
Computer Science & Engineering

The predominant language used in embedded microprocessors, assembly language lets you
write programs that are typically faster and more compact than programs written in a high-
level language and provide greater control over the program applications. Focusing on the
languages used in X86 microprocessors, X86 Assembly Language and C Fundamentals
explains how to write programs in the X86 assembly language, the C programming
language, and X86 assembly language modules embedded in a C program. A wealth of
program design examples, including the complete code and outputs, help you grasp the
concepts more easily. Where needed, the book also details the theory behind the design.

Assembly language programming requires knowledge of number representations, as well
as the architecture of the computer on which the language is being used. After covering
the binary, octal, decimal, and hexadecimal number systems, the book presents the general
architecture of the X86 microprocessor, individual addressing modes, stack operations,
procedures, arrays, macros, and input/output operations. It highlights the most commonly
used X86 assembly language instructions, including data transfer, branching and looping,
logic, shift and rotate, and string instructions, as well as fixed-point, binary-coded decimal
(BCD), and floating-point arithmetic instructions.

Written for students in computer science and electrical, computer, and software engineering,
the book assumes a basic background in C programming, digital logic design, and computer
architecture. Designed as a tutorial, this comprehensive and self-contained text offers a solid
foundation in assembly language for anyone working with the design of digital hardware.

ISBN: 978-1-4665-6824-2

9 781466 568242

90000

X
8
6

 A
ssem

b
ly Lan

g
u
ag

e
an

d
 C

 Fu
n
d
am

en
tals

C
avan

ag
h

X86 Assembly
 Language

and
C Fundamentals

Joseph Cavanagh

w w w . c r c p r e s s . c o m

K16377
6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.taylorandfrancisgroup.com

K16377 cvr mech.indd 1 11/15/12 10:15 AM

X86 Assembly
Language

and
C Fundamentals

This page intentionally left blankThis page intentionally left blank

X86 Assembly
Language

and
C Fundamentals

Joseph Cavanagh
Santa Clara University, Santa Clara, California

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2013 by © 2013 by © 2013 by © 2013 by © 2013 by © 2013 by © 2013 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20130109

International Standard Book Number-13: 978-1-4665-6825-9 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

By the same author:

COMPUTER ARITHMETIC and Verilog HDL Fundamentals

DIGITAL DESIGN and Verilog HDL Fundamentals

VERILOG HDL: Digital Design and Modeling

SEQUENTIAL LOGIC: Analysis and Synthesis

DIGITAL COMPUTER ARITHMETIC: Design and Implementation

THE COMPUTER CONSPIRACY
A novel

This page intentionally left blankThis page intentionally left blank

To Dr. Daniel W. Lewis
Professor, Computer Engineering Department, Santa Clara University,
for his many years of continued encouragement, support, and friendship

This page intentionally left blankThis page intentionally left blank

CONTENTS

Preface ... xvii

Chapter 1 Number Systems and Number Representations 1

1.1 Number Systems ... 1
1.1.1 Binary Number System .. 4
1.1.2 Octal Number System .. 6
1.1.3 Decimal Number System .. 8
1.1.4 Hexadecimal Number System 9
1.1.5 Arithmetic Operations .. 12
1.1.6 Conversion between Radices 20

1.2 Number Representations ... 26
1.2.1 Sign Magnitude .. 26
1.2.2 Diminished-Radix Complement 28
1.2.3 Radix Complement ... 31
1.2.4 Arithmetic Operations .. 32

1.3 Problems ... 47

Chapter 2 X86 Processor Architecture .. 51

2.1 General Architecture ... 51
2.2 Arithmetic and Logic Unit .. 52
2.3 Control Unit .. 54
2.4 Memory Unit .. 55

2.4.1 Main Memory .. 55
2.4.2 Hamming Code .. 56
2.4.3 Cache Memory ... 61

2.5 Input/Output .. 65
2.5.1 Tape Drives .. 65
2.5.2 Disk Drives ... 66

2.6 Register Set ... 68
2.6.1 General-Purpose Registers 70
2.6.2 Segment Registers .. 71
2.6.3 EFLAGS Register .. 72
2.6.4 Instruction Pointer .. 74
2.6.5 Floating-Point Registers ... 75

2.7 Translation Lookaside Buffer.. 80
2.8 The Assembler .. 81

2.8.1 The Assembly Process 82
2.9 Problems ... 83

x Contents

Chapter 3 Addressing Modes .. 87

3.1 Register Addressing .. 88
3.2 Immediate Addressing .. 88
3.3 Direct Memory Addressing .. 89
3.4 Base (Register Indirect) Memory Addressing 89
3.5 Base or Index Plus Displacement Addressing 90
3.6 Base and Index Plus Displacement Addressing 92
3.7 Scale Factor .. 94
3.8 Segment Override Prefix .. 96
3.9 X86 Operation Modes ... 96

3.9.1 Protected Mode .. 96
3.9.2 Real Mode .. 97

3.10 Problems ... 97

Chapter 4 C Programming Fundamentals 101

4.1 Structure of a C Program .. 101
4.2 Variables and Constants ... 104

4.2.1 Variables .. 104
4.2.2 Constants .. 107

4.3 Input and Output ... 113
4.3.1 The Printf () Function .. 113
4.3.2 The Scanf () Function .. 117

4.4 Operators .. 120
4.4.1 Arithmetic Operators .. 121
4.4.2 Relational Operators ... 132
4.4.3 The If Statement ... 135
4.4.4 The Else Statement ... 139
4.4.5 Logical Operators ... 145
4.4.6 Conditional Operator .. 148
4.4.7 Increment and Decrement Operators 151
4.4.8 Bitwise Operators ... 156

4.5 While Loop ... 160
4.6 For Loop ... 163
4.7 Additional C Constructs ... 166

4.7.1 Arrays ... 167
4.7.2 Strings .. 172
4.7.3 Pointers ... 179
4.7.4 Functions .. 180

4.8 Problems ... 183

Contents xi

Chapter 5 Data Transfer Instructions ... 193

5.1 Data Types .. 193
5.1.1 Signed Binary Integers ... 193
5.1.2 Unsigned Binary Integers 194
5.1.3 Unpacked and Packed BCD Integers 195
5.1.4 Floating-Point Numbers ... 196

5.2 Move Instructions ... 197
5.2.1 General Move Instructions 198
5.2.2 Move with Sign/Zero Extension 203
5.2.3 Conditional Move ... 204

5.3 Load Effective Address .. 206
5.4 Load Segment Registers ... 207
5.5 Exchange Instructions .. 209

5.5.1 Exchange .. 209
5.5.2 Byte Swap .. 213
5.5.3 Exchange and Add .. 215
5.5.4 Compare and Exchange .. 217

5.6 Translate ... 220
5.7 Conversion Instructions .. 225
5.8 Problems ... 229

Chapter 6 Branching and Looping Instructions 231

6.1 Branching Instructions .. 232
6.1.1 Unconditional Jump Instruction 232
6.1.2 Compare Instruction ... 237
6.1.3 Conditional Jump Instructions 241

6.2 Looping Instructions ... 251
6.2.1 Unconditional Loop .. 251
6.2.2 Conditional Loops .. 254
6.2.3 Implementing while Loops 256
6.2.4 Implementing for Loops .. 260

6.3 Problems ... 266

Chapter 7 Stack Operations ... 271

7.1 Stack Structure .. 272
7.2 Additional Push Instructions ... 280
7.3 Additional Pop Instructions .. 281
7.4 Problems ... 282

xii Contents

Chapter 8 Logical, Bit, Shift, and Rotate Instructions 285

8.1 Logical AND Instruction .. 285
8.2 Logical Inclusive-OR Instruction ... 291
8.3 Logical Exclusive-OR Instruction .. 294
8.4 Logical NOT Instruction — 1s Complement 298
8.5 NEG Instruction — 2s Complement 299
8.6 TEST and Byte Set on Condition Instructions 304

8.6.1 TEST Instruction .. 304
8.6.2 Set Byte on Condition (SETcc) Instruction 304

8.7 Bit Test Instructions .. 305
8.7.1 Bit Test (BT) Instruction .. 305
8.7.2 Bit Test and Set (BTS) Instruction 306
8.7.3 Bit Test and Reset (BTR) Instruction 306
8.7.4 Bit Test and Complement (BTC) Instruction 307

8.8 Bit Scan Instructions ... 314
8.8.1 Bit Scan Forward (BSF) Instruction 314
8.8.2 Bit Scan Reverse (BSR) Instruction 317

8.9 Shift Instructions ... 320
8.9.1 Shift Arithmetic Left (SAL) Instruction 320
8.9.2 Shift Logical Left (SHL) Instruction 323
8.9.3 Shift Arithmetic Right (SAR) Instruction 324
8.9.4 Shift Logical Right (SHR) Instruction 326
8.9.5 Shift Left Double (SHLD) Instruction 327
8.9.6 Shift Right Double (SHRD) Instruction 331

8.10 Rotate Instructions .. 333
8.10.1 Rotate Left (ROL) Instruction 334
8.10.2 Rotate through Carry Left (RCL) Instruction 335
8.10.3 Rotate Right (ROR) Instruction 339
8.10.4 Rotate through Carry Right (RCR) Instruction 339

8.11 Problems ... 343

Chapter 9 Fixed-Point Arithmetic Instructions 347

9.1 Addition .. 347
9.1.1 Add (ADD) Instruction .. 349
9.1.2 Add with Carry (ADC) Instruction 352
9.1.3 Increment by 1 (INC) Instruction 358

9.2 Subtraction .. 363
9.2.1 Subtract (SUB) Instruction 366
9.2.2 Integer Subtraction with Borrow (SBB) Instruction 369
9.2.3 Decrement by 1 (DEC) Instruction 370
9.2.4 Two’s Complement Negation (NEG) Instruction .. 377

9.3 Multiplication ... 377
9.3.1 Unsigned Multiply (MUL) Instruction 378

Contents xiii

9.3.2 Signed Multiply (IMUL) Instruction 382
9.4 Division .. 389

9.4.1 Unsigned Divide (DIV) Instruction 391
9.4.2 Signed Divide (IDIV) Instruction 394

9.5 Problems ... 398

Chapter 10 Binary-Coded Decimal Arithmetic Instructions 409

10.1 ASCII Adjust after Addition (AAA) Instruction 411
10.2 Decimal Adjust AL after Addition (DAA) Instruction 414
10.3 ASCII Adjust AL after Subtraction (AAS) Instruction 421
10.4 Decimal Adjust AL after Subtraction (DAS) Instruction 424
10.5 ASCII Adjust AX after Multiplication (AAM) Instruction ... 427
10.6 ASCII Adjust AX before Division (AAD) Instruction 435
10.7 Problems ... 440

Chapter 11 Floating-Point Arithmetic Instructions 445

11.1 Floating-Point Fundamentals .. 446
11.1.1 Rounding Methods ... 449

11.2 Load Data Instructions .. 451
11.2.1 Load Floating-Point Value (FLD) Instructions 451
11.2.2 Load Constant Instructions 453
11.2.3 Load X87 FPU Control Word (FLDCW)

 Instruction .. 454
11.2.4 Load X87 FPU Environment (FLDENV)

Instruction .. 455
11.2.5 Load Integer (FILD) Instruction 455
11.2.6 Load Binary-Coded Decimal (FBLD) Instruction .. 455

11.3 Store Data Instructions ... 456
11.3.1 Store BCD Integer and Pop (FBSTP) Instruction ... 456
11.3.2 Store Integer (FIST) Instruction 456
11.3.3 Store Integer and Pop (FISTP) Instruction 456
11.3.4 Store Integer with Truncation and Pop (FISTTP)

Instruction .. 457
11.3.5 Store Floating-Point Value (FST) Instruction 459
11.3.6 Store Floating-Point Value and Pop (FSTP)

Instruction .. 461
11.3.7 Store X87 FPU Control Word (FSTCW)

Instruction .. 461
11.3.8 Store X87 FPU Environment (FSTENV)

Instruction .. 462
11.3.9 Store X87 FPU Status Word (FSTSW)

Instruction .. 462

xiv Contents

11.4 Addition Instructions .. 463
11.4.1 Overflow and Underflow .. 465
11.4.2 Add Instructions ... 466

11.5 Subtraction Instructions .. 469
11.5.1 Numerical Examples .. 470
11.5.2 Subtract Instructions ... 472

11.6 Multiplication Instructions ... 478
11.6.1 Double Bias .. 478
11.6.2 Numerical Examples .. 479
11.6.3 Multiply Instructions .. 481

11.7 Division Instructions ... 486
11.7.1 Zero Bias .. 487
11.7.2 Numerical Example .. 489
11.7.3 Divide Instructions ... 492

11.8 Compare Instructions .. 497
11.8.1 Compare Floating-Point Values 497
11.8.2 Compare Floating-Point Values and Set EFLAGS 499
11.8.3 Compare Integer ... 501
11.8.4 Test ... 501
11.8.5 Unordered Compare Floating-Point Values 501

11.9 Trigonometric Instructions ... 503
11.9.1 Cosine ... 503
11.9.2 Partial Arctangent ... 504
11.9.3 Partial Tangent ... 506
11.9.4 Sine ... 507
11.9.5 Sine and Cosine .. 509

11.10 Additional Instructions ... 515
11.10.1 Absolute Value ... 515
11.10.2 Change Sign ... 516
11.10.3 Decrement Stack-Top Pointer 516
11.10.4 Free Floating-Point Register 516
11.10.5 Increment Stack-Top Pointer 517
11.10.6 Partial Remainder ... 517
11.10.7 Round to Integer ... 517
11.10.8 Square Root .. 518
11.10.9 Exchange Register Contents 519

11.11 Problems ... 522

Chapter 12 Procedures .. 529

12.1 Call a Procedure .. 530
12.2 Return from a Procedure ... 531
12.3 Passing Parameters to a Procedure ... 531
12.4 Problems ... 540

Contents xv

Chapter 13 String Instructions ... 543

13.1 Repeat Prefixes ... 544
13.1.1 REP Prefix .. 545
13.1.2 REPE / REPZ Prefix ... 546
13.1.3 REPNE / REPNZ Prefix ... 547

13.2 Move String Instructions .. 549
13.2.1 Move Data from String to String

(Explicit Operands) Instructions 550
13.2.2 Move Data from String to String

(No Operands) Instructions 551
13.3 Load String Instructions ... 554

13.3.1 Load String (Explicit Operands) Instructions 555
13.3.2 Load String (No Operands) Instructions 555

13.4 Store String Instructions ... 558
13.4.1 Store String (Explicit Operands) Instructions 558
13.4.2 Store String (No Operands) Instructions 558

13.5 Compare Strings Instructions ... 560
13.5.1 Compare Strings (Explicit Operands) Instructions.. 561
13.5.2 Compare Strings (No Operands) Instructions 561

13.6 Scan String Instructions ... 564
13.6.1 Scan String (Explicit Operands) Instructions 564
13.6.2 Scan String (No Operands) Instructions 565

13.7 Problems ... 566

Chapter 14 Arrays .. 575

14.1 One-Dimensional Arrays .. 575
14.1.1 One-Dimensional Arrays in C 582

14.2 Multidimensional Arrays .. 586
14.3 Problems ... 590

Chapter 15 Macros ... 593

15.1 Macro Definitions ... 593
15.2 Macro Examples ... 597
15.3 Problems ... 614

Chapter 16 Interrupts and Input/Output Operations 617

16.1 Interrupts ... 617
16.2 Direct Memory Access ... 619

xvi Contents

16.3 Memory-Mapped I/O .. 622
16.4 In/Out Instructions .. 623

16.4.1 Register I/O IN Instructions 624
16.4.2 Register I/O OUT Instructions 625
16.4.3 String I/O IN Instructions 625
16.4.4 String I/O OUT Instructions 627

16.5 Problems ... 628

Chapter 17 Additional Programming Examples 629

17.1 Programming Examples ... 629
17.2 Problems ... 677

Appendix A ASCII Character Codes 681

Appendix B Answers to Select Problems 683

 Chapter 1 Number Systems and Number Representations 683
 Chapter 2 X86 Processor Architecture .. 685
 Chapter 3 Addressing Modes .. 686
 Chapter 4 C Programming Fundamentals ... 687
 Chapter 5 Data Transfer Instructions .. 693
 Chapter 6 Branching and Looping Instructions 698
 Chapter 7 Stack Operations ... 699
 Chapter 8 Logical, Bit, Shift, and Rotate Instructions 702
 Chapter 9 Fixed-Point Arithmetic Instructions 709

 Chapter 10 Binary-Coded Decimal Arithmetic Instructions 723
 Chapter 11 Floating-Point Arithmetic Instructions 735
 Chapter 12 Procedures .. 747
 Chapter 13 String Instructions ... 751
 Chapter 14 Arrays ... 755
 Chapter 15 Macros .. 759
 Chapter 16 Interrupts and Input/Output Operations 768
 Chapter 17 Additional Programming Examples 769

Index ... 781

xvii

PREF

ACE

Although assembly language is not as prevalent as a high-level language, such as C

or an object-oriented language like C++, it is the predominant language used in
embedded microprocessors. A course in a high-level language, such as C, usually
precedes a course in assembly language.

Assembly language programming requires a knowledge of number representa-
tions, such as fixed-point, decimal, and floating-point; also digital logic, registers,
and stacks. In order to thoroughly understand assembly language, it is necessary to
be familiar with the architecture of the computer on which the language is being
used. For the X86 assembly language, this implies the Intel and Intel-like micropro-
cessors. Programs written in assembly language are usually faster and more compact
than programs written in a high-level language and provide greater control over the
program application. Assembly language is

machine dependent

; that is, it is used
only with a specific type of processor. A high-level language, however, is usually

machine independent

; that is, it can be used with any processor.
Assembly language programs use an

assembler

 to convert the assembly lan-
guage code to the machine language of 1s and 0s. This is in contrast to high-level
languages which use compilers to accomplish the transformation.

Assembly languages consist of mnemonic codes, which are similar to English
words, making the program easy to read. For example, the MOV instruction moves
data from a source location to a destination location; the XCHG instruction
exchanges the contents of a source location and a destination location; and the logi-
cal AND instruction performs the bitwise AND operation of two operands.

The programs in this book are written using X86 assembly language only, the C
programming language only, or by embedding an in-line assembly language module
in a C program by using the

_asm

 command. The assembly language code immedi-
ately follows the

_asm

 command and is bracketed by left and right braces, as shown
below.

#include "stdafx.h"

int main (void)

{

define variables

_asm

switch to assembly language
{

assembly language code goes here
}

print results

return

 0;
}

xviii

 Preface

Assembly languages also have input/output (I/O) instructions to access I/O

devices on the computer. Input/output instructions are usually not available for high-
level languages. Also, assembly languages can access the stack, general-purpose
registers, base pointer registers, segment registers, and execute PUSH and POP oper-
ations.

The book presents the binary, octal, decimal, and hexadecimal number systems,
as well as the basic X86 processor architecture. The architecture includes the gen-
eral-purpose registers, the segment registers, the flags register, the instruction
pointer, and the floating-point registers. The following topics are also presented: dif-
ferent addressing modes, data transfer instructions, branching and looping opera-
tions, stack operations, logic, shift, and rotate instructions. Computer arithmetic
topics are presented in detail, including fixed-point, binary-coded decimal, and float-
ing-point instructions. There are additional chapters on procedures, string opera-
tions, arrays, macros, and input/output operations. The fundamentals of C
programming are covered in a separate chapter.

The book is intended to be tutorial, and as such, is comprehensive and self con-
tained. All program examples are carried through to completion — nothing is left
unfinished or partially designed. Also, all programs provide the outputs that result
from program execution. Each chapter includes numerous problems of varying com-
plexity to be designed by the reader.

Chapter

 1

 covers the number systems of different radices, such as binary, octal,
binary-coded octal, decimal, binary-coded decimal, hexadecimal, and binary-coded
hexadecimal. The chapter also presents the number representations of sign magni-
tude, diminished-radix complement, and radix complement.

Chapter

 2

 presents the generic architecture of processors and how the architec-
ture corresponds more appropriately to the X86 architecture execution environment,
including the different sets of registers. The chapter also covers the arithmetic and
logic unit (ALU), the control unit, and memory, including main memory and cache
memory. Error detection and correction is also discussed using the Hamming code
developed by Richard W. Hamming. A brief introduction to tape drives and disk
drives is also presented. The X86 register set is covered, which includes the general-
purpose registers (GPRs), the segment registers, the EFLAGS register containing
status flags, system flags, and a control flag. Other registers include the instruction
pointer and the floating-point registers. The translation lookaside buffer (TLB) and
the assembler are also briefly discussed.

Chapter

 3

 presents the various addressing modes of the X86 assembly language.
The instruction set provides various methods to address operands. The main meth-
ods are: register, immediate, direct, register indirect, base, index, and base combined
with index. A displacement may also be present. These and other addressing meth-
ods are presented in this chapter together with examples. The processor selects the
applicable default segment as a function of the instruction: instruction fetching
assumes the code segment; accessing data in main memory references the data seg-
ment; and instructions that pertain to the stack reference the stack segment. How-
ever, a

segment override prefix

 can be used to change the default data segment to
another segment; that is, to explicitly specify any segment register to be used as the
current segment.

Preface

xix

Chapter

 4

 presents a brief introduction to the C programming language, which
will be used in most chapters — typically to contain an embedded assembly lan-
guage module. The main purpose of this chapter is to provide sufficient information
regarding C programming in order to demonstrate how a C program can be linked to
an assembly language program. The various constants and variables of the C lan-
guage are presented, plus the input/output functions. The following operators are
introduced: arithmetic, relational,

if

 and

else

 statements, and the logical operators of
AND, OR, and NOT. Also included are the conditional operator, the increment and
decrement operators, and the bitwise operators. There are two looping statements.
The

while

 loop executes a statement or block of statements as long as a test expres-
sion is true (nonzero). The second looping statement is the

for

 loop. The

for

 loop
repeats a statement or block of statements a specific number of times. Arrays and
strings are also covered in this chapter.

Chapter

 5

 presents the basic data transfer instructions as they apply to the X86
processors. Other data transfer instructions, such as instructions that pertain to stack
operations and string operations, are presented in later chapters. This chapter also con-
tains the various data types used in the X86 processors, which include signed binary
integers, unsigned binary integers, unpacked binary-coded decimal (BCD) integers,
packed BCD integers, and floating-point numbers.

Some of the basic move instructions involving data transfer are also presented.
These include register-to-register, immediate-data-to-register, immediate-data-to-
memory, memory-to-register, and register-to-memory. This chapter also covers
moves with sign extension, moves with zero extension, and conditional moves that
move data to a destination depending on the state of a flag. Different types of
exchange instructions are discussed, which exchange the contents of a source and des-
tination location. The chapter also presents translate instructions, which change an
operand into a different operand in order to translate from one code to another code.

Chapter

 6

 presents branching and looping instructions as used in the X86
assembly language. These instructions transfer control to a section of the program
that does not immediately follow the current instruction. The transfer may be a

backward transfer

 to a section of code that was previously executed or a

forward
transfer

 to a section of code that follows the current instruction. The

unconditional
jump

 instruction advances the instruction pointer register forward or backward a spe-
cific number of instructions. It transfers control to a destination address and pro-
vides no return address. The

conditional jump

 instruction transfers control to a
destination instruction in the same code segment if certain condition codes are met
— as determined by a compare instruction. If the condition is not met, then program
execution continues with the next instruction that follows the

conditional jump

instruction. Implementing WHILE and FOR loops in assembly is also presented.

Chapter

 7

 presents stack operations in the X86 processor. The stack is a one-
dimensional data structure located in contiguous locations of memory that is used for
the temporary storage of data. It is one of the segments in a segmented memory
model and is called the

stack segment

, in which the base address of the stack is con-
tained in the

stack segment

 register. A data element is placed on top of the stack by a
PUSH instruction; a data element is removed from the top of the stack by a POP
instruction. A stack builds toward lower addresses. Additional PUSH and POP

xx

 Preface

instructions are also covered in this chapter

. The PUSH instruction decrements an
explicit number of bytes before the operation is executed, depending on the size of
the operand being pushed onto the stack.

Chapter

 8

 presents the logical operations of AND, OR, exclusive-OR, NOT, and
NEG. These instructions execute the Boolean equivalent of the corresponding oper-
ations in digital logic circuits. The NOT instruction performs a bitwise 1s complement
operation on the destination operand and stores the result in the destination operand.
The NEG instruction performs a 2s complement operation on the destination operand
and stores the result in the destination operand. There are also bit test instructions that
operate on a single bit and are used to scan the bits in an operand and then perform an
operation on the selected bit. These instructions include: the

bit test

,

bit test and set

,

bit
test and reset

,

bit test and complement

,

bit scan forward

, and

bit scan reverse

 opera-
tions.

Shift instructions are also presented that perform logical or arithmetic left or right
shifts on bytes, words, or doublewords. The number of bits shifted can be specified by
an immediate value of 1, an immediate value stipulated in a byte, or a count in general-
purpose register CL or CX. The shift instructions are

shift arithmetic left

,

shift logical
left

,

shift arithmetic right

,

shift logical right

,

double precision shift left

, and

double
precision shift right

. There are also rotate instructions that rotate the operand a num-
ber of bits specified by an immediate value of 1, an immediate value stipulated in a
byte, or a count in general-purpose register CL or CX. The rotate instructions are

rotate left

,

rotate right

,

rotate through carry left

, and

rotate through carry right

. Also
covered is the

 set byte on condition

 instruction.
There are two bit scan instructions:

bit scan forward

 and

bit scan reverse

. These
instructions scan the contents of a register or memory location to determine the loca-
tion of the first 1 bit in the operand.

Chapter

 9

 covers the four operations of addition, subtraction, multiplication,
and division for fixed-point arithmetic. In fixed-point operations, the radix point is
in a fixed location in the operand. The operands can be expressed by any of the fol-
lowing number representations: unsigned, sign-magnitude, diminished-radix com-
plement, or radix complement. Addition operations include the

add

,

add with carry

,
and the

increment by 1

 instructions. Subtraction operations include the

subtract

,

subtract with borrow

,

decrement by 1

, and

twos complement negation

 instructions.
Multiplication operations include the

unsigned multiply

 and

signed multiply

 instruc-
tions. Division operations include the

unsigned divide

 and

signed divide

 instruc-
tions.

Chapter

 10

 presents the binary-coded decimal (BCD) operations of addition,
subtraction, multiplication, and division. BCD instructions operate on decimal num-
bers that are encoded as 4-bit binary numbers in the 8421 code. The BCD instruc-
tions include the

ASCII adjust after addition

 instruction, which adjusts the result of
an addition operation of two unpacked BCD operands in which the high-order four
bits of a byte contain zeroes; the low-order four bits contain a numerical value; the

decimal adjust AL after addition

 instruction, which adjusts the sum of two packed
BCD integers to generate a packed BCD result; and the

ASCII adjust AL after sub-
traction

 instruction, which adjusts the result of a subtraction of two unpacked BCD
operands.

Preface

xxi

Other BCD operations include the

decimal adjust AL after subtraction

 instruc-
tion, which adjusts the result of a subtraction of two packed BCD operands; the

ASCII adjust AX after multiplication

 instruction, which adjusts the product in regis-
ter AX resulting from multiplying two valid unpacked BCD operands; and the

ASCII
adjust AX before division

 instruction, which converts two unpacked digits in register
AX to an equivalent binary value, then divides AX by an unpacked BCD value.

Chapter

 11

 presents floating-point arithmetic instructions. Floating-point num-
bers consist of the following three fields: a sign bit,

s

; an exponent,

e

; and a fraction,

f

. These parts represent a number that is obtained by multiplying the fraction,

f

 , by a
radix,

r

, raised to the power of the exponent,

e

, where

f

 and

e

 are signed fixed-point
numbers, and

r

 is the radix (or base). As the exponents are being formed, a

bias

 con-
stant is added to the exponents, making all exponents positive, thus allowing expo-
nent comparison to be simplified.

Floating-point operations utilize an 8-register stack in which each register con-
tains 80 bits. There are three main rounding methods used in floating-point opera-
tions: truncation rounding, adder-based rounding, and von Neumann rounding.
Rounding deletes one or more low-order bits of the fraction and adjusts the retained
bits according to a particular rounding technique.

There are several different load instructions that push different types of data onto
the register stack. These include pushing a value of +1.0, pushing logarithmic values,
pushing the value of π, and pushing the value of +0.0. There are also several different
store instructions that pop values off the stack. These include storing operands in the
BCD format or as rounded integers, storing an integer then popping the stack, and stor-
ing a truncated integer then popping the stack. Operands can also be popped off the
stack and stored as floating-point values or stored as floating-point values and then
pop the stack.

There are different versions of the add instruction. These include adding a stack
register and a memory location then storing the sum in the register stack, or adding two
stack registers and storing the sum in the register stack. There are also instructions that
add, store, then pop the stack. There are similar versions of the subtract instructions.
These include subtracting a memory operand from a stack register and storing the dif-
ference in the register stack, or subtracting two stack registers and storing the differ-
ence in the register stack. There are also instructions that subtract, store, then pop the
stack.

There are different versions of the multiply instruction. These include multiplying
a stack register and a memory location then storing the product in the register stack, or
multiplying two stack registers and storing the product in the register stack. There are
also instructions that multiply, store, then pop the stack. There are similar versions of
the divide instructions. These include dividing a stack register by a memory operand
and storing the result in the register stack, or dividing two stack registers and storing
the result in the register stack. There are also instructions that divide, store, then pop
the stack.

There are also several different versions of floating-point instructions that com-
pare different types of data. One version compares an operand in the register stack
with an operand in memory and sets condition code flags. Another version compares
two operands in the register stack and sets the condition codes. Both versions can also

xxii Preface

compare operands, set the condition codes, then pop the stack. Another version com-
pares operands, sets the condition codes, then pops the stack twice. There are also dif-
ferent versions that compare integer operands.

This chapter also contains instructions that operate on trigonometric functions,
such as sine, cosine, and combined sine and cosine, which calculates both functions.
There is also a partial tangent instruction, which calculates the tangent of the source
operand in a stack register, then pushes a value of +1.0 onto the stack. The partial
arctangent instruction is also included, which is the inverse tangent function.

There are several additional floating-point instructions that perform basic arith-
metic operations and have only one syntax. Most of the previous instructions pre-
sented above have more than one syntax.

Chapter 12 provides a brief discussion on procedures. A procedure is a set of
instructions that perform a specific task. They are invoked from another procedure
and provide results to the calling program at the end of execution. Procedures (also
called subroutines) are utilized primarily for routines that are called frequently by
other procedures. The procedure routine is written only once, but used repeatedly,
thereby saving storage space. Procedures permit a program to be coded in modules,
thus making the program easier to code and test.

Chapter 13 discusses string instructions. A string is a sequence of bytes, words,
or doublewords that are stored in contiguous locations in memory as a one-dimen-
sional array. Strings can be processed from low addresses to high addresses or from
high addresses to low addresses, depending on the state of the direction flag. If the
direction flag is set, then the direction of processing is from high addresses to low
addresses (auto-decrement). If the direction flag is reset, then the direction of pro-
cessing is from low addresses to high addresses (auto-increment).

There are several repeat prefixes, which can be placed before the string instruc-
tion, that specify the condition for which the instruction is to be executed. The gen-
eral-purpose register (E)CX specifies the number of times that the string instruction
is to be executed.

The move string instructions transfer a string element — byte, word, or double-
word — from one memory location to another memory location. The load string
instructions transfer a string element from a memory location to general-purpose reg-
ister AL, AX, or EAX. The store string instructions transfer a string element from
register AL, AX, or EAX to a destination memory location.

The compare strings instructions compare a string element in the first source
operand with an equivalent size operand in the second source operand. The status
flags reflect the result of the comparison. Both operands are unaltered by the com-
parison. The compare strings instructions are usually followed by a jump on condi-
tion instruction.

The scan strings instructions contain only one operand, which is in a general-
purpose register. The instructions compare a string element in general-purpose reg-
ister AL, AX, or EAX with an equivalent size operand in a memory location. The
status flags reflect the result of the comparison. Both the operand in the general-pur-
pose register and the memory location are unaltered by the comparison.

Chapter 14 introduces arrays, which are data structures that contain a list of ele-
ments of the same data type (homogeneous) with a common name whose elements

Preface xxiii

can be accessed individually. Array elements are usually stored in contiguous loca-
tions in memory, allowing easier access to the array elements. There are two main
types of arrays: one-dimensional arrays and multi-dimensional arrays. A one-dimen-
sional array — also called a linear array — is an array that is accessed by a single
index. A two-dimensional array — also called a multi-dimensional array — is an
array that is accessed by two indexes. One index accesses a row, the other index
accesses a column. The two different types of arrays are written in assembly lan-
guage only, the C programming language only, or an assembly language module
embedded in a C program.

Chapter 15 introduces macros, which are segments of code that are written only
once, but can be executed many times in the main program. When the macro is
invoked, the assembler replaces the macro call with the macro code. The macro code
is then placed in-line with the main program. Macros generally make the program
more readable. Macros and procedures are similar because they both call a sequence
of instructions to be executed by the main program; however, there is no CALL or
RET instruction in a macro as there is in a procedure.

Chapter 16 discusses interrupts and input/output operations. When an interrupt
occurs, the processor suspends operation of the current program and pushes the con-
tents of specific registers onto the stack. Return from an interrupt is generated by the
interrupt return instruction, which is similar to the procedure far return instruction.

Direct memory access is also covered, which allows an I/O device control unit to
transfer data directly to or from main memory without CPU intervention. This is a
much faster data transfer operation, allowing both the processor and the I/O device to
operate concurrently in most cases.

Memory-mapped I/O is also discussed. For single bus machines, the same bus can
be utilized for both memory and I/O devices. Therefore, I/O devices may be assigned
a unique address within main memory, which is partitioned into separate areas for
memory and I/O devices. Using the memory-mapped technique, I/O devices are
accessed in the same way as memory locations, providing significant flexibility in
managing I/O operations. Thus, there are no separate I/O instructions and the I/O
devices can be accessed utilizing any of the memory read or write instructions and
their addressing modes.

There are several instructions used to transfer data between an I/O device and the
processor. There are two instructions that transfer data between an I/O port and gen-
eral-purpose registers: IN and OUT. The IN instruction transfers data from an I/O
port to register AL, AX, or EAX. The OUT instruction transfers data from register
AL, AX, or EAX to an I/O port. These are referred to as register I/O instructions.

There are also two types of instructions that transfer string data between memory
and an I/O port: INS and OUTS. The INS instructions transfer bytes, words, or dou-
blewords of string data from an I/O port to memory. The OUTS instructions transfer
bytes, words, or doublewords of string data from memory to an I/O port. These are
referred to as string (block) I/O instructions. The repeat prefix may also be used to
specify the condition for which the instructions are to be executed.

Chapter 17 presents additional programming examples to provide additional
exposure for the reader. The examples include programs written in assembly lan-
guage only, the C programming language only, and assembly language modules

xxiv Preface

embedded in a C program. The various topics that are covered in the examples
include logic instructions, bit test instructions, compare instructions, unconditional
and conditional jump instructions, unconditional and conditional loop instructions,
fixed-point instructions, floating-point instructions, string instructions, and arrays.

Appendix A lists the American Standard Code for Information Interchange
(ASCII) codes for hexadecimal characters 20H through 7FH. These are provided as
a reference to be used in certain chapters. Appendix B provides solutions to select
problems in each chapter.

The outputs obtained from executing the programs in this book are the actual
outputs obtained directly from the flat assembler or from the C compiler.

Since there are more than 330 instructions in the X86 Assembly Language, not
all instructions are presented in this book — only the most commonly used instruc-
tions. For a complete listing of all the X86 assembly language instructions, refer to
the following manuals: Intel 64 and IA-32 Architectures Software Developer’s Man-
ual, Volumes 2A and 2B.

It is assumed that the reader has an adequate background in C programming, dig-
ital logic design, and computer architecture. The book is designed for undergraduate
students in electrical engineering, computer engineering, computer science, and soft-
ware engineering; also for graduate students who require a noncredit course in X86
assembly language to supplement their program of studies.

Although this book does not utilize Verilog HDL, I would like to express my
thanks to Dr. Ivan Pesic, CEO of Silvaco International, for allowing use of the
SILOS Simulation Environment software for all of my books that use Verilog HDL
and for his continued support.

I would like to express my appreciation and thanks to the following people who
gave generously of their time and expertise to review the manuscript and submit
comments: Professor Daniel W. Lewis, Department of Computer Engineering, Santa
Clara University who supported me in all my endeavors; Geri Lamble; and Steve
Midford. Thanks also to Nora Konopka and the staff at Taylor & Francis for their
support.

X86 Assembly Language code for the figures can be downloaded at:
http://www.crcpress.com/product/isbn/9781466568242

Joseph Cavanagh

1

1
Number Systems and Number
Representations

This chapter discusses positional number systems using various radices (bases),
counting in different radices, and conversion from one radix to a different radix. The
number systems are presented for both integer and fraction notation. The different
number systems covered are binary (radix 2), octal (radix 8), binary-coded octal, dec-
imal (radix 10), binary-coded decimal, hexadecimal (radix 16), and binary-coded
hexadecimal. Also, other nontraditional radices are presented to illustrate that the
same rules apply to any radix. Various arithmetic operations are provided to demon-
strate the four arithmetic operations of addition, subtraction, multiplication, and divi-
sion.

Number representations are also covered for both positive and negative numbers
for the three number representations of sign magnitude, diminished-radix comple-
ment, and radix complement. The four arithmetic operations are presented for binary
and binary-coded decimal.

1.1 Number Systems
Numerical data are expressed in various positional number systems for each radix, or
base. A positional number system encodes a vector of n bits in which each bit is
weighted according to its position in the vector. The encoded vector is also associated
with a radix r, which is an integer greater than or equal to 2. A number system has
exactly r digits in which each bit in the radix has a value in the range of 0 to r – 1, thus

1.1 Number Systems
1.2 Number Representations
1.3 Problems

2 Chapter 1 Number Systems and Number Representations

the highest digit value is one less than the radix. For example, the binary radix has two
digits which range from 0 to 1; the octal radix has eight digits which range from 0 to 7.
An n-bit integer A is represented in a positional number system as follows:

A = (an–1 an–2 an–3 … a1a0) (1.1)

where 0 ≤ ai ≤ r – 1. The high-order and low-order digits are an–1 and a0, respectively.
The number in Equation 1.1 (also referred to as a vector or operand) can represent pos-
itive integer values in the range 0 to rn – 1. Thus, a positive integer A is written as

A = an–1 rn–1 + an–2 rn–2 + an–3 rn–3 + … + a1r1 + a0r0 (1.2)

The value for A can be represented more compactly as

ΣA =
i = 0

n – 1

(1.3)ai ri

The expression of Equation 1.2 can be extended to include fractions. For example,

A = an–1 rn–1 + … + a1r1 + a0r0 + a–1r–1 + a–2r–2 + … + a–m r–m (1.4)

Equation 1.4 can be represented as

ΣA =
i = –m

n – 1

(1.5)airi

Adding 1 to the highest digit in a radix r number system produces a sum of 0 and
a carry of 1 to the next higher-order column. Thus, counting in radix r produces the
following sequence of numbers:

0, 1, 2, … , (r – 1), 10, 11, 12, …, 1(r – 1), ….

Table 1.1 shows the counting sequence for different radices. The low-order digit will
always be 0 in the set of r digits for the given radix. The set of r digits for various
radices is given in Table 1.2. In order to maintain one character per digit, the numbers
10, 11, 12, 13, 14, and 15 are represented by the letters A, B, C, D, E, and F, respec-
tively.

Table 1.1 Counting Sequence for
Different Radices

Decimal r = 2 r = 4 r = 8
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 10 4
5 101 11 5
6 110 12 6
7 111 13 7
8 1000 20 10
9 1001 21 11
10 1010 22 12
11 1011 23 13
12 1100 30 14
13 1101 31 15
14 1110 32 16
15 1111 33 17
16 10000 100 20
17 10001 101 21

Table 1.2 Character Sets for Different Radices

Radix (base) Character Sets for Different Radices
2 {0, 1}
3 {0, 1, 2}
4 {0, 1, 2, 3}
5 {0, 1, 2, 3, 4}
6 {0, 1, 2, 3, 4, 5}
7 {0, 1, 2, 3, 4, 5, 6}
8 {0, 1, 2, 3, 4, 5, 6, 7}
9 {0, 1, 2, 3, 4, 5, 6, 7, 8}

10 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
11 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A}
12 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B}
13 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C}
14 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D}
15 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E}
16 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}

1.1 Number Systems 3

4 Chapter 1 Number Systems and Number Representations

Example 1.1 Count from decimal 0 to 25 in radix 5. Table 1.2 indicates that radix
5 contains the following set of four digits: {0, 1, 2, 3, 4}. The counting sequence in
radix 5 is

000, 001, 002, 003, 004 = (0 × 52) + (0 × 51) + (4 × 50) = 410
010, 011, 012, 013, 014 = (0 × 52) + (1 × 51) + (4 × 50) = 910
020, 021, 022, 023, 024 = (0 × 52) + (2 × 51) + (4 × 50) = 1410
030, 031, 032, 033, 034 = (0 × 52) + (3 × 51) + (4 × 50) = 1910
040, 041, 042, 043, 044 = (0 × 52) + (4 × 51) + (4 × 50) = 2410

 100 = (1 × 52) + (0 × 51) + (0 × 50) = 2510

Example 1.2 Count from decimal 0 to 25 in radix 12. Table 1.2 indicates that radix
12 contains the following set of twelve digits: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B}. The
counting sequence in radix 12 is

00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B = (0 × 121) + (11 × 120) = 1110
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1A, 1B = (1 × 121) + (11 × 120) = 2310

 20, 21 = (2 × 121) + (1 × 120) = 2510

1.1.1 Binary Number System

The radix is 2 in the binary number system; therefore, only two digits are used: 0 and
1. The low-value digit is 0 and the high-value digit is (r – 1) = 1. The binary number
system is the most conventional and easily implemented system for internal use in a
digital computer; therefore, most digital computers use the binary number system.
There is a disadvantage when converting to and from the externally used decimal sys-
tem; however, this is compensated for by the ease of implementation and the speed of
execution in binary of the four basic operations: addition, subtraction, multiplication,
and division. The radix point is implied within the internal structure of the computer;
that is, there is no specific storage element assigned to contain the radix point.

The weight assigned to each position of a binary number is as follows:

2n–1 2n–2 … 23 22 21 20 . 2–1 2–2 2–3 … 2–m

where the integer and fraction are separated by the radix point (binary point). The dec-
imal value of the binary number 1011.1012 is obtained by using Equation 1.4, where r
= 2 and ai ∈ {0,1} for –m ≤ i ≤ n – 1. Therefore,

23 22 21 20 . 2–1 2–2 2–3

1 0 1 1 . 1 0 12 = (1 × 23) + (0 × 22) + (1 × 21) + (1 × 20) +
 (1 × 2–1) + (0 × 2–2) + (1 × 2–3)
= 11.62510

1.1 Number Systems 5

Digital systems are designed using bistable storage devices that are either reset
(logic 0) or set (logic 1). Therefore, the binary number system is ideally suited to rep-
resent numbers or states in a digital system, since radix 2 consists of the alphabet 0 and
1. These bistable devices can be concatenated to any length n to store binary data. For
example, to store 1 byte (8 bits) of data, eight bistable storage devices are required for
the value 0110 1011 (10710). Counting in binary is illustrated in Table 1.3, which
shows the weight associated with each of the four binary bit positions. Notice the
alternating groups of 1s in Table 1.3 for each of the four columns. A binary number is
a group of n bits that can assume 2n different combinations of the n bits. Therefore, the
range for n bits is 0 to 2n – 1 and the range for four bits is 0 to 24 – 1; that is 0 to 15, as
shown in Table 1.3.

Table 1.3 Counting in Binary

Decimal Binary

8 4 2 1

23 22 21 20

0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
10 1 0 1 0
11 1 0 1 1
12 1 1 0 0
13 1 1 0 1
14 1 1 1 0
15 1 1 1 1

The binary weights for each bit position of an 8-bit integer are shown in Table 1.4
and the binary weights for each bit position of an 8-bit fraction are shown in Table 1.5.

Table 1.4 Binary Weights for an 8-Bit Integer

27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1

Table 1.5 Binary Weights for an 8-Bit Fraction

2–1 2–2 2–3 2–4 2–5 2–6 2–7 2–8

1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256
0.5 0.25 0.125 0.0625 0.03125 0.015625 0.0078125 0.00390625

6 Chapter 1 Number Systems and Number Representations

Each 4-bit binary segment has a weight associated with the segment and is
assigned the value represented by the low-order bit of the corresponding segment, as
shown in the first row of Table 1.6. The 4-bit binary number in each segment is then
multiplied by the value of the segment. Thus, the binary number 0010 1010 0111
1100 0111 is equal to the decimal number 174,02310 as shown below.

(2 × 65536) + (10 × 4096) + (7 × 256) + (12 × 16) + (7 × 1) = 174,02310

Table 1.6 Weight Associated with 4-Bit Binary Segments

65536 4096 256 16 1
0001 0001 0001 0001 0001
0010 1010 0111 1100 0111

1.1.2 Octal Number System

The radix is 8 in the octal number system; therefore, eight digits are used, 0 through 7.
The low-value digit is 0 and the high-value digit is (r – 1) = 7. The weight assigned to
each position of an octal number is as follows:

8n–1 8n–2 … 83 82 81 80 . 8–1 8–2 8–3 … 8–m

where the integer and fraction are separated by the radix point (octal point). The dec-
imal value of the octal number 217.68 is obtained by using Equation 1.4, where r = 8
and ai ∈ {0,1,2,3,4,5,6,7} for –m ≤ i ≤ n – 1. Therefore,

82 81 80 . 8–1

2 1 7 . 68 = (2 × 82) + (1 × 81) + (7 × 80) + (6 × 8–1)
= 143.7510

When a count of 1 is added to 78, the sum is zero and a carry of 1 is added to the next
higher-order column on the left. Counting in octal is shown in Table 1.7, which shows
the weight associated with each of the three octal positions.

Table 1.7 Counting in Octal

Decimal Octal

64 8 1

82 81 80

0 0 0 0
1 0 0 1
2 0 0 2
3 0 0 3
4 0 0 4
5 0 0 5
6 0 0 6
7 0 0 7
8 0 1 0
9 0 1 1
... ...
14 0 1 6
15 0 1 7
16 0 2 0
17 0 2 1
... ...
22 0 2 6
23 0 2 7
24 0 3 0
25 0 3 1
… …
30 0 3 6
31 0 3 7
… …
84 1 2 4
… …

242 3 6 2
… …

377 5 7 1

1.1 Number Systems 7

Binary-coded octal Each octal digit can be encoded into a corresponding binary
number. The highest-valued octal digit is 7; therefore, three binary digits are required
to represent each octal digit. This is shown in Table 1.5, which lists the decimal digits
and indicates the corresponding octal and binary-coded octal (BCO) digits.

Table 1.8 Binary-Coded Octal Numbers

Decimal Octal Binary-Coded Octal
0 0 000
1 1 001
2 2 010
3 3 011
4 4 100
5 5 101
6 6 110
7 7 111
8 10 001 000
9 11 001 001
10 12 001 010
11 13 001 011
… … …
20 24 010 100
21 25 010 101
… … …

100 144 001 100 100
101 145 001 100 101
… … …

267 413 100 001 011
… … …

385 601 110 000 001

8 Chapter 1 Number Systems and Number Representations

1.1.3 Decimal Number System

The radix is 10 in the decimal number system; therefore, ten digits are used, 0 through
9. The low-value digit is 0 and the high-value digit is (r – 1) = 9. The weight assigned
to each position of a decimal number is as follows:

10n–1 10n–2 … 103 102 101 100 . 10–1 10–2 10–3 … 10–m

where the integer and fraction are separated by the radix point (decimal point). The
value of 635710 is immediately apparent; however, the value is also obtained by using
Equation 1.4, where r = 10 and ai ∈ {0,1,2,3,4,5,6,7,8,9} for –m ≤ i ≤ n – 1. That is,

103 102 101 100
 6 3 5 710 = (6 × 103) + (3 × 102) + (5 × 101) + (7 × 100)

1.1 Number Systems 9

When a count of 1 is added to decimal 9, the sum is zero and a carry of 1 is added
to the next higher-order column on the left. The following example contains both an
integer and a fraction:

103 102 101 100 . 10–1

 5 4 3 6 . 5 = (5 × 103) + (4 × 102) + (3 × 101) + (6 × 100) + (5 × 10–1)

Binary-coded decimal Each decimal digit can be encoded into a corresponding
binary number; however, only ten decimal digits are valid. The highest-valued deci-
mal digit is 9, which requires four bits in the binary representation. Therefore, four
binary digits are required to represent each decimal digit. This is shown in Table 1.9,
which lists the ten decimal digits (0 through 9) and indicates the corresponding
binary-coded decimal (BCD) digits. Table 1.9 also shows BCD numbers of more than
one decimal digit.

Table 1.9 Binary-Coded Decimal Numbers

Decimal Binary-Coded Decimal
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 0001 0000
11 0001 0001
12 0001 0010
… …

124 0001 0010 0100
… …

365 0011 0110 0101

1.1.4 Hexadecimal Number System

The radix is 16 in the hexadecimal number system; therefore, 16 digits are used, 0
through 9 and A through F, where by convention A, B, C, D, E, and F correspond to
decimal 10, 11, 12, 13, 14, and 15, respectively. The low-value digit is 0 and the

10 Chapter 1 Number Systems and Number Representations

high-value digit is (r – 1) = 15 (F). The weight assigned to each position of a hexa-
decimal number is as follows:

16n–1 16n–2 … 163 162 161 160 . 16–1 16–2 16–3 … 16–m

where the integer and fraction are separated by the radix point (hexadecimal point).
The decimal value of the hexadecimal number 6A8C.D41616 is obtained by using
Equation 1.4, where r = 16 and ai ∈ {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F} for – m ≤ i ≤
n – 1. Therefore,

163 162 161 160 . 16–116–216–316–4

6 A 8 C . D 4 1 6 = (6 × 163) + (10 × 162) + (8 × 161)
+ (12 × 160) + (13 × 16–1) + (4 × 16–2)
+ (1 × 16–3) + (6 × 16–4)

= 27, 276.8284610

When a count of 1 is added to hexadecimal F, the sum is zero and a carry of 1 is added
to the next higher-order column on the left. Note that when inserting hexadecimal
numbers in an assembly language program manually, the first digit must be a number
0 through 9, then the digits A through F, if required, followed by the hexadecimal radix
specifier H.

Binary-coded hexadecimal Each hexadecimal digit corresponds to a 4-bit
binary number as shown in Table 1.10. All 24 values of the four binary bits are used to
represent the 16 hexadecimal digits. Table 1.10 also indicates hexadecimal numbers
of more than one digit. Counting in hexadecimal is shown in Table 1.11. Table 1.12
summarizes the characters used in the four number systems: binary, octal, decimal,
and hexadecimal.

Table 1.10 Binary-Coded Hexadecimal Numbers

Decimal Hexadecimal Binary-Coded Hexadecimal
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001

(Continued on next page)

1.1 Number Systems 11

10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111
...

124 7C 0111 1100
...

365 16D 0001 0110 1101

Table 1.11 Counting in Hexadecimal

Decimal Hexadecimal

256 16 1

162 161 160

0 0 0 0
1 0 0 1
2 0 0 2
3 0 0 3
4 0 0 4
5 0 0 5
6 0 0 6
7 0 0 7
8 0 0 8
9 0 0 9
10 0 0 A
11 0 0 B
12 0 0 C
13 0 0 D
14 0 0 E
15 0 0 F
16 0 1 0
17 0 1 1
… …
26 0 1 A

(Continued on next page)

Table 1.10 Binary-Coded Hexadecimal Numbers

Decimal Hexadecimal Binary-Coded Hexadecimal

12 Chapter 1 Number Systems and Number Representations

1.1.5 Arithmetic Operations

The arithmetic operations of addition, subtraction, multiplication, and division in any
radix can be performed using identical procedures to those used for decimal arith-
metic. The operands for the four operations are shown in Table 1.13.

Table 1.13 Operands Used for Arithmetic Operations

Addition Subtraction Multiplication Division
Augend Minuend Multiplicand Dividend

+) Addend –) Subtrahend ×) Multiplier ÷) Divisor
Sum Difference Product Quotient, Remainder

27 0 1 B
… …
30 0 1 E
31 0 1 F
… …

256 1 0 0
… …

285 1 1 D
… …

1214 4 B E

Table 1.12 Digits Used for Binary, Octal, Decimal,
and Hexadecimal Number Systems

0 1 2 3 4 5 6 7 8 9 A B C D E F
Binary
Octal
Decimal
Hexadecimal

Table 1.11 Counting in Hexadecimal

Decimal Hexadecimal

256 16 1

162 161 160

1.1 Number Systems 13

Radix 2 addition Figure 1.1 illustrates binary addition of unsigned operands. The
sum of column 1 is 210 (102); therefore, the sum is 0 with a carry of 1 to column 2. The
sum of column 2 is 410 (1002); therefore, the sum is 0 with a carry of 0 to column 3 and
a carry of 1 to column 4. The sum of column 3 is 310 (112); therefore, the sum is 1 with
a carry of 1 to column 4. The sum of column 4 is 410 (1002); therefore, the sum is 0
with a carry of 0 to column 5 and a carry of 1 to column 6. The unsigned values of the
binary operands are shown in the rightmost column together with the resulting sum.

Column 6 5 4 3 2 1 Radix 10 values
1 1 1 0 14
0 1 1 1 7
1 0 1 0 10

+) 011 10 01 1 5
1 0 0 1 0 0 36

Figure 1.1 Example of binary addition.

Radix 2 subtraction The rules for subtraction in radix 2 are as follows:

0 – 0 = 0
0 – 1 = 1 with a borrow from the next higher-order minuend
1 – 0 = 1
1 – 1 = 0

Figure 1.2 provides an example of binary subtraction using the above rules for
unsigned operands. An alternative method for subtraction — used in computers —
will be given in Section 1.2 when number representations are presented. In Figure 1.2
column 3, the difference is 1 with a borrow from the minuend in column 4, which
changes the minuend in column 4 to 0.

Column 4 3 2 1 Radix 10 values

 10 0 1 1 11
–) 0 1 0 1 5

0 1 1 0 6

Figure 1.2 Example of binary subtraction.

14 Chapter 1 Number Systems and Number Representations

Radix 2 multiplication Multiplying in binary is similar to multiplying in deci-
mal. Two n-bit operands produce a 2n-bit product. Figure 1.3 shows an example of
binary multiplication using unsigned operands, where the multiplicand is 710 and the
multiplier is 1410. The multiplicand is multiplied by the low-order multiplier bit (0),
producing a partial product of all zeroes. Then the multiplicand is multiplied by the
next higher-order multiplier bit (1), producing a left-shifted partial product of 0000
111. The process repeats until all bits of the multiplier have been used.

0 1 1 1 7
×) 1 1 1 0 14

0 0 0 0 0 0 0 0
0 0 0 0 1 1 1
0 0 0 1 1 1
0 01 111 10 11

0 1 1 0 0 0 1 0 98

Figure 1.3 Example of binary multiplication.

Radix 2 division The division process is shown in Figure 1.4, where the divisor is
n bits and the dividend is 2n bits. This division procedure uses a sequential shift-sub-
tract-restore technique. Figure 1.4 shows a divisor of 510 (01012) and a dividend of
1310 (0000 11012), resulting in a quotient of 210 (00102) and a remainder of 310
(00112).

The divisor is subtracted from the high-order four bits of the dividend. The result
is a partial remainder that is negative — the leftmost bit is 1 — indicating that the
divisor is greater than the four high-order bits of the dividend. Therefore, a 0 is placed
in the high-order bit position of the quotient. The dividend bits are then restored to
their previous values with the next lower-order bit (1) of the dividend being appended
to the right of the partial product. The divisor is shifted right one bit position and again
subtracted from the dividend bits.

This restore-shift-subtract cycle repeats for a total of three cycles until the partial
remainder is positive — the leftmost bit is 0, indicating that the divisor is less than the
corresponding dividend bits. This results in a no-restore cycle in which the previous
partial remainder (0001) is not restored. A 1 bit is placed in the next lower-order quo-
tient bit and the next lower-order dividend bit is appended to the right of the partial
remainder. The divisor is again subtracted, resulting in a negative partial remainder,
which is again restored by adding the divisor. The 4-bit quotient is 0010 and the 4-bit
remainder is 0011.

The results can be verified by multiplying the quotient (0010) by the divisor
(0101) and adding the remainder (0011) to obtain the dividend. Thus, 0010 × 0101 =
1010 + 0011 = 1101.

0 0 0 1 0 Quotient
0 1 0 1 0 0 0 0 1 1 0 1

Subtract 0 1 0 1
1 0 1 1

Restore 0 0 0 0 1
Shift-subtract 0 1 0 1

1 1 0 0

Restore 0 0 0 0 1 1
Shift-subtract 0 1 0 1

1 1 1 0

Restore 0 0 0 0 1 1 0
Shift-subtract 0 1 0 1

0 0 0 1

No restore 0 0 0 0 0 0 1 1
Shift-subtract 0 1 0 1

1 1 1 0

Restore 0 0 0 0 0 0 1 1 Remainder

1.1 Number Systems 15

Figure 1.4 Example of binary division.

Radix 8 addition Figure 1.5 illustrates octal addition. The result of adding col-
umn 1 is 178, which is a sum of 1 with a carry of 2. The result of adding column 2 is
118, which is a sum of 3 with a carry of 1. The remaining columns are added in a sim-
ilar manner, yielding a result of 216318 or 911310.

83 82 81 80

Column 4 3 2 1 Radix 10 value
7 6 5 4 4012
6 5 4 7 3431

+) 31 21 02 6 1670
2 1 6 3 1 9113

Figure 1.5 Example of octal addition.

16 Chapter 1 Number Systems and Number Representations

Radix 8 subtraction Octal subtraction is slightly more complex than octal addi-
tion. Figure 1.6 provides an example of octal subtraction. In column 2 (81), a 1 is sub-
tracted from minuend 58 leaving a value of 48; the 1 is then added to the minuend in
column 1 (28). This results in a difference of 68 in column 1, as shown below.

(1 × 81) + (2 × 80) = 1010
Therefore, 10 – 4 = 6

In a similar manner, in column 4 (83), a 1 is subtracted from minuend 68 leaving a
value of 58; the 1 is then added to the minuend in column 3 (18), leaving a difference
of 9 – 5 = 4, as shown below.

(1 × 83) + (1 × 82) = 11008
Consider only the 11 of 11008, where (1 × 81) + (1 ×80) = 910
Therefore, 9 – 5 = 4

83 82 81 80

Column 4 3 2 1 Radix 10 value
6 1 5 2 3178

–) 5 5 3 4 2908
0 4 1 6 0270

Figure 1.6 Example of octal subtraction.

Radix 8 multiplication An example of octal multiplication is shown in Figure
1.7, where the multiplicand = 74638 and the multiplier = 52108. The multiplicand is
multiplied by each multiplier digit in turn to obtain a partial product. Except for the
first partial product, each successive partial product is shifted left one digit. The sub-
scripts in partial products 3 and 4 represent carries obtained from multiplying the mul-
tiplicand by the multiplier digits. When all of the partial products are obtained, the
partial products are added following the rules for octal addition.

7 4 6 3 389110

×) 5 2 1 0 269610

Partial product 1 0 0 0 0 0 0 0 0
Partial product 2 0 0 0 7 4 6 3
Partial product 3 0 01 61 01 4 6
Partial product 4 04 32 43 61 7
Carries from addition 1 2 2 2 1

5 0 0 1 0 4 3 0 1049013610

Figure 1.7 Example of octal multiplication.

1.1 Number Systems 17

Radix 8 division An example of octal division is shown in Figure 1.8. The first
quotient digit is 38 which, when multiplied by the divisor 178, yields a result of 558.
Subtraction of the partial remainder and multiplication of the quotient digit times the
divisor are accomplished using the rules stated above for octal arithmetic.

3 2 3
1 7 6 1 4 5

5 5
4 4
3 6

6 5
5 5
1 0

Figure 1.8 Example of octal division.

The results of Figure 1.8 can be verified as follows:

Dividend = (quotient × divisor) + remainder
= (3238 × 178) + 108
= 61458

Radix 16 addition An example of hexadecimal addition is shown in Figure 1.9.
The subscripted numbers indicate carries from the previous column. The decimal
value of the hexadecimal addition of each column is also shown. To obtain the hexa-
decimal value of the column, a multiple of 1610 is subtracted from decimal value and
the difference is the hexadecimal value and the multiple of 1610 is the carry. For exam-
ple, the decimal sum of column 1 is 28. Therefore, 28 – 16 = 12 (C16) with a carry of
1 to column 2. In a similar manner, the decimal sum of column 2 is 40 + 1 (carry) = 41.
Therefore, 41 – 32 = 9 (916) with a carry of 2 to column 3.

Column 4 3 2 1
A B C D
9 8 7 6
E F 9 4

+) 92 A2 C1 5
Radix 10 = 44 46 41 28

2 C E 9 C

Figure 1.9 Example of hexadecimal addition.

18 Chapter 1 Number Systems and Number Representations

Radix 16 subtraction Hexadecimal subtraction is similar to subtraction in any
other radix. An example of hexadecimal subtraction is shown in Figure 1.10.

Column 4 3 2 1

 C1 21 8 D
–) 8 F E 9

3 2 A 4

Figure 1.10 Example of hexadecimal subtraction.

The superscripted numbers indicate borrows from the minuends. For example,
the minuend in column 2 borrows a 1 from the minuend in column 3; therefore, col-
umn 2 becomes 1816 – E16 = A16. This is more readily apparent if the hexadecimal
numbers are represented as binary numbers, as shown below.

1 8
→

0 0 0 1 1 0 0 0
–) E –) 0 0 0 0 1 1 1 0

0 0 0 0 1 0 1 0

In a similar manner, column 3 becomes 1116 – F16 = 216 with a borrow from col-
umn 4. Column 4 becomes B16 – 816 = 316.

Radix 16 multiplication Figure 1.11 shows an example of hexadecimal multipli-
cation. Multiplication in radix 16 is slightly more complex than multiplication in other
radices. Each multiplicand is multiplied by each multiplier digit in turn to form a par-
tial product. Except for the first partial product, each partial product is shifted left one
digit position. The subscripted digits in Figure 1.11 indicate the carries formed when
multiplying the multiplicand by the multiplier digits.

Consider the first row of Figure 1.11 — the row above partial product 1.

1010 × 410 = 4010 = 816 with a carry of 216
1010 × 1310 = 13010 = 216 with a carry of 816
1010 × 910 = 9010 = A16 with a carry of 516
1010 × 1210 = 12010 = 816 with a carry of 716

In a similar manner, the remaining partial products are obtained. Each column of par-
tial products is then added to obtain the product.

C 9 D 4
×) 7 8 B A
7 851 A8 22 8

Partial product 1 0 0 0 7 E 2 4 8

8 46 38 F2 C
Partial product 2 0 0 8 A C 1 C

0 6 4 86 82 0
Partial product 3 0 6 4 E A 0

5 43 F5 B1 C
Partial product 4 5 8 4 C C
Carries from addition 1 2 3 1

Product 5 F 2 E 0 4 0 8

1.1 Number Systems 19

Figure 1.11 Example of hexadecimal multiplication.

Radix 16 division Figure 1.12 (a) and Figure 1.12 (b) show two examples of
hexadecimal division. The results of Figure 1.12 can be verified as follows:

Dividend = (quotient × divisor) + remainder

For Figure 1.12 (a): Dividend = (F0F16 × 1116) + 0 = FFFF16
For Figure 1.12 (b): Dividend = (78716 × 2216) + 1116 = FFFF16

 (a)

 (b)

F 0 F
1 1 F F F F

F F
0 F F

F F
0

7 8 7
2 2 F F F F

E E
1 1 F
1 1 0

F F
E E
1 1

Figure 1.12 Examples of hexadecimal division.

20 Chapter 1 Number Systems and Number Representations

1.1.6 Conversion between Radices

Methods to convert a number in radix ri to radix rj will be illustrated in this section.
The following conversion methods will be presented:

Binary → Decimal
Octal → Decimal

Hexadecimal → Decimal
Decimal → Binary
Decimal → Octal
Decimal → Hexadecimal

Binary → Octal
Binary → Hexadecimal

Octal → Binary
Octal → Hexadecimal

Hexadecimal → Binary
Hexadecimal → Octal

Octal → Binary-coded octal
Hexadecimal → Binary-coded hexadecimal

Decimal → Binary-coded decimal

Comparison between the following formats will also be examined:

octal → binary-coded octal and octal → binary
hexadecimal → binary-coded hexadecimal and hexadecimal → binary
decimal → binary-coded decimal and decimal → binary

There will also be examples to illustrate converting between two nonstandard
radices and an example to determine the value of an unknown radix for a given radix
10 number.

Binary to decimal Conversion from any radix r to radix 10 is easily accomplished
by using Equation 1.2 for integers, and Equation 1.4 for numbers consisting of integers
and fractions. Equation 1.2 and Equation 1.4 are reproduced below as Equation 1.6
and Equation 1.7 for convenience.

A = an–1 rn–1 + an–2 rn–2 + an–3 rn–3 + … + a1r1 + a0r0 (1.6)

A = an–1 rn–1 + … + a1r1 + a0r0 + a–1r–1 + a–2r–2 + … + a–m r–m (1.7)

1.1 Number Systems 21

The binary number 1111000.1012 will be converted to an equivalent decimal num-
ber. The weight by position is as follows:

26 25 24 23 22 21 20 2–1 2–2 2–3

1 1 1 1 0 0 0 . 1 0 1

Therefore, 1111000.1012= (1 × 26) + (1 × 25) + (1 × 24) + (1 × 23) +
(0 × 22) + (0 × 21) + (0 × 20) +
(1 × 2–1) + (0 × 2–2) + (1 × 2–3)

 = 64 + 32 + 16 + 8 + 0.5 + 0.125
 = 120.62510

Octal to decimal The octal number 217. 658 will be converted to an equivalent
decimal number. The weight by position is as follows:

82 81 80 8–1 8–2

2 1 7 . 6 5

Therefore, 217. 658 = (2 × 82) + (1 × 81) + (7 × 80) + (6 × 8–1) (5 × 8–2)
= 128 + 8 + 7 + 0.75 + 0.078125
= 143.82812510

Hexadecimal to decimal The hexadecimal number 5C2.4D16 will be converted
to an equivalent decimal number. The weight by position is as follows:

162 161 160 16–1 16–2

5 C 2 . 4 D

Therefore, 5C2.4D16= (5 × 162) + (12 × 161) + (2 × 160) + (4 × 16–1) + (13 × 16–2)
 = 1280 + 192 + 2 + 0.25 + 0.05078125
 = 1474.30078110

Decimal to binary To convert a number in radix 10 to any other radix r, repeat-
edly divide the integer by radix r, then repeatedly multiply the fraction by radix r. The
first remainder obtained when dividing the integer is the low-order digit. The first
integer obtained when multiplying the fraction is the high-order digit.

The decimal number 186.62510 will be converted to an equivalent binary number.
The process is partitioned into two parts: divide the integer 18610 repeatedly by 2 until
the quotient equals zero; multiply the fraction 0.625 repeatedly by 2 until a zero result
is obtained or until a certain precision is reached.

186 ÷ 2 = quotient = 93, remainder = 0 (0 is the low-order digit)
93 ÷ 2 = quotient = 46, remainder = 1
46 ÷ 2 = quotient = 23, remainder = 0
23 ÷ 2 = quotient = 11, remainder = 1
11 ÷ 2 = quotient = 5, remainder = 1
5 ÷ 2 = quotient = 2, remainder = 1
2 ÷ 2 = quotient = 1, remainder = 0
1 ÷ 2 = quotient = 0, remainder = 1

0.625 × 2 = 1.25 1 (1 is the high-order digit)
0.25 × 2 = 0.5 0
0.5 × 2 = 1.0 1

22 Chapter 1 Number Systems and Number Representations

Therefore, 186.62510 = 10111010.1012. Converting from decimal to BCD does not
yield the same results as converting from decimal to binary, because BCD does not use
all 16 combinations of four bits — only ten combinations are used.

Decimal to octal The decimal number 219.6210 will be converted to an equivalent
octal number. The integer 21910 is divided by 8 repeatedly and the fraction 0.6210 is
multiplied by 8 repeatedly to a precision of three digits.

219 ÷ 8 = quotient = 27, remainder = 3 (3 is the low-order digit)
27 ÷ 8 = quotient = 3, remainder = 3

3 ÷ 8 = quotient = 0, remainder = 3

0.62 × 8 = 4.96 4 (4 is the high-order digit)
0.96 × 8 = 7.68 7
0.68 × 8 = 5.44 5

Therefore, 219.6210 = 333.4758.

Decimal to hexadecimal The decimal number 195.82812510 will be converted
to an equivalent hexadecimal number. The integer is divided by 16 repeatedly and the
fraction is multiplied by 16 repeatedly.

195 ÷ 16 = quotient = 12, remainder = 3 (3 is the low-order digit)
12 ÷ 16 = quotient = 0, remainder = 12 (C)

0.828125 × 16 = 13.250000 13 (D) (D is the high-order digit)
0.250000 × 16 = 4.000000 4

1.1 Number Systems 23

Therefore, 195.82812510 = C3.D416.

Binary to octal When converting a binary number to octal, the binary number is
partitioned into groups of three bits as the number is scanned from right to left for inte-
gers and scanned left to right for fractions. If the leftmost group of the integer does not
contain three bits, then leading zeroes are added to produce a 3-bit octal digit; if the
rightmost group of the fraction does not contain three bits, then trailing zeroes are
added to produce a 3-bit octal digit. The binary number 10110100011.111012 will be
converted to an octal number as shown below.

0 1 0 1 1 0 1 0 0 0 1 1 . 1 1 1 0 1 0
2 6 4 3 . 7 2

Binary to hexadecimal When converting a binary number to hexadecimal, the
binary number is partitioned into groups of four bits as the number is scanned from
right to left for integers and scanned left to right for fractions. If the leftmost group of
the integer does not contain four bits, then leading zeroes are added to produce a 4-bit
hexadecimal digit; if the rightmost group of the fraction does not contain four bits,
then trailing zeroes are added to produce a 4-bit hexadecimal digit. The binary number
11010101000.11110101112 will be converted to a hexadecimal number as shown
below.

0 1 1 0 1 0 1 0 1 0 0 0 . 1 1 1 1 0 1 0 1 1 1 0 0
6 A 8 . F 5 C

Octal to binary When converting an octal number to binary, three binary digits are
entered that correspond to each octal digit, as shown below.

2 7 5 4 . 3 6
0 1 0 1 1 1 1 0 1 1 0 0 . 0 1 1 1 1 0

When converting from octal to binary-coded octal (BCO) and from octal to binary,
the binary bit configurations are identical. This is because the octal number system
uses all eight combinations of three bits.

24 Chapter 1 Number Systems and Number Representations

Octal to hexadecimal To convert from octal to hexadecimal, the octal number is
first converted to BCO then partitioned into 4-bit segments to form binary-coded
hexadecimal (BCH). The BCH notation is then easily changed to hexadecimal, as
shown below.

7 6 3 5 . 4 6
1 1 1 1 1 0 0 1 1 1 0 1 . 1 0 0 1 1 0 0 0

F 9 D . 9 8

Hexadecimal to binary To convert from hexadecimal to binary, substitute the
four binary bits for the hexadecimal digits according to Table 1.10 as shown below.

F A 9 7 . B 6
1 1 1 1 1 0 1 0 1 0 0 1 0 1 1 1 . 1 0 1 1 0 1 1 0

When converting from hexadecimal to BCH and from hexadecimal to binary, the
binary bit configurations are identical. This is because the hexadecimal number sys-
tem uses all sixteen combinations of four bits.

Hexadecimal to octal When converting from hexadecimal to octal, the hexadec-
imal digits are first converted to binary. Then the binary bits are partitioned into 3-bit
segments to obtain the octal digits, as shown below.

B 8 E . 4 D
1 0 1 1 1 0 0 0 1 1 1 0 . 0 1 0 0 1 1 0 1 0

5 6 1 6 . 2 3 2

Conversion from radix 5 to radix 10 Equation 1.4 is reproduced below as
Equation 1.8 for convenience and will be used to convert the following radix 5 number
to an equivalent radix 10 number: 2134.435.

A = an–1 rn–1 + … + a1r1 + a0r0 + a–1r–1 + a–2r–2 + … + a–m r–m (1.8)

2134.435 = (2 × 53) + (1 × 52) + (3 × 51) + (4 × 50) . (4 × 5–1) + (3 × 5–2)
= 250 + 25 + 15 + 4 + 0.8 + 0.12
= 294.9210

1.1 Number Systems 25

Convert from radix ri to any other radix rj To convert any nondecimal num-
ber Ari in radix ri to another nondecimal number Arj in radix rj, first convert the num-
ber Ari to decimal using Equation 1.4, then convert the decimal number to radix rj by
using repeated division and/or repeated multiplication. The radix 9 number 1259 will
be converted to an equivalent radix 7 number. First 1259 is converted to radix 10.

1259 = (1 × 92) + (2 × 91) + (5 × 90)
 = 10410

Then, convert 10410 to radix 7.

104 ÷ 7 = quotient = 14, remainder = 6 (6 is the low-order digit)
14 ÷ 7 = quotient = 2, remainder = 0

2 ÷ 7 = quotient = 0, remainder = 2

Verify the answer.

1259 = 2067 = (2 × 72) + (0 × 71) + (6 × 70)
 = 10410

Determine the value of an unknown radix The equation shown below has an
unknown radix a. This example will determine the value of radix a.

44a
0.5 = 610

44a = 3610

(4 × a1) + (4 × a0) = (3 × 101) + (6 × 100)
4a + 4 = 30 + 6

4a = 32
a = 8

Verify the answer.

448 = (4 × 81) + (4 × 80)
= 3610

26 Chapter 1 Number Systems and Number Representations

1.2 Number Representations
Computers use both positive and negative numbers, and since a computer cannot rec-
ognize a plus (+) or a minus (–) sign, an encoding method must be established to rep-
resent the sign of a number in which both positive and negative numbers are
distributed as evenly as possible.

There must also be a method to differentiate between positive and negative num-
bers; that is, there must be an easy way to test the sign of a number. Detection of a
number with a zero value must be straightforward. The leftmost (high-order) digit is
usually reserved for the sign of the number. Consider the following number A with
radix r :

A = (an – 1 an – 2 an – 3 … a2 a1 a0)r

where digit an – 1 has the value shown in Equation 1.9.

0 if A ≥ 0
r – 1 if A < 0 {A = (1.9)

The remaining digits of A indicate either the true magnitude or the magnitude in a
complemented form. There are three conventional ways to represent positive and neg-
ative numbers in a positional number system: sign magnitude, diminished-radix com-
plement, and radix complement. In all three number representations, the high-order
digit is the sign of the number, such that: 0 = positive and r – 1 = negative, as shown in
Equation 1.9.

1.2.1 Sign Magnitude

In this representation, an integer has the decimal range shown in Equation 1.10.

 –(rn–1 – 1) to + (rn–1 – 1) (1.10)

where the number zero is considered to be positive. Thus, a positive number A is rep-
resented as shown in Equation 1.11.

A = (0 an–2 an–3 … a1a0)r (1.11)

A negative number with the same absolute value as shown in Equation 1.12.

A ' = [(r – 1) an–2 an–3 … a1a0]r (1.12)

1.2 Number Representations 27

In sign-magnitude notation, the positive version, +A, differs from the negative
version, –A, only in the sign digit position. The magnitude portion an–2 an–3 … a1a0
is identical for both positive and negative numbers of the same absolute value.

There are two problems with sign-magnitude representation. First, there are two
representations for the number 0; specifically, + 0 and – 0. Ideally there should be a
unique representation for the number 0. Second, when adding two numbers of oppo-
site signs, the magnitudes of the numbers must be compared to determine the sign of
the result. This is not necessary in the other two methods that are presented in subse-
quent sections. Sign-magnitude notation is used primarily for representing fractions
in floating-point notation.

Examples of sign-magnitude notation are shown below using 8-bit binary num-
bers and decimal numbers that represent both positive and negative values. Notice
that the magnitude parts are identical for both positive and negative numbers for the
same radix.

Radix 2

0 0 0 1 0 1 0 0 + 20
1 0 0 1 0 1 0 0 – 20

Magnitude

Sign

0 1 0 0 1 1 0 1 . 1 0 1 + 77.625
1 1 0 0 1 1 0 1 . 1 0 1 – 77.625

0 1 1 0 0 1 1 1 . 0 1 1 +103.375
1 1 1 0 0 1 1 1 . 0 1 1 –103.375

Radix 10

0 7 4 5 + 745
9 7 4 5 – 745

where 0 represents a positive number in radix 10, and 9 (r – 1) represents a negative
number in radix 10. Again, the magnitudes of both numbers are identical.

0 6 7 9 3 8 + 67938
9 6 7 9 3 8 – 67938

28 Chapter 1 Number Systems and Number Representations

1.2.2 Diminished-Radix Complement

This is the (r – 1) complement in which the radix is diminished by 1 and an integer has
the decimal range shown in Equation 1.13, which is the same as the range for sign-
magnitude integers, although the numbers are represented differently. The number
zero is again considered to be positive. Thus, a positive number A is represented as
shown in Equation 1.14. A negative number is represented as shown in Equation 1.15,
in which all the digits are inverted.

 – (rn – 1 – 1) to + (rn – 1 – 1) (1.13)

A = (0 an–2 an–3 … a1a0)r (1.14)

A ' = [(r – 1) an–2 'an–3 ' … a1'a0']r (1.15)

For the r – 1 complement, individual digits can be determined as shown in Equa-
tion 1.16. For example, if ai = 1 in radix 2, then the diminished-radix complement of
ai is ai' = [(r – 1) – 1] = [(2 – 1) – 1] = 0. In a similar manner, if ai = 0 in radix 2, then
the diminished-radix complement of ai is ai' = [(r – 1) – 0] = [(2 – 1) – 0] = 1. In binary
notation (r = 2), the diminished-radix complement (r – 1 = 2 – 1 = 1) is the 1s com-
plement.

ai' = (r – 1) – ai (1.16)

Positive and negative integers have the ranges shown below and are represented as
shown in Equation 1.14 and Equation 1.15, respectively.

Positive integers: 0 to 2n – 1 – 1
Negative integers: 0 to – (2n – 1 – 1)

To obtain the 1s complement of a binary number, simply complement (invert) all
the bits. Thus, 0011 11002 (+ 6010) becomes 1100 00112 (– 6010). To obtain the value
of a positive binary number, the 1s are evaluated according to their weights in the posi-
tional number system, as shown below.

27 26 25 24 23 22 21 20

0 0 1 1 1 1 0 0 + 6010

1.2 Number Representations 29

To obtain the value of a negative binary number, the 0s are evaluated according to
their weights in the positional number system, as shown below.

27 26 25 24 23 22 21 20

1 1 0 0 0 0 1 1 – 6010

When performing arithmetic operations on two operands, comparing the signs is
straightforward, because the leftmost bit is a 0 for positive numbers and a 1 for nega-
tive numbers. There is, however, a problem when using the diminished-radix com-
plement. There is a dual representation of the number zero, because a word of all 0s
(+ 0) becomes a word of all 1s (– 0) when complemented. This does not allow the
requirement of having a unique representation for the number zero to be attained. The
examples shown below represent the diminished-radix complement for different radi-
ces.

Example 1.3 The binary number 1001 11012 will be 1s complemented. The num-
ber has a decimal value of – 98. To obtain the 1s complement, subtract each digit in
turn from 1, the highest number in the radix. Or in the case of binary, simply invert
each bit. Therefore, the 1s complement of 1001 11012 is 0110 00102, which has a dec-
imal value of + 98.

1 – 1
0

1 – 0
1

1 – 0
1

1 – 1
0

1 – 1
0

1 – 1
0

1 – 0
1

1 – 1
0

To verify the operation, add the negative and positive numbers to obtain 1111
11112, which is zero in 1s complement notation.

1 0 0 1 1 1 0 1
+) 0 1 1 0 0 0 1 0

1 1 1 1 1 1 1 1

Example 1.4 The diminished-radix complement (9s complement) of 08752.4310,
will be obtained, where 0 is the sign digit indicating a positive number. The 9s com-
plement is obtained by using Equation 1.15 and Equation 1.16. When a number is
complemented in any form, the number is negated. Therefore, the sign of the com-
plemented radix 10 number is (r – 1) = 9. The remaining digits of the number are
obtained by using Equation 1.16, such that each digit in the complemented number is
obtained by subtracting the given digit from 9. Therefore, the 9s complement of
08752.4310 is

9 – 0
9

9 – 8
1

9 – 7
2

9 – 5
4

9 – 2
7

9 – 4
5

9 – 3
6

.

30 Chapter 1 Number Systems and Number Representations

The sign digit is (r – 1) = 9. If the above answer is negated, then the original num-
ber will be obtained. Thus, the 9s complement of 91247.5610 = 08752.4310; that is,
the 9s complement of –1247.5610 is +8752.4310, as written in conventional sign mag-
nitude notation for radix 10.

To verify the operation, add the negative and positive numbers to obtain 9999910,
which is zero in 9s complement notation.

0 8 7 5 2 . 4 3
+) 9 1 2 4 7 . 5 6

9 9 9 9 9 . 9 9

Example 1.5 The diminished-radix complement of the positive radix 8 number
043768 will be 7s complemented. To obtain the 7s complement, subtract each digit in
turn from 7 (the highest number in the radix), as shown below to obtain the negative
number with the same absolute value. The sign of the positive number is 0 and the sign
of the negative number is 7.

7 – 0
7

7 – 4
3

7 – 3
4

7 – 7
0

7 – 6
1

To verify the operation, add the negative and positive numbers to obtain 777778,
which is zero in 7s complement notation.

0 4 3 7 6
+) 7 3 4 0 1

7 7 7 7 7

Example 1.6 The diminished-radix complement of the positive radix 16 number
0B8E516 will be 15s complemented. To obtain the 15s complement, subtract each
digit in turn from 15 (the highest number in the radix), as shown below to obtain the
negative number with the same absolute value. The sign of the positive number is 0
and the sign of the negative number is F.

F – 0
F

F – B
4

F – 8
7

F – E
1

F – 5
A

To verify the operation, add the negative and positive numbers to obtain FFFFF16,
which is zero in 15s complement notation.

0 B 8 E 5
+) F 4 7 1 A

F F F F F

1.2 Number Representations 31

1.2.3 Radix Complement

This is the r complement, where an integer has the following decimal range:

 – (rn – 1) to + (rn – 1 – 1) (1.17)

where the number zero is positive. A positive number A is represented as

A = (0 an–2 an–3 … a1a0)r (1.18)

and a negative number as

(A ') + 1 = {[(r – 1) an–2 'an–3 ' … a1'a0'] + 1}r (1.19)

where A ' is the diminished-radix complement. Thus, the radix complement is
obtained by adding 1 to the diminished-radix complement; that is, (r – 1) + 1 = r. Note
that all three number representations have the same format for positive numbers and
differ only in the way that negative numbers are represented, as shown in Table 1.14
for n-bit numbers.

Table 1.14 Number Representations for Positive and Negative Integers of the
Same Absolute Value for Radix r

Number Representation Positive Numbers Negative Numbers
Sign magnitude 0 an–2 an–3 … a1a0 (r – 1) an–2 an–3 … a1a0
Diminished-radix
complement

0 an–2 an–3 … a1a0 (r – 1) an–2 'an–3 ' … a1'a0'

Radix complement 0 an–2 an–3 … a1a0 (r – 1) an–2 'an–3 ' … a1'a0' + 1

Another way to obtain the radix complement of a number is to keep the low-order
0s and the first 1 unchanged and to complement (invert) the remaining high-order bits.
Thus, the radix complement (2s complement) of the binary number 0101 1100 (+92) is
1010 0100 (–92). To obtain the value of a negative number in radix 2, the 0s are eval-
uated according to their weights in the positional number system, then 1 is added to the
value obtained. There is a unique zero for binary numbers in radix complement —
when the number zero is 2s complemented, the bit configuration does not change; that
is, the 2s complement of 0000 0000 is 1111 1111 + 1 = 0000 0000.

32 Chapter 1 Number Systems and Number Representations

1.2.4 Arithmetic Operations

This section will concentrate on fixed-point binary, binary-coded decimal (BCD), and
floating point operations, since these are the dominant number representations in com-
puters. Examples of addition, subtraction, multiplication, and division will be pre-
sented for these three number representations.

Binary addition Numbers in radix complement representation are designated as
signed numbers, specifically as 2s complement numbers in binary. The sign of a
binary number can be extended to the left indefinitely without changing the value of
the number. For example, the numbers 000010102 and 00000000010102 both repre-
sent a value of + 1010; the numbers 111101102 and 11111111101102 both represent a
value of – 1010.

Thus, when an operand has its sign extended to the left, the expansion is achieved
by setting the extended bits equal to the leftmost (sign) bit. This is equivalent to the
X86 instructions CBW (convert byte to word), CWDE (convert word to doubleword),
and CDQE (convert doubleword to quadword). The maximum positive number con-
sists of a 0 followed by a field of all 1s, depending on the word size of the operand.
Similarly, the maximum negative number consists of a 1 followed by a field of all 0s,
depending on the word size of the operand.

The radix (or binary) point can be in any fixed position in the number — thus the
radix point is referred to as a fixed-point radix. For integers, however, the radix point
is positioned to the immediate right of the low-order bit position.

Overflow occurs when the result of an arithmetic operation (usually addition)
exceeds the word size of the machine; that is, the sum is not within the representable
range of numbers provided by the number representation. For numbers in 2s comple-
ment representation, the range is from –2n–1 to +2n–1 – 1. For two n-bit numbers

A = an–1 an–2 an–3 … a1a0

B = bn–1 bn–2 bn–3 … b1 b0

an–1 and bn–1 are the sign bits of operands A and B, respectively. Overflow can be
detected by either of the following two equations:

Overflow = (an–1 • bn–1 • sn–1') + (an–1 ' • bn–1' • sn–1)

Overflow = cn–1 ⊕ cn–2 (1.20)

where the symbol “ • ” is the logical AND operator, the symbol “ + ” is the logical OR
operator, the symbol “ ⊕” is the exclusive-OR operator as defined below, and cn–1 and
cn–2 are the carry bits out of positions n – 1 and n – 2, respectively.

Thus, overflow produces an erroneous sign reversal and is possible only when
both operands have the same sign. An overflow cannot occur when adding two
operands of different signs, since adding a positive number to a negative number pro-
duces a result that falls within the limit specified by the two numbers.

1.2 Number Representations 33

Binary subtraction The operands used for subtraction are the minuend and sub-
trahend. The rules for binary subtraction are not easily applicable to computer sub-
traction. The method used by most processors is to add the radix complement (2s
complement) of the subtrahend to the minuend; that is, change the sign of the minuend
then add the two operands, as shown below.

A = 0110 1101 +109
–) B = 0011 0111 +55

A = 0110 1101 +109
+) B = 1100 1001 –55

0011 0110 +54

The diminished-radix complement is rarely used in arithmetic applications
because of the dual interpretation of the number zero (0000 ... 0000 and 1111 ... 1111).
The example shown below illustrates another disadvantage of the diminished-radix
complement. Given the two radix 2 numbers shown below, in 1s complement repre-
sentation, the difference will be obtained.

A = 1111 1001 (– 6)
B = 1110 1101 (– 18)

A – B = A + B ' (1s complement of B)

A = 1111 1001 (– 6)
+) B ' = 0001 0010 (+ 18) 1s complement of B

1 0000 1011 (+ 11) Incorrect result
 1 End-around carry

A – B = 0000 1100 (+ 12) Correct result

When performing a subtract operation using 1s complement operands, an end-
around carry will result if at least one operand is negative. As can be seen above, the
result will be incorrect (+ 11) if the carry is not added to the intermediate result.
Although 1s complementation may seem easier than 2s complementation, the result
that is obtained after an add operation is not always correct. In 1s complement nota-
tion, the final carry-out cn – 1 cannot be ignored. If the carry-out is zero, then the result
is correct. Thus, 1s complement subtraction may result in an extra add cycle to obtain
the correct result.

Binary multiplication The multiplication of two n-bit operands results in a 2n-bit
product, where A = an – 1 an – 2 an – 3 . . . a1 a0 and B = bn – 1 bn – 2 bn – 3 . . . b1 b0 to
yield A × B = p2n – 1 p2n – 2 p2n – 3 . . . p1 p0. Multiplication of two binary numbers can
be accomplished by a variety of methods. These methods include the sequential add-
shift technique, the Booth algorithm, bit-pair recoding, a 2-dimension planar array, a
table lookup technique, and a method using memory.

34 Chapter 1 Number Systems and Number Representations

The different methods for multiplying two binary numbers are beyond the scope
of this book; however, the sequential add-shift technique will be presented in this sec-
tion as a representative method. Multiplication of two fixed-point binary numbers in
2s complement representation using the add-shift method is done by a process of suc-
cessive add and shift operations. The process consists of multiplying the multiplicand
by each multiplier bit as the multiplier is scanned right to left. If the multiplier bit is a
1, then the multiplicand is copied as a partial product; otherwise, 0s are inserted as a
partial product. The partial products inserted into successive lines are shifted left one
bit position from the previous partial product. The partial products are then added to
form the product.

The sign of the product is determined by the signs of the operands. If the signs are
the same, then the sign of the product is plus; if the signs are different, then the sign of
the product is minus. In this sequential add-shift technique, however, the multiplier
must be positive. When the multiplier is positive, the bits are treated the same as in the
sign-magnitude representation. When the multiplier is negative, the low-order 0s and
the first 1 are treated the same as a positive multiplier, but the remaining high-order 1s
of a negative multiplier are treated as 1s corresponding to their bit position and not as
sign bits. Therefore, the algorithm treats the multiplier as unsigned, or positive.

The problem is easily solved by forming the 2s complement of both the multiplier
and the multiplicand. An alternative approach is to 2s complement the negative mul-
tiplier, leaving the multiplicand unchanged. Depending on the signs of the initial oper-
ands, it may be necessary to complement the product.

The example shown below in Figure 1.13 uses the add-shift method to multiply
the positive operands of 01112 (+ 710) and 01012 (+ 510). Since both operands are pos-
itive, the product will be positive (+ 3510).

0 1 1 1 (+ 7)
×) 0 1 0 1 (+ 5)

0 0 0 0 0 1 1 1
0 0 0 0 0 0 0
0 0 0 1 1 1
0 0 0 0 0
0 0 1 0 0 0 1 1 (+ 35)

Figure 1.13 Example of the sequential add-shift technique.

Binary division Division has two operands that produce two results, as shown
below. Unlike multiplication, division is not commutative; that is, A ÷ B ≠ B ÷ A,
except when A = B.

Dividend
= Quotient + Remainder

Divisor

1.2 Number Representations 35

Like multiplication, there are many ways to perform division on two fixed-point
binary operands, all of which are also beyond the scope of this book. These methods
include the sequential shift add/subtract technique for restoring and nonrestoring divi-
sion, SRT division, multiplicative division, and division using a 2-dimension planar
array. All operands for a division operation comply with the following equation:

Dividend = (Quotient × Divisor) + Remainder (1.21)

The remainder has a smaller value than the divisor and has the same sign as the
dividend. If the divisor B has n bits, then the dividend A has 2n bits and the quotient Q
and remainder R both have n bits, as shown below.

A = a2n – 1 a2n – 2 … an an – 1 . . . a1 a0

B = bn – 1 bn – 2 … b1 b0

Q = qn – 1 qn – 2 … q1 q0

R = rn – 1 rn – 2 … r1 r0

The sign of the quotient is qn – 1 and is determined by the rules of algebra; that is,

qn – 1 = a2n – 1 ⊕ bn – 1

Multiplication is a sequential add-shift operation, whereas division is a shift add/
subtract operation. The result of a shift add/subtract operation determines the next
operation in the division sequence. If the partial remainder is negative, then the carry-
out is 0 and becomes the low-order quotient bit q0. The partial remainder thus
obtained is restored to the value of the previous partial remainder. This technique is
referred to as restoring division. If the partial remainder is positive, then the carry-out
is 1 and becomes the low-order quotient bit q0. In this case, the partial remainder is not
restored.

An example of restoring division using a hardware algorithm is shown in Figure
1.14, where the dividend in register-pair A Q is 0000 01112 (+710) and the divisor in
register B is 00112 (+310). The algorithm is implemented with a subtractor and a 2n-
bit shift register.

The first operation in Figure 1.14 is to shift the dividend left 1 bit position, then
subtract the divisor, which is accomplished by adding the 2s complement of the divi-
sor. Since the result of the subtraction is negative, the dividend is restored by adding
back the divisor, and the low-order quotient bit q0 is set to 0. This sequence repeats for
a total of four cycles — the number of bits in the divisor. If the result of the subtraction
was positive, then the partial remainder is placed in register A, the high-order half of
the dividend, and q0 is set to 1.

The division algorithm is slightly more complicated when one or both of the oper-
ands are negative. The operands can be preprocessed and/or the results can be

36 Chapter 1 Number Systems and Number Representations

postprocessed to achieve the desired results. The negative operands are converted to
positive numbers by 2s complementation before the division process begins. The
resulting quotient is then 2s complemented, if necessary.

Unlike multiplication, overflow can occur in division. This happens when the
high-order half of the dividend is greater than or equal to the divisor. Also, division by
zero must be avoided. Both of these problems can be detected before the division pro-
cess begins by subtracting the divisor from the high-order half of the dividend. If the
difference is positive, then an overflow or a divide by zero has been detected.

 Divisor Dividend
B A Q

0011 0000 0111
Shift left 1 0000 111–
Subtract B 1101

 0 1101

Restore, add B 0011
set q0 = 0 0000 1110
Shift left 1 0001 110–
Subtract B 1101

 0 1110

Restore, add B 0011
set q0 = 0 0001 1100
Shift left 1 0011 100–
Subtract B 1101

 1 0000

No restore
set q0 = 1 0000 1001
Shift left 1 0001 001–
Subtract B 1101

 0 1110

Restore, add B 0011
set q0 = 0 0001 0010

R Q

Figure 1.14 Example of sequential shift add/subtract restoring division.

1.2 Number Representations 37

Binary-coded decimal addition When two binary-coded decimal (BCD) digits
are added, the range is 0 to 18. If the carry-in cin = 1, then the range is 0 to 19. If the
sum digit is ≥ 10 (10102), then it must be adjusted by adding 6 (01102). This excess-
6 technique generates the correct BCD sum and a carry to the next higher-order digit,
as shown below in Figure 1.15 (a). A carry-out of a BCD sum will also cause an
adjustment to be made to the sum — called the intermediate sum — even though the
intermediate sum is a valid BCD digit, as shown in Figure 1.15 (b).

1010 (1010)
+) 0110 Adjust

1 0000

0001 0000 10 in BCD

1001 (910)
+) 1001 (910)

1 0010 Intermediate sum
0110 Adjust
1000

0001 1000 18 in BCD(a)

(b)

Figure 1.15 Example showing adjustment of a BCD sum.

There are three conditions that indicate when the intermediate sum of a BCD addi-
tion should be adjusted by adding six, as shown in Equation 1.22, where c8 is the carry-
out of the high-order bit, b8 b4 = 11 or b8 b2 = 11.

Carry = c8 + b8 b4 + b8 b2 (1.22)

The algorithms used for BCD arithmetic are basically the same as those used for
fixed-point arithmetic for radix 2. The main difference is that BCD arithmetic treats
each digit as four bits, whereas fixed-point arithmetic treats each digit as a bit. Shift-
ing operations are also different — decimal shifting is performed on 4-bit increments.

Binary-coded decimal subtraction Subtraction in BCD is essentially the same
as in fixed-point binary: add the rs complement of the subtrahend to the minuend,
which for BCD is the 10s complement. Example 1.7 shows a subtract operation using
BCD numbers. Negative results can remain in 10s complement notation or be recom-
plemented to sign-magnitude notation with a negative sign.

38 Chapter 1 Number Systems and Number Representations

Example 1.7 The following decimal numbers will be subtracted using BCD arith-
metic: minuend = + 30 and subtrahend = + 20 to yield a difference of +10, as shown in
Figure 1.16. This can be considered as true subtraction, because the result is the dif-
ference of the two numbers, ignoring the signs. A carry-out of 1 from the high-order
decade indicates a positive number. A carry-out of 0 from the high-order decade indi-
cates a negative number in 10s complement notation. The number can be changed to
an absolute value by recomplementing the number and changing the sign to indicate a
negative value.

+ 30 0011 0000
–) + 20 +) 0111 1010 10s complement

+ 10 1 1010
1 1011 0110
 0110 0000

0001

+ 0001 0000

Figure 1.16 Example of BCD subtraction.

Binary-coded decimal multiplication The multiplication algorithms for deci-
mal multiplication are similar to those for fixed-point binary multiplication except in
the way that the partial products are formed. In binary multiplication, the multiplicand
is added to the previous partial product if the multiplier bit is a 1. In BCD multipli-
cation, the multiplicand is multiplied by each digit of the multiplier and these subpar-
tial products are aligned and added to form a partial product. When adding digits to
obtain a partial product, adjustment may be required to form a valid BCD digit. Exam-
ple 1.8 illustrates BCD multiplication.

Multiplication of two BCD operands can also be accomplished by using high-
speed read-only memory (ROM). The concatenated four bits of the multiplicand and
the four bits of the multiplier constitute the memory address. The outputs from the
memory are valid BCD digits — no correction is required. All corrections (or adjust-
ments) are accomplished by the memory programming.

Decimal multiplication can also be facilitated by using a table lookup method.
This is similar to the table lookup method for fixed-point multiplication. The multi-
plicand table resides in memory.

Example 1.8 The following decimal numbers will be multiplied using BCD arith-
metic: multiplicand = + 67 and multiplier = + 9, resulting in a product of + 603, as
shown in Figure 1.17.

67
×) 9

603
9 × 7 0110 0011
9 × 6 0101 0100

1 1010
0110 0110

 0000

0110 0000 0011

1.2 Number Representations 39

Figure 1.17 Example of BCD multiplication.

Binary-coded decimal division The method of decimal division presented here
is analogous to the binary search method used in programming, which is a systematic
way of searching an ordered database. The method begins by examining the middle of
the database. For division, the method adds or subtracts multiples of the divisor or par-
tial remainder. The arithmetic operation is always in the following order:

– 8 × the divisor
± 4 × the divisor
± 2 × the divisor
± 1 × the divisor

This method requires four cycles for each quotient digit. The first operation is – 8
× the divisor. If the result is less than zero, then 4 × the divisor is added to the partial
remainder; if the result is greater than or equal to zero, then 8 is added to a quotient
counter and 4 × the divisor is subtracted from the partial remainder. The process
repeats for ± 4 × the divisor, ± 2 × the divisor, and ± 1 × the divisor. Whenever +8, +4,
+2, or +1 is added to the quotient counter, the sum of the corresponding additions is the
quotient digit. Whenever a partial remainder is negative, the next version of the divi-
sor is added to the partial remainder; whenever a partial remainder is positive, the
next version of the divisor is subtracted from the partial remainder. Example 1.9 illus-
trates this technique.

Example 1.9 Let the dividend = 1945 and the divisor = 20 to yield a quotient of 97
and a remainder of 5. Figure 1.18 shows the decimal version and Figure 1.19 shows
the application of the BCD algorithm for the same decimal operands.

9 7
2 0 1 9 4 5

1 8 0
1 4 5
1 4 0

5

40 Chapter 1 Number Systems and Number Representations

Figure 1.18 Example of BCD division using decimal operands.

9
2 0 1 9 4 5

– Divisor × 8 – 1 6 0
+ 3 4

– Divisor × 4 – 8 0
– 4 6

+ Divisor × 2 + 4 0
– 6

+ Divisor × 1 + 2 0
+ 1 4 Partial remainder

7
2 0 1 4 5

– Divisor × 8 – 1 6 0
– 1 5

+ Divisor × 4 + 8 0
+ 6 5

– Divisor × 2 – 4 0
+ 2 5

– Divisor × 1 – 2 0
+ 5 Remainder

Figure 1.19 Example of BCD division using the BCD algorithm for the decimal
operands shown in Figure 1.18.

1.2 Number Representations 41

Floating-point addition Floating-point numbers consist of the following three
fields: a sign bit, s; an exponent, e; and a fraction, f. These parts represent a number
that is obtained by multiplying the fraction, f , by a radix, r, raised to the power of the
exponent, e, as shown in Equation 1.23 for the number A, where f and e are signed
fixed-point numbers, and r is the radix (or base).

A = f × r e (1.23)

The exponent is also referred to as the characteristic; the fraction is also referred
to as the significand or mantissa. Figure 1.20 shows the format for 32-bit single-pre-
cision and 64-bit double-precision floating-point numbers. The single-precision for-
mat consists of a sign bit that indicates the sign of the number, an 8-bit signed
exponent, and a 24-bit fraction. The double-precision format consists of a sign bit, an
11-bit signed exponent, and a 52-bit fraction.

Although the fraction can be represented in sign-magnitude, diminished-radix
complement, or radix complement, the fraction is predominantly expressed in sign-
magnitude representation, where the sign bit is bit 31 and the magnitude is bits 22
through 0 for the single-precision format.

 31 23 22 0

Sign bit:
0 = positive
1 = negative

8-bit signed
exponent
(characteristic)

23-bit fraction
(mantissa, significand)

(a)

 63 52 51 0

Sign bit:
0 = positive
1 = negative

11-bit signed
exponent
(characteristic)

52-bit fraction
(mantissa, significand)

(b)

Figure 1.20 Floating-point formats for the IEEE Std 754-1985 (reaffirmed 1990):
(a) 32-bit single precision and (b) 64-bit double precision.

42 Chapter 1 Number Systems and Number Representations

When adding or subtracting floating-point numbers, the exponents are compared
and made equal. This comparison results in a right shift of the fraction with the smaller
exponent. If the exponents are eA and eB, then the shift amount is equal to the absolute
value of eA – eB ; that is, | eA – eB |. The comparison is easier if the exponents are
unsigned — a simple comparator can be used for the comparison. Therefore, as the
exponents are being formed, a bias constant is added to the exponents such that all
exponents are positive internally.

Fractions in the IEEE format are normalized; that is, the leftmost significant bit is
a 1. Since there will always be a 1 to the immediate right of the radix point, the 1 bit
is not explicitly shown — it is an implied 1.

Floating-point addition is defined as shown in Equation 1.24 for two numbers A
and B, where A = fA × reA and B = fB × reB . The terms shown below are shifting fac-
tors to shift the fraction with the smaller exponent.

r eA eB–()– , r eB eA–()–

This is analogous to a divide operation, since r eA eB–()– is equivalent to the term
1/r eA eB–() , which is a right shift.

A + B = (fA ×) + (fB ×)

= [fA + (fB ×)] × for eA > eB

= [(fA ×) + fB] × for eA ≤ eB

reA reB

r eA eB–()– reA

r eB eA–()– reB (1.24)

Figure 1.21 illustrates an example of floating-point addition. The fractions must
be properly aligned before addition can take place; therefore, the fraction with the
smaller exponent is shifted right and the exponent is adjusted by increasing the expo-
nent by one for each bit position shifted.

Before alignment
A = 0 . 1 1 0 1 0 1 0 0 × 25 +26.5

B = 0 . 1 0 0 0 1 1 0 0 × 23 +4.375

After alignment
A = 0 . 1 1 0 1 0 1 0 0 × 25 +26.5

B = 0 . 0 0 1 0 0 0 1 1 × 25 +4.375

A + B = 0 . 1 1 1 1 0 1 1 1 × 25 +30.875

Figure 1.21 Example of floating-point addition requiring fraction alignment.

1.2 Number Representations 43

Floating-point subtraction The subtraction of two fractions is identical to the
subtraction algorithm presented in fixed-point subtraction. If the signs of the operands
are the same (Asign ⊕ Bsign = 0) and the operation is subtraction, then this is referred to
as true subtraction and the fractions are subtracted. If the signs of the operands are dif-
ferent (Asign ⊕ Bsign = 1) and the operation is addition, then this is also specified as
true subtraction.

All operands will consist of normalized fractions properly aligned with biased
exponents. Floating-point subtraction is defined as shown in Equation 1.25 for two
numbers A and B, where A = fA × reA and B = fB × reB . An example of floating-point
subtraction is shown in Figure 1.22 for two operands, A = +36.5 and B = +5.75.

A – B = (fA ×) – (fB ×)

= [fA – (fB ×)] × for eA > eB

= [(fA ×) – fB] × for eA ≤ eB

reA reB

r eA eB–()– reA

r eB eA–()– reB (1.25)

Before alignment
A = 0 . 1 0 0 1 0 0 1 0 × 26 +36.5

B = 0 . 1 0 1 1 1 0 0 0 × 23 +5.75

After alignment
A = 0 . 1 0 0 1 0 0 1 0 × 26 +36.5

B = 0 . 0 0 0 1 0 1 1 1 × 26 +5.75

Subtract fractions
A = 0 . 1 0 0 1 0 0 1 0 × 26

+) B ' + 1 = 0 . 1 1 1 0 1 0 0 1 × 26

1 ← 0 . 0 1 1 1 1 0 1 1 × 26 +30.75

Postnormalize (SL1) 0 . 1 1 1 1 0 1 1 0 × 25 +30.75

Figure 1.22 Example of floating-point subtraction requiring fraction alignment.

44 Chapter 1 Number Systems and Number Representations

Floating-point multiplication Floating-point multiplication is slightly easier
than addition or subtraction, because the exponents do not have to be compared and
the fractions do not have to be aligned. For floating-point multiplication, the expo-
nents are added and the fractions are multiplied. Both operations can be done in par-
allel. Any of the algorithms presented in binary fixed-point multiplication can be used
to multiply the floating-point fractions.

Floating-point multiplication is defined as shown in Equation 1.26, which shows
fraction multiplication and exponent addition performed simultaneously.

A × B
=

 (fA × r eA) × (fB × r eB)

= (fA × fB) × reA + eB
(1.26)

Multiplication using the single-precision format generates a double-precision 2n-
bit product; therefore, the resulting fraction is 46 bits. However, the range of a single-
precision fraction in conjunction with the exponent is sufficiently accurate so that a
single-precision result is usually adequate. Therefore, the low-order half of the frac-
tion can be truncated, which may require a rounding procedure to be performed. The
rounding techniques of truncation rounding, adder-based rounding, and von Neumann
rounding are covered in Chapter 2.

The sign of the product is determined by the signs of the floating-point numbers.
If the signs are the same, then the sign of the product is positive; if the signs are dif-
ferent, then the sign of the product is negative. This can be determined by the exclu-
sive-OR of the two signs, as shown in Equation 1.27.

Product sign = Asign ⊕ Bsign (1.27)

The example shown in Figure 1.23 uses the sequential add-shift method with 8-bit
operands. A multiplicand fraction fract_a = 0.1010 0000 × 23 (+5) is multiplied by a
multiplier fract_b = 0.1100 0000 × 22 (+3) with partial product D = 0000 0000 to pro-
duce a product of prod = 0.1111 0000 0000 0000 × 24 (+15). Register A contains the
normalized multiplicand fraction, fract_a; register prod contains the high-order n bits
of the partial product (initially set to all zeroes); and register B contains the normalized
multiplier fraction, fract_b.

Since the multiplication involves two n-bit operands, a count-down sequence
counter, count, is set to a value that represents the number of bits in one of the oper-
ands. The counter is decremented by one for each step of the add-shift sequence.
When the counter reaches a value of zero, the operation is finished and the product is
normalized, if necessary.

If the low-order bit of register fract_b is equal to zero, then zeroes are added to the
partial product and the sum is loaded into register prod. In this case, it is not necessary
to perform an add operation — a right shift can accomplish the same result. However,

1.2 Number Representations 45

it may require less logic if the same add-shift sequence occurs for each cycle. The
sequence counter is then decremented by one. If the low-order bit of register fract_b
is equal to one, then the multiplicand is added to the partial product. The sum is loaded
into register prod and the sequence counter is decremented.

fract_a (+5) prod fract_b (+3)
1010 0000 prod 0000 0000 1100 0000

Shift right 6 0000 0000 0000 0011
Add A +) 1010 0000 Add-shift

0 1010 0000 0000 0011

Shift right 1 0101 0000 0000 0001
Add A +) 1010 0000 Add-shift

0 1111 0000 0000 0001

Shift right 1 0111 1000 0000 0000
8 cycles (count = 0)
Postnormalize 1111 0000 0000 0000

Product = 0. 1111 0000 0000 0000 × 2(3+2)–1 = 24

Figure 1.23 Example of floating-point multiplication using the sequential add-
shift method for two 8-bit operands.

Floating-point division Floating-point division performs two operations in par-
allel: fraction division and exponent subtraction. Fraction division can be accom-
plished using any of the methods for fixed-point division. The dividend is usually 2n
bits and the divisor is n bits; that is, the dividend conforms to the double-precision for-
mat and the divisor conforms to the single-precision format.

Floating-point division is defined as shown in Equation 1.28, which shows frac-
tion division and exponent subtraction performed simultaneously.

A / B
=

 (fA × r eA) / (fB × r eB)

= (fA / fB) × reA – eB
(1.28)

46 Chapter 1 Number Systems and Number Representations

Figure 1.24 shows floating-point division using the sequential shift-subtract/add
restoring division method for a dividend fraction fract_a = 0.1000 0110 × 27 (+67) and
a divisor fraction fract_b = 0.1000 × 24 (+8) to yield a quotient of 1000 × 24 (+8) and
a remainder of 0011 × 24 (+3).

fract_b (+8) fract_a (+67)
1000 1000 0110
Align 0100 0011 × 2(7 + 1) = 28

Shift left 1 1000 011–
Subtract B +) 1000

1 0000

No restore 0000 0111

Shift left 1 0000 111–
Subtract B +) 1000

0 1000

Restore +) 1000
0000 1110

Shift left 1 0001 110–
Subtract B +) 1000

0 1001

Restore +) 1000
0001 1100

Shift left 1 0011 100–
Subtract B +) 1000

0 1011

Restore +) 1000
0011 1000

R Q × 2(7 – 4) + 1 = 24

Figure 1.24 Example of floating-point division using the sequential shift-sub-
tract/add restoring division method.

1.3 Problems 47

Since the high-order half of the dividend is greater than or equal to the divisor, the
dividend is shifted right one bit position to prevent overflow. In the first cycle of this
4-cycle example, the dividend is shifted left one bit position and the divisor is sub-
tracted from the high-order four bits of the dividend by adding the 2s complement of
the divisor. The difference produces a 0 in the leftmost bit of the partial remainder,
indicating that the divisor is less than the corresponding dividend bits. This results in
a no-restore cycle in which the partial remainder (0000) is not restored. A 1 bit is
placed in the next lower-order quotient bit and appended to the right of the low-order
dividend bits.

Then the resulting dividend is shifted left one bit position and the divisor is sub-
tracted from the high-order four bits of the dividend. The result is a partial remainder
that is negative — the leftmost bit is 1. Therefore, the high-order four bits of the partial
remainder are restored to their previous values by adding the divisor. Then a 0 is
placed in the next lower-order bit position of the quotient and appended to the right of
the low-order dividend bits.

This restore-shift-subtract cycle repeats for a total of four cycles, resulting in a 4-
bit quotient of 1000 and a 4-bit remainder of 0011.

1.3 Problems

1.1 Convert the following unsigned binary numbers to decimal:

(a) 1111 00002
(b) 1000 0001.1112

1.2 Convert the following unsigned binary numbers to decimal and hexadecimal:

(a) 0100 1101.10112
(b) 0100 1101.10112

1.3 Convert the unsigned binary number 0111 11012 to decimal.

1.4 Convert the signed binary number 1100 11002 to decimal.

1.5 Convert the octal number 173.258 to decimal.

1.6 Convert the binary-coded octal number 110 010 101BCO to decimal.

1.7 Convert the decimal number 487510 to hexadecimal.

1.8 Convert the hexadecimal number AF6C.B5616 to decimal.

48 Chapter 1 Number Systems and Number Representations

1.9 Add the following binary numbers to yield a 12-bit sum:

1111 1111 1111
1111 1111 1111
1111 1111 1111
1111 1111 1111

1.10 Obtain the difference of the following binary numbers:

1010 0101 1111
0111 1110 1010

1.11 Convert the hexadecimal number 4A3CB16 to binary and octal.

1.12 Convert the following octal numbers to hexadecimal: 65368 and 634578.

1.13 Convert the binary number 0100 1101.10112 to decimal and hexadecimal no-
tation.

1.14 Convert 76548 to radix 3.

1.15 Represent the decimal numbers + 54, – 28, + 127, and – 13 in sign magnitude,
diminished-radix complement, and radix complement for radix 2 using eight
bits.

1.16 Multiply the unsigned binary numbers 11112 and 00112.

1.17 Obtain the radix complement of F8B616.

1.18 Obtain the radix complement of 543206.

1.19 The numbers shown below are in sign-magnitude representation. Convert the
numbers to 2s complement representation for radix 2 with the same numerical
value using eight bits.

Sign magnitude 2s complement
1001 1001
0001 0000
1011 1111

1.20 Perform the following binary subtraction using the diminished-radix comple-
ment method:

101111
–) 000011

1.3 Problems 49

1.21 Add the following BCD numbers:

1001 1000
+) 1001 0111

1.22 Obtain the sum of the following radix 3 numbers:

1 1 1 1
1 1 1 1
1 1 1 1

+) 1 1 1 1

1.23 Multiply the two binary numbers shown below, which are in radix comple-
mentation.

1 1 1 1 1
×) 0 1 0 1 1

1.24 Let A and B be two binary numbers in 2s complement representation as shown
below, where A ' and B ' are the 1s complement of A and B, respectively. Per-
form the operation listed below. The answer is to be an 8-bit number in 2s
complement representation.

A = 1011 0001
B = 1110 0100

(A ' + 1) – (B ' + 1)

1.25 The operands shown below are to be added using decimal (BCD) addition.

0111 0010 0101
0101 0011 0110

This page intentionally left blankThis page intentionally left blank

51

2
X86 Processor Architecture

Microprocessors have evolved considerably over the past four decades, from the Intel
4-bit 4004 to the multi-core processors of today. A multi-core processor consists of
two or more separate central processing units (CPUs), called cores. Thus, a quad-core
processor consists of four independent CPUs. Multi-core processors can be designed
to accommodate very-long-instruction-words (VLIWs), a pipelined reduced-instruc-
tion-set computer (RISC), or as a vector processor that operates on sets or vectors.
Multi-core processors are designed to operate with multiple threads; that is, to execute
multiple tasks simultaneously. Multithreading takes advantage of memory latency in
order to improve system performance.

The speed of computers has increased significantly with the advent of multi-core
processing and multithreading. IBM recently announced the development of a super-
computer to operate at 20 petaflops; that is, 20 × 1015 floating-point operations per
second, but this will undoubtedly be surpassed in the near future. Pipelined RISC pro-
cessors also increase machine performance by increasing parallelism by fetching,
decoding, and executing instructions simultaneously in a multi-stage pipeline.

2.1 General Architecture
All computers have the generic architecture shown in Figure 2.1. This figure does not
apply to any specific machine, but is common to all computers. Since there are over
twenty different X86 architectures, it would be unreasonable to illustrate all of the
architectural variations in this section. Figure 2.1 will be expanded in a subsequent

2.1 General Architecture
2.2 Arithmetic and Logic Unit
2.3 Control Unit
2.4 Memory Unit
2.5 Input/Output
2.6 Register Set
2.7 Translation Lookaside Buffer
2.8 The Assembler
2.9 Problems

52 Chapter 2 X86 Processor Architecture

section to more appropriately correspond to the X86 architecture execution environ-
ment, including the different sets of registers. A computer has five main functional
units: the arithmetic and logic unit (ALU); the control unit (or sequencer), both of
which constitute the CPU; the storage unit comprising the main memory and cache;
the input devices; and the output devices. The word memory will be used throughout
the book, although the International Standards Organization (ISO) states that the word
memory is a deprecated term for main storage, because memory is a human character-
istic. However, the word memory is used almost exclusively throughout the computer
industry.

Arithmetic

(ALU)

and
Logic Unit

Control unit

(Sequencer)
Output

Input/outputCPU (processor)

Memory unit Input

Main Memory
and

Cache

Figure 2.1 General architecture for a computer.

2.2 Arithmetic and Logic Unit
The ALU may consist of a complex-instruction-set computer (CISC), a parallel pro-
cessor, a pipelined reduced-instruction-set computer (RISC), or any other processor
architecture. For a pipelined computer, there are many different stages in a pipeline,
with each stage performing one unique operation in the instruction processing. When
the pipeline is full, a result is obtained usually every clock cycle.

An example of a simple 4-stage pipeline is shown in Figure 2.2. The Ifetch stage
fetches the instruction from memory; the Decode stage decodes the instruction and
fetches the operands; the Execute stage performs the operation specified in the instruc-
tion; the Store stage stores the result in the destination location. The destination is a
register file or a reorder queue if instructions are executed out of order. Four instruc-
tions are in progress at any given clock cycle. Each stage of the pipeline performs its
task in parallel with all other stages.

Ifetch Decode Execute Store

Ifetch Decode Execute Store

Ifetch Decode Execute Store

Ifetch Decode Execute Store

Ifetch Decode Execute Store

Ifetch Decode Execute Store

Ifetch Decode Execute Store Ifetch Decode Execute Store

One clock cycle

2.2 Arithmetic and Logic Unit 53

Figure 2.2 Example of a 4-stage pipeline.

If the instruction required is not available in the cache, then a cache miss occurs,
necessitating a fetch from main memory. This is referred to as a pipeline stall and
delays processing the next instruction. Information is passed from one stage to the
next by means of a storage buffer, as shown in Figure 2.3. There must be a register in
the input of each stage (or between stages) to store information that is transmitted from
the preceding stage. This prevents data being processed by one stage from interfering
with the following stage during the same clock period.

Iunit Decode Eunit Store

Interstage buffers

Figure 2.3 Four stages of a pipeline showing the interstage storage buffers.

The ALU performs arithmetic operations, such as add, subtract, multiply, and
divide in fixed-point, decimal, and floating-point number representations;
increment and decrement; logical operations, such as AND, OR, NOT, exclu-
sive-OR, exclusive-NOR; shifting operations, such as shift right algebraic
(SRA), shift right logical (SRL), shift left algebraic (SLA), and shift left logical
(SLL); and rotate operations, such as rotate right and rotate left.

54 Chapter 2 X86 Processor Architecture

2.3 Control Unit
The control unit, or control store, is part of the CPU and contains the microprogram,
also referred to as microcode. The microprogram is stored in a high-speed memory
and accommodates a set of low-level instructions that control the machine’s hardware
and is machine dependent; that is, it is written for a particular type computer. The
instructions in a microprogram represent micro operations that the CPU performs to
execute a machine-language instruction. A microprogram is also referred to as firm-
ware.

A control word in the microprogram is normally a very-long instruction word
(VLIW) — ten bytes or more — to perform the many micro operations required by a
CPU instruction, such as effective address generation and load/reset registers. There
are two types of control units: hardwired and microprogrammed. A Hardwired con-
trol unit is too complex for large machines and is inherently inflexible to changes
required by design changes or modification of the instruction set. A micropro-
grammed control unit does not have the limitations of a hardwired controller — to
change the firmware, simply change the program that resides in a programmable read-
only memory (PROM). Figure 2.4 shows the organization of a general micropro-
grammed control unit.

Instruction register

Address generation

Microprogram counter

Control storage

. . .

>

EAXin

EAXout

. . .
BLin

BLout

>

Condition codes

Microprogram counter clock

Control word clock
Control word
register
(μ instruction)

address
Branch

Microprogram

Figure 2.4 Organization of a general microprogrammed control unit.

2.4 Memory Unit 55

The instruction register contains the current instruction. The address generation
block is set to the starting address of the microprogram for a particular instruction and
is a function of the contents of the instruction register, the condition codes, and the
branch address of the current control word (microinstruction). The microprogram
counter is similar to the program counter (PC) of a computer — it points to the address
of the next instruction. The microprogram counter is incremented by 1 or set to the
branch address. The control storage block is a PROM that contains the microprogram
(or firmware).

The control word register contains the current microinstruction to control the
machine’s hardware for a specific macroinstruction. Microinstructions are fetched
from control storage in a similar manner to instructions fetched from main memory. A
microinstruction has two main parts: a control field and an address field. The control
field issues control lines, such as EAXin, which loads the EAX register with data at the
next active clock transition; and EAXout, which gates the contents of EAX to the des-
tination bus. The address field (branch address) indicates the address of the next
microinstruction in the microprogram if a branch is required.

It is desirable to keep the control word as short as possible to minimize the hard-
ware and yet have as many unique individual bits as possible to obtain high-speed exe-
cution of the macro instructions. Microinstructions (control words) are generally
classifies as a horizontal format, a vertical format, or a combination format, which is
a combination of vertical and horizontal formats.

The horizontal format has no decoding; therefore, it has very long formats. This
provides high operating speeds with a high degree of parallelism. An example of the
horizontal format is shown in Figure 2.5(a). The vertical format has a large amount of
decoding; therefore, it has short formats. It operates at a slower speed due to the inclu-
sion of a decoder and is not highly parallel. An example of the vertical format is
shown in Figure 2.5(b). Most microprogrammed computers use a combination of hor-
izontal and vertical formats. An example of the combination format is shown in Fig-
ure 2.5(c). Note that decoder output 0 cannot be used, because the field being decoded
may be all zeroes.

2.4 Memory Unit
The memory unit consists primarily of main memory and cache. It also contains two
registers: memory address register and memory data register. The memory address
register (MAR) contains the memory address to which data are written of from which
data are read. The memory data register (MDR) contains the data that is written to
memory or read from memory.

2.4.1 Main Memory

The main memory, also called random access memory (RAM), contains the instruc-
tions and data for the computer. There are typically two types RAM: static RAM and

56 Chapter 2 X86 Processor Architecture

dynamic RAM. Static RAM is designed using flip-flops that store one bit of informa-
tion. A static RAM does not need refreshing and operates at a higher speed than
dynamic RAM, but requires more hardware. Dynamic RAM stores one bit of infor-
mation in a capacitor and associated hardware. Since the charge in the capacitor leaks
and diminishes with time, the charge must be refreshed periodically in order to main-
tain the state of the data. The density of a dynamic RAM is much greater than the den-
sity of a static RAM, but operates at a slower speed.

n–1 n–2 1 0

n–bit control field

. . .

. . .
(a)

One control field

Decoder
 0 1 2 . . . n–1

(b)

DecoderDecoder
0 1 . . . 7 0 1 . . . 14 15

. . .

Control fields

(c)

Figure 2.5 Examples of microinstruction formats: (a) horizontal; (b) vertical;
and (c) combination.

2.4.2 Hamming Code

Errors can occur in the transmission or storage of information being sent to or from
memory. A typical error detection and correction scheme is one developed by Richard
W. Hamming. The basic Hamming code can detect single or double errors and can
correct single errors. The information sent to memory is coded in the form shown in

2.4 Memory Unit 57

Figure 2.6. A code word contains n bits consisting of m message bits plus k parity
check bits. The m bits represent the information or message part of the code word; the
k bits are used for detecting and correcting errors, where k = n – m.

Since there can be an error in any bit position, including the parity check bits, there
must be a sufficient number of k parity check bits to identify any of the m + k bit
positions. The parity check bits are normally embedded in the code word and are
positioned in columns with column numbers that are a power of two, as shown in Fig-
ure 2.7 for a code word containing four message bits (m3, m5, m6, m7) and three parity
bits (p1, p2, p4).

m1, m2, ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ , mm p1, p2, ⋅ ⋅ ⋅ , pk

Code word (n bits)

Message word Parity check word
(k bits)(m bits)

Code word X = x1, x2, ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ , xm, xm + 1, ⋅ ⋅ ⋅ , xn

Figure 2.6 Code word to encode message bits using the Hamming code.

Column number 1 2 3 4 5 6 7
Code word = p1 p2 m3 p4 m5 m6 m7

Figure 2.7 Code word configuration to encode four bits in Hamming code.

Each parity bit maintains odd parity over a unique group of bits as shown in Figure
2.8 for a code word of four message bits, where E1, E2, and E4 represent the four
groups.

Group E1 = p1 m3 m5 m7
Group E2 = p2 m3 m6 m7
Group E4 = p4 m5 m6 m7

Figure 2.8 Parity bit grouping for a code word of seven bits.

The placement of the parity bits in certain columns is not arbitrary. Each of the
variables in group E1 contain a 1 in column 1 (20) of the binary representation of the
column number as shown in Figure 2.9. Since p1 has only a single 1 in the binary rep-
resentation of column 1, p1 can therefore be used as a parity check bit for a message bit

58 Chapter 2 X86 Processor Architecture

in any column in which the binary representation of the column number has a 1 in
column 1 (20). Thus, group E1 can be expanded to include other message bits, as
shown below.

p1, m3, m5, m7, m9, m11, m13, m15, m17, . . .

4 2 1
Group E1 22 21 20

p1 0 0 1
m3 0 1 1
m5 1 0 1
m7 1 1 1

Figure 2.9 Placement of parity bit p1 for a code word of four bits.

Each of the variables in group E2 contain a 1 in column 2 (21) of the binary rep-
resentation of the column number as shown in Figure 2.10. Since p2 has only a single
1 in the binary representation of column 2, p2 can therefore be used as a parity check
bit for a message bit in any column in which the binary representation of the column
number has a 1 in column 2 (21). Thus, group E2 can be expanded to include other
message bits, as shown below.

p2, m3, m6, m7, m10, m11, m14, m15, m18, . . .

4 2 1
Group E2 22 21 20

p2 0 1 0
m3 0 1 1
m6 1 1 0
m7 1 1 1

Figure 2.10 Placement of parity bit p2 for a code word of four bits.

Each of the variables in group E4 contain a 1 in column 4 (22) of the binary rep-
resentation of the column number as shown in Figure 2.11. Since p4 has only a single
1 in the binary representation of column 4, p4 can therefore be used as a parity check

2.4 Memory Unit 59

bit for a message bit in any column in which the binary representation of the column
number has a 1 in column 4 (22). Thus, group E4 can be expanded to include other
message bits, as shown below.

p4, m5, m6, m7, m12, m13, m14, m15, m20, . . .

4 2 1
Group E4 22 21 20

p4 1 0 0
m5 1 0 1
m6 1 1 0
m7 1 1 1

Figure 2.11 Placement of parity bit p4 for a code word of four bits.

The format for embedding parity bits in the code word can be extended easily to
any size message. For example, the code word for an 8-bit message is encoded as
shown below, where m3, m5, m6, m7, m9, m10, m11, m12 are the message bits and p1, p2,
p4, p8 are the parity check bits for groups E1, E2, E4, E8, respectively, as shown in Fig-
ure 2.12.

p1, p2, m3, p4, m5, m6, m7, p8, m9, m10, m11, m12

Group E1 = p1 m3 m5 m7 m9 m11
Group E2 = p2 m3 m6 m7 m10 m11
Group E4 = p4 m5 m6 m7 m12
Group E8 = p8 m9 m10 m11 m12

Figure 2.12 Parity bit grouping for a code word of twelve bits.

