




Matthias	Felleisen

Daniel	P.	Friedman

Drawings	by	Duane	Bibby

Foreword	by	Robin	Milner





To	Helga.	Christopher,	and
Sebastian.
To	Mary,	Rob.	Rachel,	Sara,
and	to	the	memory	of	Brian.



Foreword	ix

Preface	xi

Experimenting	with	SML	xiii

Experimenting	with	Objective	Caml	xv

1.	Building	Blocks	3

2.	Matchmaker,	Matchmaker	11

3.	Cons	Is	Still	Magnificent	31

4.	Look	to	the	Stars	45

5.	Couples	Are	Magnificient.	Too	57

6.	Oh	Mv.	It's	Full	of	Stars!	73

7.	Functions	Are	People,	Too	91

8.	Bows	and	Arrows	109

9.	Oh	No!	133

10.	Building	on	Blocks	151

Commencement	179

Index	180



This	 is	 a	 book	 about	writing	 programs,	 and	understanding	 them	as	 you	write
them.	Most	large	computer	programs	are	never	completely	understood;	if	they
were,	they	wouldn't	go	wrong	so	often	and	we	would	be	able	to	describe	what
they	do	in	a	scientific	way.	A	good	language	should	help	to	improve	this	state
of	affairs.

There	are	many	ways	of	trying	to	understand	programs.	People	often	rely	too
much	on	one	way,	which	is	called	"debugging"	and	consists	of	running	a	partly-
understood	program	 to	 see	 if	 it	 does	what	you	expected.	Another	way,	which
ML	advocates,	is	to	install	some	means	of	understanding	in	the	very	programs
themselves.

Standard	ML	was	designed	with	this	in	mind.	There	are	two	particular	ways-
ofunderstanding	built	 in	 to	Standard	ML;	one	 is	 types	for	understanding	data,
the	 other	 is	 the	module	 system	 for	 understanding	 the	 structure	 of	 the	 large-
scale	programs.	People	who	program	in	a	language	with	a	strong	type	system,
like	 this	 one,	 often	 say	 that	 their	 programs	 have	 fewer	 mistakes,	 and	 they
understand	them	better.

The	 authors	 focus	 upon	 these	 features	 of	 Standard	 NIL.	 They	 are	 well
equipped	 to	 help	 you	 to	 understand	 programming;	 they	 are	 experienced
teachers	 as	well	 as	 researchers	 of	 the	 elegant	 and	 simple	 ideas	which	 inspire
good	programming	languages	and	good	programming	style.

Above	all	they	have	written	a	book	which	is	a	pleasure	to	read;	it	is	free	of
heavy	detail,	but	doesn't	avoid	tricky	points.	I	hope	you	will	enjoy	the	book	and
be	able	to	use	the	ideas,	whatever	programming	language	you	use	in	the	future.



Programs	 consume	 data	 and	 produce	 data;	 designing	 a	 program	 requires	 a
thorough	 understanding	 of	 data.	 In	 ML,	 programmers	 can	 express	 their
understanding	of	 the	data	using	 the	 sublanguage	of	 types.	Once	 the	 types	 are
formulated,	 the	design	of	 the	program	follows	naturally.	Its	shape	will	reflect
the	shape	of	the	types	and	type	definitions.	Most	collections	of	data,	and	hence
most	 type	 specifications,	 are	 inductive,	 that	 is,	 they	 are	 defined	 in	 terms	 of
themselves.	 Hence,	 most	 programs	 are	 recursive;	 again,	 they	 are	 defined	 in
terms	of	themselves.

The	first	and	primary	goal	of	this	book	is	to	teach	you	to	think	recursively
about	 types	 and	 programs.	 Perhaps	 the	 best	 programming	 language	 for
understanding	types	and	recursive	thinking	is	ML.	It	has	a	rich,	practical	type
language,	 and	 recursion	 is	 its	 natural	 computational	 mechanism.	 Since	 our
primary	concern	is	the	idea	of	recursion,	our	treatment	of	ML	in	the	first	eight
chapters	 is	 limited	 to	 the	whys	 and	wherefores	 of	 just	 a	 few	 features:	 types,
datatypes,	and	functions.

