looks like this:

The method that you’re currently in is at the top. (DoSomethingElse, in this case.) Each line below that

shows the method that called it. (DoSomethingElse was called by DoSomething, which was called by

Main.) You can click on one of those other lines and Visual Studio will jump to that method, allowing you

to see what state your variables are in over there.

Editing Your Code While Debugging

In some cases, you will have the ability to edit your code while it is running and then continue running the

program, exactly where you left off, with the edited code. I can’t overstate how cool this is. This is like

being able to change the tires of a car as you drive it down the road without even stopping.

But this doesn’t work in all cases. For starters, if the problem occurred outside of the current method (on

the top of the stack trace) you won’t be able to edit that method and continue. You can only continue

from changes made to the top method on the call stack.

Also, if you’re doing a LINQ query when the exception occurs, you won’t be able to edit.

In many other cases, you’ll be able to edit your code while it’s stopped. To edit your code, once the

program has stopped and switched back to Visual Studio, just start editing your code like you normally

would. If, in the process of editing, you introduce an error that prevents it from compiling, you won’t be

able to resume until you fix the compiler errors.

There are some types of edits that you won’t be able to do. You won’t be able to add a new using

directive. And that means that the normal steps you may do to add a using directive just flat out won’t

show up in the menu. You won’t be able to structurally modify a type, so no adding, deleting, renaming

methods, properties, instance variables, or class variables. The way the debugger swaps out code just

doesn’t allow you to swap out structural changes like that, just changes to functionality. If you make a

structural change, the change you made will be underlined in blue, and Visual Studio will tell you it needs

to recompile and restart to allow the changes to take effect.

336 Chapter 48 Debugging Your Code

Breakpoints

Up until now, we’ve only about debugging code after your program runs into a problem. But you’ll of

course want to be able to occasionally analyze running code before there’s a crash.

Whenever you want, you can set a breakpoint on a particular line of code in Visual Studio. A breakpoint is

a way to mark a line of code so that when the program reaches that line during execution, the program

will halt, allowing you to take a look at the program’s current state.

To set a breakpoint, you simply locate the line you want to set the breakpoint at, and on the left side, click

in the gray area, marked in the image on the left below:

When you do this, a red circle will appear in the left margin on the line you have selected, and the text on

that line will also be marked in red. This looks like the image above on the right side.

You can set as many breakpoints as you want in your program. You can also add and remove breakpoints

whenever you want, even if the program is already running. To remove a breakpoint, simply click on the

red circle and it will go away.

Whenever your program is stopped at a breakpoint, you can press the Continue button (located on the

Standard toolbar, taking the place of the Start button while your program is running) which will leave the

breakpoint and continue on until another breakpoint is hit, or until the program ends and closes.

Stepping Through Your Program

While stopping your program in the middle of execution allows you to do everything you could before

(looking at local variables, the call stack, etc.) it can do a whole lot more. After all, unlike before, the

program hasn’t run into a problem. You’ve stopped it before that happened.

To use these options, while your program is running, find the Debug toolbar among the various toolbars

at the top of Visual Studio. The Debug toolbar looks similar to this:

If you don’t see it, go to View > Toolbars > Debug to open it. This toolbar contains a collection of very

useful tools for stepping through your code.

The debug toolbar may look a little different, depending on your settings and the specific version of Visual

Studio that you have, but the items on the toolbar that we’ll discuss should be available in all of them. If

Stepping Through Your Program 337

you feel like you’re missing something useful, this toolbar (and all other toolbars) can be customized by

clicking on the little down arrow at the end of the toolbar and choosing the items you want displayed.

Items on the Debug Toolbar
The first button on the Debug toolbar is the Break All button, represented by a pause icon. While

your program is executing, you can press Break All, which will halt execution of your program

immediately, and you can see where it’s at. The computer runs your program so fast that this isn’t useful

for fine-grained control. (We’ll see a better tool for that in a second.) Instead, this feature is usually more

useful to figure out why your program is taking so long to do something. Usually, it is stuck in some

infinite loop somewhere, and by hitting the pause button, you can track down where the problem is.

The second button is the Stop Debugging button. This terminates your running program. It is

important to remember that as soon as you push this, you’ll lose any debugging information you

were looking at, so be sure you’ve got the information you need before hitting it.

The third button is the Restart button. This closes the current execution and starts over from the

beginning. This is very convenient for the times that you’ve made a change and you want to restart

to see if the changes are working.

There are three other buttons on the Debug toolbar which make it easy to slowly step

through your code. These are the Step Into, Step Over, and Step Out buttons. The first two

allow you to advance through your code one line at a time, giving you the ability to study what your code

is doing. Step Into and Step Over both advance by one line, but there’s a subtle difference between the

two. The difference is most obvious when you are on a line of code that calls a method. If you use Step

Into, the debugger will jump into the method that you’re looking at, and the next line you’ll see will be at

the start of that method. You can then continue stepping through the code there. If you use Step Over,

the debugger will “step over” the method call, running it entirely, and only pausing again when the flow of

execution returns back to the current method.

If you are looking at a line of code that doesn’t call a method, the two are identical.

On the other hand, if you’re in a method and you know you’re ready to just move back up to the method

that called it, you can use the Step Out button. This will jump forward as many lines as it needs to until it

is back up to the calling method.

There are two other tools that you may find handy for debugging as well, though these are buried away in

a context menu. If you know you want to skip ahead to another specific line, you can click on the line you

want to jump to, right-click, and choose Run To Cursor. This causes the program to run without pausing

until it hits the line that you indicated. This is like setting a breakpoint on that line temporarily and hitting

Continue. This makes it so you don’t need to keep pressing the Step Over button repeatedly.

There’s one other tool that is very powerful, but can also be a bit dangerous. Use it wisely. I’ll point out the

pitfalls that come with it in a second. But first, let me show you what the feature is.

At any point when you’re debugging, you can right-click on a line elsewhere in the method that you’re

debugging and choose Set Next Statement. This is a very handy feature. To illustrate my point, take a

look at the simple example code below, which simulates rolling a six-sided die:

public int RollDie(Random random)
{
 return random.Next(6);
}

In most cases, this will probably work fine. But if the object passed in for random was null, you’ll get a

null reference exception on that line when it tries to generate the number.

338 Chapter 48 Debugging Your Code

If you’re debugging, the debugger will halt on that line of code and point out the problem to you. As I said

earlier, in some cases, you can make edits to your code and continue. Perhaps you want to fix this by

checking to ensure that random is not null before calling the Next method like this:

public int RollDie(Random random)
{
 if(random != null)
 return random.Next(6);

 throw new ArgumentNullException(nameof(random));
}

But after you’ve made these edits, if you try to continue executing, you’ll still be on that line (now inside of

the if statement). You could just restart the program, or you could use the Set Next Statement tool by

selecting the if(random != null) line, then right-click and choose Set Next Statement, and then press the

Continue button on the Debug toolbar. This will start your program running at the chosen line. Your

program will check for null like you want, and you’ll be able to move forward without needing to restart.

It’s an extremely powerful tool, but there’s a dark side to it as well. It is incredibly easy to misuse it and put

your program in a weird state that it can’t get into naturally. Take the code below, for instance:

static void Main(string[] args)
{
 int b = 2;

 if (b > 2)
 Console.WriteLine("How can this be?");

 b *= 2;
}

In the normal course of execution, we’d never be able to get inside of that if block. But, if you run this

code and set a breakpoint at the closing curly brace of the method, then use Set Next Statement to move

back up to the if statement, b will be 4, and the code inside of the if block will get executed.

It is very easy to accidentally get your program into an inconsistent state like this when you use the Set

Next Statement tool, so it is important to keep this in mind as you use the feature. Even if you think you’ve

fixed a problem, you’ll still want to rerun the program from scratch again, just to be sure everything is

working like it should.

Answers: (1) False. (2) True. (3) True. (4) False. (5) True.

Try It Out!
Debugging Quiz. Answer the following questions to check your understanding. When you’re done,

check your answers against the ones below. If you missed something, go back and review the section

that talks about it.

1. True/False. You can easily debug a program that was compiled in release mode.

2. True/False. Debug mode creates executables that are larger and slower than release mode.

3. True/False. If an exception occurs in debug mode, your program will be suspended, allowing

you to debug it, even if you haven’t set a breakpoint.

4. True/False. In release mode, Visual Studio will stop at breakpoints.

5. True/False. In some cases, you can edit your source code while execution is paused and

continue with the changes.

49
49 How Your Project Files are

Organized

I once had a professor who hated Visual Studio. He explained that the reason why is because it’s making

programmers dumb. Students were turning in their assignments and they had no clue what they were

even submitting, and they didn’t know what to do when things went wrong with their submission.

Visual Studio has a bit of a bad habit of spewing lots of files all over the place. Some of these files are your

.cs files, which contain your code. Others might be images, DLLs, or other resource files that you have.

Those are all OK. But in addition, Visual Studio loves configuration files.

I personally don’t think that this is a good reason to hate Visual Studio. In fact, this is evidence that Visual

Studio is doing its job. (Though I do wish the contents of these files were simpler and perhaps less tied to

the Visual Studio editor itself.) It hides all of the information needed to compile, run, and publish your

program, and it does it while juggling flaming swords and singing a rock ballad about doing the Fandango.

And the fact that people can get away with not knowing how it works means it’s doing its job right.

In a Nutshell
 Your solution structure looks like this:

Solution Directory

 .sln file: Describes the contents of your solution.

 .suo file: User specific settings for a particular solution.

 Project Directory (possibly multiple).

 .csproj file: Describes the contents of a project.

 .csproj.user file: User specific settings for a project.

 Code files and directories, matching various namespaces.

 Properties folder.

 obj directory: a staging area for compiling code.

 bin directory: finalized compiled code.

340 Chapter 49 How Your Project Files are Organized

Still though, I think it is worth digging into a project and seeing how things are organized and what

everything is for. In this chapter, we’ll take a look at the directory structure that Visual Studio creates and

look at what is contained in each of the files we discover there.

Visual Studio’s Projects Directory

Visual Studio will place each solution or project you create in its own directory. These project directories

are all in the same place by default, though you can pick a different location when you create a project.

By default, these projects are all stored in [Documents Directory]/Visual Studio 2017/Projects, where

[Documents Directory] is your ‘My Documents’ or ‘Documents’ directory.

If you’ve been putting all of your projects in the default location, you should be able to open that directory

and see a folder for each of the projects that you’ve created. All projects have the same overall directory

structure, so once you’ve figured one out, the others should make sense as well.

The Solution Directory

Solutions vs. Projects
The top level folder corresponds to a solution. Remember that a solution can be thought of as a collection

of projects that are all related, and used together to accomplish a specific task.

You may remember that in the past, when you’ve been ready to start on something new, that you’ve

chosen File > New Project from the menu. What you get is actually a new project, created inside of a new

solution. In the past, when you’ve created a project, you’ve also creating a new solution to contain it.

Inside of the solution folder, you’ll find three things. You’ll see a .sln file, a folder for every project in your

solution (only one if you’ve only got one project in your solution), and you may also see a .suo file. If you

don’t see the .suo file, it’s probably still there, just hidden. If you don’t see it, don’t worry too much. It’s not

too critical that you can see it. It is just important to know that it is there.

Try It Out!
Demystifying Project Files. Follow along with this chapter by opening up any project of yours and

digging around until you understand what every file you discover means.

In Depth
Version Control. Throughout this chapter, I’ll be pointing out parts of your project’s directory

structure that should be placed in version control and parts that should not. While a full explanation

of version control software is well beyond the scope of this book, it is worth a brief introduction.

Version control software is a category of software that serves two primary purposes: the ability to

share source code among team members, and the ability to track changes to that code over time,

keeping a history of your software’s development. SVN, Git, and Mercurial are all popular and free

version control systems that you can use. (I’d recommend Git or Mercurial, as they are both

“distributed” version control systems.)

The general rule for what goes into version control are that user-specific project files don’t belong in

version control (everyone should have their own copy) and anything that can be rebuilt from other

things (like compiled executable files) should be skipped as well. Everything else can go in your

version control system.

The Project Directory 341

The .sln File
The .sln file is your solution file. This file is very important. It contains information about what projects are

contained in the solution, as well as solution specific settings like build configurations. The .sln file

contains shared information that everyone will want to keep the same, and it should be included in your

version control system if you have one.

The .suo File
The .suo file is the solution user options file. It contains various settings for the project that Visual Studio

uses. Like I said earlier, it may be a hidden file, so you may not see it. This contains things like what files

you had open when you last used the project, so they can get reopened when the project is reopened.

You could delete this file and nothing bad would happen.

Because this file contains user-specific information, this file shouldn’t go into version control. Instead,

everyone should have their own version of the file.

The Project Directories
In your solution directory, you should find that there is one folder for each project in your solution.

Let me clarify something that has confused many people in the past, including myself. By default, you’ll

have one project in your solution. This project is named the same thing as your solution. So if you created

a new project called LikeFacebookButBetter, what you’ll be looking at here is a folder called

LikeFacebookButBetter inside of a folder called LikeFacebookButBetter. It can be confusing at first.

The key to remember is that the top level one is the solution folder, and the lower level one is the project

folder, and they represent two different things.

The Project Directory

Inside of a project directory, you’ll see even more files. For starters, you will see a file ending with .csproj.

You will also likely see another file ending with .csproj.user. You should also see a Properties folder. And

you’ll also probably find a pile of .cs files, or other folders than contain .cs files and other resources. You

may also see a bin and an obj folder.

