Programming in

280
Assembly
Language

‘utl_‘_l_l_l_i_l_l_.L_Ll_.L_ L.

FO Ll Ll ettt &

|EE TS D S R e
= L

!
!
e

]

Roger Hutty

Programming in Z80 Assembly Language

Also from Macmillan

Advanced Graphics with the BBC Model B Microcomputer
Ian O. Angell and Brian J. Jones
Advanced Graphics with the Sinclair ZX Spectrum
Ian O. Angell and Brian J. Jones
Assembly Language Programming for the Acorn Electron
Ian Birnbaum
Assembly Language Programming for the BBC Microcomputer,
second edition
Ian Birnbaum
Advanced Programming for the 16 K ZX81
Mike Costello
Using Your Home Computer
Garth W.P. Davies
Beginning BASIC
Peter Gosling
Continuing BASIC
Peter Gosling
Practical BASIC Programming
Peter Gosling
Program Your Microcomputer in BASIC
Peter Gosling
Codes for Computers and Microprocessors
P. Gosling and Q. Laarhoven
Microprocessors and Microcomputers — their use and programming
Eric Huggins
The Sinclair ZX81 - Programming for Real Applications
Randle Hurley
More Real Applications for the ZX81 and ZX Spectrum
Randle Hurley
Digital Techniques
Noel Morris
Microprocessor and Microcomputer Technology
Noel Morris
The Alien, Numbereater, and Other Programs for Personal
Computers — with notes on how they were written
John Race
Understanding Microprocessors
B.S. Walker
Assembly Language Assembled - for the Sinclair ZX81
Anthony Woods

Programming in
Z80 Assembly Language

Roger Hutty

M

MACMILLAN

© Roger Hutty 1984

All rights reserved. No part of this
publication may be reproduced or
transmitted, in any form or by any
means, without permission.

First published 1984 by

Higher and Further Education Division
MACMILLAN PUBLISHERS LTD
London and Basingstoke

Companies and representatives
throughout the world

ISBN 978-1-349-06959-0 ISBN 978-1-349-06957-6 (eBook)
DOI 10.1007/978-1-349-06957-6

Contents

Chapter

Chapter

Chapter

Chapter

Chapter

2

Preface
The Z80 architecture

1.1 Microprocessor systems

1.2 The Z80 central processing unit
1.3 Memory

1.4 Instructions

1.5 Assembly language

Accumulator and register instructions

2.1 Load A register with a value

2.2 Add and subtract a value

2.3 Add and subtract a register

2.4 Load one register with another

2.5 Increment and decrement a register

2.6 Negate the accumulator

2.7 Addressing modes - immediate and extended
2.8 Labels

2.9 Program

Subroutines and display output

3.1 Subroutine concepts

3.2 The CALL and RET instructions
3.3 Display output

3.4 Pseudo operations

3.5 Program

Unconditional jumps and keyboard input

4,1 Unconditional jumps

4,2 Keyboard input

4,3 Character codes and values
4.4 The EQU pseudo operator
4,5 Program

Flags, conditional jumps and the CP instruction

5.1 The flag register

5.2 Conditional jump instructions
5.3 The compare instruction

5.4 Conditional loop termination
5.5 Program

ix

QWX NNIIOD [+} M~ PN -

—

11
12
13
14
15

16

16
17
18

20

21
22
23
24
25

v

Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11

Contents

Counting loops and the stack

(=23 e Ne) e) T}
DY
AW =

Counting loops

Number input

The stack

The stack instructions

Saving and restoring registers
Program

Nested loops and addressing modes

7.1
7.2

Nested loops

Immediate extended and register indirect
addressing modes

The DEFM pseudo operator

Text output

The subroutine mechanism

Program

Carry and overflow

Carry

The carry flag

Overflow

The overflow flag
Conditional CALLs and RETs
Program

operations and the index registers

The BIT test instruction

The SET and RES instructions
The DEFS pseudo operator

The index registers
Expressions

Jump tables

Program

Shift instructions, multiply and divide

10.1 The SRL instruction

10.2 The SRA instruction

10.3 The SLA instruction

10.4 8-bit multiplication and division
10.5 Program

Logical operations and macros

11.1 Logic operators

11.2 Logical instructions

11.3 Masking

11.4 Macros

11.5 Conditional pseudo operations
11.6 Program

26

26
28
29
30
30
31

33

40

40
40

41
42

42
43

45

45
46
46
47
47
48
50

51

51
52

53
55

56

56
56
57
57
60
62

Chapter

Chapter

Chapter

Chapter

Chapter

Appendix A

Appendix B

12

13

14

15

16

Contents

Rotate instructions and parity

12.1 Accumulator rotate instructions

12.2 Register and memory byte rotate instructions

12.3 Packing and unpacking
12.4 Parity

12.5 The parity flag

12,6 Program

16-bit and multiple byte arithmetic

13.1 The DEFW pseudo operator

13.2 The 16-bit ADD, ADC and SBC instructions
13.3 Extended loops

13.4 Multiple byte arithmetic

13.5 Program

Block transfer and search instructions

14.1 Block transfer instructions
14.2 Block search instructions
14.3 Program

Decimal arithmetic

15.1 BCD representation

15.2 BCD arithmetic

15.3 The DAA instruction

15.4 The digit rotate instructions
15.5 Program

Miscellaneous instructions

16.1 The NOP instruction

16.2 The auxiliary registers

16.3 Input and output instructions
16.4 Interrupt instructions

Binary and hexadecimal number systems

Binary and hexadecimal numbers
Binary and hexadecimal arithmetic
Decimal to hexadecimal conversion
Hexadecimal to decimal conversion
Binary-hexadecimal conversion
Decimal-binary conversions

Bytes

Signed (2’s complement) numbers
xercise answers

[e
O~V WN

Hexadecimal-decimal conversion tables

Vil

76
76
79
81

83

viii Contents

Appendix C Summary of Z80 instructions 103
Table C.1 Summary of flag operations 104
Table C.2 8-bit load group 105
Table C.3 16~-bit load group 106
Table C.4 Exchange group and block transfer 107

and search group

Table C.5 8-bit arithmetic and logical group 108
Table C.6 General purpose arithmetic and
CPU control groups 109
Table C.7 16-bit arithmetic group 110
Table C.8 Rotate and shift group 111
Table C.9 Bit set, reset and test group 112
Table C.10 Jump group 113
Table C.11 Call and return group 114
Table C.12 Input and output group 115
Appendix D Display and keyboard character codes 116
Appendix E Expression operators 117

Index 118

Preface

Many microcomputer systems, home and business ones, are based on
Zilog's Z80 microprocessor, one of the most commonly used
microprocessors.

All microcomputer systems have the facility to run programs
written in one or more high-level languages such as BASIC,
PASCAL, COBOL, FORTRAN and FORTH. However, sometimes it is
necessary (because of speed or memory restrictions) or desirable
to run programs written in the assembly language of a
microcomputer system. If the microcomputer system is based on a
Z80 microprocessor then the Z80 assembly language must be used.

This book covers all of the facilities provided by the Z80
assembly language, starting with the simple facilities and
building on them step—by-step to gradually include the more
complex facilities.

Learning a programming language is 1like learning a foreign
language - you need plenty of practical experience. At the end of
each chapter there is a practical program for you to do. Programs
from some of the chapters are used in later practicals so that
you can develop quite substantial programs, relatively easily.
The practicals have been carefully chosen to be interesting and
visually rewarding — all practicals except the first produce some
form of output on the display.

ACKNOWLEDGEMENTS

My thanks to Leicester Polytechnic for allowing me to use their
computer facilities for the development of programs and
production of the book, and to Mark Folker for his thorough
checking of the text and many suggested improvements. Also, I
wish to thank my wife, Susan, for her support in many ways,
particularly in the typing of the text using a word processor.

Roger Hutty

1 The Z80 Architecture

1.1 MICROPROCESSOR SYSTEMS

Computing, like many other processes, has three main parts

input }—e processing fe.sd output

In a computer system, data (numbers and words) is input by an
input device, the processing is performed by a central processing
unit and data is output by an output device.

A computer system can have many different types of device but as
far as a microprocessor system is concerned the most common
system is shown in Figure 1.1.

central processing unit
and memory

display

keyboard

Figure 1.1

A keyboard is used to input programs, and data for the programs.
A program is a list of instructions to tell the computer what to
do during the processing stage. A display is used to output
information, such as results from a program. The memory is used
to store programs and data.

So for a microprocessor system, a keyboard is used as the input
device and a display is used as the output device.

2 Programming in Z80 Assembly Language

If you are not familiar with binary and hexadecimal number
systems and signed (2’s complement) and unsigned numbers you
should work through Appendix A before continuing with the text.

1.2 THE Z80 CENTRAL PROCESSING UNIT

There are several different microprocessor central processing
units available. This book is concerned only with the Zilog 80
(Z80) microprocessor.

* Zilog and Z80 are trademarks of Zilog, Inc., with whom the
publisher is not associated. *

The components of the Z80 which are of most importance to a
programmer are the registers shown in Figure 1.2.

Accumulator A F Flag register
B c
D E
H L
SP Stack pointer
PC Program counter
IX X index register
IY Y index register
I Interrupt vector
register

Figure 1.2

The accumulator is an 8-bit register used for arithmetic and
logical operations. For example, to add two numbers in the Z80
microprocessor the first number must be in the accumulator and
the second number is added to the accumulator, thereby leaving
the sum in the accumulator.

The flag register is used to hold information about the results
of some operations. For example, the flag registér indicates
whether the result of adding a number to the accumulator is
positive, zero or negative.

The B, C, D, E, H and L registers are often referred to as
secondary registers and are used mainly to store data
temporarily. They can be used as single 8-bit registers or as 16-
bit registers when they are referred to as BC, DE and HL. These
secondary registers tend to be used, by convention, in particular

The Z80 Architecture 3

ways as you will see throughout the book. In particular, the HL
register pair is usually used to point to data in memory.

The 16-bit stack pointer is used to provide a stack facility -
this will be explained later.

The 16-bit program counter is used by the central processing unit
to keep a track of the place in memory where the next instruction
to be obeyed is located.

The use of the IX and IY index registers and the interrupt vector
register will be explained later.

1.3 MEMORY

The memory of a Z80 microprocessor system consists of locations,
usually called bytes, which are 8 bits long. Look at Figure 1.3.

0 01010010
1101110111
2 110110000
3101111110
- -

address contents 1locations

Figure 1.3

The number of bytes in a memory varies from one system to another
but will normally be 4K, 8K, 16K, 32K, 48K or 64K which are round
binary values (equivalent to decimal tens and thousands, etc.).
IK is equivalent to decimal 1024 (binary 10000000000). For
example, a 64K memory has decimal 65536 bytes or hexadecimal
10000 bytes.

The bytes of a memory are numbered sequentially starting at zero
- the number of a byte is referred to as its address. Each byte
contains an 8-bit pattern which is referred to as the contents of
the byte. The 8-bit pattern may represent any one of several
quantities such as an instruction, a number or a character.

Considering the memory contents as shown in Figure 1.3, the
contents of the byte whose address is 2 is hexadecimal BO (binary
10110000).

A shorthand form of writing ‘the content of a byte whose address
is’ is to enclose the address in parentheses (curved brackets) so
that, for example, (2) is hexadecimal BO.

4 Programming in Z80 Assembly Language

In the remainder of this text binary numbers are postfixed with
the letter B and hexadecimal numbers with the letter H. Numbers
with no postfix letter may be assumed to be decimal.

1.4 TINSTRUCTIONS

Have a quick glance at Appendix C where you will see the complete
280 instruction set.

In general, an instruction consists of an operation and an
operand. The operation indicates what has to be done and the
operand indicates what 1is to be used in the operation. For
example, the instruction

10010010

has an operation code (op-code) of 10010B which specifies that
the operand has to be ‘subtracted from the accumulator’ and an
operand of 010B which specifies the ‘contents of the register D’
are to be used in the subtraction.

An instruction may occupy 1, 2, 3 or 4 bytes depending mainly on
how the operand 1is specified. Look at the first five
instructions listed in Table C.5 of Appendix C. All five
instructions have an op-code of ‘add to the accumulator’. Look
down the column headed No. of Bytes and you will see that the
number of bytes occupied by the instructions varies from one to
three. This is because there are differences in the
specification of the operand’s address. The different ways in
which an operand may be addressed are called ‘addressing modes’.

1.5 ASSEMBLY LANGUAGE

In the computer itself instructions are held in binary. We could
write programs in binary but this would be very tedious and
error-prone. We could take advantage of the hexadecimal number
system and use, for example, 92H in place of the instruction
100100108. This would be an improvement but still tedious and
error-prone for any reasonably-sized program.

A more convenient way of writing programs is to use an assembly
language. An assembly language has many facilities to make
programming easier.

To start with, mnemonics may be used in place of operation codes.
Mnemonics are usually chosen to help a programmer by indicating
what the operation is. For example, the instruction referred to
in the previous section, ‘subtract register D from the
accumulator’ may be written using the SUB mnemonic, as

SUB D

which is easier to remember than 10010010B, or even 92H. Notice
also that the operand part of the instruction, in this case

The Z80 Architecture 5

register D, may be specified as the letter D in place of the code
010B.

There are many more facilities provided by the Z80 assembly
language which will be introduced to you throughout the text.

Assembly language programs cannot be executed directly by a
computer - they have to be converted to their equivalent binary
codes. This conversion is performed by a program called an
assembler, The assembler inputs an assembly language program,
called the source program, assembles the program and produces a
machine code program, called the object program, which can then
be executed.

All Z80 assemblers provide the same assembly language facilities
(with occasional odd exceptions). You will need to find out how
to assemble and execute programs on the Z80 computer system which
you intend to use for the practical programs.

2 Accumulator and Register
Instructions

In this chapter we shall consider the one-byte operations of
loading registers, adding to the accumulator, subtracting from
the accumulator, incrementing and decrementing registers and
negating the accumulator. All these instructions allow 8-bit
arithmetic to be performed.

2.1 LOAD A REGISTER WITH A VALUE

Any of the single registers may be loaded directly with a value
using the two-byte instruction

LD r,n

where r is any of the registers A, B, C, D, E, H or L and n is an
unsigned number in the range O to 255 or a signed number in the
range -128 to +127. For example, LD B,99 will 1load the B
register with 99.

2.2 ADD AND SUBTRACT A VALUE

Quantities can be added to, and subtracted from, the accumulator
by means of the

ADD A,n and SUB n

instructions, respectively. For example, the sequence of
instructions

LD 4,15
ADD A,46
SUB 22

will cause the accumulator to contain 15 after the LD
instruction, 61 after the ADD instruction and 39 after the SUB
instruction. Hence, the instructions compute 15 + 46 - 22,

Accumulator and Register Instructions 7

Notice that the ADD instruction requires the accumulator to be
specified explicitly, whereas the accumulator is implied in the
SUB instruction.

2.3 ADD AND SUBTRACT A REGISTER

The contents of any of the registers can be added to, or
subtracted from, the accumulator using the

ADD A,r and SUB r

instructions, respectively. This allows, for example,
intermediate results which have been saved temporarily in one of
the registers to be added to, or subtracted from, the
accumulator.

2.4 1LOAD ONE REGISTER WITH ANOTHER

A register may be loaded with the contents of another register
with the instruction

LD rl,r2

which loads register rl with the contents of register r2. This
instruction is often used to save the accumulator temporarily
whilst it is needed for another purpose, during which time the
saved value may be used. The contents of r2 are not changed -
all LD instructions perform a ‘copy’ rather than ‘load’ function.

The sequence of instructions

LD A,S6
SUB 22

1D B,A
ADD A,B
ADD A,B

computes 3 x (56 - 22). It does the 3 times multiplication by
adding 56 - 22 twice to itself. The result of computing 56 - 22
is stored in register B so that it can be added to the
accumulator by the last two instructions.

2.5 INCREMENT AND DECREMENT A REGISTER
The single-byte instructions
INC r and DEC r

increment and decrement, respectively, the register r by one.
These instructions are used mainly for looping as will be
explained later. However, they can also be used to add one or
subtract one during an arithmetic computation. In particular, INC
A and DEC A execute faster than ADD A,1 and ADD A,-1 or SUB 1l and
occupy one byte rather than two bytes of memory.

8 Programming in Z80 Assembly tanguage

2.6 NEGATE THE ACCUMULATOR
Another single-byte instruction
NEG

negates the accumulator. If, for example, the accumulator
contains 78 and a NEG instruction is executed the accumulator
will then contain -78.

The following table shows the contents of the accumulator, in
decimal and hexadecimal, after the execution of each of the three
instructions.

accumulator
LD A,27 27 (1BH)
NEG =27 (ES5H)
INC A -26 (E6H)

2.7 ADDRESSING MODES - IMMEDIATE AND EXTENDED

The three instructions LD r,n, ADD A,n and SUB n are using the
immediate addressing mode - so called because the value of the
operand is included in the instruction (in the second byte for
these particular instructions).

Another addressing mode - extended addressing - allows the
address of the operand to be specified. For example,

LD A,(127AH)

specifies that the contents of byte 127AH are to be loaded into
the accumulator. Conversely, the contents of the accumulator can
be stored in a byte using the instruction

LD (nn),A

where nn is the address of the byte in which the contents of the
accumulator are to be stored.

These two instructions occupy three bytes - the address of the
operand nn occupies the last two bytes of the instruction.

To demonstrate the difference between the immediate and extended
addressing modes consider the contents of the accumulator after
the execution of the two instructions LD A,35H and LD A,(35H)
assuming that byte 35H contains 79. The accumulator will contain
35H after execution of the instruction LD A,35H and 79 after
execution of the instruction LD A,(35H).

By looking at Table C.2 in Appendix C you will see that, of the
single registers, only the accumulator may be loaded and stored
using the extended addressing mode.

Accumulator and Register Instructions 9
2.8 LABELS

Keeping track of addresses in a program can be quite difficult.
The assembler overcomes this difficulty by allowing bytes in
memory to be given labels - like giving a house a name. A
labelled byte may then be referred to by its label rather than
its address number. Only those bytes to which a reference is
made are labelled, as shown in Program 2.1 which adds 10 to a
number.

5 Program 2.1 adds 10 to a number

y

0000 3A0009 LD A, (NUMBER)

0003 C60A ADD A,10

0005 32000A LD (RESULT),A ; result = number + 10
0008 76 HALT

0009 4A NUMBER: DEFB 74

000A 00 RESULT: DEFB 0

Labels are chosen by a programmer within the constraints that
they must consist of no more than six letters and digits, the
first of which must be a letter. A label is terminated by the
colon character. Careful thought in choosing labels can produce
intelligible programs as shown in Program 2.1. Lack of thought
can produce really ‘bad’ programs.

Program 2.1 shows the listing produced by the assembler after the
source program has been assembled. The first column of the
assembler listing gives the byte address of an 1instruction or
data byte and the second column 1is the object program, in
hexadecimal.

The 1listing shows how the assembler has assigned values = their

byte address number - to the labels. For example, NUMBER has the
value 0009H.

The HALT instruction causes the program to stop executing.

The DEFB pseudo operator requests the assembler to allocate a

byte and set it to the specified number. Pseudo operators will be
dealt with in more detail later in the text.

Comments should always be included in assembly language programs
to make their function understandable to a human reader. As shown
in Program 2.1 comments start with a semi-colon. The assembler
ignores all characters after a semi-colon in a line during
assembly but includes them in the listing. Comments may start at
any position in a line, including the beginning of a line. It is
difficult to define the level of comments - certainly, the level
should be higher than a comment beside each instruction. Looking
at the comments in the programs throughout the text will give you
a good idea of the level required.

10 Programming in Z80 Assembly Language

2.9 PROGRAM
Write a program which computes
RESULT = N1 - 3(N2 + 1) -1

Set up N1 and N2 and RESULT as data at the end of your program.

When supplying values for the variables ensure that all results,
intermediate and final, will be in the range -128 to 127.

Enter the program in the computer and have it assembled and
executed. Check the computation by looking at the contents of
the byte RESULT. Find out from your computer reference manual
how to look at the contents of bytes.

To see what 1is happening during execution of your program,
single~step through the program looking at the contents of the
registers and relevant bytes after the execution of each
instruction. Find out from your computer reference manual how to
single-step through a program.

Change the values of NI and N2 and repeat the assembly,
execution, checking and single-stepping of your program.

3 Subroutines and Display Output

3.1 SUBROUTINE CONCEPTS

Subroutines are a very important feature of programming which,
unfortunately, are wusually left until the end of a programming
course. At this stage in the book you will learn why subroutines
are used and how to use them, but not how they work. The
subroutine mechanism will be covered in a Chapter 7.

Let us first look at the reason for using subroutines. Suppose a
program contains two or more groups of statements which are
functionally identical, as indicated by the shaded areas on the
left of Figure 3.1.

Vv ’

> main

program program

e

/ / / / subroutine

Figure 3.1

11

12 Programming in Z80 Assembly Language

It is wasteful to repeat the statements, so instead we make the
group of statements into a subroutine as shown on the right of
Figure 3.l1. The program now consists of a main program followed
by the subroutine. In the main program, when the group of
statements is required to be executed, a reference is made to the
subroutine, the group of statements is executed and return is
made to the main program. Execution then continues normally in
the main program until a further reference is made to the
subroutine.

An important point to notice is that references from the main
program are made to the same place (the start of a subroutine)
but returns to the main program are made to different places in
the main program (following the reference). The mechanism for
returning to the correct place in the main program will be dealt
with later. When a main program makes a reference to a
subroutine we say that it is calling the subroutine.

3.2 THE CALL AND RET INSTRUCTIONS

Subroutines are called in the Z80 microprocessor by using the
CALL instruction followed by a label which is the label of the
first instruction of the subroutine. Program 3.1 shows a
subroutine being called twice from a main program.

; Program 3.1 multiplies two numbers by 4

LD A,(N1)
CALL QUAD
LD (Rl),A

start of main program
compute NIl x 4
Rl = N1 x 4

we Vo we

LD A,(N2)
CALL QUAD
LD (R2),A ; R2 = N2 x 4
HALT
Nl: DEFB 31
N2: DEFB 25
Rl: DEFB 0
R2: DEFB 0

Subroutine - multiplies the accumulator by 4

AA ;s Ax 2
ADD A,A s (Ax2) x2=Ax4

The subroutine, referred to by its label as QUAD, multiplies the
number in the accumulator by four.

Going through the program as it would be executed, first the
accumulator is loaded with N1 and then the subroutine QUAD is
called with the CALL QUAD instruction. This causes the
subroutine’s first instruction ADD A,A to be executed, followed
by the second instruction ADD A,A. The last instruction in the

Subroutines and Display Output 13

subroutine, RET, is used to return to the main program - to the
LD (R1l),A instruction in this case.

The main program then continues its execution with the LD A,(N2)
instruction which 1loads the accumulator with N2 before calling
the subroutine again with the second CALL QUAD instruction. The
subroutine’s two ADD instructions will be executed, followed by
the RET instruction which causes a return to the main program -
to the LD (R2),A instruction this time. Finally, the program
terminates with the HALT instruction.

The accumulator is being used by the QUAD subroutine to accept
data - the number to be quadrupled = from the main program and to
return data - the number quadrupled - to the main program. We
say that the accumulator is being used to ‘pass parameters’ to
and from the subroutine, the parameters in this case being the
number and the number quadrupled. Other registers, memory bytes
and the stack may also be used to pass parameters as we shall see
later.