For messages, the bit with the highest numbered subscript is the low-order bit.
Thus, the low-order message bit is m12 for a byte of data that is encoded using the
Hamming code. A 32-bit message requires six parity check bits:

p1, p2, p4, p8, p16, p32

60 Chapter 2 X86 Processor Architecture

There is only one parity bit in each group. The parity bits are independent and no par-
ity bit checks any other parity bit. Consider the following code word for a 4-bit mes-
sage:

p1, p2, m3, p4, m5, m6, m7

The parity bits are generated so that there are an odd number of 1s in the following
groups: group E1, group E2, and group E4. For example, the parity bits are generated
by the exclusive-NOR function as follows:

p1 = (m3 ⊕ m5 ⊕ m7)'
p2 = (m3 ⊕ m6 ⊕ m7)'
p4 = (m5 ⊕ m6 ⊕ m7)'

Example 2.1 A 4-bit message (0110) will be encoded using the Hamming code
then transmitted. The message, transmitted code word, and received code word are
shown in Figure 2.13.

p1 p2 m3 p4 m5 m6 m7

Message to be sent 0 1 1 0

Code word sent 0 0 0 1 1 1 0
Code word received 0 0 0 1 1 0 0

Figure 2.13 Detected error in a code word of seven bits.

From the received code word, it is apparent that bit 6 is in error. When the code
word is received, the parity of each group is checked using the bits assigned to that
group, as shown in Figure 2.14. A parity error is assigned a value of 1; no parity error
is assigned a value of 0. The groups are then listed according to their binary weight.
The resulting binary number is called the syndrome word and indicates the bit in error;
in this case, bit 6, as shown in Figure 2.15. The bit in error is then complemented to
yield a correct message of 0110.

Group E1 = p1 m3 m5 m7 = 0 0 1 0 = No Error = 0
Group E2 = p2 m3 m6 m7 = 0 0 0 0 = Error = 1
Group E4 = p4 m5 m6 m7 = 1 1 0 0 = Error = 1

Figure 2.14 Generation of the syndrome word for a code word of seven bits.

22 21 20

Groups E4 E2 E1
Syndrome word 1 1 0

2.4 Memory Unit 61

Figure 2.15 Syndrome word for Example 2.1.

Since there are three groups in this example, there are eight combinations. Each
combination indicates the column of the bit in error, including the parity bits. A syn-
drome word of E4E2E1 = 000 indicates no error in the received code word.

Double error detection and single error correction can be achieved by adding a
parity bit for the entire code word. The format is shown below, where pcw is the parity
bit for the code word.

Code word = p1 p2 m3 p4 m5 m6 m7 pcw

2.4.3 Cache Memory

The memory block also includes cache memory. Cache memory is used to increase
the speed of instruction execution by storing frequently-used information in the form
of instructions or data. Each location in cache is referred to as a cache line. A cache
is a content-addressable memory (CAM), because the memory is addressed by con-
tents contained in memory, not by the physical address of the contents. Caches are
also referred to as associative memory.

There are typically three types of cache memories that are used in current micro-
processors: level 1 cache (L1), level 2 cache (L2), and level 3 (L3) cache. The L1
cache, implemented with static RAM, has high-speed access and is the primary cache.
It is located on the CPU chip and is used for temporary storage of instructions and data.
There are usually two L1 caches: one to store instructions and one to store data.

The L2 cache typically has a larger capacity than the L1 cache but is slower and is
logically positioned between the L1 cache and main memory. In many cases, the L2
cache is also located on the CPU chip. The L2 cache is referred to as the secondary
cache and is implemented with static RAM. The L2 cache is used to prefetch instruc-
tions and data for the processor, thus reducing access time.

The L3 cache is an optional cache and, if used, is usually located on the circuit
board logically positioned between the L2 cache and main memory. If the system does
have L1, L2, and L3 caches, then the information transfer path is from main memory
to L3 to L2 to L1 to CPU.

Figure 2.16 shows the organization of memory priority in relation to the CPU.
The highest speed memory is located within the CPU in the form of registers. Next is
the cache subsystem (L1, L2, and L3 caches) with slower speeds than the CPU,

62 Chapter 2 X86 Processor Architecture

followed by the relatively low-speed memory but with a much larger capacity. The
lowest-speed memory devices are the peripheral I/O units; for example a disk sub-
system with the highest capacity.

CPU L1 L2 L3 Main memory

Load through from memory — read

Store through from CPU — write

Disk

Figure 2.16 Organization of memory priority relative to the CPU.

If the addressed information is not in cache during a read operation from main
memory, then a block transfer is performed from main memory to cache. Execution
can be increased if the addressed word is passed on to the CPU as soon as it is received
from main memory. This is referred to as a load through. A store through is per-
formed when cache and main memory are updated simultaneously.

When information is transferred from main memory to cache, there are normally
three mapping algorithms that can be applied: direct mapping, associative mapping —
also referred to as fully associative, and set-associative mapping — also referred to as
block-set-associative. When a block is loaded from main memory into cache, a tag
associated with the main memory location is assigned to the block in cache.

Direct mapping Direct mapping is the most straightforward. Assume that cache
has 128 blocks and that there are 4096 blocks in main memory partitioned into 128
blocks per partition. Then block k of main memory maps into block k modulo-128 of
the cache. That is, block 0, block 128, block 256, etc. all map into block 0 of cache. In
a similar manner, block 1, block 129, block 257, etc. all map into block 1 of cache.

Associative mapping Associative mapping allows any block in main memory to
be loaded into any cache location. This necessitates a large associative cache memory,
because any cache location may contain the required information. This mapping tech-
nique yields a very high hit ratio for an associative search. The hit ratio is the per-
centage of cache accesses that result in a cache hit. A cache hit means that the
information is in cache; a cache miss means that the information is in main memory or
I/O memory.

Set-associative mapping Set-associative mapping combines the advantages of
both direct and associative mapping. Blocks — or cache lines — in cache are parti-
tioned into sets. The algorithm assigns a block in main memory to be mapped into any
block of a specific set. The cache contains S sets in which each set contains L lines.
Let M be the number of lines in cache. Then the set associativity of cache is L = M/S
= set size. A 4-way (L = 4) set-associative cache with 1024 lines (M = 1024) has S =
M/L = 256 sets. This mapping technique requires an additional field in the memory

2.4 Memory Unit 63

address: a set field. The algorithm first determines which set might contain the desired
cache block. Then the tag field in the memory address is compared with the tags in the
cache blocks of that set. The technique is direct mapping to set i; however, this is pre-
dominantly set-associative mapping, because any memory block to some modulus can
map to any line in set i.

Tag field This section describes a general approach for tag comparison to deter-
mine if the requested block of data is in cache. Each cache line has a tag field associ-
ated with the data in the cache line, as shown in Figure 2.17.

Tag0 Line0

Memory address (requested tag)

Tag1 Line1

Tagi Linei

Tagn–1 Linen–1

.

.

Tag
memory

Associative memory

Data
memory

Figure 2.17 The tag associative memory and data cache.

The main memory address consists of three main fields, the tag field, the block
field, and the word field which selects the word in the cache. The tag field is usually
the high-order bits of the main memory address and connects to the tag memory inputs
of a content-addressable memory; thus, data can be identified for retrieval by the con-
tents of the tag field rather than by the address of the data. All tags fields are compared
in parallel. If the tag field in cache matches the tag field in the memory address, then
a cache hit occurs and the data in that cache line is sent to the CPU. If there is no tag
match, then a cache miss occurs and main memory is searched for the required block
of data.

Tag fields are used in all three types of mapping: direct mapping, associative map-
ping, and set-associative mapping. Tag comparison is simply the exclusive-NOR of
the tag field bits in the main memory address with the tag field bits in cache. This is the
equality function, which generates a logic 1 if the two tags are equal.

There are also two additional bits associated with a cache line: a valid bit and a
dirty bit. These bits are usually part of the tag field. The valid bit indicates whether

64 Chapter 2 X86 Processor Architecture

a specific cache line contains valid data. When the system is initialized, the
valid bit is set to 0. When a cache line is loaded from main memory, the valid
bit is set to 1. The dirty bit (or modified bit) indicates that the cache line has
been updated.

Replacement algorithms There are replacement algorithms associated with
cache. When a new block is to be mapped into a cache that is full, an existing block
must be replaced. For direct mapping, there is only one choice: block k of main mem-
ory maps into block k to some modulus of cache and replaces the cache block. For
associative and set-associative caches, a different replacement algorithm is used.

One commonly used technique is the least-recently used (LRU) algorithm. This
method replaces the block in the set which has been in the cache the longest without
being referenced. For a two-block set-associative cache, in which there are two blocks
per set, each of the two blocks in the set contain a USE bit. When a block is referenced,
the USE bit for that block is set to 1; the USE bit for the second block is set to 0. When
a block is read from main memory to be stored in cache, the cache block whose USE
bit equals 0 is replaced.

For a four-block set-associative cache, containing four blocks per set, a 2-bit
counter is used to determine which block in the set is least recently used. There are
three conditions that determine which block is replaced depending on a cache hit or a
cache miss and whether the cache is full or not full. The three conditions are shown
below.

1. If there is a cache hit on seti blockj, then the following operations take place:
If blockk counter < blockj counter, then increment blockk counter.
If blockk counter ≥ blockj counter, then do not increment blockk counter.
Set blockj counter = 0.

2. If there is a cache miss and the set is not full, then the following operations
take place:

Memory block is stored in seti blockj (empty block).
Set blockj counter = 0.
Increment all other counters.

3. If there is a cache miss and the set is full, then the following operations take
place:

If blockj counter = 3, then remove blockj.
Memory block is stored in seti blockj (empty block).
Set blockj counter = 0.
Increment all other counters.

Another replacement algorithm is called first-in, first-out. This technique
replaces the block in the set which has been in the cache the longest and is imple-
mented with a circular buffer technique, as shown below.

Seti

Tag Data
Block 1 Load block 1 first Remove block 1 first
Block 2 Load block 2 second Remove block 2 second
Block 3 Load block 3 third Remove block 3 third
Block 4 Load block 4 fourth Remove block 4 fourth

2.5 Input/Output 65

A fourth replacement algorithm is called random replacement. A block is ran-
domly chosen to be replaced. This is a very effective method and is only slightly infe-
rior to the other algorithms.

2.5 Input/Output
The input/output (I/0) block of Figure 2.1 incorporates I/O peripheral devices and
associated control units. Some examples of I/O device subsystems are tape, disk, key-
board, monitors, plotters, compact disks, and devices attached to a computer by means
of a universal serial bus (USB). Many computers also incorporate I/O processors —
called channels — to control all data and command transfers between the computer (or
memory) and the I/O device. The channels are integrated into the CPU or are standa-
lone units.

2.5.1 Tape Drives

Tape drives A tape drive is sequential access storage device (SASD) and is a low-
cost means of obtaining large storage. The disadvantage is that it has long access
times, because it reads or writes data sequentially; that is, it cannot go directly to a
record on tape, but must progress through previous records to obtain the desired
record, depending on the location of the read/write heads. Figure 2.18 shows a typical
tape drive head with one write head and one read head per track. Most tape subsystems
utilize a read-after-write (also called read-while-write) procedure to verify that the
data were written correctly.

Write
+– iw

Read
signal

Write gap Read gap

TapeOxide surface

Figure 2.18 Typical read/write head for a tape drive.

66 Chapter 2 X86 Processor Architecture

The number of tracks per tape varies depending on the format used for the data.
There are single-track drives, drives with nine tracks (one byte plus parity) for the
Extended Binary-Coded Decimal Interchange Code (EBCDIC) for legacy systems,
and drives with seven tracks (including parity) for BCD formats. Most current per-
sonal computer (PC) drives use the seven-track American Standard Code for Informa-
tion Interchange (ASCII) format (0 through 127 decimal), which can be extended to
include the remaining codes (128 through 255 decimal).

Data stored on tape can be in a variety of formats, depending on the manufacturer.
A typical format is shown in Figure 2.19. The preamble is a unique combination of 1s
and 0s, which are used to synchronize detection circuits to distinguish 1s from 0s. The
postamble serves two purposes: It signals the end of data; and it serves as a preamble
which permits a read backward operation — the functions of the preamble and post-
amble are then reversed. The error correcting code (ECC) is used to detect and correct
errors in the data stream. The longitudinal redundancy check (LRC) is a form of hor-
izontal redundancy check that is applied to each track. The interrecord gap (IRG) pov-
ides a space for starting and stopping the tape. It allows sufficient time to decelerate
and accelerate the tape between records.

Preamble Postamble

Data

ECC
LRC IRG

Preamble Postamble

Data

ECC
LRC

Figure 2.19 Typical tape drive track format.

A tape with many small records requires a large number of IRGs. This decreases
the efficiently of tape utilization. This inefficiency can be reduced by grouping the
records into blocks with no IRGs between records. The IRGs are placed between the
blocks and are called interblock gaps (IBGs). A block and file format is shown in Fig-
ure 2.20. There is only one preamble and postamble per block. An end of file gap is
used to separate files. This is usually blank tape followed by a tape mark (7F hexa-
decimal).

2.5.2 Disk Drives

Current disk drives have a mean time between failures (MTBF) of approximately 40
years. The data rate can be calculated using Equation 2.1. The circumference as a
function of the radius is required in order to obtain the data rate in bits per second. The
radius changes with each track; however, the density also changes if the method of

2.5 Input/Output 67

writing is fixed data transfer rate with varying linear density. As the radius increases
toward the outer tracks. the density decreases. Thus, the data rate remains constant.

Record 1 (R1)

 R1 R2 R3 R4 R5 R6 R7 EOF R1

IBG

End of file

File 1 File 2

Block 1 Block 2 Block 3

Figure 2.20 Typical block and file format for a tape drive.

Data rate (bits/sec) = Density (bits/in) (rev/min) (min/60 sec) (2πrin/rev) (2.1)

The read/write head is not in contact with the surface of the disk. The linear den-
sity depends on the amount of separation between the head and the disk — higher den-
sity requires closer separation. To achieve close separation, the head is flown on an air
bearing and is referred to as the flying height. The bearing is simply a cushion of air
that is dragged along by the rotating surface. The disk and head in current disk drives
are usually contained in a sealed head-disk assembly (HDA).

Since the read/write head is expensive, there is usually only one head and one gap
per surface. Therefore, it is not possible to read while writing to verify that the data
were written correctly, as in tape drives. There are numerous track formats, depending
on the manufacturer. One format is shown in Figure 2.21, which contains two fields
for each fixed-length sector: the address field and the data field.

The preamble for both the address and the data field consists of two bytes — fif-
teen 0s followed by a single 1 — that are used for clock synchronization and to dif-
ferentiate between 1s and 0s. The second two-byte segment of the address field
contains the address of the cylinder, head, and sector. This is followed by two bytes
containing an error correcting code (ECC). A common error correcting code is a
cyclic redundancy check (CRC) code. Cyclic redundancy check codes can detect both
single-bit errors and multiple-bit errors and are especially useful for large strings of
serial binary data found on single-track storage devices, such as disk drives. They are
also used in serial data transmission networks and in 9-track magnetic tape systems,
where each track is treated as a serial bit stream.

The postamble consists of sixteen 0s and is used to separate the address and data
fields. It is possible to verify a sector address then read or write the data in that sector
by switching from read mode to write mode between the address and data fields.

0…01 ECC 0…00 0…01 Data ECC 0…00

Bytes 2 2 2 2 2 256 2 2

Preamble
Data
Head
Cylinder
Sector
ECC
Postamble

Address field Data field

68 Chapter 2 X86 Processor Architecture

Figure 2.21 An example of a sector format for a disk drive.

The areal density (bits/in2) can be increased by using thin film heads which are
manufactured using semiconductor technology. This technology can double the areal
density and has a flying height of less than one-half the wavelength of red light —
approximately 0.000075 centimeters.

2.6 Register Set
Many of the X86 microprocessors use a superscalar architecture that executes more
than one instruction per clock cycle in a parallel implementation. A superscalar pro-
cessor has multiple parallel pipelines in which each pipeline processes instructions
from a separate instruction thread. Superscalar processors are different from multi-
core processors which process multiple threads from multiple cores, one thread per
core. Superscalar processors are also different than pipelined processors, which oper-
ate on multiple instructions in various stages of execution.

There are a variety of X86 processors from Intel Corporation, Advanced Micro
Devices (AMD), and many other microprocessor companies. Intel processors range
from the Pentium family to the dual-core and quad-core processors that support 32-
and 64-bit architectures. Figure 2.22 shows a typical X86 processor register set used
for most common applications in the IA-32 processor basic execution environment.
There are other registers that are not shown, such as those used for memory manage-
ment; single-instruction multiple-data (SIMD); packed floating-point operations; con-
trol registers; debug registers; machine check registers; and the 64-bit registers with R
prefix, among others.

32-bit mode 31 16 15 8 7 0

AH ALEAX

BH BLEBX

AX
16-bit mode

BX

CH CLECX CX

DH DLEDX DX

SPESP

BPEBP

SIESI

SPEDI

General-Purpose Registers

CS

15 0

DS

SS

ES

FS

GS

EFLAGS Flags Register
31 0

EIP

31 0

Instruction Pointer

(a)

DI

Segment Registers

2.6 Register Set 69

Figure 2.22 Typical X86 register set for most common applications in the IA-32
basic execution environment: (a) general-purpose registers and (b) floating-point reg-
isters.

 79 78 64 63 0

R0

Floating-point register stack

R1

Tag
register

R2

R3

R4

R5

R6

R7

Control register
15 0

Status register
15 0

47 0
Instruction pointer

47 0
Data pointer

0

15

1

14

(b)

70 Chapter 2 X86 Processor Architecture

Figure 2.22 (Continued)

2.6.1 General-Purpose Registers

The eight general-purpose registers (GPRs) can be addressed separately as 8-bit
registers, as 16-bit registers, or as 32-bit registers, such as AL, AX, or EAX, for exam-
ple. Register AL specifies the low-order eight bits of register AX; register AH spec-
ifies the high-order eight bits of register AX; register AX specifies the low-order 16
bits of register EAX. The general-purpose registers are used for arithmetic operations,
logical operations, and for addressing memory.

Although they are referred to as general-purpose registers, each register has a spe-
cific application. Register EAX and its constituent registers are used as the accumu-
lator; specifically, as the dividend for unsigned and signed divide operations, as the
multiplicand for unsigned and signed multiply operations, and for input/output oper-
ations. Register AL is also used for the translate (XLAT) instruction.

2.6 Register Set 71

Register EBX and its constituent registers are used as index registers for base
addressing and as pointers to data in the data segment (DS). The effective address
(EA) is the sum of a displacement value and the contents of one of the EBX registers.
When these registers are used, the default location of the operand resides in the current
data segment.

The ECX register and its constituent registers are the implied counters for certain
instructions; for example, to count the number of iterations in a loop. The CL register
is also used to indicate the shift amount when shifting or rotating bits left or right. For
string operations, the ECX register set denotes the number of operands that are moved
from the source string to the destination string.

The EDX register and its associated registers — generally referred to as the data
registers — are used for input/output operations and for multiply and divide operations
for both unsigned and signed operands. The multiplicand (destination operand — AL,
AX, or EAX) is multiplied by the multiplier (source operand in a GPR or memory) and
the product is stored in the destination operand. The product is stored in register AX,
concatenated register pair DX:AX, or concatenated register pair EDX:EAX, depend-
ing on the size of the 2n-bit result. The destination operand in 64-bit mode is
RDX:RAX. For a divide operation, the 2n-bit dividend in registers AX, DX:AX,
EDX:EAX, or RDX:RAX is divided by the n-bit divisor (source operand in a GPR or
memory). The resulting quotient is stored in AL, AX, EAX, or RAX. The remainder
is stored in register AH, DX, EDX, or RDX.

Register SP (for 16-bit stack words) or register ESP (for 32-bit stack double-
words) are stack pointers that point to the current top of stack by providing an offset
from the stack segment register address to point to the last valid entry in the stack. Fig-
ure 2.23 shows a stack of 16-bit words using SP as the stack pointer. When a word is
pushed onto the stack in this figure, SP is first decremented by two, then the word is
stored on the stack. SP points to the new top of stack (TOS) containing the last valid
entry. When a word is popped off the stack, the word is first stored in the destination,
then SP is incremented by two.

The BP and EBP registers are base pointers that are used to point to data on the
stack; for example, parameters pushed onto the stack by one program to be accessed
by another program via the stack. The base pointer registers provide an offset from the
stack segment register address to point to the required data.

The SI and ESI registers are source index registers that are used for string opera-
tions. They provide an offset in the data segment (DS) that points to the beginning of
a source string that is to be transferred to a destination string in the extra segment (ES).

The DI and EDI registers are destination index registers that are used for string
operations. They provide an offset in the extra segment that points to the beginning
address of a destination string that is to be transferred from a source string in the data
segment.

2.6.2 Segment Registers

When using a segmented memory model in the IA-32 processors, memory is par-
titioned into independent segments for code, data, and stack. The code segment (CS)

72 Chapter 2 X86 Processor Architecture

register — segment selector — contains the starting address of the computer’s code
segment. The offset in the instruction pointer (IP or EIP) points to a particular instruc-
tion in the code segment. The combination of the segment selector and the offset is the
logical address of the next instruction to be executed.

0 15
Stack segment

Last valid entry

SS

SP(TOS)

SP

Low address

High address

Stack builds
toward lower
addresses

Low High

Figure 2.23 A stack with 16-bit words.

There are four data segments: DS, ES, FS, and GS. The data segment (DS) reg-
ister contains the starting address of the program’s data segment. This address plus the
offset value indicates the logical address of the required data. The contents of the extra
segment (ES) register plus an offset in the destination index (DI) register points to a
destination address in the extra segment for string operations. The FS and GS registers
are available for different data structures.

2.6.3 EFLAGS Register

The 32-bit EFLAGS register is partitioned into three groups of flags: status flags, con-
trol flags, and system flags, as shown in Figure 2.24.

31 30 29 28 27 26 25 24
0 0 0 0 0 0 0 0

23 22 21 20 19 18 17 16
0 0 ID VIP VIF AC VM RF

15 14 13 12 11 10 9 8
0 NT IOPL OF DF IF TF

7 6 5 4 3 2 1 0
SF ZF 0 AF 0 PF 1 CF

2.6 Register Set 73

Figure 2.24 EFLAGS register.

Status flags The carry flag (CF) is set if there is a carry out of or a borrow into the
high-order bit position of an arithmetic operation; otherwise it is reset. It is also used
with shift and rotate instructions.

The parity flag (PF) is set if the low-order byte of the result has an even number of
1s; otherwise it is reset. The adjust flag (AF or auxiliary carry) is set if there is a carry
out of or a borrow into the low-order four bits — used primarily for a binary-coded
decimal arithmetic operation; otherwise it is reset. The zero flag (ZF) is set if the result
is zero; otherwise it is reset. The sign flag (SF) is set to the value of the high-order bit
position, which is the sign bit for signed operands. If the sign flag is 0, then the result
is positive; if the sign flag is 1, then the result is negative.

The overflow flag (OF) is set if the result of an operation is too large or too small
to be contained in the destination operand; that is, the number is out of range for the
size of the result. An interrupt-on-overflow (INTO) instruction generates an interrupt
if the overflow flag is set. The equations to detect overflow for two n-bit operands A
and B are shown in Equation 2.2, where an–1 and bn–1 are the sign bits of A and B,
respectively and sn–1 is the sign of the result. The carry bits out of positions n–1 and
n–2 are cn–1 and cn–2, respectively.

Overflow = an–1 bn–1 sn–1' + an–1' bn–1' sn–1

Overflow = cn–1 ⊕ cn–2 (2.2)

Control flag The direction flag (DF) indicates the direction for string operations
and is used for the following string instructions: move string (MOVS), compare
strings (CMPS), scan string (SCAS), load string (LODS), and store string (STOS). If

74 Chapter 2 X86 Processor Architecture

the direction flag is reset, then this causes the string instruction to auto-increment the
index registers (SI and DI); that is, to process strings from left (low address) to right
(high address). If the direction flag is set, then this causes the string instruction to
auto-decrement the index registers (SI and DI); that is, to process strings from right
(high address) to left (low address).

System flags The system flags are used to control the operating system and CPU
operations. For example, if the interrupt enable flag (IF) is set and an interrupt occurs,
then this causes the CPU to transfer control to a memory location specified by an inter-
rupt vector. The CPU can temporarily ignore maskable interrupts, but must respond
immediately to non-maskasble interrupts, such as non-recoverable hardware
errors, time-critical interrupts, or power failure. If the interrupt enable flag is
reset, then interrupts are disabled.

The trap flag (TF) allows single-step mode for debugging; that is, single instruc-
tion execution. The CPU generates an interrupt after each instruction so that the pro-
gram and results can be examined.

The nested task (NT) flag is set if the present task is nested within another task.
The two bits of the input/output privilege level (IOPL) flag contain the I/O privilege
level of the current task and supports multitasking. An IOPL of 00 is the highest level;
an IOPL of 11 is the lowest level. The privilege levels are used with the privileged
instructions, such as input/output instructions and segment accessibility.

The resume flag (RF), when set, indicates to the CPU to resume debugging. The
debug software sets the flag prior to returning to the interrupted program. When the
virtual-8086 mode (VM) flag is set, the CPU emulates the program environment of the
8086 processor; when reset, the processor returns to protected mode. Protected mode
permits the CPU to use virtual memory, paging, and multi-tasking features.

The alignment check (AC) flag is used to check the alignment of memory refer-
ences. It is set if a word (16 bits) or doubleword (32 bits) is not on a word or double-
word boundary. The virtual interrupt flag (VIF) is a virtual image of the interrupt flag
and is used in combination with the virtual interrupt pending (VIP) flag. The VIP flag
is set if an interrupt is pending and reset if there is no interrupt pending.

If a program has the capability to set or reset the identification (ID) flag, then the
processor supports the CPU identification (CPUID) instruction. The CPUID instruc-
tion returns the processor identification in certain general registers.

2.6.4 Instruction Pointer

The instruction pointer (EIP) contains the offset for the current code segment that
points to the next instruction to be executed. The EIP is updated as shown below for
sequential execution, where (EIP) specifies the 'contents of ' EIP. The EIP register is
used for 32-bit mode; the RIP register is used for 64-bit mode.

 EIP (EIP) + instruction length

2.6 Register Set 75

The EIP progresses from one instruction to the next in sequential order, or for-
wards/backwards a specified number of instructions for jump (JMP), jump on condi-
tion (Jcc), return from a procedure/subroutine (RET), or return from interrupt (IRET)
instructions.

2.6.5 Floating-Point Registers

The floating-point unit (math coprocessor) provides a high-performance floating-
point processing component for use with the IEEE Standard 754. It provides support
for floating-point, integer, and binary-coded decimal operands for use in engineering
and other applications. The floating-point registers were shown in Figure 2.22(b).

Data registers There are eight 80-bit data registers, R0 through R7, whose func-
tions are similar to that a stack. Any R i can be assigned as top of stack (T0S). Data are
stored in these registers in the double extended-precision floating-point format con-
sisting of a sign bit (79), a 15-bit exponent field (78 through 64), and a 64-bit signif-
icand/fraction (63 through 0). The implied 1 is to the immediate left of bit position 63,
but is not shown. Data that are loaded into the floating-point data registers are con-
verted to the double extended-precision floating-point format.

There are no push and pop instructions the floating-point register stack. A load
(push) operation is accomplished decreasing the stack top by 1, then loading the oper-
and into the new top of stack (T0S). This is similar to a regular stack which builds
toward lower addresses. A store (pop) operation is accomplished by storing the oper-
and from the current stack top to the destination, then increasing stack top by 1. If a
load is to be executed when the stack top is R0, then the registers wrap around making
the new stack top R7. This may generate an overflow condition if the contents of R7
were not previously saved.

Tag register The 16-bit tag register specifies the condition of the individual data
registers. There are two bits per register that are defined as shown in Figure 2.25. A
tag of 10 indicates a special floating-point number, such as not-a-number (NaN), a
value of infinity, a denormal number, or unsupported format.

Tag(7) Tag(6) Tag(5) Tag(4) Tag(3) Tag(2) Tag(1) Tag(0)
 15 14 1 0

Tag values
00 = Valid
01 = Zero
10 = Special
11 = Empty

Figure 2.25 Floating-point unit tag register organization.

76 Chapter 2 X86 Processor Architecture

A denormal number has a biased exponent of zero. NaN is a value that does
not depict a numeric or infinite quantity. It is a value that is generally produced
as the result of an arithmetic operation using invalid operands. For example,
calculating the square root of a negative number. NaNs can also be used to rep-
resent missing values in arithmetic calculations.

Status register The format for the 16-bit status word register is shown in Figure
2.26. The status word indicates the condition of the floating-point unit. It can be
inspected by first storing the status word into a memory location and then transferring
it to a general register. If a bit is set, then this indicates an active condition.

15 14 13 12 11 10 9 8
B C3 TOS C2 C1 C0

7 6 5 4 3 2 1 0
ES SF PE UE OE ZE DE IE

Figure 2.26 Floating-point unit status word format.

Bit 15 indicates that the floating-point unit is busy (B). The condition code bits C3
through C0 are specified by bits 14, 10, 9, and 8, respectively. They represent the
result of certain floating-point arithmetic operations. The condition code is used pri-
marily for conditional branching. Bits 13 through 11 indicate the top of stack (TOS)
pointer, as shown below.

Bits

13 12 11 Stack top
0 0 0 = Register 0
0 0 1 = Register 1
0 1 0 = Register 2
0 1 1 = Register 3
1 0 0 = Register 4
1 0 1 = Register 5
1 1 0 = Register 6
1 1 1 = Register 7

Bit 7 is the exception summary status (ES) bit, which is set if any of the unmasked
exception flags — bits 5 through 0 — in the status word are set. The exception flags
in the status word can be prevented from being set by setting the corresponding excep-
tion mask bit in the control word register.

2.6 Register Set 77

Bit 6 is the stack fault (SF) bit, which is set if a stack overflow or stack underflow
has been detected. Bit 5 is the precision exception (PE) bit, which is set if the result of
an operation cannot be precisely represented in the destination format. Bit 4 is the
underflow exception (UE) bit, which is set whenever the rounded normalized result of
an arithmetic operation is too small to be contained in the destination operand. Bit 3 is
the overflow exception (OE) bit, which is set whenever the rounded normalized result
of an arithmetic operation is too large to be contained in the destination operand. Bit
2 is the divide-by-zero exception (ZE) bit, which is set whenever an instruction
attempts to divide an operand by zero, where the dividend is a nonzero operand.

Bit 1 is the denormalized operand exception (DE) bit. If the biased exponent of a
floating-point number is zero, then extremely small numbers can be represented by
setting the high-order bits of the fraction (significand) to zero, thus allowing very
small numbers to be realized. Numbers in this range are referred to as denormalized
numbers. A number that is denormalized may result in a loss of precision. If the expo-
nent is zero and the significand is also zero, then this is usually specified as a value of
zero. Therefore, a number is denormalized if the exponent is zero and the fraction is
not all zeroes. Denormalized numbers are located around the value of zero.

Bit 0 is the invalid operation exception (IE), which is set whenever there is a stack
overflow, a stack underflow, or when an invalid arithmetic operand has been detected.
When the stack fault bit is set in the status word register, the invalid operation was
caused by a stack overflow or underflow. When the stack fault bit is reset in the status
word register, the invalid operation was caused by an invalid operand.

Control register The format for the control word register is shown in Figure 2.27.
The control word provides several processing options by loading a word from memory
into the 16-bit control word register. Blank entries in the register are reserved. The
control word register manages the precision, rounding methods, and masking. The
control word register is initialized to the following states: round to nearest, 64-bit dou-
ble extended precision, and set the six exception mask flags to one.

15 14 13 12 11 10 9 8
IC RC PC

7 6 5 4 3 2 1 0
PM UM OM ZM DM IM

Figure 2.27 Floating-point unit control word format.

Bit 12 is the infinity control (IC) bit, which is used to allow compatibility with
older versions of floating-point units. Bit 11 and bit 10 are the rounding control field
bits that determine the rounding method used in arithmetic operations. The four dif-
ferent types of rounding techniques are shown in Table 2.1 and explained in the para-
graphs that follow.

Table 2.1 Rounding Control Field

Rounding Method 11 10
Round to nearest (default mode) 0 0
Round down toward minus infinity 0 1
Round up toward positive infinity 1 0
Round toward zero (truncate) 1 1

78 Chapter 2 X86 Processor Architecture

The round to nearest mode is the default rounding method, which provides the
nearest approximation to the result. The result of a floating-point arithmetic operation
can be rounded to the nearest number that contains n bits. This method is also called
adder-based rounding and rounds the result to the nearest approximation that contains
n bits. The operation is as follows: The bits to be deleted are truncated and a 1 is added
to the retained bits if the high-order bit of the deleted bits is a 1. When a 1 is added to
the retained bits, the carry is propagated to the higher-order bits. If the addition results
in a carry out of the high-order bit position, then the fraction is shifted right one bit
position and the exponent is incremented.

Consider the fraction 0.b–1 b–2 b–3 b–4 1 x x x — where the xs are 0s or 1s — which
is to be rounded to four bits. Using the adder-based rounding technique, this rounds to
0.b–1 b–2 b–3 b–4 + 0.0001. The retained bits of fraction 0.b–1 b–2 b–3 b–4 0 x x x round
to 0.b–1 b–2 b–3 b–4. The first fraction approaches the true value from above; the sec-
ond fraction approaches the true value from below. Examples of adder-based round-
ing are shown in Figure 2.28 and illustrate approaching the true value from above and
approaching the true value from below.

Delete
0. 0 1 0 1 1 0 0 0 × 28 = +88 True value

+) 0. 0 0 0 1
Rounded result 0. 0 1 1 0 × 28 = +96 Approach from above

(a)

Delete
0. 0 1 1 1 0 1 1 1 × 28 = +119 True value

Rounded result 0. 0 1 1 1 × 28 = +112 Approach from below
(b)

Figure 2.28 Adder-based rounding: (a) true value approached from above and (b)
true value approached from below.

2.6 Register Set 79

The rounding mode of round down toward minus infinity (also referred to as
directed rounding) produces a solution that is nearest to but no greater than the result.
This technique rounds towards negative infinity. It stipulates that the result of an arith-
metic operation should be the value closest to negative infinity; that is, a value that is
algebraically less than the precise result.

The rounding mode of round up toward positive infinity (also referred to as
directed rounding) produces a solution that is nearest to but no less than the result.
This technique rounds towards positive infinity. It stipulates that the result of an arith-
metic operation should be the value closest to positive infinity; that is, a value that is
algebraically greater than the precise result.

The rounding mode of round toward zero is also referred to as truncation or chop-
ping. Truncation deletes extra bits and makes no changes to the retained bits. This
makes the truncated value less than or equal to the original value. Aligning fractions
during addition or subtraction could result is losing several low-order bits, so there is
obviously an error associated with truncation. Assume that the following fraction is to
be truncated to four bits:

0.b–1 b–2 b–3 b–4 b–5 b–6 b–7 b–8

Then all fractions in the range 0.b–1 b–2 b–3 b–4 0000 to 0.b–1 b–2 b–3 b–4 1111 will
be truncated to 0.b–1 b–2 b–3 b–4. The error ranges from 0 to .00001111. In general, the
error ranges from 0 to approximately 1 in the low-order position of the retained bits.
Truncation is a fast and easy method for deleting bits resulting from a fraction under-
flow and requires no additional hardware. Fraction underflow can occur when align-
ing fractions during addition or subtraction when one of the fractions is shifted to the
right. There is one disadvantage in that a significant error may result.

There is another method of rounding called von Neumann rounding. The von
Neumann rounding method is also referred to as jamming and is similar to truncation.
If the bits to be deleted are all zeroes, then the bits are truncated and there is no change
to the retained bits. However, if the bits to be deleted are not all zeroes, then the bits
are deleted and the low-order bit of the retained bits is set to 1.

Thus, when 8-bit fractions are rounded to four bits, fractions in the range

0.b–1 b–2 b–3 b–4 0001 to 0.b–1 b–2 b–3 b–4 1111

will all be rounded to 0.b–1 b–2 b–3 1. Therefore, the error ranges from approximately
–1 to +1 in the low-order bit of the retained bits when

0.b–1 b–2 b–3 b–4 0001 is rounded to 0.b–1 b–2 b–3 1

and when

0.b–1 b–2 b–3 b–4 1111 is rounded to 0.b–1 b–2 b–3 1

Although the error range is larger in von Neumann rounding than with truncation
rounding, the error range is symmetrical about the ideal rounding line and is an

80 Chapter 2 X86 Processor Architecture

unbiased approximation. Assuming that individual errors are evenly distributed over
the error range, then positive errors will be inclined to offset negative errors for long
sequences of floating-point calculations involving rounding. The von Neumann
rounding method has the same total bias as adder-based rounding; however, it requires
no more time than truncation.

Bit 9 and bit 8 represent the precision control field and set the precision at 64 bits,
53 bits, or 24 bits, as defined in Table 2.2. The default precision is double extended
precision using a 64-bit significand — bit 63 through bit 0 — thereby providing a high
degree of precision.

Table 2.2 Precision Control Field

Precision 9 8
Single precision (24 bits) 0 0
Reserved 0 1
Double precision (53 bits) 1 0
Double extended precision (64 bits) 1 1

Bit 5 through bit 0 are designated as exception mask bits for certain exceptions; if
a bit is set, then the exception is masked. The exception mask bits in the control word
register correspond directly to the exception flag bits in the same position in the status
word register. When a mask bit is set, the corresponding exception is blocked from
being produced.

Instruction pointer and data pointer The instruction and data pointer regis-
ters contain pointers to the instruction and data for the last non-control instruction exe-
cuted; if a control instruction is executed, then the register contents remain unchanged
for both the instruction pointer and the data pointer. The data register contains a
pointer for a memory operand. These pointers are stored in 48-bit registers — a seg-
ment selector is stored in bit 47 through bit 32; a memory offset is stored in bit 31
through bit 0.

2.7 Translation Lookaside Buffer
Another common component that is inherent in the architecture of current micropro-
cessors is a translation lookaside buffer (TLB). A TLB is a cache used by the memory
management unit to increase the speed of virtual-to-physical address translation. A
TLB is generally a content-addressable memory in which each virtual (or logical)
address is a tag in cache that is associated with a physical address. Since the TLB is an
associative memory, comparison of the virtual address with the corresponding tags is

2.8 The Assembler 81

accomplished in parallel. If the desired virtual address is in cache, then this is a TLB
hit and the physical address thus obtained is used to address main memory.

TLBs contain instruction addresses and data addresses of the most recently used
pages. A page is a fixed-length area of memory that consists of blocks of contiguous
memory locations. The virtual address is formed by a virtual page number and an off-
set — the high-order and low-order bits, respectively. The virtual address is applied to
the TLB and to the system cache concurrently. If the address is not in main memory,
then the contents are retrieved from a direct-access storage device and stored in main
memory; this is referred to as page-in technique. When transferring a page in main
memory to an external storage device, this is referred to as a page-out technique. At
any given time, main memory contains only a portion of the total contents of virtual
memory.

There are advantages in utilizing a virtual memory technique: More efficient use
of main memory is achieved; only the amount of main memory that is needed at the
time is used; that is, programs are not present in memory if they are not being used; an
application program can be designed that exceeds the main memory size, thus a pro-
gram’s address space is not bound by the amount of main (real) memory. When a pro-
gram does not fit completely into memory, the parts that are not currently being
executed are stored in secondary storage, such as a disk subsystem.

The relative (virtual) address of an instruction or operand is translated into a real
(physical) address only when the virtual address is referenced. This type of translation
is called dynamic relocation and is executed by a hardware component called dynamic
address translation. Address translation occurs whenever an instruction or operand is
referenced (addressed) during program execution.

2.8 The Assembler
There are various levels of programming in a computer. The lowest level is machine
level programming in which the program is entered using a binary, octal, or hexadec-
imal number system. This is a tedious method and is prone to errors. The next higher
level is assembly language programming in which the program is entered using sym-
bolic instructions, such as MOV, ADD, SAR, etc., which represent a move instruction,
an add instruction, and a shift arithmetic right instruction, respectively. Assembly lan-
guage programming is machine dependent and requires an assembler, which translates
the instructions into the required bit pattern of 1s and 0s.

The next popular higher level language currently in use is C programming, which
is machine independent; that is, unlike an assembly language, it can be run on any
computer with little or no alteration. C programs require a compiler to generate
machine code. Other languages in this category are Fortran, PL1, Basic, and Pascal,
among others. The next higher level language is the popular C++ programming lan-
guage, which is classified as an object-oriented programming language and maintains
the integrity and support for C. Another object-oriented programming language is
Java, which is used for general-purpose programming and World Wide Web program-
ming.

82 Chapter 2 X86 Processor Architecture

An interpreter translates a single instruction, written in a high-level language, to
machine code before executing the instruction. A compiler translates all instructions
in the source code program to machine (object) code before executing the program. A
compiler translates source code from a high-level language to a low-level lan-
guage, such as assembly language and may generate many lines of machine
code. An assembler translates one line of source code to one line of machine
code.

2.8.1 The Assembly Process

There are many different versions of an X86 assembler, such as Microsoft Assembler
(MASM), Turbo Assembler (TASM), Flat Assembler (FASM), and Netwide Assem-
bler (NASM), among others. The X86 assembler translates an assembly language pro-
gram into a relocatable object file that can be linked with other object files to generate
an executable file.

An editor is used to create an assembler source program which is saved as a .asm
file. Then the assembler translates the source program to machine code and generates
an object program .obj. For example, if the source code was to move an immediate
operand of 0123H to register AX, then the source code would be MOV AX, 23 01.
This translates to the following hexadecimal machine code: B8 23 01.

The next task is to link the .obj program and create an executable program .exe.
Because a program can be loaded anywhere in memory, the assembler may not have
generated all the addresses. Also, there may be other programs to link. Therefore, the
link program

(1) Completes address generation.
(2) Combines more than one assembled module into an executable program.
(3) Initializes the .exe module for loading the program for execution.

For a simple two-pass assembler, the following steps take place during each pass:

Pass 1: (1) The assembler reads the entire symbolic program.
(2) The assembler makes a symbol table of names and labels; for exam-

ple, data field labels.
(3) The assembler determines the amount of code to be generated.

Pass 2: (1) The assembler now knows the length and relative position of each
data field and instruction.

(2) The assembler can now generate the object code with relative
addresses.

2.9 Problems 83

2.9 Problems

2.1 Three code words, each containing a message of four bits which are encoded
using the Hamming code, are received as shown below. Determine the cor-
rect 4-bit messages that were transmitted using odd parity.

Received Code Words

Bit Position 1 2 3 4 5 6 7
(a) 0 1 0 1 0 1 0
(b) 1 1 0 0 1 1 0
(c) 0 0 1 0 1 1 1

2.2 An 11-bit message is to be encoded using the Hamming code with odd parity.
Write the equations for all of the groups that are required for the encoding pro-
cess.

2.3 The 7-bit code words shown below are received using Hamming code with
odd parity. Determine the syndrome word for each received code word.

(a) Bit Position = 1 2 3 4 5 6 7
Received Code Word = 1 1 1 1 1 1 1

(b) Bit Position = 1 2 3 4 5 6 7
Received Code Word = 0 0 0 0 0 0 0

2.4 A code word containing one 8-bit message, which is encoded using the Ham-
ming code with odd parity, is received as shown below. Determine the 8-bit
message that was transmitted.

Bit Position 1 2 3 4 5 6 7 8 9 10 11 12
Received Code Word 0 1 0 1 1 0 0 1 0 0 1 1

2.5 A code word containing one 8-bit message, which is encoded using the Ham-
ming code with odd parity, is received as shown below. Determine the 8-bit
message that was transmitted.

Bit Position 1 2 3 4 5 6 7 8 9 10 11 12
Received Code Word 1 1 0 0 1 0 1 1 0 0 0 1

84 Chapter 2 X86 Processor Architecture

2.6 A code word containing one 12-bit message, which is encoded using the Ham-
ming code with odd parity, is received as shown below. Determine the syn-
drome word.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 1

2.7 Obtain the code word using the Hamming code with odd parity for the fol-
lowing message word: 1 1 0 1 0 1 0 1 1 1 1.

2.8 Determine the relative merits of horizontal and vertical microinstruction for-
mats.

2.9 Discuss the advantages and disadvantages of hardwired and micropro-
grammed control.

2.10 A block-set-associative cache consists of a total of 64 blocks (lines) divided
into four-block sets. Determine the number of sets in cache.

2.11 Perform the arithmetic operations shown below with fixed-point binary num-
bers in 2s complement representation. In each case, indicate if there is an
overflow.

(a) 0100 0000
+) 0100 0000

(b) 0011 0110
+) 1110 0011

(c) +6410
+6310

2.12 Let A and B be two binary integers in 2s complement representation as shown
below, where A ' and B ' are the diminished radix complement of A and B, re-
spectively. Determine the result of the operation and indicate if an overflow
exists.

A = 1011 0001 A ' + 1 + B ' + 1
B = 1110 0100

2.13 A fraction and the bits to be deleted (low-order three bits) are shown below.
Determine the rounded results using truncation (round toward zero), adder-
based rounding (round to nearest), and von Neumann rounding.

Fraction
. 0 0 1 0 1 0 0 1 1 0 1

2.9 Problems 85

2.14 Let the augend be A = 0.1100 1101 × 26
Let the addend be B = 0.1011 0001 × 24

 Perform the addition operation and round the result using all three rounding
methods.

2.15 Let the augend be A = 0.1110 1001 × 26
Let the addend be B = 0.1001 0111 × 24

Perform the addition operation and round the result using all three rounding
methods.

This page intentionally left blankThis page intentionally left blank

87

3
Addressing Modes

X86 instructions can have zero or more operands; for example, a return (RET) instruc-
tion from a procedure (subroutine) can have no operands or an immediate operand; a
negate (NEG) instruction forms the 2s complement of a single operand, NEG AX; a
move instruction has two operands MOV AX, BX, which moves the contents of reg-
ister BX to register AX. In the X86 instruction set, the first operand listed is the des-
tination operand; the second operand listed is the source operand.

The instruction set provides various methods to address operands. The main
methods are: register, immediate, direct, register indirect, base, index, and base com-
bined with index. A displacement may also be present. These and other addressing
methods are presented in this chapter together with examples. All arithmetic instruc-
tions with the exception of unsigned division (DIV) and signed division (IDIV) permit
the source operand to be an immediate value.

The source operand can be obtained from the instruction as immediate data, from
a general-purpose register, from a memory location, or from an input/output (I/O) port.
The source operand is normally unchanged by the instruction execution. The result of
an instruction execution can be sent to a destination in a register, a location in memory,
or to an I/O port. Memory-to-memory operations are not permitted with single
instructions — this type of operation is reserved for string instructions, which require
that the source and destination locations be set up before the transfer takes place.

An instruction has the format shown below, where a label is an identifier for a line
of code or a block of code, followed by a colon (:). The mnemonic is the name of the
instruction, for example, ADD, SUB, MOV, etc. This is followed by zero to three
operands — depending on the operation — separated by commas.

3.1 Register Addressing
3.2 Immediate Addressing
3.3 Direct Memory Addressing
3.4 Base (Register Indirect) Memory Addressing
3.5 Base or Index Plus Displacement Addressing
3.6 Base and Index Plus Displacement Addressing
3.7 Scale Factor
3.8 Segment Override Prefix
3.9 X86 Operation Modes
3.10 Problems

LABEL: MNEMONIC OPERAND1, OPERAND2, OPERAND3

88 Chapter 3 Addressing Modes

Some instructions require an operand to be a quadword (eight bytes), such as a
dividend for a divide operation, or generate a quadword result, such as the product for
a multiply operation. The dividend or product are contained in a concatenated register
pair, such as EDX:EAX, where the colon specifies concatenation.

Addressing modes provide different ways to access operands. A displacement is
an 8-bit, 16-bit, or 32-bit immediate value in the instruction and is used to address
memory. A base is the contents of a general-purpose register (GPR). The registers
normally used for this purpose are (E)BX and (E)BP. An index is the contents of a
GPR. The registers that are normally used for this purpose are (E)SI and (E)DI.

 b

3.1 Register Addressing
Using register addressing, the instruction selects one or more registers which represent
the operand or operands. This is the most compact addressing method, because the
register addresses are encoded in the instruction. It achieves fast execution since the
operation is performed entirely within the central processing unit (CPU); that is, there
are no bus transfers to or from memory. Examples of register addressing are shown
below, where the semicolon indicates a comment.

INC BH ;increment register BH
MOV AX, BX ;move contents of register BX to register AX
SUB EBX, EBX ;subtract EBX from EBX (EBX = 0)
XOR EAX, EAX ;exclusive-OR EAX with EAX (EAX = 0)

The source and destination registers can be any of the general-purpose registers,
either 8-bit, 16-bit, 32-bit, or 64-bit GPRs. The segment registers CS, DS, SS, ES, FS,
or GS can also be used in register addressing as well as the flag register and the float-
ing-point registers, among others. The length of the operand is determined by the
name of the GPR.

3.2 Immediate Addressing
Some instructions have a data value encoded in the instruction so that it is available
immediately as the source operand. The immediate data can be 8 bits, 16 bits, or 32
bits, which are sign-extended to fit the size of the destination operand. Examples of
immediate addressing are shown below for both positive and negative values.

ADD EAX, 3 ;add 3 to register EAX
MOV AH, 00 ;reset AH; AH = 0000 0000
MOV EAX, 0ABCDFFFFH ;32-bit operand ABCD FFFF(Hex) = EAX
MOV AX, 302 ;AX = 0000 0001 0010 1110
MOV AX, – 40 ;AX = 1111 1111 1101 1000

3.3 Direct Memory Addressing 89

3.3 Direct Memory Addressing
The memory operand can be either the source or the destination operand and is
addressed by a segment selector and a 32-bit or 64-bit offset that is part of the instruc-
tion. The combination of the selector and the offset generates an effective address that
points directly to the memory operand. The segment selector can be any of the follow-
ing segment registers: code segment (CS), data segment (DS), stack segment (SS), or
the extra segment (ES).

A segment selector is loaded with the appropriate value, then the CPU addresses
memory using the current (implicit) selector and the offset. Explicit segment selectors
are discussed in later section using a segment override prefix. Examples of direct
memory addressing using an implicit segment selector are shown below.

MOV AL, [1A33D4H] ;AL = contents of memory at 1A33D4H
INC DWORD PTR [17H] ;incr 32-bit operand at offset 17H

3.4 Base (Register Indirect) Memory
Addressing

Base, or register indirect, addressing is used when a register contains the address of the
data, rather than the actual data to be accessed. This method of addressing uses the
general-purpose registers within brackets; for example, [BX], [BP], [EAX], [EBX],
etc., where the brackets specify that the indicated register contains an offset that points
to the data within a specific segment. Registers (E)BX, (E)SI, and (E)DI contain off-
sets for processing operands in the data segment; for example, DS:BX, DS:ESI, and
DS:DI. Register (E)BP is used to reference data in the stack segment, such as SS:EBP.

Examples of indirect memory addressing are shown below. In the first example,
the notation [[EBX]] in the comments reads “the contents of the contents of EBX”;
that is, the contents of memory specified by the contents of EBX are loaded into reg-
ister ECX. In the second example, assume that BX = 0002H and that memory loca-
tions 0002H and 0003H contain 00H and FFH, respectively. Then register AX = FF
00H after completion of the move instruction, where 00H is the low-order byte in AL.
This is illustrated in Figure 3.1.

MOV ECX, [EBX] ;ECX = [[EBX]]; If [EBX] = 1000H, then
;ECX = bytes [1000H through 1003H]

MOV AX, [BX] ;AX = [0002H] , [0003H]

DS register

BX register

Data segment

AX register

Offset

Data

90 Chapter 3 Addressing Modes

Figure 3.1 Figure to illustrate indirect memory addressing.

3.5 Base or Index Plus Displacement
Addressing

This is a variation of base addressing and uses the general-purpose registers (E)AX,
(E)BX, (E)CX, (E)DX, (E)SP, (E)BP, (E)SI, or (E)DI as the base address or (E)AX,
(E)BX, (E)CX, (E)DX, (E)BP, (E)SI, or (E)DI as an index address, plus a displace-
ment to access memory. A scaling factor may also be used in conjunction with the
index register. The displacement consists of a signed number in 2s complement rep-
resentation that is added to the value in the base register or index register to produce an
effective address. When (E)BP is utilized as the base register, the stack segment is the
default segment.

An expression using a displacement is usually written as [BX + 4] using BX as the
base register with a displacement of 4, or as [ESI + 8] using ESI as the index register
with a displacement of 8. Both methods indicate a displacement of four or eight bytes
from the base or index address stored in register BX or register ESI. This addressing
method can be used as an index into an array, as shown in the code segment shown
below, where the DB directive defines the five values as bytes. The compare instruc-
tion compares the contents of AL with the byte at location TABLE + 4, which is the

3.5 Base or Index Plus Displacement Addressing 91

fifth byte (4) of the list. The first element (15) of the list is at location TABLE, which
has a displacement of zero. Changing the value of the displacement accesses different
fields in the same record. Changing the base register accesses the same field in dif-
ferent records.

TABLE: DB 15, 7, 6, 10, 4
...
LEA BX, TABLE ;loads the effective

;addr of TABLE into BX
CMP AL, [BX + 4]

Base or index addressing provides a way to address tables, arrays, or lists which
may be located in different areas of memory. A base register can be set to point to the
base of a table. The elements of the table can then be addressed by their displacement
from the base. Different tables can be addressed by simply changing the value in the
base register. A graphical representation of this concept is illustrated in Figure 3.2,
which shows relevant information regarding an employee. The contents of register
BX can be changed to access a different employee, where the same displacement
addresses the rate.

Alternatively, this addressing method can be used to access elements in an array.
The displacement value locates the beginning of the array and the value stored in the
index register selects an element in the array, as shown in Figure 3.3.

DS register

BX register

Data segment

Employee

Element

Table

Pay rate

Displacement

Figure 3.2 Illustration of base addressing with displacement.

EDS register

ESI register

Data segment

Element

Array

ARRAY

Element

(displacement)

92 Chapter 3 Addressing Modes

Figure 3.3 Illustration of index addressing with displacement.

The effective address in Figure 3.3 is obtained from the sum of the displacement
and the contents of index register ESI. Indexed addressing is used to access elements
in an array at execution time. The value of the index register selects an element in the
array; the first element is selected if the index register contains a value of zero. The
elements are the same length; therefore, simple arithmetic on the index register will
select any element. An instruction to move the contents of an array element to register
EAX is shown below, where ARRAY is the address (displacement) of the array (or
table) and the element is accessed whose index is in ESI.

MOV EAX, ARRAY[ESI]

ARRAY[ESI] references the contents of the element in the location addressed by
the displacement ARRAY plus the contents of ESI — ARRAY + 0 references the first
element in the array. To access the next element, simply increment register ESI.

3.6 Base and Index Plus Displacement
Addressing

The effective address of the operand is obtained by adding the contents of the base reg-
ister, the contents of the index register, and the displacement (which may be zero).
Base indexed addressing without displacement is frequently used to access the

3.6 Base and Index Plus Displacement Addressing 93

elements of a dynamic array. A dynamic array is an array whose base address can
change during program execution. This addressing method can also be used to access
a 2-dimensional array in which the beginning of the array is determined by the dis-
placement and the base register; the index register addresses the array elements.

Another application is to access elements in a 1-dimensional array on a stack, as
shown in Figure 3.4. The base register can point to the stack top; the contents of the
base register plus the displacement points to the beginning of the array. The index reg-
ister then selects elements in the array. The effective address (EA) is calculated as
shown below.

EA = EBP + displacement + ESI

SS register

ESI register

Stack segment

Element
Array

Element

Displacement

EBP register Top of stack

Element

Element

Beginning of array

Bottom of stack

Bottom of stack
segment

End of array

Figure 3.4 Illustration of base and index addressing with displacement.

94 Chapter 3 Addressing Modes

Example 3.1 A 2-dimensional array is shown in Figure 3.5 in which the elements
are stored row by row. The elements can be accessed by base-index with displace-
ment addressing. The second element in the first row (56) can be accessed by

[EBX/EBP][ESI/EDI]

by storing the base address of the first element in BX/EBX (or BP/EBP) and storing a
1 in SI/ESI (or DI/EDI) with no displacement — the index register selects the ith ele-
ment. A 1 rather than a 2 is stored in the index register, because the element whose
address is in the base register is the first element (12). To access the second element in
the second row (89), a value of 5 is added to the base register— the number of ele-
ments in a row — as shown below assuming a value of 1 in the index register.

5[EBX/EBP][ESI/EDI] or [EBX/EBP + ESI/EDI + 5]

12 56 78 5 44
54 89 65 92 6
37 66 15 77 19

Figure 3.5 An illustration of a 2-dimensional array.

3.7 Scale Factor
A scale factor can be used to access elements in an array in which the size of the ele-
ments is two, four, or eight bytes. The address calculation can be considered as

(Index register × 2scale) + Displacement or
Base register + (index register × 2scale) + Displacement

where the scale is 0, 1, 2, or 3. This addressing mode is useful for processing arrays
and provides an index into the array when the array elements are two, four, or eight
bytes. If the array elements are 8-byte operands, then the index register is multiplied
by eight prior to calculating the effective address. Since the scale factor is a power of
two, multiplication can be accomplished by shifting left rather than by a multiply oper-
ation.

(Index times scale) plus displacement The displacement points to the begin-
ning of the array, while the index contains the address of the appropriate array element;
that is, the index is the subscript of the array element. The effective address of the
operand is obtained by multiplying the index by a scale factor of one, two, four, or
eight and then adding the displacement.

3.7 Scale Factor 95

Base plus (index times scale) plus displacement The effective address of
the operand is obtained by multiplying the index register by a scale factor of one, two,
four, or eight, then adding the base register, and then adding the displacement. This
addressing mode is useful for accessing array elements in a 2-dimensional array when
the operands are one, two, four, or eight bytes. An example is shown in Figure 3.6
using EBX as the base register, ESI as the index register with a scale factor of 4, and a
displacement for the following move instruction that moves the addressed operand
into register EAX:

MOV EAX, [EBX + ESI * 4 + DISPLACEMENT]

DS register

ESI register

Data segment

Element
Array

Element

Displacement

EBX register

Element

Element

Beginning of array

End of data
segment

End of array

Element

If ESI = 20, then 20 × 4 = 80 EAX

If ESI = 21, then 21 × 4 = 84 EAX

Base

Index

Figure 3.6 Illustration of base plus (index times scale) plus displacement.

96 Chapter 3 Addressing Modes

3.8 Segment Override Prefix
The processor selects the applicable default segment as a function of the instruction:
instruction fetching assumes the code segment; accessing data in main memory refer-
ences the data segment; and instructions that pertain to the stack reference the stack
segment. When transferring data to or from memory, the processor usually references
the current data segment as the default segment. However, a segment override prefix
can be used to change the default data segment to another segment; that is, to explicitly
specify any segment register to be used as the current segment.

This is accomplished by listing the new segment to be used for source or destina-
tion operands followed by a colon and is placed in front of the offset variable. For
example, to override the data segment with the extra segment, the coding shown below
applies to a move instruction, which moves the 32-bit operand addressed by register
EBX in the extra segment to register EAX. When the move instruction is executed, the
offset in register EBX pertains to the extra segment rather than the data segment.

MOV EAX, ES:[EBX]

The segment override prefix is a byte that is inserted in the instruction and causes
the processor to fetch the memory operand from the designated segment rather than
from the default segment. Some segments, however, cannot be overridden. Instruc-
tion fetches must be made from the code segment; push and pop operations must be
made with reference to the stack segment; and string operations must provide a desti-
nation address in the extra segment.

The segment override prefix applies only to the instruction in which it is inserted;
that is, it is restricted to a single instruction — all subsequent instructions use the
default segment. Thus, the segment override prefix must be specified for each instruc-
tion that is to be overridden. Utilizing a segment override prefix increases the execu-
tion time of the corresponding instruction.

3.9 X86 Operation Modes
This section presents two of the operating modes for the X86 architecture for the basic
execution environment: protected mode that allows for multiple tasks and multiple
users and real mode. The operating modes are set by software and specify the instruc-
tions and architectural attributes that are available.

3.9.1 Protected Mode

Protected mode allows the system software to use features, such as virtual memory
and multitasking, to increase system performance. The architecture provides four lev-
els of protection: level 0 through level 3. Level 0 has the highest priority and is

3.10 Problems 97

reserved for the operating system; levels 1 and 2 are for less critical operating system
functions; level 3 is reserved for application programs.

Multitasking can execute several programs simultaneously. These programs (or
tasks) may have separate segments or may share segments. The programs are written
as if on a dedicated microprocessor. The multitasking software then simulates a ded-
icated microprocessor by allocating a virtual processor. The substitution of these vir-
tual processors creates the appearance of a dedicated processor, where each task has an
allotment of CPU time. If a task must wait for an I/O operation, it suspends its oper-
ation. The computer must be able to switch rapidly between tasks, save and load the
entire machine state, prevent interference of tasks, and prioritize tasks.

Protected mode allows reliable multitasking and prevents tasks from overwriting
code or data of another task. Thus, if a program fails, the effects are confined to a lim-
ited area and the operating system will not be affected. Protection is applied to seg-
ments and pages.

3.9.2 Real Mode

Real mode (or real-address mode), is an operating mode that implements the 8086
architecture and is initialized when power is applied or the system is reset. Thus, real
mode allows compatibility with programs that were written for the 8086 processor.
Real mode allows access to the 32-bit register set and protected mode when processor
extensions are in effect. Real mode does not support multitasking.

The real-address mode implements a segmented memory consisting of 64 kilo-
bytes in each segment. Each segment register is associated with either code, data, or
stack, which are contained in separate segments. Real mode segments begin on 16-
byte boundaries. Memory is accessed using a 20-bit address that is calculated by add-
ing a right-aligned 16-bit offset to a segment register that is multiplied by 16; that is,
the segment register is shifted left four bits. This provides an address space of 1 mega-
byte.

3.10 Problems

3.1 Specify the addressing mode for each operand in the instructions shown below.

(a) ADD AX, [BX]

(b) ADD CX, [BP + 8]

(c) ADD EBX, ES:[ESI – 4]

(d) ADD [EBP +EDI + 6], 10

98 Chapter 3 Addressing Modes

3.2 Let DS = 1000H, SS = 2000H, BP = 1000H, and DI = 0100H. Using the real
addressing mode with a 20-bit address, determine the physical address mem-
ory address for the instruction shown below.

MOV AL, [BP + DI]

3.3 Let DS = 1100H, DISPL = –126, and SI = 0500H. Using the real addressing
mode with a 20-bit address, determine the physical address memory address
for the instruction shown below.

MOV DISPL[SI], DX

3.4 Let the directive shown below be located in the data segment at offset
04F8H, where DW 10 DUP(?) specifies that a word is defined with an un-
known value and duplicated ten times.

Let BX = 04F8H, SI = 04FAH, and DI = 0006H. Let the 10 reserved words
beginning at location VALUE be labelled

WORD1, WORD2, . . . , WORD10

Indicate the word that is referenced by the memory operand in each of the
move instructions shown below.

(a) MOV AX, VALUE + 2
(b) MOV AX, [BX]
(c) MOV AX, [SI]
(d) MOV AX, [BX + DI – 2]

3.5 Differentiate between the operation of the following two move instructions:

(a) MOV EAX, 1234ABCDH
(b) MOV AX, [1234H]

3.6 Differentiate between the operation of the following two move instructions:

(a) MOV EBX, 1234ABCDH
(b) MOV [EBX], 1234H

3.10 Problems 99

3.7 Use base and index plus displacement addressing to obtain the physical ad-
dress of the memory operand for the following conditions:

BX = 6F30H, SI = 1000H, DS = 85H, Displacement = 2106H

3.8 Obtain the real (physical) address that corresponds to each segment:offset pair
shown below.

Segment: Offset
(a) 2B8C: 8D21

(b) F000: FFFF

(c) 3BAC: 90DF

This page intentionally left blankThis page intentionally left blank

101

4
C Programming Fundamentals

The C programming language was developed by Bell Laboratories in 1972 and has
become the predominant high-level programming language. As a high-level lan-
guage, C programs are machine independent; that is, they can be run on different com-
puter systems. Assembly language uses an assembler to convert the symbolic
program to machine code; whereas, the C programming language uses a compiler to
convert the source code into machine code.

The C language is case sensitive; therefore, add () and ADD () are different func-
tion names. It is common practice to use lowercase for both the code statements and
the comments. The main purpose of this chapter is to provide sufficient information
regarding C programming in order to demonstrate how a C program can be linked to
an assembly language program. This concept will be used in subsequent chapters.

An editor is used to create a disk file for the source code, which is saved with a .c
or a .cpp extension. The source code is then compiled to create an object file, which is
linked with library files to assign addresses and to create an executable file that can be
run on a computer. The flowchart of Figure 4.1 illustrates this development cycle.

4.1 Structure of a C Program
A simple C program is shown in Figure 4.2 displaying both the program code and the
outputs obtained from the program. The program contains some basic statements and
symbols that are inherent to C programs. Line 1 is a comment line indicated by double

4.1 Structure of a C Program
4.2 Variables and Constants
4.3 Input and Output
4.4 Operators
4.5 While Loop
4.6 For Loop
4.7 Additional C Constructs
4.8 Problems

102 Chapter 4 C Programming Fundamentals

forward slashes //. This comment syntax is used for single-line comments only. A
second syntax to specify a multiple-line comment uses the symbol /* before the first
comment character, followed by the comment, and terminated by the symbol */. This
syntax can also be used for single-line comments. Examples of different types of com-
ments are shown below.

//This is a single-line comment.
/*This is a single-line comment.*/

printf (“Hello World\n”); //comment for this line of code

/*
This is a multiple-line comment
used to accommodate information
that spans several lines.
*/

Begin

Editor

Compile source code

Link object fileLibrary files

Execute program

End

Source code

Object codeSyntax errors

Errors

Logic Errors

Figure 4.1 Development cycle for a C program.

1 //hello world2, a simple C program
2 #include <stdio.h>
3
4 main ()
5 {
6 printf ("Hello World\n");
7 return;
8 }

(a)

Hello World
Press any key to continue_

(b)

4.1 Structure of a C Program 103

Figure 4.2 A simple C program to illustrate some basic characteristics: (a) the C
program and (b) the resulting output generated by the program.

Line 2 is a preprocessor directive used to read in another file and include it in the
program. Preprocessor directives begin with symbol #. It informs the compiler to
include at this location in the program information that is contained in the stdio.h file.
The angle brackets < > indicate that the stdio.h file is located in a specific machine-
dependent location. The stdio.h files are specified by the American National Stan-
dards Institute (ANSI) and include the printf () function used in this program. Line 3
is a separation line.

Line 4 consists of a function called main (), where the parentheses indicate to the
compiler that it is a function. The keyword void can also be included within the paren-
theses to indicate that no arguments are being passed to the function. Line 5 contains
a left brace {, which marks the beginning of the body of the function. Left and right
braces are also used as delimiters to group statements together.

Line 6 invokes the print function printf (), which displays information on the
monitor screen. This function is part of the standard library of functions contained in
the C programming environment. Information pertaining to the printf () function is
contained in the stdio.h header file. The data within the parentheses is a series of char-
acters called a string argument contained within double quotation marks. The string is
called an argument and is displayed on the screen, except for the symbol (\ n), which
is a newline character. This character is not displayed, but simply places the cursor at
the beginning of the next line. Line 6 is terminated with a semicolon — all declara-
tions and statements are terminated with a semicolon.

Line 7 indicates that the function returns to the calling function main (). This is
part of the ANSI requirement for a C program. An expression can be passed to the
calling function, in which case the expression is usually enclosed in parentheses. The
expression may be the result of a calculation requested by the calling function. A
value of zero means that the program was executed correctly — a nonzero integer

104 Chapter 4 C Programming Fundamentals

indicates that the function main () was unsuccessful. Line 8 is the closing right brace
and indicates the end of the program specified by the function main ().

It is important to make the program format easy to read. This makes the program
easier to understand and to correct or modify. One technique to make the program eas-
ier to understand is to make the variable names meaningful. Comments also help to
clarify certain tasks in the program and indicate more clearly how the program func-
tions. Comments should be placed before a code segment to illustrate the function of
the segment and also on individual lines of code, where applicable.

Blank lines help to delineate different segments of the program by separating
them. Although C is classified as a free-form language — allowing more than one
statement per line — the code is easier to read if there is only one statement per line.
The braces should be placed on the extreme left of the page with the body of the seg-
ment right-indented a few spaces. These techniques make the program easier to read
and understand at a later date for both the programmer who wrote the code and others.

4.2 Variables and Constants
This section describes how the C programming language defines and stores variables
and constants. Variables store values in memory and the type of each variable must be
specified; that is, the variable must be declared as type character, integer, and so forth.
The focus will be on numeric variables and numeric constants.

4.2.1 Variables

A variable is a named memory location and must be declared before it is used in the
program. The declaration of a variable with an assigned type permits the compiler to
assign an appropriate amount of storage for the variable. A variable is defined by indi-
cating the type of variable followed by the name of the variable, which can range from
a single first letter to 31 characters, including underscore characters. Some typical
variables are shown in Table 4.1. The typical ranges for the variables listed in Table
4.1 are shown in Table 4.2.

Table 4.1 Some Typical C Variables

Type Keyword Meaning
Character char Signed character (one byte)
Unsigned character unsigned char Unsigned character (one byte)
Integer int Signed integer (two bytes)
Unsigned integer unsigned int Unsigned integer (two bytes)
Float float Single-precision floating-point numbers
Double double Double-precision floating-point numbers

Table 4.2 Typical Ranges for Some Typical C Variables

Type Range Bits required
char –128 to +127 8 bits
unsigned char 0 to 255 8 bits
int –32,768 to +32,767 16 bits
unsigned int 0 to 65,535 16 bits
float 10–38 to 10+38 (approximate range) 32 bits

double 10–308 to 10+308 (approximate range) 64 bits

4.2 Variables and Constants 105

Variables that are declared outside a function — defined before the function brace
— are global variables and can be accessed by any function in the remainder of the
program. It is preferable to have global variables declared at the beginning of the pro-
gram prior to main (), because this makes them easier to notice.

Variables that are declared inside a function — defined after the brace at the start
of the function — are local variables and can be accessed only by the function in which
they are defined. They are unique from other variables of the same name that are
declared at other locations in the program; that is, they are distinct and separate vari-
ables with the same name. Variables are declared as follows: type var_name; for
example: int counter;. Examples of global and local variable declarations are shown
in Figure 4.3.

main ()
{

int a //local
//(declared after the brace)

...
} (a)

#include <stdio.h>
int b //global

//(declared before a function)
main () //main () is a function
{

...
} (b)

Figure 4.3 Examples of declared variables: (a) local variable and (b) global vari-
able.

106 Chapter 4 C Programming Fundamentals

More than one variable can be declared by using commas to separate the variable
names; for example, the floating-point numbers x, y, and z: float x, y, z;. Variables can
be assigned values by using the assignment operator (=) in an assignment statement, as
follows: var_name = value (or expression); for example: num = 100;. The variable
name is any variable that has been previously defined. Commas are not allowed in
numerical values; thus, the number 36,000 is invalid.

Variables can be initialized when they are declared; for example, int num = 100;.
Since an integer has a range of –32,768 to +32,767, a value of 50,000 would be beyond
the range of an integer. Errors of this type are undetected by the compiler. An integer
value has no fractional part; however, a floating-point value must include a decimal
point. Floating-point numbers are segmented into the sign, the exponent (character-
istic), and the fraction (mantissa or significand), as shown in Figure 4.4 for single-pre-
cision and double-precision formats.

 31 23 22 0

Sign bit:
0 = positive
1 = negative

8-bit signed
exponent
(characteristic)

23-bit fraction
(mantissa, significand)

(a)

 63 52 51 0

Sign bit:
0 = positive
1 = negative

11-bit signed
exponent
(characteristic)

52-bit fraction
(mantissa, significand)

(b)

Figure 4.4 IEEE floating-point formats: (a) 32-bit single precision and (b) 64-bit
double precision.

The result of a floating-point operation can be displayed on the monitor by using
the print function printf (), as shown in the short program of Figure 4.5, which mul-
tiplies two floating-point numbers a and b, then displays the product. The symbol %f

4.2 Variables and Constants 107

is a conversion specifier that causes the result of the multiply operation to be displayed
as a floating-point number. Conversion specifiers are covered in more detail in a later
section. The symbol (*) is the multiplication operator. Operators are also covered in
a later section.

//float_mul
//multiplies two floating-point numbers
#include <stdio.h>

main ()
{

float a, b;

a = 3.5;
b = 4.5;

//product of 3.5 x 4.5 = 15.750000
printf ("Product = %f\n", a * b);

return;
}

(a)

Product = 15.750000
Press any key to continue_

(b)

Figure 4.5 Example of floating-point multiplication: (a) the C program and (b)
the resulting output generated by the program.

4.2.2 Constants

Unlike variables, constants are fixed values that cannot be altered by the program.
There are primarily four types of constants in the C programming language: integer
constants, floating-point constants, character constants, and string constants.

Integer constants An integer is a whole number without a decimal point, such as
the natural numbers and their negatives, including the number zero. Examples of inte-
ger constants are 10 and –100. Integer constants can be represented in three different
radices: decimal (radix 10, with digits 0 through 9), octal (radix 8, with digits 0
through 7), and hexadecimal (radix 16, with digits 0 through 9 and letters A through F
that represent digits 10 through 15 as one character).

108 Chapter 4 C Programming Fundamentals

A decimal number in C is entered as shown above for 10 and –100 with no prefix.
If there is no leading plus or minus sign, then the compiler assumes that the number is
positive. An octal number is preceded by a zero (0) prefix; for example, 0248 = 2010.
Octal numbers can be preceded by a plus or minus sign. A hexadecimal number is pre-
ceded by a 0x prefix; for example, 0xA5B16 = 265110 and can have a plus or minus
sign.

An integer constant can also be written as a literal constant in which the integer
constant is entered directly into the statement that specifies the integer; for example:
int num = 35;.

Floating-point constants A floating-point number consists of a sign, either plus
or minus — if there is no sign indicated, then the number is assumed to be positive; an
exponent character — either E or e; an integer exponent; and a significand containing
a decimal point.

Floating-point constants are decimal digits that are of type float, double, long, or
long double. Unless otherwise specified, floating-point numbers are stored as double
as the default type; that is, they are stored in the double-precision format. A suffix can
be added to the constant, however, to uniquely specify the type. A suffix of f or F spec-
ifies a single-precision number; a suffix of l or L specifies a double-precision number.
The C compiler maps long double to type double.

Floating-point numbers can also be written in scientific notation. Thus, 2.45E3 =
2.45 × 103 = 2,450; 3.7256e4 = 3.7256 × 104 = 37,256; and 0.92e–3 = 0.92 × 10–3 =
0.00093. When converting a floating-point number to an integer, the fraction is trun-
cated, as shown in Figure 4.6, where the conversion specifier %f is a floating-point
number and %d is a signed decimal integer.

//convert_flp_to_int
//convert a floating-point number to an integer

#include <stdio.h>
main ()

{
int i;
float f;

f = 1234.009766;
i = f;

printf (" float = %f\n integer = %d \n", f, i);
return;

} //continued on next page
(a)

Figure 4.6 Program to illustrate converting a floating-point number to an inte-
ger: (a) the C program and (b) the outputs obtained from the program.

float = 1234.009766
integer = 1234
Press any key to continue_

(b)

4.2 Variables and Constants 109

Figure 4.6 (Continued)

When using the Microsoft Visual C++ Express Edition, the #include directive is
slightly different and main is preceded by the int data type, as shown in Figure 4.7 for
the floating-point-to-decimal conversion of Figure 4.6. The stdafx.h directive is a
precompiled header directive, which is an abbreviation for Standard Application
Framework Extensions. This directive contains standard and project-specific files
that are to be included in the program.

The construct int main (void) is a function prototype that has two components.
The int is the return type, which is the type of variable that is returned to the operating
system at the completion of the program and represents the status of the program exe-
cution. The main (void) indicates to the compiler where program execution begins
and that no arguments are being passed to the invoked function. The left and right
braces indicate the beginning and end of the function.

// convert_flp_to_int.cpp

#include "stdafx.h"
int main (void)

{
int i;
float f;

f = 1234.009766;
i = f;

printf (" float = %f\n integer = %d \n ", f, i);
return 0;

}
(a)

 float = 1234.009766
 integer = 1234
 Press any key to continue . . . _

(b)

Figure 4.7 Program to illustrate converting a floating-point number to an integer
using C++ Express Edition: (a) the C program and (b) the outputs obtained from the
program.

110 Chapter 4 C Programming Fundamentals

Character constants Unlike variables, the value of a constant cannot be
changed. The keyword char indicates the type used for letters and other characters,
such as !, &, $, %, and *, among others. When characters are stored, they are actually
stored as integers using the American Standard Code for Information Interchange
(ASCII). A different code is used for IBM mainframes, called the Extended Binary
Coded Decimal Interchange Code (EBCDIC).

For example, to store an uppercase A represented in ASCII, 6510 (4116) is stored;
whereas, to store a lowercase a, 9710 (6116) is stored. The standard ASCII code has a
range of decimal 0 to 127 (hexadecimal 00 to 7F). The extended ASCII code has a
range of decimal 128 to 255 (hexadecimal 80 to FF) for special characters, such as ≥ or
≤. Both standard ASCII and extended ASCII characters are stored as one-byte inte-
gers.

Character constants are written within single quotation marks, such as '#' and 'R',
which act as delimiters for the character. The single quotation marks indicate to the
compiler that a single character is specified. Note that the number 7 and the character
constant '7' are different — the number 7 has an integer value of seven; the character
constant '7' has an integer value of 5510 (3716).

The program shown in Figure 4.8 illustrates printing a standard ASCII character
and an extended ASCII character. The conversion specifier %c specifies a character
value. An extended ASCII character must be unsigned.

//ascii char.cpp
//print standard ascii and extended ascii

#include "stdafx.h"

int main (void)
{

char x1;
unsigned char x2;

x1 = 'R';
x2 = 193; //extended ascii character is ⊥

printf ("x1 = %c, x1= %d, x2 = %c \n", x1, x1, x2);
return 0;

}
(a)

x1 = R, x1 = 82, x2 = ⊥
Press any key to continue . . . _

(b)

Figure 4.8 Program to illustrate a program to print standard ASCII and extended
ASCII characters: (a) the C program and (b) the outputs obtained from the program.

4.2 Variables and Constants 111

If an attempt is made to place a 16-bit character into an 8-bit integer, only the low-
order eight bits will be retained — the high-order eight bits will be removed. For
example, 100010 = 03E816. This value is represented in eight bits as E816 = 1110
10002 = –24 in 2s complement representation. Figure 4.9 illustrates this concept.

//truncate.cpp
//truncate 16 bits to 8 bits

#include "stdafx.h"

int main (void)
{

char ch; //char is 8 bits
int i; //int is 16 bits

i = 1000; //03E8H is > 8 bits
ch = i; //cannot put 16 bits into 8 bits

printf ("%d\n", ch);
return 0;

}
(a)

–24
Press any key to continue . . . _

(b)

Figure 4.9 Program to illustrate high-order truncation when attempting to place
a 16-bit variable into an 8-bit variable: (a) the C program and (b) the outputs.

The program shown in Figure 4.10 illustrates declaring three different types: char,
float, and double, then assigns a value to each type and then prints the output to the
screen using one print statement.

//char_flp_dbl.cpp
//create variables of type char, float, and double
//assign each a value and print to the screen
#include "stdafx.h" //continued on next page

(a)

Figure 4.10 Program to illustrate assigning values to types char, float, and dou-
ble: (a) the C program and (b) the outputs.

int main (void)

{
char ch;
float flp;
double dbl;

ch = 'X';
flp = 100.123;
dbl = 123.009;

printf (" ch = %c\n flp = %f\n dbl = %f\n ",
ch, flp, dbl);

return 0;
}

 ch = X
 flp = 100.123001
 dbl = 123.009000
Press any key to continue . . . _

(b)

112 Chapter 4 C Programming Fundamentals

Figure 4.10 (Continued)

String constants String constants are a set of characters enclosed by double quo-
tation marks. The string characters are terminated by a null zero (\0). This is a binary
zero (0000 0000) and is inserted by the compiler to mark the end of the string — it is
not the number zero (0011 0000). The null zero is also called the string delimiter.
Since the quotation marks are not stored as part of the string, the only indication that
the compiler has that the string has ended is the null zero.

Strings produce a one-dimensional array in memory, including the terminating
null zero. To use double quotation marks in the string, precede the quotation mark
with a backslash. Examples of strings are shown in Table 4.3 together with the string
lengths.

Table 4.3 String Examples and their Lengths

String Length in Bytes
"012" 3
"Hello World" 11
"Temperature is 74 degrees Fahrenheit." 36

4.3 Input and Output 113

4.3 Input and Output
This section presents additional detail on the printf () function and introduces the
scanf () function. These are the only two input/output (I/O) functions that will be used
in later chapters when linking C to an assembly language program. Other I/O func-
tions that will not be covered in this section include the getchar () function, which
reads the next character typed from the keyboard as an integer; the putchar () func-
tion, which writes a single character to the screen; the getche () function, which reads
the next character and then displays the character on the screen; and the getch () func-
tion, which is similar to the getche () function, but does not display the character on
the screen, among others.

4.3.1 Printf () Function

The printf () function, together with the scanf () function, are two of the most ver-
satile I/O functions in the C repertoire. The printf () function has the general format
shown below. It prints the characters that are contained within the double quotation
marks. Some of the more common conversion specifiers are shown in Table 4.4.

printf (“format_string and conversion specifier(s)\n”,
one or more arguments);

Table 4.4 Some Common Conversion Specifiers

Conversion Specifiers Resulting Output
%c Single character
%d Signed decimal integer
%u Unsigned decimal integer
%f Decimal floating-point number
%s Character string
%o Unsigned octal integer
%x Unsigned hexadecimal integer (a–f)
%X Unsigned hexadecimal integer (A–F)
%% Percent sign

The escape character for a newline (\ n) has already been discussed. This character
causes a carriage return and a line feed. Another escape character is the tab character
(\ t), which advances the output horizontally to the next tab stop. Use of these two
escape characters is shown in the program of Figure 4.11, which displays decimal and
floating-point numbers in various configurations using the newline and tab characters.

114 Chapter 4 C Programming Fundamentals

Three integers are defined: int1 = 4, int2 = 20, and int3 = 40. These are displayed
on separate lines with and without tabs. The double newline characters cause the next
printed line to be two lines below the current line. The floating-point numbers are dis-
played on three separate lines and indented by placing a newline character and a tab
character before each floating-point conversion specifier. The sum of the two float-
ing-point numbers flp1 = 1.15 and flp2 = 15.50 is obtained by the mathematical oper-
ator (+) to yield a sum of flp1 + flp2 = 16.650000. The subtraction of the two floating-
point numbers positive flp1 = 1.15 and negative flp3 = –1.5 is obtained by the math-
ematical operator (–) to yield a result of flp1 – flp3 = 2.650000. The mathematical
operators are discussed in detail in the next section.

//displ_val_tabs.cpp
//display decimal and floating-point values
//using newline and tabs

#include "stdafx.h"

int int1 = 4, int2 = 20, int3 = 40;
float flp1 = 1.15, flp2 = 15.50, flp3 = -1.5;

int main (void)
{

printf ("Decimal values without tabs:
%d, %d, %d\n\n", int1, int2, int3);

printf ("Decimal values with tabs:
\t%d, \t%d, \t%d\n\n", int1, int2, int3);

printf ("Floating-point values on three lines:
\n\t%f, \n\t%f, \n\t%f\n\n", flp1, flp2, flp3);

printf ("Floating-point addition of %f + %f = %f\n\n",
flp1, flp2, flp1+flp2);

printf ("Floating-point subtraction of %f - %f
= %f\n\n", flp1, flp3, flp1-flp3);

return 0;
}

//continued on next page
(a)

Figure 4.11 Program to illustrate the use of the newline character and the tab char-
acter: (a) the C program and (b) the outputs.

Decimal values without tabs: 4, 20, 40

Decimal values with tabs: 4, 20, 40

Floating-point values on three lines:
1.150000,
15.500000,
–1.500000

Floating-point addition of 1.150000 + 15.500000 = 16.650000

Floating-point subtraction of 1.150000 – –1.500000 = 2.650000

Press any key to continue . . . _
(b)

4.3 Input and Output 115

Figure 4.11 (Continued)

Figure 4.12 illustrates a method to align columns using the newline and tab char-
acters. The columns display decimal numbers in both the uppercase and lowercase
hexadecimal number representation. The conversion specifiers %X and %x specify
uppercase and lowercase hexadecimal, respectively.

//create_col.cpp
//creates three columns using the newline and tab characters

#include "stdafx.h"

int main (void)
{
 printf ("hex uppercase \t\thex lowercase \t\tdecimal\n");
 printf ("%X \t\t\t%x \t\t\t%d\n", 8, 8, 8);
 printf ("%X \t\t\t%x \t\t\t%d\n", 11, 11, 11);
 printf ("%X \t\t\t%x \t\t\t%d\n", 14, 14, 14);

 return 0;
}

//continued on next page
(a)

Figure 4.12 Program to illustrate the use of the newline character and the tab char-
acter to create columns: (a) the C program and (b) the outputs.

hex uppercase hex lowercase decimal
8 8 8
B b 11
E e 14
Press any key to continue . . . _

(b)

116 Chapter 4 C Programming Fundamentals

Figure 4.12 (Continued)

One final example to illustrate alignment is shown in Figure 4.13, which adds a
minimum field width integer between the percent sign (%) and the letter (d) of a con-
version specifier. The integer is referred to as a minimum field width specifier and pro-
vides a minimum field width for the output. For example, a minimum right-aligned
field width of six spaces is specified by %6d, as shown in the program of Figure 4.13.

If no minimum field width is specified, the output is left-aligned. A minimum
field width of %06d will right-align the output with high-order zeroes, if necessary, to
fill in the minimum field width. If the minimum field width is less than the width of
the output, then the entire output is printed since the output is greater than the specified
minimum width.

//min_field_width.cpp
//add an integer between the % sign and the letter of the
//conversion specifier to indicate a minimum field width

#include "stdafx.h"
int num1, num2; //global variables

int main (void)
{

num1 = 92;
num2 = 56789;

printf ("%d\n", num1); //prints 92 width 6 left-aligned
printf ("%d\n", num2); //prints 56789 width 6

//left-aligned
printf ("%6d\n", num1); //prints 92 width 6 right-aligned

//continued on next page
(a)

Figure 4.13 Program to illustrate the use of the minimum field width specifier: (a)
the C program and (b) the outputs.

printf ("%06d\n", num1);//prints 92 width 6 with
//0s right-aligned

printf ("%3d\n", num2); //prints entire number
//left-aligned even though
//width of number is greater than
//the minimum width specified

return 0;
}

92
56789
 92
000092
56789
Press any key to continue . . . _

(b)

4.3 Input and Output 117

Figure 4.13 (Continued)

4.3.2 Scanf () Function

The scanf () function is the most commonly used input function of the several input
functions in the C programming language. The customary use for the scanf () func-
tion is to input data from the keyboard. It converts inputs to the following formats:
decimal integers, floating-point numbers, characters, and strings. The scanf () func-
tion can contain spaces and tabs — which are ignored — to make the string more read-
able. The scanf () function is similar to the printf () function — it contains a control
string of format specifiers (also called conversion specifiers) %d, %c, %f, and so forth,
which describe the format of each input variable. The general format for the scanf ()
function is shown below, together with a specific format to read a decimal integer.

scanf () ("conversion specifiers", argument names);

scanf ("%d", &num);

The ampersand (&) is the address-of operator, which indicates that the decimal
input number is to be stored in the location assigned to the variable num. The conver-
sion specifiers for the scanf () function are the same as for the print () function and
are reproduced in Table 4.5 for convenience. When the scanf () stores input data, it
converts the data to the corresponding conversion specifier in the format string.

The scanf () function is normally preceded by the printf () function, which
requests the user to enter information. The scanf () function then assigns the input
data to a specific location.

Table 4.5 Some Common Conversion Specifiers

Conversion Specifiers Resulting Output
%c Single character
%d Signed decimal integer
%u Unsigned decimal integer
%f Decimal floating-point number
%s Character string
%o Unsigned octal integer
%x Unsigned hexadecimal integer (a–f)
%X Unsigned hexadecimal integer (A–F)
%% Percent sign

118 Chapter 4 C Programming Fundamentals

The example shown in Figure 4.14 requests the user to enter an integer number
and a floating-point number using the printf () function, then stores the data in spe-
cific locations using the scanf () function, then prints the input data to the monitor
screen.

//input_int_float
//input an integer and a floating-point
//number and display the values

#include "stdio.h"

int main (void)
{

int int_num;
float float_num;

printf ("Enter an integer: ");
scanf (" %d", &int_num);

printf ("Enter a floating-point number: ");
scanf(" %f", &float_num);

printf ("%d\n", int_num);
printf ("%f\n", float_num);

return 0;
} //continued on next page

(a)

Figure 4.14 Program to illustrate the use of the printf () and scanf () functions to
enter and print an integer and a floating-point number: (a) the C program and (b) the
outputs.

Enter an integer: 7
Enter a floating-point number: 4.5
7
4.500000
Press any key to continue_

(b)

4.3 Input and Output 119

Figure 4.14 (Continued)

The example shown in Figure 4.15 uses the printf () function and the scanf ()
function to request the user to enter two integer numbers, perform an addition and sub-
traction on the numbers, then print the sum and difference. This program uses the
arithmetic operators of addition (+) and subtraction (–), which are covered in more
detail in the next section.

//add_sub_int.cpp
//enter two integers, then add and subtract them

#include "stdafx.h"

int main (void)
{

int num1, num2;
printf ("Enter first integer:");
scanf ("%d", &num1);

printf ("Enter second integer:");
scanf ("%d", &num2);

printf ("Sum is %d\n", num1 + num2);
printf ("Difference is %d\n", num1 - num2);

return 0;
}

//continued on next page
(a)

Figure 4.15 Program to illustrate the use of the printf() and scanf () functions to
enter two integers, perform addition and subtraction on the two numbers, then print the
sum and difference: (a) the C program and (b) the outputs.

Enter first integer: 9
Enter second integer: 3
Sum is 12
Difference is 6
Press any key to continue . . . _
--
Enter first integer: 45
Enter second integer: 63
Sum is 108
Difference is –18
Press any key to continue . . . _

(b)

120 Chapter 4 C Programming Fundamentals

Figure 4.15 (Continued)

4.4 Operators
Operators are symbols that direct C to execute specific operations. Some of the more
common operators are used to perform the following operations: an arithmetic oper-
ation, a relational operation to determine the relationship between two expressions, a
logical operation of AND, OR, or NOT, a conditional operation to replace the if-else
statement, an increment or decrement operation, and bitwise operations that perform
logical operations on a bit-by-bit basis. Table 4.6 lists the more common operators.

Table 4.6 Common Operators Used in C Programming

Operator Function
= Assignment
+ Addition
– Subtraction
* Multiplication
/ Division
% Modulus (remainder)
= = Equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
!= Not equal to //continued on next page

4.4 Operators 121

4.4.1 Arithmetic Operators

An expression is a conjunction of operators and operands — or expressions — and
may also contain variables and constants. Expressions can contain multiple operators
that are evaluated in a specific sequence, depending on the precedence of the opera-
tors; for example, multiplication, division, and modulus have a higher precedence than
addition. However, parentheses can be utilized to alter the precedence, as shown in the
following example:

result = (6 + 7) * 8;

Normally, the multiplication operator (*) would have a higher precedence than the
addition operator (+). The use of parentheses, however, places a higher precedence on
the addition operation than on the multiply operation. This provides a value of 104 for
the right-hand expression, which is assigned to the variable result.

Assignment operator The assignment operator (=) does not signify equality —
it means to copy the right-hand side expression to the left-hand side tar expression.
For example, the statement x = y means to copy the value of y into x, that is, y is
assigned to x, where the variable x refers to a memory location. However, a value can-
not be assigned to a constant.

There can be multiple assignments in a single statement, where the order of
assignments is in a right-to-left sequence. For example, the statement shown below
first assigns 75 to z, then assigns 75 to y, and finally assigns 75 to x. The program
shown in Figure 4.16 illustrates this concept. Multiple assignments is a simple way to
initialize variables to a known value.

x = y = z = 75;

&& Logical AND
| | Logical OR
! Logical NOT
? : Conditional
++ Increment the operand by 1
– – Decrement the operand by 1
& Bitwise AND
| Bitwise OR
^ Bitwise exclusive-OR
~ Bitwise 1s complement

Table 4.6 Common Operators Used in C Programming

Operator Function

//mult_assign.cpp
//multiple assignments are made to initialize
//variables to a known value

#include "stdafx.h"

int main (void)
{

int x, y , z;
x = y = z = (75 + 25);

//the \n prints each variable on a separate line
printf ("x = %d, \ny = %d, \nz = %d\n", x, y, z);

return 0;
}

(a)

x = 100,
y = 100,
z = 100
Press any key to continue . . . _

(b)

122 Chapter 4 C Programming Fundamentals

Figure 4.16 Program to illustrate using multiple assignments: (a) the C program
and (b) the outputs.

Addition and subtraction operators The operands used for addition are the
augend and the addend. The addend is added to the augend to form the sum, which
replaces the augend in most computers — the addend is unchanged. The addition
operator (+) performs the addition operation on the two operands, which can be either
constants or variables. The rules for binary addition are shown in Table 4.7. A carry
of 1 indicates a carry-out to the next higher-order column.

Table 4.7 Rules for Binary Addition

Augend Addend Carry Sum
0 + 0 0 0
0 + 1 0 1
1 + 0 0 1
1 + 1 1 0

4.4 Operators 123

An example of binary addition is shown in Figure 4.17. The sum of column 1 is
210 (102); therefore, the sum is 0 with a carry of 1 to column 2. The sum of column 2
is 410 (1002); therefore, the sum is 0 with a carry of 0 to column 3 and a carry of 1 to
column 4. The sum of column 3 is 410 (1002); therefore, the sum is 0 with a carry of
0 to column 4 and a carry of 1 to column 5. The sum of column 4 is 210 (102); there-
fore, the sum is 0 with a carry of 1 to column 5. The sum of column 5 is 2 (102); there-
fore, the sum is 0 with a carry of 1 to column 6. The unsigned radix 10 values of the
binary operands are shown in the rightmost column together with the resulting sum.

Column 6 5 4 3 2 1 Radix 10 values
0 1 1 0 6
0 1 0 1 5
1 1 1 1 15

+) 11 010 10 11 0 6
1 0 0 0 0 0 32

Figure 4.17 Example of binary addition.

The operands used for subtraction are the minuend and the subtrahend. The sub-
trahend is subtracted from the minuend to obtain the difference. The subtraction oper-
ator (–) performs the subtraction operation on the two operands, which can be either
constants or variables. The rules for binary subtraction are shown in Table 4.8. A bor-
row of 1 indicates a borrow from the minuend in the next higher-order column.

Table 4.8 Rules for Binary Subtraction

Minuend Subtrahend Borrow Difference
0 – 0 0 0
0 – 1 1 1
1 – 0 0 1
1 – 1 0 0

Two 8-bit operands are shown in Figure 4.18 to illustrate the rules for radix 2 sub-
traction in which all four combinations of two bits are provided. The borrow from the
minuend in column 21 to the minuend in column 20 changes column 21 from 10 to 00;
that is, the operation of column 21 then becomes 0 – 0 = 0. The program shown in Fig-
ure 4.19 illustrates the addition and subtraction operations utilizing three integers.

27 26 25 24 23 22 21 20

A (Minuend) = +54 0 0 1 1 0 1 1 0
–) B (Subtrahend) = +37 0 0 1 0 0 1 0 1

D (Difference) = +17 0 0 0 1 0 0 0 1

124 Chapter 4 C Programming Fundamentals

Figure 4.18 Example of binary subtraction.

//add_sub_int2.cpp
//addition and subtraction of integers

#include "stdafx.h"

int main (void)
{

int int1, int2, int3;

printf ("Enter three integers: ");
scanf ("%d %d %d", &int1, &int2, &int3);

printf ("\nInteger sum = %d", int1 + int2 + int3);
printf ("\nInteger difference = %d\n",

(int1 + int2) - int3);

return 0;
}

(a)

Enter three integers: 125 50 200

Integer sum = 375
Integer difference = –25
Press any key to continue . . . _

(b)

Figure 4.19 Program to illustrate the addition and subtraction of integers: (a) the C
program and (b) the outputs.

The program shown in Figure 4.20 illustrates addition and subtraction operations
utilizing integer numbers and floating-point numbers. The keyword int establishes
int1 and int2 as integers; in the same way, flp1 and flp2 are declared as type float. The

4.4 Operators 125

scanf () function stores the two integers in the locations specified by &int1 and &int2,
where the ampersand indicates the address-of. The arguments (or parameters) of the
second print function specify an addition of int1and int2, in the same way that the
arguments of the third print function specify a subtraction of int1and int2. In both print
functions, the newline character (\ n) at the beginning of the format strings places the
sum and difference on separate lines. The double newline characters insert a blank
line between the integer difference result and the print function to enter two floating-
point numbers. The conversion specifier (%d) in both cases indicate a decimal integer
value.

The second scanf () function stores the two floating-point numbers in the loca-
tions specified by &flp1 and &flp2. The conversion specifier (%f) in both cases indi-
cates a decimal floating-point value. The arguments of the print function specify an
addition of flp1 and flp2, in the same way that the arguments in the next print function
specify a subtraction of flp1 and flp2.

//add_sub_int_flp3.cpp
//add and subtract integer numbers
//and floating-point numbers

#include "stdafx.h"

int main (void)
{

int int1, int2;
float flp1, flp2;

printf ("Enter two integer numbers: ");
scanf ("%d %d", &int1, &int2);

printf ("\nInteger sum = %d", int1 + int2);
printf ("\nInteger difference = %d\n\n", int1 - int2);

printf ("Enter two floating-point numbers: ");
scanf ("%f %f", &flp1, &flp2);

printf ("\nFloating-point sum = %f", flp1 + flp2);
printf ("\nFloating-point difference = %f\n\n",

flp1 - flp2);

return 0;
} //continued on next page

(a)

Figure 4.20 Program to illustrate the addition and subtraction of integer numbers
and floating-point numbers: (a) the C program and (b) the outputs.

Enter two integer numbers: 45 70

Integer sum = 115
Integer difference = –25

Enter two floating-point numbers: 4.5 5.75

Floating-point sum = 10.250000
Floating-point difference = –1.250000

Press any key to continue . . ._
--
Enter two integer numbers: –125 25

Integer sum = –100
Integer difference = –150

Enter two floating-point numbers: 6.25 –8.50

Floating-point sum = –2.250000
Floating-point difference = 14.750000

Press any key to continue . . ._
(b)

126 Chapter 4 C Programming Fundamentals

Figure 4.20 (Continued)

Multiplication and division operators The multiplication operator (*) multi-
plies the multiplicand by the multiplier to produce a product. In a hardware multipli-
cation unit, the multiplicand and multiplier are both n-bit operands that produce a 2n-
bit result. If the operands are in 2s complement notation, then the sign bit is treated in
a manner identical to the other bits; however, the sign bit of the multiplicand is
extended left in the partial product to accommodate the 2n-bits of the product.

The only requirement is that the multiplier must be positive — the multiplicand
can be either positive or negative. This can be resolved by either 2s complementing
both operands or by 2s complementing the multiplier, performing the multiplication,
then 2s complementing the result.

A simple example of multiplying two 4-bit operands is shown in Figure 4.21. Let
the multiplicand and multiplier be a[3:0] = 0111 (+7) and b[3:0] = 0101 (+5), respec-
tively to produce a product p[7:0] = 0010 0011 (+35). A multiplier bit of 1 copies the
multiplicand to the partial product; a multiplier bit of 0 enters 0s in the partial product.
This is the sequential add-shift multiplication algorithm. There are numerous methods
to perform multiplication; however, since the topic of this book is programming, the
multiplication algorithms are not important.

Multiplicand A 0 1 1 1 +7
Multiplier B ×) 0 1 0 1 +5

0 0 0 0 0 1 1 1
Partial 0 0 0 0 0 0 0
products 0 0 0 1 1 1

0 0 0 0 0
Product P 0 0 1 0 0 0 1 1 +35

4.4 Operators 127

Figure 4.21 Example of the sequential add-shift multiply algorithm.

An example of integer and floating-point multiplication is shown in Figure 4.22,
which prompts the user to enter an integer length and width, then prints the integer
area. Next a floating-point length and width are entered, then the program prints the
floating-point area.

//area.cpp
//calculates the area of a flat surface
//using integers and floating-point numbers

#include "stdafx.h"

int main (void)
{

int int_length, int_width;
float flp_length, flp_width;

printf ("Enter integer length: ");
scanf ("%d", &int_length);

printf ("Enter integer width: ");
scanf ("%d", &int_width);

printf ("Integer area = %d\n", int_length * int_width);

//continued on next page

(a)

Figure 4.22 Program to illustrate the multiplication of integer numbers and float-
ing-point numbers: (a) the C program and (b) the outputs.

printf ("\nEnter floating-point length: ");
scanf ("%f", &flp_length);

printf ("Enter floating-point width: ");
scanf ("%f", &flp_width);

printf ("Floating-point area = %f\n\n",
flp_length * flp_width);

return 0;
}

Enter integer length: 40
Enter integer width: 40
Integer area = 1600

Enter floating-point length: 10.5
Enter floating-point width: 10.5
Floating-point area = 110.250000

Press any key to continue . . . _
(b)

128 Chapter 4 C Programming Fundamentals

Figure 4.22 (Continued)

The division operator (/) divides the dividend by the divisor to produce a quotient
when used in integer division. The integer division operation in C programming pro-
duces a quotient result only — the remainder is discarded; that is, any fraction is trun-
cated, because integer division produces an integer result. If a remainder is desired,
then this can be obtained by using the modulus operator (%) for integer division. Divi-
sion can take place using either integer operands or floating-point operands. In a hard-
ware division unit, a 2n-bit dividend is divided by an n-bit divisor to produce an n-bit
quotient and an n-bit remainder.

The example shown in Figure 4.23 is a program to illustrate integer division, the
modulus operator, and floating-point division. The integer quotient is obtained by the
operands that were entered by the user, as shown below.

Integer quotient = int_dvdnd / int_dvsr

The integer remainder is obtained using the modulus operator (%) as shown below.

Integer remainder = int_dvdnd % int_dvsr

4.4 Operators 129

The floating-point quotient is obtained by the division operator (/). Note that the
conversion specifier for the result is %.2f, which means that the result is to be rounded
up to two digits to the right of the decimal point.

//div_int_float.cpp
//program to illustrate integer division
//and floating-point division

#include "stdio.h"

int main (void)
{

int int_dvdnd, int_dvsr;
float flp_dvdnd, flp_dvsr;

printf ("Enter an integer dividend: ");
scanf ("%d", &int_dvdnd);

printf ("Enter an integer divisor: ");
scanf ("%d", &int_dvsr);

printf ("Integer quotient = %d\n", int_dvdnd / int_dvsr);
printf ("Integer remainder = %d\n\n",

int_dvdnd % int_dvsr);

//--

printf ("Enter a floating-point dividend: ");
scanf ("%f", &flp_dvdnd);

printf ("Enter a floating-point divisor: ");
scanf ("%f", &flp_dvsr);

printf ("Floating-point quotient = %.2f\n\n",
flp_dvdnd / flp_dvsr);

return 0;
} //continued on next page

(a)

Figure 4.23 Program to illustrate integer division, the modulus operator, and
floating-point division: (a) the C program and (b) the outputs.

Enter an integer dividend: 128
Enter an integer divisor: 6
Integer quotient = 21
Integer remainder = 2

Enter a floating-point dividend: 50000.0
Enter a floating-point divisor: 75.0
Floating-point quotient = 666.67

Press any key to continue . . . _
--
Enter an integer dividend: 125
Enter an integer divisor: 100
Integer quotient = 1
Integer remainder = 25

Enter a floating-point dividend: 65000.0
Enter a floating-point divisor: 85.0
Floating-point quotient = 764.71

Press any key to continue . . . _
--
Enter an integer dividend: 625
Enter an integer divisor: 35
Integer quotient = 17
Integer remainder = 30

Enter a floating-point dividend: 44444.0
Enter a floating-point divisor: 65.0
Floating-point quotient = 683.75

Press any key to continue . . . _
--
Enter an integer dividend: 625
Enter an integer divisor: 25
Integer quotient = 25
Integer remainder = 0

Enter a floating-point dividend: 75.0
Enter a floating-point divisor: 6.0
Floating-point quotient = 12.50

Press any key to continue . . . _

(b)

130 Chapter 4 C Programming Fundamentals

Figure 4.23 (Continued)

4.4 Operators 131

The program shown in Figure 4.24 illustrates the order of precedence of the arith-
metic operators. The order of precedence is reproduced below for convenience. The
value of the flp1 variable is straightforward, it is simply the sum of 3.0 + 3.0 =
6.000000. The value of the flp2 uses the operator precedence in the calculation, where
the value of the variable is obtained by first multiplying 3.0 × 10.5 to yield 31.5; this
result is then added to a value of 2.0 to yield a result of 33.500000.

In the calculation of flp3, both the division operator and the multiplication oper-
ator have the same precedence. Therefore, the operation proceeds in a left-to-right
sequence. The division of 3/5 yields a result of zero; therefore, 0 × 22.0 = 0.00000. In
the equation for flp4, both operators again have the same precedence and the operation
proceeds in a left-to-right sequence. Thus, 22.0 × 3 = 66.0, which is then divided by
5.0 to yield a result of 13.200000. To obtain the value of flp5, the modulus operator
takes precedence over the addition operator. The remainder of 3/5 is 3, which is added
to 2.0 to yield a value of 5.000000.

Precedence Order Arithmetic Operator
Highest order Multiplication (*), division (/), modulus remainder (%)
Next highest order Addition (+), subtraction (–)

//op_precedence.cpp
//shows the precedence of the arithmetic operators

#include "stdafx.h"
int main (void)
{

float flp1, flp2, flp3, flp4, flp5;

flp1 = 3.0 + 3.0;
flp2 = 2.0 + 3.0 * 10.5; //* is higher precedence
flp3 = 3/5 * 22.0; //same precedence
flp4 = 22.0 * 3.0/5.0; //same precedence
flp5 = 2.0 + 3 % 5; //% is higher precedence

printf ("%f\n", flp1);
printf ("%f\n", flp2);
printf ("%f\n", flp3);
printf ("%f\n", flp4);
printf ("%f\n\n", flp5);
return 0; //continued on next page

} (a)

Figure 4.24 Program to illustrate operator precedence: (a) the C program and (b)
the outputs.

6.000000
33.500000
0.000000
13.200000
5.000000

Press any key to continue . . . _
(b)

132 Chapter 4 C Programming Fundamentals

Figure 4.24 (Continued)

4.4.2 Relational Operators

Relational operators compare data to determine the relationship between the data.
There are six relational operators that are used for comparing data, where the data can
be constants, variables, or expressions, or a combination of these. When determining
the relationship between data, if the relationship is true, then a value of 1 (or nonzero)
is returned; if the relationship is false, then a value of 0 is returned. The six relational
operators are defined in Table 4.9.

Table 4.9 Relational Operators

Operator Symbol Relationship Example
= = Equal x = = y
! = Not equal x ! = y
> Greater than x > y
> = Greater than or equal x > = y
< Less than x < y
< = Less than or equal x < = y

Relational operators can be used for both integers and floating-point numbers.
Relational operators have a lower precedence than the arithmetic operators. The rela-
tional operators (>), (> =), (<), and (< =) have a higher precedence than (= =) or (! =).
Note that (= =) and (=) have distinct meanings:

x = 5; Assigns a value of 5 to x; whereas
x == 5; Checks to determine if x = 5

An expression generated by relational operators is also referred to as a relational
expression. Relational operators are placed between the expressions that are being

4.4 Operators 133

compared. The program shown in Figure 4.25 provides an example of utilizing the six
relational operators. The user is prompted to enter two integers, then the program
applies the relational operators to determine the relationship between the integers.

//relational_ops.cpp
//determines the relationship between two integers

#include "stdio.h"

int main (void)
{

int int1, int2;

printf ("Enter first integer: ");
scanf ("%d", &int1);

printf ("Enter second integer: ");
scanf ("%d", &int2);

//determine relationship: true = 1, false = 0
printf ("\nint1 == int2 %d\n", int1 == int2);
printf ("int1 != int2 %d\n", int1 != int2);
printf ("int1 > int2 %d\n", int1 > int2);
printf ("int1 >= int2 %d\n", int1 >= int2);
printf ("int1 < int2 %d\n", int1 < int2);
printf ("int1 <= int2 %d\n\n", int1 <= int2);

return 0;
}

(a)

Enter first integer: 4
Enter second integer: 9

int1 == int2 0
int1 != int2 1
int1 > int2 0
int1 >= int2 0
int1 < int2 1
int1 <= int2 1

Press any key to continue . . . _
//continued on next page

(b)

Figure 4.25 Program to illustrate using the relational operators: (a) the C program
and (b) the outputs.

Enter first integer: 92
Enter second integer: 75

int1 == int2 0
int1 != int2 1
int1 > int2 1
int1 >= int2 1
int1 < int2 0
int1 <= int2 0

Press any key to continue . . . _
--
Enter first integer: 25
Enter second integer: 25

int1 == int2 1
int1 != int2 0
int1 > int2 0
int1 >= int2 1
int1 < int2 0
int1 <= int2 1

Press any key to continue . . . _

134 Chapter 4 C Programming Fundamentals

Figure 4.25 (Continued)

As a final example on relational operators, the program in Figure 4.26 illustrates
that the arithmetic operators have a higher precedence than relational operators.

//relational_ops2.cpp
//program to illustrate that the arithmetic operators
//have a higher precedence than the relational operators

#include "stdafx.h"

int main (void)
{

int int1, int2;
double flp1;

//continued on next page
(a)

Figure 4.26 Program to illustrate using the relational operators: (a) the C program
and (b) the outputs.

int1 = 10;
int2 = 40;
flp1 = 37.65;

printf ("Let int1 = %d, int2 = %d, flp1 = %.2f\n\n",
int1, int2, flp1);

printf ("int1 >= int2 produces: %d\n", int1 >= int2);
printf ("int1 == int2 produces: %d\n", int1 == int2);
printf ("int1 < flp1 produces: %d\n", int1 < flp1);
printf ("int2 > flp1 produces: %d\n", int2 > flp1);

//arithmetic operations execute before relational operations
printf ("int1 != int2 - 30 produces: %d\n",

int1 != int2 - 30);
printf ("int1 + int2 != flp1 produces: %d\n\n",

int1 + int2 != flp1);

return 0;
}

Let int1 = 10, int2 = 40, flp1 = 37.65

int1 >= int2 produces: 0
int1 == int2 produces: 0
int1 < flp1 produces: 1
int2 > flp1 produces: 1
int1 != int2 – 30 produces: 0 //arithmetic ops execute 1st
int1 + int2 != flp1 produces: 1 //arithmetic ops execute 1st

Press any key to continue . . . _
(b)

4.4 Operators 135

Figure 4.26 (Continued)

4.4.3 The If Statement

Conditional statements, such as the if statement, alter the flow within a program based
on certain conditions. The if statement is also referred to as a program control state-
ment, a selection statement, or a decision statement. The if statement makes a decision
based on the result of a test. The choice among alternative statements depends on the

136 Chapter 4 C Programming Fundamentals

Boolean value of an expression. The alternative statements can be a single statement
or a block of statements. The syntax for the if statement is shown below, where a true
value is 1 or any nonzero value; a false value is 0. If the expression is true, then the
statement, or block of statements, is executed; if the expression is false, then the state-
ment, or block of statements, is not executed, then the next statement in the program
flow is executed.

if (expression/condition)
{statement or block of statements}

Figure 4.27 illustrates an example of a C program to determine if an integer
entered by the user is greater than, equal to, or less than 100. This program requires
three if statements, one for each comparison.

//chk_value.cpp
//determine if a value is greater than,
//equal to, or less than 100

#include "stdafx.h"

int main (void)
{

int num;

printf ("Enter an integer: ");
scanf ("%d", &num);

if (num > 100)
printf ("Number is greater than 100\n\n");

if (num == 100)
printf ("Number is equal to 100\n\n");

if (num < 100)
printf ("Number is less than 100\n\n");

return 0;
}

//continued on next page
(a)

Figure 4.27 Program to illustrate using the if statement: (a) the C program and (b)
the outputs.

Enter an integer: 101
Number is greater than 100

Press any key to continue . . . _
--
Enter an integer: 100
Number is equal to 100

Press any key to continue . . . _
--
Enter an integer: 99
Number is less than 100

Press any key to continue . . . _
(b)

4.4 Operators 137

Figure 4.27 (Continued)

A final example to illustrate the if statement is shown in Figure 4.28, which con-
verts Fahrenheit to centigrade or centigrade to Fahrenheit, depending on the user’s
request. The conversion equations are shown.

Fahrenheit = (Centigrade × 1.8) + 32

Centigrade = (Fahrenheit – 32) × 5/9

//fahr_cent_conv.cpp
//converts fahrenheit to centigrade or
//centigrade to fahrenheit

#include "stdafx.h"

int main (void)
{

int choice;
float tempf;
float temp_fahr;
float tempc;
float temp_cent; //continued on next page

(a)

Figure 4.28 Program to illustrate using the if statement: (a) the C program and (b)
the outputs.

printf ("Enter fahrenheit temperature: ");
scanf ("%f", &tempf);
temp_cent = ((tempf - 32) * 5)/9;

printf ("Enter centigrade temperature: ");
scanf ("%f", &tempc);
temp_fahr = (tempc * 1.8) + 32;

printf ("\n1: fahr to cent, 2: cent to fahr \n");
printf ("Enter choice: ");
scanf ("%d", &choice);

if (choice == 1)
printf ("Centigrade = %f\n", temp_cent);

if (choice == 2)
printf ("Fahrenheit = %f\n", temp_fahr);

return 0;
}

Enter fahrenheit temperature: 32
Enter centigrade temperature: 25

1: fahr to cent, 2: cent to fahr
Enter choice: 1
Centigrade = 0.000000

Press any key to continue . . . _
--
Enter fahrenheit temperature: 68
Enter centigrade temperature: 45

1: fahr to cent, 2: cent to fahr
Enter choice: 1
Centigrade = 20.000000

Press any key to continue . . . _
//continued on next page

(b)

138 Chapter 4 C Programming Fundamentals

Figure 4.28 (Continued)

Enter fahrenheit temperature: 45
Enter centigrade temperature: 22

1: fahr to cent, 2: cent to fahr
Enter choice: 2
Fahrenheit = 71.599998

Press any key to continue . . . _
--
Enter fahrenheit temperature: 72
Enter centigrade temperature: 41

1: fahr to cent, 2: cent to fahr
Enter choice: 2
Fahrenheit = 105.800003

Press any key to continue . . . _
--
Enter fahrenheit temperature: 0
Enter centigrade temperature: 10

1: fahr to cent, 2: cent to fahr
Enter choice: 1
Fahrenheit = –17.777779

Press any key to continue . . . _

4.4 Operators 139

Figure 4.28 (Continued)

4.4.4 The Else Statement

The else statement is used in conjunction with the if statement to provide alternative
paths through the program. The syntax for the conditional branching if-else construct
is shown below. When the if expression is true, then the statement(s) following the if
statement will be executed. When the if expression is false, then the statement(s) con-
tained in the else block are executed.

if (expression/condition)
{statement or block of statements}

else
{statement or block of statements}

140 Chapter 4 C Programming Fundamentals

The statement(s) in the if block will be executed only when the condition is true
(1). However, when the condition is false (0), the else statement(s) will be executed.
When the if expression/condition returns a true value, then the statements in the else
block are not executed. This technique provides a two-way decision path.

A variation of the if-else construct is the nested if statements in which only one
block of statements is executed. The syntax is shown below. If expression_1 is true,
then statement_1 (or block of statements) is executed and the program exits the nested
if statements. If expression_1 is false and expression_2 is true, then statement_2 (or
block of statements) is executed and the program exits the nested if statements. If
expression_2 is false, then the program executes statement_3 (or block of statements).

if (expression_1/condition_1)
{statement_1 or block of statements}

else if (expression_2/condition_2)
{statement2 or block of statements}

else {statement_3 or block of statements}

The program of Figure 4.27 will be redesigned using the nested if technique to
determine if a number that is entered from the keyboard is greater than, equal to, or less
than 100. The program is listed in Figure 4.29.

//chk_value_if_else.cpp
//use nested if-else to determine if a number
//is greater than, equal to, of less than 100

#include "stdafx.h"

int main (void)
{

int num;

printf ("Enter an integer: ");
scanf ("%d", &num);

if (num > 100)
printf ("Number is greater than 100\n\n");

//continued on next page
(a)

Figure 4.29 Program to illustrate using the nested if statement: (a) the C program
and (b) the outputs.

else if (num == 100)
printf ("Number is equal to 100\n\n");

else
printf ("Number is less than 100\n\n");

return 0;
}

Enter an integer: 222
Number is greater than 100

Press any key to continue . . . _
--
Enter an integer: 100
Number is equal to 100

Press any key to continue . . . _
--
Enter an integer: 45
Number is less than 100

Press any key to continue . . . _
(b)

4.4 Operators 141

Figure 4.29 (Continued)

The program shown in Figure 4.30 depicts an example of integer division. If the
divisor is zero, then the division operation is invalid. The user is requested to enter a
dividend and a divisor. If the divisor is not zero, then the divide operation is per-
formed; otherwise, a message is displayed stating that division by zero is invalid.

//div_integer.cpp
//perform division of two integers using if-else.
//detect divide by zero

#include "stdafx.h"

int main (void) //continued on next page
(a)

Figure 4.30 Program to illustrate using the if-else construct for a divide operation:
(a) the C program and (b) the outputs.

{
int dvdnd, dvsr;

printf ("Enter dividend: ");
scanf ("%d", &dvdnd);

printf ("Enter divisor: ");
scanf ("%d", &dvsr);

if (dvsr == 0)
printf ("\nCannot divide by zero\n");

else
printf ("\nQuotient = %d\n", dvdnd/dvsr);
printf ("Remainder = %d\n\n", dvdnd % dvsr);

return 0;
}

Enter dividend: 45
Enter divisor: 6

Quotient = 7
Remainder = 3

Press any key to continue . . . _
--
Enter dividend: 64
Enter divisor: 8

Quotient = 8
Remainder = 0

Press any key to continue . . . _
--
Enter dividend: 115
Enter divisor: 4

Quotient = 28
Remainder = 3

Press any key to continue . . . _
//continued on next page

(b)

142 Chapter 4 C Programming Fundamentals

Figure 4.30 (Continued)

--
Enter dividend: 75
Enter divisor: 0

Cannot divide by zero
Press any key to continue . . . _

4.4 Operators 143

Figure 4.30 (Continued)

As a final example in this section, Figure 4.31 provides an example illustrating
using the if-else construct to either add two operands or subtract two operands. For
addition, the addend is added to the augend; for subtraction, the subtrahend is sub-
tracted from the minuend. The variable named opnd1 is the augend/minuend; the vari-
able named opnd2 is the addend/subtrahend. If the user enters a choice of 1, then the
operation is addition; otherwise, the operation is subtraction. The blocks of code for
the if statement and the else statement are delimited by beginning and ending braces.

//add_sub_if_else.cpp
//addition and subtraction using if-else

#include "stdafx.h"

int main (void)
{

int choice, opnd1, opnd2;

printf ("Enter: 1 for addition, 2 for subtraction: ");
scanf ("%d", &choice);

if (choice == 1)
{

printf ("Enter augend: ");
scanf ("%d", &opnd1);

printf ("Enter addend: ");
scanf ("%d", &opnd2);

printf ("Sum = %d\n", opnd1 + opnd2);
} //continued on next page

(a)

Figure 4.31 Program to illustrate using the if-else construct for addition and sub-
traction operations: (a) the C program and (b) the outputs.

else
{

printf ("Enter minuend: ");
scanf ("%d", &opnd1);

printf ("Enter subtrahend: ");
scanf ("%d", &opnd2);

printf ("Difference = %d\n", opnd1 - opnd2);
}

return 0;
}

Enter: 1 for addition, 2 for subtraction: 1
Enter augend: 45
Enter addend: 57
Sum = 102

Press any key to continue . . . _
--
Enter: 1 for addition, 2 for subtraction: 1
Enter augend: –258
Enter addend: 200
Sum = –58

Press any key to continue . . . _
--
Enter: 1 for addition, 2 for subtraction: 2
Enter minuend: 79
Enter subtrahend: 33
Difference = 46

Press any key to continue . . . _
--
Enter: 1 for addition, 2 for subtraction: 2
Enter minuend: –340
Enter subtrahend: –200
Difference = –140

Press any key to continue . . . _

(b)

144 Chapter 4 C Programming Fundamentals

Figure 4.31 (Continued)

4.4 Operators 145

4.4.5 Logical Operators

There are three logical operators, as shown in Table 4.10. The AND operation eval-
uates as true (1) only if both expression 1 AND expression 2 are true; otherwise, it
evaluates as false (0). The OR operation evaluates as true (1) if either expression 1 OR
expression 2 is true; it evaluates as false (0) if both expressions are false. The OR
operator is also referred to as the inclusive OR; the exclusive OR is discussed later.
The NOT operation evaluates as false (0) if expression 1 is true; otherwise, it evaluates
as true (1) if expression 1 is false. Table 4.11 is a truth table that illustrates the three
logical operators using binary values.

Table 4.10 Logical Operators

Operator Symbol Operation Example
&& AND expression 1 && expression 2
| | OR expression 1 | | expression 2
! NOT ! expression 1

Table 4.11 Truth Table for the Logical Operators

x1 x2 x1 && x2 x1 | | x2 ! x1

0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 0

Logical operators can be combined with relational operators to form a single
expression that evaluates to either true (1) or false (0). When used in this context, they
are sometimes referred to as compound relational operators. When relational and log-
ical operators are combined, relational operators have a higher precedence. Logical
operators are used with expressions, not with individual bits — individual bits are
evaluated using bitwise operators. The arithmetic operators have a higher precedence
than the relational operators, which have a higher precedence than the logical opera-
tors. The precedence of relational and logical operators is shown in Table 4.12.

Relational and logical operators can be used in if statements. For example, in the
statement shown below, since the first expression is true, C will not evaluate the sec-
ond expression. This is because a logic 1 ORed with anything will generate a logic 1
regardless of the value of the second expression.

if (10 > 9) || (2 > 1)

146 Chapter 4 C Programming Fundamentals

In a similar manner, in the statement shown below, since the first expression is
false, C will not evaluate the second expression. This is because a logic 0 ANDed with
anything will generate a logic 0 regardless of the value of the second expression.

if (10 < 9) && (1< 2)

Table 4.12 Precedence of Relational
and Logical Operators

Operator Symbol Precedence
! Highest
>, >=, <, <=
= =, ! =
&&
| | Lowest

The exclusive-OR function is defined for two variables x1 and x2 as shown below;
that is, only when the variables are different will a logic 1 be generated.

x1 x2' + x1' x2

The C programming language does not provide an exclusive-OR operator; however,
the function can be easily obtained by utilizing the logical operands && and | | , as fol-
lows:

(x1 && ! x2) || (! x1 && x2)

Examples of logical operators are shown below together with the resulting evaluation.

Expression Evaluates as
(14 = = 14) && (20 != 10) True (1), because both expressions are true
(20 > 10) | | (15 < 10) True (1), because one expression is true
(10 = = 10) && (30 < 20) False (0), because one expression is false
!(10 = = 15) True (1), because the expression is false
(30 > 10) && (20 = = 20) True (1), because both expressions are true
!(10 = = 10) False (0), because the expression is true
!(20 > 10) && (30 = = 30) False (0), because both expressions are true

4.4 Operators 147

Figure 4.32 shows a program to illustrate the logical operators, including the
exclusive-OR function. The user enters two binary digits and the program performs
the appropriate logical operations. All combinations of two variables are entered.

//logical_ops.cpp
//program to illustrate the use of
//the logical operators, AND, OR, and NOT

#include "stdafx.h"

int main (void)
{

int x1, x2;

printf ("Enter binary digit for x1: ");
scanf ("%d", &x1);

printf ("Enter binary digit for x2: ");
scanf ("%d", &x2);

printf ("\nx1 AND x2 = %d\n", x1 && x2);
printf ("x1 OR x2 = %d\n", x1 || x2);
printf ("x1 XOR x2 = %d\n", (x1 && !x2) || (!x1 && x2));
printf ("NOT x1 = %d\n\n", !x1);

return 0;
}

(a)

Enter binary digit for x1: 0
Enter binary digit for x2: 0

x1 AND x2 = 0
x1 OR x2 = 0
x1 XOR x2 = 0
NOT x1 = 1

Press any key to continue . . . _
//continued on next page

(b)

Figure 4.32 Program to illustrate using the logical operators: (a) the C program
and (b) the outputs.

Enter binary digit for x1: 0
Enter binary digit for x2: 1

x1 AND x2 = 0
x1 OR x2 = 1
x1 XOR x2 = 1
NOT x1 = 1

Press any key to continue . . . _
--
Enter binary digit for x1: 1
Enter binary digit for x2: 0

x1 AND x2 = 0
x1 OR x2 = 1
x1 XOR x2 = 1
NOT x1 = 0

Press any key to continue . . . _
--
Enter binary digit for x1: 1
Enter binary digit for x2: 1

x1 AND x2 = 1
x1 OR x2 = 1
x1 XOR x2 = 0
NOT x1 = 0

Press any key to continue . . . _

148 Chapter 4 C Programming Fundamentals

Figure 4.32 (Continued)

4.4.6 Conditional Operator

The conditional operator (? :) has three operands, as shown in the syntax below. The
conditional_expression is evaluated. If the result is true (1), then the true_expression
is evaluated; if the result is false (0), then the false_expression is evaluated.

conditional_expression ? true_expression : false_expression;

The conditional operator can be used when one of two expressions is to be select-
ed. For example, in the statement below, if x1 is greater than or equal to x2 , then z1 is
assigned the value of x3 ; if x1 is less than x2 , then z1 is assigned the value of x4 .

z1 = (x1 > = x2) ? x3 : x4;

4.4 Operators 149

Since the conditional operator selects one of two values, depending on the result of
the conditional_expression evaluation, the operator can be used in place of the if-else
construct. Conditional operators can be nested; that is, each true_expression and
false_expression can be a conditional operation, as shown below.

conditional_expression ? (cond_expr1 ? true_expr1 : false_expr1)
: (cond_expr2 ? true_expr2 : false_expr2);

The program shown in Figure 4.33 illustrates a method to determine whether one
integer is less than, equal to, or greater than the other integer using the conditional
operator.

//cond_op.cpp
//determine the relationship between two variables
//using the conditional operator.
//print the largest variable.
//if the variables are equal, then set result to 0

#include "stdafx.h"

int main (void)
{

int x1, x2, result, rslt;

printf ("Enter first integer: ");
scanf ("%d", &x1);

printf ("Enter second integer: ");
scanf ("%d", &x2);

result = (x1 > x2) ? (rslt = x1)
: ((x1 < x2) ? rslt = x2 : rslt = 0);

printf ("\nLargest = %d\n\n", result);
return 0;

} (a)

Enter first integer: 3
Enter second integer: 4

Largest = 4
Press any key to continue . . . _ //continued on next page

 (b)

Figure 4.33 Program to illustrate using the conditional operator: (a) the C pro-
gram and (b) the outputs.

