The Little MLer

Matthias Felleisen and Daniel P. Friedman
Foreword by Robin Milner

The Little MLer

The Little

Matthias Felleisen

Rice University
Houston, Tezas

Daniel P. Friedman

Indiana University
Bloomington, Indiana

Drawings by Duane Bibby

Foreword by Robin Milner

The MIT Press
Cambridge, Massachusetts
London, England

MLer

© 1998 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any
electronic or mechanical means (including photocopying, recording, or information
storage and retrieval) without permission in writing from the publisher.

This book was set by the authors and was printed and bound in the United States
of America.

Library of Congress Cataloging-in-Publication Data

Felleisen, Matthias
The little MLer / Matthias Felleisen and Daniel P. Friedman; drawings by Duane
Bibby; foreword by Robin Milner
p. cm.
Includes index and bibliographical references.
ISBN 0-262-56114-X (pbk : alk. paper)
1. ML (Computer program language) I. Friedman, Daniel P. II. Title.

QA76.73.MGF45 1998
005.13'3—dc21 97-40550
CIP

To Helga. Christopher, and
Sebastian.

To Mary, Rob. Rachel, Sara,
and to the memory of Brian.

CONTENTS

Foreword ix

Preface xi

Experimenting with SML xiii

Experimenting with Objective Caml xv

1. Building Blocks 3

2. Matchmaker, Matchmaker 11

3. Cons Is Still Magnificent 31

4. Look to the Stars 45

5. Couples Are Magnificient. Too 57

6. Oh Mv. It's Full of Stars! 73

7. Functions Are People, Too 91

8. Bows and Arrows 109

9. Oh No! 133

10. Building on Blocks 151
Commencement 179

Index 180

FOREWORD

This is a book about writing programs, and understanding them as you write
them. Most large computer programs are never completely understood; if they
were, they wouldn't go wrong so often and we would be able to describe what
they do in a scientific way. A good language should help to improve this state
of affairs.

There are many ways of trying to understand programs. People often rely too
much on one way, which is called "debugging" and consists of running a partly-
understood program to see if it does what you expected. Another way, which
ML advocates, is to install some means of understanding in the very programs
themselves.

Standard ML was designed with this in mind. There are two particular ways-
ofunderstanding built in to Standard ML; one is types for understanding data,
the other is the module system for understanding the structure of the large-
scale programs. People who program in a language with a strong type system,
like this one, often say that their programs have fewer mistakes, and they
understand them better.

The authors focus upon these features of Standard NIL. They are well
equipped to help you to understand programming; they are experienced
teachers as well as researchers of the elegant and simple ideas which inspire
good programming languages and good programming style.

Above all they have written a book which is a pleasure to read; it is free of
heavy detail, but doesn't avoid tricky points. I hope you will enjoy the book and
be able to use the ideas, whatever programming language you use in the future.

Robin Milner
Cambridge University

PREFACE

Programs consume data and produce data; designing a program requires a
thorough understanding of data. In ML, programmers can express their
understanding of the data using the sublanguage of types. Once the types are
formulated, the design of the program follows naturally. Its shape will reflect
the shape of the types and type definitions. Most collections of data, and hence
most type specifications, are inductive, that is, they are defined in terms of
themselves. Hence, most programs are recursive; again, they are defined in
terms of themselves.

The first and primary goal of this book is to teach you to think recursively
about types and programs. Perhaps the best programming language for
understanding types and recursive thinking is ML. It has a rich, practical type
language, and recursion is its natural computational mechanism. Since our
primary concern is the idea of recursion, our treatment of ML in the first eight
chapters is limited to the whys and wherefores of just a few features: types,
datatypes, and functions.

The second goal of this book is to expose you to two important topics
concerning large programs: dealing with exceptional situations and composing
program components. Managing exceptional situtations is possible, but
awkward, with recursive functions. Consequently, ML provides a small and
pragmatic sublanguage, i.e., exception, raise, and handle, for dealing with such
situations. The exception mechanism can also be used as a control tool to
simplify recursive definitions when appropriate.

Typically, programs consist of many collections of many types and
functions. Each collection is a progam component or module. Constructing
large programs means combining modules but also requires understanding the
dependencies among the components. ML supports a powerful sublanguage for
that purpose. In the last chapter, we introduce you to this language and the art
of combining program components. The module sublanguage is again a
functional programming language, just like the one we present in the first eight
chapters, but its basic values are modules (called structures) not integers or
booleans.

While The Little MLer provides an introduction to the principles of types,
computation, and program construction, you should also know that ML itself is
more general and incorporates more than we could intelligibly cover in an
introductory text. After you have mastered this book, you can read and
understand more advanced and comprehensive books on ML.

ACKNOWLEDGMENTS

We are indebted to Benjamin Pierce for numerous readings and insightful
suggestions on improving the presentation and to Robert Harper for criticisms
of the book and guidance concerning the new module system of ML. Michael
Ashley, Cynthia Brown, Robby Findler, Matthew Flatt, Jeremy Frens, Steve
Ganz, Daniel Grossman, Erik Hilsdale, Julia Lawall, Shinn-Der Lee, Michael
Levin, David MacQueen, Kevin Millikin, Jon Riecke, George Springer, and
Mitchell Wand read the book at various stages of development and their
comments helped produce the final result. We also wish to thank Robert Prior
at MIT Press who loyally supported us for many years. The book greatly
benefited from Dorai Sitaram's incredibly clever Scheme typesetting program
Finally, we would like to thank the National Science Foundation for its
continued support and especially for the Educational Innovation Grant that
provided its with the opportunity to collaborate for the past year.

WHAT You NEED TO KNOW TO READ THIS BOOK

You must be comfortable reading English and performing rudimentary
arithmetic. A willingness to use paper and pencil to ensure understanding is
absolutely necessary.

READING GUIDELINES

Do not rush through this book. Read carefully; valuable hints are scattered
throughout the text. Do not read the first eight chapters in fewer than three
sittings. Allow one sitting at least for each of the last two chapters. Read
systematically. If you do not fully understand one chapter, you will understand
the next one even less.

The book is a dialogue about interesting examples of NIL programs. If you
can, try the examples while you read. Since NIL implementations are

predominantly interactive, the programmer can immediately participate in and
observe the behavior of expressions. We encourage you to use this interactive
read-evaluate-and-print loop to experiment with our definitions and examples.
Some hints concerning experimentation are provided below.

We do not give any formal definitions in this hook. We believe that you can
form your own definitions and thus remember and understand them better than
if we had written them out for you. But be sure you know and understand the
morals that appear at the end of each chapter.

We use a few notational conventions throughout the text, primarily changes
in typeface for different classes of symbols. Variables are in italic. Basic data,
including numbers. booleans, constructors introduced via datatypes, are set in
sans serif. Keywords, e.g., datatype, of, and, fun, are in boldface. When you
experiment with the programs, you may ignore the typefaces but not the related
framenotes. To highlight this role of typefaces, the ML fragments in
framenotes are set in a typewriter face.

Food appears in many of our examples for two reasons. First, food is easier
to visualize than abstract ideas. (This is not a good book to read while dieting.)
We hope the choice of food will help you understand the examples and
concepts we use. Second, we want to provide you with a little distraction. We
know how frustrating the subject matter can be, and a little distraction will help
you keep your sanity.

You are now ready to start. Good luck! We hope you will enjoy the
experiences waiting for you on the following pages.

Bon appétit!

Matthias Felleisen
Daniel P. Friedman

EXPERIMENTING WITH SML

The book's programming language is a small subset of SML. With minor
modifications, the examples of the first nine chapters of the book will run on
most implementations of SAIL. For the tenth chapter. an implementation based
on the 1996/97 revision of SAIL must be used.

The best mode to conduct experiments is

1. to place Compiler. Control. Print. printDepth : = 20; into a newly
created file,

2. to append the desired definitions (boxes) to the file,
3. to add a semicolon after each box, and

4. to employ use "<filename>"; to load the definitions into the read-eval-
print loop.

SML is then ready to accept and evaluate expressions that refer to the new
definitions.

EXPERIMENTING WITH OBJECTIVE CAML

Objective Canil is a major dialect of the family of ML languages. The best
mode to conduct experiments with Objective Canil is

1. to place #print-depth 20; ; into a newly created file,

2. to append the desired definitions (boxes) to the file,

3. to add two semicolons after each box, and

4. to employ #use to load the definitions into the read-eval-print loop.

Objective Catnl is then ready to accept and evaluate expressions that refer to
the new definitions.

Objective Canil's syntax differs slightly from SML's. By using the following
hints systematically, you can easily translate the boxes from the first nine
chapters of the book into Objective Caml. Each hint is marked by a chapter
number and a frame number. If you are using Objective Caml, annotate the
corresponding frames before you start reading to remind you where the
differences between SML's and Objective Caml's syntaxes first appear.

1:16 Replace datatype by type:

type seasoning =
Salt
| Pepper

2:15 Replace fun by let rec and use function. The patterns omit the function
name:

let rec only_onions =
function
(Skewer)
-> true
| (Onion(x))
-> only_onions(x)
| (Lamb(x))
-> false
| (Tomato(x))
-> false

4:66 To specify the precise types that a function should consume and produce,
wrap the function name with the type assertion:

let rec (has_steak : meza * main * dessert -> bool) =
function
(x,Steak,d)
-> true
| (x,ns,d)
-> false

7:11 Since constructors are not functions in Objective Caml, define hot-maker
as follows:

let rec hot_maker(x) =
function

(x)
-> Hot (x)

8:93 Curried definitions with matching on the first consumed value need
parentheses around the function being returned when the second consumed
value is placed in parentheses as we do here:

let rec combine_c =
function
(Empty)
-> (function
(12)
-> 12)
| (Cons(a,1l1))
-> (function
(12)
-> Cons(a,combine_c(11) (12)))

9:14 Replace No-bacon 0 by (No-bacon 0).

9:84 Replace (expi handle pattern => exp2) by (try expl with pattern -
> exp2). Also, replace div by /:

let rec find(n,boxes) =
(try check(n,boxes,list_item(n,boxes))
with
Out_of_range
-> find(n / 2,boxes))
and check =
function
(n,boxes,Bacon)
->n
| (n,boxes,Ix(i))
-> find(i,boxes)

10 The examples of this chapter can be expressd in Objective Caml, but see the
manual for the syntax of modules and simple examples that use them before

you do.

The Little MLer

3l

o« @&

B UL GBI TG RSS!

Is this a number: 57 ' Yes.

Is 5 also an integer? : Yes, it is.

Is this a number: 177 ’ Yes, it is also an integer.

Is this a number: 237 ! Yes, but we don’t use negative integers.

Is this an integer: 5.327

What type of number is 57

Quick, think of another integer!

What type of value is true?

What type of value is false?
Can you think of another bool?
Are there more ints than bools?
What is int?

What is bool?

What is a type?

What is a type?

Does this define a new type?

No, and we don’t use reals.

(0]
int.!

1 The symbol 1nt stands for “integer.”

" How about 137

bool.!

1 The symbol bool stands for “boolean.”

9

bool.

10

No, that’s all there is to bool.

11

Lots.

12

A type.

® Another type.

YA type is a name for a collection of values.

15 . 0 . .
Sometimes we use it as if it were the

collection.

16 .
Yes, it does.

datatype seasoning =
Salt
| Pepper

Is this a seasoning: Salt?
And Pepper?
Can you think of another seasoning?

Have we seen a type like seasoning before?

17 o
Yes, it is.

S .
It’s also a seasoning.

B No, there are two. And that’s all.

" Yes, bool also has just two values.

Does this define a new type, too?

datatype num =
Zero
| One_more_than of num

Is this a num: Zero?

Is One_more_than(Zero) a num?

How does One_more_than do that?

What is the type of

One_more_than(
One_more_than(
Zero))?

26

What is
One_more_than(
0)?

What is the type of
One_more_than(
One_more_than(
One_more_than(
One_more_than(

Zero))))?

What is the difference between Zero and 07

Correct. In general, if two things belong to
two different types, they cannot be the same.

Are there more nums than bools?

23

24

25

21

Yes, it does.

: Obviously, just like Salt is a seasoning.

Yes, because One_more_than constructs a
num from a num.

We gave it Zero, which is a num, and it
constructs a new num.

num, because One_more_than constructs a
num from a num and we agreed that

One_more_than(
Zero)

is a num.

This is nonsense,! because 0 is not a num.

1 We use the word “nonsense” for an expression that has no
type.

T num.

** The value Zero belongs to the type num,

whereas 0 belongs to int.

° A type is a name for a collection of values,

and there is no overlap for any two distinct
types.

30

Lots.

. 31
Are there more nums than ints?

32

What does this define?

datatype o' open_faced_sandwich =
Bread of o
| Slice of a open_faced_sandwich

1 We use ’a for a, but it is pronounced alpha.

What is Bread(0)?

And what is Bread(true)?

They can’t! They belong to two different

types:
int open_faced_sandwich

and

bool open_faced_sandwich.

It means that

No.!

1 And we will see in a later chopter why there are as many
ints as nums.

It looks like the definition of a new type, but
it also contains this funny looking a.

’ It looks like an element of

o open_faced_sandwich.

"It also looks like an element of

a open_faced_sandwich.

But how can both Bread(0) and Bread(true)
be elements of the same type?

What does that mean?

36

Okay, that makes sense.

datatype a open_faced_sandwich =
Bread of o
| Slice of a open_faced_sandwich

is not a type definition but a shape that
represents many different datatypes.

So, if we write int open_faced_sandwich, we
mean a type like this.!

37 Writing bool open_faced_sandwich is as if we
had defined a new datatype.

datatype int open_faced_sandwich =
Bread of int
| Slice of int open_faced_sandwich

®

datatype bool open_faced_sandwich =

| Slice of bool open_faced_sandwich

Bread of bool

What does bool open_faced_sandwich mean?

1 The marker ® indicates that this definition is
ungrammatical. We use this ungrammatical definition to
explain a open_faced_sandunch.

So what is int open_faced_sandwich?

And what is bool open_faced_sandwich? »

. . 40
What is num open_faced_sandwich?

Does that also mean that we can derive as
many types as we want from the shape

a open_faced_sandwich?

Is
Bread(0)
an

int open_faced_sandwich?

43

Why does it belong to
int open.faced_sandwich
and not

bool open_faced_sandwich?

® The simplest way of saying “This is an

instance of the definition of
o open._faced_sandwich

where a stands for int.”

The simplest way of saying “This is an
instance of the definition of

a open_faced_sandwich

where a stands for bool.”

The simplest way of saying “This is an
instance of the definition of

a open_faced_sandwich

where o stands for num.”

11

Yes.

42

Yes.

Because 0 is an int, and Bread constructs
elements of type int open_faced_sandwich
when it is given an int.

And what is the type of Bread(true)?

To what type does

Bread(
One_more_than(
Zero))

belong?

Is

Bread(Bread(0))

an
(int open_faced_sandwich)
open_faced_sandwich?

46

* bool open_faced_sandwich.

0 belongs to num open_faced_sandwich.

Yes, because int open_faced_sandwich is a
type, and we said that we can derive a new
type from a open_faced_sandwich by
replacing o with any type.

And finally, since (num open_faced_sandwich) " It belongs to

is also a type, to what type does

Bread(
Bread(
One_more_than(

Zero)))
belong?

The First Moral

Use datatype to describe types. When a
type contains lots of values, the datatype
definition refers to itself. Use a with
datatype to define shapes.

(num open_faced_sandwich)
open._faced_sandwich.

Wow, types are types.

22 ¢

At
h;@ 'g: S arme I
a o)

_'I

o

Here is another type definition.

datatype shish_kebab =
Skewer
| Onion of shish_kebab
| Lamb of shish_kebab
| Tomato of shish_kebab

What is different about it?

What is an element of this new type?

And another one?

And a third?

Are there only Onions on this shish_kebab:

Skewer?

Are there only Onions on this shish_kebab:

Onion(
Skewer)?

And how about:
Lamb(
Skewer)?

Is it true that
Onion(
Onion(
Onion(
Skewer)))

contains only Onions?

' It contains four alternatives, not just two.

? How about
Skewer?

3
Here’s one:

Onion(
Skewer).

4
Here’s one more:

Onion(
Lamb(
Onion(
Skewer))).

’ true, because there is neither Lamb nor
Tomato on the Skewer.

(i}
true.

7 . .
false, it contains Lamb.

true.

And finally:
Onion(
Lamb(
Onion(
Skewer)))?

Is it true that

5
contains only Onions?

Write the function only_onions using fun, =, !

l, (,), true, false, Skewer, Onion, Lamb, and
Tomato.

What kind of things does only_onions
consume?

And what does it produce?

Are you anxious to see the first function
definition?

false.

10

What kind of question is that? That looks
like nonsense, because 5 is an int, not a
shish_kebab.

Of course, you can’t write this function, yet.
Okay, you deserve something sweet for
enduring this last question.

12

shish_kebabs.
" bools.

M Yes, we can’t wait for the next page.

Here it is.

fun only_onions(Skewer)
= true
| only_onions(Onion(z))
only_onions(z)
| only-onions(Lamb(z))
= false
| only_onions(Tomato(z))
= false

only_onions! :
shish_kebab — bool

Did you notice the second box?

1 This box (type assertion) is a part of the program. It is

transcribed as
(only_onions : shish kebab =-> bool)

so that implementations can verify your thoughts about the
type of a function. The transcription must always follow the
function definition, never precede it. In general, if a box
contains a bullet o, then you must transcribe it by putting a
left parenthesis in front of the contents and a right
parenthesis behind it. The arrow is transcribed with two
characters: - followed by >.

The second box states what only_onions °

consumes and produces.

Is
shish_kebab — bool
the type of only_onions?

Which item is mentioned first in the
definition of shish_kebab?

Which item is mentioned first in the
definition of only_onions?

Which item is mentioned second in the
definition of shish_kebab?

° Yes, the second box is not a function
definition. Why is the second box there?

What is in front of (i.e., to the left of) the
symbol — is the type of things that the
function consumes, and what is behind — is
the type of things it produces.

v Yes, shish_kebab — bool is the type of
only_onions just as int is the type of 5.

18
Skewer.

19
Skewer.

Onion.

. 21
Which item is mentioned second in the

Onion.
definition of only_onions?

Does the sequence of items in the datatype

: Yes, it does. Is this always the case?
definition correspond to the sequence in

which they appear in the function definition?

Almost always.

What is the value of
only_onions(
Onion(
Onion(
Skewer)))?

And how do we determine the answer of
only-onions(
Onion(
Onion(
Skewer)))?

Does
only_onions(
Onion(
Onion(
Skewer)))

match

only_-onions(Skewer)?

Why not?

23

Okay.

24
true.

** We will need to pay attention to the function

definition.

fun only_onions(Skewer)
= true
| only_onions(Onion(z))
= only_onions(z)
| only_onions(Lamb(z))
= false
| only-onions(Tomato(z))

= false

26

No.

27
Because

Onion(
Onion(
Skewer))

does not match Skewer.

Does
only_onions(
Onion(
Onion(
Skewer)))

match
only_onions(Onion(z))?
Let z stand for

Onion(
Skewer).

Then what is
only_onions(

* Yes, if z stands for
Onion(
Skewer).

29
In that case, we have found a match.

30

It is

; only_onions(z),
Onion(o
Skewer))? which is what follows the ‘=" below
' only_onions(Onion(z)) in the definition of
only_onions, with z replaced by what it
stands for:
Onion(
Skewer).
Why do we need to know the meaning of *" Because the answer for
only_onions(only_onions(
Onion(Onion(
Skewer))? Skewer))

How do we determine the answer of

only_onions(
Onion(
Skewer))?

is also the answer for
only_onions(
Onion(
Onion(
Skewer))).

32
Let’s see.

Does
only_onions(
Onion(
Skewer))

match

only_onions(Skewer)?

Why not?

Does
only_onions(
Onion(
Skewer))

match

only_onions(Onion(z))?
So let = stand for Skewer, now.

Then what is only_onions(Skewer)?

33

34

36

37

It is

No.

Because
Onion(
Skewer)

does not match Skewer.

Yes, if z stands for Skewer, now.

° In that case, we have found our match again.

only_onions(z),

which

is what follows the ‘=’ below

only_onions(Onion(z)) in the definition of
only_onions, with z replaced by what it
stands for:

Skewer.

Why do we need to know what the meaning

of

only_onions(Skewer)
is?

How do we determine the answer of

only_onions(Skewer)?

Does
only_onions(Skewer)
match

only_onions(Skewer)?

Then what is the answer?

Are we done?

° Because the answer for
only_onions(Skewer)

is the answer for
only_onions(
Onion(
Skewer)),

which is the answer for
only_onions(
Onion(
Onion(
Skewer))).

39 .
We need to match one more time.

° Completely.

' true.
¥ Yes! The answer for
only_onions(
Onion(
Onion(
Skewer)))

is the same as the answer for
only_onions(
Onion(
Skewer)),

which is the same as the answer for
only_onions(Skewer),

which is
true.

What is the answer of
only_onions(
Onion(
Lamb(
Skewer)))?

Does
only_onions(
Onion(
Lamb(
Skewer)))

match

only_onions(Skewer)?

Why not?

Does
only_onions(
Onion(
Lamb(
Skewer)))

match

only_onions(Onion(z))?

Next let z stand for
Lamb(
Skewer).

43

44

45

46

47

false, isn’t it?

No, it does not match.

Because
Onion(
Lamb(
Skewer))

does not match Skewer.

Yes, if z now stands for

Lamb(
Skewer).

In that case, they match.

Then what is
only_onions(
Lamb(
Skewer))?