The following is another example of a simple subroutine called
SUMREG which sums the contents of the single registers B, C, D,
E, H and L and leaves the result in the accumulator.

3 subroutine to sum the single registers
b
SUMREG: LD A
ADD A
ADD A
ADD A
ADD A
ADD A
ADD A
RET

CFrErmouowo

A main program may need to use more than one subroutine. In that
case, all the required subroutines are located at the end of the
main program, one after the other.

3.3 DISPLAY OUTPUT

One advantage of subroutines is that a programmer can use someone
else’s subroutine without necessarily knowing how the subroutine
performs its function.

You would usually have to go further than the third chapter in an
assembly language programming book to learn how to output to the
display. However, if you are given a subroutine which performs
that function and told how to use it, it does not matter that you
do not understand what is going on inside the subroutine.

A subroutine to output a character to the display is given in
Program 3.2.

14 Programming in Z80 Assembly Language

; Program 3.2

Subroutine to output a character to the display

; —on entry the accumulator contains the code of the
H character to be output

;3 =—all registers preserved

I

H
COUT: PUSH AF ; save all registers

PUSH BC

PUSH DE

PUSH HL

LD E,A 3 character into E
LD C,02H

CALL 0005H ; output character
POP HL ; restore all registers
POP DE

POP BC

POP AF

RET ; return

The subroutine is called by the instruction CALL COUT after
ensuring that the code of the character to be output is in the
accumulator. Incidentally, the character code is still in the
accumulator on return from the subroutine.

The ASCII character codes are given in Appendix D. A character’s
ASCII code is the binary pattern which is used when transmitting
a character from the cpu to a device and vice versa. Looking at
the ASCII table, you can see that the ASCII code for G is 47H and
the character with an ASCII code of 28H is +.

The display output subroutine above is the one used with Z80
microcomputer systems which operate under the CP/M (Control
Program/Monitor) operating system. You must check with your
computer reference manual or computer supplier that the display
output subroutine is correct in every detail for your particular
780 computer system. There may be small differences or, in fact,
the whole subroutine may be quite different.

A character code can be specified in a program by writing either
the numeric equivalent of the code or the character between
apostrophes. For example, LD A,2AH and LD A, *’ can both be used
to load the accumulator with the ASCII code of the * character.
The latter form is preferable because it is more understandable -
the assembler does the work of converting it into its numeric

equivalent.
3.4 PSEUDO OPERATIONS

Pseudo operations are so-called because, although they appear in
an assembly language program in the same place as the operator of
an executable instructions, they are not executed = not even
assembled. In fact, pseudo operations are information provided by
the programmer for the assembler. We have already used one pseudo

Subroutines and Display Output 15

operator - the DEFB pseudo operator which informs the assembler
that a byte and its contents are being defined.

There are several other pseudo operators which will be introduced
throughout the text. For now, we will look at two little-used
pseudo operators.

The ORG nn pseudo operator informs the assembler that the
following instruction is to be assembled so that it starts at
address nun. The mnemonic ORG, which is short for ORiGin, was
chosen because this pseudo operator is mainly used to indicate
the address of the start of a program, although it can be used
anywhere within a program. The ORG pseudo operator allows a
programmer to specify the absolute address of the place in memory
where a program is to reside. However, most microprocessors are
used under the control of an operating system, such as CP/M
(Control Program / Monitor), which either controls the allocation
of memory to programs or allows a program to be located at an
absolute place after the assembly of the program - usually during
the 1linking phase. Hence, it is now standard practice for an
assembler always to assemble a program relative to byte zero, and
the ORG pseudo operator has gone out of use.

The END pseudo operator has also now gone out of general use.Its
function is to inform the assembler that there is no more program
to assemble, that is, to indicate the end of a program. This is
necessary in some environments, such as the old paper-tape
systems, where it is not clear that the end of the program has
been reached., However, programs are now more normally held in
files, of one kind or another, and the assembler automatically
finds the end of a program by detecting the end of the file
containing the program. Purists would say that a program should
always finish with the END pseudo operator but since it is
usually obvious where the end of a program is, it is now rarely
used. Exceptionally, some assembler systems require programs to
be terminated with an END pseudo operator.

3.5 PROGRAM

Using the COUT subroutine write a program which outputs your
initials followed by a carriage-return and line-feed (referred to
as CR and LF in the ASCII character codes in Appendix D).

4 Unconditional Jumps and
Keyboard |Input

4.1 UNCONDITIONAL JUMPS

Execution of 280 programs we have looked at so far proceeds
sequentially through the instructions, one after another.
However, it is possible and, in fact, wusual to change the
sequence of execution for one reason or another. Jump
instructions allow the execution of a program to take different
paths through the instructions. There are two types of jump
instructions - unconditional and conditional. We will look at
conditional jumps in the next chapter,

An unconditional jump has the form
JP nn

where nn is the address of a memory byte. The instruction will
cause the instruction at address nn to be executed after the JP
instruction. The address is normally specified as the label of
the instruction to be jumped to, rather than its actual address.

Without conditional jumps the wuse of the JP instruction is
limited to providing indefinite loops, as shown in Program 4.1.

; Program 4.1 an indefinite loop
- ; initial part of program
LOOP: -

)k
- ; * instructions to be repeated
H
’

*
jump to LOOP

JP LOOP

The initial part of the program will be executed first, followed
by the instructions to be repeated. Then the JP LOOP instruction
causes a jump to the first instruction of those to be repeated.
The remainder of the instructions in the loop will be executed
until the JP LOOP is executed again, and so on.

The programming of indefinite loops is not recommended because
the only way to stop the looping is to ‘crash’ the system by
pressing the RESET button or worse, switching off the computer.
Jse of conditional jumps prevents the need to code indefinite
loops, as we shall see in the next chapter.

16

Unconditional Jumps and Keyboard Input 17

The following set of instructions repeatedly output an asterisk
character to the display.

LD A,’*’
NEXT: CALL COUT
JP NEXT

The JP instruction allows a jump to be made to any location in a
memory of 64K bytes. However, because most jumps are to
instructions within a few bytes from the jump instruction a
shorter version, the JR instruction, is also available. The JR
mnemonic stands for ‘Jump Relative’, so-called because the
address part of the instruction specifies the number of bytes
between the JR instruction and the instruction to which the jump
is to be made. The JP instruction occupies 3 bytes whereas the JR
instruction occupies only 2 bytes. Also, the JR instruction has a
faster execution time than the JP instruction.

4.2 KEYBOARD INPUT

In the same way that you were given a subroutine to output to the
display you are now given a subroutine called CIN which accepts a
character from the keyboard. The subroutine is shown in Program
4.2,

;s Program 4.2

H

; Subroutine to input and echo a character from the keyboad
H -on return the accumulator contains the code of the

H character

’

CIN: PUSH BC ; save registers
PUSH DE
PUSH HL
LD C,01H
CALL 0005H ; input character
POP HL ; restore registers
POP DE
POP BC
RET

On return from the subroutine, the accumulator contains the ASCII
code of the character which was input from the keyboard. The
subroutine is called by the instruction CALL CIN.

A character which is input from the keyboard is not always
automatically displayed: on the display wunit. If the input
subroutine supplied for your computer system does not
automatically echo the keyed character on the display you should
include a CALL COUT at the end (but before the RET) of the CIN
subroutine.

18 Programming in Z80 Assembly Language

You should check with your computer reference manual or computer
supplier that the input subroutine in Program 4.2 is correct, in
every detail, for your particular computer system. You will also
need to check if an input character is automatically echoed, or
not. The subroutine given is the one used with Z80 microcomputer
systems operating under the CP/M operating system.

Groups of statements which are required more then once in a
program or which are likely to be required by more than one
program should be made into a subroutine. The program you had to
write in Chapter 3 required a carriage-return and line—feed to be
output to the display. This is obviously going to be a common
requirement in many programs which affect the display. It is
prudent, therefore, to make the group of statements which perform
that function into a subroutine called CRLF, which can then be
called from a program by the instruction CALL CRLF whenever a
carriage-return and a line-feed is required to be output. The
subroutine CRLF would be coded as follows

; subroutine to output a carriage-return and line-feed

s
CRLF: LD A,13 3 output carriage-return
CALL COUT
LD A,10 ; output line-feed
CALL COUT
RET

This approach to programming is referred to as modular
programming, or more precisely modular design. Although normally
associated with high-level 1language programming, it is a
desirable feature of assembly language programming because it
saves time when a program is originated and also reduces
subsequent maintenance times associated with a program.

4,3 CHARACTER CODES AND VALUES

You must be careful when working with digits that you do not
confuse a digit’s character code with its value. The two are
quite different.

The values of the digits O to 9 are represented in registers and
memory bytes in the computer by the numbers OOH to O9H.

The character codes of the digits 0 to 9 are represented by the
numbers 30H to 39H (see Appendix D).

The values of digits are used when doing arithmetic in the
computer and the character codes of digits are used during input
and output of digital characters. The character code of a digit
which 1is 1input and needs to be used in arithmetic must be
converted to the value of the digit, and vice versa.

An example showing the difference between a digit’s value and
its character code is given by the two instructions LD A,’7’ and

Unconditional Jumps and Keyboard Input 19

LD A,8., The LD A,’7’ instruction loads the accumulator with the

number 37H and the LD A,8 instruction loads the accumulator with
08H.

When a digit is input it must have 30H subtracted from it before
the digit can be used in any arithmetic computation. Similarly, a
single digit result of an arithmetic computation must have 30H
added to it before it is output. The 30H addition and subtraction
are necessary to convert from a digit’s character code to its
value, and vice versa.

4,4 THE EQU PSEUDO OPERATOR

The EQU pseudo operator is a little-used pseudo operator which
should be used more often. It allows a programmer to give a
constant a mname by assigning a value to a label. Its main
advantages are that it makes a program more readable and easier
to change for different environments. For example, when loading
the accumulator with the carriage-return character code, it is
more obvious what is being done if

CR: EQU 13

D A,CR

is used. The EQU (short for EQUate) pseudo operator normally
occurs at the beginning of a program. A label may only be equated
once, but may be used as many times as necessary once it has been
defined.

Another example of the EQU pseudo operator being put to good wuse
is the naming of the address in the input and output. The outline
of a program using the display and keyboard subroutines given in
Programs 3.2 and 4.2 would look like

OPSYS: EQU 0005H

CIN: -
CALL CPM

COUT: -
CALL CPM

Now, if it is necessary to change the OPSYS address, only the EQU
pseudo operator at the beginning of the program need be amended
and the program re—assembled.

In general, all numbers in a program which represent a code or an
address should be equated. This does not include numbers which
are to be used for the value which they represent.

20 Programming in Z80 Assembly Language
4.5 PROGRAM

Write a program which repeatedly inputs (and echoes) two decima
digits from the keyboard and outputs their sum. It may b
assumed that the sum of the two digits does not exceed 9.
typical run of the program would leave the display containing

242=4
5+3=8
4+1=5

It is the program’s responsibility to output the + and
characters.

5 Flags, Conditional Jumps
and the CP Instruction

5.1 THE FLAG REGISTER

The 780 has an 8-bit flag register which is used to contain
information regarding the result produced by the last executed
instruction. In fact, only six of the eight bits are used as
follows

s [z] x [w [x]enw [w [c]

- Sign flag
- Zero flag
- Half-carry flag
/V - Parity/Overflow flag
- Add/Subtract flag
- Carry flag
- Unused bits

HOo=Z"IDmN®m

The SIGN FLAG is set to 1 if the result produced by an
instruction is negative, otherwise the flag is reset to O. For
example, after execution of the instructions

LD A,23
SUB 56

the accumulator will contain =33 and the sign flag will be set to
1.

The ZERO FLAG is set to 1l if the result produced by an
instruction is zero, otherwise the flag is reset to 0. The zero
flag would be reset to O after the execution of the two
instructions above.

The operation of the S and Z flags will suffice for now - the H,
P/V, N and C flags will be dealt with later in the book.

21

22 Programming in Z80 Assembly Language

Not all instructions affect all of the flags. For example, none
of the LD instructions affects any flags. You can discover which
instructions affect which flags by looking in the third column of
the tables in Appendix C. Glancing through the tables you will
see that the sign and zero flags are mainly affected by
arithmetic, shift, rotate and bit instructions.

The contents of the accumulator and the S and Z flags after
execution of each of the following six instructions are

A S z
LD 4,120 120 ? ?
SUB 122 -2 1 0
LD B,A -2 1 0
SUB B 0 0 1
ADD 4,70 70 0 0
NEG -70 1 0

We shall now look at conditional jump instructions which use the
flag bits.

5.2 CONDITIONAL JUMP INSTRUCTIONS

Conditional jump instructions allow a program either to continue
executing the instructions following the instruction or to
execute a set of instructions elsewhere in the program, depending
on the state of one of the flag bits. This allows a program to
go one way or another depending on a condition. A conditional
jump instruction is used in Program 5.1.

; Program 5.1

3

LD A,(X)
SUB 10 ; compute X~10
JP Z,EQUAL
LD A,l s X # 10
JP CONTIN
EQUAL: LD A,0 ; X =10
CONTIN: -
X: DEFB 25

The program resets the accumulator to 0 if X is equal to 10 or
sets it to 1 if X is not equal to 10. The SUB instruction
computes X - 10 and sets the sign and zero flags according to the
result of that computation. With X having a value of 25, both
the sign and zero flags will be reset to 0.

The JP Z,EQUAL instruction causes a jump to the instruction
labelled EQUAL if the zero flag is 1, or execution of the
following instruction, LD A,1, 1if the zero flag is 0. With X
having a value of 25, no jump will be made, and the LD A,l
instruction will be executed followed by the unconditional jump

Flags, Conditional Jumps and the CP Instruction 23

instruction JP CONTIN.

If the value of X had been defined as 10 then the order of
execution of instructions would have been LD A,(X) SUB 10
JP Z,EQUAL and LD A,0.

Four of the conditions which can be tested by a conditional jump
instruction are

Zero - jump if zero flag is 1 - eg. JP Z,EQUAL
Non Zero - jump if zero flag is 0 - eg. JP NZ,DIFF
Minus - jump if sign flag is 1 - eg. JP M,NEG
Positive - jump if sign flag is 0 - eg. JP P,POS

The following program segment outputs the letter N if the sum of
the two numbers which are in the B and C registers, 1is negative,
the letter Z if the sum is zero or the letter P if the sum is
gositive, but not zero.

LD A,B
ADD A,C ; B+ C
JP M,NEG
JP Z,ZERO
LD A,"P’ ; +ve
JP DONE

NEG: LD A,'N’ ; —ve
JP DONE

ZERO: LD A,’Z’ ;0

DONE: CALL COUT

The JP Z and JP NZ have equivalent relative jump instructions JR
Z and JR NZ in the same way as the unconditional JP instruction
has an equivalent JR instruction. The JP M and JP P instructions
do not have relative equivalents.

5.3 THE COMPARE INSTRUCTION

The Z80 compare instruction is very useful because it allows the
accumulator to be compared with another value without affecting
the contents of the accumulator as, for example, do the SUB and
ADD instructions. The compare instruction computes the value of
the operand subtracted from the accumulator and sets the flags
according to the result of the computation. The result does NOT
replace the contents of the accumulator - the result is
discarded. The instruction has a mnemonic of CP and can have an
operand of a register or an 8-bit value.

The most straightforward use of the CP instruction is determining
if the accumulator contains a specific value or not. For example,
the instructions

Ccp 50
JR Z,FIFTY

will cause the Z flag to be set to 1 if the accumulator contains

24 Programming in Z80 Assembly Language

50 and reset to O otherwise, followed by a jump to the
instruction 1labelled FIFTY if, in fact, the accumulator does
contain 50.

The following program segment causes a jump to an instruction
labelled LESS if the value of the variable COUNT is less than
100, to an instruction labelled EQUAL if COUNT is equal to 100 or
to an instruction labelled GREAT if COUNT is greater than 100.

LD A, (COUNT)

CP 100

JP M,LESS ; COUNT < 100
JP Z,EQUAL ; COUNT = 100
JP GREAT ; COUNT > 100

The CP O instruction is useful for setting the flag register
after an instruction which does not affect the flags. For
example, the LD instruction in the sequence

LD A,(TEMP)
CP 0

does not affect the flags and a CP 0 instruction is, therefore,
necessary if the status of the accumulator is required.

5.4 CONDITIONAL LOOP TERMINATION

The loops which were considered in the previous chapter were
referred to as indefinite loops because there were no
instructions to stop the looping.

We shall be considering several different methods of terminating
loops in subsequent chapters, but for now we shall consider just
one method in which the loop is terminated when a specified
condition occurs. Program 5.2 contains a loop which inputs
characters until a blank character is input.

; Program 5.2

3’
NEXTCH: CALL CIN

CP ’ ’

JP NZ ,NEXTCH
BLANK: -

The three instructions in the program will be repeatedly executed
until the character input is the blank character. When this
occurs, the CP instruction will produce a zero result causing the
instruction following the JP NZ,NEXTCH instruction to be executed
next rather than the instruction labelled NEXTCH.

Flags, Conditional Jumps and the CP Instruction 25

5.5 PROGRAM

First write a subroutine to categorise a character code. On
entry to the subroutine the accumulator contains the character
code. The subroutine returns with the accumulator unchanged and

register B containing

-1 if the character is a decimal digit, 0 to 9
0 if the character is a letter of the alphabet (small
and capital), a to z or A to Z
or 1 1if the character is a special character (neither a
decimal digit nor a letter of the alphabet)

You will need to consult the table of character codes in Appendix
D. Use the Compare instruction to determine first if the
character code is less than ‘0’, in which case the character is a

special character, second if the character code is less than ":’,
in which case the character is a digit, and so on.

Use the subroutine to write a main program which repeatedly
inputs a character from the keyboard and responds, after
outputting a space, by displaying the letter D, A or N indicating
that the character just input was a decimal digit, an alphabetic
character or neither, respectively. The 1letter should be
followed by a carriage-return and line-feed.

Pressing the RETURN key should terminate the program.

6 Counting Loops and the Stack

There are many different constructions used in looping. We have
already used an ‘indefinite loop’ construct (not recommended) and
a ’conditional terminated loop’ construct. We shall consider
several more types of loop construct throughout the book,
starting now with a ‘counting loop’ comnstruct.

6.1 COUNTING LOOPS

One of the simplest loop constructions allows a sequence of
instructions to be executed n times. An example of this is shown
in Program 6.1 which inputs 10 digits and sums them.

; Program 6.1 input and sum 10 numbers
5
b C,0
LD B,l10
NEXT: CALL CIN

C contains running sum
initialise loop counter
input digit

s we we

SUB 30H ; convert digit to its value
ADD A,C ;s add digit to running sum
LD C,A

DJNZ NEXT

CONTIN: -

The sequence of instructions between, and including, CALL CIN and
LD C,A will be executed 10 times. The loop counter, register B
in this example, is initially loaded with the number of times
that the loop is to be executed using the LD B,10 instruction.
The DJINZ (Decrement and Jump if Not Zero) instruction causes
register B to be decremented and a jump made to the specified
label NEXT if B is not zero. When B does become zero, after the
loop instructions have been executed 10 times, execution will
continue with the instruction following the DJNZ instruction,
that is, the one labelled CONTIN.

The maximum loop count that can be used by the loop construction
in Program 6.1 is 255.

It is not good programming practice to write specialised programs

like, for example, Program 6.1 which has been written for a fixed
loop count of 10. Normally, programs are writtenm to be of

26

Counting Loops and the Stack 27

general use, although not so general that it is difficult to use
a program for a particular case. For counting loops the initial
value of the loop counter can be a parameter of a subroutine 1if
the loop is contained in a subroutine, a value input from the
keyboard, or a value computed prior to the loop.

An example of a counting loop which obtains its initial value
from the keyboard is shown in the following program which inputs
a digit n from the keyboard and displays n asterisks.

; program to output n asterisks
b
CALL CIN ; input digit
SUB 30H ; convert to value n
LD B,A
LD A%
NEXTAS: CALL COUT ; output *
DJNZ NEXTAS
HALT

Other registers, and memory bytes, can be used as the loop
counter as well as the B register. The reason why the B register
is a first choice is because of the DJNZ instruction. There is no
equivalent instruction for the other registers. A counting loop
using, for example, the accumulator looks like

LD A,initial-value
NEXT: -

DEC A

JR NZ,NEXT

which requires two separate instructions to decrement and test
the accumulator. Hence, DEC B followed by JR NZ,label is
equivalent to DJNZ label.

It is sometimes convenient to use the loop counter within the
sequence of instructious to be repeated. Suppose, for example,
we wanted to sum the numbers from 1 to n.

Program 6.2 does just that by adding in the loop counter, which
goes from n to 1, each time through the loop.

; Program 6.2 sum the numbers 1 to n

)

N: EQU 11
LD A,0 ; set sum to O
LD B,N

NEXADD: ADD A,B ; add n to sum

DJNZ NEXADD

28 Programming in Z80 Assembly Language

The loop counter is being used to count the number of times that
the sequence of instructions is executed. It is also being wused
as the value to be added in each time round through the loop.
After looping is complete the accumulator will contain the sum.
Notice that the accumulator must be set to zero to start with.

When the loop counter is being used within a repeated sequence of
instructions it is not always convenient to count down to O. If
the Jlower value is not zero then a compare instruction must be
used to detect the end of looping. As the compare 1instruction
operates only on the accumulator, this technique implies the use
of the accumulator as the loop counter. An example of such a
program is the following program which outputs the decimal digits
9 to 1, in descending order.

; program to output the digits 9 to 1

.
3

LD A,’9° 5 code for 9 (39H)
NEXDIG: CALL COUT

DEC A

CP ‘0° ; code for O (OOH)

JR NZ,NEXDIG

HALT

6.2 NUMBER INPUT

So far we have only considered the input of a single digit number
from the keyboard. Inputting a number with more than one digit
is not so straightforward.

If, for example, we wanted to input the number 123 it would have
to be input as three separate digits - the digit 1 followed by
the digit 2 followed by the digit 3. This would be done with
three CALLs to the CIN subroutine so the program would then have
the character codes for the three digits 1, 2 and 3. How then do
we convert these codes to form the 8-bit value 123 in a register
or memory byte?

First of all each digit’s character code must be converted to the
digit’s wvalue. Then the first digit’s value is multiplied by
100, the second digit‘s value is multiplied by 10 and these two
products are added to the third digit’s value to give the total
value of the number. So that for the number 123 the computation

1 x 100 + 2 x 10 + 3
would be performed.

An equivalent, but more efficient, algorithm for computing the
value of a 3-digit number is

((first digit x 10) + second digit) x 10 + last digit

which can easily be extended to an algorithm which inputs an n-
digit number.

Counting Loops and the Stack 29

6.3 THE STACK

The Z80 stack is an area of memory in which a stack facility
exists. The main characteristic of a stack is that items may
only be added to, and removed from, the top of the stack. A
stack is also referred to as a LIFO (Last-In-First-Qut) queue.
Figure 6.1 shows how a Z80 stack is organised.