The .csproj File
This is one of the more important files that Visual Studio creates. This file essentially defines your project.

It identifies what files are included in your project, as well as listing other assemblies, libraries, or other

projects that this project uses. This file does for projects what the .sln file does for solutions.

Again, if you’re using version control, this one belongs in the repository.

The .csproj.user File
This file, like the .suo file, contains user-based settings, but for your project instead of the solution. Like

the .suo file, every user gets their own copy, so it should not go into version control.

The bin and obj Folders
You may or may not see folders called bin and obj. If you don’t see them, open the project and compile it

and these folders will appear. These are both used for building and storing executable versions of your

projects and solutions (EXE and DLL files).

The difference between the obj folder and the bin folder is that when the program is compiling, at first it

will place stuff in the obj directory. The stuff in here is not necessarily complete, and can be thought of as

a staging area for the final executable code, which will get put into the bin folder. If you’re going to hand

342 Chapter 49 How Your Project Files are Organized

off the EXE to anyone, or attempt to run the EXE from here, you should go with the one in the bin folder,

not the one in the obj folder.

If you open up either of these directories, you’ll likely see a folder in there called Debug or Release. Dig

down further and you’ll end up seeing the EXE file (or possibly a DLL file if the project is a class library)

along with a random assortment of other files. You’ll get a Debug or Release folder depending on how

you’ve built your program. If you’ve told it to run in debug mode, you’ll see a debug directory. If you’ve

told it to run in release mode, you’ll get a release directory.

Both the obj and the bin directories should be kept out of the version control repository, if you’re using it.

And if you’re submitting an assignment for a class, or handing off your code to another programmer,

these directories do not need to be included, because they can be rebuilt. (In fact, doing so is a good idea

if you’re giving it to someone else who has the capacity to compile it themselves. It reduces the total size

of what you’re sending and eliminates the executable files, which many email systems block.)

The Properties Folder
The Properties folder contains properties and resources that you’ve added to your project. For a large

project, this can be quite large.

At a minimum, you’ll probably see an AssemblyInfo.cs file in the Properties folder of the project. This file

contains information about your project, including versioning information. This file is also quite

important, and it is a shared file, so you should put it in version control.

You can open the file and see what it contains, but it is worth pointing out that everything in this file can

be edited through Visual Studio by right-clicking on your project in the Solution Explorer and choosing

Properties, and then on the Application tab click on the Assembly Information... button, where you

can specify the information you want.

Source Files and Everything Else
At this point, we have covered everything except your actual code and other folders and files you may

have added directly to your project in Visual Studio. If you look around, you’re bound to find a bunch of

.cs files, which are your C# code. Any directories that we have not discussed are directories that you have

made yourself in Visual Studio, and each folder that you see likely represents a different namespace. This

is the default behavior, but you can change your namespaces to be something else entirely. I wouldn’t

recommend doing that though, as it is very handy to have your namespaces match up with the folder

structure that the files are in.

Part 6
Wrapping Up

In this final part, we’re going to wrap up everything that we’ve been doing throughout this book, in

more ways than one. Part 6 will cover the following:

 Give you several larger Try It Out! Problems for you to tackle, to help you be sure you’ve

learned the things you needed to (Chapter 50).

 Discuss where you can go next, now that you’ve learned C#, including C#-based websites and

web applications, desktop applications, and even video games (Chapter 51).

50
50 Try It Out!

The best way to learn to program is by programming. That’s why I’ve included the Try It Out! sections

throughout this book. It’s also the reason why there’s homework.

In this chapter, I’m going to present a collection of tasks that will hopefully be interesting to you, and give

you something to work on that will help you be sure that you’ve learned the things you needed to.

Of course, if you’ve got your own project that you want to work on, you should go for that instead. As

interesting as these projects are, if you’ve got one of your own in mind, that’s a better choice for you to

work on. You’ll get the best results and learn more from something that you’ve personally chosen and are

excited about.

I should point out that these challenges are not necessarily easy. They’re like the final boss of a video

game, where you’ll use all of the tools and tricks that you’ve learned throughout the game. It may take

hours of coding, maybe even spread out over days or weeks, to get the right answer. (Or not.) Many of

these are based on the projects that I did while learning to program that I thought were the most

interesting, fun, or memorable.

Each of these problems can be kept to a very simple minimum, or you can add extra features to make

them more detailed and more interesting. Feel free to keep going with an idea until you get tired of it.

In a Nutshell
 The best way to learn how to program is to do it. No amount of reading will make you learn.

 This chapter contains a variety of interesting problems that you can try out to help you learn.

If you don’t find any of these problems interesting, feel free to pick your own.

 This includes the following challenge problems to try out:

 Message from Julius Caesar: Encryption using the Caesar cipher.

 Reverse It!: A simple game that gives you practice with arrays and indexing.

 Pig Dice: A simple multiplayer game involving randomness and dice.

 Connect Four: Remake the classic game of Connect Four.

 Conway’s Game of Life: An exploration of a zero-player game.

346 Chapter 50 Try It Out!

By the way, like all of the other Try It Out! problems throughout this book, I’m posting answers to each of

these on the book’s website and you can go there to see a complete working solution. See

http://www.starboundsoftware.com/books/c-sharp/try-it-out/

Message from Julius Caesar

Encryption is the process of taking data and turning it into a form that is no longer readable. This keeps

the information protected, so that people who aren’t supposed to read it can’t. Of course, the person who

is supposed to read it needs to be able to decrypt it and recover the message.

When encryption is performed, the algorithm used to encrypt stuff usually uses a special value called a

key to perform the encryption. If a person has the key, they can usually decrypt the message as well.

The Caesar cipher is one of the simplest encryption schemes, and it is possibly something you used to

send coded messages to friends when you were younger. It is an encryption method that supposedly

Julius Caesar occasionally used when he wrote personal letters.

The basic idea is that for every letter in your message, you shift it down the alphabet by a certain number

of letters. The amount you shift is the key for the algorithm. If you are using a key of 3, A would become D,

B would become E, etc. Once you get to the end of the alphabet, it wraps back around, so Z would be C.

For example, with a key of 4, the message below is encrypted to look like this:

Plain text: EXPERIENCE IS THE TEACHER OF ALL THINGS
Encrypted: IBTIVMIRGI MW XLI XIEGLIV SJ EPP XLMRKW

Write a program that will read in a message from a file (or from the user) and encrypt it, writing out the

encrypted message to another file (or back to the console window). Don’t overwrite the original file.

Ideally, your program will ask for the name of a file to read, and a key (a number) to use in the encryption.

Anything besides a letter (punctuation, numbers, etc.) can either be skipped or passed along to the output

without encrypting it.

Also create code that will do the reverse, decrypting a message given a decryption key.

If you want an extra challenge, try this. The Caesar cipher is really easy to crack. In fact, it is so basic that it

provides little real protection in modern usage. Much more sophisticated algorithms are used now to

encrypt data. To prove the point that the Caesar cipher can be cracked, we’re going to try a “brute force”

approach to crack the following code:

UX LNKX MH WKBGD RHNK HOTEMBGX

With the Caesar cipher, there are only 26 possible keys. Try each one, one at a time, until the decrypted

message makes sense. The simple approach for this is to have a human (you) visually inspect the

decrypted message to see if it makes sense. While it is more work, it is possible to have the computer

figure out if the message has been decrypted by using a dictionary file (containing all or the words in the

English language) and checking to see if all or most of the decrypted words are in it. A high percentage

typically indicates a successful decryption.

Reverse It!

In this task, we’re going to make a simple array-based game. We’ll start by making an array that can hold 9

integer values, and we’ll randomly put the numbers 1 through 9 in the array. Make sure you don’t have

any duplicates. Each number should appear exactly once.

The array will be printed out to the user like this:

Pig Dice 347

5 3 8 6 4 1 2 9 7

Allow the user to type in a number 1 through 9. Whatever the user types in, we’re going to reverse that

many numbers, starting at the front. So from the randomized starting position shown above, if the user

typed in the number 4, we’d end up reversing the first four numbers, and the resulting array would be:

6 8 3 5 4 1 2 9 7

The player can keep typing in numbers, and you will keep reversing the indicated part of the array until

the array is in ascending order:

1 2 3 4 5 6 7 8 9

When this happens, the player has won the game, and the game ends. Before closing, show the number

of moves it took the player to win.

Can you figure out an optimal strategy for this game? It is possible to win this game in no more than 16

moves, regardless of the starting arrangement.

Pig Dice

In the game of Pig Dice, players take turns rolling two six-sided dice. On a player’s turn, they can roll the

dice repeatedly until they either choose to hold (stop rolling) or roll a 1. As long as the player keeps rolling

without getting a 1 on either die, the numbers on the dice are added to the player ’s turn score. At any

point, a player can hold, which takes their turn score and permanently adds it to their overall score. If they

roll a 1 on either die, they lose all of the points they had collected in their turn score, nothing extra is

added to their overall score, and it becomes the next player ’s turn. When a player’s overall score reaches

100, the game ends, and they have won.

To illustrate, let’s say Alice (player #1) rolls a 3 and a 4. That gives her a turn score of 7. Alice chooses to

roll again, getting a 2 and a 6. That gives her an extra 8 points, for a total turn score of 15 points. Alice

then chooses to hold, and her current turn score is added to her overall score. Alice now has 15 points

overall, and it is now Wally’s turn (player #2). Wally rolls a 2 and a 3, giving him a turn score of 5. Wally

chooses to roll again, but this time, gets a 1 and a 5. Since he rolled a 1, he loses his turn score (which was

5) leaving him still with 0 overall points, and it becomes Alice’s turn again.

Our goal is to create a computer version of Pig Dice. On each player’s turn, allow them choose to either

hold or roll. When a player rolls, generate two random numbers between 1 and 6, and program the game

to follow the logic described above. Between rolls, display the current status of the game, showing both

player’s overall score, and the current player’s turn score. When a player gets up to 100, end the game

and show who won. For an extra challenge, make the game playable by three or more players.

Connect Four

The game of Connect Four is a simple and interesting game played on a grid

with six rows and seven columns. Two players take turns taking tokens and

dropping them into one of the seven columns, where it falls down to either the

bottom if the column is currently empty or to the top of the pile if it is not.

The goal of the game is to get four of your tokens in a row, up and down, side

to side, or diagonally, before the other player does. Your task is to make a

game where two alternating players can select a row (numbers 1 through 7) to

place their token on and play the game of Connect Four.

348 Chapter 50 Try It Out!

There are a few pieces to this game that might be challenging. One will be writing the code to take a row

and add a token to the top of it. On a related note, it may also be tricky to ensure that if a row is full, the

game doesn’t crash, but instead, notifies the player that the move they wanted to make was an illegal

move, and give them another chance. Also, after each move, you’ll want to check to see if that move

caused the player to win.

By the way, while many games like this tend to look great with a GUI the game can still easily be made to

look good by printing out the right things to the console window, as shown below:

.

.

.

. . . O . . .

. . . X . . .

. X . X O . .

Conway’s Game of Life

In 1970, British mathematician John Conway invented a “zero player” game called the Game of Life. This is

not the Milton Bradley board game called LIFE, but rather a mathematical game that simulates life.

The game is “played” on a grid, where the game advances in generations, with cells becoming alive or

dying, based on certain conditions.

If a particular cell in the grid is empty (dead) then it can come to life if the following conditions are met:

 Exactly three neighbors that are alive.

If a particular cell in the grid is alive, then it dies in the following generation if any of the following are true:

 It has more than three neighbors. (Overcrowding.)

 It has 0 or 1 neighbors (Loneliness, I guess...)

For example, look at the little grid below:

In the next generation (round) the top cell that is alive will die, because it only has one neighbor. The one

in the middle will stay alive, because it has two neighbors. The one on the bottom will also die, because it

only has one neighbor. Additionally, just off to the left and the right of the three “alive” cells, there is a cell

with three neighbors, both of which will become alive. After one generation, this will turn into the

following:

Interestingly, if you look at this and follow it through to the next generation, you’ll end up back where you

were initially. This happens to create what is called an oscillator in the Game of Life. It will keep repeating

forever.

Conway’s Game of Life 349

These simple rules for determining when cells in the grid come to life or die create very interesting results

that are much more interesting to see than to read in a book.

Because of this, we’re going to take upon ourselves the challenge of creating the Game of Life as a

computer program.

There are several key parts to this. For one, we will need to store the current grid. There are lots of ways

to do this, but one might be a two dimensional array of bools.

We will also need a method for drawing our current grid. Again, it would look nice with a fancy GUI, but

we can get away without needing to go beyond the console. If you’re sticking with the console, your best

bet is to use 40 columns in your grid, and have each cell take up two characters (an “X” or “.” depending on

if it is alive or dead, plus an empty space) because on the console, characters are twice as tall as they are

wide, and there are 80 columns by default. Using 40 columns with two characters per column gives you

nice, square shaped cells. About 12 rows fit on the console window by default, but you can go up to 20

rows pretty easily and then drag the console window to resize it and make it taller.

Additionally, you will need to create a mechanism to update the grid using the rules described earlier for

cell death and generation. It is important to work with a copy for the next generation or updating one cell

will mess up the calculation in another cell.