Why do we need to know what

only_onions(
Lamb(
Skewer))

is?

Does
only_onions(

Lamb(
Skewer))

match

only_onions(Skewer)?

Does
only_onions(
Lamb(
Skewer))

match

only_onions(Onion(z))?

Does
only_onions(
Lamb(
Skewer))

match
only_onions(Lamb(z))?

48

It is
only_onions(z),
which is what follows the ‘=" below

only_onions(Onion(z)), with = replaced by

what it stands for:
Lamb(
Skewer).

* Because the answer for
only.onions(
Lamb(
Skewer))

is the answer for
only_onions(

Onion(
Lamb(
Skewer))).
* No.
' No.

52 .
Yes, if z stands for Skewer, now

And now what is the answer?

Are we done?

Describe the function only_onions in your
own words.

Describe how the function only.onions
accomplishes this.

So what is the value of
only_onions(5)?

Is
Tomato(
Skewer)?
an element of shish_kebab?
Is
Onion(

Tomato(
Skewer))

an element of shish_kebab?

And how about another Tomato?

° false, because false follows the ‘=" below
only_onions(Lamb(z)) in the definition of
only_onions.

Yes! The answer for
only_onions(
Onion(
Lamb(
Skewer)))

is the same as the answer for
only_onions(
Lamb(
Skewer)),
which is
false.
** Here are our words:

“only_onions consumes a shish_kebab and
checks to see whether it is only edible by
an onion lover.”

** Here are our words again:
“only_onions looks at each piece of the
shish_kebab and, if it doesn’t encounter
Lamb or Tomato, it produces true.”

" Nonsense. We already said that 5 is an int,
not a shish_kebab.

58

Yes.

59 .
Since
Tomato(
Skewer)

is an element of shish_kebab, we can also
wrap an Onion around it.

G0
Sure.

Is
Tomato(
Onion(
Tomato(
Skewer)))

a vegetarian shish kebab?

Is
Onion(
Onion(
Onion(
Skewer)))

a vegetarian shish kebab?

Define the function
1s_vegetarian :
shish_kebab — bool,

which returns true if what it consumes does
not contain Lamb.

Yes, that’s right. Let’s move on. What does

61 . N .
Of course, there is no Lamb in it.

62 . . .
Yes, it only contains Onions.

? Shouldn’t the line for Tomatoes in this

function be the same as the line for Onions?

fun is_vegetarian(Skewer)

= true

| is_vegetarian(Onion(z))
= is_vegetarian(z)

| is-vegetarian(Lamb(z))
= false

| is_vegetarian(Tomato(z))
= is_vegetarian(z)

1s_vegetarian :
shish_kebab — bool

datatype a shish =
Bottom of a
| Onion of a shish
| Lamb of a shish
| Tomato of a shish

define?

" It defines a datatype that is similar in shape

to shish_kebab.

Do the definitions of « shish and shish_kebab ° Yes, the names of the constructors are the

use the same names?

What is different about the new datatype?

Here are some bottom objects.

datatype rod =
Dagger
| Fork
| Sword

Are they good ones?

Think of another class of bottom objects.

What is the type of
Onion(
Tomato(
Bottom(Dagger)))?

Is
Onion(
Tomato(
Bottom(Dagger)))

a vegetarian rod shish?

Does
Onion(
Tomato(
Bottom(Gold_plate)))

belong to plate shish?

same, but clearly from now on Onion
constructs an « shish and no longer a
shish_kebab.

° A shish_kebab is always on a Skewer, an a
shish is placed on different kinds of Bottoms.

o Sure, rod shish makes some form of shish

kebab.

o We could move all of the food to various

forms of plates.

datatype plate =
Gold_plate
| Silver_plate
| Brass_plate

"It belongs to rod shish.

° Sure it is. It only contains Tomatoes and

Onions.

' Sure, because Gold_plate is a plate and plate

is used as a Bottom, and Tomatoes and
Onions can be wrapped around Bottoms.

Is
Onion(
Tomato(
Bottom(Gold_plate)))

a vegetarian shish kebab?

Let’s define the function
is-veggie : a shish — bool,

which checks whether a shish kebab contains
only vegetarian foods, regardless of what
Bottom it is in.

Let’s determine the value of
is-veggie(
Onion(
Fork)).

Why?

What is the value of
is_veggie(
Onion(
Tomato(
Bottom(Dagger))))?

* Sureit is. It is basically like

Onion(
Tomato(
Bottom(Dagger)))
except that we have moved all the food from
a Dagger to a Gold_plate.

‘It only differs from is_vegetarian in one part.

fun is_veggie(Bottom(z))

= true

| is_veggie(Onion(z))
= is_veggie(z)

| is_veggie(Lamb(z))
= false

| is-veggie(Tomato(z))
= is.veggie(z)

is_veggie :
a shish — bool

This new function matches against arbitrary
Bottoms, whereas is_vegetarian only matches
against Skewers.

74 . .
This is nonsense.

75 . .
Because Onion constructs « shish from «

shish, which does not include Fork.

76
true.

What type of thing is " We said it belonged to the type rod shish.
Onion(
Tomato(
Bottom(Dagger)))?

What is the value of ® Itis true, too.
is-veggie(
Onion(
Tomato(
Bottom(Gold_plate))))?

And what type of thing is "I belongs to the type plate shish, which has
Onion(the same shape as rod shish, but is a distinct
Tomato(type.

Bottom(Gold_plate)))?

80

But aren’t both examples of a shish? Yes, they are. The two types only differ in
how « is replaced by a type.
How can is_veggie consume things that . Perhaps we should think of is_veggie as two
belong to different types? functions.
. . s2 .
What functions should we think about? One function has the type

rod shish — bool
and the other one has the type
plate shish — bool.

Where else do the functions differ? ¥ Nowhere—they are identical otherwise.

So this is how we could have written the
function is_veggie for shishes on rods.

* All we have to change is the type of Bottom
and the type of the function.

datatype rod =
Dagger
| Fork
| Sword

datatype plate =
Gold_plate
| Silver_plate
| Brass_plate

fun is_veggie(Bottom(z))

= true

| is_veggie(Onion(z))
= is-veggie(x)

| is_veggie(Lamb(z))
= false

| is_veggie(Tomato(z))
= is_veggie(z)

fun is_veggie(Bottom(z))

= true

| is_veggie(Onion(z))
= is_veggie(z)

| is_veggie(Lamb(z))
= false

| is_veggie(Tomato(z))
= is-veggie(z)

is_veggie :
rod shish — bool

is_veggie :
plate shish — bool

And how would we write the function
is_veggie for shishes on plates?

What type of value is
is-veggie(
Onion(
Tomato(
Bottom(52))))?

What type of value is
is_veggie(
Onion(
Tomato(
Bottom(
One_more_than(Zero)))))?

Whew, that’s a lot of writing!

85

bool.

** bool.

What type of value is
is_veggie(
Onion(
Tomato(
Bottom(false))))?

Does that mean is_veggie works for all five
types: rod shish, plate shish, int shish,

num shish, and bool shish?

What is the bottom object of
Onion(
Tomato(
Bottom(Dagger)))?

What is the bottom object of
Onion(
Tomato(
Bottom(Gold_plate)))?

What is the bottom object of
Onion(
Tomato(
Bottom(52)))?

What is the value of
what_bottom(
Onion(
Tomato(
Bottom(Dagger))))?

What is the value of
what_bottom(
Onion(
Tomato(
Bottom(Gold_plate))))?

o bool.

’ Yes, and all other shish types that we could

possibly think of.

89

All the food is on a dagger.

90

All the food is now on a gold plate.

91

All the food is on a 52.

92

Dagger.

93

Gold_plate.

What is the value of
what_bottom(
Onion(
Tomato(
Bottom(52))))?

So what type of value does what_bottom
consume?

And what type of value does what_bottom
produce?

Is there a simple way of saying what type of
value it produces?

How many variants of shishes must
what_bottom match?

What is the value of
what_bottom(
Bottom(52))?

What is the value of
what_bottom(
Bottom(Sword))?

What is the value of
what_bottom(
Bottom(z)),

no matter what z is?

94

52.

* shish, which means all types of shishes.

‘It produces rods, plates, and ints. And it

looks like it can produce a whole lot more.

97 .
Here is our way:

“If a is a type and we use what_bottom on a
value of type a shish, then the result is of

type a.”

8
There are four.

fun what_bottom(Bottom(z))

| what_bottom(Onion(z))

| what_bottom(Lamb(z))

| what_bottom(Tomato(z))

99

52.

100
Sword.

101

So what goes into the first blank line of
what_bottom?

What is the value of
what_bottom(
Tomato(
Onion(
Lamb(
Bottom(52)))))?

What is the value of
what_bottom(
Onion(
Lamb(
Bottom(52))))?

What is the value of
what_bottom(
Lamb(
Bottom(52)))?

What is the value of
what_bottom(
Bottom(52))?

102

103

104

105

106

52.

52.

52.

52.

Does that mean that the value of
what_bottom(
Tomato(
Onion(
Lamb(
Bottom(52)))))

is the same as
what_bottom(
Onion(
Lamb(
Bottom(52)))),

which is the same as
what_bottom(
Lamb(
Bottom(52))),

which is the same as
what_bottom(
Bottom(52))?

Fill in the blanks in this skeleton.

fun what_bottom(Bottom(z))
=z
| what_bottom(Onion(z))
= what_bottom(z)
| what_bottom(Lamb(z))

| what_bottom(Tomato(z))

The Second Moral

The number and order of the patterns
in the definition of a function should
match that of the definition of the con-
sumed datatype.

108

o Yes, all four have the same answer: 52.

Now this is easy.

fun what_bottom(Bottom(z))
=z
| what_bottom(Onion(z))
= what_bottom(z)
| what_bottom(Lamb(z))
= what_bottom(z)
| what_bottom(Tomato(z))

= what_bottom(z)

what_bottom :
a shish — «

o
CorsplisSEEy U nll
IS G il e et

—
4

Do you like to eat pizza?

" Looks like good toppings.

datatype pizza =
Crust
| Cheese of pizza
| Onion of pizza
| Anchovy of pizza
| Sausage of pizza

Here is our favorite pizza:

Anchovy(
Onion(
Anchovy(
Anchovy(
Cheese(

Crust))))).

How about removing each Anchovy?

Let’s remove them. What is the value of
remove_anchovy(
Anchovy(
Onion(
Anchovy(
Anchovy(
Cheese(

Crust))))))?

What is the value of
remove_anchovy(
Sausage(
Onion(
Anchovy(
Sausage(
Cheese(

Crust))))))?

Does remove_anchovy consume pizzas?

* This looks too salty.

® That would make it less salty.

" It should be a Cheese and Onion pizza, like

this:
Onion(
Cheese(
Crust)).

° It should be a Cheese, Sausage, and Onion

pizza, like this:
Sausage(
Onion(
Sausage(
Cheese(
Crust)))).

° Yes, and it produces them, too.

Fill in the blanks in the skeleton.

fun remove_anchovy(Crust)
= Crust
| remove_anchovy(Cheese(z))

| remove_anchovy(Onion(z))

| remove_anchovy(Anchovy(z))

| remove_anchovy(Sausage(z))

remove_anchovy :
pizza — pizza

Fill in all the blanks except for the Anchovy
line.

" We didn’t expect you to know this one.

® The Onion and Sausage lines are similar to

the Cheese line.

fun remove_anchovy(Crust)
= Crust
| remove_anchovy(Cheese(z))
= Cheese(remove_anchovy(z))
| remove_anchovy(Onion(z))

| remove_anchouvy(Anchovy(z))

| remove_anchovy(Sausage(z))

fun remove_anchovy(Crust)
= Crust
| remove_anchovy(Cheese(z))
= Cheese(remove_anchovy(z))
| remove_anchovy(Onion(z))
= Onion(remove_anchovy(z))
| remove_anchovy(Anchovy(z))

| remove_anchovy(Sausage(z))

We’ve eaten the cheese already.

Explain why we use Cheese, Onion, and
Sausage when we fill in the blanks.

= Sausage(remove_anchovy(z))

° For every Cheese, Onion, or Sausage that we

see, we must put one back.

. . 10 .
Since remove_anchovy must produce a pizza, Yes, remove_anchovy consumes pizza and

let us use Crust, the simplest pizza, for the produces pizza without Anchovy on it.
line that contains Anchovy(z).

fun remove_anchouvy(Crust)

= Crust

| remove_anchovy(Cheese(z))
= Cheese(remove_anchovy(z))

| remove_anchouvy(Onion(z))
= Onion(remove_anchovy(z))

| remove_anchovy(Anchovy(z))
= Crust

| remove_anchovy(Sausage(z))
= Sausage(remove_anchovy(z))

Let’s try it out on a small pizza: " That’s easy. It matches the Anchovy line, if z
remove_anchouvy(stands for Crust. And the answer is Crust.
Anchovy(
Crust)).
Is N Absolutely, but what if we had more
Crust anchovies?
like
remove_anchovy(
Anchovy(
Crust))
without Anchovy?
No problem. Here is an example: * That's easy again. It also matches the
remove_anchovy(Anchovy line and the answer is still Crust.
Anchovy(
Anchovy(
Crust))).
14 .
Okay, so what if we had onions on top: This matches
remove_anchovy(remove_anchouvy(Onion(z))
Onion(if = stands for
Cheese(Cheese(
Anchovy(Anchovy(
Anchovy(Anchovy(

Crust)))))? Crust))).

What is the value of
Onion(remove_anchouvy(z))

if z stands for
Cheese(
Anchovy(
Anchovy(
Crust)))?

What is the value of
remove_anchovy(
Cheese(
Anchovy(
Anchovy(
Crust))))?

And what is the value of
Cheese(remove_anchovy(z))

if z stands for
Anchovy(
Anchovy(
Crust))?

Do we know the value of
remove_anchovy(
Anchovy(
Anchovy(
Crust)))?

Does that mean that Crust is the answer?

Does it matter in which order we add those
two ingredients?

So what is the final answer?

® It is the pizza that

remove_anchovy(
Cheese(
Anchovy(
Anchovy(
Crust))))

produces, with Onion added on top.

° This matches
remove_anchovy(Cheese(z))

if z stands for
Anchovy(
Anchovy(
Crust)).

" It is the pizza that

remove_anchovy(
Anchovy(
Anchovy(
Crust)))

produces, with Cheese added on top.

° Yes, we know that this produces Crust.

° No, we still have to add Cheese and Onion.

° Yes, we must first add Cheese, producing

Cheese(
Crust)

and then we add Onion.

21

It is
Onion(
Cheese(
Crust)).

Can you describe in your own words what
remove.anchovy
does?

Is that what we wanted?

Let’s try one more example:
remove_anchouvy(
Cheese(
Anchovy(
Cheese(
Crust)))).

What kind of pizza should this make?

Check it out!

Doesn’t that mean that the result is
Cheese(
remove_anchovy(
Anchovy(
Cheese(
Crust))))?

What does
remove_anchovy(
Anchovy(
Cheese(
Crust)))

match next?

And the answer is
Crust?

22
Here are our words:

“remove_anchovy looks at each topping of a
pizza and makes a pizza with all the
toppings that are above the first anchovy.”

** No. We wanted to keep all toppings except
for anchovies.

*" It should be a double-cheese pizza.

* It matches
remove_anchouvy(Cheese(z))

if z stands for
Anchovy(
Cheese(
Crust)).

* Yes, we have at least one Cheese topping.

" This matches
remove_anchovy(Anchovy(z)).

® Yes, and just like before we need to add

Cheese on top.

Does that mean the final answer is * Yes, but that’s not the answer we wanted.

Cheese(
Crust)?
What did we want? ** A double-cheese pizza like
Cheese(
Cheese(
Crust)),

because that’s what it means to remove
anchovies and nothing else.

How do we have to change remove_anchovy ' The Anchovy line must produce
to get the Cheese back? remove_anchovy(z).

fun remove_anchovy(Crust)

= Crust

| remove_anchovy(Cheese(z))
= Cheese(remove_anchovy(z))

| remove_anchovy(Onion(z))
= Onion(remove_anchovy(z))

| remove_anchovy(Anchovy(z))
= remove_anchovy(z)

| remove_anchovy(Sausage(z))
= Sausage(remove_anchouvy(z))

. : 32 o
Does this new version of remove_anchovy Yes, and it still produces them.
still consume pizzas?

You have earned yourself a double-cheese * And don’t forget the anchovies.
pizza.

Would you like even more cheese than that? > Some people like lots of cheese.

We could add cheese on top of the anchovies. * Yes, that would hide their taste a bit.

30

What kind of pizza is Easy, there is a layer of Cheese on top of each

top-anchovy_with_cheese(Anchovy:
Onion(Onion(
Anchovy(Cheese(
Cheese(Anchovy(
Anchovy(Cheese(
Crust)))))? Cheese(
Anchovy(
Crust)))))).
And what is *" Here we don’t add any Cheese, because the
top_anchovy_with_cheese(pizza does not contain any Anchovy:
Onion(Onion(
Cheese(Cheese(
Sausage(Sausage(
Crust))))? Crust))).
Fill in the blanks in the skeleton. * We expect you to know some of the answers.
fun top_anchovy_with_cheese(Crust) .
— Crust fun top_anchovy_with_cheese(Crust)
= Crust

top_anchovy_with_cheese(Chees
| top-anchovy ese(Cheese(z)) | top_anchovy_with_cheese(Cheese(z))

ton_anchovy_with_cheese(Onion = Cheese(top_anchovy_with_cheese(z))
| =p y-with-cheese((=) | top-anchovy_with_cheese(Onion(z))

= Onion(top-anchovy_with_cheese(z))

| top-anchovy-with_cheese(Anchovy(z))

| top-anchovy_with_cheese(Anchovy(z))

| top-anchovy_with_cheese(Sausage(z))

| top_anchovy_with_cheese(Sausage(z))
= Sausage(top_anchovy_with_cheese(z))

top_anchovy_with_cheese :
pizza — pizza

How does that skeleton compare with this
one?

fun remove_anchovy(Crust)
= Crust
| remove_anchouvy(Cheese(z))
= Cheese(remove_anchovy(z))
| remove_anchouvy(Onion(z))
= Onion(remove_anchovy(z))
| remove_anchovy(Anchovy(z))

| remove_anchovy(Sausage(z))
= Sausage(remove_anchovy(z))

° The two skeletons are the same except for

the names of the functions.

What function would we get if we filled the * We would get remove_anchovy but with a

blank in the last skeleton for
top_anchovy_with_cheese
with

top-anchovy_with_cheese(z)?

different name.

Then what do we have to put into the blank? " We must at least put the Anchovy back on

And then?

Let’s do it!

the pizza.
¥ We must top it with Cheese.

Here it is.

fun top_anchovy_with_cheese(Crust)
= Crust
| top_anchovy_with_cheese(Cheese(z))
= Cheese(top_anchovy_with_cheese(z))
| top_anchovy_with_cheese(Onion(z)
= Onion(top-anchovy_with_cheese(z))
| top_anchovy_-with_cheese(Anchovy(z))
= Cheese(
Anchovy(
top_anchovy_with_cheese(z)))
| top_anchovy_with_cheese(Sausage(z))
= Sausage(top-anchovy_with_cheese(z))

What type of value does
top_anchovy_with_cheese
produce?

How many occurrences of Cheese are in the
result of
top-anchovy-with_cheese(
remove_anchouvy(
Onion(
Anchovy(
Cheese(
Anchovy(

Crust))))))?

How many occurrences of Cheese are in the
result of
remove_anchouvy(
top-anchovy_with_cheese(
Onion(
Anchovy(
Cheese(
Anchovy(

Crust))))))?

Perhaps we should replace every Anchovy

with Cheese.

Is it true that for each Anchovy in z
remove_anchovy(
top_anchovy_with_cheese(z))

adds some Cheese as long as z is a pizza?

" The difference between

top_anchovy_with_cheese
and
remove_anchovy

is one line. Cheese on top of Anchovy on a
pizza still makes pizza, so the type of

top-anchovy_with_cheese
is

plzza — pizza.

45
One, because remove_anchovy removes all

anchovies, so that top_anchovy_with_cheese
doesn’t add any cheese.

’ Three, because top_anchovy_with_cheese first

adds Cheese for each Anchovy. Then
remove_anchovy removes all anchovies:
Onion(
Cheese(
Cheese(
Cheese(
Crust)))).

" We just did that for one pizza.

° Yes, and it does more. Once all the cheese is

added, the anchovies are removed.

So is this the correct definition of * Yes, it is. This function replaces each
subst_anchovy_-by_cheese? instance of Anchovy by Cheese.

fun subst_anchovy_by_cheese(z)
= remove_anchovy(
top_anchovy-with_cheese(z))

subst_anchovy_by_cheese :
pizza — pizza

. . 50
Can you describe in your own words how Here are our words:

subst_anchovy_by_cheese “subst_anchovy_by_cheese looks at each

works? topping of a pizza and adds Cheese on top
of each Anchovy. Then, it looks at each
topping again, including all the new
cheese, and removes the anchovies.”
Here are some different words: . Yes, here is a skeleton.
“subst_anchovy_by_cheese looks at each
topping of a pizza and replaces each fun subst_anchovy_by_cheese(Crust)
Anchovy by Cheese.” = Crust
Can you define a function that matches this | subst_anchovy_by_cheese(Cheese(z))
description and doesn’t use remove_anchovy = Cheese(subst-anchovy_by_cheese(z))
and top-anchovy-with_cheese? | subst.anchovy_by.cheese(Onion(z)
= Onion(subst_anchovy_by_cheese(z))
| subst_anchovy_by_cheese(Anchovy(z))
| subst_anchovy-by_cheese(Sausage(z))
= Sausage(subst-anchovy_by_cheese(z))
Does this skeleton look familiar? > Yes, this skeleton looks just like those of

top_anchovy_with_cheese
and

remove_anchovy.