A stack has a top and a bottom. The bottom of the stack is where
the first item was added to the stack and the top of the stack is
where the last item was added. (A Z80 stack item is two bytes.)
The stack pointer (SP) register always points to the top of the
stack. Initially, when the stack is empty, the stack pointer
points to just below the bottom of the stack.

low address

r /]/ <«—stack top

stack pointer(SP)
register «—stack bottom

high address

-~
Figure 6.1

You can see from Figure 6.1 that the stack bottom is a high
address and the top is a low address, so usually the stack bottom
is a memory byte with one of the highest addresses, The address
of the stack bottom can be set by program instructions and there
may be more than one stack. However, a system will usually have
only one stack and the address of that stack bottom will be set
by the operating system.

Items may be added to the stack, or pushed on the stack, as we
say, when the SP register will be decremented by two to point to
the new top of the stack. Also, items may be removed from the
stack, or popped off, as we say, when the SP register will be
incremented by two to point to the new top of the stack.

The stack is used mainly for the temporary storage of data and
addresses, an example of which we shall look at in the next
section and also in the subroutine mechanism which will be
discussed in the next chapter.

30 Programming in Z80 Assembly Language

6.4 THE STACK INSTRUCTIONS

The stack bottom can be initialised using one of several
instructions which load the SP register with a value.

The two most commonly used of these instructions are LD SP,value
and LD SP,(label). So, for example, LD SP,32767 will set the
bottom of the stack to the byte with address 32767.

Having initialised the stack, items may be pushed on the stack
and popped off the stack. Only the contents of the register
pairs AF, BC, DE, HL, IX and IY may be pushed on and popped off
the stack, so for any operation on the stack, its size increases
or decreases by two bytes. The two instructions for popping and
pushing are POP rp and PUSH rp, where rp is any one of the
register pairs listed above. When a register pair has been
PUSHed on to the stack the contents of the SP register are
decremented by two to point to the new top of the stack, and when
a register pair has been POPped off the stack the contents of the
SP register are incremented by two.

The operation of the PUSH and POP instructions is shown in the
following table in which the contents of the registers A, B, C,
D, E and SP are shown after execution of each of the
instructions.

A B c D E SP
LD SP,16383 OAH OBH OCH ODH OEH 16383
PUSH AF OAH OBH OCH ODH OEH 16381
PUSH BC OAH OBH OCH ODH OEH 16379
PUSH DE OAH OBH OCH ODH OEH 16377
POP BC OAH ODH OEH ODH OEH 16379
POP DE OAH ODH OEH OBH OCH 16381

Another wuseful stack instruction is EX (SP),HL which exchanges
the top of the stack with the contents of the HL register pair.
The exchange may take place also with the IX and IY registers
using the EX (SP),IX and EX (SP),IY instructions, respectively.

6.5 SAVING AND RESTORING REGISTERS

A subroutine should normally leave all registers in the state
that it finds them, except those which are wused to pass
parameters back to the main program or calling subroutine. The
technique for doing this is referred to as ‘saving and restoring
registers’. On entry to the subroutine, the subroutine saves any
registers that it is going to use and then restores those
registers just before returning. The simplest method of saving
and restoring registers uses the stack. For example, if a
subroutine uses registers B, C and D, then the start and end of

Counting Loops and the Stack 31

the subroutine would look like

SUBIN: PUSH BC

PUSH DE
POP DE
POP BC
RET

When wusing the stack in this way care must be taken to ensure
that registers placed on the stack are removed before the RET
instruction and also that the registers are POPped off in reverse

order.

We are now able to code the CRLF (carriage-return line-feed)

subroutine in a better way — using EQU and saving and restoring
the accumulator which would otherwise be corrupted by the

subroutine., The improved version is as follows

; subroutine to output carriage-return and line-feed

3’
CR: EQu 13
LF: EQU 10
CRLF: PUSH AF
LD A,CR 5 output carriage-return
CALL COUT
LD A,LF s output line-feed
CALL COUT
POP AF
RET

When a subroutine does not save used registers, there should be a
comment at the beginning of the subroutine indicating which
registers are affected by the subroutine.

6.6 PROGRAM

Repeated addition can be used as a crude method of multiplying
two numbers since, for example, 3 x 4 is equivalent to 3 + 3 + 3
+ 3. So, to multiply p by q, p is added to itself q - 1 times.

Write a subroutine called MULT which multiplies the B register by
the C register and leaves the product in the accumulator. The
subroutine may assume that the resulting product is not too large
to be contained in the accumulator.

Write a subroutine called NUMIN which inputs an.unsigned decimal
number consisting of any number of digits. The number is
terminated by any non-digit character and may have leading spaces
which are 1ignored by the subroutine. On return from the
subroutine the accumulator should contain the number, the B
register should contain the number of digits in the number and
the C register should contain the non-digit terminating character.

32 Programming in Z80 Assembly Language

Use the MULT and NUMIN subroutines, and subroutines from previous
programs, to write a main program which repeatedly inputs (with
echo) a decimal number terminated by a space and outputs the
number of digits (1, 2 or 3) in the number, a space, the word OK
if the number is in the range 50 to 100, inclusive, or otherwise
the word NO, and a carriage-return and a line-feed.

One advantage of modular programming is that a module - a
subroutine in assembly language programming - can be replaced by
another module without affecting the rest of the program provided
that the new module performs exactly the same function as the old
module and that parameters are passed in the same way. For
example, when you are able to write a ‘better’ multiply
subroutine, the crude one you have used in this program can
simply be replaced, without affecting any program which uses the
subroutine.

7 Nested Loops and Addressing
Modes

7.1 NESTED LOOPS

A natural extension of the loops we have used so far is a
construction which has a loop within a loop, within a loop, and
so on. This type of construction is referred to as nested loops,
because each loop nests inside another loop. The terms outer
loop and inner 1loop are used to describe a loop containing
another loop, and a loop which is inside another loop,
respectively. Program 7.1 shows a program with two loops.

; Program 7.1 outputs 4 lines of 6 *’s

LD C,4 ; initialise line count
NEXTC: CALL CRLF 5 line loop start

LD A, ’*’

LD B,6 ; initialise * count
NEXTB: CALL COUT ;s * loop start

DJNZ NEXTB 3 * loop end

DEC C

JP NZ,NEXTC ; line loop end

HALT

The program outputs four lines of six asterisks. The outer loop
uses the C register to count the number of lines and the inner
loop uses the B register to count the number of asterisks.

Although Program 7.1 shows two standard counting loops, there may
be more than two loops nested and any one of the nested loops may
be any type of loop which is used in any way and terminated in
any way.

7.2 IMMEDIATE EXTENDED AND REGISTER INDIRECT ADDRESSING MODES

The 280 microprocessor has ten addressing modes, that 1is, ten
different ways of specifying the operand of an instruction. We
have already looked at two addressing modes explicitly (immediate
and extended), but have used another three (register, implied and
relative) without special mention.

33

34 Programming in Z80 Assembly Language

Immediate addressing mode has the value of the operand included
in the instruction - in the second byte. The instruction CP 27
has an immediate operand of 27.

Extended addressing mode has the address of the operand included
in the instruction - in the second and third bytes. The
instruction LD A,(1234H) has an extended operand of 1234H.

Register addressing mode has one of the registers as the operand.
The register B 1is specified as the register operand in the
instruction DEC B.

Implied addressing mode has the operand implied, that is, not
explicitly stated in the instruction. The accumulator is the
implied operand in the instruction NEG.

Relative addressing mode is the one in which the instruction
contains a relative displacement between a jump instruction and
the instruction to which the jump is to be made, such as the JR
conditional and unconditional jump instructions.

Figure 7.1 compares the immediate and extended addressing modes.

SUB opcode LD A opcode
73 operand 78 operand
address
56
SUB 73 LD A,(5678H)
Immediate addressing Extended addressing
Figure 7.1
We shall now consider two more addressing modes - register

indirect and immediate extended.

Immediate extended addressing mode is, as its name suggests, an
extension of the immediate addressing mode. Immediate addressing
refers to 8-bit values whereas immediate extended refers to 16-
bit values.

In the immediate extended addressing mode the operand is the 16-
bit value in the last two bytes of the instruction. For example,
the instruction LD BC,4985 would cause the register pair BC to be
loaded with the value 4985. The three register pairs BC, DE and
HL may all be loaded with a value, although you will find that
the register pair HL is the most used in this way because that
pair is used to point to data following the end of a program. To
use the data in the program it is first necessary for HL to

Nested Loops and Addressing Modes 35

contain the address of the data as follows

LD HL,NUMBER

NUMBER: DEFB -25

The instruction LD HL,NUMBER causes the address of the data byte
labelled NUMBER to be loaded into the HL register pair.

In register indirect addressing mode, the address of the operand
is contained in a register pair, so that, for example, the
instruction LD A,(HL) causes the accumulator to be loaded with
the contents of the memory byte whose address is in HL.

Figure 7.2 compares the immediate extended and register indirect
addressing modes.

LD HL opcode LD A, (HL) opcode
34
operand
12 H 9A operand
address
L 2B
LD HL,1234H LD A, (HL)

Immediate extended addressing Register indirect addressing
Figure 7.2

The register indirect addressing mode can be used in addition -
ADD A,(HL) - and subtraction - SUB (HL). Also, a memory byte may
be loaded from the accumulator using this addressing mode - LD
(HL) ,A.

Program 7.2 shows the use of the immediate extended and register
indirect addressing modes.

The program computes the sum and the difference of two numbers Ni
and N2 which are located in a data area at the end of the
program.

The first instruction in the program sets HL to point to the data
byte N2. With N1 in the accumulator, the SUB (HL) instruction
causes the contents of the memory byte pointed to by HL, to be
subtracted from the accumulator. Similarly, the ADD A,(HL)
instruction causes the contents of N2 to be added to the
accumulator.

36 Programming in Z80 Assembly Language

Program 7.2 sum and difference of 2 numbers

LD HL,N2 ; HL points to N2
1D A, (N1)

SUB (HL) ;3 DIFF = N1 - N2
LD (DIFF),A

LD A, (NI)

ADD A, (ML) ; SUM = NI + N2
LD (SUM),A

HALT
5
N1: DEFB 14H
N2: DEFB -23H
DIFF: DEFB O
SUM: DEFB O

7.3 THE DEFM PSEUDO OPERATOR

A string of characters can be specified in the data area of a
program by using several DEFB pseudo operators, as follows

TEXT: DEFB ‘M’
DEFB ‘E’
DEFB ‘S’
DEFB ‘S’
DEFB ‘A’
DEFB ‘G’
DEFB ‘E’

However, that is rather tedious and unnecessary because
TEXT: DEFM ‘MESSAGE’

is exactly equivalent to the seven DEFBs above but is quicker to
write and easier to read and understand. On detecting a DEFM
pseudo operator the assembler puts the first character, M in this
case, in the memory byte 1labelled TEXT and the remaining
characters in order in the next six bytes.

The pseudo operator DEFM actually stands for DEFine Message.

The DEFM and DEFB pseudo operators can be mixed to produce
strings of characters which contain control codes. For example,
the character string

MESS12: DEFM ‘FIRST LINE’
DEFB ODH 3 CR code
DEFB OAH ;s LF code
DEFM ‘SECOND LINE’

Nested Loops and Addressing Modes 37

if output as one string would cause

FIRST LINE
SECOND LINE

to be displayed.
7.4 TEXT OUTPUT

When only one, two or three characters are being output to the
display it is normal to output them with separate sets of
statements, each of which loads the accumulator with a character
and calls COUT. However, for three or more characters this would
be a very inefficient way to output them to the display.

A more efficient method uses a loop to output the message.
Assuming that the message is defined by a DEFM pseudo operator at
the end of the program, the program code performs as follows. The
HL register pair is set to point to the first of the characters,
the character is loaded into the accumulator and output to the
display. The HL register pair is then incremented by omne, so
that it 1is pointing to the next character which is loaded into
the accumulator and output to the display, and so on. Program
7.3 outputs a string of eleven characters to the display.

;s Program 7.3 output text to the display

H
LD HL, TEXT ; HL points to first character
LD B,11

b
NEXCH: LD A,(HL) ; get next character
CALL CcouT
INC HL ; HL points to next character
DJNZ NEXCH
HALT

5
TEXT: DEFM ’“ABCDEFGHIJK’

The INC HL instruction in Program 7.3 is a new instruction for
you to note. In fact all the register pairs, BC, DE, HL, SP, IX
and IY, can be incremented by one with an INC rp instruction and
also decremented by one with a DEC rp. One important difference
between incrementing and decrementing register pairs and
incrementing and decrementing single registers is that none of
the flags is affected by the register pair INC and DEC
instructions. Check this fact for yourself by looking at Table
C.7 in Appendix C.

7.5 THE SUBROUTINE MECHANISM

Having used subroutines we are now going to see how they work,
that is, what happens when a call is made from a main program to
a subroutine and a return is made from that subroutine. The
following description refers to Figure 7.3.

38 Programming in Z80 Assembly Language

The stack is used by the subroutine mechanism to save temporarily
the return address. When the main program CALL instruction 1is
executed, the address of the instruction following the CALL
instruction (NEXTI) is automatically pushed on to the stack.
Execution of the subroutine 1is then started by loading the
program counter (PC) register with the address specified in the
CALL instruction (SUBR).

- ~————T
CALL SUBR
NEXTI
S S
T ————T
NEXTI
SUBR
—_——
RET
/—__/"
program and subroutine stack

PC SUBR after execution of CALL SUBR
PC NEXTI after execution of RET

Figure 7.3

When the subroutine RET instruction is executed, the top of the
stack (NEXTI) is automatically popped off into the PC register
and the instruction at the address pointed to by the PC register
(that is, the one following the CALL instruction - NEXTI) is
executed next.

If a subroutine uses the stack for any reason, then it must
ensure that it has popped off all that it has pushed on, so that
when the RET instruction is executed the top of the stack
contains the return address.

7.6 PROGRAM

Write a subroutine called CHSOUT which outputs a character n
times on m lines on the display. On entry to the subroutine the

Nested Loops and Addressing Modes 39

accumulator contains the character and m and n are contained in
the B and C registers, respectively.

Write a subroutine called TEXOUT which outputs a string of
characters. On entry to the subroutine HL contains the address
of the first character in the string. The string must be
terminated by a byte containing a zero value.

Using the subroutines CHSOUT and TEXOUT and subroutines from
previous programs, write a program which outputs the following on
the display

kkkkkkkhhkhkhhrhkkhkhkhhhhkhhik
khkkkhkhhkhhhhhhhkhkhhhhkhhkhkhhhikhk
khkkkhhkhkdhhhhhhkkhhkkhhkihkhkhkhk

your name

your address - first line
- second line
- third line

kkkkhkkhikhkkihkhkkhhhhkhhhkkkkk
hhhkkhkhhkhkhhhhkkhkhkhkhkhkhkkkkkk
kkkkkhikkhkkkhkhkhhhhhhhkhhhkhhik

As an extra challenge you could output after the last line the
following pattern

khkkhhkikhhkhkhhhhkkhhkhkkkkkkkk
dkkkkhkhhhkhhhhihkhhhkkhkkk
khkkhhkkkhkhkhhhhhhkhkhhkhid
hkhkhkhhhkkhkhhhhkhkkkhkk
khkkkkkhkkhhdhhrhkiix
hhkkkkhhkkhkhhkihk
kxkkkkdhkkhkhkikk
kkhkhhhhkhkkkk
kkkkkkhkkkkhk
dhkkkhkikkk
khkkhkhkk
kkkkkk
kkkk
*%

You should use nested loops to provide this additional output,
not just fourteen calls to the TEXOUT subroutine with fourteen
different fixed-character strings.

8 Carry and Overflow

Carry and overflow are two conditions which can occur during
addition and subtraction. The conditions affect bits in the flag
register which can then be tested by conditional jump
instructions.

8.1 CARRY

Carry normally refers to the carry out of the most significant
bit during the addition of two numbers. For example, the sum

00110011 (+51)
+ 00011100 (+28)
01001111 (+79)

does not produce a carry, but the sum

11111110 (-2)
+ 11111111 (-1)
[1] 11111101 (-3)

has produced a carry which would be ignored as far as the result
of the 8-bit addition is concerned.

8.2 THE CARRY FLAG

When an ADD instruction is executed the CARRY FLAG will be set to
1 if carry occurs, otherwise it will be reset to 0. The carry
flag can then be tested by using one of the conditional jump
instructions

JP C,label
JP NC,label
JR C,label
or JR NC,label

where C stands for Carry (the carry flag is set to 1) and NC
stands for No Carry (the carry flag is reset to 0).

40

Carry and Overflow 41

The carry flag is also used to indicate that a SUB instruction
needed to borrow a 1 during subtraction of the two most
significant bits.

When the following program segment

SUB 8
JP NC,NCARRY
CARRY: -

is executed with 7 in the accumulator, for example, the
instruction labelled CARRY will be executed after the JP
instruction rather than the instruction labelled NCARRY because a
carry would have been produced by the subtraction.

The carry flag is involved in the execution of shift, rotate and
decimal adjust instructions, which are dealt with later in the
book.

There are two instructions which may be used to change the value
of the carry flag. The instructions are SCF which Sets the Carry
Flag to 1, and CCF which Complements the Carry Flag. These two
instructions are specified in Table C.6 in Appendix C.

The sequence of instructions

SCF ; set carry flag to 1
CCF ; complement it - now reset to O

can be used to reset the carry flag to O.
8.3 OVERFLOW

Overflow occurs when the result of an operation is outside an
arithmetic range. For 8-bit registers and bytes the range is
-128 to +127.

For addition, two numbers with different signs will never cause
overflow. However, when adding two positive numbers or two
negative numbers overflow may or may not occur. For example, the
sum

01100100 (+100)
+ 00110001 (+49)
10010101 (-107)

does not produce the correct arithmetic result because the real
sum of the two numbers, +149, is greater than +127 and is
therefore outside the arithmetic range.

For subtraction, overflow can only occur if the two numbers have
different signs. For example, the subtraction

42 Programming in Z80 Assembly Language

01111110 (+126)
- 11000000 (-64)
{1] 10111110 (-66)

does not produce the correct arithmetic result. The real result,
+190, 1is outside the range. Additionally, in this particular
example, carry has occurred.

Both carry and overflow can occur together when adding two
numbers. For example, the sum

10010101 (-107)
+ 10010101 (-107)

produces overflow and carry.

8.4 THE OVERFLOW FLAG

The parity/overflow flag is used to indicate overflow or parity
depending on the instruction. The flag indicates overflow for
arithmetic operations when it is referred to as the overflow
flag.

The OVERFLOW FLAG is set to 1 if overflow occurs and reset to 0
if overflow does not occur, for the ADD, SUB, INC, DEC, NEG and
CP instructions. The flag can be tested using one of the
conditional jump instructions

JP PO,label
or JP PE,label

where PE stands for Overflow (the overflow flag is set to 1) and
PO stands for No Overflow (the overflow flag is reset to 0).
Unfortunately, PO and PE refer to the usage of the flag as a
parity indicator and, therefore, are rather misleading when
referring to overflow. Notice that there are no JR equivalent
instructions for overflow.

8.5 CONDITIONAL CALLS AND RETS

In addition to the simple CALL subroutine instruction, there are
conditional CALL instructions which operate in a similar manner

to the conditiomal JP instructions. For example, the program
segment

JP NZ ,0VER
CALL SUBEX
OVER: -

could be recoded, using the single instruction

Carry and Overflow 43

CALL Z,SUBEX
thereby saving one instruction.,

The conditions which can be tested by the conditional CALL
instructions are the same as those which can be tested by the
conditional JP instructions, that is, Z and NZ, M and P, C and NC
and PE and PO.

There are equivalent conditional RET instructions. to return
conditionally from a subroutine. However, these are not normally
used because a subroutine should have only one exit place, that
is, only one unconditional RET instruction. Hence, the
subroutine structure

JP NC,EXIT

JP EXIT
JP Z,EXIT
EXIT: RET

would be used in preference to

RET NC
RET
;ET Z
;ET

A single exit subroutine provides a cleaner interface which
ensures that all that has to be done before returning is done and
extensions to the subroutines can easily be made without the
possibility of forgetting that exits were made other than at the
end of the subroutine.

The “exit’ label is normally associated with the first of several
instructions ending with the RET instruction. If, for example,
registers have to be restored then the end of the subroutine may
look 1like
GOBACK: POP BC
POP DE
RET

8.6 PROGRAM
Amend the subroutine NUMIN so that it inputs a signed, rather

than unsigned, decimal number. The subroutine should then accept
numbers such as -121, +84 and 53 (implied positive number).

44 Programming in Z80 Assembly Language

Write a program which first requests two numbers to be input as
follows

INPUT FIRST NUMBER nl
INPUT SECOND NUMBER n2

and then outputs
SUM IS znorp

where znorp is the word ZERO, NEGATIVE or POSITIVE, followed, if
appropriate, on the next line by

PRODUCED OVERFLOW
followed, if appropriate, on the next line by
PRODUCED CARRY

The two numbers nl and n2 are signed 2-digit decimal numbers, for
example, 63 and -08.

The program should repeatedly deal with pairs of numbers wuntil
E is input as nl.

9 Bit Operations and the Index
Registers

The Z80 has an extensive range of bit instructions. The bit
instructions allow individual bits of a register or memory byte
to be tested (for 0 or 1), set to 1 and reset to O. The number
of the bit in the register or memory byte to be used in the
operation has to be specified in the instruction and, for this
purpose, the bits are numbered right to left starting at 0, as

HEEEEEN

7T 6 5 4 3 2 1 0

All bit instructions operate on any of one of the single
registers or a memory byte pointed to by HL, IX or IY.

9.1 THE BIT TEST INSTRUCTION

The BIT instruction tests a specified bit of a register or memory
byte and sets the zero flag accordingly - to 1 if the bit is O,
or to 0 if the bit is 1. For example, the instruction

BIT 6,E

tests the bit numbered 6 of register E and would set the Z flag
to 0 if register E contained 01000100B.

Look back at Program 3.2 where you will see a BIT instruction
used to test bit 0 of the accumulator.

It is probably easier to remember that the BIT instruction causes
the Z flag to be set to the complement of the specified bit.

A BIT instruction is usually followed by a ‘jump on zero’ or
“jump on non-zero’ instruction, in which case the Zero and Non-

46 Programming in Z80 Assembly Language

Zero conditions refer, as you would expect, to the specified bit
being 0 or 1, respectively. So there is normally no need to
remember how the Z flag is set by a BIT instruction.

9.2 THE SET AND RES INSTRUCTIONS

The SET instruction allows a specified bit of a register or
memory byte to be set to 1. For example, the instruction

SET 2,C

sets bit 2 of register C to 1. The other bits of C remain
unchanged.

The RES instruction allows a specified bit of a register or
memory byte to be reset to 0. For example, the instruction

RES 5,(HL)

resets bit 5 of the memory byte pointed to by HL to 0. The other
bits of the memory byte remain unchanged.

The following program segment checks if the number in the
accumulator is odd or even and then sets bit 7 of the B register
to 1 if the number is odd or to O if the number is even, without
affecting the other bits in the B register.

BIT O0,A ; 1s number odd or even?
JR Z,EVEN

ODD: SET 7,B ; odd - set bit 7 of B to 1
JR CONTIN

EVEN: RES 7,B ; even — reset bit 7 of B to O

CONTIN: -
9.3 THE DEFS PSEUDO OPERATOR

The DEFS pseudo operator allows memory bytes to be reserved,
usually in the data area at the end of the program. Unlike the
DEFB and the DEFM pseudo operators, the DEFS pseudo operator does
not initialise the bytes to a specified value. For example, in
the following program segment

NUM: DEFS 1
BUFFER: DEFS 96
NAME: DEFM ‘FRED’

the first DEFS pseudo operator reserves 1 byte which is labelled
NUM, and the second DEFS reserves 96 bytes - the first of which
is labelled BUFFER.