Finally, you’ll need to put it all together in a loop that repeats forever, updating the grid, drawing the grid,

and waiting for a while in between, to animate the game and let you see what ’s happening. For this, you

might find the Thread.Sleep method useful. We talked about this method in Chapter 39. You will need to

add a using directive to the top of your code for System.Threading to get access to this, as discussed in

Chapter 27. You might also find it useful to be able to clear the console window before you draw the new

grid, using Console.Clear();

The most interesting part about the Game of Life is being able to start with different starting

configurations and watching it evolve. To make this happen, make it so you can load in initial

configurations in a file. The specifics of the file format are up to you, but one possibility is to make them

look like this:

..

..

..

..

..

..

...................X....................

...................X....................

...................X....................

..

..

..

..

.......................X................

........................X...............

......................XXX...............

..

..

..

..

You can create these files in any text editor, like Notepad.

350 Chapter 50 Try It Out!

When your game is up and running, try loading the following patterns and watch what happens:

Blinker: Glider: Pulsar:

Diehard:

There are tons of interesting patterns that show up in the Game of Life, so when you get your game

working, experiment with various configurations, and look online and see what other interesting patterns

exist.

51
51 What’s Next?

As you finish learning everything this book has to offer, you may be wondering where you’re supposed to

go next. And it really depends. I want to take a little time and give you some pointers on where your next

steps might take you.

Other Frameworks and Libraries

If you’ve gone through this book sequentially, you already know all of the basic things you need to know

about the C# language. Much of the rest of your learning in the C# world will be more about playing with

the different .NET stacks and app models, and learning useful libraries for building different types of

programs. Below are some of the most useful ones.

Desktop Application Development
The .NET Platform includes a number of GUI desktop application frameworks, including Windows Forms,

Windows Presentation Foundation (WPF) and the Universal Windows Platform (UWP). We talked about

each of these different app models in depth in Chapter 44. Windows Forms is in maintenance mode, but

is still quite popular. WPF is the most mature and powerful option, but is only supported on Windows

desktops, laptops, and tablets. UWP is the newcomer, and supports a broader set of hardware platforms.

Web Development with ASP.NET
If you’re more interested in making web-based software, ASP.NET is the next step. ASP.NET allows you to

run C# code on the server side, in place of alternatives like PHP, Java (Java Server Pages), Python, or Perl.

ASP.NET is supported in both the .NET Framework stack, as well as the .NET Core stack (ASP.NET Core).

In a Nutshell
 Your next step might include learning app models like WPF, UWP, ASP.NET, or Xamarin

development, or maybe even game development tools like MonoGame or Unity.

 It is also worth your time to learn software engineering, as well as data structures and

algorithms if you haven’t already done so while learning another language.

 The best way to learn C# is to program in C#.

 You can get more information from MSDN, Stack Overflow, and this book’s website.

352 Chapter 51 What’s Next?

Mobile Development with Xamarin
The Xamarin stack is built with a focus on mobile app development. If you want to make phone apps with

your C# skills, this is the destination for you. Xamarin is designed to make it easy to make Android and

iPhone apps, and allows you to make code that is largely sharable between the two versions.

Game Development
I’ve saved my personal favorite for last. C# is a very popular choice for game development, and you have

a wide variety of options for doing so in C#. While none of the following are “official” app models from

Microsoft, they all have large communities around to help you.

Unity is a powerful game engine that can target almost any platform you can dream up, and is a popular

choice for C# programmers. Unity isn’t the only full-fledged game engine on the market though. Xenko

and Delta Engine are another two. And the list goes on….

MonoGame is another excellent option. It’s not quite a game engine like Unity is. It doesn’t provide as

much framework for you, but at the same time, it gives you greater control into how you approach things.

You don’t have to do things “the Unity way” but can craft your own way. MonoGame can also target pretty

much every platform out there, and is an open source port of Microsoft ’s old XNA framework.

If you want to get really close to the metal, there’s always the option of using SharpDX, a very thin wrapper

around DirectX, or one of a number of C# OpenGL bindings to make your game.

C# has no shortage of game development options.

Other Topics

In addition to learning other frameworks, it is also important to learn things like the best way to structure

your code, or various algorithms and data structures to use. If you are studying C#, and you’re getting

started with formal education at a university, you’ll learn things like this in a software engineering class, or

a data structures and algorithms class. Most universities require you to take these classes, but if it is

optional, don’t skip it. It will be worth it.

If you aren’t at a university, you’ll still want to learn these things. Take the time to learn software

engineering practices. It will be worth the time. You’ll know much better how to organize code into classes

and how to make classes interact effectively. Doing it the right way makes it easier to make changes as

your plans for your program change and grow over time. You’ll learn things like how to best test your code

to make sure it is bug free and working like it should. And you’ll get a basic idea of how to manage your

projects to finish things on time.

Also, be sure to learn about data structures and algorithms for things like sorting and searching. Making

software is a whole lot more than knowing how to write lines of code. And to make truly awesome

software, you’ll need to understand how things will work at a higher level, and how to get the fastest

results, or when to maximize for speed vs. memory usage.

Of course, if you’ve been programming for a while, especially if you had formal education in things like

this, then you probably already know most of this stuff. Generally speaking, the best practices that you

learned in other languages will carry over to the C# world.

Make Some Programs

By far the best thing you can do now is make some programs. Nothing will launch you into the C# world

faster than making a real program. Or several. You’ll quickly see what topics you didn’t fully grasp (and you

can then go back and learn them in depth) or you’ll figure out what extra little pieces you’ll need to learn

still, and you’ll be able to quickly hunt down those things on the Internet.

Where Do I Go to Get Help? 353

Of course, that’s why I’ve included the Try It Out! chapter (Chapter 50), to give you some interesting

problems to work through while testing your knowledge of various aspects of programming.

The programs you choose to work on do not need to be limited to the basics of C# that we’ve discussed in

this book. If you want to try tackling something that also uses WPF, ASP.NET, UWP, or game development,

go for it. There’s no better way to learn to program than by programming.

Where Do I Go to Get Help?

The best part about making software is that you’re creating something that has never been done before.

It is as much a creative process as it is mathematical or analytical. You’re not just manufacturing the exact

same thing over and over again. As such, you’re going to run into problems that have never been

encountered before. You’re bound to run into trouble sooner or later, and so before we part ways, I want

to point out to you a few meaningful things you can do to solve your problems when they come up.

First, obviously, a Google search will go a very long way. That’s always a great place to start.

Second, make sure you fully understand what the code you are working with is doing. If you’re having

trouble with a particular class that someone else created (like the List class, for instance) and a method

isn’t doing what you thought it should, take the time to make sure you understand every piece that you’re

working with. I’ve learned over the years, that if you’re running into a problem with code you don’t quite

understand, you’re not likely to figure the whole problem out until you’ve figured out how to use all of the

individual pieces that are in play. Learn what each parameter in a method does. Learn what exceptions it

might throw. Figure out what all of its properties do. Once you truly understand the things you’re working

on, usually the problem solves itself.

Along those lines, the Microsoft Developer Network (MSDN) has tons of details about every type that the

.NET Standard Library has, with plenty of examples of how to use them. It’s a great resource if you’re

trying to learn how a specific type works. (http://msdn.microsoft.com/library/)

I probably don’t need to say this, but if you’re stuck, and you’ve got team members that might know the

answer, it is always a good idea to talk to them.

If you don’t have team members who can answer the question, Stack Overflow is one of the best sites out

there for programming Q&A. (http://stackoverflow.com/) Stack Overflow covers everything from the basics

up to some very specific, very detailed questions, and you’re likely to get good, intelligent responses from

people. Just be sure to do a Google search to make sure the answer isn’t obvious, and search on the site

as well, to make sure the question hasn’t already been asked. (Because it probably has.)

Parting Words

You’ve learned the basics of C#, and ready to take the world by storm. There’s so much that you can do

with your new knowledge of C#. It truly is an exciting time!

From one programmer to another, I want to wish you the best of luck with the amazing software that you

will create!

http://stackoverflow.com/
http://msdn.microsoft.com/library/

52 Glossary

.NET Core
A newer.NET Platform stack that is designed to be more

cross-platform friendly, and primarily targets Linux and

macOS. (Chapter 44.)

.NET Framework
The oldest (original) most popular, and most complete

stack within the .NET Platform. Aimed primarily at

Windows computers. This term is frequently used to refer

to the entire .NET ecosystem, though this book makes a

distinction between these two, and calls the entire system

the .NET Platform. (Chapters 1 and 44.)

.NET Platform
The platform C# is built for and utilizes. The term used in

this book to describe the entire .NET ecosystem, including

all stacks (the .NET Framework, .NET Core, Xamarin, etc.),

all app models, the entire .NET Standard Library, the

compilers, CLR runtime, CIL language, and other tools. This

is also sometimes called simply “.NET” and also frequently

called the .NET Framework, though this book makes a

distinction between the two. (Chapters 1 and 44.)

.NET Standard
A specification that defines a vast collection of reusable

types (classes, interfaces, structs, enums, etc.) that exist

across multiple stacks within the .NET Platform. The .NET

Standard allows you to reuse code and produce code that

can be migrated from stack to stack. It allows you to write

code that runs on the original .NET Framework, as well as

.NET Core, Xamarin, and other stacks. The .NET standard

has many different levels or version numbers. Higher

version numbers include more reusable material. Lower

version numbers allow you to target more diverse stacks.

(Chapters 1 and 44.)

.NET Standard Library
See .NET Standard.

Abstract Class
A class that you cannot create instances of. Instead, you

can only create instances of derived classes. The abstract

class is allowed to define any number of members, both

concrete (implemented) and abstract (unimplemented).

Derived classes must provide an implementation for any

abstract members defined by the abstract base class

before you can create instances of the type. (Chapter 23.)

Abstract Method
A method declaration that does not provide an

implementation or body. Abstract methods can only be

defined in abstract classes. Derived classes that are not

abstract must provide an implementation of the method.

(Chapter 23.)

Accessibility Level
Types and members are given different levels that they can

be accessed from, ranging from being available to anyone

who has access to the code, down to only being accessible

from within the type they are defined in. More restrictive

accessibility levels make something less vulnerable to

tampering, while less restrictive levels allow more people

to utilize the code to get things done. It is important to

point out that this is a mechanism provided by the C#

language to make programmer’s lives easier, but it is not a

way to prevent hacking, as there are still ways to get access

 Glossary 355

to the code. Types and type members can be given an

access modifier, which specifies what accessibility level it

has. The private accessibility level is the most restrictive,

and means the code can only be used within the type

defining it, protected can be used within the type defining

it and any derived types, internal indicates it can be used

anywhere within the assembly that defines it, and public

indicates it can be used by anyone who has access to the

code. Additionally, the combination of protected internal

can be used to indicate that it can be used within the

defining type, a derived type, or within the same assembly.

(Chapters 18 and 22.)

Accessibility Modifier
See Accessibility Level.

Anonymous Method
A special type of method where no name is ever supplied

for it. Instead, a delegate is used, and the method body is

supplied inline. Because of their nature, anonymous

methods cannot be reused in multiple locations. Lambda

expressions largely supersede anonymous methods and

should usually be used instead. (Chapter 37.)

Anonymous Type
A type (specifically a class) that does not have a formal type

name and is created by using the new keyword with a list

of properties. E.g., new { A = 1, B = 2 }. The properties of

an anonymous type are read-only. (Chapter 19.)

App Model
A component of the .NET Platform that allows you to easily

create a specific type of application. This primarily consists

of a library of reusable code for creating applications of

that type, but also contains additional infrastructure such

as a deployment model or a security model. (Chapter 44.)

Argument
See parameter.

Array
A collection of multiple values of the same type, placed

together in a list-like structure. (Chapter 13.)

ASP.NET
An app model for building web-based applications using

the .NET Framework or .NET Core stacks. This book does

not cover ASP.NET in depth. (Chapter 44.)

Assembly
Represents a single block of redistributable code, used for

deployment, security, and versioning. An assembly comes

in two forms: a process assembly, in the form of an EXE file,

and a library assembly, in the form of a DLL file. An EXE file

contains a starting point for an application, while a DLL

contains reusable code without a specified starting point.

See also project and solution. (Chapter 44.)

Assembly Language
A very low level programming language where each

instruction corresponds directly to an equivalent

instruction in machine or binary code. Assembly languages

can be thought of as a human readable form of binary.

(Chapter 44.)

Assignment
The process of placing a value in a specific variable.

(Chapter 5.)

Associativity
See Operator Associativity.

Asynchronous Programming
The process of taking a potentially long running task and

pulling it out of the main flow of execution, having it run on

a separate thread at its own pace. This relies heavily on

threading. (Chapters 39 and 40.)

Attribute
A feature of C# that allows you to give additional meta

information about a type or member. This information can

be used by the compiler, other tools that analyze or

process the code, or at run-time. You can create custom

attributes by creating a new type derived from the

Attribute class. Attributes are applied to a type or

member by using the name and optional parameters for

the attribute in square brackets immediately above the

type or member’s declaration. (Chapter 43.)

Base Class
In inheritance, a base class is the one that is being derived

from. The members of the base class are included in the

derived type. A base class is also frequently called a

superclass or a parent class. A class can be a base class,

and a derived class simultaneously. See also inheritance,

derived class, and sealed class. (Chapter 22.)

Base Class Library
The .NET Standard Library implementation that is a part of

the .NET Framework. It is the most expansive and most

widely use implementation of the Standard Library

(Chapter 44.)

BCL
See Base Class Library.

356 Glossary

Binary Code
The executable instructions that computers work with to

do things. All programs are built out of binary code.

(Chapters 1 and 44.)

Binary Instructions
See Binary Code.