Enter first integer: 425
Enter second integer: 54

Largest = 425
Press any key to continue . . . _
--
Enter first integer: 78
Enter second integer: 78

Largest = 0
Press any key to continue . . . _

150 Chapter 4 C Programming Fundamentals

Figure 4.33 (Continued)

As a final example in this section, consider the program listed in Figure 4.34,
which detects a division by zero. Division by zero generates a result of infinity or Not
a Number (NaN). Most calculators will display an error message when an attempt is
made to divide by zero, because division of any number by zero is not defined. A NaN
is a value that is unrepresentable in floating-point calculations and is defined in the
IEEE 754-1985 (Reaffirmed 1990) floating-point standard.

//cond_ops2.cpp
//detect a division of zero (infinity or NaN)
//by using the conditional operator
#include "stdafx.h"
int main (void)
{

float flp1, flp2, result;

printf ("Enter floating-point dividend: ");
scanf ("%f", &flp1);

printf ("Enter floating-point divisor: ");
scanf ("%f", &flp2);

result = flp2 ? flp1/flp2 : 0;
printf ("\nQuotient = %f\n\n", result);
return 0;

} (a) //continued on next page

Figure 4.34 Program to illustrate using the conditional operator to detect a divi-
sion by zero: (a) the C program and (b) the outputs.

Enter floating-point dividend: 10.0
Enter floating-point divisor: 5.0

Quotient = 2.000000

Press any key to continue . . . _
--
Enter floating-point dividend: 156.25
Enter floating-point divisor: 4.5

Quotient = 34.722221

Press any key to continue . . . _
--
Enter floating-point dividend: 76.34
Enter floating-point divisor: 85.29

Quotient = 0.895064

Press any key to continue . . . _
--
Enter floating-point dividend: 87.45
Enter floating-point divisor: 0.0

Quotient = 0.000000

Press any key to continue . . . _
(b)

4.4 Operators 151

Figure 4.34 (Continued)

4.4.7 Increment and Decrement Operators

There are four versions of the increment and decrement operators, as shown below.
The increment/decrement operators are unary operators and can be placed before or
after the variable — they cannot be used with constants.

Prefix Mode Postfix Mode
+ + x Increment operand x

before it is used
x + + Increment operand x

after it is used
– – x Decrement operand x

before it is used
x – – Decrement operand x

after it is used

152 Chapter 4 C Programming Fundamentals

The increment operator An example of a preincrement operator is shown
below. After execution, x = 11 and y = 11; that is, x was incremented, then its value was
assigned to y.

x = 10
y = + + x

An example of a postincrement operator is shown below. After execution, x = 11 and
y = 10; that is, the value of x was assigned to y, then x was incremented. The program
shown in Figure 4.35 illustrates using the preincrement and postincrement operators.

x = 10
y = x + +

//incr_ops.cpp
//program to illustrate the preincrement
//and postincrement operators

#include "stdafx.h"

int main (void)

{
int int1, int2, int3, int4, result;

printf ("Enter an integer for int1: ");
scanf ("%d", &int1);
int2 = ++int1; //the current value of int1 is incr,

//then the new value is assigned to int2
printf ("int1 and int2 = %d %d\n\n", int1, int2);

printf ("Enter an integer for int3: ");
scanf ("%d", &int3);
int4 = int3++; //the current value of int3 is assigned

//to int4, then int3 is incr
printf ("int3 and int4 = %d %d\n\n", int3, int4);

return 0;
} //continued on next page

(a)

Figure 4.35 Program to illustrate using the preincrement and postincrement oper-
ators: (a) the C program and (b) the outputs.

Enter an integer for int1: 100
int1 and int2 = 101 101

Enter an integer for int3: 100
int3 and int4 = 101 100

Press any key to continue . . . _
--
Enter an integer for int1: 75
int1 and int2 = 76 76

Enter an integer for int3: 75
int3 and int4 = 76 75

Press any key to continue . . . _
(b)

4.4 Operators 153

Figure 4.35 (Continued)

The decrement operator An example of a predecrement operator is shown
below. The current value of x is decremented, then the new value is assigned to y.
After execution, x = 9 and y = 9; that is, x was decremented, then its value was assigned
to y.

x = 10
y = – – x

An example of a postdecrement operator is shown below. After execution, x = 9
and y = 10; that is, the value of x was assigned to y, then x was decremented. The pro-
gram shown in Figure 4.36 illustrates using the predecrement and postdecrement oper-
ators.

x = 10
y = x – –

As can be seen in both the programs of Figure 4.35 and Figure 4.36, there is only
one operand utilized in the unary arithmetic operators. An expression cannot be incre-
mented or decremented, thus the statement shown below is invalid.

z = ++(x * y);

//decr_ops.cpp
//program to illustrate the predecrement
//and postdecrement operators

#include "stdafx.h"

int main (void)

{
int int1, int2, int3, int4;

printf ("Enter an integer for int1: ");
scanf ("%d", &int1);
int2 = --int1; //the current value of int1 is decr,

//then the new value is assigned to int2
printf ("int1 and int2 = %d %d\n\n", int1, int2);

printf ("Enter an integer for int3: ");
scanf ("%d", &int3);
int4 = int3--; //the current value of int3 is assigned

//to int4, then int3 is decr
printf ("int3 and int4 = %d %d\n\n", int3, int4);

return 0;
}

(a)

Enter an integer for int1: 10
int1 and int2 = 9 9

Enter an integer for int3: 10
int3 and int4 = 9 10

Press any key to continue . . . _
--
Enter an integer for int1: 50
int1 and int2 = 49 49

Enter an integer for int3: 50
int3 and int4 = 49 50

Press any key to continue . . . _
(b)

154 Chapter 4 C Programming Fundamentals

Figure 4.36 Program to illustrate using the predecrement and postdecrement
operators: (a) the C program and (b) the outputs.

4.4 Operators 155

As a final example in this section, the program shown in Figure 4.37 illustrates
using the unary increment/decrement operators with the binary multiplication opera-
tor. Note that parentheses are not required for the prefix unary operators when used
with the binary operator, because the prefix operators have a higher precedence than
the multiplication operator in a left-to-right sequence.

//pre_post_incr_decr.cpp
//using pre_post_incr_decr with multiplication
#include "stdafx.h"
int main (void)
{

int int1, int2;

printf ("Enter an integer for int1 for pre-incr: ");
scanf ("%d", &int1);

int2 = 2*++int1; //incr int1 by 1, then mul by 2
//and assign to int2

printf ("int2 = %d", int2);
//--

printf ("\n\nEnter an integer for int1 for post-incr: ");
scanf ("%d", &int1);

int2 = 2*int1++; //mul by 2, assign to int2
//then incr int1 by 1

printf ("int2 = %d\n\n", int2);
//==

printf ("Enter an integer for int1 for pre-decr: ");
scanf ("%d", &int1);

int2 = 2*--int1; //decr int1 by 1, then mul by 2
//and assign to int2

printf ("int2 = %d", int2);
//--

printf ("\n\nEnter an integer for int1 for post-decr: ");
scanf ("%d", &int1);

int2 = 2*int1--; //mul by 2, assign to int2
//then decr int1 by 1

printf ("int2 = %d\n\n", int2);
return 0;

} (a) //continued on next page

Figure 4.37 Program to illustrate using the pre/postincrement and pre/postdecre-
ment operators with the multiply operator: (a) the C program and (b) the outputs.

Enter an integer for int1 for pre-incr: 1
int2 = 4

Enter an integer for int1 for post-incr: 1
int2 = 2

Enter an integer for int1 for pre-decr: 1
int2 = 0

Enter an integer for int1 for post-decr: 1
int2 = 2

Press any key to continue . . . _
--
Enter an integer for int1 for pre-incr: 50
int2 = 102

Enter an integer for int1 for post-incr: 50
int2 = 100

Enter an integer for int1 for pre-decr: 50
int2 = 98

Enter an integer for int1 for post-decr: 50
int2 = 100

Press any key to continue . . . _
(b)

156 Chapter 4 C Programming Fundamentals

Figure 4.37 (Continued)

4.4.8 Bitwise Operators

There are three bitwise operators: AND, OR, and the exclusive-OR, that operate on the
individual bits of two operands; the NOT operator performs the 1s complement on one
operand. The operators (or symbols) used for the bitwise operations and the corre-
sponding function definitions are listed in Table 4.13. Table 4.14 illustrates the truth
tables for the bitwise operators, where z1 is the result of the operation.

The AND operator corresponds to the Boolean product and generates a logic 1
output if both bits are a logic 1; otherwise a logic 0 is generated. The OR operator cor-
responds to the Boolean sum and generates a logic 1 output if either or both bits are a
logic 1 — if both bits are a logic 0, then a logic 0 is generated. The exclusive-OR oper-
ator generates a logic 1 if both bits are different — if both bits are the same, then the
output is a logic 0.

Table 4.13 Boolean Operators for Variables x1 and x2

Operator Function Definition
& AND x1 & x2
| OR x1 | x2
^ Exclusive-OR x1 ^ x2 = (x1 x2 ') + (x1 ' x2)

~ NOT (1s complement) ~x1

Table 4.14 Truth Table for AND, OR, Exclusive-OR,
and NOT

AND
x1 x2 z1

OR
x1 x2 z1

Exclusive-OR
x1 x2 z1

NOT
x1 z1

0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 1 1 0 1 1 1 0
1 0 0 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0

4.4 Operators 157

The program shown in Figure 4.38 illustrates using the three bitwise operators of
AND, OR, and exclusive-OR for various user-generated inputs. Integers are entered
by the user and the values are displayed in both decimal and hexadecimal number rep-
resentations. The bitwise operator is then executed and the result is displayed in both
decimal and hexadecimal.

For the first AND operation, a value or 10010 (6416) was entered. This value was
ANDed with 25510 (FF16), as shown below, to yield a result of 10010 (6416). Thus, the
initial value was unchanged, since 1 & 1 = 1 and 1 & 0 = 0.

0110 0100
&) 1111 1111

0110 0100

For the second OR operation, a value or 5810 (3A16) was entered. This value was
ORed with 9710 (6116), as shown below, to yield a result of 12310 (7B16). Thus, the
initial value was changed, since 1 | 1 = 1 and 1 | 0 = 1.

0011 1010
|) 0110 0001

0111 1011

158 Chapter 4 C Programming Fundamentals

For the second exclusive-OR operation, a value or 12510 (7D16) was entered. This
value was exclusive-ORed with 25510 (FF16), as shown below, to yield a result of
13010 (8216). Thus, the initial value was changed, because the result is a logic 1 only
when the bits being exclusive-ORed are different. The NOT operator produces the 1s
complement of the operand. This will be left as a problem in which a program is writ-
ten to illustrate the operation of the NOT operator.

0111 1101
^) 1111 1111

1000 0010

//bitwise_and_or_xor.cpp
//use the bitwise operators

#include "stdafx.h"

int main (void)
{

int int1, int2;

printf ("Enter an integer: ");
scanf ("%d", &int1);
printf ("Initial value of int1 = %d decimal, %X hex\n",

int1, int1);

int2 = int1 & 255; //FFH
printf ("After AND 255 (FFH) int2 = %d decimal,

%X hex\n\n", int2, int2);
//--

printf ("Enter an integer: ");
scanf ("%d", &int1);
printf ("Initial value of int1 = %d decimal, %X hex\n",

int1, int1);

int2 = int1 & 15;//0FH
printf ("After AND 15 (0FH) int2 = %d decimal,

%X hex\n\n", int2, int2);
//===

//continued on next page

(a)

Figure 4.38 Program to illustrate using the bitwise operators of AND, OR, and
exclusive-OR: (a) the C program and (b) the outputs.

//===
printf ("Enter an integer: ");
scanf ("%d", &int1);
printf ("Initial value of int1 = %d decimal, %X hex\n",

int1, int1);

int2 = int1 | 188;//BCH
printf ("After OR 188 (BCH) int2 = %d decimal,

%X hex\n\n", int2, int2);
//--

printf ("Enter an integer: ");
scanf ("%d", &int1);
printf ("Initial value of int1 = %d decimal, %X hex\n",

int1, int1);

int2 = int1 | 97;//61H
printf ("After OR 97 (61H) int2 = %d decimal,

%X hex\n\n", int2, int2);
//==

printf ("Enter an integer: ");
scanf ("%d", &int1);
printf ("Initial value of int1 = %d decimal, %X hex\n",

int1, int1);

int2 = int1 ^ 85;//55H
printf ("After XOR 85 (55H) int2 = %d decimal,

%X hex\n\n", int2, int2);
//--

printf ("Enter an integer: ");
scanf ("%d", &int1);
printf ("Initial value of int1 = %d decimal, %X hex\n",

int1, int1);

int2 = int1 ^ 255;//FFH
printf ("After XOR 255 (FFH) int2 = %d decimal,

%X hex\n\n", int2, int2);

return 0;
}

//continued on next page

4.4 Operators 159

Figure 4.38 (Continued)

Enter an integer: 100
Initial value of int1 = 100 decimal, 64 hex
After AND 255 (FFH) int2 = 100 decimal, 64 hex

Press any key to continue . . . _

Enter an integer: 240
Initial value of int1 = 240 decimal, F0 hex
After AND 15 (0FH) int2 = 0 decimal, 0 hex

Press any key to continue . . . _
===++
Enter an integer: 75
Initial value of int1 = 75 decimal, 4B hex
After OR 188 (BCH) int2 = 255 decimal, FF hex

Press any key to continue . . . _

Enter an integer: 58
Initial value of int1 = 58 decimal, 3A hex
After OR 97 (61H) int2 = 123 decimal, 7B hex

Press any key to continue . . . _
===++
Enter an integer: 170
Initial value of int1 = 170 decimal, AA hex
After XOR 85 (55H) int2 = 255 decimal, FF hex

Press any key to continue . . . _

Enter an integer: 125
Initial value of int1 = 125 decimal, 7D hex
After XOR 255 (FFH) int2 = 130 decimal, 82 hex

Press any key to continue . . . _
(b)

160 Chapter 4 C Programming Fundamentals

Figure 4.38 (Continued)

4.5 While Loop
The while loop (or while statement) executes a statement or block of statements as
long as a test expression is true (nonzero). The statements that are controlled by the
while statement loop repeatedly until the expression becomes false (0). If a block of

4.5 While Loop 161

statements is executed, then the block is delimited by beginning and ending braces; for
a single statement, braces are not required. The syntax for the while loop is shown
below. The expression is checked at the beginning of the loop and may contain rela-
tional and logical operators.

while (expression)
{block of statements}

The statements in the block must change the value of the expression, since this
determines the duration of the loop. If the expression does not change (always true),
then the loop would never stop, resulting in an infinite loop. When the expression
becomes false (0), the program exits the loop and transfers control to the first state-
ment following the block of statements. If the expression is initially false, then the
block is not executed.

Figure 4.39 shows a simple program that uses the while statement in conjunction
with the preincrement and postincrement operators. The while loop adds 3 to the inte-
ger int1 during each iteration of the loop. The integer int1 is initially assigned a value
of 1. The printf () argument adds 1 to int1 in the preincrement mode, increasing int1
to 2. Then the two postincrement operators add 2 to int1, increasing int1 to 4. At the
next iteration of the loop, the printf () function increases int1 to a value of 5.

//while.cpp
//use the while loop in conjunction with the
//preincrement and postincrement operators

#include "stdafx.h"
int main (void)
{

int int1;
int1 = 1;

while (int1 <= 10)
{

printf ("%d \n", ++int1);
int1++;
int1++;

}
return 0;

} (a)

2 5 8 11 Press any key to continue . . . _
 (b)

Figure 4.39 Program to illustrate using the while loop with the preincrement and
postincrement operators: (a) the C program and (b) the outputs.

162 Chapter 4 C Programming Fundamentals

The program shown in Figure 4.40 illustrates the while loop to multiply an integer
from the keyboard by 2 until the number becomes equal to or greater than 2048. The
integer int1 is defined as a local variable, is printed, then multiplied by 2. This process
repeats until the value reaches or exceeds 2048.

//powers_of_2.cpp
//multiplies by 2 up to a limit of 2048

#include "stdafx.h"
int main (void)
{

int int1;

printf ("Enter an integer: ");
scanf ("%d", &int1);

while (int1 < 2048)
{

printf ("%d ", int1);
int1 = int1 * 2;

}
printf ("\n\n");
return 0;

} (a)

Enter an integer: 1
1 2 4 8 16 32 64 128 256 512 1024

Press any key to continue . . . _
--
Enter an integer: 64
64 128 256 512 1024

Press any key to continue . . . _
--
Enter an integer: 23
23 46 92 184 368 736 1472

Press any key to continue . . . _
--
Enter an integer: 2048

Press any key to continue . . . _ (b)

Figure 4.40 Program to illustrate using the while loop to multiply by 2 up to a
limit of 2048: (a) the C program and (b) the outputs.

4.6 For Loop 163

4.6 For Loop
The for loop repeats a statement or block of statements a specific number of times.
This is different than the while loop, which repeats the loop as long as a certain con-
dition is met. When the for loop has completed the final loop, the program exits the
loop and transfers control to the first statement following the block of statements. The
syntax for the for loop is shown below.

for (initialization; conditional test; increment)
{one or more statements}

The initialization step sets a variable to a specific value; this is the loop control
variable and is executed only once. The conditional test is performed at the start of the
loop to determine if the loop should be entered. This is usually a relational expression
that tests the loop control variable against a target value. If the test is true (nonzero),
then the loop is entered; otherwise, the loop is exited and the next instruction following
the loop is executed. The increment step is performed at the end of the loop; this can
also be a decrement depending on the initialization and conditional test.

Figure 4.41 and Figure 4.42 show two examples of using a for loop to increment
an integer. Figure 4.41 has no user input. The integer int1 is initialized to a value of 0;
the loop continues until the value is equal to or less than 30; the integer is incremented
by 3 at the beginning of the loop. Figure 4.42 requires a user input. A space for the ini-
tialization step of the for loop indicates that a user input is required. An integer is
entered for the initialization step and is stored in location int1. The conditional test
specifies an end result of less than or equal to 50; the integer is incremented by 5 at the
beginning of the loop.

//for_loop2.cpp
//use a for loop to increment a variable
//by 3 until it is less than or equal to 30

#include "stdafx.h"
int main (void)
{

int int1;

for (int1 = 0 ; int1 <= 30; int1 = int1 + 3)
printf ("Number = %d\n", int1);

return 0;
} //continued on next page

(a)

Figure 4.41 Program to illustrate using the for loop to increment a variable by 3
up to a limit of less than or equal to 30: (a) the C program and (b) the outputs.

Number = 0
Number = 3
Number = 6
Number = 9
Number = 12
Number = 15
Number = 18
Number = 21
Number = 24
Number = 27
Number = 30
Press any key to continue . . . _

(b)

164 Chapter 4 C Programming Fundamentals

Figure 4.41 (Continued)

//for_loop.cpp
//use a for loop to increment a variable
//by 5 until it is less than or equal to 50

#include "stdafx.h"

int main (void)
{

int int1;

printf ("Enter an integer less than 50: ");
scanf ("%d", &int1);

//a blank initialization indicates that
//the user enters a number

for (; int1 <= 50; int1 = int1 + 5)
printf ("Number = %d\n", int1);

return 0;
}

//continued on next page

(a)

Figure 4.42 Program to illustrate using the for loop to increment a variable by 5
up to a limit of less than or equal to 50: (a) the C program and (b) the outputs.

Enter an integer less than 50: 25
Number = 25
Number = 30
Number = 35
Number = 40
Number = 45
Number = 50
Press any key to continue . . . _
--
Enter an integer less than 50: 27
Number = 27
Number = 32
Number = 37
Number = 42
Number = 47
Press any key to continue . . . _
--
Enter an integer less than 50: 49
Number = 49
Press any key to continue . . . _

(b)

4.6 For Loop 165

Figure 4.42 (Continued)

As a final example, the program shown in Figure 4.43 illustrates a for loop con-
sisting of a user-entered integer and the postdecrement operator, which decrements the
integer by 1. As long as the integer int1 is nonzero, as determined by the conditional
test, the looping continues. When the value of int1 reaches a value of zero, the pro-
gram exits the loop. The printf ("\n"); simply places the cursor at the beginning of a
new line. Since there is only one statement in the for loop, braces are not required.

//for_loop3.cpp
//use a for loop to decrement a user-entered
//integer by 1 using the post-decrement operator
#include "stdafx.h"
int main (void)
{

int int1;
printf ("Enter an integer: ");
scanf ("%d", &int1); //continued on next page

(a)

Figure 4.43 Program to illustrate using the for loop to postdecrement a variable
by 1 until its value is 0: (a) the C program and (b) the outputs.

//a blank initialization indicates that
//the user enters a number

for (; int1; int1--)
printf ("%d ", int1);

printf ("\n");

return 0;
}

Enter an integer: 10
10 9 8 7 6 5 4 3 2 1
Press any key to continue . . . _
--
Enter an integer: 15
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Press any key to continue . . . _

(b)

166 Chapter 4 C Programming Fundamentals

Figure 4.43 (Continued)

4.7 Additional C Constructs
This section gives a short introduction to arrays, strings, pointers, and functions.
Arrays are one-dimensional or multidimensional structures that contain a series of ele-
ments of a specific data type; that is, an array is a list of variables with the same name.
The declaration and initialization of arrays is discussed in which arrays are used to
declare a set of variables of the same data type.

Strings are usually one-dimensional character arrays that are terminated with a
null character (\ 0) — the null character is automatically appended to the end of the
string by the compiler to mark the end of the string. Strings are part of the printf ()
function and are contained in the format_string and conversion section of the print
function.

Pointers are variables that address (or point to) a memory location where a data
type is stored. The memory location can be selected by the pointer to access or modify
the data. Pointers provide an effective method to access arrays.

A function is an independent procedure (or subroutine) which is invoked by a call-
ing function. The invoked function receives arguments from the calling program, per-
forms specific operations on the arguments, then returns the results to the calling
program. A function is identified by a pair of parentheses. Functions are useful in
avoiding repetitive programming — a function can be defined once then used by sev-
eral invoking functions.

4.7 Additional C Constructs 167

4.7.1 Arrays

An array can be initialized by simply listing the array elements, as shown below
together with examples. The type can be char, int, float, double, or any valid C type.
The value list is a sequence of constants that are the same type as the array_name type
and enclosed in braces.

type array_name [size] = {value list};
int array[5] = {1, 4, 9, 16, 25};
char array[3] = {'A', 'B', 'C'};

The size of the array does not have to be specified, as shown below for an array of
eight elements — the compiler creates the array based upon the number of elements.
The length of the array is one element longer than the value list; the compiler supplies
the null terminator.

int powers[] = {1, 2, 4, 8, 16, 32, 64, 128};

An array is an ordered structure, in which the location of the individual elements
is known. An array is homogeneous; that is, every element is of the same type. The
array can be an array of integers, an array of floating-point numbers, or an array of any
other data types — array types cannot be mixed. An automatic array is an array that is
defined inside the main () function. An external array is defined outside a function,
usually before main (). A static array is defined inside a function with the keyword
static, but retains its values between function calls.

One-dimensional array A one-dimensional array is declared as shown below,
where the type is a valid C type, var_name is the name of the array, and size is the num-
ber of elements in the array. An example of a one-dimensional array of type int, called
array with 20 elements, is also shown below.

type var_name [size]
int array [20]

Arrays start at element 0; therefore, the second element is accessed as follows:
array [1]. The first element of the array can be set to a value of 200 by the following
statement: array [0] = 200. One-dimensional arrays are stored in contiguous memory
locations, with the first array element at the lowest address.

Figure 4.44 illustrates a method to initialize a one-dimensional array with ten ele-
ments to values 1 through 10. The integer i is set to a value of 1 in the for loop, then
the first element (array[i–1]), which is array[0], is set to a value of 1 by the following
statement: array[i–1] = i; that is, array[0] = 1. The array is then printed, where the
first element (i–1) is assigned the value of array[i–1], which is the contents of the first
element — a value of 1. A similar structure is shown in the program of Figure 4.45,
which generates the cubes of integers 1 through 10.

//array_init.cpp
//initialize a one-dimensional array
//with values 1 through 10

#include "stdafx.h"

int main (void)
{

int array[10]; //declare an array of 10 elements
int i; //declare an integer to count

//initialize and print the array
for (i=1; i<11; i++)
{

array[i-1] = i;
printf ("array[%d] = %d\n", i-1, array[i-1]);

}
return 0;

}
 (a)

array[0] = 1
array[1] = 2
array[2] = 3
array[3] = 4
array[4] = 5
array[5] = 6
array[6] = 7
array[7] = 8
array[8] = 9
array[9] = 10
Press any key to continue . . . _ (b)

168 Chapter 4 C Programming Fundamentals

Figure 4.44 Program to illustrate initializing and printing a one-dimensional
array: (a) the C program and (b) the outputs.

//array_cubes.cpp
//obtain the cubes of numbers 1 through 10
#include "stdafx.h"
int main (void) //continued on next page

(a)

Figure 4.45 Program to illustrate an array to obtain the cubes of integers 1 through
10: (a) the C program and (b) the outputs.

{
int cubes[10]; //declare an array of 10 elements
int i; //declare an integer to count

//initialize and print the array
for (i=1; i<11; i++)
{

cubes[i-1] = i*i*i;
printf ("cubes[%d] = %d\n", i-1, cubes[i-1]);

}
return 0;

}

cubes[0] = 1
cubes[1] = 8
cubes[2] = 27
cubes[3] = 64
cubes[4] = 125
cubes[5] = 216
cubes[6] = 343
cubes[7] = 512
cubes[8] = 729
cubes[9] = 1000
Press any key to continue . . . _

(b)

4.7 Additional C Constructs 169

Figure 4.45 (Continued)

Two-dimensional array A two-dimensional array has the syntax shown below
for a 10 × 12 array, where the type is int, the array name is count, the number of rows
is 10, and the number of columns is 12.

int count [10][12];

A two-dimensional array is an array of one-dimensional arrays that is accessed one
row at a time from left to right. The rightmost index (columns) will change faster than
the leftmost index (rows). Figure 4.46 shows a 3 × 3 array consisting of nine elements
with addresses for select elements. Figure 4.47 shows a program to initialize and print
the two-dimensional array of Figure 4.46 using nested for loops. The array elements
can also be listed in a single line. The row index does not have to be specified — C will
index the array properly. This permits the construction of arrays of varying lengths;
the compiler allocates storage automatically.

1 2 3

4 5 6

7 8 9

Column number 0 1 2

0

1 4 5 6

2

Row number

array_sqr[0][1]
array_sqr[0][2]

array_sqr[1][0]

array_sqr[0][0]

170 Chapter 4 C Programming Fundamentals

Figure 4.46 A multidimensional array consisting of three rows and three columns.

//array_sqr.cpp
//initialize and print a two-dimensional array

#include "stdafx.h"

int main (void)
{

int array_sqr[3][3] = {1,2,3,4,5,6,7,8,9};
int i, j;

for (i=0; i<3; i++) //i is row index
{

for (j=0; j<3; j++) //j is column index

//"%4d" in the printf () is 4-digit spacing right aligned
printf ("%4d", array_sqr[i][j]);
printf ("\n");

}
return 0;

} (a)

 1 2 3
 4 5 6
 7 8 9
Press any key to continue . . . _

(b)

Figure 4.47 Program to illustrate initializing and printing a two-dimensional
array: (a) the C program and (b) the outputs.

4.7 Additional C Constructs 171

Figure 4.48 illustrates a program that loads a 3 × 4 array with the products of the
indices, then displays the array in a row–column format. This program also uses
nested for loops. Note that a for loop block that has only one statement does not
require delimiting braces. Integers i and j represent the row and column indices,
respectively.

//array_mul_indices.cpp
//load a 3 x 4 array with the products
//of the indices, then display the
//array in a row-column format

#include "stdafx.h"
int main (void)
{

int array_mul[3][4];
int i, j;

for (i=0;i<3; i++) //i is row index
for (j=0; j<4; j++) //j is column index

array_mul[i][j] = i*j;

for (i=0; i<3; i++)
{

for (j=0; j<4; j++)
printf ("%4d", array_mul[i][j]);
printf ("\n");

}
printf ("\n");

return 0;
}

(a)

 0 0 0 0
 0 1 2 3
 0 2 4 6

Press any key to continue . . . _
(b)

Figure 4.48 Program to illustrate loading a 4 × 5 array with the product of the indi-
ces then printing the array: (a) the C program and (b) the outputs.

172 Chapter 4 C Programming Fundamentals

4.7.2 Strings

A string is a one-dimensional character array that is terminated by a null character
(\ 0). The string can be defined to be a certain length and must include the null char-
acter as part of the overall length. There are many library functions that apply to
strings, including input/output functions. The following string functions are described
in this section: gets (), puts (), strcpy (), strcat (), strcmp (), and strlen ().

Gets () The gets (string) function stores input data — primarily from the keyboard
— into the string named string. The gets () function inputs the string data until a new-
line (\ n) character is detected, which is generated by pressing the Enter key. The gets
() function discards the newline character and adds the null character (\ 0) or (0016),
which indicates the end of the string. The length of the string array must be large
enough to hold the entire string, because the bounds of the string are not checked. Fig-
ure 4.49 shows a simple program to illustrate the use of the gets () function.

//string_input.cpp
//use the gets () function to input a string

#include "stdafx.h"

int main (void)
{

char string [20]; //declare a string for 20 elements
int i; //declare an integer to count

printf ("Enter the day and month: \n");
gets (string);
for (i=0; string[i]; i++)

printf ("%c", string[i]);

printf ("\n");

return 0;
}

(a)

Enter the day and month:
monday september
monday september
Press any key to continue . . . _

(b)

Figure 4.49 Program to illustrate using the gets () function: (a) the C program and
(b) the outputs.

4.7 Additional C Constructs 173

Puts () The puts () function displays text on the monitor screen and automatically
adds a newline character (\ n) at the end of the string; therefore, a newline character
does not have to be inserted by the programmer. When a string is to be output to the
screen, the puts () function is faster than the printf (). The program shown in Figure
4.50 illustrates the use of the puts () function to tell the user to enter an integer number
followed by a floating-point number. The numbers are read by the scanf () function
and displayed on the screen by the printf () function.

//string_puts.cpp
//use the puts () function to output data
//to the monitor screen

#include "stdafx.h"

int main (void)
{

int int1;
float flp1;

puts ("Enter an integer: ");
scanf ("%d", &int1);

puts ("\nEnter a float: ");
scanf ("%f", &flp1);

printf ("\ninteger entered: %d,
\nfloat entered: %f\n\n", int1, flp1);

return 0;
} (a)

Enter an integer:
759

Enter a float:
372.125

integer entered: 759
float entered: 372.125000

Press any key to continue . . . _
(b)

Figure 4.50 Program to illustrate using the puts () function: (a) the C program and
(b) the outputs.

174 Chapter 4 C Programming Fundamentals

Strcpy () The strcpy () function copies the source string to the destination string,
including the null character (\ 0). Both the source and destination strings are arrays.
Since the strcpy () function does not perform bounds checking on the destination
string, the destination array must be of sufficient length to accommodate the source
string plus the terminating null character. The syntax for the strcpy () function is
shown below.

strcpy (destination_string, source-string);

Figure 4.51 shows a program that illustrates a user-entered source string being
copied to a destination string. The "string.h" header is required in order to make
some string operations valid. The gets () function stores the keyboard input string into
the source string src_str, which is initialized to 25 characters. This is then transferred
to the destination string dst_str, also initialized to 25 characters.

//string_copy2.cpp
//copy a user-entered source string to a
//destination string using the strcpy () function
#include "stdafx.h"
#include "string.h"
int main (void)
{

char src_str[25];
char dst_str[25];

puts ("Enter a short string: ");
gets (src_str);

strcpy(dst_str, src_str);

printf("\nSource string: %s\n", src_str);
printf ("Destination string: %s\n\n", dst_str);
return 0;

} (a)

Enter a short string:
This is a short string.

Source string: This is a short string.
Destination string: This is a short string.

Press any key to continue . . . _ (b)

Figure 4.51 Program to illustrate using the strcpy () function: (a) the C program
and (b) the outputs.

4.7 Additional C Constructs 175

Strcat () String concatenation is performed by the strcat () function, shown in
Figure 4.52. The syntax is shown below, containing two arguments: string1 and
string2, where string2 is concatenated to the right of string1 to generate a new string.
The terminating null character is moved to the right of the new string. The strcat ()
function performs no bounds checking; therefore, the array of string1 must be of suf-
ficient length to accommodate both strings plus the null character. Figure 4.52 shows
a program illustrating the use of the strcat () function.

strcat (string1, string2);

//string_concat.cpp;
//concatenate strings using the strcat () function
#include "stdafx.h"
#include "string.h"

int main (void)
{

char str1 [30];
char str2 [12];

printf ("Enter 10 letters for the first string: ");
gets (str1); //gets () reads characters

//until enter is pressed
//the carriage return is replaced
//by the null character

printf ("Enter 10 numbers for the second string: ");
gets (str2);

strcat (str1, str2);

printf ("\nThe concatenated strings are:
%s\n\n", str1);

return 0;
} (a)

Enter 10 letters for the first string: abcdefghij
Enter 10 numbers for the second string: 0123456789

The concatenated strings are: abcdefghij0123456789

Press any key to continue . . . _
(b)

Figure 4.52 Program to illustrate using the strcat () function: (a) the C program
and (b) the outputs.

176 Chapter 4 C Programming Fundamentals

Strcmp () String comparison is performed by the strcmp () function. The syntax
is shown below, which contains two arguments: string1 and string2, where string1 is
compared to string2. The string arrays do not have to be the same size, because com-
parison is not based on the length of the strings. The strcmp () function returns a
value of 0 if the strings are the same; it returns a value of < 0 if string1 is less than
string2; it returns a value of > 0 if string1 is greater than string2.

strcmp (string1, string2);

The strings are compared character by character; that is, lexicographically, as in a
dictionary. The comparison is case sensitive and in the same order as shown in the
ASCII character code chart in Appendix A for hexadecimal 20 through 7F. Lowercase
letters are greater than uppercase letters, because they have a higher decimal value.

Figure 4.53 shows a program illustrating the use of the strcmp () function to com-
pare two strings from a set of three strings. The result of the string comparison is con-
tained in the comp_rslt variable. The value of comp_rslt will be either 0, less than 0,
or greater than 0. This is determined by the conditional if, else-if, and else statements.
If comp_rslt is equal to zero, then this indicates that string1 is equal to string2; if
comp_rslt is less than zero, then this indicates that string1 is less than string2; if
comp_rslt is greater than zero, then this indicates that string1 is greater than string2.

//string_comp.cpp
//compare strings using the strcmp () function
#include "stdafx.h"
#include "string.h"

int main (void)
{

char str1 [10];
char str2 [10];
char str3 [10];
int comp_rslt; //the string comparison result

printf ("Enter a 6-digit string for string str1: ");
gets (str1);

printf ("Enter a 6-digit string for string str2: ");
gets (str2);

printf ("Enter a 6-digit string for string str3: ");
gets (str3); //continued on next page

(a)

Figure 4.53 Program to illustrate using the strcmp () function: (a) the C program
and (b) the outputs.

//--
comp_rslt = strcmp (str1, str2);
if (comp_rslt == 0)

printf ("String1 = string2.\n");
else if (comp_rslt < 0)

printf ("String1 < string2\n");
else

printf ("String1 > string2\n");
//--

comp_rslt = strcmp (str1, str3);
if (comp_rslt == 0)

printf ("String1 = string3.\n");
else if (comp_rslt < 0)

printf ("String1 < string3\n");
else

printf ("String1 > string3\n");
//--

comp_rslt = strcmp (str2, str3);
if (comp_rslt == 0)

printf ("String2 = string3.\n");
else if (comp_rslt < 0)

printf ("String2 < string3\n");
else

printf ("String2 > string3\n");
return 0;

}

Enter a 6-digit string for string str1: 121212
Enter a 6-digit string for string str2: 121212
Enter a 6-digit string for string str3: 121212
String1 = string2
String1 = string3
String2 = string3
Press any key to continue . . . _
--
Enter a 6-digit string for string str1: abcDef
Enter a 6-digit string for string str2: abcdEf
Enter a 6-digit string for string str3: abcdeF
String1 < string2
String1 < string3
String2 < string3
Press any key to continue . . . _

//continued on next page
(b)

4.7 Additional C Constructs 177

Figure 4.53 (Continued)

Enter a 6-digit string for string str1: 345678
Enter a 6-digit string for string str2: 234567
Enter a 6-digit string for string str3: 123456
String1 > string2
String1 > string3
String2 > string3
Press any key to continue . . . _
--
Enter a 6-digit string for string str1: 123456
Enter a 6-digit string for string str2: ABCDEF
Enter a 6-digit string for string str3: abcdef
String1 < string2
String1 < string3
String2 < string3
Press any key to continue . . . _

178 Chapter 4 C Programming Fundamentals

Figure 4.53 (Continued)

Strlen () The strlen () function returns the length of a string, but does not include
the null character. The number of characters defined for the string is irrespective of the
length of the string. The syntax for the strlen () function is shown below. Figure 4.54
shows a program illustrating the use of the strlen () function to determine the length
of two strings.

strlen (string);

//string_length.cpp
//determine the length of two strings using strlen ()
#include "stdafx.h"
#include "string.h"

int main (void)
{

char str1 [20];
char str2 [20];

printf ("Enter 10 or less characters for string str1: ");
gets (str1);

printf ("Enter 10 or less characters for string str2: ");
gets (str2); //continued on next page

(a)

Figure 4.54 Program to illustrate using the strlen () function: (a) the C program
and (b) the outputs.

//determine the length of the two strings
//and print the result

printf ("\n%s is %d characters in length\n",
str1, strlen(str1));

printf ("%s is %d characters in length\n\n",
str2, strlen(str2));

return 0;
}

Enter 10 or less characters for string str1: 88888888
Enter 10 or less characters for string str2: 4444

88888888 is 8 characters in length
4444 is 4 characters in length

Press any key to continue . . . _
(b)

4.7 Additional C Constructs 179

Figure 4.54 (Continued)

4.7.3 Pointers

A pointer is a variable that contains the address of (points to) another variable. The
syntax for a pointer declaration is shown below, where type is the type of variable
addressed by the pointer, such as char, int, and float, for example. The asterisk is a
pointer operator that returns the contents of the variable to which it points — the aster-
isk, as used here, has a different meaning than the asterisk used for multiplication.

type *pointer_name;

Another pointer operator that was presented previously is the address-of operator
(&), which returns the address of the variable. Examples of pointers that return the
contents of the variable to which they point are as follows:

char *character_pointer;
int *integer_pointer;
float *flp_pointer;

The asterisk is also referred to as the indirection operator. A simple program to
illustrate one use of a pointer is shown in Figure 4.55. The program declares two float-
ing-point variables: a pointer *ptr and a floating-point number flp. The floating-point
number, flp, is assigned a value of 75.25 and ptr is assigned the address of flp. The

180 Chapter 4 C Programming Fundamentals

floating-point value is then printed using the *ptr pointer that points to the address of
flp, which contains 75.25. Pointers are also an effective way to access arrays, in which
the array name is the address of the first element [0] of the array. Pointers used in this
manner, however, are beyond the scope of this book.

//pointer_ex.cpp
//program to illustrate the use of a pointer

#include "stdafx.h"

int main (void)
{

float *ptr;
float flp;

flp = 75.25;
ptr = &flp;

//print the floating-point value of the variable flp
printf ("Floating-point value of flp: %f\n\n", *ptr);

return 0;
}

(a)

Floating-point value of flp: 75.250000

Press any key to continue . . . _
(b)

Program to illustrate one use of a pointer: (a) the C program and (b) the outputs.

4.7.4 Functions

A function is a procedure, or subroutine, that is written once and can be executed sev-
eral times by calling routines. Functions perform specific tasks and may return results
to the calling program. Each function is assigned a specific name that is different from
the names of other functions. The use of functions is referred to as structured pro-
gramming or modular programming. The general syntax for a function is shown
below, where type is the return type of the function, followed by the unique function
name, followed by a parameter list, or arguments, which can be int, char, float, and so
forth.

4.7 Additional C Constructs 181

type function_name (parameter list)
{

Statements
}

The return type is specified as a global variable — also called an external variable
— and indicates the type of value that the function will return to the calling program
after execution of the function. In the program listing of Figure 4.56, a, b, sum, and
prod are declared as type int prior to the main () function. Integers a and b are the
arguments that are passed to the functions; the return values from the functions are
assigned to sum and prod. The function statements are delimited by a beginning and
an ending brace.

The addition function is called by the following statement, where a and b are the
arguments that are passed to the function — the a and b values were entered by the
user:

sum = addition (a, b);

The addition function is defined as shown below, where the type is int and the
arguments, int x and int y, are declared as local variables to perform the addition oper-
ation. The return statement returns the sum of the integers that were entered by the
user.

int addition (int x, int y)
{

return (x + y);
}

//arith_ops.cpp
//use functions to perform addition and multiplication
#include "stdafx.h"

int a, b, sum, prod;

//declare the add function
int addition (int x, int y);

//declare the multiply function
int multiplication (int x, int y);

//--
(a) //continued on next page

Figure 4.55 Program to illustrate one use of functions to perform addition and
multiplication: (a) the C program and (b) the outputs.

int main (void)
{
//input the first number

printf ("Enter the first number: ");
scanf ("%d", &a);

//input the second number
printf ("Enter the second number: ");
scanf ("%d", &b);

//calculate and display the sum
sum = addition (a, b); //call the add fctn
printf ("\n%d plus %d = %d\n", a, b, sum);

//calculate and display the product
prod = multiplication (a, b); //call the multiply fctn
printf ("\n%d times %d = %d\n\n", a, b, prod);

}

//--
//define the add function

int addition (int x, int y)
{

return (x + y); //return the sum
}

//--
//define the multiply function

int multiplication (int x, int y)
{

return (x * y); //return the product
}

Enter the first number: 12
Enter the second number: 12

12 plus 12 = 24

12 times 12 = 144

Press any key to continue . . . _
--

(b) //continued on next page

182 Chapter 4 C Programming Fundamentals

Figure 4.56 (Continued)

//
Enter the first number: 75
Enter the second number: 136

75 plus 136 = 211

75 times 136 = 10200

Press any key to continue . . . _
(b)

4.8 Problems 183

Figure 4.56 (Continued)

This chapter has presented only a minimal introduction to the C programming lan-
guage, but is sufficient for the purpose of this book, which focuses on X86 assembly
language programming. As stated previously, this book will link C programs with
assembly language programs — this will occur in the remaining chapters of the book.

There are over 330 instructions in the X86 assembly language; therefore, in order
to keep the number of pages to a reasonable number, only the most commonly used
instructions will be presented. The remaining chapters in the book will discuss both
the 16-bit general-purpose register (GPR) set and the 32-bit extended GPR register set
to give variety to the presentation. Both sets of GPRs will incorporate linkage of C
programs with assembly language.

4.8 Problems

4.1 Enter three floating-point numbers from the keyboard, add them, then print
the sum.

4.2 Write a program to create three columns that show the binary numbers 1
through 256 as powers of 2.

4.3 Write a program to change the following Fahrenheit temperatures to centi-
grade temperatures: 32.0, 100.0, and 85.0. Then print the results.

4.4 Write a program that displays on three lines:
the number 10 as five digits right-aligned;
the number 99.95 as a floating-point number preceded by a $;
the first 10 characters of a 20-character string.

184 Chapter 4 C Programming Fundamentals

4.5 Write a program to calculate the volume of a parallelepiped. A parallelepiped
is a six-faced polyhedron all of whose faces are parallelograms lying in pairs
of parallel planes. Prompt for length, width, and height as integers, calculate
the volume, then display the volume.

4.6 Write a program to determine the quotient and remainder of the following op-
erations: 216 ÷ 5, 76 ÷ 6, and 744 ÷ 9.

4.7 Write a program to illustrate the difference between integer division and float-
ing-point division regarding the remainder, using the following dividends and
divisors: 742 ÷ 16 and 1756 ÷ 24. For the floating-point result, let the integer
be two digits and the fraction be four digits.

4.8 Write a program to prompt for five integers, then display their average. Then
display the five numbers in five-space increments.

4.9 Indicate which of the following expressions return a value of 1 (true) or 0
(false).

(a) (5 = = 5) && (6 != 2)
(b) (5 > 1) | | (6 < 1)
(c) (2 = = 1) && (5 = = 5)
(d) !(5 = = 4)

4.10 Indicate the value to which each of the following expressions evaluate.

(a) (1 + * 3)
(b) 10 % 3 * 3 – (1 + 2)
(c) ((1 + 2) * 3)
(d) (5 = = 5)
(e) (5 = 5)

4.11 Given x = 7, y = 25, and z = 24.46, write a program that generates either a 1
(true) or a 0 (false) for the following relational operators:

x > = y, x = = y, x < z, y > z, x != y – 18, x + y != z

4.12 Write a program to convert from feet to meters or from meters to feet. Prompt
for a value to be entered for feet or meters, then prompt for a choice: 1 means
feet to meters; 2 means meters to feet. Check for both conversions.

4.13 Write a program to compare two integers that are entered from the keyboard.
Indicate the relationship between the two integers — less than, equal, or great-
er than.

4.8 Problems 185

4.14 Write a program that prompts for two integers, then prompts whether the
arithmetic operation is to be addition, subtraction, multiplication, or division.
Display the resulting sum, difference, product, or quotient and remainder. En-
ter numbers for all four operations.

4.15 After execution of the following program, indicate the value of the expression
for x:

(a) Without parentheses.
(b) With parentheses

// log_op_precedence.cpp

/* Determine to what the expression evaluates
without and with parentheses.
*/

#include <stdio.h>

int a = 5, b = 6, c = 5, d = 1;
int x;

main (void)
{

x = a < b || a < c && c < d;
printf ("\nWithout parentheses, the expression

evaluates as %d", x);

x = (a < b || a < c) && c < d;
printf ("\nWith parentheses, the expression

evaluates as %d\n\n", x);
return 0;

}

4.16 Write a program to illustrate the relational, arithmetic, and logical operators.
Prompt for three integers separated by spaces, then use the three operators on
combinations of the inputs. Print the resulting outputs.

4.17 Given the values a = 3 and b = 4, write a program to evaluate the following
two conditional statements:

(5 + 2 * (a > b)) ? a : b;
(6>(a > b)) ? a : b;

4.18 To what does the expression 5 + 3 * 8 / 2 + 2 evaluate?
Rewrite the expression, adding parentheses, so that it evaluates to 16.

186 Chapter 4 C Programming Fundamentals

4.19 Given the program shown below, obtain the output for a, b, and c.

//pre_post_incr.cpp
//example of preincrement and postincrement

#include "stdafx.h"

int main (void)
{

int a, b;
int c = 2;

a = ++c;
b = c++;

printf ("%d %d %d\n\n", a, b, ++c);

return 0;
}

4.20 Given the program shown below, obtain the output for a and x.

//pre_post_incr2.cpp
//evaluate preincrement and postincrement expressions

#include "stdafx.h"

int main (void)
{

int a;
int x = 10;

a = x++;
printf ("a = %d\nx = %d\n\n", a, x);

a = ++x;
printf ("a = %d\nx = %d\n\n", a, x);

return 0;
}

4.8 Problems 187

4.21 Display the outputs for variables int1 and int2 after the program shown below
has executed.

//pre_post_incr3.cpp
//illustrates pre- and postincrement operators
//utilizing integer multiplication

#include "stdafx.h"

int main (void)

{
int int1, int2;

int1 = int2 = 10;

printf ("%d %d", int1++, ++int2);
printf ("\n%d %d", int1++, ++int2);
printf ("\n%d %d\n\n", 5*int1++, 5*++int2);

return 0;
}

4.22 Given the program shown below, obtain the outputs for variables a and b after
the program has executed.

//pre_post_incr4.cpp
//example to illustrate pre- and postincrement

#include "stdafx.h"

int main (void)

{
int a, b;
int c = 0;

a = ++c;
b = c++;

printf ("%d %d %d\n\n", a, b, ++c);

return 0;
}

188 Chapter 4 C Programming Fundamentals

4.23 This problem uses the bitwise operators AND, OR, and XOR. Prompt for two
2-digit lowercase hexadecimal characters, convert them to uppercase hexa-
decimal characters, and display them. Then perform the operations of AND,
OR, and XOR on the two characters. Display the results of the three bitwise
operations.

4.24 Determine the returned values for the six printf () statements in the program
shown below by entering one even and one odd integer.

//logical_and_or_xor.cpp
//using the logical and, or, and
//exclusive-or operators

#include "stdafx.h"

int main (void)
{

int int1, int2;

printf ("Enter one even and one odd integer: ");
scanf ("%d %d", &int1, &int2);

printf ("\nThe AND operator returns a value of:
%d\n", (int1%2 == 0) && (int1%4 == 0));

printf ("The AND operator returns a value of:
%d\n", (int2%2 == 0) && (int2%4 == 0));

//--
printf ("\nThe OR operator returns a value of:

%d\n", (int1%2 == 0) || (int1%4 == 0));

printf ("The OR operator returns a value of:
%d\n", (int2%2 == 0) || (int2%3 == 0));

//--
printf ("\nThe XOR operator returns a value of:

%d\n", (int1%2 == 0) ^ (int1%4 == 0));

printf ("The XOR operator returns a value of:
%d\n\n", (int2%2 == 0) ^ (int2%3 == 0));

return 0;
}

4.8 Problems 189

4.25 Determine the returned values (True or False) for the printf () functions in the
program shown below.

//if_else_statements.cpp
//if-else statements returning a value of true or false

#include "stdafx.h"

int main (void)
{

int a = 10, b = 12, c = 15;
//--

if (c == 15)
printf ("True");

else
printf ("\nFalse");

//--
if (a != c + b)

printf ("\nTrue");
else

printf ("\nFalse");
//--

if (c == 10)
printf ("\nTrue");

else
printf ("\nFalse");

//--
if (b == a * c - 2)

printf ("\nTrue\n\n");
else

printf ("\nFalse\n\n");
//--

return 0;
}

4.26 Write a program to illustrate the bitwise NOT operator using the conversion
specifier %c for characters entered from the keyboard.

190 Chapter 4 C Programming Fundamentals

4.27 Determine the number of times that the program shown below will execute the
while () loop.

#include "stdafx.h"
int main (void)
{

int n = 0;
while (n < 3)

printf ("n = %d\n", n);
n++;

printf ("Have a good day.\n");
return 0;

}

4.28 Prompt for a single character from the keyboard, then display the character.
Continue looping with a while () loop until a lowercase x is entered. Give the
user instructions on using the program.

4.29 Write a program to display the characters A through G as numeric values us-
ing a while () loop. Use the decimal value of G as the limit for the while ()
loop.

4.30 Use a for () loop to count from 10 to 100 in increments of 10. Display the
numbers on a single line.

4.31 Use a for () loop to display the numbers that are evenly divisible by 4 and by
6 up to a value of 60.

4.32 Write a program to generate i1, i2, and i3, where i represents the integers 1, 2,
3, 4, and 5. Display the results in three columns that specify i1, i2, and i3.

4.33 Determine the number of As that are printed by the program shown below.

//for_loop_nested.cpp
#include "stdafx.h"
int main (void)
{

int x, y;
for (x = 0; x < 5; x++)

for (y = 5; y > 0; y--)
printf ("A");

printf ("\n\n");
return 0;

}

4.8 Problems 191

4.34 Initialize an array with the squares of numbers 1 through 10, then print the ar-
ray. Copy the array to a second array, then print the second array.

4.35 Write a program that defines a 9 × 2 array with powers of 2. Prompt the user
to enter a number from 0 to 8, then print the number raised to the power of 2.
Use the break statement to exit from any loops that are used. The break state-
ment permits the program to exit a loop immediately from any location within
the body of the loop.

4.36 Write a program that defines a string, then prints the string. Then reverse the
order of the original string and print the new string.

4.37 Write a program that prompts for uppercase and lowercase letters to be insert-
ed into a string. Then print the letters that were entered, plus their decimal
equivalent and their hexadecimal equivalent.

4.38 Write a program to illustrate pointer postincrement. Assign an integer int1 a
value of 50 and assign a pointer variable the address of int1.

4.39 Write a program to illustrate pointer addition and subtraction from two inte-
gers that are entered from the keyboard.

4.40 Write a program containing a function, which adds two integers that are en-
tered from the keyboard.

4.41 Write a program containing two functions: one to add two integers and one to
add two floating-point numbers. The integers and floating-point numbers are
entered from the keyboard.

4.42 Write a program to create five functions to perform arithmetic operations on
two integers. Call the functions add, sub, mul, divq, and divr, where divq and
divr represent divide (quotient) and divide (remainder), respectively. Prompt
for two operands, then execute all five functions in sequence and display the
results.

This page intentionally left blankThis page intentionally left blank

193

5
Data Transfer Instructions

This chapter presents the basic data transfer instructions as they apply to the X86 pro-
cessors. Other data transfer instructions, such as instructions that pertain to stack oper-
ations and string operations, are presented in later chapters. This chapter also includes
the various data types used in the X86 processors.

5.1 Data Types
The data types that are covered in this section are signed binary integers, unsigned
binary integers, unpacked binary-coded decimal (BCD) integers, packed BCD inte-
gers, and floating-point numbers.

5.1.1 Signed Binary Integers

A signed integer is a binary number that is interpreted as a number in 2s complement
representation, where the high-order (leftmost) bit is the sign bit. Signed integers can
occupy a byte (8 bits: 7 through 0), a word (16 bits: 15 through 0), a doubleword (32
bits: 31 through 0), or a quadword (64 bits: 63 through 0), where the sign bits are bits
7, 15, 31, and 63, respectively. A sign bit of 0 indicates a positive number; a sign bit
of 1 indicates a negative number. An integer has the following range:

–(2n–1) to +(2n–1 – 1)

5.1 Data Types
5.2 Move Instructions
5.3 Load Effective Address
5.4 Load Segment Registers
5.5 Exchange Instructions
5.6 Translate
5.7 Conversion Instructions
5.8 Problems

194 Chapter 5 Data Transfer Instructions

Therefore, a signed integer byte has a range from –128 to +127, where n = 8; a
signed integer word has a range from –32,768 to + 32,767, where n = 16; a signed dou-
bleword has a range from –2,147,483,648 to +2,147,483,647, where n = 32; and a
signed quadword has a range from –9.223372037 × 1018 to +9.223372037 × 1018 – 1,
where n = 64.

Bytes of a multibyte number are stored in the little endian format; that is, the low-
order byte is stored first at the lower address and subsequent bytes are stored in
successively higher addresses in memory. Little endian can also refer to the way that
the bits are ordered in a byte; for example, bits 7 through 0 in a left-to-right sequence.

The big endian format stores the high-order byte first at the lower address and sub-
sequent bytes are stored in successively higher addresses in memory. Big endian can
also refer to the way that the bits are ordered in a byte; for example, bits 0 through 7 in
a left-to-right sequence. Examples of signed integers in 2s complement representation
are shown in Table 5.1.

Table 5.1 Examples of Numbers in 2s Complement Representation

Positive Numbers Decimal Value Negative Numbers Decimal Value
0111 +7 1001 –7

0101 0110 +86 1010 1010 –86
0010 1111 0101 +757 1101 0000 1011 –757

The 2s complement is obtained by adding 1 to the 1s complement; the 1s comple-
ment is obtained by inverting all bits of the number. There is a faster way to obtain the
2s complement of a number: keep the low-order 0s and the first 1 unchanged as the
number is scanned from right to left, then invert all remaining bits. An example is
shown below.

1110 1100 0001 0100 1110 11002s 2s

–20 +20 –20

5.1.2 Unsigned Binary Integers

Unsigned integers can occupy a byte (8 bits: 7 through 0), a word (16 bits: 15 through
0), a doubleword (32 bits: 31 through 0), or a quadword (64 bits: 63 through 0). An
unsigned integer has the following range:

0 to 2n – 1

5.1 Data Types 195

The maximum range for an unsigned byte is 28 – 1 = 255; the range for a word is
216 – 1 = 65,535; the maximum range for a doubleword is 232 – 1 = 4,294,967,295; and
the maximum range for a quadword is 264 – 1 = 1.8446744072 × 1019. Examples of
unsigned binary integers are shown in Table 5.2.

Table 5.2 Examples of Unsigned Binary Integers

Unsigned Integers Decimal Value Unsigned Integers Decimal Value
0111 7 1001 9

0101 0110 86 1010 1010 170
0010 1111 0101 757 1101 0000 1011 3339

5.1.3 Unpacked and Packed BCD Integers

Each BCD digit is an unsigned number with a range from 0 (0000) to 9 (1001); that is,
the decimal number is encoded as an equivalent binary number. All numbers 10
through 15 are invalid for BCD, since a radix 10 digit contains only the decimal num-
bers 0 through 9.

If the BCD number is unpacked, then only the low-order bits of each byte contain
a valid decimal number; the high-order bits of each byte can be an indeterminate value
for addition or subtraction operations, but must be 0000 for multiplication and division
operations.

For packed BCD numbers, both the low-order and the high-order half of a byte
contain valid decimal numbers. In this case, the digit in the high-order half of the byte
is the most significant number. BCD digits can be packed into a format consisting of
ten bytes that represent a signed decimal number, as shown in Figure 5.1. The low-
order digit is D0 and the high-order digit is D17. The sign bit is bit 79, where a 0 indi-
cates a positive number and a 1 indicates a negative number. Bits 78 through 72 are
irrelevant and can be classified as don’t care bits.

Byte 10 9 8 7 6 5 4 3 2 1

Bit 79 72 71 7 0
Sign

D1 D0D17 D16

Figure 5.1 Eighty-bit packed BCD format.

196 Chapter 5 Data Transfer Instructions

Positive and negative BCD numbers with the same absolute value are differenti-
ated only by the sign bit — all decimal digits are identical for both positive and neg-
ative numbers. This is in contrast to radix 2 numbers for the diminished-radix
complement and the radix complement number representations, where the bit config-
urations are different for positive and negative numbers. However, the 80-bit packed
BCD format is similar to the sign-magnitude number representation, where only the
sign bit is different.

5.1.4 Floating-Point Numbers

Floating-point numbers consist of the following three fields: a sign bit, s; an exponent,
e; and a fraction, f. These parts represent a number that is obtained by multiplying the
fraction, f , by a radix, r, raised to the power of the exponent, e, as shown in Equation
5.1 for the number A, where f and e are signed fixed-point numbers, and r is the radix
(or base).

A = f × r e (5.1)

The exponent is also referred to as the characteristic; the fraction is also referred
to as the significand or mantissa. Although the fraction can be represented in sign-
magnitude, diminished-radix complement, or radix complement, the fraction is pre-
dominantly expressed in a true magnitude (unsigned) representation.

Figure 5.2 shows the format for 32-bit single-precision and 64-bit double-preci-
sion floating-point numbers. The single-precision format consists of a sign bit that
indicates the sign of the number, an 8-bit signed exponent, and a 23-bit fraction. The
double-precision format consists of a sign bit, an 11-bit signed exponent, and a 52-bit
fraction. Fractions in the IEEE format are normalized; that is, the leftmost significand
bit is a 1. Since there will always be a 1 to the immediate right of the radix point, the
1 bit is not explicitly shown — it is an implied 1.

 31 23 22 0

Sign bit:
0 = positive
1 = negative

8-bit signed
exponent
(characteristic)

23-bit fraction
(mantissa, significand)

(a) (Continued on next page)

Figure 5.2 IEEE floating-point formats: (a) 32-bit single precision and (b) 64-bit
double precision.

 63 52 51 0

Sign bit:
0 = positive
1 = negative

11-bit signed
exponent
(characteristic)

52-bit fraction
(mantissa, significand)

(b)

5.2 Move Instructions 197

Figure 5.2 (Continued)

The exponents of the X86 floating-point architecture are initially unbiased num-
bers. An unbiased exponent can be either a positive or a negative integer. During the
addition or subtraction of two floating-point numbers, the exponents are compared
and the fraction with the smaller exponent is shifted right by an amount equal to the
difference of the two exponents. The comparison is simplified by using biased expo-
nents; that is, by adding a positive bias constant to each exponent during the formation
of the numbers. This bias constant has a value that is equal to the most positive expo-
nent and makes all exponents positive numbers.

For example, if the exponents are represented by n bits, then the bias is 2n – 1 – 1.
For n = 4, the most positive number is 0111 (+7). Therefore, all biased exponents are
of the form shown in Equation 5.2.

ebiased = eunbiased + 2n – 1 – 1 (5.2)

The advantage of using biased exponents is that they are easier to compare without
having to consider the signs of the exponents. The main reason for biasing is to deter-
mine the correct alignment of the fractions by aligning the radix points, and to deter-
mine the number of bits to shift a fraction in order to obtain proper alignment. An
additional advantage is that the smallest exponent contains only zeroes; therefore, the
floating-point depiction of the number zero is an exponent of zero with a fraction of
zero. If the biased exponent has a maximum value (255) and the fraction is nonzero,
then this is interpreted as Not a Number (NaN), which is the result of zero divided by
zero or the square root of – 1.

5.2 Move Instructions
This section presents some of the basic move instructions involving data transfer.
These include register-to-register, immediate-data-to-register, immediate-data-to-
memory, memory-to-register, and register-to-memory. Also included are moves with

198 Chapter 5 Data Transfer Instructions

sign extension, moves with zero extension, and conditional moves that move data to a
destination depending on the state of a flag. Data transfer instructions have the fol-
lowing general syntax:

MOV destination, source

The source is a general-purpose register, a segment register, immediate data, or a
memory operand. The destination is a general-purpose register, a segment register, or
a memory location. Debug registers can also be used as source or destination registers.

5.2.1 General Move Instructions

Examples of different forms of the MOV instruction are shown below. The general
move instruction, MOV, cannot be used for memory-to-memory data transfer. The
move string (MOVS) instruction is used for that operation. The MOV instruction also
cannot move data from one segment register to another segment register.

Register-to-register MOV EAX, EBX
Immediate-to-register MOV AX, 1234H
Direct MOV MEM_ADDR, AX MEM_ADDR gives the

address directly
Register indirect MOV EAX, [EBP] [EBP] gives the address

indirectly
Indexed MOV AX, [DI/SI +

displacement]
Displacement may be 0

Based MOV EAX, [EBP/EBX +
displacement]

Displacement may be 0

Base plus index MOV [BP/BX + SI/DI], AX
Base plus index plus dis-
placement

MOV [BX/BP + DI/SI +
displacement], EAX

Figure 5.3 shows an example of moving a byte from a memory location, deter-
mined by the contents of register EBX, to register AL. This is an indirect addressing
mode with an offset of eight. If the operand type is not obvious, then the type can be
specified by either BYTE PTR, WORD PTR, DWORD PTR, for example, as shown
below, which moves 0C16 to a memory location specified by the sum of the contents of
registers EBX and ESI.

MOV BYTE PTR [EBX + ESI], 0CH

. .
 .

MOV AL, 8[EBX]

+8

AL

5.2 Move Instructions 199

Figure 5.3 Example of moving a byte from memory to register AL.

Structure of an X86 assembly language program Figure 5.4 illustrates a
program to interchange two registers using the MOV instruction. This can be accom-
plished much easier by using the exchange (XCHG) instruction, which is presented in
a later section. However, since this section introduces the MOV instruction, the pro-
gram uses the MOV data transfer instruction.

The program is called swap_bytes and saved as swap_bytes.asm. The .STACK is
a simplified segment directive that defines the stack segment; in a similar manner, the
directives that define the data and code segments are labelled .DATA and .CODE,
respectively. A size value can be appended to these simplified segment directives to
specify their respective sizes. These directives generate the appropriate segment state-
ments and the corresponding end segment statements. Prior to the introduction of the
simplified segment directives, the segments were defined as shown below.

STSG SEGMENT PARA STACK 'STACK'
. . .

STSG ENDS
--
DTSG SEGMENT PARA 'DATA'

. . .
DTSG ENDS
--
CDSG SEGMENT PARA 'CODE'
BEGIN PROC FAR

ASSUME SS:STACK, DS:DTSG, CS:CDSG
. . .

BEGIN ENDP
CDSG ENDS

END BEGIN

;swap_bytes.asm
;---
.STACK
;---
.DATA
 TEMP DB ?
;$ sign is a delimiter meaning end of string
 RSLT DB 0DH, 0AH, 'BL = , BH = $'
;---
.CODE
BEGIN PROC FAR

;set up pgm ds

MOV AX, @DATA ;place the .DATA addr in ax
MOV DS, AX ;set up data seg addr for this pgm

;assign values to bl and bh
MOV BL, 'A'
MOV BH, 'B'

;store bl in temp area before swapping
MOV TEMP, BL

;swap registers
MOV BL, BH
MOV BH, TEMP

;move registers to result area for display
MOV RSLT + 7, BL
MOV RSLT + 15, BH

;print result
MOV AH, 09H ;display string
MOV DX, OFFSET RSLT ;rslt addr must be in dx
INT 21H ;a dos interrupt that uses

;a fctn code in ah

BEGIN ENDP

END BEGIN ;start pgm at begin
(a)

BL = B, BH = A
(b)

200 Chapter 5 Data Transfer Instructions

Figure 5.4 Program to illustrate interchanging the contents of two general-pur-
pose registers BL and BH: (a) the program, and (b) the outputs.

5.2 Move Instructions 201

The procedure section of the code begins with the PROC directive and ends with
the end procedure (ENDP) directive. The code segment, specified by the PROC direc-
tive, contains the executable code for the program. The procedure name is BEGIN and
must be distinct from any other procedure name. The operand FAR indicates the pro-
cedure entry location to begin execution of the program. The ENDP directive ends a
procedure and contains the same name as the procedure; the END directive ends the
program, and the operand — BEGIN in this case — contains the name of the FAR pro-
cedure where program execution is to begin.

The simplified segment directives also include predefined equates, such as @code
and @data. The @data equate can be used, in conjunction with the MOV instruction,
to load the offset of the data segment into register AX by the following statement:

MOV AX, @DATA

Register AX is then loaded into the data segment register DS by the following state-
ment:

MOV DS, AX

The ASCII characters A and B are then loaded into registers BL and BH, respec-
tively. The contents of registers BL and BH are then interchanged using the temporary
storage area in the data segment declared as TEMP, which is defined as a byte location
by the define byte(s) directive DB. Once the contents of the registers have been inter-
changed, they are moved to the RSLT area in the data segment, which is also defined
as a field of individual bytes. The control character 0DH places the cursor at the left of
the monitor screen; the control character 0AH specifies a line feed, which advances
the output by a single line — also called a carriage return.

The control characters 0DH and 0AH occupy one byte each, where 0DH is at loca-
tion 0 of the storage area designated by RSLT and 0AH is at location 1 of the storage
area designated by RSLT. Register BL is moved to location RSLT + 7, which is two
spaces to the right of the first equal sign — every space within the single quotation
marks is one byte. Register BH is moved to location RSLT + 15, which is two spaces
to the right of the second equal sign. The dollar sign ($) indicates end of string within
the single quotation marks.

The statements shown below display the contents of the RSLT field. A function
code of 09H (display string) is moved to register AH, which must contain the required
function. The offset address of RSLT — relative to the beginning of the data segment
— is moved to the required register, DX. The DOS interrupt, INT 21H, is an interrupt
that uses a function code in register AH to indicate an operation to be performed — in
this case the display string function.

MOV AH, 09H
MOV DX, OFFSET RSLT
INT 21H

202 Chapter 5 Data Transfer Instructions

The program of Figure 5.4 will be rewritten using an assembly language module
that is linked to a C program. The revised program is shown in Figure 5.5. External
names in a C program are preceded by an underscore (_) character; for example,
_asm; that is, in-line assembly language is achieved by the _asm command. Since a C
program is case sensitive, the assembly language section should use the same case for
variable names that are common to both the C module and the assembly language
module.

Note that there is no need to declare stack, data, or code segments in the linked
program. The C module uses the stack to push and pop data as required. There is also
no need to set up the data segment in the DS register. The results of the interchange
program do not have to be sent to the data segment in preparation for display. The
three instructions to display printing the resulting string are also not required — this is
accomplished by the printf () function. Linking an assembly language to a C program
makes the resulting program easier to read and understand.

//swap_bytes.cpp
//swap bytes in two GPRs
#include "stdafx.h"
char main (void)
{

char temp;
char rslt1, rslt2;

//switch to assembly
_asm
{

MOV BL, 'A'
MOV BH, 'B'

//swap bytes
MOV temp, BL
MOV rslt1, BH
MOV BH, temp
MOV rslt2, BH

}

//print result
printf ("BL = %c, BH = %c\n", rslt1, rslt2);
return 0;

} (a)

BL = B, BH = A
Press any key to continue . . . _(b)

Figure 5.5 Assembly language module linked to a C module to interchange two
general-purpose registers: (a) the program and (b) the outputs.

5.2 Move Instructions 203

5.2.2 Move with Sign/Zero Extension

The move with sign extension (MOVSX) instruction moves the source operand into a
destination general-purpose register, then extends the sign bit into the high-order bits
of the destination. The sign bit is extended into a 16-bit or a 32-bit destination. The
MOVSX instruction is used with signed operands.

The move with zero extension (MOVZX) instruction is similar to the MOVSX
instruction, except that zeroes are extended in the destination instead of the sign bit.
The syntax for the MOVSX and the MOVZX instructions is shown below.

MOVSX/MOVZX register, register/memory/immediate

Figure 5.6 contains a program that illustrates both the MOVSX instruction and the
MOVZX instruction. An immediate operand, 0F5H, is loaded into register AL, which
is sign-extended into register EAX to yield a result of FFFFFFF5H. An immediate,
0F5H, is loaded into register BL, which is zero-extended into register EBX to yield a
result of F5H (000000F5).

//movsx_movzx2.cpp
//move with sign/zero extension
#include "stdafx.h"
int main (void)

{
int rslt1, rslt2;

//switch to assembly
_asm
{

MOV AL, 0F5H
MOVSX EAX, AL
MOV rslt1, EAX

MOV BL, 0F5H
MOVZX EBX, AL
MOV rslt2, EBX

}
printf ("Result = %X, %X\n", rslt1, rslt2);
return 0;

} (a)

Result = FFFFFFF5, F5
Press any key to continue . . . _ (b)

Figure 5.6 Program to illustrate the MOVSX and the MOVZX instructions: (a)
the program and (b) the outputs.

204 Chapter 5 Data Transfer Instructions

5.2.3 Conditional Move

The conditional move (CMOVcc) instructions execute move operations based on the
state of certain flags — condition codes (cc) — in the EFLAGS register. The condition
codes are appended to the right of the CMOV instruction; for example, the instruction
CMOVC will execute if the state of the carry flag is 1 (CF = 1).

The conditional move instructions move data from a source operand to a destina-
tion location; that is, from memory to a general-purpose register (GPR) or from one
GPR to another GPR. Conditional moves for 8-bit registers are not supported. If the
specified condition is true, then the move operation is performed. If the condition is
false, then the move operation is not executed and the instruction following the
CMOVcc instruction is executed. The conditional move function is similar to the if
construct, in which a branch takes place if a condition is true. The conditional move
instructions are shown in Table 5.3 for both unsigned and signed operations.

Table 5.3 Conditional Move Instructions

Mnemonic Flags Description
Unsigned

CMOVA (CF or ZF) = 0 Above
CMOVAE CF = 0 Above or equal
CMOVNC CF = 0 No carry
CMOVB CF = 1 Below
CMOVC CF = 1 Carry
CMOVBE (CF or ZF) = 1 Below or equal
CMOVE ZF = 1 Equal
CMOVNE ZF = 0 Not equal
CMOVP PF = 1 Parity even
CMOVNP PF = 0 Parity odd

Signed
CMOVGE (SF xor OF) = 0 Greater than or equal
CMOVL (SF xor OF) = 1 Less than
CMOVLE [(SF xor OF) or ZF] = 1 Less than or equal
CMOVO OF = 1 Overflow
CMOVNO OF = 0 No overflow
CMOVS SF = 1 Sign is negative
CMOVNS SF = 0 Sign is positive

5.2 Move Instructions 205

Compare instruction Since the conditional move instructions depend on the
state of flags resulting from the execution of certain instructions, the compare instruc-
tion will be introduced at this time in order to generate flags for a conditional move
instruction. One example will suffice to illustrate the operation of a conditional move
instruction. The syntax for the compare instruction is shown below.

CMP first source operand, second source operand

The comparison is achieved by subtracting the second source operand from the
first source operand and setting the appropriate flags. The comparison is that of the
first source operand to the second source operand. The operands are unchanged after
the compare operation, but the following flags are set according to the result of the
compare operation: auxiliary carry or adjust flag (AF), the carry flag (CF), the over-
flow flag (OF), the parity flag (PF), the sign flag (SF), and the zero flag (ZF).

Figure 5.7 shows a program that illustrates the application of the conditional move
instruction CMOVAE if the unsigned operand in register EAX is above or equal to the
unsigned operand in register EBX. The purpose of the program is to print the larger of
two operands or one operand if the two are equal. Two integers are entered by the user
and stored in memory locations x and y.

//mov_cond.cpp
//uses cmovae (above or equal); cf = 0.
//If user-entered x is unsigned above or equal to
//user-entered y, then print x; otherwise, print y.
//If integers are equal, then print x

#include "stdafx.h"

int main (void)
{
//define and initialize variables

int x, y, rslt;

printf ("Enter two integers: \n");
scanf ("%d %d", &x, &y);

//switch to assembly
_asm
{

MOV EAX, x
MOV EBX, y //continued on next page

(a)

Figure 5.7 Program to illustrate the use of the conditional move instruction
CMOVAE: (a) the program and (b) the outputs.

//to move ebx to result if conditional move fails
MOV EDX, EBX

CMP EAX, EBX //set flags

//if eax >= ebx, move eax to rslt;
//otherwise, move ebx to result

CMOVAE EDX, EAX
MOV rslt, EDX

}

printf ("Result = %d\n\n", rslt);
return 0;

}

Enter two integers:
15 10
Result = 15

Press any key to continue . . . _
--
Enter two integers:
10 15
Result = 15

Press any key to continue . . . _

Enter two integers:
15 10
Result = 15

Press any key to continue . . . _

Enter two integers:
10 15
Result = 15

Press any key to continue . . . _

Enter two integers:
10 10
Result = 10

Press any key to continue . . . _
(b)

206 Chapter 5 Data Transfer Instructions

Figure 5.7 (Continued)

5.3 Load Effective Address
The load effective address (LEA) instruction loads the offset (effective address) of a
memory address (source operand) within a memory segment and stores it in a general-
purpose register. No flags are affected by this instruction. The address calculation of
the LEA instruction is similar to the calculation performed by the MOV instruction,
but the address of the source operand is stored in the destination, not the contents of

5.4 Load Segment Registers 207

the source operand. The LEA instruction can also be used for unsigned integer arith-
metic. The syntax for the LEA instruction is shown below.

LEA destination, source

A comparable operation to the LEA instruction is a MOV with offset operation
and the equate construct that were utilized in the program of Figure 5.4, as shown
below, both of which move an offset address to a destination register.

MOV DX, OFFSET RSLT
MOV AX, @DATA

An example that illustrates one use of the LEA instruction is shown in Figure 5.8,
which accesses an array element. The address of array in the data segment is loaded
into register BX and register SI is cleared using the immediate addressing mode — SI
will be used to index into the array. Then the word at array [0] is stored in register AX.
The register addressing mode is used for the destination (AX); the base-index address-
ing mode is used for the source [BX][SI]. To index through the array, simply incre-
ment register SI by the appropriate amount.

.

.

.

DS
BX = array

Displacement = 0
SI = 0

This word is accessed

LEA BX, ARRAY
MOV SI, 0
MOV AX, [BX][SI]

Figure 5.8 One use for the LEA instruction is to access an array element.

5.4 Load Segment Registers
This section describes some of the instructions that load far pointers; for example, load
far pointer using DS (LDS), load far pointer using SS (LSS), load far pointer using ES
(LES), load far pointer using FS (LFS), and load far pointer using GS (LGS). These
instructions load a far pointer (segment selector and offset), that points to a memory
location, into a segment register and a general-purpose register. The 16-bit segment
selector component of the far pointer is stored in the segment register specified in the
operation code of the instruction; the offset is stored in the specified general-purpose
register.

208 Chapter 5 Data Transfer Instructions

The syntax for a load far pointer instruction is shown below, where destination is
any 16-bit or 32-bit general-purpose register and source is a 32-bit or 48-bit memory
location.

Lseg destination, source

An example using the extra segment (ES) is shown in Figure 5.9 for the following
instruction:

LES ESI, ptr1

ptr1

 47 16 15 0

16-bit selector32-bit offset

ESESI

Figure 5.9 Example of a load far pointer instruction using ES and ESI.

An example of a load far pointer instruction using the data segment (DS) register
and the source index (SI) register is shown in Figure 5.10. This example sets SI for
string operations; SI contains the offset of the string.

LDS SI, label

78 56 DS

Low word High word

12 34 56 78label (pointer)

34 12SI

Data segment

Offset

To SI To DS

Beginning of source string

Figure 5.10 Example of a load far pointer instruction.

5.5 Exchange Instructions 209

5.5 Exchange Instructions
This section presents four different interchange-type instructions. One instruction
exchanges the contents of a register — or memory location — with a register (XCHG);
another reverses the order of bytes in a register (BSWAP); another exchanges the con-
tents of two operands, then stores the sum in the destination (XADD); and another
compares the contents of a specific register with the contents of a register — or mem-
ory location — then performs a move operation depending on the results of the com-
parison (CMPXCHG).

5.5.1 Exchange

The exchange (XCHG) instruction exchanges the contents of the source and destina-
tion operands. The operands can be two general-purpose registers (GPRs) or a GPR
and a memory location. This is a simpler and more expeditious method of exchanging
two operands than the method using the MOV instruction of Figure 5.4 — no tempo-
rary storage location is required to hold one of the operands.

When an XCHG instruction is executed, the LOCK prefix asserts the processor’s
LOCK# signal. In a multiprocessor environment, the LOCK prefix ensures that the
processor maintains uninterrupted use of any shared memory. This prevents other
threads from accessing the memory location while the instruction is executing. The
LOCK prefix is applicable only to certain instructions and is asserted for the duration
of the instruction that follows the LOCK prefix; that is, the LOCK prefix prepends the
instruction to which it applies.

The syntax for the XCHG instruction is shown below, where the source and des-
tination operands can be a register or a memory location, but cannot both be memory
locations. The flags are not affected by the XCHG instruction.

XCHG destination, source
XCHG register/memory, register/memory

There are several versions of assemblers for use with X86 assembly language pro-
gramming. The various assemblers include the following: Microsoft Macro-Assem-
bler (MASM), Netwide Assembler (NASM), Lazy Assembler (LZASM), NewBasic
Assembler (NBASM), Flat Assembler (FASM), CodeX Assembler, and TMA Macro
Assembler, among others. This book uses a version of a flat assembler.

Figure 5.11 illustrates the parameter list array in the data segment that is used to
store the keyboard input data. Figure 5.12 shows an example of the XCHG instruction
to swap two registers. The name PARLST (parameter list) in the data segment is the
name of a one-dimensional array that is labelled as a byte array and accepts input data
from the keyboard. The first element of the array, PARLST [0], is called MAXLEN,
which defines the maximum number of input characters — in this example, five is the
maximum number of allowable characters.

The second array element, PARLST [1], is called ACTLEN, which stores the
actual number of characters entered from the keyboard. The third element of the array,

210 Chapter 5 Data Transfer Instructions

PARLST [2], contains the beginning of the operand field (OPFLD) where the
operands from the keyboard are stored — the last byte in the OPFLD is the Enter (car-
riage return) character (↵).

. . .PARLST
MAXLEN ACTLEN OPFLD

Figure 5.11 Parameter list one-dimensional array in which the keyboard input
data are stored.

Following the PARLST array in the data segment is a prompt (PRMPT) for the
user to enter two characters. The 0DH byte is the carriage return character; the 0AH
byte is the line feed character. A string to be displayed is enclosed in single quotation
marks and is terminated by a dollar sign ($), which indicates end of string. The code
to display the prompt is shown below. The INT 21H is an operating system interrupt
that uses a function code in register AH to specify an operation to be performed. The
function code 09H is a display string routine. The address of the string to be displayed
(PRMPT) is placed in register DX by the LEA instruction.

MOV AH, 09H
LEA DX, PRMPT
INT 21H

The code to receive the keyboard input data is similar, except that the function
code 0AH is used to indicate that the function is a buffered keyboard input. The data
are stored in the PARLST one-dimensional array beginning at location OPFLD.

The label RSLT1 displays the characters before they are exchanged. The first byte
(B) of the string is location RSLT1 [2]. Each character, including spaces, is one byte;
therefore, the first character entered from the keyboard is placed at location RSLT1
[20] — one space past the equal sign. In a similar manner, after the characters are
exchanged, they are placed in the RSLT2 area of the data segment. The ENDP direc-
tive indicates the end of the procedure named BEGIN. The END directive indicates
the end of the program.

;xchg_2_characters.asm
.STACK

.DATA
PARLST LABEL BYTE
MAXLEN DB 5
ACTLEN DB ?
OPFLD DB 5 DUP(?) //continued on next page

(a)

Figure 5.12 Example to illustrate the use of the XCHG instruction: (a) the pro-
gram and (b) the outputs.

PRMPT DB 0DH, 0AH, 'Enter two characters: $'
RSLT1 DB 0DH, 0AH, 'Before exchange = $'
RSLT2 DB 0DH, 0AH, 'After exchange = $'

.CODE
BEGIN PROC FAR
;set up pgm ds

MOV AX, @DATA
MOV DS, AX

;read prompt
MOV AH, 09H ;display string
LEA DX, PRMPT ;load addr of prmpt
INT 21H ;dos interrupt

;kybd rtn to enter characters

MOV AH, 0AH ;buffered kybd input
LEA DX, PARLST ;load addr of parlst
INT 21H ;dos interrupt

;store characters from opfld to bl and bh

MOV BL, OPFLD ;get 1st char, store in bl
MOV BH, OPFLD + 1 ;get 2nd char, store in bh

;display original characters

MOV RSLT1 + 20, BL
MOV RSLT1 + 22, BH

MOV AH, 09H
LEA DX, RSLT1
INT 21H

;exchange characters

XCHG BL, BH

;display swapped characters

MOV RSLT2 + 19, BL
MOV RSLT2 + 21, BH

MOV AH, 09H
LEA DX, RSLT2
INT 21H

BEGIN ENDP

END BEGIN
 //continued on next page

5.5 Exchange Instructions 211

Figure 5.12 (Continued)

Enter two characters: 12
Before exchange = 1 2
After exchange = 2 1
--
Enter two characters: ab
Before exchange = a b
After exchange = b a (b)

212 Chapter 5 Data Transfer Instructions

Figure 5.12 (Continued)

Figure 5.13 shows a similar program in which two integers are exchanged by an
X86 assembly language program that is linked to a C program. Note the simplicity of
the code — there is no need to specify a stack segment, a data segment, or a code seg-
ment. There is also no need to display the original integers — they are automatically
displayed by the printf () function when they are entered. Two integers are entered by
the user and are stored in locations x and y. The integers are then moved to registers
EAX and EBX, where they are exchanged by the instruction XCHG EAX, EBX, then
displayed by the printf () function; thus, there is also no need to precisely position the
results of the operation for display.

//xchg_2_numb.cpp
//exchange two user-entered integers
#include "stdafx.h"
int main (void)
{

intx, y, rslt1, rslt2; //define variables
printf ("Enter two integers: ");
scanf ("%d %d", &x, &y);

//switch to assembly
_asm
{

MOV EAX, x
MOV EBX, y
XCHG EAX, EBX
MOV rslt1, EAX
MOV rslt2, EBX

}
printf ("Result = %d %d\n\n", rslt1, rslt2);
return 0;

} (a) //continued on next page

Figure 5.13 Exchange two integers by linking as X86 assembly language program
to a C program: (a) the program and (b) the outputs.

Enter two integers: 11 22
Result = 22 11

Press any key to continue . . . _
--
Enter two integers: 200 400
Result = 400 200

Press any key to continue . . . _ (b)

5.5 Exchange Instructions 213

Figure 5.13 (Continued)

5.5.2 Byte Swap

The byte swap (BSWAP) instruction reverses the order of the bytes in a 32-bit or a 64-
bit general-purpose register. For a 32-bit register, bit positions 0 through 7 are
swapped with bit positions 24 through 31 and bit positions 8 through 15 are swapped
with bit positions 16 through 23, as shown in Figure 5.14. This effectively converts a
little endian format to a big endian format and a big endian format to a little endian for-
mat. The syntax for the byte swap instruction is shown below, where the destination
register is a 32-bit or a 64-bit general-purpose register.

BSWAP destination register

The byte swap instruction is not defined for 16-bit registers; to swap bytes in a 16-
bit register, the XCHG instruction should be used. Figure 5.15 shows a program to
illustrate the BSWAP instruction for a 32-bit general-purpose register, EAX. A user-
entered integer is stored in location x as uppercase hexadecimal characters. The char-
acter is then moved to register EAX where the byte swap operation takes place. The
result of the operation is then moved to location rslt to be displayed.

 FF 00 FF 00

 00 FF 00 FF

EAX

EAX

 31 24 23 16 15 8 7 0

Figure 5.14 Diagram to illustrate the byte swap instruction.

//byte_swap.cpp
//swap bytes to convert between little-endian and big-endian

#include "stdafx.h"

int main (void)
{

//define variables
int x, rslt;

printf ("Enter an integer: \n");
scanf ("%X", &x);

//switch to assembly
_asm
{

MOV EAX, x
BSWAP EAX
MOV rslt, EAX

}

printf ("\nResult = %X\n\n", rslt);

return 0;
} (a)

Enter an integer:
FF00FF00

Result = FF00FF

Press any key to continue . . . _
--
Enter an integer:
11221122

Result = 22112211

Press any key to continue . . . _ (b)
//continued on next page

214 Chapter 5 Data Transfer Instructions

Figure 5.15 Program to illustrate the byte swap operation: (a) the program and (b)
the outputs.

Enter an integer:
12345678

Result = 78563412

Press any key to continue . . . _
--
Enter an integer:
–1

Result = FFFFFFFF

Press any key to continue . . . _
--
Enter an integer:
aaaabbbb

Result = BBBBAAAA

Press any key to continue . . . _

5.5 Exchange Instructions 215

Figure 5.15 (Continued)

5.5.3 Exchange and Add

The exchange and add (XADD) instruction exchanges the destination operand with
the source operand, then stores the sum of the two operands in the destination location.
The destination operand can be in a register or memory location; the source operand is
in a general-purpose register. The syntax for the XADD instruction is shown below.

XADD register/memory, register

destination + source

The register and memory operands can be 8-bit, 16-bit, 32-bit, or 64-bit operands.
The XADD instruction can also utilize the LOCK prefix to ensure that the processor
maintains uninterrupted use of any shared memory until the instruction has completed
execution. Figure 5.16 shows a linked C and assembly language program that dem-
onstrates the use of the XADD instruction using the EAX and EBX general-purpose
registers.

216 Chapter 5 Data Transfer Instructions

Two integers are entered from the keyboard and stored in locations x and y, then
moved to registers EAX and EBX, respectively. The XADD instruction is then exe-
cuted which swaps the contents of the two registers and obtains their sum, which is
stored in the destination register EAX. The program then moves the sum to location
rslt1 and the original value of register EAX to rslt2. The corresponding results are
then displayed. The flags in the EFLAGS register specify the result of the addition
operation.

//xchg_add.cpp
//exchange and add two general-purpose registers

#include "stdafx.h"

int main (void)
{
//define variables

int x, y, rslt1, rslt2;

printf ("Enter two integers: \n");
scanf ("%d %d", &x, &y);

//switch to assembly
_asm
{

MOV EAX, x
MOV EBX, y

XADD EAX, EBX //swap EAX and EBX
//sum is stored in EAX (dst)

MOV rslt1, EAX //move sum to rslt1
MOV rslt2, EBX //move original EAX to rslt2

}

printf ("\nSum = %d\nOriginal EAX = %d\n\n",
rslt1, rslt2);

return 0;
}

//continued on next page
(a)

Figure 5.16 A linked C and assembly program that demonstrates the use of the
exchange and add (XADD) instruction using the EAX and EBX general-purpose reg-
isters: (a) the program and (b) the outputs.

Enter two integers:
40 25

Sum = 65
Original EAX = 40

Press any key to continue . . . _
--
Enter two integers:
672 538

Sum = 1210
Original EAX = 672

Press any key to continue . . . _
(b)

5.5 Exchange Instructions 217

Figure 5.16 (Continued)

5.5.4 Compare and Exchange

Since the primary focus of this book is to present the code segment for X86 assembly
language programming, it is of lesser importance to include the stack segment and the
data segment in each program. Therefore, most of the programs will be structured as
an assembly language module embedded in a C program. Also, the methods to obtain
keyboard input data and to display the results of an assembly language program are
simpler when using the C functions of scanf () and printf ().

This section presents the compare and exchange (CMPXCHG) instruction, which
compares the value in the accumulator with the value in the destination operand. If the
two operands are equal, then the source operand is stored in the destination location —
a register or a memory location. If the two operands are not equal, then the destination
operand is stored in the accumulator. The syntax for the CMPXCHG instruction is
shown below.

CMPXCHG register/memory, register

The flags in the EFLAGS register indicate the result of the operation that is
obtained after subtracting the destination operand from the contents of the accumula-
tor. The CMPXCHG instruction can be combined with the processor’s LOCK prefix.
In a multiprocessor environment, the LOCK prefix ensures that the processor main-
tains exclusive use of shared memory, thus preventing other threads from accessing
the memory location while the instruction is executing. This is referred to as an atomic
operation, which is used to maintain synchronization and to avoid race conditions in a

218 Chapter 5 Data Transfer Instructions

multiprocessor environment. Many instructions, such as the XCHG and XADD
instructions, among others, always assert the LOCK# signal whether the LOCK prefix
is present or not.

The diagram shown in Figure 5.17 graphically portrays the operation of the
CMPXCHG instruction using EAX as the accumulator register, EBX as the destina-
tion register, and EDX as the source register. Figure 5.18 shows a program to illustrate
the use of the instruction CMPXCHG using the registers shown in Figure 5.17.

CMPXCHG EBX, EDX

Compare

EAX

dst src

≠ =
EDX EBX
src dst

EBX EAX
dst

Figure 5.17 Graphical representation of the CMPXCHG instruction.

//comp_xchg.cpp
//compare and exchange registers based
//on the results of the comparison

#include "stdafx.h"

int main (void)
{

//define variables
int eax_reg, ebx_reg, edx_reg, equal, not_equal;

printf ("Enter integers for EAX, EBX_dst, EDX_src: \n");
scanf ("%d %d %d", &eax_reg, &ebx_reg, &edx_reg);

(a) //continued on next page

Figure 5.18 Program to illustrate the use of the CMPXCHG instruction: (a) the
program and (b) the outputs.

//switch to assembly
_asm
{

MOV EAX, eax_reg
MOV EBX, ebx_reg //EBX is dst register
MOV EDX, edx_reg //EDX is src register

CMPXCHG EBX, EDX //if EAX = EBX, EDX --> EBX
//if EAX != EBX, EBX --> EAX

MOV equal, EBX
MOV not_equal, EAX

}

printf ("\nEBX = %d\nEAX = %d\n\n", equal, not_equal);

return 0;
}

Enter integers for EAX, EBX_dst, EDX_src:
130 130 140

EBX = 140
EAX = 130

Press any key to continue . . . _
--
Enter integers for EAX, EBX_dst, EDX_src:
120 100 150

EBX = 100
EAX = 100

Press any key to continue . . . _
--
Enter integers for EAX, EBX_dst, EDX_src:
–1 4294967295 20 //4294967295 is –1 (FFFFFFFF)

EBX = 20
EAX = –1

Press any key to continue . . . _
--

 (b) //continued on next page

5.5 Exchange Instructions 219

Figure 5.18 (Continued)

Enter integers for EAX, EBX_dst, EDX_src:
4294967295 –1 30

EBX = 30
EAX = –1

Press any key to continue . . . _
--
Enter integers for EAX, EBX_dst, EDX_src:
4294967295 20 55

EBX = 20
EAX = 20

Press any key to continue . . . _
--

220 Chapter 5 Data Transfer Instructions

Figure 5.18 (Continued)

5.6 Translate
The translate (XLAT or XLATB) instructions use the contents of register AL as an
index into a translation table in memory that contains the translated byte of data. The
data at the memory location addressed by the index is then stored in AL. The index
value in register AL is treated as an unsigned integer, which is added to the contents of
the base register (E)BX to obtain the base address of the translation table in the data
segment, as shown in Figure 5.19 using register BX as the base register.

DS

DS + BX + AL

DS + BX

BX

AL

Beginning of table

AL

Figure 5.19 Diagram to illustrate the operation of the translate instruction.

5.6 Translate 221

The XLAT instruction permits the base address of the translation table to be spec-
ified with a symbol. The base address must be explicitly stored in registers DS:(E)BX
before execution of the XLAT instruction. The XLATB instruction, however, assumes
that the DS:(E)BX registers contain the base address of the translation table. This is
often referred to as the short form of the translation instruction. The translation
instructions are often used to translate from one code to another code; for example,
from the ASCII code to the EBCDIC code that is used in the IBM mainframes.

An assembly language program will be coded to translate a 4-bit binary number to
the corresponding 4-bit Gray code number using the XLATB instruction. The binary
code and Gray code for four bits are shown in Table 5.4.

The Gray code is an nonweighted code that has the characteristic whereby only
one bit changes between adjacent code words. The Gray code belongs to a class of cy-
clic codes called reflective codes, as can be seen in Table 5.4. Notice in the first four
rows, that g0 reflects across the reflecting axis; that is, g0 in rows 2 and 3 is the mirror
image of g0 in rows 0 and 1. In the same manner, g1 and g0 reflect across the reflecting
axis drawn under row 3. Thus, rows 4 through 7 reflect the state of rows 0 through 3
for g1 and g0. The same is true for g2, g1, and g0 relative to rows 8 through 15 and rows
0 through 7.

Table 5.4 Binary 8421 Code and the Gray Code

Binary Code Gray Code

Row b3 b2 b1 b0 g3 g2 g1 g0

 0 0 0 0 0 0 0 0 0
 1 0 0 0 1 0 0 0 1
 2 0 0 1 0 0 0 1 1 ← g0 is reflected
 3 0 0 1 1 0 0 1 0
 4 0 1 0 0 0 1 1 0 ← g1 and g0 are reflected
 5 0 1 0 1 0 1 1 1
 6 0 1 1 0 0 1 0 1
 7 0 1 1 1 0 1 0 0
 8 1 0 0 0 1 1 0 0 ← g2, g1, and g0 are reflected
 9 1 0 0 1 1 1 0 1
10 1 0 1 0 1 1 1 1
11 1 0 1 1 1 1 1 0
12 1 1 0 0 1 0 1 0
13 1 1 0 1 1 0 1 1
14 1 1 1 0 1 0 0 1
15 1 1 1 1 1 0 0 0

222 Chapter 5 Data Transfer Instructions

Since the data in the translation table is one byte, the translation table is 28 = 256
bytes in length. Figure 5.20 shows an assembly language program to demonstrate the
use of the XLATB instruction, which is a one-byte instruction. This program trans-
lates a binary code of four bits to the corresponding Gray code of four bits. An ASCII
character is entered that corresponds to a 4-bit binary number, in the form of a hexa-
decimal digit, that is used to generate a 4-bit Gray code number 0 – 9, A – F. This is
only one of several methods to perform the conversion. In a later chapter, a different
method will be used that is more appropriate — 1s and 0s are entered as the binary
number — but that method requires the use of instructions that have not yet been dis-
cussed. This method achieves the translation using the binary-to-Gray conversion
algorithm.

In Figure 5.20, the translation table, XLTBL, is defined where the first 16 bytes
represent the Gray code numbers that were translated from the corresponding binary
numbers. The remaining 240 bytes are declared as zeroes (ASCII 30H). The usual
sequence of instructions is utilized: set up the program’s data segment; load the
address of the translation table into register BX; read the prompt; and enter the key-
board character.

Then the character that was entered from the keyboard and placed into the operand
field (OPFLD) is moved to register AL as the index, where the ASCII bias is removed.
For example, if the number 5 (0101) is entered, then this is represented as 35H in
ASCII — 0011 0101 in binary — but the binary number 0000 0101 is required as the
index. Therefore, the high-order four bits — the ASCII bias — must be removed. This
is accomplished by ANDing the 0011 0101 with 0000 1111 to produce 0000 0101, the
required number to access the sixth entry in the translation table to yield the corre-
sponding Gray code number of 0000 0111. This number can then be printed on the
monitor screen as a 7, which is 37H in ASCII. The AND instruction is presented in
more detail in Chapter 9, together with the other logic operations.

The translation instruction, XLATB, is then executed, which places the translated
data in register AL. The contents of AL are then moved to the result area (RSLT)
where the Gray code is displayed by the DOS interrupt INT 21H.

;translate.asm

;Enter an ascii character that corresponds to a 4-bit
;hexadecimal number that is used to generate a 4-bit
;Gray code number 0 - 9, A - F

.STACK

.DATA
PARLST LABEL BYTE
MAXLEN DB 5
ACTLEN DB ?
OPFLD DB 5 DUP(0) (a) //continued on next page

Figure 5.20 Program to illustrate using the XLATB instruction to convert binary
code to Gray code: (a) the program and (b) the outputs.

;define ascii translation table of 256 bytes
XLTBL DB 30H, 31H, 33H, 32H ;0, 1, 3, 2
 DB 36H, 37H, 35H, 34H ;6, 7, 5, 4
 DB 43H, 44H, 46H, 45H ;12(C), 13(D), 15(F), 14(E)
 DB 41H, 42H, 39H, 38H ;10(A), 11(B), 9, 8
 DB 240 DUP(30H) ;0

PRMPT DB 0DH, 0AH, 'Enter an ascii character: $'
RSLT DB 0DH, 0AH, 'Gray = $'

.CODE
BEGIN PROC FAR

;set up pgm ds
 MOV AX, @DATA
 MOV DS, AX

;put addr of translation table xltbl in bx
 LEA BX, XLTBL

;read prompt
 MOV AH, 09H ;display string
 LEA DX, PRMPT ;load addr of prmpt
 INT 21H ;dos interrupt

;kybd rtn to enter characters
 MOV AH, 0AH ;buffered kybd input
 LEA DX, PARLST ;load addr of parlst
 INT 21H ;dos interrupt

;store number from opfld in al and translate
 MOV AL, OPFLD
 AND AL, 0FH ;remove ascii bias

 XLATB ;translate to ascii

 MOV RSLT+9, AL ;move gray number to rslt

;display gray number
 MOV AH, 09H ;display string
 LEA DX, RSLT ;load addr of rslt field
 INT 21H ;dos interrupt

BEGIN ENDP
 END BEGIN

//continued on next page

5.6 Translate 223

Figure 5.20 (Continued)

Enter an ascii character: 3
Gray = 2
--
Enter an ascii character: 5
Gray = 7
--
Enter an ascii character: 8
Gray = C
--
Enter an ascii character: 9
Gray = D (b)

224 Chapter 5 Data Transfer Instructions

Figure 5.20 (Continued)

The conversion from binary to ASCII can also be accomplished by a simple C pro-
gram, as shown in Figure 5.21. An integer array, labelled gray, is a 256-byte array in
which the first 16 bytes contain the Gray code for the equivalent binary code — the
remaining 240 bytes are initialized to zero by the C compiler.

A user-entered integer specifies the decimal equivalent of a binary number that is
stored in location x. For example, if 1110 (1011) is entered, then the corresponding
Gray code is E (1110). The Gray code is printed as specified by the gray[x] entry in the
array gray[256].

//translate.cpp
//Convert from binary to gray code.
#include "stdafx.h"
int main (void)
{
//define array for gray code

int gray[256] = {0x00, 0x01, 0x03, 0x02,
0x06, 0x07, 0x05, 0x04,
0x0c, 0x0d, 0x0f, 0x0e,
0x0a, 0x0b, 0x09, 0x08};

int x, rslt;
printf ("Enter an integer 0-15 that represents

a binary number: \n");
scanf ("%d", &x);
printf ("Binary = %d, Gray = %x\n\n", x, gray[x]);
return 0;

} (a) //continued on next page

Figure 5.21 C program to convert from binary to Gray code: (a) the program and
(b) the outputs.

Enter an integer 0-15 that represents a binary number:
13
Binary = 13, Gray = b

Press any key to continue . . . _
--
Enter an integer 0-15 that represents a binary number:
2
Binary = 2, Gray = 3

Press any key to continue . . . _
--
Enter an integer 0-15 that represents a binary number:
15
Binary = 15, Gray = 8

Press any key to continue . . . _
--
Enter an integer 0-15 that represents a binary number:
10
Binary = 10, Gray = f

Press any key to continue . . . _
--
Enter an integer 0-15 that represents a binary number:
11
Binary = 11, Gray = e

Press any key to continue . . . _
(b)

5.7 Conversion Instructions 225

Figure 5.21 (Continued)

5.7 Conversion Instructions
This section presents the following conversion instructions: convert byte to word
(CBW), convert word to doubleword (CWD), convert word to doubleword extended
(CWDE), and convert doubleword to quadword (CDQ). Each of these conversion
instructions requires no operands and they double the size of the implied source reg-
ister by extending the sign bit into the implied destination extension register. The flags
are not affected by any of these instructions.

These are similar in function to the two move instructions discussed in Section
5.2.2. The move with sign extension (MOVSX) moves the source operand into a des-
tination general-purpose register, then extends the sign bit into the high-order bits of
the destination. The move with zero extension (MOVZX) instruction extends zeroes

226 Chapter 5 Data Transfer Instructions

into the destination. Figure 5.22 shows the four conversion instructions together with
a graphical illustration of their function.

CDQ

EDX EAX
DX AX

31 15 0 31 15 0

31 16 15 0AX
EAX

CWDE

15 0 15 0
DX AX

CWD

15 8 7 0
AH AL

CBW

AX

Figure 5.22 Conversion instructions and their function.

Convert byte to word (CBW) The CBW instruction copies the sign bit (bit 7) of
register AL into every bit position of register AH, effectively increasing the size of the
implied source register, AL, from a byte to a word. The CBW instruction is designed
for use when the operand-size attribute is 16 bits. During a division operation, a 2n-bit
dividend is divided by an n-bit divisor; therefore, the CBW instruction can be used to
produce a word dividend from a byte dividend prior to a byte division operation.

Convert word to doubleword (CWD) The CWD instruction copies the sign bit
(bit 15) of register AX into every bit position of register DX, thereby doubling the size
of the implied source operand register. Thus, the CWD instruction uses the DX:AX
register pair as the destination operand. During a division operation, the CWD

5.7 Conversion Instructions 227

instruction can be used to produce a doubleword dividend from a word dividend
before the divide operation commences.

Convert word to doubleword extended (CWDE) The CWDE instruction
copies the sign bit (bit 15) of register AX into the high-order 16 bits of register EAX.
The CWDE instruction is used when the operand-size attribute is 32 bits. The CWDE
instruction differs from the CWD instruction, in that the CWDE instruction uses reg-
ister EAX as the destination register; whereas, the CWD instruction extends the sign
bit in register AX throughout register DX.

Convert doubleword to quadword (CDQ) The CDQ instruction copies the
sign bit (bit 31) of register EAX into every bit position of register EDX, thereby dou-
bling the size of the implied source operand register. Thus, the CDQ instruction uses
the EDX:EAX register pair as the destination operand. The CDQ instruction can be
used to produce a quadword dividend from a doubleword dividend before the division
operation begins. Figure 5.23 shows an assembly language module embedded in a C
program that illustrates the use of the CDQ instruction. An integer is entered from the
keyboard and stored in location eax_reg, then copied to general-purpose register EAX.
The conversion instruction CDQ is then executed and the results are displayed by the
printf () function.

//convert.cpp
//convert doubleword to quadword (CDQ)
#include "stdafx.h"
int main (void)
{
//define variables

int eax_reg, edx_reg;
printf ("Enter an integer: \n");
scanf ("%x", &eax_reg);

//switch to assembly
_asm
{

MOV EAX, eax_reg
CDQ
MOV eax_reg, EAX
MOV edx_reg, EDX

}
printf ("\nEDX = %X, EAX = %X\n\n", edx_reg, eax_reg);
return 0;

} (a) //continued on next page

Figure 5.23 Program to illustrate using the conversion instruction CDQ: (a) the
program and (b) the outputs.

Enter an integer:
F0F0F0F0

EDX = FFFFFFFF, EAX = F0F0F0F0

Press any key to continue . . . _
--
Enter an integer:
ffffffff

EDX = FFFFFFFF, EAX = FFFFFFFF

Press any key to continue . . . _
--
Enter an integer:
3F

EDX = 0, EAX = 3F

Press any key to continue . . . _
--
Enter an integer:
63

EDX = 0, EAX = 63

Press any key to continue . . . _
--
Enter an integer:
80000000

EDX = FFFFFFFF, EAX = 80000000

Press any key to continue . . . _
--
Enter an integer:
7fffffff

EDX = 0, EAX = 7FFFFFFF

Press any key to continue . . . _

(b)

228 Chapter 5 Data Transfer Instructions

Figure 5.23 (Continued)

5.8 Problems 229

5.8 Problems

5.1 Let A and B be two binary integers in 2s complement representation, where A
= 1011 0001 and B = 1110 0100. A ' and B ' are the 1s complement of A and
B, respectively. Determine the following: A ' + 1 and B ' + 1.

5.2 The 1s complement (diminished-radix complement) can be obtained by sub-
tracting all bits of the number from 1. The 2s complement (radix comple-
ment) is obtained by adding 1 to the 1s complement, as shown below for the
binary number 1110 (–2), which is in 2s complement representation.

1–1 = 0 1–1 = 0 1–1 = 0 1–0 = 1 + 1 = 0010 (+2)

The following number is in radix complement representation for radix 16:
F8B616. Perform the operation of radix complementation (16s complemen-
tation) on the number.

5.3 The sign-magnitude notation for a positive number is represented by the
equation shown below, where the sign bit of 0 indicates a positive number.

A = (0 an–2 an–3 … a1a0)r

The sign-magnitude notation for a negative number is represented by the
equation shown below, where the sign bit is the radix minus 1. In sign-mag-
nitude notation, the positive version differs from the negative version only in
the sign digit position. The magnitude portion an–2 an–3 … a1a0 is identical
for both positive and negative numbers of the same absolute value.

A ' = [(r – 1) an–2 an–3 … a1a0]r

The numbers shown below are in sign-magnitude representation for radix 2.
Convert the numbers to 2s complement representation with the same numer-
ical value using eight bits.

Sign-magnitude 2s Complement
(a) 0111 1111
(b) 1111 1111
(c) 0000 1111
(d) 1000 1111
(e) 1001 0000

230 Chapter 5 Data Transfer Instructions

5.4 Convert the positive 2s complement numbers shown below to negative num-
bers in 2s complement representation.

0000 1100 00112
0101 0101 01012

5.5 Determine the bias constant for an 8-bit floating-point exponent.

5.6 Write a program using C and assembly language that shows the application of
the conditional move below or equal (CMOVBE) instruction for unsigned op-
erands.

5.7 Write a program using C and assembly language that shows the application of
the conditional move greater than or equal (CMOVGE) instruction for signed
operands.

5.8 Write a program using C and assembly language that shows the application of
the conditional move less than or equal (CMOVLE) instruction for signed op-
erands.

5.9 Write a program using C and assembly language that shows the application of
the conditional move no parity (CMOVNP) instruction for unsigned oper-
ands. The compare instruction subtracts the second source operand from the
first source operand and sets the parity flag accordingly. If the low-order byte
of the difference contains an odd number of 1s, then the parity flag equals ze-
ro; otherwise, the parity flag equals one.

5.10 Write a program using C and assembly language that shows the application of
the conditional move sign (CMOVS) instruction for signed operands. The
compare instruction subtracts the second source operand from the first source
operand and the state of the sign flag is set to either 0 or 1, depending on the
sign of the result. If the sign of the difference is negative (SF = 1), then the
move operation is executed.

5.11 Use the exchange and add (XADD) instruction for two 32-bit user-entered
hexadecimal integers. Display the results in lowercase hexadecimal.

5.12 Use the compare and exchange (CMPXCHG) instruction for three 32-bit
user-entered hexadecimal integers. Display the results in lowercase hexadec-
imal.

5.13 Write a C program to convert a decimal number to the square of the number.
Use an array to translate the decimal numbers 0 through 15 to their corre-
sponding squares.

231

6
Branching and Looping
Instructions

This chapter describes program transfer control using branching and looping instruc-
tions. These instructions transfer control to a section of the program that does not
immediately follow the current instruction. The transfer may be a backward transfer
to a section of code that was previously executed or a forward transfer to a section of
code that follows the current instruction.

There are three basic types of addresses (or pointers) provided by the assembler: a
short address, a near address, and a far address. A short address (or short jump) trans-
fers control to an address that is located –128 to +127 bytes from the current location
(the current EIP value). A near address (or near jump) transfers control to an address
within the current code segment that has a 16-bit or 32-bit offset — also referred to as
an effective address. A far address (or far jump) transfers control to an address
obtained from a 16-bit segment selector and a 16-bit or 32-bit offset. Far addresses
(pointers) are used to transfer control to an address outside the current code segment.
Near and far pointers are shown in Figure 6.1 for non-64-bit mode.

Far pointer (address)

Near pointer (address)
31 0

Offset

47 32 31 0
Segment
selector Offset

Figure 6.1 Near and far address pointers.

6.1 Branching Instructions
6.2 Looping Instructions
6.3 Problems

232 Chapter 6 Branching and Looping Instructions

6.1 Branching Instructions
There are various types of branch instructions, including unconditional jumps, condi-
tional jumps, and if structures. A jump instruction alters the sequence of flow through
the program by branching — or jumping — to another point in the program. A branch
can be executed or not executed depending on certain conditions, such as the state of
flags in the EFLAGS register. If a branch is not taken, then the program executes the
instruction that follows the branch instruction. If a branch is taken, then the program
jumps to a new location in the program; that is, an instruction in a different location in
memory.

Branch instructions are relative to the current instruction pointer (E)IP, which
points to a particular instruction in the current code segment. The combination of the
segment selector and the offset is the logical address of the next instruction to be exe-
cuted. Branching is facilitated by means of a branch target buffer (BTB), which is a
set-associative cache that is used to predict whether a branch will be performed —
refer to Chapter 2 for a review of a set-associative cache. The BTB cache entries con-
tain the address of the branch instruction in conjunction with the branch target address.
The cache contains information regarding the branch history; that is, about recently
encountered branch instructions.

When a branch instruction is encountered, the BTB is examined to determine if
there is an entry for the branch instruction. If there is a miss, the branch is assumed to
have not been executed; if there is a hit, the branch history is checked to determine if
the branch should be taken. If the branch is predicted to have failed, then program exe-
cution continues with the next sequential instruction; otherwise, a branch to the target
address is performed.

6.1.1 Unconditional Jump Instruction

The unconditional jump (JMP) instruction advances the (E)IP register forward or
backward a specific number of instructions. It transfers control to a destination
address and provides no return address. The destination address may be in the current
code segment or outside the current segment and can be a relative address or an abso-
lute address. If the transfer is to an address within the current code segment, then this
is referred to as an intrasegment transfer, which may be direct or indirect. If the trans-
fer is to an address outside the current code segment, then this is referred to as an inter-
segment transfer, which may be direct or indirect.

A relative address is obtained by adding a signed offset to the (E)IP register to
generate a near pointer. The signed offset (or displacement) allows for either a for-
ward jump or a backward jump. An absolute address is measured from the base of the
current code segment and is stored in the (E)IP register as an offset in the code segment
(near pointer), or the address is obtained using a segment selector stored in the CS reg-
ister and an offset in the (E)IP register. The syntax for the JMP instruction is shown
below.

JMP short/near/far address

6.1 Branching Instructions 233

A short jump is an intrasegment jump and has a 1-byte displacement that is added
to the RIP register then sign-extended to 64 bits — the EIP register becomes the RIP
register in 64-bit mode. The jump range for a 1-byte displacement is –128 to +127
from the current value of the (E)IP register. When a short jump is specified as a rela-
tive offset, this is represented by label and is encoded as a signed displacement that is
relative to the current value of the (E)IP register.

A near jump is an intrasegment jump whose branch target address is either an
absolute offset or a relative offset that is relative to the next instruction. In 64-bit
mode, the relative near jump has a displacement of 32 bits that is added to the RIP reg-
ister then sign-extended to 64 bits.

A far jump is an intersegment jump. The branch target address can specify an
absolute address directly by using a pointer in the instruction, where the segment and
offset are encoded in the instruction; or the branch target address can specify an indi-
rect address from a memory location, where the low-order part of the memory location
is placed in the (E)IP register and the high-order part of the memory location is placed
in the CS register. All JMP instructions also clear the instruction prefetch queue.

Figure 6.2 shows a simple assembly language program that illustrates the JMP
instruction. Registers BL and BH are assigned the values of A (41H) and B (42H),
respectively. Before they can be changed to AL = BL = 00 by two MOV instructions,
however, a jump instruction is executed to a location in the program that moves the
original contents of the two registers to the RSLT area in the data segment to be dis-
played.

;uncond_jump.asm
.STACK

.DATA
RSLT DB 0DH, 0AH, 'After jump: BL = , BH = $'

.CODE
BEGIN PROC FAR
;set up pgm ds

MOV AX, @DATA
MOV DS, AX

;assign values to bl and bh
MOV BL, 'A'
MOV BH, 'B'
JMP JMP_DST

MOV BL, 00
MOV BH, 00 //continued on next page

 (a)

Figure 6.2 Program to illustrate a JMP instruction: (a) the program and (b) the
outputs.

;move bl and bh to rslt area in ds
JMP_DST: MOV RSLT + 19, BL

MOV RSLT + 28, BH
;display result

MOV AH, 09H
LEA DX, RSLT
INT 21H

BEGIN ENDP

END BEGIN

After jump: BL = A, BH = B (b)

234 Chapter 6 Branching and Looping Instructions

Figure 6.2 (Continued)

The main reason for this program is to introduce the operation codes for the JMP
instruction together with the addressing mode byte and the branch target address for a
jump instruction. There are four different 1-byte operation codes for a jump instruc-
tion, depending on whether it is a short jump, a near jump, or a far jump. The operation
code for an intrasegment short jump is EBH (1110 1011). The operation codes for
near jumps are E9H (1110 1001) and FFH (1111 1111). The E9H operation code is
intrasegment direct and can be used with a displacement that is relative to the next
instruction or with the RIP register with a 32-bit displacement sign extended to 64 bits.
The FFH operation code is used with indirect addressing that is either intrasegment
indirect or intersegment indirect.

The operation codes for a far jump are EAH (1110 1010) or FFH (1111 1111). The
EAH operation code is used for an intersegment direct operation with an absolute
address given the instruction. The FFH operation code is used with absolute address-
ing obtained indirectly from memory, where the memory location is partitioned into
two parts: one for the CS register and one for the (E)IP register.

Table 6.1 shows the machine codes for the instruction segment shown below. The
jump instruction in this program is a short intrasegment direct jump with a 1-byte dis-
placement. Therefore, the jump range is from +127 bytes to –128 bytes from the
updated (E)IP register.

. . .
JMP JMP_DST

MOV BL, 00
MOV BH, 00

;move bl and bh to rslt area in ds
JMP_DST: MOV RSLT + 19, BL

. . .

6.1 Branching Instructions 235

Assume that the CS register is 0723H and that the IP register is 0009H. Then the
real (physical) address is obtained as shown below, where the CS register is shifted left
four bits and the IP register is right-aligned for the addition operation.

CS register: 07230
IP register (offset): +) 00009
Physical address 07239

Table 6.1 Machine Codes for the Program Segment of Figure 6.2

Physical
Address

Machine
Code Symbolic Instruction

Machine
Instruction

. . .
07239 EB JMP JMP_DST JMP 0FH
0723A 04
0723B B3 MOV BL, 00 MOV BL, 00H
0723C 00
0723D B7 MOV BH, 00 MOV BH, 00H
0723E 00
0723F 88 JMP_DST: MOV RSLT + 19, BL MOV [00013H], BL
07240 1E
07241 13
07242 00

. . .

The machine code for the jump instruction is EBH, which is an intrasegment direct
short jump. The second byte is a displacement of 04H, which results in a jump of four
bytes past the updated IP register — the updated IP register is 000BH. The resulting
target address for the jump instruction is

CS × 16 (07230H) + right-aligned IP (0000BH) + 04H = 0723FH

This is shown in the machine jump instruction as 0FH, which represents the IP register
contents of the jump target address — 0723FH.

The instruction format for the move instruction that moves register BL to the rslt
area (MOV RSLT + 19, BL) is as follows:

Operation code Addressing mode Displacement low and high

1 0 0 0 1 0 d w mod reg r/m

236 Chapter 6 Branching and Looping Instructions

If d = 0 in the operation code, then the source operand is a register; if d = 1, then the
destination operand is a register. If w = 0, then the width is a byte; otherwise, the width
is a word. For the move instruction, the source is register BL; therefore, d = 0. Since
register BL is a byte operand, therefore, w = 0, resulting in an operation code of 1000
1000 (88H).

An addressing mode byte may also be used with an instruction. When used, it is
contiguous to the operation code and consists of three fields: a 2-bit mod field that is
used to differentiate between register addressing and memory addressing and is
defined in Table 6.2; a 3-bit reg field that determines the size of the operands and is
shown in Table 6.3; and a 3-bit r/m (register/memory) field that is used in conjunction
with the mod field to determine the addressing mode and is shown in Table 6.4.

The format for the addressing mode byte is shown below for the target move
instruction with a bit configuration of 0001 1110 (1EH). The mod code of 00 indicates
that there is no displacement; the reg code of 011 specifies register BL when w = 0; and
the r/m field of 110 indicates a direct addressing mode when the mod = 00.

mod reg r/m

0 0 0 1 1 1 1 0

Table 6.2 Definition of the mod Bits

mod Definition
0 0 No displacement unless r/m = 110, then there is displacement high and low
0 1 There is displacement (offset) low sign-extended to 16 bits
1 0 There is displacement (offset) high and low
1 1 The r/m field specifies a register

Table 6.3 Definition of the reg Bits

reg Bits
w = 0
Reg 8-Bit

w = 1
Reg 16/32 Bit

Segment
Register

0 0 0 AL AX/EAX ES
0 0 1 CL CX/ECX CS
0 1 0 DL DX/EDX SS
0 1 1 BL BX/EBX DS
1 0 0 AH SP/ESP FS
1 0 1 CH BP/EBP GS
1 1 0 DH SI/ESI
1 1 1 BH DI/EDI

Table 6.4 Definition of the r/m Bits

r/m Bits mod = 00 mod = 01 or 10
mod = 11
w = 0

mod = 11
w = 1

0 0 0 BX + SI BX + SI + displacement AL AX
0 0 1 BX + DI BX + DI + displacement CL CX
0 1 0 BP + SI BP + SI + displacement DL DX
0 1 1 BP + DI BP + DI + displacement BL BX
1 0 0 SI SI + displacement AH SP
1 0 1 DI DI + displacement CH BP
1 1 0 Direct BP + displacement DH SI
1 1 1 BX BX + displacement BH DI

6.1 Branching Instructions 237

6.1.2 Compare Instruction

The compare (CMP) was introduced in Chapter 5, but more details are presented in
this section. The compare instruction compares two integer operands. It subtracts the
second source operand from the first source operand and sets the status flags in the
EFLAGS register accordingly. Both operands remain unchanged after the subtract
operation, whereas a subtract (SUB) operation replaces the destination operand with
the difference. The compare instruction is used primarily in conjunction with the jump
on condition (Jcc) instruction, which performs a branch operation based on the state of
the flags resulting from a compare instruction. The syntax for the compare instruction
is shown below.

CMP register/memory, immediate/register/memory

The compare instruction can be used to compare an immediate operand of 8 bits,
16 bits, or 32 bits with the accumulator register. For example,

CMP AL, 4AH
CMP AX, 1B36H
CMP EAX, 45AC7B89H

It can also be used to compare an immediate operand with a memory operand or a reg-
ister. For example,

CMP [BX], 12ADH
CMP BX, 2244H

It can also be used to compare registers of the same width. For example,

CMP EBX, EDX

238 Chapter 6 Branching and Looping Instructions

Table 6.5 shows the results of subtracting second source operands from first
source operands and the resulting flags, using unsigned operands. The adjust flag, or
auxiliary carry, (AF) is set if there is a carry out of or a borrow into the low-order four
bits; the carry flag (CF) is set if there is a carry out of or a borrow into the high-order
bit position of an arithmetic operation; otherwise it is reset. When subtracting by add-
ing the 2s complement of the subtrahend, the state of the resulting AF and CF flags is
inverted.

The overflow flag (OF) is set if the result of an operation is too large or too small
to be contained in the destination operand; that is, the number is out of range for the
size of the result. The parity flag (PF) is set if the low-order byte of the result has an
even number of 1s; otherwise it is reset. The sign flag (SF) is set to the value of the
high-order bit position. The zero flag (ZF) is set if the result is zero; otherwise it is
reset.

Table 6.5 Compare Operations and the Resulting Flags

First Source
Operand

Second Source
Operand

Resulting
Difference OF SF ZF AF PF CF

7AH 7AH 00H 0 0 1 0 1 0 op1 = op2
6CH 3FH 2DH 0 0 0 1 1 0 op1 > op2
B5H CDH E8H 0 1 0 1 1 1 op1 < op2
15H 32H E3H 0 1 0 0 0 1 op1 < op2
63H B3H B0H 1 1 0 0 0 1 op1 < op2

The second example (6CH – 3FH) will be examined in more detail using binary
subtraction; that is, the difference will be obtained by adding the 2s complement of the
subtrahend to the minuend. The state of the AF flag is reversed from 0 to 1. The state
of the carry flag (CF) is reversed from 1 to 0. There is no overflow (OF), because the
signs of the operands are different (minuend = 0, 2s complemented subtrahend = 1).
The parity flag (PF) is 1, because there are an even number of 1s in the resulting byte
(or low-order byte). The sign flag (SF) is 0, because the high-order bit is 0, which is
the sign bit for signed operands. The zero flag (ZF) is 0, because the result is nonzero.

0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0
–) 0 0 1 1 1 1 1 1 +) 1 1 0 0 0 0 0 1

0 0 1 0 1 1 0 1
1 0

AF
CF 2s complement

of subtrahend

6.1 Branching Instructions 239

The low-order byte of the EFLAGS register is shown below, which will be used in
conjunction with the program shown in Figure 6.3 — an assembly language module
linked to a C program. Bit positions 1, 3, and 5 are reserved.

7 6 5 4 3 2 1 0
SF ZF 0 AF 0 PF 1 CF

The flags variable in the program is declared as type char, because only the low-
order byte in the EFLAGS register is being used. The user enters two hexadecimal
characters, which are stored in int variables x and y. In the assembly language module,
x and y are moved to registers EAX and EBX, respectively. The variables are then
compared, resulting in the flags being generated.

A new instruction will now be introduced in order to display the flags. This is the
load AH from flags (LAHF) instruction, which has a 1-byte operation code. The
LAHF instruction copies the low-order byte of the EFLAGS register into the corre-
sponding bit positions of the AH register, but does not alter the flags in the EFLAGS
register. The contents of register AH are then moved to the flags variable for display.

//cmp_flags_gen.cpp
//compare two operands and generate the status flags
#include "stdafx.h"
int main (void)
{

int x, y; //define variables
char flags;

printf ("Enter two hexadecimal integers: \n");
scanf ("%X %X", &x, &y);

//switch to assembly
_asm
{

MOV EAX, x
MOV EBX, y
CMP EAX, EBX
LAHF
MOV flags, AH

}

printf ("\nOpnd1 = %d\nOpnd2 = %d\nFlags = %X\n\n",
x, y, flags);

return 0;
} (a) //continued on next page

Figure 6.3 Program to illustrate the CMP instruction and the resulting status
flags: (a) the program and (b) the outputs.

Enter two hexadecimal integers:
7A 7A

Opnd1 = 122
Opnd2 = 122 //Difference is 0 (00H); Opnd1 = Opnd2
Flags = 46 //ZF = 1, PF = 1

Press any key to continue . . . _
--
Enter two hexadecimal integers:
6C 3F

Opnd1 = 108
Opnd2 = 63 //Difference is 45 (2DH); Opnd1 > Opnd2
Flags = 16 //AF = 1, PF = 1

Press any key to continue . . . _
--
Enter two hexadecimal integers:
B5 CD

Opnd1 = 181
Opnd2 = 205 //Difference is –24 (E8H); Opnd1 < Opnd2
Flags = 97 //SF = 1, AF = 1, PF = 1, CF = 1

Press any key to continue . . . _
--
Enter two hexadecimal integers:
15 32

Opnd1 = 21
Opnd2 = 50 //Difference is –29 (E3H); Opnd1 < Opnd2
Flags = 83 //SF = 1, CF = 1

Press any key to continue . . . _
(b)

240 Chapter 6 Branching and Looping Instructions

Figure 6.3 (Continued)

In Figure 6.3(b), the first pair of hexadecimal operands are 7A16 (12210) and 7A16
(12210), which results in a difference of zero (0000 0000) after subtracting the second
source operand from the first source operand, to yield a flag byte of 0100 0110. Thus,
ZF = 1, indicating a result of all zeroes; and PF = 1 in order to maintain odd parity for
the byte; that is, there are an even number of 1s in the difference.

The second pair of hexadecimal operands are 6C16 (10810) and 3F16 (6310), which
results in a difference of 45 (0010 1101), to yield a flag byte of 0001 0110. Thus, AF

6.1 Branching Instructions 241

= 1, indicating a borrow from bit 4 of the minuend; and PF = 1, because there are an
even number of 1s in the difference.

The third pair of operands are B516 (18110) and CD16 (20510), which results in a
difference of –24 (1110 1000), to yield a flag byte of 1001 0111. Thus, SF = 1, because
bit 7 is a 1; AF = 1, indicating a borrow from bit 4 of the minuend; PF =1, indicating an
even number of 1s in the difference; and CF = 1, indicating a borrow into bit 7 of the
minuend.

The fourth pair of operands are 1516 (2110) and 3216 (5010), resulting in a differ-
ence of –29 (1110 0011), to yield a flag byte of 1000 0011. Thus, SF = 1, because bit
7 is a 1; and CF = 1, indicating a borrow into bit 7 of the minuend.

Another instruction that operates on the EFLAGS register and the AH register is
the store AH into flags (SAHF) instruction. The SAHF instruction copies register AH
into the low-order byte of the EFLAGS register.

6.1.3 Conditional Jump Instructions

The conditional jump/transfer (Jcc) instructions transfer control to a destination
instruction in the same code segment if certain condition codes (cc) are set — the con-
dition is specified in the instruction mnemonic. If the condition is not met, then pro-
gram execution continues with the next instruction that follows the Jcc instruction.
The conditional jump instructions are partitioned into three groups: those that are used
with unsigned integers, those that are used with signed integers, and those that are used
irrespective of the sign of the operands, as shown in Table 6.6. There are usually two
mnemonics associated with each instruction that give alternative names for the
instruction; this may facilitate easier understanding of the operation of the instruction.