Examples of the use of the DEFS pseudo operator appear in the
remainder of this chapter.

Bit Operations and the Index Registers 47

9.4 THE INDEX REGISTERS

The Z80 microprocessor has two index registers, IX and 1Y, so-
called because they allow a program to access a particular byte
in a block of bytes, by an index which is relative to the start
of the block.

The following program skeleton shows how an index register can be
used.

LD IX,START ;IX points to start of block

LD A,(IX+2) ; A = 3rd byte of block

SET 3,(IX+5) ; Bit 3 of 5th byte = 0

DEC (IX+9) ; Decrement last byte

START: DEFS 10

A block of ten bytes is defined at the end of the program, using
the DEFS pseudo operator. The first of the bytes is 1labelled
START. Before any bytes in the block may be accessed the index
register is set to point to this first byte using the LD IX,START
instruction. Thereafter, a particular byte in the block 1is
referenced by specifying the index register plus the relative
displacement of the byte from the start of the block. For
example, the fourth byte of the block is referenced by (IX+3).

The 1Y index register can be used in exactly the same way as the
IX index register.

The index registers are useful for referencing bytes within
blocks in which the data is distinct but related; for example, in
a structure in which a file or table contains records of data
items.

However, in the main you will find the index registers being used
with a zero displacement, in which case they are used in much the
same way as the HL register pair.

9.5 EXPRESSIONS

Operands that we have used so far have consisted of a single
label. In fact, the 280 assembler allows a wide range of
expressions to be written as an operand - a single label being
the simplest example of an expression. For example, the
instruction

LD A, (NUM+1)

would cause the contents of the byte following the byte labelled
NUM to be loaded into the accumulator.

48 Programming in Z80 Assembly Language

When an expression is used it is normally a simple one, as in the
LD instruction above. However, an expression may be quite complex
as a result of using the many operators which can be used in an
expression., The full list of the twenty available operators is
shown in Appendix E.

All expressions are evaluated left to right, except that wunary
operators are performed first, exponentiation next,
multiplication, division, modulo and shifts next, followed by
addition and subtraction, and then logical operations and
comparisons. 16-bit signed arithmetic is used throughout the
evaluation of an expression.

The following program skeleton shows one use of expressions

ITEMS: EQU m
LENTH: EQU n

TABLE: DEFS ITEMS*LENTH

The characteristics (number of items in the table and the number
of bytes 1in each item) of the TABLE need to be varied from one
version of the program to another. Thus the TABLE is defined in
terms of its characteristics which are given values, m and n, at
the beginning of the program (using the EQU pseudo operator) for
a particular version of the program.

9.6 JUMP TABLES

A jump table 1is a convenient way of executing one of several
program segments depending on the value of a variable which has
sequential values 1 to N.

The basis of the technique is as follows

- ; rp contains JPTAB + 3 x (N - 1)
JP (rp)

JPTAB: JP NICODE ; start of jump table
JP N2CODE

JP NNCODE ; end of jump table

Before the jump table can be used, one of-the IX, IY or HL
register pairs must contain the address of one of the JP
instructions in the jump table. A JP (rp) instruction is then
executed which causes one of the JP instructions in the jump
table to be executed.

Program 9.1 shows the use of a jump table in displaying the name
of a day whose number is input from the keyboard.

Bit Operations and the Index Registers 49

; Program 9.1 input day number, output day name

>

- CALL CIN ; input day number
SUB 30H
3
DEC A ; day number - 1
LD C,A
ADD A,C
ADD A,C ; 3 x (day number - 1)
LD C,A
LD B,O0 ; jump table offset now in BC

LD HL,DAYJP ; HL contains start of jump table

ADD HL,BC ; + offset
5
JP (HL)
5
DAYJP: JP MON ;jump table
JP TUE
JP WED
JP THU
JP FRL
JP SAT
JP SUN

b
MON: LD HL,MONDAY
CALL TEXOUT

JP FINI

5

5

SUN: LD HL, SUNDAY
CALL TEXOUT
JP FINI

5
FINI: HALT

bl
MONDAY: DEFM ‘MONDAY’
DEFB O

SUNDAY: DEFM ‘SUNDAY’
DEFB 0O

The day number, which is input from the keyboard, is in the range
1 to 7, representing the days Monday to Sunday. The address in
the jump table of the corresponding JP instructions is calculated
in the HL register pair, and execution of that JP instruction
follows execution of the JP (HL) instruction. Hence, a jump is
made to the program segment which outputs the name of the day
corresponding to the number which was input.

Because the seven program segments are the same length (that is,
they occupy the same number of bytes), an algorithm could have

50 Programming in Z80 Assembly Language

been used to compute the start address of the corresponding
program segment, rather than using a jump table. However, the
jump table technique makes the code more intelligible and, in

fact, has to be used when the program segments are of wunequal
lengths.

9.7 PROGRAM

Write a program which repeatedly inputs a number in the range 1
to 12 and outputs the corresponding name of the month.

Instead of using a ‘jump table’ technique to solve this problem,
use a "look-up table’ technique as follows: set up two data areas
at the end of your program, one in which the names of the months
(terminated by a byte containing 0) are stored end-on in a
contiguous data area (occupying 86 bytes), and a second 12-byte
data area in which the nth byte contains the position of the
start of the nth month’s name in the months’ names data area
(that is, the first of the 12 bytes will contain 0, the second 8,
the third 17, and so on); to obtain the start address of a
month’s name, look-up the corresponding entry in the 12-byte data

area and add it to the start address of the months’ names data
area.

10 Shift Instructions, Multiply and
Divide

Shift instructions allow the bits of a register or memory byte to
be shifted one bit place to the left or to the right. There are
two types of shift instructions - logical and arithmetic.
Logical shifts consider the contents of the register or memory
byte to be just a bit pattern when the shift is made. Arithmetic
shifts consider the contents of the register or memory byte to be
a signed number so that when the shift is made the number is
arithmetically multiplied by two (left shift) or divided by two
(right shift). The Z80 microprocessor has one logical
instruction and two arithmetic instructions. Descriptions of the
shift instructions are included in Table C.8 in Appendix C.

10.1 THE SRL INSTRUCTION

The Shift Right Logical instruction shifts a register or memory
byte one bit place to the right. Bit 7 of the register or memory
byte 1is reset to 0 and the original bit O goes into the carry
flag, as follows

0 —> —

7 6 5 4 3 2 1 0 carry
flag
register or memory byte
The foru of the instruction is

SRL m

where m is any of the single registers or a memory byte pointed
to by HL, IX or IY.

As an example, suppose that the contents of the accumulator and
carry flag are

accumulator 10100111 carry flag O
then after the instruction SRL A is executed they will contain

accumulator 01010011 carry flag 1

51

52 Programming in Z80 Assembly Language

In all shift instructions, the bit which is moved out of the
register or memory byte, be it to the left or right, is placed in
the carry flag. This can be useful because the value of a bit
which has been moved out can be checked by any of the carry
conditional jumps, such as JP C,label and JR NC,label.

10.2 THE SRA INSTRUCTION

The Shift Right Arithmetic instruction is the same as the SRL
instruction except that, instead of bit 7 being reset to 0 it is
set to what it was before the shift. In other words, the sign
bit remains unchanged so that a positive value would remain
positive and a negative value would remain negative. The SRA
instruction, in fact, divides the register or memory byte by two,
and leaves the remainder in the carry flag.

The form of the instruction is
SRA m

where m is any of the single registers or a memory byte pointed
to by HL, IX or IY.

The following program segment shows the effect of the SRA
instruction on both positive and negative numbers

B C Carry
LD B,11 00001011B (+11) ? ?
SRA B 00000101B (+5) ? 1
LD Cc,-8 " 11111000B (-8) 1
SRA C " 11111100B (-4) 0

10.3 THE SLA INSTRUCTION

The Shift Left Arithmetic instruction shifts a register or memory
byte one bit place to the left. In doing so, bit 0 of the
register or memory byte is reset to 0 and bit 7 is placed in the
carry flag, as follows

carry 7 6 5 4 3 2 1 0
flag
register or memory byte

The effect of the instruction is to multiply the contents of the
register or memory byte by two.

Shift Instructions, Multiply and Divide 53

The usual difference between an arithmetic left shift and a
logical left shift 1is that the overflow flag would be set
accordingly for an arithmetic left shift but not for a logical
left shift. Overflow would occur, for example, during an
arithmetic left shift when the register contained 127 since, in
signed number arithmetic, multiplying 127 by 2 would cause
overflow in an 8-bit register.

As the shift left arithmetic instruction does not set the
overflow flag, it should more precisely be called a shift left
logical instruction.

If the contents of the register or memory byte to be shifted left
are considered to be an unsigned number in the range 0 to 255,
then the carry flag would indicate overflow.

The form of the instruction is
SLA m

where m is any one of the single registers, or a memory byte
pointed to by HL, IX or IY.

The following program segment shows the use of the SLA
instruction in multiplying the contents of the accumulator by ten

SLA A s 2 X A

LD B,A

SLA A ; 2x(2xA)=4xA
SLA A ; 2x (6 xA) =8xA
ADD A,B ; 8 x A+2x A=10x A

10.4 8-BIT MULTIPLICATION AND DIVISION

The multiplication method of repeated addition which we have been
using is very inefficient for multipliers greater than five, or
S0, A more efficient method for larger multipliers is called
‘shift and add’. To understand the reason for using this method
work through the following multiplication

00111 multiplicand
x 01010 multiplier
00000 x 0
00111 x 10
00000 x 000
00111 x 1000
00000 x 00000
001000110 product

Each bit in the multiplier causes a one bit shift to the left of

54 Programming in Z80 Assembly Language

the multiplicand which is then added into the product. Also, it
can be seen that the value to be added in each time is either the
multiplicand or zero.

Hence, the algorithm for multiplication by ‘shift and add’ is:
for each bit of the multiplier, working from right to left, the
multiplicand 1is added to the partial product if the multiplier
bit is 1, otherwise nothing is done: The multiplicand is then
shifted 1left one bit place before the next bit of the multiplier
is considered.

Program 10.1 shows a program segment which multiplies the
contents of the B and C registers, wusing the ‘shift and add’
method. The product is accumulated in the accumulator.

; Program 10.1 computes A =B x C
5
LD
LD
NEXBIT: SRL
JP NC,NOADD
ADD A,B ; add in multiplicand
JR PO,OVERFL
NOADD: DEC D

0
v

[eN—N 4

; test next bit of multiplier

JR Z,DONE
SLA B ;3 shift multiplicand
JR NEXBIT
The program segment deals only with .positive signed numbers. It

would have to be extended to deal with negative signed numbers.
One straightforward method of doing this is first to multiply the
absolute values of the two numbers and then compute the sign of
the product according to the signs of the numbers.

The operation of Program 10.1 is as follows: the next multiplier
bit is tested for 0 or 1 by shifting the bit into the carry flag;
using a carry flag conditional jump instruction the multiplicand
is added in, or not; the multiplicand is then shifted left one
bit place ready to be added in, or not, when the next multiplier
bit is tested. A check for an overflow condition is made when
the multiplicand is added in.

Division can be performed by ‘repeated subtraction’ (equivalent
to multiplication by ‘repeated addition’) or by a method which is
similar to the standard pencil and paper approach, in which a
check 1is made to see if the divisor goes into the remaining
dividend (equivalent, in some respects, to multiplication by
“shift and add’ and could, in fact, be referred to as the ’shift
and subtract’ technique).

Shift Instructions, Multiply and Divide 55

10.5 PROGRAM

Write a new MULT subroutine which uses the “shift and add’ method
of multiplication and additionally deals with signed numbers.

Write a subroutine called DIV which divides a signed number in
register B by a signed number in register C and leaves the result
(quotient) in the accumulator and the remainder in register D.

Using the DIV subroutine to divide by ten, write a subroutine
called NUMOUT which outputs the contents of the accumulator as a
signed number in the range -128 to +127. Leading zeros should
not be output and positive numbers should be output without a +
character.

Using the NUMOUT, DIV and MULT subroutines and subroutines from
previous programs, write a main program which inputs two signed
numbers separated by either an * character or a / character and
followed by an = character. The program should then output
either the product of the number (if the * character was input),
or the quotient and remainder (if the / character was input). A
typical dialogue would look like

-11*5==55
125/10=12 REMAINDER 5

11 Logical Operations and Macros

11.1 LOGIC OPERATORS

There are several Z80 logical instructions which allow logical
operations to be performed between corresponding bits in the
accumulator and an 8-bit operand.

To understand the operation of the logical instructions, it 1is
necessary to know the rules of the basic logical operators, such
as AND, OR, XOR (Exclusive OR) and NOT. The rules are normally
displayed in tables as follows

0 AND 0 =0 OORO=20 O0XOR 0=0 NOT O = 1
OAND 1 =0 OOR1 =1 0 XO0R 1 =1 NOT 1 = O
1 AND O =0 10R0=1 1 X0R 0 =1
1 AND 1 =1 10R1 =1 1 X0R 1 =20

Apart from the NOT operator, logical operators operate on two
one-bit values and produce a one-bit result. For example, the
result of the AND operator is one if, and only if, the two values
are one, otherwise, the result is zero.

Glance at Table C.5 in Appendix C where you will see the AND, OR
and XOR instructions specified. Notice that the Symbolic
Operation column of that table uses the Boolean Algebra symbols
of * for AND, v for OR and & for XOR.

11.2 LOGICAL INSTRUCTIONS

All the Z80 1logical instructions perform a logical operation
between the bits in the accumulator and their corresponding bits
in the operand, leaving the result in the accumulator. For
example, if the accumulator contains 00001010B and register B
contains 11001111B then the instruction AND B would produce a
result of 00001010B in the accumulator, as follows

Contents of A 00011010B
Contents of B 11001111B
Contents of A after AND B 00001010B

Corresponding bits in the accumulator and operand are logically
operated upon in isolation from the other bits.

56

Logical Operations and Macros 57

The operand of a logical instruction may be a register, an 8-bit
value or a memory byte pointed to by HL, IX or IY. The logical
instructions may be specified together as

AND r
n

OR (HL)
(IX)

XOR (1Y)

Notice that the accumulator is implied in the instructions since
logical operations may be performed only on the accumulator.

The NOT 1logical operation is performed by the CPL instruction
which changes all the 0’s in the accumulator to 1’s and all the
1’s to 0’s. The mnemonic CPL stands for the word ‘ComPLement’.

The following program segment shows the effect of the four Z80
logical instructions on the accumulator and the S, Z and C flags

A s Z ¢C
LD A,10110101B 101101018 ? ? ?
LD C,11110000B 101101018 ? ? ?
AND 00011111B 00010101B 0 0 0
OR C 11110101B 1 0 O
XOR 11001100B 00111001B 0o 0 0
CPL 11000110B 0O 0 O

11.3 MASKING

One of the main uses of the AND logical instruction is in masking
when it 1is required to use only some of the bits of an 8-bit
value and it is necessary to mask the required bits. For example,
masking could be used instead of subtraction to obtain a decimal
digit’s value from its character code, because the least
significant four bits of a decimal digit’s character code are its
value and can be obtained by ANDing the character code with
000011118, as follows

LD A,'77 ; accumulator containing 00110111B
AND OFH 5 ANDed with 00001111B
; gives a value of 00000111B

Conversely, the logical instruction OR 30H will convert a decimal
digit value in the accumulator to its character code.

11.4 MACROS

Macros provide a means for a programmer to define his own
opcodes. Suppose that there is a frequent need to reset the
carry flag to 0 in a program, then an opcode to do that could be

58 Programming in Z80 Assembly Language

defined at the beginning of the program with the following macro
definition

RSF: MACRO ; reset carry flag macro

SCF ; * macro body
CCF ; %
ENDM ; end of macro definition

The MACRO pseudo operator informs the assembler that a macro
called RSF is to be defined. The code between MACRO and ENDM
(the macro—end pseudo operator) is called the macro body.

Now, at any place in the program the opcode RSF can be used - or,
as is usually said, ‘the macro RSF can be called’. For example,
the RSF macro is called in the following program segment

LD (POINT),A
RSF ; reset carry flag macro
ADD A,B

During assembly the program segment will be expanded, according
to the macro definition, to

LD (POINT),A

SCF ; macro RSF
CCF ; expansion
ADD A,B

Another example of a macro is the MUL4 macro

MUL4: MACRO ; macro multiplies A by 4
SLA A
SLA A
ENDM

which multiplies the contents of the accumulator by four.

A growing wuse of macros is in the attempt to give assembly
language programs some structure (similar to the structuring
facilities of high-level languages) for constructs which are
often wused,. Program 11.1 shows how macros can be used to give
some structuring to loops.

Two macros are defined - one for the start of the loop, LOOPST,
and one for the end of the loop, LOOPEN. Unlike the previous RSF
macro, both of these macros have parameters. Any parameters used
in a macro definition must be listed after the MACRO pseudo
operator. The parameters may then by used anywhere in the macro
body. When a call is made to a macro with parameters, during
expansion of the macro the parameters are replaced by the actual
parameters in the macro call. The last macro call in Program
11.1 would be expanded to

DEC E
Jp NZ ,ROUND

Logical Operations and Macros 59

Notice that parameters in a macro definition are preceded by the
character and parameters in a macro call are enclosed with
apostrophes.

; Program 11.1 structured loops using macros

’

LOOPST: MACRO #R,#N ; start of loop macro
LD #R,#N
ENDM

5
LOOPEN: MACRO #R,#LABEL ; end of loop macro

DEC #R
JP NZ,#LABEL
ENDM

LOOPST ‘C’,” 99’
NEXTHG: -

LOOPEN ’C’,’NEXTHG’
LOOPST ‘E’,” 18"
ROUND: -

LOOPEN ‘E’,”ROUND’

Macro definitions may not be nested, but a previously defined
macro may be called from another macro body.

In order to be able to use labels which are local to a macro body
a special symbol generator facility is provided. This facility
is best explained by way of an example. Consider the macro
definition

TIMER: MACRO #N

LD B,#N
TM#$YM: DINZ TM#S$YM
ENDM

which provides a crude timing facility by counting down register
B from N to zero. A local label is required for the loop, but if
this label were to be chosen in the normal way as, say TMLOOP,
then a program which called the TIMER macro more than once would
cause multiple definitions of the TMLOOP label to be produced
during macro expansion of the program. To overcome this problem,
local labels are defined with the last four characters as #$YM
and during the expansion of macros, #$YM is replaced by a 4-digit
hexadecimal number starting at 0000 for the first macro call and
incrementing by one for each subsequent macro call.

60 Programming in Z80 Assembly Language

For example, a program containing three calls on the TIMER
macro, as follows

TIMER “200°

TIMER “50°

TIMER ‘767

would be expanded as

LD B,200
TMO000: DJNZ TMO000

LD B,50
TMOOOLl: DJNZ TMOOO1

LD B,76
TM0002: DJNZ TMOOO2

The main difference between macros and subroutines 1is that
instructions in a macro body are repeated everywhere that a macro
is called, whereas subroutine instructions occur once only. In
general, macros should not be used when the macro body consists
of more than just a few instructionms.

The format for defining and calling macros does, unfortunately,
vary from one Z80 assembly language system to another. You should
obtain the correct format for your system from the macro section
in your Z80 assembly language manual.

11.5 CONDITIONAL PSEUDO OPERATIONS

Conditional pseudo operations provide the capability to include
conditionally parts of a program during assembly time. The two
conditional pseudo operators are COND and ENDC, and they are used
as follows

COND CODEIN

ENDC

The instructions between the COND and ENDC pseudo operators will
be included during assembly if the value of CODEIN is non-zero,
but ignored by the assembler if CODEIN is zero.

Logical Operations and Macros 61

The DEFL - DEFine Label - pseudo operator is normally used to set
the value of the COND pseudo operator label to zero or non-zero.
For example, if the statement

CODEIN: DEFL 1

had appeared before the COND pseudo operator, in the above
example, the instruction between the COND and ENDC pseudo
operators would be included in the assembly.

Although the condition usually depends on the value of a 1label,
an arithmetic or logical expression may be used.

Let us look at a typical example of conditional assembly. Suppose
a program needs to be assembled to produce output to a display or
a printer, but not both. The program will have two subroutines
with the same name - one subroutine for outputting to the
display, the other for outputting to the printer. An outline of
the program would look like

DORP: DEFL n ; n is 1 for display output
- ; n is 0 for printer output
COND DORP

OUTLIN: - ; display output subroutine
RET
ENDC

COND .NOT. DORP

OUTLIN: - ; printer output subroutine
RET
ENDC

When the program is to be used for display output only the n in
the DORP instruction will be set to 1, so that when the program
is assembled the display output subroutine will be included and
the printer output subroutine will not be included.

Alternatively, if n 1is set to O the display output subroutine
will not be included but the printer output subroutine will be
included. '

The DEFL pseudo operator is similar to the EQU pseudo operator.
Both operators allow a label to be given a value but, whereas the
EQU pseudo operator can appear only once for any label in a
program, the DEFL pseudo operator can be repeated in the same
program to give different values to a label. This extra facility
of the DEFL pseudo operator allows more flexible conditional
assemblies to be constructed.

The conditional pseudo operations are very useful for tailoring a
general program for a particular requirement.

62 Programming in Z80 Assembly Language

11.6 PROGRAM

Two other common logical operations are NOR and NAND, which are
short for NOT OR and NOT AND, respectively. The rules of these
two logical operations are

0O NOR O =1 0 NAND O 1
ONORI1 =0 O NAND 1 =1
1 NORO =0 1 NAND 0 = 1
1 NOR 1 0 1 NAND 1 0

from which it can be seen that the result of the NOR operation is
the complement, or NOT, of the OR result and, similarly, the
result of the NAND operation is the NOT of the AND result.

Write a Logic Operation Trainer program which repeatedly allows
input of the form

b lopb==>O
where b is 0 or 1
and lop is one of OR (space to be input after the R)
AND
XOR
NOR

or NAN (short for NAND)

and outputs further along the same line, TRUE if the input is
correct and otherwise FALSE.

A training session is ended by inputting the letter E.

12 Rotate Instructions and Parity

Rotate instructions are similar to shift instructiouns except that
the bit shifted out of one end is shifted into the other end -
hence, the name rotate.

There are several rotate instructions available in the Z80
microprocessor. Four of the rotate instructions involve the
accumulator; the other rotate instructions involve a register or
memory byte.

Some of the rotate instructions include the carry flag within the
rotation, while others, referred to as rotate circular
instructions, do not.

In line with the shift instructions, rotates may be left or
right and are for one bit place only. All rotates are a logical
type of shift.

The definition of all the rotate instructions is included in
Table C.8 in Appendix C.

12.1 ACCUMULATOR ROTATE INSTRUCTIONS
The accumulator can be rotated left and right, and for each

direction the carry flag may, or may not, be included within the
rotate, giving the four instructions

RLA - rotate left accumulator,

RRA - rotate right acccumulator,

RLCA - rotate left circular accumulator,
and RRCA - rotate right circular accumulator.