Binary Literal
A literal that specifies an integer in binary, and is preceded

by the marker “0b”: 0b00101001. (Chapter 6.)

Binary Operator
An operator that works on two operands or values. Many

of the most common operators are binary, such as

addition and subtraction. (Chapter 7.)

Bit Field
The practice of storing a collection of logical (Boolean)

values together in another type (such as int or byte) where

each bit represents a single logical value. Enumerations

can also be used as a bit field by applying the Flags

attribute. When working with a bit field, the bitwise

operators can be used to modify the individual logical

values contained in the bit field. (Chapter 43.)

Bitwise Operator
One of several operators that operate on the individual

bits of a value, as opposed to treating the bits as a single

value with semantic meaning. Bitwise operators include

bitwise logical operators, which perform operations like

and, or, not, and xor (exclusive or) on two bits in the same

location of two different values. It also includes bit shift

operators, which slide the bits of a value to the left or right.

In C#, the extra spots are filled with the value 0. (Chapter

43.)

Boolean
Pertaining to truth values. In programming, a Boolean

value can only take on the value of true or false. Boolean

types are a fundamental part of decision making in

programming. (Chapter 6.)

Built-In Type
One of a handful of types that the C# compiler knows a lot

about, and provides special shortcuts for to make working

with them easier. These types have their own keywords,

such as int, string, or bool. (Chapter 6.)

Breakpoint
While debugging, a line of code may be marked with a

breakpoint, and when the program reaches that point, the

program will pause and switch back to the Visual Studio

debugger, allowing you to take a look at the current state

of the program. (Chapter 48.)

C++
A powerful all-purpose programming language that C# is

largely based on. C++ is generally compiled to executable

code, and is not run on a virtual machine. (Chapter 44.)

Casting
See Typecasting.

Checked Context
A section of code wherein mathematical overflow will

throw an exception instead of wrapping around. An

unchecked context is the default. (Chapter 43.)

CIL
See Common Intermediate Language.

Class
One of several categories of types that exist in the C#

language that can be custom designed. A class defines a

set of related data that belongs to a single type or category

of objects in the real world, or representation of a concept

in the domain model, along with the methods that are used

to interact with or modify that data. A class is as a blueprint

for objects or instances of the class, defining what they

store and what they can do. All classes are reference types.

See also struct, type, and object. (Chapter 17.)

CLR
See Common Language Runtime.

Code Window
The main window, usually in the center of the screen,

which allows you to edit code. The window can show

multiple code files tabbed together. Any hidden window

can be opened up through the View menu, or the View >

Other Windows menu. (Chapter 45.)

Command Line Arguments
When a program is started, arguments may be provided

on the command line of a program, which are passed into

the program’s main method where it can use them. These

parameters are command line arguments. (Chapter 43.)

Comment
Additional text placed within source code that is designed

to be read by any humans that are working with the code.

The C# compiler ignores comments entirely. (Chapter 4.)

Common Intermediate Language
A special high-level, object-oriented form of assembly code

that the CLR is able to execute. It includes instructions for

things like type conversion, exceptions, and method calls.

(Chapter 44.)

 Glossary 357

Common Language Runtime
A virtual machine that any .NET language including C# is

built to run on. The Common Language Runtime, often

called the CLR, converts CIL code that the C# compiler

created into binary instructions for the computer to run on

the fly. (Chapter 44.)

Compile-Time Constant
See Constant.

Compiler
A special program that turns source code into executable

machine code. (Chapters 1 and 44.)

Compound Assignment Operator
An operator that combines a normal math operation with

assignment, as in x += 3; (Chapter 7.)

Conditional Operators
The operators && (and operator) and || (or operator),

which are used to perform checks for multiple conditions.

(Chapter 10.)

Constant
A special type of variable that, once set, cannot be

modified. Constants come in two variations. Compile-time

constants are created when the program is compiled,

using the const keyword. These are treated as global

constants and cannot be changed without recompiling

your program. Run-time constants, created with the

readonly keyword, are variables that cannot be modified

once assigned to. However, they can be assigned while the

program is running. For instance, a type may have read-

only instance variables, allowing instances of the type to be

created with different values, but forcing the variables to

be immutable. (Chapter 43.)

Constructor
A special type of method that initializes an instance of a

type. The role of a constructor is to ensure that the new

instance will be initialized to a valid state. Like a method, a

constructor’s definition may include any number of

parameters. A constructor must have the same name as

the type and no return type. A type may define multiple

constructors. When creating a new instance of a type, a

constructor is called, along with the new keyword. If a type

does not explicitly include a constructor, the C# compiler

will automatically generate a default parameterless

constructor. (Chapters 17 and 18.)

Contravariance
See Generic Variance.

Covariance
See Generic Variance.

Critical Section
A block of code that should not be accessed by more than

one thread at once. Critical sections are usually blocked off

with a mutex to prevent multiple simultaneous thread

access. (Chapter 39.)

Curly Braces
The symbols { and }, used to mark blocks of code. (Chapter

3.)

Debug
The process of working through your code to find and fix

problems with the code. (Chapter 48.)

Declaration
The process of creating something, specifying the

important information about it. This is typically used to

refer to variable declaration, but it is also applied to

methods and type definitions. (Chapter 5.)

Decrementing
Subtracting 1 from a variable. See also Incrementing.

(Chapter 9.)

Delegate
A way to treat methods like objects. A delegate definition

identifies a return type and a list of parameter types. A

delegate is created in a way that is similar to declaring a

variable, and can be assigned “values” that are the names

of methods that match the return type and parameter list

of the delegate. The delegate can then be called, which will

execute whatever method is currently assigned to the

delegate and return the result. (Chapter 32.)

Dependency
A separate library (frequently a DLL) or resource that

another project references and utilizes. The project is said

to “depend on” the referenced library. (Chapter 46.)

Derived Class
In inheritance, the derived class extends or adds on to

another class (the base class). All members of the base

class, including instance variables, methods, and events

also exist in the derived class. Additional new members

may also be added in a derived class. In the case of

multiple levels of inheritance (not to be confused with

multiple inheritance) a class may act as both a base class

and a derived class. A derived class is also sometimes

called a subclass. See also base class and inheritance.

(Chapter 22.)

358 Glossary

Digit Separator
An underscore character (‘_’) placed between the digits of

a numeric literal, used to organize the digits more cleanly,

without changing the meaning of the number. E.g.,

1_543_220. (Chapter 6.)

Divide and Conquer
The process of taking a large, complicated task and

breaking it down into more manageable, smaller pieces.

(Chapter 15.)

Division by Zero
An attempt to use a value of 0 on the bottom of a division

operation. From a math standpoint, it is meaningless and

isn’t allowed. In programming, it often results in your

program crashing. (Chapter 9.)

DLL
A specific type of assembly that contains no specific entry

point but rather a collection of code that can be reused by

other applications. See also assembly and EXE. (Chapter 46.)

Dynamic Object
An object whose members (methods, properties,

operators, etc.) are either changeable at run-time or whose

members are not known until run-time. A dynamic object

should be stored in a variable of type dynamic, so that

dynamic type checking can be done. (Chapter 41.)

Dynamic Type Checking
The act of checking that members such as methods,

properties, operators, etc. that are invoked on an object

exist at run-time, instead of earlier at compile time. This is

necessary for dynamic objects, which can change their

members at run-time or whose members are not known at

run-time. This is contrasted with static type checking,

which happens at compile time. Most C# objects are

checked dynamically type checked, with the exception of

variables of type dynamic. (Chapter 41.)

E Notation
A way of expressing very large or very small numbers in a

modified version of scientific notation (e.g., 1.3 x 1031) by

substituting the multiplication and 10 base with the letter

‘E’ (e.g., “1.3e31”). In C#, float, double, and decimal can all

be expressed with E notation. (Chapter 6.)

Enum
See Enumeration.

Error List
A window in Visual Studio that displays a list of compiler

errors and warnings. Any hidden window can be opened

up through the View menu, or the View > Other Windows

menu. (Chapter 45.)

EXE
A specific type of assembly that contains an entry point

which can be started and run by the .NET Platform. See

also assembly and DLL. (Chapter 44.)

Enumeration
A specific listing of the possible values something can take.

In C#, enumerations are used to represent a type of data

where there is a known, specific, finite set of options to

choose from. (Chapter 14.)

Event
A delegate-based mechanism that allow one part of the

code to notify others that something specific has occurred.

Event handlers are methods which match a particular

delegate and they can be attached or removed from the

event, allowing it to start or stop receiving notifications

from the event. (Chapter 33.)

Exception
An object that encapsulates an error that occurred while

executing code. The object is “thrown” or passed up the call

stack to the calling method until it is either handled

(“caught”) or is thrown from the Main method, causing the

program to crash. (Chapter 30.)

Explicit
A term frequently used to mean something must be

formally stated or written out. The opposite of “implicit.”

(Chapter 9.)

Extension Method
A special type of static method that appears to be a part of

a class but is actually defined outside of it. This allows you

to create methods for types that are sealed or that you do

not have access to the source code for. (Chapter 36.)

FCL
See Framework Class Library.

Field
See instance variable.

Fixed Size Array
An array variable that is always the same size, and whose

bytes are allocated as a part of the struct it belongs to,

instead of elsewhere in the heap. Also called a “fixed size

buffer.” Used primary for interoperating with non-

managed code. (Chapter 42.)

Fixed Statement
A statement that causes a normal reference to be “pinned”

in place, barring the garbage collector from moving it

temporarily. This is only allowed in an unsafe context, and

allowing it to access managed objects. (Chapter 42.)

 Glossary 359

Floating-Point Type
One of several built-in types that are used for storing real-

valued numbers, such as fractional or decimal numbers.

(Chapter 6.)

Framework Class Library
A massive collection of reusable code that is a part of the

.NET Framework. This includes all of the Base Class Library,

plus additional code, including all of the app models in the

.NET Framework stack. (Chapter 44.)

Fully Qualified Name
The full name of a type, including the namespace that it

belongs in. (Chapter 27.)

Function
A chunk of reusable code that does some specific task. A

function is identified by a name, and indicates the inputs

provided to the function (parameters) and the values it

produces as a result (return values). Nearly all functions in

C# are methods (owned by a class) with the exception of

local functions. The terms “function” and “method”

frequently used interchangeably in C# programming.

(Chapter 15.)

Garbage Collection
The process of removing objects on the heap that are no

longer accessible. Garbage collection in C# is automated.

It makes it so that you do not need to worry as much about

memory leaks, and you do not need to manually deallocate

memory for your program, in most cases. See also

managed memory. (Chapter 16.)

Generic Variance
A mechanism for specifying hierarchy-like relationships

among generic types. While one class is derived from

another, Generic<Derived> has no association to

Generic<Base>. Generic variance allows you to set up

rules for how the generic class can be used in hierarchy-

like relationships, but is dependent on how the generic

type parameter is used inside of the generic class. If a type

is only used as an output from the generic type, it can be

made covariant, which makes Generic<Derived>

substitutable for Generic<Base>. If a type parameter is

only used as input to the generic type, then it can be made

contravariant, which makes Generic<Base> substitutable

for Generic<Derived>. If the generic type is used as both

input and output, it must remain invariant, and

Generic<Base> and Generic<Derived> will have no

substitution relationship. (Chapter 43.)

Generics
A mechanism that allows you to create classes that are

type safe, without having to commit to specific types at

compile time. Rather than creating something that can

work with only a specific type (and then creating a very

similar version for other types) and instead of using a very

generalized type (like object) and casting to and from that

to the wanted type, generics can be used to specify that at

run-time, a certain specific type will be used, but it is

currently unknown, and may be different in different

instances. (Chapters 25 and 26.)

Global Namespace
The root level namespace. If your code is not placed in a

namespace block, then it will live in the global namespace.

In some instances where name conflicts occur, you can

reference a name by starting at the global namespace by

starting with global:: followed by the fully qualified name

of a namespace or type. (Chapter 43).

Heap
One of two main parts of a program’s memory. The heap

is unstructured, and any part of the program can access

the information on the heap as needed. Because the heap

is unstructured, memory allocation and deallocation must

be handled carefully. The CLR manages the heap (see

managed memory) using garbage collection. See also stack

and reference type. (Chapter 16.)

Hexadecimal
A base-16 numbering scheme, popular in computing

because of its ability to represent the contents of a byte

using two characters, which uses 16 total digits, instead of

the 10 that is used in a normal decimal system. These

characters are 0 through 9, then A through F. (Chapter 6.)

Hexadecimal Literal
A literal that specifies an integer in hexadecimal, and is

preceded by the marker “0x”: 0xac915d6c. (Chapter 6.)

IDE
See Integrated Development Environment.

IL
See Common Intermediate Language.

Implicit
A term frequently used to mean something happens

without needing to be specifically stated. The opposite of

“explicit.” (Chapter 9.)

Incrementing
Adding 1 to a variable. See also Decrementing. (Chapter 9.)

Indexer
An indexer is a part of a type that defines what the indexing

operator should do for the type. Indexers can use any

360 Glossary

number of parameters, and can use any type—they’re not

just limited to integers. (Chapter 35.)

Inference
See Type Inference.

Inheritance
The ability of one class to include all of the members that

another class has, and add on additional members.

Inheritance is designed to mimic an is-a relationship, or an

is-a-special-type-of relationship—in other words, things

where one type is a special type of another. For example,

an octagon is a special type of polygon, and so an Octagon

class may inherit from, or be derived from, a Polygon class.