Fill in the blank. * Here it is.

fun subst_anchovy_by-cheese(Crust) fun subst_anchovy_by-cheese(Crust)
= Crust = Crust
| subst-anchovy_by_cheese(Cheese(z)) | subst_anchouvy_by_cheese(Cheese(z))
= Cheese(subst-anchovy-by-cheese(z)) = Cheese(subst_anchovy_by_cheese(z))
| subst_anchovy-by-_cheese(Onion(z)) | subst-anchovy_by-cheese(Onion(z))
= Onion(subst_anchovy_by_cheese(z)) = Onion(subst_anchovy_by_cheese(z))
| subst_anchovy_by_cheese(Anchovy(z)) | subst_anchouvy_by_cheese(Anchovy(z))
= = Cheese(subst-anchovy_by_cheese(z))
| subst_anchovy_by-cheese(Sausage(z)) | subst_anchouvy_by-cheese(Sausage(z))
= Sausage(subst-anchovy_by_cheese(z)) = Sausage(subst_anchovy_by_cheese(z))

Now you can replace Anchovy with whatever " We will stick with anchovies.
pizza topping you want.

The Third Moral

Functions that produce wvalues of a
datatype must use the associated con-
structors to build data of that type.

Are you tired of making pizza?

Do you like shrimp cocktail?

We like Hummus for meza too.

Okay, let’s sum them up.

datatype meza =
Shrimp
| Calamari
| Escargots
| Hummus

And here are some entrées.

' We are too. Let’s make complete meals.
2
We do, too.
3
And how about some Escargots?

4 . .
There is a new one, too: Calamari.

° We should also have some salads.

datatype main =
Steak
| Ravioli
| Chicken

| Eggplant

datatype salad =
Green
| Cucumber

Let’s not forget the fun part.

Now let’s make a meal.

No, we can use stars!

Here is our first three star meal:
(Calamari,Ravioli,Greek,Sundae).

How many items does this meal have?

| Greek

6
Yes, we need desserts.

r:iatatype dessert =
Sundae

| Mousse
| Torte

" Don’t we have to put together different
courses when we make full meals?

S .
What is a star?

It looks like a meal.

° Four, and they are separated by commas and

enclosed in parentheses.

Is
(Hummus,Steak,Green, Torte)
a meal of the same type?

Does
(Torte,Hummus,Steak,Sundae)
belong to the same type?

The first kind of meal is of type

(meza * main x salad * dessert).

What’s unusual about our meals?

Is that a meal?

No, it is not. Each star corresponds to a

comma in the construction of a meal.

Yes, the order matters, but do we have to
have three stars in meals?

14

17

1
Yes, it also consists of four items in the same

order: meza, main, salad, and dessert.

" We have seen meals like this before, but

dessert should never be the first course.

® Does this mean that the type of the thing

that is not a meal is
(dessert * meza * main * dessert)?

People here eat the salads before the main
course:

(meza * salad * main x dessert).
* It is not the same kind of meal, is it?
16 .
And the order matters, right?
No, if we want small meals with three
courses, we only need two stars. And if we

want tiny meals with two courses, we need
only one.

What is your favorite kind of meal with only * Ours is

two ingredients?

What is the type of that tiny meal?

Have you tasted your sundae yet?

What is
add_a_steak(Shrimp)?

What is
add_a_steak(Hummus)?

(Shrimp,Sundae).

19
(meza * dessert).

* We just ate ours.

21 . .
It is a tiny meal:

(Shrimp,Steak).

* This meal needs something to sink our teeth

into.
(Hummus,Steak).

Does add_a_steak consume meza?

Does add_a_steak produce a tiny meal?

Is this a definition of add_a_steak?

fun add_a_steak(Shrimp)

= (Shrimp,Steak)

| add_a_steak(Calamari)
= (Calamari,Steak)

| add_a_steak(Escargots)
= (Escargots,Steak)

| add_a_steak(Hummus)
= (Hummus,Steak)

What is its type?

Isn’t this long for something so simple?

It doesn’t really matter what the meza is, so 7

we can just give it a name in the pattern and
use that name in the answer. Define the
abridged version of add_a_steak.

What is the value of
add_a_steak(Escargots)?
And how about add_a_steak(5)?

It should be.

It would be nonsense had we only used the

first version of add_a_steak.

What does the abridged version of
add_a_steak consume?

23 .
Yes, it does.

1 . . .
Yes, this function always produces a tiny
meal. Indeed, we even know that the second
item is always Steak.

* 1t is a function and we already discussed

what it consumes and produces.

add.a_steak :
meza — (meza * main)

26 . . :
Yes, four lines is a lot. Can we shorten it?

With this hint, it is a piece of cake (which,
by the way, isn’t a dessert).

fun add_a_steak(z)
= (z,Steak)

28

(Escargots,Steak).
? Isn’t this nonsense?
0 .

But is it?

*" Correct. It consumed only meza.

32

Anything.

So what is its type?

Does that mean the second version of
add_a_steak is more general than the first?

Are both definitions correct?

Why should we choose one over the other?

Is it always better to use the more general
version?

Could we have used this idea of shortening
functions before?

33

34

We have always used a when a function
could consume anything.

add_a_steak :

a — (a * main)

Yes, the second version exists for many
different types. Therefore it can consume
mezas, or desserts, or nums, and even mains.

Yes, they both add a Steak.

36

We know that the second one is more
general, but it is also always one line long.
The first kind of definition always contains as
many lines as there are alternatives in the
datatype definition.

37 . .
No, the more specific one is more accurate,
so using it will reveal nonsense more often.

° Yes, we should have known about this

shorthand when we defined remove_anchovy.
It could have been so much shorter.

fun remove_anchovy(Crust)
= Crust
| remove_anchovy(Anchovy(z))
= remove_anchovy(z)
| remove_anchouvy(C(z))
= C(remove_anchovy(z))

Nice dream, but it is impossible for a variable * Too bad.
like C' to stand in place of a constructor that
consumes values as we did in the third line.

Here is a lollypop.

That helps a little.

Let’s write the function eg_main, which takes " Does that mean we need to compare all four

two main dishes and determines whether
they are the same.

possible main dishes with each other?

Yes, that is precisely what we mean.

Where is its type?

43

42

Here it is.

fun eq_main(Steak,Steak)

Here.

eq-main :

= true

| eg-main(Steak,Ravioli)
= false

| eg_main(Steak,Chicken)
= false

| eg-main(Steak,Eggplant)
= false

| eg-main(Ravioli,Steak)
= false

| eg_main(Ravioli,Ravioli)
= true

| eg_main(Ravioli,Chicken)
= false

| eg_main(Ravioli,Eggplant)
= false

| eg-main(Chicken,Steak)
= false

| eg-main(Chicken,Ravioli)
= false

| eg-main(Chicken,Chicken)
= true

| eg-main(Chicken,Eggplant)
= false

| eg_main(Eggplant,Steak)
= false

| eg-main(Eggplant,Ravioli)
= false

| eq_main(Eggplant,Chicken)
= false

| eg-main(Eggplant,Eggplant)
= true

(main * main) — bool

How does this type differ from the type of
add_a_steak?

Does that mean eg_main consumes two
things?

Here is a shorter version.

fun eg_main(Steak,Steak)

= true

| eg-main(Ravioli,Ravioli)
= true

| eg-main(Chicken,Chicken)
= true

| eg-main(Eggplant,Eggplant)
= true

| eg-main(a_-main,another_main)
= false

' It has a star to the left of — instead of the

right.

45
Not really, it consumes a pair of main dishes,

which we sometimes think of as two dishes.

° This is much shorter than the previous one

and it contains far fewer patterns

Yes, once we have defined a function, we may " That’s neat but who could have figured that

be able to rearrange patterns and make a
function shorter.

What is the value of
has_steak(Hummus,Ravioli,Sundae)?

And
has_steak (Shrimp,Steak,Mousse)?

Good. What does the function consume?

What does it produce?

What is the type of has_steak?

Could we write the unabridged version of

has_steak?

out?

48
false.

49
true.

50 . 3 .
A small meal consisting of meza, main, and

dessert.

51

bool.

52

(meza x main x dessert) — bool.

® It would make our fingers too tired.

Let’s define just the abridged version of
has_steak.

What is its type?

That’s true. But is
has_steak(5,Steak,true)

nonsense?

So, is it nonsense?

Then what is the type of this abridged
version of has_steak?

Why?

Here is the type.

' That's easy.

fun has_steak(a_meza,Steak,a_dessert)
= true
| has_steak(a-meza,a-main,a_dessert)
= false

It does consume meza, a main dish, and a

dessert. So, it seems that this is the type:

(meza * main x dessert) — bool.

° Nearly. If has_steak has the type we said it

57

58

has, then it is nonsense.

The definition of has_steak does not prevent
it from consuming 5 and true.

We need another Greek letter like o to make
the type.

° Because the first and the third components

G0

do not need to belong to the same type.
Therefore we must say the third component
is arbitrary, yet differs from the first.

Good, but could we also have written this?

has_steak :
(a * main * B') — bool

has_steak :
(8 x main * a) — bool

1 We use ’b for 8, but it is pronounced beta.

Yes, the two types are identical except for
the Greek names of the types.

1 They both say that has_steak consumes three

things, the first and third belong to
arbitrary, distinct types.

Do « and f always stand for different types? ” No, has_steak can also consume (5,Ravioli,b).

We won’t use any other Greek letters,

Does it make sense to have has_steak
consume (5,Ravioli,6)?

64

That’s good.

No, has_steak should consume only meza and
desserts along with a main dish.

Is it possible to restrict the function so that
it would consume only good things?

Unfortunately, that is only enough for us
because we agreed to respect these
statements about the types of functions. If
we really want to restrict the type of things
has_steak consumes, we need to combine the
bulleted type boxes with the definitions.

fun has_steak(a:meza,Steak,d: dessert): bool
= true
| has_steak(a:meza,ns,d: dessert):bool
= false

If it looks simple, why not combine the type
of the first version of add_a_steak and the
second definition to restrict its use, too.

fun add_a_steak(z)
= (z,Steak)

add_a_steak :
meza — (meza * main)

Relax and enjoy a hot fudge sundae.

The Fourth Moral

Some functions consume values of star
type, some produce values of star type.

* We could say its type is this.

has_steak :
(meza *x main * dessert) — bool

® Looks simple. It is obvious where the various

underlined pieces come from.

7 o
Here it is:

fun add_a_steak(z:meza):(meza * main)

= (z,Steak)

*® After a delicious Turkish meza platter.

e
‘ClOUPIIIGSPARE,
Dea @ Epbiatuciat?, 2 (oxe

Have we seen this kind of definition before? =~ What? More pizza!

datatype a pizza =
Bottom
| Topping of (a * (a pizza))

Yes, still more pizza, but this one is
interesting.

Yes, it is. Use a datatype definition to
describe the shape that is like the type fish
pizza using this definition of fish.

datatype fish =
Anchovy
| Lox
| Tuna

Is
Topping(Anchovy,
Topping(Tuna,
Topping(Anchovy,
Bottom)))

a pizza of type fish pizza?

Is
Topping(Tuna,
Topping(Anchovy,
Bottom))

a fish pizza?
Is

Topping(Anchovy,
Bottom)

a fish pizza?

Is Bottom really a fish pizza?

’ Yes, we have seen something like this kind of

definition before. A type definition using o
abbreviates many different type definitions.
But isn’t this the first datatype definition
that uses a star?

Here it is.!

datatype fish pizza =
Bottom
| Topping of (fish * (fish pizza))

®

I' Recall that ® indicates that this definition is
ungrammatical, but this definition expresses the idea best.

It is a fish pizza provided
Topping(Tuna,
Topping(Anchovy,
Bottom))
is a fish pizza, because Topping makes these
kinds of pizzas.

i Yes, it too is a fish pizza, if
Topping(Anchovy,
Bottom)
is a fish pizza.

Yes, it is, because Topping constructs a fish
pizza from Anchovy—a fish—and Bottom—a
fish pizza.

Yes, because Bottom is at the bottom of
many kinds of pizzas. We could also put it at
the bottom of an int pizza, a bool pizza, or a
num pizza.

What is the value of
rem_anchovy(
Topping(Lox,
Topping(Anchovy,
Topping(Tuna,
Topping(Anchovy,
Bottom)))))?

Is it true that the value of
rem_anchovy(
Topping(Lox,
Topping(Tuna,
Bottom)))
is
Topping(Lox,
Topping(Tuna,
Bottom))?

Does rem_anchovy consume fish pizza and
produce fish pizza?

Define rem_anchovy. Here is a skeleton.

1t is this fish pizza:
Topping(Lox,
Topping(Tuna,
Bottom)).

° Yes, the pizza that comes out is the same as

the one that goes in.

10 . .
Yes, it does, and it does not consume a num

pizza or an int pizza.

' This is easy by now.

fun rem_anchovy(Bottom)

| rem_anchovy(Topping(Anchovy,p))

| rem_anchovy(Topping(Tuna,p))

| rem_anchovy(Topping(Lox,p))

rem_anchovy :
(fish pizza) — (fish pizza)

Is there a shorter version of rem_anchouvy?

fun rem_anchovy(Bottom)
= Bottom
| rem_anchovy(Topping(Anchovy,p))
= rem_anchovy(p)
| rem_anchovy(Topping(Tuna,p))
= Topping(Tuna,rem_anchovy(p))
| rem_anchovy(Topping(Lox,p))
= Topping(Lox,rem_anchouvy(p))

N Yes, we can combine the last two patterns

and their answers if we let ¢ stand for either
Tuna or Lox.

Do we expect you to know that?

How does

rem_tuna
differ from
rem_anchovy?

Where is the type?

Can we shorten this definition like we

shortened that of rem_anchouvy?

13

14

No, but here is the definition.

fun rem_anchovy(Bottom)
= Bottom
| rem_anchovy(Topping(Anchovy,p))
= rem-anchovy(p)
| rem_anchovy(Topping(t,p))
= Topping(t,rem_anchouvy(p))

Not much. It removes Tuna instead of
Anchovy. Here is the definition.

fun rem_tuna(Bottom)
= Bottom
| rem_tuna(Topping(Anchovy,p))
= Topping(Anchovy,rem_tuna(p))
| rem_tuna(Topping(Tuna,p))
= rem_tuna(p)
| rem_tuna(Topping(Lox,p))
= Topping(Lox,rem_tuna(p))

15 o
Here it is.

rem_tuna :

(fish pizza) — (fish pizza)

’ No, the patterns and answers that are alike

are too far apart.

17

How do the following two definitions of fish They aren’t really different, because they
differ? both say that Lox, Anchovy, and Tuna are

fish. But, if we had chosen the second
datatype fish = definition, we would have defined rem_tuna
Anchovy like this.
| Lox
| Tuna fun rem_tuna(Bottom)
= Bottom
| rem_tuna(Topping(Tuna,p))
datatype fish = = rem_tuna(p)
Tuna | rem_tuna(Topping(Lox,p))
| Lox = Topping(Lox,rem_tuna(p))
| Anchovy | rem_tuna(Topping(Anchovy,p))
= Topping(Anchovy,rem_tuna(p))

rem_tuna :
(fish pizza) — (fish pizza)

Why would we have defined rem_tuna like " Because we have always ordered the patterns

that? according to the alternatives in the
corresponding datatype definition.

Can we shorten this new definition of v Yes, because the pair of patterns and

rem_tuna? answers that are alike are close together.

Do we have to change the definition of fish to * No, we don’t. The ordering of the patterns

do all that? does not matter as long as there is one for
each alternative in the corresponding
datatype definition. But we like to keep
things in the same order.

21

Write a shorter version of rem_tuna. Here’s one.
fun rem_tuna(Bottom) fun rem_tuna(Bottom)

= Bottom = Bottom

| rem_tuna(Topping(Tuna,p)) | rem_tuna(Topping(Tuna,p))
= rem_tuna(p) = rem_tuna(p)

| rem_tuna(Topping(Lox,p)) | rem_tuna(Topping(t,p))
= Topping(Lox,rem_tuna(p)) = Topping(t,rem_tuna(p))

| rem_tuna(Topping(Anchovy,p))
= Topping(Anchovy,rem_tuna(p))

. 22 . .
Can we combine rem_anchovy and rem_tuna Yes, but when we use the combined function,

into one function? we need to say which kind of fish we want to
remove.
. . 23
What is a good name for the combined How about rem_fish?
function?
How do we use rem_fish? " We give it a pair of things. The first

component could be the kind of fish we want
to remove and the second one could be the
pizza.

Could we also give it a pair where the second ® Yes, it doesn’t matter as long as we stick to
component is the kind of fish we want to one choice.
remove and the first one is the pizza?

What would be the type of rem_fish if we ** That’s easy:
chose the second alternative? ((fish pizea) * fish) — (fish pizza).

But, let’s use the first one. *" Then rem_fish consumes a pair that consists
of a fish and a fish pizza.

Here is the definition of rem_fish.

fun rem_fish(z,Bottom)

= Bottom

| rem_fish(Tuna, Topping(Tuna,p))
= rem_fish(Tuna,p)

| rem_fish(Tuna,Topping(t,p))
= Topping(t,rem_fish(Tuna,p))

| rem_fish(Anchovy, Topping(Anchovy,p))
= rem._fish(Anchovy,p)

| rem_fish(Anchovy, Topping(t,p))
= Topping(t,rem_fish(Anchovy,p))

| rem_fish(Lox, Topping(Lox,p))
= rem_fish(Lox,p)

| rem_fish(Lox,Topping(t,p))
= Topping(t,rem_fish(Lox,p))

rem_fish :
(fish x (fish pizza)) — (fish pizza)

Isn’t this clumsy?

Describe in your words how it could have
been worse.

S . .
As we will see, it could have been worse.

Here are ours:

“The pattern
rem_fish(Tuna, Topping(t,p))

matches all pairs that consist of Tuna and
a fish pizza whose topping is not Tuna. For
the long version of rem_fish we would have
used two different patterns:

rem_fish(Tuna, Topping(Anchovy,p))
and
rem_fish(Tuna, Topping(Lox,p)).

And, we would also have needed an answer
for each pattern.”

Write the unabridged version of rem._fish.

If we add another kind of fish to our
datatype, what happens to the short
function?

32

If we add another kind of fish to our
datatype, what happens to the unabridged
version?

Why does the unabridged version get so %
large?

Does that mean the unabridged version for
five fish contains 26 patterns?

° It has three more patterns than the short

one.

fun rem_fish(z,Bottom)
= Bottom
| rem_fish(Tuna,Topping(Tuna,p))
= rem_fish(Tuna,p)
| rem_fish(Tuna,Topping(Anchovy,p))
= Topping(Anchovy,rem_fish(Tuna,p))
| rem_fish(Tuna,Topping(Lox,p))
= Topping(Lox,rem_fish(Tuna,p))
| rem_fish(Anchovy, Topping(Anchovy,p))
= rem_fish(Anchovy,p)
| rem_fish(Anchovy, Topping(Lox,p))
= Topping(Lox,rem_fish(Anchovy,p))
| rem_fish(Anchovy, Topping(Tuna,p))
= Topping(Tuna,rem_fish(Anchovy,p))
| rem_fish(Lox, Topping(Lox,p))
= rem._fish(Lox,p)
| rem_fish(Lox, Topping(Anchovy,p))
= Topping(Anchovy,rem_fish(Lox,p))
| rem_fish(Lox, Topping(Tuna,p))
= Topping(Tuna,rem_fish(Lox,p))

*" We have to add two patterns and two

answers.

We have to add one pattern and one answer
for each old kind of fish and four patterns
and answers for the new kind.

Because we must compare each kind of fish to
every other kind of fish, including itself. And
the first pattern is always a test for Bottom.

* Yes, and for six fish it would be 37. Worse, if

n is the number of fish in a datatype, the
number of patterns needed for the
unabridged version is n2 + 1.

Is there a shorter way to determine whether
two fish are the same?

Wouldn’t that be great? Unfortunately,

35 N
Could we use the same name in one pattern

twice?

fun rem_fish(z,Bottom)
= Bottom
| rem_fish(z,Topping(z,p))
= rem_fish(z,p)
| rem_fish(z,Topping(t,p))
= Topping(t,rem_fish(z,p))

* Sigh.

using the same name twice in a pattern is

ungrammatical.

Let’s define the function eq_fish, which

determines whether two given fish are equal.

The unabridged version of eg_fish is huge.

37

That function consumes a pair of fish and
produces a bool.

* Ttis only four lines long.

fun eq_fish(Anchovy,Anchovy)

= true

| eq-fish(Anchovy,Lox)
= false

| eq_fish(Anchovy,Tuna)
= false

| eq_fish(Lox,Anchovy)
= false

| eq_fish(Lox,Lox)
= true

| eq-fish(Lox,Tuna)
= false

| eq_fish(Tuna,Anchovy)
= false

| eq-fish(Tuna,Lox)
= false

| eq_fish(Tuna,Tuna)
= true

Write the abridged version and provide a
type?

What is the value of
eq-fish(Anchovy,Anchovy)?

fun eq_fish(Anchovy,Anchovy)
= true
| eq_fish(Lox,Lox)
= true
| eq-fish(Tuna,Tuna)
= true
| eq_fish(a_fish,another_fish)
= false
eq_fish :
(fish * fish) — bool
[]

" Itis true, unlike eg_fish(Anchovy,Tuna).