The Rotate Left Accumulator instruction includes the carry flag
within the rotate and operates as follows

— T T T T[] =

carry 7 6 5 4 3 2 1 0
flag accumulator

63

64 Programming in Z80 Assembly Language

The contents of the accumulator move to the left one bit place,
and in doing so, bit 7 of the accumulator moves into the carry
flag and the carry flag moves round into bit 0 of the
accumulator.

The Rotate Right Accumulator instruction also includes the carry
flag within the rotate and operates as follows

b [[[l []
7 6 5 4 3 2 1 0 carry
accumulator flag

The contents of the accumulator move to the right one bit place,
and in doing so, bit 0 of the accumulator moves into the carry
flag and the carry flag moves round into bit 7 of the
accumulator.

The Rotate Left Circular Accumulator instruction is a circular
version of a rotate and does not, therefore, include the carry
flag within the rotate. However, the carry flag is still
involved as follows

[TTTTTIT]

carry 7 6 5 4 3 2 10
flag accumulator

The contents of the accumulator move to the left one bit place,
and in doing so, bit 7 of the accumulator is moved to the carry
flag and around into bit 0 of the accumulator. So after a RLCA
instruction the carry flag and bit 0 of the accumulator will
always be the same value - the value of bit 7 of the accumulator
prior to execution of the instruction.

The Rotate Right Circular Accumulator instruction 1is also a
circular type of rotate and operates as follows

- T I T T 1T
7 6 5 4 3 2 1 0 carry
accumulator flag

The contents of the accumulator move to the right one bit place,

and in doing so, bit O of the accumulator is moved into the carry
flag and also around into bit 7 of the accumulator.

Rotate Instructions and Parity 65

The effect of the four rotate instructions is shown in the
following sequence of instructions

A Carry
101010118 0
RLA 010101108 1
RLCA 101011008 0
RRA 01010110B 0
RRCA 00101011B 0

12.2 REGISTER AND MEMORY BYTE ROTATE INSTRUCTIONS

The four types of rotate of the accumulator may be applied to any
of the single registers or a memory byte, wusing the four
instructions

RL m - rotate left register or memory byte,

RR m - rotate right register or memory byte,

RLC m - rotate left circular register or memory byte,
and RRC m - rotate right circular register or memory byte,

where m is any one of the single registers or a memory byte
pointed to by HL, IX or IY.

The operation of the instructions is exactly the same as their
corresponding accumulator rotate instructions. However, by
looking at Table C.8 in Appendix C you can see that the
accumulator rotate instructions each occupy one byte and set only
the carry flag, whereas the general register and memory byte
rotate instructions each occupy two or four bytes and set the
carry, zero and sign flags.

Hence, the RLCA instruction would be used in preference to the
RLC A instruction because it operates faster and uses fewer

bytes.

Because a rotate accumulator instruction occupies only one byte
whereas a shift accumulator instruction occupies two bytes, some
programmers use the rotate accumulator instruction to perform a
shift operation, instead of the shift accumulator instruction.
However, in saving a byte, and time of execution of the
instruction, the program becomes less intelligible because what
is actually a shift operation appears in the program as a rotate
operation.

12.3 PACKING AND UNPACKING

The term packing refers to having a register or memory byte
containing two or more distinct values. We say that the values
are packed into the register or memory byte. For example, a

66 Programming in Z80 Assembly Language

memory byte could be packed with the sex and age of a person, as
follows

sex age

Bit 7 of the memory byte indicates the sex of the person, say O
for female and 1 for male. Bits 6 to 0 of the memory byte
contain the person’s age, giving a range for the age of 0 to 127.
The example above specifies a male aged 100 years.

Assuming that the sex and age of one thousand people was held in
memory then there is a saving of one thousand bytes by including
the sex bit in the byte containing the age. If the sex and age
were contained in separate bytes, two thousand bytes would be
needed to hold the same information.

To be able to use the packed values it is usually necessary to
unpack them. For example, to use the sex and age as packed above
it would be necessary to unpack the sex bit into one register and
the age bits into another register.

In general, packing is performed by ORing and shifting or
rotating, while unpacking is performed by ANDing and shifting or
rotating. For example, the program segment

LD A, (SEXAGE)
AND 10000000B
RLCA

LD B,A

LD A,(SEXAGE)
AND 01111111B
LD C,A

unpacks a sex/age memory byte by placing the sex in the B
register and the age in the C register. There are many ways of
unpacking bytes, some using fewer instructions than others, and
some more obvious than others. The method of unpacking also
depends on the number, length and position of values that are
packed.

The following program segment packs into a memory byte labelled

SEXAGE, sex from the B register (bit 0) and age from the C
register

LD A,B ; get sex
RRCA
OR c ; add age

LD (SEXAGE) ,A

Rotate Instructions and Parity 67

12.4 PARITY

Parity refers to the number of 1’s in a binary number. A binary
number is said to have even parity if the number of 1°s is even,
and odd parity if the number of 1°s is odd. For example,

01101000 has odd parity,
11111100 has even parity,
and 01110011 has odd parity.

Parity is often used in computer systems when transferring
information from one unit to another. A parity bit is added to
the information at source to make the number of 1 bits either odd
or even. At the destination, the parity of the information is
checked to make sure that it is still either odd or even. It is
not a foolproof check because the parity would remain correct if
an even number of bits changed their values during transfer.
However, a parity check is a great deal better than nothing.

Assuming an even parity system with bit 7 of a byte as the parity
bit, the hexadecimal value of a byte containing the ASCII
character code for X will be D8H, and for + will be 2BH.

12.5 THE PARITY FLAG

The parity/overflow flag is used to indicate the parity of a
result after most of the rotate instructions and the shift and
logical instructions.

If the number of 1’s in the register or memory byte is even after
any of these instructions has executed, the parity flag will be
set to 1, but if the number of 1°s is odd the parity flag will be
reset to 0.

The following program segment shows how the parity flag is
affected by the AND, SLA and RLA instructions

A Parity
101110018 ?
AND 111111108 101110008 1
SLA A 011100008 0
RLA 11100001B 1

The parity condition can be tested by any of the instructions

JP PE,label
JP PO, label
CALL PE,label
CALL PO,label
RET PE

and RET PO

68 Programming in Z80 Assembly Language

The mnemonics PE and PO stand for Parity Even and Parity 0dd,
respectively.

The following subroutine called CHKPAR checks the parity of the
accumulator. On entry to the subroutine register B contains
either O to indicate an even parity check, or 1 to indicate an
odd parity check. On exit from the subroutine the register C
should contain O if the parity was correct and 1 otherwise.

CHKPAR: BIT O,B s parity check subroutine
JP Z,EVTEST
AND OFFH ; check for ODD parity
JP PO,0K
JP NOTOK

EVTEST: AND OFFH ; check for EVEN parity
JP PE,OK

NOTOK: LD C,1 ; not OK
JP RETSUB

OK: Lb C,0 ; OK

RETSUB: RET

12.6 PROGRAM

Write a subroutine called BINOUT which outputs on the display the
contents of the accumulator as eight binary digits. The
subroutine will have to extract each bit separately from the
accumulator and output the character code for 1 or 0 depending on
the value of a bit.

Write a subroutine called PACK which packs the accumulator from
two consecutive memory bytes as follows

bit 0 of M to bit 7 of the accumulator,
and bits 6 to 0 of M+l to bits 6 to 0 of the accumulator,

where M is the first memory byte.

The address of the first of the two bytes is contained in the HL
register pair on entry to the subroutine.

Write a subroutine called UNPACK which does the reverse of the
PACK subroutine.

Using the subroutines BINOUT, PACK and UNPACK and existing
subroutines, write a main program which inputs ten sets of two
numbers and packs each set as specified in the PACK subroutine
specification. The two numbers are input as decimal numbers 0 or
1 and 0 to 127, respectively. The ten sets of packed numbers
should be stored in ten consecutive bytes. After inputting the
ten sets of numbers, the program should output each of the packed
sets in binary for checking purposes.

13 16-Bit and Multiple Byte
Arithmetic

So far we have been concerned with 8-bit arithmetic - that is, 8-
bit operands and 8-bit results. The range of numeric values
which can be manipulated by 8-bit arithmetic is small and so we
may need to use 16-bit arithmetic and more. The 280
microprocessor has instructions which allow l6-bit arithmetic to
be performed directly. These instructions can also be.used to
provide 32-bit arithmetic, 48-bit arithmetic and so on. The 16-
bit arithmetic instructions also allow additional loop facilities.

All the 16-bit arithmetic instructions are described in Table C.7
in Appendix C.

13.1 THE DEFW PSEUDO OPERATOR

When working with 8-bit quantities we wused the DEFB pseudo
operator when it was necessary to initialise memory bytes at the
end of our programs. When working with 16-bit quantities we will
need to initialise double bytes, or words as they are called. To
do this we use the DEFW (DEFine Word) pseudo operator. For
example,

DOUBLE: DEFW 56ABH

initialises DOUBLE to the value 56ABH. The label DOUBLE is
associated with the first of the two bytes and, in fact, ABH is
placed 1in the first of the two bytes and 56H in the second byte.
This unusual ordering is necessary to complement the instructions
which load register pairs with two consecutive bytes. For
example, the instruction LD HL,(LABEL) loads register L with the
first memory byte (LABEL) and register H with the seqcond memory
byte (LABEL+1).

In fact, the DEFW pseudo operation saves us having to concern
ourselves with this reverse ordering. The LD HL,(LABEL)
instruction in

LD HL, (LABEL)

LABEL: DEFW 7B9An

will cause HL to be loaded with 7B9AH as you would expect.

69

70 Programming in Z80 Assembly Language

13.2 THE 16-BIT ADD, ADC AND SBC INSTRUCTIONS

The main 16-bit arithmetic instructions use the HL register pair

as the ‘accumulator’. For example, the 16-bit addition
instruction
ADD HL,DE

adds the contents of register pair DE to HL, leaving the result
in HL. The general form of the instruction is

ADD HL,ss

where ss is any one of the register pairs BC, DE, HL or SP.

The program segment

LD BC,2054
LD HL,1362
ADD HL,BC

shows two 16-bit numbers being added together in the HL register
pair. After execution of the ADD HL,BC instruction HL will

contain the value 3416.

Remember that the range of signed numbers that can be dealt with
by 16-bit arithmetic is =32708 to +32767.

Another 16-bit add instruction adds the carry produced by a
previous operation. The general form of the 16-bit ADd with

Carry instruction is
ADC HL,ss

where ss 1is the same as for the l16-bit ADD instruction. The
contents of the register pair ss are added to HL along with the
carry flag and the result is placed in HL.

The ADC HL,ss instruction can be used to provide a simple 32-bit
arithmetic facility. Look at Program 13.1 which shows a program
segment which adds two 32-bit signed numbers.

First, the 1least significant 16 bits of the two 32-bit numbers
are added using the ADD HL,DE instruction, and stored in the
result bytes. During this addition any carry out of the addition
of the most significant bit will be recorded in the carry flag.

Second, the most significant 16 bits of the numbers are added
using the ADC HL,DE instruction, which will cause the carry flag
to be added also - that is, the carry from the addition of the
least significant 16 bits of the numbers.

16-Bit and Multiple Byte Arithmetic 71

;3 Program 13.1 addition of two 32-bit signed numbers
’
LD HL,(NILS)
LD DE,(N2LS)
ADD HL,DE ; add least significant l6-bits
LD (RESLS) ,HL
LD HL,(NIMS)
LD DE, (N2MS)

ADC HL,DE ; add most significant 16-bits
LD (RESMS) ,HL
JP PO,OVERF ; overflow occurred?

NIMS: DEFW 05A1H ;3 first number

N1LS: DEFW 63B2H

N2MS: DEFW 00C6H ; second number

N2LS: DEFW OAS57EH

RESMS: DEFW O ; result

RESLS: DEFW O

Hence, the overall affect of the program segment is to add two
32-bit signed numbers. Overflow is detected by checking the
overflow flag after execution of the ADC instruction.

After execution of the program, RESMS will contain 0668H and
RESLS will contain 0930H.

The technique in Program 13.1 can be extended to add multiple 16-
bit numbers.

There is only one 16-bit subtract instruction - a ‘subtract with
carry’ version. The general form of the 16-bit SuBtract with
Carry is

SBC HL,ss

where ss is any one of the register pairs BC, DE, HL and SP - the
same as for the 16-bit add instructions.

The instruction causes the contents of the register pair ss and
the carry flag both to be subtracted from HL, the result being
left in the HL register pair.

The SBC HL,ss instruction can be used, in a similar way to the
ADC HL,ss instruction, to perform subtractions with multiple 16—
bit numbers.

To perform subtraction with single 16-bit numbers, it is
necessary to set the carry flag to 0 just prior to execution of
the SBC HL,ss instruction to ensure that nothing other than zero
is subtracted from the true result.

The following program segment subtracts the contents of the

72 Programming in Z80 Assembly Language

register pair BC from HL, assuming single 16-bit arithmetic.

SCF 3 reset carry flag to O
CCF
SBC HL,BC

One important point to note about the 16-bit ADD, ADC and SBC
instructions is the flag setting of these instructions. Look at
the specifications of these instructions in Table C.7 of Appendix
C and you will see that the 16-bit ADC and SBC instructions set
the carry, zero, overflow and sign flags as you would expect,
but the 16-bit ADD instruction causes only the carry flag to be
set. A 16-bit ADC instruction, preceded by an instruction to set
the carry flag to zero, can be used if the setting of the zero,
overflow and sign flags are required during a single 16-bit
addition.

13.3 EXTENDED LOOPS

The 16-bit load, increment/decrement and arithmetic instructions
which we have already considered can be used for loops in which
the 1loop index has a range of 0 to 65535. However, there are
special 16-bit instructions 1involving the IX and IY index
register pairs which can be used for such loops.

The basic loop structure using the IX index register looks like

LD IX,nn ;3 or LD IX,(nn)
LOOP: -
- ; instructions to be repeated
INC IX ;3 or DEC IX
JP LOOP

The IX index register pair is first loaded with an initial value,
either directly wusing an LD IX,nn instruction, or indirectly
using an LD IX,(LABEL) instruction. At the end of the set of
instructions to be repeated, the index register is incremented by
one using an INC IX instruction, or decremented by one using a
DEC IX instruction. A jump is then made back to the first of the
instructions to be repeated.

The loop must be terminated either by a condition occurring
within the loop or by IX becoming a specific value. However, it
must be remembered that the INC IX and DEC IX instructions do not
affect any of the flags.

The IY index register can be used wherever the IX index register
can be used.

There 1is a special ADD instruction relating to the index
registers which, amongst other things, allows the registers to be
incremented and decremented by a value other than one, when used
as the loop index register. The instructions are

16-Bit and Multiple Byte Arithmetic 73

ADD IX,pp

where pp is any one of the register pairs BC, DE, IX and SP and
ADD IY,rr

where rr is any one of the register pairs BC, DE, IY and SP, The
instructions cause the contents of the register pair pp and rr to
be added to IX and IY, respectively.

The use of the ADD IY,rr instruction is shown in Program 13.2
which outputs the numbers 1000 to O in decrements of 5.

Program 13.2 outputs numbers 1000, 995, 990, ... 5, O

LD DE,-5 3 DE contains decrement

LD 1Y,1000 s IY contains first number
b}
NEXNUM: CALL IYOUT

CALL CRLF

ADD IY,DE ; decrement IY

; check if IY is O

PUSH 1Y H move IY to BC

POP BC

LD A,B

cp 0 H B zero?

JP NZ,NEXNUM 5 no

LD A,C

CP 0 H C zero?

JP N2,NEXNUM 5 no

HALT

The index register IY which is used as the loop index is
initialised to the first number, 1000, and the DE register pair
is set to the decrement (negative increment) value.

Each time through the loop a carriage-return line-feed is output
to the display followed by the value in IY - the IYOUT subroutine
outputs the contents of the IY register as an unsigned number in
the range 0 to 65535,

After the repeated instructions IY is decremented by 5, that is,
DE, containing -5, is added to IY., It is then necessary to check
if IY is zero. This check is not as straightforward as you might
think. There are several methods of performing the check; none
of them is a neat method. In Program 13.2 the check is made by
splitting IY into the two registers B and C each of which is then
checked for zero.

You will often find that the IX and IY index registers are
awkward to use and that the other register pairs, particularly
HL, are more convenient to use because there is a wider range of
more flexible instructions involving these register pairs.

74 Programming in Z80 Assembly Language
13.4 MULTIPLE BYTE ARITHMETIC

There are two instructions which can be used for multiple byte
arithmetic, in the same way that we saw that the two ADC HL,ss

and SBC HL,ss instructions could be used for multiple 16-bit
arithmetic.

The equivalent add instruction is
ADC A,s

where s is either a value, a single register or a memory byte
pointed to by HL, IX or IY. The instruction causes s to be added
to the accumulator along with the carry flag.

The equivalent subtract instruction is
SBC A,s

where s 1is the same as for the ADC A,s instruction. This
instruction causes s and the carry flag to be subtracted from the
accumulator.

The principle of multibyte arithmetic is that the two least
significant bytes of the numbers to be added (subtracted) are
added (subtracted) wusing an ADD (SUB) instruction and the
remaining pairs of bytes, going from the next least significant
byte to the most significant byte, are added (subtracted) using
the ADC (SBC) instruction.

Depending on the number of bytes to be added, there are many
combinations of 8-bit arithmetic instructions and 16-bit
arithmetic instructions which can be wused. However, for the
general case of any number of bytes (which may, therefore, be an
odd number) , an appropriate number of 8-bit arithmetic
instructions is most suitable.

Program 13.3 shows a program segment which adds multiple byte
numbers.

; Program 13.3 addition of multiple byte numbers
5
SCF
CCF

; reset carry flag

;
NEXBYT: LD 4,(IX)

ADC A,(IY) ; add next pair of bytes

LD (HL),A ; and store result

DEC IX

DEC 1Y ; point to next more significant
DEC HL ; bytes

DJNZ NEXBYT

addition done

16-Bit and Multiple Byte Arithmetic 75

Initially, the registers IX, IY and HL point to the least
significant bytes of the first number, the second number and the
sum, respectively, and the B register contains the number of
bytes to be added. The carry flag must be 1initialised to O
before the loop is entered so that the first add instruction is
equivalent to an ADD instruction.

The program segment in Program 13.3 can be amended to make it
subtract the second number from the first number by replacing the
ADC opcode with a SBC opcode.

13.5 PROGRAM

Write a program which outputs on the display the numbers from m
to n in steps of k, one number per line.

The numbers m, n and k are unsigned hexadecimal numbers which the
program inputs from the keyboard.

The 1level of difficulty of this program may be varied by
restricting the values of m, n and k to fit into

8-bits (8-bit arithmetic),
16 bits (16-bit arithmetic or double 8-bit arithmetic),
24 bits (l6-bit arithmetic for the least significant 16
bits and 8-bit arithmetic for the most
significant 8 bits),
32 bits (double 16-bit arithmetic),
nxl6 bits (multiple 16~bit arithmetic),
or nx8 bits (multiple byte arithmetic).

Additionally, the program could be made to input and output
decimal, rather than hexadecimal numbers.

14 Block Transfer and Search
Instructions

The Z80 microprocessor has eight very powerful block instructions
which allow operations on blocks of consecutive memory bytes.
Four of the instructions are block transfer instructions which
allow the contents of one block of memory bytes to be transferred
to another block of memory; the other four instructions are block
search instructions which allow a block of memory bytes to be
searched for one of the bytes containing a specified value.

All the block instructions are included in Table C.4 in Appendix
C.

14.1 BLOCK TRANSFER INSTRUCTIONS

Suppose it was necessary to move the contents of a block of ten
memory bytes, starting at the byte labelled SOURCE, to a block
starting at a byte labelled DESTIN. Program 14.1 could be wused
to perform that function.

; Program 14.1 block transfer - the hard way

bl

LD HL, SOURCE ; set up pointers
LD DE,DESTIN
Lb B,10 ; and counter

b

NEXBYT: LD A,(HL) ; transfer byte
LD (DE),A

H
INC HL s increment pointers
INC DE
DINZ NEXBYT ; and counter
HALT

5
SOURCE: DEFM ’ABCDEFGHIJ’
DESTIN: DEFM “0000000000°

76

Block Transfer and Search Instructions 77

The register pairs HL and DE are set to point to the first byte
of the source and destination blocks of memory bytes,
respectively. The register B is to be used as the counter and is
initialised to ten.

In the 1loop, a byte is transferred from the source block of
memory bytes to the destination block of memory bytes via the
accumulator. The register pairs HL and DE are both incremented
by one to point to the next bytes in the source and destination
blocks of memory bytes.

When the looping finishes and the HALT instruction is executed,
the string of the first ten letters of the alphabet will have
been moved, character by character, to the ten bytes starting at
DESTIN, thereby overwriting the zeros originally contained in
those bytes.

In order for the program to deal with blocks of thousands of
memory bytes instead of tens of memory bytes the LD B,10

instruction must be replaced by a LD BC,number~of-bytes
instruction and the DJNZ NEXBYT instruction must be replaced by

DEC BC
LD A,B

CcP 0

JP NZ,NEXBYT
LD A,C

CcP 0

JP NZ,NEXBYT

The Z80 microprocessor has an instruction which could replace the
instructions in the loop in Program l4.1 and deal with blocks of
thousands of memory bytes. It is the LDIR instruction - LoaD,
Increment and Repeat. Prior to execution of the LDIR
instruction, HL must contain the address of the first of the
source block memory bytes, DE must contain the first of the
destination block memory bytes, and BC must contain the number of
bytes to be transferred. Program 14.2 shows a version of Program
14,1 using the LDIR instruction.

s Program 14.2 block transfer — the easy way
H

LD HL,SOURCE ; set up pointers

LD DE,DESTIN

LD BC, 10 ; and counter

H
LDIR s transfer block
HALT

SOURCE: DEFM ‘ABCDEFGHIJ
DESTIN: DEFM ‘0000000000

Program 14.2 is functionally the same as Program l4.1 except that

78 Programming in Z80 Assembly Language

Program 14.2 allows blocks of up to 64K bytes to be transferred,
since a register pair is being used as the counter instead of a
single register. For each byte transfer HL and DE are
incremented by one and BC is decremented by one - the transfer
continues until BC is equal to O.

The LDDR - LoaD, Decrement and Repeat instruction is the same as
the LDIR instruction except that, as its mnemonic suggests, HL
and DE are decremented instead of incremented.

The following program segment has the same effect as Program 14.2
but uses the LDDR instruction instead

LD HL,SOURCE+9 3 set pointers to the end
LD DE,DESTIN+9 ; of the blocks

LD BC,10

LDDR ; transfer block

Two other block transfer instructions LDI and LDD are similar to
the LDIR and LDDR instructions except that they do not
automatically go on to transfer the next byte.

The LDI - LoaD and Increment instruction increments up from the
beginning of the block of bytes, whereas the LDD - LoaD and
Decrement instruction decrements down from the end of the block
of bytes. The LDI instruction transfers a byte, increments both
HL and DE by one and decrements BC by one, whereas the LDD
instruction, after transferring a byte, decrements both HL and DE
by one and decrements BC by one.

It is important to know that the condition of BC becoming zero is
indicated by the P/V flag not the zero flag. The P/V flag is set
to O (PO mnemonic) if BC is zero, otherwise it is set to 1 (PE
mnemonic).