Table 6.6 Conditional Jump Instructions

Mnemonic Description Flags Examined
Unsigned Conditional Jumps

JA/JNBE Jump if above or not below/equal (CF or ZF) = 0
JAE/JNB Jump if above or equal/not below CF = 0
JB/JNAE Jump if below or not above/equal CF = 1
JBE/JNA Jump if below/equal or not above (CF or ZF) = 1
JE/JZ Jump if equal or zero — unsigned/signed ZF = 1
JNE/JNZ Jump if not equal/not zero — unsigned/signed ZF = 0

Signed Conditional Jumps
JG/JNLE Jump if greater or not less/equal [(SF xor OF) or ZF] = 0
JGE/JNL Jump if greater/equal or not less (SF xor OF) = 0
JL/JNGE Jump if less or not greater/equal (SF xor OF) = 1
JLE/JNG Jump if less/equal or not greater [(SF xor OF) or ZF] = 1

(Continued on next page)

242 Chapter 6 Branching and Looping Instructions

As can be seen from Table 6.6, conditional jump instructions that use the words
above or equal in their descriptions refer to unsigned operands; conditional jump
instructions that use the words greater or less in their descriptions refer to signed oper-
ands. There is no return address for the conditional jump instructions and they do not
support far jumps; that is, jumps to other code segments. The destination address is a
signed offset that is relative to the contents of the (E)IP register, and thus, resides in the
current code segment.

The conditional jump instructions examine the state of one or more flags in the
EFLAGS register to determine if a jump should take place. The flags that are
inspected are SF, ZF, AF, PF, and CF. Examples will now be presented that illustrate
the operation of select conditional jump instructions.

Jump if above (JA) for unsigned numbers The JA instruction will cause a
jump to occur if the following equation is true:

(CF or ZF) = 0

Example 6.1 Let register AL = 1111 1011 (251) and register BL = 0000 0111 (7),
then compare the two operands by adding the 2s complement of the subtrahend to the
minuend.

1 1 1 1 1 0 1 1
+) 1 1 1 1 1 0 0 1

1 1 1 1 0 1 0 0
1(0) 1(0)

Since [(CF = 0) or (ZF = 0)] = 0, therefore, the jump will occur, because the number
251 is above the number 7.

Other Conditional Jumps
JCXZ Jump if CX = 0 Register CX = 0
JECXZ Jump if ECX = 0 Register ECX = 0
JC Jump if carry CF = 1
JNC Jump if no carry CF = 0
JNO Jump if no overflow OF = 0
JO Jump if overflow OF = 1
JNP/JPO Jump if parity is odd PF = 0
JP/JPE Jump if parity is even PF = 1
JNS Jump if sign bit = 0 SF = 0
JS Jump if sign bit = 1 SF = 1

Table 6.6 Conditional Jump Instructions

Mnemonic Description Flags Examined

6.1 Branching Instructions 243

Example 6.2 Let register AL = 1111 1011 (251) and register BL = 1111 1011 (251),
then compare the two operands by adding the 2s complement of the subtrahend to the
minuend.

1 1 1 1 1 0 1 1
+) 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0
1(0) 1(0)

Since [(CF = 0) or (ZF = 1)] = 1, therefore, the jump will not occur, because the num-
bers are equal; that is, the number 251 is not above the number 251.

Example 6.3 Let register AL = 0000 1001 (9) and register BL = 0001 1100 (28),
then compare the two operands by adding the 2s complement of the subtrahend to the
minuend.

0 0 0 0 1 0 0 1
+) 1 1 1 0 0 1 0 0

1 1 1 0 1 1 0 1
0(1) 0(1)

Since [(CF = 1) or (ZF = 0)] = 1, therefore, the jump will not occur, because the num-
ber 9 is not above the number 28.

Figure 6.4 shows a program to illustrate the jump if above (JA) instruction for
unsigned integers. The operands, opnd1 and opnd2, are moved to registers EAX and
EBX, respectively, then compared. If opnd1 is above opnd2, then a conditional jump
occurs to the label ABOVE, whose address is equal to the contents of register (E)IP
plus a signed displacement. A printf () function then displays that operand1 is above
operand2. If operand1 is not above operand2, then an unconditional jump occurs to
the label BELOW where the printf () function displays that operand1 is not above
(below or equal) operand2.

The goto instruction simply bypasses the second printf () function if operand1 is
above operand2; that is, it is equivalent to an unconditional jump in assembly lan-
guage. The goto statement is rarely used in C programming, because other forms of
control make the program easier to follow, such as the while loop, the if and if ... else
constructs, and the for loop. Too many goto statements make the program difficult to
follow and to understand, causing the code to become what some programmers refer to
as spaghetti code. The goto instruction, therefore, should be used sparingly.

//jump_above.cpp
//illustrate JA for unsigned operands

#include "stdafx.h"

int main (void)
{
//define variables

int opnd1, opnd2;

printf ("Enter two unsigned integers: \n");
scanf ("%d %d", &opnd1, &opnd2);

//switch to assembly
_asm
{

MOV EAX, opnd1
MOV EBX, opnd2

CMP EAX, EBX
JA ABOVE
JMP BELOW

}

ABOVE:
printf ("Opnd1 is above opnd2 \n\n");
goto end;

BELOW:
printf ("Opnd1 is below/equal opnd2 \n\n");

end:
return 0;

}
 (a)

Enter two unsigned integers:
226 227
Opnd1 is below/equal opnd2

Press any key to continue . . . _
(b) //continued on next page

244 Chapter 6 Branching and Looping Instructions

Figure 6.4 Program to illustrate the use of the JA instruction: (a) the program and
(b) the outputs.

Enter two unsigned integers:
350 330
Opnd1 is above opnd2

Press any key to continue . . . _
--
Enter two unsigned integers:
670 670
Opnd1 is below/equal opnd2

Press any key to continue . . . _

6.1 Branching Instructions 245

Figure 6.4 (Continued)

Jump if greater (JG) for signed numbers The JG instruction will cause a
jump to occur if the following equation is true:

([SF xor OF) or ZF] = 0

Example 6.4 Let register AL = 0001 0111 (+23) and register BL = 0000 1011
(+11), then compare the two operands by adding the 2s complement of the subtrahend
to the minuend.

0 0 0 1 0 1 1 1
+) 1 1 1 1 0 1 0 1

0 0 0 0 1 1 0 0
1(0) 0(1)

Since {[(SF = 0) xor (OF = 0)] or ZF = 0} = 0, therefore, the jump will occur, because
the number +23 is greater than the number +11.

Example 6.5 Let register AL = 0001 1101 (+29) and register BL = 0001 1101
(+29), then compare the two operands by adding the 2s complement of the subtrahend
to the minuend.

0 0 0 1 1 1 0 1
+) 1 1 1 0 0 0 1 1

0 0 0 0 0 0 0 0
1(0) 1(0)

246 Chapter 6 Branching and Looping Instructions

Since {[(SF = 0) xor (OF = 0)] or ZF = 1} = 1, therefore, the jump will not occur,
because the numbers are equal; that is, the number +29 is not greater than the number
+29.

Example 6.6 Let register AL = 0011 0111 (+55) and register BL = 1001 1011, a
negative number (–101), then compare the two operands by adding the 2s complement
of the subtrahend to the minuend.

0 0 1 1 0 1 1 1
+) 0 1 1 0 0 1 0 1

1 0 0 1 1 1 0 0
0(1) 0(1)

Since {[(SF = 1) xor (OF = 1)] or ZF = 0} = 0, therefore, the jump will occur, because
+55 is greater than –101.

Example 6.7 Let registers AL and BL both contain identical negative operands:
1101 1011 (–37), then compare the two operands by adding the 2s complement of the
subtrahend to the minuend.

1 1 0 1 1 0 1 1
+) 0 0 1 0 0 1 0 1

0 0 0 0 0 0 0 0
1(0) 1(0)

Since {[(SF = 0) xor (OF = 0)] or ZF = 1} = 1, therefore, the jump will not occur,
because both operands are equal; that is, the number –37 is not greater than the number
–37.

Example 6.8 Let registers AL and BL both contain negative operands: AL = 1110
1100 (–20) and BL = 1110 1001 (–23), then compare the two operands by adding the
2s complement of the subtrahend to the minuend.

1 1 1 0 1 1 0 0
+) 0 0 0 1 0 1 1 1

0 0 0 0 0 0 1 1
1(0) 1(0)

Since {[(SF = 0) xor (OF = 0)] or ZF = 0} = 0, therefore, the jump will occur, because
–20 is greater than –23.

6.1 Branching Instructions 247

Figure 6.5 shows a program to illustrate the jump if greater (JG) instruction for
signed integers. The operands, opnd1 and opnd2, are moved to registers EAX and
EBX, respectively, then compared. If opnd1 is greater than opnd2, then a conditional
jump occurs to the label GREATER, whose address is equal to the contents of register
(E)IP plus a signed displacement. A printf () function then displays that operand1 is
greater than operand2. If operand1 is not greater than operand2, then an unconditional
jump occurs to the label LESS, where the printf () function displays that operand1 is
not greater than (less or equal) operand2.

//jump_greater.cpp
//illustrate JG for signed operands

#include "stdafx.h"
int main (void)
{
//define variables

int opnd1, opnd2;

printf ("Enter two signed integers: \n");
scanf ("%d %d", &opnd1, &opnd2);

//switch to assembly
_asm
{

MOV EAX, opnd1
MOV EBX, opnd2

CMP EAX, EBX
JG GREATER
JMP LESS

}

GREATER:
printf ("Opnd1 is greater than opnd2 \n\n");
goto end;

LESS:
printf ("Opnd1 is less/equal opnd2 \n\n");

end:
return 0;

} (a) //continued on next page

Figure 6.5 Program to illustrate the use of the JG instruction: (a) the program and
(b) the outputs.

Enter two signed integers:
–29 –30
Opnd1 is greater than opnd2

Press any key to continue . . . _
--
Enter two signed integers:
+1 –1
Opnd1 is greater than opnd2

Press any key to continue . . . _
--
Enter two signed integers:
+450 +450
Opnd1 is less/equal opnd2

Press any key to continue . . . _
--
Enter two signed integers:
+780 +779
Opnd1 is greater than opnd2

Press any key to continue . . . _
--
Enter two signed integers:
+425 +426
Opnd1 is less/equal opnd2

Press any key to continue . . . _ (b)

248 Chapter 6 Branching and Looping Instructions

Figure 6.5 (Continued)

Jump if carry (JC) The JC instruction will cause a jump to occur if the following
equation is true:

CF = 1

Example 6.9 Let register AL = 0001 1101 (+29) and register BL = 0011 1100
(+60). Then compare the two operands by subtracting the subtrahend from the min-
uend. This results in a carry out of the high-order bit position and produces a jump.

0 0 0 1 1 1 0 1
+) 1 1 0 0 0 1 0 0

1 1 1 0 0 0 0 1
0(1) 1(0)

6.1 Branching Instructions 249

Example 6.10 Let register AL = 0011 0111 (+55) and register BL = 1001 1011, a
negative number (–101), then compare the two operands by subtracting the subtrahend
from the minuend. This results in a carry out of the high-order bit position and pro-
duces a jump.

0 0 1 1 0 1 1 1
+) 0 1 1 0 0 1 0 1

1 0 0 1 1 1 0 0
0(1) 0(1)

Example 6.11 Let registers AL and BL both contain negative operands: AL = 1110
1100 (–20) and BL = 1110 1001 (–23), then compare the two operands by subtracting
the subtrahend from the minuend. This results in no carry out of the high-order bit
position; therefore, a jump is not executed.

1 1 1 0 1 1 0 0
+) 0 0 0 1 0 1 1 1

0 0 0 0 0 0 1 1
1(0) 1(0)

Example 6.12 Let registers AL and BL both contain identical positive operands:
0010 1000 (+40), then compare the two operands by subtracting the subtrahend from
the minuend. This results in no carry out of the high-order bit position; therefore, a
jump is not executed.

0 0 1 0 1 0 0 0
+) 1 1 0 1 1 0 0 0

0 0 0 0 0 0 0 0
1(0) 1(0)

Figure 6.6 shows a program that illustrates the jump if carry (JC) instruction. The
operands, opnd1 and opnd2, are moved to registers EAX and EBX, respectively, then
compared. A conditional jump will occur if there is a carry out of the high-order bit
position, in which case the program jumps to the label CARRY, whose address is equal
to the contents of register (E)IP plus a signed displacement. A printf () function then
displays that a carry has occurred. If there is no carry, then an unconditional jump
occurs to the label NO_CARRY where the printf () function displays that there was
no carry.

//jump_carry.cpp
//illustrate JC for unsigned/signed operands

#include "stdafx.h"

int main (void)
{
//define variables

int opnd1, opnd2;

printf ("Enter two unsigned/signed integers: \n");
scanf ("%d %d", &opnd1, &opnd2);

//switch to assembly
_asm
{

MOV EAX, opnd1
MOV EBX, opnd2

CMP EAX, EBX
JC CARRY
JMP NO_CARRY

}

CARRY:
printf ("A carry was generated \n\n");
goto end;

NO_CARRY:
printf ("No carry was generated \n\n");

end:
return 0;

} (a)

Enter two unsigned/signed integers:
+29 +60
A carry was generated

Press any key to continue . . . _
//continued on next page

(b)

250 Chapter 6 Branching and Looping Instructions

Figure 6.6 Program to illustrate the use of the JC instruction: (a) the program and
(b) the outputs.

Enter two unsigned/signed integers:
+55 -101
A carry was generated

Press any key to continue . . . _
--
Enter two unsigned/signed integers:
-20 -23
No carry was generated

Press any key to continue . . . _
--
Enter two unsigned/signed integers:
+40 +40
No carry was generated

Press any key to continue . . . _

6.2 Looping Instructions 251

Figure 6.6 (Continued)

6.2 Looping Instructions
There are two categories of software loop instructions: an unconditional loop and con-
ditional loops. Both categories use the (E)CX register as a loop control counter; the
counter determines the number of times that the loop will be executed. All loop
instructions decrement the count in the (E)CX register by one each time the loop
instruction is decoded. If the count is nonzero, then the loop operation is executed; if
the count is zero then the loop operation is not executed and program control is trans-
ferred to the instruction that immediately follows the loop instruction. The loop
instructions do not change the state of the flags in the EFLAGS register.

If the loop instruction is executed, then the destination address is relative to the
contents of the (E)IP register and is characterized as a short jump; that is, within –128
bytes to +127 bytes of the current value in the (E)IP register. If the count in the (E)CX
register is zero when the loop instruction is initially decoded, then the counter is dec-
remented to a value of 216 = FFFFH if register CX is used or to a value of 232 =
FFFFFFFFH if register ECX is used. In order to avoid this situation, the jump if CX
register is 0 (JCXZ) or the jump if ECX register is 0 (JECXZ) should be used.

6.2.1 Unconditional Loop

An unconditional loop (LOOP) instruction transfers control to another instruction in
the specified range as indicated by a label. The label at the destination address is

252 Chapter 6 Branching and Looping Instructions

terminated by a colon, which indicates an instruction within the current code segment.
The label name in the LOOP instruction, however, does not have a colon. If the LOOP
instruction does not generate a transfer, then the instruction immediately following the
LOOP instruction is executed more quickly than if a transfer occurred. This is because
fewer clock cycles are required, since there is no address calculation to determine the
destination address — the (E)IP register is simply incremented.

The program segment shown below illustrates an unconditional LOOP instruction
to transfer control to an instruction with a label specified as NXT_NUM. The program
in the loop performs a calculation on numbers in the loop. The body of the loop is exe-
cuted 20 times.

MOV ECX, 20
NXT_NUM: .

. Perform calculation

.
LOOP NXT_NUM

[(E)IP + displacement] (E)IP if (E)CX ≠ 0

Figure 6.7 shows an assembly language program embedded in a C program to
illustrate using the unconditional loop to double the value of a user-entered integer six
times. The instruction shown below adds the contents of register EAX to register
EAX, effectively doubling the value in EAX.

ADD EAX, EAX

//loop_dbl.cpp
//program to illustrate the loop instruction.
//an integer is entered, then doubled with
//each iteration of the loop (6 times)

#include "stdafx.h"

int main (void)
{
//define variables

int x, rslt;

(a) //continued on next page

Figure 6.7 Program to illustrate using the LOOP instruction to double a user-
entered integer six times: (a) the program and (b) the outputs.

printf ("Enter a decimal integer: \n");
scanf ("%d", &x);

//switch to assembly
_asm
{

MOV EAX, x
MOV ECX, 6

DBL: ADD EAX, EAX //double the value in EAX
MOV rslt, EAX //move EAX to rslt
LOOP DBL //loop to DBL if ECX is not zero,

//otherwise print result
}

printf ("Result = %d\n\n", rslt);

return 0;
}

Enter a decimal integer:
1
Result = 64

Press any key to continue . . . _
--
Enter a decimal integer:
2
Result = 128

Press any key to continue . . . _
--
Enter a decimal integer:
5
Result = 320

Press any key to continue . . . _
--
Enter a decimal integer:
25
Result = 1600

Press any key to continue . . . _
(b)

6.2 Looping Instructions 253

Figure 6.7 (Continued)

254 Chapter 6 Branching and Looping Instructions

6.2.2 Conditional Loops

The conditional loop instructions are loop while equal/zero (LOOPE/LOOPZ) and
loop while not equal/not zero (LOOPNE/LOOPNZ). The LOOPE and LOOPZ
instructions are different mnemonics that refer to the same instruction and they repeat
the loop — a short jump — if the (E)CX register is nonzero and the ZF flag is equal to
1. Otherwise, the instruction immediately following the loop instruction is executed.
The ZF flag is set by a previous instruction.

The LOOPNE and LOOPNZ are different mnemonics that refer to the same
instruction and repeat the loop — a short jump — if (E)CX is nonzero and the ZF flag
is equal to 0. Otherwise, the instruction immediately following the loop instruction is
executed. The ZF is reset by a previous instruction.

The conditional loop instructions use the count in the (E)CX register to determine
the number of times to execute the loop; the count in the (E)CX register is decre-
mented by one for each iteration. None of the flags are affected by these conditional
loop instructions.

Figure 6.8 shows an embedded assembly language program illustrating the use of
the LOOPNE instruction. Although the program for the loop instruction is relatively
simple, it illustrates the principle of how it can be used for certain applications. In the
program of Figure 6.8, the count in register ECX is initially set to a value of 20, reg-
ister EAX is set to a value of 10, and register EBX is set to a value of 1. The condi-
tional loop repeats while register ECX ≠ 0 and the zero flag ZF = 0.

A value of 1 is added to register EBX with each iteration of the loop. After nine
iterations, the values in registers EAX and EBX are equal. Therefore, even though the
count in register ECX is nonzero (1110), the ZF flag is set to a value of 1, which results
in the termination of the loop. The sequence of iterations through the loop is shown
below.

Iteration EAX EBX ZF (CMP EAX, EBX) ECX
0 10 1 0 20
1 10 2 0 19
2 10 3 0 18
3 10 4 0 17
4 10 5 0 16
5 10 6 0 15
6 10 7 0 14
7 10 8 0 13
8 10 9 0 12
9 10 10 1 11

When the program exits the loop, the value in register ECX is moved to the rslt
variable. The printf () function then displays the equality of registers EAX and EBX
and displays the resulting value (1110) in register ECX. The count in register ECX

6.2 Looping Instructions 255

does not decrement to zero because the ZF flag was set at iteration 9, resulting in the
termination of the loop.

//loopne.cpp
//program to illustrate the
//loop while not equal (LOOPNE) instruction.

#include "stdafx.h"

int main (void)
{
//define variable

int rslt;

//switch to assembly
_asm
{

MOV ECX, 20
MOV EAX, 10
MOV EBX, 1

LP1: ADD EBX, 1 //add 1 to EBX
CMP EAX, EBX //ZF = 0 for 9 iterations

LOOPNE LP1 //loop if ECX ≠ 0 and ZF = 0,
MOV rslt, ECX //otherwise print result

}

printf ("EAX = EBX, ECX = %d\n\n", rslt);

return 0;
}

(a)

EAX = EBX, ECX = 11

Press any key to continue . . . _
(b)

Figure 6.8 Program to illustrate the function of the LOOPNE instruction: (a) the
program and (b) the outputs.

256 Chapter 6 Branching and Looping Instructions

6.2.3 Implementing While Loops

The while loop (or while statement) is one of many constructs in the C programming
language that operate in a looping manner. The while loop executes a statement or
block of statements as long as a test expression is true (nonzero). The statements that
are controlled by the while statement loop repeatedly until the expression becomes
false (0). Although the while statement is not part of the X86 assembly language
instruction set, it can be implemented by using a series of standard assembly language
instructions that simulate the structure of a while loop.

Figure 6.9 shows an assembly language program module embedded in a C pro-
gram. The while structure is contained within the WHILE and END_WHILE labels,
which act as delimiters for the assembly language program. The user enters a number
in the range of 1 through 9; the number is then moved to register EAX prior to entering
the loop, which begins at the WHILE label.

A comparison is made with the contents of register EAX and the number 10 to
determine if the value in register EAX is greater than 10. This is done by the following
instruction:

CMP EAX, 10

If register EAX is greater than 10, then the loop is exited by the following instruction:

JG END_WHILE

A value of 1 is added to register EAX with each iteration of the loop until the value in
EAX is greater than 10. The final contents (1110) of register EAX are then printed.

//while_loop_asm.cpp
//program to illustrate implementing
//a while loop using C and assembly language

#include "stdafx.h"

int main (void)
{
//define variables

int int1, rslt;

printf ("Enter an integer between 1 and 9: \n");
scanf ("%d", &int1);

//continued on next page
(a)

Figure 6.9 An assembly language module embedded in a C program to simulate
a while loop structure: (a) the program and (b) the outputs.

//switch to assembly
_asm
{

MOV EAX, int1
WHILE:

CMP EAX, 10 //is EAX > 10?
JG END_WHILE //if EAX > 10, end the while loop
ADD EAX, 1 //if EAX !> 10, add 1 to EAX
MOV rslt, EAX
JMP WHILE //do another iteration of the loop

}

END_WHILE:
printf ("EAX = %d\n\n", rslt);

return 0;
}

Enter an integer between 1 and 9:
1
EAX = 11

Press any key to continue . . . _
--
Enter an integer between 1 and 9:
5
EAX = 11

Press any key to continue . . . _
--
Enter an integer between 1 and 9:
10
EAX = 11

Press any key to continue . . . _
(b)

6.2 Looping Instructions 257

Figure 6.9 (Continued)

A similar program will now be written entirely in assembly language using the
number 9 as an upper limit, as shown in Figure 6.10. This program displays the value
of register BL for each iteration of the WHILE loop. The .STACK directive is a sim-
plified way to define the stack segment — the default stack size is 1,024 bytes, but can
be changed as required.

258 Chapter 6 Branching and Looping Instructions

The data segment is defined by the .DATA directive and includes a one-dimen-
sional parameter list array defined as a byte array, labelled PARLST, that is used to
store the keyboard input data. The first element of the array, PARLST [0], is called
MAXLEN, which defines the maximum number of input character bytes (DB) — in
this example, ten is the maximum number of allowable characters, although only one
character is needed.

The second array element, PARLST [1], is defined as a byte (DB) called
ACTLEN, which stores the actual number of characters entered from the keyboard.
The third element of the array, PARLST [2], contains the beginning of the operand
field (OPFLD) where the operands from the keyboard are stored — in this example,
ten bytes are specified. The last byte in the OPFLD is the Enter character (carriage
return ↵).

A prompt field follows the parameter list, labelled PRMPT; this field prompts the
user to enter an integer. The final field in the data segment is the result (RSLT) field
where the results of the program are stored.

In a similar manner, the code segment is declared by the directive .CODE. A size
value can be appended to these simplified segment directives to specify their respec-
tive sizes. These directives generate the appropriate segment statements and the cor-
responding end segment statements.

The address of the data segment (@DATA) is moved into the DS register. Then
the prompt is displayed by the following instructions:

MOV AH, 09H
LEA DX, PRMPT
INT 21H

The MOV instruction places 09H, which is the display string function, in the
required register AH for the interrupt function call, INT 21H. The LEA instruction
places the address of the prompt for the display area in the required register DX. The
INT instruction is the function call to execute the function code in register AH.

The next sequence of instructions is similar to those just presented, except that the
function (0AH) in register AH is for a buffered keyboard input, which places the key-
board characters in the OPFLD area of the parameter list (PARLST). Data entered
from the keyboard is stored in the OPFLD area as American Standard Code for Infor-
mation Interchange (ASCII) characters. The number that is stored in the OPFLD is
then moved to register BL. The address of the display area, RSLT + 11, to store the
character from the first iteration of the loop is stored in register DI, which is used as a
destination index.

The first instruction of the WHILE loop moves the user-entered number in register
BL to the location specified by the contents of register DI ([DI]), where the brackets
indicate the contents of. Since ASCII characters are being compared, the contents of
register BL are compared to 39H — the upper limit. If the contents of register BL are
greater than 9 (39H), then the program jumps to the END_WHILE label and exits the
WHILE loop.

If the contents of register BL are not greater than 9, then a value of 1 is added to
register BL and the destination address in register DI is incremented by 3, which

6.2 Looping Instructions 259

provides for spacing between successive numbers. Then the next iteration of the loop
occurs with an unconditional jump to the label WHILE. The result area (RSLT),
containing all of the numbers from the user-entered number to the number 9, is then
displayed.

PAGE 66, 80
TITLE while_loop.asm
;---

.STACK

;---

.DATA
PARLST LABEL BYTE
MAXLEN DB 10
ACTLEN DB ?
OPFLD DB 10 DUP(?)

PRMPT DB 0DH, 0AH, 'Enter a number between 1 and 9: $'
RSLT DB 0DH, 0AH, 'Result = $'

;---

.CODE
BEGIN PROC FAR

;set up pgm ds

MOV AX, @DATA ;put addr of data seg in ax
MOV DS, AX ;put addr in ds

;read prompt

MOV AH, 09H ;display string
LEA DX, PRMPT ;put addr of prompt in dx
INT 21H ;dos interrupt

;kybd rtn to enter number

MOV AH, 0AH ;buffered kybd input
LEA DX, PARLST ;load addr of parlst
INT 21H ;dos interrupt

;store number in bl

MOV BL, OPFLD ;store ascii number in bl
LEA DI, RSLT + 11 ;set up destination addr

(a) //continued on next page

Figure 6.10 Assembly language program to illustrate the implementation of a
while loop: (a) the program and (b) the outputs.

;implement the while loop
WHILE:

MOV [DI], BL ;move bl to where di points
CMP BL, 39H ;is bl > 9 (39 ascii)?
JG END_WHILE ;if bl > 9, end the while loop
ADD BL, 1 ;if bl !> 9, add 1 to bl
ADD DI, 3 ;obtain next destination addr
JMP WHILE ;repeat while loop

END_WHILE:
;display the values of bl

MOV AH, 09H ;display string
LEA DX, RSLT ;load addr of rslt field
INT 21H ;dos interrupt

BEGIN ENDP
END BEGIN ;start pgm at begin

Enter a number between 1 and 9: 1
Result = 1 2 3 4 5 6 7 8 9 :
--
Enter a number between 1 and 9: 5
Result = 5 6 7 8 9 :
--
Enter a number between 1 and 9: 7
Result = 7 8 9 :
--
Enter a number between 1 and 9: 9
Result = 9 :

(b)

260 Chapter 6 Branching and Looping Instructions

Figure 6.10 (Continued)

6.2.4 Implementing for Loops

Another common looping technique is the for loop, which is used in the C program-
ming language and in the Verilog Hardware Description Language (HDL). The for
loop repeats a statement or block of statements a specific number of times. This is dif-
ferent than the while loop, which repeats the loop as long as a certain condition is met.
When the for loop has completed the final loop, the program exits the loop and trans-
fers control to the first statement following the block of statements.

6.2 Looping Instructions 261

The for loop contains three parts:

1. An initial condition to assign a value to the counter E(CX) as a control vari-
able to determine the number of iterations for the loop. This is executed once
before the beginning of the loop.

2. A test condition to determine when the loop terminates. This is a jump on con-
dition instruction; for example, a jump if greater than (JG) expression that is
executed before the procedural statements of the loop to determine if the loop
should execute. The loop is repeated as long as the expression is true. If the
expression is false, the loop terminates and the activity flow proceeds to the
next statement in the module.

3. An assignment to modify the control variable, usually an increment or a dec-
rement. This assignment is executed after each execution of the loop and be-
fore the next test to terminate the loop. The syntax for a for loop is shown
below.

for (initial assignment for the counter; test instruction;
increment/decrement)

Although the for statement is not part of the X86 assembly language instruction
set, it can be implemented by using a series of standard assembly language instructions
that simulate the structure of a for loop.

Figure 6.11 shows an assembly language module embedded in a C program. The
for structure is contained within the FOR and END_FOR labels, which act as delim-
iters for the assembly language program. The user enters a number in the range of 1
through 9 that is stored in an int variable called count. The number is then moved to
register ECX and acts as a loop control variable prior to entering the loop, which
begins at the FOR label.

The FOR loop performs an operation on register EAX by incrementing EAX by 1
during each iteration of the loop. The count in register ECX in incremented by 1 near
the end of the FOR loop, then checked if it is within range at the beginning of the loop.

//for_loop_asm.cpp
//program to illustrate implementing
//a for loop using assembly language
#include "stdafx.h"

int main (void)
(a) //continued on next page

Figure 6.11 An assembly language module embedded in a C program to simulate
a for loop structure: (a) the program and (b) the outputs.

{
//define variables

int count, rslt_ecx, rslt_eax;

printf ("Enter an integer between 1 and 9: \n");
scanf ("%d", &count);

//switch to assembly
_asm
{

MOV EAX, 0
MOV ECX, count

FOR:
CMP ECX, 10 //is ECX > 10?
JG END_FOR //if ECX > 10, end the for loop

//if ECX !> 10, add 1 to EAX and ECX
ADD EAX, 1
MOV rslt_eax, EAX
ADD ECX, 1
MOV rslt_ecx, ECX

JMP FOR //do another iteration of the loop
}

END_FOR:
printf ("ECX = %d\nEAX = %d\n\n", rslt_ecx, rslt_eax);

return 0;
}

Enter an integer between 1 and 9:
0
ECX = 11
EAX = 11

Press any key to continue. . . _
--
Enter an integer between 1 and 9:
1
ECX = 11
EAX = 10

Press any key to continue. . . _ //continued on next page
(b)

262 Chapter 6 Branching and Looping Instructions

Figure 6.11 (Continued)

Enter an integer between 1 and 9:
3
ECX = 11
EAX = 8

Press any key to continue. . . _
--
Enter an integer between 1 and 9:
7
ECX = 11
EAX = 4

Press any key to continue. . . _
--
Enter an integer between 1 and 9:
9
ECX = 11
EAX = 2

Press any key to continue. . . _
--
Enter an integer between 1 and 9:
10
ECX = 11
EAX = 1

Press any key to continue. . . _

6.2 Looping Instructions 263

Figure 6.11 (Continued)

The sequence of iterations through the loop is shown below for register ECX and reg-
ister EAX.

Iteration ECX EAX
0 3 0
1 4 1
2 5 2
3 6 3
4 7 4
5 8 5
6 9 6
7 10 7
8 11 8

264 Chapter 6 Branching and Looping Instructions

A similar program will now be written entirely in assembly language using the
number 9 as an upper limit, as shown in Figure 6.12. This program displays the value
of the count in register CL and the value of the data in register BL for each iteration of
the FOR loop. The result areas, RSLT1 and RSLT2, contain all of the numbers from
the user-entered number to the number 9 in register CL and corresponding data in reg-
ister BL. The two result areas are displayed using two separate display routines.

PAGE 66, 80
TITLE for_loop.asm

;---

.STACK

;---

.DATA
PARLST LABEL BYTE
MAXLEN DB 10
ACTLEN DB ?
OPFLD DB 10 DUP(?)

PRMPT DB 0DH, 0AH, 'Enter a number between 1 and 9: $'
RSLT1 DB 0DH, 0AH, 'CL = $'
RSLT2 DB 0DH, 0AH, 'BL = $'

;---

.CODE
BEGIN PROC FAR

;set up pgm ds

MOV AX, @DATA ;put addr of data seg in ax
MOV DS, AX ;put addr in ds

;read prompt

MOV AH, 09H ;display string
LEA DX, PRMPT ;put addr of prompt in dx
INT 21H ;dos interrupt

;kybd rtn to enter number (count)

MOV AH, 0AH ;buffered kybd input
LEA DX, PARLST ;load addr of parlst
INT 21H ;dos interrupt

(a) //continued on next page

Figure 6.12 Assembly language program to illustrate the implementation of a for
loop: (a) the program and (b) the outputs.

;store count in cl
MOV CL, OPFLD ;get ascii number, store in cl
MOV BL, 30H ;initialize bl to ascii 0
LEA DI, RSLT1 + 7 ;set up dst addr for cl
LEA SI, RSLT2 + 7 ;set up dst addr for bl

;implement the for loop
FOR:

MOV [DI], CL ;move cl to where di points
CMP CL, 39H ;is cl > 9 (39 ascii)?
JG END_FOR ;if cl > 9, end the for loop

ADD CL, 1 ;if cl !> 9, add 1 to cl
ADD DI, 3 ;obtain next dst addr for cl

MOV [SI], BL ;move bl to where si points

ADD BL, 1 ;add 1 to bl
ADD SI, 3 ;obtain next dst addr for bl
JMP FOR ;repeat for loop

END_FOR:
;display the values of cl

MOV AH, 09H ;display string
LEA DX, RSLT1 ;load addr of rslt1 (cl) field
INT 21H ;dos interrupt

;display the values of bl

MOV AH, 09H ;display string
LEA DX, RSLT2 ;load addr of rslt2 (bl) field
INT 21H ;dos interrupt

BEGIN ENDP

END BEGIN ;start pgm at begin

Enter a number between 1 and 9: 1
CL = 1 2 3 4 5 6 7 8 9 :
BL = 0 1 2 3 4 5 6 7 8
--
Enter a number between 1 and 9: 3
CL = 3 4 5 6 7 8 9 :
BL = 0 1 2 3 4 5 6
--
Enter a number between 1 and 9: 7
CL = 7 8 9 :
BL = 0 1 2 (b) //continued on next page

6.2 Looping Instructions 265

Figure 6.12 (Continued)

Enter a number between 1 and 9: 9
CL = 9 :
BL = 0

266 Chapter 6 Branching and Looping Instructions

Figure 6.12 (Continued)

6.3 Problems

6.1 Define a near jump, a short jump, and a far jump. All are unconditional jump
instructions.

6.2 Determine if an overflow occurs for the operation shown below. The oper-
ands are signed numbers in 2s complement representation.

1 0 1 1 1 0 0 1
–) 0 1 0 0 0 1 1 0

6.3 Determine if an overflow occurs for the operation shown below. The oper-
ands are signed numbers in 2s complement representation.

1 1 1 1 1 1 1 1
+) 1 1 1 1 1 1 1 1

6.4 Show that no overflow occurs for the operations shown below. The operands
are in 2s complement representation.

(a) 1101 0011 + 1100 1110
(b) 0110 1101 – 0110 0011
(c) 1111 1111 – 1111 1111
(d) 1111 1111 + 1111 1111

6.5 Determine the state of the flags for the following operation, where register AX
= 73B4H and register BX = 6ACDH:

CMP AX, BX

6.6 Determine the state of the flags for the following operation, where register AL
= F3H and register BL = 72H:

CMP AL, BL

6.3 Problems 267

6.7 Determine whether the conditional jump instructions shown below will cause
a jump to DEST.

(a) 004FH + 200D JS DEST
(b) FF38H + 200D JZ DEST

6.8 Let AL = 1110 0000B and BL = 1100 0000B. Determine whether the condi-
tional jump instructions shown below will cause a jump to DEST.

(a) CMP AL, BL
JA DEST

(b) CMP AL, BL
JG DEST

6.9 Let AL = 1111 1000B and BL = 1111 0000B. Determine whether the condi-
tional jump instruction shown below will cause a jump to LBL1.

CMP AL, BL
JG LBL1

6.10 Let AX = 067CH. Determine whether the conditional jump instruction shown
below will cause a jump to BRANCH_ADDR.

CMP AX, 1660D
JNE BRANCH_ADDR

6.11 Let AX = –405D. Determine whether the conditional jump instruction shown
below will cause a jump to BRANCH_ADDR.

CMP AX, FE6CH
JGE BRANCH_ADDR

6.12 Let AX = 7768H and BX = 9BCAH. Determine if the conditional jump in-
struction shown below will cause a jump to DEST for the operation AX + BX.

JPO DEST

6.13 Determine the number of times that the following program segment executes
the body of the loop:

MOV CX, –1
LP1: .

.
LOOP LP1

268 Chapter 6 Branching and Looping Instructions

6.14 Determine the number of times that the following program segment executes
the body of the loop:

MOV CX, 1
LP1: .

.
LOOP LP1

6.15 Determine the number of times that the following program segment executes
the body of the loop:

MOV CX, 10
LP1: .

.
LOOP LP1

6.16 Determine the number of times that the following program segment executes
the body of the loop:

MOV CX, 0
LP1: .

.
LOOP LP1

6.17 Given the program shown below, determine the contents of register EAX after
the program has finished execution.

//loop_add.cpp
//determine the contents of register EAX
//after execution of the program

#include "stdafx.h"

int main (void)

{
//define variable

int rslt;

//continued on next page

//switch to assembly
_asm
{

MOV CX, 4
MOV EAX, 2

LP1: ADD AX, 3
ADD AL, 4
LOOP LP1
MOV rslt, EAX

}

printf ("EAX = %X\n\n", rslt);

return 0;
}

6.3 Problems 269

This page intentionally left blankThis page intentionally left blank

271

7
Stack Operations

The stack is a one-dimensional data structure located in contiguous locations of mem-
ory that is used for the temporary storage of data. It is one of the segments in a seg-
mented memory model and is called the stack segment, in which the base address of
the stack is contained in the stack segment (SS) register. A stack can have a maximum
size of four gigabytes. A general-purpose register (GPR) called the stack pointer
(E)SP contains the address of the current top of stack. A stack is comparable to a stack
of trays in a cafeteria in which each tray is stacked on top of the last tray; the tray on the
top of the stack is the tray that is normally removed first.

Generally, only the word at the top of stack — pointed to by the stack pointer — is
accessed; however, another GPR can also be used to access elements within the stack.
This is the base pointer (E)BP register, which contains an offset into the stack segment
to reference data or parameters that were passed to a called program via the stack. The
default segment for the (E)BP register is the stack segment. Since the element at the
top of the stack is removed first, stacks are referred to as a last-in-first-out (LIFO)
queue.

A data element is placed on top of the stack by a PUSH instruction; a data element
is removed from the top of the stack by a POP instruction. A stack builds toward lower
addresses. When a data item is pushed onto the stack, the (E)SP register is first dec-
remented, then the data item is stored at the new top of stack. When a data item is
popped off the stack, it is first stored in the destination address, then the (E)SP register
is incremented to point to the new top of stack. The operand size determines the
amount that the stack pointer is incremented or decremented. For example, if the oper-
and size is 16 bits, then the SP register is incremented/decremented by 2; if the operand
size is 32 bits, then the ESP register is incremented/decremented by 4.

7.1 Stack Structure
7.2 Additional Push Instructions
7.3 Additional Pop Instructions
7.4 Problems

272 Chapter 7 Stack Operations

7.1 Stack Structure
Figure 7.1 shows a drawing of a stack structure where the operand size is 16 bits; there-
fore, the SP register is used as the stack pointer. The structure is similar for an operand
size of 32 bits where the items stored on the stack are doublewords; in this case, the
stack pointer is the ESP register. In Figure 7.1, a PUSH operation first decrements SP
by 2, then stores the operand at the new stack top, as shown below, where the colon (:)
indicates concatenation.

PUSH
SP ← (SP – 2)
SP:(SP + 1) ← [source operand]

A POP operation first stores the operand in the destination then increments SP by 2, as
shown below.

POP
SP ← (SP + 2)

destination ← [SP:(SP + 1)]

0 15
Stack segment

Last valid entry

SS

SP(TOS)

SP

Low address

High address

Stack builds
toward lower
addresses

Low byte High byte

SP SP + 1

Figure 7.1 Stack segment for an operand size of 16 bits.

7.1 Stack Structure 273

Figure 7.2 shows an example of pushing and popping 16-registers using the stack
configuration of Figure 7.1. Prior to the operations, the general-purpose register, AX,
is assigned a value of 1234H; the stack segment register, SS, is assigned a value of
1050H; and the stack pointer register, SP, is assigned a value of 0008H. Figure 7.2(a)
shows the initialization of the stack and registers. Figure 7.2(b) shows the PUSH AX
operation; Figure 7.2(c) shows the POP AX operation; and Figure 7.2(d) shows the
POP BX operation. The stack pointer is incremented or decremented accordingly for
each operation. Flags are not affected by the PUSH and POP operations.

10500 10501SS 1 0 5 0

Stack segment

10502 10503

10504 10505

10506 10507

10508 10509

1050A 1050B

1050C 1050D

AX 1 2 3 4

SP 0 0 0 8
TOS

A A B B

 (a)

Low High

10500 10501SS 1 0 5 0

Stack segment

10502 10503

10504 10505

10506 10507

10508 10509

1050A 1050B

1050C 1050D

AX 1 2 3 4

SP 0 0 0 6
TOS

A A B B

 (b)

PUSH AX

3 4 1 2

Low High

//continued on next page

Figure 7.2 Diagram showing stack operations for PUSH and POP instructions
involving the general-purpose registers AX and BX: (a) initialization, (b) PUSH AX,
(c) POP AX, and (d) POP BX.

10500 10501SS 1 0 5 0

Stack segment

10502 10503

10504 10505

10506 10507

10508 10509

1050A 1050B

1050C 1050D

AX 1 2 3 4

SP 0 0 0 8
TOS

A A B B

 (c)

Low High

POP AX

10500 10501SS 1 0 5 0

Stack segment

10502 10503

10504 10505

10506 10507

10508 10509

1050A 1050B

1050C 1050D

BX B B A A

SP 0 0 0 A
TOS

A A B B

 (d)

Low High

POP BX

AX 1 2 3 4

274 Chapter 7 Stack Operations

Figure 7.2 (Continued)

Unlike the CS register, the SS register and the (E)SP register can be initialized
explicitly. This allows multiple stacks to be used with the capability to switch between
the stacks. This is a useful technique for multitasking systems, where each task has a
separate stack. One method of initializing a stack is shown in Figure 7.3 to initialize
the SS register and the SP register.

7.1 Stack Structure 275

The memory model is defined as SMALL by the .MODEL directive, which
defines a code segment of ≤ 64 kilobytes and a data segment of ≤ 64 kilobytes. The
stack is defined as 64 bytes by the .STACK directive — the default stack size is 1,024
bytes. Initially, (E)SP points to the doubleword/word that is one location higher than
the highest address in the stack.

The name TOS in the stack segment is characterized by LABEL, which is a direc-
tive used to define the type attribute of a name — in this case the name TOS is defined
as type WORD and aligns the stack on a word boundary. The syntax for the LABEL
directive is shown below.

NAME LABEL type-specifier

.

.

.

SS

TOS

Stack

(a)

Low address

High address

.MODEL SMALL
;---
.STACK 64
TOS LABEL WORD
;---
.DATA . . .
;---
.CODE
BEGIN PROC FAR

. . .
MOV AX, @STACK
MOV SS, AX ;initialize SS

MOV SP, OFFSET TOS ;initialize SP
. . .

BEGIN ENDP
END BEGIN

(b)

Figure 7.3 One technique to initialize the SS register and the SP register: (a) the
stack structure and (b) the program snippet.

276 Chapter 7 Stack Operations

Figure 7.3 established the SS register and the SP register using the MOV instruc-
tion. They can also be established in a simpler more direct method by using the load
far pointer using SS (LSS) instruction. The LSS instruction loads a far pointer, con-
taining a segment selector and offset, from the source operand in memory into the SS
register and the (E)SP register in one operation. The syntax for the LSS instruction is
shown below for legacy mode, with different operand-size attributes.

LSS register 16 bits, memory 16:16 bits
LSS register 32 bits, memory 16:32 bits

The operation code (LSS) and the destination specify the stack segment and the
general-purpose register (E)SP. The 16-bit segment selector from the source operand
is loaded into the stack segment (SS) register and the 32-bit or 16-bit offset is loaded
into the stack pointer (E)SP register as specified by the destination operand. The fol-
lowing line of code establishes the SS register and the SP register.

LSS SP, [SRC_OPND]

The stack pointer (SP) register should point to a 16-bit word or a 32-bit double-
word boundary for correct alignment, as specified by the stack segment. The PUSH
instruction can push memory operands, immediate operands, general-purpose regis-
ters, and segment registers onto the stack. The POP instruction stores the word or dou-
bleword to a general-purpose register, a segment register, or a memory location. When
an operand is popped off the stack and stored in the destination, it is simply copied to
the destination, not removed from the stack until it is overwritten.

If an attempt is made to push an operand onto a full stack, then an error is indi-
cated; likewise, if an attempt is made to pop an empty stack, then an error is indicated.
Most operating systems monitor the stack boundaries to detect stack overflow and
stack underflow in order to maintain system reliability.

However, if necessary, a safe push and a safe pop can be implemented in software.
Assume that the boundary addresses for a stack are 00986 to 10500. If (E)SP is ≤
00986, and a push operation is attempted, then a stack overflow is indicated, because
the stack is full. Similarly, if (E)SP is > 10500, and a pop operation is attempted, then
a stack underflow is indicated, because the stack is empty. The code snippets shown
check for stack overflow and stack underflow.

Stack overflow: CMP 00986, ESP
JLE FULL_ERR
NEXT_INSTR

Stack underflow: CMP 10500, ESP
JG EMPTY_ERR
NEXT_INSTR

7.1 Stack Structure 277

Figure 7.4 shows an assembly language module embedded in a C program to illus-
trate stack utilization to perform addition operations on user-entered integers. This is
a rudimentary application of a stack, but adequate to describe the use of a stack. The
user enters three integers, int1, int2, and int3, which are moved to registers EAX,
EBX, and ECX, respectively. The program then adds int1 and int2 and stores the sum
in register EAX, then moves the sum to location sum_12 to be displayed later.

Then int1 and int3 are added; the sum is stored in register EAX and location
sum_13. Then int2 and int3 are added; the sum is stored in register EBX, and location
sum_23. Register EBX is then pushed onto the stack. Integer int1 is moved to register
EAX, register EBX (int2 + int3) is popped off the stack and added to register EAX,
which contains int1, to produce the sum of the three integers: int1, int2, and int3. The
program then prints the following sums: int1 + int2, int1 + int3, int2 + int3, and int1 +
int2 + int3.

//push_pop_add.cpp
//use the stack to add three integers

#include "stdafx.h"
int main (void)
{
//define variables

int int1, int2, int3;
int sum_12, sum_13, sum_23, sum_123;

printf ("Enter three integers: \n");
scanf ("%d %d %d", &int1, &int2, &int3);

//switch to assembly
_asm
{

MOV EAX, int1
MOV EBX, int2
MOV ECX, int3

ADD EAX, EBX ;int1 + int2 -> EAX
MOV sum_12, EAX ;move int1 + int2 to result area

MOV EAX, int1 ;move int1 to EAX
ADD EAX, ECX ;int1 + int3 -> EAX
MOV sum_13, EAX ;move int1 + int3 to result area

(a) //continued on next page

Figure 7.4 Program to illustrate using a stack to add three integers: (a) the pro-
gram and (b) the outputs.

ADD EBX, ECX ;int2 + int3 -> EBX
MOV sum_23, EBX ;move int2 + int3 to result area
PUSH EBX ;save int2 + int3 on stack

MOV EAX, int1 ;move int1 to EAX
POP EBX ;pop int2 + int3
ADD EAX, EBX ;int1 + int2 + int3 -> EAX
MOV sum_123, EAX;move int1 + int2 + int3 to result

}

printf ("\nint1 + int2 = %d\n
int1 + int3 = %d\n
int2 + int3 = %d\n
int1 + int2 + int3 = %d\n\n",
sum_12, sum_13, sum_23, sum_123);

return 0;
}

ADD EBX, ECX ;int2 + int3 -> EBX
MOV sum_23, EBX ;move int2 + int3 to result area
PUSH EBX ;save int2 + int3 on stack

MOV EAX, int1 ;move int1 to EAX
POP EBX ;pop int2 + int3
ADD EAX, EBX ;int1 + int2 + int3 -> EAX
MOV sum_123, EAX;move int1 + int2 + int3 to result

}

printf ("\nint1 + int2 = %d\n
int1 + int3 = %d\n
int2 + int3 = %d\n
int1 + int2 + int3 = %d\n\n",
sum_12, sum_13, sum_23, sum_123);

return 0;
}

Enter three integers:
0 0 0

int1 + int2 = 0
int1 + int3 = 0
int2 + int3 = 0
int1 + int2 + int3 = 0

Press any key to continue . . . _
--
Enter three integers:
1 1 1

int1 + int2 = 2
int1 + int3 = 2
int2 + int3 = 2
int1 + int2 + int3 = 3

Press any key to continue . . . _
--

(b) //continued on next page

278 Chapter 7 Stack Operations

Figure 7.4 (Continued)

Enter three integers:
2 2 2

int1 + int2 = 4
int1 + int3 = 4
int2 + int3 = 4
int1 + int2 + int3 = 6

Press any key to continue . . . _
--
Enter three integers:
2 10 25

int1 + int2 = 12
int1 + int3 = 27
int2 + int3 = 35
int1 + int2 + int3 = 37

Press any key to continue . . . _
--
Enter three integers:
10 20 30

int1 + int2 = 30
int1 + int3 = 40
int2 + int3 = 50
int1 + int2 + int3 = 60

Press any key to continue . . . _
--
Enter three integers:
25 50 100

int1 + int2 = 75
int1 + int3 = 125
int2 + int3 = 150
int1 + int2 + int3 = 175

Press any key to continue . . . _
--
Enter three integers:
250 125 600

int1 + int2 = 375
int1 + int3 = 850
int2 + int3 = 725
int1 + int2 + int3 = 975

Press any key to continue . . . _

7.1 Stack Structure 279

Figure 7.4 (Continued)

280 Chapter 7 Stack Operations

7.2 Additional Push Instructions
This section describes additional push instructions, such as PUSHA, PUSHAD,
PUSHF, and PUSHFD. These instructions push specific source operands onto the
stack. The stack pointer, (E)SP register, operates in the same manner as the regular
PUSH operation; that is, it decrements an explicit number of bytes before the push
operation, depending on the size of the operand being pushed onto the stack.

Push all 16-bit general-purpose registers (PUSHA) The PUSHA instruc-
tion is used to push all general-purpose registers (GPRs) onto the stack. If the oper-
and-size attribute is 16, then the registers are pushed onto the stack in the following
order: AX, CX, DX, BX, SP, BP, SI, and DI. Note that the value in SP that is pushed
onto the stack is the value in SP before the PUSHA instruction is executed.

When a procedure call is executed, the processor does not automatically save the
GPRs onto the stack prior to executing the call. The PUSHA instruction is one way
that the calling/called procedure can save all the GPRs by executing a single instruc-
tion. The called procedure can also save only the specific registers that will be used
before executing the procedure; the registers are then restored to their original values
prior to returning to the calling program. No flags are affected by the PUSHA instruc-
tion.

Push all 32-bit general-purpose registers (PUSHAD) The instruction that
pushes all 32-bit GPRs onto the stack is the PUSHAD instruction. If the operand-size
attribute is 32 bits, then the registers are pushed onto the stack in the following order:
EAX, ECX, EDX, EBX, ESP, EBP, ESI, and EDI. Note that the value in ESP that is
pushed onto the stack is the value in ESP before the PUSHAD instruction is executed.
The PUSHA and PUSHAD instructions have the same operation code and their oper-
ation is identical except for the registers that are pushed onto the stack, which are a
function of the operand-size attribute.

When a procedure is called, saving the GPRs is identical as described under the
PUSHA heading. It should be noted that some X86 assemblers may cause the operand
size to be 16 bits for a PUSHA instruction or to be 32 bits when a PUSHAD instruction
is encountered. Other X86 assemblers use the current value of the operand-size
attribute. No flags are affected by the PUSHAD instruction.

Push 16 low-order flags (PUSHF) This instruction pushes the FLAGS register
— the low-order 16 bits of the EFLAGS register — onto the stack if the operand-size
attribute is 16 bits, then decrements the stack pointer, SP, by two. The FLAGS register
contains the status flags (OF, SF, ZF, AP, PF, and CF), the control flag (DF), and four
system flags (NT, IOPL, IF, and TF). No flags are affected by the PUSHF instruction.

Push all 32 flags (PUSHFD) This instruction pushes the 32-bit EFLAGS regis-
ter onto the stack if the operand-size attribute is 32 bits, then decrements the stack
pointer, ESP, by four. The EFLAGS register contains the status flags (OF, SF, ZF, AP,
PF, and CF), the control flag (DF), and the ten system flags (ID, VIP, VIF, AC, VM,
RF, NT, IOPL, IF, and TF).

7.3 Additional Pop Instructions 281

Some X86 assemblers may cause the operand size to be 16 bits for a PUSHF
instruction or to be 32 bits when a PUSHFD instruction is encountered. Other X86
assemblers use the current value of the operand-size attribute. The PUSHF and
PUSHFD instructions have the same operation code and their operation is identical
except for the registers — FLAGS or EFLAGS — that are pushed onto the stack,
which are a function of the operand-size attribute. No flags are affected by the
PUSHFD instruction. Certain flags in the EFLAGS register can be modified by spe-
cific instructions; for example, set carry flag (STC), clear carry flag (CLC), and com-
plement carry flag (CMC).

7.3 Additional Pop Instructions
This section describes additional pop instructions, such as POPA, POPAD, POPF, and
POPFD. The stack pointer, (E)SP, register operates in an identical manner as for the
regular POP operation; that is, it increments an explicit number of bytes after the pop
operation depending on the size of the operand being popped from the stack.

Pop all 16-bit general-purpose registers (POPA) The POPA instruction is
used to pop all general-purpose registers off the stack. If the operand-size attribute is
16, then the word registers are popped off the stack in the following order and stored in
their respective registers: DI, SI, BP, the pushed SP is ignored, BX, DX, CX, and AX.
Note that the value in SP is discarded, because if SP were popped off the stack, then the
value in the current SP register would be changed.

The POPA instruction is one way that the called/calling procedure can restore all
the GPRs by executing a single instruction. The called procedure can also restore only
the specific registers that were used in the procedure; the registers are then restored to
their original values prior to returning to the calling program. The POPA instruction
effectively reverses the operation of the PUSHA instruction. No flags are affected by
the POPA instruction.

Pop all 32-bit general-purpose registers (POPAD) The POPAD instruction
pops all 32-bit general-purpose registers off the stack. If the operand-size attribute is
32 bits, then the registers are popped off the stack in the following order: EDI, ESI,
EBP, the pushed ESP is ignored, EBX, EDX, ECX, and EAX. Note that the value in
ESP is discarded for the same reason that the value of SP was discarded for the POPA
instruction. The POPA and POPAD instructions have the same operation code and
their operation is identical except for the registers that are popped off the stack, which
are a function of the operand-size attribute.

Some X86 assemblers may cause the operand size to be 16 bits for a POPA
instruction or to be 32 bits when a POPAD instruction is encountered. Other X86
assemblers use the current value of the operand-size attribute. No flags are affected by
the POPAD instruction.

282 Chapter 7 Stack Operations

Pop 16 low-order flags (POPF) The POPF instruction is used when the oper-
and-size attribute is 16. It pops the top word from the stack into the low-order 16 bits
of the EFLAGS register, then increments the SP register by two to point to the new
stack top. The POPF instruction, in conjunction with the PUSHF instruction, allows a
procedure to save the calling program’s flags and then to restore the flags. The fol-
lowing flag bits are affected: OF, DF, TF, SF, ZF, AF, PF, and CF. The IOPL flag and
the IF flag are also affected depending on the privilege level.

Pop all 32 flags (POPFD) The POPFD instruction pops a doubleword off the
stack into the EFLAGS register if the operand-size attribute is 32 bits, then increments
the ESP stack pointer by four. The POPF and POPFD instructions have the same oper-
ation code and their operation is identical except for the registers that are loaded from
the stack — FLAGS or EFLAGS — which are a function of the operand-size attribute.
Some X86 assemblers may cause the operand size to be 16 bits for a POPF instruction
or to be 32 bits when a POPFD instruction is encountered. Other X86 assemblers use
the current value of the operand-size attribute.

7.4 Problems

7.1 Given DS = 2800H, BX = 0400H, SP = 1000H, SS = 2F00H, and memory lo-
cation 28400H = A020H, find the real (physical) data address of the source
operand and the real address of the stack top when the PUSH [BX] instruc-
tion is executed. Show the contents of the stack top in memory and deter-
mine the new contents of the stack pointer SP.

7.2 Given DS = FF00H, SI = 0008H, SP = 0FEAH, SS = 2F00H, and memory lo-
cation 2FFEAH = 3BC5H, find the real (physical) data address of the desti-
nation operand and the real address of the stack top when the POP [SI]
instruction is executed. Show the contents of the stack top in memory and
determine the new contents of the stack pointer SP.

7.3 Determine the result of each instruction for the following program segment:

PUSH EBP
MOV EBP, ESP
PUSH EAX
PUSH EBX
PUSH ECX

. . .
//continued on next page

. . .
MOV EAX, [EBP – 12]
MOV EBX, [EBP – 8]
MOV ECX, [EBP – 4]

. . .
ADD ESP, 12
POP EBP

7.4 Problems 283

7.4 Determine the result of each instruction for the following program segment:

PUSH EAX
PUSH EBX
PUSH ECX
PUSH EBP
MOV EBP, ESP

. . .
MOV EAX, [EBP + 4]
MOV EBX, [EBP + 8]
MOV ECX, [EBP + 12]

. . .
POP EBP
ADD ESP, 12

7.5 The partial contents of a stack are shown below before execution of the pro-
gram segment listed below. Determine the contents of the stack after the pro-
gram has been executed and indicate the new top of stack.

Stack Before Stack After

Low High Low addr Low High Low addr

ESP E4 11

7E 00

High addr High addr

POP BX
MOV AH, BH
ADD AH, BL
MOV BH, AH
PUSH BX

284 Chapter 7 Stack Operations

7.6 Why will a PUSH AL instruction cause an error message to be displayed?

7.7 Assume that a stack contains three parameters and that SP points to the third
parameter, as shown in the diagram below. Determine how each parameter
can be accessed if the following program segment is executed:

PUSH BP
PUSH CX
PUSH SI
MOV BP, SP

Stack

Low

High

Initial SP

BP = SP

BP

CX

SI

First parameter

Second parameter

Third parameter

Low High

7.8 Write an assembly language program — using the PUSH and POP instruc-
tions — that adds four decimal integers, then displays their sum. Embed the
assembly module in a C program. The decimal integers are entered from the
keyboard.

7.9 Write an assembly language program — using the PUSH and POP instruc-
tions — that adds five hexadecimal integers, then displays their sum. Embed
the assembly module in a C program. The hexadecimal integers are entered
from the keyboard. Enter hexadecimal integers that range from one character
to eight characters. Display the sum as upper-case hexadecimal characters.

285

8
Logical, Bit, Shift, and Rotate
Instructions

The logical operations of AND, OR, exclusive-OR, NOT, and TEST are presented in
this chapter; these instructions execute the Boolean equivalent of the corresponding
operations in digital logic circuits. Also covered are the instructions that operate on
single bits, such as bit test (BT), bit test and set (BTS), bit test and reset (BTR), bit test
and complement (BTC), bit scan forward (BSF), and bit scan reverse (BSR).

Shift instructions are also presented that perform logical or arithmetic left or right
shifts on bytes, words, or doublewords. The shift instructions are shift arithmetic left
(SAL), shift logical left (SHL), shift arithmetic right (SAR), shift logical right (SHR),
double precision shift left (SHLD), and double precision shift right (SHRD). The
rotate instructions include rotate left (ROL), rotate right (ROR), rotate through carry
left (RCL), and rotate through carry right (RCR). Also covered is the set byte on con-
dition (SETcc) instruction.

8.1 Logical AND Instruction
The AND instruction performs the bitwise AND operation of two operands — the first
operand (destination) and the second operand (source) and stores the result in the des-
tination operand. The source operand can be located in a general-purpose register, in
memory, or can be an immediate operand. The destination operand can be in a gen-
eral-purpose register or a memory location; however, both operands cannot be in
memory. The syntax for the logical AND instruction is shown below.

8.1 Logical AND Instruction
8.2 Logical Inclusive-OR Instruction
8.3 Logical Exclusive-OR Instruction
8.4 Logical NOT Instruction — 1s Complement
8.5 NEG Instruction — 2s Complement
8.6 TEST and Set Byte on Condition Instructions
8.7 Bit Test Instructions
8.8 Bit Scan Instructions
8.9 Shift Instructions
8.10 Rotate Instructions
8.11 Problems

286 Chapter 8 Logical, Bit, Shift, and Rotate Instructions

AND register/memory, register/memory/immediate

The truth table for the AND function is shown in Table 8.1 and corresponds to the
Boolean product. The variables x1 , x2 , and z1 represent a bit in the destination oper-
and, a bit in the source operand, and the resulting bit in the destination operand, respec-
tively. The AND instruction can be used to mask off particular bits; that is, to reset
certain bits, because any bit that is ANDed with a 0 bit results in a 0 bit. The affected
flags are the parity flag (PF), the sign flag (SF), and the zero flag (ZF) — the overflow
flag (OF) and the carry flag (CF) are set to 0. Examples of the AND function are
shown in Table 8.2(a) and Table 8.2(b). Table 8.2(b) masks off the high-order four
bits.

Table 8.1 Truth Table
for the AND Function

AND
x1 x2 z1
0 0 0
0 1 0
1 0 0
1 1 1

Table 8.2 Examples of the AND Function for Eight Bits

AND
0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 0 0 0 0 0 1 0 1 0
0 0 1 0 1 1 0 0 0 0 0 0 1 0 1 0

(a) (b)

Figure 8.1 shows an assembly language module embedded in a C program that
illustrates using the AND function to mask off certain bits in a hexadecimal number
that is entered from the keyboard. The number is moved to the EAX register, then the
AND instruction resets the high-order 28 bits; that is, bits 31 through 4 by the instruc-
tion shown below.

AND EAX, 0000000FH

The program checks to determine if the modified number is in the range 00000002H
through 00000005H. If the number is within the range, then the number is displayed.
If the number is not in the specified range, then an error message is displayed.

//and_mask.cpp
//illustrates the use of the AND function
//to mask off certain bits

#include "stdafx.h"

int main (void)
{
//define variables

int hex1, rslt;

printf ("Enter an 8-digit hex number in the range
xxxxxxx2 -- xxxxxxx5: \n");

scanf ("%X", &hex1);

//switch to assembly
_asm
{

MOV EAX, hex1
AND EAX, 0000000FH
CMP EAX, 00000005H
JA ERR

CMP EAX, 00000002H
JB ERR

MOV rslt, EAX
JMP NO_ERR

}

ERR: printf ("\nNumber out of range\n\n");
goto end;

NO_ERR:
printf ("\nResult = %X\n\n", rslt);

end:
return 0;

}
(a) //continued on next page

8.1 Logical AND Instruction 287

Figure 8.1 Program to illustrate using the AND instruction to mask off certain
bits: (a) the program and (b) the outputs.

Enter an 8-digit hex number in the range xxxxxxx2 -- xxxxxxx5:
ABCDEF12

Result = 2

Press any key to continue . . . _
--
Enter an 8-digit hex number in the range xxxxxxx2 -- xxxxxxx5:
12AB34C3

Result = 3

Press any key to continue . . . _
--
Enter an 8-digit hex number in the range xxxxxxx2 -- xxxxxxx5:
1A2B3C44

Result = 4

Press any key to continue . . . _
--
Enter an 8-digit hex number in the range xxxxxxx2 -- xxxxxxx5:
12AB34C5

Result = 5

Press any key to continue . . . _
--
Enter an 8-digit hex number in the range xxxxxxx2 -- xxxxxxx5:
ABCDEF11

Number out of range

Press any key to continue . . . _
--
Enter an 8-digit hex number in the range xxxxxxx2 -- xxxxxxx5:
12345676

Number out of range

Press any key to continue . . . _

(b)

288 Chapter 8 Logical, Bit, Shift, and Rotate Instructions

Figure 8.1 (Continued)

8.1 Logical AND Instruction 289

Figure 8.2 contains an assembly language module embedded in a C program that
illustrates the logical AND function of two operands. The program displays the result
of the AND operation together with the resulting flags. The unsigned type modifier is
applied to the char data type. An unsigned character has a range from 0 to 255; a
signed character, char, has a range from –128 to +127.

The two operands, opnd1 and opnd2, are moved to registers AL and BL, respec-
tively, prior to the AND operation. The load AH from flags (LAHF) instruction stores
the low-order byte (shown below) of the EFLAGS register in the AH register. Bit
positions 1, 3, and 5 are reserved. The flags and result are then moved to the flags vari-
able and the rslt variable to be displayed.

7 6 5 4 3 2 1 0
SF ZF 0 AF 0 PF 1 CF

//logical_and2.cpp
//illustrates the logical AND function
#include "stdafx.h"
int main (void)
{
//define variables

unsigned char and1, and2, rslt, flags;

printf ("Enter two 2-digit hexadecimal characters: \n");
scanf ("%X %X", &and1, &and2);

//switch to assembly
_asm
{

MOV AL, and1
MOV BL, and2
AND BL, AL
LAHF
MOV flags, AH
MOV rslt, BL

}

printf ("\nOpnd1 = %X\nOpnd2 = %X\n", and1, and2);
printf ("\nAND result = %X\n\n\nFlags = %X\n\n",

rslt, flags);
return 0;

} (a) //continued on next page

Figure 8.2 Program to illustrate the logical AND operation and resulting flags:
(a) the program and (b) the outputs.

Enter two 2-digit hexadecimal characters:
87 CA

Opnd1 = 87 //1 0 0 0 0 1 1 1
Opnd2 = CA //1 1 0 0 1 0 1 0

AND result = 82 //1 0 0 0 0 0 1 0

//SF ZF 0 AF 0 PF 1 CF
Flags = 86 //1 0 0 0 0 1 1 0

Press any key to continue . . . _
--
Enter two 2-digit hexadecimal characters:
47 C3

Opnd1 = 47 //0 1 0 0 0 1 1 1
Opnd2 = C3 //1 1 0 0 0 0 1 1

AND result = 43 //0 1 0 0 0 0 1 1

//SF ZF 0 AF 0 PF 1 CF
Flags = 2 //0 0 0 0 0 0 1 0

Press any key to continue . . . _
--
Enter two 2-digit hexadecimal characters:
FF FF

Opnd1 = FF //1 1 1 1 1 1 1 1
Opnd2 = FF //1 1 1 1 1 1 1 1

AND result = FF //1 1 1 1 1 1 1 1

//SF ZF 0 AF 0 PF 1 CF
Flags = 86 //1 0 0 0 0 1 1 0

Press any key to continue . . . _
--

//continued on next page
(b)

290 Chapter 8 Logical, Bit, Shift, and Rotate Instructions

Figure 8.2 (Continued)

Enter two 2-digit hexadecimal characters:
FF 00

Opnd1 = FF //1 1 1 1 1 1 1 1
Opnd2 = 0 //0 0 0 0 0 0 0 0

AND result = 0 //0 0 0 0 0 0 0 0

//SF ZF 0 AF 0 PF 1 CF
Flags = 46 //0 1 0 0 0 1 1 0

Press any key to continue . . . _
--
Enter two 2-digit hexadecimal characters:
EC C3

Opnd1 = EC //1 1 1 0 1 1 0 0
Opnd2 = C3 //1 1 0 0 0 0 1 1

AND result = C0 //1 1 0 0 0 0 0 0

//SF ZF 0 AF 0 PF 1 CF
Flags = 86 //1 0 0 0 0 1 1 0

Press any key to continue . . . _

8.2 Logical Inclusive-OR Instruction 291

Figure 8.2 (Continued)

8.2 Logical Inclusive-OR Instruction
The OR instruction performs the bitwise OR operation of two operands — the first
operand (destination) and the second operand (source) and stores the result in the des-
tination operand. The source operand can be located in a general-purpose register, in
memory, or can be an immediate operand. The destination operand can be in a gen-
eral-purpose register or a memory location; however, both operands cannot be in
memory. The syntax for the logical OR instruction is shown below.

OR register/memory, register/memory/immediate

The truth table for the OR function is shown in Table 8.3 and corresponds to the
Boolean sum. The variables x1 , x2 , and z1 represent a bit in the destination operand,
a bit in the source operand, and the resulting bit in the destination operand, respec-
tively. The OR instruction can be used to set particular bits; that is, to set certain bits
to a value of 1, because any bit that is ORed with a 1 bit results in a 1 bit. The affected

292 Chapter 8 Logical, Bit, Shift, and Rotate Instructions

flags are the parity flag (PF), the sign flag (SF), and the zero flag (ZF) — the overflow
flag (OF) and the carry flag (CF) are set to 0. Examples of the OR function are shown
in Table 8.4(a) and Table 8.4(b). Table 8.4(b) sets all the bits to a value of 1 regardless
of their original value.

Table 8.3 Truth Table
for the OR Function

OR
x1 x2 z1
0 0 0
0 1 1
1 0 1
1 1 1

Table 8.4 Examples of the OR Function for Eight Bits

OR
0 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0
0 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1
0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1

(a) (b)

Figure 8.3 contains an assembly language module embedded in a C program that
illustrates the logical OR function of two operands. The program displays the result of
the OR operation together with the resulting flags.

//logical_or.cpp
//illustrates the logical OR function

#include "stdafx.h"

int main (void)
{
//define variables

unsigned char or1, or2, rslt, flags;
(a) //continued on next page

Figure 8.3 Program to illustrate the logical OR operation and resulting flags: (a)
the program and (b) the outputs.

printf ("Enter two 2-digit hexadecimal characters: \n");
scanf ("%X %X", &or1, &or2);

//switch to assembly
_asm
{

MOV AL, or1
MOV BL, or2
OR BL, AL
LAHF
MOV flags, AH
MOV rslt, BL

}

printf ("\nOpnd1 = %X\nOpnd2 = %X\n", or1, or2);
printf ("\nOR result = %X\n\n\nFlags = %X\n\n",

rslt, flags);
return 0;

}

Enter two 2-digit hexadecimal characters:
F0 0F

Opnd1 = F0 //1 1 1 1 0 0 0 0
Opnd2 = F //0 0 0 0 1 1 1 1

OR result = FF //1 1 1 1 1 1 1 1

//SF ZF 0 AF 0 PF 1 CF
Flags = 86 //1 0 0 0 0 1 1 0

Press any key to continue . . . _
--
Enter two 2-digit hexadecimal characters:
69 37

Opnd1 = 69 //0 1 1 0 1 0 0 1
Opnd2 = 37 //0 0 1 1 0 1 1 1

OR result = 7F //0 1 1 1 1 1 1 1

//SF ZF 0 AF 0 PF 1 CF
Flags = 2 //0 0 0 0 0 0 1 0

Press any key to continue . . . _ (b) //continued on next page

8.2 Logical Inclusive-OR Instruction 293

Figure 8.3 (Continued)

Enter two 2-digit hexadecimal characters:
BD AE

Opnd1 = BD //1 0 1 1 1 1 0 1
Opnd2 = AE //1 0 1 0 1 1 1 0

OR result = BF //1 0 1 1 1 1 1 1

//SF ZF 0 AF 0 PF 1 CF
Flags = 82 //1 0 0 0 0 0 1 0

Press any key to continue . . . _
--
Enter two 2-digit hexadecimal characters:
4D EC

Opnd1 = 4D //0 1 0 0 1 1 0 1
Opnd2 = EC //1 1 1 0 1 1 0 0

OR result = ED //1 1 1 0 1 1 0 1

//SF ZF 0 AF 0 PF 1 CF
Flags = 86 //1 0 0 0 0 1 1 0

Press any key to continue . . . _

294 Chapter 8 Logical, Bit, Shift, and Rotate Instructions

Figure 8.3 (Continued)

8.3 Logical Exclusive-OR Instruction
The XOR instruction performs the bitwise exclusive-OR operation of two operands —
the first operand (destination) and the second operand (source) and stores the result in
the destination operand. The source operand can be located in a general-purpose reg-
ister, in memory, or can be an immediate operand. The destination operand can be in
a general-purpose register or a memory location; however, both operands cannot be in
memory. The syntax for the logical XOR instruction is shown below.

XOR register/memory, register/memory/immediate

The truth table for the exclusive-OR function is shown in Table 8.5. The variables
x1 , x2 , and z1 represent a bit in the destination operand, a bit in the source operand, and
the resulting bit in the destination operand, respectively. The XOR instruction can be
used to invert select bits; that is, to change a bit with a value of 1 to a value of 0 and vice
versa, because any bit that is exclusive-ORed with a 1 bit will invert the value of the

8.3 Logical Exclusive-OR Instruction 295

bit. The affected flags are the parity flag (PF), the sign flag (SF), and the zero flag (ZF)
— the overflow flag (OF) and the carry flag (CF) are set to 0. Examples of the exclu-
sive-OR function are shown in Table 8.6(a) and Table 8.6(b). Table 8.6(b) inverts all
bits regardless of their original value.

Table 8.5 Truth Table for
the Exclusive-OR Function

XOR
x1 x2 z1
0 0 0
0 1 1
1 0 1
1 1 0

Table 8.6 Examples of the XOR Function for Eight Bits

XOR
1 1 0 1 0 0 1 0 1 0 0 1 0 1 1 0
1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1
0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1

(a) (b)

There is no exclusive-NOR instruction; however, this function can be achieved by
using the XOR operation in conjunction with the NOT operation (Section 8.4) to
invert the result. Figure 8.4 contains an assembly language module embedded in a C
program that illustrates the logical XOR function of two operands. The program dis-
plays the result of the XOR operation together with the resulting flags.

//logical_xor.cpp
//illustrates the logical xor function

#include "stdafx.h"
int main (void)
{
//define variables

unsigned char xor1, xor2, rslt, flags;
//continued on next page

(a)

Figure 8.4 Program to illustrate the logical XOR operation and resulting flags:
(a) the program and (b) the outputs.

printf ("Enter two 2-digit hexadecimal characters: \n");
scanf ("%X %X", &xor1, &xor2);

//switch to assembly
_asm
{

MOV AL, xor1
MOV BL, xor2
XOR BL, AL
LAHF
MOV flags, AH
MOV rslt, BL

}
printf ("\nOpnd1 = %X\nOpnd2 = %X\n", xor1, xor2);
printf ("\nXOR result = %X\n\n\nFlags = %X\n\n",

rslt, flags);
return 0;

}

Enter two 2-digit hexadecimal characters:
5A 99

Opnd1 = 5A //0 1 0 1 1 0 1 0
Opnd2 = 99 //1 0 0 1 1 0 0 1

XOR result = C3 //1 1 0 0 0 0 1 1

//SF ZF 0 AF 0 PF 1 CF
Flags = 86 //1 0 0 0 0 1 1 0

Press any key to continue . . . _
--
Enter two 2-digit hexadecimal characters:
F0 0F

Opnd1 = F0 //1 1 1 1 0 0 0 0
Opnd2 = F //0 0 0 0 1 1 1 1

XOR result = FF //1 1 1 1 1 1 1 1

//SF ZF 0 AF 0 PF 1 CF
Flags = 86 //1 0 0 0 0 1 1 0

Press any key to continue . . . _
(b) //continued on next page

296 Chapter 8 Logical, Bit, Shift, and Rotate Instructions

Figure 8.4 (Continued)

Enter two 2-digit hexadecimal characters:
AB CD

Opnd1 = AB //1 0 1 0 1 0 1 1
Opnd2 = CD //1 1 0 0 1 1 0 1

XOR result = 66 //0 1 1 0 0 1 1 0

//SF ZF 0 AF 0 PF 1 CF
Flags = 6 //0 0 0 0 0 1 1 0

Press any key to continue . . . _
--
Enter two 2-digit hexadecimal characters:
7E 43

Opnd1 = 7E //0 1 1 1 1 1 1 0
Opnd2 = 43 //0 1 0 0 0 0 1 1

XOR result = 3D //0 0 1 1 1 1 0 1

//SF ZF 0 AF 0 PF 1 CF
Flags = 2 //0 0 0 0 0 0 1 0

Press any key to continue . . . _
--
Enter two 2-digit hexadecimal characters:
D7 D7

Opnd1 = D7 //1 1 0 1 0 1 1 1
Opnd2 = D7 //1 1 0 1 0 1 1 1

XOR result = 0 //0 0 0 0 0 0 0 0

//SF ZF 0 AF 0 PF 1 CF
Flags = 46 //0 1 0 0 0 1 1 0

Press any key to continue . . . _

8.3 Logical Exclusive-OR Instruction 297

Figure 8.4 (Continued)

298 Chapter 8 Logical, Bit, Shift, and Rotate Instructions

8.4 Logical NOT Instruction —
1s Complement

The NOT instruction performs a bitwise 1s complement operation on the destination
operand and stores the result in the destination operand. The destination can be a gen-
eral-purpose register or a memory location. The NOT instruction inverts each bit in
the destination operand and is also referred to as the diminished-radix complement (or
the r – 1 complement). The syntax for the NOT instruction is shown below.

NOT register/memory

Operands that are represented in the 1s complement notation are signed numbers
with the following range:

– (2n – 1 – 1) to +(2n – 1 – 1)

The truth table for the NOT function is shown in Table 8.7. The variables x1 and
z1 represent bits in the destination operand and the resulting bit in the destination oper-
and, respectively. No flags are affected by the NOT instruction.

Table 8.7 Truth Table
of the NOT Function

NOT
x1 z1
0 1
1 0

The binary number 11012 will be 1s complemented. The number has a decimal
value of – 2. To obtain the 1s complement, subtract each digit in turn from 1 (the high-
est number in the radix), as shown below — or for radix 2, simply invert each bit.
Therefore, the 1s complement of 11012 is 00102, which has a decimal value of + 2.

1 – 1
0

1 – 1
0

1 – 0
1

1 – 1
0

To verify the operation, add the negative and positive numbers to obtain 11112,
which is zero in 1s complement notation; 00002 is also zero in 1s complement.

1 1 0 1
+) 0 0 1 0

1 1 1 1

8.5 NEG Instruction — 2s Complement 299

8.5 NEG Instruction — 2s Complement
The NEG instruction performs a 2s complement operation on the destination operand
and stores the result in the destination operand. The destination can be a general-pur-
pose register or a memory location. The NEG instruction subtracts the destination
operand from zero, effectively changing the sign of the number while maintaining the
same absolute value.

The value of a positive number in 2s complement representation is obtained in the
usual manner by adding the values of the 1 bits by the weight of their respective posi-
tions. The value of a negative number in 2s complement representation is obtained by
adding the values of the 0 bits by weight in their respective positions and then adding
a value of one to the result.

Another method of obtaining the 2s complement of a number is to form the 1s
complement of the number, then add one to the result. Both methods are shown Figure
8.5 using 4-bit operands. Figure 8.5(a) subtracts the operand from zero; Figure 8.5(b)
adds one to the 1s complement.

A third method to generate the radix complement for a radix 2 number is to keep
the low-order 0s and the first 1 unchanged, then complement (invert) the remaining
high-order bits.

(a)

0 0 0 0
–) 1 1 0 1 – 3

0 0 1 1 + 3

0 0 0 0
–) 0 1 1 0 + 6

1 0 1 0 – 6

(b)

1 1 0 1 – 3
0 0 1 0 1s

+) 1
0 0 1 1 + 3

0 1 1 0 + 6
1 0 0 1 1s

+) 1
1 0 1 0 – 6

Figure 8.5 Methods to obtain the 2s complement (negation) of a number: (a) sub-
tract from zero and (b) add 1 to the 1s complement.

The NEG instruction is also referred to as the radix complement (or the r comple-
ment). The syntax for the NEG instruction is shown below.

NEG register/memory

300 Chapter 8 Logical, Bit, Shift, and Rotate Instructions

A integer has the following range in 2s complement representation, where the number
zero is considered to be positive:

 – (2n – 1) to + (2n – 1 – 1)

A positive number A is represented as

A = (0 an–2 an–3 … a1a0)2

and a negative number is represented as

(A ') + 1 = {[(2 – 1) an–2 'an–3 ' … a1'a0'] + 1}2

where A ' is the diminished-radix complement. Thus, the radix complement is
obtained by adding 1 to the diminished-radix complement; that is, (r – 1) + 1 = r.

The flags affected by the NEG instruction are the overflow flag (OF), the sign flag
(SF), the zero flag (ZF), the auxiliary carry flag (AF), the parity flag (PF), and the carry
flag (CF) — if the operand is zero, then CF = 0. Figure 8.6 shows an assembly lan-
guage module embedded in a C program that illustrates both the NOT instruction and
the NEG instruction and the associated flags for the NEG instruction.

//logical_not_neg.cpp
//illustrates the logical not and neg functions
#include "stdafx.h"
int main (void)
{
//define variables

unsigned char not1, neg1, rslt_not, rslt_neg, flags_neg;

printf ("Enter two 2-digit hexadecimal characters: \n");
scanf ("%X %X", ¬1, &neg1);

//switch to assembly
_asm
{

MOV AL, not1
NOT AL ;form 1s complement of opnd1
MOV rslt_not, AL

(a) //continued on next page

Figure 8.6 Program to illustrate the logical NOT and NEG operations and result-
ing flags for the NEG function: (a) the program and (b) the outputs.

MOV BL, neg1
NEG BL ;form 2s complement of opnd2
LAHF ;load AH from flags register
MOV flags_neg, AH
MOV rslt_neg, BL

}

printf ("\nNOT opnd = %X\nResult NOT = %X\n",
not1, rslt_not);

printf ("\nNEG opnd = %X\nResult NEG = %X\n\n\n
NEG flags = %X\n\n\n",
neg1, rslt_neg, flags_neg);

return 0;
}

Enter two 2-digit hexadecimal characters:
1F 3A

NOT opnd = 1F //0 0 0 1 1 1 1 1
Result NOT = E0 //1 1 1 0 0 0 0 0

NEG opnd = 3A //0 0 1 1 1 0 1 0
Result NEG = C6 //1 1 0 0 0 1 1 0

//SF ZF 0 AF 0 PF 1 CF
NEG flags = 97 //1 0 0 1 0 1 1 1

Press any key to continue . . . _
--
Enter two 2-digit hexadecimal characters:
E6 DB

NOT opnd = E6 //1 1 1 0 0 1 1 0
Result NOT = 19 //0 0 0 1 1 0 0 1

NEG opnd = DB //1 1 0 1 1 0 1 1
Result NEG = 25 //0 0 1 0 0 1 0 1

//SF ZF 0 AF 0 PF 1 CF
NEG flags = 13 //0 0 0 1 0 0 1 1

Press any key to continue . . . _
--

(b) //continued on next page

8.5 NEG Instruction — 2s Complement 301

Figure 8.6 (Continued)

Enter two 2-digit hexadecimal characters:
00 FF

NOT opnd = 0 //0 0 0 0 0 0 0 0
Result NOT = FF //1 1 1 1 1 1 1 1

NEG opnd = FF //1 1 1 1 1 1 1 1
Result NEG = 1 //0 0 0 0 0 0 0 1

//SF ZF 0 AF 0 PF 1 CF
NEG flags = 13 //0 0 0 1 0 0 1 1

Press any key to continue . . . _
--
Enter two 2-digit hexadecimal characters:
FF 00

NOT opnd = FF //1 1 1 1 1 1 1 1
Result NOT = 0 //0 0 0 0 0 0 0 0

NEG opnd = 0 //0 0 0 0 0 0 0 0
Result NEG = 0 //0 0 0 0 0 0 0 0

//SF ZF 0 AF 0 PF 1 CF
NEG flags = 46 //0 1 0 0 0 1 1 0

Press any key to continue . . . _

302 Chapter 8 Logical, Bit, Shift, and Rotate Instructions

Figure 8.6 (Continued)

To obtain the NOT function of an operand, the bits are simply inverted. The NEG
results for the operands shown in Figure 8.6(b) are determined by the calculations
shown in Figure 8.7, which subtracts the operands from a value of zero. It was previ-
ously stated that the NEG instruction subtracts the destination operand from zero,
effectively changing the sign of the number while maintaining the same absolute
value. The rules for subtraction in radix 2 are as follows:

0 – 0 = 0
0 – 1 = 1 with a borrow from the next higher-order minuend
1 – 0 = 1
1 – 1 = 0

0 0 0 0 0 0 0 0
–) 0 0 1 1 1 0 1 0 3AH +58

1 1 0 0 0 1 1 0 C6H –58
1 1

CF AF

SF ZF 0 AF 0 PF 1 CF
1 0 0 1 0 1 1 1

8.5 NEG Instruction — 2s Complement 303

0 0 0 0 0 0 0 0
–) 1 1 0 1 1 0 1 1 DBH –37

0 0 1 0 0 1 0 1 25H +37
1 1

CF AF

SF ZF 0 AF 0 PF 1 CF
0 0 0 1 0 0 1 1

0 0 0 0 0 0 0 0
–) 1 1 1 1 1 1 1 1 FFH –1

0 0 0 0 0 0 0 1 01H +1
1 1

CF AF

SF ZF 0 AF 0 PF 1 CF
0 0 0 1 0 0 1 1

0 0 0 0 0 0 0 0
–) 0 0 0 0 0 0 0 0 00H 0

0 0 0 0 0 0 0 0 00H 0
0 0

CF AF

SF ZF 0 AF 0 PF 1 CF
0 1 0 0 0 1 1 0

Figure 8.7 Calculations for the negation operations of the operands shown in
Figure 8.6(b).

304 Chapter 8 Logical, Bit, Shift, and Rotate Instructions

8.6 TEST and Set Byte on Condition
Instructions

The TEST instruction and the set byte on condition (SETcc) instruction can be used to
alter the program flow depending on the state of the EFLAGS register. The TEST
instruction can be followed by a jump on condition (Jcc) instruction.

8.6.1 TEST Instruction

The TEST instruction performs the logical AND operation of two operands on a bit-
by-bit basis. The result of the operation affects the sign flag (SF), the zero flag (ZF),
and the parity flag (PF) in a manner similar to an AND instruction; however, the des-
tination and source operands are not changed. The result of the AND operation is dis-
carded after execution of the TEST instruction. The syntax for the TEST instruction is
shown below.

TEST register/memory, register/immediate

If any identical bit positions in the two operands both contains 1s, then the zero
flag is reset. The state of the EFLAGS register can then be tested by using the jump on
condition (Jcc) instruction, the loop on condition (LOOPcc), or the set byte on condi-
tion (SETcc) instruction. For example, the low-order four bits in register AX can be
tested to determine if any bits are nonzero, as shown below. The jump will occur if the
zero flag is reset (ZF = 0).

TEST AX, 0000000000001111
JNZ N0N_ZERO

8.6.2 Set Byte on Condition (SETcc) Instruction

The set byte on condition (SETcc) instruction sets the destination byte operand to a
value of 0 or 1 depending on the state of certain flags in the EFLAGS register. The
syntax for the SETcc instruction is shown below.

SETcc register/memory

The affected flags are similar to those of the jump on condition (Jcc) instruction
described in Chapter 6. An example to determine if register EAX is greater than reg-
ister EBX is shown below. If register EAX is greater than register EBX, then register
CH is set to a value of 00000001.

CMP EAX, EBX
SETG CH

8.7 Bit Test Instructions 305

8.7 Bit Test Instructions
The bit test instructions operate on a single bit and are used to scan the bits in an oper-
and and then perform an operation on the selected bit. The operand that contains the
bit to be tested is specified by the destination operand (first operand — or bit base),
which can be in a general-purpose register of a memory location. The location of the
bit to be tested is stipulated by the source operand (bit offset). The location of the bit
in the bit string is specified as an offset from bit 0 of the string. The selected bit is then
stored in the carry flag (CF). No other flags are affected.

If the destination operand indicates a register, then the instruction assumes mod-
ulo-16, modulo-32, or modulo-64 of the source operand, depending on the size of the
operand and the mode. Operands that are 64 bits can be used only in 64-bit mode. If
the destination operand is a memory location, then this specifies the address of a byte
in memory that contains the operand on which the bit test instruction is to be executed.
The syntax for the bit test instructions is shown below.

BT/S/R/C register/memory, register/immediate

There are four bit test instructions that will be discussed in this section: bit test
(BT), bit test and set (BTS), bit test and reset (BTR), and bit test and complement
(BTC). Figure 8.8 shows a general diagram that illustrates the four bit test instruc-
tions.

BT/S/R/C destination, source

Bit base Bit offset (index)

CF

Figure 8.8 Illustration of the bit test instructions.

8.7.1 Bit Test (BT) Instruction

Figure 8.9 shows a drawing for the bit test (BT) instruction using a general-purpose
register and an immediate operand. The base offset is modulo-32, because register
EAX is 32 bits. If the immediate value is greater than 31, then it is modulo-32. For
example, if the offset were 198, then bit 6 would be selected.

306 Chapter 8 Logical, Bit, Shift, and Rotate Instructions

The BT instruction copies the value of the selected bit within a bit string to the CF
flag; the sequence of bits in a general-purpose register or a memory location are num-
bered from the low-order bit to the high-order bit. If the destination operand is in
memory, then the processor can access two bytes beginning with a 16-bit operand
address or four bytes beginning with a 32-bit operand address.

BT EAX, 4

CF

4 3 2 1 0

Figure 8.9 Bit test instruction for a general-purpose register with an immediate
operand.

8.7.2 Bit Test and Set (BTS) Instruction

The bit test and set (BTS) instruction stores the selected bit in the carry flag (CF), then
sets the selected bit in the bit string (destination) to a value of 1. The destination oper-
and (bit base) can be a general-purpose register or a memory location, both of which
can be 16 bits, 32 bits, or 64 bits. The source operand (bit offset — or index) can be a
register or an immediate operand. If the index is an immediate operand, then the
selected bit can range from 0 to 31 or greater, depending on the mode. The general
comments and figures for the BT instruction also apply to the BTS instruction.

8.7.3 Bit Test and Reset (BTR) Instruction

The bit test and reset (BTR) instruction selects a single bit in a bit string specified by
the destination operand (bit base) and stores the selected bit in the carry flag (CF), then
resets the selected bit in the bit string (destination) to a value of 0. The selected bit is
determined by the source operand (bit offset — or index). The destination operand can
be a general-purpose register or a memory location, both of which can be 16 bits, 32
bits, or 64 bits. The source operand can be a register or an immediate operand. If the
index is an immediate operand, then the selected bit can range from 0 to 31 or greater,
depending on the mode. The general comments and figures for the BT instruction also
apply to the BTR instruction.

8.7 Bit Test Instructions 307

8.7.4 Bit Test and Complement (BTC) Instruction

The bit test and complement (BTC) instruction selects a single bit in a bit string spec-
ified by the destination operand (bit base) and stores the selected bit in the carry flag
(CF), then complements (inverts) the selected bit in the bit string (destination). The
selected bit is determined by the source operand (bit offset — or index). The destina-
tion operand can be a general-purpose register or a memory location, both of which
can be 16 bits, 32 bits, or 64 bits. The source operand can be a register or an immediate
operand. If the index is an immediate operand, then the selected bit can range from 0
to 31 or greater, depending on the mode. The general comments and figures for the BT
instruction also apply to the BTC instruction.

Figure 8.10 shows an assembly language module embedded in a C program that
illustrates the four bit test instructions using immediate data as the bit offset. An 8-
character hexadecimal number is entered from the keyboard and stored in the variable
bt_opnd to be used as the bit test operand. The results of the bit test operations are dis-
played as: bt_opnd for the BT instruction, bts_rslt_ebx for the BTS instruction,
btr_rslt_ebx for the BTR instruction, btc_rslt_ebx for the BTC instruction, and
btc_rslt_mod32 for the BTC instruction in which the bit index is greater than 31.

The flags are also displayed for each bit test instruction as: bt_flags for the BT
instruction, bts_flags for the BTS instruction, btr_flags for the BTR instruction,
btc_flags for the BTC instruction, and btc_mod32_flags for the BTC instruction in
which the bit index is greater than 31. Since the carry flag (CF) is the only flag affected
by the bit test instructions, the state of the other flags is irrelevant.

The LAHF instruction is executed for each bit test instruction; register AH is then
stored in the appropriate flags variable. The second BTC instruction has a bit offset
(index) value of 198. This establishes the selected bit as bit 6, because 198 modulo-32
is 6.

In the first pass, the hexadecimal number of FFFFFF4B (shown below) is entered
from the keyboard and stored in the bt_opnd variable. Then the BT instruction moves
bit 4 (0) to the carry flag and leaves the original bit 4 unchanged.

31 ... 23 22 21 20 ... 17 16 ... 7 6 5 4 3 2 1 0
1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 1

The BTS instruction operates on bit 5 (0) of the bt_opnd variable, moves bit 5 to
the carry flag, then sets the original bit 5, giving the four bits 4 through 7 a value of 616.
The BTR instruction operates on bit 16 (1) of the bt_opnd variable, moves bit 16 to the
carry flag, then resets the original bit 16, giving the four bits 16 through 19 a value of
E16 (1410). The first BTC instruction operates on bit 20 (1) of the bt_opnd variable,
moves bit 20 to the carry flag, then complements bit 20 to yield a value of 0, giving the
four bits 20 through 23 a value of E16 (1410). The second BTC instruction operates on
bit 6 (198 modulo-32) of the bt_opnd variable, moves bit 6 to the carry flag, then com-
plements bit 6 to yield a value of 0, giving the four bits 4 through 7 a value of 0. A sim-
ilar sequence occurs for the two remaining user-entered hexadecimal numbers:
11111111 and 77777777.

//bit_test_instr.cpp
//illustrate the operation of the bit test
//instructions BT, BTS, BTR, BTC using
//immediate data for the bit offset (index)

#include "stdafx.h"

int main (void)
{
//define variables

int bt_opnd, bts_rslt_ebx, btr_rslt_ebx, btc_rslt_ebx,
btc_rslt_mod32;

unsigned char bt_flags, bts_flags, btr_flags, btc_flags,
btc_mod32_flags;

printf ("Enter an 8-character hexadecimal number: \n");
scanf ("%X", &bt_opnd);

//switch to assembly
_asm
{

//BT instruction
MOV EBX, bt_opnd
BT EBX, 4
LAHF
MOV bt_flags, AH

//BTS instruction
BTS EBX, 5
LAHF
MOV bts_flags, AH
MOV bts_rslt_ebx, EBX

//BTR instruction
MOV EBX, bt_opnd
BTR EBX, 16
LAHF
MOV btr_flags, AH
MOV btr_rslt_ebx, EBX

//continued on next page

(a)

308 Chapter 8 Logical, Bit, Shift, and Rotate Instructions

Figure 8.10 Program to illustrate the bit test instructions: BT, BTS, BTR, and
BTC using immediate data as the bit offset: (a) the program and (b) the outputs.

//BTC instruction
MOV EBX, bt_opnd
BTC EBX, 20
LAHF
MOV btc_flags, AH
MOV btc_rslt_ebx, EBX

MOV EBX, bt_opnd
BTC EBX, 198 ;198 modulo-32 = bit 6
LAHF
MOV btc_mod32_flags, AH
MOV btc_rslt_mod32, EBX

}

printf ("\nbt_opnd = %X bit 4\nbt_flags = %X\n\n",
bt_opnd, bt_flags);

printf ("bts_opnd = %X bit 5\nbts_flags = %X\n
rslt_ebx = %X\n\n", bt_opnd, bts_flags,
bts_rslt_ebx);

printf ("btr_opnd = %X bit 16\nbtr_flags = %X\n
rslt_ebx = %X\n\n", bt_opnd, btr_flags,

btr_rslt_ebx);

printf ("btc_opnd = %X bit 20\nbtc_flags = %X\n
rslt_ebx = %X\n\n", bt_opnd, btc_flags,
btc_rslt_ebx);

printf ("btc_opnd = %X bit 198(6)\n
btc_mod32_flags = %X\nrslt_ebx = %X\n\n",
bt_opnd, btc_mod32_flags, btc_rslt_mod32);

return 0;
}

//continued on next page

8.7 Bit Test Instructions 309

Figure 8.10 (Continued)

Enter an 8-character hexadecimal number:
FFFFFF4B

bt_opnd = FFFFFF4B bit 4
bt_flags = 46

bts_opnd = FFFFFF4B bit 5
bts_flags = 46
rslt_ebx = FFFFFF6B

btr_opnd = FFFFFF4B bit 16
btr_flags = 47
rslt_ebx = FFFEFF4B

btc_opnd = FFFFFF4B bit 20
btc_flags = 47
rslt_ebx = FFEFFF4B

btc_opnd = FFFFFF4B bit 198(6)
btc_mod32_flags = 47
rslt_ebx = FFFFFF0B

Press any key to continue . . . _
--
Enter an 8-character hexadecimal number:
11111111

bt_opnd = 11111111 bit 4
bt_flags = 47

bts_opnd = 11111111 bit 5
bts_flags = 46
rslt_ebx = 11111131

btr_opnd = 11111111 bit 16
btr_flags = 47
rslt_ebx = 11101111

btc_opnd = 11111111 bit 20
btc_flags = 47
rslt_ebx = 11011111

btc_opnd = 11111111 bit 198(6)
btc_mod32_flags = 46
rslt_ebx = 11111151

Press any key to continue . . . _ (b) //continued on next page

310 Chapter 8 Logical, Bit, Shift, and Rotate Instructions

Figure 8.10 (Continued)

Enter an 8-character hexadecimal number:
77777777

bt_opnd = 77777777 bit 4
bt_flags = 47

bts_opnd = 77777777 bit 5
bts_flags = 47
rslt_ebx = 77777777

btr_opnd = 77777777 bit 16
btr_flags = 47
rslt_ebx = 77767777

btc_opnd = 77777777 bit 20
btc_flags = 47
rslt_ebx = 77677777

btc_opnd = 77777777 bit 198(6)
btc_mod32_flags = 47
rslt_ebx = 77777737

Press any key to continue . . . _

8.7 Bit Test Instructions 311

Figure 8.10 (Continued)

Figure 8.11 shows an assembly language module embedded in a C program that
illustrates the four bit test instructions using data in register EDX as the bit offset. An
8-character hexadecimal number is entered from the keyboard and stored in the vari-
able bt_opnd to be used as the bit test operand. Then a hexadecimal number is entered
as the bit offset and stored in the variable offset_reg, which is later stored in register
EDX.

This program is similar to the program shown in Figure 8.10, except that the bit
offset is in a register rather than specified as immediate data. The hexadecimal num-
ber that is entered as the bit offset applies to all of the bit test instructions. The second
set of characters shown in Figure 8.11(b) is hexadecimal FFFFFF4B for the bit test
operand and hexadecimal 10 (1610) for the bit offset. Bit offsets greater than 31 are not
shown in this example.

The results of the four bit test operations are displayed together with the corre-
sponding flags in a manner identical to that of Figure 8.10. Unlike the program of Fig-
ure 8.10 however, the bit test and set (BTS) instruction does not reinitialize the bit test
operand in register EBX, because the contents were not changed by the bit test (BT)
instruction.

//bit_test_instr_reg.cpp
//illustrates the operation of the bit test
//instructions BT, BTS, BTR, BTC using a
//register as the bit offset (index).
//the first hex number entered is the operand;
//the second hex number entered is the offset in a reg
#include "stdafx.h"
int main (void)
{
//define variables

int bt_opnd, offset_reg, bts_rslt_ebx, btr_rslt_ebx,
btc_rslt_ebx;

unsigned char bt_flags, bts_flags, btr_flags, btc_flags;

printf ("Enter two hexadecimal numbers: \n");
scanf ("%X %X", &bt_opnd, &offset_reg);

//switch to assembly
_asm
{

//BT instruction
MOV EBX, bt_opnd
MOV EDX, offset_reg
BT EBX, EDX
LAHF
MOV bt_flags, AH

//BTS instruction
BTS EBX, EDX
LAHF
MOV bts_flags, AH
MOV bts_rslt_ebx, EBX

//BTR instruction
MOV EBX, bt_opnd
MOV EDX, offset_reg
BTR EBX, EDX
LAHF
MOV btr_flags, AH
MOV btr_rslt_ebx, EBX

(a) //continued on next page

312 Chapter 8 Logical, Bit, Shift, and Rotate Instructions

Figure 8.11 Program to illustrate the bit test instructions: BT, BTS, BTR, and
BTC using the contents of register EDX as the bit offset: (a) the program and (b) the
outputs.

//BTC instruction
MOV EBX, bt_opnd
MOV EDX, offset_reg
BTC EBX, EDX
LAHF
MOV btc_flags, AH
MOV btc_rslt_ebx, EBX

}
printf ("\nbt_opnd = %X\nbt_flags = %X\n\n",

bt_opnd, bt_flags);

printf ("bts_opnd = %X\nbts_flags = %X\n
rslt_ebx = %X\n\n", bt_opnd, bts_flags,
bts_rslt_ebx);

printf ("btr_opnd = %X\nbtr_flags = %X\n
rslt_ebx = %X\n\n", bt_opnd, btr_flags,
btr_rslt_ebx);

printf ("btc_opnd = %X\nbtc_flags = %X\n
rslt_ebx = %X\n\n", bt_opnd, btc_flags,
btc_rslt_ebx);

return 0;
}

Enter two hexadecimal numbers:
FFFFFF4B 4

bt_opnd = FFFFFF4B
bt_flags = 46

bts_opnd = FFFFFF4B
bts_flags = 46
rslt_ebx = FFFFFF5B

btr_opnd = FFFFFF4B
btr_flags = 46
rslt_ebx = FFFFFF4B

btc_opnd = FFFFFF4B
btc_flags = 46
rslt_ebx = FFFFFF5B

Press any key to continue . . . _ (b) //continued on next page

8.7 Bit Test Instructions 313

Figure 8.11 (Continued)

Enter two hexadecimal numbers:
FFFFFF4B 10

bt_opnd = FFFFFF4B
bt_flags = 47

bts_opnd = FFFFFF4B
bts_flags = 47
rslt_ebx = FFFFFF4B

btr_opnd = FFFFFF4B
btr_flags = 47
rslt_ebx = FFFEFF4B

btc_opnd = FFFFFF4B
btc_flags = 47
rslt_ebx = FFFEFF4B

Press any key to continue . . . _

314 Chapter 8 Logical, Bit, Shift, and Rotate Instructions

Figure 8.11 (Continued)

8.8 Bit Scan Instructions
There are two bit scan instructions: bit scan forward (BSF) and bit scan reverse (BSR).
These instructions scan the contents of a register or memory location to determine the
location of the first 1 bit in the operand. If the scanned operand contains all zeroes, the
zero flag (ZF) is set to 1; if the scanned operand contains at least one 1 bit, then the ZF
flag is reset — the other flags are undefined. The syntax for the bit scan instructions is
shown below.

BSF/R register, register/memory

8.8.1 Bit Scan Forward (BSF) Instruction

The BSF instruction scans the source operand in a register or memory location to
determine the location of the first 1 bit with reference to bit 0 of the operand. The oper-
ation scans the source operand from the low-order bit to the high-order bit. Scanning
stops when the first low-order 1 bit is encountered. If a 1 bit is found, then its location
is specified as the bit index (offset) and is stored in the destination register. The bit

8.8 Bit Scan Instructions 315

index is an unsigned offset referenced from bit 0. If the source operand is zero, then
the ZF flag is set to 1 and the contents of the destination register are undefined. Figure
8.12 illustrates a BSF operation using register EAX as the destination register.

BSF EAX, DATA

EAX 6

6 5 4 3 2 1 0

 1 0 0 0 0 0 0

Scan

dst src

31

– – – – – – –

Figure 8.12 Illustration of a bit scan forward (BSF) operation.

Figure 8.13 shows an assembly language module embedded in a C program that
illustrates the operation of the BSF instruction. An 8-digit hexadecimal number is
entered from the keyboard and moved to register EBX. Since the MOV instruction
does not affect the flags, the operand in register EBX is first compared to zero to deter-
mine if there are any 1s in the operand. Then a conditional jump if zero (JZ) instruc-
tion is executed — the jump will occur if the ZF flag is set, indicating no 1s in the
operand. If the jump does not occur, then register EBX is scanned from bit 0 to bit 31
to locate the position of the first 1 bit. The operand and the location of the first low-
order 1 bit are then displayed.

//bit_scan_fwd.cpp
//illustrates the operation of the BSF instruction

#include "stdafx.h"

int main (void)
{
//define variables

int bsf_src_opnd, bsf_rslt;

(a) //continued on next page

Figure 8.13 Illustrates the operation of the BSF instruction: (a) the program and
(b) the outputs.

printf ("Enter an 8-digit hexadecimal number: \n");
scanf ("%X", &bsf_src_opnd);

//switch to assembly
_asm
{

MOV EBX, bsf_src_opnd
//the MOV instr does not affect the flags;
//therefore, the state of the flags is unknown

CMP EBX, 0
JZ NO_ONES_BSF
BSF EAX, EBX
MOV bsf_rslt, EAX

}

printf ("\nBSF bit is %d\n\n", bsf_rslt);
goto end;

NO_ONES_BSF:
printf ("\nThe BSF operand had no 1s \n\n");

end:
return 0;

}

Enter an 8-digit hexadecimal number:
00A07000

BSF bit is 12

Press any key to continue . . . _
--
Enter an 8-digit hexadecimal number:
00000001

BSF bit is 0

Press any key to continue . . . _
--

//continued on next page
(b)

316 Chapter 8 Logical, Bit, Shift, and Rotate Instructions

Figure 8.13 (Continued)

Enter an 8-digit hexadecimal number:
80000000

BSF bit is 31

Press any key to continue . . . _
--
Enter an 8-digit hexadecimal number:
0DC06000

BSF bit is 13

Press any key to continue . . . _
--
Enter an 8-digit hexadecimal number:
FF800000

BSF bit is 23

Press any key to continue . . . _
--
Enter an 8-digit hexadecimal number:
00000000

The BSF operand has no 1s

Press any key to continue . . . _

8.8 Bit Scan Instructions 317

Figure 8.13 (Continued)

8.8.2 Bit Scan Reverse (BSR) Instruction

The BSR instruction scans the source operand in a register or memory location to
determine the location of the first 1 bit with reference to bit 0 of the operand. The oper-
ation scans the source operand from the high-order bit to the low-order bit. Scanning
stops when the first high-order 1 bit is encountered. If a 1 bit is found, then its location
is specified as the bit index (offset) and is stored in the destination register. The bit
index is an unsigned offset referenced from bit 0. If the source operand is zero, then
the ZF flag is set to 1 and the contents of the destination register are undefined. Figure
8.12 also applies to the BSR instruction, except that scanning is done from left to right
— from bit 31 to bit 0.

Figure 8.14 shows an assembly language module embedded in a C program that
illustrates the operation of the BSR instruction. An 8-digit hexadecimal number is

318 Chapter 8 Logical, Bit, Shift, and Rotate Instructions

entered from the keyboard and is scanned from bit 31 to bit 0 to locate the position of
the first 1 bit. The operand and the location of the first high-order 1 bit are displayed.

//bit_scan_rev.cpp
//illustrates the operation of the BSR instruction

#include "stdafx.h"

int main (void)
{
//define variables

int bsr_src_opnd, bsr_rslt;

printf ("Enter an 8-digit hexadecimal number: \n");
scanf ("%X", &bsr_src_opnd);

//switch to assembly
_asm
{

MOV EBX, bsr_src_opnd
//the MOV instr does not affect the flags;
//therefore, the state of the flags is unknown

CMP EBX, 0
JZ NO_ONES_BSR
BSR EAX, EBX
MOV bsr_rslt, EAX

}

printf ("\nBSR bit is %d\n\n", bsr_rslt);
goto end;

NO_ONES_BSR:
printf ("\nThe BSR operand had no 1s \n\n");

end:
return 0;

}
//continued on next page

(a)

Figure 8.14 Illustrates the operation of the BSR instruction: (a) the program and
(b) the outputs.

Enter an 8-digit hexadecimal number:
F0000000

BSR bit is 31

Press any key to continue . . . _
--
Enter an 8-digit hexadecimal number:
00000001

BSR bit is 0

Press any key to continue . . . _
--
Enter an 8-digit hexadecimal number:
0000065C

BSR bit is 10

Press any key to continue . . . _
--
Enter an 8-digit hexadecimal number:
01116ED0

BSR bit is 24

Press any key to continue . . . _
--
Enter an 8-digit hexadecimal number:
00000000

The BSR operand had no 1s

Press any key to continue . . . _
--
Enter an 8-digit hexadecimal number:
00A0B7D0

BSR bit is 23

Press any key to continue . . . _
(b)

8.8 Bit Scan Instructions 319

Figure 8.14 (Continued)

320 Chapter 8 Logical, Bit, Shift, and Rotate Instructions

8.9 Shift Instructions
There are six shift instructions: shift arithmetic left (SAL), shift logical left (SHL),
shift arithmetic right (SAR), shift logical right (SHR), shift left double (SHLD), and
shift right double (SHRD). The SAL and SAR instructions perform arithmetic shifts
where the operands are signed numbers in 2s complement representation. The SHL
and SHR instructions perform logical shifts on unsigned numbers. The SHLD and
SHRD instructions perform shifts from one operand to another operand. The syntax
for these instructions is shown below.

SAL/R/SHL/R register/memory, immediate/register CL

SHLD/SHRD register/memory, register, immediate/register CL

8.9.1 Shift Arithmetic Left (SAL) Instruction

The bits in the first operand (destination) are shifted left by the number of bits speci-
fied by the second operand (count). The count can be an immediate value of 1, an
immediate value specified in a byte, or a count in register CL. The count is masked by
1F16 (000111112) so that the count cannot exceed a count of 31 (modulo-32), making
the count range from 0 to 31. If the REX prefix is used in 64-bit mode, then the count
is masked to produce a range from 0 to 63. In this mode, the number of general-pur-
pose registers is increased from eight to sixteen and can be extended to 64 bits.

During each shift, the high-order bit of the destination is shifted into the carry flag
(CF) and a 0 is shifted into the low-order bit. Since the destination operand is a signed
number in 2s complement representation, an overflow occurs if the high-order bit of
the destination is not equal to the carry flag. This means that significant bits have been
lost in the destination operand.

The flags affected by the SAL instruction are the overflow flag (OF), the sign flag
(SF), the zero flag (ZF), the parity flag (PF), and the carry flag (CF). These flags
reflect the result of the SAL instruction execution. The overflow flag (OF) is not
affected by multiple-bit shifts; it is affected only by single-bit shifts. If the initial count
is greater than 1, then the overflow flag (OF) is undefined. The OF flag is reset (0) if
the high-order bit in the destination is the same as the CF flag after an initial count of
1 has been performed; if these bits are different, then the OF flag is set (1).

Figure 8.15 shows an assembly language module embedded in a C program that
illustrates the use of the SAL instruction utilizing a shift count with an immediate
value of 1, a shift count with an immediate byte of 5, and a shift count contained in reg-
ister CL. The original shift operand is shown in the outputs before execution of the
SAL instruction and the resulting shifted operand after execution of the SAL instruc-
tion. The flags are also shown that reflect the result of the operation.

//shift_arith_left.cpp
//illustrates the operation of the SAL instruction
#include "stdafx.h"
int main (void)
{
//define variables

int sal_dst_opnd, sal_1_rslt, sal_immed_rslt,
sal_cl_rslt;

unsigned char sal_1_flags, sal_immed_flags, sal_cl_flags;

printf ("Enter a decimal number: \n");
scanf ("%d", &sal_dst_opnd);

//switch to assembly
_asm
{

//shift arithmetic left one bit immediate
MOV EBX, sal_dst_opnd
SAL EBX, 1
MOV sal_1_rslt, EBX
LAHF
MOV sal_1_flags, AH

//shift arithmetic left one byte immediate
MOV EBX, sal_dst_opnd
SAL EBX, 5
MOV sal_immed_rslt, EBX
LAHF
MOV sal_immed_flags, AH

//shift arithmetic left the count in CL
MOV EBX, sal_dst_opnd
MOV CL, 4
SAL EBX, CL
MOV sal_cl_rslt, EBX
LAHF
MOV sal_cl_flags, AH

} (a) //continued on next page

8.9 Shift Instructions 321

Figure 8.15 Illustrates the operation of the SAL instruction: (a) the program and
(b) the outputs.

printf ("\nImmediate shift 1\nBefore shift = %d\n
After shift = %d\nFlags = %X\n\n",
sal_dst_opnd, sal_1_rslt, sal_1_flags);

printf ("Immediate byte shift 5\nBefore shift = %d\n
After shift = %d\nFlags = %X\n\n",
sal_dst_opnd, sal_immed_rslt, sal_immed_flags);

printf ("CL register shift 4\nBefore shift = %d\n
After shift = %d\nFlags = %X\n\n",
sal_dst_opnd, sal_cl_rslt, sal_cl_flags);

return 0;
}

Enter a decimal number:
32

Immediate shift 1
Before shift = 32
After shift = 64
Flags = 2

Immediate byte shift 5
Before shift = 32
After shift = 1024
Flags = 6

CL register shift 4
Before shift = 32
After shift = 512
Flags = 6

Press any key to continue . . . _
--
Enter a decimal number:
25

Immediate shift 1
Before shift = 25
After shift = 50
Flags = 2

(b) //continued on next page

322 Chapter 8 Logical, Bit, Shift, and Rotate Instructions

Figure 8.15 (Continued)

Immediate byte shift 5
Before shift = 25
After shift = 800
Flags = 2

CL register shift 4
Before shift = 25
After shift = 400
Flags = 6

Press any key to continue . . . _

8.9 Shift Instructions 323

Figure 8.15 (Continued)

8.9.2 Shift Logical Left (SHL) Instruction

The SAL instruction and the SHL instruction are equivalent operations, although the
SHL instruction is for unsigned operands. They both shift the destination operand left
toward the high-order bit position, which is shifted into the carry flag. Zeroes are
shifted into the low-order bit position. The SAL and the SHL instructions are equiv-
alent to a multiply operation: a left shift of one bit multiplies the operand by two; a left
shift of three bits multiplies the operand by eight. Operations are shown below using
eight bits for both the SAL instruction (2s complement) and the SHL instruction.

SAL: Initial operand = 0 0 0 1 1 0 1 1 +27
SAL 1 (×2) 0 0 1 1 0 1 1 0 +54

SAL: Initial operand = 0 0 0 0 1 1 1 1 +15
SAL 3 (×8) 0 1 1 1 1 0 0 0 +120

SAL: Initial operand = 1 1 1 0 0 0 1 1 –29
SAL 2 (×4) 1 0 0 0 1 1 0 0 –116

SHL: Initial operand = 0 0 0 0 0 1 1 1 7
SHL 4 (×16) 0 1 1 1 0 0 0 0 112

SHL: Initial operand = 0 0 0 1 1 1 1 1 31
SHL 3 (×8) 1 1 1 1 1 0 0 0 248

324 Chapter 8 Logical, Bit, Shift, and Rotate Instructions

8.9.3 Shift Arithmetic Right (SAR) Instruction

The bits in the first operand (destination) are shifted right by the number of bits spec-
ified by the second operand (count). The count can be an immediate value of 1, an
immediate value specified in a byte, or a count in register CL. The count is masked by
1F16 (000111112) so that the count cannot exceed a count of 31 (modulo-32), making
the count range from 0 to 31. If the REX prefix is used in 64-bit mode, then the count
is masked to produce a range from 0 to 63. In this mode, the number of general-pur-
pose registers is increased from eight to sixteen and can be extended to 64 bits.

For each bit shift, the low-order bit (0) is shifted into the carry flag. The high-
order bit — the sign bit of the destination operand — extends to the right replacing the
bits that have been shifted, thereby keeping the sign of the number unchanged.

The flags affected by the SAR instruction are the overflow flag (OF), the sign flag
(SF), the zero flag (ZF), the parity flag (PF), and the carry flag (CF). These flags
reflect the result of the SAR instruction execution. The overflow flag (OF) is not
affected by multiple-bit shifts; it is affected only by single-bit shifts. The OF flag is
reset (0) for all 1-bit shifts.

Figure 8.16 shows an assembly language module embedded in a C program that
illustrates the use of the SAR instruction utilizing a shift count with an immediate
value of 1, a shift count with an immediate byte of 4, and a shift count contained in reg-
ister CL. The original operand is shown in the outputs before execution of the SAR
instruction and the resulting shifted operand after execution of the SAR instruction.

//shift_arith_right.cpp
//illustrates the operation of the SAR instruction
#include "stdafx.h"
int main (void)
{
//define variables

int sar_dst_opnd, sar_1_rslt, sar_immed_rslt,
sar_cl_rslt;

printf ("Enter an 8-digit hexadecimal number: \n");
scanf ("%X", &sar_dst_opnd);

//switch to assembly
_asm

{
//shift arithmetic right one bit immediate

MOV EBX, sar_dst_opnd
SAR EBX, 1
MOV sar_1_rslt, EBX

(a) //continued on next page

Figure 8.16 Illustrates the operation of the SAR instruction: (a) the program and
(b) the outputs.

//shift arithmetic right one byte immediate
MOV EBX, sar_dst_opnd
SAR EBX, 4
MOV sar_immed_rslt, EBX

//shift arithmetic right the count in CL
MOV EBX, sar_dst_opnd
MOV CL, 3
SAR EBX, CL
MOV sar_cl_rslt, EBX

}

printf ("\nImmediate shift 1\nBefore shift = %X\n
After shift = %X\n\n", sar_dst_opnd,sar_1_rslt);

printf ("Immediate byte shift 4\nBefore shift = %X\n
After shift = %X\n\n", sar_dst_opnd,
sar_immed_rslt);

printf ("CL register shift 3\nBefore shift = %X\n
After shift = %X\n\n", sar_dst_opnd,
sar_cl_rslt);

return 0;
}

Enter an 8-digit hexadecimal number:
FF0000FF

Immediate shift 1
Before shift = FF0000FF
After shift = FF80007F

Immediate byte shift 4
Before shift = FF0000FF
After shift = FFF0000F

CL register shift 3
Before shift = FF0000FF
After shift = FFE0001F

Press any key to continue . . . _
(b) //continued on next page

8.9 Shift Instructions 325

Figure 8.16 (Continued)

Enter an 8-digit hexadecimal number:
F0000677

Immediate shift 1
Before shift = F0000677
After shift = F800033B

Immediate byte shift 4
Before shift = F0000677
After shift = FF000067

CL register shift 3
Before shift = F0000677
After shift = FE0000CE

Press any key to continue . . . _
--
Enter an 8-digit hexadecimal number:
00EF00FF

Immediate shift 1
Before shift = 00EF00FF
After shift = 77807F

Immediate byte shift 4
Before shift = 00EF00FF
After shift = EF00F

CL register shift 3
Before shift = 00EF00FF
After shift = 1DE01F

Press any key to continue . . . _

326 Chapter 8 Logical, Bit, Shift, and Rotate Instructions

Figure 8.16 (Continued)

8.9.4 Shift Logical Right (SHR) Instruction

The SHR instruction shifts an unsigned operand right the number of bits specified in
the count field of the second operand, which can be an immediate value of 1, an imme-
diate value specified in a byte, or a value in the CL register. During each shift opera-
tion, the low-order bit is shifted into the carry flag and a zero is shifted into the high-
order bit position. The SAR instruction and the SHR instruction can be used to divide
the destination operand by powers of 2. A right shift of one bit divides the operand by

8.9 Shift Instructions 327

two; a right shift of three bits divides the operand by eight. Operations are shown
below using eight bits for both the SAR instruction (2s complement) and the SHR
instruction.

SAR: Initial operand = 0 0 0 1 0 1 0 0 +20
SAR 1 (÷2) 0 0 0 0 1 0 1 0 +10

SAR: Initial operand = 0 1 1 0 1 0 0 0 +104
SAR 3 (÷8) 0 0 0 0 1 1 0 1 +13

SAR: Initial operand = 1 1 1 0 0 1 1 0 –26
SAR 2 (÷4) 1 1 1 1 1 0 0 1 –7

SAR: Initial operand = 0 0 0 1 0 1 0 1 +21
SAR 1 (÷2) 0 0 0 0 1 0 1 0 +10

SAR: Initial operand = 0 0 0 1 0 1 0 1 +21
SAR 2 (÷4) 0 0 0 0 0 1 0 1 +5

SHR: Initial operand = 0 0 1 1 0 0 0 0 48
SHR 4 (÷16) 0 0 0 0 0 0 1 1 3

SHR: Initial operand = 1 0 0 1 1 0 0 0 152
SHR 3 (÷8) 0 0 0 1 0 0 1 1 19

Note the result of the third SAR instruction, which divides –26 by 4. The shift
operation leaves an incorrect result; however, the last bit shifted out of the operand —
the most significant bit (1) from position 21 — is stored in the carry flag. This problem
occurs only for negative numbers. A signed division of these two numbers yields a
correct result with a quotient and remainder. In the fourth SAR instruction, +21 is
divided by 2, which yields a result of 10 with the carry flag (CF) = 1; that is, an answer
of 10.5. In the fifth SAR instruction, +21 is divided by 4, which yields a result of 5
with the carry flag (CF) = 0. If the two bits shifted out are considered, then the result
would be 0000 0101.01 (+5.25), which is correct.

8.9.5 Shift Left Double (SHLD) Instruction

The SHLD instruction is a 3-operand instruction that is used to shift bits from one
operand into another operand. Bits from the second operand (source operand) are
shifted left into the first operand (destination operand). The number of bits shifted are

328 Chapter 8 Logical, Bit, Shift, and Rotate Instructions

specified in a count variable that is either an unsigned immediate integer or a count in
register CL. Bits are shifted from the source operand, beginning with the high-order
bit position, into the destination operand, beginning with the low-order bit position.
The destination operand is either a register or a memory location; the source operand
must be a register and is not modified by the instruction. For convenience, the syntax
for the SHLD instruction is reproduced below.

SHLD register/memory, register, immediate/register CL

Both the destination operand and the source operand must be the same length,
either 16 bits or 32 bits. The count in register CL is masked by 1F16 (000111112) so
that the count cannot exceed a count of 31, making the count range from 0 to 31. A
count that is greater than the size of the operand produces a result that is undefined. If
the REX prefix is used in 64-bit mode, then the count is masked to produce a range
from 0 to 63. In this mode, the number of general-purpose registers is increased from
eight to sixteen and can be extended to 64 bits.

The carry flag (CF) contains the last bit that is shifted out of the destination oper-
and. If the shift count is 1, then the overflow flag (OF) is set (1) if a change in the sign
occurred; otherwise, it is reset (0); for counts greater than one, the overflow flag is
undefined. A count of zero does not affect the flags.

Figure 8.17 shows a diagram that illustrates the operation of the SHLD instruction
for two 32-bit operands. Figure 8.18 shows a code segment that demonstrates the
SHLD instruction using two operands from memory that are moved to register EAX
(destination) and to register EBX (source). The shift count is an immediate value of
seven.

Figure 8.19 shows a numerical example of the SHLD instruction using registers
AX (destination) and register BX (source). Register AX is assigned a value of 1234H
and register BX is assigned a value of 5678H. The source operand in register BX is
saved before the shift operation begins so that it can be restored after the SHLD
instruction is finished.

31 0 31 0
First operand Second operand
Destination Source

Shift this operand Shift in these bits
Unchanged after the shift
Source must be a register

Figure 8.17 Diagram showing the operation of the SHLD instruction.

MOV EAX, [ESI]

MOV EBX, [ESI + 4]

SHLD EAX, EBX, 7

EAX

31 0 31 0
Destination Source

EBX

31 0

EAX EBX

8.9 Shift Instructions 329

Figure 8.18 Code segment and register initialization of operands from memory
for a SHLD instruction.

0001 0010 0011 0100 0101 0110 0111 1000AX BX

 Destination Source

Before shift

0011 0100 0101 0110 0111 1000 0000 0000AX BX

 Destination Source

After shift

0101 0110 0111 1000

Let AX = 1234H
Let BX = 5678H

Then do SHLD AX, BX, 8

Then restore BX

Save BX

0101 0110 0111 1000 BX

--

--

--

Figure 8.19 Diagram to illustrate a numerical example for a SHLD instruction.

330 Chapter 8 Logical, Bit, Shift, and Rotate Instructions

Figure 8.20 shows an assembly language module embedded in a C program that
illustrates the application of the SHLD instruction shown in Figure 8.19 using the AX
and BX general-purpose registers. The unsigned short integer data type is used to
characterize the 16-bit unsigned hexadecimal numbers. This data type consists of two
bytes with a range from 0 to 65,535.

//shift_left_dbl.cpp
//illustrates the use the SHLD instruction

#include "stdafx.h"

int main (void)

{
//define variables

unsigned short src_opnd, dst_opnd, src_rslt, dst_rslt;

printf ("Enter two 4-digit hex numbers - src, dst: \n");
scanf ("%X %X", &src_opnd, &dst_opnd);

//switch to assembly
_asm
{

MOV BX, src_opnd
MOV AX, dst_opnd

SHLD AX, BX, 8 ;shift AX:BX left 8 bits

MOV src_rslt, BX
MOV dst_rslt, AX

}

printf ("\nSource result = %X\n
Destination result = %X\n\n",
src_rslt, dst_rslt);

return 0;
}

(a) //continued on next page

Figure 8.20 Illustrates the operation of the SHLD instruction: (a) the program and
(b) the outputs.

Enter two 4-digit hex numbers - src, dst:
1234 5678

Source result = 1234
Destination result = 7812

Press any key to continue . . . _
--
Enter two 4-digit hex numbers - src, dst:
12AB CDEF

Source result = 12AB
Destination result = EF12

Press any key to continue . . . _
(b)

8.9 Shift Instructions 331

Figure 8.20 (Continued)

8.9.6 Shift Right Double (SHRD) Instruction

The SHRD instruction functions in a manner similar to the SHLD instruction, except
that the bits are shifted to the right from the low-order bit position of the source oper-
and register to the high-order bit of the destination operand (register/memory). The
number of bits shifted is specified in a count variable that is either an unsigned imme-
diate integer or a count in register CL. The syntax for the SHRD instruction is shown
below.

SHLD register/memory, register, immediate/register CL

Both the destination operand and the source operand must be the same length,
either a word (16 bits) or a doubleword (32 bits). The count is masked by 1F16
(000111112) providing a count range from 0 to 31. A count that is greater than the size
of the operand produces an undefined result.

If the REX prefix is used in 64-bit mode, then the count is masked to produce a
range from 0 to 63. In this mode, the number of general-purpose registers is increased
from eight to sixteen and can be extended to 64 bits. The last bit shifted out of the des-
tination operand is stored in the carry flag (CF). The overflow flag (OF) is set if the
sign changes for a 1-bit shift; otherwise, the overflow flag is reset. The states of the
sign flag (SF), the zero flag (ZF), and the parity flag (PF) are determined by the result
of the shift operation. Figure 8.21 shows a diagram that illustrates the operation of the

332 Chapter 8 Logical, Bit, Shift, and Rotate Instructions

SHRD instruction for two 32-bit operands. The source operand is unchanged after the
shift operation.

31 0 31 0
Second operand First operand

Source Destination

Shift in these bits Shift this operand
Unchanged after the shift
Source must be a register

Figure 8.21 Diagram showing the operation of the SHRD instruction.

Figure 8.22 shows an assembly language module embedded in a C program that
illustrates the application of the SHRD instruction using the AX and BX general-pur-
pose registers for the source operand and destination operand, respectively. Two 4-
digit hexadecimal numbers are entered from the keyboard and displayed together with
the source operand result and the destination operand result. The unsigned short inte-
ger data type is used to characterize the 16-bit unsigned hexadecimal numbers.

//shift_right_dbl2.cpp
//illustrates the use the SHRD instruction
#include "stdafx.h"
int main (void)

{
//define variables

unsigned short src_opnd, dst_opnd, src_rslt, dst_rslt;

printf ("Enter two 4-digit hex numbers - src, dst: \n");
scanf ("%X %X", &src_opnd, &dst_opnd);

//switch to assembly
_asm
{

MOV AX, src_opnd
MOV BX, dst_opnd

(a) //continued on next page

Figure 8.22 Illustrates the operation of the SHRD instruction: (a) the program and
(b) the outputs.