Here is the shortest version of rem_fish yet.

40 . .
Yes, it contains

fun rem_fish(z,Bottom)
= Bottom
| rem_fish(z,Topping(t,p))
= if eq_fish(t,z)
then rem_fish(z,p)
else Topping(t,(rem_fish(z,p)))

if eTp1
then ezp,
else exps,

which we haven’t seen before. How do we
determine its type?

Is there anything new?

To determine its type, we first make sure
that the type of exp; is bool, and then we
determine the types of ezps; and ezpj.

Yes, great guess. Does this version of
rem_fish still have the type

(fish » (fish pizza)) — (fish pizza)?

How does that new version differ from this
ungrammatical one?

fun rem_fish(z,Bottom)
= Bottom
| rem_fish(z,Topping(z,p))
= rem_fish(z,p)
| rem._fish(z, Topping(t,p))
= Topping(t,rem_fish(z,p))

&

Let’s try it out with the shortest version:
rem_fish(Anchovy,
Topping(Anchovy,
Bottom)).

Does the second pattern match?

What next?

" And these two need to be the same because
the value of either one can be the result of
the entire expression. Correct?

42 Yes, since both rem_fish and Topping produce

fish pizza, rem_fish produces fish pizza, no
matter which of exp, or ezps is evaluated.

® Not too much. The shortest version uses
eq-fish to compare the two kinds of fish; this
one uses an ungrammatical pattern.

' It does not match the first pattern, because
the pizza is not Bottom.

* Ifzis Anchovy, t is Anchovy, and p is
Bottom, then it matches.

° Next we need to compare t with z, which are

equal, so eq.fish(t,z) is true.

47

Therefore, we take rem_fish(z,p) as the Since p is Bottom, the result of that

answer. expression is Bottom, and that is also the
result of
rem_fish(Anchovy,
Topping(Anchovy,
Bottom)).
What is the value of * Again, the first pattern doesn’t match, but
rem_fish(Tuna, the other one does, if z is Tuna, t is Anchovy,
Topping(Anchovy, and p is
Topping(Tuna, Topping(Tuna,
Topping(Anchovy, Topping(Anchovy,
Bottom))))? Bottom)).

49

What is eq_fish(¢,z) if t is Anchovy and z is false.
Tuna?
So what is the answer? *® The answer is
Topping(Anchovy,
rem_fish(Tuna,
Topping(Tuna,
Topping(Anchovy,
Bottom)))),
which is what follows the pattern and the =
sign with z replaced by Tuna, ¢ replaced by
Anchovy, and p replaced by
Topping(Tuna,
Topping(Anchovy,
Bottom)).

Which pattern does *" It matches the second one again if z is Tuna,
rem_fish(Tuna, t is Tuna, and p is
Topping(Tuna, Topping(Anchovy,
Topping(Anchovy, Bottom).
Bottom)))

match?

And how do we continue? ** We determine the value of
rem_fish(Tuna,
Topping(Anchovy,
Bottom)),

because we want to remove Tuna.

Is
Topping(Anchovy,
Bottom)
the value of
rem_fish(Tuna,
Topping(Anchovy,
Bottom))?

So what is the final answer?

Does
rem_int(3,
Topping(2,
Topping(3,
Topping(2,
Bottom))))

look familiar?

What does rem_int do?

With eg_int,! define rem_int.

1 You must define eq-int as
fun eq-int(n:int,m:int) = (n = o).

Describe how rem._fish differs from rem_int.

53 . .
Yes, because the pizza does not contain any

Tuna.

' We still need to top it with anchovy:
Topping(Anchovy,
Topping(Anchovy,
Bottom)).

° Yes, it looks like what we just evaluated.

56
It removes ints from int pizzas just as

rem._fish removes fish from fish pizzas.

" That's easy, it is nearly identical to the
definition of rem_fish.

fun rem_int(z,Bottom)
= Bottom
| rem_int(z, Topping(t,p))
= if eq_int(t,z)
then rem_int(z,p)
else Topping(t,(rem-int(z,p)))

rem_int :
(int x (int pizza)) — (int pizza)

8 .
Here is what is on our mind:

“They look alike, but they differ in the
types of the things that they consume and
produce, and therefore in how they
compare toppings.

Can we define one function that removes

toppings from many kinds of pizza?

What is the value of
subst_fish(Lox,Anchovy,
Topping(Anchovy,
Topping(Tuna,
Topping(Anchovy,
Bottom))))?

What value does subst_fish consume?

And what does it produce?

What is the value of
subst_int(5,3,
Topping(3,
Topping(2,
Topping(3,
Bottom))))?

What value does subst_int consume?

And what does it produce?

We can define subst_fish.

fun subst_fish(n,a,Bottom)
= Bottom
| subst_fish(n,a,Topping(t,p))
= if eq_fish(t,a)
then Topping(n,subst_fish(n,a,p))
else Topping(t,subst_fish(n,a,p))

subst_fish :
(fish * fish x (fish pizza)) — (fish pizza)

Can we define subst_int?

61

63

G4

59

Yes, but not until chapter 8.

° It is the same pizza with all instances of
Anchovy replaced by Lox:
Topping(Lox,
Topping(Tuna,
Topping(Lox,
Bottom))).

It consumes a triple whose first two
components are of type fish and whose last
component is a fish pizza.

‘It always produces a fish pizza.

It is the same pizza with all 3s replaced by
5s:
Topping(5,
Topping(2,
Topping(5,
Bottom))).

It consumes a triple whose first two
components are of type int and whose last
component is an int pizza.

65 . .
It always produces an int pizza.

* To get from subst_fish to subst_int, we just

need to substitute fish by int everywhere.

fun subst_int(n,a,Bottom)
= Bottom
| subst_int(n,a,Topping(t,p))
= if eg_int(t,a)
then Topping(n,subst_int(n,a,p))
else Topping(t,subst_int(n,a,p))

subst_int :

(int * int * (int pizza)) — (int pizza)
[]

eq-int(17,0)?

eq-int(17,Tuna)?

What is the value of
eq-num(
One_more_than(
Zero),
One_more_than(
Zero))?

Define eq_num, but don’t forget that it takes "

two values.

. . . . 71
Define the abridged version. Here is a version

where we reordered some patterns. Can the
last two be combined?

fun eg_num(Zero,Zero)
= true
| eg-num(
One_more_than(n),
One_more_than(m))
= eg_num(n,m)
| eg-num(One_more_than(n),Zero)
= false
| eg-num(Zero,One_more_than(m))
= false

67
false,
because 17 and 0 are different.

This is nonsense,! because 17 and Tuna
belong to two different types.

1 Remember that we use the word “nonsense” to refer to
expressions that have no type.

true,
because both values are constructed with

One_more_than and the same component.

It is easy to write the unabridged version if
we use two patterns for each value that it
consumes.

fun eq_num(Zero,Zero)
= true
| eg_num(One_more_than(n),Zero)
= false
| eq-num(Zero,One_more_than(m))
= false
| eg-num(
One_more_than(n),
One_more_than(m))
= eg_num(n,m)

No problem.

fun eq_num(Zero,Zero)
= true
| eg-num(
One_more_than(n),
One_more_than(m))
= eg_-num(n,m)
| eg-num(n,m)
= false

No problem?

Perhaps it is time to digest something
besides this book.

The Fifth Moral

Write the first draft of a function fol-
lowing all the morals. When it is cor-
rect and no sooner, simplify.

™ Not if we start from a correct program and

carefully transform it, step by step.

" Great idea. How about a granola bar and a
walk?

e
(Ofa Fa by, Y&
Y ailf] @4 Seesess Y

Is Yes.
Flat(Apple,
Flat(Peach,
Bud))

a flat tree?

Is
Flat(Pear,
Bud)

a flat tree?

And how about
Split(

Bud,
Flat(Fig,
Split(

Bud,
Bud)))?

Here is one more example:

Split(
Split(
Bud,
Flat(Lemon,
Bud)),
Flat(Fig,
Split(
Bud,
Bud))).

Is it flat?

Ready to go?

Here are some fruits.

datatype fruit =
Peach
| Apple
| Pear
| Lemon

| Fig

Let’s say all trees are either flat, split, or
bud. Formulate the datatype for trees.

How is it different from all the other
datatypes we have seen before?

’ Yes, it is also a flat tree.

? No, it contains Split, so it can’t be flat.

No, it isn’t flat either.

* Sure. Let’s define the datatypes we need to
make this work.

° It does not differ too much from the
datatypes we have seen before.

datatype tree =
Bud
| Flat of fruit * tree
| Split of tree * tree

" The name of the new datatype occurs twice
in one (the last) alternative.

How many patterns does the definition of ° Three, because it consumes trees, and the
flat_only contain? datatype tree contains three alternatives.

What type of value does flat_only produce? ® bool.

What function does flat_only remind us of? ° only_onions.

11

Here is a skeleton for flat_only. That’s easy now.
fun flat_only(Bud) fun flat_only(Bud)
= = true
| flat_only(Flat(f,t)) | flat_only(Flat(f,t))
= = flat_only(t)
| Aat_only(Split(s,t)) | flat_only(Split(s,t))
= = false

Fill in the blanks and supply the type.
flat_only :
tree — bool

Define the function split_only, which checks * Here is the easy part.

whether a tree is constructed with Split and
Bud only. fun split_only(Bud)

= true

| split_only(Flat(f,t))
= false

| split_only(Split(s,t))

What is difficult about the last line? " We need to check whether both s and t are
split trees.

14

Isn’t that easy? Yes, we just use split_only on s and ¢.
And then? ® Then we need to know that both are true.
Doesn’t that mean we need to know that e Yes.

split_only(t) is true if split_only(s) is true?

Do we need to know whether split_only(t) is " No, then the answer is false.

true if split_only(s) is false?

Finish the definition of split_only using
if ...
then ...
else

1 We could have written this if-expression as
split.only(s) andalso split_only(t).

18

Now we can do it.

fun split_only(Bud)
= true
| split-only(Flat(f,t))
= false
| split_only(Split(s,t))
= if! split_only(s)
then split-only(t)
else false

split_only :
tree — bool

Give an example of a tree for which split_only " There is a trivial one: Bud.

responds with true.

How about one with five uses of Split?

Does this tree contain any fruit?

Here is one:
Split(
Split(
Bud,
Split(
Bud,
Bud)),
Sp:|it(
Bud,
Split(
Bud,
Bud))).

*" No tree for which split_only is true contains

any fruit.

Here is one version of the definition of the
function contains_fruit.

fun contains_fruit(Bud)
= false
| contains_fruit(Flat(f,t))
= true
| contains_fruit(Split(s,t))
= if! contains_fruit(s)
then true
else contains_fruit(t)

contains_fruit :
tree — bool

Write a shorter one.

1 We could have written this if-expression as
contains _fruit(s) orelse contains.fruit(t).

What is the height of
Split(
Split(
Bud,
Flat(Lemon,
Bud)),
Flat(Fig,
Split(
Bud,
Bud)))?

What is the height of
Split(
Bud,
Flat(Lemon,
Bud))?

What is the height of

Flat(Lemon,
Bud)?

* We can use split_only, which already checks

whether a tree contains a Flat.

fun contains_fruit(z)
= if! split_only(z)
then false
else true

1 We could have written this if-expression as
not(split_only(x)).

23

3.

24

What is the height of
Bud?

So what is the height of a tree?

Does height consume a tree?

What is the value of
height (
Flat(Fig,
Flat(Lemon,
Flat(Apple,
Bud))))?

What is the value of
height (
Split(
Split(
Bud,
Bud),
Flat(Fig,
Flat(Lemon,
Flat(Apple,

Bud)))))?

Why is the height 47

26

" The height of a tree is the distance from the

root to the highest bud in the tree.

28 . .
Yes, and it produces an int.

29 . .
3, isn’t it?

30

' Because the value of

height(
Sp:”t(
Bud,
Bud))
is 1, the value of
height(
Flat(Fig,
Flat(Lemon,
Flat(Apple,
Bud))))

is 3, and the larger of the two numbers is 3.

And how do we get from 3 to 47

Define the function larger_of.

It consumes a pair of ints and produces an
int.

* We need to add 1 to the larger of the

numbers so that we don’t forget the Split at
the root of the tree.

33 .
What does it consume?

! Well, then it must be this.

larger_of :
(int * int) — int

Here is height.

fun height(Bud)
=0
| height(Flat(f,t))
=1 + height(t)
| height(Split(s,t))
=1 + larger-of (height(s),height(t))

What is the value of
height (Split(Bud,Bud))?

And why is it 1?

What is the value of
subst_in_tree(Apple,Fig,
Split(
Split(
Flat(Fig,
Bud),
Flat(Fig,
Bud)),
Flat(Fig,
Flat(Lemon,
Flat(Apple,
Bud)))))?

fun larger_of (n,m)
= if less_than!(n,m)
then m
else n

1 You must define less_than as

fun less_than(n:int,m:int) = (n < m).

** And here is its type.

height :
tree — int

36
1, of course.

" Because height(Bud) is 0 and the larger of 0

and 0 is 0. And one more than 0 is 1.

* That’s also easy. We replace all Figs by
Apples:
Split(
Split(
Flat(Apple,
Bud),
Flat(Apple,
Bud)),
Flat(Apple,
Flat(Lemon,
Flat(Apple,

Bud)))).

Do we need to define eq_fruit before we
define subst_in_tree? Here is its type.

eq-fruit :
(fruit * fruit) — bool

How many lines would eg_fruit be if we had

twenty-five different fruits?

Define the function subst_in_tree.

° How could you know, but we do need it!

fun eq_fruit(Peach,Peach)

= true

| eq.fruit(Apple,Apple)
= true

| eq_fruit(Pear,Pear)
= true

| eq_fruit(Lemon,Lemon)
= true

| eq-fruit(Fig,Fig)
= true

| eq-fruit(a_fruit,another_fruit)
= false

° When you have counted them all, you can

have some apple juice.

" It's like subst_fish and subst_int from the end

of chapter 5.

fun subst_in_tree(n,a,Bud)
= Bud
| subst_in_tree(n,a,Flat(f,t))
= if eq_fruit(f,a)
then Flat(n,subst_in_tree(n,a,t))
else Flat(f,subst_in_tree(n,a,t))
| subst_in_tree(n,a,Split(s,t))
= Split(
subst_in_tree(n,a,s),
subst_in_tree(n,a,t))

subst_in_tree :
(fruit * fruit * tree) — tree

How many times does Fig occur in
Split(
Split(
Flat(Fig,
Bud),
Flat(Fig,
Bud)),
Flat(Fig,
Flat(Lemon,
Flat(Apple,
Bud))))?

Write the function occurs.

Do you like your fruit with yogurt?

Is it true that
An_atom(5)

is an sexp?

Is it true that
An_atom(Fig)

is an sexp?

Is it true that
A_slist(Empty)

is an sexp?

43

47

42

This is so easy; just follow the patterns.

fun occurs(a,Bud)
=0
| occurs(a,Flat(f,t))
= if eq_fruit(f,a)
then 1 + occurs(a,t)
else occurs(a,t)
| occurs(a,Split(s,t))
= occurs(a,s) + occurs(a,t)

occurs :
(fruit * tree) — int

44
We prefer coconut sorbet.

45
Yes,
because An_atom is one of the two
constructors of int sexp.

46

Yes,
because An_atom is one of the two
constructors of fruit sexp.

Yes,
because Aslist is the other constructor of
int sexp.

Is it also true that
Aslist(Empty)
is an sezxp?

Is it true that
Scons(An_atom(5),
Scons(An_atom(13),
Scons(An_atom(1),
Empty)))

is an int slist?

Is it also true that
Scons(An_atom(Fig),
Empty)

is a fruit slist?

Okay, so here are two new shapes.

48

Yes,
because A_slist is the other constructor of

fruit sexp.

49

Yes,
because here Scons constructs int slists

from int sexps and int slists.

50

Yes,
because Scons also constructs fruit slist

from fruit sexps and fruit slists.

a slist and a sexp.

datatype
a slist =
Empty
| Scons of ((a sexp) * (a slist))
and
a sexp =
An_atom of o
| Aslist of (a slist)

What are the two shapes?

Why are the two definitions separated by
and?

* The first definition, « slist, refers to the
second, a sexp; and the second refers to the

first.

Do such mutually self-referential datatypes » Always.
lead to mutually self-referential functions?

How many times does Fig occur in

Scons(An_atom(Fig),
Scons(An_atom(Fig),
Scons(An_atom(Lemon),

Empty)))?

What is the value of
occurs_in_slist(Fig,
Scons(A slist(
Scons(An_atom(Fig),
Scons(An_atom(Peach),
Empty))),
Scons(An_atom(Fig),
Scons(An_atom(Lemon),

Empty))))?

And what does
occurs_in_sexp(Fig,
A_slist(
Scons(An_atom(Fig),
Scons(An_atom(Peach),

Empty))))

evaluate to?

54 .
Twice.

2, again.

56

Here are the skeletons of occurs_in_slist and
OCCUTS_IN_SeTp.

fun
occurs_in_slist(a,Empty)

| occurs_in_slist(a,Scons(s,y))

and
occurs_in_sezp(a,An_atom(b))
= if eq_fruit(b,a)
then 1
else 0
| occurs_in_sezp(a,Aslist(y))

occurs_in_slist :

(fruit = fruit slist) — int
[]

Fill in the blanks. Also provide the type for
OCCUTS_IN_SEeTp.

Define subst_in_slist and subst_in_sexp. Here

are their types.

57

The blanks are easy now, because they just
stand for the obvious answers.

fun
occurs_in_slist(a,Empty)
=0
| occurs_in_slist(a,Scons(s,y))
= occurs_in-sezp(a,s) +
occurs_in_slist(a,y)
and
occurs_in_sezp(a,An_atom(b))
= if eq_fruit(b,a)
then 1
else 0
| occurs_in_sezp(a,Aslist(y))
= occurs_in_slist(a,y)

OCCUTS_IN_SeTp :
(fruit * fruit sexp) — int

° That is no problem either.

fun

subst_in_slist :
(fruit = fruit = fruit slist) — fruit slist

subst_in_sezp :

(fruit x fruit * fruit sexp) — fruit sexp

subst_in_slist(n,a,Empty)
= Empty
| subst_in_slist(n,a,Scons(s,y))
= Scons(
subst_in_sezp(n,a,s),
subst_in_slist(n,a,y))
and

subst_in_sexp(n,a,An_atom(b))
= if eq_fruit(b,a)
then An_atom(n)
else An_atom(b)
| subst_in_sezp(n,a,Aslist(y))
= Aslist(subst_in_slist(n,a,y))

Let’s remove atoms. Here are the skeletons
for rem_from_slist and rem_from_sexp.

fun
rem_from_slist(a,Empty)

| rem_from_slist(a,Scons(s,y))

and
rem_from_sezp(a,An_atom(b))

| rem_from_sezp(a,Aslist(y))

rem_from_slist :
(fruit = fruit slist) — fruit slist

rem_from_sezp :
(fruit * fruit sexp) — fruit sexp

What is the value of
rem_from_sezxp(Fig,
An_atom(Fig))?

And what is the value of
rem_from_slist(Fig,
Scons(An_atom(Fig),

Empty))?

When does rem_from_slist produce a slist
that is shorter than the one it consumes?

Does that mean we should check in
rem_from_slist whether the sezp inside of
Scons is an atom?

0 . .
Here are the obvious pieces.

fun
rem_from_slist(a,Empty)
= Empty
| rem_from_slist(a,Scons(s,y))

and
rem_from_sezp(a,An_atom(b))

| rem_from_sexp(a,Aslist(y))
= Aslist(rem_from_slist(a,y))

° It should be a fruit sexp, but there is no

61

63

possible answer. No sezp is like An_atom(Fig)
without Fig.

This is a related problem. The answer must
be Empty, because that is the slist that is
similar to

Scons(An_atom(Fig),

Empty)
without Fig.

* When the first element in the slist is equal to

the element to be removed.

Yes, we should check that and whether the
atom is the one that is to be removed.

Here are the refined skeletons.

fun
rem_from_slist(a,Empty)
= Empty
| rem_from_slist(a,Scons(s,y))

= if eq_fruit_in_atom(a,s)
then rem_from_slist(a,y)
else Scons(

rem_from_sezp(a,s),

rem_from_slist(a,y))
and

rem_from_sezp(a,An_atom(b))

| rem_from_sexp(a,Aslist(y))
= Aslist(rem_from_slist(a,y))

Is rem_from_sexp ever applied to a fruit and
an atom constructed from the same fruit?

Voila.

64

We cannot know because we have never seen
eq_fruit_in_atom before.

o That’s not difficult.

fun eq_fruit_in_atom(a,An_atom(s))
= eq_fruit(a,s)
| eq-fruit_in_atom(a_fruit,Aslist(y))
= false

What is the type of eq_fruit_in_atom?

And what does it do?

Is rem_from_sezp ever applied to a fruit and
an atom constructed from the same fruit?

eq-fruit_in_atom :
(fruit = fruit sexp) — bool

6 . .
It consumes a fruit and a fruit sexp and
determines whether the latter is an atom
constructed from the given fruit.

7 . .
Not in rem_from_slist, because rem_from_sexp

is only applied when eg_fruit_in_atom(a,s) is
false.

What is the answer to the first pattern in
rem._from_sexp?