C# does not allow for inheritance from more than one base

class (multiple inheritance) but a similar effect can be

accomplished by implementing multiple interfaces.

Inheritance can be many levels deep. Every type in C# is

ultimately derived from the object type. Note that structs

do not support inheritance. (Chapter 22.)

Instance
See object.

Interface
A listing of specific members that a type that implements

the interface must have. It defines a specific contract that

a type needs to present to the outside world. A type may

implement multiple interfaces. All members defined in any

interface that a type implements must be defined in the

type. (Chapter 24.)

Integer Division
A special kind of division, used when working with only

integral types, in which any remainder or fractional part of

the result is dropped. Using integer division, 7 / 2 is 3.

(Chapter 9.)

Integral Type
One of several built-in types that are used for storing

integers. (Chapter 6.)

Integrated Development Environment
A program that is built for the purpose of making it easy to

create programs. It typically includes a source code editor

and a compiler, along with many other features to assist

with things like project management, testing, and

debugging. (Chapters 1 and 45.)

IntelliSense
A feature of Visual Studio that performs auto-completion

of various tasks such as name completion, but also

provides a convenient way to view the XML documentation

comments of types and their members. IntelliSense is

brought up automatically when the dot operator (member

access operator) is used, but it can also be brought up any

time by using Ctrl + Space. (Chapter 45.)

Internal
See accessibility level.

Invariance
See Generic Variance.

Immutability
A feature of a type (or sometimes, just a member of a type)

that prevents it from being modified once it has been

created. In order to make changes to an instance, a new

instance must be created with the desired changes.

Immutability provides certain benefits, including simplicity,

automatic thread safety, usable as keys in a dictionary or

hash table, and you do not need to make defensive copies

when returning them from a method or property. Value

types should be made immutable in most cases. Classes

should be immutable when possible. (Chapter 21.)

Implicitly Typed Local Variable
Using type inference, a local variable’s type does not need

to be specified in some cases. Instead, the var keyword is

used to indicate that type inference should be used. Only

local variables can be implicitly typed. It is important to

remember that implicitly typed local variables actually do

have a specific type (they’re not loosely typed) but that type

is determined by the compiler instead of the programmer.

(Chapter 6.)

Instance Variable
A non-static variable that is declared as a member of a

type. As such, it is available throughout the type, and

depending on its accessibility level, it may be accessible

from outside the type as well. Contrasted with a static class

variable, where all instances of the type share the same

variable, each instance of the type will have its own

variable that functions independently of the variable with

the same name in other instances. It is good practice to

make sure instance variables are not accessible from

outside of the type to adhere to the principle of

encapsulation. (Chapters 17 and 18.)

Iterator
A mechanism for visiting or looking at each item in a

collection of data. A foreach loop can “iterate” over (or

loop over) items in any type that provides an iterator.

(Chapter 43.)

Jagged Array
An array of arrays, where each array within the main array

can be a different length. (Chapter 13.)

 Glossary 361

Java
A high-level, all-purpose programming language similar to

C#. Like C#, it also runs on a virtual machine. (Chapter 1.)

JIT Compiler
See Just-in-Time Compiler.

Just-in-Time Compiler
The process of converting IL code to executable code right

before it is first needed. The CLR uses Just-in-Time

compiling (JIT compiling) as it runs C# code. (Chapter 44.)

Keyword
A special reserved word in a programming language.

(Chapter 3.)

Lambda Expression
An anonymous method that is written with a simplified

syntax to make it easy to create. Lambda expressions are

powerful when used where a delegate is required. If a

lambda expression becomes complicated, it is usually

better to pull it out into a normal method. (Chapter 37.)

Language Integrated Query
A part of the C# language that allows you to perform

queries on collections within your program. These queries

involve taking a set of data and then filtering, combining,

transforming, grouping, and ordering it to produce the

desired result set. Often called LINQ (pronounced “link”).

LINQ can be done with a special query syntax or with

simple method calls. (Chapter 38.)

Left Associativity
See Operator Associativity.

LINQ
See Language Integrated Query.

Literal
A direct representation of a value in source code. For

example, in the line int x = 3; the 3 is an integer literal. The

built-in types generally can all be created with a literal,

rather than by use of the new keyword. (Chapter 6.)

Local Function
A function that is contained directly in another function or

method. It is given a name, parameters, and return type,

but is only accessible from within the function that

contains it. (Chapter 28.)

Local Variable
A variable that is created inside of a method, and is only

accessible within that method. Some local variables may

have scope smaller than the entire method. A local variable

that is declared inside of a loop, if statement, or other

block will only have block scope, and cannot be used

outside of that block. (Chapter 15.)

Loop
To repeat something multiple times. C# has a variety of

loops, including the for, while, do-while, and foreach

loops. (Chapter 12.)

Managed Memory
Rather than requiring you to allocate and deallocate or free

memory on the heap, the CLR keeps track of this for you,

freeing you to concentrate on other things. Memory that is

no longer used is cleaned up by the garbage collector. The

CLR also rearranges memory to optimize space. (Chapter

16.)

Member
Anything that can belong to a type, including instance

variables, methods, delegates, and events. (Chapter 17.)

Memory Barrier
A hardware instruction that indicates that pending

memory reads or writes must complete before passing the

memory barrier. Memory barriers are important when

multiple threads access the same data in a way that isn’t

otherwise thread-safe (for example a lock). Access to a

specific piece of data can be protected with a memory

barrier by using the volatile keyword on the variable.

(Chapter 43.)

Method
A type of function that is a member of a type (a class, struct,

etc.) Nearly all functions in C# are methods, with the

exception of nested functions, and the two terms are

largely interchangeable. (Chapter 15.)

Method Body
See method implementation.

Method Call
Going from one method into another. When a method is

called, data may be sent to the method by passing them in

as parameters to the method. When a method call is

finishing, information may be sent back or “returned” from

the method. A method may call itself (recursion). Method

calls are kept track of on the stack. As a new method is

called, a new frame is placed on the stack. As the flow of

execution returns from a method call, the top frame,

representing the current method is removed, returning

execution back to the calling method. (Chapter 15.)

362 Glossary

Method Call Syntax
Contrasted with query syntax, method call syntax allows

you to perform LINQ queries using normal methods and

lambda expressions, rather than the context-dependent

keywords. (Chapter 38.)

Method Implementation
The actual code that defines what the method should do.

This is enclosed in curly braces right below the method

declaration in most cases. A method without an

implementation is an abstract method, and can only be

made in an abstract class. (Chapter 15.)

Method Signature
The name of the method and types of parameters that a

method has. This does not include its return type or the

names of the parameters. This is largely what distinguishes

one method from another. Two methods in a type cannot

share the same method signature. (Chapter 15.)

Mutex
See Mutual Exclusion.

Mutual Exclusion
Setting up code so that only one thread can access it at a

time. The mechanism that forces this is often called a

mutex. (Chapter 39.)

Named Parameter
When passing values into a method, the name of the

parameter they go with can be explicitly named, allowing

the parameters to be given out of order. (Chapter 28.)

Namespace
A collection of related types, grouped together under a

common label. Namespaces often represent broad

features of a program, and contain the types that are

needed to implement the feature. The types in a

namespace are typically placed together in a single folder

in the directory structure. (Chapters 3 and 27.)

Name Collision
A situation where two different types use the same name.

At compile time, the compiler will be unable to determine

which of the two types is supposed to be used. To resolve

a name collision, you must either use fully qualified names

or an alias to rename one or both of the types involved in

the collision. (Chapter 27.)

Name Hiding
When a variable in method or block scope has the same

name as an instance variable or static variable, making the

instance variable or static variable inaccessible. The

instance variable or static variable may still be accessed

using the this keyword. (Chapter 18.)

NaN
A special value used to represent no value. It stands for

“Not a Number.” (Chapter 9.)

Nesting
Placing one statement or block of statements inside of

another block. (Chapter 10.)

NuGet Package Manager
A tool for making it easy to work with many 3rd party

packages and libraries in your code. NuGet is built into

Visual Studio. It is the most common tool for working with

references to other code libraries. (Chapter 46.)

Null Reference
A special reference that refers to no object at all. (Chapter

16.)

Nullable Type
A mechanism in C# for allowing value types to additionally

be assigned null, like a reference type. A nullable type is

still a value type. A nullable type is simply one that uses the

Nullable<T> struct, but the C# language allows for a

simplified syntax, by using the type, followed by a ‘?’. For

example: int? a = null; (Chapter 43.)

Object
Objects are instances of a type (often a class) and

represent a specific instance or occurrence of a defined

type. This is contrasted with the class (or other type

definition) itself, which defines what kinds of data objects

of that type will be able to keep track of and the methods

that operate on that data. (Chapter 17.)

Object-Oriented Programming
An approach to programming or programming languages

where code is packaged into chunks of reusable code that

have data and methods that act on that data, bundled

together. C# is an object-oriented programming language.

(Chapter 17.)

Operator
A calculation or other work that is done by working with

one, two, or three operands. Many of the C# operators are

based on math operators, such as addition (+) or

multiplication (*). (Chapter 7.)

Operator Associativity
The rules that determine how operations of the same

precedence are evaluated when used together in a single

expression. Left-associative (or left-to-right associative)

operators are evaluated starting from the left side. Right-

associative (or right-to-left associative) operators are

evaluated starting from the right side. For example, in the

expression 5 – 3 – 1, the operations are evaluated like (5 –

 Glossary 363

3) – 1, because subtraction is left-associative. (Operators

Chart, page 370 and Chapter 7.)

Operator Overloading
Within a type, providing a definition for what a particular

operator (+, -, *, /, etc.) should do. Not all operators are

overloadable. Operators should only be overloaded if

there is an intuitive way to use the operator. (Chapter 34.)

Optional Parameter
When a parameter is given a default value, allowing calling

methods to not provide a value for the parameter if

desired. (Chapter 28.)

Operator Precedence
The rules that determine which operator is evaluated first

in an expression where multiple operations are used.

Operators with higher precedence will be evaluated before

operators with lower precedence. For example,

multiplicative operations such as *, /, and % will be

executed before additive operations, such as + and -.

Operator precedence can be overruled by placing pieces of

the expression in parentheses. (Operators Chart, page 370

and Chapter 7.)

Order of Operations
See Operator Precedence.

Out-of-Order Execution
For the purposes of optimization, the CPU may run

multiple instructions in parallel or in an order different

from program order. This is called out-of-order execution.

From the perspective of a single thread, all operations will

always function as though the operations were executed

in order. (Chapter 43.)

Overflow
When the result of an operation exceeds what the data

type is capable of representing. In a purely mathematical

world, this doesn’t happen, but on a computer, since all

types have a certain size with set ranges and limits,

overflow is when those bounds are surpassed. (Chapter 9.)

Overloading
Providing multiple methods with the same name but

different parameter list. Not to be confused with

overriding, an overload creates an entirely different

method, though usually, the purpose is to do similar things

with different inputs or parameters. For overloading

operators, see operator overloading. (Chapter 15.)

Overriding
Taking a method, property, or indexer in a base class and

providing an entirely different implementation of it in a

derived class. In C#, in the base class, the method must be

either virtual or abstract, and in the derived class, the

method must be marked with override in order to

override the member. (Chapter 23.)

P/Invoke
See Platform Invocation Services.

Package
A set of resources (typically a single DLL file) along with

some additional metadata, that makes it easy to reference

and leverage a piece of code. In the .NET ecosystem,

packages are typically referenced and managed using the

NuGet Package Manager. (Chapter 46.)

Parameter
A type of variable that has method scope, meaning it is

available from anywhere inside of a method. Unlike other

local variables, the value contained in a parameter is

determined by the calling method, and may be different

for different method calls. (Chapter 15.)

Parent Class
See base class.

Parentheses
The symbols (and), used for order of operations, the

conversion operator, and method calls. (Chapters 7 and

15.)

Parse
The process of taking something and breaking it down into

smaller pieces that have individual meaning. Parsing is a

common task when reading data in from a file, or from

user input. (Chapter 29.)

Partial Class
A class that is defined in multiple files. This can be done to

separate a very large class into more manageable pieces,

or to separate a class into parts that are maintained by

separate things, such as the programmer and a GUI

designer tool. (Chapter 22.)

Pattern
A syntactic element that allows for conditional execution of

some code. It is composed of four parts. An input, which is

supplied to the pattern, a rule which is applied to the input

and is either “matched” (the rule returns true) or

unmatched, and if matched, an action is performed that

produces an output from the input. Patterns were

introduced to C# 7. Patterns can be used in switch

statements and with the is keyword. (Chapter 31.)

364 Glossary

Pinning
See Fixed Statement.

Platform Invocation Services
A mechanic whereby your C# code can directly invoke

unmanaged code that lives in another DLL that your

project references. (Chapter 42.)

Pointer
Contrasted with a reference, a pointer is a raw “link” to a

memory address. Pointers can only be used in unsafe

contexts. C# pointers are similar to pointers in other

languages such as C++. Pointers are generally only used

when interoperating with code that requires it. Generally

speaking, pointers should be avoided in favor of normal

reference types. (Chapter 42.)

Polymorphism
In C#, a class may declare a method or property, including

optionally providing an implementation for it, which can

then be overridden in derived classes in different ways.

This means that related types may have the same methods

implemented with different behavior. This ability to have

the same method that does different things when done by

different types is called polymorphism. The term comes

from Greek, meaning “many forms,” which reflects the fact

that these different types can behave differently, or do

different things, by simply providing different

implementations of the same method. (Chapter 23.)