The	 second	 goal	 of	 this	 book	 is	 to	 expose	 you	 to	 two	 important	 topics
concerning	large	programs:	dealing	with	exceptional	situations	and	composing
program	 components.	 Managing	 exceptional	 situtations	 is	 possible,	 but
awkward,	 with	 recursive	 functions.	 Consequently,	 ML	 provides	 a	 small	 and
pragmatic	sublanguage,	i.e.,	exception,	raise,	and	handle,	for	dealing	with	such
situations.	 The	 exception	 mechanism	 can	 also	 be	 used	 as	 a	 control	 tool	 to
simplify	recursive	definitions	when	appropriate.

Typically,	 programs	 consist	 of	 many	 collections	 of	 many	 types	 and
functions.	 Each	 collection	 is	 a	 progam	 component	 or	 module.	 Constructing
large	programs	means	combining	modules	but	also	requires	understanding	the
dependencies	among	the	components.	ML	supports	a	powerful	sublanguage	for
that	purpose.	In	the	last	chapter,	we	introduce	you	to	this	language	and	the	art
of	 combining	 program	 components.	 The	 module	 sublanguage	 is	 again	 a
functional	programming	language,	just	like	the	one	we	present	in	the	first	eight
chapters,	 but	 its	 basic	 values	 are	 modules	 (called	 structures)	 not	 integers	 or
booleans.



While	The	Little	MLer	provides	an	 introduction	 to	 the	principles	of	 types,
computation,	and	program	construction,	you	should	also	know	that	ML	itself	is
more	 general	 and	 incorporates	 more	 than	 we	 could	 intelligibly	 cover	 in	 an
introductory	 text.	 After	 you	 have	 mastered	 this	 book,	 you	 can	 read	 and
understand	more	advanced	and	comprehensive	books	on	ML.

ACKNOWLEDGMENTS

We	 are	 indebted	 to	 Benjamin	 Pierce	 for	 numerous	 readings	 and	 insightful
suggestions	on	improving	the	presentation	and	to	Robert	Harper	for	criticisms
of	the	book	and	guidance	concerning	the	new	module	system	of	ML.	Michael
Ashley,	 Cynthia	 Brown,	 Robby	 Findler,	 Matthew	 Flatt,	 Jeremy	 Frens,	 Steve
Ganz,	Daniel	Grossman,	Erik	Hilsdale,	 Julia	Lawall,	 Shinn-Der	Lee,	Michael
Levin,	 David	 MacQueen,	 Kevin	 Millikin,	 Jon	 Riecke,	 George	 Springer,	 and
Mitchell	 Wand	 read	 the	 book	 at	 various	 stages	 of	 development	 and	 their
comments	helped	produce	the	final	result.	We	also	wish	to	thank	Robert	Prior
at	 MIT	 Press	 who	 loyally	 supported	 us	 for	 many	 years.	 The	 book	 greatly
benefited	from	Dorai	Sitaram's	 incredibly	clever	Scheme	typesetting	program
Finally,	 we	 would	 like	 to	 thank	 the	 National	 Science	 Foundation	 for	 its
continued	 support	 and	 especially	 for	 the	 Educational	 Innovation	 Grant	 that
provided	its	with	the	opportunity	to	collaborate	for	the	past	year.

WHAT	You	NEED	TO	KNOW	TO	READ	THIS	BOOK

You	 must	 be	 comfortable	 reading	 English	 and	 performing	 rudimentary
arithmetic.	 A	willingness	 to	 use	 paper	 and	 pencil	 to	 ensure	 understanding	 is
absolutely	necessary.