*® Since it is never applied to two identical

atoms, the answer is always An_atom(b).
Hence, these are the complete mutually
self-referential definitions.

fun
rem_from_slist(a,Empty)
= Empty
| rem_from_slist(a,Scons(s,y))
= if eq_fruit_in_atom(a,s)
then rem_from_slist(a,y)
else Scons(
rem_from_sezp(a,s),
rem_from_slist(a,y))
and
rem_from_sezp(a,An_atom(b))
= An_atom(b)
| rem_from_sezp(a,Aslist(y))
= Aslist(rem_from_slist(a,y))

Here are two skeletons that are similar to the ° The only change is in the second pattern of

first two.

fun
rem_from_slist(a,Empty)
= Empty
| rem_from_slist(a,Scons(An_atom(b),y))

and
rem_from_sezp(a,An_atom(b))

| rem_from_sezp(a,Aslist(y))
= Aslist(rem_from_slist(a,y))

What changed?

What is the answer that corresponds to that
pattern?

Can rem_from_slist match all possible «
slists?

rem_from_slist. The new pattern says that
the first item of the slist must be an atom.

" The answer depends on a and b. If they are

the same, it is
rem_from_slist(a,y)

otherwise, it is

Scons(An_atom(b),rem_from_slist(a,y)).

' No, not if the first element is an « sexp that

was constructed by A slist.

Let’s add another pattern to the skeletons.

What is the answer for the last pattern in
rem._from_slist?

Does that mean we can use
rem_from_slist(a,z)
and

rem_from_slist(a,y)?

And what do we do with the results?

? Something like this.

fun
rem_from_slist(a,Empty)
= Empty
| rem_from_slist(a,Scons(An_atom(b),y))
= if eq_fruit(a,b)
then rem_from_slist(a,y)
else Scons(
An_atom(b),
rem_from_slist(a,y)
| rem_from_slist(a,Scons(Aslist(z),y))

and
rem_from_sezp(a,An_atom(b))

| rem_from_sezp(a,Aslist(y))
= Aslist(rem_from_slist(a,y))

" We need to remove all a’s from the slist z

and from the slist y.

74

Yes.

" We Scons them back together again.

Refine the skeletons.

Describe in your own words what we just
discovered.

The Sixth Moral

As datatype definitions get more com-
plicated, so do the functions over them.

° Once we fill in the blank in rem_from_slist,

we no longer need rem_from_sexp. Here is the
complete definition.

fun rem_from_slist(a,Empty)
= Empty
| rem_from_slist(a,Scons(An_atom(b),y))
= if eq_fruit(a,b)
then rem_from_slist(a,y)
else Scons(
An_atom(b),
rem_from_slist(a,y)
| rem_from_slist(a,Scons(Aslist(z),y))
= Scons(
A_slist(rem_from_slist(a,z)),
rem_from_slist(a,y))

Here are our words:

“After we have designed a program that
naturally follows the datatype definitions,
we can considerably improve it by focusing
on its weaknesses and carefully rearranging
its pieces.”

Lmacifierns fise
E@@ﬂ’)ﬂ@w %@

L2z -/ 1
H/\f};ﬁ. /
I)'-r

4L

11

Ll

NHI V/M |

What is the type of this function?

fun identity(z)
=z

What does a — o mean?

p
fﬂr

SN

1 . . .
Whatever it consumes is what it produces.

identity :
a—a

* It means that identity is a function that

consumes and produces values of the same
type, no matter what the type is.

What does “no matter what the type is” ’

Here are our words:
mean?

“Pick an arbitrary type. Then, identity

consumes and produces values of the
chosen type.”

And what does the word “arbitrary” mean? Our words again.
“It means that there is no relationship

between the type that you choose and the
type that we choose.”

What is the type of true_maker? * It always produces true.

fun true_maker(z)

true_maker :
= true

a — bool

Was that easy? Of course, true_maker consumes values of

any type and always produces a bool.

Make up a value of the type bool_or_int. " Here is one: Hot(true).

datatype bool_or_int =
Hot of bool
| Cold of int

What is the type of Hot(true)? bool_or_int.

And how about another value of this type? Cold(10).

What is the type of Cold(5)? ** bool_or_int.

What is the type of hot_maker? It must also start with «, because it can

consume anything.

fun hot_maker(z)

= Hot
And what does it produce? Yy produces Hot.
What is the type of Hot(true)? ** bool_or_int, as we mentioned earlier.
What is the type of true? "

bool.

So Hot is of type bool — bool_or_int.

16

Does that mean Hot is a function? Yes, absolutely.
Did we just agree that constructors are " Those constructors that are followed by of in
functions? the datatype definition are indeed functions.
Then what is the type of hot_maker? ** It must be this.

hot_maker :

a — (bool — bool_or_int)

Does that mean hot_maker is a function? * Yes, we defined it that way.
Here is help, a new function definition. * No,
because true_maker consumes all types of
fun help(f) values, e.g., true, 6, Hot, and so on.
= Hot(
true_maker(fun help(f)
if true_maker(—) = Hot(
then f true_maker(
else true_maker)) if true_maker(5)
then f
else true_maker))
help :
(a — bool) — bool_or_int
[]

Does it matter whether the blank is replaced

by true or 57

What is the difference between *" The difference is the placement of the
matching parentheses. In the first type, the

a — (bool — bool_or_int)
(parentheses enclose the last two types, bool

and _ and bool_or_int, and in the second type the
(a — bool) — boolor_int? parentheses enclose the first two types, a and
bool.
Are they really different? * Yes, one consumes a function and the other
produces one.
Does that mean functions can consume * Yes, and, as we have already seen, they can

functions? produce them, too.

. 24 .
Does that mean functions are values? Yes, functions are values, too.
)

How do we determine the type of the values * That’s easy. We know that Hot always
that help produces? returns a bool_or_int, which means that help
must be of type

_ — bool_or_int.

How do we determine the type of the values ** That’s tricky.
that help consumes?

What is the type of the values that Hot *" bool.
consumes?
Does true_maker produce a bool? * Yes, it does. We said so earlier.

Is it important that Hot consumes bools and * Yes, because whatever true_maker produces

that true_maker produces them? is consumed by Hot in the definition of help.
What is the type of the values that ** 1t consumes values of any type and therefore
true_maker consumes? it doesn’t matter how we fill in the blank.
What is the type of " It doesn’t matter, because the result of this
if true_maker(—) expression is consumed by true_maker and
then f true_.maker consumes values of any type.

else true_maker?

Does it matter that > Although it doesn’t matter which type it
if true_maker() has, it matters a lot that it has a type. If the
then f expression didn’t have a type, it would be
else true_maker nonsense.
has a type?
How do we determine the type of * Tt is the type of exp, or the type of ezps,
if exp; because their types must be the same.
then ezp,
else exps3?
. 34
What is the type of true_maker? a — bool.
What is the type of f? * It doesn’t have one yet. Therefore we can say

that f’s type is a — bool, because f and
true_maker must have the same type.

. 36
Do we know enough now to determine the

type of help?

Should we go through this again?

Look at this datatype definition.

datatype chain =
Link of (int x (int — chain))

What is unusual about it?

Is the definition self-referential?

Have we seen self-referential datatypes
before?

41

How do they differ from this one?

42

Make up a value of type chain.

43

What does that mean?

. . 44
Haven'’t we just seen that functions are

values?

Yes, we do. The type of f is the type of what
is consumed, and the type of what is
produced by Hot is bool_or_int. Therefore the
type of help is

(ac = bool) — bool_or_int.

> Perhaps someone should.

® It is the first datatype definition that has

only one alternative. It is also the first
datatype definition to use —.

39 . . .
Yes, because chain appears in its own

definition.

40
Sure, many of them were.

This datatype definition includes only
self-referential alternatives, whereas the
others always contain at least one alternative
that is not.

That seems impossible. The basic
alternatives—those without a
self-reference—in the previous datatype
definitions always provide us with a starting
point for the creation of values. The
datatype definition of chain has no starting
point.

Every value of type chain is a pair. The first
component of the pair must be an int. That
part is easy. But, the second component
must be a function.

Yes, but the kind of function we need now is
strange.

What is strange about it?

Does that mean the function’s type is

int — chain?

Here is a start at such a function.

fun ints(n)
= Link(n +1, —)

What is the type of ints?

How must we fill in the blank?

Don’t we have such a function?

Fill in the blank now.

What is the value of
ints(0)?

Why?

What is the value of
ints(5)?

What is the value of
ints(13)?

What is the value of
ints(50005)7

How many times can we do this?

45
It consumes an int, which is also easy, but it

produces a chain, which brings us back to
the original problem.

° That is what the datatype requires.

T clearly consumes an int and the answer it

constructs is a chain.

ints :
int — chain

48

As we said before, the blank must be filled in
with a function of type int — chain.

® Only one: ints.

50 ..
Now it is easy.

fun ints(n)
= Link(n + 1,ints)

[

Link(1,ints).

52 .
Because n stands for 0 and the answer is

Link(0 + 1,ints).
Link(6,ints).

Link(14,ints).

55

Link(50006,ints).

* Lots. As many as there are ints.

Did you notice the roman “s” at the end of I not, start over.
int?

What is the type of this function? ** This function also consumes ints and
produces chains.

fun skips(n)
= Link(n + 2,skips) skips :
int — chain

What is the value of ? Link(10,skips).
skips(8)?
What is the value of ” Link(19,skips).
skips(17)?
What are the types of these functions? " The types are easy, if mod consumes a pair
of ints.

fun divides_evenly(n,c) —
= egq_int((n mod c),0) divides_evenly :
(int * int) — bool

fun is-mod_5_0or_7(n)

= if divides_evenly(n,5) is.mod_5_or.7 :
then true int — bool
else divides_evenly(n,7)

G2

Here is another function that produces a Okay.
chain.

fun some_ints(n)
= if is_mod_5_0r_7(n + 1)
then Link(n + 1,some_ints)
else some_ints(n + 1)

some_ints :
int — chain

What are the values of
some_ints(1),
some_ints(17),

and
some_ints(116)?

And why are these the right answers?

Is that it?

What is the first ¢nt in the chain
ints(0)?

How about the second?

Yet, we know that it is 2, don’t_we?

And what do we get here?

Is it true then that the third int is 37

What is the first some_int in the chain

some_ints(0)?

How about the second?

Yet, we know that it is 7, don’t we?

63

No problem:
Link(5,some_ints),
Link(20,some_ints),

and
Link(119,some_ints).

* Because 5, 20, and 119 are evenly divisible
by 5 or 7.

65
Tea break, anyone?

° It’s obviously 1.

*" That’s not obvious. Every Link contains an
int and a function. There isn’t really a
second int.

68
Yes, we know:

“Because we may think of ints as a very
long sequence of ints. We go from one
element in this sequence to the next by
applying the second component of ints(n)
to the first.”

Link(2,ints).

70 e o
Yes, it is 3 in the very same sense.

71

5.

7 . .
* That’s not obvious. Every Link contains a

number and a function. There isn’t really a
second some_int.

73 Yes, if we apply the second component of
some_ints(0) to the first, we get

Link(7,some_ints).

What is some_ints(0)?

How many patterns do we need for a
function that consumes chains?

Fill in the blanks in this skeleton.

" It is a chain of all those numbers (larger

than 1) that are evenly divisible by 5 or 7.
" One,

because there is only one alternative in the

datatype definition of chain.

76

The first blank is easy. The result must be

fun chain_item(n,Link(¢,f))
= if eg_int(n,1)
then
else chain_item(n — 1,

an int, so it can only be i or n. Since we
know that n is 1, we pick 3.

chain_item :
(int * chain) — int

Why is ¢ a good answer and not just an
answer of the right type?

Could the answer have been 177

What is the type of the second blank?

What are our possibilities?

Is Link(¢,f) an interesting possibility?

So the blank must be filled with f(¢), right?

" We are looking for the nth int in the chain.
Since ¢ is the first (i.e., 1st) element of the
chain, the result is ¢ when n is 1.

™ The type is right, but who would want to
define a function that always returns 177

9 . . .
It must be chain, because chain_item
consumes a pair consisting of an int and a
chain.

* The type of Link(%,f) is chain. But, since f
is of type

int — chain,

f(2) is also of type chain.
81 No,
because chain_item would always receive a
pair with the same second component, so
the answer would always be the first int in
the chain.

? Yes, because a chain consists of an int and a
function that consumes that value to produce
the next chain.

Complete the definition of chain_item. * Here it is.

fun chain_item(n,Link(7,f)) fun chain_item(n,Link(4,f))
= if eg_int(n,1) = if eq_int(n,1)
then ¢ then ¢
else chain_item(n — 1,_) else chain_item(n — 1,f(i))
How do we find the 1st, 6th, and 37th " We determine the values of

elements of some_ints(0)? chain_item(1,some_ints(0)),

chain_item(6,some_ints(0)),
and
chain_item(37,some_ints(0)).

And what are the values? % They are 5, 20, and 119, respectively.

Easy? *If you didn’t take a tea break before, how
about some coffee now?

What is the next number in this sequence? 3.

2,3,5,7, 11, 13, 17, 19, 23, 29, 31, ...

Why? > It is the next prime number.

What is a prime number? * A number is prime if it is (strictly) greater
than 1 and can be divided evenly only by
itself and 1.

[\]
What is the value of ’ true, of course.

is_prime(3)?

What is the value of o false,
is_prime(81)? because it can be divided evenly by 3.

Let’s get started on is_prime.

fun

is_prime(n)

= has_-no-divisors(n,n — 1)
and

has_no_divisors(n,c)

What is the type of is_prime?

Define has_no_divisors, which goes through
all the numbers from c, the second value it
consumes, down to 2 and tests whether n,
the first value consumed, is evenly divisible
by any of them. If so, it produces false;
otherwise, it produces true.

Why do we use and to combine two
definitions?!

1 You could also have written
local
fun has.no._divisors(nm,c)
= if eq-int(c.1)
then true
else
if divides_evenly(n,c)
then false
olse hasno.divisors(n,c - 1)
in
fun is.prime(n)
= hasno.divisors(n.n - 1)
end

94

92 .
It consumes ints and produces bools.

In that case, ¢ must vary.

fun
is_prime(n)
= has_no_divisors(n,n — 1)
and
has_no_divisors(n,c)
= if egq_int(c,1)
then true
else
if divides_evenly(n,c)
then false
else has_no_divisors(n,c — 1)

Because the first definition is more important
than the second one and yet it refers to the
second one.

1
...or

fun is_prime(n)
= let
fun has.no.divisors(n,c)
= if eq-int(c,1)
then true
else
if divides.evenly(n,c)
then false
else has_no.divisors(n,c - 1)
in
has_no.divisors(n,n - 1)
end

Do we now know what the types of is_prime
and has_no_divisors are?

Here is another long chain link.

Now it is easy because we know that
has_no_divisors produces a bool.

is_prime :
int — bool

has_no_divisors :
(int * int) — bool

96

37.

fun primes(n)
= if is_prime(n + 1)
then Link(n + 1,primes)
else primes(n + 1)

primes :
int — chain

What is the value of
chain_item(12,primes(1))?

Do you like rabbits?

Here is how to make more rabbits.!

fun fibs(n)(m)
= Link(n 4+ m,fibs(m))

What does fibs consume?

1 In the Liber abaci, Leonardo of Pisa (1175-1250), also
known as Fibonacci, describes the following problem. A pair
of rabbits is placed in a pen to find out how many offspring
will be produced by this pair in one year if each pair of
rabbits gives birth to a new pair of rabbits each month
starting with the second month of its life. The solution is
known as the Fibonacci Sequence of numbers.

What does fibs produce?

97

Perhaps not to eat but to pet.

It seems to consume two things, called n and
m. Since we add them together, they must
be ints.

* That’s easier. It produces a chain.

So why isn’t this the type of fibs?

100 .
Because there is no comma between n and

m; instead there is)(.

fibs:

(int * int) — chain

What must be the type of fibs(n)?

So what is the type of fibs?

And then?

So what is the type of fibs?

" We know that Link consumes an int and a

function from int to chain. So, fibs(n) must
be a function from int to chain.

" really consumes just one int.

[produces a function from int to chain.

04 _ .
Now it is obvious.

fibs :

int — (int — chain)

Yes, and we just found out about another 10 Yes, we did.
notation for building functions that return

functions.

What is the value of
Link(0,ftbs(1))?

B (; you know this, take a short nap.

To determine its value, we only need to know 7 Yes, but what is it?

the value of fibs(1).
What type of thing is fibs(1)?

Here is such a function.

*® It is a function of type int — chain.

109

It is like fibs, without (n).

fun fibs_1(m)
= Link(1 + m,fibs(m))

Where does it come from?

What showed up in place of n?

1 Every place where n appeared in the

definition, except behind fibs, there is a 1
now.

11

We think of fibs_1 as the value of fibs(1). ' That is simple enough.

What is the value of "* The same as the value of

fibs(1)(1)? fibs.1(1).

Do you see the underscores under the 1’s? e Yes, and the 1 without an underscore has
been consumed in the process.

What is the value of m Link(2,fibs_1), a chain.
fibs_1(1)?

What is the value of " The same as the value of
fibs_1(2)? Link(3,fibs(2)).

What is the value of "® It is a function from int to chain.
fibs(2)?

Define fibs_2. """ This is easy as pie.

fun fibs_2(m)
= Link(2 + m,fibs(m))

118

Don’t forget the ice cream! Okay.
The Seventh Moral

Some functions consume values of ar-
row type; some produce values of arrow
type.

73]
@)

) BIOLWASE Y AWEN R I O W,

Do you know fish lists and int lists?

=

' The datatype definition of list is an old

family friend of ours.

datatype a list =
Empty
| Cons of a * o list

da tta

Can you compare apples to oranges? No, how could we do that?

First, we put them together in a new ° Then comparing them is easy.
datatype.
fun eq_orapl(Orange,Orange)
datatype orapl! = = true
Orange | eq-orapl(Apple,Apple)
| Apple = true
| eg-orapl(one,another)
= false
eqg-orapl :
(orapl * orapl) — bool
[]
1 A better name for this is orange_or_apple.
Here is subst_int. It basically looks like subst_int and has a
similar type.
fun subst_int(n,a,Empty)
= Empty fun subst_orapl(n,a,Empty)
| subst_int(n,a,Cons(e,t)) = Empty
= if eg.int(a,e) | subst_orapl(n,a,Cons(e,t))
then Cons(n,subst_int(n,a,t)) =if eq_ompl(a)e)
else Cons(e,subst-int(n,a,t)) then Cons(n,subst_orapl(n,a,t))
else Cons(e,subst-orapl(n,a,t))
subst_int :
(int * int * int list) — int list subst_orapl :
° (orapl * orapl * orapl list) — orapl list
[]

Define subst_orapl.

Would subst_bool be more difficult to define? No, we would have to substitute bool for int
everywhere in subst_int.

Would subst_num be more difficult to define? ° No, we would have to substitute num for int
everywhere in subst_int.

’ No, we would have to substitute fish for int

Would subst_fish be more difficult to define?
everywhere in subst_int.

Are you tired of all this duplication yet? Yes, is this going somewhere?

Okay, so let’s not duplicate this work over
and over again.

fun subst(rel',n,a,Empty)
= Empty
| subst(rel,n,a,Cons(e,t))
= if rel(a,e)
then Cons(n,subst(rel,n,a,t))
else Cons(e,subst(rel,n,a,t))

What is the type of subst?

1 A better name for rel is relation.

What do we know about the last component °

that subst consumes?

How is the type of the result related to that
of the fourth component?

What does o mean here?

Does that imply anything else?

Does that mean the type of a is a?

° It is a function that consumes a value with

four components, and that’s what we can see
immediately:

(* * *) —

It must be a list, but since we don’t know
what kind of elements the list contains, we
use a list:

(* * * alist) > .

' If rel always produced false, then the answer

would have to be identical to the fourth
component consumed. So, the type on the
right of — must be «a list:

(* * * o list) — o list.

If subst consumes an int list, it produces an
int list; if it consumes a num list, it
produces a num list; and if it consumes a
(num list) list, it produces a (num list) list;
and if it consumes an orapl list, it produces
an orapl list.

Yes, since exp, and ezps in
if exp;
then ezp,
else ezxps

are of the same type, this also means that n
and e are of the same type. Since e is an

element of the consumed list and is therefore
of type a, so is n:

(

* o k x a list) — a list.

14
Who knows? We don’t know what rel
consumes.

Does that mean we don’t know what kind of Yes, and so we could agree that its type is §:

value it is?

When is « different from §?

What is the type of rel?

Describe in your words what that type says
about subst.

Anything else?

Suppose we want to substitute one int in a
list of ints by some other int.

Do we know of such a function?

So how do we use subst to substitute all
occurrences of 15 in
Cons(15,
Cons(6,
Cons(15,
Cons(17,
Cons(15,
Cons(8,
Empty))))))
by 11?7

(

* a* (% a list) — o list.

° On occasion, @ will stand for the same type
as a, and sometimes it will be a different

type.

It is a function that obviously produces bool
and consumes a # and an «. And we don’t
know anything more about its type.

subst :
(((8 * @) = bool) x a * B * « list)
— « list

" You knew that we would use our words:
“The type says that subst consumes a value
with four components: a function, an
arbitrary value of type a, another
arbitrary value of type 3, and a list. But,
all elements in the list must have the type
a, and the function must consume pairs of

type B * a.”

° of course, the result of subst is a list whose
elements are of the same type as the first
arbitrary value.

* Then, we need to give subst a function that

consumes two ints as its first argument.

21 .
Yes, we do: eq_-int.

* We use eg-int as rel and otherwise act as if

we were using subst_int:
subst(eg-int,11,15,
Cons(15,
Cons(6,
Cons(15,
Cons(17,
Cons(15,
Cons(8,

Empty))))))-

And that produces?