Public
See accessibility level.

Precedence
See Operator Precedence.

Preprocessor Directive
Special commands embedded in source code that are

actually instructions for the compiler. (Chapter 43.)

Primitive Type
See Built-In Type.

Private
See accessibility level.

Procedure
See method.

Program Order
When referring to out-of-order execution, program order

is the order in which statements appear in the source code.

For optimization purposes, the CPU may not always

execute code in program order, but (assuming a single

thread) the effects will always be as though the instructions

were executed in program order. See also Out-of-Order

Execution and Volatile Fields. (Chapter 43.)

Project
In Visual Studio, a project represents the source code,

resource files, and settings needed to build a single

assembly (in the form of an .EXE file or a .DLL file). See also

solution and assembly. (Chapter 45.)

Property
A member that provides a way for the outside world to get

or set the value of a private instance variable, providing

encapsulation for it. This largely replaces any GetX or SetX

methods, providing simpler syntax, without needing to

publicly expose the data. The instance variable that a

property sets or returns is called a backing field, though

not all properties need a backing field. Properties do not

need to provide both a get and a set component, and when

they do, they do not need the same accessibility level.

Auto-generated properties can be used for very simple

properties that require no special logic. (Chapter 19.)

Protected
See accessibility level.

Query Expression
A special expression in C# that allows you to make SQL-like

queries on data within a C# program. Query expressions

are a fundamental part of LINQ. Query expressions are

composed of a variety of context-specific keywords and

structured into clauses that each manipulate, filter,

combine, or rearrange data sets to produce a final set of

results for the query (Chapter 38.)

Query Syntax
One of the two flavors of LINQ (contrasted with method

call syntax) that uses query expressions to perform queries

against data sets. (Chapter 38.)

Rectangular Array
A special form of multi-dimensional arrays where each row

has the same number of values. (Chapter 13.)

Recursion
Indicates a method that calls itself. Care must be taken to

ensure that eventually, a base case will be reached where

the method will not be called again, or you will run out of

space on the stack. See also recursion. (Chapter 15.)

Refactor
The process of tweaking or modifying source code in a way

that doesn’t affect the functionality of the program, but

improves other metrics of the code such as readability and

maintainability. (Chapter 45.)

 Glossary 365

Reference
A unique identifier for an object on the heap, used to find

an object that is located there. This is similar to a pointer,

used in other languages, which is a memory address

pointing to the object in question. However, a reference is

managed, and the actual object may be moved around in

memory without affecting the reference. (Chapter 16.)

Reference Semantics
When something has reference semantics, the identity of

the object is considered to be the object, rather than the

data it contains. When assigned from one variable to

another, passed to a method, or returned from a method,

while the reference is copied, it results in a reference to the

same object or data. This means both variables are

ultimately referencing the same data, and making changes

to one will affect the other. In C# all reference types have

reference semantics. See also reference type and value

semantics. (Chapter 16.)

Reference Type
One of the two main categories of types in C#. Reference

types are stored on the heap. A variable that stores a

reference type will actually contain a reference to the

object’s data. Reference types have reference semantics,

and as they are passed into a method or returned from a

method, a copy of the reference is made. The copy still

points to the same object. Modifying the object inside of

the method will affect the object that was passed in.

Classes are all reference types, as are the string and

object types, as well as arrays. See also value type, pointer

type, and reference. (Chapter 16.)

Reflection
The ability of a program to programmatically inspect types

and their members. This includes the ability to discover the

types that exist in an assembly and the ability to locate

methods and call them. Reflection allows you to sidestep

many of the rules that the C# language provides (such as

no external access to private variables or methods) though

performance is slower. (Chapter 43.)

Relational Operators
Operators that determine a relationship between two

values, such as equality (==), inequality (!=), or less than or

greater than relationships. (Chapter 10.)

Return
The process of going from one method back to the one

that called it. It is also used to describe the process of giving

back a value to the method that called it, upon reaching the

end of the method. In this sense, it is said to “return a

value” from the method. (Chapter 15.)

Right Associativity
See Operator Associativity.

Run-Time Constant
See Constant.

Scientific Notation
The representation of very large or very small numbers by

expressing them as a “normal” number between 1 and 10,

multiplied by a power of ten. E.g., “1.3 x 1031.” In C# code,

this is usually expressed through E Notation. (Chapter 6.)

Scope
The part of the code in which a member (especially a

variable) or type is accessible. The largest scope for

variables is class or file scope, and it is accessible anywhere

within the type. Instance variables or class variables have

class scope. Method scope is smaller. Anything with

method scope is accessible from within the method that it

is used in, but not outside of the method. Parameters and

most local variables have method scope. The smallest

scope is block scope, which is for variables that are

declared within a code block such as a for loop. Variables

in block scope or method scope may have the same name

as something in class scope, which causes name hiding.

(Chapter 18.)

Sealed Class
A class that cannot be used as a base class for another

class. This is done by adding the sealed keyword to the

class definition. (Chapter 22.)

Signed Type
A numeric type that includes a + or - sign. (Chapter 6.)

Solution
In Visual Studio, a solution represents a collection of

related projects, and keeps track of how they reference

each other and other external assemblies. See also project,

assembly, and Solution Explorer. (Chapter 45.)

Solution Explorer
A window in Visual Studio that outlines the overall

structure of the code that you are working on. At the top

level is the solution you are currently working on. Inside of

that, any projects included in the solution are listed, and

inside of that are any files that the project uses, including

source code files, resource files, and configuration files.

Any hidden window can be opened up through the View

menu, or the View > Other Windows menu. (Chapter 45.)

366 Glossary

Source Code
Human-readable instructions that will ultimately be turned

into something the computer can execute. (Chapters 1 and

44.)

Square Brackets
The symbols [and], used for array indexing. (Chapter 13.)

Stack
One of two main parts of a program’s memory. The stack

is a collection of frames, which represent individual

method calls and that method’s local variables and

parameters. The stack is structured and is managed by

adding frames when a new method is called, and removing

frames when returning from a method. See also heap and

struct. (Chapter 16.)

Stack Allocation
Arrays are typically stored on the heap. A stack allocation

allows an array to be allocated on the stack instead, which

reduces pressure on the garbage collector, though the

array must be fixed size in this case. This can only be done

in an unsafe context, and only with local array variables.

(Chapter 42.)

Static
A keyword that is applied to members of a type to indicate

that they belong to the class as a whole, rather than any

single instance. A static member is shared between all

instances of the class, and do not need an instance to be

used. A type may define a single, parameterless static

constructor, which is executed just before the first time the

class is used. This static constructor provides initialization

logic for the type. If a type is static, all of its members must

be static as well. (Chapter 18.)

Static Type Checking
The act of verifying that members of a type that the code

uses exist at compile time. This ensures that incorrect or

invalid members such as methods, properties, and data

will exist or be caught at compile time. Catching type errors

at compile time is usually better than waiting until the

application is running, but this fails for dynamic objects

that change their members at run-time or whose members

aren’t known until run-time. Aside from variables that have

the dynamic type, all variables use static type checking in

C#. Static type checking is contrasted with dynamic type

checking, which happens at run-time. (Chapter 41.)

String
A sequence of characters. In programming, you can usually

think of strings as words or text. (Chapter 6.)

Struct
A custom-made type, assembled from other types,

including methods and other members. A struct is a value

type, while a class is a reference type. Structs should be

immutable in most cases. (Chapter 21.)

Subclass
See derived class.

Superclass
See base class.

Subroutine
See method.

TAP
See Task-based Asynchronous Pattern.

Task-based Asynchronous Pattern
A pattern for achieving asynchronous programming (doing

other things while you wait for a long-running task to

complete) using tasks, primarily in the form of the Task

class and the generic variant Task<TResult>. (Chapter 40.)

Ternary Operator
An operator that works on three operators. C# only has

one ternary operator, which is the conditional operator.

(Chapter 10.)

Thread
A lightweight "process” (contained within a normal

process) which can be given its own code to work on, and

run on a separate core on the processor. Depending on

what you’re trying to do, running your code on multiple

threads may make your program run much faster, at the

cost of being somewhat more difficult to maintain and

debug. (Chapter 39.)

Thread Safety
Ensuring that parts of code that should not be accessed

simultaneously by multiple threads (critical sections) are

not accessible by multiple threads. (Chapter 39.)

Tuple
A simple data structure that stores a fixed number of

ordered (presumably related) items. There are two sets of

types in C# that allow you to use tuples. The Tuple classes

are reference types, and the ValueTuple structs are

reference types. ValueTuple is also used to leverage C# 7’s

syntax for returning multiple values from a method, which

is transformed into a ValueTuple behind the scenes.

(Chapters 28 and 46.)

Type
A specific kind of information, as a category. A type acts as

a blueprint, providing a definition of what any object or

instance of the type will keep track of and store. C# has a

number of built-in types, but custom-made value or

 Glossary 367

reference types can be defined with structs or classes

respectively. (Chapters 5 and 6.)

Typecasting
Converting from one type to another using the conversion

operator: int x = (int)3.4; (Chapter 9.)

Type Inference
The ability of the C# compiler to guess the type involved in

certain situations, allowing you to leave off the type (or use

the var type). (Chapter 6.)

Type Safety
The ability of the compiler and runtime to ensure that

there is no way for one type to be mistaken for another.

This plays a critical role in generics. (Chapter 25.)

Unary Operator
An operator that works with only a single value, such as the

negation operator (the – sign in the value “-3”). (Chapter 7.)

Unchecked Context
A section of code wherein mathematical overflow will wrap

around instead of throwing an exception. An unchecked

context is the default. (Chapter 43.)

Underflow
With floating point types, when an operation results in loss

of information, because the value was too small to be

represented. (Chapter 9.)

Universal Windows Platform
An app model designed to support GUI applications in the

.NET Framework and .NET Core stacks. Sometimes

abbreviated UWP. (Chapters 44 and 51.)

Unsafe Code
Unsafe code is not fully managed by the CLR, giving you

some added abilities like better performance or calling

native code, at the cost of giving up some of the benefits of

the CLR. Pointer types can only be used in an unsafe

context. Unsafe code is only rarely needed. (Chapter 42.)

Unsafe Context
An unsafe context is a region of code (a type, a method, or

a section of a method) where unsafe code can be

performed. This allows you to leave the CLR’s managed

memory framework and work more directly with memory

addresses, etc. This is generally only used in the context of

interoperating with external, non-C# code (like C or C++).

(Chapter 42.)

Unsigned Type
A type that does not include a + or - sign (generally

assumed to be positive). (Chapter 6.)

User-Defined Conversion
A type conversion mechanism that is defined by the

programmer instead of the language. C# allows you to

create implicit and explicit conversions for your types, but

it is recommended that you use them sparingly, as they

have a variety of complications that often arise from using

them. See also typecasting. (Chapter 43.)

Using Directive
A special statement at the beginning of a C# source file,

which identifies specific namespaces that are used

throughout the file, to make it so you do not need to use

fully qualified names. (Chapters 3 and 27.)

Using Statement
Not to be confused with using directives, a using

statement is a special way of wrapping up an object that

implements the IDisposable interface, which disposes of

the object when leaving the block of code that it wraps.

(Chapter 43.)

Value Semantics
Something is said to have value semantics if its value is

what counts, not the thing’s identity. When something has

value semantics and is assigned from one variable to

another, passed to a method as a parameter, or returned

from a method, the value is copied, and while the two

variables or sides will have the same value, they will be

copies of the same data. Modifying one will not affect the

other, because a copy was made. In C#, all value types have

value semantics. See also value types and reference

semantics. (Chapter 16.)

Value Type
One of two main categories of types in C#. Value types are

stored on the stack when possible (when not a part of a

reference type). Value types follow value semantics, and

when they are passed to a method or returned from a

method, are copied. Structs are value types, as are all of

the built-in types except object and string. See also

reference type and pointer type. (Chapter 16.)

ValueTuple
See Tuple.

Variable
A place to store data. Variables are given a name, which

can be used to access the variable, a type, which

determines what kind of data can be placed in it, and a

value, which is the actual contents of the variable at any

368 Glossary

given point in time. Once a variable is created, its name and

type cannot be modified, though its value can be. Variables

come in a number of different varieties, including local

variables, instance variables, parameters, and static class

variables. (Chapter 5.)

Virtual Machine
A special piece of software that can run executable code.

The CLR is the virtual machine that .NET uses. Virtual

machines usually provide controlled hardware access to

the software that they are running and perform a number

of useful features for the code that it runs, including a

security model and memory management. Virtual

machines are also usually responsible for the task of JIT

compiling code to machine code at run-time. (Chapter 44.)

Virtual Method
If a method is virtual, derived classes are allowed to

override the method and provide a new definition for it. To

mark a method as virtual, the virtual keyword should be

added to it. See also abstract method and overriding.

(Chapter 23.)

Visual Basic.NET
A programming language that is very different from C# in

syntax, but has almost a 1-to-1 correspondence in

keywords and features, because both were designed for

.NET. (Chapter 44.)

Visual C++
See C++.

Visual Studio
Microsoft’s IDE, designed for making programs in C# and

other programming languages. (Chapters 2 and 45.) The

latest version of Visual Studio is Visual Studio 2017.

Visual Studio 2017 Community Edition
A member of the Visual Studio 2017 family that is free and

has identical features to Professional. It allows commercial

development as long as you have no more than 5

developers, you don’t have more than 250 computers, and

your company doesn’t gross more than $1,000,000 in

revenue. There are additional exceptions that allow you to

use this free, including for educational use and open

source use. This is the version that most new C#

developers will start with.