Program 14,2 could be written using an LDI instruction instead of
the LDIR instruction, as follows

LD HL,SOURCE

LD DE,DESTIN

LD BC,10
NEXBYT: LDI

JP PE,NEXBYT

HALT

transfer byte
last byte? no, next byte
yes

e we we

The LDIR and LDDR instructions can be used only when the number
of bytes to be transferred is known in advance. When the
criteria for the numbers of bytes to be transferred are not known
in advance, the LDI or LDD instructions must be used and the
program must write the instructions to transfer all the bytes.

The following program segment moves a block of characters from
one place to another.

Block Transfer and Search Instructions 79

LD HL, HERE ; set up pointers

LD DE, THERE

LD BC,1000 ; and maximum counter
NEXBYT: LDI ; transfer byte

LD A,(HL)

CP 0 ; is byte zero?

JP NZ ,NEXBYT ; no - go to transfer next byte

A maximum of one thousand characters in the block is catered for,
although the transfer stops when a byte containing zero is
encountered. The zero byte is not transferred.

Care must be taken during block tramsfers when the source and
destination blocks overlap. Take, for example, a situation where
it 1is necessary to move a block of bytes so many bytes through
memory as is done by the following program segment

LD HL,START

LD DE,START+100
LD BC,500

LDIR

The first one hundred bytes of the source block of bytes will be
copied into the first one hundred bytes of the destination block
of bytes which also happens to be the second one hundred bytes of
the source block of bytes. So the last four hundred bytes of the
source block of bytes are overwritten before they can be
transferred to the destination block of bytes.

To make the block of bytes move down through memory correctly the
above program segment would have to be changed to

LD HL,START+499
LD DE,START+599
LD BC,500

LDDR

14.2 BLOCK SEARCH INSTRUCTIONS

There are four block search instructions which allow a block of
memory bytes to be searched for one of them containing the same
contents as the accumulator. The operation of all four
instructions requires that the accumulator shall contain the byte
contents to be searched for, HL contain the address of the first
byte of the block of bytes to be searched, and BC contain a count
of the number of bytes in the block, all to be set before the
instructions are executed.

As for the block transfer instructions, two of the block search
instructions automatically search through the block and the other
two block search instructions require extra instructions to move
on to the next byte in the block.

The two automatic block search instructions are CPIR - ComPare,
Increment and Repeat and CPDR - ComPare, Decrement and Repeat.

80 Programming in Z80 Assembly Language

Program 14.3 shows a use of the CPIR instruction in searching
for the value zero in a block of memory bytes.

s Program 14.3 search a block for zero
5
H
LD HL,START ; set up pointer,
LD BC,10 ; counter
LD A0 ; and accumulator

CPIR ; search block for zero

we

LD A,C ; output value of counter
ADD A,30H

CALL COUT

HALT

bl

START: DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

NOOOWUWMPOWN—

First of all HL is loaded with the address of the first byte of
the block labelled START, the register pair BC is loaded with the
number of bytes in the block and the accumulator is loaded with
the value to be found.

The CPIR instruction then indexes through the block of bytes
until either a match with the contents of the accumulator 1is
found or the end of the block is reached, that is, BC becomes
zero. For each byte, the contents of the accumulator are
compared with the contents of the byte; if they are equal the
zero flag is set to 1; the HL register pair is incremented by one
and the BC register pair is decremented by one. Finally, if the
zero flag 1is set to 1, or BC is zero, the instruction is
finished; otherwise the next byte in the block is considered, and
so on.

In the same way that the P/V flag is used to indicate that BC
contains zero during execution of the LDI and LDD block transfer
instructions, so the P/V flag is used to indicate the contents of
BC on termination of the block search instructions.

As it stands Program 14.3 will output the number 6, ie. 10 - 4,
as the first zero byte is in the fourth byte of the block of
bytes. If the block of bytes did not contain a zero byte the
program would output the number zero.

The CPDR instruction can be used to search a block from the end

Block Transfer and Search Instructions 81

back to the beginning. In this case, HL is initially set to
point to the last byte of the block of memory bytes and during
execution of the instruction HL is decremented, rather than
incremented, by one.

The CPI - ComPare and Increment and CPD - ComPare and Decrement
instructions are similar to the CPIR and CPDR except that they do
not automatically go on to the next byte. Extra instructions
have to be used to test for a match between the accumulator and
whether the byte has been found - zero flag is set to 1 - and to
detect 1if the whole of the block has been searched — BC is zero
and the P/V flag is set to 0. These two instructions are used in
place of the CPIR and CPDR instructions when intermediate
processing is required and, for example, when more than one
occurrence of the value in the accumulator needs to be detected.

To make Program l14.3 output the value of the counter for every

occurrence of a zero byte the instructions CPIR to HALT would
have to be replaced by the following instructions

NEXBYT: CPIL
JP PO,FINI ; end of block?
JR NZ,NEXBYT
LD A,C ; output counter
ADD A,30H
CALL CoUuT
LD A,0 ; restore A
JR NEXBYT

5
FINI: HALT

It is sometimes useful to know the contents of HL and DE when the
block instructions LDIR, LDDR, CPIR and CPDR have finished
execution.

For the LDIR instruction, HL and DE will be pointing to the bytes
immediately following the ends of the blocks.

For the LDDR instruction, HL and DE will be pointing to the bytes
immediately preceding the beginning of the blocks.

For the CPIR instruction, HL will be pointing to the byte
immediately following the end of the block.

For the CPDR instruction, HL will be pointing to the byte
immediately preceding the beginning of the block.

14.3 PROGRAM

This program is required to provide an internal filing system
which can hold wup to nine records. Each record contains 20

characters.

The file should be defined at the end of the main program using

82 Programming in Z80 Assembly Language

the pseudo instruction
FILE: DEFS 180

So far as the program is concerned, the contents of the records
(the 20 characters) are immaterial. The program identifies each
record by a record number which is its numerical position in the
file; so the file has records numbered 1 to 9.

A user of the program should be able to input any of the
following

Dn to delete the record numbered n (n
is 1 to 9) - following records move
up one record position,

I n 20-character~record to insert the specified record
after the record numbered n (n is
0 to 8)- following records move
down one record position,

R n 20-character-~record to replace the record numbered n by
the specified record (n is 1 to 9),

L to list the file on the display -
for each record, its number and its
contents,

F character-string to find and display the first

record in the file containing the
specified character-string, which
may be 1, 2 or 3 characters.

15 Decimal Arithmetic

Up to now, we have only considered the binary representation of
numbers in the Z80 microprocessor, and arithmetic has involved
signed and unsigned binary numbers. However, the 7280
microprocessor caters for another representation of numbers -
Binary Coded Decimal, or BCD for short.

15.1 BCD REPRESENTATION
The Binary Coded Decimal representation of numbers requires that
each decimal digit be expressed as a 4-digit binary number, so

that 9 would be written as 1001B.

A 4~bit unit is called a nibble, so a nibble is half a byte and a
byte can hold a 2-digit BCD number, as follows

left nibble right nibble

84 Programming in Z80 Assembly Language

The left nibble, bits 7 to 4, inclusive, contains the BCD number
7 and the right nibble, bits 3 to 0, inclusive, contains the BCD
number 4., The byte as a whole contains the BCD number 74.

A nibble can contain a BCD number in the range 0 to 9, but an
unsigned binary number in the range 0 to 15, so you can see that
the BCD representation 1is wasteful compared to the unsigned
binary representation. A byte can contain BCD numbers in the
range 0 to 99 and unsigned binary numbers in the range 0 to 255,
ie. more than double the range for BCD numbers.

Numbers are normally input from the keyboard and output to the
display as decimal digits. To enable arithmetic to be performed
on the numbers they have to be converted to binary, and then the
results converted from binary to decimal before being output. If
a computer has instructions which allow arithmetic to be
performed with numbers in their decimal digit form then the
conversion from decimal to binary, and vice versa, would be
unnecessary.

The Z80 microprocessor does have facilities for decimal
arithmetic (the Decimal Adjust Accumulator instruction) and
facilities for moving nibbles around (the Rotate Left Digit and
Rotate Right Digit instructions), so sometimes it is more
convenient to use the BCD representation of numbers rather than
their binary representation.

15.2 BCD ARITHMETIC

As you would expect, BCD arithmetic is not as straightforward as
binary arithmetic on a computer which is binary orientated. The
standard arithmetic instructions cannot be used because they are
binary and, therefore, not suitable for BCD arithmetic. For
example, the sum of BCD 28 and BCD 39, would yield the incorrect
result of BCD 61, if a standard binary add operation were to be
used, as follows"

00101000 BCD 28
+ 00111001 BCD 39
01100001 BCD 61 - incorrect

The error occurs because, in BCD arithmetic, if the sum of the
right nibbles is greater than 9 a carry into the left nibble is
required. Binary arithmetic also produces nibbles containing
numbers in the range 1010B to 1111B for which there is no valid
BCD equivalent.

Having performed a binary add operation on two BCD numbers it is
possible to correct the erroneous result to give a correct BCD
result. The correction after the addition of two BCD digits is
as follows: 1if the nibble contains a value between 1010B and
1111B, inclusive, or a carry occurred from the most significant

Decimal Arithmetic 85

bit of the nibble then 0110B must be added to the nibble,
otherwise nothing need be done. The two following examples show
the effect of the correction

0110 BCD 6
+ 0111 BCD 7
1101 -incorrect BCD result not a BCD digit
+ 0110
00010011 BCD 13 - correct BCD result
1000 BCD 8
+ 1001 BCD 9
00010001 BCD 11 - incorrect BCD result
+ 0110
00010111 BCD 17 - correct BCD result

An example of a 2-digit BCD addition is

00010111 BCD 17
+ 01101001 BCD 69
10000000 BCD 80 - incorrect BCD result
+ 0110
10000110 BCD 86 — correct BCD result

A carry occurring from the left nibble of a 2-digit BCD addition
would indicate overflow, that is, a value greater than 99.

When subtracting one BCD number from another, 0l110B must be
subtracted from the result if either a borrow has occurred into
the nibble or the nibble contains a value in the range 1010B to
1111B, inclusive,

The following shows the subtraction of BCD 56 from BCD 82

10000010 BCD 82
- 01010110 BCD 56
00101100 incorrect result - not a BCD digit
- 0110

00100110 BCD 26 - correct BCD result

86 Programming in Z80 Assembly Language

A borrow occurring into the left nibble of a 2-digit BCD
subtraction would indicate overflow.

15.3 THE DAA INSTRUCTION

In order to provide decimal arithmetic a computer must either
provide a separate set of decimal arithmetic instructions, such
as decimal Add, or provide a means of changing a binary
arithmetic result into a decimal arithmetic as shown in the
previous section. The Z80 microprocessor designers chose the
latter by including in the Z80 instruction set the DAA - Decimal
Adjust Accumulator - instruction.

Whenever an arithmetic instruction is executed the two flags in

the flag register which we have not considered so far - the half-
carry and subtract flags - are affected in the following way.

The half-carry flag is set to 1 if an add instruction produces a
carry out of the right nibble of a register, otherwise the flag
is reset to O, Also, the half-carry flag is set to 1 if a
subtract instruction requires a borrow into the right nibble of a
register, otherwise the flag is reset to O.

The subtract flag 1is set to 1 if the instruction is an add
instruction or to O if it is a subtract instruction.

Although the half-carry and subtract flags are used only by the
DAA instruction they are set accordingly after every arithmetic
instruction. Neither of these flags may be used by a programmer
because there are no instructions to set or test them directly.

Using the setting of the half-carry and subtract flags, the DAA
instruction corrects the contents of the accumulator, if
necessary, to give a result in the accumulator as if the previous
arithmetic instruction had been a BCD one. For example, the
program segment

LD A,43H
LD B,28H
ADD A,B
DAA

loads the accumulator and B register with BCD 43 and BCD 28,
respectively, sums them using a binary ADD instruction, and then
adjusts the result to BCD representation wusing the DAA
instruction. Notice that hexadecimal representation, being a 4-
bit representation, is very useful for writing BCD constants in
programs.

The DAA instruction is used during BCD arithmetic after the

Decimal Arithmetic 87

instructions ADD A, SUB, INC A, DEC A, CP, NEG, ADC A, SBC and
the four block search instructions. Notice that the DAA
instructions operate on the accumulator only.

The two flags of most importance to the programmer, which are set
by the DAA instruction, are the carry flag indicating BCD
arithmetic overflow and the zero flag indicating a zero BCD
value. The carry flag setting can also be used in multi-byte BCD
arithmetic, as we shall see later.

15.4 THE DIGIT ROTATE INSTRUCTIONS

Two Z80 instructions are available for rotating nibbles, or BCD
digits - one to rotate to the left and the other to rotate to the
right.

The rotation involves the right nibble of the accumulator and the

two nibbles of a memory byte pointed to by the HL register pair.
The Rotate Left Digit instruction, RLD, operates as follows

| '

{ |+

accumulator memory byte

The right nibble of the accumulator moves to the right nibble of
the memory byte. The right nibble of the memory byte moves to
the left nibble of the memory byte and the left byte of the
memory byte moves to the right nibble of the accumulator. The
left nibble of the accumulator is not affected by the rotation.

The Rotate Right Digit instruction, RRD, operates as follows

i

accumulator memory byte

The RLD and RRD instructions are very useful for manipulating BCD
numbers. For example, look at Program 15.1 which inputs two 2-
digit BCD numbers, adds them, and outputs their sum.

88 Programming in Z80 Assembly Language

; Program 15.1 add two 2-digit BCD numbers

3

LD HL,NUM
CALL CIN ; input lst digit of first number
AND OFH
LD (HL),A
CALL CIN ; input 2nd digit of first number
AND OFH
RLD ; store first number in NUM
INC HL
CALL CIN ; input lst digit of second number
SUB 30H
LD (HL),A
CALL CIN ; input 2nd digit of second number
SUB 30H
RLD ; store second number in NUM+1
LD HL,NUM
LD A,(HL)
INC HL
ADD A, (HL) ; add the two numbers
DAA ; decimal adjust for BCD
LD HL,SUM ; save result
LD (HL),A
LD A,0 ; output result
RLD
ADD A,30H
CALL COUT ; - first digit
LD A0
RLD
ADD A,30H
CALL COUT ; — second digit
HALT
’
NUM: DEFS 2
SUM: DEFS 1

Working through the program, the first number is input, digit by
digit, and stored in NUM using an RLD instruction, followed by
the input of the second number into NUM+1 wusing another RLD
instruction. The HL register pair must be used to point to the
memory bytes because the RLD instruction assumes that it does.

The two numbers are then added and immediately adjusted for BCD
arithmetic using the DAA instruction. The result is stored
before being output, digit by digit, using an RLD instruction to
move each nibble in turn from SUM to the accumulator ready for
output. Notice that the accumulator has to be set to zero before
the last two RLD instructions are executed - this is to ensure
that the left nibble of the accumulator is zero. Although the
left nibble is not involved in the decimal rotate instruction,
and partly because it is not, you must ensure that the contents
of the left nibble of the accumulator are what you want them to
be.

Decimal Arithmetic 89

15.5 PROGRAM

A program which inputs, adds, subtracts and outputs signed
multiple-digit BCD numbers is required.

A BCD number is assumed to be held internally as follows: an
initial byte specifies the sign of the number (bit 7 is O for a
positive number or 1 for a negative number) and the number of BCD
digits contained in the number (bits 6 to 0); subsequent bytes
contain the BCD digits packed two to a byte.

Write a subroutine called INBCD which inputs a signed BCD number
(no sign implies a positive number) from the keyboard and stores
it as specified above. On entry to the subroutine the HL
register pair points to the first of the bytes where the number
is to be stored.

Write a subroutine called OUTBCD which outputs a signed BCD
number (suppressed positive sign) to the display. On entry to
the subroutine the HL register pair points to the first byte of
the number to be output.

Write a subroutine called BCDADD which adds two equal-length
signed BCD numbers. On entry to the subroutine the IX and 1IY
register pairs point to the first bytes of the first and second
numbers, respectively, and the HL register pair points to the
first byte of the resulting number. On exit from the subroutine
the accumulator should contain a 1 if overflow occurred, or O
otherwise.

Write a subroutine called BCDSUB which is similar to the above
add subroutine except that the subroutine subtracts the second
number from the first number.

Use the subroutines to write a main program which repeatedly
inputs two signed BCD numbers separated by either a + character
or a — character and followed by an equal character, and outputs
the result. The program should cater for BCD numbers containing
up to twenty BCD digits.

16 Miscellaneous Instructions

There are several instructions which have not yet been considered
because they are rarely used or because they are beyond the scope
of this book. However, for completeness, they are discussed
briefly in this final chapter.

16,1 THE NOP INSTRUCTION

The NOP instruction performs No OPeration but, paradoxically,
does have some uses. For example, the instruction can be used to
provide a delay in a sequence of code by inserting the
instructions

DELAY: NOP
DJINZ DELAY

which will cause a delay of (N - 1) x (4 + 13) + 8 clock periods.
(N is the value in the B register prior to the delay loop; the
NOP instruction takes 4 clock periods and the DJIJNZ instruction
takes 13 clock periods if B is not zero and 8 clock periods 1f B

is zero.)
16,2 THE AUXILIARY REGISTERS

The Z80 microprocessor has another set of eight registers called
the auxiliary registers which are denoted by A’, F’, B’, C’, D',
E’, H’ and L', These auxiliary registers can be used in exactly
the same way as their counterparts, but not at the same time.

To change over from using the standard registers to wusing the
auxiliary registers, the instruction

EXX ; exchange standard and auxiliary registers
must be executed, causing subsequent instructions to refer to the

auxiliary registers. To revert back to using the standard
registers another EXX instruction must be executed.

90

Miscellaneous Instructions 91

Most programs need to use only the standard registers and to
exchange all eight registers would not be necessary. However,
for the more frequent requirement that a second accumulator is
sometimes necessary, the instruction

EX AF,AF’, ; exchange AF and AF’

is available which interchanges the standard and auxiliary
accumulator and flag registers.

16.3 INPUT AND OUTPUT INSTRUCTIONS

There are twelve input and output instructions altogether and
these are specified in Table C.12 of Appendix C.

Input and output of data can be specified to be to and from any
of the single registers using the IN r,(C) and OUT (C),r
instructions, in which case the contents of the C register
identify the port to be used.

The remaining input and output instructions allow the input and
output of blocks of data. These instructions, and their
variations, are similar to the block search instructions except
that, instead of comparing a data byte, a data byte is input or
output. (Also, only the single B register is used as a counter -
not the BC register pair.)

These block input and output instructions appear very useful at
first sight, but it must be remembered that the repeat ones can
be used only with devices which operate at the same high speed as
instructions, which does not include, for example, displays or
keyboards.

16.4 INTERRUPT INSTRUCTIONS

An interrupt facility allows signals from outside to interrupt
the sequence of instructions in the central processing unit.

Five of the instructions associated with the Z80 interrupt
facility are specified in Table C.8 in Appendix C. The Z80
microprocessor has three modes of interrupt which can be set by
instruction wusing one of the three IM 0, IM 1 and IM 2
instructions which set the interrupt mode to modes 0, 1 or 2,
respectively. The DI and EI instructions Disable Interrupts and
Enable Interrupts and, therefore, allow interrupts to be disabled
or enabled under program control.

Interrupts are dealt with by Interrupt Service Routines = normal
program segments with a specific function of dealing with a
particular interrupt. The last instruction of an interrupt
service routine is either a RETI (RETurn from Interrupt) or RETN
(RETurn from Non-maskable interrupt) instruction which causes a
return back to the sequence of instructions which was
interrupted. The RETI and RETN instructions are included in
Table C.11 in Appendix C along with the RST (ReSTart) instruction

92 Programming in Z80 Assembly Language

which is used to service a mode 0 interrupt.

Appendix A: Binary and
Hexadecimal Number Systems

In order to understand how information is stored in the memory of
a computer we need to know about binary and hexadecimal numbers.
In everyday life we normally use decimal numbers. However,
computers store information in binary, and hexadecimal is a
compact way of representing binary.

Put simply, decimal is counting in tens, binary is counting in
twos and hexadecimal is counting in sixteens.

A.l BINARY AND HEXADECIMAL NUMBERS

A decimal number, say 453 may be expressed in the following way

453 400 + 59 + 3

(4 x 107) + (5 x lO) + 3 x 10)

Similarly, a hexadecimal number, say 974, is expressed as

900H + 7O0H + 4H
(9 x 16°) + (7 x 16

974H

by + 4 x 169

and the binary number 101 is expressed as

101B

100B +_00B + 1B 1
(1 x2°)+ O0x2)+ (1 x 2)

The H at the end of the hexadecimal number 974 is there to
indicate that that number is, in fact, hexadecimal rather than
decimal or binary. Similarly, a binary number is postfixed by
the letter B.

Looking at the three numbers above you can see that decimal
numbers are expressed in terms of the powers of tens, hexadecimal
numbers are expressed in terms of the powers of sixteens and
binary numbers are expressed in terms of the powers of two. The

93

94 Programming in Z80 Assembly Language

ten, sixteen and two are said to be the base or radix, of the
numbers. Decimal numbers have a base of ten, hexadecimal numbers
a base of sixteen and binary numbers a base of two. Any number
can be used as a base, but in computing, and particularly for
microprocessors, the most common bases are sixteen and two.

Throughout this appendix there are several exercises for
you to do to give you practice in number systems. The
answers to the exercises are at the end of this appendix.

Exercise 1

By working out the expressions above, what are 974H and 101B
equivalent to as decimal numbers?

You know already that decimal numbers use the digits 0 to 9, that
is, zero through to one less than the base value.

Exercise 2
Which digits do binary numbers use?

Hexadecimal numbers need to use sixteen, that is 0 to something.
We can use the same digits as are used for decimal numbers up to
9 but for the remaining six digits we need single-character
symbols. The chosen symbols are the letters A, B, C, D, E and F,
so that hexadecimal A is equivalent to decimal 10 and hexadecimal
F is equivalent to decimal 15.

Look now at Figure A.l which shows the equivalent hexadecimal and
binary numbers of the decimal numbers 0 to 15.

decimal hexadecimal binary
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 c 1100
13 D 1101
14 E 1110
15 F 1111
Figure A.l

You will need to know the hexadecimal and binary numbers in
Figure A.l1 by heart, so spend a short time making sure that you
know them without having to think about it - especially the
binary numbers.

Appendix A: Binary and Hexadecimal Number Systems 95

Exercise 3
What is the decimal equivalent of E8A5H?

A.2 BINARY AND HEXADECIMAL ARITHMETIC

Addition and subtraction can be done using any base. The
technique 1is the same as for decimal numbers except that any
reference to ten is replaced by a reference to the base. For
example, when adding two hexadecimal numbers, a carry is produced
when the addition of two of the digits results in a number

greater than FH (or decimal 15).

Examples of addition and subtraction using hexadecimal and binary
numbers are

3A7FH 10110110B
+ 10BBH - 01011010B
4B3AH 01011100B

Exercise 4
Do the following arithmetic

C7BAH 01101101B
- O9FF8H + 01011110B

A3 DECIMAL TO HEXADECIMAL CONVERSION

To convert a decimal number to a hexadecimal number, repeatedly
divide the decimal number by 16 until a O quotient is obtained.
The remainders from the divisions constitute the equivalent
hexadecimal number, the last remainder so obtained being the most
significant digit of the hexadecimal number. For example, the
conversion of 745 to hexadecimal looks like

16 45

16 46 remainder 9

16 2 remainder E
0 remainder 2

the equivalent hexadecimal number being 2E9H.