What is the value of
less_than(15,17)7

Is less_than a function that consumes a

** A list with three 11’s.
Cons(11,
Cons(6,
Cons(11,
Cons(17,
Cons(11,
Cons(8,

Empty))))))-

24
true.

* Yes, that’s right.

two-coniponent value with both components

being ints?

Can we use it with subst?

So how would we substitute all numbers not

less than 15 in
Cons(15,
Cons(6,
Cons(15,
Cons(17,
Cons(15,
Cons(8,
Empty)))))
by 117

And what does that produce?

26
Yes, we can substitute all ints in an int list
that are greater than or equal to some other
int.

*" We use less_than as rel and otherwise act as
if we were using subst_int:
subst(less_than,11,15,
Cons(15,
Cons(6,
Cons(15,
Cons(17,
Cons(15,
Cons(8,
Empty)))))))-

° A list with an 11:
Cons(15,
Cons(6,
Cons(15,
Cons(11,
Cons(15,
Cons(8,

Empty)))))).

29

What is the value of true.
in_range((11,16),15)?
What does in_range do? ** It determines whether or not some number is
in some range of numbers.

So what is the value of o false.

in_range((11,15),15)?

Why is it false? ** Because 15 is not less than 15. Is
in_range((15,22),15)
also false?
Yes, same deal. ** Then the function is easy to define.

fun in_range((small,large),z)
= if less_than(small,z)
then less_than(z,large)
else false

in_range :
((int * int) % int) — bool

. . 34 .
Is in_range a function that consumes a value That’s what its type says.
whose components are a pair of ints and an
int?

Can we use it with subst? * We could as long as the third component
consumed by subst is a pair of ints.

So how would we substitute all numbers * We use in_range as rel:

between 11 and 16 in subst(in_range,22,(11,16),
Cons(15, Cons(15,
Cons(6, Cons(6,
Cons(15, Cons(15,
Cons(17, Cons(]_7,
COFIS(].S, Cons(15,
Cons(8, Cons(8,
Empty)))))) Empty)))))))-
by 227
And what does that produce? *" A list with three 22’s:
Cons(22,
Cons(6,
Cons(22,
Cons(17,
Cons(22,
Cons(8,
Empty)))))).
Does that mean o and 3 are different for this * They sure are. Here a stands for int and
use of subst? for (int x int).
Have an orange. * No, an apple is better.

Can we do all these things with subst_pred? " Shouldn’t we determine subst_pred’s type

first?!
fun subst_pred(pred,n,Empty)
= Empty
| subst_pred(pred,n,Cons(e,t))
= if pred(e)
then Cons(n,subst_pred(pred,n,t))
else Cons(e,SUbSt—pr‘ed(pNed’nyt)) 1 A better name for subst_pred is
substitute_using.a predicate.
Okay let’s figure out its type. ' This function consumes a value with only

three components, so its type is shorter than
that of subst:

(* *) —

Is the result still an o list? ¥ Sure, and so is the last component of the
value consumed:

(

Does that mean the second one is of type a, * Yes, and it follows from the same reasoning
too? that we used to determine the type
for subst:

(

And what is pred? It is a function that consumes one value, an
element of the list, and produces a bool.

*

x o list) — a list.

* a % a list) — o list.

subst_pred :
((a — bool) x a * a list) — « list

Describe in your words what that type says * Here are our words again:

about subst_pred. “The type says that subst_pred consumes a
value with three components: a function,
an arbitrary value of type a, and a list.
But, all elements in the list must have type
a, and the function must consume values
of that type.”

Anything else? *® Same as before. The result of subst_pred is a

list whose elements are of the same type as
the arbitrary value.

So how do we use subst_pred to substitute all =~ We need a function that compares the value
occurrences of 15 in it consumes to 15.
Cons(15,
Cons(6,
Cons(15,
Cons(17,
Cons(15,
Cons(8,
Empty))))))
by 11?7

48

Define this function. Easy.

fun is_15(n)
= cg-int(n,15)

1s_15 :
int — bool

So how do we use subst_pred to substitute all ¥ We use is_15 as pred and otherwise act as if

occurrences of 15 in we were using subst_int:
Cons(15, subst_pred(is-15,11,
Cons(6, Cons(15,
Cons(15, Cons(6,
Cons(17, Cons(15,
Cons(15, Cons(17,
Cons(8, Cons(15,
Empty)))))) Cons(8,
by 117 Empty)))))))-
And that produces? *® Same as above:
Cons(11,
Cons(6,
Cons(11,
Cons(17,
Cons(11,
Cons(8,
Empty))))))-
What is the value of ' true.

less_than_15(11)?

52

Define less_than_15. Easy, too.

fun less_than_15(z)
= less_than(z,15)

less.than_15 :
it — bool

Is less_than_15 a function that consumes an

int?

Can we use it with subst_pred?

So how would we substitute all numbers less °

than 15 in

Cons(15,

Cons(6,

Cons(15,
Cons(17,
Cons(15,
Cons(8,
Empty))))))

by 117

And what does that produce?

What is the value of
in_range_11_16(15)?

What does in_range_11_16 do?

Define in_range_11_16.

® That’s what its type says.

Yes, we can to substitute all ints in an int
list that are less than 15.

We use less_than_15 as pred and otherwise
act as if we were using subst_int:
subst_pred(less_than_15,11,
Cons(15,
Cons(6,
Cons(15,
Cons(17,
Cons(15,
Cons(8,
Empty)))))))-

A list with two 11’s:
Cons(15,
Cons(11,
Cons(15,
Cons(17,
Cons(15,
Cons(11,

Empty))))))-

57
true.

8 . .
It determines whether or not some number is

in the range between 11 and 16.

9
Whew, another easy one.

fun in_range_11_16(z)
= if less_than(11,z)
then less_than(z,16)
else false

in_range_11_10 :
int — bool

Does in_range consume an int? ° That’s what its type says.

Can we use it with subst_pred? ° Well, we could as long as the third
component consumed by subst_pred is an int
list.

So how would we substitute all numbers * We use in_range_11_10 as pred:
between 11 and 16 in subst_pred(in_range_11_16,22,
Cons(15, Cons(15,
Cons(6, Cons(6,
Cons(15, Cons(15,
Cons(17, Cons(17,
Cons(15, Cons(15,
Cons(8, Cons(8,
Empty)))))) Empty)))))))-
by 227
And what does that produce? ** A list with three 22's:
Cons(22,
Cons(6
Cons(22,
Cons(17,
Cons(22,
Cons(8,

Empty))))))-

We recommend dinner now. How about some ~~ Don’t forget the curry.
Indian lamb?

Did you have your fill of curry? Then take a * 1t is like in_range_11_106, but it doesn’t
look at this variant of in_range_11_16.

contain 11 and 16. Instead, it first consumes
a pair of ints and then another int.!

fun in_range_c(small,large)(z)
= if less_than(small,z)
then less_than(z,large)
else false

1 Such functions are said to be curried. A better name for

. g . . . this function would be in_range_Curry after Haskell B.
What is different about it besides its name? Curry (1900-1982) and Moses Schonfinkel (1889-1942).

So what is the type of in_range_c? ** We need to substitute just one * with an —

in the type of in_range.

in_rangc_c :
(int * int) — (int — bool)

What is the purpose of the underlined o They surround the type of what in_range_c
parentheses? produces.

Does that mean that in_range_c is a function ” Yes, and it produces a function.
that consumes one pair of ints?

What does the function that it produces * That function consumes an int, just like
consume? in_range_11_16.
What is the value of " Itisa function, and that function is just like
in-range_c(11,16)? in_range-11-16.
Can you define a function that is like " We copy in_range_c and substitute 11 for
in_range_c(11,16)? small and 16 for large.

fun in_range_c_11_16(z)
= if less_than(11,z)
then less_than(z,16)
else false

So what is the difference between ™ None.

in_range-11_10
and

in.range_c_11_167

73

Is there a difference between No, there really isn’t. Are they equal?

in_range_11_16
and
in_range_c(11,16)?

Yes, but no function can determine that they " What does that mean?
are equal.

It means that no one can define the function
eg-int_funcs, which consumes two functions
from int to int and determines whether the
two functions are equal.

Yes, but let’s move on. So how would we
substitute all numbers between 11 and 16 in

Cons(15,
Cons(6,
Cons(15,
Cons(17,
Cons(15,
Cons(8,
Empty))))))

by 227

How would we substitute all numbers
between 3 and 16 in
Cons(15,
Cons(6,
Cons(15,
Cons(17,
Cons(15,
Cons(8,

Empty))))))
by 227

Can we also substitute all numbers in the
range between 11 and 277

Did you have your fill of curry now? If not,
take a look at this new variant of subst_pred.

fun subst_c(pred)(n,Empty)
= Empty
| subst_c(pred)(n,Cons(e,t))
= if pred(e)
then Cons(n,subst_c(pred)(n,t))
else Cons(e,subst_c(pred)(n,t))

What is different about it besides its name?

" That’s interesting. Since functions from int
to int are pretty simple, does that imply that
there is no general function eq_funcs?

7

° We use in_range_c(11,16) as pred:
subst_pred(in_range_c(11,16),22,
Cons(15,
Cons(6,
Cons(15,
Cons(17,
Cons(15,
Cons(8,
Empty)))))))-

" We use in-range_c(3,16) as pred:

subst_pred(in_range_c(3,16),22,
Cons(15,
Cons(6,
Cons(15,
Cons(17,
Cons(15,
Cons(8,
Empty))))).

® of course, we could but we are hungry again.

How about you?

* 1t is like subst_pred but it consumes values in

two stages. First, it consumes pred, then n
and a list.!

1 To emphasize the two-stage aspect, we could write
fun subst_c(pred)
= fn (n,Empty)
=> Empty
| (n,Cons(e,t))
=> if pred(e)
then Cons(n,subst_c(pred) (n,t))
else Cons(e,subst_c(pred)(n,t))

So what is the type of subst_c? *® We need to substitute just one * with an —

in the type of subst_pred.

subst_c :

(a@ = bool) = ((@ * (a list)) — o list) .

S1

What is the purpose of the underlined As before, they surround the type of what
parentheses? subst_c produces.

Does that mean that subst_c is a function > Yes, it consumes a function and produces

that consumes one thing? one.

What does the function that it produces *® That function consumes a pair.

consume?

Can you define a function that is like *" We know that the value of
subst_c(in_range_c(11,16))? in_range_c(11,16)

is just like in_range_11_16.

Which means that we should have asked you * Yes.
to define a function that is like

subst_c(in-range_11_16)7

Define subst_c_in_range_11_16. * What an obvious name. We copy subst_c,
delete (pred) five times, and substitute

in_range_11_16 three times for the uses of
pred.

fun subst_c_in_range_11_16(n,Empty)
= Empty
| subst_c_in_range_11_16(n,Cons(e,t))
= if in_range_11_16(e)
then
Cons(n,
subst_c_in_range_11_16(n,t))
else
Cons(e,
subst_c_in_range_11_16(n,t))

We had tea much too. " How about you?

Simplify the following definition.

fun combine(Empty,Empty)

= Empty

| combine(Empty,Cons(b,12))
= Cons(b,12)

| combine(Cons(a,l1),Empty)
= Cons(a,l1)

| combine(Cons(a,l1),Cons(b,i2))
= Cons(a,combine(l1,Cons(b,12)))

What does combine consume and produce?

What is the value of
combine(
Cons(1,
Cons(2,
Cons(3,
Empty))),
Cons(5,
Cons(4,
Cons(7,
Cons(9,

Empty)))))?

What is the value of
combine(
Cons(1,
Cons(2,
Cons(3,
Empty))),
Cons(12,
Cons(11,
Cons(5,
Cons(7,

Empty)))))?

° Itis good to start from a definition that

covers all the cases.

fun combine(Empty,i2)
=12
| combine(Cons(a,l1),12)
= Cons(a,combine(l1,12))

* It consumes a pair of a lists and produces

one.

combine :
((a list) = (« list)) — « list

90

That’s no problem:
Cons(1,
Cons(2,
Cons(3,
Cons(5,
Cons(4,
Cons(7,
Cons(9,

Empty)))))))-

' It starts with the same numbers:
Cons(1,
Cons(2,
Cons(3,
Cons(12,
Cons(11,
Cons(5,
Cons(7,
Empty)))))):

Define combine_c.

Yes.

The stage is set. What is the value of
combine_c(
Cons(1,
Cons(2,
Cons(3,
Empty))))?

Define a function that is like the value of
combine_c(
Cons(1,
Cons(2,
Cons(3,

Empty)))).

92

That must be the function that consumes one
list and produces a function that consumes a

list and then produces the combined list.

° That's easy then.

fun combine_c(Empty)(i2)
=12
| combine_c(Cons(a,l1))(12)
= Cons(a,combine_c(l1)(12))

combine_c :
a list — (a list = « list)

94

A function that consumes a list and prefixes

that list with 1, 2, and 3.

Easy.

fun prefizer_123(12)
= Cons(1,
Cons(2,
Cons(3,

2)))

prefizer_123 :
int list — int list

It is an approximation. ° Why?

When prefizer_128 is used on a list, three " Aha. Then here is an improvement.
Conses happen and nothing else. But when

the value of fun waiting_prefiz_123(12)
combine_c(= Cons(1,
Cons(1, combine_c(
Cons(2, Cons(2,
Cons(3, Cons(3,
Empty)))) Empty)))
is used, combine_c has only seen the first (12))
Cons.
waiting_prefic_123 :
int list — int list
[]
Yes, waiting_prefiz_123 is “intensionally” * What does that mean?
more accurate than prefizer_123.
The functions waiting_prefiz_123 and * Does “intensional” mean they differ in how
prefizer_123 are “extensionally” equal they produce the values?

because they produce the same values when
they consume (extensionally) equal values.

Exactly. Can we define a function like " How could we do that?
combine_c that produces prefizer-128 when
used with
Cons(1,
Cons(2,
Cons(3,

Empty)))?

The name [2 must disappear from the " Here is a start.

definition. Define this new version, called
combine_s.! fun combine_s(Empty)

| combine_s(Cons(a,l1))

1 A better name for this function would be combine_staged.

. 102 .
What does combine_s consume and produce? It consumes an « list and produces a
function from a list to o list:

a list = (a list — o list).

How must we fill in the first blank? > With a function that consumes a list, the
former 12, and produces that very list.

Define this function. o Simple enough.

fun base(12)
=12

base :
a list = o list

Yes, and with that we can give a better 10 Good, that leaves us with one blank.
definition.

fun combine_s(Empty)
= base
| combine_s(Cons(a,l1))

What kind of answer do we need to fill the 10e Another function.
last blank?

What does that function consume? T A list.

What does it produce? " A list that starts with a.

10

And what is the rest of the list? ° The combination of 11 and the new value.

Let’s call the function that makes this
function make_cons and let’s use it to
complete the definition of combine_s.

110

Yes, that would do it.

fun
combine_s(Empty)
= base
| combine_s(Cons(a,l1))
= make_cons(a,combine_s(l1))
and
make_cons(a,f)

&

What does make_cons consume to produce
the function we want?

Complete the definition of make_cons.

112

The definition tells us that it consumes a
value of type o and a function with the same
type as base.

One part is obvious.

fun
combine_s(Empty)
= base
| combine_s(Cons(a,l1))
= make_cons(a,combine_s(l1))
and
make_cons(a,f)(12)

What does f consume?

Is there one?

fun
combine_s(Empty)
= base
| combine_s(Cons(a,l1))
= make_cons(a,combine_s(11))
and
make_cons(a,f)(12)

= Cons(@,———)

e An o list.

114 . .
Yes, 12 is an « list.

Go for it.

What is the value of
combine_s(
Cons(1,
Cons(2,
Cons(3,

Empty))))?

What is the value of
make_cons(3,
base)?

115

117

Oh that’s good. Now we can complete it.

fun

combine_s(Empty)

= base

| combine_s(Cons(a,l1))

= make_cons(a,combine_s(l1))
and

make_cons(a,f)(12)

= Cons(a,f(12))

combine_s :
a list - (a list — a list)

make_cons :
(a * (a list — a list))
—)

(a list — « list)

" It is equivalent to the value of

make_cons(1
make_cons(2,
make_cons(3,

base))).

It is this function.

fun prefiz_3(12)
= Cons(3,base(12))

prefiz_3 :

int list — int list

118

Then what is the value of No big deal.

make_cons(2,
prefiz_3)? fun prefiz_23(12)

= Cons(2,prefiz_3(12))

prefiz_23 :

int list — int list

So what is the value of "* A function that consumes a list and prefixes
make_cons(1, that list with 1, 2, and 3.
prefiz_23)7

fun prefiz_123(12)
= Cons(1,prefiz_23(12))

prefiz_ 123 :
int list — int list

120

Is prefix_123 equal to prefizer_1287 Extensionally, yes. Both prefix a list with 1,
2, and 3. Intensionally, no. The latter just
Conses the numbers onto a list, but the
former has to shuffle the list around with
make_cons.

Can we define a function like combine_s that ~~ We'd rather have dessert. How about you?
produces prefizer_123 when used with
Cons(1,
Cons(2,
Cons(3,
Empty)))?

What is the difference between functions of Easy, they have different types.
y
type
type, — type; — types
and those of type
(type:r = typesz) — types?

Seriously. "** The first kind of function consumes two

values in two stages and may determine some
aspect of the value it produces before it
consumes the second value. The second kind
of function consumes two values as a pair.

Aren’t functions a lot of fun? ! They sure are.

. . 125
Rest up before continuing, unless you are See you tomorrow.

exceptionally hungry.

The Eighth Moral

Replace stars by arrows to reduce the
number of values consumed and to in-
crease the generality of the function de-
fined.

Did you ever play “Steal the Bacon?” l No, what about it?

We just invented “Find the Bacon.” * How does it work?

We need to practice first. ° What are we waiting for?

Lists. " Lists are easy, they have been done before.

datatype a list =
Empty
| Cons of a * a list

"

And we also use this datatype. " There is some Bacon.

datatype boz! =
Bacon
| Ix! of int

1 Better names for these are bacon_or_index and Index,
respectively.

What is the value of ° 3, right?
where_is(
Cons(Ix(5),
Cons(Ix(13),
Cons(Bacon,
Cons(Ix(8),
Empty)))))?

What is the value of ’ 1, because Bacon is the first thing in the list.
where_is(
Cons(Bacon,
Cons(Ix(8),
Empty)))?

What should be the value of ° 0, because there is no Bacon in the list.
where_is(
Cons(Ix(5),
Cons(Ix(13),
Cons(Ix(8),
Empty))))?

Here is the function is_bacon. ° This shouldn’t be a problem.

fun is_bacon(Bacon) fun where_is(Empty)
= true =0
| is_bacon(Ix(n)) | where_is(Cons(a_boz,rest))
= false = if is_bacon(a-boz)
then 1
else 1 + where_is(rest)
is_bacon :
boz — bool

where_is :
bozx list — int

Use it to define where_is.

Use your definition to determine the value of " Oh no. It’s 3.

where_is(
Cons(Ix(5),
Cons(Ix(13),
Cons(Ix(8),

Empty)))).
What were we expecting? ! 0, of course.
How did that happen? " When where_is produced 0, three additions

were waiting for the result:
1+
1+
1+....

We should forget these additions when we ** That would be great.
return 0, shouldn’t we?

There is a way to do precisely that.
look at these definitions.

Takea They contain two new special words:

exception and raise.

exception No_bacon of int

fun where_is(Empty)
= raise No_bacon(0)
| where_is(Cons(a-boz,rest))
= if is_bacon(a_boz)
then 1
B else 1 + where_is(rest)

Use your own words to describe what
exception means.

What does raise mean?

* You knew that we wouldn’t let you down.

Here are our words:

“The exception definition creates a
constructor just like a datatype definition
but for exceptional values. The expression
No_bacon(10) creates such an exceptional
value.”

16 . i :
Can we just watch it in action?

Yes, let’s slowly determine the value of v Yes, let’s do that.

where_is(
Cons(Ix(5),
Cons(Ix(13),
Cons(I1x(8),
Empty)))).

18

Since the list is constructed with Cons, thisis =~ Which in turn is equal to

equal to

1 + where_is(
Cons(Ix(13),
Cons(Ix(8),
Empty))).

1+
1 + where_is(
Cons(Ix(8),
Empty)).

19

Correct. And that is equal to
1+
1+
1 + where_is(
Empty).

20

No,
because we can think of raise ... as
having the necessary type, whatever it
may be.

The meaning of raise ... is equally simple. *

It does not have a value.

So next we have

raise No_bacon(0).

Where did the additions go?

Good. Now we know that
where_is(
Cons(Ix(5),
Cons(Ix(13),
Cons(Ix(8),
Empty))))

has no value but is equal to
raise No_bacon(0).

We made some progress. The additions are
gone.

Don’t worry, we will get there. Did you
notice that we said where_is does not
produce a value when it consumes a list
without Bacon?

But didn’t we say that where_is produces an
int?

Now raise happens:
1+
1+
1 + raise No_bacon(0).

But what does that mean? Isn’t it nonsense?

We have never seen anything like that before.
Still, the answer does not explain what the
expression means.

It has no value? No wonder it has whatever
type it needs to have. But that is strange.

22

They’ve disappeared.

® Does that mean we didn’t make any
progress?

! Yes, but we wanted an int; we wanted 0.

* Yes, we said that.

* Yes, but how can we say that it doesn’t

produce an int for everything that it
consumes?

We can’t. We just know that when we say * Aha, that clarifies it.
where_is is of type

(boz list) — int,

we include the possibility that the function
raises an exception.