READING	GUIDELINES

Do	 not	 rush	 through	 this	 book.	 Read	 carefully;	 valuable	 hints	 are	 scattered
throughout	 the	 text.	 Do	 not	 read	 the	 first	 eight	 chapters	 in	 fewer	 than	 three
sittings.	 Allow	 one	 sitting	 at	 least	 for	 each	 of	 the	 last	 two	 chapters.	 Read
systematically.	If	you	do	not	fully	understand	one	chapter,	you	will	understand
the	next	one	even	less.

The	book	is	a	dialogue	about	interesting	examples	of	NIL	programs.	If	you
can,	 try	 the	 examples	 while	 you	 read.	 Since	 NIL	 implementations	 are



predominantly	interactive,	the	programmer	can	immediately	participate	in	and
observe	the	behavior	of	expressions.	We	encourage	you	to	use	this	interactive
read-evaluate-and-print	loop	to	experiment	with	our	definitions	and	examples.
Some	hints	concerning	experimentation	are	provided	below.

We	do	not	give	any	formal	definitions	in	this	hook.	We	believe	that	you	can
form	your	own	definitions	and	thus	remember	and	understand	them	better	than
if	we	had	written	them	out	for	you.	But	be	sure	you	know	and	understand	the
morals	that	appear	at	the	end	of	each	chapter.

We	use	a	few	notational	conventions	throughout	the	text,	primarily	changes
in	typeface	for	different	classes	of	symbols.	Variables	are	in	italic.	Basic	data,
including	numbers.	booleans,	constructors	 introduced	via	datatypes,	are	set	 in
sans	 serif.	 Keywords,	 e.g.,	 datatype,	 of,	 and,	 fun,	 are	 in	 boldface.	When	 you
experiment	with	the	programs,	you	may	ignore	the	typefaces	but	not	the	related
framenotes.	 To	 highlight	 this	 role	 of	 typefaces,	 the	 ML	 fragments	 in
framenotes	are	set	in	a	typewriter	face.

Food	appears	in	many	of	our	examples	for	two	reasons.	First,	food	is	easier
to	visualize	than	abstract	ideas.	(This	is	not	a	good	book	to	read	while	dieting.)
We	 hope	 the	 choice	 of	 food	 will	 help	 you	 understand	 the	 examples	 and
concepts	we	use.	Second,	we	want	to	provide	you	with	a	little	distraction.	We
know	how	frustrating	the	subject	matter	can	be,	and	a	little	distraction	will	help
you	keep	your	sanity.

You	are	now	ready	to	start.	Good	luck!	We	hope	you	will	enjoy	the
experiences	waiting	for	you	on	the	following	pages.



The	 book's	 programming	 language	 is	 a	 small	 subset	 of	 SML.	 With	 minor
modifications,	 the	examples	of	 the	first	nine	chapters	of	 the	book	will	 run	on
most	implementations	of	SAIL.	For	the	tenth	chapter.	an	implementation	based
on	the	1996/97	revision	of	SAIL	must	be	used.

The	best	mode	to	conduct	experiments	is

1.	to	place	Compiler.	Control.	Print.	printDepth	:	=	20;	into	a	newly
created	file,

2.	to	append	the	desired	definitions	(boxes)	to	the	file,

3.	to	add	a	semicolon	after	each	box,	and

4.	to	employ	use	"<filename>";	to	load	the	definitions	into	the	read-eval-
print	loop.

SML	is	then	ready	to	accept	and	evaluate	expressions	that	refer	to	the	new
definitions.



Objective	 Canil	 is	 a	 major	 dialect	 of	 the	 family	 of	ML	 languages.	 The	 best
mode	to	conduct	experiments	with	Objective	Canil	is

1.	to	place	#print-depth	20;	;	into	a	newly	created	file,

2.	to	append	the	desired	definitions	(boxes)	to	the	file,

3.	to	add	two	semicolons	after	each	box,	and

4.	to	employ	#use	to	load	the	definitions	into	the	read-eval-print	loop.

Objective	Catnl	is	then	ready	to	accept	and	evaluate	expressions	that	refer	to
the	new	definitions.