SHRD BX, AX, 10 ;shift AX:BX right 10 bits

MOV src_rslt, AX
MOV dst_rslt, BX

}

printf ("\nSource result = %X\n
Destination result = %X\n\n",
src_rslt, dst_rslt);

return 0;
}

Enter two 4-digit hex numbers - src, dst:
1234 5678

Source result = 1234
Destination result = 8D15

Press any key to continue . . . _
--
Enter two 4-digit hex numbers - src, dst:
12AB CDEF

Source result = 12AB
Destination result = AAF3

Press any key to continue . . . _
(b)

8.10 Rotate Instructions 333

Figure 8.22 (Continued)

8.10 Rotate Instructions
This section describes the four rotate instructions: rotate left (ROL), rotate through
carry left (RCL), rotate right (ROR), and rotate through carry right (RCR). The rotate
instructions rotate the bits in the destination operand a specific number of bits as stip-
ulated in the count field of the second operand. The count can be a single bit shift, an
unsigned integer as an immediate byte, or a count in register CL. The count is masked
by 1F16 (000111112) providing a count range from 0 to 31. The shift operations pre-
sented in Section 8.9 resulted in an inherent loss of bits; however, the rotate instruc-

334 Chapter 8 Logical, Bit, Shift, and Rotate Instructions

tions provide a result in which no bits are lost — they are simply shifted in to the other
end of the destination operand. The syntax for the rotate instructions is shown below.

ROL/RCL/ROR/RCR register/memory, immediate/register CL

8.10.1 Rotate Left (ROL) Instruction

The rotate left (ROL) instruction rotates (shifts) the destination bits left toward the
high-order bit position of the operand. The high-order bit is shifted into the carry flag
and also into the low-order bit position. The carry flag is not included as part of the
destination result. The overflow flag (OF) is set for shifts of one bit only and is unde-
fined for all other shift counts. The overflow flag is defined as the exclusive-OR of the
carry flag and the high-order bit of the result; that is, a change of sign occurred for the
destination operand. Figure 8.23 shows a diagram that illustrates the operation of the
ROL instruction. Figure 8.24 provides a numerical example for a ROL instruction
using general-purpose register BX with a rotate count of 9.

31 0
Destination

CF

Rotate left (ROL)

Figure 8.23 Diagram showing the operation of the ROL instruction.

ROL BX, 9 BX = 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1
After 1 shift 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0
After 2 shifts 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1
After 3 shifts 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0
After 4 shifts 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1
After 5 shifts 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0
After 6 shifts 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0
After 7 shifts 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0
After 8 shifts 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0
After 9 shifts 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1

Figure 8.24 Numerical example for ROL using register BX with a count of 9.

8.10 Rotate Instructions 335

8.10.2 Rotate through Carry Left (RCL) Instruction

The rotate through carry left (RCL) instruction is similar to the ROL instruction
except that the carry flag is included in the rotation. The RCL instruction shifts the
carry flag into the low-order bit position of the destination operand and shifts the high-
order bit of the destination into the carry flag. The overflow flag operates in an iden-
tical manner as in the ROL instruction. Figure 8.25 shows a diagram that illustrates
the operation of the RCL instruction. Figure 8.26 provides a numerical example for a
RCL instruction using general-purpose register EAX with a rotate count of 4 in which
the carry flag is initially set to a value of 1. This example depicts one of the user-
entered inputs in an assembly language program that is described below.

Figure 8.27 shows an assembly language module embedded in a C program that
illustrates the application of the ROL instruction and the RCL instruction using the
general-purpose register EAX as the destination operand. An 8-digit hexadecimal
number is entered from the keyboard and displayed together with the resulting desti-
nation operand. The set carry flag (STC) instruction is introduced in the program to
set the carry flag to a known state in order to execute the RCL instruction. The STC
instruction sets the carry flag in the EFLAGS register to a value of 1. There are two
similar instructions: clear carry flag (CLC), which resets the carry flag, and the com-
plement carry flag (CMC), which changes the state of the carry flag — from 0 to 1 or
from 1 to 0.

31 0
Destination

CF

Rotate through carry left (RCL)

Figure 8.25 Diagram showing the operation of the RCL instruction.

CF RCL EAX, 4
1 0001 0010 1010 1011 1100 1101 1110 1111
0 0010 0101 0101 0111 1001 1011 1101 1111 After 1 shift
0 0100 1010 1010 1111 0011 0111 1011 1110 After 2 shifts
0 1001 0101 0101 1110 0110 1111 0111 1100 After 3 shifts
1 0010 1010 1011 1100 1101 1110 1111 1000 After 4 shifts

Figure 8.26 Numerical example for RCL using register EAX with a count of 4.

//rotate_left.cpp
//illustrates the operation of the rotate left (ROL)
//and the rotate through carry left (RCL) instructions

#include "stdafx.h"

int main (void)
{
//define variables

int rotate_opnd, rol_1_rslt, rol_immed_rslt, rol_cl_rslt,
rcl_rslt;

printf ("Enter an 8-digit hexadecimal number: \n");
scanf ("%X", &rotate_opnd);

//switch to assembly
_asm
{

//rotate left one bit immediate
MOV EAX, rotate_opnd
ROL EAX, 1
MOV rol_1_rslt, EAX ;move to result

//rotate left one byte immediate
MOV EAX, rotate_opnd
ROL EAX, 6
MOV rol_immed_rslt, EAX ;move to result

//rotate left the count in CL
MOV EAX, rotate_opnd
MOV CL, 3
ROL EAX, CL
MOV rol_cl_rslt, EAX ;move to result

//rotate through carry left one byte immediate
STC
MOV EAX, rotate_opnd
RCL EAX, 4
MOV rcl_rslt, EAX ;move to result

}

(a) //continued on next page

336 Chapter 8 Logical, Bit, Shift, and Rotate Instructions

Figure 8.27 Program to illustrate the application of the ROL and the RCL instruc-
tions: (a) the program and (b) the outputs.

printf ("\nImmediate rotate 1\nBefore rotate = %X\n
After rotate = %X\n\n", rotate_opnd, rol_1_rslt);

printf ("\nImmediate byte rotate 6\n
Before rotate = %X\nAfter rotate = %X\n\n",
rotate_opnd, rol_immed_rslt);

printf ("\nCL register rotate 3\n
Before rotate = %X\nAfter rotate = %X\n\n",
rotate_opnd, rol_cl_rslt);

printf ("\nRotate through carry 4\n
Before rotate = %X\nAfter rotate = %X\n\n",
rotate_opnd, rcl_rslt);

return 0;
}

Enter an 8-digit hexadecimal number:
12ABCDEF

Immediate rotate 1
Before rotate = 12ABCDEF
After rotate = 25579BDE

Immediate byte rotate 6
Before rotate = 12ABCDEF
After rotate = AAF37BC4

CL register rotate 3
Before rotate = 12ABCDEF
After rotate = 955E6F78

Rotate through carry 4
Before rotate = 12ABCDEF
After rotate = 2ABCDEF8

Press any key to continue . . . _
--

//continued on next page
(b)

8.10 Rotate Instructions 337

Figure 8.27 (Continued)

Enter an 8-digit hexadecimal number:
67AB89CD

Immediate rotate 1
Before rotate = 67AB89CD
After rotate = CF57139A

Immediate byte rotate 6
Before rotate = 67AB89CD
After rotate = EAE27359

CL register rotate 3
Before rotate = 67AB89CD
After rotate = 3D5C4E6B

Rotate through carry 4
Before rotate = 67AB89CD
After rotate = 7AB89CDB

Press any key to continue . . . _

--

Enter an 8-digit hexadecimal number:
11111111

Immediate rotate 1
Before rotate = 11111111
After rotate = 22222222

Immediate byte rotate 6
Before rotate = 11111111
After rotate = 44444444

CL register rotate 3
Before rotate = 11111111
After rotate = 88888888

Rotate through carry 4
Before rotate = 11111111
After rotate = 11111118

Press any key to continue . . . _

338 Chapter 8 Logical, Bit, Shift, and Rotate Instructions

Figure 8.27 (Continued)

8.10 Rotate Instructions 339

8.10.3 Rotate Right (ROR) Instruction

The rotate right (ROR) instruction rotates (shifts) the destination bits right toward the
low-order bit position of the operand. The low-order bit is shifted into the carry flag
and also into the high-order bit position. The carry flag is not included as part of the
destination result. The overflow flag (OF) is set for shifts of one bit only and is unde-
fined for all other shift counts. The overflow flag is defined as the exclusive-OR of the
two high-order bits of the result; that is, a change of sign occurred for the destination
operand. Figure 8.28 shows a diagram that illustrates the operation of the ROR
instruction. Figure 8.29 shows a numerical example for a ROR instruction using gen-
eral-purpose register AX with a rotate count of 5.

31 0
Destination

CF

Rotate right (ROR)

Figure 8.28 Diagram showing the operation of the ROR instruction.

ROR AX, 5 AX = 1 1 0 1 1 1 0 0 0 1 1 0 1 0 0 1
After 1 shift 1 1 1 0 1 1 1 0 0 0 1 1 0 1 0 0
After 2 shifts 0 1 1 1 0 1 1 1 0 0 0 1 1 0 1 0
After 3 shifts 0 0 1 1 1 0 1 1 1 0 0 0 1 1 0 1
After 4 shifts 1 0 0 1 1 1 0 1 1 1 0 0 0 1 1 0
After 5 shifts 0 1 0 0 1 1 1 0 1 1 1 0 0 0 1 1

Figure 8.29 Numerical example for ROR using register AX with a count of 5.

8.10.4 Rotate through Carry Right (RCR) Instruction

The rotate through carry right (RCR) instruction is similar to the ROR instruction
except that the carry flag is included in the rotation. The RCR instruction shifts the
carry flag into the high-order bit position of the destination operand and shifts the low-
order bit of the destination into the carry flag. The overflow flag operates in an iden-
tical manner as in the ROR instruction. Figure 8.30 shows a diagram that illustrates
the operation of the RCR instruction. Figure 8.31 provides a numerical example for a
RCR instruction using general-purpose register EAX with a rotate count of 4 in which

340 Chapter 8 Logical, Bit, Shift, and Rotate Instructions

the carry flag is initially set to a value of 0. This example depicts one of the user-
entered inputs in an assembly language program that is described below.

Figure 8.32 shows an assembly language module embedded in a C program that
illustrates the application of the ROR instruction and the RCR instruction using the
general-purpose register EAX as the destination operand. An 8-digit hexadecimal
number is entered from the keyboard and displayed together with the resulting desti-
nation operand. The clear carry flag (CLC) resets the carry flag in the EFLAGS reg-
ister to a value of 0 prior to execution of the RCR instruction.

31 0
Destination

CF

Rotate through carry right (RCR)

Figure 8.30 Diagram showing the operation of the RCR instruction.

RCR EAX, 4 CF
0001 0010 0011 0100 1010 1011 1100 1101 0

After 1 shift 0000 1001 0001 1010 0101 0101 1110 0110 1
After 2 shifts 1000 0100 1000 1101 0010 1010 1111 0011 0
After 3 shifts 0100 0010 0100 0110 1001 0101 0111 1001 1
After 4 shifts 1010 0001 0010 0011 0100 1010 1011 1100 1

Figure 8.31 Numerical example for RCR using register EAX with a count of 4.

//rotate_right.cpp
//illustrates the operation of the rotate right (ROR)
//and the rotate through carry right (RCR) instructions
#include "stdafx.h"
int main (void)
{
//define variables

int rotate_opnd, ror_1_rslt, ror_immed_rslt, ror_cl_rslt,
rcr_rslt;

(a) //continued on next page

Figure 8.32 Program to illustrate the application of the ROR and the RCR instruc-
tions: (a) the program and (b) the outputs.

printf ("Enter an 8-digit hexadecimal number: \n");
scanf ("%X", &rotate_opnd);

//switch to assembly
_asm
{

//rotate right one bit immediate
MOV EAX, rotate_opnd
ROR EAX, 1
MOV ror_1_rslt, EAX ;move to result

//rotate right one byte immediate
MOV EAX, rotate_opnd
ROR EAX, 6
MOV ror_immed_rslt, EAX ;move to result

//rotate right the count in CL
MOV EAX, rotate_opnd
MOV CL, 3
ROR EAX, CL
MOV ror_cl_rslt, EAX ;move to result

//rotate through carry right one byte immediate
CLC
MOV EAX, rotate_opnd
RCR EAX, 4
MOV rcr_rslt, EAX ;move to result

}
printf ("\nImmediate rotate 1\nBefore rotate = %X\n

After rotate = %X\n\n", rotate_opnd, ror_1_rslt);

printf ("\nImmediate byte rotate 6\nBefore rotate = %X\n
After rotate = %X\n\n", rotate_opnd,
ror_immed_rslt);

printf ("\nCL register rotate 3\nBefore rotate = %X\n
After rotate = %X\n\n", rotate_opnd,
ror_cl_rslt);

printf ("\nRotate through carry 4\nBefore rotate = %X\n
After rotate = %X\n\n", rotate_opnd, rcr_rslt);

return 0;
}

//continued on next page

8.10 Rotate Instructions 341

Figure 8.32 (Continued)

Enter an 8-digit hexadecimal number:
1234ABCD

Immediate rotate 1
Before rotate = 1234ABCD
After rotate = 891A55E6

Immediate byte rotate 6
Before rotate = 1234ABCD
After rotate = 3448D2AF

CL register rotate 3
Before rotate = 1234ABCD
After rotate = A2469579

Rotate through carry 4
Before rotate = 1234ABCD
After rotate = A1234ABC

Press any key to continue . . . _

--

Enter an 8-digit hexadecimal number:
11111111

Immediate rotate 1
Before rotate = 11111111
After rotate = 88888888

Immediate byte rotate 6
Before rotate = 11111111
After rotate = 44444444

CL register rotate 3
Before rotate = 11111111
After rotate = 22222222

Rotate through carry 4
Before rotate = 11111111
After rotate = 21111111

Press any key to continue . . . _
--

//continued on next page
(b)

342 Chapter 8 Logical, Bit, Shift, and Rotate Instructions

Figure 8.32 (Continued)

Enter an 8-digit hexadecimal number:
AB34CD56

Immediate rotate 1
Before rotate = AB34CD56
After rotate = 559A66AB

Immediate byte rotate 6
Before rotate = AB34CD56
After rotate = 5AACD335

CL register rotate 3
Before rotate = AB34CD56
After rotate = D56699AA

Rotate through carry 4
Before rotate = AB34CD56
After rotate = CAB34CD5

Press any key to continue . . . _

8.11 Problems 343

Figure 8.32 (Continued)

8.11 Problems

8.1 For each of the sections shown below, where the values are in hexadecimal, ob-
tain the resulting values for register AX and the flags. Then write an assembly
language module that is embedded in a C program to verify the results and print
the results and the flags. When inserting hexadecimal numbers in an assembly
language program manually, the first digit must be a number 0 through 9, then
the digits A through F, if required, followed by the hexadecimal radix specifier
H.

(a) AX = FA75 AND AX, 000FH

(b) AX = FA75 OR AX, 0FFF0H

(c) AX = FA75 XOR AX, 0FFFFH

344 Chapter 8 Logical, Bit, Shift, and Rotate Instructions

8.2 Use an XOR instruction to do the following:

(a) Exclusive-OR the memory operand addressed by register BX with the
contents of register DX. Save the result in the memory location addressed
by BX.

(b) Change the contents of register CL from 53H to 73H.

8.3 Using only logic instructions, write one instruction for each of the following
parts that will perform the indicated operations.

(a) Set the low-order four bits of register AX.

(b) Reset the high-order three bits of register AX.

(c) Invert bits 7, 8, and 9 of register AX.

8.4 Write an assembly language program — not embedded in a C program — to
perform an AND operation of two single hexadecimal characters that are en-
tered from the keyboard. There is no space between the characters. Display
the result of the AND operation and the low-order four bits of the flags regis-
ter.

8.5 Assume that register AL contains an ASCII code for an uppercase letter.
Write a single instruction to change the contents to the corresponding lower-
case letter.

8.6 Determine the contents of registers AX, AH, and BL after the following pro-
gram segment has been executed:

MOV CL, 3
MOV AX, 7FH
MOV BX, 0505H
ROL AX, CL
AND AH, BH
OR BL, AL

8.7 Write an assembly language module embedded in a C program that executes
the bit test instructions BTS, BTR, and BTC. Enter a 4-digit hexadecimal
number for the operand and a 2-digit hexadecimal number for the bit offset.

8.11 Problems 345

Store the operand in register AX. The program consists of two segments: one
segment for an immediate bit offset and one segment for an offset in register
BX. Include bit offsets greater than 16 so that the bit offset modulo-16 will
generate a bit position in register AX. Display the results of the BTS, BTR,
and BTC instructions for both the immediate bit offsets and the bit offset in
register BX.

8.8 Write an assembly language module embedded in a C program that uses the
bit scan forward (BSF) instruction to detect whether the first bit detected is in
the low-order half or the high-order half of a 32-bit operand. Do not deter-
mine the bit position.

8.9 Repeat problem 8.8 using the bit scan reverse (BSR) instruction.

8.10 Determine the contents of register AX after execution of the following pro-
gram segment:

MOV AX, –15
MOV CL, 3
SAL AX, CL

8.11 Determine the contents of register AX after execution of the following pro-
gram segment:

MOV AX, –32,668
MOV CL, 5
SAR AX, CL

8.12 Determine the contents of register EBX and the flags register after execution
of the program segment shown below. Then write an assembly language
module embedded in a C program to verify the results.

MOV EBX, 0FFFFA85BH
SAL EBX, 20
MOV EBX, 0FFFFA85BH
SAR EBX, 20

8.13 Determine the contents of the destination register EBX, the source register
EDX, and the flags register after execution of the program segment shown be-
low and on the following page. Then write an assembly language module em-
bedded in a C program to verify the results.

MOV EBX, 1234ABCDH
MOV EDX, 0ABCD1234H

346 Chapter 8 Logical, Bit, Shift, and Rotate Instructions

MOV CL, 16
SHLD EBX, EDX, CL

MOV EBX, 1234ABCDH
MOV EDX, 0ABCD1234H
MOV CL, 16
SHRD EBX, EDX, CL

8.14 Write an assembly language module embedded in a C program that will mul-
tiply and divide a decimal number by 8 using arithmetic shift instructions.
When dividing, some numbers will have the fraction truncated.

8.15 Write an assembly language program — not embedded in a C program — that
requests one of three 1-digit numbers (1, 2, or 3) to be entered from the key-
board. Determine which number was entered, then display the number. Use
the AND instruction to remove the ASCII bias.

8.16 Let register EAX contain AD3E14B5H and the carry flag be set. Determine
the contents of register EAX after the following instruction is executed:

RCL EAX, 6

8.17 Let register EAX contain 12345678H and the carry flag be set. Determine the
contents of register EAX after the following instruction is executed:

RCR EAX, 6

8.18 Let register EAX contain 1C78FDA5 and the carry flag be set. Determine the
contents of register EAX after the following instruction is executed:

RCR EAX, 6

8.19 Write an assembly language module embedded in a C program that illustrates
the shift logical left (SHL), shift logical right (SHR), rotate left (ROL), and
rotate right (ROR) instructions. Enter an 8-digit hexadecimal number for the
destination operand with a count of 40 stored in register CL.

8.20 This problem is similar to Problem 8.15. Write an assembly language module
embedded in a C program that requests one of three 1-digit numbers (3, 4, or
5) to be entered from the keyboard. Determine which number was entered,
then display the number. If an incorrect number is entered, then display that
information.

347

9
Fixed-Point Arithmetic
Instructions

In fixed-point operations, the radix point is in a fixed location in the operand. The
radix point (or binary point for radix 2) is to the immediate right of the low-order bit
for integers, or to the immediate left of the high-order bit for fractions. The operands
in a computer can be expressed by any of the following number representations:
unsigned, sign-magnitude, diminished-radix complement, or radix complement.

 If the numbers are signed, then the sign bit can be extended to the left indefinitely
without changing the value of the number. An n-bit signed number A is shown in
Equation 9.1, where the leftmost digit an–1 is the sign bit. The sign bit for any radix is
0 for positive numbers and r –1 for negative numbers, as shown in Equation 9.2.

A = an–1 an–2 . . . a1 a2 (9.1)

A = { 0 for A ≥ 0
r – 1 for A < 0 (9.2)

9.1 Addition
Addition of two binary operands treats both signed and unsigned operands the same —
there is no distinction between the two types of numbers during the add operation. The

9.1 Addition
9.2 Subtraction
9.3 Multiplication
9.4 Division
9.5 Problems

348 Chapter 9 Fixed-Point Arithmetic Instructions

operands for addition are the augend and the addend, where the addend is added to the
augend and the sum replaces the augend in most computers — the addend is
unchanged. The rules for radix 2 addition are shown in Table 9.1.

Table 9.1 Rules for
Binary Addition

+ 0 1
0 0 1
1 1 01

(1) 1 + 1 = 0 with a carry to the next higher-order column.

An example of binary addition is shown in Figure 9.1. The subscripted values are
the carries from the previous columns. For example, in column 1 the sum of five 1s is
510 (1012). Therefore, there is a carry of 0 to column 2 and a carry of 1 to column 3.
The sum of column 2 is 310 (112), which yields a sum of 1 with a carry of 1 to column
3. In column 3, the sum is 610 (1102), which yields a sum of 0 with a carry of 1 to col-
umn 4 and a carry of 1 to column 5. The total sum is 5110 (1100112).

Now consider the rightmost four columns and assume that the operands are in 2s
complement representation. Operand 1 is negative because the sign is 1; therefore, the
value is –5 (the 0 in column 3 has a value of 4 + 1 = 5). Using the same rationale, oper-
and 2 is also negative with a value of –3. Operand 3 is positive because the sign is 0;
therefore, the value is +5. Operand 5 is negative with a value of –1 (count the zeroes
by their weight and add one).

25 24 23 22 21 20

Column 6 5 4 3 2 1 Radix 10 values
Operand 1 0 0 1 0 1 1 +11(–5)
Operand 2 0 0 1 1 0 1 +13(–3)
Operand 3 0 0 0 1 0 1 +5
Operand 4 0 0 0 1 1 1 +7
Operand 5 01 010 11 111 10 1 +15(–1)
Sum = 1 1 0 0 1 1 +51(+3)

Figure 9.1 Example of binary addition.

9.1 Addition 349

9.1.1 Add (ADD) Instruction

The add (ADD) instruction obtains the sum of the destination operand (the augend)
and the source operand (the addend) and stores the result in the destination operand.
The destination operand (first operand) can be a general-purpose register or a memory
location. The source operand (second operand) can be a general-purpose register, a
memory location, or a signed immediate operand with the sign extended to match the
size of the destination operand, if necessary. The syntax for the ADD instruction is
shown below.

ADD register/memory, register/memory/immediate

The ADD instruction operates on integer operands only and affects the following
flags: the overflow flag (OF), the sign flag (SF), the zero flag (ZF), the auxiliary carry
flag (AF), the parity flag (PF), and the carry flag (CF).

Overflow occurs when the result of an arithmetic operation (usually addition)
exceeds the word size of the machine; that is, the sum is not within the representable
range of numbers provided by the number representation. For numbers in 2s comple-
ment representation, the range is from –2n–1 to +2n–1 – 1. For two n-bit numbers

A = an–1 an–2 an–3 … a1a0

B = bn–1 bn–2 bn–3 … b1 b0

an–1 and bn–1 are the sign bits of operands A and B, respectively. Overflow can be
detected by either of the following two equations:

Overflow = (an–1 • bn–1 • sn–1') + (an–1 ' • bn–1' • sn–1)

Overflow = cn–1 ⊕ cn–2 (9.3)

where the symbol “ • ” is the logical AND operator, the symbol “ + ” is the logical OR
operator, the symbol “ ⊕” is the logical exclusive-OR operator, the sign bit of the
result is sn–1, and the carry bits out of positions n – 1 and n – 2 are cn–1 and cn–2,
respectively.

Thus, overflow produces an erroneous sign reversal and is possible only when
both operands have the same sign. An overflow cannot occur when adding two oper-
ands of different signs, since adding a positive number to a negative number produces
a result that falls within the limit specified by the two numbers. Two examples of over-
flow are shown below: one for positive numbers and one for negative numbers, where
both operands are in 2s complement representation.

A = 0 0 1 1 1 1 1 0 +62
+) B = 0 1 1 0 0 0 1 1 +99
Sum = 1 0 1 0 0 0 0 1 +161

A = 1 0 1 1 0 1 0 1 –75
+) B = 1 1 0 0 1 0 0 0 –56
Sum = 0 1 1 1 1 1 0 1 –131

350 Chapter 9 Fixed-Point Arithmetic Instructions

For the first example, the sum of +161 requires nine bits: 0 1010 0001; therefore,
an overflow has occurred. For the second example, the sum of –131 also requires nine
bits: 1 0111 1101; therefore, an overflow has occurred.

The sign flag (SF) is set to the value of the high-order bit of the result; the zero flag
(ZF) is set if the sum is zero; the auxiliary carry flag (AF) is set if there is a carry from
column 23 to column 24, which occurs in the first example; the parity flag (PF) is set if
there are an even number of 1s in the result (low-order byte only); and the carry flag
(CF) is set if there is a carry out of the high-order bit positions.

Figure 9.2 shows an assembly language module embedded in a C program that
illustrates an ADD instruction in which all of the flags in the low-order byte of the
EFLAGS register are set for specific augends and addends.

//add_flags2.cpp
//add two operands and display the resulting flags
#include "stdafx.h"
int main (void)
{
//define variables

unsigned short augend, addend, sum;
unsigned char flags;

printf ("Enter two 4-digit hexadecimal numbers: \n");
scanf ("%X %X", &augend, &addend);

//switch to assembly
_asm
{

MOV BX, augend
MOV AX, addend

 //continued on next page
(a)

Figure 9.2 Program to illustrate the AND instruction and flag generation: (a) the
program and (b) the outputs.

ADD BX, AX
MOV sum, BX
LAHF
MOV flags, AH

}

printf ("\nAugend = %X\nAddend = %X\n", augend, addend);
printf ("\nSum = %X\nFlags = %X\n\n", sum, flags);

return 0;
}

Enter two 4-digit hexadecimal numbers:
0100 0100

Augend = 100
Addend = 100

Sum = 200
Flags = 6 //PF

Press any key to continue . . . _
--
Enter two 4-digit hexadecimal numbers:
0200 FE00

Augend = 200
Addend = FE00

Sum = 0
Flags = 47 //ZF, PF, CF

Press any key to continue . . . _
--
Enter two 4-digit hexadecimal numbers:
0FBC A0DE

Augend = FBC
Addend = A0DE

Sum = B09A
Flags = 96 //SF, AF, PF

Press any key to continue . . . _
(b) //continued on next page

9.1 Addition 351

Figure 9.2 (Continued)

Enter two 4-digit hexadecimal numbers:
10A2 6522

Augend = 10A2
Addend = 6522

Sum = 75C4
Flags = 2 //no status flags set (low-order = C4)

Press any key to continue . . . _

352 Chapter 9 Fixed-Point Arithmetic Instructions

Figure 9.2 (Continued)

9.1.2 Add with Carry (ADC) Instruction

The add with carry (ADC) instruction adds two integers plus the carry flag (CF = 0 or
1). It is typically used when adding two signed or unsigned operands, which can be
multiple bytes, words, doublewords, or larger operands — the carry is propagated
from one stage to the next stage. The ADC instruction adds the destination operand,
the source operand, and the carry flag and stores the sum in the destination operand.
The syntax for the ADC instruction is shown below; however, both operands cannot be
in memory.

ADC register/memory, register/memory/immediate

The value of the carry flag represents a carry from a previous addition of two oper-
ands in a multioperand addition. An immediate operand is sign extended to match the
size of the destination operand, if necessary. The ADC instruction normally follows
an ADD instruction of a multioperand addition. If a REX prefix is used in 64-bit
mode, the number of general-purpose registers is increased from eight to sixteen and
can be extended to 64 bits.

Figure 9.3 shows a program segment that depicts the ADC instruction to add two
32-bit operands in two sections. First the low-order section is added, then the high-
order section is added plus any carry generated from the addition of the low-order sec-
tion. The operands are shown below in two segments. Figure 9.4 shows how the num-
bers are stored in memory.

0 0 1 5 6 5 A 0
+) 0 0 2 1 B 7 9 E

1
0 0 3 7 1 D 3 E

. . .
DP1 DW 65A0H ;low word; stored as A065
DP1+2 DW 0015H ;high word; stored as 1500

DP2 DW B79EH ;low word; stored as 9EB7
DP+2 DW 0021H ;high word; stored as 2100

DPSUM DW ?
DPSUM+2 DW ?

. . .
MOV AX, DP1
ADD AX, DP2
MOV DPSUM, AX
MOV AX, DP1+2
ADC AX, DP2+2
MOV DPSUM+2, AX

. . .

9.1 Addition 353

Figure 9.3 Program segment using the ADC instruction.

+1 +2 +3 Decimal value
DP1 A0 65 15 00 1,402,272

+1 +2 +3
DP2 9E B7 21 00 2,209,694

+1 +2 +3
DPSUM 3E 1D 37 00

Sum = 00 37 1D 3E 3,611,966

Figure 9.4 Values of the numbers as stored in memory.

Figure 9.5 lists an assembly language module embedded in a C program that adds
the numbers given in this section. The program adds the two 32-bit operands in two
sections: first the low-order segment, then the high-order segment plus the carry from
the low-order segment. Both operands are entered as immediate data and the sum is
declared as sum1 and sum2 for the low-order and the high-order segments, respec-
tively.

//dbl_precision.cpp
//illustrates the ADC instruction
//for adding two 32-bit operands

#include "stdafx.h"

int main (void)

{
unsigned short sum1, sum2;

//switch to assembly
_asm
{

MOV AX, 65A0H
MOV BX, 0B79EH
ADD AX, BX
MOV sum1, AX

MOV AX, 0015H
MOV BX, 0021H
ADC AX, BX
MOV sum2, AX

}

printf ("Low sum = %X\nHigh sum = %X\n\n", sum1, sum2);

return 0;
}

(a)

Low sum = 1D3E
High sum = 37

Press any key to continue . . . _
(b)

354 Chapter 9 Fixed-Point Arithmetic Instructions

Figure 9.5 Program illustrating using the ADC instruction to add two 32-bit
operands: (a) the program and (b) the outputs.

9.1 Addition 355

Figure 9.6 depicts a program segment illustrating a numerical example of adding
two operands: a 32-bit augend and a 16-bit addend using the add with carry (ADC)
instruction in conjunction with the convert word to doubleword (CWD) instruction.

. . .
DP DW F000H Stored as 00F0
DP+2 DW 0001H Stored as 0100

Actual augend = 0001F000 (+126,976)
. . .

MOV AX, 8000H Addend value = –32,768
CWD DX:AX = FFFF:8000
ADD AX, DP DP = F000

 1 7000

MOV DP, AX DP = 0070

ADC DX, DP+2 DX = FFFF
 DP+2 = 0001

 CF = 1
 DX = 0001

MOV DP+2, DX DP+2 = 0100

Result = DP = 0070, DP+2 = 0100
Actual value = 0001 7000 (+94,208)
+126,976 + (–32,768) = +94,208

Figure 9.6 Program segment to add a 32-bit augend to a 16-bit addend.

Figure 9.7 shows an assembly language module embedded in a C program that
adds two unequal length operands using the ADC instruction in combination with the
CWD instruction, this time using hexadecimal numbers that are entered from the key-
board. The augend consists of 32 bits, whereas the addend consists of 16 bits. The
first operands are those shown in Figure 9.6.

The CWD instruction effectively doubles the size of the operand in the implied
general-purpose register AX by extending the sign in AX throughout register DX.
Thus, the result obtained by executing the CWD instruction is stored in register pair
DX:AX, where the colon signifies concatenation. The 32-bit contents of the addend in
registers DX:AX can now be added to the 32-bit augend. No flags are affected by the
CWD instruction.

//dbl_precision3.cpp
//add a 32-bit operand to a 16-bit operand.
//the CWD and ADC instructions will be used

#include "stdafx.h"

int main (void)
{
//define variables

unsigned short aug_hi, aug_lo, add_lo, sum_hi, sum_lo;

printf ("Enter three 4-digit hexadecimal numbers:
two for augend, one for addend: \n");

scanf ("%X %X %X", &aug_hi, &aug_lo, &add_lo);

//switch to assembly
_asm
{

//obtain low sum
MOV AX, add_lo
CWD //dx=ax sign (ext), ax=add_lo
ADD AX, aug_lo
MOV sum_lo, AX //flags are not affected by mov

//obtain high sum
MOV AX, aug_hi
ADC AX, DX //cf not changed since the add
MOV sum_hi, AX

}

printf ("\nAugend high = %X, Augend low = %X\n",
aug_hi, aug_lo);

printf ("\nAddend low = %X\n", add_lo);

printf ("\nSum high = %X, Sum low = %X\n\n",
sum_hi, sum_lo);

return 0;
}

(a) //continued on next page

356 Chapter 9 Fixed-Point Arithmetic Instructions

Figure 9.7 Using the ADC instruction in conjunction with the CWD instruction
to add a 32-bit augend to a 16-bit addend: (a) the program and (b) the outputs.

Enter three 4-digit hexadecimal numbers: two for augend,
one for addend:
0001 F000 8000 //CF = 1

Augend high = 1, Augend low = F000

Addend low = 8000

Sum high = 1, Sum low = 7000

Press any key to continue . . . _
--
Enter three 4-digit hexadecimal numbers: two for augend,
one for addend:
ABCD 1234 1234 //CF = 0

Augend high = ABCD, Augend low = 1234

Addend low = 1234

Sum high = ABCD, Sum low = 2468

Press any key to continue . . . _
--
Enter three 4-digit hexadecimal numbers: two for augend,
one for addend:
1234 5678 F111 //CF = 1

Augend high = 1234, Augend low = 5678

Addend low = F111

Sum high = 1234, Sum low = 4789

Press any key to continue . . . _
--
Enter three 4-digit hexadecimal numbers: two for augend,
one for addend:
ABCD 0789 1234 //CF = 0

Augend high = ABCD, Augend low = 789

Addend low = 1234

Sum high = ABCD, Sum low = 19BD
//continued on next page

(b)

9.1 Addition 357

Figure 9.7 (Continued)

Enter three 4-digit hexadecimal numbers: two for augend,
one for addend:
CDEF 568D C7AB //CF = 1

Augend high = CDEF, Augend low = 568D

Addend low = C7AB

Sum high = CDEF, Sum low = 1E38

358 Chapter 9 Fixed-Point Arithmetic Instructions

Figure 9.7 (Continued)

9.1.3 Increment by 1 (INC) Instruction

The increment by 1 (INC) instruction is used primarily to increment counters and other
unsigned integers by a value of 1. The INC instruction adds 1 to the destination oper-
and, but does not affect the carry flag (CF). The flags that are affected are the overflow
flag (OF), the sign flag (SF), the zero flag (ZF), the auxiliary flag (AF), and the parity
flag (PF). The destination operand can be a value in a general-purpose register or a
value in a memory location. The syntax for the INC instruction is shown below.

INC register/memory

Binary-to-Gray code conversion A sufficient number of instructions have
now been presented in order to illustrate the binary-to-Gray code conversion algo-
rithm. A procedure for converting from the binary 8421 code to the Gray code can be
formulated. Let an n-bit binary code word be represented as

bn–1 bn–2 ⋅ ⋅ ⋅ b1 b0

and an n-bit Gray code word be represented as

gn–1 gn–2 ⋅ ⋅ ⋅ g1 g0

where b0 and g0 are the low-order bits of the binary and Gray codes, respectively. The
ith Gray code bit gi can be obtained from the corresponding binary code word by the
following algorithm:

gn–1 = bn–1
 gi = bi ⊕ bi+1 (9.4)

for 0 ≤ i ≤ n – 2, where the symbol ⊕ denotes modulo-2 addition defined as:

0 ⊕ 0 = 0

0 ⊕ 1 = 1

1 ⊕ 0 = 1

1 ⊕ 1 = 0

9.1 Addition 359

Table 9.2 shows the relationship between the binary 8421 code and the Gray code.
The Gray code belongs to a class of cyclic codes called reflective codes. Notice in the
first four rows, that g0 reflects across the reflecting axis; that is, g0 in rows 2 and 3 is
the mirror image of g0 in rows 0 and 1. In the same manner, g1 and g0 reflect across the
reflecting axis drawn under row 3. Thus, rows 4 through 7 reflect the state of rows 0
through 3 for g1 and g0. The same is true for g2, g1, and g0 relative to rows 8 through
15 and rows 0 through 7. The Gray code is an unweighted code where only one input
changes between adjacent code words.

Table 9.2 Table for Converting from the Binary 8421 Code to the Gray code

Row
Binary code

b3 b2 b1 b0

Gray code
g3 g2 g1 g0

 0 0 0 0 0 0 0 0 0
 1 0 0 0 1 0 0 0 1
 2 0 0 1 0 0 0 1 1 ← g0 is reflected
 3 0 0 1 1 0 0 1 0
 4 0 1 0 0 0 1 1 0 ← g1 and g0
 5 0 1 0 1 0 1 1 1 are reflected
 6 0 1 1 0 0 1 0 1
 7 0 1 1 1 0 1 0 0
 8 1 0 0 0 1 1 0 0 ← g2, g1, and g0
 9 1 0 0 1 1 1 0 1 are reflected
10 1 0 1 0 1 1 1 1
11 1 0 1 1 1 1 1 0
12 1 1 0 0 1 0 1 0
13 1 1 0 1 1 0 1 1
14 1 1 1 0 1 0 0 1
15 1 1 1 1 1 0 0 0

360 Chapter 9 Fixed-Point Arithmetic Instructions

Equation 9.4 indicates that the conversion process can be achieved by repetitive
use of the exclusive-OR function. For example, using the algorithm of Equation 9.4,
the 4-bit binary code word b3 b2 b1 b0 = 1010 translates to the 4-bit Gray code word
g3 g2 g1 g0 = 1111 as follows:

g3 = b3 = 1

g2 = b2 ⊕ b3 = 0 ⊕ 1 = 1

g1 = b1 ⊕ b2 = 1 ⊕ 0 = 1

g0 = b0 ⊕ b1 = 0 ⊕ 1 = 1

An example is shown in Figure 9.8 using the algorithm of Equation 9.4 to translate
an 8-bit binary code word b7 b6 b5 b4 b3 b2 b1 b0 = 10101110 to an 8-bit Gray code
word g7 g6 g5 g4 g3 g2 g1 g0 = 11111001 as follows:

b7 b6 b5 b4 b3 b2 b1 b0
⊕ ⊕ ⊕ ⊕

Binary code word: 1 0 1 0 1 1 1 0
⊕ ⊕ ⊕

Gray code word: 1 1 1 1 1 0 0 1
g7 g6 g5 g4 g3 g2 g1 g0

Figure 9.8 Example of translating an 8-bit binary code word to an 8-bit Gray
code word.

An assembly language program will now be written to convert a binary code to the
corresponding Gray code. Recall that a parameter list (PARLST) is used in the data
segment (DTSG) to contain the maximum length (MAXLEN) of the operand field
(OPFLD) and the actual length (ACTLEN) of the operand field after data have been
entered from the keyboard.

A diagram of the parameter list in the data segment is shown in Figure 9.9 that
contains an example of eight binary bits (10101110) that have been entered from the
keyboard to be converted to the Gray code. The 1 and 0 bits are entered as ASCII char-
acters and stored in the operand field — numbers have an ASCII bias of 3 (0011). The
resulting Gray code is stored in the result area (RSLT) of the data segment and must
also be represented as ASCII characters in order to be displayed correctly.

⊕ ⊕ ⊕ ⊕
MAX ACT OP +1 +2 +3 +4 +5 +6 +7

PARLST 31 30 31 30 31 31 31 30
⊕ ⊕ ⊕

SI

9.1 Addition 361

Figure 9.9 An example of the parameter list for the assembly language program
of Figure 9.10.

Figure 9.10 contains an assembly language program — not embedded in a C pro-
gram — that converts binary data to the Gray code. The comments in the code de-
scribe the program execution. When performing the exclusive-OR on two ASCII
numbers, there is no need to remove the ASCII bias of 3 (0011). For example, 1 ⊕ 1
= 0; that is, 31H ⊕ 31H = 00110001 ⊕ 00110001 = 00000000, which is correct. Be-
fore the Gray code number can be displayed, however, the ASCII bias must be re-
stored by performing either the OR operation or the ADD operation of 30H with the
resulting Gray code bit. The same reasoning is true for 1 ⊕ 0.

PAGE 66, 80
;bin-to-gray2.asm

;--
.STACK

;--
.DATA
PARLST LABEL BYTE
MAXLEN DB 12
ACTLEN DB ?
OPFLD DB 12 DUP(?)
PRMPT DB 0DH, 0AH, 'Enter 8 binary bits: $'
RSLT DB 0DH, 0AH, 'Gray code = $'
;---
.CODE
BEGIN PROC FAR

;set up pgm ds
MOV AX, @DATA ;put addr of data seg in ax
MOV DS, AX ;put addr in ds

(a) //continued on next page

Figure 9.10 Program to convert binary data to the corresponding Gray code: (a)
the program and (b) the outputs.

;read prompt
MOV AH, 9 ;display string
LEA DX, PRMPT ;put addr of prompt in dx
INT 21H ;dos interrupt

;keyboard request rtn to enter numbers

MOV AH, 0AH ;buffered keyboard input
LEA DX, PARLST ;load addr of parlst
INT 21H ;dos interrupt

;set up count for number of bits
MOV CX, 7 ;set up count
LEA SI, OPFLD ;set up addr of opfld
LEA DI, RSLT + 14 ;set up addr of rslt

;move first char unchanged to rslt
MOV AL, [SI] ;si points to 1st char in opfld
MOV [DI], AL ;di points to the rslt + 14

;set up loop to process characters
NEXT: MOV AL, [SI] ;move char to al

INC SI ;inc si to point to next char
MOV AH, [SI] ;move next char to ah
XOR AL, AH ;perform the xor operation
ADD AL, 30H ;add ascii bias
INC DI ;inc di to next location in rslt
MOV [DI], AL ;move gray code bit to rslt area
LOOP NEXT ;decrement cx. If cx != 0, loop

;display the result

MOV AH, 9 ;display string
LEA DX, RSLT ;put addr of rslt in dx
INT 21H ;dos interrupt

BEGIN ENDP

END BEGIN

Enter 8 binary bits: 10101110
Gray code = 11111001
--
Enter 8 binary bits: 01111010
Gray code = 01000111
--
Enter 8 binary bits: 11111111
Gray code = 10000000
--

(b) //continued on next page

362 Chapter 9 Fixed-Point Arithmetic Instructions

Figure 9.10 (Continued)

Enter 8 binary bits: 01010110
Gray code = 01111101
--

9.2 Subtraction 363

Figure 9.10 (Continued)

9.2 Subtraction
The two operands for subtraction are the minuend and the subtrahend — the subtra-
hend is subtracted from the minuend according to the rules shown in Table 9.3 for
radix 2.

Table 9.3 Truth Table for Subtraction

0 – 0 = 0
0 – 1 = 1 with a borrow from the next higher-order minuend
1 – 0 = 1
1 – 1 = 0

An example is shown in Figure 9.11 using the rules of Table 9.3, in which the sub-
trahend 0101 0011 (+83) is subtracted from the minuend 0110 0101 (+101), resulting
in a difference of 0001 0010 (+18). This is called the paper-and-pencil method, but is
not applicable for subtraction in a computer. The difference in column 21 is 0 – 1 = 1
with a borrow from the minuend in column 22, which results in a difference of 0 – 0 =
0 in column 22. The same rationale applies to column 24 and column 25.

27 26 25 24 23 22 21 20

Minuend (+101) 0 1 11 0 0 11 0 1
–) Subtrahend (+83) 0 1 0 1 0 0 1 1

Difference (+18) 0 0 0 1 0 0 1 0

Figure 9.11 Example of the paper-and-pencil method of binary subtraction.

Subtraction is similar to addition, because computers use an adder for the subtrac-
tion operation by adding the radix complement of the subtrahend to the minuend.
Recall that the rs complement is obtained from the r – 1 complement by adding 1. For
radix 2, the 2s complement is obtained by adding 1 to the 1s complement. Arithmetic
processors use an adder to perform subtraction by adding the 2s complement of the

364 Chapter 9 Fixed-Point Arithmetic Instructions

subtrahend to the minuend. Let A and B be two n-bit operands, where A is the minu-
end and B is the subtrahend as follows:

A = an–1 an–2 . . . a1 a0

B = bn–1 bn–2 . . . b1 b0

Therefore, A – B = A + (B ' + 1), where B ' is the 1s complement of B. Figure 9.11
is repeated as shown in Figure 9.12 using this method.

27 26 25 24 23 22 21 20

Minuend (+101) 0 1 1 0 0 1 0 1
+) Subtrahend (–83) 1 0 1 0 1 1 0 1

Difference (+18) 0 0 0 1 0 0 1 0

Figure 9.12 Example of subtraction by adding the radix complement of the sub-
trahend to the minuend.

When subtracting two operands by adding the 2s complement of the subtrahend,
the states of the auxiliary carry flag (AF) and the carry flag (CF) are inverted. For
example, a subtraction will be performed on the following operands: minuend 0110
0001 (+97) and subtrahend 0110 0101 (+101) to yield a difference of 1111 1100 (–4).
Figure 9.13(a) shows the paper-and-pencil method — including borrows — and Fig-
ure 9.13(b) shows the same subtraction accomplished by adding the 2s complement of
the subtrahend — including carries.

In Figure 9.13(a), the borrow from column 24 represents the auxiliary carry flag
(AF = 1) and the borrow from column 28 represents the carry flag (CF = 1). Since col-
umn 24 has a 0 in the minuend, the borrow must come from column 25, which leaves
a 0 for the minuend in column 25. The process repeats for columns 25 through column
28. In Figure 9.15(b), the auxiliary carry flag and the carry flag are indicated as having
a value of 0; however, the true values are 1.

28 27 26 25 24 23 22 21 20

Minuend (+97) 1 01 10 10 01 01 0 0 1
–) Subtrahend (+101) 0 1 1 0 0 1 0 1

Difference (–4) 1 1 1 1 1 1 0 0
(a) //continued next page

Figure 9.13 Two methods of subtraction: (a) the paper-and-pencil method and (b)
adding the 2s complement of the subtrahend.

28 27 26 25 24 23 22 21 20

Minuend (+97) 0 1 1 0 0 0 0 1
+) Subtrahend (–101) 0 1 0 0 10 1 01 11 1

Difference (–4) 1 1 1 1 1 1 0 0
(b)

9.2 Subtraction 365

Figure 9.13 (Continued)

Additional examples of subtraction are shown in Figure 9.14 for both positive and
negative operands using the radix complement (2s complement) method.

A = 0 0 0 0 1 1 1 1 +15
–) B = 0 1 1 0 0 0 0 0 +96

↓

0 0 0 0 1 1 1 1 +15
+) 1 0 1 0 0 0 0 0 –96

1 0 1 0 1 1 1 1 –81

A = 1 0 1 1 0 0 0 1 –79
–) B = 1 1 1 0 0 1 0 0 –28

↓

1 0 1 1 0 0 0 1 –79
+) 0 0 0 1 1 1 0 0 +28

1 1 0 0 1 1 0 1 –51

Figure 9.14 Additional examples of subtraction in which the radix complement of
the subtrahend is added to the minuend.

This section presents the following subtract instructions: subtract (SUB), integer
subtraction with borrow (SBB), decrement by 1 (DEC), and negate (NEG).

366 Chapter 9 Fixed-Point Arithmetic Instructions

9.2.1 Subtract (SUB) Instruction

The subtract instruction performs a subtraction on signed (2s complement) or
unsigned integer operands that can be bytes, words, or doublewords. The syntax for
the subtract operation is shown below. The source operand (second operand — sub-
trahend) is subtracted from the destination operand (first operand — minuend) and
stores the difference in the destination operand.

SUB register/memory, register/memory/immediate

The destination operand can be a register or a memory location; the source oper-
and can be a register, a memory location, or an immediate value; however, both
operands cannot be in memory. When an immediate operand is used, it is sign-
extended to match the size of the destination operand, if necessary.

The following flags are affected: the overflow flag (OF), the sign flag (SF), the
zero flag (ZF), the auxiliary carry flag (AF), the parity flag (PF), and the carry flag
(CF). If signed operands are utilized, then the overflow flag is set to indicate an over-
flow condition. The default operand size is 32 bits in 64-bit mode. Using a REX pre-
fix allows access to eight additional registers: R8 through R15.

Figure 9.15 shows an assembly language module embedded in a C program that
illustrates the use of the SUB instruction. Two signed or unsigned decimal operands
are entered from the keyboard — the first is for the minuend, the second is for the sub-
trahend. After the subtraction takes place, the resulting difference and flags are dis-
played. The program is shown in Figure 9.15(a) and the outputs for various operands
are shown in Figure 9.15(b).

The results of the first five pairs of operands are easy to understand. The fifth pair
of operands has a minuend value of 187904819210 which is 0111 0000 0000 0000
0000 0000 0000 00002 and a subtrahend value of 241591910410 which is 1001 0000
0000 0000 0000 0000 0000 00002. When the subtrahend is negated it becomes 0111
0000 0000 0000 0000 0000 0000 00002, resulting in an overflow condition for a dif-
ference of 375809638410 which is 1110 0000 0000 0000 0000 0000 0000 00002 as
shown below.

Minuend = 0111 0000 0000 0000 0000 0000 0000 0000
–) Subtrahend = 1001 0000 0000 0000 0000 0000 0000 0000

↓

0111 0000 0000 0000 0000 0000 0000 0000
+) 0111 0000 0000 0000 0000 0000 0000 0000

1110 0000 0000 0000 0000 0000 0000 0000

It can be clearly seen that an overflow has occurred, because the signs of the oper-
ands and result satisfy the following equation: (an–1 ' • bn–1' • sn–1). The sign flag has

9.2 Subtraction 367

a value of 1; the parity flag has a value of 1, because the low-order byte has an even
number of 1s; and the carry flag is 1, because 0 – 1 = 1 with a borrow from the next
higher-order bit of the minuend (refer to Table 9.3).

//subtract.cpp
//subtraction of two signed or unsigned operands
//and show the resulting flags
#include "stdafx.h"

int main (void)
{
//define variables

int minuend, subtrahend, difference;
unsigned short flags;

printf ("Enter two signed or unsigned decimal integers:
\n");

scanf ("%d %d", &minuend, &subtrahend);

//switch to assembly
_asm
{

MOV EAX, minuend
MOV EBX, subtrahend
SUB EAX, EBX
MOV difference, EAX

PUSHF
POP AX
MOV flags, AX

}

printf ("\nMinuend = %d\nSubtrahend = %d\n",
minuend, subtrahend);

printf ("\nDifference = %d\nFlags = %X\n\n",
difference, flags);

return 0;
}

(a) //continued on next page

Figure 9.15 Program to illustrate the use of the SUB instruction: (a) the program
and (b) the outputs.

Enter two signed or unsigned decimal integers:
46 20

Minuend = 46
Subtrahend = 20

Difference = 26
Flags = 202 //IF

Press any key to continue . . . _
--
Enter two signed or unsigned decimal integers:
42 –30

Minuend = 42
Subtrahend = –30

Difference = 72
Flags = 207 //IF, PF, CF

Press any key to continue . . . _
--
Enter two signed or unsigned decimal integers:
–250 250

Minuend = –250
Subtrahend = 250

Difference = –500
Flags = 296 //IF, SF, AF, PF

Press any key to continue . . . _
--
Enter two signed or unsigned decimal integers:
–86 –86

Minuend = –86
Subtrahend = –86

Difference = 0
Flags = 246 //IF, ZF, PF

Press any key to continue . . . _
--

(b) //continued on next page

368 Chapter 9 Fixed-Point Arithmetic Instructions

Figure 9.15 (Continued)

Enter two signed or unsigned decimal integers:
28672 –28672

Minuend = 28672
Subtrahend = –28672

Difference = 57344
Flags = 207 //IF, PF, CF

Press any key to continue . . . _
--
Enter two signed or unsigned decimal integers:
1879048192 2415919104

Minuend = 1879048192
Subtrahend = –1879048912

Difference = –536870912
Flags = A87 //OF, IF, SF, PF, CF

Press any key to continue . . . _

9.2 Subtraction 369

Figure 9.15 (Continued)

9.2.2 Integer Subtraction with Borrow (SBB) Instruction

The SBB instruction subtracts the source operand (second operand) from the destina-
tion operand (first operand) and subtracts 1 if the carry flag is set — the carry flag rep-
resents a borrow from a previous subtraction. This operation is accomplished by
adding the source operand and the carry flag, then subtracting the sum from the des-
tination operand. The difference is stored in the destination operand.

The SBB instruction is used to subtract multiple bytes or words and is preceded by
a SUB instruction. The destination operand can be a register or a memory location; the
source operand can be a register, an immediate operand, or a memory location. How-
ever, both operands cannot be memory locations. The syntax for the SBB instruction
is shown below.

SBB register/memory, register/immediate/memory

If an immediate operand is used, the sign is extended to match the size of the des-
tination operand. The SBB instruction is used for both signed and unsigned operands.
The overflow flag (OF) is used in conjunction with signed operands; the carry flag
(CF) is used for unsigned operands. Using an REX prefix allows access to eight sup-
plementary registers: R8 through R15.

370 Chapter 9 Fixed-Point Arithmetic Instructions

The affected flags resulting from the SBB instruction are the overflow flag (OF),
the sign flag (SF), the zero flag (ZF), the auxiliary carry flag (AF), the parity flag (PF),
and the carry flag (CF).

9.2.3 Decrement by 1 (DEC) Instruction

The DEC instruction subtracts 1 from the destination operand, which is an integer
operand. The destination operand can be a register or a memory location. The affected
flags resulting from the DEC instruction are the overflow flag (OF), the sign flag (SF),
the zero flag (ZF), the auxiliary carry flag (AF), and the parity flag (PF); the carry flag
(CF) is not affected. If the state of the carry flag is required, then a subtraction with an
immediate value of 1 can be executed. The DEC instruction can also access eight
additional registers — R8 through R15 — if an REX prefix is utilized. The syntax for
the DEC instruction is shown below.

DEC register/memory

An assembly language program — not embedded in a C program — will now be
presented that obtains the sum of the smallest and largest n single-digit numbers that
are entered from the keyboard, where n can range from 1 to a much larger number, for
example 30. The DEC instruction will be used throughout the program. Any program
of this size is easier to implement if a flowchart is developed prior to coding the pro-
gram. There are six main symbols used in drawing flowcharts, as shown in Figure
9.16. Arrows indicate the control flow through the flowchart.

Start/end symbol Processing symbol

Input/output symbol
Decision symbol

Comment symbol Connecting symbol
to another page

Figure 9.16 Symbols used in drawing a flowchart.

The flowchart for this program is shown in Figure 9.17. The program will be
designed directly from the flowchart. The stack, data, and code segments are initial-
ized in the processing symbol following the start symbol. The initialize symbol sets

9.2 Subtraction 371

up the program’s data segment (DS). Numbers are entered using the parallelogram
labelled keyboard rtn. The decision symbol labelled 1 digit entered? checks to deter-
mine if only one number was entered. The remaining symbols are self-explanatory.
The assembly language program is shown in Figure 9.18 and follows the sequence
presented in the flowchart.

Start

.STACK, .DATA, .CODE

Initialize

Kybd routine

1 digit
entered?

Yes

Move it to RSLT
unchanged

Already ASCII

Jump to display rtn

CX ACTLEN – 1
SI is index

AL 1st digit
Increment SI

Point to next
digit

A

No

//continued on next page

Figure 9.17 Flowchart for the assembly language program to obtain the sum of the
smallest and largest single-digit numbers that are entered from the keyboard.

A

AL <= [SI]?
No

Yes

Find smallest #

Increment SI

CX = 0?
No

Loop to SMALL

AL [SI]

Yes

Smallest # in AL
in ASCII format

CX ACTLEN – 1

Find largest #

SI is index
AH 1st digit

Increment SI

B
//continued on next page

372 Chapter 9 Fixed-Point Arithmetic Instructions

Figure 9.17 (Continued)

B

AL > = [SI]?
No

Yes
AL [SI]

Increment SI

CX = 0?
No

Yes

Largest # in AH
in ASCII format

Unpack AH and AL

ADD AL, AH

AH 0

AAA

C

Loop to BIG

Required for
 AAA

AH = 0 digit
AL = 0 digit

//continued on next page

9.2 Subtraction 373

Figure 9.17 (Continued)

C

Change AX to ASCII

Display routine

End

374 Chapter 9 Fixed-Point Arithmetic Instructions

Figure 9.17 (Continued)

PAGE 66, 80
TITLE sum small large.asm
;---
.STACK
;---
.DATA
PARLST LABEL BYTE
MAXLEN DB 40
ACTLEN DB ?
OPFLD DB 40 DUP(?)
PRMPT DB 0DH, 0AH, 'Enter digits: $'
RSLT DB 0DH, 0AH, 'Sum = $'
;---
.CODE
BEGIN PROC FAR

;set up pgm ds
MOV AX, @DATA ;get addr of data seg
MOV DS, AX ;move addr to ds

(a) //continued on next page

Figure 9.18 Assembly language program to obtain the sum of the smallest and
largest single-digit numbers that are entered from the keyboard: (a) the program and
(b) the outputs.

;read prompt
MOV AH, 09H ;display string
LEA DX, PRMPT ;put addr of prompt in dx
INT 21H ;dos interrupt

;keyboard request rtn to enter characters

MOV AH, 0AH ;buffered keyboard input
LEA DX, PARLST ;put addr of parlst in dx
INT 21H ;dos interrupt

;check if one number entered
CMP ACTLEN, 1 ;comp actual #s entered with 1
JNE CONT ;if more than 1, jmp to CONT rtn
MOV AL, OPFLD ;else move the only number to al
MOV RSLT + 8, AL ;move the # to the result area
JMP PRINT ;jump to the print rtn

;if more than one number entered
CONT: MOV CL, ACTLEN ;put qty of #s entered in cl

MOV CH, 0 ;clear ch
DEC CX ;decrease count by 1

LEA SI, OPFLD ;load the addr of opfld into si
MOV AL, [SI] ;put the number in al
INC SI ;point to next number in opfld

;find smallest number
SMALL: CMP AL, [SI] ;comp al with # pointed to by si

JLE INCR1 ;if # is <=, jump to INCR1 rtn
MOV AL, [SI] ;if !<=, move the larger # to al

INCR1: INC SI ;point to next number in opfld

LOOP SMALL ;find next smallest number

;find largest number

MOV CL, ACTLEN ;put qty of #s entered in cl
MOV CH, 0 ;clear ch
DEC CX ;decrease count by 1

LEA SI, OPFLD ;load the addr of opfld into si
MOV AH, [SI] ;put the number in ah
INC SI ;point to next number in opfld

BIG: CMP AH, [SI] ;comp ah with # pointed to by si

JGE INCR2 ;if # is >=, jump to INCR2 rtn
MOV AH, [SI] ;if !>=, move smaller # to al

//continued on next page

9.2 Subtraction 375

Figure 9.18 (Continued)

INCR2: INC SI ;point to next number in opfld
LOOP BIG ;find next largest number

;add smallest and largest
AND AL, 0FH ;remove ascii bias -- unpack
AND AH, 0FH ;remove ascii bias -- unpack
ADD AL, AH ;add the smallest and largest
MOV AH, 0 ;required for aaa
AAA ;aaa is presented in chapter 10
OR AX, 3030H ;restore ascii bias
MOV RSLT + 8, AH ;move high-order # to rslt area
MOV RSLT + 9, AL ;move low-order # to rslt area

;display the result
PRINT: MOV AH, 09H ;display string

LEA DX, RSLT ;put addr of rslt in dx
INT 21H ;dos interrupt

BEGIN ENDP
END BEGIN

Enter digits: 7
Sum = 7
--
Enter digits: 26
Sum = 08
--
Enter digits: 739
Sum = 12
--
Enter digits: 0895103
Sum = 09
--
Enter digits: 8769976
Sum = 15
--
Enter digits: 9999999999
Sum = 18

(b)

376 Chapter 9 Fixed-Point Arithmetic Instructions

Figure 9.18 (Continued)

9.3 Multiplication 377

9.2.4 Two’s Complement Negation (NEG) Instruction

The NEG instruction generates the 2s complement of a number by subtracting the des-
tination integer operand from zero. This procedure changes the sign of the number,
but does not alter the absolute value of the number. Numbers that contain a high-order
one preceded by all zeroes does not change when it is negated. For example, the num-
ber 1000 0000 (–128) will be negated by subtracting the number from zero, as shown
below, using the rules of Table 9.3. The 1 bit in column 28 represents a borrow from
column 28.

28 27 26 25 24 23 22 21 20

1 0 0 0 0 0 0 0 0
–) 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

The destination operand can be in a register or a memory location. If an REX pre-
fix is used in 64-bit mode, the number of general-purpose registers is increased from
eight to sixteen and can be extended to 64 bits. The syntax for the NEG instruction is
shown below.

NEG register/memory

If the destination operand is zero before the NEG instruction is executed, then the
carry flag (CF) is reset to zero; otherwise, it is set to one. The remaining flags — OF,
SF, ZF, AF, and PF — are set or reset depending on the result of the NEG instruction.

The negation of a number can also be accomplished using a paper-and-pencil
method by keeping the low-order 0 bits and the first 1 bit unchanged, then inverting all
remaining higher-order bits, as the number is scanned from right to left.

9.3 Multiplication
Fixed-point multiplication is more complex than either addition or subtraction. This
section will present techniques and examples to multiply both signed and unsigned
operands. The n-bit multiplicand A is multiplied by the n-bit multiplier B to produce
a 2n-bit product P, as shown below.

Multiplicand: A = an – 1 an – 2 an – 3 . . . a1 a0
Multiplier: B = bn – 1 bn – 2 bn – 3 . . . b1 b0

Product: P = p2n – 1 p2n – 2 p2n – 3 . . . p1 p0

378 Chapter 9 Fixed-Point Arithmetic Instructions

An algorithm for the paper-and-pencil method will be described for multiplying
unsigned and signed operands, then examples using these methods will be presented.
The algorithm consists of multiplying the multiplicand by the low-order multiplier bit
to obtain a partial product. If the multiplier bit is 1, then the multiplicand becomes the
partial product; if the multiplier bit is 0, then zeroes become the partial product. For
signed multiplication, the sign bit extends left to produce a partial product of 2n bits.

The partial product is then shifted left 1 bit position and the multiplicand is mul-
tiplied by the next higher-order multiplier bit to obtain a second partial product. Each
partial product is shifted left relative to the previous partial product. The process
repeats for all remaining multiplier bits, at which time the partial products are added to
obtain the product.

For signed multiplication, the sign of the product is positive if both operands have
the same sign. If the signs of the operands are different, then the sign of the product is
negative. Multiplication of two fixed-point binary numbers is a process of repeated
add-shift operations. There are two X86 assembly language instructions that are used
for multiplication: unsigned multiply (MUL) and signed multiply (IMUL).

9.3.1 Unsigned Multiply (MUL) Instruction

The MUL instruction performs a multiplication on two unsigned integer operands: an
unsigned multiplicand (destination operand) and an unsigned multiplier (source oper-
and). The implied destination operand is in the accumulator — registers AL, AX,
EAX, or RAX, which are a function of the size of the operands. The multiplier source
operand can be in a general-purpose register or in a memory location.

The 2n-bit product is stored in register AX, register pair DX:AX, register pair
EDX:EAX, or register pair RDX:RAX. The high-order bits of the product are in reg-
isters AH, DX, EDX, or RDX. If the high-order bits of the product are not all zeroes,
then the carry flag (CF) and the overflow flag (OF) are set. The syntax is as follows:

MUL register/memory

Example 9.1 This example multiplies two 4-bit operands, both with 0s as the high-
order bits: multiplicand a[3:0] = 0111 (7) and multiplier b[3:0] = 0101 (5) to produce
a product p[7:0] = 0010 0011 (35). A multiplier bit of 1 copies the multiplicand to the
low-order four bits of the partial product with zeroes extended to eight bits; a multi-
plier bit of 0 enters zeroes in the partial product.

Multiplicand A 0 1 1 1 7
Multiplier B ×) 0 1 0 1 5

0 0 0 0 0 1 1 1
Partial 0 0 0 0 0 0 0
products 0 0 0 1 1 1

0 0 0 0 0
Product P 0 0 1 0 0 0 1 1 35

9.3 Multiplication 379

Example 9.2 This example multiplies two 4-bit operands, both with 1s as the high-
order bits: multiplicand a[3:0] = 1100 (12) and multiplier b[3:0] = 1011 (11) to pro-
duce a product p[7:0] = 1000 0100 (132). A multiplier bit of 1 copies the multiplicand
to the low-order four bits of the partial product with zeroes extended to eight bits; a
multiplier bit of 0 enters zeroes in the partial product.

Multiplicand A 1 1 0 0 12
Multiplier B ×) 1 0 1 1 11

0 0 0 0 1 1 0 0
Partial 0 0 0 1 1 0 0
Products 0 0 0 0 0 0

0 1 1 0 0
Product P 1 0 0 0 0 1 0 0 132

Figure 9.19 shows a listing for an assembly language module embedded in a C
program that multiplies an unsigned multiplicand in register EAX by an unsigned mul-
tiplier. The flags are displayed after the multiply operation has been executed. The
first set of operands that are entered from the keyboard result in the high-order part of
the product being equal to zero; thus, the overflow flag and the carry flag are reset.

The second set of operands result in the high-order part of the product being non-
zero; thus, the overflow flag and the carry flag are set. In both cases the parity flag is
set, because the low-order byte contains an even number of ones. Although the oper-
ands are normally the same length, it is also possible to multiply operands of different
lengths, as shown in Figure 9.20 for a doubleword multiplicand and a word multiplier.
When the MUL instruction is used to multiply two unsigned operands, the operands
are treated as unsigned even though the high-order bit — normally the sign bit — is a
1.

//mul.cpp
//illustrates unsigned multiplication and resulting flags
#include "stdafx.h"
int main (void)
{
//define variables

unsigned long mpcnd, mplyr, prod_unsigned_hi,
prod_unsigned_lo;

unsigned short flags;
printf ("Enter a hexadecimal mpcnd and mplyr: \n");
scanf ("%X %X", &mpcnd, &mplyr);

(a) //continued on next page

Figure 9.19 Program to illustrate unsigned multiplication and the resulting flags:
(a) the program and (b) the outputs.

//switch to assembly
_asm
{

MOV EAX, mpcnd
MUL mplyr ;product in edx:eax
MOV prod_unsigned_hi, EDX
MOV prod_unsigned_lo, EAX

PUSHF ;push low-order 16 bits
POP AX ;pop flags to ax
MOV flags, AX

}

printf ("\nUnsigned product high = %X",
prod_unsigned_hi);

printf ("\nUnsigned product low = %X\n",
prod_unsigned_lo);

printf ("\nFlags = %X\n\n", flags);

return 0;
}

Enter a hexadecimal mpcnd and mplyr:
4567 ABCD

Unsigned product high = 0
Unsigned product low = 2E93607B

Flags = 206 //IF, PF

Press any key to continue . . . _
--
Enter a hexadecimal mpcnd and mplyr:
12345 12345

Unsigned product high = 1
Unsigned product low = 4B65F099

Flags = A07 //OF, IF, PF, CF

Press any key to continue . . . _

(b)

380 Chapter 9 Fixed-Point Arithmetic Instructions

Figure 9.19 (Continued)

//mul_dblwd_wd.cpp
//multiply a double word by a word
//to generate a product of three words

#include "stdafx.h"

int main (void)
{
//define variables

unsigned long mpcnd, mplyr, prod_hi, prod_lo;
unsigned short flags;

printf ("Enter a hex 8-digit mpcnd and a 4-digit mplyr:
\n");

scanf ("%X %X", &mpcnd, &mplyr);

//switch to assembly
_asm
{

MOV EAX, mpcnd
MUL mplyr ;product in edx:eax
MOV prod_hi, EDX
MOV prod_lo, EAX

PUSHF ;push low-order 16 bits
POP AX ;pop flags
MOV flags, AX

}

printf ("\nProduct high = %X\nProduct low = %X\n",
prod_hi, prod_lo);

printf ("\nFlags = %X\n\n", flags);

return 0;
}

//continued on next page
(a)

9.3 Multiplication 381

Figure 9.20 Program to illustrate multiplying a doubleword multiplicand by a
word multiplier: (a) the program and (b) the outputs.

Enter a hex 8-digit mpcnd and a 4-digit mplyr:
AAAABBBB CCCC

Product high = 8888
Product low = DA69D04

Flags = A03 //OF, IF, CF
--
Enter a hex 8-digit mpcnd and a 4-digit mplyr:
32062521 6400

Product high = 138A
Product low = 6680E400

Flags = A07 //OF, IF, PF, CF
(b)

382 Chapter 9 Fixed-Point Arithmetic Instructions

Figure 9.20 (Continued)

9.3.2 Signed Multiply (IMUL) Instruction

The IMUL instruction executes a multiply operation on a signed multiplicand and a
signed multiplier. There are three forms for the IMUL instruction, which are a func-
tion of the operands being used: one operand, two operands, or three operands. When
the IMUL instruction is used to multiply two signed operands, the high-order bit rep-
resents the sign bit — 0 for positive operands and 1 for negative operands. For both
the MUL instruction and the IMUL instruction, an REX prefix in 64-bit mode
increases the number of general-purpose registers from eight to sixteen and can be
extended to 64 bits.

One operand This form is equivalent to the syntax used for the MUL instruction;
thus, the source operand is in a general-purpose register or in a memory location. The
implied destination operand is in the accumulator — registers AL, AX, EAX, or RAX,
which are a function of the operand size. The syntax for the one operand IMUL
instruction is shown below.

IMUL register/memory

Two operands This form multiplies the destination operand (first operand) by the
source operand (second operand) and stores the product in the destination operand.
The destination operand is a general-purpose register and the source operand is a

9.3 Multiplication 383

general-purpose register, a memory location, or an immediate operand. The syntax for
the two-operand IMUL instruction is shown below.

IMUL register, register/memory/immediate

Three operands This form uses three operands: the destination operand (first
operand) and two source operands (second operand and third operand). The destina-
tion operand is a general-purpose register; the first source operand can be a general-
purpose register or a memory location; the second source operand is an immediate
value. The first source operand is multiplied by the second source operand and the
product is stored in the destination operand. If an immediate operand is utilized, the
sign extends to match the size of the destination operand.

If the high-order half of the product is not the sign extension, then the overflow
flag (OF) and the carry flag (CF) are set; otherwise, the flags are reset. When the over-
flow flag and the carry flag are set, this indicates that the high-order half of the product
contains significant bits of the result. The sign flag (SF), the zero flag (ZF), the aux-
iliary carry flag (AF), and the parity flag (PF) are undefined following execution of the
IMUL instruction. An n-bit multiplicand and an n-bit multiplier produce a 2n-bit
product. The syntax for the three-operand IMUL instruction is shown below.

IMUL register, register/memory, immediate

An algorithm for the paper-and-pencil method will be described for multiplying
signed operands, then examples using this method will be presented. The algorithm is
similar to that used for unsigned operands and consists of multiplying the multiplicand
by the low-order multiplier bit to obtain a partial product. If the multiplier bit is a 1,
then the multiplicand becomes the partial product with the sign extended to match the
size of the 2n-bit product; if the multiplier bit is a 0, then zeroes become the partial
product with zeroes extended to match the size of the 2n-bit product.

The partial product is then shifted left 1 bit position and the multiplicand is mul-
tiplied by the next higher-order multiplier bit to obtain a second partial product. Each
partial product is shifted left relative to the previous partial product. The process
repeats for all remaining multiplier bits, at which time the partial products are added to
obtain the product. The sign of the product is positive if both operands have the same
sign; the sign of the product is negative if the signs of the operands are different.

Example 9.3 This example multiplies a 4-bit negative multiplicand by a 4-bit neg-
ative multiplier to yield an 8-bit positive product. In the paper-and-pencil method,
both operands must be positive to obtain the correct positive product. This can be eas-
ily accomplished by 2s complementing both operands. If the operands were not
negated, then the result would be incorrect due to sign extension in order to generate
the partial products. This is not a problem when using the IMUL instruction — the
operands do not have to be negated. In this example, the multiplicand is a[3:0] = 1100
(–4), the multiplier is b[3:0] = 1011 (–5), to generate a product p[7:0] = 0001 0100
(+20) when both operands are negated.

Multiplicand A 0 1 0 0 +4
Multiplier B ×) 0 1 0 1 +5

0 0 0 0 0 1 0 0
Partial 0 0 0 0 0 0 0
Products 0 0 0 1 0 0

0 0 0 0 0
Product P 0 0 0 1 0 1 0 0 +20

384 Chapter 9 Fixed-Point Arithmetic Instructions

Example 9.4 This example performs a signed multiplication on two doubleword
positive operands: a multiplicand with a hexadecimal value of 228D4A53 and a mul-
tiplier with a hexadecimal value of 55C496B2. The multiplication will be performed
first using the paper-and-pencil method to display all of the partial products, as shown
in Figure 9.21. Then the product will be verified using an assembly language module
embedded in a C program in which the operands are entered from the keyboard. The
one-operand IMUL form will be used. The three-operand form is assigned as a prob-
lem.

The program will also multiply two additional pairs of operands that are entered
from the keyboard: a positive multiplicand and a negative multiplier; and a negative
multiplicand and a positive multiplier of the same absolute value as the previous val-
ues. The product will be the same in both cases. Figure 9.22 illustrates the program
for the doubleword multiplication using an assembly language module embedded in a
C program.

2 2 8 D 4 A 5 3
×) 5 5 C 4 9 6 B 2

0 0 0 0 0 0 0 0 4 5 1 A 9 4 A 6
0 0 0 0 0 0 1 7 C 1 2 3 1 9 1
0 0 0 0 0 0 C F 4 F B D F 2
0 0 0 0 1 3 6 F 7 9 C E B
0 0 0 0 8 A 3 5 2 9 4 C
0 0 1 9 E 9 F 7 B E 4
0 0 A C C 2 7 3 9 F
0 A C C 2 7 3 9 F

1 2 2 2 3 4 4 4 2 3 2 ← Carries
0 B 9 3 7 2 3 1 4 6 5 6 4 F B 6

Figure 9.21 Paper-and-pencil method for doubleword signed multiplication.

//imul_dblwd_dblwd.cpp
//signed multiply on two doublewords

#include "stdafx.h"

int main (void)
{
//define variables

long mpcnd, mplyr, prod_hi, prod_lo;

printf ("Enter two 8-digit hexadecimal numbers: \n");
scanf ("%X %X", &mpcnd, &mplyr);

//switch to assembly
_asm
{

MOV EAX, mpcnd //move 8-digit mpcnd to eax
IMUL mplyr //imul by 8-digit mplyr;

//product in edx:eax
MOV prod_hi, EDX //high-order product

//in edx to prod_hi
MOV prod_lo, EAX //low-order product

//in eax to prod_lo
}

printf ("\nProduct high = %X\nProduct low = %X\n\n",
prod_hi, prod_lo);

return 0;
} (a)

Enter two 8-digit hexadecimal numbers:
228D4A53 55C496B2

Product high = B937231
Product low = 46564FB6

Press any key to continue . . . _
--

(b)
//continued on next page

9.3 Multiplication 385

Figure 9.22 Doubleword multiplication using the one-operand form of IMUL: (a)
the program and (b) the outputs.

Enter two 8-digit hexadecimal numbers:
228D4A53 85C496B2

Product high = EF80A5CD
Product low = D6564FB6

Press any key to continue . . . _
--
Enter two 8-digit hexadecimal numbers:
85C496B2 228D4A53

Product high = EF80A5CD
Product low = D6564FB6

Press any key to continue . . . _

386 Chapter 9 Fixed-Point Arithmetic Instructions

Figure 9.22 (Continued)

This next program performs unsigned (MUL) and signed (IMUL) multiplication
on the same operands. All combinations of the high-order bit will be applied for byte
operands, as shown below.

Multiplicand
Bit 7

Multiplier
Bit 7

Unsigned
Result

Signed
Result

0 0 Positive Positive
0 1 Positive Negative
1 0 Positive Negative
1 1 Positive Positive

The program is shown in Figure 9.23 as an assembly language module embedded
in a C program. Two-digit hexadecimal numbers are entered from the keyboard for
both the multiplicand and the multiplier. The multiply instructions are applied, then
the results are displayed as unsigned and signed products in decimal notation.

//mul_imul.cpp
//demonstrates the use of mul (unsigned numbers)
//and imul (signed numbers) for identical numbers
#include "stdafx.h"
int main (void)

(a) //continued on next page

Figure 9.23 Program to illustrate unsigned and signed multiplication for identical
numbers: (a) the program and (b) the outputs.

{
//define variables

char mpcnd, mplyr;
unsigned short prod_unsigned;
short prod_signed;

printf ("Enter a 2-digit hex mpcnd and mplyr: \n");
scanf ("%X %X", &mpcnd, &mplyr);

//switch to assembly
_asm
{

//unsigned multiply
MOV AL, mpcnd
MUL mplyr ;product in ax
MOV prod_unsigned, AX

//signed multiply
MOV AL, mpcnd
IMUL mplyr ; product in ax
MOV prod_signed, AX

}

printf ("\nUnsigned product = %d", prod_unsigned);
printf ("\nSigned product = %d\n\n", prod_signed);
return 0;

}

Enter a 2-digit hex mpcnd and mplyr:
6E 7C

Unsigned product = 13640
Signed product = 13640

Press any key to continue . . . _
--
Enter a 2-digit hex mpcnd and mplyr:
7F 7F

Unsigned product = 16129
Signed product = 16129

Press any key to continue . . . _
(b) //continued on next page

9.3 Multiplication 387

Figure 9.23 (Continued)

Enter a 2-digit hex mpcnd and mplyr:
7F C7

Unsigned product = 25273
Signed product = -7239

Press any key to continue . . . _
--
Enter a 2-digit hex mpcnd and mplyr:
3D C6

Unsigned product = 12078
Signed product = -3538

Press any key to continue . . . _
--
Enter a 2-digit hex mpcnd and mplyr:
8D 6E

Unsigned product = 15510
Signed product = -12650

Press any key to continue . . . _
--
Enter a 2-digit hex mpcnd and mplyr:
E7 02

Unsigned product = 462
Signed product = -50

Press any key to continue . . . _
--
Enter a 2-digit hex mpcnd and mplyr:
FF FF

Unsigned product = 65025
Signed product = 1

Press any key to continue . . . _
--
Enter a 2-digit hex mpcnd and mplyr:
E1 9A

Unsigned product = 34650
Signed product = 3162

Press any key to continue . . . _

388 Chapter 9 Fixed-Point Arithmetic Instructions

Figure 9.23 (Continued)

9.4 Division 389

Multiplication can also be achieved by shifting the operand left a specified num-
ber of bits, as shown in Chapter 8. A left shift of one bit position multiplies the oper-
and by two; a left shift of two bit positions multiplies the operand by four; a left shift
of three bit positions multiplies the operand by eight, and so forth.

9.4 Division
Division is essentially the inverse of multiplication, where the 2n-bit dividend corre-
sponds to the 2n-bit product; the n-bit divisor corresponds to the n-bit multiplicand;
and the n-bit quotient corresponds to the n-bit multiplier. The equation that represents
this concept is shown below and includes the n-bit remainder as one of the variables.

2n-bit dividend = (n-bit divisor × n-bit quotient) + n-bit remainder

Unlike multiplication, division is not commutative; that is, A/B ≠ B/A, except
when A = B, where A and B are the dividend and divisor, respectively. Before intro-
ducing the divide instructions, this section presents an example of division using the
paper-and-pencil method of sequential shift-subtract/add restoring division. Using
this algorithm, the dividend is shifted left one bit position, then the divisor is sub-
tracted from the shifted dividend by adding the 2s complement of the divisor. In gen-
eral, the operands are as shown below, where A is the 2n-bit dividend and B is the n-bit
divisor. The quotient is Q and the remainder is R, both of which are n bits.

A = a2n–1 a2n–2 . . . an an–1 . . . a1 a0

B = bn–1 bn–2 . . . b1 b0

Q = qn–1 qn–2 . . . q1 q0

R = rn–1 rn–2 . . . r1 r0

Overflow will occur if the high-order half of the dividend is greater than or equal
to the divisor. For example, assume that the high-order half of the dividend is equal to
the divisor, as shown below for a dividend of 112 and a divisor of 7, yielding a quotient
of 16. The resulting quotient value of 16 cannot be contained in the machine’s word
size of four bits; therefore, an overflow had occurred. If the high-order half of the div-
idend is greater than the divisor, then the value of the quotient will be even greater.

B
0 1 1 1

A
0 1 1 1 0 0 0 0

Q

1 0 0 0 0

390 Chapter 9 Fixed-Point Arithmetic Instructions

Overflow can be detected by subtracting the divisor from the high-order half of the
dividend before the division operation commences. If the result is positive, then an
overflow will occur. An overflow is indicated by a divide error exception.

Figure 9.24 illustrates an example of dividing an 8-bit dividend (13) by a 4-bit
divisor (5) to yield a 4-bit quotient (2) and a 4-bit remainder (3). Since there are four
bits in the divisor, there are four left-shift operations each followed by a subtract oper-
ation. The carry-out of the subtraction is placed in the low-order bit position vacated
by the left-shifted partial remainder.

Divisor B (+5) C Dividend A (+13)
0 1 0 1 1 0 0 0 0 1 1 0 1

Shift left 1 0 0 0 1 1 0 1 —
Subtract B +) 1 0 1 1

0 1 1 0 0

Restore (Add B) +) 0 1 0 1
Set C 1 0 0 0 1 1 0 1 0

Shift left 1 0 0 1 1 0 1 0 —
Subtract B +) 1 0 1 1

0 1 1 1 0

Restore (Add B) +) 0 1 0 1
Set C 1 0 0 1 1 0 1 0 0

Shift left 1 0 1 1 0 1 0 0 —
Subtract B +) 1 0 1 1

1 0 0 0 1

No Restore (C = 1) 1 0 0 0 1 1 0 0 1

Shift left 1 0 0 1 1 0 0 1 —
Subtract B +) 1 0 1 1

0 1 1 1 0

Restore (Add B) +) 0 1 0 1
0 0 1 1 0 0 1 0

Remainder Quotient

Figure 9.24 Example of the paper-and-pencil method for binary division.

9.4 Division 391

A carry-out of 0 indicates that the difference was greater than the divisor and the
partial remainder must be restored by adding the divisor to the partial remainder. A
carry-out of 1 indicates that the difference requires no restoration. At the completion
of the final cycle, the remainder is contained in the high-order half of the dividend and
the quotient is contained in the low-order half of the dividend.

9.4.1 Unsigned Divide (DIV) Instruction

The DIV instruction is one of two divide instructions for fixed-point division; the
other is signed divide (IDIV), which is presented in the next section. The DIV instruc-
tion divides the unsigned dividend in an implied general-purpose register by the
unsigned divisor source operand in a register or memory location. The results are
stored in the implied registers. The syntax for the DIV instruction is shown below.

DIV register/memory

The locations of the DIV operands are as follows: the dividend registers are AX,
DX:AX, EDX:EAX, and RDX:RAX and the size of the corresponding divisors are 8
bits, 16 bits, 32 bits, and 64 bits, respectively; the resulting quotients are stored in reg-
isters AL, AX, EAX, and RAX, respectively; the resulting remainders are stored in
registers AH, DX, EDX, and RDX, respectively. If an REX prefix is used in 64-bit
mode, the number of general-purpose registers is increased from eight to sixteen and
can be extended to 64 bits. Results that are not integers are truncated to integers. The
above descriptions are illustrated in Figure 9.25 for 8 bit, 16 bit, and 32 bit divisors.

A dividend

B divisor

Rem Quot

A dividend

B divisor

 Rem Quot

A dividend

B divisor

 Remainder

Quotient

AH AL

Src
AH AL

DX AX

Source
DX AX

EDX EAX

Source

EDX

EAX

Figure 9.25 Pictorial illustration of the dividend, divisor, quotient, and remainder.

392 Chapter 9 Fixed-Point Arithmetic Instructions

Figure 9.26 shows an assembly language module embedded in a C program that
illustrates the DIV instruction. Register pair DX:AX contains the dividend, which is
entered from the keyboard as dvdnd_hi (DX) and dvdnd_lo (AX). The divisor is also
entered from the keyboard. The dividend, divisor, quotient, and remainder are dis-
played after the program has executed. The following flags are undefined: OF, SF, ZF,
AF, PF, and CF.

The first set of operands is entered as: dividend = 0100 2050H and divisor =
3500H to yield a quotient = 4D5H and a remainder = 750H. The calculations shown
below illustrate the division operation and show the resulting quotient and remainder.

0100 205016
→

Quotient = 4D516 (123710)
350016 Remainder = 75016 (187210)

↓ ↓

1678548810 →
Quotient = 123710

1356810 Remainder = 0.13797210 × 1356810 = 187210

//div2.cpp
//unsigned division of two integers
#include "stdafx.h"
int main (void)
{
//define variables

unsigned short dvdnd_hi, dvdnd_lo, dvsr, quot, rem;

printf ("Enter a hex dvdnd (hi then lo) and dvsr: \n");
scanf ("%X %X %X", &dvdnd_hi, &dvdnd_lo, &dvsr);

//switch to assembly
_asm
{

MOV DX, dvdnd_hi
MOV AX, dvdnd_lo
DIV dvsr

MOV quot, AX
MOV rem, DX

} (a) //continued on next page

Figure 9.26 Unsigned division with the dividend in register pair DX:AX: (a) the
program and (b) the outputs.

printf ("\nDividend_hi = %X\nDividend_lo = %X\n",
dvdnd_hi, dvdnd_lo);

printf ("\nDivisor = %X\n", dvsr);

printf ("\nQuotient = %X\nRemainder = %X\n\n", quot, rem);

return 0;
}

Enter a hex dvdnd (hi then lo) and dvsr:
0100 2050 3500

Dividend_hi = 100
Dividend_lo = 2050

Divisor = 3500

Quotient = 4D5
Remainder = 750

Press any key to continue . . . _
--
Enter a hex dvdnd (hi then lo) and dvsr:
12AB E543 3500

Dividend_hi = 12AB
Dividend_lo = E543

Divisor = 3500

Quotient = 5A2F
Remainder = 2A43

Press any key to continue . . . _
-
12AB E54316 / 350016 → 31325523510 / 1356810
31325523510 / 1356810 = 23087.7973910

Quotient = 5A2F16 (2308710)

Remainder = 2A4316 → 0.7973910 × 1356810 = 10818.9875210
 = 1081910 = 2A4316

(b)

9.4 Division 393

Figure 9.26 (Continued)

394 Chapter 9 Fixed-Point Arithmetic Instructions

9.4.2 Signed Divide (IDIV) Instruction

The signed divide instruction (IDIV) is similar to the unsigned divide instruction
(DIV), except that IDIV operates on signed operands. The IDIV instruction divides
the signed dividend in registers AH:AL, DX:AX, EDX:EAX, or RDX:RAX (if an
REX prefix is used in 64-bit mode) by the signed source divisor and stores the result-
ing quotient in the low-order part of the register pairs and stores the remainder in the
high-order part of the register pairs.

The source operand can be in a general-purpose register or in a memory location.
Results that are not integers are truncated toward zero as integers. The registers shown
in Figure 9.25 also apply to the IDIV instruction. The following flags are undefined:
OF, SF, ZF, AF, PF, and CF. The syntax for the IDIV instruction is shown below.

IDIV register/memory

The remainder has the same sign as the dividend and satisfies the following equa-
tion as shown in the examples of Figure 9.27:

Dividend = (Quotient × Divisor) + Remainder

Divisor Dividend Quotient Remainder
4075 50 81 25
4075 –50 –81 25

–4075 50 –81 –25
–4075 –50 81 –25

Figure 9.27 Examples of signed division with resulting quotient and remainder.

Figure 9.28 shows an assembly language module embedded in a C program that
illustrates the application of the IDIV instruction. The dividend and divisor are
entered from the keyboard as signed decimal integers. All combinations of the signs
are presented for the dividend and divisor. The quotient and remainder are displayed
after the program has executed.

//idiv2.cpp
//signed divide operation
#include "stdafx.h"
int main (void)

(a) //continued on next page

Figure 9.28 Example to illustrate signed division: (a) the program and (b) the out-
puts.

{
//define variables

short dvdnd;
char dvsr, quot, rem;

printf ("Enter a signed decimal dvdnd and dvsr: \n");
scanf ("%d %d", &dvdnd, &dvsr);

//switch to assembly
_asm
{

MOV AX, dvdnd
IDIV dvsr ;quot in al; rem in ah

MOV quot, AL
MOV rem, AH

}
printf ("\nDividend = %d\nDivisor = %d\n", dvdnd, dvsr);
printf ("\nQuotient = %d\nRemainder = %d\n\n", quot, rem);
return 0;

}

Enter a signed decimal dvdnd and dvsr:
4075 50

Dividend = 4075
Divisor = 50

Quotient = 81
Remainder = 25

Press any key to continue . . . _
--
Enter a signed decimal dvdnd and dvsr:
3500 65

Dividend = 3500
Divisor = 65

Quotient = 53
Remainder = 55

Press any key to continue . . . _ //continued on next page
(b)

9.4 Division 395

Figure 9.28 (Continued)

Enter a signed decimal dvdnd and dvsr:
4075 –50

Dividend = 4075
Divisor = –50

Quotient = –81
Remainder = 25

Press any key to continue . . . _
--
Enter a signed decimal dvdnd and dvsr:
12288 –96

Dividend = 12288
Divisor = –96

Quotient = –128
Remainder = 0

Press any key to continue . . . _
--
Enter a signed decimal dvdnd and dvsr:
–4075 50

Dividend = –4075
Divisor = 50

Quotient = –81
Remainder = –25

Press any key to continue . . . _
--
Enter a signed decimal dvdnd and dvsr:
–600 35

Dividend = –600
Divisor = 35

Quotient = –17
Remainder = –5

Press any key to continue . . . _
--

//continued on next page

396 Chapter 9 Fixed-Point Arithmetic Instructions

Figure 9.28 (Continued)

Enter a signed decimal dvdnd and dvsr:
–4075 –50

Dividend = –4075
Divisor = –50

Quotient = 81
Remainder = –25

Press any key to continue . . . _
--
Enter a signed decimal dvdnd and dvsr:
–100 –25

Dividend = –100
Divisor = –25

Quotient = 4
Remainder = 0

Press any key to continue . . . _

9.4 Division 397

Figure 9.28 (Continued)

Division can also be achieved by shifting the operand right a specified number of
bits, as shown in Chapter 8. A right shift of one bit position divides the operand by
two; a right shift of two bit positions divides the operand by four; a right shift of three
bit positions divides the operand by eight, and so forth. All of the problems in the fol-
lowing section utilize one or more of the instructions presented in this chapter.

398 Chapter 9 Fixed-Point Arithmetic Instructions

9.5 Problems

9.1 Add the following numbers, which are in radix complementation for radix 7.

1 2 3 47
5 6 1 27
3 4 5 67
1 2 3 47

9.2 Add the following numbers, which are in radix complementation for radix 2.

1 1 1 12
1 1 1 12
1 1 1 12
1 1 1 12
1 1 1 12

9.3 Indicate whether an overflow occurs for the operation shown below. The
numbers are in radix complementation for radix 3.

2 1 0 1 23
+) 0 2 1 2 23

9.4 Write a program segment to negate a 32-bit binary number. The number is in
2s complement representation and resides in register pair DX:AX. Do not use
the NEG instruction.

9.5 Let AX = 00 4FH and the word OPND in memory = FF 38H. Determine
whether the conditional jump instructions shown below will jump to DEST.

(a) ADD AX, 200
JS DEST

(b) ADD OPND, 200
JZ DEST

9.5 Problems 399

9.6 Determine the contents of registers AL and BL after the program segment
shown below has executed. Then write an assembly language module embed-
ded in a C program to verify the results.

MOV AL, 00H
MOV BL, –5

LOOP1: ADD BL, 2
INC AL
ADD BL, –1
JNZ LOOP1

9.7 Let AX = 47E7H and BX = 4BED, then add the two registers and obtain the
state of the following flags: AF, CF, OF, PF, SF, and ZF.

9.8 Write an assembly language module — not embedded in a C program — that
requests two characters to be entered from the keyboard. Display the first
character unchanged and display the second character shifted left logically
one bit position. The characters can be numbers or special characters in the
range 21H to 3FH.

9.9 Write an assembly language program — not embedded in a C program — that
removes all nonletters from a string of characters that are entered from the
keyboard.

9.10 Write an assembly language module embedded in a C program that adds two
4-digit hexadecimal numbers and displays the sum and the low-order two
bytes of the EFLAGS register.

9.11 Write an assembly language module embedded in a C program that uses the
add with carry (ADC) instruction in the addition of four 4-digit hexadecimal
numbers: two for the augend and two for the addend. Display the high-order
sum and the low-order sum. Also display the high-order byte and the low-or-
der byte of the EFLAGS register.

9.12 Given the program shown below, determine the contents of the RSLT field af-
ter each of the following hexadecimal characters are entered from the key-
board:

12345616 ABCDEF16 4a5b6c16 UVWXYZ16

;logic_inc.asm
;---
;STACK

;---
.DATA
PARLST LABEL BYTE
MAXLEN DB 15
ACTLEN DB ?
OPFLD DB 15 DUP(?)
PRMPT DB 0DH, 0AH, 'Enter text: $'
RSLT DB 0DH, 0AH, 'Result = $'

;---
.CODE
BEGIN PROC FAR

;set up pgm ds

MOV AX, @DATA
MOV DS, AX

;read prompt
MOV AH, 09H
LEA DX, PRMPT
INT 21H

;keyboard request rtn to enter characters
MOV AH, 0AH
LEA DX, PARLST
INT 21H

;set up addresses
LEA SI, OPFLD
LEA DI, OPFLD+2
LEA BX, RSLT+12
MOV CX, 4

;begin main pgm
LP1: MOV AL, [SI]

MOV AH, [DI]
XOR AL, AH
OR AL, 30H
MOV [BX] ,AL
INC SI
INC DI
INC BX
LOOP LP1

//continued on next page

400 Chapter 9 Fixed-Point Arithmetic Instructions

;display result
MOV AH, 09H
LEA DX, RSLT
INT 21H

BEGIN ENDP
END BEGIN

9.5 Problems 401

9.13 Perform a subtract operation on the radix 5 numbers shown below. The pro-
cedure is identical to the radix 2 method — the only difference is the radix.

0 4 3 2 15
–) 4 3 3 4 05

9.14 Perform a subtract operation on the two hexadecimal operands shown below.

A B C D16
–) 1 2 3 416

9.15 Indicate whether an overflow occurs for the operation shown below. The
numbers are in radix complement representation for radix 2.

0 1 1 1 1 1 0 02
–) 1 1 1 1 1 1 1 12

9.16 Indicate whether an overflow occurs for the operation shown below. The
numbers are in radix complement representation for radix 2.

0 1 1 0 1 1 0 02
–) 1 0 0 0 1 1 1 02

9.17 Let register AL = 61H (9710). Then execute the instruction shown below to
obtain the difference and the state of the following flags: OF, SF, ZF, AF, PF,
and CF.

SUB AL, 65H

402 Chapter 9 Fixed-Point Arithmetic Instructions

9.18 Let register DL = F3H and register BH = 72H. Then execute the instruction
shown below to obtain the difference and the state of the following flags: OF,
SF, ZF, AF, PF, and CF.

SUB DL, BH

9.19 Determine the contents of register AL after the program shown below has ex-
ecuted.

//decrement.cpp
//program to illustrate the DEC instruction.

#include "stdafx.h"

int main (void)
{

//define variables
char result;

//switch to assembly
_asm
{

MOV AL, 3AH
MOV CH, 0A9H
ADD CH, 06H
ADD AL, CH

NEG AL
DEC AL
MOV result, AL

}

printf ("\nAL = %X\n\n", result);

return 0;
}

9.5 Problems 403

9.20 Show the result of the program listed below when the following digits are en-
tered from the keyboard: 34689000678305. Refer to Chapter 10 for a descrip-
tion of the ASCII Adjust After Addition (AAA) instruction.

PAGE 66, 80
;adc_aaa_dec.asm

;---
.STACK

;---
.DATA
PARLST LABEL BYTE
MAXLEN DB 20
ACTLEN DB ?
OPFLD DB 20 DUP(?)
PRMPT DB 0DH, 0AH, 'Enter 14 single-digit numbers: $'
RSLT DB 0DH, 0AH, 'Result = $'
;OPFLD #s 34689000678305

;---
.CODE
BEGIN PROC FAR

;set up pgm ds

MOV AX, @DATA
MOV DS, AX

;read prompt

MOV AH, 09H
LEA DX, PRMPT
INT 21H

;keyboard request rtn to enter characters

MOV AH, 0AH
LEA DX, PARLST
INT 21H

;start main pgm
LEA SI, OPFLD+5
LEA DI, OPFLD+13
LEA BX, RSLT+12

MOV CX, 6
CLC

//continued on next page

LP1: MOV AH, 0
MOV AL, [SI]
ADC AL, [DI]
AAA
OR AL, 30H
MOV [BX], AL
DEC SI
DEC DI
INC BX
LOOP LP1

MOV AH, 09H
LEA DX, RSLT
INT 21H

BEGIN ENDP

END BEGIN

404 Chapter 9 Fixed-Point Arithmetic Instructions

9.21 Write an assembly language program — not embedded in a C program — to
reverse the order and change to uppercase all letters that are entered from the
keyboard. The letters that are entered may be lowercase or uppercase.

9.22 Eight digits, either 0 or 1, are entered from the keyboard. Write an assembly
language program — not embedded in a C program — to determine the parity
of the byte. If there are an even number of 1s in the byte, then a flag bit (PF)
is set to a value of 1 maintaining odd parity over all nine bits — the eight bits
plus the parity flag; otherwise, the parity flag is reset to 0. Display the parity
flag. Draw a flowchart that represents the operation of the odd parity gener-
ator. Remember that a 0 and a 1 are represented in ASCII as 30H and 31H, re-
spectively.

9.23 Write an assembly language program — not embedded in a C program — to
sort n single-digit numbers in ascending numerical order that are entered from
the keyboard. A simple exchange sort is sufficient for this program. The tech-
nique is slow, but appropriate for sorting small lists. The method is as fol-
lows:

1. Search the list to find the smallest number.
2. After finding the smallest number, exchange this number with the first

number.
3. Search the list again to find the next smallest number, starting with the

second number.
4. Then exchange this (second smallest) number with the second number.
5. Repeat this process, starting with the third number, then the fourth num-

ber, and so forth.

9.5 Problems 405

9.24 Let register AL = 6CH and register BL = A7H. After execution of

IMUL BL

determine the hexadecimal contents of register AX.

9.25 Determine the contents of register pair DX:AX after the following program
segment has been executed:

OP1 DW 8080H
OP2 DB 0A2H
MOV AL, OP2
CBW
MUL OP1

9.26 Determine the results of each of the following operations:

Before Instruction
AX = FF FFH MUL AX
AX = FF E4H
BX = 04 C2H

MUL BX

AX = 00 17H
CX = 00 B2H

IMUL CX

AX = FF E4H
BX = 04 C2H

IMUL BX

9.27 Determine the hexadecimal contents of register AX after the following pro-
gram segment has been executed:

MOV CX, 3
MOV AX, 2

LP1: MUL AX
LOOP LP1

9.28 Write an assembly language module embedded in a C program that multiplies
two unsigned (MUL) hexadecimal numbers. Enter numbers from the key-
board that produce a product where the high-order half is all zeroes and where
the high-order half is not all zeroes. The overflow flag and the carry flag
should be set if the high-order half of the product is not all zeroes. Display the
products and the low-order 16 bits of the EFLAGS register.

406 Chapter 9 Fixed-Point Arithmetic Instructions

9.29 Perform a signed multiplication (IMUL) on two doubleword operands: a neg-
ative multiplicand with a hexadecimal value of 85C496B216 and a positive
multiplier with a hexadecimal value of 2244124316. Use the paper-and-pencil
method and display all of the partial products. Then verify the product using
an assembly language module embedded in a C program in which the oper-
ands are entered from the keyboard.

9.30 Write an assembly language module embedded in a C program that uses the
three-operand form for signed multiplication. Enter a signed decimal multi-
plicand from the keyboard and assign an immediate multiplier for the IMUL
operation. Display the multiplicand, the multiplier, and the product.

9.31 Use the shift logical left (SHL) instruction in an assembly language module
embedded in a C program to multiply an operand. Enter an 8-digit hexadec-
imal number and a shift amount from the keyboard. Include numbers and shift
amounts that produce no overflow and that produce an overflow. Display the
shift amount, the preshifted value, the postshifted value, and the accompany-
ing flags.

9.32 Determine the result of the following operation:

Before Instruction
AX = FE 01H
BL = FFH

DIV BL

9.33 Determine whether the following operands produce an overflow for an un-
signed binary divide (DIV) operation:

(a) Dividend = 00011111
Divisor = 0001

(b) Dividend = 00001111
Divisor = 0001

(c) Dividend = 01000001
Divisor = 0011

9.34 Write an assembly language module embedded in a C program to perform un-
signed division (DIV) on two decimal integers that are entered from the key-
board. Print the dividend, divisor, quotient, and remainder.

9.5 Problems 407

9.35 Write an assembly language program — not embedded in a C program — for
a sequence detector that detects the number of times that the four-bit se-
quence 0111 appears in the keyboard input buffer (OPFLD) when n charac-
ters are entered. The variable n has the following range: 1 ≤ n ≤ 30.

The bit configuration 0111 may be in the high-order four bits of the key-
board character, the low-order four bits, or both high- and low-order four
bits. Display the number of times that the sequence occurs. The DIV instruc-
tion can be used in this program. Draw a flowchart prior to designing the
program. An example of input data is shown below.

7 5 g q T W
0011 0111 0011 0101 0110 0111 0111 0001 0101 0100 0111 0111

0111 occurs five times

9.36 Write an assembly language program — not embedded in a C program — that
calculates the surface area of a rectangular solid box. The length, width, and
height are single-digit numbers that are entered from the keyboard. The pro-
gram will use the ADD, MUL, and DIV instructions. Enter at least three sets
of numbers and display the corresponding surface area.

9.37 Determine the contents of register pair DX:AX for parts (a) and (b) after ex-
ecution of the following program segment:

MOV AX, dvdnd
CWD
IDIV dvsr

(a) dvdnd = 059A; dvsr = FFC7

(b) dvdnd = 7C58; dvsr = FFA9

9.38 Write an assembly language module embedded in a C program that evaluates
the expression shown below, where x = 40010 (019016), y = 510 (000516), z =
100010 (03E816), and v = 400010 (0FA016).

[v – (x × y + z – 500)] / x

This page intentionally left blankThis page intentionally left blank

409

10
Binary-Coded Decimal
Arithmetic Instructions

The radix is 10 in the decimal number system; therefore, ten digits are used, 0 through
9. The low-value digit is 0 and the high-value digit is (r – 1) = 9. The weight assigned
to each position of a decimal number is as follows:

10n–1 10n–2 … 103 102 101 100 . 10–1 10–2 10–3 … 10–m

where the integer and fraction are separated by the radix point (decimal point).
Binary-coded decimal (BCD) instructions operate on decimal numbers that are

encoded as 4-bit binary numbers in the 8421 code. For example, the decimal number
576 is encoded in BCD as 0101 0111 0110. BCD numbers have a range of 0 to 9;
therefore, any number greater than 9 must be adjusted by adding a value of 6 to the
number to yield a valid BCD number. For example, if the result of an operation is
1010, then 0110 is added to this intermediate sum. This yields a value of 0000 with a
carry of 1, or 0001 0000 in BCD which is 10 in decimal.

The condition for a correction (adjustment) of an intermediate sum that also pro-
duces a carry-out is shown in Equation 10.1. This specifies that a carry-out will be
generated whenever bit position b8 is a 1 in both decades, when bit positions b8 and b4
are both 1s, or when bit positions b8 and b2 are both 1s, as shown in the examples of
Figure 10.1. Table 10.1 lists the ten decimal digits (0 through 9) and the corresponding
binary-coded decimal digits, plus BCD numbers of more than one decimal digit.

Carry = c8 + b8b4 + b8b2 (10.1)

10.1 ASCII Adjust after Addition (AAA) Instruction
10.2 Decimal Adjust AL after Addition (DAA)

Instruction
10.3 ASCII Adjust AL after Subtraction (AAS)

Instruction
10.4 Decimal Adjust AL after Subtraction (DAS)

Instruction
10.5 ASCII Adjust AX after Multiplication (AAM)

Instruction
10.6 ASCII Adjust AX before Division (AAD)

Instruction
10.7 Problems

b8 b4 b2 b1

1 0 0 0 (8)
+) 1 0 0 0 (8)

c8 = 1 1 ← 0 0 0 0 ← Intermediate sum
↓ +) 0 1 1 0 ← Adjust

0 0 0 1 0 1 1 0 (16)

b8 b4 b2 b1

0 1 1 1 (7)
+) 0 1 0 1 (5)

b8 . b4 = 11 1 1 0 0 ← Intermediate sum
+) 0 1 1 0 ← Adjust

0 0 0 1 ← 0 0 1 0 (12)

b8 b4 b2 b1

0 1 1 0 (6)
+) 0 1 0 0 (4)

b8 . b2 = 11 1 0 1 0 ← Intermediate sum
+) 0 1 1 0 ← Adjust

0 0 0 1 ← 0 0 0 0 (10)

410 Chapter 10 Binary-Coded Decimal Arithmetic Instructions

Figure 10.1 Examples showing adjustment of the intermediate sum.

Table 10.1 Binary-Coded Decimal Numbers

Decimal Binary-Coded Decimal
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

10 0001 0000 Continued on next page

10.1 ASCII Adjust After Addition (AAA) Instruction 411

Figure 10.2 shows an additional example of adding BCD numbers, where the
augend and addend both contain three digits each: the augend = 436, the addend = 825,
to yield a sum of 1261. The intermediate sum in this example is 1 1100 0110 1011.
The sum of the second decade does not require adjustment, because the intermediate
sum does not satisfy Equation 10.1. The same is true for the final carry-out.

b8 b4 b2 b1 b8 b4 b2 b1 b8 b4 b2 b1

0 1 0 0 0 0 1 1 0 1 1 0
1 0 0 0 0 0 1 0 0 1 0 1

+) 1 ← 1 0 1 1
+) 0 ← 0 1 1 0 +) 0 1 1 0

1 ← 1 1 0 0 0 0 0 1
+) 0 1 1 0

0 0 1 0

0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1

Figure 10.2 Example of adding two BCD operands containing three digits each.

10.1 ASCII Adjust After Addition (AAA)
Instruction

The AAA instruction adjusts the result of an addition operation of two unpacked
binary-coded decimal (BCD) operands. An unpacked BCD number contains zeroes in
the high-order four bits of the byte; the numerical value of the number is contained in

11 0001 0001
12 0001 0010
… …
124 0001 0010 0100
… …
365 0011 0110 0101

Table 10.1 Binary-Coded Decimal Numbers

Decimal Binary-Coded Decimal

412 Chapter 10 Binary-Coded Decimal Arithmetic Instructions

the low-order four bits of the byte. General-purpose register AL is the implied source
and destination for the AAA instruction.

The sum obtained by the addition of two unpacked BCD or ASCII numbers is
stored in register AL. This sum may not be a valid BCD value. The AAA instruction
converts the sum in register AL into a valid BCD number and stores the result in bits
3 through 0 of register AL and resets bits 7 through 4 of register AL. If the low-order
four bits of the sum in register AL are greater than nine or if the AF flag is set, then six
is added to AL and register AH is incremented by 1. In this case, both the auxiliary
carry flag (AF) and the carry flag (CF) are set; otherwise, they are reset. The following
flags are undefined: OF, SF, ZF, and PF.

Figure 10.3 shows examples of sums in which the result is not a valid BCD num-
ber — greater than nine — and a sum in which the AF flag is set. When used in a pro-
gram, the AAA instruction is preceded by an ADD instruction or an ADC instruction.

AX = 0 0 3 8 ASCII 8
+) BX = 0 0 3 4 ASCII 4

AX = 0 0 6 C Low half of AL > 9
AAA 1 6

0 1 0 2 After AAA

(a)

AX = 0 0 3 9 ASCII 9
+) BX = 0 0 319 ASCII 9

AX = 0 0 7 2 AF = 1
AAA 1 6

0 1 0 8 After AAA

(b)

Figure 10.3 Examples of using the AAA instruction: (a) where the sum was not a
valid BCD number and (b) where the AF flag was set.

Figure 10.4 shows an assembly language module — not embedded in a C program
— that illustrates the use of the AAA instruction. Two single-digit numbers are
entered from the keyboard and added using the ADD instruction; then the AAA
instruction is executed to produce a valid result, if necessary. Numbers that generate
a valid BCD sum are entered, also numbers that generate an invalid BCD result, and
numbers that generate an auxiliary carry flag (AF). In order to display the sums

10.1 ASCII Adjust After Addition (AAA) Instruction 413

correctly, the ASCII bias is added to the sums generated by the AAA instruction. A
program that adds two 3-digit numbers is left as a problem.

;add_aaa.asm
;---
.STACK
;---
.DATA
PARLST LABEL BYTE
MAXLEN DB 5
ACTLEN DB ?
OPFLD DB 5 DUP(?)
PRMPT DB 0DH, 0AH, 'Enter two single digits: $'
RSLT DB 0DH, 0AH, 'Sum = $'

;---
.CODE
BEGIN PROC FAR

;set up pgm ds

MOV AX, @DATA ;get addr of data seg
MOV DS, AX ;move addr to ds

;read prompt

MOV AH, 09H ;display string
LEA DX, PRMPT ;put addr of prompt in dx
INT 21H ;dos interrupt

;keyboard request rtn to enter numbers

MOV AH, 0AH ;buffered keyboard input
LEA DX, PARLST ;put addr of parlst in dx
INT 21H ;dos interrupt

;get first number
MOV AL, OPFLD ;move first number to al
MOV AH, 00H ;clear ah for the aaa instr

;get second number

MOV BL, OPFLD+1 ;move second number to al
MOV BH, 00H ;clear bh for the aaa instr

ADD AL, BL ;add al and bl
AAA ;change al to valid unpacked #
OR AX, 3030H ;restore ascii bias for display

(a) //continued on next page

Figure 10.4 Program to illustrate using the AAA instruction: (a) the program and
(b) the outputs.

MOV RSLT+8, AH ;move high-order digit to rslt
MOV RSLT+9, AL ;move low-order digit to rslt

;display the result

MOV AH, 09H ;display string
LEA DX, RSLT ;put addr of rslt in dx
INT 21H ;dos interrupt

BEGIN ENDP

END BEGIN

Enter two single digits: 84 //generates an invalid BCD #
Sum = 12

Enter two single digits: 99 //AF =1
Sum = 18

Enter two single digits: 97 //AF =1
Sum = 16

Enter two single digits: 78 //generates an invalid BCD #
Sum = 15

Enter two single digits: 43
Sum = 07

Enter two single digits: 45
Sum = 09

(b)

414 Chapter 10 Binary-Coded Decimal Arithmetic Instructions

Figure 10.4 (Continued)

10.2 Decimal Adjust AL after Addition
(DAA) Instruction

The DAA instruction adjusts the sum of two packed BCD integers to generate a
packed BCD result. A packed BCD number contains a valid BCD digit in both the
high-order four bits and the low-order four bits of a byte. An ADD instruction pre-
cedes the DAA instruction. The ADD instruction adds the two packed BCD numbers
and stores the sum in register AL. The DAA instruction is then executed and adjusts
the sum in register AL to a valid 2-digit packed BCD value, if necessary. Register AL
is the implied source and destination register for the DAA instruction.

10.2 Decimal Adjust AL after Addition (DAA) Instruction 415

There are two rules that are used when adding packed BCD numbers regarding the
resulting sum.

Rule 1: If the low-order four bits of the sum are greater than nine or if the auxiliary
carry flag (AF) is set, then 06H is added to the sum — which is contained in register
AL — and the AF flag is set; otherwise, the AF is reset.

Rule 2: If the sum in AL is greater than 9FH or if the carry flag (CF) is set, then 60H
is added to AL and the CF flag is set; otherwise, the CF is reset.

For both rules, the overflow flag (OF) is undefined. Examples of adding packed
BCD numbers are shown in Figure 10.5.

4 9
+) 31 8

8 1

8 1
DAA +) 0 6

CF 0 8 7
 Rule 1

6 8
+) 5 1

B 9

B 9
DAA +) 6 0

CF 1 1 9
Rule 2

3 4
+) 8 9

B D

B D
DAA +) 61 6

CF 1 2 3
Rule 1
Rule 2

Figure 10.5 Examples of utilizing the DAA instruction.

416 Chapter 10 Binary-Coded Decimal Arithmetic Instructions

Figure 10.6 shows an assembly language module embedded in a C program that
illustrates the application of the DAA instruction. Two hexadecimal numbers are
entered from the keyboard: an augend and an addend. They are added using the ADD
instruction, then adjusted using the DAA instruction. The sum is then displayed as a
valid 2-digit packed BCD result in register AL. Since the carry flag (CF) and the aux-
iliary carry flag (AF) are affected, the low-order byte of the EFLAGS register is also
displayed — shown below for convenience.

7 6 5 4 3 2 1 0
SF ZF 0 AF 0 PF 1 CF

//daa.cpp
//illustrates the use of the daa instruction
#include "stdafx.h"
int main (void)
{
//define variables

unsigned char augend, addend, sum, flags;

printf ("Enter two 2-digit hexadecimal numbers: \n");
scanf ("%X %X", &augend, &addend);

//switch to assembly
_asm
{

//obtain sum
MOV AL, augend
ADD AL, addend
DAA
MOV sum, AL

//save flags
PUSHF
POP AX
MOV flags, AL

}

printf ("\nAugend = %X, Addend = %X\n", augend, addend);
printf ("Sum = %X, Flags = %X\n\n", sum, flags);
return 0;

} (a) //continued on next page

Figure 10.6 Program to illustrate the use of the DAA instruction: (a) the program
and (b) the outputs.

Enter two 2-digit hexadecimal numbers:
49 38

Augend = 49, Addend = 38
Sum = 87, Flags = 96 //SF, AF, PF

//Sum = 087; CF = 0
Press any key to continue . . . _
--
Enter two 2-digit hexadecimal numbers:
68 51

Augend = 68, Addend = 51
Sum = 19, Flags = 3 //CF

//Sum = 119; CF= 1
Press any key to continue . . . _
--
Enter two 2-digit hexadecimal numbers:
34 89

Augend = 34, Addend = 89
Sum = 23, Flags = 13 //AF, CF

//Sum = 123; CF = 1
Press any key to continue . . . _
--
Enter two 2-digit hexadecimal numbers:
89 76

Augend = 89, Addend = 76
Sum = 65, Flags = 17 //AF, PF, CF

/Sum = 165; CF = 1
Press any key to continue . . . _
--
Enter two 2-digit hexadecimal numbers:
98 89

Augend = 98, Addend = 89
Sum = 87, Flags = 97 //SF, AF, PF, CF

//Sum = 187; CF = 1
Press any key to continue . . . _
--
Enter two 2-digit hexadecimal numbers:
99 99

Augend = 99, Addend = 99
Sum = 98, Flags = 93 //SF, AF, CF

//Sum = 198; CF = 1
Press any key to continue . . . _ (b)

10.2 Decimal Adjust AL after Addition (DAA) Instruction 417

Figure 10.6 (Continued)

418 Chapter 10 Binary-Coded Decimal Arithmetic Instructions

A similar program is shown in Figure 10.7, this time using only assembly lan-
guage. The numbers that are entered from the keyboard are stored in the OPFLD input
buffer as hexadecimal ASCII characters. If only the numbers 0 through 9 were
entered, then only the hexadecimal characters 30 through 39 could be used.

In order to obtain higher-valued hexadecimal numbers as valid packed BCD num-
bers, the ASCII characters @ through Y and ‘ through y can be entered. This yields @
= 40 through Y = 59 and ‘ = 60 through y = 79. Thus, 8y yields 38 79 and 9q yields 37
91. The only drawback with this method is that the higher-valued numbers 80 through
89 and 90 through 99 cannot be realized. This presents no problem in illustrating the
use of the DAA instruction.

If the higher-valued packed hexadecimal numbers are required, then a simple —
but longer — procedure can be employed. Assume that it is required to use the DAA
instruction to adjust the sum obtained by adding 99 + 99. The numbers are entered
from the keyboard and stored in the OPFLD buffer, as shown below, where the first
two digits are altered and changed to a valid packed BCD number. The second pair of
digits are similarly altered.

MAX ACT OP +1 +2 +3
PARLST 39 39 39 39

AX 39 39

09 09

90 09

AND AX, 0F0FH

SHL AH, 4

90 99OR AL, AH

;daa.asm
;obtain the sum of two packed bcd operands
;---
.STACK
;---
.DATA
PARLST LABEL BYTE
MAXLEN DB 5
ACTLEN DB ?
OPFLD DB 5 DUP(?) (a) //continued on next page

Figure 10.7 Assembly language program to illustrate using the DAA instruction:
(a) the program and (b) the outputs.

PRMPT DB 0DH,0AH,'Enter 2 ascii chars as packed bcd #s: $'
RSLT DB 0DH, 0AH, 'Result = $'
FLAGS DB 0DH, 0AH, 'Flags = $'

;---
.CODE
BEGIN PROC FAR

;set up pgm ds
MOV AX, @DATA ;get addr of data seg
MOV DS, AX ;move addr to ds

;read prompt

MOV AH, 09H ;display string
LEA DX, PRMPT ;put addr of prompt in dx
INT 21H ;dos interrupt

;keyboard request rtn to enter characters

MOV AH, 0AH ;buffered keyboard input
LEA DX, PARLST ;put addr of parlst in dx
INT 21H ;dos interrupt

;---
;get the two numbers

MOV AL, OPFLD ;get first number
MOV AH, OPFLD+1 ;get second number

;add the two numbers and adjust sum
ADD AL, AH ;add the two numbers
DAA ;adjust the sum

;---
;move flags to flag area first (or instr resets flags)

PUSHF
POP BX ;flags word to bx

MOV DL, BL
AND DL, 10H ;isolate af
SHR DL, 4 ;shift left logical 4
OR DL, 30H ;add ascii bias
MOV FLAGS+11, DL ;move af to flag area

MOV DL, BL
AND DL, 01H ;isolate cf
OR DL, 30H ;add ascii bias
MOV FLAGS+12, DL ;move cf to flag area

//continued on next page

10.2 Decimal Adjust AL after Addition (DAA) Instruction 419

Figure 10.7 (Continued)

;obtain high-order sum
MOV BL, AL
SHR BL, 4 ;put # in bits 3-0
OR BL, 30H ;add ascii bias
MOV RSLT+11, BL ;move sum to result area

;obtain low-order sum

MOV BL, AL
AND BL, 0FH ;isolate low-order digit
OR BL, 30H ;add ascii bias
MOV RSLT+12, BL ;move sum to result area

;display sum, af, and cf flags
MOV AH, 09H ;display string
LEA DX, RSLT ;put addr of rslt (sum) in dx
INT 21H ;dos interrupt

MOV AH, 09H ;display string
LEA DX, FLAGS ;addr of flags (af, cf) in dx
INT 21H ;dos interrupt

BEGIN ENDP

END BEGIN

Enter 2 ascii chars as packed bcd #s: 8y //38 79
Result = 17
Flags = 11 //AF = 1, CF = 1; Sum = 117
--
Enter 2 ascii chars as packed bcd #s: 9q //39 71
Result = 10
Flags = 11 //AF = 1, CF = 1; Sum = 110
--
Enter 2 ascii chars as packed bcd #s: 2R //32 52
Result = 84
Flags = 00 //AF = 0, CF = 0; Sum = 084
--
Enter 2 ascii chars as packed bcd #s: cr //63 72
Result = 35
Flags = 01 //AF = 0, CF = 1; Sum = 135
--
Enter 2 ascii chars as packed bcd #s: I8 //49 38
Result = 87
Flags = 10 //AF = 1, CF = 0; Sum = 087
--

(b) //continued on next page

420 Chapter 10 Binary-Coded Decimal Arithmetic Instructions

Figure 10.7 (Continued)

Enter 2 ascii chars as packed bcd #s: 99 //39 39
Result = 78
Flags = 10 //AF = 1, CF = 0; Sum = 078
--
Enter 2 ascii chars as packed bcd #s: 76 //37 36
Result = 73
Flags = 10 //AF = 1, CF = 0; Sum = 073
--
Enter 2 ascii chars as packed bcd #s: Ec //45 63
Result = 08
Flags = 01 //AF = 0, CF = 1; Sum = 108

10.3 ASCII Adjust AL after Subtraction (AAS) Instruction 421

Figure 10.7 (Continued)

10.3 ASCII Adjust AL after Subtraction
(AAS) Instruction

The AAS instruction adjusts the result of a subtraction operation of two unpacked
binary-coded decimal (BCD) operands. The resulting difference is converted to an
unpacked BCD value and stored in general-purpose register AL, which is the implied
source and destination for the AAS instruction.

This result may not be a valid BCD value. The AAS instruction converts the dif-
ference in register AL into a valid BCD number and stores the result in bits 3 through
0 of register AL and resets bits 7 through 4 of register AL. If the low-order four bits of
the result in register AL are greater than nine or if the AF flag is set, then six is sub-
tracted from AL and register AH is decremented by 1. In this case, both the auxiliary
carry flag (AF) and the carry flag (CF) are set; otherwise, they are reset. The following
flags are undefined: OF, SF, ZF, and PF.

When used in a program, the AAS instruction is preceded by a subtract (SUB)
instruction or an integer subtraction with borrow (SBB) instruction. Shown below are
two examples of subtraction in which the results are a valid and an invalid BCD num-
ber before using the AAS instruction.

AX = 00 08 – 00 03: AL = 05; AF = 0, CF = 0
AAS AL = 05H; AH = 00H

AX = 00 06 – 00 08: AL = –2 (0FEH)
AL & 0FH = 0EH > 9; AF = 1, CF = 1
AAS AL – 6 = –8 (0F8H)

AL & 0FH = 08; AH = FFH

422 Chapter 10 Binary-Coded Decimal Arithmetic Instructions

Figure 10.8 shows an assembly language module embedded in a C program that
illustrates using the AAS instruction to adjust the result of subtracting two single-digit
numbers. The numbers used in the preceding examples are entered from the keyboard
for comparison.

//aas.cpp
//illustrates the use of the aas instruction

#include "stdafx.h"

int main (void)

{
//define variables

unsigned char minuend, subtrahend, result_lo, result_hi;

printf ("Enter two single-digit numbers:
minuend -- subtrahend: \n");

scanf ("%d %d", &minuend, &subtrahend);

//switch to assembly
_asm
{

MOV AL, minuend
MOV BL, subtrahend

SUB AL, BL
AAS

MOV result_lo, AL
MOV result_hi, AH

}

printf ("\nResult low-order = %X\n", result_lo);

printf ("Result high-order = %X\n\n", result_hi);

return 0;
}

//continued on next page
(a)

Figure 10.8 Program to illustrate using the AAS instruction: (a) the program and
(b) the outputs.

Enter two single-digit numbers: minuend -- subtrahend:
8 3

Result low-order = 5
Result high-order = 0

Press any key to continue . . . _
--
Enter two single-digit numbers: minuend -- subtrahend:
6 8

Result low-order = 8
Result high-order = FF

Press any key to continue . . . _
--
Enter two single-digit numbers: minuend -- subtrahend:
4 7

Result low-order = 7
Result high-order = FF

Press any key to continue . . . _
--
Enter two single-digit numbers: minuend -- subtrahend:
5 9

Result low-order = 6
Result high-order = FF

Press any key to continue . . . _
--
Enter two single-digit numbers: minuend -- subtrahend:
8 4

Result low-order = 4
Result high-order = 0

Press any key to continue . . . _
--
Enter two single-digit numbers: minuend -- subtrahend:
2 9

Result low-order = 3
Result high-order = FF

Press any key to continue . . . _(b)

10.3 ASCII Adjust AL after Subtraction (AAS) Instruction 423

Figure 10.8 (Continued)

424 Chapter 10 Binary-Coded Decimal Arithmetic Instructions

10.4 Decimal Adjust AL after Subtraction
(DAS) Instruction

The DAS instruction adjusts the result of a subtraction of two packed BCD operands.
The instruction generates a valid packed BCD result and stores the difference in gen-
eral-purpose register AL, which is the implied source and destination operand. The
DAS instruction is preceded by a subtract (SUB) instruction or by an integer subtrac-
tion with borrow (SBB) instruction.

There are two rules that are used when subtracting packed BCD numbers regard-
ing the resulting difference.

Rule 1: If the low-order four bits of the difference are greater than nine or if the aux-
iliary carry flag (AF) is set, then 06H is subtracted from the difference — which is con-
tained in register AL — and the AF flag is set; otherwise, the AF flag is reset.

Rule 2: If the difference in AL is greater than 9FH or if the carry flag (CF) is set,
then 60H is subtracted from AL and the CF flag is set; otherwise, the CF flag is reset.

For both rules, the overflow flag (OF) is undefined. Examples of subtracting
packed BCD numbers are shown in Figure 10.9 for the following operands:

42 – 23 78 – 94 34 – 89.

 //continued on next page

AL
42 – 23 = 19 4 2

+) D D (2s complement of BCD 23)
1 F

DAS (Rule 1) +) F1 A (–6)
AF = 1 1 9

AL
78 – 94 = –84 7 8

+) 61 C (2s complement of BCD 94)
E 4

DAS (Rule 2) +) A 0 (–60)
CF = 1 8 4

Figure 10.9 Examples of utilizing the DAS instruction.

AL
34 – 89 = –45 3 4

+) 7 7 (2s complement of BCD 89)
A B

DAS (Rule 1) +) A (–6)
AF = 1 A 5

DAS (Rule 2) +) A 0 (–60)
CF = 1 4 5

10.4 Decimal Adjust AL after Subtraction (DAS) Instruction 425

Figure 10.9 (Continued)

Figure 10.10 shows an assembly language module embedded in a C program that
illustrates the application of the DAS instruction. Two valid packed BCD operands
are entered from the keyboard and subtracted using the SUB instruction, then the dif-
ference is adjusted using the DAS instruction. The difference after the SUB instruc-
tion is displayed together with the result after the DAS instruction is executed. The
low-order byte of the EFLAGS register is also displayed. The first three sets of oper-
ands are the same as the operands shown in the examples of Figure 10.9.

//das.cpp
//illustrates the use of the das instruction

#include "stdafx.h"

int main (void)
{
//define variables

unsigned char minuend, subtrahend, sub_diff, das_diff,
flags;

printf ("Enter two 2-digit hexadecimal numbers: \n");
scanf ("%X %X", &minuend, &subtrahend);

//continued on next page

(a)

Figure 10.10 Program to illustrate the application of the DAS instruction: (a) the
program and (b) the outputs.