28

Is that all that bad? It depends. If we only determine the value of
where_is(
Cons(Ix(5),
Cons(Ix(13),
Cons(Ix(8),
Empty)))),

we are just fine. If we get a number, we know
that the list contains Bacon and where it is.
If it raises an exception, we know there is no

Bacon.
. . 29 .
How do we know when the function raises Good question.
an exception?
We need yet another ingredient called ** And how do we use this new ingredient?
handle.
Like this: *" It seems like we are looking at a new form of
(where_is(expression:
Cons(Ix(5), (ezp1 handle pattern = exp,).
Cons(Ix(13), But what does it B
Cons(Ix(8), ut what does it mean’
Empty))))
handle
No_bacon(an.int)
=! an_int).

! Thisis a two-character symbol: =>.

What do you think it means?

And how does No_bacon(0) match
No_bacon(an_int)?

Let an_int stand for 0. Then what is the
value in our example?

What is the value of
(where_is(
Cons(Ix(5),
Cons(Bacon,
Cons(Ix(8),

Empty))))
handle

No_bacon(an_int)
= an.int)?

What kind of value does
(where_is(
handle
No_bacon(an_int)
= an_int)

produce if the value consumed contains

Bacon?

And what if it doesn’t contain Bacon?

32

We know that the handle expression
consumes exceptional values. So, when
where_is(
Cons(Ix(5),
Cons(Ix(13),
Cons(Ix(8),
Empty))))
is the same as

raise No_bacon(0),

it matches the handler pattern and
produces whatever is to the right of =.

° That’s barely worth a question. It’s certainly

not worthy of an answer.

* Exactly what we want: 0, which is what is to

the right of = with an_int replaced by 0.

35

It is 2,

because Bacon is in the second position
and no exception is raised.

36

An int.

7 Also an int.

Does that mean that both parts of a handle * Yes, they must.
expression must produce values of the same

type?

Have you seen anything like that before? % Yes, the two branches of an if-expression
must produce values that belong to the same

type.

40

Ready to play the game? Yeah, we want to find the Bacon.

Here is a list with five bozes: "1

Cons(Ix(5),
Cons(Ix(4),
Cons(Bacon,
Cons(1x(2),
Cons(Ix(3),
Empty))))).
Think of a number. Quick.

First, we check to see whether the 1st item is * Do we get to eat it?
Bacon. If it is, we found it.

No. If we found it, we just know where we * And if not?
found it.

Then, the 1st component niust be Ix(¢). " The rest is obvious: We start the game over
only this time with ¢, right?

Exactly. What is the value of * According to our rules, the answer is 3.

find(1,
Cons(Ix(5),
Cons(Ix(4),
Cons(Bacon,
Cons(I1x(2),
Cons(Ix(3),
Empty))))))?

And how do we get that answer? ** We look at the first component, which is

Ix(5).

Then we look at the fifth component. " Which is Ix(3) and the third component is
Bacon.

Wasn'’t that easy? * Easy as quiche lorraine.

Then let’s look for more bacon. What is the Well, we must check the second component,

value of which is Ix(4).
find(2,
Cons(Ix(5),
Cons(Ix(4),
Cons(Bacon,
Cons(Ix(2),
Cons(Ix(3),
Empty))))))?

And what is the fourth component? ® Itis 1x(2).
Weren’t we just here? . Yes, we were.
Will we ever find the bacon? ** We will never find Bacon.
Never? » Yes, we will just keep on looking at the

second and the fourth components forever.

What kind of value does find consume? *" It consumes a pair of an int and a bozx list:
(int * (boz list)).
And what kind of value does it produce? It produces an int.
But didn’t we just say that sometimes it * Yes, but how can we say that?
doesn’t produce a value?
57

We say that such uses of functions are Is meaningless like nonsense?
meaningless.!

1 We use the word "“meaningless” to refer to expressions for
which nobody can determine a value.

No, remember we can discover nonsense by * Yes, they are obviously different. But how
just looking at the text of a function, but to can we use types to warn others about
discover that the use of a function is meaningless functions?

meaningless, we must try to determine the

value.

We can’t. We just know that when we say » Everything is clear now.
find is of type

(int * (boz list)) — int

that we include the possibility that a use of
find is meaningless.

G0

Didn’t we just go through this discussion Yes, we said the same thing about raising
before? exceptions.

Put in your own words what it means to say ' We say:

some function f is of type “If f produces a value, that value is of type

out. But, the use of f may be meaningless
or it may raise an exception.”

____ — out.

Does every function type have this extended > Absolutely.
meaning?

63

Time to define find, isn’t it? Don’t we need a function like chain_item for
lists?
Good point. Define it. * Hereis a part of it.

fun list_item(n,Empty)

| list_item(n,Cons(aboz,rest))
= if eg_int(n,1)
then abox
else list_item(n — 1,rest)

Why is the first answer a blank? ** Because it is not clear what list_item

produces when the list is empty.

L] GG
et’s raise an exception. Here is its

definition.

exception Out_of_range

Well, then it is easy to fill in the blank.

fun list_item(n,Empty)
= raise Out_of range
| list_item(n,Cons(aboz,rest))
= if eg_int(n,1)
then aboz
else list_item(n — 1,rest)

list_item :
(int * box list) — boz

Does this definition differ from anything we v Very.

have seen before?

fun
find(n,bozes)
= check(n,bozxes,list_item(n,bozes))
and
check(n,bozes,Bacon)
=n
| check(n,bozes,Ix(i))
= find(i,bozes)

find :

(int * (boz list)) — int

check :
(int % (boz list) * bor) — int

That’s correct. Does the definition of bozx
refer to itself?

Does the definition of find refer to itself?

Isn’t that unusual? °

G8

No.

” Yes, through check.

We have not seen that combination before.

Does that mean the definition of find

71

That’s right, it doesn’t.

matches neither the outline of the datatype

boz nor that of the datatype boz list?

Then what is the reference to find used for?

Isn’t this unusual?

And that kind of reference is precisely why a

use of find may be meaningless.

® Tt is used to restart the search for Bacon with
a new index.

73

Very.

74 That settles it.

What is the value of
find(1,t)

where t is
Cons(Ix(5),
Cons(Ix(4),
Cons(Bacon,
Cons(1x(2),
Cons(Ix(7),
Empty)))))?

No, it will stay the same for the rest of the
chapter. So what is the value?

And then?

And now?

And what does that mean?

75
Is t going to change?!

1 We can write
val t =
Cons(Ix(S),
Cons(Ix(4),
Cons (Bacon,
Cons (Ix(2),
Cons (Ix(7),
Empty)))))
in order to associate the name t with this value.

The expression is the same as the value of

find(5,t).

77

Then it is the same as find(7,t).

7S . . .
An exception is raised.

’ Every time find raises an exception, the
bacon can’t be found.

Let’s try something new. We will restart the * What does that mean?

search at n div 2.
What is the value of 8 div 27

What is the value of 7 div 27

How can we restart the search when the

number is out of range?

81

Obvious: 4.

82 .
Not so obvious: 3.

83
We can use a handler.

Good. Fill in the blank.

fun find(n,bozes)
= (check(n,bozes,list_item(n,bozes))
handle
Out_of _range
= —_—)
and
check(n,bozes,Bacon)
=n
| check(n,bozes,Ix(3))
= find(i,bozes)

Now the plot really thickens.

Now what is the value of
find(1,t)?

And then?

S§4

Okay.

fun find(n,bozes)
= (check(n,bozes,list_item(n,bozes))
handle
Out_of_range
= find(n div 2,bozes))
and
check(n,bozes,Bacon)
=n
| check(n,bozes,|x(z))
= find(i,bozes)

find :
(int * (boz list)) — int

check :
(int * (boz list) * box) — int

85

Like pea soup?

® It is the same as the value of
(find(5,t)
handle
Out_of_range
= find(1 div 2,t)).

¥ Then it is the same as

((find(7,1)
handle
Out_of_range
= find(5 div 2,t))
handle
Out_of_range
= find(1 div 2,t)).

And now?

What does that mean?

Does check(7,t,...) disappear, too?

How is the exception handled then?

® The next stop is
(((check(7,t,list_item(7,t))
handle
Out_of_range
= find(7 div 2,t))
handle
Out_of_range
= find(5 div 2,t))
handle
Out_of_range
= find(1 div 2,t)).

And here list_item(7,t) raises an exception.

* It means list_item(7,t) doesn’t have a value

but is equal to raise Out_of_range, so that we
get
(((check(7,t,raise Out_of_range)
handle
Out_of_range
= find(7 div 2,t))
handle
Out_of_range
= find(5 div 2,t))
handle
Out_of _range
= find(1 div 2,t)).

% Yes, raise does that.

' By matching with Out_of_range.

Yes, and then we evaluate find(7 div 2,t). > Easy:

What is the next expression?

Next?

((find(3,1)

handle

Out_of_range

= find(5 div 2,t))
handle
Out_of_range

= find(1 div 2,t)).

*® We have found the Bacon, which means the
result is 3.

Where have the handlers gone? ** Since find(3,t) has a value, the handlers

disappear.

Where did we stop while we were searching * At 1,5,7, and 3.
for the bacon?

Could we define a function that produces °° Yes, as an int list.
that sequence for us?

Hang on! 7 Isit going to get more complicated still?

Yes! Look at this definition of path. ’ No, that much is obvious.

fun path(n,bozes) fun path(n,bozes)

= Cons(n, = Cons(n,
(check(n,bozes,list_item(n,bozes)) (check(bozes,list_item(n,bozes))
handle handle

Out_of_range

Out_of_range
= path(n div 2,bozes))) = path(n div 2,bozes)))
and

and
check(bozes,Bacon)
= Empty
| check(bozes,Ix(3))
= path(i,bozes)

check(n,bozes,Bacon)
= Empty
| check(n,bozes,Ix(t))
= path(i,bozes)

path :

path :
(int * (boz list)) — (int list)

(int x (bozx list)) — (int list)

check :

check :
(int * (boz list) x box) — (int list)

((boz list) x boz) — (int list)

Do we still need to have n around in check?

Describe in your own words how this function * What?
produces the list of intermediate stops.

Neither can we. So let’s just determine the

value of
path(1,t).

And then?

And the next stop is
Cons(1,
(Cons(5,
(Cons(7,
((check(t,list_item(7,t))
handle
Out_of_range
= path(7 div 2,t))))
handle
Out_of_range
= path(5 div 2,t)))
handle
Out_of_range
= path(1 div 2,t))).

Here list_item(7,t) raises an exception.

Does this raise also make check(t,...)

disappear?

How is the exception handled?

o Well, list_item produces Ix(5), which means

that it is equal to
Cons(1,
(path(5,t)
handle
Out_of_range
= path(1 div 2,t))).
101
Then it is the same as
Cons(1,
(Cons(5,
(path(7,t)
handle
Out_of_range
= path(5 div 2,t)))
handle
Out_of_range
= path(1 div 2,t))).

102

Right and we get
Cons(1,
(Cons(5,
(Cons(7,

((check(t,raise Out_of_range)
handle
Out_of_range
= path(7 div 2,t))))
handle
Out_of range
= path(5 div 2,t)))

handle

Out_of_range

= path(1 div 2,t))).

103 . .
Yes, it, too, disappears.

104

By matching with Out_of_range and
evaluating path(7 div 2,t) next.

So what is our next expression?

Next?

Where have all the handlers gone?

Is this an exceptional journey?

The Ninth Moral

Some functions produce exceptions in-
stead of values; some don’t produce any-

thing. Handle raised exceptions care-
fully.

10

105

Easy:
Cons(1,
(Cons(5,
(Cons(7,
path(3,t))

handle
Out_of_range

= path(5 div 2,t)))

handle

Out_of_range

= path(1 div 2,t))).

106

We have found the Bacon:
Cons(1,
Cons(5,
Cons(7,
Cons(3,

Empty)))).

" Since path(3,t) has a value, the handlers
disappear.

108

Quite, and it sure makes us hungry.

I D
IRl g (@
I2eilleing @ BEIECIRS

What is the value of plus(0,1)? ' 1. But isn’t that obvious?

Yes, it’s obvious, so let’s move on. What is 2, which is also one more than plus(0,1).
the value of plus(1,1)?

Correct. Here is the final question. What is 3, which is one more than plus(1,1).
the value of plus(2,1)?

Here is a definition of plus based on the
previous questions.

They are easy functions.

fun plus(n,m)
= if is_zero(n)
then m
else succ(plus(pred(n),m))

plus :
(int * int) — int

fun is_zero(n)
= eq_int(n,0)

1S_2€ero
int — bool

exception Too_small

It relies on three help functions: is_zero,

pred, and succ.! Define these help functions.

1 .
Better names for these functions are predecessor and
successor, respectively.

Why does pred raise an exception when it
consumes 07

fun pred(n)
= if eq_int(n,0)
then raise Too_small
elsen — 1

pred :
it — int

fun succ(n)
=n+1

succ :
int — int

° We only work with non-negative ints, so 0

does not have a predecessor.

Define the function plus in the same style,
but use nums in place of ints.

datatype num =
Zero
| One_more_than of num

With those, it is a piece of cake.

fun plus(n,m)
= if is_zero(n)
then m
else succ(plus(pred(n),m))

Here are the help functions that we need.

fun is_zero(Zero)
= true
| is_zero(not_zero)
= false

plus :
(num * num) — num

1S_zero :
num — bool

exception Too_small

fun pred(Zero)
= raise Too_small
| pred(One_more_than(n))
=n

pred :
num — num

fun succ(n)
= One_more_than(n)

succ :
num — num

Isn’t it curious that the two definitions of

plus are identical?

’ Yes, and that’s good.

Why? ® Because the functions are closely related.
They produce similar values when they
consume similar pairs of values.

What is the value of ° This is nonsense. The last definition of plus
plus(2,3)? consumes a pair of nums and produces one.
It cannot be used with ints.

What is the value of Now we are making sense. It is

plus(One_more_than(
One_more_than(One_more_than(

One_more_than(One_more_than(
Zero)), One_more_than(
One_more_than(One_more_than(
One_more_than(Zero))))).
One_more_than(
Zero))))?

Isn’t it unfortunate that we can’t use the two = It truly is. But because the two definitions

versions of plus at the same time? are identical, we must use building blocks
with the same names, even though they
consume and produce values of different

types.

Any ideas about what to do? ** There seems to be no other way to do this.
For each definition of plus we need to have
around the two sets of building blocks. Each
set requires definitions for the same set of
names. Because it is impossible to use a
name for two different definitions, we cannot
have two definitions of plus available at the
same time.

There is a way and we are about to ® Oh great.

discover it.

What are the basic building blocks needed to " There are five:

make plus?

the type,
the exception Too_small,
the function succ,
the function pred,
and
the function is_zero.

If we call the type number, what is the type ** The type of succ is

of the building block succ?

And how about pred?

And is_zero?

Good, and here is a way to write down these °
minimal requirements for our building blocks.

signature N1 =

sig
type number
exception Too.small
val succ : number — number
val pred : number — number
val is_zero : number — bool

end

1 A better name for this signature would be
NUMBERS_BY_PEANO.

number — number.

16

It has the same type:
number — number.

Tt produces a bool:

number — bool.
This is clear enough. This notation specifies

five things between sig and end, but what
do signature, type, and val mean?

The word signature makes a name stand for ** That much makes sense.
a signature. Our example defines the name
N. The signature is the collection of things

listed between sig and end.

The word type in between sig ... end

indicates that number is used as the name of

a type.

Do we know anything else about the type?

Not nmuch. All we know here is that the type 21

is used to describe what the values succ,
pred, and is_zero consume and produce.

What is a signature?

A signature is like a type int — int. Each
element of this type must be a function, and
furthermore, each element must consume and
produce an int.

The elements are called structures but we
don’t usually call them elements. We say
that a structure has a signature.

A signature describes the components of
structures. Before we can say that a
structure has some signature, we must check
that it provides all the required pieces.

Now that explains val in signatures. The
word val says that we must have values of a
certain kind. In our example all three values
are functions over numbers.

* We have seen a signature, but we don’t yet
know what it is.

’ Well, we know what the elements of a type

like int — int are, but what are the elements
of a signature?

' What does a signature say about a structure?

* Fair enough. Before we say that some
function f has the type int — int we check
that it consumes and produces ints. But
have we seen structures yet?

Not yet. We produce structures with
functor, (,), and struct ... end. Here is
one for nums; create one for ints.

functor NumberAsNum()
>
N

struct
datatype num =
Zero
| One_more_than of num
type number = num
exception Too_small
fun succ(n)
= One_more_than(n)
fun pred(Zero)
= raise Too_small
| pred(One_more_than(n))
=n
fun is_zero(Zero)
= true
| is_zero(a_-num)
= false
end

° The structure for ints must also contain the

required basic building blocks.

functor NumberAsiInt()
>1
N

struct
type number = int
exception Too.small
fun suce(n)
=n+4+1
fun pred(n)
= if eq_int(n,0)
then raise Too_small
elsen — 1
fun is_zero(n)
= eg_int(n,0)
end

The words
type number = ...
in
struct ... end
indicate that number stands for whatever is
to the right of =.

The word functor makes a name stand for

This notation defines several things between
struct and end. We already know that fun
defines functions, datatype creates a new
type, but what does type mean here?

1 This is a two-character symbol :>.

" So that is how we know that in the first

example numbers are made from nums and
in the second one from ints. But what do
functor, (), and > mean?

That much makes sense.

something that produces structures. We refer
to this thing as “functor.” The first example

introduces NumberAsNum as a functor’s

name, the second one NumberAsint. Using
the functor produces a structure that consists
of the collection of definitions enclosed in

struct ... end.

What does () mean?

Good. We will see things other than ().
So what is the notation ..

. > N about?

Do both of these functors produce structures
that have the signature N?

Now let’s use a functor to build a structure.

structure IntStruct =
NumberAsInt()

What is the signature of IntStruct?
And what does () behind NumberAsInt

mean?

Define the structure NumStruct.

Why are we doing all of this?

Do we now have both sets of building blocks >

around at the same time?

Is this progress?

Exactly. What is the type of plus?

38

29
Here are our words:

“It means that we are defining a functor
that does not depend on anything else.”

* Okay, and then the meaning of “depend”
should become clearer.

' It states that the result of using the functor
is a structure with signature N.

** Each struct ... end contains several
definitions, but at least one for number,
Too_small, succ, pred, and is_zero. And, in
terms of number, the three values have the
right type.

*Itis N obviously, because the definition of
NumberAsInt states that the functor
produces structures with signature N.

34

Here are our words:

“It means that we are using a functor that
does not depend on anything else.”

35 .
That’s obvious now.

structure NumStruct =
NumberAsNum()

6 . .
Is it because we want to use both versions of

plus at the same time and, if possible, create
them from the same text?

Basically. Those for nums are collected in
NumStruct and those for ints in IntStruct.

Yes, if we can now somehow create the two
versions of plus from the two structures.

* If number is the type, then plus has the type

(number * number) — number.

40

Define a signature that says that.

Here is the functor.

functor PON!(structure a_N :
>
P

N)

struct
type number = a_N.number
fun plus(n,m)
= if a_N.is_zero(n)
then m
else a_N.succ(
plus(a_N.pred(n),m))
end

How does it differ from the functors we have
seen so far?

1 A better name for this functor would be PlusOverNumber.

The notation 2

(structure a-N : N)

says that the structure produced by PON
depends on a structure a_N that has
signature N.

What does a_N.is_zero mean?

Here is one.

signature P! =
sig
type number
val plus :
(number * number) — number
end

1 A better name for this signature would be
PLUS_OVER_NUMBER.

' The names of the other functors are always

followed by (). This one, however, contains
something else:

(structure a_N : N).
What does it mean?

And that’s how we know that a_N contains a
type, an exception, and three values: is_zero,
succ, and pred.

® It means that we are using the value named

is_zero from the structure named a_N.

44

Correct. And how about They refer to

a_-N.number, a-N’s type number,
a_N.succ, a_N’s value succ,
and and
a_N.pred? a-N’s value pred,
respectively.

And how do we know that a_NV contains all Because it has signature N.
these things?

Let’s build a structure from PON. * We don’t know how to satisfy PON’s
dependency.
We need a new notation. " Yet more notation?

structure IntArith =
PON(structure a_N = IntStruct)

. 3 3 48
Yes. Explain in your words what it means. Our words:

“Consider the functor’s dependency:
(structure a_N : N).

It specifies that the structure created by
PON depends on a yet to be determined
structure a_N with signature N. Here we
say that a_N stands for IntStruct.”

Does IntStruct have the signature N? * The structure was created with
NumberAsInt, which always produces
structures that have signature N.

50

And how do we know that? The definition of NumberAsInt contains N
below >, and that’s what says the resulting
structure has signature N.

. 51
Time to create plus over nums. Easy.

structure NumArith =
PON(structure a-N = NumStruct)

What is the value of ** This should be 3.
IntArith.plus(1,2)?

53
Wrong. What! Nonsense!
Good guess! It is nonsense. What do we ** We know that it is a structure that has
know about IntArith? signature P.

What do we know about structures that have ~~ A structure with signature P has two

signature P? components: a type named number and a
value named plus. The value plus consumes
a pair of numbers and produces one.

And what else do we know about *° Nothing, because the signature P does not
number in P? reveal anything else about the structures
that PON produces.