Visual Studio 2017 Professional
A member of the Visual Studio family that has identical

features to 2017 Community, but comes at cost. If you have

more than 5 Visual Studio users in your company, you have

more than 250 computers in the company, or the company

has gross revenue in excess of $1,000,000, then the

company will have to find the money to pay for this.

Volatile Field
An instance variable that has been protected with memory

barriers by using the volatile keyword. This is used to

ensure that data accessed by multiple threads, but not

protected by some other thread-safe mechanism will be

accessed in a way that won’t have any unintended

consequences from out-of-order execution at the

hardware level. (Chapter 43.)

Windows Forms
An older app model designed for creating GUI applications.

This app model has largely been replaced by Windows

Presentation Foundation. (Chapters 44 and 51.)

Windows Presentation Foundation
An app model designed for creating GUI applications. It is

a part of the .NET Framework stack. This is frequently

abbreviated WPF. This is generally preferred to Windows

Forms. (Chapters 44 and 51.)

Xamarin
A .NET Platform stack designed primarily for mobile

development (specifically iOS and Android). (Chapter 44.)

XML Documentation Comment
A special type of comment, placed immediately above a

type or member of a type to define what it does and how

it is used. These comments are started by using three

forward slashes (///). The format can include certain XML

tags. XML documentation comments are used by

automated tools to generate documentation that can be

displayed on websites for anyone else who uses your code.

It is also used by Visual Studio to create IntelliSense for

your code. (Chapter 15.)

Tables and Charts

Operators
Name Syntax Description Category Page Overloadable? Associativity Arity

Member Access x.y Accesses members of an instance, type, namespace, etc.

Primary Operators

(These Happen First)

84 No Left-to-Right 2

Null Conditional Member Access x?.y Member access with a null check first 284 No Left-to-Right 2

Function Invocation x(y) Invoking or calling a method 88 No Left-to-Right 2

Aggregate Object Indexing a[x] Accessing items in a collection 78 Indexers Left-to-Right 2

Null Conditional Indexing a?[x] Collection access with a null check first 284 Indexers Left-to-Right 2

Postfix Increment x++ Adds 1 to a variable (original value returned) 58 Yes Left-to-Right 1

Postfix Decrement x-- Subtracts 1 from a variable (original value returned) 58 Yes Left-to-Right 1

Type Instantiation new Creates new objects by invoking a constructor 78 No Right-to-Left 1

Typeof typeof(T) Produces a Type object from the name of a type 280 No Right-to-Left 1

Checked checked Switches to a checked context for overflow 287 No Right-to-Left 1

Unchecked unchecked Switches to an unchecked context for overflow 287 No Right-to-Left 1

Default default(T) Produces the default value of a given type 171 No Right-to-Left 1

Delegate delegate Defines delegate types or produces a new empty instance 206 No Right-to-Left 1

Sizeof sizeof(T) Produces the size of a given type 276 No Right-to-Left 1

Pointer Dereference x->y Member access through a pointer (unsafe context) 266 No Left-to-Right 2

Unary Plus +x Produces the same value as the operand

Unary Operators

45 Yes Right-to-Left 1

Unary Minus/Numeric Negation -x Produces the negative of the operand 45 Yes Right-to-Left 1

Logical Negation !x Produces the Boolean inverse of the operand 65 Yes Right-to-Left 1

Bitwise Complement ~x Produces the bitwise complement of the operand 278 Yes Right-to-Left 1

Prefix Increment ++x Adds 1 to a variable (incremented value returned) 58 Yes Right-to-Left 1

Prefix Decrement --x Subtracts 1 from a variable (decremented value returned) 58 Yes Right-to-Left 1

Type Casting (T)x Specifies a cast or type conversion 55 User-Defined Conversions Right-to-Left 1

Await await Awaits asynchronous tasks 256 No Right-to-Left 1

Address Of &x Produces the address of a variable (unsafe context) 266 No Right-to-Left 1

Dereferencing/Indirection *x Declare pointer types and dereference pointers 266 No Right-to-Left 1

Multiplication x * y Multiplies two values

Multiplicative Operators

43 Yes Left-to-Right 2

Division x / y Divides the first value by the second 43 Yes Left-to-Right 2

Remainder/Modulus x % y Produces the remainder of a division operation 44 Yes Left-to-Right 2

Addition x + y Adds two values
Additive Operators

43 Yes Left-to-Right 2

Subtraction x – y Subtracts the second value from the first 43 Yes Left-to-Right 2

Left Shift x << y Bitwise shifts a value a number of bits leftward
Shift Operators

278 Yes Left-to-Right 2

Right Shift x >> y Bitwise shifts a value a number of bits rightward 278 Yes Left-to-Right 2

Less Than x < y Returns whether x is less than y 63 Yes Left-to-Right 2

 Tables and Charts 371

Greater Than x > y Returns whether x is greater than y

Relational and Type Testing

Operators

63 Yes Left-to-Right 2

Less Than Or Equal x <= y Returns whether x is less than or equal to y 63 Yes Left-to-Right 2

Greater Than Or Equal x >= y Returns whether x is greater than or equal to y 63 Yes Left-to-Right 2

Is is Determines if a value is a certain type or matches a pattern 146 No Right-to-Left 1

As as Type conversion, returns null where (T)x throws an exception 147 No Right-to-Left 1

Equality x == y Returns whether x exactly equals y
Equality Operators

63 Yes Left-to-Right 2

Inequality x != y Returns whether x does not equal y 63 Yes Left-to-Right 2

Logical AND x & y Performs bitwise AND between two values Logical AND Operator 278 Yes Left-to-Right 2

Logical XOR x ^ y Performs bitwise XOR between two values Logical XOR Operator 278 Yes Left-to-Right 2

Logical OR x | y Performs bitwise OR between two values Logical OR Operator 278 Yes Left-to-Right 2

Conditional AND x && y Returns whether both x and y are true Conditional AND Operator 66 No Left-to-Right 2

Conditional OR x || y Returns whether either x, y, or both are true Conditional OR Operator 66 No Left-to-Right 2

Null Coalescing x ?? y Returns x unless it is null, otherwise returns y Null Coalescing Operator 283 No Right-to-Left 2

Conditional/Ternary t ? x : y If t is true, produces x, otherwise y is produced Conditional Operator 67 No N/A 3

Assignment x = y Assigns the value of y to the variable x

Assignment and Lambda

Operators

(These Happen Last)

46 No Right-to-Left 2

Addition Assignment x += y Shorthand for x = x + y 47 Indirectly Right-to-Left 2

Subtraction Assignment x -= y Shorthand for x = x – y 47 Indirectly Right-to-Left 2

Multiplication Assignment x *= y Shorthand for x = x * y 47 Indirectly Right-to-Left 2

Division Assignment x /= y Shorthand for x = x / y 47 Indirectly Right-to-Left 2

Remainder Assignment x %= y Shorthand for x = x % y 47 Indirectly Right-to-Left 2

AND Assignment x &= y Shorthand for x = x & y 278 Indirectly Right-to-Left 2

OR Assignment x |= y Shorthand for x = x | y 278 Indirectly Right-to-Left 2

XOR Assignment x ^= y Shorthand for x = x ^ y 278 Indirectly Right-to-Left 2

Left Shift Assignment x <<= y Shorthand for x = x << y 278 Indirectly Right-to-Left 2

Right Shift Assignment x >>= y Shorthand for x = x >> y 278 Indirectly Right-to-Left 2

Lambda Declaration => Defines a lambda 230 No Left-to-Right 2

Keywords
Name Reference Name Reference Name Reference

abstract 154 int 31 ulong 32

add ♦ 218 interface 157 unchecked 294

alias ♦ 293 internal 121 unsafe 265

as 147 into ♦ 242 ushort 32

ascending ♦ 240 is 146 using 16

async ♦ 256 join 240 value ♦ 125

await ♦ 256 let 240 var ♦ 40

base 147, 153 lock 249 virtual 151

bool 36 long 32 void 89

break 74 nameof 275 volatile 296

by 241 namespace 16 where (query clause) ♦ 239

byte 32 new 78 where (generics) ♦ 169

case 68 null 101 while 71

catch 196 object 148 yield ♦ 272

char 33 operator 219

checked 294 orderby ♦ 240

class 112 out 183

const 273 out (generics) 292

continue 74 override 151

decimal 34 params 182

default 68, 171 partial (method) 149

delegate 206 partial (type) 149

descending ♦ 240 private 114

do 73 protected 148

double 34 public 114

dynamic ♦ 260 readonly 273

else 62 ref 183

enum 83 remove ♦ 218

event 212 return 89

explicit 286 sbyte 32

extern 270 sealed 148

false 36 select 239

finally 199 set 125

fixed 268 short 32

float 34 sizeof 276

for 73 stackalloc 267

foreach 81 static 120

from ♦ 238 string 36

get ♦ 125 struct 138

global ♦ 293 switch 68

goto 287 this 117

group ♦ 241 throw 197

if 61 true 36

implicit 286 try 196

in 81 typeof 280
♦ = Contextual Keyword, only reserved in certain

contexts. in (generics) 292 uint 32

 Tables and Charts 373

Built-In Types

Type Category Size (Bytes) Range Precision

byte Value 1 0 to 255

short Value 2 -32,768 to +32,767

int Value 4 -2147,483,648 to 2,147483,647

long Value 8 -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

sbyte Value 1 -128 to +127

ushort Value 2 0 to 65,535

uint Value 4 0 to 4,294,967,295

ulong Value 8 0 to 18,446,744,073,709,551,615

float Value 4 ±1.0e-45 to ±3.4e38 7

double Value 8 ±5e-324 to ±1.7e308 15-16

decimal Value 16 ±1.0 × 10e-28 to ±7.9e28 28-29

char Value 2 U+0000 to U+ffff (All Unicode characters)

bool Value 1 true/false

object Reference

Size of content varies.

References are 4 bytes.