//switch to assembly
_asm
{

//obtain difference
MOV AL, minuend
SUB AL, subtrahend
MOV sub_diff, AL
DAS
MOV das_diff, AL

//save flags
PUSHF
POP AX
MOV flags, AL

}

printf ("\nMinuend = %X, Subtrahend = %X\n",
minuend, subtrahend);

printf ("\nSUB difference = %X, DAS difference = %X\n",
sub_diff, das_diff);

printf ("Flags = %X\n\n", flags);
return 0;

}

Enter two 2-digit hexadecimal numbers:
42 23

Minuend = 42, Subtrahend = 23

SUB difference = 1F, DAS difference = 19
Flags = 12 //AF

Press any key to continue . . . _
--
Enter two 2-digit hexadecimal numbers:
78 94

Minuend = 78, Subtrahend = 94

SUB difference = E4, DAS difference = 84
Flags = 87 //SF, PF, CF

Press any key to continue . . . _
(b) //continued on next page

426 Chapter 10 Binary-Coded Decimal Arithmetic Instructions

Figure 10.10 (Continued)

Enter two 2-digit hexadecimal numbers:
34 89

Minuend = 34, Subtrahend = 89

SUB difference = AB, DAS difference = 45
Flags = 13 //AF, CF

Press any key to continue . . . _
--
Enter two 2-digit hexadecimal numbers:
68 51

Minuend = 68, Subtrahend = 51

SUB difference = 17, DAS difference = 17
Flags = 6 //PF

Press any key to continue . . . _
--
Enter two 2-digit hexadecimal numbers:
45 87

Minuend = 45, Subtrahend = 87

SUB difference = BE, DAS difference = 58
Flags = 13 //AF, CF

Press any key to continue . . . _

10.5 ASCII Adjust AX after Multiplication (AAM) Instruction 427

Figure 10.10 (Continued)

10.5 ASCII Adjust AX after Multiplication
(AAM) Instruction

The AAM instruction adjusts the product in general-purpose register AX resulting
from multiplying two valid unpacked BCD operands. The adjustment creates a prod-
uct of two unpacked BCD values in register AX: the high-order digit is in AH, the low-
order digit is in AL. Register AX is the implied source and destination operand for the
AAM instruction. The AAM instruction is preceded by a MUL instruction. The
affected flags are the sign flag (SF), the zero flag (ZF), and the parity flag (PF), which
are set according to the result in register AL. The overflow flag (OF), the auxiliary
carry flag (AF), and the carry flag (CF) are undefined.

428 Chapter 10 Binary-Coded Decimal Arithmetic Instructions

The AAM instruction divides register AL by 1010 (0AH) and stores the quotient in
register AH and the remainder in register AL, as shown below. Since single digits
have a maximum value of 9, the product has a maximum value of 8110 (51H); there-
fore, only register AL can contain an invalid BCD digit. Figure 10.11 depicts the
sequence of operations performed by the MUL and AAM instructions.

AH AL/0AH (Quotient)
AL AL%0AH (Remainder, % is modulo)

Source
Mplyr AL

0 D 0 D 0 Digit

MUL

AX 0 0 Hex Hex Hex may be valid/invalid

AAM

AX 0 D 0 D Two valid unpacked decimal operands

Figure 10.11 Sequence of operations for the MUL and AAM instructions.

Figure 10.12 shows an assembly language module embedded in a C program that
illustrates the use of the AAM instruction when preceded by a MUL instruction. In
this program, the product in register AX is in the same format as shown in Figure
10.11; that is, two unpacked BCD digits. A one-digit multiplicand and a one-digit
multiplier are entered from the keyboard. The resulting product is displayed as a hexa-
decimal value after the MUL instruction is executed and is displayed as two unpacked
BCD digits after the AAM instruction is executed. The flags are also displayed.

//aam2.cpp
//illustrates the use of the aam instruction

#include "stdafx.h"
int main (void) (a) //continued on next page

Figure 10.12 Program to illustrate the use of the AAM instruction: (a) the program
and (b) the outputs.

{
//define variables

unsigned char mpcnd, mplyr, flags;

unsigned short mul_prod, aam_prod;

printf ("Enter a 1-digit multiplicand and multiplier:
\n");

scanf ("%X %X", &mpcnd, &mplyr);

//switch to assembly
_asm
{

//multiply the operands
MOV AL, mpcnd
MUL mplyr
MOV mul_prod, AX

//adjust the result
AAM
MOV aam_prod, AX

//save the flags
PUSHF
POP AX
MOV flags, AL

}

printf ("\nMultiplicand = %X, Multiplier = %X",
mpcnd, mplyr);

printf ("\nMUL product = %X\n", mul_prod);

printf ("AAM product = %X\n", aam_prod);

printf ("Flags = %X\n\n", flags);

return 0;
}

//continued on next page

10.5 ASCII Adjust AX after Multiplication (AAM) Instruction 429

Figure 10.12 (Continued)

Enter a 1-digit multiplicand and multiplier:
9 9

Multiplicand = 9, Multiplier = 9
MUL product = 51
AAM product = 801
Flags = 2 //bit 2 is set

Press any key to continue . . . _

--
Enter a 1-digit multiplicand and multiplier:
4 7

Multiplicand = 4, Multiplier = 7
MUL product = 1C
AAM product = 208
Flags = 2 //bit 2 is set

Press any key to continue . . . _

--
Enter a 1-digit multiplicand and multiplier:
9 5

Multiplicand = 9, Multiplier = 5
MUL product = 2D
AAM product = 405
Flags = 6 //PF

Press any key to continue . . . _

--
Enter a 1-digit multiplicand and multiplier:
9 7

Multiplicand = 9, Multiplier = 7
MUL product = 3F
AAM product = 603
Flags = 6 //PF

Press any key to continue . . . _

(b)

430 Chapter 10 Binary-Coded Decimal Arithmetic Instructions

Figure 10.12 (Continued)

10.5 ASCII Adjust AX after Multiplication (AAM) Instruction 431

Figure 10.13 shows an assembly language module embedded in a C program that
also illustrates the application of the AAM instruction in conjunction with the MUL
instruction. This program demonstrates a slightly different version of the same appli-
cation using the MUL instruction and the AAM instruction that was shown in Figure
10.12; this time the product is displayed as a packed BCD value.

The unpacked product is shown below in register AX, where D represents a BCD
digit. In order to obtain a packed format in register AL, the unpacked digit in register
AH is shifted left logically (SHL) four bit positions. Then register AH is ORed with
register AL to obtain the requisite two-digit packed format.

AH AL
AX 0 D 0 D

A one-digit multiplicand and a one-digit multiplier are entered from the keyboard;
the resulting product is displayed after the MUL instruction is executed and after the
AAM instruction is executed. Although the flags are not usually required, they are
also displayed. A program to multiply a multidigit multiplicand by a single-digit mul-
tiplier is left as a problem.

//aam3.cpp
//illustrates the use of the aam instruction

#include "stdafx.h"
int main (void)
{
//define variables

unsigned char mpcnd, mplyr, flags, aam_prod;
unsigned short mul_prod;

printf ("Enter a 1-digit multiplicand and multiplier:
\n");

scanf ("%X %X", &mpcnd, &mplyr);

//switch to assembly
_asm
{

//multiply the operands
MOV AL, mpcnd
MUL mplyr
MOV mul_prod, AX

(a) //continued on next page

Figure 10.13 Program to illustrate the use of the AAM instruction to obtain a
packed BCD product: (a) the program and (b) the outputs.

//adjust the result
AAM

//save the flags; flags are affected by shl later
PUSHF
POP BX
MOV flags, BL

//change product from 0d 0d to dd
SHL AH, 4
OR AL, AH
MOV aam_prod, AL

}

printf ("\nMultiplicand = %X, Multiplier = %X",
mpcnd, mplyr);

printf ("\nMUL product = %X\n", mul_prod);
printf ("AAM product = %X\n", aam_prod);
printf ("Flags = %X\n\n", flags);
return 0;

}

Enter a 1-digit multiplicand and multiplier:
9 9

Multiplicand = 9, Multiplier = 9
MUL product = 51H
AAM product = 8110
Flags = 2 //bit 2 is set

Press any key to continue . . . _
--
Enter a 1-digit multiplicand and multiplier:
4 7

Multiplicand = 4, Multiplier = 7
MUL product = 1CH
AAM product = 2810
Flags = 2 //bit 2 is set

Press any key to continue . . . _
--

(b) //continued on next page

432 Chapter 10 Binary-Coded Decimal Arithmetic Instructions

Figure 10.13 (Continued)

Enter a 1-digit multiplicand and multiplier:
9 5

Multiplicand = 9, Multiplier = 5
MUL product = 2DH
AAM product = 4510
Flags = 6 //PF

Press any key to continue . . . _
--
Enter a 1-digit multiplicand and multiplier:
9 7

Multiplicand = 9, Multiplier = 7
MUL product = 3FH
AAM product = 6310
Flags = 6 //PF

Press any key to continue . . . _

10.5 ASCII Adjust AX after Multiplication (AAM) Instruction 433

Figure 10.13 (Continued)

Figure 10.14 shows an assembly language program — not embedded in a C pro-
gram — that uses the MUL instruction in conjunction with the AAM instruction to cal-
culate the area of a triangle, as shown below.

Area = ½ base × height

A single-digit base and a single-digit height are entered from the keyboard and
stored in the OPFLD input buffer of the parameter list (PARLST). Since the param-
eters are entered as ASCII characters, they must first be unpacked — ASCII bias
removed — before they are used. If the base value is an odd number, then the base is
truncated — rounded down — when it is divided by 2.

;area of triangle.asm
;area = 1/2 base x height
;---
.STACK
;---
.DATA
PARLST LABEL BYTE

(a) //continued on next page

Figure 10.14 Calculate the area of a triangle using the MUL and AAM instructions:
(a) the program and (b) the outputs.

MAXLEN DB 5
ACTLEN DB ?
OPFLD DB 5 DUP(?)
PRMPT DB 0DH, 0AH, 'Enter base and height: $'
RSLT DB 0DH, 0AH, 'Area of triangle = $'

;---
.CODE
BEGIN PROC FAR

;set up pgm ds

MOV AX, @DATA ;get addr of data seg
MOV DS, AX ;move addr to ds

;read prompt

MOV AH, 09H ;display string
LEA DX, PRMPT ;put addr of prompt in dx
INT 21H ;dos interrupt

;keyboard request rtn to enter characters

MOV AH, 0AH ;buffered keyboard input
LEA DX, PARLST ;put addr of parlst in dx
INT 21H ;dos interrupt

;get base and height and remove ascii bias

MOV BL, OPFLD ;get 1st digit (base)
AND BL, 0FH ;remove ascii bias
MOV AL, OPFLD+1 ;get 1st digit (height)
AND AL, 0FH ;remove ascii bias

;calculate area
SHR BL, 1 ;divide base by 2
MUL BL ;mul 1/2 base x height in al
AAM ;convert to unpacked decimal #s
OR AX, 3030H ;add ascii bias

MOV RSLT+21, AH ;move tens to result area
MOV RSLT+22, AL ;move units to result area

;---
;display area

MOV AH, 09H ;display string
LEA DX, RSLT ;put addr of rslt (area) in dx
INT 21H ;dos interrupt

BEGIN ENDP
END BEGIN //continued on next page

434 Chapter 10 Binary-Coded Decimal Arithmetic Instructions

Figure 10.14 (Continued)

Enter base and height: 67
Area of triangle = 21
--
Enter base and height: 89
Area of triangle = 36
--
Enter base and height: 98
Area of triangle = 32 //1/2 the base truncates; rounds down
--
Enter base and height: 87
Area of triangle = 28
--
Enter base and height: 45
Area of triangle = 10
--
Enter base and height: 44
Area of triangle = 08

(b)

10.6 ASCII Adjust AX before Division (AAD) Instruction 435

Figure 10.14 (Continued)

10.6 ASCII Adjust AX before Division (AAD)
Instruction

The AAD instruction converts two unpacked digits in register AX — high-order digit
in register AH and low-order digit in register AL — to an equivalent binary value,
stores the result in register AL, and resets register AH. The AAD instruction normally
precedes a DIV instruction, but can be used independently to convert two unpacked
BCD digits in register AX to an equivalent radix 10 value in registers AH and AL,
where AH = 00H.

When the value in register AX is then divided by an unpacked BCD value, the
unpacked quotient is stored in register AL and the unpacked remainder is stored in reg-
ister AH. The AAD instruction multiplies register AH by 1010 (0AH), then adds the
product to the contents of register AL, and stores the result in register AL, as shown
below.

AL (AH × 0AH) + AL
AH 00H

The affected flags are the sign flag (SF), the zero flag (ZF), and the parity flag
(PF), which are set or reset according to the result in register AL. The overflow flag
(OF), the auxiliary carry flag (AF), and the carry flag (CF) are unaffected.

436 Chapter 10 Binary-Coded Decimal Arithmetic Instructions

An example is shown in Figure 10.15 that divides AX = 08 04H by BL = 09H
using the AAD instruction and the DIV instruction. The AAD instruction changes AX
from AX = 08 04H to AX = 00 8410 (00 54H), then the DIV instruction produces the
result in AX as AH = 03 (remainder), AL = 09 (quotient).

AH AL
AX 0 8 0 4 Dividend

BL 0 9 Divisor BL (register/memory)

AAD 0 0 8 4 Radix 10. Or AH = 00H, AL = 54H

DIV BL 0 0 8 4 Two valid packed decimal operands

0 9

AH AL
AX 0 3 0 9 Result

Rem Quot

Figure 10.15 Example of using the AAD instruction in conjunction with the DIV
instruction.

Figure 10.16 shows an assembly language program — not embedded in a C pro-
gram — that uses the AAD instruction in conjunction with the DIV instruction to
divide a 2-digit unpacked BCD dividend by a 1-digit unpacked BCD divisor. The
divide operation is executed with several different operands that are entered from the
keyboard.

The results of the AAD instruction are displayed together with the quotient and
remainder obtained from the DIV instruction. The results obtained from executing the
AAD instruction and the DIV instruction may not necessarily be displayed as numer-
ical ASCII digits — 30 (0) through 39 (9). The ASCII digits can range from 21H (!)
to 7EH (~) depending on the results. For example, dividing a dividend of 74 by a divi-
sor of 3 yields a quotient of 24 and a remainder of 2. Executing the AAD instruction
for these operands displays a value of J (4AH = 74); executing the DIV instruction dis-
plays a quotient of 18H (24), and a remainder of 2H (2).

;aad.asm
;obtain the quotient and remainder
;of a 2-digit unpacked bcd dividend
;and a 1-digit unpacked bcd divisor
;---
.STACK

;---
.DATA
PARLST LABEL BYTE
MAXLEN DB 5
ACTLEN DB ?
OPFLD DB 5 DUP(?)
PRMPT DB 0DH, 0AH, ' Enter 2-digit dvdnd &

1-digit dvsr: $'
RSLT_AAD DW 0DH, 0AH, 'After AAD, AX = $'
RSLT_DIV_QUOT DB 0DH, 0AH, 'After DIV, Quot = $'
RSLT_DIV_REM DB 0DH, 0AH, 'After DIV, Rem = $'

;---
.CODE
BEGIN PROC FAR

;set up pgm ds
MOV AX, @DATA ;get addr of data seg
MOV DS, AX ;move addr to ds

;read prompt

MOV AH, 09H ;display string
LEA DX, PRMPT ;put addr of prompt in dx
INT 21H ;dos interrupt

;keyboard request rtn to enter characters

MOV AH, 0AH ;buffered keyboard input
LEA DX, PARLST ;put addr of parlst in dx
INT 21H ;dos interrupt

;---
;get the two numbers and unpack them

MOV AH, OPFLD ;get dvdnd first digit
AND AH, 0FH ;unpack it
MOV AL, OPFLD+1 ;get dvdnd second digit
AND AL, 0FH ;unpack it
MOV DL, OPFLD+2 ;get dvsr digit
AND DL, 0FH ;unpack it

(a) //continued on next page

10.6 ASCII Adjust AX before Division (AAD) Instruction 437

Figure 10.16 Assembly language program to illustrate using the AAD instruction
in conjunction with the DIV instruction: (a) the program and (b) the outputs.

;---
ascii adjust ax before division

AAD
MOV RSLT_AAD+20, AX;move aad value to result area

;---
;divide ax by dl and form quotient and remainder

DIV DL ;quot in al; rem in ah
MOV BL, AL ;move al to bl

OR AH, 30H ;add ascii bias to ah (rem)

SHR BL, 4 ;shift right logical 4
OR BL, 30H ;add ascii bias to bl (quot hi)

AND AL, 0FH ;isolate low-order al
OR AL, 30H ;add ascii bias to al (quot lo)

;---
;move quotient and remainder to result area

MOV RSLT_DIV_REM+19, AH
MOV RSLT_DIV_QUOT+20, BL
MOV RSLT_DIV_QUOT+21, AL

;---
;display aad result

MOV AH, 09H ;display string
LEA DX, RSLT_AAD
INT 21H ;dos interrupt

;---
;display div result

MOV AH, 09H ;display string
LEA DX, RSLT_DIV_QUOT
INT 21H ;dos interrupt

;display div result
MOV AH, 09H ;display string
LEA DX, RSLT_DIV_REM
INT 21H ;dos interrupt

;---
BEGIN ENDP

END BEGIN
//continued on next page

438 Chapter 10 Binary-Coded Decimal Arithmetic Instructions

Figure 10.16 (Continued)

Enter 2-digit dvdnd & 1-digit dvsr: 758
After AAD, AX = K //K = 4BH (7510)
After DIV, Quot = 09H
After DIV, Rem = 3

--
Enter 2-digit dvdnd & 1-digit dvsr: 743
After AAD, AX = J //J = 4AH (7410)
After DIV, Quot = 18H //2410
After DIV, Rem = 2

--
Enter 2-digit dvdnd & 1-digit dvsr: 934
After AAD, AX =] //] = 5DH (9310)
After DIV, Quot = 17H //2310
After DIV, Rem = 1

--
Enter 2-digit dvdnd & 1-digit dvsr: 859
After AAD, AX = U //U = 55H (8510)
After DIV, Quot = 09H
After DIV, Rem = 4

--
Enter 2-digit dvdnd & 1-digit dvsr: 932
After AAD, AX =] //] = 5DH (9310)
After DIV, Quot = 2> //2> = 2EH (4610)
After DIV, Rem = 1

--
Enter 2-digit dvdnd & 1-digit dvsr: 849
After AAD, AX = T //T = 54H (8410)
After DIV, Quot = 09H
After DIV, Rem = 3

--
Enter 2-digit dvdnd & 1-digit dvsr: 997
After AAD, AX = c //c = 63H (9910)
After DIV, Quot = 0> //0> = 0EH (1410)
After DIV, Rem = 1

--
Enter 2-digit dvdnd & 1-digit dvsr: 465
After AAD, AX = . //. = 2EH (4610)
After DIV, Quot = 09
After DIV, Rem = 1

(b)

10.6 ASCII Adjust AX before Division (AAD) Instruction 439

Figure 10.16 (Continued)

440 Chapter 10 Binary-Coded Decimal Arithmetic Instructions

10.7 Problems

10.1 Show the contents of register AX and the values of the indicated flags after
the ADD instruction has been executed and after the AAA instruction has
been executed.

ADD AL, CH
AAA

Before After ADD After AAA
(a) AX = 00 04H AX = AX =

CH = 07H AF = AF = , CF =

(b) AX = 05 05H AX = AX =
CH = 07H AF = AF = , CF =

10.2 Write an assembly language program — not embedded in a C program — that
adds two ASCII numbers that are entered from the keyboard, where the ASCII
numbers have three digits each. The first number entered is the augend; the
second number entered is the addend. The parameter list (PARLST) format is
shown below for convenience. The ASCII numbers shown in the PARLST
yield a sum of 127210. Enter at least four sets of numbers and display the re-
sulting sums.

Augend Addend
MAX ACT OP +1 +2 +3 +4 +5

PARLST 35 37 38 36 39 34

SI DI

10.3 Let register AX = 05 35H and register BL = 39H. After executing the in-
structions shown below, determine the contents of AX and the auxiliary car-
ry flag (AF).

ADD AL, BL
AAA

10.4 Write an assembly language program — not embedded in a C program — for
a sequence detector that detects the number of times that the four-bit se-
quence 0110 appears anywhere in the keyboard input buffer (OPFLD) when
three ASCII characters are entered. This program does not necessarily re-
quire BCD instructions.

10.7 Problems 441

The bit sequence 0110 may be in the high-order four bits of the keyboard
character, the low-order four bits, both high-order and low-order four bits,
across the boundary of the high- and low-order bits, or across the boundary of
two contiguous bytes. Display the number of times that the sequence occurs.
A flowchart may make the program easier to code. Two examples of input
data are shown below for cct and F67.

c c t
0110 0011 0110 0011 0111 0100

0110 occurs four times

F 6 7
0100 0110 0011 0110 0011 0111

0110 occurs four times

10.5 In each part below, assume that the following instructions are executed:

ADD AL, BL
DAA

(a) Give the values of AL after the ADD instruction has been executed, but
before the DAA instruction has been executed for the indicated register
values shown below.

(b) Give the values of AL, the carry flag (CF), and the auxiliary carry flag
(AF) after the DAA instruction has been executed for the indicated reg-
ister values shown below.

(1) AL = 35H, BL = 48H
(2) AL = 47H, BL = 61H
(3) AL = 75H, BL = 46H

Then write an assembly language module embedded in a C program to verify
the results.

442 Chapter 10 Binary-Coded Decimal Arithmetic Instructions

10.6 Given the two instructions shown below, determine the ADD sum, the DAA
sum, the auxiliary carry flag (AF), the parity flag (PF), and the carry flag (CF)
after the instructions have been executed when AL = 89H and BL = 64H.

ADD AL, BL
DAA

10.7 Write an assembly language module embedded in a C program that adds two
4-digit hexadecimal numbers. Display the carry flag (CF) and the sum for
several different numbers.

10.8 Perform a subtraction and adjustment of the following two operands: 07 – 09.
Show the details of the subtraction and adjustment.

10.9 Design an assembly language program — not embedded in a C program — to
perform the following subtraction using the AAS instruction: 76 – 48, then
display the result.

10.10 Design an assembly language module embedded in a C program to perform
subtraction on two unpacked BCD operands using the AAS instruction, then
display the result. Enter several different operands.

10.11 Design an assembly language program — not embedded in a C program —
that performs subtraction on two unpacked BCD operands using the AAS in-
struction. Display the results of several different operands. The first two op-
erands are shown below as: 76 (37 36) and 48 (34 38).

Minuend Subtrahend
MAX ACT OP +1 +2 +3

PARLST 37 36 34 38

10.12 Let AL = 00H and BL = 61H. Execute the following two instructions and then
show the contents of AL, CF, and AF after the SUB instruction has been ex-
ecuted and after the DAS instruction has been executed:

SUB AL, BL
DAS

10.13 Write an assembly language module embedded in a C program that uses the
DAS instruction to subtract and adjust two 4-digit hexadecimal numbers.
Display the difference and the resulting flags.

10.7 Problems 443

10.14 Write an assembly language program — not embedded in a C program —
that performs subtraction on two valid packed BCD operands using the DAS
instruction. Display the results of several different operands.

10.15 Show the contents of register AX after the MUL instruction has been exe-
cuted and after the AAM instruction has been executed for AL = 04H, BL =
06H and AL = 05H, BL = 07H.

MUL BL
AAM

10.16 Write an assembly language program — not embedded in a C program —
that obtains the product of two unpacked single-digit ASCII (BCD) numbers
using the MUL and AAM instructions. Display the multiplicand, the multi-
plier, and the product.

10.17 Write an assembly language program — not embedded in a C program —
that multiplies a five-digit multiplicand by a one-digit multiplier using the
MUL instruction in combination with the AAM instruction. The ADD in-
struction and the AAA instruction will also be used in implementing the pro-
gram.

The five-digit multiplicand and the one-digit multiplier are entered from
the keyboard and stored in the OPFLD, as shown below using a multiplicand
of 12345 and a multiplier of 6. Enter several different multiplicands and
multipliers, then display the operands and the resulting product.

Multiplicand Multiplier

MAX ACT OP +1 +2 +3 +4 +5
PARLST 31 32 33 34 35 36

The paper-and-pencil example shown below may help to illustrate the
algorithm used in the program.

7 8 9
×) 9

8 1 AAM, then store 1 in result area
+) 7 2

8 0 AAM – AAA, then store 0 in result area
+) 6 3

7 1 AAM – AAA, then store 7 and 1 in result area
 Product = 7101

444 Chapter 10 Binary-Coded Decimal Arithmetic Instructions

10.18 Write an assembly language program — not embedded in a C program —
that calculates the number of hours, minutes, and seconds from a number of
seconds that are entered from the keyboard. The number of seconds entered
ranges from 10,000 to 60,000. Enter several different 5-digit numbers of sec-
onds. Do not use the LOOP instruction in this program — Problem 10.20
will use the LOOP instruction to reduce the amount of code. This program
will use the AAM instruction.

10.19 Repeat Problem 10.18, this time using an assembly language module embed-
ded in a C program. Note the simplicity of this program. There is no require-
ment to remove the ASCII bias for the numbers that are entered from the
keyboard, or to restore the ASCII bias before displaying the hours, minutes,
and seconds. It is also not necessary to establish stack or data segments. The
range is the same: 10,000 to 60,000 seconds.

10.20 Write an assembly language program to repeat Problem 10.18 — not embed-
ded in a C program — that calculates the number of hours, minutes, and sec-
onds from a number of seconds that are entered from the keyboard. This time
use a loop to calculate the sum that is represented by the digits that are en-
tered from the keyboard. The number of seconds entered ranges from 10,000
to 60,000. Enter several different 5-digit numbers of seconds. This program
will use the MUL, DIV, and AAM instructions.

10.21 Use the AAD instruction in conjunction with the DIV instruction to divide
register AX = 06 04H by register BL = 05H. Show the result of the AAD in-
struction and the quotient and remainder obtained from the DIV instruction.

10.22 Use the AAD instruction in conjunction with the DIV instruction to divide
register AX = 05 09H by register BL = 03H. Show the result of the AAD in-
struction and the quotient and remainder obtained from the DIV instruction.

10.23 The AAD instruction can be used independently of the DIV instruction for
certain applications, as used in the program for this problem. Create a flow-
chart that demonstrates a method to display one of the twelve months of a
calendar from a number that is entered from the keyboard. For example, the
number 09 will display the month of September. Then write an assembly
language program — not embedded in a C program — that performs this
function.

The months are listed in the data segment and each month contains nine
letters to correspond to the month with the most letters — September. Enter
several month numbers from the keyboard. Other arithmetic instructions
will be used in this program in conjunction with the AAD instruction.

445

11
Floating-Point Arithmetic
Instructions

The fixed-point number representation is appropriate for representing numbers with
small numerical values that are considered as positive or negative integers; that is, the
implied radix point is to the right of the low-order bit. The same algorithms for arith-
metic operations can be employed if the implied radix point is to the immediate right
of the sign bit, thus representing a signed fraction.

The range for a 16-bit fixed-point number is from (–215) to (+215 – 1), which is
inadequate for some numbers; for example, the following operation:

28,400,000,000. × 0.0000000546

This operation can also be written in scientific notation, as follows:

(0.284 × 1011) × (0.546 × 10–7)

where 10 is the base and 11 and –7 are the exponents. Floating-point notation is equiv-
alent to scientific notation in which the radix point (or binary point) can be made to
float around the fraction by changing the value of the exponent; thus, the term floating
point. In contrast, fixed-point numbers have the radix point located in a fixed position,
usually to the immediate right of the low-order bit position, indicating an integer.

The base and exponent are called the scaling factor, which specify the position of
the radix point relative to the significand digits (or fraction digits). Common bases are
2 for binary, 10 for decimal, and 16 for hexadecimal. The base in the scaling factor
does not have to be explicitly specified in the floating-point number.

11.1 Floating-Point Fundamentals
11.2 Load Data Instructions
11.3 Store Data Instructions
11.4 Addition Instructions
11.5 Subtraction Instructions
11.6 Multiplication Instructions
11.7 Division Instructions
11.8 Compare Instructions
11.9 Trigonometric Instructions
11.10 Additional Instructions
11.11 Problems

446 Chapter 11 Floating-Point Arithmetic Instructions

11.1 Floating-Point Fundamentals
Floating-point numbers consist of the following three fields: a sign bit, s; an exponent,
e; and a fraction, f. These parts represent a number that is obtained by multiplying the
fraction, f , by a radix, r, raised to the power of the exponent, e, as shown in Equation
11.1 for the number A, where f and e are signed fixed-point numbers, and r is the radix
(or base).

A = f × r e (11.1)

The exponent is also referred to as the characteristic; the fraction is also referred
to as the significand or mantissa. Although the fraction can be represented in sign-
magnitude, diminished-radix complement, or radix complement, the fraction is pre-
dominantly expressed in sign-magnitude representation — sign bit plus fraction.

If the fraction is shifted left k bits, then the exponent is decremented by an amount
equal to k ; similarly, if the fraction is shifted right k bits, then the exponent is incre-
mented by an amount equal to k. Consider an example in the radix 10 floating-point
representation. Let A = 0.0000074569 × 10+3. This number can be rewritten as A =
0.0000074569 +3 or A = 0.74569 –2, both with an implied base of 10.

Figure 11.1 shows the format for 32-bit single-precision and 64-bit double-preci-
sion floating-point numbers. The single-precision format consists of a sign bit that
indicates the sign of the number, an 8-bit signed exponent, and a 23-bit unsigned frac-
tion. The double-precision format consists of a sign bit, an 11-bit signed exponent, and
a 52-bit unsigned fraction.

 31 23 22 0

Sign bit:
0 = positive
1 = negative

8-bit signed
exponent
(characteristic)

23-bit fraction
(mantissa, significand)

(a)

 63 52 51 0

Sign bit:
0 = positive
1 = negative

11-bit signed
exponent
(characteristic)

52-bit fraction
(mantissa, significand)

(b)

Figure 11.1 Floating-point formats: (a) 32-bit format and (b) 64-bit format.

11.1 Floating-Point Fundamentals 447

Figure 11.2(a) shows the eight data registers — called the register stack — used in
the floating-point unit (X87 FPU). The stack top ST(0) — also referred to as ST — is
register R0 and, like a normal stack, builds toward lower-numbered registers. The reg-
ister immediately below the stack top is referred to as ST(1); the register immediately
below ST(1) is referred to as ST(2), and so forth. When the stack is full, that is, the reg-
isters at ST(0) through the register at ST(7) contain valid data, a stack wraparound
occurs if an attempt is made to store additional data on the stack. This results in a stack
overflow because the unsaved data is overwritten. The stack registers are specified by
three bits — 000 through 111 — to reference ST(0) through ST(7). Therefore, ST(i)
references the ith register from the current stack top.

The 16-bit tag register contains a 2-bit tag field for each register that specifies the
type of data contained in the corresponding register, as shown in Figure 11.2(b). The
values signify whether the data is valid (00); zero (01); a special floating-point num-
ber, such as not-a-number (NaN), a value of infinity, a denormal number, or unsup-
ported format (10); or an empty register (11).

 79 78 64 63 0 1 0

R0

Floating-point register stack

R1

Tag
register

R2

R3

R4

R5

R6

R7

Sign Exponent Significand

15 14
(a)

Tag(7) Tag(6) Tag(5) Tag(4) Tag(3) Tag(2) Tag(1) Tag(0)

 15 14 1 0

Tag values
00 = Valid
01 = Zero
10 = Special
11 = Empty

(b)
Figure 11.2 Double extended-precision register stack and tag register for the float-
ing-point unit: (a) the register stack and (b) the tag register.

448 Chapter 11 Floating-Point Arithmetic Instructions

When adding or subtracting floating-point numbers, the exponents are compared
and made equal resulting in a right shift of the fraction with the smaller exponent. The
comparison is easier if the exponents are unsigned — a simple comparator can be used
for the comparison. As the exponents are being formed, a bias constant is added to the
exponents such that all exponents are positive internally.

For the single-precision format, the bias constant is +127 — also called excess-
127; therefore, the biased exponent has a range of

0 ≤ ebiased ≤ 255

Fractions in the IEEE format are normalized; that is, the leftmost significant bit is
a 1. Figure 11.3 shows unnormalized and normalized numbers in the 32-bit format.
Since there will always be a 1 to the immediate right of the radix point, the 1 bit is not
explicitly shown — it is an implied 1.

S Exponent Fraction
Unnormalized 0 0 0 0 0 0 1 1 1 0 0 1 1 x … x

+ .0011x … x × 27

S Exponent Fraction
Normalized 0 0 0 0 0 0 1 0 0 1 x … x 0 0 0

+ 1.1x … x000 × 24

Figure 11.3 Unnormalized and normalized floating-point numbers.

The bias constant has a value that is equal to the most positive exponent. For
example, if the exponents are represented by n bits, then the bias is 2n – 1 – 1. For n =
4, the most positive number is 0111 (+7). Therefore, all biased exponents are of the
form shown in Equation 11.2. The advantage of using biased exponents is that they are
easier to compare without having to consider the signs of the exponents. The main rea-
son for biasing is to determine the correct alignment of the fractions by aligning the
radix points, and to determine the number of bits to shift a fraction in order to obtain
proper alignment.

ebiased = eunbiased + 2n – 1 – 1 (11.2)

11.1 Floating-Point Fundamentals 449

11.1.1 Rounding Methods

Rounding deletes one or more low-order bits of the significand and adjusts the retained
bits according to a particular rounding technique. The reason for rounding is to reduce
the number of bits in the result in order to conform to the size of the significand; that
is, in order to be retained within the word size of the machine. Since bits are deleted,
this limits the precision of the result.

In some floating-point operations, the result may exceed the number of bits of the
significand. For example, rounding can occur when adding two n-bit numbers that
result in a sum of n + 1 bits. The overflow is handled by shifting the fraction right 1 bit
position, resulting in the low-order bit being lost unless it is saved. Rounding attempts
to dispose of the extra bits and yet preserve a high degree of accuracy. This section
presents three common techniques for rounding that still maintain a high degree of
accuracy.

Truncation rounding This method of rounding is also called chopping. Trunca-
tion deletes extra bits and makes no changes to the retained bits. Aligning fractions
during addition or subtraction could result is losing several low-order bits, so there is
obviously an error associated with truncation. Assume that the following fraction is to
be truncated to four bits:

0.b–1 b–2 b–3 b–4 b–5 b–6 b–7 b–8

Then all fractions in the range 0.b–1 b–2 b–3 b–4 0000 to 0.b–1 b–2 b–3 b–4 1111 will be
truncated to 0.b–1 b–2 b–3 b–4. The error ranges from 0 to 0.00001111. In general, the
error ranges from 0 to approximately 1 in the low-order position of the retained bits.

Truncation is a fast and easy method for deleting bits resulting from a fraction
underflow and requires no additional hardware. There is one disadvantage in that a
significant error may result. A fraction underflow can occur when aligning fractions
during addition or subtraction when one of the fractions is shifted to the right. Trun-
cation does not round up or round down, but simply deletes a specified number of the
low-order significand bits.

Adder-based rounding The result of a floating-point arithmetic operation can be
rounded to the nearest number that contains n bits. This method is called adder-based
rounding and rounds the result to the nearest approximation that contains n bits. The
operation is as follows: The bits to be deleted are truncated and a 1 is added to the
retained bits if the high-order bit of the deleted bits is a 1. When a 1 is added to the
retained bits, the carry is propagated to the higher-order bits. If the addition results in
a carry-out of the high-order bit position, then the fraction is shifted right one bit posi-
tion and the exponent is incremented.

Consider the fraction 0.b–1 b–2 b–3 b–4 1 x x x — where the xs are 0s or 1s — which
is to be truncated and rounded to four bits. Using adder-based rounding, this rounds to
0.b–1 b–2 b–3 b–4 + 0.0001 and the resulting fraction is 0.b–1 b–2 b–3 b–4, where b–4 is a
1 or 0. Examples of adder-based rounding are shown in Figure 11.4 in which the frac-
tions are to be rounded to four bits.

Delete
0. 0 1 0 1 1 0 0 0 × 28 = +88 True value

+) 0. 0 0 0 1
Rounded result 0. 0 1 1 0 × 28 = +96 Approach from above

(a)

Delete
0. 0 1 1 1 0 1 1 1 × 28 = +119 True value

Rounded result 0. 0 1 1 1 × 28 = +112 Approach from below
(b)

450 Chapter 11 Floating-Point Arithmetic Instructions

Figure 11.4 Adder-based rounding examples: (a) a 1 is added to the retained bits and
(b) no rounding occurs.

In Figure 11.4(a), the part of the fraction to be deleted for rounding has a value that
is greater than or equal to half its maximum value of 15. Therefore, a 1 is added to the
retained bits, which results in the true value being approached from above. That is, the
part being deleted has a maximum value of 1111 (15), while its actual value is 1000
(8). Since a value of 8 ≥ 7.5, a 1 is added to the retained bits. A similar reasoning is
used for Figure 11.4(b); however, the actual value of the part to be deleted is 0111 (7).
Since 7 < 7.5, the low-order four bits are deleted and a 1 is not added to the retained
bits, which results in the true value being approached from below.

Adder-based rounding is an unbiased method that generates the nearest approxi-
mation to the number being rounded. Although adder-based rounding is obviously a
better method of rounding than truncation, additional hardware is required to accom-
modate the addition cycle, thus adding more delay to the rounding operation.

von Neumann rounding The von Neumann rounding method is also referred to
as jamming and is similar to truncation. If the bits to be deleted are all zeroes, then the
bits are truncated and there is no change to the retained bits. However, if the bits to be
deleted are not all zeroes, then the bits are deleted and the low-order bit of the retained
bits is set to 1. Thus, when 8-bit fractions are rounded to four bits, fractions in the
range

0.b–1 b–2 b–3 b–4 0001 to 0.b–1 b–2 b–3 b–4 1111

will all be rounded to 0.b–1 b–2 b–3 1.

11.2 Load Data Instructions 451

Therefore, the error ranges from approximately –1 to +1 in the low-order bit of the
retained bits when

0.b–1 b–2 b–3 b–4 0001 is rounded to 0.b–1 b–2 b–3 1
and when

0.b–1 b–2 b–3 b–4 1111 is rounded to 0.b–1 b–2 b–3 1

Although the error range is larger in von Neumann rounding than with truncation
rounding, the individual errors are evenly distributed over the error range. Thus, pos-
itive errors will be inclined to offset negative errors for long sequences of floating-
point calculations involving rounding. The von Neumann rounding method has the
same total bias as adder-based rounding; however, it requires no more time than trun-
cation.

There are over 90 floating-point instructions in the X86 instruction set; therefore,
only the most commonly used instructions will be presented in detail. The predomi-
nant prefix for the floating-point mnemonics is the letter F. The following types of
floating-point instructions will be presented: load data instructions, store data instruc-
tions, addition instructions, subtraction instructions, multiplication instructions, divi-
sion instructions, compare instructions, trigonometric instructions, and a select variety
of additional instructions.

11.2 Load Data Instructions
This section describes the floating-point instructions that push different types of data
onto the register stack. These are classified as data transfer instructions and include
the load floating-point value (FLD) instruction, several load constant instructions,
such as FLD1, FLDL2T, FLDL2E, FLDPI, FLDLG2, FLDLN2, and FLDZ (all of
which will be described in later sections), the load X87 FPU control word (FLDCW)
instruction, and the load X87 FPU environment (FLDENV) instruction. Also
included is the load integer (FILD) and the load binary-coded decimal (FBLD)
instructions.

11.2.1 Load Floating-Point Value (FLD) Instruction

The FLD instruction pushes the contents of the X87 source operand onto the register
stack. The source operand can be any of the three floating-point data type formats: sin-
gle precision, double precision, or double extended precision. Single-precision for-
mats and double-precision formats are automatically converted to the double
extended-precision format. The syntax for the FLD instruction is shown below, where
FLD ST(i) is a register in the register stack.

 FLD m32/64/80fp (memory, 32-, 64-, or 80-bit floating-point)
 FLD ST(i)

452 Chapter 11 Floating-Point Arithmetic Instructions

If a stack overflow or a stack underflow results from a floating-point operation, the
stack fault flag (SF) — bit 6 of the status word reproduced in Figure 11.5 — is set.
When the SF flag is set, the condition code flag C1 (bit 9) is examined. If C1 = 1, a
stack overflow has occurred; if C1 = 0, a stack underflow has occurred.

15 14 13 12 11 10 9 8
B C3 TOS C2 C1 C0

7 6 5 4 3 2 1 0
ES SF PE UE OE ZE DE IE

Figure 11.5 Floating-point unit status word format.

A simplified register stack is shown in Figure 11.6. Assume that memory contains
the following floating-point values:

flp1 = 25.0
flp2 = 10.0
flp3 = 15.0

Assume also that the instructions shown below are executed sequentially. The
stack will contain the values shown in Figure 11.6 after the instructions have been exe-
cuted. The fourth instruction will push the contents of ST(2) onto the stack; however,
the contents of location ST(2) will not change.

FLD flp1 Figure 11.6(a)
FLD flp2 Figure 11.6(b)
FLD flp3 Figure 11.6(c)
FLD ST(2) Figure 11.6(d)

R0 25.0 ST 10.0 ST 15.0 ST 25.0 ST
R1 ST(1) 25.0 ST(1) 10.0 ST(1) 15.0 ST(1)
R2 ST(2) ST(2) 25.0 ST(2) 10.0 ST(2)
R3 ST(3) ST(3) ST(3) 25.0 ST(3)
R4 ST(4) ST(4) ST(4) ST(4)
R5 ST(5) ST(5) ST(5) ST(5)
R6 ST(6) ST(6) ST(6) ST(6)
R7 ST(7) ST(7) ST(7) ST(7)

(a) (b) (c) (d)

Figure 11.6 Simplified register stack.

11.2 Load Data Instructions 453

The floating-point instructions can access only the X87 registers, not the X86 gen-
eral-purpose registers. Data must be transmitted between processors via memory. All
addressing of the register stack is relative to the current top of stack (TOS), which is
contained in bits 13 through 11 of the X87 status word. Like a regular stack, a load
operation decrements the TOS by one and stores the new data in the new TOS register;
this is similar to a PUSH operation. A store operation sends the data that resides in the
current TOS register to the destination, then increments the TOS by one; this is similar
to a POP operation.

11.2.2 Load Constant Instructions

There are seven load constant instructions that push specific values onto the register
stack as double extended-precision floating-point values. These are listed below.

FLD1 instruction This instruction pushes +1.0 onto the register stack.

FLDL2T instruction This instruction pushes log210 onto the register stack, where
log210 represents the exponent to which the base 2 must be raised to yield 10. The
general equation is

(logbx = y) ≡ (by = x)
where b is the base. Thus,

(log210 = y) ≡ (2y = 10)

∴ 23.333 = 10

∴ log210 ≈ 3.333

FLDL2E instruction This instruction pushes log2e onto the register stack, where
log2e represents the exponent to which the base 2 must be raised to yield e, where

e ≈ 2.71828

The notation for the constant e was selected by the mathematician Leonhard Euler
because it was the first letter of the word exponential. The general equation is

(logbx = y) ≡ (by = x)
where b is the base. Thus,

(log2e = y) ≡ (2y = e)

∴ 21.4425 ≈ 2.717914

∴ log2e ≈ 1.4425

454 Chapter 11 Floating-Point Arithmetic Instructions

FLDPI instruction This instruction pushes π onto the register stack, where π is
approximately 3.14159.

FLDLG2 instruction This instruction pushes log102 onto the register stack, where
log102 represents the exponent to which the base 10 must be raised to yield 2. The
general equation is

(logbx = y) ≡ (by = x)
where b is the base. Thus,

(log102 = y) ≡ (10y = 2)

∴ 100.3 = 2

∴ log102 ≈ 0.3

FLDLN2 instruction This instruction pushes loge2 onto the register stack, where
loge2 represents the exponent to which the base e must be raised to yield 2 and

e ≈ 2.71828
The general equation is

(logbx = y) ≡ (by = x)
where b is the base. Thus,

(loge2 = y) ≡ (ey = 2)

∴ 2.718280.695 = 2

∴ loge2 ≈ 0.695

FLDZ instruction This pushes +0.0 onto the register stack.

11.2.3 Load X87 FPU Control Word (FLDCW) Instruction

This instruction loads a 16-bit source operand from memory into the floating-point
unit control word register, which is reproduced in Figure 11.7.

15 14 13 12 11 10 9 8
IC RC PC

7 6 5 4 3 2 1 0
PM UM OM ZM DM IM

Figure 11.7 Floating-point unit control word register.

11.2 Load Data Instructions 455

The syntax for the FLDCW instruction is shown below, where m2byte specifies a
2-byte memory location. This instruction is used to load a new control word from
memory in order to modify the existing control word — thus changing the mode of
operation of the floating-point unit — or to establish a new control word.

FLDCW m2byte (memory, 2 bytes)

11.2.4 Load X87 FPU Environment (FLDENV) Instruc-
tion

The FLDENV instruction loads the operating environment into the floating-point reg-
isters from memory as 14-byte data or as 28-byte data. The operating environment is
loaded into the following registers: control word, status word, tag word, instruction
pointer (IP) offset, data pointer offset, and last opcode pointer. The information that is
loaded depends on the operating mode of the floating-point unit — protected mode or
real mode — and the current operand size attribute, either 16 bits or 32 bits. The syn-
tax for the FLDENV instruction is shown below, where m14/28byte specifies a
memory operand of 14 bytes or 28 bytes.

FLDENV m14/28byte (memory, 14 or 28 bytes)

The FLDENV instruction should use the identical operating mode — protected
mode or real mode — as was used with the store X87 FPU environment (FSTENV)
instruction, which is covered in the next section.

11.2.5 Load Integer (FILD) Instruction

The FILD instruction changes a signed integer source operand in memory to a double
extended-precision floating-point number and pushes that value onto the register
stack. The format for the integer source operand can be a word, a doubleword, or a
quadword. The syntax for the FILD instruction is shown below.

FILD m16int (memory, 16-bit integer)
FILD m32int (memory, 32-bit integer)
FILD m64int (memory, 64-bit integer)

11.2.6 Load Binary-Coded Decimal (FBLD) Instruction

The FBLD instruction converts a signed 80-bit packed binary-coded decimal (BCD)
source operand in memory to a double extended-precision floating-point number and
pushes that value onto the register stack. The instruction does not check for invalid
digits. The syntax for the FBLD instruction is shown below.

FBLD m80dec (memory, 80 bits decimal)

456 Chapter 11 Floating-Point Arithmetic Instructions

11.3 Store Data Instructions
This section describes the floating-point instructions that store — or store and pop —
different types of data on the register stack and other specific registers. These instruc-
tions include the store bcd integer and pop (FBSTP) instruction, the store integer
(FIST) instruction, the store integer and pop (FISTP) instruction, the store integer
with truncation (FISTTP) instruction, the store floating-point value (FST) instruction,
the store floating-point value and pop (FSTP) instruction, the store X87 FPU control
word (FSTCW) instruction, the store X87 FPU environment (FSTENV) instruction,
and the store X87 FPU status word (FSTSW).

11.3.1 Store BCD Integer and Pop (FBSTP) Instruction

The FBSTP instruction converts the value in ST(0) of the register stack to a BCD inte-
ger and stores the result in the destination operand located in a 10-byte area in memory.
If the stored value is not an integer, then the operand is rounded to an integer using the
rounding method specified by bits 11 and 10 of the RC field in the floating-point con-
trol word register of Figure 11.7. The register stack is then popped. A pop operation
marks the ST(0) register as empty and increments the stack pointer by 1 — bits 13
through 11 (TOS or TOP) of the X87 floating-point status word, as shown in Figure
11.5. The syntax for the FBSTP instruction is shown below, where m80bcd is the des-
tination operand of 80 bits in the BCD format.

FBSTP m80bcd (memory, 80 bits)

11.3.2 Store Integer (FIST) Instruction

The FIST instruction converts the value in ST(0) of the register stack to a signed inte-
ger — rounded if necessary — and stores the result in the destination memory location
as a word or doubleword. The syntax for the FIST instruction is shown below, where
the destination operand is either a 16-bit integer or a 32-bit integer.

FIST m16int (memory, 16-bit integer)
FIST m32int (memory, 32-bit integer)

11.3.3 Store Integer and Pop (FISTP) Instruction

The FISTP instruction operates identically to the FIST instruction and then pops the
register stack. It stores the value in ST(0) into memory as a word, doubleword, or
quadword integer. The syntax for the FISTP instruction is shown below, where the
destination operand is either a 16-bit integer, a 32-bit integer, or a 64-bit integer.

11.3 Store Data Instructions 457

FISTP m16int (memory, 16-bit integer)
FISTP m32int (memory, 32-bit integer)
FISTP m64int (memory, 64-bit integer)

11.3.4 Store Integer with Truncation and Pop (FISTTP)
Instruction

The FISTTP instruction converts the operand in ST(0) to a signed integer using the
truncation rounding method, then stores the result in the destination location and pops
the register stack. Truncation deletes extra bits and makes no changes to the retained
bits. This method of rounding is also referred to as chopping. The syntax for the
FISTTP instruction is shown below.

FISTTP m16int (memory, 16-bit integer)
FISTTP m32int (memory, 32-bit integer)
FISTTP m64int (memory, 64-bit integer)

Figure 11.8 shows an assembly language module embedded in a C program that
illustrates the application of the FIST and the FISTTP instructions. Two floating-point
numbers are entered from the keyboard and then used by the FIST and FISTTP
instructions. The integer results are then displayed.

//fist_fisttp.cpp
//program to illustrate using
//FIST store integer and
//FISTTP store integer with truncation and pop

#include "stdafx.h"

int main (void)
{
//define variables

float fist_num, fisttp_num;
short fist_rslt, fisttp_rslt;

printf ("Enter two floating-point numbers: \n");
scanf ("%f %f", &fist_num, &fisttp_num);

//continued on next page
(a)

Figure 11.8 Program to illustrate using the FIST and the FISTTP instructions: (a)
the program and (b) the outputs.

//switch to assembly
_asm
{

FLD fist_num //push first flp number
FIST fist_rslt //convert to integer and store

FLD fisttp_num //push second flp number
FISTTP fisttp_rslt //convert to integer, truncate,

//store, and pop
}

//print result
printf ("\nFIST result = %d\n", fist_rslt);
printf ("FISTTP result = %d\n\n", fisttp_rslt);

return 0;
}

Enter two floating-point numbers:
43.6789 5.9865

FIST result = 44
FISTTP result = 5

Press any key to continue . . . _
--
Enter two floating-point numbers:
38.00375 640.76438

FIST result = 38
FISTTP result = 640

Press any key to continue . . . _
--
Enter two floating-point numbers:
720.475 34.444

FIST result = 720
FISTTP result = 34

Press any key to continue . . . _
--

//continued on next page
(b)

458 Chapter 11 Floating-Point Arithmetic Instructions

Figure 11.8 (Continued)

Enter two floating-point numbers:
1.4456 3.1546

FIST result = 1
FISTTP result = 3

Press any key to continue . . . _
--
Enter two floating-point numbers:
567.5000 567.5000

FIST result = 568
FISTTP result = 567

Press any key to continue . . . _

11.3 Store Data Instructions 459

Figure 11.8 (Continued)

11.3.5 Store Floating-Point Value (FST) Instruction

The FST instruction stores the operand in ST(0) to the destination location, which can
be a location in memory or another register in the register stack. If the destination is a
memory location, then the operand is converted to the single-precision format or the
double-precision format. The syntax for the FST instruction is shown below.

FST m32fp (memory, 32 bits floating-point)
FST m64fp (memory, 64 bits floating-point)
FST ST(i) (copy ST(0) to ST(i))

Figure 11.9 shows an assembly language module embedded in a C program that
illustrates using the FST instruction in conjunction with the load constant instructions:
FLD1, FLDL2T, FLDL2E, FLDPI, FLDLG2, FLDLN2, and FLDZ. The load con-
stant instructions push the appropriate values onto the register stack; the FST instruc-
tion stores them in the assigned locations in memory, then the results are displayed.

//fld_fst.cpp
//use floating-point load constant instructions and
//floating-point store instructions
#include "stdafx.h"

//continued on next page
(a)

Figure 11.9 Program to illustrate using the FST instruction: (a) the program and
(b) the outputs.

int main (void)
{
//define variables

float fld1_num, fldl2t_num, fldl2e_num, fldpi_num,
fldlg2_num, fldln2_num, fldz_num;

//switch to assembly
_asm
{

FLD1 //push +1.0 onto stack
FST fld1_num //copy ST(0) to fld1_num

FLDL2T //push log210 onto stack
FST fldl2t_num //copy ST(0) to fldl2t

FLDL2E //push log2e onto stack
FST fldl2e_num //copy ST(0) to fldl2e_num

FLDPI //push pi onto stack
FST fldpi_num //copy ST(0) to fldpi_num

FLDLG2 //push log102 onto stack
FST fldlg2_num //copy ST(0) to fldlg2_num

FLDLN2 //push loge2 onto stack
FST fldln2_num //copy ST(0) to fldln2_num

FLDZ //push +0.0 onto stack
FST fldz_num //copy ST(0) to fldz_num

}

//print result
printf ("FLD1 result = %f\n", fld1_num);
printf ("FLDL2T result = %f\n", fldl2t_num);
printf ("FLDL2E result = %f\n", fldl2e_num);
printf ("FLDPI result = %f\n", fldpi_num);
printf ("FLDLG2 result = %f\n", fldlg2_num);
printf ("FLDLN2 result = %f\n", fldln2_num);
printf ("FLDZ result = %f\n\n", fldz_num);

return 0;
}

460 Chapter 11 Floating-Point Arithmetic Instructions

Figure 11.9 (Continued)

FLD1 result = 1.000000
FLDL2T result = 3.321928
FLDL2E result = 1.442695
FLDPI result = 3.141593
FLDLG2 result = 0.301030
FLDLN2 result = 0.693147
FLDZ result = 0.000000

Press any key to continue . . . _

(b)

11.3 Store Data Instructions 461

Figure 11.9 (Continued)

11.3.6 Store Floating-Point Value and Pop (FSTP)
Instruction

The FSTP instruction stores the operand in ST(0) to the destination location, which
can be a location in memory or another register in the register stack, then pops the reg-
ister stack. If the destination is a memory location, then the operand is converted to the
single-precision format, the double-precision format, or the double extended-preci-
sion format. The syntax for the FSTP instruction is shown below.

FSTP m32fp (memory, 32 bits floating-point and pop stack)
FSTP m64fp (memory, 64 bits floating-point and pop stack)
FSTP m80fp (memory, 80 bits floating-point and pop stack)
FSTP ST(i) (copy ST(0) to ST(i) and pop stack)

11.3.7 Store X87 FPU Control Word (FSTCW)
Instruction

The FSTCW instruction stores the floating-point control word at the memory location
specified by the destination location. The FSTCW also resolves any pending
unmasked floating-point exceptions before storing the control word. Refer to Section
11.2.3 for the control word format. The syntax for the FSTCW instruction is shown
below. There is a second store X87 FPU control word (FNSTCW) that does not check
for pending unmasked floating-point exceptions. The syntax for the FNSTCW is also
shown below.

FSTCW m2byte (memory, two bytes check for exceptions)
FNSTCW m2byte (memory, two bytes do not check for exceptions)

462 Chapter 11 Floating-Point Arithmetic Instructions

11.3.8 Store X87 FPU Environment (FSTENV)
Instruction

The FSTENV instruction saves the floating-point unit environment in a memory loca-
tion as indicated by the destination operand. The operating environment consists of
the following registers: control word, status word, tag word, instruction pointer (IP)
offset, data pointer offset, and last opcode pointer. The format of the environment
depends on the operating mode of the floating-point unit — protected mode or real
mode — and the current operand size attribute, either 16 bits or 32 bits. The FSTENV
instruction then masks all floating-point exceptions.

The syntax for the FSTENV instruction is shown below. There is a second store
X87 FPU environment (FNSTENV) that does not check for pending unmasked float-
ing-point exceptions. The syntax for the FNSTENV is also shown below.

FSTENV m14byte (memory, 14 bytes check for exceptions,
 then mask exceptions)

FSTENV m28byte (memory, 28 bytes check for exceptions,
 then mask exceptions)

FNSTENV m14byte (memory, 14 bytes do not check for
exceptions, then mask exceptions)

FNSTENV m28byte (memory, 28 bytes do not check for
exceptions, then mask exceptions)

11.3.9 Store X87 FPU Status Word (FSTSW) Instruction

The FSTSW instruction stores the floating-point status word at the memory location
specified by the destination location. The destination is a 2-byte memory location or
the general-purpose register AX. The FSTSW also resolves any pending unmasked
floating-point exceptions before storing the status word.

The syntax for the FSTSW instruction is shown below. There is a second store
X87 FPU status word (FNSTSW) that does not check for pending unmasked floating-
point exceptions. The syntax for the FNSTSW is also shown below.

FSTSW m2byte (memory, two bytes, check for exceptions)

FSTSW AX (register AX, check for exceptions)

FNSTSW m2byte (memory, two bytes,
 do not check for exceptions)

FNSTSW AX (register AX, do not check for exceptions)

11.4 Addition Instructions 463

11.4 Addition Instructions
The addition of two fractions is identical to the addition algorithm presented in fixed-
point addition. If the signs of the operands are the same (Asign ⊕ Bsign = 0), then this
is referred to as true addition and the fractions are added. True addition corresponds to
one of the following conditions:

(+A) + (+B)
(–A) + (–B)
(+A) – (–B)
(–A) – (+B)

Floating-point addition is defined as shown in Equation 11.3 for two numbers A
and B, where A = fA × reA and B = fB × reB .

A + B = (fA ×) + (fB ×)

= [fA + (fB ×)] × for eA > eB

= [(fA ×) + fB] × for eA ≤ eB

reA reB

r eA eB–()– reA

r eB eA–()– reB (11.3)

The terms r eA eB–()– and r eB eA–()– are shifting factors to shift the fraction
with the smaller exponent. This is analogous to a divide operation, since r eA eB–()–
is equivalent to 1/r eA eB–() , which is a right shift. For eA > eB, fraction fB is shifted
right the number of bit positions specified by the absolute value of | eA – eB |. An
example of using the shifting factor for addition is shown in Figure 11.10 for two oper-
ands A = +9.75 and B = +3.875.

The fractions must be properly aligned before addition can take place; therefore,
the fraction with the smaller exponent is shifted right and the exponent is adjusted by
increasing the exponent by one for each bit position shifted.

Before alignment
A = fA × r4

A = 0 . 1 0 0 1 1 1 0 0 × 24 +9.75

B = fB × r2

B = 0 . 1 1 1 1 1 0 0 0 × 22 +3.875
Continued on next page

Figure 11.10 Addition of two floating-point numbers.

After alignment
A = 0 . 1 0 0 1 1 1 0 0 × 24 +9.75

B = 0 . 0 0 1 1 1 1 1 0 × 24 +3.875

A + B = 0 . 1 1 0 1 1 0 1 0 × 24 +13.625

464 Chapter 11 Floating-Point Arithmetic Instructions

Figure 11.10 (Continued)

Figure 11.11 shows an example of floating-point addition when adding A = +5.75
and B = +30.5, in which the 8-bit fractions are not properly aligned initially and post-
normalization is required. Postnormalization occurs when the resulting fraction over-
flows, requiring a right shift of one bit position with a corresponding increment of the
exponent. The bit causing the overflow is shifted right into the high-order fraction bit
position.

Before alignment
A = fA × r3

A = 0 . 1 0 1 1 1 0 0 0 × 23 +5.75

B = fB × r5

B = 0 . 1 1 1 1 0 1 0 0 × 25 +30.5

After alignment
A = 0 . 0 0 1 0 1 1 1 0 × 25 +5.75

B = 0 . 1 1 1 1 0 1 0 0 × 25 +30.5

A + B = 1 . 0 0 1 0 0 0 1 0 × 25

Bsign 0 . 1 0 0 1 0 0 0 1 ×26 +36.25

Figure 11.11 Addition of two floating-point numbers with postnormalization.

11.4 Addition Instructions 465

The alignment and shifting of the fractions is now summarized. Equation 11.3
states that if eA > eB, then fraction fA is added to the aligned fraction fB with the expo-
nent eA assigned to the resulting sum. The radix points of the two operands must be
aligned prior to the addition operation. This is achieved by comparing the relative
magnitudes of the two exponents. The fraction with the smaller exponent is then
shifted | eA – eB | positions to the right.

The augend and addend are then added and the sum is characterized by the larger
exponent. A carry-out of the high-order bit position may occur, yielding a result with
an absolute value of 1 ≤ | result | < 2 before postnormalization.

11.4.1 Overflow and Underflow

The floating-point addition example of Figure 11.11 generated a carry-out of the high-
order bit position, which caused a fraction overflow. When adding two numbers with
the same sign, the absolute value of the result may be in the following range before
postnormalization:

1 ≤ | result | < 2

This indicates that the fraction is in the range of 1.000 . . . 0 to 1.111 . . .1. The
overflow can be corrected by shifting the carry-out in concatenation with the fraction
one bit position to the right and incrementing the exponent by 1. This operation is
shown in Equation 11.4.

A + B = (fA ×) + (fB ×)

= {[fA + (fB ×)] × r– 1} × r eA + 1 for eA > eB

= {[(fA ×) + fB] × r – 1} × r eB + 1 for eA ≤ eB

reA reB

r eA eB–()–

r eB eA–()– (11.4)

The term r–1 is the shifting factor that shifts the resulting fraction and the carry-out
one bit position to the right. For radix 2, the shifting factor is 2 – 1 (or 1/2), which
divides the result by 2 by executing a right shift of one bit position. The terms r eA + 1

and r eB + 1 increment the appropriate exponents by 1. Equation 11.3 is similar to Equa-
tion 11.4, but does not require a shift operation.

When aligning a fraction by shifting the fraction right and adjusting the exponent,
bits may be lost off the right end of the fraction, resulting in a fraction underflow. This
can be resolved by using a rounding method discussed in Section 11.1.1.

466 Chapter 11 Floating-Point Arithmetic Instructions

11.4.2 Add Instructions

There are different versions of the add instruction. One version, FADD, adds the sin-
gle-operand floating-point destination operand in ST(0) of the register stack to a 32-bit
or a 64-bit source operand in memory and stores the sum in ST(0). For some add
instructions, the source operand can be a single-precision floating-point operand, a
double-precision floating-point operand, an integer word operand, or an integer dou-
bleword operand. The syntax for the FADD instruction is shown below.

FADD m32fp (memory, 32 bits, floating-point)
FADD m64fp (memory, 64 bits, floating-point)

Another version of the add instruction adds the operand in register ST(0) to the
operand in register ST(i) and stores the sum in ST(0) as destination or in ST(i) as des-
tination depending on syntax of the instruction, as shown below.

FADD ST(0), ST(i) (stores sum in destination ST(0))
FADD ST(i), ST(0) (stores sum in destination ST(i))

Another version of the add instruction, FADDP, is similar to the double-operand
version shown above, where the sum is stored in ST(i). However, in this version the
register stack is popped after the sum is stored. The syntax is shown below.

FADDP ST(i), ST(0)

Another version of the add instruction, FADDP, is the no-operand version, which
adds the operand in ST(0) to the operand in ST(1) and stores the sum in ST(1), then
pops the register stack. The syntax is shown below.

FADDP

Another version of the add instruction, FIADD, adds the operand in ST(0) of the
register stack to a 16-bit or a 32-bit integer source operand in memory and stores the
sum in ST(0). The FIADD instruction converts the integer source operand to a double
extended-precision floating-point number before adding it to ST(0). The syntax is
shown below.

FIADD m16int (memory, 16 bits, integer)
FIADD m32int (memory, 32 bits, integer)

Figure 11.12 shows an assembly language module embedded in a C program that
illustrates utilizing different versions of the FADD instruction. The FADD single-
operand and the FADD double-operand instructions are used in the program. Two
floating-point numbers are entered from the keyboard for use in the program. The

11.4 Addition Instructions 467

initialize floating-point unit (FINIT) can be used to initialize the register stack. This
instruction does not change the contents of the stack; however, each register is tagged
as being empty — the tag register is set to 112.

//fadd_versions.cpp
//show the use of versions of the FADD instruction

#include "stdafx.h"

int main (void)
{
//define variables

float flp1_num, flp2_num, flp_rslt1, flp_rslt2, flp_rslt3;

printf ("Enter two floating-point numbers: \n");
scanf ("%f %f", &flp1_num, &flp2_num);

//switch to assembly
_asm
{

FLD flp1_num //flp1_num -> ST(0)
FLDPI //pi -> ST(0), flp1_num -> ST(1)
FADD flp2_num //sum = flp2_num + pi -> ST(0)
FST flp_rslt1 //ST(0) sum -> flp_rslt1

//fld1_num -> ST(1)

FADD ST(0), ST(0)//2 x ST(0) -> ST(0)
FST flp_rslt2 //ST(0) -> flp_rslt2

FADD ST(0), ST(1)//ST(0) + ST(1) -> ST(0)
FST flp_rslt3 //ST(0) -> flp_rslt3

}

//print result
printf ("\nflp_rslt1 = %f\n", flp_rslt1);
printf ("flp_rslt2 = %f\n", flp_rslt2);
printf ("flp_rslt3 = %f\n\n", flp_rslt3);

return 0;
} //continued on next page

(a)

Figure 11.12 Program to illustrate using versions of the FADD instruction: (a) the
program and (b) the outputs.

Enter two floating-point numbers:
2.4 6.8

flp_rslt1 = 9.941593
flp_rslt2 = 19.883186
flp_rslt3 = 22.283186

Press any key to continue . . . _ (b)

468 Chapter 11 Floating-Point Arithmetic Instructions

Figure 11.12 (Continued)

Figure 11.13 shows the register stack contents for different stages of the program.
Figure 11.13(a) shows the result of flp1_num (2.4) being pushed onto the register
stack. Then the value of pi (≈3.141593) is pushed onto the stack as shown in Figure
11.13(b). Next the FADD instruction adds flp2_num (6.8) to pi and stores the sum
(9.941593) in ST(0), as shown in Figure 11.13(c). Then ST(0) is doubled
(19.883186), as shown in Figure 11.13(d). Finally, ST(0) is added to ST(1) —
19.883186 + 2.4 = 22.283186 and stored in ST(0).

R0 2.4 ST(0) 3.141593 ST(0)
R1 ST(1) 2.4 ST(1)
R2 ST(2) ST(2)
R3 ST(3) ST(3)
R4 ST(4) ST(4)
R5 ST(5) ST(5)
R6 ST(6) ST(6)
R7 ST(7) ST(7)

(a) (b)

R0 9.941593 ST(0) 19.883186 ST(0)
R1 2.4 ST(1) 2.4 ST(1)
R2 ST(2) ST(2)
R3 ST(3) ST(3)
R4 ST(4) ST(4)
R5 ST(5) ST(5)
R6 ST(6) ST(6)
R7 ST(7) ST(7)

(c) (d)

Figure 11.13 Register stack utilization for the program of Figure 11.12.

11.5 Subtraction Instructions 469

11.5 Subtraction Instructions
Floating-point subtraction also requires that the fractions be aligned before subtract-
ing. Fraction overflow can also occur in subtraction since subtraction is accomplished
by adding the 2s complement of the subtrahend. The subtraction of two fractions is
identical to the subtraction algorithm presented in fixed-point addition. If the signs of
the operands are the same (Asign ⊕ Bsign = 0) and the operation is subtraction, then this
is referred to as true subtraction and the fractions are subtracted. If the signs of the
operands are different (Asign ⊕ Bsign = 1) and the operation is addition, then this is also
specified as true subtraction. True subtraction corresponds to one of the following
conditions:

(+A) – (+B)
(–A) – (–B)
(+A) + (–B)
(–A) + (+B)

As in fixed-point notation, the same hardware can be used for both floating-point
addition and subtraction to add or subtract the fractions. All operands will consist of
normalized fractions properly aligned with biased exponents. Floating-point subtrac-
tion is defined as shown in Equation 11.5 for two numbers A and B, where A = fA × reA
and B = fB × reB .

A – B = (fA ×) – (fB ×)

= [fA – (fB ×)] × for eA > eB

= [(fA ×) – fB] × for eA ≤ eB

reA reB

r eA eB–()– reA

r eB eA–()– reB (11.5)

The terms r eA eB–()– and r eB eA–()– in Equation 11.5 are analogous to the
terms used in floating-point addition. These terms are called shifting factors to shift
the fraction with the smaller exponent. This is equivalent to a divide operation, since
r eA eB–()– is equivalent to 1/r eA eB–() , which is a right shift. For eA > eB, fraction
fB is shifted right the number of bits specified by the absolute value of | eA – eB |. An
example of using the shifting factor for subtraction is shown in Figure 11.14 for two
operands, A = +36.5 and B = +5.75. Since the implied 1 is part of the fractions, it must
be considered when subtracting two normalized floating-point numbers — the implied
1 is shown as the high-order bit in Figure 11.14.

Before alignment
A = 0 . 1 0 0 1 0 0 1 0 × 26 +36.5

B = 0 . 1 0 1 1 1 0 0 0 × 23 +5.75

After alignment
A = 0 . 1 0 0 1 0 0 1 0 × 26 +36.5

B = 0 . 0 0 0 1 0 1 1 1 × 26 +5.75

Subtract fractions (Add 2s compl B)
A = 0 . 1 0 0 1 0 0 1 0 × 26

+) B ' + 1 = 0 . 1 1 1 0 1 0 0 1 × 26

1 ← 0 . 0 1 1 1 1 0 1 1 × 26 +30.75

Postnormalize (SL1) 0 . 1 1 1 1 0 1 1 0 × 25 +30.75

470 Chapter 11 Floating-Point Arithmetic Instructions

Figure 11.14 Example of floating-point subtraction.

11.5.1 Numerical Examples

Subtraction can yield a result that is either true addition or true subtraction. True addi-
tion produces a result that is the sum of the two operands disregarding the signs; true
subtraction produces a result that is the difference of the two operands disregarding
the signs. There are four cases that yield a true addition, as shown in Figure 11.15, and
eight cases that yield a true subtraction, as shown in Figure 11.16.

– Small number – Large number
–) + Large number –) + Small number

True addition True addition

+ Large number + Small number
–) – Small number –) – Large number

True addition True addition

Figure 11.15 Examples of true addition.

+ Large number + Small number
–) + Small number –) + Large number

True subtraction True subtraction

– Small number – Large number
–) – Large number –) – Small number

True subtraction True subtraction

+ Small number – Small number
+) – Large number +) + Large number

True subtraction True subtraction

+ Large number – Large number
+) – Small number +) + Small number

True subtraction True subtraction

11.5 Subtraction Instructions 471

Figure 11.16 Examples of true subtraction.

An example of true addition is shown in Figure 11.17 in which +24 is subtracted
from –40 to yield a result of –64.

Before alignment
A = 1 . 1 0 1 0 0 0 0 0 × 26 –40

B = 0 . 1 1 0 0 0 0 0 0 × 25 +24
After alignment

A = 1 . 1 0 1 0 0 0 0 0 × 26 –40

B = 0 . 0 1 1 0 0 0 0 0 × 26 +24

Add fractions
A = 1 . 1 0 1 0 0 0 0 0 × 26 –40

+) B = 1 . 0 1 1 0 0 0 0 0 × 26 –24

 1 . 0 0 0 0 0 0 0 0 ×26

Postnormalize 1 . 1 0 0 0 0 0 0 0 × 27 –64

Figure 11.17 An example of true addition.

472 Chapter 11 Floating-Point Arithmetic Instructions

An example of true subtraction is shown in Figure 11.18 in which –13 is added to
+45 to yield a result of +32.

Before alignment
A = 0 . 1 0 1 1 0 1 0 0 × 26 +45

B = 1 . 1 1 0 1 0 0 0 0 × 24 –13
After alignment

A = 0 . 1 0 1 1 0 1 0 0 × 26 +45

B = 1 . 0 0 1 1 0 1 0 0 × 26 –13

Add fractions
A = 0 . 1 0 1 1 0 1 0 0 × 26

+) B ' + 1 = 1 . 1 1 0 0 1 1 0 0 × 26

 1 . 1 0 0 0 0 0 0 0 ×26

0 . 1 0 0 0 0 0 0 0 ×26 +32

Figure 11.18 An example of true subtraction.

11.5.2 Subtract Instructions

There are different versions of the subtract instruction. One version, FSUB, subtracts
the single-operand floating-point 32-bit or a 64-bit source operand in memory from
ST(0) of the register stack and stores the difference in ST(0). For some subtract
instructions, the source operand can be a single-precision floating-point operand, a
double-precision floating-point operand, an integer word operand, or an integer dou-
bleword operand. The syntax for the FSUB instruction is shown below.

FSUB m32fp (memory, 32 bits, floating-point)
FSUB m64fp (memory, 64 bits, floating-point)

Another version of the subtract instruction subtracts the operand in register ST(i)
from the operand in register ST(0) and stores the difference in ST(0). A similar ver-
sion subtracts ST(0) from ST(i) and stores the difference in ST(i). The syntax for the
two-operand FSUB instruction is shown below.

FSUB ST(0), ST(i) (stores difference in ST(0))
FSUB ST(i), ST(0) (stores difference in ST(i))

11.5 Subtraction Instructions 473

Another version of the subtract instruction, FSUBP, is similar to the double-oper-
and version shown above, where the difference is stored in ST(i). The operand in
ST(0) is subtracted from the operand in ST(i) and the difference is stored in ST(i).
However, in this version the register stack is popped after the difference is stored. The
syntax is shown below.

FSUBP ST(i), ST(0)

Another version of the subtract instruction, FSUBP, is the no-operand version,
which subtracts the operand in ST(0) from the operand in ST(1) and stores the differ-
ence in ST(1), then pops the register stack. The syntax is shown below.

FSUBP

Another version of the subtract instruction, FISUB, subtracts the 16-bit or a 32-bit
single-operand integer source operand in memory from ST(0) and stores the differ-
ence in ST(0). The FISUB instruction converts the integer source operand to a double
extended-precision floating-point number before subtracting it from ST(0). The syn-
tax is shown below.

FISUB m16int (memory, 16 bits, integer)
FISUB m32int (memory, 32 bits, integer)

There are also a variety of reverse subtract instructions. These instructions are
similar to those listed above, except that the subtract operation is reversed. For exam-
ple, the FSUBR instruction subtracts ST(0) from the single-operand floating-point 32-
bit or a 64-bit source operand in memory stores the difference in ST(0). These instruc-
tions include the following:

FSUBR m32fp (memory, 32 bits, floating-point,
 subtracts ST(0) from memory and
 stores the difference in ST(0))

FSUBR m64fp (memory, 64 bits, floating-point,
 subtracts ST(0) from memory and
 stores the difference in ST(0))

FSUBR ST(0), ST(i) (subtracts ST(0) from ST(i) and
stores the difference in ST(0))

FSUBR ST(i), ST(0) (subtracts ST(i) from ST(0) and
stores the difference in ST(i))

FSUBRP ST(i), ST(0) (subtracts ST(i) from ST(0),
 stores the difference in ST(i),
 then pops stack)

FSUBRP (subtracts ST(1) from ST(0),
 stores the difference in ST(1),
 then pops stack)

474 Chapter 11 Floating-Point Arithmetic Instructions

FISUBR m16int (memory, 16 bits, integer,
 subtracts ST(0) from the integer
 in memory and stores the difference
 in ST(0)

FISUBR m32int (memory, 32 bits, integer,
 subtracts ST(0) from the integer
 in memory and stores the difference
 in ST(0))

The advantage of using the reverse subtraction instructions is that it is not neces-
sary to exchange the operand in ST(0) with the operand in another register in the stack
in order to perform a subtraction.

Figure 11.19 shows an assembly language module embedded in a C program that
illustrates utilizing different versions of the FSUB instruction. The FSUB single-oper-
and instruction, the FSUB double-operand instruction, and the FSUBP instruction are
used in the program. Four floating-point numbers are entered from the keyboard for
use in the program: two negative numbers and two positive numbers, as shown below.
The results of the five subtract instructions are also shown below.

flp1_num = –296.125
flp2_num = –77.625
flp3_num = +156.750
flp4_num = +127.500

The initialize floating-point unit (FINIT) can be used to initialize the register
stack. This instruction does not change the contents of the stack; however, each reg-
ister is tagged as being empty — the tag register is set to 112.

FSUB flp2_num FSUB flp2_num
+127.500 ST(0) +205.125 ST(0)

–) – 77.625 flp2_num –) – 77.625 flp2_num
+205.125 → ST(0) +282.750 → ST(0)

FSUBP ST(1), ST(0) FSUB ST(0), ST(2)
+156.750 ST(1) –126.000 ST(0)

–) +282.750 ST(0) –) –296.125 ST(2)
–126.000 → ST(1) +170.125 → ST(0)

then pop

FSUB ST(0), ST(2)
+170.125 ST(0)

–) –296.125 ST(2)
+466.250 → ST(0)

//fsub_versions.cpp
//show the use of versions of the FSUB instruction

#include "stdafx.h"

int main (void)
{
//define variables

float flp1_num, flp2_num, flp3_num, flp4_num,
flp_rslt1, flp_rslt2, flp_rslt3, flp_rslt4,
flp_rslt5;

printf ("Enter 4 flp numbers, 2 negative & 2 positive:
\n");

scanf ("%f %f %f %f", &flp1_num, &flp2_num, &flp3_num,
&flp4_num);

//switch to assembly
_asm
{

FLD flp1_num //flp1_num (-296.125) -> ST(0)
FLD flp2_num //flp2_num (-77.625) -> ST(0)

//(-296.125) -> ST(1)
FLD flp3_num //flp3_num (+156.750) -> ST(0)

//(-77.625) -> ST(1)
//(-296.125) -> ST(2)

FLD flp4_num //flp4_num (+127.500) -> ST(0)
//(+156.750) -> ST(1)
//(-77.625) -> ST(2)
//(-296.125) -> ST)3)

//--
FSUB flp2_num //ST(0) - flp2_num -> ST(0)

//(+127.50) - (-77.625) = +205.125
FST flp_rslt1 //+205.125 -> flp_rslt1

//--
FSUB flp2_num //ST(0) - flp2_num -> ST(0)

//(+205.125) - (-77.625) =
//+282.750

FST flp_rslt2 //+282.75 -> flp_rslt2
//--

(a) //continued on next page

11.5 Subtraction Instructions 475

Figure 11.19 Program to illustrate using versions of the FSUB instruction: (a) the
program and (b) the outputs.

//--
FSUBP ST(1), ST(0)//ST(1) - ST(0) -> ST(1), then pop

//(+156.75) - (+282.750) =
//-126.000

FST flp_rslt3 //-126.00 -> flp_rslt3
//--

FSUB ST(0), ST(2)//ST(0) - ST(2) -> ST(0)
//(-126.00) - (-296.125) =
//+170.125

FST flp_rslt4 //+170.125 -> flp_rslt4
//--

FSUB ST(0), ST(2)//ST(0) - ST(2) -> ST(0)
//(+170.125) - (-296.125) =
//+466.250

FST flp_rslt5 //+466.25 -> flp_rslt5
//--
}

//print result
printf ("\nflp_rslt1 = %f\n", flp_rslt1);
printf ("flp_rslt2 = %f\n", flp_rslt2);
printf ("flp_rslt3 = %f\n", flp_rslt3);
printf ("flp_rslt4 = %f\n", flp_rslt4);
printf ("flp_rslt5 = %f\n\n", flp_rslt5);

return 0;
}

Enter 4 flp numbers, 2 negative & 2 positive:
–296.125 –77.625 +156.750 +127.500

flp_rslt1 = 205.125000
flp_rslt2 = 282.750000
flp_rslt3 = –126.000000
flp_rslt4 = 170.125000
flp_rslt5 = 466.250000

Press any key to continue . . . _

(b)

476 Chapter 11 Floating-Point Arithmetic Instructions

Figure 11.19 (Continued)

11.5 Subtraction Instructions 477

Figure 11.20 shows the register stack contents for different stages of the program.
Figure 11.20(a) shows the result of the four floating-point numbers having been
pushed onto the register stack. The remaining figures in Figure 11.20 portray the
results of the various instructions after they have been executed.

 FSUB flp2_num

 FSUB flp2_num FSUBP ST(1), ST(0)

 FSUB ST(0),ST(2) FSUB ST(0), ST(2)

R0 +127.500 ST(0) +205.125 ST(0) →flp_rslt1
R1 +156.750 ST(1) +156.750 ST(1)
R2 –77.625 ST(2) –77.625 ST(2)
R3 –296.125 ST(3) –296.125 ST(3)
R4 ST(4) ST(4)
R5 ST(5) ST(5)
R6 ST(6) ST(6)
R7 ST(7) ST(7)

(a) (b)

R0 +282.750 ST(0) →flp_rslt2 –126.000 ST(0) →flp_rslt3
R1 +156.750 ST(1) –77.625 ST(1)
R2 –77.625 ST(2) –296.125 ST(2)
R3 –296.125 ST(3) ST(3)
R4 ST(4) ST(4)
R5 ST(5) ST(5)
R6 ST(6) ST(6)
R7 ST(7) ST(7)

(c) (d)

R0 +170.125 ST(0) →flp_rslt4 +466.250 ST(0) →flp_rslt5
R1 –77.625 ST(1) –77.625 ST(1)
R2 –296.125 ST(2) –296.125 ST(2)
R3 ST(3) ST(3)
R4 ST(4) ST(4)
R5 ST(5) ST(5)
R6 ST(6) ST(6)
R7 ST(7) ST(7)

(e) (f)

Figure 11.20 Register stack utilization for the program of Figure 11.19.

478 Chapter 11 Floating-Point Arithmetic Instructions

11.6 Multiplication Instructions
In floating-point multiplication, the fractions are multiplied and the exponents are
added. Floating-point multiplication is simpler than floating-point addition or sub-
traction because there is no comparison of exponents and no alignment of fractions.
Fraction multiplication and exponent addition are two independent operations and can
be done in parallel. Floating-point multiplication is defined as shown in Equation
11.6.

A × B = (fA × r eA) × (fB × r eB)
= (fA × fB) × r(eA + eB) (11.6)

The sign of the product is determined by the signs of the operands as shown below.

Asign ⊕ Bsign

11.6.1 Double Bias

An n-bit multiplicand (A) and an n-bit multiplier (B) generate a 2n-bit product (P),
which, in conjunction with the exponent, should be of sufficient precision. Although
it is not apparent in the numerical paper-and-pencil floating-point multiplication
examples in the next section, there is a minor problem when adding two biased expo-
nents. Since both exponents are biased, there will be a double bias in the resulting
exponent, as shown below.

(eA + bias) + (eB + bias) = (eA + eB) + 2 bias

The resulting exponent should be restored to a single bias before the multiplica-
tion operation begins. This is accomplished by subtracting the bias.

1. Check for zero operands. If A = 0 or B = 0, then the product = 0.
2. Determine the sign of the product.
3. Add exponents and subtract the bias.
4. Multiply fractions. Steps 3 and 4 can be done in parallel, but both must be

completed before step 5.
5. Normalize the product.

An example will illustrate this concept. Let the exponents be eA = 0000 1010 (10)
and eB = 0000 0101 (5). Each exponent will be biased, then added to produce a double
bias. The bias will then be subtracted to produce a single bias, then subtracted again to
produce the sum of the two unbiased exponents: eA = 0000 1010 (10) and eB = 0000
0101 (5) = (eA + eB)unbiased = 0000 1111 (15).

eA(unbiased) = 0000_1010
+) bias = 0111_1111

eA(biased) = 1000_1001

eB(unbiased) = 0000_0101
+) bias = 0111_1111

eB(biased) = 1000_0100

eA(biased) = 1000_1001
+) eB(biased) = 1000_0100
Double bias = 1 ← 0000_1101

11.6 Multiplication Instructions 479

Restore to single bias by subtracting the bias; that is, by adding the 2s complement
of 0111 1111 (1000 0001).

eA(biased) + eB(biased) = 0000_1101
+) 2s complement of bias = 1000_0001

(eA + eB)single bias = 1 ← 1000_1110

(eA + eB)single bias = 1000_1110
+) 2s complement of bias = 1000_0001

(eA + eB)no bias = 1 ← 0000_1111

11.6.2 Numerical Examples

Examples will now be presented that illustrate multiplication using the paper-and-pen-
cil method for 4-bit operands in 2s complement notation. If the operands are in 2s
complement notation, then the sign bit is treated in a manner identical to the other bits;
however, the sign bit of the multiplicand is extended left in the partial product to
accommodate the 2n-bits of the product. The only requirement is that the multiplier
must be positive — the multiplicand can be either positive or negative. This is not a
problem when using the X86 assembly language — the assembler resolves this prob-
lem automatically. The assembler also resolves exponent biasing and significand
alignment for addition and subtraction.

Example 11.1 The multiplicand and multiplier are two positive 4-bit operands,
where a[3:0] = 0111 (+7) and b[3:0] = 0101 (+5) to yield a product p[7:0] = 0010
0011 (+35). A multiplier bit of 1 copies the multiplicand to the partial product; a mul-
tiplier bit of 0 enters 0s in the partial product.

Multiplicand A 0 1 1 1 +7
Multiplier B ×) 0 1 0 1 +5

0 0 0 0 0 1 1 1
Partial 0 0 0 0 0 0 0
products 0 0 0 1 1 1

0 0 0 0 0
Product P 0 0 1 0 0 0 1 1 +35

480 Chapter 11 Floating-Point Arithmetic Instructions

Example 11.2 This example multiplies a positive multiplicand by a negative multi-
plier to demonstrate that the multiplier must be positive. The multiplicand is a[3:0] =
0101 (+5); the multiplier is b[3:0] = 1101 (–3). The product should be –15; however,
since the multiplier is treated as an unsigned number (1101 = 13), the result is 0100
0001 (65).

Multiplicand A 0 1 0 1 +5
Multiplier B ×) 1 1 0 1 (–3) 13

0 0 0 0 0 1 0 1
Partial 0 0 0 0 0 0 0
products 0 0 0 1 0 1

0 0 1 0 1
Product P 0 1 0 0 0 0 0 1 65

The problem can be resolved by either 2s complementing both operands or by 2s
complementing the multiplier, performing the multiplication, then 2s complementing
the result. The method shown below 2s complements both operands.

Multiplicand A 1 0 1 1 –5
Multiplier B ×) 0 0 1 1 +3

1 1 1 1 1 0 1 1
Partial 1 1 1 1 0 1 1
products 0 0 0 0 0 0

0 0 0 0 0
Product P 1 1 1 1 0 0 0 1 –15

When both operands are negative, the correct result can be obtained by 2s com-
plementing both operands before the operation begins, since a negative multiplicand
multiplied by a negative multiplier yields a positive product.

11.6 Multiplication Instructions 481

11.6.3 Multiply Instructions

There are different versions of the multiply instruction. One version, FMUL, multi-
plies the multiplicand in ST(0) by the single-operand floating-point 32-bit or a 64-bit
multiplier source operand in memory and stores the product in ST(0). For some mul-
tiply instructions, the source operand can be a single-precision floating-point operand,
a double-precision floating-point operand, an integer word operand, or an integer dou-
bleword operand. The syntax for the FMUL instruction is shown below.

FMUL m32fp (memory, 32 bits, floating-point)
FMUL m64fp (memory, 64 bits, floating-point)

Another version of the multiply instruction multiplies the operand in register
ST(0) by the operand in register ST(i) and stores the product in ST(0). A similar ver-
sion multiplies ST(i) by ST(0) and stores the product in ST(i). The syntax for the two-
operand FMUL instruction is shown below.

FMUL ST(0), ST(i) (stores product in ST(0))
FMUL ST(i), ST(0) (stores product in ST(i))

Another version of the multiply instruction, FMULP, is similar to the double-oper-
and version shown above, where the product is stored in ST(i). The operand in ST(i)
is multiplied by the operand in ST(0) and the product is stored in ST(i). However, in
this version, the register stack is popped after the product is stored. The syntax is
shown below.

FMULP ST(i), ST(0)

Another version of the multiply instruction, FMULP, is the no-operand version,
which multiplies the operand in ST(1) by the operand in ST(0) and stores the product
in ST(1), then pops the register stack. The syntax is shown below.

FMULP

Another version of the multiply instruction, FIMUL, multiplies ST(0) by the 16-
bit or a 32-bit single-operand integer source operand in memory and stores the product
in ST(0). The FIMUL instruction converts the integer source operand to a double
extended-precision floating-point number before the multiplication operation. The
syntax is shown below.

FIMUL m16int (memory, 16 bits, integer)
FIMUL m32int (memory, 32 bits, integer)

Figure 11.21 shows an assembly language module embedded in a C program that
illustrates utilizing different versions of the FMUL instruction. The FMUL single-
operand instruction, the FMUL double-operand instruction, and the FMULP instruc-
tion are used in the program. Four floating-point numbers are entered from the

482 Chapter 11 Floating-Point Arithmetic Instructions

keyboard for use in the program: two negative numbers and two positive numbers, as
shown below. The results of the five multiply instructions are also shown below.

flp1_num = –10.500
flp2_num = –5.000
flp3_num = +7.700
flp4_num = +12.500

FMUL flp2_num FMUL flp4_num
+ 12.500 ST(0) – 62.500 ST(0)

×) – 5.000 flp2_num ×) + 12.500 flp4_num
– 62.500 → ST(0) – 781.250 → ST(0)

FMUL ST(0), ST(2) FMULP ST(1), ST(0)
– 781.250 ST(0) + 7.700 ST(1)

×) – 5.000 ST(2) ×) + 3906.250 ST(0)
+ 3906.250 → ST(0) + 30078.125 → ST(1)

Then pop

//fmul_versions.cpp
//show the use of versions of the FMUL instruction

#include "stdafx.h"

int main (void)
{
//define variables

float flp1_num, flp2_num, flp3_num, flp4_num,
flp_rslt1, flp_rslt2, flp_rslt3, flp_rslt4;

printf ("Enter 4 flp numbers, 2 negative & 2 positive:
\n");

scanf ("%f %f %f %f", &flp1_num, &flp2_num, &flp3_num,
&flp4_num);

//continued on next page
(a)

Figure 11.21 Program to illustrate using versions of the FMUL instruction: (a) the
program and (b) the outputs.

//switch to assembly
_asm
{

FLD flp1_num //flp1_num (-50.5) -> ST(0)
FLD flp2_num //flp2_num (-5.0) -> ST(0)

//(-50.5) -> ST(1)
FLD flp3_num //flp3_num (+7.7) -> ST(0)

//(-5.0) -> ST(1)
//(-50.5) -> ST(2)

FLD flp4_num //flp4_num (+25.7) -> ST(0)
//(+7.7) -> ST(1)
//(-5.0) -> ST(2)
//(-50.5) -> ST)3)

//--

FMUL flp2_num //ST(0) × flp2_num -> ST(0)
//(+12.5) x (-5.0) = -62.5

FST flp_rslt1 //-62.5 -> flp_rslt1
//--

FMUL flp4_num //ST(0) × flp4_num -> ST(0)
//(-62.5) x (+12.5) = -781.25

FST flp_rslt2 //-781.25 -> flp_rslt2
//--

FMUL ST(0), ST(2)//ST(0) × ST(2) -> ST(0)
//(-781.25) x (-5.0) = +3906.25

FST flp_rslt3 //+16512.25 -> flp_rslt3
//--

FMULP ST(1), ST(0)//ST(1) × ST(0) -> ST(1)
//(+7.700) × (+3906.25) =
//+30078.125

FST flp_rslt4 //+30078.125 -> flp_rslt4
//--

}

//print result
printf ("\nflp_rslt1 = %f\n", flp_rslt1);
printf ("flp_rslt2 = %f\n", flp_rslt2);
printf ("flp_rslt3 = %f\n", flp_rslt3);
printf ("flp_rslt4 = %f\n\n", flp_rslt4);

return 0;
} //continued on next page

11.6 Multiplication Instructions 483

Figure 11.21 (Continued)

Enter 4 flp numbers, 2 negative & 2 positive:
–10.500 –5.000 +7.700 +15.500

flp_rslt1 = –62.500000
flp_rslt2 = –781.250000
flp_rslt3 = 3906.250000
flp_rslt4 = 30078.125000

Press any key to continue . . . _ (b)

484 Chapter 11 Floating-Point Arithmetic Instructions

Figure 11.21 (Continued)

Figure 11.22 shows the register stack contents for different stages of the program.
Figure 11.22(a) shows the result of the four floating-point numbers having been
pushed onto the register stack. The remaining figures in Figure 11.22 portray the
results of the various instructions after they have been executed.

 FMUL flp2_num

 FMUL flp4_num FMUL ST(0), ST(2)

R0 +12.500 ST(0) –62.500 ST(0) →flp_rslt1
R1 +7.700 ST(1) +7.700 ST(1)
R2 –5.000 ST(2) –5.000 ST(2)
R3 –10.500 ST(3) –10.500 ST(3)
R4 ST(4) ST(4)
R5 ST(5) ST(5)
R6 ST(6) ST(6)
R7 ST(7) ST(7)

(a) (b)

R0 –781.250 ST(0) →flp_rslt2 +3906.250 ST(0) →flp_rslt3
R1 +7.700 ST(1) +7.700 ST(1)
R2 –5.000 ST(2) –5.000 ST(2)
R3 –10.500 ST(3) –10.500 ST(3)
R4 ST(4) ST(4)
R5 ST(5) ST(5)
R6 ST(6) ST(6)
R7 ST(7) ST(7)

(c) (d)
//continued on next page

Figure 11.22 Register stack utilization for the program of Figure 11.21.

 FMULP ST(1), ST(0)

R0 +30078.125 ST(0) →flp_rslt4
R1 –5.000 ST(1)
R2 –10.500 ST(2)
R3 ST(3)
R4 ST(4)
R5 ST(5)
R6 ST(6)
R7 ST(7)

(e)

11.6 Multiplication Instructions 485

Figure 11.22 (Continued)

An example of floating-point multiplication is shown in Figure 11.23 to illustrate
the concept of adding the exponents to obtain the correct resulting exponent. The
example uses the sequential add-shift method with 8-bit operands. In this example, the
multiplicand fraction fract_a = 0.1010 0000 × 23 (+5) is multiplied by a multiplier
fract_b = 0.1100 0000 × 22 (+3) with partial product D = 0000 0000 to produce a prod-
uct of prod = 0.1111 0000 0000 0000 × 24 (+15).

fract_a (+5) prod fract_b (+3)
1010 0000 prod 0000 0000 1100 0000

Shift right 6 0000 0000 0000 0011
+) 1010 0000 Add-shift

0 1010 0000 0000 0011

Shift right 1 0101 0000 0000 0001
+) 1010 0000 Add-shift

0 1111 0000 0000 0001

Shift right 1 0111 1000 0000 0000
8 cycles (count = 0)
Postnormalize 1111 0000 0000 0000

Product = 0. 1111 0000 0000 0000 × 2(3+2)–1 = 24

Figure 11.23 Example of floating-point multiplication using the sequential add-
shift method.

486 Chapter 11 Floating-Point Arithmetic Instructions

Since the multiplication involves two n-bit operands, a count-down sequence
counter, count, is set to a value that represents the number of bits in one of the oper-
ands. The counter is decremented by one for each step of the add-shift sequence.
When the counter reaches a value of zero, the operation is finished and the product is
normalized, if necessary.

If the low-order bit of register fract_b is equal to zero, then zeroes are added to the
partial product and the sum is loaded into register prod. In this case, it is not necessary
to perform an add operation — a right shift can accomplish the same result. The
sequence counter is then decremented by one. If the low-order bit of register fract_b
is equal to one, then the multiplicand is added to the partial product. The sum is loaded
into register prod and the sequence counter is decremented.

11.7 Division Instructions
Floating-point division performs two operations in parallel: fraction division and
exponent subtraction. The dividend is usually 2n bits and the divisor is n bits. Divide
overflow is determined in the same way as in fixed-point division; that is, if the high-
order half of the dividend is greater than or equal to the divisor, then divide overflow
occurs. The problem is resolved by shifting the dividend right one bit position and
incrementing the exponent by one. Since both operands were normalized, this assures
that the entire dividend is smaller than the divisor, as shown below.

High-order half of Dividend = 0.01x x x . . . x x
Divisor = 0.1x x x . . . x x

This is referred to as dividend alignment, providing the ranges for the two oper-
ands, as shown below.

1/4 ≤ Dividend < 1/2
1/2 ≤ Divisor < 1

Both operands are checked for a value of zero. If the dividend is zero, then the
exponent, quotient, and remainder are set to zero. If the divisor is zero, then the result
is infinity and the operation is terminated. Division is performed on normalized float-
ing-point operands A and B using biased exponents, such that

A = fA × r eA

B = fB × r eB

11.7 Division Instructions 487

where f is the normalized fraction, e is the exponent, and r is the radix. Floating-point
division is defined as shown in Equation 11.7, which shows fraction division and
exponent subtraction performed simultaneously.

A / B
=

 (fA × r eA) / (fB × r eB)

= (fA / fB) × reA – eB
(11.7)

The sign of the quotient is determined by the signs of the floating-point numbers.
If the signs are the same, then the sign of the quotient is positive; if the signs are dif-
ferent, then the sign of the quotient is negative. This can be determined by the exclu-
sive-OR of the two signs, as shown in Equation 11.8. The sign of the remainder is the
same as the sign of the dividend.

Quotient sign = Asign ⊕ Bsign (11.8)

11.7.1 Zero Bias

As was stated previously, the divisor exponent is subtracted from the dividend expo-
nent in parallel with fraction division. The exponents are subtracted and the carry-out
is examined. If the carry-out = 1, then the dividend exponent was greater than or equal
to the divisor exponent (eA ≥ eB). If the carry-out = 0, then the dividend exponent was
less than the divisor exponent (eA < eB). Since both exponents were initially biased,
the difference generates a result with no bias, as shown in Equation 11.9.

eA – eB = (eA + bias) – (eB + bias)
= eA + bias – eB – bias
= (eA – eB)unbiased (11.9)

Therefore, the bias must be added to the difference so that the resulting exponent
is properly biased. Thus, for the single-precision format:

(eA – eB)biased = (eA – eB)unbiased + 0111 1111

Restoring the bias may result in an exponent overflow, in which case the division
operation is terminated. Examples will now be presented that illustrate the previous
statements and are chosen for eA > eB, eA = eB, and eA < eB.

Example 11.3 Let eA > eB, where eA(unbiased) = 0001 0110 (22) and eB(unbiased) =
0000 1010 (10). Therefore, eA – eB = 22 – 10 = 12.

eA(unbiased) = 0001 0110
Add bias +) 0111 1111
eA(biased) = 1001 0101

eB(unbiased) = 0000 1010
Add bias +) 0111 1111
eB(biased) = 1000 1001

488 Chapter 11 Floating-Point Arithmetic Instructions

eA(biased) – eB(biased)

eA(biased) = 1001 0101
+) 2s complement of eB(biased) = 0111 0111

1 ← 0000 1100 12

Restore to single bias by adding the bias.

(eA – eB)unbiased = 0000 1100
Add bias = 0111 0111

(eA – eB)biased = 1001 1011

Example 11.4 Let eA = eB, where eA(unbiased) = 0001 0101 (21) and eB(unbiased) =
0001 0101 (21). Therefore, eA – eB = 21 – 21 = 0.

eA(unbiased) = 0001 0101
Add bias +) 0111 1111
eA(biased) = 1001 0100

eB(unbiased) = 0001 0101
Add bias +) 0111 1111
eB(biased) = 1001 0100

eA(biased) – eB(biased)

eA(biased) = 1001 0100
+) 2s complement of eB(biased) = 0110 1100

1 ← 0000 0000 0

11.7 Division Instructions 489

Restore to single bias by adding the bias.

(eA – eB)unbiased = 0000 0000
Add bias = 0111 0111

(eA – eB)biased = 0111 1111

Example 11.5 Let eA < eB, where eA(unbiased) = 0000 1001 (9) and eB(unbiased) = 0001
0011 (19). Therefore, eA – eB = 9 – 19 = –10.

eA(unbiased) = 0000 1001
Add bias +) 0111 1111
eA(biased) = 1000 1000

eB(unbiased) = 0001 0011
Add bias +) 0111 1111
eB(biased) = 1001 0010

eA(biased) – eB(biased)

eA(biased) = 1000 1000
+) 2s complement of eB(biased) = 0110 1110

0 ← 1111 0110 –10

If carry-out = 0, then 2s complement to obtain the difference of 0000 1010 (10).

Restore to single bias by adding the bias.

(eA – eB)unbiased = 1111 0110
Add bias = 0111 1111

(eA – eB)biased = 0111 0101

11.7.2 Numerical Example

This section presents a numerical example using the sequential shift-subtract/add
restoring division method with 4-bit divisors and 8-bit dividends. Register A contains
the 2n-bit normalized dividend fraction, fract_a, which will eventually contain the n-
bit quotient and n-bit remainder. Register B contains the n-bit normalized divisor frac-
tion, fract_b.

Since the division process involves one n-bit divisor and one 2n-bit dividend, a
count-down sequence counter, count, is set to a value that represents the number of bits

490 Chapter 11 Floating-Point Arithmetic Instructions

in the divisor. The counter is decremented by one for each step of the shift-subtract/
add sequence. When the counter reaches a value of zero, the operation is finished and
the quotient resides in fract_a[3:0] and the remainder resides in fract_a[7:4].

If the value of the high-order half of the dividend is greater than or equal to the
value of the divisor, then an overflow condition exists. To resolve this problem, the
dividend is shifted right one bit position and the dividend exponent is incremented by
one. Each sequence in the division process consists of a shift left of one bit position
followed by a subtraction of the divisor.

Example 11.6 A dividend fraction fract_a = 0.1010 0100 × 27 (+82) is divided by a
divisor fraction fract_b = 0.1001 × 24 (+9) to yield a quotient of 1001 × 24 (+9) and a
remainder of 0001 × 24 (+1), as shown in Figure 11.24.

fract_b (+9) fract_a (+82)
1001 1010 0100
Align 0101 0010 × 2(7 + 1) = 28

Shift left 1 1010 010–
Subtract B +) 0111

1 0001

No restore 0001 0101

Shift left 1 0010 101–
Subtract B +) 0111

0 1001

Restore +) 1001
0010 1010

Shift left 1 0101 010–
Subtract B +) 0111

0 1100

Restore +) 1001
0101 0100

Continued on next page

Figure 11.24 Example of sequential shift-subtract/add restoring division.

Shift left 1 1010 100–
Subtract B +) 0111

1 0001

No restore 0001 1001
R Q × 2(7 – 4) + 1 = 24

11.7 Division Instructions 491

Figure 11.24 (Continued)

The example of Figure 11.24 was presented only to provide a review of the
sequential shift-subtract/add restoring division algorithm and does not reflect the
floating-point division procedure. Floating-point division yields a quotient only —
there is no remainder. For example, the operands of Figure 11.24 will yield a floating-
point result of 9.111111; that is, 82 / 9 = quotient of 9 and a remainder of 1 / 9 =
0.111111. This is shown in the program of Figure 11.25, using the FDIV instruction,
which is explained in Section 11.7.3. The remainder can be obtained by using the par-
tial remainder FPREM1 instruction described in Section 11.10.

//fdiv_versions2.cpp
//show the use of the FDIV instruction
#include "stdafx.h"
int main (void)
{
//define variables

float flp_dvdnd, flp_dvsr, flp_rslt;
printf ("Enter a dividend and a divisor: \n");
scanf ("%f %f", &flp_dvdnd, &flp_dvsr);

//switch to assembly
_asm
{

FLD flp_dvdnd //flp_dvdnd -> ST(0)
FDIV flp_dvsr //ST(0) / flp_dvsr -> ST(0)
FST flp_rslt

}
printf ("\nflp_rslt = %f\n\n", flp_rslt);
return 0;

} (a) //continued on next page

Figure 11.25 Program to show a divide operation of 82.00 / 9.00 to yield a quotient
of 9.111111: (a) the program and (b) the outputs.

Enter a dividend and a divisor:
82.00 9.00

flp_rslt = 9.111111

Press any key to continue . . . _
--
Enter a dividend and a divisor:
12.25 7.45

flp_rslt = 1.644295

Press any key to continue . . . _
(b)

492 Chapter 11 Floating-Point Arithmetic Instructions

Figure 11.25 (Continued)

11.7.3 Divide Instructions

There are different versions of the divide instruction. One version, FDIV, divides the
dividend in ST(0) by the single-operand floating-point 32-bit or a 64-bit divisor source
operand in memory and stores the result in ST(0). For some divide instructions, the
source operand can be a single-precision floating-point operand, a double-precision
floating-point operand, an integer word operand, or an integer doubleword operand.
The syntax for the FDIV instruction is shown below.

FDIV m32fp (memory, 32 bits, floating-point)
FDIV m64fp (memory, 64 bits, floating-point)

Another version of the divide instruction divides the operand in register ST(0) by
the operand in register ST(i) and stores the result in ST(0). A similar version divides
ST(i) by ST(0) and stores the result in ST(i). The syntax for the two-operand FDIV
instruction is shown below

FDIV ST(0), ST(i) (stores result in ST(0))
FDIV ST(i), ST(0) (stores result in ST(i))

Another version of the divide instruction, FDIVP, is similar to the double-operand
version shown above, where the result is stored in ST(i). The operand in ST(i) is
divided by the operand in ST(0) and the result is stored in ST(i). However, in this ver-
sion, the register stack is popped after the result is stored. The syntax is shown below.

FDIVP ST(i), ST(0)

11.7 Division Instructions 493

Another version of the divide instruction, FDIVP, is the no-operand version,
which divides the operand in ST(1) by the operand in ST(0) and stores the result in
ST(1), then pops the register stack. The syntax is shown below.

FDIVP

Another version of the divide instruction, FIDIV, divides ST(0) by the 16-bit or
32-bit integer source operand in memory and stores the result in ST(0). The FIDIV
instruction converts the integer source operand to a double extended-precision float-
ing-point number before the division operation. The syntax is shown below.

FIDIV m16int (memory, 16 bits, integer)
FIDIV m32int (memory, 32 bits, integer)

There are also a variety of reverse divide instructions. These instructions are sim-
ilar to those listed above, except that the divide operation is reversed. For example, the
FDIVR instruction divides the single-operand floating-point 32-bit or a 64-bit source
operand in memory by ST(0) stores the result in ST(0). These instructions include the
following:

FDIVR m32fp (memory, 32 bits, floating-point,
 divides memory operand by ST(0) and
 stores the result in ST(0))

FDIVR m64fp (memory, 64 bits, floating-point,
 divides memory operand by ST(0) and
 stores the result in ST(0))

FDIVR ST(0), ST(i) (divides ST(i) by ST(0) and
stores the result in ST(0))

FDIVR ST(i), ST(0) (divides ST(0) by ST(i) and
stores the result in ST(i))

FDIVRP ST(i), ST(0) (divides ST(0) by ST(i),
 stores the result in ST(i),
 then pops stack)

FDIVRP (divides ST(0) by ST(1),
 stores the result in ST(1),
 then pops stack)

FIDIVR m16int (memory, 16 bits, integer,
 divides memory operand by ST(0) and
 stores the result in ST(0))

FIDIVR m32int (memory, 32 bits, integer,
 divides memory operand by ST(0) and
 stores the result in ST(0))

494 Chapter 11 Floating-Point Arithmetic Instructions

Figure 11.26 shows an assembly language module embedded in a C program that
illustrates utilizing different versions of the FDIV instruction. The FDIV single-oper-
and instruction, the FDIV double-operand instruction, and the FDIVP instruction are
used in the program. Four floating-point numbers are entered from the keyboard for
use in the program: a positive and negative dividend and a positive and negative divi-
sor, as shown below. The results of the four divide instructions are also shown below.

flp1_dvdnd = +547.125
flp2_dvdnd = –15.750
flp1_dvsr = +65.175
flp2_dvsr = –50.650

FDIV flp1_dvsr FDIV flp2_dvsr
+547.125 ST(0) +8.394706 ST(0)

÷) +65.175 flp1_dvsr ÷) –50.650 flp2_dvsr
+8.394706 → ST(0) –0.165740 → ST(0)

FDIV ST(0), ST(1) FDIVP ST(1), ST(0)
–15.7250 flp2_dvdnd –0.165740 ST(1)

÷) –0.165740 ST(1) ÷) + 95.028641 ST(0)
+ 95.028641 → ST(0) –0.001744 → ST(1)

Then pop

//fdiv_versions.cpp
//show the use of versions of the FDIV instruction
#include "stdafx.h"
int main (void)
{
//define variables

float flp1_dvdnd, flp2_dvdnd, flp1_dvsr, flp2_dvsr,
flp_rslt1, flp_rslt2, flp_rslt3, flp_rslt4;

printf ("Enter a pos & neg dvdnd and a pos & neg dvsr:
\n");

scanf ("%f %f %f %f", &flp1_dvdnd, &flp2_dvdnd,
&flp1_dvsr, &flp2_dvsr);

(a) //continued on next page

Figure 11.26 Program to illustrate using versions of the FDIV instruction: (a) the
program and (b) the outputs.

//switch to assembly
_asm
{

FLD flp1_dvdnd //flp1_dvdnd (+547.125) -> ST(0)
//--

FDIV flp1_dvsr //ST(0) / flp1_dvsr -> ST(0)
//(+547.125) / (+65.175) =
//+8.394706

FST flp_rslt1 //+8.394706 -> flp_rslt1
//--

FDIV flp2_dvsr //ST(0) / flp2_dvsr -> ST(0)
//(+8.394706) / (-50.650) =
//-0.165740

FST flp_rslt2 //-0.165740 -> flp_rslt2
//--

FLD flp2_dvdnd //flp2_dvdnd (-15.750) -> ST(0)
//ST(0) (-0.165740) -> ST(1)

FDIV ST(0), ST(1)//ST(0) / ST(1) -> ST(0)
//(-15.750) / (-0.165740) =
//+95.028641

FST flp_rslt3 //+95.028641 -> flp_rslt3
//--

FDIVP ST(1), ST(0)//ST(1) / ST(0) -> ST(1), pop
//(-0.165740) / (+95.028641) =
//-0.001744

FST flp_rslt4 //-0.001744 -> flp_rslt4
//--

}

//print result
printf ("\nflp_rslt1 = %f\n", flp_rslt1);

printf ("flp_rslt2 = %f\n", flp_rslt2);

printf ("flp_rslt3 = %f\n", flp_rslt3);

printf ("flp_rslt4 = %f\n\n", flp_rslt4);

return 0;
} //continued on next page

11.7 Division Instructions 495

Figure 11.26 (Continued)

Enter a pos & neg dvdnd and a pos & neg dvsr:
+547.125 –15.750 +65.175 –50.650

flp_rslt1 = 8.394706
flp_rslt2 = –0.165740
flp_rslt3 = 95.028641
flp_rslt4 = –0.001744

Press any key to continue . . . _
(b)

496 Chapter 11 Floating-Point Arithmetic Instructions

Figure 11.26 (Continued)

Figure 11.27 shows the register stack contents for different stages of program exe-
cution for Figure 11.26. The floating-point number flp1_dvdnd is initially stored in
ST(0) by the first load instruction. Figure 11.27(a) through Figure 11.27(d) portray the
results of the various instructions after they have been executed.

 FDIV flp1_dvsr FDIV flp2_dvsr

 FDIV ST(0), ST(1) FDIVP ST(1), ST(0)

R0 +8.394706 ST(0) →flp_rslt1 –0.165740 ST(0) →flp_rslt2
R1 ST(1) ST(1)
R2 ST(2) ST(2)
R3 ST(3) ST(3)
R4 ST(4) ST(4)
R5 ST(5) ST(5)
R6 ST(6) ST(6)
R7 ST(7) ST(7)

(a) (b)

R0 +95.028641 ST(0) →flp_rslt3 –0.001744 ST(0) →flp_rslt4
R1 –0.165740 ST(1) ST(1)
R2 ST(2) ST(2)
R3 ST(3) ST(3)
R4 ST(4) ST(4)
R5 ST(5) ST(5)
R6 ST(6) ST(6)
R7 ST(7) ST(7)

(c) (d)

Figure 11.27 Register stack utilization for the program of Figure 11.26.

11.8 Compare Instructions 497

11.8 Compare Instructions
This section describes the floating-point instructions that compare different types of
data. These include the compare floating-point values instructions: FCOM, FCOMP,
and FCOMPP; the compare floating-point values and set flags instructions: FCOMI,
FCOMIP, FUCOMI, and FUCOMIP; the compare integer instructions: FICOM and
FICOMP; the test instruction: FTST; and the unordered compare floating-point values
instructions: FUCOM, FUCOMP, and FUCOMPP. These instructions are explained
in the sections that follow.

11.8.1 Compare Floating-Point Values

There are nine compare floating-point values instructions that compare the contents of
stack register ST(0) with the source operand. The condition code flags are then set in
the floating-point unit (FPU) status word or in the EFLAGS register, depending on the
type of instruction and the results of the operation. The FPU status word is reproduced
in Figure 11.28 and the EFLAGS register is reproduced in Figure 11.29.

15 14 13 12 11 10 9 8
B C3 TOS C2 C1 C0

7 6 5 4 3 2 1 0
ES SF PE UE OE ZE DE IE

Figure 11.28 Floating-point unit status word format.

31 30 29 28 27 26 25 24
0 0 0 0 0 0 0 0

23 22 21 20 19 18 17 16
0 0 ID VIP VIF AC VM RF

15 14 13 12 11 10 9 8
0 NT IOPL OF DF IF TF

7 6 5 4 3 2 1 0
SF ZF 0 AF 0 PF 1 CF

Figure 11.29 EFLAGS register.

498 Chapter 11 Floating-Point Arithmetic Instructions

The meaning of bits C3, C2, and C0 in the floating-point unit status word are
defined in Table 11.1. Bits C3, C2, and C0 map into bits ZF, PF, and CF, respectively
in the EFLAGS register. Unlike integer comparison instructions, floating-point com-
parison instructions have four — rather than three — results: ST(0) greater than
source, ST(0) less than source, ST(0) equal to source, and unordered. An unordered
condition is detected if an operand is not-a-number (NaN) or is in an undefined format.
In this case, a floating-point invalid-operation exception (#IA) is produced. If the #IA
exception is masked, then the condition code flags are set to the unordered state.

Table 11.1 X87 Condition Code Flags
in the FPU Status Word for the
Compare Floating-Point Values Instructions

Condition C3 C2 C1 C0
ST(0) > source 0 0 – 0
ST(0) < source 0 0 – 1
ST(0) = source 1 0 – 0
Unordered 1 1 – 1

There are different versions of the compare floating-point values instruction. The
source operand can be a register in the FPU stack or a memory location. However, if
no source operand is given, then the operand in ST(0) is compared with the operand in
ST(1).

One version, FCOM, compares the operand in ST(0) with the floating-point 32-bit
or a 64-bit source operand in memory and sets the X87 FPU condition code flags. The
syntax for the FCOM instruction is shown below.

FCOM m32fp (memory, 32-bit floating-point)
FCOM m64fp (memory, 64-bit floating-point)

Another version of the FCOM instruction compares the operand in register ST(0)
with the operand in register ST(i) and sets the X87 FPU condition code flags. The syn-
tax is shown below.

FCOM ST(i) (compare ST(0) with ST(i))

Another version of the FCOM instruction compares the operand in register ST(0)
with the operand in register ST(1) and sets the X87 FPU condition code flags. This
version does not define a source operand. The syntax is shown below.

FCOM (compare ST(0) with ST(1))

11.8 Compare Instructions 499

Another version, FCOMP, of the instruction compares the operand in register
ST(0) with the floating-point 32-bit or a 64-bit source operand in memory, sets the
X87 FPU condition code flags, then pops the register stack. The syntax is shown
below.

FCOMP m32fp (memory, 32-bit floating-point, pop stack)
FCOMP m64fp (memory, 64-bit floating-point, pop stack)

Another version of the FCOMP instruction compares the operand in register
ST(0) with the operand in ST(i), sets the X87 FPU condition code flags, then pops the
register stack. The syntax is shown below.

FCOMP ST(i) (compare ST(0) with ST(i), pop stack)

Another version of the FCOMP instruction compares the operand in register
ST(0) with the operand in ST(1), sets the X87 FPU condition code flags, then pops the
register stack. This version does not define a source operand. The syntax is shown
below.

FCOMP (compare ST(0) with ST(1), pop stack)

Another version of the instruction compares the operand in register ST(0) with the
operand in ST(1), sets the X87 FPU condition code flags, then pops the register stack
twice. This version does not define a source operand. The syntax is shown below.

FCOMPP (compare ST(0) with ST(1), pop stack twice)

11.8.2 Compare Floating-Point Values and Set EFLAGS

These instructions perform an unordered comparison of the operands in stack registers
ST(0) and ST(i). The result of the comparison sets the zero flag (ZF), the parity flag
(PF), and the carry flag (CF) in the EFLAGS register, as shown in Table 11.2.

Table 11.2 Status Flag Bits for the
Compare Floating-Point Values
and Set EFLAGS Instructions

Condition ZF PF CF
ST(0) > source 0 0 0
ST(0) < source 0 0 1
ST(0) = source 1 0 0
Unordered 1 1 1

500 Chapter 11 Floating-Point Arithmetic Instructions

An unordered comparison checks the type of numbers being compared; for exam-
ple, unsupported, NaN, normal finite, infinity, zero, empty, or denormal. Denormal-
ized numbers are very small numbers, where the biased exponent is zero and there are
leading zeroes in the significand (fraction). There are four different versions of this
type of instruction, which are described below. Each version has two operands and
there is no destination.

One version, FCOMI, compares the operand in register stack ST(0) with the oper-
and in register stack ST(i), then sets the three status flags in the EFLAGS register, as
shown in Table 11.2. This instruction operates identically to the FCOM instruction,
but sets the status flags in the EFLAGS register instead of the condition code flags in
the X87 FPU status word register. The syntax is shown below.

FCOMI ST(0), ST(i) (compare ST(0) with ST(i), set flags)

Another version, FCOMIP, compares the operand in register stack ST(0) with the
operand in register stack ST(i), sets the three flags in the EFLAGS register, then pops
the register stack. This instruction operates identically to the FCOM instruction, but
sets the status flags in the EFLAGS register instead of the condition code flags in the
X87 FPU status word register. The syntax is shown below.

FCOMIP ST(0), ST(i) (compare ST(0) with ST(i),
set status flags, then pop stack)

Another version, FUCOMI, compares the operand in register stack ST(0) with the
operand in register stack ST(i) for ordered operands, then sets the status flags in the
EFLAGS register instead of the condition code flags in the X87 FPU status word reg-
ister. This instruction operates identically to the FCOMI instruction, but does not
yield a floating-point invalid-operation exception. The syntax is shown below.

FUCOMI ST(0), ST(i) (compare ST(0) with ST(i)
 for ordered operands,

 then set status flags)

Another version, FUCOMIP, compares the operand in register stack ST(0) with
the operand in register stack ST(i) for ordered operands, sets the status flags in the
EFLAGS register instead of the condition code flags in the X87 FPU status word reg-
ister, then pops the register stack. This instruction operates identically to the FCOMIP
instruction, but does not yield a floating-point invalid-operation exception, except for
NaNs or unsupported formats. The syntax is shown below.

FUCOMIP ST(0), ST(i) (compare ST(0) with ST(i)
 for ordered operands,

 set status flags,
 then pop stack)

11.8 Compare Instructions 501

11.8.3 Compare Integer

There are two different versions of the compare integer instruction, both of which are
described below. The operation of both versions, FICOM and FICOMP, is identical to
the operation of the FCOM and FCOMP instructions; however, the source operand is
an integer in a memory location. The integer operand is changed to a double extended-
precision floating-point value before the operands are compared.

One version, FICOM, compares ST(0) with a 16-bit or 32-bit integer source oper-
and in memory, then sets the condition code flags in the X87 floating-point unit status
word. Refer to Table 11.1 for the meaning of bits C3, C2, and C0. The syntax is shown
below.

FICOM m16int (compare ST(0) with a 16-bit integer
in memory, then set flags)

FICOM m32int (compare ST(0) with a 32-bit integer
in memory, then set flags)

Another version, FICOMP, compares ST(0) with a 16-bit or 32-bit integer source
operand in memory, sets the condition code flags in the X87 floating-point unit status
word, then pops the register stack. The syntax is shown below.

FICOMP m16int (compare ST(0) with a 16-bit integer
 in memory, set flags,
 then pop stack)

FICOMP m32int (compare ST(0) with a 32-bit integer
 in memory, set flags,
 then pop stack)

11.8.4 Test

This instruction, FTST, performs an operation identical to the FCOM instruction, but
compares the operand in ST(0) with a value of 0.0, then sets the condition code flags
— C3, C2, C0 — in the X87 floating-point unit status word. The syntax is shown
below.

FTST (compare ST(0) with 0.0)

11.8.5 Unordered Compare Floating-Point Values

There are different versions of the unordered compare floating-point values instruc-
tion, all of which are described below. The operation of FUCOM, FUCOMP, and

502 Chapter 11 Floating-Point Arithmetic Instructions

FUCOMPP are identical to the operation of the FCOM, FCOMP, and FCOMPP
instructions, respectively. However, the floating-point invalid-operation exception is
set only when one or both operands are an SNaN (defined below) or are in an unsup-
ported format. When one or both operands are a QNaN (defined below), the condition
code flags are set to unordered and do not set the floating-point invalid-operation
exception.

There are two types of NaNs that are used in the architecture. An SNaN is defined
as a signaling NaN, in which the high-order significand bit is reset. A QNaN is
defined as a quiet NaN, in which the high-order significand bit is set. These instruc-
tions execute an unordered comparison of ST(0) with ST(i) or ST(1) and set the con-
dition code flags — C3, C2, C0 — in the X87 floating-point unit status word.

One version, FUCOM, compares ST(0) with ST(i), then sets the condition code
flags in the X87 floating-point unit status word. Refer to Table 11.1 for the meaning of
bits C3, C2, and C0. The syntax is shown below.

FUCOM ST(i) (compare ST(0) with ST(i), set flags)

Another version, FUCOM with no operand, compares ST(0) with ST(1), then sets
the condition code flags in the X87 floating-point unit status word. Refer to Table 11.1
for the meaning of bits C3, C2, and C0. The syntax is shown below.

FUCOM (compare ST(0) with ST(1), set flags)

Another version, FUCOMP, compares the operand in register stack ST(0) with the
operand in register stack ST(i), sets the condition code flags in the X87 floating-point
unit status word, then pops the register stack. Refer to Table 11.1 for the meaning of
bits C3, C2, and C0. The syntax is shown below.

FUCOMP ST(i) (compare ST(0) with ST(i),
set flags, then pop stack)

Another version, FUCOMP with no operand, compares the operand in register
stack ST(0) with the operand in register stack ST(1), sets the condition code flags in
the X87 floating-point unit status word, then pops the register stack. Refer to Table
11.1 for the meaning of bits C3, C2, and C0. The syntax is shown below.

FUCOMP (compare ST(0) with ST(1),
set flags, then pop stack)

Another version, FUCOMPP with no operand, compares the operand in register
stack ST(0) with the operand in register stack ST(1), sets the condition code flags in
the X87 floating-point unit status word, then pops the register stack twice. Refer to
Table 11.1 for the meaning of bits C3, C2, and C0. The syntax is shown below.

FUCOMPP (compare ST(0) with ST(1),
 set flags, then pop stack twice)

11.9 Trigonometric Instructions 503

A pop operation on the register stack is accomplished by setting the stack top tag
register to a value of 112, indicating empty. Then the stack pointer is incremented by
1 — bits 13 through 11 (TOS) of the X87 floating-point status word, reproduced in
Figure 11.30.

15 14 13 12 11 10 9 8
B C3 TOS C2 C1 C0

7 6 5 4 3 2 1 0
ES SF PE UE OE ZE DE IE

Figure 11.30 X87 floating-point status word.

11.9 Trigonometric Instructions
This section describes the floating-point instructions that calculate the cosine FCOS,
partial tangent FPTAN, sine FSIN, sine and cosine FSINCOS, and partial arctangent
FPATAN of source operands that are expressed in radians. These instructions are
explained in the sections that follow.

A radian is defined as an angular measurement that is equal to the angle at the cen-
ter of a circle subtended by an arc that is equal to the radius of the circle. One radian
is approximately equal to 57.296 degrees. Figure 11.31 shows a drawing that illus-
trates one radian. Since one radian ≈ 57.296 degrees, therefore, one degree ≈ 0.01745
radians.

radius = 1 radian ≈ 57.296 degrees

radius

Figure 11.31 Angular measurement of one radian.

11.9.1 Cosine

The cosine, FCOS, instruction calculates the cosine of the source operand — given in
radians — in the stack top register ST(0) and stores the result in ST(0). If the operand
is not within a specified range (–263 to +263), then bit C2 is set in the floating-point
unit status word. This however, does alter the operand in ST(0) and does not generate

504 Chapter 11 Floating-Point Arithmetic Instructions

an exception. The syntax is shown below and has no operands specified, because the
source operand was previously loaded into ST(0).

FCOS (cosine -> ST(0))

11.9.2 Partial Arctangent

The partial arctangent, FPATAN, instruction is the inverse tangent function specified
by tan–1 or arctan. The arctangent can be defined as follows:

(tan–1 x = y) ≡ (tan y = x)

The domain of the arctangent function is normally in the interval –π/2 to +π/2, as
shown in Figure 11.32. The tangent function yields the ratio of the opposite / adjacent
sides of a right triangle; the arctangent yields the angle of the ratio.

+π/2

–π/2

+Y (Y = Ordinate)

–Y

 +X–X

Quadrant 1Quadrant 2

Quadrant 3 Quadrant 4

α

φ

β

θ
π0°180°

(X = Abscissa)

Figure 11.32 Four angles shown in four quadrants.

The FPATAN instruction has no operands specified in the instruction. It calculates
the arctangent of the source operand in ST(1) divided by the second source operand in
ST(0), then pops the register stack, which places the result in ST(0). The abscissa (X)
is in ST(0) and the ordinate Y is in ST(1). The FPATAN instruction yields the angle
between the X axis and the line drawn from the origin — center of the circle — to a
point (X,Y) in a particular quadrant, as shown in Figure 11.32.

11.9 Trigonometric Instructions 505

Since there are four quadrants, the angles in the quadrants have the following X
and Y coordinates: (+X, +Y) in quadrant 1, (–X, +Y) in quadrant 2, (–X, –Y) in quad-
rant 3, (+X, –Y) in quadrant 4. The angle is a function of the sign of both X (the
abscissa) and Y (the ordinate). An X, Y coordinate in quadrant 1 yields a positive
angle; an X, Y coordinate in quadrant 2 yields an angle between π/2 and π; an X, Y
coordinate in quadrant 3 yields an angle between –π/2 and –π, and an X, Y coordinate
in quadrant 4 yields an angle between 0 and –π/2.

Figure 11.33 shows a short assembly language module embedded in a C program
that illustrates the application of the FPATAN instruction. The inputs represent the
opposite (ordinate y) and the adjacent (abscissa x) sides of a right triangle. The first set
of inputs (+1.0, +1.0) represent a 45 degree angle in quadrant 1 whose arctangent is
0.785398 radians. The second set of inputs (+1.0, +1.75) represent a 30 degree angle,
also in quadrant 1, whose arctangent is 0.519146 radians. The third set of inputs (+1.0,
–1.75) represents a 30 degree angle in quadrant 2, whose arctangent is 2.622447 radi-
ans — an angle between π/2 (1.570796) and π (3.141592).

The fourth set of inputs (–1.0, –1.75) represent a 30 degree angle in quadrant 3
whose arctangent is –2.622447 radians — an angle between –π/2 (–1.570796) and –π
(–3.141592). The fifth, and final, set of inputs (–1.0, +1.75) represent a 30 degree
angle in quadrant 4 whose arctangent is –0.519146 radians — an angle between 0 and
–π/2 (–1.570796).