Absolutely. And that’s why it is nonsense to o Okay, that’s clear. The function

ask for the value of IntArith.plus consumes values of type
IntArith. plus(1,2). IntArith.number, about which P doesn’t
reveal anything, but 1 and 2 are ints.
Can we determine the value of *® No. The function NumArith.plus consumes
NumArith.plus(values of type NumArith.number, but
One_more_than(Zero), One_more_than(Zero)

One_more_than(

One_more_than(Zero)))? and

One_more_than(
One._more_than(Zero))

are nums.

Do we have the means to produce numbers * No, the two structures contain only one
of the correct type for either IntArith.plus or function, plus, and it assumes that we have

NumArith.plus? numbers ready for consumption.
How about the structures IntStruct and ® They, too, provide only functions that
NumStruct? consume existing numbers.

So what do we do? " Yes, what?

3) 62 . . .
Here is one way out. Let’s use a larger The signature N_.C_R! requires that its

signature. corresponding structures contain definitions
for two additional functions: conceal and
reveal. What can they be about?

signature N.C_.R =
sig

type number
exception Too_small
val conceal : int — number
val succ : number — number
val pred : number — number
val is_zero : number — bool

val reveal : number — int

end LA better name for this signature would be
NUMBERS .WITH_CONCEAL REVEAL.

. . 63 [}
The function conceal consumes an int and Does reveal do the opposite?
produces a similar number.

. . [}
Yes, and opposite means that for any int ! Oh, conceal is like ()2 (square) and reveal
z 20, like /- (square root) because for any int
reveal(conceal(z)) = . T 20,

vzt =1z.

Good. Here is the extended version of

NumberAsint.

** That requires a bit more thought.

functor NumberAsint()
>
N_.C.R

struct
type number = int
exception Too_small
fun conceal(n)
=n
fun succ(n)
=n+1
fun pred(n)
= if eg_int(n,0)
then raise Too_small
elsen — 1
fun is_zero(n)
= eg-int(n,0)
fun reveal(n)
=n
end

functor NumberAsNum()
>
N.C_R

struct
datatype num =
Zero
| One_more_than of num
type number = num
exception Too_small
fun conceal(n)
= if eg_int(n,0)
then Zero
else One_more_than(

fun succ(n)
= One_more_than(n)
fun pred(Zero)
= raise Too_small
| pred(One_more_than(n))
=n

Define the extended version of
NumberAsNum.

Let’s rebuild the structures IntStruct and
IntArith.

fun is_zero(Zero)
= true
| is_zero(a_num)
= false
fun reveal(n)
= if is_zero(n)
then 0

else 1 + reveal(pred(n))

end

G .
Okay, here are the new versions of

NumStruct and NumArith.

structure IntStruct =
NumberAsInt()

structure NumStruct =
NumberAsNum()

structure IntArith =
PON(structure a_N = IntStruct)

structure NumArith =
PON(structure a_N = NumStruct)

conceal(n — 1))

What kind of structures are IntStruct and ~ Both have signature N_C_R.
NumStruct?

What kind of structure does PON depend ® 1t depends on a structure with signature N.

on? Isn’t this a conflict?
Does a structure with signature N.C_R 1t does, and N_C_R even lists those pieces
provide all the things that a structure with that are also in N in the same order as N.

signature N provides?

Absolutely. And that’s why it is okay to 70 Okay.
supply IntStruct and NumStruct to PON.
What is the value of " 1,
NumStruct.reveal(because NumStruct.conceal consumes an
NumStruct.succ(int and produces a number for the
NumStruct.conceal(0)))? consumption of NumStruct.succ. And

NumStruct.reveal consumes a number and
produces an int.

72

What is the value of This should be 3, now.
NumStruct.reveal(

NumArith.plus(
NumStruct.conceal(1),
NumStruct.conceal(2)))?

Wrong. " What! Is that nonsense again?

Good guess! It is nonsense but this time it is ™ We know that it has signature P.
“signature nonsense.” What do we know
about NumArith?

What do we know about structures with " A structure with signature P has two

signature P? components: a type named number and a
value named plus. The value plus consumes
a pair of numbers and produces one.

And what else do we know about number in Nothing!
P?

What do we know about structures with
signature N_.C_R?

Do we know anything else about number in
N_C_R?

So, how could we possibly know from just
looking at the signatures alone that

NumStruct.conceal produces the same kind of

numbers that NumArith.plus consumes?

Because we must be able to determine from
the signatures, and from the signatures only,
that the type of an expression makes sense.
If we cannot, the expression is nonsense.

Are there other forms of signature nonsense?

Correct.

We need to say that PON produces

77

78

They contain a type, also named number, an
exception and five functions over int and
number. The function conceal creates a
number from an int, and reveal translates
the number back into an int.

Nothing, because the signature N_C_R does
not reveal anything else about the structure.

9 .
From the signatures alone, we cannot know

S0

81

that the two kinds of numbers are the same.
Indeed, we could have used two different
names for these types, like number! and
number2. But why does that matter?

This is analogous to expressions and types,
except that now we relate types and
signatures.

Here is one:
NumStruct.Zero.

The signature doesn’t say anything about a
constructor Zero, so we can’t know anything
about it either.

** What shall we do?

83

And how do we do that?

structures whose type number is the same as

the type number in a_N, the functor’s
dependency.

We connect the signature of the structure

produced by PON to the structure on which

it depends.

functor PON(structure a_N : N)
>
P where type number = a_N.number

struct
type number = a_N.number
fun plus(n,m)
= if a_N.is_zero(n)
then m
else a_N.succ(
plus(a-N.pred(n),m))

end

Yes, it is a signature and therefore can be
used below >. A where-clause refines what
a signature stands for.

84

Is
P where type number = a_N.number

a signature?

* So here, the signature is like P but requires

that number in the functor’s result must be
equal to a-N.number.

And how do we make sure in struct ... end ~ We define the type number to be the type

that this is the case?

Do the two similar looking lines always go
together?

Let’s create plus over nums.

structure NumArith =
PON(structure a_N = NumStruct)

Is it different?

What is the value of
NumStruct.reveal(
NumArith.plus(
NumStruct.conceal(1),
NumStruct.conceal(2)))?

number of the structure a_N’s type number.

" For us, they do. One makes promises and the

other fulfills the promises.

° No, and the one for IntArith doesn’t change

either.

structure IntArith =
PON(structure a_N = IntStruct)

89 .
3, because now it makes sense.

Can we also calculate with ints?

How about lunch?

Are you fortified?

Then here is a second way out.

90

Can’t we just replace Num by Int like this:
IntStruct.reveal(
IntArith. plus(
IntStruct.conceal(1),
IntStruct.conceal(2)))?
* Tcan't put the book down. How can you
guys stop now?

92

Yes!

93

Out of what?

functor NumberAsInt2()
>
N where type number = int

struct
type number = int
exception Too_small
fun succ(n)
=n+1
fun pred(n)
= if eg_int(n,0)
then raise Too_small
elsen —1
fun is_zero(n)
= egq-int(n,0)
end

Out of the dilemma that we don’t have

anything that PON’s plus can consume.

* Oh yes. We said that enlarging the signature

for the basic building blocks was one way
out. How does it help to add

where type number = int

to N, now?

Here is yet another definition of IntStruct. * It is like N , but we also know that the
numbers are ints.

structure IntStruct2 =
NumberAsInt2()

What do we know about the signature of this
structure?

Yes. Now take a look at this definition of ° We know that it’s like P and that its
IntArith2. numbers are a_N’s numbers.

structure IntArith2 =
PON(structure a_N = IntStruct?)

What do we know about its signature?

And what are a_N’s numbers? " Since a_N is IntStruct2, we know from its
signature that the numbers are ints.

So, if IntArith2’s numbers are those of * We know that IntArith2s numbers are ints.
IntStruct2, and if IntStruct2’s numbers are
ints, what do we know?

99

What is the value of 3.
IntArith2.plus(
1,
2)?
Yes, it is. **® That really helps.
How can we do something like o Well, we would have to define the structure
NumArith2.plus(NumArith2.

One_more_than(Zero),
One_more_than(
One_more_than(Zero)))?

And what does it rely on? ** To use it, we need the structure NumStruct2,

which in turn is created from
NumberAsNum2, a functor that reveals a lot
about the structure that it produces.

103

Good. Here is the new functor.

functor NumberAsNum2()
>
N where type number = num

struct
datatype num =
Zero
| One_more_than of num
type number = num
exception Too_small
fun succ(n)
= One_more_than(n)
fun pred(Zero)
= raise Too_small
| pred(One_more_than(n))
=n
fun is_zero(Zero)
= true
| is_zero(a_num)
= false
end

®

Good guess, and indeed, it is nonsense.

Remember everything in struct ... end is
invisible, and it is the signature that makes
it public.

The word num in the above where clause
refers to the datatype that we defined at
the beginning of this chapter.

The two definitions look the same, but they
introduce two different types. In general,
every datatype definition introduces a new
type that is distinct from every other type.

If it weren’t for @), which says that this is
nonsense, these would be NumStruct2 and
NumArith2.

structure NumStruct2 =
NumberAsNum?2()

structure NumArith2 =
PON(structure a_N = NumStruct?2)

104 o e
But why is it nonsense?

So if num in

where type number = num

does not refer to the datatype definition, to
what does it refer then?

° But the two definitions look so much alike!

" That’s an aspect of datatype we haven’t
discussed yet, isn’t it?

True. There hasn’t been a reason to discuss . Could we get things right by removing the

what two look-alike datatype definitions datatype definition for num from the

mean. functor? Then the functor definition,
including its modified signature could only
refer to the definition from the beginning of
the chapter.

Yes we could, but we will save that for * An apple will be enough.
another book. Do you need more lunch

before we move on?

110

Is Zero the same as 07 No, 0 is similar to, but not really the same
as, Zero.
Is m Yes, 2 is similar to, but not the same as,
One_more_than(One_more_than(
One_more_than(One_more_than(
Zero)) Zero)).
similar to
2?
Define the function similar. " Should it only consume nums and ints?
. 113 . . .
No, it should work for any two structures That is more interesting.

that have the signature N.

114

Here is the signature for the functor that Okay, this is straightforward. A structure
produces a structure containing similar. with signature S contains two types:
number! and number2. It also contains a
signature § = value similar, which consumes a pair
sig consisting of number! and number2 and
type numberl! produces true or false.

type number2
val similar :
(number! x number2) — bool
end

Does this functor differ from previous ones?

functor Same(structure a_.N : N
structure b_.N : N)
>
S where type number! = a_N.number
where type number2 = b_N.number

struct
type number! = a_N.number
type number2 = b_N.number
fun sim(n,m)
= if a_N.is_zero(n)
then b_N.is_zero(m)
else sim(a_N.pred(n),
b_N.pred(m))
fun similar(n,m)
= ((sim(n,m)
handle
a-N.Too_small = false)
handle
b_N.Too_small = false)
end

Are the where refinements of S necessary?

How can we use similar?

So let’s create a structure that compares
nums and ints.

Is there another way to do it?

115

117

Yes, this one depends on two structures, each
of which has the signature N.

6 . -
Yes, if we ever want to use similar.

Since the function can consume numbers
produced by a_N.conceal and b_N.conceal,
respectively, we just feed similar numbers
produced with the proper conceal functions.

S
The functor must consume two structures,

and we already have the ones we need.

structure SimIntNum =
Same(structure a-N = IntStruct
structure b_.N = NumStruct)

0 .
It’s just a guess.

structure SimNumlInt =
Same(structure a.N = NumStruct
structure b_N = IntStruct)

Good guess. Why? "*® Here is what we would have said:

“Because we supply one structure for each
of the functor’s dependencies.”

Are functors like functions? # Yes, but they only consume and produce

structures, not values.

122

What is the value of true.
SimNumlInt.similar(
NumStruct.conceal(0),
IntStruct.conceal(0))?
What is the value of " false.
SimIntNum.similar(
IntStruct. conceal(0),
NumStruct.conceal(1))?

124
We can also compare nums to nums. How neat.

structure SimNumNum =
Same(structure a_N = NumStruct
structure b_N = NumStruct)

Is there a simpler way to define similar? e Yes, there is, but we would not have learned
as much from that one, so we chose not to
reveal it.

. . 126 .
Isn’t it snack time yet? This should be our last break.

Here is a new function. (X just addition, but it uses nums. We

could have another one that uses ints.
fun new_plus(z,y)
= NumStruct.reveal(fun new_plus(z,y)

NumArith.plus(= IntStruct.reveal(
NumStruct.conceal(z), IntArith.plus(
NumStruct.conceal(y))) IntStruct.conceal(z),

IntStruct.conceal(y)))

Use your words to describe what new_plus ** In our words:

does. “The function new_plus consumes two ints,
converts them into one of our favorite
number Systems, adds them, and converts
them back to int.”

Here is a signature. ** It looks okay. It seems to consume a

structure that has signature N_.C_R and

signature J = another one with signature P. The structure
sig that it produces seems to have signature J.
val new_plus : (int * int) — int
end

And here is the functor NP.

functor NP(structure a_N : N.C.R
structure a_P : P)

>
J
struct
fun new_plus(z,y)
= a_N.reveal(
a_P.plus(
a-N.conceal(z),
a_N.conceal(y)))
end

Why is this definition nonsense?
130

Still, it is nonsense. Why oh why?

Suppose we use this functor with nums and ! Now it’s obvious why the definition of the
IntArith. functor is nonsense.

structure NPI =
NP(structure a.N = NumStruct
structure a_P = IntArith)

&

And that is? * The function NumStruct.conceal would

produce numbers as nums and IntArith.plus
would attempt to consume those, which is

nonsense.

. 133 . .
Why is it nonsense? Because IntArith.plus consumes ints.
So what should we do? ' We must force a_N and a_P to use the same

kind of numbers.

That is perfect. And we do this by specifying
that the types a_N.number and a_P.number
must be the same.

functor NP!(structure a.N : N.C.R
structure a_P : P
sharing type

a_N.number

a_P.number)

I <~V

struct
fun new_plus(z,y)
= a_N.reveal(
a_P.plus(
a_N.conceal(z),
a-N.conceal(y)))

end

Define a structure for adding ints using
nums.

1 A better name for NP is NewPlusFunctor.
How do we know from the signatures that

the type number in NumStruct is the same as
the type number in NumArith?

And what is a_N.number in our case?

Does that mean the sharing constraint is

satisfied?

Can we say all that in one expression?

139

*° We just use NP with NumStruct and

NumArith. That’s all.

structure NPStruct =
NP(structure a.N = NumStruct
structure a_P = NumArith)

’ The functor that creates NumAmrith is defined

to produce structures that have signature
P where type number = a_N.number.

T We know that we create NumArith from

PON with NumStruct. And therefore the
type number in NumStruct and the type
number in NumArith are equal.

138

Yes.

That would be nice. We wouldn’t have to
turn so many pages.

Here is how we say it. " That looks complicated.

[.structure NPStruct =
NP(structure a_N = NumberAsNum()

structure a_P =
PON(structure a_N = a_N))

141

What does This is the easiest part to understand. It
NP(structure a_N = NumberAsNum() says that NP's dependency named a_N is
) satisfied by building a structure using the
0 functor NumberAsNum.
mean?
How about ** This says that PON’s dependency named
PON(structure a.N = a_N)? a_N is a_N.
Which a_N is that last one? "* It is the one from the previous expression:

structure a-N = NumberAsNum(),
which was created using NumberAsNum().

What else does NP's dependencies demand? " The last requirement is that the type number
in a_N and the type number in a_P must be
equal.

Are they? e Yes, because a_N is reused to create a_P

using PON.

. . . 146
Can we build all programs in one expression? Yes.

We bet that you never thought there was so
much to say about plus. Define the functor
TON, which defines times, using the
signature T

signature T! =
sig
type number
val times :
(number * number) — number
end

Don’t forget the sharing constraint.

1 A better name for this signature would be
TIMES.OVER.NUMBER.

The Tenth Moral

147

Real programs consist of many compo-
nents. Specify the dependencies among
these components using signatures and

functors.

Here it is. Now go out to dinner.

functor TON(structure a_N : N
structure a.P : P
sharing type

a_N.number

a_P.number)
>
T where type number = a_N.number

struct
type number = a_N.number
fun times(n,m)
= if a_N.is_zero(m)
then m
else a_P.plus(n,
times(n,a-N.pred(m)))
end

Don’t forget to leave a tip.

You have reached the end of your introduction to computation with types and
functions. While computation has been popularized over the past few years,
especially by the Web and consumer software, it also has a profound,
intellectually challenging side. If you wish to delve deeper into this side of
computing, starting from a typed viewpoint, we recommend the following tour:

References

1. Heijenoort. From Frege to Goedel: A Source Book in Mathematical Logic,
1879-1931. Harvard Press, 1967.

2. Pierce. Basic Category Theory for Computer Scientists. MIT Press, 1991.

3. Girard, Taylor, and Lafont. Proofs and Types. Cambridge University Press,
1989.

4. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.

5. Constable et alii. Implementing Mathematics With the Nuprl Proof
Development System. Prentice Hall, 1986.

If you then wish to explore the definition of ML, you may wish to study:

1. Milner, Tofte, Harper, and MacQueen. The Definition of Standard ML
Revised. MIT Press, 1997.

2. Milner and Tofte. Commentary on Standard ML. MIT Press, 1991.

Index

add_a_steak, 47, 48, 54

base, 126
bool_or_int, 91
box, 133

chain, 95
chain_item, 100, 101
combine, 123
combine_c, 124
combine_s, 126, 127
contains_fruit, 76

dessert, 45
divides_evenly, 98

eq_fish, 64

eq-fruit, 80
eq-fruit_in_atom, 86
eqg-main, 50, 51
eq_num, 70
eg-orapl, 109

fibs, 104
fibs_1, 105
fibs_2, 106
find, 143
fish, 57, 60
flat_only, 74
fruit, 74

has_steak, 52, 53
height, 79

help, 93
hot_maker, 92

identity, 91

in_range, 114
in_range_11_16, 118
in_range_c, 119
in_range_c_11_16, 120
IntArith, 159, 163, 165
IntArith2, 167
IntStruct, 157, 163
IntStruct2, 167

ints, 96

is-15, 116
is_bacon, 134
is-mod_5_or_7, 98
is_.prime, 102
1s_vegetarian, 21
is_veggie, 23, 25
is_zero, 151, 152

J, 174

larger_of, 78
less_than_15, 78, 117
list, 109

list_item, 142

main, 45
make_cons, 127, 128
meza, 45

N, 154

new_plus, 173

N_C_R, 161

No_bacon, 135

NP, 174, 175

NP1, 174

NPStruct, 175, 176
num, 4, 152

NumArith, 160, 163, 166
NumArith2, 169
NumStruct, 157, 163
NumStruct2, 169
NumberAsInt, 156, 162
NumberAsInt2, 167
NumberAsNum, 156, 162
NumberAsNum2, 169

occurs, 81
occurs-in_sexp, 84
occurs_in_slist, 84
only_onions, 12-14
open_faced_sandwich, 6
orapl, 109
Out_of_range, 142

P, 158

path, 147
pizza, 31, 57
plate, 22, 25
plus, 151, 152
PON, 158, 165
pred, 151, 152
prefix_123, 129
prefiz 28, 129
prefiz.3, 129
prefizer_123, 125
primes, 103

rem_anchovy, 59

rem_fish, 62, 63, 65
rem_from_slist, 85-88

rem_int, 68

rem_tuna, 59-61

remove_anchovy, 32, 33, 37, 38, 49
rod, 22, 25

S, 171

salad, 45
Same, 171
seasoning, 4
sexp, 82

shish, 22
shish_kebab, 11
SimIntNum, 172

SimNumlint, 172
SimNumNum, 173

skips, 97

slist, 82

some_ints, 98

split_only, 75

subst, 110
subst_anchovy_by_cheese, 40, 41
subst_c, 122
subst_c_in_range_11_16, 123
subst_fish, 69
subst_in_sexp, 84
subst_in_slist, 84
subst_in_tree, 80

subst_int, 69, 109
subst_orapl, 109
subst_pred, 115

succ, 151, 152

T, 177

TON, 177

Toosmall, 151, 152
top-anchovy_with_cheese, 38, 39
tree, T4

true_maker, 91

waiting_prefiz_123, 125
what_bottom, 27, 29
where_is, 134, 135

This is for the loyal Schemers.

No, we wouldn’t forget factorial.

signature Ysig

sig
val Y :
((a=a)=(a—a)) - (a—a)

end

fun mk_fact(fact)(n)
=if (n =0)
then 1
else n x fact(n — 1)

functor Yfunc()

>
Ysig
struct
datatypea T =Intoofa T — «
fun Y (f)
= H(f)(Into(H(f)))
and H(/)(a)

f(G(a))
and G(Into())(z)
= a(Into(a))(z)

end

structure Ystruct
= Yfunc()

What is the value of
Ystruct. Y (mk_fact)(10)?

The Little MLer
Matthias Felleisen and Daniel P. Friedman
Foreword by Robin Milner
Drawings by Duane Bibby

Matthias Felleisen and Daniel Friedman are well known for
gently introducing readers to difficult ideas. The Little MLer
is an introduction to thinking about programming and the
ML programming language. The authors introduce those
; wﬁMnﬂthhnﬁ
hﬂnpmimm

	Foreword
	Preface
	Experimenting with SML
	Experimenting with Objective Caml
	1. Building Blocks 3
	2. Matchmaker, Matchmaker 11
	3. Cons Is Still Magnificent 31
	4. Look to the Stars 45
	5. Couples Are Magnificient. Too 57
	6. Oh Mv. It's Full of Stars! 73
	7. Functions Are People, Too 91
	8. Bows and Arrows 109
	9. Oh No!
	10. Building on Blocks 151
	Commencement 179
	Index 180