Exercise 5
Convert the decimal number 1582 to hexadecimal.

A.4 HEXADECIMAL TO DECIMAL CONVERSION

To convert a hexadecimal number to a decimal number just expand

96 Programming in Z80 Assembly Language

the hexadecimal number in powers of 16, and then add the terms.
For example, the conversion of 3AB2H to its equivalent decimal

number would look like

3AB2H = (3 x 163) (10 x 162) + (11 x 161) + (2 x 16°)

(3 x 4096) + (10 x 256) + (11 x 16) + (2 x 1)

12288 + 2560 + 176 + 2

15026

the equivalent decimal number being 15026.

A quicker way to convert a hexadecimal number to a decimal number
(and vice-versa) is to use a conversion table, assuming that one

is readily available.

Exercise 6
Using the converion tables in Appendix B, convert FBH and A3B2H
to decimal and 142 and 9467 to hexadecimal.

A.5 BINARY-HEXADECIMAL CONVERSION

Binary to hexadecimal conversion and hexadecimal to binary
conversion is based on the fact that one hexadecimal digit can be
replaced by four binary digits and vice-versa.

So to convert a hexadecimal number, say 6BH, to binary, just
replace each hexadecimal digit by its four digit binary
equivalent - according to the values in Figure A.l. Hence,

6BH = 0110 1011
which is equal to 1101011B

with the leading zero removed and the two sets of binary digits
joined together.

To convert a binary number to a hexdecimal number, the binary

number is separated into groups of four binary digits from the

right. For example, the binary number 1111100111 would look like
11 1110 0111

Each group of bits is then converted to its equivalent
hexadecimal digit, so the binary number above would look like

3 E 7
Hence, 1111100111B is equivalent to 3E7H.

Exercise 7
Convert 9AB3H to binary and 110011101111B to hexadecimal.

Appendix A: Binary and Hexadecimal Number Systems 97
A.6 DECIMAL-BINARY CONVERSIONS

Conversions between decimal and binary numbers can be done in the
same way as we did decimal and hexadecimal number conversions,
except that 2 is used wherever we used 16.

However, those methods of conversion are rather tedious for
decimal/binary conversions so, either

use hexadecimal as an intermediary, so that,
for example, to convert from decimal to binary
first convert from decimal to hexadecimal and
then to binary,

or use a conversion table.

Exercise 8
Convert 1290 to binary and 101110111101B to decimal using both
suggested methods.

A.7 BYTES

The basic unit of data in the Z80 microprocessor is a byte, which
contains eight binary digits (bits, for short) or two hexadecimal
digits. The contents (0’s and 1°s) of a byte may represent any
one of several entities, such as

a character,
a number (unsigned),
or a signed number.

Representation of characters is dealt with in Chapter 3.

Representation of a number in a byte refers to the contents of a
byte being considered to be the value of the binary number
contained in the byte. For example, a byte containing 01100110B
represents the number 11100110B, 66H or 102 decimal. The range
of numbers which can be contained in a byte is 0 to 11111111B
(FFH and 255 decimal). When it is necessary to do so, this
representation 1is distinguished from another representation by
referring to it as the unsigned number representation.

Exercise 9

What range of unsigned numbers can be represented in two bytes
(that is, 16 bits)?

A.8 SIGNED (2‘s COMPLEMENT) NUMBERS

Numbers which may have negative values as well as positive values
are held in computers in what is called ‘2’s complement form’.
This form of representation depends on numbers consisting of a
fixed number of digits. As we are concerned with the 280
microprocessor we will consider 2°s complement numbers consisting
of eight binary digits.

98 Programming in Z80 Assembly Language

In the 2’s complement system, a negative number is represented by
taking the 2’s complement of its equivalent positive value; this
is done by converting all 0‘s to 1°s and 1’s to 0’s, and then
adding 1. For example,

+5 is 00000101B

so -5 is 11111010B
+ 1

Hence, -5 is held as 11111011B in a register or memory byte. The
mechanism for producing a negative number in 2’s complement form
is equivalent to subtracting the equivalent positive value from
2.

Exercise 10

Calculate the binary equivalent of -1, -2 and -126 and the
decimal equivalent of 10000000B and 10000001B, assuming an 8-bit
2’s complement system.

When performing arithmetic with numbers within a 2’s complement
system, numbers are added bit by bit as normal but any carry out
of the most significant bit is ignored. For example, adding +5 and
-5 looks like

000001018 +5
+ 11111011B + -5

[1] 00000000B 0

The one carry out of the addition of the eight two bits is
ignored and the result is contained in the 8 bits - that is,
zero, which you would expect to obtain when adding -5 to +5.

Exercise 11
Calculate -60 + 70, =23 + -46, 85 - 96 and 5 - -121, in binary
using an 8-bit 2’s complement system.

The range of numbers which can be held in a byte, using 2’s
complement, goes from -128 to +127 as follows

-128 10000000
-127 10000001
-2 11111110
-1 11111111

0 00000000

+1 00000001

+2 00000010

+127 01111111

Appendix A: Binary and Hexadecimal Number Systems 99

There are other ways of representing negative numbers in
computers, but the 2’s complement method is the most common and
the one used by the Z80 microprocessor. However, rather than
using the inelegant phrase "2’s complement’ we shall refer to
‘signed numbers’ rather than 2’s complement numbers from now on.

It may help you in your understanding of signed numbers and
unsigned numbers to look at the weighting of the bits in a byte
for each of the representations. They are

RN

unsigned numbers 128 64 32 16 8 4 2 1

signed numbers -128 64 32 16 8 4 2 1

so that, for example, the unsigned number 10010001B is equivalent
to

1 x 128 + 1 x 16 + 1 x 1 which equals 145
whereas, the signed number 10010001B is equivalent to

1 x-128+1x 16 + 1 x 1 which equals -111.

Exercise answers

1 974H is equivalent to 2420.
101B is equivalent to 5.

2 0 and 1.

3 E8A5H = E x 4096 + 8 x 256 + A x 16 + 5 x 1
= 14 x 4096 + 8 x 256 + 10 x 16 + 5 x 1
= 57344 + 2048 + 160 + 5
= 59557
4 C7BAH 01101101B
~ 9FF8H + 010111108
27C2H 11001011B

5 62EH

100 Programming in Z80 Assembly Language

6 FBH is equivalent to 251
A3B2H is equivalent to 41906
142 is equivalent to BEH
9467 is equivalent to 24FBH

7 9AB3H is equivalent to 1001101010110011B
110011101111B is equivalent to CEFH

8 1290 is equivalent to 50AH and 10100001010B
101110111101B is equivalent to BBDH and 3005

9 Unsigned numbers in the range O to 1111111111111111B (FFFFH
and 64535) can be represented in two bytes.

10 -1 is equivalent to 11111111B
-2 is equivalent to 11111110B
-126 is equivalent to 10000010B
10000000B is equivalent to -128
10000001B is equivalent to -127

11 11000100 -60
+ 01000110 + +70
[1] 00001010 +10
11101001 -23

+ 11010010 + -46
{1] 10111011 -69
01010101 +85

- 01100000 - +96
[1] 11110101 -11
00000101 +5

- 10000111 --121

[1] O1111110 +126

Appendix B: Hexadecimal-Decimal
Conversion Tables

The table
hexadecimal
the range 0 to 255.

00 000
10 016
20 032
30 048
40 064
50 080
60 096
70 112
80 128

A0 160
BO 176
co 192
DO 208
EO 224
FO 240

001
017
033
049
065
081
097
113
129
145
161
177
193
209
225
241

below provides
numbers in the range 0

002
018
034
050
066
082
098
114
130
146
162
178
194
210
226
242

003
019
035
051
067
083
099
115
131
147
163
179
195
211
227
243

004
020
036
052
068
084
100
116
132
148
164
180
196
212
228
244

005
021
037
053
069
085
101
117
133
149
165
181
197
213
229
245

006
022
038
054
070
086
102
118
134
150
166
182
198
214
230
246

for

007
023
039
055
071
087
103
119
135
151
167
183
199
215
231
247

direct

008
024
040
056
072
088
104
120
136
152
168
184
200
216
232
248

009
025
041
057
073
089
105
121
137
153
169
185
201
217
233
249

conversion
to FF and decimal numbers

010
026
042
058
074
090
106
122
138
154
170
186
202
218
234
250

011l
027
043
059
075
091
107
123
139
155
171
187
203
219
235
251

012
028
044
060
076
092
108
124
140
156
172
188
204
220
236
252

between

013
029
045
061
077
093
109
125
141
157
173
189
205
221
237
253

014
030
046
062
078
094
110
126
142
158
174
190
206
222
238
254

in

015
031
047
063
079
095
111
127
143
159
175
191
207
223
239
255

For conversion of larger numbers use the following in conjunction
with the table above.

101

102 Programming in Z80 Assembly Language

Hexadecimal Decimal
100 256
200 512
300 768
400 1024
500 1280
600 1536
700 1792
800 2048
900 2304
AO0O 2560
BOO 2816
co0 3072
DOO 3328
EO0O 3584
FOO 3840

1000 4096
2000 8192
3000 12288
4000 16384
5000 20480
6000 24576
7000 28672
8000 32768
9000 36864
A000 40960
B0OOO 45056
C000 49152
D000 53248
EQ00 57344

FO00 61440

Appendix C: Summary of Z80
Instructions

This appendix contains a summary of the complete Z80 instruction
set.

The first table, C.l, gives a summary of the flag operations.

In tables C.2 to C.12, the instructions are logically arranged
into functional groups. Each table shows the assembly language
mnemonic OP code, the numeric OP code, the symbolic operation,
the content of the flag register following the execution of each
instruction, the number of bytes required for each instruction as
well as the number of memory cycles and the total number of T
states (external clock periods) required for the fetching and
execution of each instruction., Care has been taken to make each
table self-explanatory without requiring any cross reference with
the text or other tables.

The following pages have been reproduced by permission of Zilog,
Inc. 1977. This material shall not be reproduced without the
written consent of Zilog, Inc.

103

104 Programming in Z80 Assembly Language

Instruction CiZ lZ/ SIN[H | C ts

ADD A,s; ADC As BENEBNE 8-bit add or add with carry

SUB . SBC A, s, CPs, NEG $IVIS|L|¢ 8-bit subtract, subtract with carry, compare and

negate accumulator

AND s o{t|P|¢|o]|1L } Logical operations

ORs; XOR s ojtiP|tiO|0 And set’s different flags

INCs oft[vis]|ofe 8-bit increment

DEC m o|t|VIE[1]¢ 8-bit decrement

ADD DD, ss {|e|o|®]|0|X 16-bit add

ADC HL, ss $1¢|V|E[0]|X | 16-bit add with carry

SBC HL, ss $[EIV[E]1]X 16-bit subtract with carry

RLA; RLCA,RRA, RRCA {lejo|e|0]|0 Rotate accumulator

RL m; RLC m; RR m; RRC m ${¢|P[$]|0]|0 | Rotate and shift location m

SLA m; SRA m; SRL m

RLD, RRD e t|P|t|O]O Rotate digit left and right

DAA t{¢(P|¢|®[$ | Decimal adjust accumulator

CPL elofojo|]|1] Complement accumulator

SCF 1|e|e|e|O]|O Set carry

CCF t|e|e|®[0|X | Complement carry

IN1,(C) o|t|P|t]0|0 [Input register indirect

INI; IND; OUTI; OUTD o4 |X|X[11X } Block input and output

INIR; INDR; OTIR; OTDR ol X]|X[1|X Z=0if B+ 0 otherwise Z=1

LDI, LDD o(X|$|X/|0]|0 Block transfer instructions

LDIR, LDDR e/ X(0|X|0|0 P/V = 1if BC # 0, otherwise P/V =0

CPl, CPIR, CPD, CPDR o$]4]¢|1{X | Block search instructions

Z=1if A=(HL), otherwise Z =0
P/V = 1if BC # 0, otherwise P/V =0

LDA,[;LD A,R o IFF|0| 0 | The content of the interrupt enable flip-flop (IFF)

is copied into the P/V flag

BITb,s e t|X]|X[0]1 The state of bit b of location s is copied into the Z flag

NEG $18IvITI11 ¥ | Negate accumulator

The following notation is used in this table:

Symbol Operation

C Carry/link flag. C=1 if the operation produced a carry from the MSB of the operand or result.

z Zero flag. Z=1 if the result of the operation is zero.

S Sign flag. S=1 if the MSB of the result is one.

P/V Parity or overflow flag. Parity (P) and overflow (V) share the same flag. Logical operations affect this flag
with the parity of the result while arithmetic operations affect this flag with the overflow of the result. If P/V
holds parity, P/V=1 if the result of the operation is even, P/V=0 if result is odd. If P/V holds overflow, P/V=1
if the result of the operation produced an overflow.

H Half-carry flag. H=1 if the add or subtract operation produced a carry into or borrow from into bit 4 of the accumulator.

N Add/Subtract flag. N=1 if the previous operation was a subtract.

H and N flags are used in conjunction with the decimal adjust instruction (DAA) to properly correct the re-
sult into packed BCD format f ing addition or sub: ion using op ds with packed BCD format.

$ The flag is affected according to the result of the operation.

. The flag is unchanged by the operation.

0 The flag is reset by the operation.

1 The flag is set by the operation.

X The flag is a “don’t care.”

v P/V flag affected according to the overflow result of the operation.

P P/V flag affected according to the parity result of the operation.

T Any one of the CPU registers A, B,C, D, E, H, L.

s Any 8-bit location for all the addressing modes allowed for the particular instruction. .

s Any 16-bit location for all the addressing modes allowed for that instruction.

ii Any one of the two index registers IX or Y.

R Refresh counter,

n 8-bit value in range <0, 255>

an 16-bit value in range <0, 65535>

m Any 8-bit location for all the addressing modes allowed for the particular instruction.

Summary of flag operation

Table C.1

Courtesy Zilog, Inc.

Appendix C: Summary of Z80 Instructions 105

Symbolic Flags orcode | 50 [B0 | ofr
Mnemonic Operation C|ZP/VS{N|H |76 543 210 Bytes Cycles | Cycles | Comments
LDr,r rer o|o|e|e|le]|e |01 r 1 1 4 nLr Reg.
LDr,n r+n e|e|e|o|oje |00 r 110 2 2 7 000 B
- n - 001 C
LDy, (HL) r+ (HL) e|o|ojefe|e Ol r 110 1 2 7 010 D
LD 1, (IX+d) 1+ (IXHd) e|lejle|eie|p]|ll 011 101 3 5 19 011 E
01 r 1i0 100 H
- d - 101 L
LD r, (IY+d) 1+ (IY+d) eo|lo|eje|eo|eill 111 101 3 5 19 111 A
01 r 110
- d -
LD (HL), r (HL) «r elelejeje|e |0) 110 r 1 2 7
LD (IX+d), r (IX+d) «r1 eie|lelojeie |11 OI1 101 3 5 19
01 110 r
- d -
LD (Y+d),r | (AY+d) <1 o|o|e|o|lefef11 111 101 | 3 5 19
01 110 r
- d -
LD (HL), n (HL) «n e|eo{eje|e|e jOO 110 110 2 3 10
« n -
LD (IX+d),n | (IX+d) «<n o|lelo|o|e|e |11 O11 101 4 N 19
00 110 110
«~ d -
- n -
LD (IY+d),n | (IY+d)«<n ole|o|efefef1} 111 101 | 4 H 19
00 110 110
- d4 -
- n -
LD A, (BC) | A+ (BC) o|ef[efe]e|e]00 00t 010 | ! 2 7
LD A, (DE) | A« (DE) o|eflofe|efefo0 011 010 | 1 2 7
LD A, (nn) A «(nn) e|ejelefe|e |00 111 OI0 3 4 13
- n -
- n -
LD (BC), A (BC)+ A e|le|eo|leje|e |00 000 010 1 2 7
LD (DE), A (DE)«+~ A e(eje|e|e|e |00 010 010 1 2 7
LD (nn), A (nn) « A eolejeo|e|e|e |00 110 010 3 4 13
- n -
- n -
LD A,1 Al ol t|1iFF ¢l of 0 f11 101 101 | 2 2 9
01 010 111
LD A,R A+<R e| $|{IFF${ 0] 0|11 101 101 2 2 9
01 011 111
LDLLA 1A ol el el el eo|e|ll 101 101 2 2 9
01 000 111
LDR, A R«<A o|e| oo e|e]|11 101 101 2 2 9
01 001 t11

Notes: 1, r' means any of the registers A, B,C,D,E,H, L

IFF the content of the interrupt enable flip-flop (IFF) is copied into the P/V flag

Flag Notation: e = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,

$ = flag is affected according to the result of the operation.

8-bit load group
Table C.2 Courtesy Zilog, Inc.

106

Programming in Z80 Assembly Language

. ode
Symbolic e Oplode) No- otu | ot
Mnemonic Operation clz|Ms| N[|76 543 210 Bytes Cycles | States | Comments
LD dd, nn dd «~nn o|e|e|e|e|e|00 ad0 001 3 3 10 dd Pair
- n - 00 BC
- n - 01 DE
LD IX, nn 1X ~nn ole|e|eleleill 011 101 4 4 14 10 HL
00 100 001 11 SP
- n -
- n -
LDIY, nn 1Y - nn o|efefefleie]ll 111 101 4 4 14
00 100 001
- n -
- n -
LDHL,(nn) | He(nn+1) | o|e|e]efe|e|00 101 010 3 5 16
L« (nn) - n -
- n -
LD dd, (nn) ddy ~(n+1) | @ e ool ejeill 101 101 4 6 20
ddL—(nn) 01 ddl 011
- o =
n o -
LD IX, (nn) IXy ~(nn+1) | ol el ojel e]ef11 011 101 4 6 20
IXL*(ml) 00 101 010
N
- n -
LD 1Y, (nn) IYy—(nn+l) | ool @lefe|el1] 111 101 4 6 20
1Y) « (an) 00 101 010
- n -
- n =
LD (nn), HL (nn+1) « H o|ele|efe|e|00 100010] 3 S 16
(nn) ~ L - n =
- n -
LD (nn). dd (nn+1)-ddy | ejefelel efel 11 101 101 4 6 20
(rn) —dd; 01 ddo 011
- n -
- n -
LD (nn), IX (nnﬂ)-lxu o(o|e|e|efe| 11 OI1 101]| 4 6 20
(nn) < 1X; 00 100 010
- n -
- n -
LD (nn), 1Y [(n+l) 1Yy | e @l e ef |11 111 101 | 4 6 20
(M)—IYL 00 100 010
- n -
- n -
LD SP. HL SP—HL o|o|efe]efe]11 111001 1 1 6
LD SP, IX SP ~IX o|efefefof el 011 101 2 2 10
11 111 001
LD SP, IY SP~1Y e|o|o|of e elll 111 101 2 2 10
11 111 001 qq Pair
PUSH qq (SP-Zj-»qu olelo|efo|e]|ll qq0 101 1 3 11 00 BC
(SP-1) - qqy 01 DE
PUSH IX (SP-Z)n—lXL o|ofe|e|l o ef11 011 101 2 4 15 10 HL
(SP—l)—IXH 11 100 101 11 AF
PUSH 1Y (SP-) 1Y, | o|ofofof ol of1l 111101 2 4 15
(SP-1) - 1Yy 11 100 101
POP qq qur(SPﬂ) e(e|e|e| o o1l qq0 001 1 3 10
qqy - (SP)
POP IX lXH~‘.SP&l) e(eje|ef o el 1] 011 101 2 4 14
lXL—lSP) 11 100 001
POPIY 1Yy« (SP+1) | o[of o] of @ @f 11 111 101 | 2 4 14
IYL—(SP) 11 100 001

Notes: dd is any of the register pairs BC, DE, HL, SP
qq is any of the register pairs AF, BC, DE, HL
(PAIR)H- (PAIR)L refer to high order and low order eight bits of the register pair respectively.

Eg BC =C,AFy=A

Flag Notation:

© = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
1 flag is affected according to the result of the operation.

16-bit load group

Table

c.3

Courtesy Zilog,

Inc.

Appendix C: Summary of Z80 Instructions 107
Flags Op-Code
No. No. No.
Symbolic l'} of of M of T
Mnemonic Operation clz|v]s H |76 543 210 Bytes Cycles | States Comments
EX DE, HL DE --HL olefe]e]jefe il 101 O11 1 1 4
EX AF, AF’ AF -~ AF” sjefo|ele 00 001 000 1 1 4
FXX (Bj}(:(") ojejefeje 11 011 001 1 1 4 Register bank and
DE M DLI* auxiliary register
H L bank exchange
EX (SP), HL H«— (SP+1) e|o|ofefofe |1l 100 OIl 1 5 19
L ~(sP)
EX (SP), IX IX~~(SP+1) le|ele]eleje|ll 011 101 2 6 23
1Xy =~ (8P 11 100 011
FXA(SPY,TY 1Y (SP+1) feleleiololelil LIl 101 2 6 23
l\'Lw(Sl') 11 100 011
@
LDI (DEY—~(HL) |e|e]1|ef0]|O|ll 101 101 2 4 16 Load (HL) into
DE « DE+1 10100 000 (DE), increment the
pointers and
HL - IL+) decrement the byte
BC - BC-1 counter (BC)
LDIR (DI — L)y efeft|efu]| 0Ll 101 101 2 N 21 IfBC+#0
DE « DI+ 10 110 000 2 4 16 ItBC=0
HL « HL+t
BC ~ BC-1
Repeat until
BC =0
@
Db (DEY - (L)Y ele|tfefOfO |11 101 101 2 4 16
DI - DE-y 10 101 000
HL -- HL-1
BC - BC-)
LDDR DIy e (HLY e|e|([el0] 011 101 101 2 N 21 IfBC#0
DE < DE-1 10 111 000 | 2 4 16 IfBC=0
HL « H1-1
BC — BC-1
Repeat until
BC =0
QIO
CP1 A -{HL} el tlept]| 1|t |t 101 101 2 4 16
HL «~ HL+1 10 100 001
BC « BC-1
o)
CPIR A - (HL) ef e[|t]11 101 101 2 5 21 If BC # 0 and A # (HL)
HL ~ HL+1 10 110 001 2 4 16 IftBC=0o0rA = (HL)
BC - BC-1
Repeat until
A= (HL)or
BC=0
QI
CPD A - (HL) ottty] 4|11 101 101 2 4 16
HL -- HL-1 10 101 001
BC ~ BC-1
Q{0
CPDR A - (HL) ejtjpt]tytf s 11 101 101 2 s 21 1f BC # 0 and A # (HL)
HL «- HL-1 10 111 001 2 4 16 1f BC=0or A =(HL)
BC « BC-1
Repeat untif
A= (HL)or
BC=0
Notes: (D PV flag is 0 if the result of BC-1 = 0, otherwise P/V = 1

@ 7 flagas i A = (HL), otherwise Z = 0,

Ilag Notation:

e = tlag not atfected, 0 = flag reset. 1 = flag set, X = flag is unknown,

1 = tlag is affected according to the result of the operation.

Exchange group and block transfer and search group
Courtesy Zilog, Inc.