//arctan.cpp
//shows the use of the FPATAN instruction
#include "stdafx.h"
int main (void)
{

float ordinate_y, abscissa_x, arctan_rslt;

printf ("Enter ordinate (y), then abscissa (x): \n");
scanf ("%f %f", &ordinate_y, &abscissa_x);

//switch to assembly
_asm
{

FLD ordinate_y //ordinate -> ST(0)
FLD abscissa_x //abscissa -> ST(0))

//ordinate -> ST(1)
FPATAN //generate angle
FST arctan_rslt //store angle
}

printf ("\nArctangent = %f radians\n\n", arctan_rslt);
return 0;

} (a) //continued on next page

Figure 11.33 Program to illustrate the use of the partial arctangent FPATAN: (a) the
program and (b) the outputs.

Enter ordinate (y), then abscissa (x):
1.0 1.0 //quadrant 1

Arctangent = 0.785398 radians

Press any key to continue . . . _
--
Enter ordinate (y), then abscissa (x):
1.0 1.75 //quadrant 1

Arctangent = 0.519146 radians

Press any key to continue . . . _
--
Enter ordinate (y), then abscissa (x):
1.0 –1.75 //quadrant 2

Arctangent = 2.622447 radians

Press any key to continue . . . _
--
Enter ordinate (y), then abscissa (x):
–1.0 –1.75 //quadrant 3

Arctangent = –2.622447 radians

Press any key to continue . . . _
--
Enter ordinate (y), then abscissa (x):
–1.0 1.75 //quadrant 4

Arctangent = –0.519146 radians

Press any key to continue . . . _
(b)

506 Chapter 11 Floating-Point Arithmetic Instructions

Figure 11.33 (Continued)

11.9.3 Partial Tangent

The partial tangent, FPTAN, instruction calculates the tangent of the source operand
— expressed in radians — in ST(0) of the register stack, stores the result in ST(0), then
pushes a value of +1.0 onto the stack, which maintains compatibility with X87 pro-
cessors. The tangent for the angle θ of a right triangle is defined as follows: tan θ =
opposite / adjacent.

11.9 Trigonometric Instructions 507

11.9.4 Sine

The sine, FSIN, instruction calculates the sign of the source operand — expressed in
radians — in ST(0) of the register stack, and stores the result in ST(0). If the operand
is not within a specified range (–263 to +263), then bit C2 is set in the floating-point
unit status word. This, however, does alter the operand in ST(0) and does not generate
an exception. The syntax is shown below and has no operands specified, because the
source operand was previously loaded into ST(0).

FSIN (sine -> ST(0)

Figure 11.34 shows an assembly language module embedded in a C program that
illustrates the usage of the FSIN and FCOS instructions. The four sets of inputs are
entered as radians.

//radian.cpp
//compute sine and cosine from radians
#include "stdafx.h"
int main (void)

{
float radian, sine_result, cosine_result;

printf ("Enter number of radians: \n");
scanf ("%f", &radian);

//switch to assembly
_asm
{

FLD radian //radians -> ST(0)
FSIN //compute sine
FST sine_result //store sine in result area

FLD radian //radians -> ST(0)
FCOS //compute cosine
FST cosine_result //store cosine in result area

}

printf ("\nSine result = %f\n", sine_result);
printf ("Cosine result = %f\n\n", cosine_result);
return 0;

} (a) //continued on next page

Figure 11.34 Program to illustrate the use of the FSIN and FCOS instructions: (a)
the program and (b) the outputs.

Enter number of radians:
0.523598775 //30 degrees

Sine result = 0.500000
Cosine result = 0.866025

Press any key to continue . . . _
--
Enter number of radians:
4.712388898 //270 degrees

Sine result = –1.000000
Cosine result = 0.000000

Press any key to continue . . . _
--
Enter number of radians:
0.5 //28.648 degrees

Sine result = 0.479426
Cosine result = 0.877583

Press any key to continue . . . _
--
Enter number of radians:
1 //57.296 degrees

Sine result = 0.841471
Cosine result = 0.540302

Press any key to continue . . . _
--
Enter number of radians:
1.2 //68.7552 degrees

Sine result = 0.932039
Cosine result = 0.362358

Press any key to continue . . . _
--
Enter number of radians:
1.5 //85.944 degrees

Sine result = 0.997495
Cosine result = 0.070737

Press any key to continue . . . _(b)

508 Chapter 11 Floating-Point Arithmetic Instructions

Figure 11.34 (Continued)

11.9 Trigonometric Instructions 509

11.9.5 Sine and Cosine

The sine and cosine, FSINCOS, instruction calculates the sine and cosine of the source
operand that was previously stored in ST(0). The FSINCOS instruction stores the sine
of the operand in ST(0) of the register stack, then pushes the cosine onto the stack, so
that ST(0) contains the cosine and ST(1) contains the sine. The source operand is
expressed in radians. If the operand is not within a specified range (–263 to +263), then
bit C2 is set in the floating-point unit status word. This, however, does alter the oper-
and in ST(0) and does not generate an exception.

Figure 11.35 contains an assembly language module embedded in a C program
that uses the trigonometric instructions FSINCOS and FPTAN to obtain the sine,
cosine, and tangent of radians that are entered from the keyboard. The program also
uses a new instruction exchange register contents FXCH, which exchanges the con-
tents of register ST(0) and register ST(i). The load constant FLD1 and the add FADD
instructions are also utilized in the program.

//sine_cos_tan2.cpp
//calculate sine, cosine, and tangent

#include "stdafx.h"
int main (void)
{

float radian, sine_rslt, cos_rslt, rad_rslt,
cos_rslt2, tan_rslt;

printf ("Enter number of radians: \n");
scanf ("%f", &radian);

//switch to assembly
_asm
{

FLD radian //radian -> ST(0)
FSINCOS //compute sine and cosine

//cosine -> ST(0)
//sine -> ST(1)

FST cos_rslt //store cosine in result area
FXCH ST(1) //exchange ST(0) with ST(1)

//sine -> ST(0), cos -> ST(1)
FST sine_rslt //store sine in result area

//continued on next page

(a)

Figure 11.35 Program to illustrate utilization of the trigonometric instructions
FSINCOS and FPTAN: (a) the program and (b) the outputs.

//--
FLD radian //radian -> ST(0)
FLD1 //+1.0 -> ST(0)

//radian -> ST(1)
FADD ST(0), ST(1) //ST(0) + ST(1) -> ST(0)

//radian + 1.0 -> ST(0)
FST rad_rslt //radian + 1 -> result area

//--
FADD ST(0), ST(3) //ST(0) + cos -> ST(0)

//(1 + rad) + cos -> ST(0)
FST cos_rslt2 //1 + rad + cos -> result area

//--
FLD radian //radian -> ST(0)
FPTAN //1.0 -> ST(0)

//tangent -> ST(1)
FXCH ST(1) //exchange ST(0) with ST(1)

//exchange 1.0 and tangent
FST tan_rslt //store tan in result area

}

//print result
printf ("\nSine result = %f\n", sine_rslt);
printf ("Cosine result = %f\n", cos_rslt);
printf ("Radian result = %f\n", rad_rslt);
printf ("Cosine result2 = %f\n", cos_rslt2);
printf ("Tangent result = %f\n\n", tan_rslt);

return 0;
}

Enter number of radians:
1 //57.296 degrees; quadrant 1

Sine result = 0.841471 //sine = opposite / hypotenuse
Cosine result = 0.540302 //cosine = adjacent / hypotenuse
Radian result = 2.000000 //1 + radian
Cosine result2 = 2.540302 //1 + radian + cosine
Tangent result = 1.557408 //tangent = opposite / adjacent

Press any key to continue . . . _
--

//continued on next page
(b)

510 Chapter 11 Floating-Point Arithmetic Instructions

Figure 11.35 (Continued)

Enter number of radians:
2 //114.592 degrees; quadrant 2

Sine result = 0.909297 //sine = opposite / hypotenuse
Cosine result = -0.416147 //cosine = adjacent / hypotenuse
Radian result = 3.000000 //1 + radian
Cosine result2 = 2.583853 //1 + radian + cosine
Tangent result = -2.185040 //tangent = opposite / adjacent

Press any key to continue . . . _
--
Enter number of radians:
1.5 //85.944 degrees; quadrant 1

Sine result = 0.997495 //sine = opposite / hypotenuse
Cosine result = 0.070737 //cosine = adjacent / hypotenuse
Radian result = 2.500000 //1 + radian
Cosine result2 = 2.570737 //1 + radian + cosine
Tangent result = 14.101420 //tangent = opposite / adjacent

Press any key to continue . . . _
--
Enter number of radians:
3 //171.888 degrees; quadrant 2

Sine result = 0.141120 //sine = opposite / hypotenuse
Cosine result = -0.989992 //cosine = adjacent / hypotenuse
Radian result = 4.000000 //1 + radian
Cosine result2 = 3.010008 //1 + radian + cosine
Tangent result = -0.142547 //tangent = opposite / adjacent

Press any key to continue . . . _
--
Enter number of radians:
4 //229.184 degrees; quadrant 3

Sine result = -0.756802 //sine = opposite / hypotenuse
Cosine result = -0.653644 //cosine = adjacent / hypotenuse
Radian result = 5.000000 //1 + radian
Cosine result2 = 4.346356 //1 + radian + cosine
Tangent result = 1.157821 //tangent = opposite / adjacent

Press any key to continue . . . _
--

//continued on next page

11.9 Trigonometric Instructions 511

Figure 11.35 (Continued)

Enter number of radians:
5 //286.480 degrees; quadrant 4

Sine result = -0.958924 //sine = opposite / hypotenuse
Cosine result = 0.283662 //cosine = adjacent / hypotenuse
Radian result = 6.000000 //1 + radian
Cosine result2 = 6.283662 //1 + radian + cosine
Tangent result = -3.380515 //tangent = opposite / adjacent

Press any key to continue . . . _

512 Chapter 11 Floating-Point Arithmetic Instructions

Figure 11.35 (Continued)

The third set of outputs in Figure 11.35(b) has an angle of 85.944 degrees, placing
the angle in quadrant 1, as shown below. Since the angle is close to 90 degrees and the
sine is opposite / hypotenuse, the result will be close to a value of 1. The cosine has an
adjacent side that is relatively small; therefore, since the cosine is adjacent / hypote-
nuse, the value of the cosine is very small. In a similar manner, since the tangent is
opposite / adjacent, the tangent value has a relatively large value.

The fourth set of outputs has an angle of 171.888 degrees, placing the angle in
quadrant 2, as shown below. Since the angle is close to 180 degrees and the sine is
opposite / hypotenuse, the result will be a small value. The cosine has an adjacent side
that is negative and relatively large; therefore, since the cosine is adjacent / hypote-
nuse, the value of the cosine is negative and relatively large. In a similar manner, since
the tangent is opposite / adjacent, the tangent value has a relatively small negative
value.

11.9 Trigonometric Instructions 513

The fifth set of outputs has an angle of 229.184 degrees, placing the angle in quad-
rant 3, as shown below. The sine has a negative opposite side; therefore, since the sine
is opposite / hypotenuse, the result will be a negative value. The cosine has an adjacent
side that is negative; therefore, since the cosine is adjacent / hypotenuse, the value of
the cosine is also negative. Since the tangent is opposite / adjacent, the tangent value
has a positive value.

The sixth set of outputs has an angle of 286.480 degrees, placing the angle in quad-
rant 4, as shown below. The sine has a negative opposite side; therefore, since the sine
is opposite / hypotenuse, the result will be a relatively large negative value. The cosine
has an adjacent side that is positive; therefore, since the cosine is adjacent / hypote-
nuse, the cosine has a relatively small positive value. Since the tangent is opposite /
adjacent, the tangent value has a negative value.

Figure 11.36 shows the register stack contents for different stages of program exe-
cution for Figure 11.35.

 FLD radian FSINCOS

R0 radian ST(0) cosine ST(0) →cos_rslt
R1 ST(1) sine ST(1)
R2 ST(2) ST(2)
R3 ST(3) ST(3)
R4 ST(4) ST(4)
R5 ST(5) ST(5)
R6 ST(6) ST(6)
R7 ST(7) ST(7)

(a) (b) //next page

Figure 11.36 Register stack utilization for the program of Figure 11.35.

 FXCH ST(1) FLD radian

R0 sine ST(0) →sine_rslt radian ST(0)
R1 cosine ST(1) sine ST(1)
R2 ST(2) cosine ST(2)
R3 ST(3) ST(3)
R4 ST(4) ST(4)
R5 ST(5) ST(5)
R6 ST(6) ST(6)
R7 ST(7) ST(7)

(c) (d)

 FLD1 FADD ST(0), ST(1)
R0 1.0 ST(0) 1.0 + radian ST(0) →rad_rslt
R1 radian ST(1) radian ST(1)
R2 sine ST(2) sine ST(2)
R3 cosine ST(3) cosine ST(3)
R4 ST(4) ST(4)
R5 ST(5) ST(5)
R6 ST(6) ST(6)
R7 ST(7) ST(7)

(e) (f)

 FADD ST(0), ST(3) FLD radian

//continued on next page

R0 1+rad+cos ST(0) →cos_rslt2 radian ST(0)
R1 radian ST(1) radian ST(1)
R2 sine ST(2) sine ST(2)
R3 cosine ST(3) cosine ST(3)
R4 ST(4) ST(4)
R5 ST(5) ST(5)
R6 ST(6) ST(6)
R7 ST(7) ST(7)

(g) (h)

514 Chapter 11 Floating-Point Arithmetic Instructions

Figure 11.36 (Continued)

 FPTAN FXCH ST(1)

R0 1.0 ST(0) tangent ST(0) →tan_rslt
R1 tangent ST(1) 1.0 ST(1)
R2 sine ST(2) sine ST(2)
R3 cosine ST(3) cosine ST(3)
R4 ST(4) ST(4)
R5 ST(5) ST(5)
R6 ST(6) ST(6)
R7 ST(7) ST(7)

(i) (j)

11.10 Additional Instructions 515

Figure 11.36 (Continued)

11.10 Additional Instructions
This section describes some additional floating-point instructions that perform basic
arithmetic operations and have only one syntax. Most of the previous instructions in
this chapter had more than one syntax. These additional instructions include the abso-
lute value instruction: FABS; the change sign instruction: FCHS; the partial remain-
der instruction: FPREM1; the round to integer instruction: FRNDINT; and the square
root instruction: FSQRT.

Some additional nonarithmetic instructions are also included. These include the
decrement stack-top pointer instruction: FDECSTP; the free floating-point register
instruction: FFREE; the increment stack-top pointer instruction: FINCSTP; and the
exchange register contents instruction: FXCH. All of the above instructions are
explained in the sections that follow and are listed alphabetically.

11.10.1 Absolute Value

The absolute value, FABS, instruction resets the sign bit of the operand in ST(0) of the
register stack, thereby generating the absolute value of the operand. The absolute
value of a number is a nonnegative number with the same numerical value without
regard to the sign. Therefore, the absolute value of –12 or +12 is 12, and is written as
|12| — this does not change a positive number; however, a negative number is changed
to a positive number.

The absolute value of a number can also be regarded as its unit distance from the
number zero. The numbers –12 and +12 are both twelve units distance from the num-
ber zero. The condition code flags that are affected in the floating-point unit status
word are as follows: C1 (bit 9) is reset; C0 (bit 8), C2 (bit 10), and C3 (bit 14) are

516 Chapter 11 Floating-Point Arithmetic Instructions

undefined. The syntax for the FABS instruction is shown below — there is no operand
specified.

FABS

11.10.2 Change Sign

The change sign, FCHS, instruction complements the sign bit of the operand in ST(0)
of the register stack. The instruction changes a negative value to positive value or pos-
itive value to a negative value — the absolute value of the operand does not change.
The condition code flags that are affected in the floating-point unit status word are as
follows: C1 (bit 9) is reset; C0 (bit 8), C2 (bit 10), and C3 (bit 14) are undefined. The
syntax for the FCHS instruction is shown below — there is no operand specified.

FCHS

11.10.3 Decrement Stack-Top Pointer

The decrement stack-top pointer, FDECSTP, instruction decrements the top-of-stack
(TOS) field — bits 13 through 11 — in the floating-point unit status word. The
instruction subtracts one from the TOS field. For example, if the top-of-stack register
was ST(0), then the FDECSTP rotates the stack by one register causing ST(7) to
become the new the top-of-stack register. The contents of the stack registers and the
associated tag registers are not affected.

The condition code flags that are affected in the floating-point unit status word are
as follows: C1 (bit 9) is reset; C0 (bit 8), C2 (bit 10), and C3 (bit 14) are undefined.
The syntax for the FDECSTP instruction is shown below — there is no operand spec-
ified.

FDECSTP

11.10.4 Free Floating-Point Register

The free floating-point register, FFREE, instruction sets the tag field associated with
stack register ST(i) to indicate empty; that is, the tag field is set to 112. The contents
of stack register ST(i) and the stack-top pointer, however, are not affected. The con-
dition code flags in the floating-point unit status word are undefined. The syntax for
the FFREE instruction is shown below, where ST(i) indicates a register in the register
stack.

FFREE ST(i)

11.10 Additional Instructions 517

11.10.5 Increment Stack-Top Pointer

The increment stack-top pointer, FINCSTP, instruction increments the top-of-stack
(TOS) field — bits 13 through 11 — in the floating-point unit status word. The
instruction adds one to the TOS field. For example, if the top-of-stack register was
ST(7), then the FINCSTP rotates the stack by one register causing ST(0) to become the
new top-of-stack register. The contents of the stack registers and the associated tag
registers are not affected; therefore, this instruction is not analogous to a pop opera-
tion.

The condition code flags that are affected in the floating-point unit status word are
as follows: C1 (bit 9) is reset; C0 (bit 8), C2 (bit 10), and C3 (bit 14) are undefined.
The syntax for the FINCSTP instruction is shown below — there is no operand spec-
ified.

FINCSTP

11.10.6 Partial Remainder

The partial remainder, FPREM1, instruction calculates the remainder that is obtained
from dividing the dividend in register ST(0) by the divisor in register ST(1) and stores
the result in register ST(0). The remainder is as specified in the Institute of Electrical
and Electronics Engineers (IEEE) floating-point Standard 754. The remainder is also
referred to as the modulus. The result that is obtained from the division process is
rounded to the nearest integer.

The partial remainder is obtained by a process of repeated subtraction of no more
than 63 iterations of one instruction execution. If the operation yields a result that is
less than half the modulus, then the condition code flag C2 in the floating-point unit
status word is reset, otherwise C2 is set. If necessary, the software can reexecute the
FPREM1 instruction until the condition code flag C2 contains a value of zero. In this
case, the result previously obtained and stored in ST(0) is used as the dividend. It
should be noted, however, that a higher-priority interrupt can override the second iter-
ation process. The syntax for the FPREM1 instruction is shown below — there is no
operand specified.

FPREM1

11.10.7 Round to Integer

The round to integer, FRNDINT, instruction rounds the operand in ST(0) of the reg-
ister stack to the nearest integer. The operand is rounded to an integer using the round-
ing method specified by bits 11 and 10 of the rounding control (RC) field in the
floating-point control word register, reproduced in Figure 11.37. The RC field is
defined as shown in Table 11.3. The rounded operand is stored in ST(0) of the register
stack. A floating-point exception, indicating an indeterminate result, is produced if
the source operand is not an integer. The condition code flags that are affected in the

518 Chapter 11 Floating-Point Arithmetic Instructions

floating-point unit status word are as follows: C1 (bit 9) is reset if a stack underflow
has occurred — C1 is set if the operand was rounded up; otherwise, C1 is reset; C0 (bit
8), C2 (bit 10), and C3 (bit 14) are undefined. The syntax for the FINCSTP instruction
is shown below — there is no operand specified.

FRNDINT

15 14 13 12 11 10 9 8
IC RC PC

7 6 5 4 3 2 1 0
PM UM OM ZM DM IM

Figure 11.37 Floating-point unit control word register.

Table 11.3 Rounding Control Field

Rounding Method 11 10
Round to nearest (default mode) 0 0
Round down toward minus infinity 0 1
Round up toward positive infinity 1 0
Round toward zero (truncate) 1 1

11.10.8 Square Root

The square root, FSQRT, instruction calculates the square root of the source operand
in ST(0) of the register stack and stores the solution in ST(0). The square root of a
number a is written using the symbol a , which specifies the square root of a. The
square root symbol is also referred to as a radical sign. The square root of a can also
be written as a0.5, where a ≥ 0.

There are two rules when using the square root operation. The product rule states
that the square root of the product of two operands is equal to the product of the square
roots of the operands, as shown below. The quotient rule states that the square root of
the division of two operands is equal to the division of the square roots of the operands,
also shown below.

a b× a b×=

a b⁄ a() b()⁄=

11.10 Additional Instructions 519

Examples of the product rule and the quotient rule are shown below.

144 16× 144 16× 12 4× 48= = =

144() 16()⁄ 144() 16()⁄ 12 4÷ 3= = =

The condition code flags that are affected in the floating-point unit status word are
as follows: C1 (bit 9) is reset if a stack underflow has occurred — C1 is set if the result
was rounded up; otherwise, C1 is reset; C0 (bit 8), C2 (bit 10), and C3 (bit 14) are
undefined. The syntax for the FSQRT instruction is shown below — there is no oper-
and specified.

FSQRT

11.10.9 Exchange Register Contents

The exchange register contents, FXCH, instruction was introduced in Section 11.9.5.
The instruction exchanges the contents of register ST(0) and the source register ST(i)
if a source operand is specified. If there is no source operand stipulated, then the
FXCH instruction exchanges the contents of ST(0) and ST(1).

Some floating-point instructions operate only on the ST(0) register. The FXCH
instruction provides a convenient method of exchanging the contents of the top-of-
stack register ST(0) with another register in the stack.

The condition code flags that are affected in the floating-point unit status word are
as follows: C1 (bit 9) is reset if a stack underflow has occurred; otherwise, C1 is set;
C0 (bit 8), C2 (bit 10), and C3 (bit 14) are undefined. The syntax for the two versions
of the FXCH instruction are shown below.

FXCH ST(i) (exchange the contents of ST(0) and ST(i))

FXCH (exchange the contents of ST(0) and ST(1))

Figure 11.38 illustrates an assembly language module embedded in a C program
that demonstrates the use of some of the additional instructions described in this sec-
tion. The program uses the change sign FCHS instruction, the round to integer
FRNDINT instruction, and the square root FSQRT instruction. A positive or negative
floating-point number is entered from the keyboard and used with all three instruc-
tions.

The first number entered is +30. The sign is changed, the number is rounded to
30.000000 using the default mode of round to nearest, and a square root of 5.477226
is generated. The second number entered is +625.789, which is rounded up to
626.000000 and yields a square root of 25.015776. The third number entered is

520 Chapter 11 Floating-Point Arithmetic Instructions

+75.498, which is rounded down to 75.000000 and yields a square root of 8.688958.
The fourth number entered is –25.473, which is rounded down to –25.000000. The
square root of –25.473 is not a real number, since there is no real number with a square
of –25.473. Therefore, the FSQRT instruction specifies a floating-point invalid-arith-
metic-operand exception, which is indicated in the outputs as –1.#IND00 in this ver-
sion of the Visual C++ software.

//additional_instr.cpp
//uses the FCHS, FRNDINT, and FSQRT instructions

#include "stdafx.h"

int main (void)
{

float flp1, fchs_rslt, round_rslt, sq_root_rslt;

printf ("Enter a floating-point number: \n");
scanf ("%f", &flp1);

//switch to assembly
_asm
{

FLD flp1 //flp1 -> ST(0)
FCHS //change sign of flp1
FST fchs_rslt //ST(0) -> fchs_rslt

//--
FLD flp1 //flp1 -> ST(0)
FRNDINT //integer -> ST(0)
FST round_rslt //ST(0) -> round_rslt

//--
FLD flp1 //flp1 -> ST(0)
FSQRT //square root -> ST(0)
FST sq_root_rslt //ST(0) -> sq_root_rslt

}

//print result
printf ("\nChange sign result = %f\n", fchs_rslt);
printf ("Rounded result = %f\n", round_rslt);
printf ("Square root result = %f\n\n", sq_root_rslt);
return 0;

} //continued on next page
(a)

Figure 11.38 Program to illustrate using the instructions FCHS, FRNDINT, and
FSQRT: (a) the program and (b) the outputs.

Enter a floating-point number:
30.0

Change sign result = –30.000000
Rounded result = 30.000000
Square root result = 5.477226

Press any key to continue . . . _
--
Enter a floating-point number:
625.789

Change sign result = –625.789001
Rounded result = 626.000000
Square root result = 25.015776

Press any key to continue . . . _
--
Enter a floating-point number:
75.498

Change sign result = –75.498001
Rounded result = 75.000000
Square root result = 8.688958

Press any key to continue . . . _
--
Enter a floating-point number:
–25.473

Change sign result = 25.473000
Rounded result = –25.000000
Square root result = –1.#IND00 //invalid operand exception

Press any key to continue . . . _

(b)

11.10 Additional Instructions 521

Figure 11.38 (Continued)

522 Chapter 11 Floating-Point Arithmetic Instructions

11.11 Problems
11.1 Convert +19.510 into a 32-bit single-precision floating-point number with a

biased exponent and an implied 1.

11.2 Convert +38.12510 into a 32-bit single-precision floating-point number with a
biased exponent and an implied 1.

11.3 Obtain the unbiased exponent for the floating-point number shown below in
which the exponent is biased.

s exponent fraction
0 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 … 0 0 0 0

11.4 The floating-point number shown below has an unbiased exponent and an un-
normalized fraction. Show the same floating-point number with a biased ex-
ponent and a normalized fraction in the single-precision floating-point format.

s exponent fraction
1 1 0 1 1 0 0 1 1 0 0 0 1 1 1 0 1 0 … 0 0 0

11.5 For a 23-bit fraction with an 8-bit exponent and a sign bit, determine the most
negative number with the most negative unbiased exponent.

11.6 Indicate whether the following statements are true or false:

(a) Adder-based rounding requires no more time than truncation.
(b) von Neumann rounding as also referred to as chopping.

11.7 Convert the decimal number 0.08007812510 into the 64-bit double-precision
floating-point number.

11.8 Round the following floating-point number to eight bits using the rounding
methods shown below:

.0001 0111 1100

(a) Chopping
(b) Adder-based
(c) von Neumann

11.11 Problems 523

11.9 Convert the single-precision floating-point number shown below to an equiv-
alent decimal number. The exponent is biased.

s exponent significand
1 1 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 … 0 0 0

Implied 1

11.10 Write an assembly language module embedded in a C program that uses the
add (FADDP) instruction and the add (FIADD) instruction. For the FADDP
instruction, use the FADDP ST(i), ST(0) version. Enter three floating-point
numbers and one integer number from the keyboard. Display the results of the
program and show the register stack for each sequence of the program.

11.11 Perform an addition operation for the following floating-point numbers:

1 . 1 0 1 0 0 0 0 0 × 24

+) 1 . 1 0 0 0 1 1 0 0 × 26

11.12 Perform an addition operation for the following floating-point numbers:

0 . 0 0 1 0 1 1 0 0 × 27

+) 0 . 0 0 1 1 1 0 0 0 × 24

11.13 Perform an addition operation for the following floating-point numbers:

0 . 1 0 0 1 0 0 0 0 × 26

+) 0 . 1 1 1 1 0 0 0 0 × 22

11.14 Add the two floating-point numbers shown below.

31 exponent 24 fraction 0
0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 0 … 0 0 0
0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 … 0 0 0

524 Chapter 11 Floating-Point Arithmetic Instructions

11.15 Add the two floating-point numbers shown below.

A = 0 . 1 0 0 1 1 0 0 0 × 26

+) B = 1 . 1 0 1 0 0 0 0 0 × 25

11.16 Convert the most negative 8-bit unbiased exponent to a biased exponent.

11.17 Write an assembly language module embedded in a C program that uses the
sub (FSUBP) instruction and the sub (FISUB) instruction. For the FSUBP in-
struction, use the FSUBP ST(i), ST(0) version. Enter three floating-point
numbers and one integer number from the keyboard. Enter the three separate
sequences shown below. Display the results of the program and show the reg-
ister stack for the third sequence of the program.

+1.2 +2.3 +3.4 +5
+32.456 +45.789 +16.123 +10
–237.658 +128.125 –279.463 –75

11.18 Perform the following operation on the two operands: (+127) – (–77).

11.19 Perform the following operation on the two operands: (–13) – (+54).

11.20 Perform the following operation on the two operands: (–47.25) – (–18.75).

11.21 Perform the following operation on the two operands: (+36.50) – (+5.75).

11.22 Write an assembly language module embedded in a C program that uses the
mul (FMULP) instruction and the mul (FIMUL) instruction. For the FMULP
instruction, use the FMULP ST(i), ST(0) version. Enter three floating-point
numbers and one integer number from the keyboard. Enter the three separate
sequences shown below. Display the results of the program and show the reg-
ister stack for the third sequence of the program.

+1.200 +2.300 +3.400 +5
+32.400 +45.700 +16.100 +10
–23.600 +28.500 –27.400 –12

11.23 Write an assembly language module embedded in a C program to obtain the
sum of cubes of n positive floating-point numbers. The sum of cubes can be
represented by the following expression:

13 + 23 + 33 + 43 + . . . + n3

11.11 Problems 525

11.24 Comment on the biasing problem when the exponents are operated on during
floating-point multiplication.

11.25 Write a C program to calculate the area of a flat surface using floating-point
numbers. Enter three sets of floating-point numbers for the width and length.

11.26 Write an assembly language module embedded in a C program that calculates
the area of a circle from a radius that is entered from the keyboard. Enter both
integer radii and noninteger radii. Display the resulting areas.

11.27 How is quotient overflow determined in floating-point division? How is over-
flow resolved? After overflow is resolved, what is the numerical range of the
dividend and divisor?

11.28 A resistor is one of four passive circuit elements: resistor, capacitor, induc-
tor, and the recently discovered memristor. The equivalent resistance Req —
specified in ohms — of resistors connected in series is the sum of the resistor
values. However, the equivalent resistance of resistors connected in parallel
is shown in the equation below.

1 1 1 1 1
Req R1 R2 R3 Rn

. . .+ + += +

The value of Req is smaller than the resistance of the smallest resistor in the
parallel circuit. The circuit shown below contains three parallel resistors.

R1 R2 R3 Requivalent

Write an assembly language module embedded in a C program that calcu-
lates the equivalent resistance of a three-resistor parallel network. Enter four
sets of values for the resistors and display the equivalent resistance.

526 Chapter 11 Floating-Point Arithmetic Instructions

11.29 Using an assembly language module embedded in a C program, find the
equivalent resistance of the circuit shown below for three sets of resistance
values.

RequivalentR1 R3

R2

11.30 Write an assembly language module embedded in a C program to find the av-
erage of five floating-point numbers that are entered from the keyboard. Enter
two sets of numbers. Display the sum and the average.

11.31 Given the program shown below, obtain the result of the program execution.

//fdivp_ex.cpp
//calculate result of program

#include "stdafx.h"
int main (void)
{

float rslt;

//switch to assembly
_asm
{

FLD1
FADD ST(0), ST(0)
FLDPI
FMUL ST(0), ST(0)
FDIVP ST(1), ST(0)
FST rslt

}

//print result
printf ("\nResult = %f\n\n", rslt);

return 0;
}

11.11 Problems 527

11.32 Write an assembly language module embedded in a C program that calculates
the sine, cosine, and tangent of a radian value that is entered from the key-
board. Enter radian values that correspond to the following degrees: 28.648°,
45°, 85.944°, 180°, 225°, 315°.

11.33 Write an assembly language module embedded in a C program that calculates
the result of the expression shown below for different values of the floating-
point variables flp1 and flp2.

flp1 flp2×2π

1

This page intentionally left blankThis page intentionally left blank

529

12
Procedures

A procedure is a set of instructions that perform a specific task. They are invoked from
another procedure — the calling procedure (or program) — and provide results to the
calling program at the end of execution. Procedures (also called subroutines) are uti-
lized primarily for routines that are called frequently by other procedures. The proce-
dure routine is written only once, but used repeatedly; thereby, saving storage space.
Procedures permit a program to be coded in modules; thus, making the program easier
to code and test.

A program can contain many procedures. Each procedure is delimited by the
PROC and ENDP directives and contains identical names for each directive, as shown
below. Each procedure must have a unique name.

Calc PROC NEAR/FAR
.
.
.

Calc ENDP

Comments are normally placed at the beginning of a procedure to indicate the pur-
pose of the procedure. A procedure is invoked from a program by means of the CALL
instruction, which can occur anywhere in the calling program, and terminated by the
RET instruction, which returns control to the calling program. Control is returned to
the instruction that immediately follows the CALL instruction in the invoking pro-
gram. A calling procedure can pass parameters or the addresses of the parameters on
the stack to be used by the invoked procedure or pass parameters by placing them in
general-purpose registers that can be accessed by the invoked procedure.

12.1 Call a Procedure
12.2 Return from a Procedure
12.3 Passing Parameters to a

Procedure
12.4 Problems

530 Chapter 12 Procedures

12.1 Call a Procedure
The CALL instruction is used to call a procedure, either in the current code segment
(near call — also referred to as an intrasegment call) or in a different code segment (far
call — also referred to as an intersegment call). The syntax for a CALL instruction is
shown below.

CALL procedure_name_label

A near call pushes the value of the updated (E)IP register onto the stack; thus, it
points to the instruction that immediately follows the CALL instruction — this
instruction is executed upon returning from the called procedure to the calling pro-
gram. Then a branch occurs to the destination (target) address. The destination
address for a near call can be either an absolute offset or a relative offset.

An absolute offset points to an address that is an offset from the base of the current
code segment. An absolute offset is obtained indirectly through a general-purpose
register or from a memory location, as shown below using the EBX register for an
indirect call. The contents of the EBX register contains an offset in memory.

CALL [EBX]

The absolute offset is stored in the (E)IP register; if the operand-size attribute is 16,
then the high-order half of the EIP register is reset. A relative offset is a signed dis-
placement that is added to the (E)IP register and is usually specified as a label that is
encoded as an immediate value. The CS register is not changed for near calls, because
the target address is in the current code segment.

A far call pushes the CS register onto the stack and the updated value of the (E)IP
register onto the stack. Then the far call loads the CS register with the segment selec-
tor of the invoked procedure and loads the offset of the invoked procedure into the
(E)IP register. The target address for the called procedure is a far address obtained
directly from a pointer in the instruction or indirectly through a memory location.

With the direct method, the target address of the invoked procedure — containing
the segment and offset — is encoded in the instruction using either a 4-byte or a 6-byte
immediate value. For a 4-byte immediate value, the low-order two bytes are loaded
into the IP register and the high-order two bytes are loaded into the CS register. For a
6-byte immediate value, the low-order four bytes are loaded into the EIP register and
the high-order two bytes are loaded into the CS register. A branch is then executed to
the subroutine.

With the indirect method, the target address is located in memory and contains
either a 4-byte or a 6-byte address. For a 4-byte value, the low-order two bytes are
loaded into the IP register and the high-order two bytes are loaded into the CS register.
For a 6-byte value, the low-order four bytes are loaded into the EIP register and the
high-order two bytes are loaded into the CS register. A branch is then executed to the
subroutine.

12.2 Return from a Procedure 531

12.2 Return from a Procedure
The RET instruction transfers control from an invoked procedure to the instruction
immediately following the CALL instruction in the calling procedure. When execut-
ing an intrasegment near return, the processor pops the value at the stack top to the
(E)IP register, adds an optional immediate value to the stack pointer, then continues
execution of the invoking procedure.

When executing an intersegment far return, the processor pops the value at the
stack top to the (E)IP register, then pops the value at the new stack top to the CS reg-
ister and adds an optional immediate value to the stack pointer, then continues execu-
tion of the invoking procedure. The immediate optional value is used to remove
parameters from the stack that were placed on the stack by the invoking procedure.
The syntax for a RET instruction is shown below.

RET optional_immediate_value

12.3 Passing Parameters to a Procedure
Parameters (arguments) can be passed to a subroutine (procedure) by means of the
stack, general-purpose registers, or by placing the addresses of the parameters in gen-
eral-purpose registers. Since the contents of the GPRs are not saved prior to executing
a CALL instruction, all six GPRs — EAX, EBX, ECX, EDX, ESI, and EDI — can be
used to pass parameters to the invoked procedure. Registers ESP and EBP, however,
cannot be used to pass parameters. The calling program can save the GPRs on the
stack, in memory, or in a data segment before calling the procedure.

Passing parameters using the stack The code segment in Figure 12.1 illus-
trates using the stack to pass parameters to the called procedure. The calling program
passes the augend and addend to a procedure by pushing them onto the stack. The
invoked procedure then performs the addition operation and returns the sum to the
calling program in the EAX register.

PUSH AUGEND
PUSH ADDEND
CALL ADD_PROC

.

.

.

ADD_PROC PROC NEAR
PUSH EBP
MOV EBP, ESP
MOV EAX, [EBP + 12]
ADD EAX, [EBP + 8]
POP EBP
RET 8

ADD_PROC ENDP
(a) //continued on next page

Figure 12.1 Program segment to illustrate passing parameters to an invoked pro-
cedure using the stack; the procedure adds two operands and returns the sum: (a) the
program segment and (b) the stack.

Stack

Low

High

Initial ESP

Augend

Addend
EIP

EBPEBP = ESP

Low High

(b)

532 Chapter 12 Procedures

Figure 12.1 (Continued)

The calling program pushes the augend and the addend onto the stack, then calls
the ADD_PROC procedure. The procedure is a near procedure; therefore, only the
EIP register is placed on the stack. The invoked procedure pushes the EBP register
onto the stack — the EBP register will be used to access the augend and the addend.
Then the value of the ESP register — which points to the location of EBP on the stack
— is moved to EBP. The EBP register can now be used to access data on the stack.

The augend is then moved to register EAX by the instruction shown below. The
augend is located 12 bytes above the address of EBP (ESP); therefore, a value of 12 is
added to the contents of the EBP register.

MOV EAX, [EBP + 12]

An ADD instruction then adds the contents of register EAX (augend) to the con-
tents of the stack at location EBP + 8 (addend) and places the sum in register EAX.
Then the initial contents of register EBP are popped off the stack and stored in EBP. A
near return instruction is then executed, which pops EIP off the stack; register ESP
now points to the addend. In order to restore the contents of the ESP register to its ini-
tial value, an immediate value of eight is added to the ESP register upon returning to
the calling procedure. The invoked procedure is delimited by the PROC and ENDP
directives, both of which contain the name of the invoked procedure.

Passing parameters using general-purpose registers All six general-pur-
pose registers — EAX, EBX, ECX, EDX, ESI, and EDI — can be used to transfer
parameters to an invoked procedure. The operands are moved to the applicable

12.3 Passing Parameters to a Procedure 533

registers prior to calling the procedure; the procedure can then access the registers
directly to perform the specified operation. Since the stack is not used to store the
operands before calling the procedure, there is no immediate value added to a near
return. Figure 12.2 shows a program segment to add two operands using a near pro-
cedure. Although this program segment is relatively simple, it illustrates how general-
purpose registers can be used to pass parameters to an invoked procedure.

MOV EAX, AUGEND
MOV EBX, ADDEND
CALL ADD_PROC

.

.

.

ADD_PROC PROC NEAR
ADD EAX, EBX
RET

ADD_PROC ENDP

Figure 12.2 A near procedure to add two operands by passing the operands to the
procedure using general-purpose registers.

Passing parameters by indirect addressing In this method, the effective
addresses of the parameters are loaded into general-purpose registers prior to calling
the procedure. The procedure then uses the indirect addressing mode to access the
parameters. Figure 12.3 uses this technique to add two operands.

LEA ECX, AUGEND
LEA EDX, ADDEND
CALL ADD_PROC

.

.

.

ADD_PROC NEAR
MOV EAX, [ECX]
ADD EAX, [EDX]
RET

ADD_PROC ENDP

Figure 12.3 A near procedure to add two operands by passing the addresses of the
operands to the procedure using general-purpose registers.

534 Chapter 12 Procedures

Example 12.1 This example provides a sequence of calls and returns to and from
near and far procedures. There will be a total of four calls and four returns, as shown
below. There is a main program, a far procedure called PROC_A, a near procedure
called PROC_B, and a near procedure called PROC_C.

1. The first operation is a call from the main program to far PROC_A.

2. The second operation is a call from PROC_A to near PROC_B.

3. The third operation is a call from PROC_B to near PROC_C.

4. The fourth operation is a return from PROC_C to PROC_B.

5. The fifth operation is a return from PROC_B to PROC_A.

6. The sixth operation is a call from PROC_A to near PROC_C.

7. The seventh operation is a return from PROC_C to PROC_A.

8. The eighth operation is a return from PROC_A to the main program.

The above eight sequence of operations is shown pictorially in Figure 12.4.

.

.

.
CALL A

MAIN FAR PROC_A NEAR PROC_B NEAR PROC_C

.

.

.
CALL B

.

.

.
CALL C

.

.

.
RET

.

.

.
CALL C

.

.

.
RET

.

.

.
RET

1 2
3

4

5

6

7

8

Figure 12.4 Sequence of calls and returns to and from near and far procedures.

The eight sequences for the various operations together with applicable addresses
for the CS register and the EIP register are shown below. Figure 12.5 shows the
sequence of operations and the contents of the stack for each operation.

12.3 Passing Parameters to a Procedure 535

1. MAIN program calls far procedure PROC_A.
MAIN program return address from PROC_A call: CS = 0700, EIP = 2500.

2. PROC_A calls near PROC_B.
PROC_A return address from PROC_B call: EIP = 4000.

3. PROC_B calls near PROC_C.
PROC_B return address from PROC_C call: EIP = 5500.

4. Return to PROC_B.

5. Return to PROC_A.

6. PROC_A calls near PROC_C.
PROC_A return address from PROC_C call: EIP = 6250.

7. Return to PROC_A.

8. Return to main program.

 ESP TOS

1. After call to far PROC_A from MAIN:

 ESP TOS
0700 Push CS

2500 Push EIP

Before call to PROC_A:

2. After call to near PROC_B from PROC_A:

 ESP TOS
2500
4000 Push EIP (PROC_A return addr from PROC_B)

0700

3. After call to near PROC_C from PROC_B:

 ESP TOS
4000
5500 Push EIP (PROC_B return addr from PROC_C)

2500
0700 //Continued on next page

Figure 12.5 Sequence of operations and the contents of the stack for each opera-
tion.

4. After return to PROC_B from PROC_C:

 ESP TOS 4000
2500
0700

5. After return to PROC_A from PROC_B:

 ESP TOS

5500

2500
0700

5500 Pop return to PROC_B EIP

4000 Pop return to PROC_A EIP

6. After call to near PROC_C from PROC_A:

 ESP TOS
5500

2500
0700

6250 Push EIP (PROC_A return addr from PROC_C)

7. After return to PROC_A from PROC_C:

 ESP TOS

5500

2500
0700

6250 Pop return to PROC_A EIP

8. After return to MAIN from PROC_A:

 ESP TOS

5500

2500
0700

6250
Pop EIP

Pop CS
Return to MAIN program

536 Chapter 12 Procedures

Figure 12.5 (Continued)

12.3 Passing Parameters to a Procedure 537

The parameter list is reproduced in Figure 12.6 for convenience. The name
PARLST (parameter list) in the data segment of a program is the name of a one-dimen-
sional array that is labelled as a byte array and accepts input data from the keyboard.

The first array element (MAXLEN) specifies the maximum number of characters
that can be entered; the second array element (ACTLEN) indicates the actual number
of characters that were entered from the keyboard; the third element of the array
(OPFLD) contains the beginning of the operand field where the operands from the
keyboard are stored — the last byte in the operand field is the Enter (carriage return)
character (↵).

. . .PARLST
MAXLEN ACTLEN OPFLD OPFLD+1

Figure 12.6 Parameter list one-dimensional array in which the keyboard input
data are stored.

Figure 12.7 shows an assembly language program — not embedded in a C pro-
gram — that illustrates the application of a procedure to add two single-digit numbers
that are entered from the keyboard. The procedure utilizes the ASCII adjust for addi-
tion (AAA) instruction. The two numbers are prepared for the AAA instruction, then
pushed onto the stack to be added by the CALC procedure.

 Recall that the AAA instruction adjusts the result of an addition operation of two
ASCII operands. ASCII numerical digits have a high-order four bits of 3H when
entered from the keyboard. The AAA instruction produces an unpacked BCD number
which contains zeroes in the high-order four bits of the byte; the numerical value of the
number is contained in the low-order four bits of the byte. General-purpose register
AL is the implied source and destination for the AAA instruction.

The sum obtained from adding the two ASCII numbers may not be a valid BCD
value. If the low-order four bits of the sum in register AL are greater than nine or if the
AF flag is set, then six is added to AL and register AH is incremented by 1. The AAA
instruction converts the sum in register AL into a valid BCD number and stores the
result in bits 3 through 0 of register AL and resets bits 7 through 4 of register AL.

Shown below is an example in which the low-order four bits of the result are not
a valid BCD number; that is, a digit (C) that is greater than nine. When used in a pro-
gram, the AAA instruction is preceded by an ADD instruction or an ADC instruction.

AX = 0 0 3 8 ASCII 8
+) BX = 0 0 3 4 ASCII 4

AX = 0 0 6 C Low half of AL > 9
AAA 1 6

0 1 0 2 After AAA

;add_proc2.asm

;---
.STACK

;---
.DATA
PARLST LABEL BYTE
MAXLEN DB 5
ACTLEN DB ?
OPFLD DB 5 DUP(?)
PRMPT DB 0DH, 0AH, 'Enter two single-digit integers: $'
RSLT DB 0DH, 0AH, 'Sum = $'

;---
.CODE
BEGIN PROC FAR

;set up pgm ds

MOV AX, @DATA ;get addr of data seg
MOV DS, AX

;read prompt

MOV AH, 09H ;display string
LEA DX, PRMPT
INT 21H ;dos interrupt

;kybd rtn to enter chars

MOV AH, 0AH ;buffered kybd input
LEA DX, PARLST
INT 21H

;get the two integers

MOV AL, OPFLD ;get 1st digit from opfld
MOV AH, 00H ;clear ah
PUSH AX

MOV BL, OPFLD+1 ;get 2nd digit from opfld
MOV BH, 00H ;clear bh
PUSH BX

CALL CALC ;push ip. call calc rtn

//continued on next page
(a)

538 Chapter 12 Procedures

Figure 12.7 Program to illustrate the application of a procedure: (a) the program
and (b) the outputs.

;return to here after calc procedure
;move the sum to result

MOV RSLT+8, AH
MOV RSLT+9, AL

;display the resulting sum

MOV AH, 09H ;display string
LEA DX, RSLT
INT 21H

BEGIN ENDP

;---
CALC PROC NEAR

PUSH BP ;bp will be used
MOV BP, SP ;bp points to tos
MOV AX, [BP+4] ;get opnd a (addend)
ADD AX, [BP+6] ;add opnd b. sum to ax
AAA ;ascii adjust for addition
OR AX, 3030H ;convert to ascii
POP BP ;restore bp
RET 4 ;pop ip. add 4 to sp so that

;sp points to initial location
CALC ENDP

;---
END BEGIN

Enter two single-digit integers: 23
Sum = 05
--
Enter two single-digit integers: 54
Sum = 09
--
Enter two single-digit integers: 56
Sum = 11
--
Enter two single-digit integers: 78
Sum = 15
--
Enter two single-digit integers: 99
Sum = 18

(b)

12.3 Passing Parameters to a Procedure 539

Figure 12.7 (Continued

540 Chapter 12 Procedures

The register stack for the program of Figure 12.7 is shown in Figure 12.8. The
calling program first pushes the operand in AX onto the stack and then pushes the
operand in BX onto the stack. The CALL to the near CALC procedure pushes IP onto
the stack. The procedure then pushes the base pointer, BP, onto the stack to be used as
an offset in the stack segment. In order to accomplish this, BP is made equal to the
stack pointer, SP, so that BP points to the top of stack.

BP = SP BP

IP

BX

AX

addend

augend

SP

Figure 12.8 Stack usage for the program of Figure 12.7.

12.4 Problems

12.1 Write an assembly language program — not embedded in a C program —
that uses a procedure to multiply two single-digit operands. Enter several op-
erands for the multiplicand and multiplier and display the products.

12.2 Write an assembly language program — not embedded in a C program — that
uses a procedure to obtain the area of a triangle from two integers that are en-
tered from the keyboard. Enter several sets of single-digit numbers for the
base and height and display the areas.

12.3 Calculate the area of a triangle using an assembly language module embedded
in a C program. Floating-point numbers for the base and height are entered
from the keyboard. In this problem, a procedure is not necessary. Unlike
Problem 12.2, odd-valued bases will not be truncated. Enter several floating-
point numbers for the base and height and display the areas.

12.4 Write an assembly language program — not embedded in a C program — that
uses a procedure to exclusive-OR six hexadecimal characters that are entered
from the keyboard. The following characters are exclusive-ORed: the first
and third; the second and fourth; the third and fifth; and the fourth and sixth.
The keyboard data can be any hexadecimal characters; for example, 2T/}b*.

12.4 Problems 541

12.5 Write an assembly language program — not embedded in a C program — that
uses a procedure to convert an 8-bit binary code number to the corresponding
Gray code number. The binary number is entered from the keyboard.

This page intentionally left blankThis page intentionally left blank

543

13
String Instructions

A string is a sequence of bytes, words, or doublewords that are stored in contiguous
locations in memory as a one-dimensional array. Strings can be processed from low
addresses to high addresses or from high addresses to low addresses, depending on the
state of the direction flag (DF). If the direction flag is set (DF = 1), then the direction
of processing is from high addresses to low addresses — also referred to as auto-dec-
rement. If the direction flag is reset (DF = 0), then the direction of processing is from
low addresses to high addresses — also referred to as auto-increment. The state of the
direction flag can be set by the set direction flag (STD) instruction and can reset by the
clear direction flag (CLD) instruction. The direction flag is located in bit 10 of the 32-
bit EFLAGS register, which is reproduced below in Figure 13.1.

31 30 29 28 27 26 25 24
0 0 0 0 0 0 0 0

23 22 21 20 19 18 17 16
0 0 ID VIP VIF AC VM RF

15 14 13 12 11 10 9 8
0 NT IOPL OF DF IF TF // continued on next page

Figure 13.1 EFLAGS register.

13.1 Repeat Prefixes
13.2 Move String Instructions
13.3 Load String Instructions
13.4 Store String Instructions
13.5 Compare Strings Instructions
13.6 Scan String Instructions
13.7 Problems

7 6 5 4 3 2 1 0
SF ZF 0 AF 0 PF 1 CF

544 Chapter 13 String Instructions

Figure 13.1 (Continued)

There are several instructions that operate specifically on strings. These include
the compare string operands instructions: CMPS, CMPSB, CMPSW, CMPSD, and
CMPSQ; the load string instructions: LODS, LODSB, LODSW, LODSD, and
LODSQ; the move data from string to string instructions: MOVS, MOVSB, MOVSW,
MOVSD, and MOVSQ; the scan string instructions: SCAS, SCASB, SCASW, and
SCASD; and the store string instructions: STOS, STOSB, STOSW, STOSD, and
STOSQ. All of the above instructions will be described in later sections.

There are additional instructions, flags, and registers that are associated with the
string instructions. These include the repeat string operation prefix instructions: REP,
REPE, REPZ, REPNE, and REPNZ; the clear direction flag (CLD) instruction and the
set direction flag (STD) instruction, both of which were previously described; the gen-
eral-purpose registers (E)SI and (E)DI, which are the source pointer and the destina-
tion pointers for string operations, respectively; the (E)CX register, which is the
counter for certain string operations; and the general-purpose registers AL, AX, and
EAX.

13.1 Repeat Prefixes
The repeat prefixes are placed before the string instruction and specify the condition
for which the instruction is to be executed. The general-purpose registers (E)SI and
(E)DI are automatically incremented or decremented after each execution of the string
instruction to point to the next byte, word, or doubleword in the string.

The direction flag (DF) determines whether the registers are incremented (DF = 0)
or decremented (DF = 1). As mentioned previously, the state of the direction flag is
determined by the set direction flag (STD) instruction and the clear direction flag
(CLD) instruction. When the string operation is completed, the (E)SI and (E)DI reg-
isters point to the first data element after or before the string. The repeat prefix causes
successive iterations of the string instruction until the condition stipulated by the pre-
fix is fulfilled. The general-purpose register (E)CX is also used to determine the ces-
sation of the string instruction by specifying a count to indicate the number of
iterations of the string instruction. The repeat prefixes apply only to the instruction
that they immediately precede.

 If a block of instructions is to be executed, then a LOOP instruction can be uti-
lized. A string operation can be delayed by an exception or an interrupt, in which case,
the registers are saved so that the operation can continue upon the completion of the
exception or interrupt. Thus, the (E)SI and (E)DI registers point to the next string

13.1 Repeat Prefixes 545

elements; the (E)IP register points to the string instruction; and the (E)CX register con-
tains the count that it held prior to the exception or interrupt.

When operating in 64-bit mode, the source operand address and the destination
operand address are stipulated by RSI (or ESI) and by RDI (or EDI), respectively,
using an REX prefix. The count is contained in RCX or ECX depending on the
address size attribute.

13.1.1 REP Prefix

The REP prefix allows a string instruction to be repeated a specified number of times
as indicated by the count in register (E)CX. The REP prefix can be utilized with dif-
ferent versions of the following string instructions: MOVS, LODS, and STOS. The
REP prefix can also be used with different versions of the input/output string instruc-
tions: input from port to string INS and output string to port OUTS.

The syntax for the REP prefix is shown below for the MOVS instruction, which
moves string elements from the data segment source to the extra segment destination.
Recall that the brackets stipulate indirect memory addressing. Thus, DS:[(E)SI] indi-
cates a memory address in the data segment with an offset specified by the contents of
register ESI or register SI. The memory address ES:[(E)DI] is similarly defined.

REP MOVS m8, m8 (move (E)CX bytes from DS:[(E)SI]
 to ES:[(E)DI])

REP MOVS m8, m8 (move RCX bytes from [RSI]
 to [RDI], 64-bit mode)

REP MOVS m16, m16 (move (E)CX words from DS:[(E)SI]
 to ES:[(E)DI])

REP MOVS m32, m32 (move (E)CX doublewords from
 DS:[(E)SI] to ES:[(E)DI])

REP MOVS m64, m64 (move RCX quadwords from
 [RSI] to [RDI], 64-bit mode)

Another version of the REP instruction is shown below for the LODS instruction,
which loads string elements from the data segment to general-purpose registers. The
REP prefix is normally not used. The syntax is shown below.

REP LODS AL (load (E)CX bytes from DS:[(E)SI]
 to register AL)

REP LODS AL (load RCX bytes from [RSI]
 to register AL, 64-bit mode)

546 Chapter 13 String Instructions

REP LODS AX (load (E)CX words from
DS:[(E)SI] to register AX)

REP LODS EAX (load (E)CX doublewords from
DS:[(E)SI] to register EAX)

REP LODS RAX (load RCX quadwords from
[RSI] to register RAX, 64-bit mode)

Another version of the REP instruction is shown below for the STOS instruction,
which stores string elements from a general-purpose register to the extra segment des-
tination at ES:[(E)DI]. The syntax is shown below.

REP STOS m8 (store (E)CX bytes from
 register AL to ES:[(E)DI])

REP STOS m8 (store RCX bytes from
register AL to [RDI], 64-bit mode)

REP STOS m16 (store (E)CX words from
 register AX to ES:[(E)DI])

REP STOS m32 (store (E)CX doublewords from
 register EAX to ES:[(E)DI])

REP STOS m64 (store RCX quadwords from
 register RAX to [RDI], 64-bit mode)

13.1.2 REPE / REPZ Prefix

Another version of the REP prefix is the repeat while equal (REPE) prefix. The
REPE prefix can be used to find nonmatching string elements in memory location
DS:[(E)SI] by comparing them with string elements in memory location ES:[(E)DI].
The operation continues as long as the count in register (E)CX is nonzero and the
string elements are equal — zero flag (ZF) equals 1. The REPZ prefix is synonymous
with the REPE prefix. The REPE / REPZ prefixes and the REPNE / REPNZ prefixes
(covered in the next section) are used only with the compare string operands (CMPS)
instruction and the scan string (SCAS) instruction. The syntax for the REPE prefix is
shown below for the CMPS instruction.

REPE CMPS m8, m8 (compare bytes in DS:[(E)SI]
 with bytes in ES:[(E)DI]
 to find nonmatching bytes)

REPE CMPS m8, m8 (compare bytes in [RSI]
 with bytes in [RDI]
 to find nonmatching bytes)

13.1 Repeat Prefixes 547

REPE CMPS m16, m16 (compare words in DS:[(E)SI]
 with words in ES:[(E)DI]
 to find nonmatching words)

REPE CMPS m32, m32 (compare doublewords in DS:[(E)SI]
 with doublewords in ES:[(E)DI]
 to find nonmatching doublewords)

REPE CMPS m64, m64 (compare quadwords in [RSI]
 with quadwords in [RDI]
 to find nonmatching quadwords,
 64-bit mode)

Another application of the REPE instruction is shown below for the SCAS
instruction, which compares the destination string element in ES:[(E)DI] with the con-
tents of a general-purpose register and sets the status flags in the EFLAGS register
based on the result. This REPE prefix, together with the SCAS instruction, is used to
find string elements that do not match the contents of a general-purpose register. The
syntax is shown below.

REPE SCAS m8 (compare a byte in AL with
 a byte in ES:[(E)DI]
 to find nonmatching bytes)

REPE SCAS m8 (compare a byte in AL with
 a byte in [RDI]
 to find nonmatching bytes,
 64-bit mode)

REPE SCAS m16 (compare a word in AX with
 a word in ES:[(E)DI]
 to find nonmatching words)

REPE SCAS m32 (compare a doubleword in EAX with
 a doubleword in ES:[(E)DI]
 to find nonmatching doublewords)

REPE SCAS m64 (compare a quadword in RAX with
 a quadword in [RDI]
 to find nonmatching quadwords,
 64-bit mode)

13.1.3 REPNE / REPNZ Prefix

Another version of the REP prefix is the repeat while not equal (REPNE) prefix.
The REPNE prefix can be used to find matching string elements in memory location

548 Chapter 13 String Instructions

DS:[(E)SI] by comparing them with string elements in memory location ES:[(E)DI].
The operation continues as long as the count in register (E)CX is nonzero and the
string elements are not equal — zero flag (ZF) equals 0. The REPNZ prefix is syn-
onymous with the REPNE prefix. The REPE / REPZ prefixes and the REPNE /
REPNZ prefixes are used only with the compare string operands (CMPS) instruction
and the scan string (SCAS) instruction. The syntax for the REPNE prefix is shown
below for the CMPS instruction.

REPNE CMPS m8, m8 (compare bytes in DS:[(E)SI]
 with bytes in ES:[(E)DI]
 to find matching bytes)

REPNE CMPS m8, m8 (compare bytes in [RSI]
 with bytes in [RDI]
 to find matching bytes,
 64-bit mode)

REPNE CMPS m16, m16 (compare words in DS:[(E)SI]
 with words in ES:[(E)DI]
 to find matching words)

REPNE CMPS m32, m32 (compare doublewords in DS:[(E)SI]
 with doublewords in ES:[(E)DI]
 to find matching doublewords)

REPNE CMPS m64, m64 (compare quadwords in [RSI]
 with quadwords in [RDI]
 to find matching quadwords,
 64-bit mode)

Another application of the REPNE instruction is shown below for the SCAS
instruction, which compares the destination string element in ES:[(E)DI] with the con-
tents of a general-purpose register and sets the status flags in the EFLAGS register
based on the result. This REPNE prefix, together with the SCAS instruction, is used to
find string elements that match the contents of a general-purpose register. The syntax
is shown below.

REPNE SCAS m8 (compare a byte in AL with
 a byte in ES:[(E)DI]
 to find matching bytes)

REPNE SCAS m8 (compare a byte in AL with
 a byte in [RDI]
 to find matching bytes, 64-bit mode)

REPNE SCAS m16 (compare a word in AX with
 a word in ES:[(E)DI]
 to find matching words)

13.2 Move String Instructions 549

REPNE SCAS m32 (compare a doubleword in EAX with
 a doubleword in ES:[(E)DI]
 to find matching doublewords)

REPNE SCAS m64 (compare a quadword in RAX with
 a quadword in [RDI]
 to find matching quadwords,
 64-bit mode)

13.2 Move String Instructions
The move string (MOVS) instructions transfer a string element — byte, word, or dou-
bleword — from memory location DS:(E)SI to memory location ES:(E)DI. There are
abbreviated mnemonics for the three different string element sizes: move string byte
(MOVSB), move string word (MOVSW), and move string doubleword (MOVSD). In
64-bit mode, a quadword can be moved using the instruction move string quadword
(MOVSQ).

After the transfer is completed, the (E)SI and (E)DI registers are automatically
incremented or decremented depending on the state of the direction flag (DF) in the
EFLAGS register. Figure 13.2 pictorially illustrates the MOVS instructions in trans-
ferring data from the source segment (DS) with offset (E)SI to the destination segment
(ES) with offset (E)DI.

.

.

.

 Source Destination

(E)SI

DS

Address of

.

.

.
(E)DI

ESLow

Highsource operand
Address of
destination operand

Low

High

Figure 13.2 Illustration of transferring data from DS:(E)SI to ES:(E)DI.

The source and destination operand addresses should be initialized prior to the
execution of the string instructions. This can be accomplished by using the load far
pointers LDS and LES instructions as shown in Figure 13.3.

Segment selector Offset

DS (E)SI

LDS (E)SI, mem-ptr1

mem-ptr1

Segment selector Offset

ES (E)DI

LES (E)DI, mem-ptr2

mem-ptr2

550 Chapter 13 String Instructions

Figure 13.3 Initializing the addresses of the source and destination strings.

The data segment (DS) can be overridden with a segment override prefix. The
segment override operator is specified by a colon (:). An example of a segment over-
ride prefix to move a word from general-purpose register BX to segment ES with an
offset contained in general-purpose register AX is shown below. The extra segment
(ES), however, cannot be overridden. Different versions of the move string instruc-
tions are described in the next sections.

MOV ES:[AX], BX

13.2.1 Move Data from String to String
(Explicit Operands) Instructions

This section describes the explicit operands form of the move strings instructions. The
explicit operands form explicitly specifies the size of the source and destination oper-
ands as part of the instruction. The location of the source and destination operands are
determined by contents of the DS:(E)SI and ES:(E)DI registers, respectively. There
are four move strings instructions that have explicit operands, as shown in the syntax
below.

MOVS m8, m8 (transfer a byte from source in DS:(E)SI
 to destination in ES:E(DI);
 (R/E)SI and (R/E)DI for 64-bit mode)

MOVS m16, m16 (transfer a word from source in DS:(E)SI
 to destination in ES:E(DI);
 (R/E)SI and (R/E)DI for 64-bit mode)

13.2 Move String Instructions 551

MOVS m32, m32 (transfer a doubleword from source
 in DS:(E)SI to destination in ES:E(DI);
 (R/E)SI and (R/E)DI for 64-bit mode)

MOVS m64, m64 (transfer a quadword from source in (R/E)SI
 to destination in (R/E)DI, 64-bit mode)

13.2.2 Move Data from String to String (No Operands)
Instructions

The no-operands form specifies the size of the operands by the mnemonic; for exam-
ple, the MOVSW instruction specifies a word transfer. Like the explicit operand form,
the no-operand form assumes that the location of the source and destination operands
are determined by contents of the DS:(E)SI and ES:(E)DI registers, respectively. The
syntax is shown below.

MOVSB (transfer a byte from source in DS:(E)SI
 to destination in ES:E(DI);
 (R/E)SI and (R/E)DI for 64-bit mode)

MOVSW (transfer a word from source in DS:(E)SI
 to destination in ES:E(DI);
 (R/E)SI and (R/E)DI for 64-bit mode)

MOVSD (transfer a doubleword from source in DS:(E)SI
 to destination in ES:E(DI);
 (R/E)SI and (R/E)DI for 64-bit mode)

MOVSQ (transfer a quadword from source in (R/E)SI
 to destination in (R/E)DI, 64-bit mode)

One application of the MOVS instruction is shown in Figure 13.4, which moves
string operands from an input buffer to a working area in memory. This allows the sys-
tem to operate on the relocated string data while the input buffer is being filled with
additional string data.

Memory

Working area Input buffer area
REP MOVSB/W/D/Q

I/O device

Figure 13.4 Application of a repeat move strings operation.

552 Chapter 13 String Instructions

Examples of moving source strings to destination locations in which the strings
are overlapping, or are in identical memory locations, or are nonoverlapping, are
shown in Figure 13.5. Figure 13.5(a) illustrates overlapping strings, where the higher
addresses of the source string overlap the lower addresses of the destination locations.
In this case, the direction flag must be set (DF = 1) — auto-decrement; otherwise, the
source string would overwrite some of the higher addresses of the source string.

In Figure 13.5(b), the strings are also overlapping, but in a reverse orientation to
that of Figure 13.5(a). In this case, the direction flag must be reset (DF = 0) — auto-
increment; otherwise, the source string would overwrite some of the lower addresses
of the source string. In Figure 13.5(c), the source string and the destination locations
are identical; therefore, there is no data transfer. In Figure 13.5(d) and Figure 13.5(e),
the strings are nonoverlapping; the direction flag can be set or reset (DF = 1 or DF = 0).

(a) DF = 1

(E)SI
Source (E)DI

Destination

Low

High

. . .
string

string

(b) DF = 0

Low

High

. . .
(E)DI
Destination
string

(E)SI
Source
string

(c) No transfer

(E)SI
Source

(E)DI
Destination

Low

High

. . .

string string

(d) DF = 0 or 1

(E)SI
Source

(E)DI
Destination

Low

High

string

string

(e) DF = 0 or 1

(E)DI
Destination

Low

High

string
(E)SI
Source
string

Figure 13.5 Different string orientations when executing a MOVS operation: (a)
and (b) overlapping strings; (c) identical memory locations; and (d) and (e) nonover-
lapping strings.

13.2 Move String Instructions 553

Figure 13.6 shows an assembly language program — not embedded in a C pro-
gram — that illustrates using the MOVSB instruction with the REP prefix. The data
segment (DS as source) and the extra segment (ES as destination) are made identical
by the following instructions:

MOV AX, @DATA ;get addr of data seg
MOV DS, AX ;move addr to ds
MOV ES, AX ;move addr to es

The source index, SI, is assigned the address of OPFLD; the destination index, DI,
is assigned the address of RSLT+15, which contains the string ABCDEFGHI. Nine
hexadecimal characters are entered from the keyboard and stored in the OPFLD area.
The program then moves the first five characters of OPFLD to the last five locations of
the result area, effectively overwriting the last five locations. The result area is then
displayed.

;movs_byte4.asm
;move the first 5 string elements in opfld
;to the result area last 5 string positions
;---
.STACK

;---
.DATA
PARLST LABEL BYTE
MAXLEN DB 10
ACTLEN DB ?
OPFLD DB 10 DUP(?)
PRMPT DB 0DH, 0AH, 'Enter nine hexadecimal characters: $'
RSLT DB 0DH, 0AH, 'Result = ABCDEFGHI $'

;---
.CODE
BEGIN PROC FAR

;set up pgm ds
MOV AX, @DATA ;get addr of data seg
MOV DS, AX ;move addr to ds
MOV ES, AX ;move addr to es

;read prompt

MOV AH, 09H ;display string
LEA DX, PRMPT ;put addr of prompt in dx
INT 21H ;dos interrupt

(a) //continued on next page

Figure 13.6 Program to illustrate an application of using the MOVSB byte
instruction with the REP prefix: (a) the program and (b) the outputs.

;keyboard request rtn to enter characters
MOV AH, 0AH ;buffered keyboard input
LEA DX, PARLST ;put addr of parlst in dx
INT 21H ;dos interrupt

;---
;set up source and destination addresses and
;move first 5 string elements of opfld to
;last 5 positions of rslt

LEA SI, OPFLD ;addr of opfld -> si as src
LEA DI, RSLT+15 ;addr of rslt+15 -> di as dst
MOV CX, 5 ;count in cx

REP MOVSB ;move bytes to dst

;---
;display result

MOV AH, 09H ;display string
LEA DX, RSLT ;put addr of rslt in dx
INT 21H ;dos interrupt

BEGIN ENDP

END BEGIN

Enter nine hexadecimal characters: 123456789
Result = ABCD12345
--
Enter nine hexadecimal characters: ABCDE6789
Result = ABCDABCDE
--
Enter nine hexadecimal characters: 111111111
Result = ABCD11111

(b)

554 Chapter 13 String Instructions

Figure 13.6 (Continued)

13.3 Load String Instructions
The load string (LODS) instructions transfer a string element — byte, word, or dou-
bleword — from memory location DS:(E)SI to registers AL, AX, or EAX, respec-
tively. There are abbreviated mnemonics for the three different string element sizes:
load string byte (LODSB), load string word (LODSW), and load string doubleword
(LODSD). In 64-bit mode, a quadword can be loaded using the instruction load string
quadword (LODSQ).

13.3 Load String Instructions 555

After the operand is loaded into register AL, AX, or EAX, the (E)SI register is
automatically incremented or decremented depending on the state of the direction flag
(DF) in the EFLAGS register. The source operand address should be initialized prior
to the execution of the load string instruction. This can be accomplished by using the
load effective address (LEA) instruction.

As mentioned in Section 13.2, the data segment (DS) can be overridden with a
segment override prefix. The segment override operator is specified by a colon (:).
The extra segment (ES), however, cannot be overridden. There is no need to use the
REP prefix, because the previous data would be overwritten. The flags are not
affected. Different versions of the load string instructions are described in the next
sections.

13.3.1 Load String (Explicit Operands) Instructions

This section describes the explicit operands form of the load string instructions. The
explicit operands form explicitly specifies the size of the source operand as part of the
instruction. The location of the source operand is determined by contents of the
DS:(E)SI register. There are four load string instructions that have explicit operands,
as shown in the syntax below.

LODS m8 (load a byte from source in DS:(E)SI
 into AL, (R)SI for 64-bit mode)

LODS m16 (load a word from source in DS:(E)SI
 into AX, (R)SI for 64-bit mode)

LODS m32 (load a doubleword from source in DS:(E)SI
 into EAX, (R)SI for 64-bit mode)

LODS m64 (load a quadword from source in (R)SI
 into RAX, 64-bit mode)

13.3.2 Load String (No Operands) Instructions

The no-operands form specifies the size of the operands by the mnemonic; for exam-
ple, the LODSB instruction specifies a load byte into register AL instruction. Like the
explicit operand form, the no-operand form assumes that the location of the source
operand is determined by contents of the DS:(E)SI register. The syntax is shown
below.

LODSB (load a byte from source in DS:(E)SI
 into AL, (R)SI for 64-bit mode)

556 Chapter 13 String Instructions

LODSW (load a word from source in DS:(E)SI
 into AX, (R)SI for 64-bit mode)

LODSD (load a doubleword from source in DS:(E)SI
 into EAX, (R)SI for 64-bit mode)

LODSQ (load a quadword from source in (R)SI
 into RAX, 64-bit mode)

Figure 13.7 shows an assembly language program — not embedded in a C pro-
gram — that illustrates an application using the LODSB (no operands) instruction.
The program reverses the order of nine characters that are entered from the keyboard.
The source index, SI, is assigned the address of OPFLD, which stores the nine char-
acters; the destination index, DI, is assigned the address of RSLT+19, which contains
the resulting reversed string. A count of nine is stored in register CX. Nine hexadec-
imal characters are entered from the keyboard and stored in the OPFLD area. A loop
is used to read the nine characters and reverse their order. The result area is then dis-
played.

;lods_reverse.asm
;move the string elements in opfld to
;the result area in reverse order
;---
.STACK

;---
.DATA
PARLST LABEL BYTE
MAXLEN DB 10
ACTLEN DB ?
OPFLD DB 10 DUP(?)
PRMPT DB 0DH, 0AH, 'Enter nine hexadecimal characters: $'
RSLT DB 0DH, 0AH, 'Result = $'

;---
.CODE
BEGIN PROC FAR

;set up pgm ds
MOV AX, @DATA ;get addr of data seg
MOV DS, AX ;move addr to ds

(a) //continued on next page

Figure 13.7 Program to illustrate an application of the LODSB instruction: (a) the
program and (b) the outputs.

;read prompt
MOV AH, 09H ;display string
LEA DX, PRMPT ;put addr of prompt in dx
INT 21H ;dos interrupt

;keyboard request rtn to enter characters

MOV AH, 0AH ;buffered keyboard input
LEA DX, PARLST ;put addr of parlst in dx
INT 21H ;dos interrupt

;---
;set up source and destination addresses and
;move 9 string elements of opfld to
;rslt area in reverse order

CLD ;left-to-right
MOV CX, 9 ;count in cx
LEA SI, OPFLD ;addr of opfld -> si as src
LEA DI, RSLT+19 ;addr of rslt+19 -> di as dst

LP1: LODSB ;load byte into al

MOV [DI], AL ;move al to where di points
DEC DI ;decrement di for reverse order
LOOP LP1 ;loop if cx != 0

;---
;display result

MOV AH, 09H ;display string
LEA DX, RSLT ;put addr of rslt in dx
INT 21H ;dos interrupt

BEGIN ENDP

END BEGIN

Enter nine hexadecimal characters: 123456789
Result = 987654321
--
Enter nine hexadecimal characters: IHGFEDCBA
Result = ABCDEFGHI
--
Enter nine hexadecimal characters: 987654321
Result = 123456789
--
Enter nine hexadecimal characters: abc123def
Result = fed321cba

(b)

13.3 Load String Instructions 557

Figure 13.7 (Continued)

558 Chapter 13 String Instructions

13.4 Store String Instructions
The store string (STOS) instructions transfer a string element — byte, word, or dou-
bleword — from registers AL, AX, or EAX to a destination memory location specified
by ES:(E)DI. There are abbreviated mnemonics for the three different string element
sizes: store string byte (STOSB), store string word (STOSW), and store string dou-
bleword (STOSD). In 64-bit mode, a quadword can be loaded using the instruction
store string quadword (STOSQ).

After the operand from register AL, AX, or EAX is stored in memory, the
ES:(E)DI register is automatically incremented or decremented depending on the state
of the direction flag (DF) in the EFLAGS register. The source operand address should
be initialized prior to the execution of the load string instruction. This can be accom-
plished by using the load effective address (LEA) instruction.

The data segment (DS) can be overridden with a segment override prefix. The
segment override operator is specified by a colon (:). The extra segment (ES), how-
ever, cannot be overridden. The REP prefix can be used to store a specific value from
a general-purpose register into several contiguous areas in memory by setting the
number of operands to be transferred into register (E)CX. The flags are not affected.
Different versions of the store string instructions are described in the next sections.

13.4.1 Store String (Explicit Operands) Instructions

This section describes the explicit operands form of the store string instructions. The
explicit operands form explicitly specifies the size of the destination operand as part of
the instruction. The location of the destination operand is determined by contents of
the ES:(E)DI register. There are four store string instructions that have explicit oper-
ands, as shown in the syntax below.

STOS m8 (store a byte from AL to destination
 in ES:(E)DI, RDI or EDI for 64-bit mode)

STOS m16 (store a word from AX to destination
 in ES:(E)DI, RDI or EDI for 64-bit mode)

STOS m32 (store a doubleword from EAX to destination
 in ES:(E)DI, RDI or EDI for 64-bit mode)

STOS m64 (store a quadword from RAX to destination
 in RDI or EDI for 64-bit mode)

13.4.2 Store String (No Operands) Instructions

The no-operands form specifies the size of the operands by the mnemonic; for exam-
ple, the STOSW instruction specifies a store word from register AX instruction. Like

13.4 Store String Instructions 559

the explicit operand form, the no-operand form assumes that the location of the des-
tination operand is determined by contents of the ES:(E)DI register. The syntax is
shown below.

STOSB (store a byte from AL to destination
 in ES:(E)DI, RDI or EDI for 64-bit mode)

STOSW (store a word from AX to destination
 in ES:(E)DI, RDI or EDI for 64-bit mode)

STOSD (store a doubleword from EAX to destination
 in ES:(E)DI, RDI or EDI for 64-bit mode)

STOSQ (store a quadword from RAX to destination
 in RDI or EDI for 64-bit mode)

One application of the store string instructions is to replace a string in contiguous
locations in memory with a different string. Figure 13.8 shows an assembly language
program — not embedded in a C program — that replaces a string of nine characters
with asterisks. The program uses the store string (no operands) instruction with the
REP prefix. The initial string is displayed before it is changed, then the new string is
displayed.

;stos_byte_asterisk.asm
;uses store string no operand to
;replace a given string with asterisks

;---
.STACK

;---
.DATA
RSLT DB 0DH, 0AH, '123456789 $'

;---
.CODE
BEGIN PROC FAR

;set up pgm ds
MOV AX, @DATA ;get addr of data seg
MOV DS, AX ;move addr to ds
MOV ES, AX ;move addr to es

;---
//continued on next page

Figure 13.8 Using the STOSB string instruction to replace a string in memory.

;display result before changing
MOV AH, 09H ;display string
LEA DX, RSLT ;put addr of rslt in dx
INT 21H ;dos interrupt

;---
;move string elements

CLD ;left-to-right
MOV CX, 9 ;count in cx
LEA DI, RSLT+2 ;addr of rslt+2 -> di as dst
MOV AL, 2AH ;* -> al

REP STOSB ;move bytes to dst

;---
;display result after changing

MOV AH, 09H ;display string
LEA DX, RSLT ;put addr of rslt in dx
INT 21H ;dos interrupt

BEGIN ENDP

END BEGIN

;display result before changing
MOV AH, 09H ;display string
LEA DX, RSLT ;put addr of rslt in dx
INT 21H ;dos interrupt

;---
;move string elements

CLD ;left-to-right
MOV CX, 9 ;count in cx
LEA DI, RSLT+2 ;addr of rslt+2 -> di as dst
MOV AL, 2AH ;* -> al

REP STOSB ;move bytes to dst

;---
;display result after changing

MOV AH, 09H ;display string
LEA DX, RSLT ;put addr of rslt in dx
INT 21H ;dos interrupt

BEGIN ENDP

END BEGIN
;---
123456789

560 Chapter 13 String Instructions

Figure 13.8 (Continued)

13.5 Compare Strings Instructions
The compare strings (CMPS) instructions contain two source operands — there is no
destination operand. The instructions compare a string element — byte, word, dou-
bleword, or quadword — in the first source operand with the byte, word, doubleword,
or quadword in the second source operand. The comparison is accomplished by sub-
tracting the first source operand from the second source operand. The status flags in
the EFLAGS register reflect the result of the comparison. Both source operands are
unaffected by the comparison; that is, both operands are unaltered. The DS:(E)SI and
ES:(E)DI registers are automatically incremented or decremented depending on the
state of the direction flag (DF) in the EFLAGS register.

Both operands reside in memory locations. The memory address of the first
source operand is obtained from the contents of registers DS:(E)SI or RSI; the memory
address of the second source operand is obtained from the contents of registers
ES:(E)DI or RDI. There are abbreviated mnemonics for the different string element
sizes: compare strings byte (CMPSB), compare strings word (CMPSW), and compare
strings doubleword (CMPSD). In 64-bit mode, quadwords can be compared using the
compare strings quadword (CMPSQ) instruction.

13.5 Compare Strings Instructions 561

Variations of the REP prefix can be utilized with the compare strings instructions.
These include: the repeat while equal/zero (REPE/REPZ) prefixes and the repeat
while not equal/not zero (REPNE/REPNZ) prefixes. If a CMPS instruction is pre-
ceded by REPE or REPZ, then the operation is depicted as compare while strings are
equal (ZF = 1) and not end of string [E(CX) ≠ 0]. If a CMPS instruction is preceded by
REPNE or REPNZ, then the operation is depicted as compare while strings are not
equal (ZF = 0) and not end of string [E(CX) ≠ 0]. If these prefixes are used, then the
compare operation will terminate as soon as the specified condition becomes untrue or
E(CX) = 0.

The data segment (DS) can be overridden with a segment override prefix. The
segment override operator is specified by a colon (:). The extra segment (ES), how-
ever, cannot be overridden. Different versions of the compare strings instructions are
described in the next sections.

13.5.1 Compare Strings (Explicit Operands)
Instructions

This section describes the explicit operands form of the compare strings instructions.
The explicit operands form explicitly specifies the size of the first and second source
operands as part of the instruction. There are four compare string instructions that
have explicit operands, as shown in the syntax below.

CMPS m8, m8 (compare byte at DS:(E)SI with
 byte at ES:(E)DI,

 (R/E)SI, (R/E)DI for 64-bit mode)

CMPS m16, m16 (compare word at DS:(E)SI with
 word at ES:(E)DI,

 (R/E)SI, (R/E)DI for 64-bit mode)

CMPS m32, m32 (compare doubleword at DS:(E)SI with
 doubleword at ES:(E)DI,

 (R/E)SI, (R/E)DI for 64-bit mode)

CMPS m64, m64 (compare quadword at (R/E)SI with
 quadword at (R/E)DI for 64-bit mode)

13.5.2 Compare Strings (No Operands) Instructions

The no-operands form specifies the size of the operands by the mnemonic; for exam-
ple, the CMPSW instruction specifies a compare strings word instruction. Like the
explicit operand form, the no-operand form assumes that the locations of the operands
are determined by the DS:(E)SI register for the first source operand and by the
ES:(E)DI register for the second source operand. The syntax is shown below.

562 Chapter 13 String Instructions

CMPSB (compare byte at DS:(E)SI with byte at ES:(E)DI,
 (R/E)SI, (R/E)DI for 64-bit mode)

CMPSW (compare word at DS:(E)SI with word at ES:(E)DI,
 (R/E)SI, (R/E)DI for 64-bit mode)

CMPSD (compare doubleword at DS:(E)SI with
 doubleword at ES:(E)DI,
 (R/E)SI, (R/E)DI for 64-bit mode)

CMPSQ (compare quadword at (R/E)SI with
 quadword at (R/E)DI, for 64-bit mode)

Figure 13.9 shows an assembly language program — not embedded in a C pro-
gram — that illustrates an application using the CMPSB (no operands) instruction
with the REPE prefix. Two strings are entered from the keyboard and stored in the
OPFLD area of the parameter list (PARLST). Then the strings are compared and the
resulting zero flag (ZF) is displayed. If ZF = 1, then the strings are equal; if ZF = 0,
then the strings are not equal.

;cmps_byte2.asm
;compare two strings in opfld

;---
.STACK

;---
.DATA
PARLST LABEL BYTE
MAXLEN DB 15
ACTLEN DB ?
OPFLD DB 15 DUP(?)
PRMPT DB 0DH, 0AH, 'Enter two 6-digit hex strings: $'
FLAGS DB 0DH, 0AH, 'ZF flags = $'

;---
.CODE
BEGIN PROC FAR

;set up pgm ds
MOV AX, @DATA ;get addr of data seg
MOV DS, AX ;move addr to ds
MOV ES, AX ;move addr to es

(a) //continued on next page

Figure 13.9 Program to illustrate using the CMPSB instruction with the REPE
prefix: (a) the program and (b) the outputs.

;read prompt
MOV AH, 09H ;display string
LEA DX, PRMPT ;put addr of prompt in dx
INT 21H ;dos interrupt

;---
;keyboard request rtn to enter characters

MOV AH, 0AH ;buffered keyboard input
LEA DX, PARLST ;put addr of parlst in dx
INT 21H ;dos interrupt

;---
;compare strings

LEA SI, OPFLD ;addr of first string -> si
LEA DI, OPFLD+6 ;addr of second string -> di
CLD ;left-to-right
MOV CX, 6 ;count in cx

REPE CMPSB ;compare strings while equal
;---
;move flags to flag area

PUSHF ;push flags
POP AX ;flag word -> ax
AND AL, 40H ;isolate zf
SHR AL, 6 ;shift right logical 6
OR AL, 30H ;add ascii bias
MOV FLAGS+10, AL ;move zf to flag area

;---
;display zf flag

MOV AH, 09H ;display string
LEA DX, FLAGS ;put addr of rslt in dx
INT 21H ;dos interrupt

BEGIN ENDP
END BEGIN

Enter two 6-digit hex strings: 123456123456
ZF flag = 1 //strings are equal
--
Enter two 6-digit hex strings: 123456123457
ZF flag = 0 //strings are not equal
--
Enter two 6-digit hex strings: ABCDEFABCDEF
ZF flag = 1 //strings are equal
--
Enter two 6-digit hex strings: ABCDEFABCDE2
ZF flag = 0 //strings are not equal

(b)

13.5 Compare Strings Instructions 563

Figure 13.9 (Continued)

564 Chapter 13 String Instructions

13.6 Scan String Instructions
The scan string (SCAS) instructions contain only one operand, which is in a general-
purpose register. The instructions compare a string element — byte, word, double-
word, or quadword — in register AL, AX, EAX, or RAX, respectively — with the
byte, word, doubleword, or quadword in a memory location addressed by ES:E(DI) or
RDI. The comparison is accomplished by subtracting the memory operand from the
general-purpose register. The status flags in the EFLAGS register reflect the result of
the comparison. Both operands are unchanged by the comparison. The (E)DI register
is automatically incremented or decremented depending on the state of the direction
flag (DF) in the EFLAGS register.

There are abbreviated mnemonics for the different string element sizes: scan
string byte (SCASB), scan string word (SCASW), and scan string doubleword
(SCASD). In 64-bit mode, quadwords can be compared using the scan string quad-
word (SCASQ) instruction.

Variations of the REP prefix can be utilized with the scan string instructions.
These include the repeat while equal / zero (REPE / REPZ) prefixes and the repeat
while not equal / not zero (REPNE / REPNZ) prefixes. These prefixes can be utilized
for block comparisons as specified by the count in the (E)CX register. If these prefixes
are used, then the comparison operation (scanning) will terminate as soon as the spec-
ified condition becomes untrue or E(CX) = 0.

The data segment (DS) can be overridden with a segment override prefix. The
segment override operator is specified by a colon (:). The extra segment (ES), how-
ever, cannot be overridden. Different versions of the compare strings instructions are
described in the next sections.

13.6.1 Scan String (Explicit Operands) Instructions

This section describes the explicit operands form of the scan string instructions. The
explicit operands form explicitly specifies the size of the operands as part of the
instruction. There are four scan string instructions that have explicit operands, as
shown in the syntax below.

SCAS m8 (compare byte in AL with
 byte at ES:(E)DI, RDI for 64-bit mode)

SCAS m16 (compare word in AX with
 word at ES:(E)DI, RDI for 64-bit mode)

SCAS m32 (compare doubleword in EAX with
 doubleword at ES:(E)DI, RDI for 64-bit mode)

SCAS m64 (compare quadword in RAX with
 quadword at EDI or RDI for 64-bit mode)

13.6 Scan String Instructions 565

13.6.2 Scan String (No Operands) Instructions

The no-operands form specifies the size of the operands by the mnemonic; for exam-
ple, the SCASB instruction specifies a scan string byte instruction. Like the explicit
operand form, the no-operand form assumes that the location of the memory operand
is determined by the ES:(E)DI register. The register operands are contained in the gen-
eral-purpose registers. The syntax is shown below.

SCASB (compare byte in AL with
 byte at ES:(E)DI, RDI for 64-bit mode)

SCASW (compare word in AX with
 word at ES:(E)DI, RDI for 64-bit mode)

SCASD (compare doubleword in EAX with
 doubleword at ES:(E)DI, RDI for 64-bit mode)

SCASQ (compare quadword in RAX with
 quadword at EDI or RDI for 64-bit mode)

Figure 13.10 shows an assembly language program — not embedded in a C pro-
gram — that illustrates an application using the SCASB (no operands) instruction with
the REPNE prefix. If the scan character (A) in register AL matches a string character,
then ZF = 1, otherwise ZF = 0. The count is displayed together with the flags.

;scans_byte2.asm
;use scans with repne prefix
;---
.STACK
;---
.DATA
STR DB 'BCDERASW $'
CL_RSLT DB 0DH, 'CL = $'
FLAGS DB 0DH, 0AH, 'ZF flag = $'
;---
.CODE
BEGIN PROC FAR

;set up pgm ds and es

MOV AX, @DATA ;get addr of data seg
MOV DS, AX ;move addr to ds
MOV ES, AX ;move addr to es

(a) //continued on next page

Figure 13.10 Program to illustrate an application of the SCASB with the REPNE
prefix: (a) the program and (b) the outputs.

;---
MOV AL, 'A' ;ascii character A -> al
LEA DI, STR ;addr of str -> di
CLD ;left-to-right
MOV CL, 8 ;count in cl

REPNE
SCASB ;compare char while not equal

PUSHF ;push flags onto stack
POP AX ;pop flags to ax
AND AL, 40H ;isolate zf
SHR AL, 6 ;shift right logical 6
OR AL, 30H ;add ascii bias
MOV FLAGS+12, AL ;move zf to flag area

;---
;display residual count

OR CL, 30H ;add ascii bias
MOV CL_RSLT+6, CL ;cl -> result area

MOV AH, 09H ;display string
LEA DX, CL_RSLT ;addr of cl_rslt -> dx
INT 21H ;dos interrupt

;---
;display flags

MOV AH, 09H ;display string
LEA DX, FLAGS ;addr of flags -> dx
INT 21H ;dos interrupt

BEGIN ENDP
END BEGIN

CL = 2 if AL = W, then CL = 0
ZF flag = 1 and ZF flag = 1 (b) //characters match

566 Chapter 13 String Instructions

Figure 13.10 (Continued)

13.7 Problems

13.1 Write an assembly language program — not embedded in a C program — that
receives six hexadecimal characters entered from the keyboard and stores them
in the OPFLD area. The program then moves the characters to the result area

13.7 Problems 567

to be utilized as a second string. Then the first three characters from OPFLD
are moved to replace the last three characters in the result area. Display the re-
sulting contents of the result area.

13.2 Determine the contents of RSLT after execution of the following program:

;movs_byte5.asm
;---
.STACK

;---
.DATA
RSLT DB 0DH, 0AH, '123456789 $'

;---
.CODE
BEGIN PROC FAR

;set up pgm ds
MOV AX, @DATA ;get addr of data seg
MOV DS, AX ;move addr to ds
MOV ES, AX ;move addr to es

;---
;move string elements

CLD
MOV CX, 4 ;count in cx
LEA SI, RSLT+2 ;addr of rslt+2 -> si as src
LEA DI, RSLT+4 ;addr of rslt+4 -> di as dst

REP MOVSB ;move bytes to dst

;---
;display result

MOV AH, 09H ;display string
LEA DX, RSLT ;put addr of rslt in dx
INT 21H ;dos interrupt

BEGIN ENDP

END BEGIN

568 Chapter 13 String Instructions

13.3 Determine the contents of RSLT after execution of the following program:

;movs_byte_rev.asm
;---
.STACK

;---
.DATA
RSLT DB 0DH, 0AH, '123456789 $'

;---
.CODE
BEGIN PROC FAR

;set up pgm ds
MOV AX, @DATA ;get addr of data seg
MOV DS, AX ;move addr to ds
MOV ES, AX ;move addr to es

;---
;move string elements

STD ;right-to-left
MOV CX, 4 ;count in cx
LEA SI, RSLT+10 ;addr of rslt+10 -> si as src
LEA DI, RSLT+8 ;addr of rslt+8 -> di as dst

REP MOVSB ;move bytes to dst

;---
;display result

MOV AH, 09H ;display string
LEA DX, RSLT ;put addr of rslt in dx
INT 21H ;dos interrupt

BEGIN ENDP

END BEGIN

13.4 Write an assembly language program — not embedded in a C program — that
receives six hexadecimal characters entered from the keyboard and stores
them in the OPFLD area. The result area contains a second string of ABC-
DEF. Then the first three characters from OPFLD are moved to replace the
last three characters in the result area. Display the resulting contents of the re-
sult area. This program is similar to Problem 13.1, except that the second
string is given; therefore, only one LOOP instruction is required. The REP
prefix is not used.

13.7 Problems 569

13.5 Although this problem does not use the MOVS instruction, it does move mod-
ified characters from a source to a destination. Assume that the following
characters are entered from the keyboard:

0FF, 00, 0EE, 22, 0C6, 0F5

Then show the result after the program shown below has been executed.

_
//array_xor2.cpp
#include "stdafx.h"
int main (void)
{
//define variables

unsigned char hex1, hex2, hex3, hex4, hex5, hex6;

printf ("Enter six 2-digit hexadecimal characters:
\n");

scanf ("%X %X %X %X %X %X", &hex1, &hex2, &hex3,
&hex4, &hex5, &hex6);

//switch to assembly
_asm
{

MOV AL, hex1
XOR hex3, AL

MOV AL, hex2
XOR hex4, AL

MOV AL, hex3
XOR hex5, AL

MOV AL, hex4
XOR hex6, AL

}

printf ("\nhex1 = %X", hex1);
printf ("\nhex2 = %X", hex2);
printf ("\nhex3 = %X", hex3);
printf ("\nhex4 = %X", hex4);
printf ("\nhex5 = %X", hex5);
printf ("\nhex6 = %X\n\n", hex6);
return 0;

}

570 Chapter 13 String Instructions

13.6 Write an assembly language module embedded in a C program using the
LODS instruction with explicit operands that receive byte, word, and double-
word operands that are entered from the keyboard. Then display the operands.

13.7 Given the program shown below, obtain the result when the following four-
digit hexadecimal characters are entered from the keyboard separately:

1233 9999 2E+F)2<=

;lods_stos.asm
;illustrates using the load string
;and store string no operand instructions
;---
.STACK
;---
.DATA
PARLST LABEL BYTE
MAXLEN DB 10
ACTLEN DB ?
OPFLD DB 10 (?)
PRMPT DB 0DH, 0AH, 'Enter four 1-digit hex chars: $'
RSLT DB 0DH, 0AH, 'Result = $'
;---
.CODE
BEGIN PROC FAR

;set up pgm ds

MOV AX, @DATA ;get addr of data seg
MOV DS, AX ;move addr to ds

;read prompt
MOV AH, 09H ;display string
LEA DX, PRMPT ;put addr of prompt in dx
INT 21H ;dos interrupt

;---
;keyboard request rtn to enter characters

MOV AH, 0AH ;buffered keyboard input
LEA DX, PARLST ;put addr of parlst in dx
INT 21H ;dos interrupt

;---
MOV CX, 3 ;# of iterations for loop
LEA SI, OPFLD ;addr of opfld -> si
LEA DI, OPFLD+1 ;addr of opfld+1 -> di
LEA BX, RSLT+11 ;addr of rslt+11 -> bx
CLD ;left-to-right transfer

//continued on next page

LP1: LODSB

ADC AL, [DI] ;add with carry
STOSB
MOV [BX], AL ;al -> rslt area
INC BX
LOOP LP1 ;if cx != 0, then loop

;---
;display result

MOV AH, 09H
LEA DX, RSLT
INT 21H

BEGIN ENDP

END BEGIN

13.7 Problems 571

13.8 Given the program segment shown below, determine the contents of the count
in register CL and the ZF flag after the program has been executed. Then
write an assembly language program — not embedded in a C program — to
verify the results.

. . .
.DATA
STR1 DB 'ABCDEF $'
STR2 DB 'AB1234 $'
CL_RSLT DB 0DH, 0AH, 'CL = $'
FLAGS DB 0DH, 0AH, 'ZF flag = $'

;---
.CODE
BEGIN PROC FAR

;set up pgm ds and es
 MOV AX, @DATA ;get addr of data seg
 MOV DS, AX ;move addr to ds
 MOV ES, AX ;move addr to es

;---
 LEA SI, STR1 ;addr of str1 -> si
 LEA DI, STR2 ;addr of str2 -> di
 CLD ;left-to-right
 MOV CL, 6 ;count in cl

REPNE
 CMPSB ;compare strings while not equal

. . .

572 Chapter 13 String Instructions

13.9 Given the program segment shown below, obtain the count in register CL af-
ter the program executes.

. . .
.DATA
STR DB 'ABCDEFGHI $'
CL_RSLT DB 0DH, 'CL = $'
FLAGS DB 0DH, 0AH, 'ZF flag = $'

;---
.CODE
BEGIN PROC FAR

;set up pgm ds and es

MOV AX, @DATA ;get addr of data seg
MOV DS, AX ;move addr to ds
MOV ES, AX ;move addr to es

;---

MOV AL, 'G'
LEA DI, STR ;addr of str2 -> di
CLD ;left-to-right
MOV CL, 9 ;count in cl

REPNE
SCASB ;compare char while ≠

. . .

13.10 Given the program segment shown below, obtain the count in register CL af-
ter the program executes.

. . .
.DATA
STR DB 'ABCDEFGHI $'
CL_RSLT DB 0DH, 'CL = $'
FLAGS DB 0DH, 0AH, 'ZF flag = $'

;---
.CODE
BEGIN PROC FAR

;set up pgm ds and es

MOV AX, @DATA ;get addr of data seg
MOV DS, AX ;move addr to ds
MOV ES, AX ;move addr to es

//continued on next page

;---
MOV AL, 'R'
LEA DI, STR ;addr of str2 -> di
CLD ;left-to-right
MOV CL, 9 ;count in cl

REPE SCASB ;compare char while ≠
. . .

13.7 Problems 573

This page intentionally left blankThis page intentionally left blank

575

14
Arrays

An array is a data structure that contains a list of elements of the same data type (homo-
geneous) with a common name whose elements can be accessed individually. Arrays
are also synonymous with tables and can be utilized to implement other data struc-
tures, such as strings and lists. An array can consist of characters, integers, floating-
point numbers, or any other data types; however, the data types cannot be mixed.
Array elements are usually stored in contiguous locations in memory, allowing easier
access to the array elements. There are two main types of arrays: one-dimensional
arrays and multi-dimensional arrays.

14.1 One-Dimensional Arrays
A one-dimensional array — also called a linear array — is an array that is

accessed by a single index. A one-dimensional array is shown in Figure 14.1, which
contains a list of ten characters: a through j. The array elements are accessed by an
index — also called an offset or a subscript — beginning with the first array element.
The base address of the array is the address of the first element — in the location
whose offset is zero. Thus, the first element (a), in Figure 14.1, is addressed by
array_name [0], the fourth array element (d) is addressed by array_name [3], and the
last array element (j) is addressed by array_name [9]. In X86 assembly language,
arrays are defined by directives, such as define byte (DB) and define word (DW), fol-
lowed by the list of elements.

14.1 One-Dimensional Arrays
14.2 Multi-Dimensional Arrays
14.3 Problems

a b c d e f g h i jarray_name

0 1 2 3 4 5 6 7 8 9Index

576 Chapter 14 Arrays

Figure 14.1 A one-dimensional linear array.

The name of the array is the symbolic name of the memory address that specifies
the first element of the array — in Figure 14.1 this would be array_name. This type of
addressing is referred to as register indirect addressing and uses a register that con-
tains the address of the data, rather than the actual data to be accessed.

Register indirect addressing uses the general-purpose registers within brackets;
for example, [BX], [BP], [EAX], [EBX], etc., where the brackets specify that the indi-
cated register contains an offset that points to the data within a specific segment; that
is, the value in the register is added to the base address of the array. For example, the
following instruction moves the contents of register AL into the array labelled
array_name at a location specified by the contents of register BX, which are added to
the base address of array_name:

MOV array_name [BX], AL

The registers contain values for indexing — or subscripting — into an array, such
as (E)BX, (E)SI, and (E)DI, which contain offsets for processing operands in the data
segment; for example, DS:BX, DS:ESI, and DS:DI. Register (E)BP is used to refer-
ence data in the stack segment, such as SS:EBP.

Data stored in an array is organized as bytes, words, doublewords, or quadwords.
A byte array and a word array can be defined as shown below for arrays of 20 elements
in which the array elements are undefined.

array_byte DB 20 DUP(?)
array_word DW 20 DUP(?)

Assumed that register BX is used as the index into both arrays. Then the byte
array elements can be accessed by incrementing or decrementing register BX by one;
the word array elements can be accessed by incrementing or decrementing register BX
by two.

A stack can be considered as a one-dimensional array. The base register can point
to the stack top; the contents of the base register plus the displacement points to the
beginning of the array. The index register then selects elements in the array. The
effective address (EA) is calculated as shown below.

EA = EBP + displacement + ESI

...

14.1 One-Dimensional Arrays 577

One-dimensional arrays can be combined to generate a one-dimensional array that
consists of contiguous one-dimensional arrays, as shown in Figure 14.2. Accessing
elements in this type of array can be achieved by the base plus index times scale factor
plus displacement addressing mode, as shown below, where the scale is 1, 2, 4, or 8.

Base register + (index register × 2scale) + Displacement

......

Figure 14.2 A one-dimensional array of one-dimensional arrays.

A typical example of a one-dimensional (linear) array composed of contiguous
linear arrays is a list of elements of the same type with the same length. An array of
numbers is representative of this type of array. Since the numbers are of different
lengths, spaces are added to certain numbers in order to make them the same length as
the longest number. This can be considered as an array of arrays.

The array of numbers can be declared either in one of two ways:

array_number DB 'TWELVE'
. . .

DB 'ONE '

or
array_number DB 'TWELVE',

. . .
 'ONE '

To select a particular number, a 2-digit number (01 — 12) is entered from the key-
board, then the corresponding number is displayed (ONE — TWELVE). The number
is stored as equivalent hexadecimal numbers in the OPERAND field (OPFLD and
OPFLD + 1) locations of the parameter list (PARLST), as shown in Figure 14.3 for the
number SIX.

. . .PARLST
MAXLEN ACTLEN OPFLD +1

30 36

Figure 14.3 Parameter list one-dimensional array in which the keyboard input
data are stored.

578 Chapter 14 Arrays

Figure 14.4 lists an assembly language program — not embedded in a C program
— that illustrates this concept. The first digit (30H), for the number SIX, is moved to
register AH to remove the ASCII bias of 3H; then the second digit is moved to register
AL to remove the ASCII bias. The ASCII adjust AX before division (AAD) instruction
is then executed. Recall that the AAD instruction converts two unpacked digits in reg-
ister AX — high-order digit in register AH and low-order digit in register AL — to an
equivalent binary value, stores the result in register AL, and resets register AH.

Then a value of 1 is subtracted from register AL to adjust for the offset in the array
labelled TABLE. A value of 6 is moved to register CL, because there are six characters
per number. Register AL is then multiplied by 6, allowing the first letter in SIX to be
accessed. A loop instruction then moves the addressed number one letter at a time to
the result (RSLT) area to be displayed.

;number_table.asm
;enter a number (01 -- 12) from the keyboard
;and display the spelling of the corresponding number

;---
.STACK

;---
.DATA
PARLST LABEL BYTE
MAXLEN DB 40
ACTLEN DB ?
OPFLD DB 40 DUP(?)
TABLE DB 'ONE '

DB 'TWO '
DB 'THREE '
DB 'FOUR '
DB 'FIVE '
DB 'SIX '
DB 'SEVEN '
DB 'EIGHT '
DB 'NINE '
DB 'TEN '
DB 'ELEVEN'
DB 'TWELVE'

PRMPT DB 0DH, 0AH, 'Enter 2-digit number: $'
RSLT DB 0DH, 0AH, 'Number = $'

;---
(a) //continued on next page

Figure 14.4 Program to illustrate selecting a number from the keyboard to be
spelled and displayed: (a) the program and (b) the outputs.

;---
.CODE
BEGIN PROC FAR

;set up pgm ds
MOV AX, @DATA ;get addr of data seg
MOV DS, AX ;move addr to ds

;read prompt
MOV AH, 09H ;display string
LEA DX, PRMPT ;put addr of prompt in dx
INT 21H ;dos interrupt

;keyboard request rtn to enter characters

MOV AH, 0AH ;buffered keyboard input
LEA DX, PARLST ;put addr of parlst in dx
INT 21H ;dos interrupt

;---
;set up source and destination

LEA SI, OPFLD ;point to first number
LEA DI, RSLT + 10 ;point to destination

;get number
MOV AH, [SI] ;get 1st number
SUB AH, 30H ;unpack it
INC SI ;point to opfld+1
MOV AL, [SI] ;get 2nd number
SUB AL, 30H ;unpack it

;convert unpacked number in ax
;to the binary equivalent in al

AAD
SUB AL, 01H ;adjust for offset in table
MOV CL, 06H ;6 characters per number
MUL CL ;mul al by 6 to find number

;---
;get number from table

LEA SI, TABLE ;put addr of table in si
MOV AH, 00H ;clear ah
ADD SI, AX ;si points to number
MOV CX, 06H ;for 6 characters

//continued on next page

14.1 One-Dimensional Arrays 579

Figure 14.4 (Continued)

NUM: MOV AL, [SI] ;get number letter
MOV [DI], AL ;put letter in rslt
INC SI ;point to next letter
INC DI ;point to next destination
LOOP NUM ;loop until cx = 0

;---
;display the result

MOV AH, 09H ;display string
LEA DX, RSLT ;put addr of rslt in dx
INT 21H ;dos interrupt

BEGIN ENDP
END BEGIN

Enter 2-digit number: 01
Number = ONE
--
Enter 2-digit number: 06
Number = SIX
--
Enter 2-digit number: 09
Number = NINE
--
Enter 2-digit number: 10
Number = TEN
--
Enter 2-digit number: 11
Number = ELEVEN
--
Enter 2-digit number: 12
Number = TWELVE

(b)

580 Chapter 14 Arrays

Figure 14.4 (Continued)

Figure 14.5 illustrates an assembly language module embedded in a C program
that adds select integers in an array and displays the resulting sums. The array is
declared as a char data type with five elements containing both positive and negative
integers. A char type array specifies elements of one byte with a range from –128 to
+127.

//array.cpp
//add two numbers in an array
#include "stdafx.h"
int main (void)

{
//define variables

char array1 [5] = {2, -4, 56, -87, 35};
char sum1, sum2, sum3, sum4, sum5;

//switch to assembly
_asm
{

MOV AL, array1[0] ;+2
ADD AL, array1[1] ;-4
MOV sum1, AL ;-2

;---
MOV AL, array1[1] ;-4
ADD AL, array1[3] ;-87
MOV sum2, AL ;-91

;---
MOV AL, array1[2] ;+56
ADD AL, array1[4] ;+35
MOV sum3, AL ;+91

;---
MOV AL, array1[3] ;-87
ADD AL, array1[2] ;+56
MOV sum4, AL ;-31

;---
MOV AL, array1[0] ;+2
ADD AL, array1[4] ;+35
MOV sum5, AL ;+37

}
//display sums

printf ("Sum1 = %d\n", sum1);
printf ("Sum2 = %d\n", sum2);
printf ("Sum3 = %d\n", sum3);
printf ("Sum4 = %d\n", sum4);
printf ("Sum5 = %d\n\n", sum5);
return 0;

} (a) //continued on next page

14.1 One-Dimensional Arrays 581

Figure 14.5 Program to add two integers in an array: (a) the program and (b) the
outputs.

Sum1 = -2
Sum2 = -91
Sum3 = 91
Sum4 = -31
Sum5 = 37

Press any key to continue . . . _
(b)

582 Chapter 14 Arrays

Figure 14.5 (Continued)

14.1.1 One-Dimensional Arrays in C

An array can be initialized by simply listing the array elements, as shown below. The
type can be char, int, float, double, or any valid C type. An array is a sequence of con-
stants of the same data type enclosed in braces. The size of the array does not have to
be specified, also shown below.

int array[5] = {1, 4, 9, 16, 25};
char array[3] = {'A', 'B', 'C'};

int array_odd[] = {1, 3, 5, 7, 9, 11);

The length of the array is one element longer than the size of the array — the com-
piler supplies the null terminator, also called the null zero (\ 0). The null character is
a special character indicating the end of the array. An automatic array is defined inside
the main () function; an external array is defined outside a function, usually before the
main () function.

Figure 14.6 illustrates program to obtain the sum of six positive and negative
floating-point numbers in an array labelled array_ flp. The keyword double is a dou-
ble-precision floating-point data type containing eight bytes for very large values. The
operator + = is an arithmetic assignment operator defined as follows:

a + = b;
is equivalent to

a = a + b;

The for loop in the program repeats a statement or block of statements a specific
number of times. When the for loop has completed the final loop, the program exits
the loop and transfers control to the first statement following the block of statements.
The syntax for the for loop is shown below.

for (initialization; conditional test; increment)
{one or more statements}

//array_flp.cpp
//add six floating-point numbers in an array

#include "stdafx.h"
int main (void)

{
//define variables

double array_flp[6] = {72.5, -104.8, -56.7, 110.5,
-255.3, 30.6};

double flp_sum = 0.0;

int ctr;

for (ctr = 0; ctr < 7; ctr++)
{flp_sum += array_flp[ctr];}

//display result
printf ("Floating-point sum = %f\n\n", flp_sum);

return 0;
}

(a)

Floating-point sum = -203.200000

Press any key to continue . . . _
(b)

14.1 One-Dimensional Arrays 583

Figure 14.6 Program to illustrate adding consecutive floating-point numbers in an
array: (a) the program and (b) the outputs.

Another example of initializing and operating on arrays in C is shown in Figure
14.7. Two 5-element arrays are initialized using two different methods: method one
uses the assignment operator (=) to establish floating-point values to the individual
elements of array1[0] through array1[4]; method two assigns floating-point values to
the elements of array2[0] through array2[4] using a for loop.

The sum of each array is then printed together with the average of the values in
each array. The arithmetic assignment operator (+ =) is utilized to obtain the sum of
the array elements in both arrays. The average of the array elements is obtained by
dividing the sum by the number of elements.

//array_init2.cpp
//two ways to initialize arrays.
//print the sum and average of the array elements

#include "stdafx.h"

int main (void)
{
//define variables

int i;

double array1 [5];
float array2 [5];

double average1;
double average2;

double sum1 = 0.0;
float sum2 = 0.0;

//---
//define array1 by assigning values to individual elements

array1[0] = 111.1;
array1[1] = 222.2;
array1[2] = 333.3;
array1[3] = 444.4;
array1[4] = 555.5;

//---
//print array1 elements, sum, and average

for (i = 0; i < 5; i++)
{

printf ("Array1 [%d] = %f\n", i, array1 [i]);
sum1 += array1[i];

}

printf ("\nSum1 = %f\n\n", sum1);

average1 = sum1/5;
printf ("Average1 = %f\n\n", average1);

(a) //continued on next page

584 Chapter 14 Arrays

Figure 14.7 Program to initialize two arrays and obtain the sum of the array ele-
ments and the average: (a) the program and (b) the outputs.

//define array2 using a for loop
for (i = 0; i < 5; i++)
{

printf ("Enter a floating-point number: ");
scanf ("%f", &array2[i]);
sum2 += array2[i];

}

//print array2 sum and average
printf ("\nSum2 = %f\n\n", sum2);

average2 = sum2/5;
printf ("Average2 = %f\n\n", average2);

return 0;
}

Array1 [0] = 111.1
Array1 [1] = 222.2
Array1 [2] = 333.3
Array1 [3] = 444.4
Array1 [4] = 555.5

Sum1 = 1666.500000

Average1 = 333.300000

--
Enter a floating-point number: 111.1
Enter a floating-point number: 222.2
Enter a floating-point number: 333.3
Enter a floating-point number: 444.4
Enter a floating-point number: 555.5

Sum2 = 1666.500000

Average2 = 333.300000

Press any key to continue . . . _
(b)

14.1 One-Dimensional Arrays 585

Figure 14.7 (Continued)

586 Chapter 14 Arrays

14.2 Multi-Dimensional Arrays
A two-dimensional array — also called a multi-dimensional array — is an array

that is accessed by two subscripts, as shown below in C for an array of integers con-
sisting of three rows and three columns (3 × 3) labelled array_int1.

int array_int1 [3] [3];

Arrays can be initialized in C by a variety of ways, as shown below for a 3 × 3 array.
The initialized array is shown in Figure 14.8.

int array_int2 [3][3] = {1, 2, 3, 4, 5, 6, 7, 8, 9};

int array_int2 [3][3] =
{

1, 2, 3,
4, 5, 6,
7, 8, 9

};

int array_int2 [3][3] ={{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};

1 2 3

4 5 6

7 8 9

array_int2[0][0]

array_int2[1][0]

array_int2[0][1]

array_int2[0][2]

0 1 2

0

1

2

Figure 14.8 A 3 × 3 array initialized to {1, 2, 3, 4, 5, 6, 7, 8, 9};

Figure 14.9 illustrates a C program that initializes a 5 × 8 array — labelled
array_int3 — to the products of the indices, then prints the resulting array. Two for
loops are utilized: one to address the row index and one to address the column index.
Note that in the first printf () instruction, the notation "%4d" represents a format spec-
ifier. All format specifiers begin with the percent sign (%). In this case, the notation
"%4d" is a minimum-field-width specifier, where the 4 represents the minimum

14.2 Multi-Dimensional Arrays 587

distance from the end of the previous column of digits to the end of the next column of
digits, allowing for right-aligned columns. The minimum field width of 4 is inserted
after the percent sign and before the format specifier (d), which indiicates a signed
decimal integer.

//array_int3.cpp
//load a 5 x 8 array with the products of the indices,
//then display the array in a row-column format

#include "stdafx.h"

int main (void)
{
//define variables

int array_int3 [5][8]; //declare a 5 x 8 array

int i, j;

//--
for (i = 0; i < 5; i++) //i is the row index

for (j = 0; j < 8; j++) //j is the column index
array_int3 [i][j] = i*j;//row index x column index

//--
for (i = 0; i < 5; i++)
{

for (j = 0; j < 8; j++)
//"%4d" in the printf () is 4-digit spacing right aligned

printf ("%4d", array_int3 [i][j]);
printf ("\n");

}
printf ("\n");

return 0;
}

(a)

 0 0 0 0 0 0 0 0
 0 1 2 3 4 5 6 7
 0 2 4 6 8 10 12 14
 0 3 6 9 12 15 18 21
 0 4 8 12 16 20 24 28

Press any key to continue . . . _
(b)

Figure 14.9 Program to initialize a 5 × 8 array to the product of the indices then
print the array: (a) the program and (b) the outputs.

588 Chapter 14 Arrays

A C program will now be presented that demonstrates the four arithmetic opera-
tions of addition, subtraction, multiplication, and division on floating-point array ele-
ments. A 2 × 3 array is defined as shown below. Figure 14.10 illustrates the C program
for the four arithmetic floating-point operations.

float array_flp_arith [2][3] = {
 110.2, 75.5, 50.8,
 45.6, 80.7, 120.0

 };

//array_flp_arith.cpp
//perform add, sub, mul, and div
//on floating-point array elements

#include "stdafx.h"

int main (void)
{

float array_flp [2][3] = {
110.2, 75.5, 50.8,
45.6, 80.7, 120.0

 };
int i, j; //i is row index; j is column index

//--
//perform floating-point addition

array_flp [0][2] = array_flp [1][0] + array_flp [1][2];
//45.6 + 120.0 = 165.6 in [0][2]; replaces 50.8

//--
//perform floating-point subtraction

array_flp [1][0] = array_flp [1][0] - array_flp [1][2];
//45.6 - 120.0 = -74.4 in [1][0]; replaces 45.6

//--
//perform floating-point multiplication

array_flp [0][1] = array_flp [0][2] * array_flp [1][0];
//165.6 x -74.4 = 240.0 in [0][1]; replaces 75.5

//continued on next page

(a)

Figure 14.10 Program to illustrate floating-point arithmetic operations on a 2 × 3
array: (a) the program and (b) the outputs.

//--
//perform floating-point division

array_flp [1][2] = array_flp [1][2] / array_flp [1][1];
//120.0 / 80.7 = 1.486988848 in [1][2]; replaces 80.7

//--
//print the array

for (i = 0; i < 2; i++)
{

for (j = 0; j < 3; j++)
printf ("%15f", array_flp [i][j]);
printf ("\n\n");

}
printf ("\n");

return 0;
}

After addition

 110.199997 75.500000 165.600006

 45.599998 80.699997 120.000000

Press any key to continue . . . _
--
After subtraction

 110.199997 75.500000 165.600006

 -74.400002 80.699997 120.000000

Press any key to continue . . . _
--
After multiplication

 110.199997 -12320.640625 165.600006

 -74.400002 80.699997 120.000000

Press any key to continue . . . _
--

(b) //continued on next page

14.2 Multi-Dimensional Arrays 589

Figure 14.10 (Continued)

--
After division — all operations finished

 110.199997 -12320.640625 165.600006

 -74.400002 80.699997 1.486989

Press any key to continue . . . _

590 Chapter 14 Arrays

Figure 14.10 (Continued)

14.3 Problems

14.1 Write an assembly language module embedded in a C program that defines an
array of five positive and negative integers. Then calculate the cumulative sum
of the five integers and display the resulting sum.

14.2 A table can be considered as a restructured one-dimensional array. Define an
array of this type using six floating-point positive and negative numbers.
Then write an assembly language module embedded in a C program to calcu-
late the cumulative sum of the six floating-point numbers and display the re-
sulting sum.

14.3 Write an assembly language module embedded in a C program that adds, sub-
tracts, and multiplies two select floating-point numbers. Three positive and
three negative floating-point numbers are to be defined, then used in the cal-
culations. Perform two calculations on each arithmetic operation and display
the corresponding results.

14.4 Write an assembly language module embedded in a C program that performs
floating-point division on positive and negative floating-point numbers. Pro-
vide two examples for each of the following divide instructions, then display
the corresponding results:

FDIV memory
FDIV ST(0), ST(i)

14.5 Write a C program that calculates the cubes of the integers 1 through 10 using
an array, where array [0] contains a value of 1.

14.3 Problems 591

14.6 Write a C program that multiplies one 4-element array of integers by another
4-element array of integers one element at a time, as shown below. Then dis-
play the resulting products.

multiplier[0] x multiplicand[0] — [3], then
multiplier[1] x multiplicand[0] — [3], then
multiplier[2] x multiplicand[0] — [3], then
multiplier[3] x multiplicand[0] — [3]

14.7 Write a C program that multiplies a 5-element array of integers by a single in-
teger, then display resulting array.

14.8 Write a C program that loads a 3 × 4 array with the products of the indices,
then display the array in a row-column format.

14.9 Define a 3 × 5 integer array as shown below. Then write a C program to per-
form addition, subtraction, multiplication, and division on select elements of
the array and display the modified array.

long array_int = {
10, 20, 30, 40, 50,
60, 70, 80, 90, 100,
200, 300, 400, 500, 600

 };

This page intentionally left blankThis page intentionally left blank

593

15
Macros

Macros and procedures are similar because they both call a sequence of instructions to
be executed in the main program. Procedures save memory and programming time,
but require linkage to invoke the procedure, which requires a CALL and a RET
instruction.

A procedure is a set of instructions that perform a specific task. They are invoked
from another procedure — the calling procedure (or program) — and provide results
to the calling program at the end of execution. Procedures (also called subroutines) are
utilized primarily for routines that are called frequently by other procedures. The pro-
cedure routine is written only once, but used repeatedly; thereby, saving storage space.
Procedures permit a program to be coded in modules; thus, making the program easier
to code and test.

A macro is a segment of code that is written only once, but can be executed many
times in the main program. When the macro is invoked (or called), the assembler
replaces the macro call with the macro code, which is essentially an instruction sub-
stitution procedure. The macro code is then placed in-line with the main program,
which usually requires more memory than a similar procedure. Macros generally
make the program more readable and increase program execution, because there is no
CALL or RET instruction.

15.1 Macro Definitions
A macro is specified by a unique name followed by the macro directive (MACRO).
The macro may include a parameter list with a comma separating each parameter;

15.1 Macro Definitions
15.2 Macro Examples
15.3 Problems

594 Chapter 15 Macros

otherwise, there is no parameter list. This is followed by the body of the macro, which
contains the instructions that define the macro. The macro code is terminated by the
end macro directive (ENDM). Thus, the macro definition is bracketed by the
MACRO and the ENDM directives.

A macro is a user-defined instruction that normally occurs at the beginning of a
program or before the macro is called. The code between the MACRO and ENDM
directives is a sequence of consecutive instructions that replace the macro being
invoked. A general macro definition is shown below.

macro_name MACRO optional parameter list
assembly language instructions
ENDM

The macro is then called from the main program, as follows:

macro_name optional parameter list

An example of a simple macro definition, called CALC, is shown in Figure 15.1,
which adds two single-digit integers. The macro is called in the main program and
includes the list of parameters that are to be utilized by the macro. Macro arguments
A and B correspond to integers 3 and 4, respectively. Figure 15.2 shows the resulting
code after the CALC macro has been invoked.

CALC MACRO A, B ;parameter list
MOV AL, A ;operand A -> al
AND AL, 0FH ;remove ascii bias

MOV BL, B ;operand B -> bl
AND BL, 0FH ;remove ascii bias

ADD AL, BL ;add operand A and operand B
OR AL, 30H ;add ascii bias to sum
ENDM

;---
.STACK
;---
.DATA
;---
.CODE

. . .

CALC 3, 4 ;invoke the macro
MOV RSLT, AL ;store result for display

. . .

Figure 15.1 Illustrates the use of a macro to add two single-digit integers showing
the macro definition and invoking the macro.

CALC MACRO A, B ;parameter list
MOV AL, A ;operand A -> al
AND AL, 0FH ;remove ascii bias

MOV BL, B ;operand B -> bl
AND BL, 0FH ;remove ascii bias

ADD AL, BL ;add operand A and operand B
OR AL, 30H ;add ascii bias to sum
ENDM

;---
.STACK
;---
.DATA
;---
.CODE

. . .
;---
;macro is in-line with the main program

CALC 3, 4 ;invoke the macro and pass parameters
MOV AL, 3 ;operand 3 -> al
AND AL, 0FH ;remove ascii bias

MOV BL, 4 ;operand 4 -> bl
AND BL, 0FH ;remove ascii bias

ADD AL, BL ;add operand 3 and operand 4
OR AL, 30H ;add ascii bias to sum

;---
MOV RSLT, AL ;store result for display

. . .

15.1 Macro Definitions 595

Figure 15.2 Illustrates the program segment after the macro has been invoked.

A macro can be called many times in a program and the code in a macro is repro-
duced each time the macro is invoked; however, there is only one macro definition in
a program. Figure 15.3 shows a complete assembly language program that illustrates
using the CALC macro, as defined in Figure 15.1 and Figure 15.2. The CALC macro
is invoked twice using different arguments (parameters) and the resulting sums are
then displayed. The arguments cannot designate a CPU register. The macro is defined
at the beginning of the program before any segment is declared so that it can replace
the macro reference where it is invoked in the program. Since the macro is called
twice, two different result areas are required to store the two sums that will be dis-
played.

;macro_add.asm
;calculate (A + B)

;define calc macro
;---
CALC MACRO A, B

MOV AL, A
AND AL, 0FH ;remove ascii bias
MOV BL, B
AND BL, 0FH ;remove ascii bias
ADD AL, BL
OR AL, 30H ;add ascii bias to sum
ENDM

;---
.STACK
;---
.DATA
RSLT1 DB 0DH, 0AH, 'Result1 = $'
RSLT2 DB 0DH, 0AH, 'Result2 = $'
;---
.CODE
BEGIN PROC FAR

;set up pgm ds

MOV AX, @DATA ;put addr of data seg in ax
MOV DS, AX ;put addr in ds

;---
;call the macro

CALC 3, 4
MOV RSLT1+12, AL

;---
MOV AH, 09H ;display string--to display sum
LEA DX, RSLT1 ;put addr of rslt in dx
INT 21H

;---
;call the macro

CALC 6, 3
MOV RSLT2+12, AL

;---
MOV AH, 09H ;display string--to display sum
LEA DX, RSLT2 ;put addr of rslt in dx
INT 21H

;---
BEGIN ENDP

END BEGIN (a) //continued on next page

596 Chapter 15 Macros

Figure 15.3 Assembly language program invoking the CALC macro twice to add
two single-digit integers: (a) the program and (b) the outputs.

Result1 = 7
Result2 = 9 (b)

15.2 Macro Examples 597

Figure 15.3 (Continued)

15.2 Macro Examples
This section presents examples using macros with and without parameters. The exam-
ples consist of arithmetic operations, a code conversion program, and a sorting pro-
gram that sorts numbers in ascending numerical order, among others.

Example 15.1 This example uses a macro that contains no parameters. The program
adds a 2-digit augend and a 2-digit addend that are entered from the keyboard. The
assembly language program uses the ASCII adjust after addition (AAA) instruction in
the execution of the program. Figure 15.4 shows the parameter list (PARLST) in the
data segment that contains the augend in OPFLD and OPFLD + 1 and the addend in
OPFLD + 2 and OPFLD + 3. Figure 15.5 illustrates the program to calculate the sum
of the two operands.

MAX ACT OP +1 +2 +3
PARLST 3n 3n 3n 3n

SI DI
Augend Addend

Figure 15.4 Parameter list containing the 2-digit augend and the 2-digit addend
that are entered from the keyboard as hexadecimal numbers.

;macro_add2.asm
;calculate the sum of two 2-digit integers

;define calc macro
;---
CALC MACRO
;set up addresses for ascii numbers

CLC ;clear the carry flag (CF)
LEA SI, OPFLD+1 ;addr of augend low-order #
LEA DI, OPFLD+3 ;addr of addend low-order #
LEA BX, RSLT+10 ;addr of sum low-order #
MOV CX,2 ;two loops for two digits

(a) //continued on next page

Figure 15.5 Program that uses a macro to add two 2-digit operands: (a) the pro-
gram and (b) the outputs.

;calculate sum
LP1: MOV AH, 00 ;clear ah; aaa adds 1 to ah

MOV AL, [SI] ;get augend #
ADC AL, [DI] ;add ascii # with carry
AAA ;convert al sum to valid bcd #

MOV [BX], AL ;move sum to next high-order loc
DEC SI ;si points next high-order aug #
DEC DI ;di points next high-order add #
DEC BX ;bx points next high-order sum
LOOP LP1 ;if cx !=0, loop; get next #

;change sum to ascii for display

LEA BX, RSLT+10 ;addr of low-order sum
MOV CX, 2 ;two loops for two digits

LP2: MOV AL, [BX] ;move next low-order sum # to al
OR AL, 30H ;add ascii bias for display
MOV [BX], AL ;move digit to sum location
DEC BX ;bx points next high-order sum
LOOP LP2 ;if cx !=0, loop

;change next # to ascii

OR AH, 30H ;add ascii bias to display carry
MOV [BX], AH ;when finished, store carry
ENDM

;---
.STACK

;---
.DATA
PARLST LABEL BYTE
MAXLEN DB 10
ACTLEN DB ?
OPFLD DB 10 DUP(?)
PRMPT DB 0DH, 0AH, 'Enter 2 augend & 2 addend digits: $'
RSLT DB 0DH, 0AH, 'Sum = $'

;---
.CODE
BEGIN PROC FAR

;set up pgm ds

MOV AX, @DATA ;put addr of data seg in ax
MOV DS, AX ;put addr in ds

//continued on next page

598 Chapter 15 Macros

Figure 15.5 (Continued)

;read prompt
MOV AH, 09H ;display string
LEA DX, PRMPT ;put addr of prompt in dx
INT 21H ;dos interrupt

;keyboard request to enter characters
MOV AH, 0AH ;buffered keyboard input
LEA DX, PARLST ;put addr of parlst in dx
INT 21H ;dos interrupt

;---
;call the macro

CALC

;---
;display result

MOV AH, 09H ;display string
LEA DX, RSLT ;put addr of rslt in dx
INT 21H ;dos interrupt

BEGIN ENDP

END BEGIN

Enter 2 augend & 2 addend digits: 1111
Sum = 022
--
Enter 2 augend & 2 addend digits: 3478
Sum = 112
--
Enter 2 augend & 2 addend digits: 7777
Sum = 154
--
Enter 2 augend & 2 addend digits: 9999
Sum = 198
--
Enter 2 augend & 2 addend digits: 2586
Sum = 111
--
Enter 2 augend & 2 addend digits: 4444
Sum = 088
--
Enter 2 augend & 2 addend digits: 9876
Sum = 174

(b)

15.2 Macro Examples 599

Figure 15.5 (Continued)

600 Chapter 15 Macros

Example 15.2 This example uses three calls to a macro that contains two parame-
ters. The program obtains the product of two unpacked single-digit BCD operands.
The assembly language program uses the ASCII adjust AX after multiplication (AAM)
instruction in the execution of the program. Figure 15.6 illustrates the assembly lan-
guage program to calculate the product of the two operands.