Objective	Canil's	syntax	differs	slightly	from	SML's.	By	using	the	following
hints	 systematically,	 you	 can	 easily	 translate	 the	 boxes	 from	 the	 first	 nine
chapters	 of	 the	 book	 into	Objective	Caml.	 Each	 hint	 is	marked	 by	 a	 chapter
number	 and	 a	 frame	 number.	 If	 you	 are	 using	 Objective	 Caml,	 annotate	 the
corresponding	 frames	 before	 you	 start	 reading	 to	 remind	 you	 where	 the
differences	between	SML's	and	Objective	Caml's	syntaxes	first	appear.

1:16	Replace	datatype	by	type:

2:15	Replace	 fun	 by	 let	 rec	 and	 use	 function.	The	 patterns	 omit	 the	 function
name:



4:66	To	specify	the	precise	types	that	a	function	should	consume	and	produce,
wrap	the	function	name	with	the	type	assertion:

7:11	Since	constructors	are	not	functions	in	Objective	Caml,	define	hot-maker
as	follows:

8:93	 Curried	 definitions	 with	 matching	 on	 the	 first	 consumed	 value	 need
parentheses	around	the	function	being	returned	when	the	second	consumed
value	is	placed	in	parentheses	as	we	do	here:



9:14	Replace	No-bacon	0	by	(No-bacon	0).

9:84	Replace	(expi	handle	pattern	=>	exp2)	by	(try	expl	with	pattern	-
>	exp2).	Also,	replace	div	by	/:

10	The	examples	of	this	chapter	can	be	expressd	in	Objective	Caml,	but	see	the
manual	for	the	syntax	of	modules	and	simple	examples	that	use	them	before
you	do.

















The	First	Moral











































The	Second	Moral



























The	Third	Moral



















The	Fourth	Moral

































The	Fifth	Moral





































The	Sixth	Moral































The	Seventh	Moral







da	tta









































The	Eighth	Moral



































The	Ninth	Moral























































The	Tenth	Moral





You	have	reached	the	end	of	your	introduction	to	computation	with	types	and
functions.	While	 computation	 has	 been	 popularized	 over	 the	 past	 few	 years,
especially	 by	 the	 Web	 and	 consumer	 software,	 it	 also	 has	 a	 profound,
intellectually	 challenging	 side.	 If	 you	 wish	 to	 delve	 deeper	 into	 this	 side	 of
computing,	starting	from	a	typed	viewpoint,	we	recommend	the	following	tour:

References

1.	Heijenoort.	From	Frege	to	Goedel:	A	Source	Book	in	Mathematical	Logic,
1879-1931.	Harvard	Press,	1967.

2.	Pierce.	Basic	Category	Theory	for	Computer	Scientists.	MIT	Press,	1991.

3.	Girard,	Taylor,	and	Lafont.	Proofs	and	Types.	Cambridge	University	Press,
1989.

4.	Enderton.	A	Mathematical	Introduction	to	Logic.	Academic	Press,	1972.

5.	Constable	et	alii.	Implementing	Mathematics	With	the	Nuprl	Proof
Development	System.	Prentice	Hall,	1986.

If	you	then	wish	to	explore	the	definition	of	ML,	you	may	wish	to	study:

1.	Milner,	Tofte,	Harper,	and	MacQueen.	The	Definition	of	Standard	ML
Revised.	MIT	Press,	1997.

2.	Milner	and	Tofte.	Commentary	on	Standard	ML.	MIT	Press,	1991.


















	Foreword
	Preface
	Experimenting with SML
	Experimenting with Objective Caml
	1. Building Blocks 3
	2. Matchmaker, Matchmaker 11
	3. Cons Is Still Magnificent 31
	4. Look to the Stars 45
	5. Couples Are Magnificient. Too 57
	6. Oh Mv. It's Full of Stars! 73
	7. Functions Are People, Too 91
	8. Bows and Arrows 109
	9. Oh No!
	10. Building on Blocks 151
	Commencement 179
	Index 180