Any type of data

string Reference Text of any length

class Reference Custom reference type

arrays Reference Collection of any other type

enum Value Same as underlying type (default 4) Listed enumeration members

struct Value Size of content varies. Custom value type

pointer Pointer 4 Pointers to other types

53 Index

Symbols

- operator, 43, 219

π, 57

-- operator, 58, 219

-= operator, 47, 216, 219

. operator, 85, 220

!= operator, 64, 219

% operator, 44, 219

%= operator, 47, 219

& operator, 278

:: operator, 293

&& operator, 67, 220, 278

&= operator, 279

& operator, 267

* operator, 43, 219, 266

*= operator, 47, 219

/ operator, 43, 219

/= operator, 47, 219

: operator, 145, 158

?: operator, 68

?? operator, 283

@ symbol, 52

[] operator, 223

^ operator, 279

^= operator, 279

| operator, 278

|| operator, 67, 220, 278

|= operator, 279

~ operator, 279

+ operator, 43, 219

++ operator, 58, 219

+= operator, 47, 216, 219

< operator, 64, 219

<< operator, 278

<<= operator, 279

<= operator, 65, 219

= operator, 47, 220

== operator, 62, 219

=> operator, 232

> operator, 64, 219

-> operator, 267

>= operator, 65, 219

>> operator, 278

>>= operator, 279

.NET Core, 310

.NET Framework, 4, 309, 354

.NET Platform, 301

.NET Standard Library, 4, 302, 308

 Index 375

A

abstract class, 151, 354

abstract keyword, 154

abstract method, 158, 354

accessibility level, 127, 354

internal, 121, 355

private, 114, 355

protected, 148, 355

protected internal, 355

public, 115, 355

accessibility modifier. See accessibility level

Action delegate, 216

addition, 43

Address Of operator, 267

algorithm, 21, 352

alias, 178

Android app model, 312

anonymous method, 231, 355

app model, 4, 303, 311

application virtual machine, 306

argument. See parameter

ArgumentNullException class, 198

array, 78, 144, 346, 355

declaring, 79

elements, 79

length, 80

retrieving and assigning values in, 79

as keyword, 147

ASP.NET, 311, 351, 355

assembler, 305

assembly, 12, 319, 355

assembly language, 305, 355

assembly reference, 331

assignment, 355, 361, 365

assignment operator, 46

associativity, 46

async keyword, 256

asynchronous programming, 251, 355

AsyncResult pattern, 254

with the Task-based Asynchronous Pattern, 255

with the ThreadPool, 253

asynchrony. See asynchronous programming

attribute, 274, 355

await keyword, 256

B

backing field, 126

base case, 96

base class, 145, 355

Base Class Library, 4, 302, 309, 355

base keyword, 148, 153

BCL. See Base Class Library

binary, 3, 14, 356

binary language, 305

binary literal, 39

BinaryWriter class, 193

bit, 29

bit field, 277, 356

bitshift operator, 278

bitwise and operator, 278

bitwise complement operator, 279

bitwise logical operator, 278

bitwise operator, 356

bitwise or operator, 278

block scope, 116

bool type, 36, 66, 142

Boolean, 356

Boolean struct, 142

break keyword, 70, 75

breakpoint, 336, 356

built-in type, 31, 142, 356

byte, 29

Byte struct, 142

byte type, 32, 142

C

C++, 4, 356

Caesar cipher, 346

call stack, 335

callback method, 255

case keyword, 70

case label. See case statement

case statement, 70

casting. See typecasting

catch block, 196

catch keyword, 196

Char struct, 142

char type, 33, 142

checked context, 294

CIL. See Common Intermediate Language

class, 17, 112, 356

creating, 112

partial, 149

sealed, 148

class keyword, 113

class scope, 116

class variable. See static class variable

CLR. See Common Language Runtime

Code Window, 313, 356

command line arguments, 285, 356

comment, 19, 356

Common Intermediate Language, 302, 307, 356

Common Language Runtime, 4, 302, 306, 357

compiler, 14, 357

compiler error, 326

compiler warning, 326

compile-time contant. See constant

compound assignment operator, 47, 357

conditional operator, 67, 68, 357

376 Index

Console class, 95

const keyword, 273, 357

constant, 273, 357

run-time constant, 357

constant pattern, 202

constructor, 115, 357

default parameterless, 140

default parameterless constructor, 357

inheritance, 147

context switch, 246

continue keyword, 75

contravariance, 290

Convert class, 49, 95, 192

covariance, 290

critical section, 357

.csproj file, 341

.csproj.user file, 341

CSV file, 191

curly braces, 16, 64, 328, 357

D

data structure, 352

debug, 333, 357

debug mode, 15, 333

Decimal struct, 142

decimal type, 35, 142

declaration, 357

decrement, 357

default keyword, 70, 171

delegate, 206, 214, 231, 357

chaining, 209

creating, 206

relation to events, 218

using, 207

Delegate class, 208, 254

delegate keyword, 207

Delta Engine, 352

dependency, 319

derived class, 145, 357

Dictionary class, 160, 165

digit separator, 40

DirectX, 352

divide and conquer, 87, 358

DivideByZeroException class, 198

division, 43

division by zero, 56, 358

DLL, 319, 358

DLLImport attribute, 270

do keyword, 74

Double struct, 142

double type, 34, 142

do-while loop, 74

dynamic keyword, 260

dynamic language runtime, 260

dynamic object, 260

dynamic objects, 259

dynamic type checking, 259

dynamic typing, 259

DynamicObject class, 262

E

e (number), 57

E notation, 38

else keyword, 63

encryption, 346

enum. See enumeration

enum keyword, 85

enumeration, 358

flags, 279

underlying type, 86

error handling, 194

Error List, 315, 326, 358

escape character, 51

escape sequence, 51

event, 157, 212, 358

attaching and detaching, 215

defining, 213

raising, 214

relation to delegates, 218

event keyword, 214

EventArgs type, 214

EventHandler delegate, 214

EventHandler<TEventArgs> delegate, 216, 217

events, 253

exception, 194, 334, 358

catching, 195

filters, 200

throwing, 195

Exception class, 195

exception filter, 200

exclusive or operator, 279

EXE, 319, 358

ExpandoObject class, 262

explicit, 358

explicit conversion, 55

explicit keyword, 286

expression, 44

expression lambda, 233

expression-bodied members, 234

extension method, 226, 358

extern keyword, 270

F

factorial, 96

false keyword, 36

Fibonacci sequence, 97

field. See instance variable

File class, 190

file I/O, 157, 190

file input, 190

file output, 190

FileStream class, 192

 Index 377

fixed keyword, 269

fixed size array, 269

fixed statement, 268

FizzBuzz, 77

Flags attribute, 279

float type, 34, 142

floating point number, 34

floating point type, 359

for keyword, 74

for loop, 74

foreach keyword, 82

foreach loop, 77, 82, 272

forever loop, 73

FormatException class, 198

frame, 99

Framework Class Library, 359

from clause, 238

fully qualified name, 176, 359

Func delegate, 211

function. See method

G

game development, 352

garbage collection, 79, 99, 359

generic method, 171

generic type parameter, 163

generics, 160, 167, 359

covariance and contravariance, 290

inheritance, 290

motivation for, 160

get keyword, 126

global keyword, 293

goto keyword, 287

graphical user interfaces, 311

group clause, 241

group join, 242

GUI development, 311

H

heap, 98, 359

Hello World!, 10

hexadecimal literal, 39

I

IAsyncResult interface, 254

IDE. See Integrated Development Environment

IDisposable interface, 280

IDynamicMetaObjectProvider interface, 261

IEnumerable interface, 83

IEnumerable<T> interface, 164, 237

if keyword, 61

if statement, 61

immutability, 141, 360

implicit, 359

implicit conversion, 55

implicit keyword, 286

implicitly typed local variable, 360

in keyword, 83

increment, 359

index, 79

index initializer syntax, 225

indexer, 157, 220, 223, 359

multiple indices, 224

types in, 224

IndexOutOfRangeException class, 198

indirection operator, 267

infinite loop, 73

infinity, 56

inheritance, 144, 360

instance variable, 114, 360

int type, 31, 142

Int16 struct, 142

Int32 struct, 142

Int64 struct, 142

integer division, 54, 360

integer type, 33

integral type, 33, 360

Integrated Development Environment, 6, 360

IntelliSense, 316, 360

interface, 150, 156, 360

creating, 157

implementing, 158

implementing multiple, 159

naming convention, 158

interface keyword, 158

internal keyword, 121

into clause, 242

InvalidCastException class, 198

invariance, 290

iOS app model, 312

is keyword, 146

patterns, 204

is-a relationship, 145, 360

is-a-special-type-of relationship, 145, 360

iterator, 360

J

jagged array, 82, 360

Java, 4, 351, 361

JIT compiler. See Just-in-Time compiler

join clause, 240

Just-in-Time compiler, 306, 361

K

keyword, 16, 361

378 Index

L

labeled statement, 287

lambda expression, 230, 361

multiple parameters, 233

zero parameters, 233

lambda operator, 232

Language Integrated Query, 236, 361

lazy evaluation, 67

left associativity, 46

let clause, 240

library assembly, 13

line numbering, 316

lines of code, 229

LINQ. See Language Integrated Query

Linux, 9

List class, 231

literal, 35, 38

local function, 180

local variable, 114, 361

lock keyword, 250

long type, 32, 142

loop, 72, 361

breaking out of, 75

continuing to next iteration, 75

M

managed memory, 99, 361

math, 42

Math class, 57

member, 17, 88, 109, 114, 213, 361

memory barrier, 296

method, 16, 87, 157, 180, 361

calling, 89

local function, 180

multiple return values, 11, 186

passing parameters to, 92

returning from, 90

signature, 94

method body. See method implementation

method call, 361

method implementation, 89, 362

method overloading, 93, 331

method overriding, 152

method scope, 116

method signature, 362

Microsoft Developer Network, 353

mod, 44

modulo operator, 44

MonoGame, 352

MulticastDelegate class, 208

multi-dimensional array, 82

multiple inheritance, 150, 159

multiplication, 43

mutex, 250, See mutual exclusion

mutual exclusion, 250, 362

N

name collision, 178, 362

name hiding, 117, 362

named parameter, 182, 362

nameof operator, 275

namespace, 17, 175, 330, 342, 362

namespace alias operator, 293

namespace keyword, 16, 175

NaN, 57, 362

narrowing conversion, 55

nested statements, 67

nesting, 76, 362

new keyword, 79, 154

NotImplementedException class, 198

NotSupportedException class, 198

NuGet package manager, 321

null keyword, 102

null propagation, 283

null propagation operators, 283

null reference, 102, 362

nullable type, 283, 362

Nullable<T> struct, 283

NullReferenceException class, 198, 214

numeric literal, 38

O

object, 362

Object class, 142

object initializer syntax, 128

object keyword, 148

object type, 142, 247

object-oriented programming, 105, 362

Obsolete attribute, 274

off-by-one error, 79

OpenGL, 352

operand, 43

operation, 43

operator, 43, 362

binary, 43, 68, 356

ternary, 68, 366

unary, 45, 68, 367

operator keyword, 221

operator overloading, 219, 223, 363

operator precedence, 46

opereator associativity, 46

optional parameter, 181, 363

Options Dialog, 315

order of operations, 46, 363

orderby clause, 240

out keyword, 183

out-of-order execution, 295

output parameter, 184, 187

overflow, 57, 363

overloading, 93, 363

override, 152

 Index 379

override keyword, 152

P

package, 319

parameter, 92, 114, 363

variable number of, 182

parameter list, 92

ParameterizedThreadStart delegate, 247

params keyword, 183

parent class. See base class

parentheses, 46, 328, 363

parse, 191, 363

partial class, 363

partial keyword, 149

pattern

in switch statement, 203

with is keyword, 204

pattern matching, 201

pinned objects, 269

pointer, 266

pointer member access operator, 267

pointer type, 266, 364

polymorphism, 151, 364

postfix notation, 58

precedence, 46

prefix notation, 58

preprocessor directive, 281, 364

primitive type. See built-in type

private keyword, 114

procedure. See method

process assembly, 13

process virtual machine, 306

project, 12, 340, 364

Properties Window, 315

property, 124, 157, 223, 364

auto-implemented, 127

default value, 128

readonly, 127

protected keyword, 148

Q

query expression, 236, 364

R

Random class, 108

readonly keyword, 274, 357

real number, 34

rectangular array, 82, 364

recursion, 96, 364

ref keyword, 183

ref local variable, 185

refactor, 317, 364

reference, 100, 365

reference parameter, 184

reference semantics, 103, 365

reference type, 98, 100, 110, 365

reflection, 280, 365

regular expression, 201

relational operator, 64, 221, 365

release mode, 15, 333

remainder, 44

return, 59, 66, 90, 272, 329, 365

return keyword, 199

right associativity, 46

S

SByte struct, 142

sbyte type, 33, 142

scalar, 221

scientific notation, 38

scope, 233, 327, 365

sealed class, 365

sealed keyword, 148

select clause, 239

semicolon, 18

set keyword, 126

SharpDX, 352

short type, 32, 142

signature, 94

signed type, 32, 365

Single struct, 142

sizeof operator, 276

.sln file, 340

software engineering, 352

solution, 13, 340, 365

Solution Explorer, 314, 365

source code, 3, 366

square array, 82

square brackets, 366

stack, 98, 366

stack allocation, 267

stack trace, 99

StackOverflowException class, 198

statement lambda, 233

static, 366

static class, 121, 227

static class variable, 120

static constructor, 121

static keyword, 120, 227, 366

static method, 227

static type checking, 259

statically typed language, 259

String class, 142

string concatenation, 52

string type, 36, 142, 366

string.Split method, 192

struct, 138, 145, 366

380 Index

structure, 138

subclass, 145

subroutine. See method

subscript, 79

subtraction, 43

succinct null checking, 283

.suo file, 340

superclass, 145

switch keyword, 70

switch statement, 69

patterns, 203

types allowed, 71

synchronous programming, 252

event-based, 253

T

TAP. See Task-based Asynchronous Pattern

Task class, 255

Task<TResult> class, 255

Task-based Asynchronous Pattern, 255

TextReader class, 193

TextWriter class, 192

this keyword, 117, 227

thread, 245, 366

sleep, 247

Thread class, 246, 252

thread safety, 249, 250, 366

ThreadPool class, 253

ThreadStart delegate, 246

throw keyword, 197

true keyword, 36

try block, 196

try keyword, 196

type, 26, 366

Type class, 280

type conversion, 329

type inference, 40, 233, 367

type pattern, 202

type safety, 162, 367

type system, 31

typecasting, 55, 86, 146, 161, 286, 329, 367

typeof keyword, 280

U

uint type, 32, 142

UInt16 struct, 142

UInt32 struct, 142

UInt64 struct, 142

ulong type, 32, 142

unchecked context, 294

underflow, 57, 367

unhandled exception, 195

Unicode, 33

Unity, 352

unsafe code, 265, 367

unsafe context, 266

unsafe keyword, 266

unsigned type, 367

unverifiable code, 266

user input, 48

user-defined conversion, 286, 367

ushort type, 32, 142

using directive, 16, 175, 227, 330, 367

static, 179

using keyword, 16, 178

using statement, 280, 367

V

value keyword, 126

value semantics, 103, 367

value type, 98, 100, 367

ValueTuple class, 188

ValueTuple struct, 321

var keyword, 41

var pattern, 203

variable, 25, 367

assigning a value to, 27

declaring, 26

naming, 29

verbatim string literal, 52

version control system, 340

virtual keyword, 152, 158

virtual machine, 306, 368

advantages, 307

disadvantage, 308

virtual method, 151, 368

Visual Basic.NET, 368

Visual C++. See C++

Visual Studio, 6, 7, 11, 313, 368

installer, 7

keyboard shortcuts, 317

Visual Studio Code, 9

Visual Studio Community Edition, 7, 368

Visual Studio Enterprise Edition, 7

Visual Studio Professional Edition, 7, 368

void keyword, 89

volatile fields, 295

volatile keyword, 295

W

where clause, 239

where keyword, 170

while keyword, 72

while loop, 72

whitespace, 17, 64

widening conversion, 55

Windows Forms, 311, 351, 368

Windows Presentation Foundation, 368

word count, 228

WPF, 351

 Index 381

X

Xamarin, 9, 303, 310, 352

Xamarin Studio, 9

Xenko, 352

XML Documentation Comment, 20, 95, 368

XNA, 352

xor operator, 279

It is illegal to redistribute this digital book.

Please do not share this file via email, websites,

or any other means. Be mindful about where

you store it and who might gain access to it.

The digital format of this book is only

distributed via https://gumroad.com/l/CbfL. If

you have received this book through any other

means, please report it to

rbwhitaker@outlook.com.

mailto:rbwhitaker@outlook.com
https://gumroad.com/l/CbfL