Table C.4

108

Programming in Z80 Assembly Language

Flags Op-Code
P No. No. No.
Symbolic / of of M of T
Mnemonic Operation ClZ|IVIS|IN|H}76 543 210 Bytes Cycles States Comments
ADD A, r A—A+r tlelvi]tio]s r 1 1 4 r Reg.
ADD A, n A—A+n t{elvit|ols |11 oD t10 | 2 2 7 gg? g
- ono- 010 D
ADDA,(HL) | A« A+HL) {t{t|Vv]|t|o]|1|10[000 .10 | 1 2 7 ot E
ADD A, (IX+d) A-A+(X+d) |t {t|V[tfols 11 001 101 | 3 s 19 ;g? 'L‘
110 1 A
- d -
ADD A, (IY+d) A=A+(Y+d) |t |t[V]|t{o]s |11 111 101 | 3 s 19
10 [000] 110
- d -
ADC A, s A—-A+s+CY|t[t|V|t{o]|t sisany ol r, n,
SUB AvA- v 1 (HL), (1X+d),

K s H! ! ! - (1Y +d) as shown for
SBC A,s A-A-s-CYIt[t|VIt}1]? ADD instruction
AND s A=A A s Oft|P|t]|0]1
OR s A—A V s ofltlP{s|ofo The indicated bits

- replace the 000 in
XOR s Ac-Aes Oprjegsfoqo the ADD set above
CPs A-s tig vl rje] 0m
INCr re—rt | eltfvit{olsfoo r 00]} 1 I 4
INC (HL) (HL) — (HL)+1|e 1t [Vit]o|t |oo no[ioo] | 1 3 1
INC (IX+d) (IX+d) + eft v t|fo]t f1r 011 10t | 3 6 23
(IX+d)+1 00 110[100]
. d .
INC (1Y+d) (1Y+d) efs|{vittoltfrram 1o | 3 6 23
y+dy+ 1 00 1o [T00)
- d .
DEC m mem-1 el Vit m is any of r, (HL),
. (IX+d), 1Y+d) as

shown for INC
Samc format and
states as INC
Replace 100 with
10 m OP code

Notes: The V symbol in the P/V flag column indicates that the PV flag contains the overtlow of the result of the
operation Similarly the P symbol indicates partty. V= 1 means overflow, V = 0 means not overflow, P = |
means parity of the resuit is even, P = () means panty of the result s odd.

Flag Notation:

e = flag not atfected. 0 = flag reset, | = flag set, X = tlag is unknown.
t = flag is affected according to the resutt of the operation.

8-bit arithmetic and logical group

Table C.5

Courtesy Zilog,

Inc.

Appendix C: Summary of Z80 Instructions

109

Flags Op-Code
P No. No. No.
Symbolic i of of M of T
Mnemonic Operation V]S 76 543 210 | Bytes Cycles | States ;| Comments
DAA Converts acc. P|t 00 100 111 1 1 4 Decimal adjust
content into accumulator
packed BCD
following add
or subtract
with packed
BCD operands
CPL A«A ole 00 101 111 1 1 4 Complement
accumulator
(one's complement)
NEG A-0-A v 11 101 101 | 2 2 8 Negate acc. (two's
01 000 100 complement)
CCF CcY~CY ole 00 111 111 | 1 1 4 Complement carry
flag
SCF CY «~1 ofle 00 110 111 1 1 4 Set carry flag
NOP No operation ofe 00 000 000 1 1 4
HALT CPU halted ofe 01 110 110 | 1 1 4
DI IFF «~ 0 o|e 11 110 011 | 1 1 4
EI IFF ~ 1 ole 11 111 01t 1 1 4
IMO Set interrupt ele 11 101 101 2 2 8
mode 0 01 000 110
M1 Set interrupt ele 11 101 101 2 2 8
mode 1 01 010 110
M2 Set interrupt ofe 11 101 101 2 2 8
mode 2 01 011 110

Notes: IFF indicates the interrupt enable flip-flop

CY indicates the carry flip-flop.

Flag Notation:

4 = flag is affected according to the result of the operation.

o = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,

General purpose arithmetic and CPU control groups
Courtesy Zilog, Inc.

Table C.6

Programming in Z80 Assembly Language

No. No. No.
Symbolic Flags Op-Code of of M of T
Mnemonic Operation C|z P/V S|N|H|76 543 210 Bytes Cycles | States Comments
ADD HL, ss HL «~ HL+ss t{e|e]|e]0 IX]00 ssl 001 1 3 11 £} Reg.
00 BC
ADCHL,ss | HL—HL+ss+CY[t{ 2] V]| ¢ |0 [x]11 101 101 | 2 4 15 ?é gf
01 ss1 010 1 SP
SBC HL, ss HL-HL-ssCY [t|$]V[¢ |1 X]11 101 101 2 4 15
01 ss0 010
ADD IX, pp IX—~1X+pp [t|le|eje]O X1l O11 10} 2 4 1N PP Reg.
00 ppl 001 00 BC
01 DE
10 1X
It SP
ADD 1Y, 1r IY-IY+rr t|ejele |0 (X[1] 111 tOI 2 4 15 " Reg.
00 rrl 001 00 BC
ot DE
10 1Y
tl Sp
INC ss ss —ss + 1 eje|lefele o000 ssO OI1 1 1 6
INC IX IXIX4+1 ele(ejeo|e |e|]] OIl 101 2 2 10
00 100 011
INC 1Y IY —-1Y + 1 elejofofe o]l 11 101 2 2 10
00 100 011
DEC ss ss — ss - | ele|eo|eoje|e|00 ss1 011 [.1 1 6
DEC X IX~1X-1 o|lo|o|efe eIl 01l 101 2 2 10
00 101 O1t
DECI1Y 1Y «1Y -1 ejojefole|e]ll 111 10! 2 2 10
00 101 011

Notes: ss is any of the register pairs BC, DE, HL, SP
pp 1s any of the register pairs BC, DE, IX, SP
1r is any of the register pairs BC, DE, 1Y, SP.

Flag Notation: e = flag not affected, 0 = tlag reset, 1 = flag set, X = flag is unknown,
t = flag is affected according to the result of the operation.

16-bit arithmetic group
Table C.7 Courtesy Zilog, Inc.

Appendix C: Summary of Z80 Instructions

Flags Op-Code
7 No. No. No.
Symbolic / of of M of T
Mnemonic Operation C|Z] V{S|N|H|76 543 210 Bytes Cycles | States Comments
RLCA H e|e|e]|0|0|00 000 111 1 1 4 Rotate left circular
accumulator
RLA - -vo—n. efe|e|0[0}00 010 111 1 1 4 Rotate left
A accumulator
RRCA “7 — 0. e|e|e]0|0O]00 001 111 1 1 4 Rotate right circular
x accumulator
RRA .7 — n-. e|[e|e|0jO]00 011 111 1 1 4 Rotate right
A accumulator
RLC 1 t|PJt}0f0]11 001 O11 2 2 8 Rotate left circular
00 r register r
RLC (HL) ${P|¢|O]O]11 0OL O1F} 2 4 15 T Reg.
0o[000]110 000 B
RLC (IX+d) [—=—.] t|p[+]ofo]1t 011 10| 4 6 23 8‘13(1) g
. (HL), 0Xrd), (1Y) 11 001 011 ol E
- d - 100 H
maa] o mo A
RLC (IY+d) tiP|t|Of0]11 111 101{ 4 6 23
11 001 011
- 4 -
oo{ooo]110
RLm '., -— ol t{P|t|oO}O Instruction format and
m = r. (HL). (1X+d). (1Y+d} states are as Shown
T i for RLC,m. To form
—] ew OP-code replace
RRC m [—4 t[p|tfofo f@ofRLc,m with
™ E(HL). (1Xd), (1Y +d) shown code
RRm = t|P[s]o]0
m = r. (HL) (IX+d). {IY+d)
SLAm [= s|P[s]ojo} [0
m = e (HL). (IX+d). (1Y +d) X
SRAm == t{p|t]o]o
m = e (HL). (1X+d). (1Y+d)
SRLm ool —» o}=[c] tipfslojo| [
m = e (HL). (IX+d). (1Y+d)
RLD AI’ oLy s{P|t]ofo |11 101 101} 2 s 18 Rotate digit left and
L] 01 101 111 right between the
accumulator
[and location (HL).
RRD AIMU tiP{s]0f0 |11 101 101 2 5 18 The content of the
01 100 111 upper half of the
accumulator is
unaffected
Flag Notation: e = tlag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
$ = flag is affected according to the result of the operation.
Rotate and shift group
Table C.8 Courtesy Zilog, Inc.

112 Programming in Z80 Assembly Language

Flags Op-Code
P No. No. No,
Symbolic 1 of of M of T
Mnemonic Openation C|Z| V| S|N|H]76 543 210 | Bytes Cycles | States | Comments
BITb, 1 Zo-Tb ef ¢ XIXjol1]|11 001 01t 2 2 8 ¥ Reg.
01 b r 000 B
BITb, (HL) | Z-THD), of s| x| x{o}1]11 001 011 | 2 3 12 g‘l)(l) CD
01 b 110 ot | E
BIT b, (IX+d) Z-—(lX+d)b et X|X]0]1]11 011 101 4 5 20 100 H
11 001 011 101 L
111 A
- 4 -
o1 b 110 b Bit Tested
BIT b, (IY+d) Z~-(17'h‘l)b el tiX|X|O[1]11 111 101 4 s 20 000 0
011 001 1
h oo 010 2
- 4 - 011 3
01 b 110 100 4
101 5
110 6
1 7
SETb, r rb«l e|ejole|e}je|1l 001 O11 2 2 8
o -
SETb, (HL) (HL)b'-l eoje|lefele|e]|11 001 O11 2 4 15
[i] v 110
SET b, (IX+d) (IX+d)y, - 1 eleje|e|o]e]lll 011 101 4 6 23
11 001 o1
- d -
b 110
SETb, (IY+d) | (IY+d), ~1 |ejelelele|efil 111 101 | 4 6 23
11 001 Oil
- d -
1] b 110
RESb, m 5 -0 To form new OP-
m=r, (HL), code replace [T1]
(UX+d) of SET b,m with
ay+dy [10]. Flags and time
states for SET
instruction

Notes: The notation 5 indicates bit b (0 to 7) or location s.

Flag Notation: e = flag not affected, 0 = flag reset, 1 = flag set. X = flag is unknown,
$ = flag is affected according to the result of the operation.

Bit set, reset and test group
Table C.9 Courtesy Zilog, Inc.

Appendix C: Summary of Z80 Instructions 113

Flags Qp-Code
P No. No. No.
Symbolic ! of of M of T
Mnemonic Operation C[Z] V|S|N|H| 76 543 210| Bytes | Cycles | States | Comments
JP nn PC «~nn e|lejeo|e|e]ll 000 011 3 3 10
- n -
- n - cc Condition
JP cc, nn If conditioncc| e| e le e |e|e@ |11 cc 010 3 3 10 NZnon zero
is true PC «nn, - n - 001 | Z zero
otherwise N 010 | NCnon carry
continue D 011 | C carry
100 | PO parity odd
101 | PE parity even
110 | P sign positive
JRe PC—PC+t+e e|e|ojo|e|e|00 011 000 2 3 12 111 | M sign negative
- e-2 -~
JRC,e IfC=0, eo|le|eje|e|e]|00 111 000 2 2 7 if condition not met
continue
- e=2 —
IfC=1, 2 3 12 If condition is met
PC —~ PC+e
JRNC, e Ifc=1, o|le|lo|e]o}efl00 110 000 2 2 7 1f condition not met
continue 2 -
— e=
If C=0, 2 3 12 if condition i met
PC+-PC+e
JRZ,e IfZ=0 o|le|e|e|e]e|00 101 000 2 2 7 1t condition not met
continue
- e=2 -
Ifz=1, 2 3 12 1f condition 1s met
PC~PC+e
JRNZ, e IfzZ=1, o|e|e]e|e]|e]00 100 000 2 2 7 If condition not me¢
continue - e=2 —
IfZ=0, 2 3 12 If condition met
PC—PC+e
JP (HL) PC ~ HL ejlejejejelefll 101 001 1 1 4
P (IX) PC «~1X e|le|ejejeje| il 011 101 2 2 8
11 101 001
JP (1Y) PC 1Y o|le|o|o|e]e] 11 111 101 2 2 8
11 101 001
DINZ,e B+~ B-1 eolelo|ele|e|00 010 000 2 2 8 1B=0
IfB=0,
N - e-2 -
continue
IfB+0, 2 3 13 IFB=#0
PC+—PC+e

Notes: e represents the extension in the relative addressing mode.
e is a signed two’s complement number in the range <-126, 129>
e-2 in the op-code provides an effective address of pc +e as PC is
incremented by 2 prior to the addition of e.
Flag Notation: e = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
$ = flag is affected according to the result of the operation.

Jump group
Table C.10 Courtesy Zilog, Inc.

114

Programming in Z80 Assembly Language

Flags Op-Code
T T No. No. No.
Symbolic |7 of of M of T
Mnemonic Operation C{Z|V|S|N|H|76 543 210| Bytes Cycles | States | Comments
CALL nn (SP-1)«-PCpy eleje|ole|e]il 001 101 3 5 17
(SP-2)~PCy - n =
PCenn - n -
CALL cc,nn If condition efejlojolefe |1l cc 100 3 3 10 If cc is false
cc is false
. - n o
continue, i
otherwise - n - 3 5 17 If ccis true
same as
CALL nn
RET PC, ~(SP) ele|ele|e]|e}1l 001 001 1 3 10
PC—(SP+1)
RET cc If condition eflelejolelofll cc 000 1 1 5 If cc is false
cc is false
tinue,
zt‘?em” 1 3 1 If cc is true
same as [Condition
RET 000 | NZ non zero
001 z zero
010| NC non carry
RETI Returnfrom | e|ele|ejele |11 101 101]| 2 4 14 011 | ¢ carry
interrupt 01 001 101 100| PO parity odd
101 | PE parity even
RETN 'l‘loe't'urn;‘nafi:g{e e|lo|lejefe]e (l)l 101 lg} 2 4 14 1mo| p sign positive
interrupt 1000 1 1| M sign negative
RST p (SP~1)~—PCH eleloe|e|ojeofll t 111 1 3 11
(SP-2)«PCy
PCy -0
PC; P
t P
000 | OCH
001 | 08H
010 | 10H
011 | 18H
100 | 20H
101 | 28H
110 | 30H
111] 38H
Flag Notation: e = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown

t = flag is affected acgording to the result of the operation.

Call and return group
Table C.11

Courtesy Zilog, Inc.

Appendix C: Summary of Z80 Instructions 115

Flags Op-Code
T No. No. No.
Symbolic] of of M of T
Mnemonic Operation C|Z| V| SIN|H|76 543 210 Bytes Cycles | States Comments
IN A, (n) A+~ (n) ele|eo|e]efe|i] 011011 2 3 1 ntoAg~ A,
- n = Acc to A8 ~ A,s
IN1, (O 1< (0) el ¢|P|s|Oft]|11 101 101 | 2 3 12 CtoA,~A,
if r =110 only 01 r 000 BtoAg~A
the flags will
be affected
INI (HL) « (O) e| t] X[X|1]X]11 101 101 2 4 16 Cto A0~A7
B+~B-1 10 100 010 BtoAS~A15
HL ~HL +1
INIR {HL) «~ (C) o| 1| X{X|1]|X]|11 101 toOt 2 5 21 Cto A ~A7
(IfB % 0) 0
B~B-1 10 110 010 BtoAs"-AlS
HL —~HL+1 2 4 16
Repeat until (fB=0)
B=0
IND (HL) - (C) o] | X X]1|X]11 101 101 2 4 16 Cto A0~A7
B+B-1 10 101 olo BmAs'-AlS
HL «~HL-1
INDR (HL) < (O) of 1] X[Xj1{X]11 101 101 2 5 21 CtoA, ~ A
0
B+B-1 10 111 010 afB+0) BtoAg~Afg
:L”HLﬁl 2 4 16
epeat until =
iy (If B =0)
OUT (n), A| (n)—A e|loje|e]|efe]li 010 011 2 3 11 ntoA0~A
—n — AcctoA8~A15
OUT(O), r (€)1 ele|eole]efejll 101 101 2 3 12 Cto A0~A1
@ 01 r 001 B(0A8~A15
OUTI (C) ~ (HL) of t| X| X|1}X[11 101 101 2 4 16 Cto A0-A7
B+~B-1 10 100 011 BluA8~AI5
HL ~HL +1
OTIR (C) ~ (HL) e| 1} X|X]|1]X]|11 101 101 2 5 21 CtoA, ~ A7
If B+0)
B+B-1 10 110 011 (BloAy ~ A
HL ~ HL +-1 2 4 16
Re=peat until (If B=0)
OouTD (C) ~ (HL) o 1 X X|1{X]|11 101 101 2 4 16 Cto A0~A
B«~B-1 10 101 011 BIQAB‘A]S
HL «HL-1
OTDR (C) + (HL) o 1| X| X]1}§X]11 101 101 2 5 21 CtoA, ~ A
BeB-1 10 111 o1 (rs+0 BtoAg~ A
iL“HL’; 2 4 16
epeat unt; IfB=
B=0 are=0)

Notes: @ If the result of B - 1 is zero the Z flag is set, otherwise it is reset .

Flag Notation: e = flag not affected, O = flag reset, 1 = flag set, X = flag is unknown,
t = flag is affected according to the result of the operation.

Input and output group
Table C.12 Courtesy Zilog, Inc.

Appendix D: Display and Keyboard
Character Codes

The ASCII code character set is shown below

b7 —| [0 |o o lo i i Lo
b6 —| | 0| 0 t{1|o]o I
b5 —» o 1 o 1| o 1 o I
b|b|b|b[OL
aala|i |4l ol | 2]|3(4a|5]|]|6]|7
oW
O|o|o|o] O NUL|[DLE| [SP| O @ | P p
O[o|0] 1] | SOH| DC! P11]A|aQ o | q
ololilol 2 | |stx|oce] | " |2 | B |R b | r
olo[i|t] 3 | [eTx|oc3| [NE| 3| c|s c | s
O[1|0|0]| 4 | |eoT|oca| | $ | 4 | D | T d | ¢
Ol1|0]l{ 5 ENQ[NAK| [% | 5 | E | U e |u
O|I|I|O] 6 ACK |SYN &|6 | F |V f v
oft|t|1f 7| |eeclete| | " | 7|6 |w g | w
110[0|0] 8 BS |CAN (18 |H]|X h | x
110]10]1| 9 HT | EM Y191 | Y i |y
11O 10| 1O LF [suB| | % J |z il z
F{O{1{H] 1N VTiesc| |+ | 3 | K| C k| {
I{1]0]O] I2 FF | FS y [< LN by
LJijoj1[13] | cries| [—|=|mM |3 m| }
111]1]0] 14 SO | RS > N[A n |~
DU si | us /1?0 — o |DEL

For example, the ASCII code for the character K is binary
1001011, hexadecimal 4B and decimal 75.

116

Appendix E: Expression Operators

The following table lists these operators which may be used in
The list is in order of precedence of

an operand expression.

evaluation.

OPERATOR

+

+NOT. or \

.RES.
%%

.MOD.

. SHR.
.SHL.

+

.AND. o
.OR. or
.XOR.
.EQ. or
.GT. or
.LT. or
.UGT.
.ULT.

The Result
during eval

r &

~

ANV 0

FUNCTION

Unary plus

Unary minus

Logical NOT

Result
Exponentiation
Multiplication
Division

Modulo

Logical shift right
Logical shift left
Addition

Subtraction

Logical AND

Logical OR

Logical XOR

Equals

Greater than (signed)
Less than (signed)
Unsigned greater than
Unsigned less than

operator (.RES.) causes overflow to be suppressed

uation,

SO

that an assembly error does not

from an overflow condition.

The Modulo operator (.MOD.) is defined as

.MOD.B = A-B*(A/B)

where the A/B is an integer division.

The Shift
arguments.

operators

result

(.SHR. and .SHL.) are followed by two
The first argument is shifted by the number of bits
specified by the second argument.

The five comparison operators (.EQ., .GT., .LT., .UGT. and .ULT.)
evaluate to logical TRUE (all ones) if the comparison
and a logical FALSE (zero) otherwise.

117

is

true,

Index

ADC 13.2, 13.4

ADD 8-bit 2.2, 2.3
16-bit 13.2, 13.3

AND 11.1, 11.2

Auxiliary registers 16.2

BCD arithmetic 15.2
instructions 15.3
numbers 15.1

Binary numbers A.l, A.2

BIT 9.1

Block search instructions 14,2

Block transfer instructions 14,1

Bytes A.7

CALL 3.2, 7.5, 8.5, 12.5
Carry 8.1

flag 8.2
Character codes 3.3, 4.3, D
Comments 2.8
COND 11.5
Conditional jump 5.2

Conditional pseudo operations 11.5
Conversion - numbers A.3 to A.6, B

CP 5.3

CPD 14,2
CPDIR 14,2
CPDR 14,2
CPI 14.2
CPL 11.2

DAA 15.3

DEC 8-bit 2.5, 6.2
16-bit 7.4, 13.3

DEFB 2.8

DEFL 11.5

DEFM 7.3

DEFS 9.3

DEFW 13.1

Division 10.4

DINZ 6,1

118

END 3.4

ENDC 11.5

EQU 4.4

Exchange instructions
registers 16.2
stack 6.4

Expressions 9.5, E

Extended addressing 2.7

Flag register 5.1

HALT 2.8
Hexadecimal numbers A.l, A,2

Immediate addressing 2.7
extended 7.2
Implied addressing 7.2
INC 8-bit 2.5
16~-bit 7.4, 13.3
Index registers 9.4, 13.3
Input from keyboard 4.2
instructions 16.3
numbers 6.2
Interrupt instructions 16.4

JP conditional 5.2, 8.2, 8.4,
12.5
unconditional 4.1
Jump tables 9.6

Labels 2.8

1D 2.1, 2.4

LDD 14.1

LDDR 14.1

LDI 14,1

LDIR 14,1

Logical operations 1l.1

Loops 4.1, 5.4, 6.1, 7.1, 13.3

Macros 11.4
Masking 11.3

Memory 1.3

Modular programming 4.2
Multiple byte arithmetic 13.4
Multiplication 10.4

NEG 2.6

Nibble 15.1

NOP 16.1

NOT operation 11.1

OR 11.1, 11.2
ORG 3.4
‘Output to display 3.3
of text 7.4
instructions 16.3
Overflow 8.3
flag 8.4

Packing 12.3
Parity 12.4
flag 12,5
POP 6.4
Pseudo operations 3.4,11.5
PUSH 6.4

Register addressing 7.2
indirect 7.2
Registers 1.2

Index

Relative addressing 7.2
RES 9.2
RET 3.2, 7.5, 8.5, 12.5
RLD 15.4

Rotate instructions 12.1,
RRD 15.4

SBC 13,2, 13.4

SET 9.2

Sign flag 5.1

Signed numbers A.8

SLA 10.3

SRA 10.2

SRL 10.1

Stack organisation 6.3

instructions 6.4

SUB 8-bit 2.2, 2.3
16-bit 13.2

Subroutine concepts 3.1

mechanism 7.5

Unconditional jumps 4.1
Unpacking 12.3

XOR 11,1, 11,2

Zero flag 5.1

119

12.2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020005800200028003100300029000d000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b00200050004400460020005000720069006e0074002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200061006e0064002000500069007400530074006f00700020005300650072007600650072002000200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