;macro_mul.asm
;use multiple macro calls to obtain the products
;of two unpacked bcd operands per macro execution

;define the MULT macro
;---
MULT MACRO A, B
;get the two numbers and unpack them

MOV AL, A ;get multiplicand
AND AL, 0FH ;unpack multiplicand

MOV AH, B ;get multiplier
AND AH, 0FH ;unpack multiplier

;multiply the two numbers,
;adjust them, and add ascii bias

MUL AH ;ax = al x ah
AAM ;ax = 0d 0d
OR AX, 3030H ;add ascii bias
ENDM

;---
.STACK

;---
.DATA
RSLT1 DB 0DH, 0AH, 'Product1 = $'
RSLT2 DB 0DH, 0AH, 'Product2 = $'
RSLT3 DB 0DH, 0AH, 'Product3 = $'

;---
.CODE
BEGIN PROC FAR

;set up pgm ds
MOV AX, @DATA ;put addr of data seg in ax
MOV DS, AX ;move addr to ds

//continued on next page
(a)

Figure 15.6 Program using three macro calls to obtain the product of two
unpacked BCD operands: (a) the program and (b) the outputs.

;---
;call the macro

MULT 9, 9

;display the result
MOV RSLT1+13, AH ;move high product to result
MOV RSLT1+14, AL ;move low product to result

MOV AH, 09H ;display string
LEA DX, RSLT1 ;addr of rslt1 (product) -> dx
INT 21H ;dos interrupt

;---
;call the macro

MULT 6, 5

;display the result
MOV RSLT2+13, AH ;move high product to result
MOV RSLT2+14, AL ;move low product to result

MOV AH, 09H ;display string
LEA DX, RSLT2 ;addr of rslt2 (product) -> dx
INT 21H ;dos interrupt

;---
;call the macro

MULT 3, 8

;display the result
MOV RSLT3+13, AH ;move high product to result
MOV RSLT3+14, AL ;move low product to result

MOV AH, 09H ;display string
LEA DX, RSLT3 ;addr of rslt3 (product) -> dx
INT 21H ;dos interrupt

;---
BEGIN ENDP

END BEGIN

Product1 = 81
Product2 = 30
Product3 = 24 (b)

15.2 Macro Examples 601

Figure 15.6 (Continued)

602 Chapter 15 Macros

Example 15.3 This example presents an assembly language program that converts a
binary code to the corresponding Gray code. The Gray code belongs to a class of
cyclic codes called reflective codes and is an unweighted code where only one input
changes between adjacent code words. The ith Gray code bit gi can be obtained from
the corresponding binary code word by the following algorithm:

gn–1 = bn–1
 gi = bi ⊕ bi+1 (15.1)

for 0 ≤ i ≤ n – 2, where the symbol ⊕ denotes modulo-2 addition defined as:

0 ⊕ 0 = 0 0 ⊕ 1 = 1 1 ⊕ 0 = 1 1 ⊕ 1 = 0

Using the algorithm shown in Equation 15.1, an 8-bit binary code can be con-
verted to the corresponding 8-bit Gray code, as follows:

Gray Binary
g7 = b7

g6 = b6 ⊕ b7

g5 = b5 ⊕ b6

g4 = b4 ⊕ b5

g3 = b3 ⊕ b4

g2 = b2 ⊕ b3

g1 = b1 ⊕ b2

g0 = b0 ⊕ b1

For example, a binary code word of 10001101 converts to the corresponding Gray
code word of 11001011, as shown in Figure 15.7.

b7 b6 b5 b4 b3 b2 b1 b0
⊕ ⊕ ⊕ ⊕

Binary code word: 1 0 0 0 1 1 0 1
⊕ ⊕ ⊕

Gray code word: 1 1 0 0 1 0 1 1
g7 g6 g5 g4 g3 g2 g1 g0

Figure 15.7 Example of converting a binary code word of 10001101 to the Gray
code word of 11001011.

15.2 Macro Examples 603

Figure 15.8 shows the parameter list (PARLST) in the data segment that contains
representative binary data that was entered from the keyboard and stored in the
OPFLD section. This data will be used by an assembly language program presented in
this example. The first bit entered is the high-order bit and is stored in location OP
(OPFLD + 0). The eight bits of the OPFLD depict a binary number of 10001101 in
hexadecimal notation, which includes the ASCII bias of 3 for numerical digits. The
appropriate bits are then exclusive-ORed, the ASCII bias is added to the result, and the
resulting Gray code bit is stored in the result area (RSLT). When two ASCII digits are
exclusive-ORed, the result is a digit with no ASCII bias.

⊕ ⊕ ⊕ ⊕
MAX ACT OP +1 +2 +3 +4 +5 +6 +7

PARLST 31 30 30 30 31 31 30 31
⊕ ⊕ ⊕

SI

Figure 15.8 Example of binary data entered from the keyboard and stored in the
OPFLD location of the parameter list.

Figure 15.9 illustrates an assembly language program — using a macro
(BIN_GRAY) with no parameters — to translate an 8-bit binary code word to the cor-
responding 8-bit Gray code word. The binary data is entered from the keyboard.
Since no operation is required to translate the high-order binary bit to the high-order
Gray code bit, a count of seven is entered in the counter general-purpose register CX
— Gray code bit g7 is obtained directly from the binary bit b7.

;macro_bin_gray.asm
;use a macro with no parameters
;to convert from binary to gray code

;define the binary-to-gray macro (BIN_GRAY)
;---
BIN_GRAY MACRO
;move first bit unchanged to rslt

MOV AL, [SI] ;si points to 1st bit in opfld
MOV [DI], AL ;di points to the rslt + 14

//continued on next page
(a)

Figure 15.9 An assembly language program to translate an 8-bit binary code word
to the corresponding Gray code word: (a) the program and (b) the outputs.

;set up loop to process characters
NEXT: MOV AL, [SI] ;move bit to al

INC SI ;inc si to point to next bit
MOV AH, [SI] ;move next bit to ah
XOR AL, AH ;perform the xor operation
ADD AL, 30H ;add ascii bias
INC DI ;inc di to point to

;... the next location in rslt
MOV [DI], AL ;move the gray code bit to

;... the rslt area
LOOP NEXT ;decrement cx by 1.

;If cx != 0, then loop
ENDM

;---
.STACK

;---
.DATA
PARLST LABEL BYTE
MAXLEN DB 12
ACTLEN DB ?
OPFLD DB 12 DUP(?)
PRMPT DB 0DH, 0AH, 'Enter 8 binary bits: $'
RSLT DB 0DH, 0AH, 'Gray code = $'

;---
.CODE
BEGIN PROC FAR

;set up pgm ds
MOV AX, @DATA ;put addr of data seg in ax
MOV DS, AX ;put addr in dx

;read prompt

MOV AH, 9 ;display string
LEA DX, PRMPT ;put addr of prompt in dx
INT 21H ;dos interrupt

;keyboard request rtn to enter numbers

MOV AH, 0AH ;buffered keyboard input
LEA DX, PARLST ;load addr of parlst
INT 21H ;dos interrupt

//continued on next page

604 Chapter 15 Macros

Figure 15.9 (Continued)

;set up count for number of bits
MOV CX, 7 ;set up count
LEA SI, OPFLD ;set up addr of opfld
LEA DI, RSLT + 14 ;set up addr of rslt

;---
;call the macro
 BIN_GRAY

;---
;display the result

MOV AH, 9 ;display string
LEA DX, RSLT ;put addr of rslt in dx
INT 21H ;dos interrupt

BEGIN ENDP

END BEGIN

Enter 8 binary bits: 10101110
Gray code = 11111001
--
Enter 8 binary bits: 01111010
Gray code = 01000111
--
Enter 8 binary bits: 10001101
Gray code = 11001011
--
Enter 8 binary bits: 11111111
Gray code = 10000000
--
Enter 8 binary bits: 01010110
Gray code = 01111101

(b)

15.2 Macro Examples 605

Figure 15.9 (Continued)

Example 15.4 Figure 15.10 illustrates an assembly language program to calculate
the area of a triangle from two single-digit integers using a macro with two parameters.
The parameters represent the base and the height of a triangle. The ASCII bias is
removed from the parameters and the base is divided by two using a shift logical right
(SHR) instruction. The result is then multiplied by the height and converted to two
unpacked decimal numbers in register AX by the ASCII adjust AX after multiply
(AAM) instruction. The product is then converted to ASCII for display. The macro
labelled AREA is invoked three times.

;macro_area.asm
;calculate the area of triangle
;(1/2 base x height) using
;a macro with parameters

;define area macro
AREA MACRO A, B
;get the two numbers and unpack them

MOV AL, A ;get base
AND AL, 0FH ;remove ascii bias
SHR AL, 1 ;divide base by 2

MOV AH, B ;get height
AND AH, 0FH ;remove ascii bias

MUL AH ;multiply 1/2 base x height
AAM ;convert to 2 unpacked

;decimal numbers in ax
OR AX, 3030H ;convert to ascii
ENDM

;---
.STACK

;---
.DATA

AREA1 DB 0DH, 0AH, 'Area of triangle1 (4, 8) = $'
AREA2 DB 0DH, 0AH, 'Area of triangle2 (8, 8) = $'
AREA3 DB 0DH, 0AH, 'Area of triangle3 (7, 9) = $'
AREA4 DB 0DH, 0AH, 'Area of triangle4 (8, 5) = $'

;---
.CODE
BEGIN PROC FAR

;set up pgm ds

MOV AX, @DATA ;put addr of data seg in ax
MOV DS, AX ;move addr to ds

;---
//continued on next page

(a)

606 Chapter 15 Macros

Figure 15.10 Program to calculate the area of a triangle using a macro with two
parameters: (a) the program and (b) the outputs.

;---
;call the area macro for area1

AREA 4, 8
;display the area of triangle 1

MOV AREA1+29, AH ;move high number
MOV AREA1+30, AL ;move low number

MOV AH, 09H ;display string
LEA DX, AREA1 ;addr of area1 to dx
INT 21H ;dos interrupt

;---
;call the area macro for area2

AREA 8, 8
;display the area of triangle 2

MOV AREA2+29, AH ;move high number
MOV AREA2+30, AL ;move low number

MOV AH, 09H ;display string
LEA DX, AREA2 ;addr of area2 to dx
INT 21H ;dos interrupt

;---
;call the area macro for area3

AREA 7, 9
;display the area of triangle 3

MOV AREA3+29, AH ;move high number
MOV AREA3+30, AL ;move low number

MOV AH, 09H ;display string
LEA DX, AREA3 ;addr of area3 to dx
INT 21H ;dos interrupt

;---
;call the area macro for area4

AREA 8, 5
;display the area of triangle 4

MOV AREA4+29, AH ;move high number
MOV AREA4+30, AL ;move low number

MOV AH, 09H ;display string
LEA DX, AREA4 ;addr of area4 to dx
INT 21H ;dos interrupt

;---
BEGIN ENDP

END BEGIN //continued on next page

15.2 Macro Examples 607

Figure 15.10 (Continued)

Area of triangle1 (4, 8) = 16
Area of triangle2 (8, 8) = 32
Area of triangle3 (7, 9) = 27 //SHR rounds down if odd base
Area of triangle4 (8, 5) = 20

(b)

608 Chapter 15 Macros

Figure 15.10 (Continued)

Example 15.5 Figure 15.11 presents an assembly language program that utilizes a
macro to sort ten single-digit integers — that are entered from the keyboard — in
ascending numerical order. Since there are ten digits, only nine comparisons are
required. Also, it is not necessary to remove the ASCII bias from the digits, because
all the numbers have the same bias — the only difference is the low-order four bits.

Each number is compared to all the other numbers in the OPFLD to determine the
smallest number, which is then stored in the next lower-order location of the OPFLD
area of the parameter list. The program enters five separate 10-digit sequences, then
displays the sorted numbers in ascending numerical order.

;macro_sort.asm
;sort 10 integers in ascending numerical order

;---
;define the sort macro
SORT MACRO

LEA SI, OPFLD ;addr of first byte -> si
MOV DX, 9 ;# of bytes -> dx as ctr

LP1: MOV CX, DX ;cx is loop2 ctr

LP2: MOV AL, [SI] ;number -> al
MOV BX, CX ;bx is base addr
CMP AL, [BX+SI] ;is the number <= to al?
JBE NEXT ;yes, get next number
XCHG AL, [BX+SI] ;number is !<=; put # in al
MOV [SI], AL ;put small number in opfld

NEXT: LOOP LP2 ;loop until all #s are compared

INC SI ;si points to next number
DEC DX ;decrement loop ctr
JNZ LP1 ;compare remaining numbers
ENDM

(a) //continued on next page

Figure 15.11 Program to sort ten single-digit integers in ascending numerical order
using a macro: (a) the program and (b) the outputs.

;---
.STACK

;---
.DATA
PARLST LABEL BYTE
MAXLEN DB 15
ACTLEN DB ?
OPFLD DB 15 DUP(?)
PRMPT DB 0DH, 0AH, 'Enter numbers: $'
RSLT DB 0DH, 0AH, 'Sorted numbers = $'

;---
.CODE
BEGIN PROC FAR

;set up pgm ds

MOV AX, @DATA ;put addr of data seg in ax
MOV DS, AX ;move addr to ds

;read prompt
MOV AH, 09H ;display string
LEA DX, PRMPT ;put addr of prompt in dx
INT 21H ;dos interrupt

;keyboard request rtn to enter characters

MOV AH, 0AH ;buffered keyboard input
LEA DX, PARLST ;put addr of parlst in dx
INT 21H ;dos interrupt

;---
;and call sort macro

SORT

;---
;set up src (opfld) and dst (rslt)

LEA SI, OPFLD
LEA DI, RSLT+20
MOV CL, 10

;move sorted numbers to result area
RSLT_AREA:

MOV BL, [SI] ;opfld number to bl
MOV [DI], BL ;number to result area
INC SI ;set up next source
INC DI ;set up next destination
LOOP RSLT_AREA ;loop if cl != 0 //next page

15.2 Macro Examples 609

Figure 15.11 (Continued)

;display sorted numbers
MOV AH, 09H ;display string
LEA DX, RSLT ;put addr of rslt in dx
INT 21H ;dos interrupt

BEGIN ENDP

END BEGIN

Enter numbers: 9873453241
Sorted numbers = 1233445789
--
Enter numbers: 7652348971
Sorted numbers = 1234567789
--
Enter numbers: 5406798373
Sorted numbers = 0334567789
--
Enter numbers: 9876543210
Sorted numbers = 0123456789
--
Enter numbers: 5151515151
Sorted numbers = 1111155555

(b)

610 Chapter 15 Macros

Figure 15.11 (Continued)

Example 15.6 This example uses a macro in a program to detect odd parity in an 8-
bit code word that is entered from the keyboard. The parity bit is an extra bit that is
added to a code word to make the overall parity — the code word bits plus the parity
bit — contain either an odd or an even number of 1s, as shown in Table 15.1 for both
odd and even parity using a 4-bit code word.

The parity bit can be generated by modulo-2 addition, as previously defined in Ex-
ample 15.3. Equation 15.2 depicts a method to maintain even parity for a 4-bit mes-
sage m3 m2 m1 m0 using modulo-2 addition. The parity bit for odd parity generation is
the complement of Equation 15.2.

Parity bit (even) = m3 ⊕ m2 ⊕ m1 ⊕ m0 (15.2)

Parity implementation can detect an odd number of errors, but cannot correct the
errors, because the bits in error cannot be determined. If a single error occurred, then
an incorrect code word would be generated and the error would be detected. If two
errors occurred, then the parity would be unchanged and still be correct; however, the
code word would be incorrect.

15.2 Macro Examples 611

Table 15.1

Code Word Parity Bit (odd) Code Word Parity Bit (even)
0000 1 0000 0
0001 0 0001 1
0010 0 0010 1
0011 1 0011 0
0100 0 0100 1
0101 1 0101 0
0110 1 0110 0
0111 0 0111 1
1000 0 1000 1
1001 1 1001 0
1010 1 1010 0
1011 0 1011 1
1100 1 1100 0
1101 0 1101 1
1110 0 1110 1
1111 1 1111 0

Parity Bit Generation

Figure 15.12 shows the parameter list containing one of the 8-bit code words —
10001101 — that will be used in the program. Bits (30H) and (31H) are hexadecimal
notations for binary bits 0 and 1, respectively. Since the exclusive-OR function will be
used in the macro, the ASCII bias does not have to be removed. Register SI points to
the first bit in the OPFLD area of the parameter list.

Figure 15.13 shows the program utilizing a macro called PARITY that contains no
parameters. General-purpose register BL is used to contain the generated odd parity
bit for the 8-bit code word. The register is initialized to a value of 01H and will be tog-
gled when each code word bit is examined, depending on the bits in the code word.
Register CX contains a value of eight, which is the number of bits in the code word,
and will be used with the LOOP instruction in the macro.

MAX ACT OP +1 +2 +3 +4 +5 +6 +7
PARLST 31 30 30 30 31 31 30 31

SI

Figure 15.12 Example of the parameter list for a program to detect the parity in an
8-bit code word.

;macro_parity.asm
;use a macro to indicate the parity of 8 bits

;---
;define the parity macro
PARITY MACRO
NEXT: MOV AL, [SI] ;bit -> al

CMP AL, 31H ;is bit = 1?
JNE ZERO ;if bit = 0, jump
XOR BL, 01H ;if bit = 1, toggle parity flag

ZERO: INC SI ;si points to next bit
LOOP NEXT ;if cx != 0, get next bit
ENDM

;---
.STACK

;---
.DATA
PARLST LABEL BYTE
MAXLEN DB 15
ACTLEN DB ?
OPFLD DB 20 DUP(?)
PRMPT DB 0DH, 0AH, 'Enter code word: $'
RSLT DB 0DH, 0AH, 'Parity bit = $'

;---
.CODE
BEGIN PROC FAR

;set up pgm ds
MOV AX, @DATA ;put addr of data seg in ax
MOV DS, AX ;move addr to ds

;read prompt
MOV AH, 09H ;display string
LEA DX, PRMPT ;addr of prompt -> dx
INT 21H ;dos interrupt

;keyboard request to enter characters
MOV AH, 0AH ;buffered keyboard input
LEA DX, PARLST ;addr of parlst -> dx
INT 21H ;dos interrupt

;---
//continued on next page

(a)

612 Chapter 15 Macros

Figure 15.13 Program to generate the odd parity bit for an 8-bit code word: (a) the
program and (b) the outputs.

;---
;initialize parity flag to 1 and count in cx to 8
;initialize source (si) and destination (di) addr

MOV BL, 01H ;set parity flag in bl to 1
MOV CX, 08H ;number of bits is 8
LEA SI, OPFLD ;addr of opfld -> si
LEA DI, RSLT+15 ;addr of result -> di

;---
;call parity macro
 PARITY

;---
OR BL, 30H ;add ascii bias for parity
MOV [DI], BL ;parity bit -> result area

;---
;display result

MOV AH, 09H ;display string
LEA DX, RSLT ;addr of result -> dx
INT 21H ;dos interrupt

BEGIN ENDP
END BEGIN

Enter code word: 10001101
Parity bit = 1
--
Enter code word: 10110000
Parity bit = 0
--
Enter code word: 10101010
Parity bit = 1
--
Enter code word: 11111111
Parity bit = 1
--
Enter code word: 01111111
Parity bit = 0
--
Enter code word: 11000011
Parity bit = 1
--
Enter code word: 11001110
Parity bit = 0

(b)

15.2 Macro Examples 613

Figure 15.13 (Continued)

614 Chapter 15 Macros

15.3 Problems

All of the programs in this section are to be written in assembly language, not embed-
ded in a C program.

15.1 Design a program using a macro that adds two single-digit packed BCD oper-
ands that are entered from the keyboard and display the results. Use hexadec-
imal characters 0 through 9 and higher-valued hexadecimal numbers as valid
packed BCD numbers, such as the ASCII characters @ (40H) through Y (59H)
and ‘ (60H) through y (79H). For example, 2 (32H) + R(52H) = 084 and s(73H)
+ 9(39H) = 112.

15.2 Write a program using a macro that sorts from two to ten single-digit integers
in ascending numerical order that are entered from the keyboard. Enter several
different sets of integers ranging from two integers to ten integers and display
the results.

15.3 Write a program using a macro that is invoked twice to exchange two single-
digit integers and to exchange two alphabetic characters and display the results.
The macro is defined using two parameters.

15.4 Write a program using a macro to reverse the order and change to uppercase
— if necessary — all alphabetic characters that are entered from the keyboard.
Enter several sets of characters of different lengths, both lowercase and up-
percase, and display the results.

15.5 Write a program that uses two macros. One macro generates an odd parity bit
for an 8-bit code word that is entered from the keyboard. If the parity is odd,
then display a 0; if the parity is even, then display a 1. The other macro re-
moves all nonletters from data that are entered from the keyboard.

15.6 Write a program that uses two macros. One macro is called twice to switch the
locations of two characters that are listed as parameters. The other macro has
no parameters and makes all characters uppercase that are entered from the
keyboard. It also reverses the order of the characters.

15.7 Write a program using a macro with no parameters that adds two single-digit
integers that are entered from the keyboard. Enter several integers and display
the results.

15.8 Write a program using a macro with no parameters that multiplies two single-
digit integers that are entered from the keyboard. Enter several integers and
display the results.

15.3 Problems 615

15.9 Write an assembly language program — not using a macro — that performs
subtraction on two 2-digit integers. The program can easily be changed to a
macro-oriented program by simply placing the arithmetic part of the program
within the macro segment. Enter several different sets of integer pairs in
which the entire minuend is greater than, equal to, or less than the entire sub-
trahend. Also enter integers in which the individual minuend digits are great-
er than, equal to, or less than the individual subtrahend digits. Display the
results of all operations. If the subtraction operation results in a negative dif-
ference, then display a negative sign for the result. The parameter list is
shown below for this problem.

Minuend Subtrahend

MAX ACT OP +1 +2 +3
PARLST 3n 3n 3n 3n

This page intentionally left blankThis page intentionally left blank

16
Interrupts and Input/Output
Operations

An interrupt is an asynchronous occurrence that is generally initiated by an input/out-
put device; for example, the device is ready to transfer data or to receive data. When an
interrupt occurs, the processor stops execution of the current operation and transfers
control to a procedure that is specifically designed to handle the interrupt. Application
programs can access these procedures — whose addresses are located in an interrupt
descriptor table (IDT) of the operating system — by means of instructions that are
similar to the procedure CALL instruction. The IDT provides access to predefined
and used-defined interrupts and each entry in the IDT is identified by an interrupt vec-
tor number.

An exception is similar to an interrupt, but is a synchronous event caused by a pre-
defined condition that occurs during the execution of an instruction. This chapter also
provides an introduction to input/output operations, such as direct memory access
(DMA), memory-mapped I/O, and the input/output instructions (IN/OUT).

16.1 Interrupts
This section provides a brief introduction to calling interrupts and returning from
interrupts. When an interrupt occurs, the processor suspends operation of the current

16.1 Interrupts
16.2 Direct Memory Access
16.3 Memory-Mapped I/O
16.4 In/Out Instructions
16.5 Problems
617

program and pushes the contents of the following registers onto the stack: first the
EFLAGS register, then the code segment (CS) register, and then the instruction pointer
(EIP) register. The processor also resets the interrupt enable flag (IF) so that any addi-
tional interrupts will not affect the execution of the interrupt program. An error code
may also be pushed onto the stack.

618 Chapter 16 Interrupts and Input/Output Operations

A software-generated interrupt is initiated by the call to interrupt procedure
(INT n) instruction, which is a typical mnemonic for a call to an interrupt handler. The
syntax for a typical interrupt call is shown below.

INT immed8 //immed8 is an immediate
//byte that specifies an
//interrupt vector number

The destination operand of an interrupt or exception specifies an address range of
0 to 255 in the IDT, where each address contains an offset of 8-byte descriptors (pro-
tected mode) or 4-byte interrupt vectors (real-address mode: IP:CS). The IDT is
referred to as the interrupt vector table (IVT) in real-address mode. The contents of the
IDT and IVT addresses point to an operating system procedure for a particular type of
interrupt. There are 18 predefined interrupts and exceptions, 224 user-defined inter-
rupts, and 13 addresses in the IDT that are reserved.

Return from an interrupt is generated by the interrupt return (IRET) instruction,
which is similar to the procedure far return (RET) instruction. The IRET instruction
pops the previous contents of the CS register, the EIP register, and the EFLAGS reg-
ister from the stack that were pushed onto the stack by the interrupt. The stack pointer
(ESP) register is incremented to the correct setting and execution of the interrupted
program continues at the instruction immediately following the INT instruction. Four
typical interrupt vectors are shown below.

• The INT 00H instruction is used to generate an interrupt for divide by zero.

INT 00H //generates an interrupt for
//DIV and IDIV instructions if an
//attempt is made to
//divide by zero,
//located at address 000H

• The INT 04H instruction is used to generate an interrupt for divide overflow.

INT 04H //generates an interrupt for a
//an arithmetic operation if
//the overflow flag is set,
//located at address 010H

• The INT 21H instruction is used to generate an interrupt for screen display using
a function code of 09H. This interrupt is used to display a string that is entered
elsewhere in the program and is terminated by a $ sign (24H). The string is

bracketed by apostrophes. All the INT 21H instructions require a function code
to be stored in general-purpose register AH prior to executing the INT 21H
instruction.

INT 21H //A function code of 09H in AH

16.2 Direct Memory Access 619

• The INT 21H instruction is used to generate an interrupt for buffered keyboard
input using a function code of 0AH. This interrupt is used to store a character
string that is entered from the keyboard into a parameter list. All the INT 21H
instructions require a function code to be stored in general-purpose register AH
prior to executing the INT 21H instruction.

INT 21H //A function code of 0AH in AH

The interrupt flag (IF) in the EFLAGS register can be set by the set interrupt flag
(STI) instruction. When the IF flag is set by the STI instruction, the processor com-
mences responding to maskable interrupts after the next instruction has been executed,
permitting interrupts to be enabled just prior to returning from a procedure. Interrupts
can be masked by an external device so that they are ignored by the processor. Non-
maskable interrupts are those that must be acknowledged by the processor. The IF flag
can be reset by the clear interrupt flag (CLI), permitting the processor to disregard
maskable interrupts.

Input/output devices have highest priority over central processing units when
transferring data to or from main memory, because they are inherently slower and can-
not have the data transfer stopped temporarily. Disk drives and tape drives are exam-
ples of I/O subsystems in this category. This may be resolved by including in the I/O
device data bus hardware a first-in, first-out (FIFO) buffer to temporarily store the data
during a data transfer operation. Another technique is to grant the I/O device bus con-
trol when requested — a process called cycle stealing from the CPU, although this
decreases the speed of the CPU.

In summary, interrupts transfer control from the current program to an interrupt
service routine (ISR) when an internally or externally generated interrupt request has
been generated. Internally generated interrupt requests originate from the CPU — for
example, when a divide by zero, a divide overflow, or an INT 21H instruction occurs.
Externally generated interrupt requests are asynchronous events that originate from an
I/O device and suspend the currently running CPU program. When the interrupt oper-
ation is completed, the CPU restores the appropriate registers and returns to the inter-
rupted program.

16.2 Direct Memory Access
Direct memory access (DMA) allows an I/O device control unit to transfer data
directly to or from main memory without CPU intervention. This is a much faster data
transfer operation allowing both the processor and the I/O device to operate concur-
rently in most cases. The DMA technique is used primarily to transfer large amounts

of data between the I/O device and main memory without continual intervention by the
CPU. DMA transfers involve a device control unit specifically designed for DMA
operations and replaces software with hardware.

When the CPU receives a DMA request from an I/O device, it suspends its oper-
ation at certain breakpoints and releases control of the memory bus, address bus, and

620 Chapter 16 Interrupts and Input/Output Operations

control signals, then asserts an acknowledgement to the I/O device. Possible break-
points are shown in Figure 16.1 for a typical instruction cycle. These breakpoints
allow the processor to suspend execution of the current program without loss of pro-
gram continuity. The breakpoints occur just prior to when the processor requires use
of the buses. Interrupt breakpoints are allowed only at the end of an instruction cycle.

CPU
cycle

Instruction cycle

Possible DMA
breakpoints

Interrupt
breakpoint

Fetch
instruction

Decode
instruction

and
generate
address

Fetch
operand

Execute
instruction

Store
result

Figure 16.1 Typical instruction cycle showing possible DMA breakpoints.

Figure 16.2 shows a typical I/O device subsystem containing a dedicated DMA
control unit and I/O device for a single-bus structure. The DMA device control unit
contains the following registers:

• A memory data register (MDR), which contains the data to be transferred to
memory or received from memory.

• A memory address register (MAR), which contains the starting address in mem-
ory where the data is to be stored or from where the data is to be retrieved. When
a word of data is transferred to or from memory, the contents of MAR are incre-
mented to the next contiguous address.
• A word count register (WCR), which is used to determine the number of words
to be transferred. When a word of data is transferred to or from memory, the
contents of WCR are decremented by a value of one.

• A command register, which is used to contain the type of DMA operation to be

16.2 Direct Memory Access 621

performed — either a read or a write operation. The register may contain several
different commands depending on the I/O device. This information may be con-
tained in a separate control and status register.

• A control and status register (CSR), which may contain information on the status
of the device — whether the device is ready, the type of data transfer operation
— read or write, any errors that occured during the data transfer operation, an
enable interrupt bit, and any other bits that are specific to the type of I/O device.

DMA control unit

Command
register MAR MDR

WCR

Device

Address bus

Data bus

I/O device subsystem

CSR

Figure 16.2 Typical single-bus hardware for a DMA input/output device.
A DMA transfer is initiated by the CPU by sending the device control unit the
starting memory address, the number of words to be transferred, and a read or write
command. When the data transfer is complete, the control unit signals the CPU by
asserting an interrupt signal.

622 Chapter 16 Interrupts and Input/Output Operations

The address bus addresses all five blocks shown in Figure 16.2. The data bus con-
tains the appropriate information depending on the specific register that is addressed.
The CPU loads the starting address of memory into MAR, then loads the number of
words to be transferred into WCR, then sends the command (read or write) to the com-
mand register — alternatively, the command may be placed in the CSR. The WCR
may send data to the CPU that represents a residual count; that is, a count indicating
that not all data was transferred to or from memory.

The command register in Figure 16.2 may contain several different commands
depending on the type of I/O device. For example, a tape drive can be issued any of the
following commands, among others:

• A read command to read a record on tape.

• A write command to write a record on tape.

• A rewind command to rewind the tape to the beginning of tape.

• A back space command to back space over a record or to back space over a spe-
cific number of records.

• A forward space command to forward space over a record or to forward over a
specific number of records.

• A write end of file command.

16.3 Memory-Mapped I/O
For single-bus machines, the same bus can be utilized for both memory and I/O
devices. Therefore, I/O devices may be assigned a unique address within main mem-
ory, which is partitioned into separate areas for memory and I/O devices. Using the
memory-mapped technique, I/O devices are accessed in the same way as memory
locations, providing significant flexibility in managing I/O operations. Thus, there are
no separate I/O instructions, and the I/O devices can be accessed utilizing any of the
memory read or write instructions and their addressing modes.

The memory space of an I/O device is associated with a specific set of address val-
ues used as registers. Therefore, when the CPU generates a memory address, it may
refer to a main memory address or to a register in an I/O device, depending on the

address. Using an I/O-mapped technique, I/O devices are accessed using the IN and
OUT type of instructions described in Section 16.4.

Figure 16.3 illustrates the organization for a typical memory-mapped I/O struc-
ture. A set of four interface paths is required to communicate with memory and I/O
devices: a data bus, an address bus, a read signal, and a write signal. The CPU decodes

16.4 In/Out Instructions 623

a memory reference instruction, then activates the read or write control signal. This
initiates either a memory access cycle or an I/O transfer, depending on the address.

Data bus
Address bus
Read
Write

memory
Main CPU

I/O port 1
Registers

I/O port 2
Registers

Device
A

Device
B

Memory
addresses

I/O
addresses

Figure 16.3 Typical memory-mapped I/O organization for a single-bus structure.

Communicating to an I/O device, therefore, is the same as reading and writing to
memory addresses that are dedicated to the I/O device. The same protocol is used to
communicate with the CPU and an I/O device as with the CPU and main memory. An
I/O port is handled the same as a memory location; however, the memory-mapped I/O
technique reduces the number of addresses available for main memory.

16.4 In/Out Instructions
There are two types of instructions that are specifically designed to communicate with
I/O subsystems: IN and OUT. The IN instruction transfers data from an I/O port to
register AL, AX, or EAX, depending on the size of the input data. The OUT instruc-
tion transfers data from register AL, AX, or EAX to an I/O port, depending on the size
of the output data. These are referred to as register I/O instructions. The input or out-

put port is specified by either an immediate byte or the contents of register DX.

There are also two types of instructions that are specifically designed to transfer
string data between memory and an I/O port: INS and OUTS. The INS instructions
transfer string data from an I/O port to memory. These are INSD, INSW, and INSB,
which transfer doubleword, word, or byte data, respectively. The OUTS instructions

624 Chapter 16 Interrupts and Input/Output Operations

transfer string data from memory to an I/O port. These are OUTD, OUTW, and
OUTB, which transfer doubleword, word, or byte data, respectively. These are
referred to as string (block) I/O instructions. The input or output port is specified by
either an immediate byte or the contents of register DX.

The operation of the string I/O string instructions is similar to the string instruc-
tions presented in Chapter 13. The (E)SI and (E)DI registers are used for string oper-
ations as source and destination pointers, respectively — they point to string and
destination memory elements. The repeat (REP) prefixes specify the condition for
which the instruction is to be executed. The general-purpose registers (E)SI and (E)DI
are automatically incremented or decremented after each repetition of the string
instruction to point to the next byte, word, or doubleword to implement block moves
for string operations.

16.4.1 Register I/O IN Instructions

There are six categories of the IN instruction referred to as register I/O instructions:
three using immediate operands to indicate the port address for byte, word, or double-
word operands; and three using general-purpose register DX to indicate the port
address for byte, word, or doubleword operands.

The syntax for the three IN instructions using immediate port addresses is shown
below, where the source operand is the I/O port and the destination operand is a gen-
eral-purpose register.

IN register, immediate (input from port specified by
 immediate to AL, AX, or EAX)

The syntax for the three IN instructions using DX to contain the port addresses is
shown below, where the source operand is the I/O port address in DX and the desti-
nation operand is a general-purpose register.

IN register, DX (input from port specified by
 DX to AL, AX, or EAX)

If an immediate byte operand is used to specify the port address, then the address
has a range from 0 to 255 (28 – 1); if register DX is used to specify the port address,
then the address has a range from 0 to 65,535 (216 – 1). No flags are affected by the IN
instructions.
16.4.2 Register I/O OUT Instructions

There are six categories of the OUT instruction referred to as register I/O instructions:
three instructions using immediate operands to indicate the port address for byte,

16.4 In/Out Instructions 625

word, or doubleword operands; and three instructions using general-purpose register
DX to indicate the port address for byte, word, or doubleword operands.

The syntax for the three OUT instructions using immediate port addresses is
shown below, where the source operand is a general-purpose register and the I/O port
address is the destination immediate operand.

OUT immediate, register (output from AL, AX, or EAX
 to port specified by
 immediate value)

The syntax for the three OUT instructions using DX to contain the port addresses
is shown below, where the source operand is a general-purpose register and the desti-
nation operand in DX contains the I/O port address.

OUT DX, register (output from AL, AX, or EAX
 to port specified by DX)

If an immediate byte operand is used to specify the port address, then the address
has a range from 0 to 255 (28 – 1); if register DX is used to specify the port address,
then the address has a range from 0 to 65,535 (216 – 1). No flags are affected by the
OUT instructions.

16.4.3 String I/O IN Instructions

A string is a sequence of bytes, words, or doublewords that are stored in contiguous
locations in memory as a one-dimensional array. Strings can be processed from low
addresses to high addresses or from high addresses to low addresses, depending on the
state of the direction flag (DF). If the direction flag is set (DF = 1), then the direction
of processing is from high addresses to low addresses — also referred to as auto-dec-
rement. If the direction flag is reset (DF = 0), then the direction of processing is from
low addresses to high addresses — also referred to as auto-increment. The state of the
direction flag can be set by the set direction flag (STD) instruction and can reset by the
clear direction flag (CLD) instruction. The direction flag is located in bit 10 of the 32-
bit EFLAGS register.

The input from port to string (INS) instructions transfer a string element — byte,
word, or doubleword — from the I/O port designated by the source operand to the des-
tination operand located in memory. The source (second) operand is an I/O port
address contained in general-purpose register DX. The destination (first) operand is a
memory location specified by the contents of registers ES:DI, ES:EDI, or RDI for 16,
32, or 64 addresses, respectively.

After the transfer is completed, the destination register DI, EDI, or RDI is auto-

matically incremented or decremented depending on the state of the direction flag
(DF) in the EFLAGS register. Thus, after each repetition of the string instruction the
registers point to the next byte, word, or doubleword to implement block moves for
string operations. There are two types of string I/O IN instructions: the explicit-oper-
ands form and the no-operands form, as described below.

626 Chapter 16 Interrupts and Input/Output Operations

Explicit-operands form instructions The explicit-operands form explicitly
specifies the source and destination operands as part of the INS instruction. The
address of the I/O source operand port is in register DX and the destination operand is
a memory location whose size is explicitly defined as 8, 16, or 32 bits. There are three
input from port to string INS instructions that have explicit operands, as shown in the
syntax below.

INS memory, DX (transfer byte, word, or doubleword
 from I/O port to a memory location
 specified by the contents of
 ES:(E)DI or RDI)

No-operands form instructions The no-operands form specifies the size of
the operands by the mnemonic; for example, the INSW instruction specifies a word
transfer from an I/O port to memory. Like the explicit-operands form, the no-operands
form assumes that the address of the source operand port is contained in register DX
and the destination memory operand is determined by contents of registers ES:(E)DI
or RDI. The syntax for the three no-operands INS instructions is shown below.

INSB (transfer a byte from port addressed by
 DX to memory addressed by ES:(E)DI or RDI)

INSW (transfer a word from port addressed by
 DX to memory addressed by ES:(E)DI or RDI)

INSD (transfer a doubleword from port addressed by
 DX to memory addressed by ES:(E)DI or RDI)

After the transfer is completed, the destination register DI, EDI, or RDI is auto-
matically incremented or decremented depending on the state of the direction flag
(DF) in the EFLAGS register, as stated previously. If the direction flag is set, then the
direction of processing is from high addresses to low addresses; if the direction flag is
reset, then the direction of processing is from low addresses to high addresses.

The input from port to string instructions can utilize the repeat (REP) prefixes to
specify the condition for which the instruction is to be executed. A count in register
(E)CX specifies the number of bytes, words, or doublewords that are transferred from
the source I/O port to the memory destination for block transfers.

16.4.4 String I/O OUT Instructions
The output string to port (OUTS) instructions transfer a string element — byte,
word, or doubleword — from a source operand in a memory location to the I/O port
destination operand. The source (second) operand is a memory location specified by
the contents of registers DS:SI, DS:ESI, or RSI for 16, 32, or 64 addresses,

16.4 In/Out Instructions 627

respectively. The destination (first) operand is an I/O port address contained in gen-
eral-purpose register DX.

After the transfer is completed, the destination register SI, ESI, or RSI is automat-
ically incremented or decremented depending on the state of the direction flag (DF) in
the EFLAGS register. Thus, after each repetition of the string instruction the registers
point to the next byte, word, or doubleword to implement block moves for string oper-
ations. There are two types of string I/O OUTS instructions: the explicit-operands
form and the no-operands form, as described below.

Explicit-operands form instructions The explicit-operands form explicitly
specifies the source and destination operands as part of the OUTS instruction. The
address of the source operand is a memory location whose size is explicitly defined as
8, 16, or 32 bits. The source operand memory location is specified by the contents of
the DS:SI, DS:ESI, or RSI registers. The address of the I/O port destination operand
is in register DX. There are three output string to port OUTS instructions that have
explicit operands, as shown in the syntax below.

OUTS DX, memory (transfer byte, word, or doubleword
from a memory location specified by
the contents of DS:(E)SI or RSI to
the I/O port addressed by DX)

No-operands form instructions The no-operands form specifies the size of
the operands by the mnemonic; for example, the OUTSB instruction specifies a byte
transfer from memory to an I/O port. Like the explicit-operands form, the no-operands
form assumes that the address of the source operand is specified by the contents of reg-
isters DS:(E)SI or RSI and the contents of register DX specify the destination port
address. The syntax for the three no-operands OUTS instructions is shown below.

OUTSB (transfer a byte from memory addressed by
 DS:(E)SI or RSI to the port addressed by DX)

OUTSW (transfer a word from memory addressed by
 DS:(E)SI or RSI to the port addressed by DX)

OUTSD (transfer a doubleword from memory addressed by
 DS:(E)SI or RSI to the port addressed by DX)
After the transfer is completed, the destination register SI, ESI, or RSI is automat-
ically incremented or decremented depending on the state of the direction flag (DF) in
the EFLAGS register, as stated previously. If the direction flag is set, then the direc-
tion of processing is from high addresses to low addresses; if the direction flag is reset,
then the direction of processing is from low addresses to high addresses.

628 Chapter 16 Interrupts and Input/Output Operations

The output string to port instructions can utilize the repeat (REP) prefixes to spec-
ify the condition for which the instruction is to be executed. A count in register (E)CX
specifies the number of bytes, words, or doublewords that are transferred from the
memory source to the destination I/O port for block transfers.

16.5 Problems

16.1 Define an interrupt and indicate the purpose of an interrupt.

16.2 Describe what happens when an interrupt occurs.

16.3 Explain why interrupt breakpoints occur only at the end of an instruction cy-
cle.

16.4 Indicate which of the following instructions are valid or invalid.

IN AX, EA60H
IN AL, 297

16.5 Indicate the use of an interrupt with a vector of 00H.

16.6 Which interrupt type has a higher priority, maskable or nonmaskable inter-
rupts?

16.7 Explain why DMA access to main memory has a higher priority than central
processing units access to main memory.

629

17
Additional Programming
Examples

This chapter presents programming examples from topics presented in previous chap-
ters in the book. The programming designs are accomplished using assembly lan-
guage only and also using assembly language modules embedded in C programs.
Each example shows the outputs obtained from executing the program. There are
numerous examples designed in the text and also numerous programs to be designed in
the problem set at the end of the chapter.

17.1 Programming Examples
The various topics that will be covered in the examples include: logic instructions, bit
test instructions, compare instructions, unconditional and conditional jump instruc-
tions, unconditional and conditional loop instructions, fixed-point instructions, float-
ing-point instructions, string instructions, and arrays. The problem set includes the
above instructions plus additional select instructions.

Example 17.1 This example uses the following instructions: the bit test instructions
bit test and set (BTS), bit test and reset (BTR), and bit test and complement (BTC).
These instructions are used in conjunction with the load status flags into AH register
(LAHF) instruction and the move (MOV) instruction. The program is designed using
an assembly language module embedded in a C program. Figure 17.1(a) shows the
program. Figure 17.1(b) shows the outputs.

17.1 Programming Examples
17.2 Problems

//bts_btr_btc.cpp
//apply the bit test instructions
//bit test and set (bts),
//bit test and reset (btr), and
//bit test and complement (btc)
//to data entered from the keyboard

#include "stdafx.h"
int main (void)
{
//define variables

int hex_data, bts_rslt, btr_rslt, btc_rslt;
unsigned char bts_flags, btr_flags, btc_flags;

printf ("Enter eight hexadecimal characters: \n");
scanf ("%X", &hex_data);

//switch to assembly
_asm
{

//BTS instruction
MOV EBX, hex_data ;data entered -> ebx
BTS EBX, 2 ;bit 2 -> flags, set bit 2
MOV bts_rslt, EBX
LAHF ;status flags -> ah
MOV bts_flags, AH

//BTR instruction
MOV EBX, bts_rslt ;bts result -> ebx
BTR EBX, 7 ;bit 7 -> flags, reset bit 7
MOV btr_rslt, EBX
LAHF ;status flags -> ah
MOV btr_flags, AH

//BTC instruction
MOV EBX, btr_rslt ;btr result -> ebx
BTC EBX, 12 ;bit 12 -> flags, compl bit 12
MOV btc_rslt, EBX
LAHF ;status flags -> ah
MOV btc_flags, AH

} (a) //continued on next page

630 Chapter 17 Additional Programming Examples

Figure 17.1 Program illustrating the use of bit test instructions: (a) the program
and (b) the outputs.

printf ("\nBTS result = %X\nBTS flags = %X\n",
bts_rslt, bts_flags);

printf ("\nBTR result = %X\nBTR flags = %X\n",
btr_rslt, btr_flags);

printf ("\nBTC result = %X\nBTC flags = %X\n\n",
btc_rslt, btc_flags);

return 0;
}

Enter eight hexadecimal characters:
FFFFFFFF

BTS result = FFFFFFFF
BTS flags = 47 //ZF, PF, CF

BTR result = FFFFFF7F
BTR flags = 47 //ZF, PF, CF

BTC result = FFFFEF7F
BTC flags = 47 //ZF, PF, CF

Press any key to continue . . . _
--
Enter eight hexadecimal characters:
00000000

BTS result = 4
BTS flags = 46 //ZF, PF

BTR result = 4
BTR flags = 46 //ZF, PF

BTC result = 1004
BTC flags = 46 //ZF, PF

Press any key to continue . . . _
--

//continued on next page
(b)

17.1 Programming Examples 631

Figure 17.1 (Continued)

Enter eight hexadecimal characters:
ABCD9A01

BTS result = ABCD9A05
BTS flags = 46 //ZF, PF

BTR result = ABCD9A05
BTR flags = 46 //ZF, PF

BTC result = ABCD8A05
BTC flags = 47 //ZF, PF, CF

Press any key to continue . . . _

(b)

632 Chapter 17 Additional Programming Examples

Figure 17.1 (Continued)

Example 17.2 This example calculates the sum of cubes for numbers in the follow-
ing range: 1 to n, where n is ≤ 22. The range number is entered from the keyboard.
The sum of cubes can be obtained from any of the expressions shown in Equation
17.1. The three expressions will be used in Examples 17.2, Example 17.3, and
Example 17.4, respectively. This example uses the first expression listed using an
assembly language module embedded in a C program, as shown in Figure 17.2.

13 + 23 + 33 + 43 + . . . + n3

[n(n + 1)/2]2

(1 + 2 + 3 + 4 + . . . + n)2 (17.1)

//sum_of_cubes8.cpp
//obtain the sum of cubes for numbers with a range from
//1 through n <= 22, where n is entered from the keyboard

#include "stdafx.h"
int main (void)
{
//define variables

unsigned short n, range, sum;

(a) //continued on next page

Figure 17.2 Program to calculate the sum of cubes in the range from 1 to ≤ 22: (a)
the program and (b) the outputs.

n = 0;
sum = 0;

printf ("Enter a number n indicating a range: \n");
scanf ("%d", &range);

//switch to assembly
_asm
{

//--
LP1: INC n

MOV CX, 2 //count in cx
MOV AX, n //n -> ax

LP2: MUL n //ax x n -> dx:ax
LOOP LP2
ADD sum, AX //ax + sum -> sum
MOV BX, range //range -> bx
CMP n, BX //compare current value to range
JB LP1 //jump if n < range

}
//--
//print sum

printf ("\nSum of cubes 1 through n = %d\n\n", sum);

return 0;
}

Enter a number n indicating a range:
3

Sum of cubes 1 through n = 36

Press any key to continue . . . _
--
Enter a number n indicating a range:
10

Sum of cubes 1 through n = 3025

Press any key to continue . . . _
--

(b) //continued on next page

17.1 Programming Examples 633

Figure 17.2 (Continued)

Enter a number n indicating a range:
3

Sum of cubes 1 through n = 36

Press any key to continue . . . _
--
Enter a number n indicating a range:
10

Sum of cubes 1 through n = 3025

Press any key to continue . . . _
--
Enter a number n indicating a range:
16

Sum of cubes 1 through n = 18496

Press any key to continue . . . _
--
Enter a number n indicating a range:
17

Sum of cubes 1 through n = 23409

Press any key to continue . . . _
--
Enter a number n indicating a range:
18

Sum of cubes 1 through n = 29241

Press any key to continue . . . _
--
Enter a number n indicating a range:
22

Sum of cubes 1 through n = 64009

Press any key to continue . . . _

634 Chapter 17 Additional Programming Examples

Figure 17.2 (Continued)

17.1 Programming Examples 635

Example 17.3 This example calculates the sum of cubes for numbers in the follow-
ing range: 1 to n, where n is ≤ 22. The range number is entered from the keyboard. The
sum of cubes for this example is obtained from second expression listed in Equation
17.1 and shown below. This example uses an assembly language module embedded in
a C program, as shown in Figure 17.3.

[n(n + 1)/2]2

//sum_of_cubes9.cpp
//obtain the sum of cubes for numbers with a range from
//1 through n <= 22, where n is entered from the keyboard.
//the following expression is used: [n(n+1)/2]^2

#include "stdafx.h"
int main (void)
{
//define variables

unsigned short two, n, sum;
two = 2;

printf ("Enter a number indicating a range: \n");
scanf ("%d", &n);

//switch to assembly
_asm
{

MOV AX, n //n -> ax
INC AX //n+1 -> ax
MUL n //n(n+1) -> dx:ax
DIV two //n(n+1)/2 -> dx:ax
MUL AX //[n(n+1)/2]^2
MOV sum, AX

}

//print sum
printf ("\nSum of cubes 1 through n = %d\n\n", sum);

return 0;
}

//continued on next page
(a)

Figure 17.3 Program to calculate the sum of cubes in the range from 1 to ≤ 22
using the expression shown above: (a) the program and (b) the outputs.

Enter a number indicating a range:
3

Sum of cubes 1 through n = 36

Press any key to continue . . . _
--
Enter a number indicating a range:
10

Sum of cubes 1 through n = 3025

Press any key to continue . . . _
--
Enter a number indicating a range:
16

Sum of cubes 1 through n = 18496

Press any key to continue . . . _
--
Enter a number indicating a range:
17

Sum of cubes 1 through n = 23409

Press any key to continue . . . _
--
Enter a number indicating a range:
18

Sum of cubes 1 through n = 29241

Press any key to continue . . . _
--
Enter a number indicating a range:
22

Sum of cubes 1 through n = 64009

Press any key to continue . . . _

(b)

636 Chapter 17 Additional Programming Examples

Figure 17.3 (Continued)

17.1 Programming Examples 637

Example 17.4 This example calculates the sum of cubes for numbers in the follow-
ing range: 1 to n, where n is ≤ 22. The range number is entered from the keyboard. The
sum of cubes for this example is obtained from third expression listed in Equation 17.1
and shown below. This example uses an assembly language module embedded in a C
program, as shown in Figure 17.4.

(1 + 2 + 3 + 4 + . . . + n)2

//sum_of_cubes10.cpp
//obtain the sum of cubes for numbers with a range from
//1 through n <= 22, where n is entered from the keyboard.
//use the following expression: (1 + 2 + 3 + 4 + ... + n)^2

#include "stdafx.h"
int main (void)
{
//define variables

unsigned short n, sum;
sum = 0;

printf ("Enter a number n indicating a range: \n");
scanf ("%d", &n);

//switch to assembly
_asm
{

MOV CX, n //range -> cx
MOV AX, 0 //clear ax

LP1: ADD AX, 1 //inc ax
ADD sum, AX //sum + ax -> sum
LOOP LP1 //if cx != 0, loop

MOV AX, sum //sum -> ax
MUL AX //ax^2 -> dx:ax
MOV sum, AX //sum of cubes -> sum

//(1+2+3+4+ ... +n)^2 -> sum
}

//print sum
printf ("\nSum of cubes 1 through n = %d\n\n", sum);
return 0;

}
(a) //continued on next page

Figure 17.4 Program to calculate the sum of cubes in the range from 1 to ≤ 22
using the expression shown above: (a) the program and (b) the outputs.

Enter a number n indicating a range:
3

Sum of cubes 1 through n = 36

Press any key to continue . . . _
--
Enter a number n indicating a range:
5

Sum of cubes 1 through n = 225

Press any key to continue . . . _
--
Enter a number n indicating a range:
10

Sum of cubes 1 through n = 3025

Press any key to continue . . . _
--
Enter a number n indicating a range:
16

Sum of cubes 1 through n = 18496

Press any key to continue . . . _
--
Enter a number n indicating a range:
17

Sum of cubes 1 through n = 23409

Press any key to continue . . . _
--
Enter a number n indicating a range:
18

Sum of cubes 1 through n = 29241

Press any key to continue . . . _
--

//continued on next page
(b)

638 Chapter 17 Additional Programming Examples

Figure 17.4 (Continued)

Enter a number n indicating a range:
20

Sum of cubes 1 through n = 44100

Press any key to continue . . . _
--
Enter a number n indicating a range:
21

Sum of cubes 1 through n = 53361

Press any key to continue . . . _
--
Enter a number n indicating a range:
22

Sum of cubes 1 through n = 64009

Press any key to continue . . . _

17.1 Programming Examples 639

Figure 17.4 (Continued)

Example 17.5 This example replaces all spaces with hyphens in a character string
that is entered from the keyboard. The character string is stored in the operand field
(OPFLD) of the parameter list (PARLST). The parameter list is reproduced in Figure
17.5 for convenience and illustrates an example for this program. The program in this
example uses an assembly language program — not embedded in a C program — as
shown in Figure 17.6. This program does not use the MOVSB string instruction — the
same program using the MOVSB instruction is left as a problem at the end of the chap-
ter. The comments at the end of each line of code in Figure 17.6 explain the operation
of that individual line.

. . .PARLST
MAXLEN ACTLEN OPFLD

A B C

SI

Figure 17.5 Parameter list one-dimensional array in which the keyboard input
data are stored.

;hyphen.asm
;replace a space with a hyphen in a
;character string entered from the keyboard

;---
.STACK

;---
.DATA
PARLST LABEL BYTE
MAXLEN DB 20
ACTLEN DB ?
OPFLD DB 20 DUP(?)
PRMPT DB 0DH, 0AH, 'Enter a character string: $'
RSLT DB 0DH, 0AH, 'Hyphen string = $'

;---
.CODE
BEGIN PROC FAR

;set up pgm ds
MOV AX, @DATA ;put addr of data seg in ax
MOV DS, AX ;put addr in ds

;read prompt
MOV AH, 09H ;display string
LEA DX, PRMPT ;put addr of prompt in dx
INT 21H ;dos interrupt

;keyboard request rtn to enter characters
MOV AH, 0AH ;buffered keyboard input
LEA DX, PARLST ;put addr of parlst in dx
INT 21H ;dos interrupt

;---
;set up source and count

LEA SI, OPFLD ;si points to input buffer

MOV CL, ACTLEN ;actual length -> cl
MOV CH, 00H ;clear ch

;---

//continued on next page
(a)

640 Chapter 17 Additional Programming Examples

Figure 17.6 Program to replace spaces with hyphens in a character string that is
entered from the keyboard: (a) the program and (b) the outputs.

LP1: MOV AL, [SI] ;byte in opfld -> al
CMP AL, 20H ;20H is a space
JE ADD_HYPH ;jump if char is a space
INC SI ;point to next char
LOOP LP1 ;loop if cx != 0
JMP MOV_CHAR ;jump if cx = 0

ADD_HYPH:
MOV [SI], 2DH ;2DH is a hyphen
INC SI ;point to next char
LOOP LP1 ;loop if cx != 0
JMP MOV_CHAR ;jump if cx = 0

MOV_CHAR:
MOV CL, ACTLEN ;actual length -> cl
MOV CH, 00H ;clear ch

LEA SI, OPFLD ;si points to input buffer
LEA DI, RSLT+18 ;di points to result area

LP2: MOV BL, [SI] ;char in opfld -> bl
MOV [DI], BL ;bl -> rslt area
INC SI ;point to next char in opfld
INC DI ;point to next loc in rslt area
LOOP LP2 ;loop if cx != 0

;---
;display result

MOV AH, 09H ;display string
LEA DX, RSLT ;put addr of rslt in dx
INT 21H ;dos interrupt

BEGIN ENDP
END BEGIN

Enter a character string: A B C
Hyphen string = A-B-C
--
Enter a character string: A B C D E F G H
Hyphen string = A-B-C-D-E-F-G-H
--
Enter a character string: AB CDE FG H IJKL
Hyphen string = AB-CDE-FG-H-IJKL
--

//continued on next page
(b)

17.1 Programming Examples 641

Figure 17.6 (Continued)

Enter a character string: AB12CD34EF56GH
Hyphen string = AB12CD34EF56GH
--
Enter a character string: //eight spaces
Hyphen string = --------
--
Enter a character string: 1234 5678 abc def
Hyphen string = 1234-5678-abc-def
--
Enter a character string: AB CDE FGHI J
Hyphen string = AB--CDE---FGHI----J

642 Chapter 17 Additional Programming Examples

Figure 17.6 (Continued)

Example 17.6 This example counts the number of times that the integer 6 occurs in
an array of eight integers. The program in this example uses an assembly language
program — not embedded in a C program — as shown in Figure 17.7. The array is
defined in the data segment (.DATA) and is labelled LIST. The comments at the end of
each line of code in Figure 17.7 explain the operation of that individual line. A similar
program that uses data entered from the keyboard is left as a problem at the end of the
chapter.

;count_occurrence.asm
;count the number of times that the number 6
;occurs in an array of eight numbers
;---
.STACK
;---
.DATA
LIST DB 32H, 36H, 31H, 38H, 36H, 39H, 37H, 36H
RSLT DB 0DH, 0AH, 'Occurs = times $'
;---
.CODE
BEGIN PROC FAR

;set up pgm ds
MOV AX, @DATA ;put addr of data seg in ax
MOV DS, AX ;put addr in ds
LEA DI, RSLT + 11 ;put addr of rslt in di

;---
(a) //continued on next page

Figure 17.7 Program to count the number of times that the integer 6 occurs in an
array of eight integers: (a) the program and (b) the outputs.

MOV DL, 36H ;number to compare -> dl
LEA SI, LIST ;put addr of list in si
MOV CX, 8 ;qty of numbers to compare -> cx
MOV AH, 30H ;initialize number of occurrences

LP1: MOV AL, [SI] ;move number to al
CMP DL, AL ;compare dl to al
JE INC_COUNT ;if equal, jump to inc count
INC SI ;point to next number to compare
LOOP LP1 ;loop to compare next number
JMP MOVE_COUNT ;comparison is finished

INC_COUNT:
INC AH ;incr the number of occurrences
INC SI ;point to next number
LOOP LP1 ;if cx != 0, compare next number

MOVE_COUNT:
MOV [DI], AH ;# of occurrences to result area

;---
;display result

MOV AH, 09H ;display string
LEA DX, RSLT ;put addr of rslt in dx
INT 21H ;dos interrupt

BEGIN ENDP
END BEGIN

Occurs = 3 times
(b)

17.1 Programming Examples 643

Figure 17.7 (Continued)

Example 17.7 This example determines the largest integer in an array of eight inte-
gers. The program in this example uses an assembly language program — not embed-
ded in a C program — as shown in Figure 17.8. The array is defined in the data
segment (.DATA) and is labelled LIST. The comments at the end of each line of code
in Figure 17.8 explain the operation of that individual line. A similar program that
uses data entered from the keyboard is left as a problem at the end of the chapter.

;largest_num.asm
;find the largest number in an array of numbers

;---
.STACK
;---
.DATA
LIST DB 32H, 39H, 31H, 38H, 36H, 39H, 37H, 35H
RSLT DB 0DH, 0AH, 'Largest = $'
;---
.CODE
BEGIN PROC FAR

;set up pgm ds
MOV AX, @DATA ;put addr of data seg in ax
MOV DS, AX ;put addr in ds
LEA DI, RSLT + 12 ;put addr of rslt in di

;---

LEA SI, LIST ;put addr of list in si
MOV CX, 8 ;count in cx
MOV AH, 30H ;initialize maximum number

LP1: MOV AL, [SI] ;move number to al

CMP AH, AL ;compare hi in ah to al
JAE INC_SI ;if ah >= al, jump
MOV AH, AL ;if not, largest in al -> ah

INC_SI:

INC SI ;point to next number
LOOP LP1 ;if cx != 0, compare next number

MOV [DI], AH ;move largest to result area
;---
;display result

MOV AH, 09H ;display string
LEA DX, RSLT ;put addr of rslt in dx
INT 21H ;dos interrupt

BEGIN ENDP
END BEGIN

(a)

Largest = 9
(b)

644 Chapter 17 Additional Programming Examples

Figure 17.8 Program to determine the largest integer in an array of eight integers:
(a) the program and (b) the outputs.

17.1 Programming Examples 645

Example 17.8 This example calculates the factorial of single-digit integers in the
range of 1 through 8 that are entered from the keyboard. The program in this example
is designed using an assembly language module embedded in a C program, as shown
in Figure 17.9. A similar program using assembly language only — that uses data
entered from the keyboard — is left as a problem at the end of the chapter.

//factorial3.cpp
//calculate the factorial of an integer entered
//from the keyboard in the range of 1 -- 8

#include "stdafx.h"
int main (void)
{
//define variables

unsigned short integer_num;
unsigned long result;

printf ("Enter a single-digit integer 1 -- 8: \n");
scanf ("%d", &integer_num);

//switch to assembly
_asm
{

MOV AX, integer_num
MOV CX, integer_num

LP1: DEC CX
JZ PRNT
MUL CX //ax x cx -> eax
JMP LP1

PRNT: MOV result, EAX
}

//display result
printf ("\nInteger = %d\nFactorial = %d\n\n",

integer_num, result);

return 0;
}

//continued on next page
(a)

Figure 17.9 Program to calculate the factorial of single-digit integers that are
entered from the keyboard: (a) the program and (b) the outputs.

Enter a single-digit integer 1 -- 8:
1

Integer = 1
Factorial = 1

Press any key to continue . . . _
--
Enter a single-digit integer 1 -- 8:
2

Integer = 2
Factorial = 2

Press any key to continue . . . _
--
Enter a single-digit integer 1 -- 8:
3

Integer = 3
Factorial = 6

Press any key to continue . . . _
--
Enter a single-digit integer 1 -- 8:
4

Integer = 4
Factorial = 24

Press any key to continue . . . _
--
Enter a single-digit integer 1 -- 8:
5

Integer = 5
Factorial = 120

Press any key to continue . . . _
--

//continued on next page
(b)

646 Chapter 17 Additional Programming Examples

Figure 17.9 (Continued)

Enter a single-digit integer 1 -- 8:
6

Integer = 6
Factorial = 720

Press any key to continue . . . _
--
Enter a single-digit integer 1 -- 8:
7

Integer = 7
Factorial = 5040

Press any key to continue . . . _
--
Enter a single-digit integer 1 -- 8:
8

Integer = 8
Factorial = 40320

Press any key to continue . . . _

17.1 Programming Examples 647

Figure 17.9 (Continued)

Example 17.9 This example calculates the value of single-digit integer bases in the
range of 1 ≤ y ≤ 6 raised to the power of single-digit integer exponents in the range of
0 ≤ x ≤ 6 — bases and exponents are entered from the keyboard. The program in this
example is designed using an assembly language module embedded in a C program, as
shown in Figure 17.10.

//exponent3.cpp
//obtain the value of base 1 <= y <= 6 raised
//to the power of exponent 0 <= x <= 6

#include "stdafx.h"
int main (void)

//continued on next page
(a)

Figure 17.10 Program to calculate single-digit bases raised to the power of single-
digit exponents: (a) the program and (b) the outputs.

{
//define variables

unsigned short base, exponent;
unsigned long result;

printf ("Enter a single-digit base: \n");
scanf ("%d", &base);

printf ("\nEnter a single-digit exponent: \n");
scanf ("%d", &exponent);

//switch to assembly
_asm
{

//if exponent = 0, print 1
MOV AX, base
MOV CX, exponent
CMP CX, 0
JE PRNT_1

//--
//if exponent = 1, print base

CMP CX, 1
JE PRNT_BASE

//--
//calculate base ^ exponent

MOV AX, base
MOV BX, base

LP1: MUL BX
MOV result, EAX
DEC CX
CMP CX, 1
JE PRNT_RSLT
JMP LP1

}

//--
//continued on next page

648 Chapter 17 Additional Programming Examples

Figure 17.10 (Continued)

PRNT_RSLT:
printf ("\nResult = %d\n\n", result);
goto END_PGM;

PRNT_BASE:
printf ("\nResult = %d\n\n", base);
goto END_PGM;

PRNT_1:
printf ("\nResult = 1\n\n");

END_PGM:
return 0;

}

Enter a single-digit base:
5

Enter a single-digit exponent:
0

Result = 1

Press any key to continue . . . _
--
Enter a single-digit base:
6

Enter a single-digit exponent:
1

Result = 6

Press any key to continue . . . _
--
Enter a single-digit base:
2

Enter a single-digit exponent:
2

Result = 4

Press any key to continue . . . _
--

(b) //continued on next page

17.1 Programming Examples 649

Figure 17.10 (Continued)

Enter a single-digit base:
6

Enter a single-digit exponent:
2

Result = 36

Press any key to continue . . . _
--
Enter a single-digit base:
3

Enter a single-digit exponent:
3

Result = 27

Press any key to continue . . . _
--
Enter a single-digit base:
4

Enter a single-digit exponent:
3

Result = 64

Press any key to continue . . . _
--
Enter a single-digit base:
5

Enter a single-digit exponent:
4

Result = 625

Press any key to continue . . . _
--

//continued on next page

650 Chapter 17 Additional Programming Examples

Figure 17.10 (Continued)

--
Enter a single-digit base:
6

Enter a single-digit exponent:
4

Result = 1296

Press any key to continue . . . _
--
Enter a single-digit base:
5

Enter a single-digit exponent:
5

Result = 3125

Press any key to continue . . . _
--
Enter a single-digit base:
5

Enter a single-digit exponent:
6

Result = 15625

Press any key to continue . . . _
--
Enter a single-digit base:
6

Enter a single-digit exponent:
5

Result = 7776

Press any key to continue . . . _
--
Enter a single-digit base:
6

Enter a single-digit exponent:
6

Result = 46656

Press any key to continue . . . _

17.1 Programming Examples 651

Figure 17.10 (Continued)

652 Chapter 17 Additional Programming Examples

Example 17.10 This example calculates the value of the following expression using
integers for fixed-point arithmetic:

[(A × B) + C + 500] / A

The program in this example is designed using an assembly language module embed-
ded in a C program. Both the quotient and remainder will be obtained after the divi-
sion operation is executed.

Recall that the DIV instruction divides the unsigned dividend in an implied gen-
eral-purpose register by the unsigned divisor source operand in a register or memory
location. The results are stored in the implied registers. The syntax for the DIV
instruction is shown below.

DIV register/memory

The locations of the DIV operands are as follows: the dividend registers are AX,
DX:AX, EDX:EAX, and RDX:RAX and the size of the corresponding divisors are 8
bits, 16 bits, 32 bits, and 64 bits, respectively; the resulting quotients are stored in reg-
isters AL, AX, EAX, and RAX, respectively; the resulting remainders are stored in
registers AH, DX, EDX, and RDX, respectively. Results that are not integers are trun-
cated to integers. Figure 17.11 illustrates pictorially the division operation.

A dividend

B divisor

Rem Quot

A dividend

B divisor

 Rem Quot

A dividend

B divisor

 Remainder

Quotient

AH AL

Src
AH AL

DX AX

Source
DX AX

EDX EAX

Source

EDX

EAX

Figure 17.11 Pictorial illustration of the dividend, divisor, quotient, and remainder.

An example is shown below using the following values for variables A, B, and C:
A = 200, B = 200, and C = 1000, yielding a quotient of 207 and a remainder of 100.

17.1 Programming Examples 653

[(A × B) + C + 500] / A
[(200 × 200) + 1000 + 500] / 200
= (40000 + 1000 + 500) / 200
= 41500 / 200
= 207.5

A second example is shown below using the following values for variables A, B,
and C: A = 790, B = 650, and C = 1500, yielding a quotient of 652 and a remainder of
420.

[(A × B) + C + 500] / A
[(790 × 650) + 1500 + 500] / 790
= (40000 + 1000 + 500) / 790
= 515500 / 790
= 652.531645569

Figure 17.12 illustrates a program to calculate the given expression using the
fixed-point arithmetic instructions of MUL, ADD, and DIV.

//eval_expr5.cpp
//evaluate the following expression using integers
//and obtain the quotient and remainder:
//[(A x B) + C + 500)/A
#include "stdafx.h"
int main (void)
{
//define variables

unsigned short int_a, int_b, int_c, rslt_quot, rslt_rem;
printf ("Enter integers for x, y, and z: \n");
scanf ("%d %d %d", &int_a, &int_b, &int_c);

//switch to assembly
_asm
{

MOV AX, int_a
MUL int_b ;result in dx:ax
ADD AX, int_c
ADD ax, 500
DIV int_a
MOV rslt_quot, AX
MOV rslt_rem, DX

} (a) //continued on next page

Figure 17.12 Program to calculate the value of [(A × B) + C + 500] / A: (a) the pro-
gram and (b) the outputs.

//display result
printf ("\nQuotient = %d\nRemainder = %d\n\n",

rslt_quot, rslt_rem);

return 0;
}

Enter integers for a, b, and c:
200 200 1000

Quotient = 207
Remainder = 100

Press any key to continue . . . _
--
Enter integers for a, b, and c:
400 400 2000

Quotient = 406
Remainder = 100

Press any key to continue . . . _
--
Enter integers for a, b, and c:
350 175 1250

Quotient = 180
Remainder = 0

Press any key to continue . . . _
--
Enter integers for a, b, and c:
790 650 1500

Quotient = 652
Remainder = 420

Press any key to continue . . . _

(b)

654 Chapter 17 Additional Programming Examples

Figure 17.12 (Continued)

17.1 Programming Examples 655

Example 17.11 This example calculates the value of the following expression using
integers for fixed-point arithmetic:

[(A × B) + C + 500] / A

This example is similar to Example 17.10, except that doublewords are used and
only the quotient is obtained after the division operation is executed; therefore, all
fractions are truncated. The program in this example is designed using an assembly
language module embedded in a C program and is shown in Figure 17.13.

//eval_expr3.cpp
//evaluate the following expression using integers:
//[(A x B) + C + 500)/A.
//doublewords are used and only the quotient is obtained

#include "stdafx.h"
int main (void)
{
//define variables

unsigned long int_a, int_b, int_c, rslt;

printf ("Enter integers for a, b, and c: \n");
scanf ("%d %d %d", &int_a, &int_b, &int_c);

//switch to assembly
_asm
{

MOV EAX, int_a ;doubleword -> eax
MUL int_b ;result -> edx:eax
ADD EAX, int_c
ADD EAX, 500
DIV int_a
MOV rslt, EAX

}

//display result
printf ("\nResult = %d\n\n", rslt);

return 0;
}

//continued on next page
(a)

Figure 17.13 Program to calculate the value of [(A × B) + C + 500] / A using dou-
bleword operands to obtain the quotient only: (a) the program and (b) the outputs.

Enter integers for a, b, and c:
60000 60000 10000

Result = 60000 //truncated from 60000.175
--
Enter integers for a, b, and c:
350000 175000 20000

Result = 175000 //truncated from 175000.05714
--
Enter integers for a, b, and c:
12345 67890 2468

Result = 67890 //truncated from 67890.19992
--
Enter integers for a, b, and c:
3500 175000 20000

Result = 175005 //truncated from 175005.8571

(b)

656 Chapter 17 Additional Programming Examples

Figure 17.13 (Continued)

Example 17.12 This example calculates the value of the following expression using
variables for floating-point arithmetic:

[(A × B) + C + constant] / A

This example is similar to previous examples, except that floating-point operands
are used and a floating-point quotient is obtained after the division operation is exe-
cuted; therefore, all fractions are retained and are not truncated. The program in this
example is designed using an assembly language module embedded in a C program.

Recall that floating-point numbers consist of the following three fields: a sign bit,
s; an exponent, e; and a fraction, f. These parts represent a number that is obtained by
multiplying the fraction, f , by a radix, r, raised to the power of the exponent, e, as
shown in Equation 17.2 for the number A, where f and e are signed fixed-point num-
bers, and r is the radix (or base).

A = f × r e (17.2)

17.1 Programming Examples 657

Figure 17.14 shows the format for 32-bit single-precision floating-point numbers.
The single-precision format consists of a sign bit that indicates the sign of the number,
an 8-bit signed exponent, and a 23-bit unsigned fraction.

 31 23 22 0

Sign bit:
0 = positive
1 = negative

8-bit signed
exponent
(characteristic)

23-bit fraction
(mantissa, significand)

Figure 17.14 Format for single-precision floating-point numbers.

Figure 17.15 shows the eight data registers — called the register stack — used in
the floating-point unit. The stack top, ST(0), is register R0 and, like a normal stack,
builds towards lower-numbered registers. The register immediately below the stack
top is referred to as ST(1); the register immediately below ST(1) is referred to as
ST(2), etc.

 79 78 64 63 0

R0

Floating-point register stack

R1

R2

R3

R4

R5

R6

R7

Sign Exponent Significand

ST(0)

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

ST(6)

ST(7)

Figure 17.15 Double extended-precision register stack for the floating-point unit.

658 Chapter 17 Additional Programming Examples

When the stack is full; that is, the registers at ST(0) through the register at ST(7)
contain valid data, a stack wraparound occurs if an attempt is made to store additional
data on the stack. This results in a stack overflow because the unsaved data is over-
written. The stack registers are specified by three bits — 000 through 111 — to ref-
erence ST(0) through ST(7), respectively. Therefore, ST(i) references the ith register
from the current stack top. Chapter 11 can be reviewed for more details on floating-
point operations.

Figure 17.16 shows the assembly language module embedded in a C program to
perform the calculations for the expression shown in Figure 17.16. Figure 17.17
shows the contents of the register stack during execution of the program for variables
X, Y, Z, and a constant that are equal to 4.0, 5.0, 6.0, and 7.0, respectively.

//eval_expr6.cpp
//evaluate the following expression using
//floating-point numbers for X, Y, Z, and constant:
//[(X x Y) + Z + constant]/X
#include "stdafx.h"
int main (void)
{
//define variables

float flp_x, flp_y, flp_z, flp_num, flp_rslt;

printf ("Enter floating-point numbers for x, y, z,
and constant: \n");

scanf ("%f %f %f %f", &flp_x, &flp_y, &flp_z, &flp_num);

//switch to assembly
_asm
{

FLD flp_x //X -> ST(0)
FLD flp_y //Y -> ST(0)

//X -> ST(1)

FMUL ST(0), ST(1) //X x Y -> ST(0)
//ST(1) = X

FLD flp_z //Z -> ST(0)
//X x Y -> ST(1)
//ST(2) = X

//continued on next page

(a)

Figure 17.16 Program to perform calculations on [(X × Y) + Z + constant] / X: (a)
the program and (b) the outputs.

FADD ST(0), ST(1) //[(X x Y) + Z] -> ST(0)
//X x Y -> ST(1)
//ST(2) = X

FLD flp_num //flp_num -> ST(0)
//[(X x Y) + Z] -> ST(1)
//X x Y -> ST(2)
//ST(3) = X

FADD ST(0), ST(1) //[(X x Y) + Z + flp_num]
//-> ST(0)
//[(X x Y) + Z] -> ST(1)
//X x Y -> ST(2)
//ST(3) = X

FDIV ST(0), ST(3) //[(X x Y) + Z + flp_num]/X
//-> ST(0)

FST flp_rslt //ST(0) (result) -> flp_rslt
}

//print result
printf ("\nResult = %f\n\n", flp_rslt);

return 0;
}

Enter floating-point numbers for x, y, z, and constant:
4.0 5.0 6.0 7.0

Result = 8.250000

Press any key to continue . . . _
--
Enter floating-point numbers for x, y, z, and constant:
60000.0 60000.0 10000.0 500.0

Result = 60000.175781

Press any key to continue . . . _
--

//continued on next page
(b)

17.1 Programming Examples 659

Figure 17.16 (Continued)

Enter floating-point numbers for x, y, z, and constant:
400.0 400.0 2000.0 500.0

Result = 406.250000

Press any key to continue . . . _
--
Enter floating-point numbers for x, y, z, and constant:
200.0 200.0 1000.0 5000.0

Result = 207.500000

Press any key to continue . . . _
--
Enter floating-point numbers for x, y, z, and constant:
45000.0 62000.0 25000.0 8500.0

Result = 62000.746094

Press any key to continue . . . _
--
Enter floating-point numbers for x, y, z, and constant:
125.125 750.500 875.125 917.375

Result = 764.825684

Press any key to continue . . . _
--
Enter floating-point numbers for x, y, z, and constant:
8.123456 75.987654 350.2468 4666.375

Result = 693.535400

Press any key to continue . . . _
--
Enter floating-point numbers for x, y, z, and constant:
1.111111 2.222222 3.333333 4.444444

Result = 9.222222

Press any key to continue . . . _
--
Enter floating-point numbers for x, y, z, and constant:
123456.123456 234567.234567 345678.345678 999.999

Result = 234570.046875

Press any key to continue . . . _

660 Chapter 17 Additional Programming Examples

Figure 17.16 (Continued)

Assume that instructions FLD flp_x and FLD flp_y have been executed.

 FMUL ST(0), ST(1) FLD flp_z

 FADD ST(0), ST(1) FLD flp_num

 FADD ST(0),ST(1) FDIV ST(0), ST(3)

R0 20.0 ST(0) 6.0 ST(0)
R1 4.0 ST(1) 20.0 ST(1)
R2 ST(2) 4.0 ST(2)
R3 ST(3) ST(3)
R4 ST(4) ST(4)
R5 ST(5) ST(5)
R6 ST(6) ST(6)
R7 ST(7) ST(7)

R0 26.0 ST(0) 7.0 ST(0)
R1 20.0 ST(1) 26.0 ST(1)
R2 4.0 ST(2) 20.0 ST(2)
R3 ST(3) 4.0 ST(3)
R4 ST(4) ST(4)
R5 ST(5) ST(5)
R6 ST(6) ST(6)
R7 ST(7) ST(7)

R0 33.0 ST(0) 8.25 ST(0) →flp_rslt
R1 26.0 ST(1) 26.0 ST(1)
R2 20.0 ST(2) 20.0 ST(2)
R3 4.0 ST(3) 4.0 ST(3)
R4 ST(4) ST(4)
R5 ST(5) ST(5)
R6 ST(6) ST(6)
R7 ST(7) ST(7)

17.1 Programming Examples 661

Figure 17.17 Register stack for Example 17.12.

662 Chapter 17 Additional Programming Examples

Example 17.13 This example calculates the value of the following expression using
x as a variable for floating-point arithmetic:

x3 – 5x2 – 5x + x

Figure 17.18 shows the assembly language module embedded in a C program to
perform the calculations for the given expression. Figure 17.19 shows the contents of
the register stack during execution of the program for the variable x that is equal to 2.0.

//eval_expr9.cpp
//evaluate the following expression
//for different values of x:
//x^3 - 5x^2 - 5x + x^(1/2)

#include "stdafx.h"
int main (void)
{
//define variables

float flp_x, five, rslt;
five = 5.0;

printf ("Enter a floating-point value for x: \n");
scanf ("%f", &flp_x);

//switch to assembly
_asm
{

//calculate x^3
FLD flp_x //x -> ST(0)
FMUL ST(0), ST(0) //x^2 -> ST(0)
FMUL flp_x //x^3 -> ST(0)

//calculate 5x^2
FLD flp_x //x -> ST(0)

//x^3 ->ST(1)
FMUL ST(0), ST(0) //x^2 -> ST(0)

//ST(1) = x^3
FMUL five //5x^2 -> ST(0)

//continued on next page

(a)

Figure 17.18 Program to calculate the given expression for different values of x: (a)
the program and (b) the outputs.

//calculate 5x
FLD flp_x //x -> ST(0)
FMUL five //5x -> ST(0)

//ST(1) = 5x^2
//ST(2) = x^3

//calculate square root of x
FLD flp_x //x -> ST(0)
FSQRT //sq rt of x -> ST(0)

//calculate result
FXCH ST(3) //x^3 -> ST(0)
FSUB ST(0), ST(2) //x^3 - 5x^2 -> ST(0)
FSUB ST(0), ST(1) //x^3 -5x^2 - 5x -> ST(0)
FADD ST(0), ST(3) //x^3 -5x^2 - 5x + sq rt x

//-> ST(0)
FST rslt

}

//display result
printf ("\nResult = %f\n\n", rslt);

return 0;
}

Enter a floating-point value for x:
2.0

Result = -20.585787

Press any key to continue . . . _
--
Enter a floating-point value for x:
4.0

Result = -34.000000

Press any key to continue . . . _
--
Enter a floating-point value for x:
6.0

Result = 8.449490

Press any key to continue . . . _
--

//continued on next page
(b)

17.1 Programming Examples 663

Figure 17.18 (Continued)

Enter a floating-point value for x:
7.250

Result = 84.708206

Press any key to continue . . . _
--
Enter a floating-point value for x:
15.456789

Result = 2424.903320

Press any key to continue . . . _
--
Enter a floating-point value for x:
125.375

Result = 1891545.750000

Press any key to continue . . . _
--
Enter a floating-point value for x:
4.450275

Result = -31.029083

Press any key to continue . . . _

664 Chapter 17 Additional Programming Examples

Figure 17.18 (Continued)

 Calculate x3 Calculate 5x2

R0 8.0 ST(0) 20.0 ST(0)
R1 ST(1) 8.0 ST(1)
R2 ST(2) ST(2)
R3 ST(3) ST(3)
R4 ST(4) ST(4)
R5 ST(5) ST(5)
R6 ST(6) ST(6)
R7 ST(7) ST(7)

 //continued on next page

Figure 17.19 Register stack for Example 17.13.

 FXCH ST(3) FSUB ST(0), ST(2)

 FSUB ST(0),ST(1) FADD ST(0), ST(3)

 Calculate 5x Calculate x1/2

R0 10.0 ST(0) 1.414214 ST(0)
R1 20.0 ST(1) 10.0 ST(1)
R2 8.0 ST(2) 20.0 ST(2)
R3 ST(3) 8.0 ST(3)
R4 ST(4) ST(4)
R5 ST(5) ST(5)
R6 ST(6) ST(6)
R7 ST(7) ST(7)

R0 8.0 ST(0) -12.0 ST(0)
R1 10.0 ST(1) 10.0 ST(1)
R2 20.0 ST(2) 20.0 ST(2)
R3 1.414214 ST(3) 1.414214 ST(3)
R4 ST(4) ST(4)
R5 ST(5) ST(5)
R6 ST(6) ST(6)
R7 ST(7) ST(7)

R0 -22.0 ST(0) -20.585787 ST(0) → rslt
R1 10.0 ST(1) 10.0 ST(1)
R2 20.0 ST(2) 20.0 ST(2)
R3 1.414214 ST(3) 1.414214 ST(3)
R4 ST(4) ST(4)
R5 ST(5) ST(5)
R6 ST(6) ST(6)
R7 ST(7) ST(7)

17.1 Programming Examples 665

Figure 17.19 (Continued)

Example 17.14 This example calculates the value of the following trigonometric
expressions using floating-point arithmetic:

[(sine 30°) – (cosine 45°)]
[(sine 30°) × (cosine 45°)]
[(sine 30°) × (cosine 45°)]2

666 Chapter 17 Additional Programming Examples

Figure 17.20 shows the assembly language module embedded in a C program to
perform the calculations for the given trigonometric expressions. Note that the
degrees must be given in radians. Figure 17.21 shows the contents of the register stack
during execution of the program for the [(sine 30°) – (cosine 45°)] operation.

//sine_cos.cpp
//calculate the following expressions:
//[(sine 30 deg) - (cos 45 deg)]
//[(sine 30 deg) x (cos 45 deg)]
//[(sine 30 deg) x (cos 45 deg)]^2

#include "stdafx.h"

int main (void)

{
double angle1, angle2, rslt_sub, rslt_mul, rslt_mul_sq;

angle1 = 0.523598775; //30 deg must be in radians
angle2 = 0.785398163; //45 deg must be in radians

//switch to assembly
_asm
{

//--
//perform subtraction

FLD angle1 //angle1 -> ST(0)
FSIN //sine of angle1 -> ST(0)

FLD angle2 //angle2 -> ST(0)
//sine angle1 -> ST(1)

FCOS //cos of ST(0) -> ST(0)
//ST(1) = sine angle1

FSUBP ST(1), ST(0) //ST(1) - ST(0) -> ST(1), pop
//sine - cos -> ST(0)

FST rslt_sub //ST(0) (diff) -> rslt_sub

//--
//continued on next page

(a)

Figure 17.20 Program to calculate the values of the given trigonometric expres-
sions: (a) the program and (b) the outputs.

//--
//perform multiplication

FLD angle1 //angle1 -> ST(0)
FSIN //sine of angle1 -> ST(0)

FLD angle2 //angle2 -> ST(0)
//sine angle1 -> ST(1)

FCOS //cos of ST(0) -> ST(0)
//ST(1) = sine angle1

FMUL ST(0), ST(1) //sine x cos -> ST(0)
FST rslt_mul //ST(0) (result) -> rslt_mul

//--
//perform multiplication squared

FMUL ST(0), ST(0) //(sine x cos)^2 -> ST(0)
FST rslt_mul_sq //ST(0) (result)

//-> rslt_mul_sq
}

printf ("Result subtracting = %f\n", rslt_sub);

printf ("\nResult multiplication = %f\n", rslt_mul);

printf ("\nResult multiplication squared = %f\n\n",
rslt_mul_sq);

return 0;
}

Result subtraction = -0.207107

Result multiplication = 0.353553

Result multiplication squared = 0.125000

Press any key to continue . . . _

(b)

17.1 Programming Examples 667

Figure 17.20 (Continued)

 FLD angle1 FSIN
R0 0.523598775 ST(0) 0.5 ST(0)
R1 ST(1) ST(1)
R2 ST(2) ST(2)
R3 ST(3) ST(3)
R4 ST(4) ST(4)
R5 ST(5) ST(5)
R6 ST(6) ST(6)
R7 ST(7) ST(7)

 FLD angle2 FCOS

 FSUBP ST(1), ST(0)

R0 0.785398163 ST(0) 0.707106781 ST(0)
R1 0.5 ST(1) 0.5 ST(1)
R2 ST(2) ST(2)
R3 ST(3) ST(3)
R4 ST(4) ST(4)
R5 ST(5) ST(5)
R6 ST(6) ST(6)
R7 ST(7) ST(7)

R0 -0.207106781 ST(0) → rslt_sub
R1 ST(1)
R2 ST(2)
R3 ST(3)
R4 ST(4)
R5 ST(5)
R6 ST(6)
R7 ST(7)

668 Chapter 17 Additional Programming Examples

Figure 17.21 Register stack for Example 17.14.

Example 17.15 This example calculates the value of the following trigonometric
expression using floating-point arithmetic:

(5 × cos 30°) – (2 × sine 60°)

17.1 Programming Examples 669

Figure 17.22 shows the assembly language module embedded in a C program to
perform the calculation for the given trigonometric expression. Note that the degrees
must be given in radians.

//cos_sine.cpp
//evaluate the following expression:
//(5 x cos 30 deg) - (2 x sin 60 deg)

#include "stdafx.h"
int main (void)

{
//define variables

double angle1, angle2, rslt;

angle1 = 0.523598775; //30 deg must be in radians
angle2 = 1.047197551; //60 deg must be in radians

float five, two;
five = 5.0;
two = 2.0;

//switch to assembly
_asm
{

FLD angle1 //angle1 (30) -> ST(0)
FCOS //cos 30 deg -> ST(0
FMUL five //ST(0) x 5 -> ST(0)

FLD angle2 //angle2 (60) -> ST(0)
//(cos 30) x 5 -> ST(1)

FSIN //sine 60 deg -> ST(0)
//ST(1) = (cos 30) x 5

FMUL two //ST(0) x 2 -> ST(0)
//ST(1) = (cos 30) x 5

FSUBP ST(1), ST(0) //ST(1) - ST(0) -> ST(1), pop
//(5 cos 30)-(2 sine 60)-> ST(0)

FST rslt
}

//display result
printf ("Result = %f\n\n", rslt);
return 0;

} (a) //continued on next page

Figure 17.22 Program to calculate the value of the given trigonometric expression:
(a) the program and (b) the outputs.

Result = 2.598076

Press any key to continue . . . _
(b)

670 Chapter 17 Additional Programming Examples

Figure 17.22 (Continued)

Example 17.16 This example uses the move data from string to string for bytes
(MOVSB) instruction to overwrite data in a given string. The repeat prefix (REP) is
also used in the program to copy four bytes from the given string to a different location
in the same string. Figure 17.23 shows the assembly language program — not embed-
ded in a C program — to perform the operation.

;movs_byte6.asm
;replace the last 4 characters with the first 4 characters
.STACK
;---
.DATA
RSLT DB 0DH, 0AH, 'ABCD123456781234 $'
;---
.CODE
BEGIN PROC FAR

;set up pgm ds
MOV AX, @DATA ;get addr of data seg
MOV DS, AX ;move addr to ds
MOV ES, AX ;move addr to es

;move string elements

CLD
MOV CX, 4 ;count in cx
LEA SI, RSLT + 2 ;addr of rslt+2 -> si as src
LEA DI, RSLT + 14 ;addr of rslt+4 -> di as dst

REP MOVSB ;move bytes to dst

;display result
MOV AH, 09H ;display string
LEA DX, RSLT ;put addr of rslt in dx
INT 21H ;dos interrupt

BEGIN ENDP
END BEGIN (a) //continued on next page

Figure 17.23 Program to overwrite string locations: (a) the program and (b) the out-
put.

ABCD12345678ABCD
(b)

17.1 Programming Examples 671

Figure 17.23 (Continued)

Example 17.17 This example is similar to Example 17.16; however, the string is
entered from the keyboard. The move data from string to string for bytes (MOVSB)
instruction is also used together with the repeat prefix (REP) to replace the last four
characters of a 10-character string with the first four characters. Figure 17.24 shows
the assembly language program — not embedded in a C program — to perform the
operation.

;movs_byte7.asm
;replace the last 4 characters of a
;10-character string entered from the
;keyboard with the first 4 characters

;---
.STACK
;---
.DATA
PARLST LABEL BYTE
MAXLEN DB 15
ACTLEN DB ?
OPFLD DB 20 DUP(?)
PRMPT DB 0DH, 0AH, 'Enter a 10-character string: $'
RSLT DB 0DH, 0AH, 'New string = $'
;---
.CODE
BEGIN PROC FAR

;set up pgm ds
MOV AX, @DATA ;addr of data seg -> ax
MOV DS, AX ;addr of data seg -> ds
MOV ES, AX ;addr of data seg -> es

;read prompt
MOV AH, 09H ;display string
LEA DX, PRMPT ;addr of prompt -> dx
INT 21H ;dos interrupt

(a) //continued on next page

Figure 17.24 Program to exchange the last four characters of a 10-character string
with the first four characters: (a) the program and (b) the outputs.

;keyboard rtn to enter characters
MOV AH, 0AH ;buffered keyboard input
LEA DX, PARLST ;addr of parlst -> dx
INT 21H ;dos interrupt

;---
;move opfld to rslt area

LEA SI, OPFLD ;addr of opfld -> si
LEA DI, RSLT+15 ;addr of rslt -> di

MOV CL, ACTLEN ;actual length -> cl (or use 10)
MOV CH, 00H ;clear ch

REP MOVSB
;---
;overlap strings

MOV CX, 0004H
LEA SI, RSLT+15
LEA DI, RSLT+21

REP MOVSB
;---
;display result

MOV AH, 09H ;display string
LEA DX, RSLT ;addr of rslt -> dx
INT 21H ;dos interrupt

;---
BEGIN ENDP

END BEGIN

Enter a 10-character string: ABCDEFGHIJ
New string = ABCDEFABCD
--
Enter a 10-character string: 1234567890
New string = 1234561234
--
Enter a 10-character string: ^^^^&&&&&&
New string = ^^^^&&^^^^
--
Enter a 10-character string: ----123456
New string = ----12----
--
Enter a 10-character string: 12ab//////
New string = 12ab//12ab

(b)

672 Chapter 17 Additional Programming Examples

Figure 17.24 (Continued)

17.1 Programming Examples 673

Example 17.18 This example converts an integer (1 — 26) that is entered from the
keyboard to the corresponding uppercase alphabetic character. An array is used to
define the uppercase alphabetic characters. Figure 17.25 illustrates the program writ-
ten in the C programming language.

//translate_2.cpp
//Convert an integer that represents an alphabetic
//character (displayed as uppercase); 1=A, 26=Z

#include "stdafx.h"
int main (void)
{
//define alphabetic character array

int alpha[27] = {'0','A', 'B', 'C',
'D', 'E', 'F', 'G',
'H', 'I', 'J', 'K',
'L', 'M', 'N', 'O',
'P', 'Q', 'R', 'S',
'T', 'U', 'V', 'W',
'X', 'Y', 'Z'};

int x;

printf ("Enter an integer (1-26) that corresponds
to an alphabetic character: \n");

scanf ("%d", &x);

printf ("\nInteger = %d, Character = %c\n\n",
x, alpha[x]);

return 0;
} (a)

Enter an integer (1-26) that corresponds to an alphabetic char-
acter:
1

Integer = 1, Character = A

Press any key to continue . . . _
--

//continued on next page
(b)

Figure 17.25 Program to convert an integer to the corresponding uppercase alpha-
betic character: (a) the program and (b) the outputs.

Enter an integer (1-26) that corresponds to an alphabetic char-
acter:
2

Integer = 2, Character = B

Press any key to continue . . . _

--

Enter an integer (1-26) that corresponds to an alphabetic char-
acter:
8

Integer = 8, Character = H

Press any key to continue . . . _

--

Enter an integer (1-26) that corresponds to an alphabetic char-
acter:
20

Integer = 20, Character = T

Press any key to continue . . . _

--

Enter an integer (1-26) that corresponds to an alphabetic char-
acter:
26

Integer = 26, Character = Z

Press any key to continue . . . _

674 Chapter 17 Additional Programming Examples

Figure 17.25 (Continued)

Example 17.19 This example utilizes an array to translate a 2-digit number that is
entered from the keyboard to the correct spelling of the corresponding number. The 2-
digit numbers are in the following range: 01 — 12. Figure 17.26 shows the assembly
language program — not embedded in a C program — to perform the translation oper-
ation. Since the length of the longest number is six characters, each table entry in the
array must contain six locations.

;number_table.asm
;enter a number (01-12) from the keyboard
;and display the spelling of the corresponding number

;---
.STACK
;---
.DATA
PARLST LABEL BYTE
MAXLEN DB 40
ACTLEN DB ?
OPFLD DB 40 DUP(?)
TABLE DB 'ONE '
 DB 'TWO '
 DB 'THREE '
 DB 'FOUR '
 DB 'FIVE '
 DB 'SIX '
 DB 'SEVEN '
 DB 'EIGHT '
 DB 'NINE '
 DB 'TEN '
 DB 'ELEVEN'
 DB 'TWELVE'
PRMPT DB 0DH, 0AH, 'Enter 2-digit number (01-12): $'
RSLT DB 0DH, 0AH, 'Number = $'
;---
.CODE
BEGIN PROC FAR

;set up pgm ds
MOV AX, @DATA ;get addr of data seg
MOV DS, AX ;move addr to ds

;read prompt
MOV AH, 09H ;display string
LEA DX, PRMPT ;put addr of prompt in dx
INT 21H ;dos interrupt

;keyboard request rtn to enter characters

MOV AH, 0AH ;buffered keyboard input
LEA DX, PARLST ;put addr of parlst in dx
INT 21H ;dos interrupt

;---
//continued on next page

(a)

17.1 Programming Examples 675

Figure 17.26 Program to translate a 2-digit number to the correct spelling of the
number: (a) the program and (b) the outputs.

;---
;set up source and destination

LEA SI, OPFLD ;point to first number
LEA DI, RSLT + 11 ;point to destination

;get number
MOV AH, [SI] ;get 1st number
SUB AH, 30H ;unpack it
INC SI ;point to opfld+1
MOV AL, [SI] ;get 2nd number
SUB AL, 30H ;unpack it

;convert unpacked number in ax
;to the binary equivalent in al

AAD
SUB AL, 01H ;adjust for offset in table
MOV CL, 06H ;6 characters per number
MUL CL ;mul al by 6 to find number

;---

;get number from table
LEA SI, TABLE ;put addr of table in si
MOV AH, 00H ;clear ah
ADD SI, AX ;si points to number
MOV CX, 06H ;for 6 characters

NUM: MOV AL, [SI] ;get number letter

MOV [DI], AL ;put letter in rslt
INC SI ;point to next letter
INC DI ;point to next destination
LOOP NUM ;loop until cx = 0

;---

;display the result
MOV AH, 09H ;display string
LEA DX, RSLT ;put addr of rslt in dx
INT 21H ;dos interrupt

BEGIN ENDP
END BEGIN //continued on next page

676 Chapter 17 Additional Programming Examples

Figure 17.26 (Continued)

Enter 2-digit number (01-12): 01
Number = ONE
--
Enter 2-digit number (01-12): 06
Number = SIX
--
Enter 2-digit number (01-12): 09
Number = NINE
--
Enter 2-digit number (01-12): 10
Number = TEN
--
Enter 2-digit number (01-12): 11
Number = ELEVEN
--
Enter 2-digit number (01-12): 12
Number = TWELVE

(b)

17.2 Problems 677

Figure 17.26 (Continued)

17.2 Problems

17.1 Write a program in assembly language — not embedded in a C program —
that determines the largest number from eight single-digit numbers that are
entered from the keyboard, then display the number.

17.2 Write a program in assembly language — not embedded in a C program —
that counts the number of times that a number occurs in an array of eight num-
bers. The first number entered from the keyboard is the number that is being
compared to the remaining eight numbers. Display the result.

17.3 Write a program in assembly language — not embedded in a C program —
that translates an ASCII character (0 through 9) that is entered from the key-
board to the letters a through j, respectively.

17.4 Write an assembly language module embedded in a C program that uses the
exclusive-OR function to operate on a string of hexadecimal characters that
are entered from the keyboard. Perform the operation on the following char-
acter positions in the specified sequence, then display the results:

678 Chapter 17 Additional Programming Examples

Position 1 ⊕ position 3 → position 3
Position 2 ⊕ position 4 → position 4
Position 3 ⊕ position 5 → position 5
Position 4 ⊕ position 6 → position 6

17.5 Write a program in assembly language — not embedded in a C program —
that calculates the factorial of numbers entered from the keyboard in the range
of 1 through 6. Display the results.

17.6 Write an assembly language module embedded in a C program to obtain the
sum of cubes for the numbers 1 through 5. Display the resulting sum of cubes.

17.7 Write an assembly language module embedded in a C program to calculate 2
to power of n (0 – 8), where the variable n is entered from the keyboard.

17.8 Write an assembly language module embedded in a C program to evaluate the
following expression using fixed-point integers for bytes, words, and double-
words and obtain the quotients only:

[(X × Y) + Z + constant]

17.9 Write an assembly language module embedded in a C program to evaluate the
expression shown below for Y using a floating-point number for the variable
X. The range for X is –3.0 ≤ X ≤ +3.0. Enter several numbers for X and display
the corresponding results.

Y = X3 – 10 X2 + 20 X + 30

17.10 Write an assembly language module embedded in a C program to determine
the result of the equation shown below, where L and C are floating-point num-
bers. The variables L and C are entered from the keyboard. Display the re-
sults.

Result = 1/[2 × π × (L × C)1/2]

17.11 Given the program segment shown below, obtain the results for the following
floating-point numbers: 2.0, 10.0, and 15.0.

. . .
FLD flp_num
FMUL ST(0), ST(0)
FLDPI
FMUL ST(0), ST(1)
FST rslt

. . .

17.2 Problems 679

17.12 Given the program segment shown below, obtain the results for the following
floating-point numbers:

flp_num1 = 125.0, flp_num2 = 245.0

flp_num1 = 650.0, flp_num2 = 375.0

flp_num1 = 755.125, flp_num2 = 575.150

. . .
FLD flp_num1
FSQRT
FLD flp_num2
FSQRT
FSUBP ST(1), ST(0)
FST rslt

. . .

17.13 Write an assembly language module embedded in a C program to determine
the result of the following equation:

(sine 90° – sine 30°) / (cosine 180° + cosine 60°)

17.14 Write an assembly language module embedded in a C program to calculate the
tangent of the following angles using the sine and cosine of the angles:

30°, 45°, and 60°

17.15 Write an assembly language program — not embedded in a C program — that
replaces all spaces with hyphens in a character string entered from the key-
board.

This page intentionally left blankThis page intentionally left blank

681

Appendix A
ASCII Character Codes

HEX ASCII HEX ASCII HEX ASCII
20 SP 40 @ 60 ‘
21 ! 41 A 61 a
22 “ 42 B 62 b
23 # 43 C 63 c
24 $ 44 D 64 d
25 % 45 E 65 e
26 & 46 F 66 f
27 ’ 47 G 67 g
28 (48 H 68 h
29) 49 I 69 i
2A * 4A J 6A j
2B + 4B K 6B k
2C , 4C L 6C l
2D - 4D M 6D m
2E . 4E N 6E n
2F / 4F O 6F o
30 0 50 P 70 p
31 1 51 Q 71 q
32 2 52 R 72 r
33 3 53 S 73 s
34 4 54 T 74 t
35 5 55 U 75 u
36 6 56 V 76 v
37 7 57 W 77 w
38 8 58 X 78 x
39 9 59 Y 79 y
3A : 5A Z 7A z
3B ; 5B [7B {
3C < 5C \ 7C |
3D = 5D] 7D }
3E > 5E ^ 7E ~
3F ? 5F _ 7F DEL

This page intentionally left blankThis page intentionally left blank

683

Appendix B

Answers to Select Problems

Chapter 1 Number Systems and Number
Representations

1.5 Convert the octal number 173.258 to decimal.

473.268 = (4 × 82) + (7 × 81) + (3 × 80) + (2 × 8–1) + (6 × 8–2)
 = (256 + 56 + 3 + 0.25 + 0.09375)10
 = 315.3437510

1.9 Add the following binary numbers to yield a 12-bit sum:

1111 1111 1111
1111 1111 1111
1111 1111 1111
1111 1111 1111
1111 1111 1100

1.16 Multiply the unsigned binary numbers 11112 and 00112.

1 1 1 1
×) 0 0 1 1

0 0 0 0 1 1 1 1
0 0 0 1 1 1 1
0 0 1 0 1 1 0 1

684 Appendix B Answers to Select Problems

1.19 The numbers shown below are in sign-magnitude representation. Convert
the numbers to 2s complement representation for radix 2 with the same
numerical value using eight bits.

Sign magnitude 2s complement
1001 1001 – 25 1110 0111
0001 0000 + 16 0001 0000
1011 1111 – 63 1100 0001

1.21 Add the following BCD numbers:

1001 1000
+) 1001 0111

1 ← 1111
1 ← 0011 0110

0110 0101
1001

↓ ↓ ↓
0001 1001 0101

 Chapter 2 X86 Processor Architecture 685

Chapter 2 X86 Processor Architecture

2.3 The 7-bit code words shown below are received using Hamming code with
odd parity. Determine the syndrome word for each received code word.

(a) Bit Position = 1 2 3 4 5 6 7
Received Code Word = 1 1 1 1 1 1 1

Syndrome Word = 1 1 1

(b) Bit Position = 1 2 3 4 5 6 7
Received Code Word = 0 0 0 0 0 0 0

Syndrome Word = 1 1 1

2.7 Obtain the code word using the Hamming code with odd parity for the fol-
lowing message word: 1 1 0 1 0 1 0 1 1 1 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 1 1 1 0 1 0 0 1 0 1 1 1 1

2.13 A fraction and the bits to be deleted (low-order three bits) are shown below.
Determine the rounded results using truncation (round toward zero), adder-
based rounding (round to nearest), and von Neumann rounding.

Fraction
. 0 0 1 0 1 0 0 1 1 0 1

 Truncation: .0010 1001
 Adder-based: .0010 1010
 von Neumann: .0010 1001

686 Appendix B Answers to Select Problems

Chapter 3 Addressing Modes

3.3 Let DS = 1100H, DISPL = –126, and SI = 0500H. Using the real addressing
mode with a 20-bit address, determine the physical memory address for the
instruction shown below.

MOV DISPL[SI], DX

 SI: 0500
+) DISPL: FF82

0482H Effective address

 DS: 11000
 +) EA: 00482

11482H Real Memory address

3.6 Differentiate between the operation of the following two move instructions:

(a) MOV EBX, 1234ABCDH
(b) MOV [EBX], 1234H

(a) Moves the immediate value of 1234ABCDH to register EBX.
(b) Moves the immediate value of 1234H to the address pointed to by reg-

ister EBX.

 Chapter 4 C Programming Fundamentals 687

Chapter 4 C Programming Fundamentals

4.3 Write a program to change the following Fahrenheit temperatures to centi-
grade temperatures: 32.0, 100.0, and 85.0. Then print the results.

//fahr_to_cent.cpp
//change Fahrenheit to centigrade

#include "stdafx.h"

int main (void)
{

float fahr1 = 32.0;
float fahr2 = 100.0;
float fahr3 = 85.0;

float cent1, cent2, cent3;

cent1 = (fahr1 - 32) * (5.0/9.0);
cent2 = (fahr2 - 32) * (5.0/9.0);
cent3 = (fahr3 - 32) * (5.0/9.0);

printf ("fahrenheit 32.0 = centigrade %f\n",
cent1);

printf ("fahrenheit 100.0 = centigrade %f\n",
cent2);

printf ("fahrenheit 85.0 = centigrade %f\n\n",
cent3);

return 0;
}

Fahrenheit 32.0 = centigrade 0.000000
Fahrenheit 100.0 = centigrade 37.777779
Fahrenheit 85.0 = centigrade 29.444445

Press any key to continue . . . _

688 Appendix B Answers to Select Problems

4.7 Write a program to illustrate the difference between integer division and
floating-point division regarding the remainder, using the following divi-
dends and divisors: 742 ÷ 16 and 1756 ÷ 24. For the floating-point result, let
the integer be two digits and the fraction be four digits.

//div_int_flp.cpp
//show difference between integer division and
//floating-point division regarding the remainder
#include "stdafx.h"

int main (void)
{

printf ("Integer division: %d\n", 742/16);
printf ("Floating-point division:

%2.4f\n\n", 742.0/16.0);

printf ("Integer division: %d\n", 1756/24);
printf ("Floating-point division:

%2.4f\n\n", 1756.0/24.0);
return 0;

}

Integer division: 46
Floating-point division: 46.3750

Integer division: 73
Floating-point division: 73.1667

Press any key to continue . . . _

4.10 Indicate the value to which each of the following expressions evaluate.

(a) (1 + * 3) Evaluates to 7.
(b) 10 % 3 * 3 – (1 + 2) Evaluates to 0 (* and % same precedence).
(c) ((1 + 2) * 3) Evaluates to 9 (1 + 2) first.
(d) (5 = = 5) Evaluates to true (1)
(e) (5 = 5) Evaluates to 5.

 Chapter 4 C Programming Fundamentals 689

4.18 To what does the expression 5 + 3 * 8 / 2 + 2 evaluate?
Rewrite the expression, adding parentheses, so that it evaluates to 16.

//evaluate_expr.cpp
//evaluate expression without parentheses,
//then with parentheses
#include "stdafx.h"
int main (void)
{

int result1, result2;
result1 = 5 + 3 * 8 / 2 + 2;
result2 = (5 + 3) * 8 / (2 + 2);

printf ("Result1 = %d \nResult2 = %d\n\n",
result1, result2);

return 0;
}

Result1 = 19
Result2 = 16

Press any key to continue . . . _

4.22 Given the program shown below, obtain the outputs for variables a and b
after the program has executed.

//pre_post_incr4.cpp
//example to illustrate pre- and post-increment
#include "stdafx.h"
int main (void)
{

int a, b;
int c = 0;
a = ++c;
b = c++;

printf ("%d %d %d\n\n", a, b, ++c);
return 0;

}

1 1 3

Press any key to continue . . . _

690 Appendix B Answers to Select Problems

4.30 Use a for () loop to count from 10 to 100 in increments of 10. Display the
numbers on a single line.

//for_loop4.cpp
//use a for loop to count from 10 to 100
//in increments of 10
#include "stdafx.h"
int main (void)
{

int int1;

for (int1 = 10; int1 < 110; int1 = int1 + 10)
printf ("%d ", int1);

printf ("\n\n");
return 0;

}

10 20 30 40 50 60 70 80 90 100

Press any key to continue . . . _

4.33 Determine the number of As that are printed by the program shown below.

//for_loop_nested.cpp
//nested for loop to yield multiple outputs
#include "stdafx.h"
int main (void)
{

int x, y;

for (x = 0; x < 5; x++)
for (y = 5; y > 0; y--)

printf ("A");

printf ("\n\n");

return 0;
}

AAAAAAAAAAAAAAAAAAAAAAAAA

Press any key to continue . . . _

 Chapter 4 C Programming Fundamentals 691

4.36 Write a program that defines a string, then prints the string. Then reverse the
order of the original string and print the new string.

//string_cpy_len.cpp
//print a string in reverse order

#include "stdafx.h"

#include "string.h"

int main (void)

{
char string[15];
int i;

strcpy (string, "54321 edcba");

for (i=0; string[i]; i++)
printf ("%c", string[i]);

printf ("\n\n");

for (i=strlen(string)-1; i>=0; i--)
printf ("%c", string[i]);

printf ("\n\n");

return 0;
}

54321 edcba

abcde 12345

Press any key to continue . . . _

692 Appendix B Answers to Select Problems

4.38 Write a program to illustrate pointer postincrement. Assign an integer int1 a
value of 50 and assign a pointer variable the address of int1.

//ptr_incr.cpp
//program to illustrate pointer postincrement

#include "stdafx.h"

int main (void)
{

int int1 = 50;
int *pointer = &int1;

int1++;
(*pointer)++;

printf ("int1 = %d\n\n", *pointer);

return 0;
}

int1 = 52

Press any key to continue . . . _

 Chapter 5 Data Transfer Instructions 693

Chapter 5 Data Transfer Instructions

5.3 The sign-magnitude notation for a positive number is represented by the
equation shown below, where the sign bit of 0 indicates a positive number.

A = (0 an–2 an–3 … a1a0)r

The sign-magnitude notation for a negative number is represented by the
equation shown below, where the sign bit is the radix minus 1. In sign-mag-
nitude notation, the positive version differs from the negative version only in
the sign digit position. The magnitude portion an–2 an–3 … a1a0 is identical
for both positive and negative numbers of the same absolute value.

A ' = [(r – 1) an–2 an–3 … a1a0]r

The numbers shown below are in sign-magnitude representation for radix 2.
Convert the numbers to 2s complement representation with the same numer-
ical value using eight bits.

Sign-magnitude 2s Complement
(a) 0111 1111 0111 1111
(b) 1111 1111 1000 0001
(c) 0000 1111 0000 1111
(d) 1000 1111 1111 0001
(e) 1001 0000 1111 0000

5.4 Convert the positive 2s complement numbers shown below to negative num-
bers in 2s complement representation.

0000 1100 00112 (+19510) = 1111 0011 11012 (–19510)

0101 0101 01012 (+136510) = 1010 1010 10112 (–1365)

694 Appendix B Answers to Select Problems

5.7 Write a program using C and assembly language that shows the application
of the conditional move greater than or equal (CMOVGE) instruction for
signed operands.

//mov_cond3.cpp
//uses cmovge (greater than or equal); sf xor of = 0.
//if signed user-entered x is greater than or equal to
//user-entered y, then print x; otherwise, print y.
//if integers are equal, then print x

#include "stdafx.h"

int main (void)
{
//define variables

int x, y, rslt;

printf ("Enter two signed integers: \n");
scanf ("%d %d", &x, &y);

//switch to assembly
_asm
{

MOV EAX, x
MOV EBX, y

// move ebx to rslt if conditional move fails
MOV EDX, EBX
CMP EAX, EBX //set flags

//if eax >= ebx, move eax to rslt;
//otherwise, move ebx to result
CMOVGE EDX, EAX
MOV rslt, EDX

}

printf ("Result = %d\n\n", rslt);

return 0;
}

Enter two signed integers:
–256 –128
Result = –128

Press any key to continue . . . _
--
Enter two signed integers:
555 444
Result = 555

Press any key to continue . . . _
--
Enter two signed integers:
–400 400
Result = 400

Press any key to continue . . . _
--
Enter two signed integers:
750 750
Result = 750

Press any key to continue . . . _
--
Enter two signed integers:
–800 –800
Result = –800

Press any key to continue . . . _
--
Enter two signed integers:
–100 –101
Result = –100

Press any key to continue . . . _

 Chapter 5 Data Transfer Instructions 695

696 Appendix B Answers to Select Problems

5.10 Write a program using C and assembly language that shows the application
of the conditional move sign (CMOVS) instruction for signed operands. The
compare instruction subtracts the second source operand from the first
source operand and the state of the sign flag is set to either 0 or 1, depending
on the sign of the result. If the sign of the difference is negative (SF = 1), then
the move operation is executed.

//mov_cond7.cpp
//uses cmovs (sign is neg); sf = 1.
//signed user-entered x is compared to user-entered y.
//If sign flag is set, print x; otherwise, print y.

#include "stdafx.h"

int main (void)
{
//define variables

int x, y, rslt;
printf ("Enter two signed integers: \n");
scanf ("%d %d", &x, &y);

//switch to assembly
_asm
{

MOV EAX, x
MOV EBX, y

//move ebx to rslt if conditional move fails

MOV EDX, EBX
CMP EAX, EBX //set flags

//if sf = 1 (sign is neg), move eax to rslt;
//otherwise, move ebx to result

CMOVS EDX, EAX
MOV rslt, EDX

}
printf ("Result = %d\n\n", rslt);

return 0;
}

Enter two signed integers:
20000 2000 //4E20H 07D0H
Result = 2000 //Difference = 4650H

//Sign is positive

Press any key to continue . . . _

Enter two signed integers:
28000 30000 //6D60H 7530H
Result = 2800 //Difference = F830H

//Sign is negative

Press any key to continue . . . _

Enter two signed integers:
-4500 -6000 //EE6CH E890H
Result = -6000 //Difference = 05DCH

//Sign is positive

Press any key to continue . . . _

Enter two signed integers:
-6000 -4500 //E890H EE6CH
Result = -6000 //Difference = FA24H

//Sign is negative

Press any key to continue . . . _

Enter two signed integers:
750 -600 //02EEH FDA8H
Result = -600 //Difference = 0546H

//Sign is positive

Press any key to continue . . . _

Enter two signed integers:
-600 750 //FDA8H 02EEH
Result = -600 //Difference = FABAH

//Sign is negative

Press any key to continue . . . _

 Chapter 5 Data Transfer Instructions 697

698 Appendix B Answers to Select Problems

Chapter 6 Branching and Looping
Instructions
6.3 Determine if an overflow occurs for the operation shown below. The oper-

ands are signed numbers in 2s complement representation.

1 1 1 1 1 1 1 1
+) 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 0

No overflow, because (an–1 • bn–1 • sn–1') = 1 • 1 • 1.

6.7 Determine whether the conditional jump instructions shown below will
cause a jump to DEST.

(a) 004FH + 200D JS DEST
004FH + 00C8H = 0117H
Sign is positive; therefore no jump.

(b) FF38H + 200D JZ DEST
FF38H + 00C8H = 1 ← 0000H
Result is zero; therefore, a jump will occur.

6.11 Let AX = –405D. Determine whether the conditional jump instruction
shown below will cause a jump to BRANCH_ADDR.

CMP AX, FE6CH
JGE BRANCH_ADDR
For signed operands, a jump will not occur, because FE6CH (–404D)
is greater than –405D (FE6BH).

6.13 Determine the number of times the following program segment executes the
body of the loop:

MOV CX, –1
LP1: .

.

.
LOOP LP1 65,535 times.

 Chapter 7 Stack Operations 699

Chapter 7 Stack Operations

7.3 Determine the result of each instruction for the following program segment:

PUSH EBP Push EBP
MOV EBP, ESP Move ESP to EBP
PUSH EAX Push EAX
PUSH EBX Push EBX
PUSH ECX Push ECX

. . .
MOV EAX, [EBP – 12] Move ECX to EAX
MOV EBX, [EBP – 8] Move EBX to EBX
MOV ECX, [EBP – 4] Move EAX to ECX

. . .
ADD ESP, 12 Restore ESP
POP EBP Restore EBP

Stack

Low

High

ESP

EBP=ESP EBP

EAX

EBX

ECXESP

7.5 The partial contents of a stack are shown below before execution of the pro-
gram segment listed below. Determine the contents of the stack after the pro-
gram has been executed and indicate the new top of stack.

Stack Before Stack After

Low High Low addr Low High Low addr

ESP E4 11 ESP E4 F5

7E 00 7E 00

High addr High addr

POP BX ;BX = 11 E4 H
MOV AH, BH ;AX = 11 H
ADD AH, BL ;AX = F5 (E4 + 11 = F5)
MOV BH, AH ;BX = F5 E4 H BL = E4
PUSH BX ;Stack = E4 F5 H Low addr = E4

700 Appendix B Answers to Select Problems

7.8 Write an assembly language program — using the PUSH and POP instruc-
tions — that adds four decimal integers, then displays their sum. Embed the
assembly module in a C program. The decimal integers are entered from the
keyboard.

//push_pop_add_int.cpp
//add four decimal integers using push and pop

#include "stdafx.h"

int main (void)
{
//define variables

int dec1, dec2, dec3, dec4, sum_1234;

printf ("Enter four decimal integers: \n");
scanf ("%d %d %d %d", &dec1, &dec2, &dec3, &dec4);

//switch to assembly
_asm
{

MOV EAX, dec1
MOV EBX, dec2
ADD EAX, EBX ;dec1 + dec2 -> EAX
PUSH EAX ;push dec1 + dec2

MOV EAX, dec3
MOV EBX, dec4
ADD EAX, EBX ;dec3 + dec4 -> EAX

POP EBX ;pop dec1 + dec2
ADD EAX, EBX ;total sum -> EAX

MOV sum_1234, EAX ;move sum to result area
}

printf ("\nsum of four integers = %d\n\n",
sum_1234);

return 0;
}

Enter four decimal integers:
1 2 3 4

sum of four integers = 10

Press any key to continue . . . _

Enter four decimal integers:
25 50 75 100

sum of four integers = 250

Press any key to continue . . . _

Enter four decimal integers:
1000 2000 3000 4000

sum of four integers = 10000

Press any key to continue . . . _

Enter four decimal integers:
37 1200 750 875

sum of four integers = 2862

Press any key to continue . . . _

 Chapter 7 Stack Operations 701

702 Appendix B Answers to Select Problems

Chapter 8 Logical, Bit, Shift, and Rotate
Instructions

8.3 Using only logic instructions, write one instruction for each of the following
parts that will perform the indicated operations.

(a) Set the low-order four bits of register AX.
OR AX, 000FH

(b) Reset the high-order three bits of register AX.
AND AX, 1FFFH

(c) Invert bits 7, 8, and 9 of register AX.
XOR AX, 0380H

8.8 Write an assembly language module embedded in a C program that uses the
bit scan forward (BSF) instruction to detect whether the first bit detected is in
the low-order half or the high-order half of a 32-bit operand. Do not deter-
mine the bit position.

//bsf_if_struc.cpp
//determine if first bit is in position <= 15 or > 15
//using an if structure

#include "stdafx.h"
int main (void)
{
//define variables

int bsf_src_opnd;

printf ("Enter an 8-digit hexadecimal number: \n");
scanf ("%X", &bsf_src_opnd);

//continued on next page

//switch to assembly
_asm
{

MOV EBX, bsf_src_opnd
CMP EBX, 0
JZ NO_ONES
BSF EAX, EBX
CMP EAX, 15
JBE LESS_THAN_16
JMP GREATER_THAN_15

}

NO_ONES:
printf ("\nBSF opnd has no 1s\n\n");
goto end;

LESS_THAN_16:
printf ("\nBit is in position 15 -- 0\n\n");
goto end;

GREATER_THAN_15:
printf ("\nBit is in position 31 -- 16\n\n");

end:
return 0;

}

Enter an 8-digit hexadecimal number:
00A07000

Bit is in position 15 -- 0

Press any key to continue . . . _
--
Enter an 8-digit hexadecimal number:
7BC68000

Bit is in position 15 -- 0

Press any key to continue . . . _
--

//continued on next page

 Chapter 8 Logical, Bit, Shift, and Rotate Instructions 703

Enter an 8-digit hexadecimal number:
FFFF0001

Bit is in position 15 -- 0

Press any key to continue . . . _
--
Enter an 8-digit hexadecimal number:
80D10000

Bit is in position 31 -- 16

Press any key to continue . . . _
--
Enter an 8-digit hexadecimal number:
0DC00000

Bit is in position 31 -- 16

Press any key to continue . . . _
--
Enter an 8-digit hexadecimal number:
80000000

Bit is in position 31 -- 16

Press any key to continue . . . _
--
Enter an 8-digit hexadecimal number:
00000000

BSF opnd has no 1s

Press any key to continue . . . _

704 Appendix B Answers to Select Problems

8.12 Determine the contents of register EBX and the flags register after execution
of the program segment shown below. Then write an assembly language
module embedded in a C program to verify the results.

MOV EBX, 0FFFFA85BH
SAL EBX, 20
MOV EBX, 0FFFFA85BH
SAR EBX, 20

SAL result = 85B00000 SAR result = FFFFFFFF
SAL flags = 86 SAR flags = 87

//sal_sar.cpp
//program to illustrate shift arithmetic left
//and shift arithmetic right instructions
//for the same operand

#include "stdafx.h"
int main (void)
{
//define variables

int dst_opnd, sal_rslt, sar_rslt;
unsigned char sal_flags, sar_flags;

printf ("Enter an 8-digit hexadecimal number: \n");
scanf ("%X", &dst_opnd);

//switch to assembly
_asm
{

//SAL instruction
MOV EBX, dst_opnd
SAL EBX, 20
MOV sal_rslt, EBX
LAHF
MOV sal_flags, AH

//SAR instruction
MOV EBX, dst_opnd
SAR EBX, 20
MOV sar_rslt, EBX
LAHF
MOV sar_flags, AH

}

printf ("\nSAL result = %X\nSAL flags = %X\n\n",
sal_rslt, sal_flags);

printf ("\nSAR result = %X\nSAR flags = %X\n\n",
sar_rslt, sar_flags);

return 0;
}

 Chapter 8 Logical, Bit, Shift, and Rotate Instructions 705

Enter an 8-digit hexadecimal number:
FFFFA85B

SAL result = 85B00000
SAL flags = 86

SAR result = FFFFFFFF
SAR flags = 87

Press any key to continue . . . _

706 Appendix B Answers to Select Problems

8.14 Write an assembly language module embedded in a C program that will mul-
tiply and divide a decimal number by eight using arithmetic shift instruc-
tions. When dividing, some numbers will have the fraction truncated.

//sal_sar_2.cpp
//shifting positive and negative numbers
//using SAL and SAR instructions

#include "stdafx.h"

int main (void)
{
//define variables

int dst_opnd, sal_rslt, sar_rslt;

printf ("Enter a decimal number: \n");
scanf ("%d", &dst_opnd);

//switch to assembly
_asm
{

//SAL instruction
MOV EAX, dst_opnd
SAL EAX, 3
MOV sal_rslt, EAX

//continued on next page

//SAR instruction
MOV EAX, dst_opnd
SAR EAX, 3
MOV sar_rslt, EAX

}

printf ("\nSAL result = %d\n", sal_rslt);

printf ("SAR result = %d\n\n", sar_rslt);

return 0;
}

Enter a decimal number:
8

SAL result = 64
SAR result = 1

Press any key to continue . . . _
--
Enter a decimal number:
–8

SAL result = –64
SAR result = –1

Press any key to continue . . . _
--
Enter a decimal number:
–10

SAL result = –80
SAR result = –2 //1.25; 1111 ... 1111 0110

//1111 ... 1111 1110
Press any key to continue . . . _
--
Enter a decimal number:
25

SAL result = 200
SAR result = 3 //3.125; 0000 ... 0001 1001

//0000 ... 0000 0011
Press any key to continue . . . _
--

//continued on next page

 Chapter 8 Logical, Bit, Shift, and Rotate Instructions 707

Enter a decimal number:
–25

SAL result = –200
SAR result = –4 //–3.125; 1111 ... 1110 0111

//1111 ... 1111 1100
Press any key to continue . . . _
--
Enter a decimal number:
500

SAL result = 4000
SAR result = 62 //62.5; 0000 ... 0001 1111 0100

//0000 ... 0000 0011 1110
Press any key to continue . . . _
--
Enter a decimal number:
1000

SAL result = 8000
SAR result = 125

Press any key to continue . . . _

708 Appendix B Answers to Select Problems

8.16 Let register EAX contain AD3E14B5H and the carry flag be set. Determine
the contents of register EAX after the following instruction is executed:

CF RCL EAX, 6
1 1010 1101 0011 1110 0001 0100 1011 0101
1 0101 1010 0111 1100 0010 1001 0110 1011 After 1 shift
0 1011 0100 1111 1000 0101 0010 1101 0111 After 2 shifts
1 0110 1001 1111 0000 1010 0101 1010 1110 After 3 shifts
0 1101 0011 1110 0001 0100 1011 0101 1101 After 4 shifts
1 1010 0111 1100 0010 1001 0110 1011 1010 After 5 shifts
1 0100 1111 1000 0101 0010 1101 0111 0101 After 6 shifts

 Chapter 9 Fixed-Point Arithmetic Instructions 709

Chapter 9 Fixed-Point Arithmetic
Instructions

9.3 Indicate whether an overflow occurs for the operation shown below. The
numbers are in radix complementation for radix 3.

2 1 0 1 23 = 2×34 + 1×33+ 0×32 + 1×31 + 2×30 = 194
+) 0 2 1 2 23 = 0×34 + 2×33 + 1×32 + 2×31 + 2×30 = 71
1 0 0 2 1 13 = 1×35 + 0×34 + 0×33 + 2×32 + 1×31 + 1×30 = 265

No overflow, because a positive and negative number are being added.
The sign for a positive number is 0.
The sign for a negative number is r – 1 = 3 – 1 = 2.

9.6 Determine the contents of registers AL and BL after the program segment
shown below has executed. Then write an assembly language module
embedded in a C program to verify the results.

AL BL AL BL AL BL AL BL AL BL
MOV AL, 00H 0
MOV BL, –5 0 –5

LOOP1: ADD BL, 2 0 –3 1 –2 2 –1 3 0 4 1
INC AL 1 –3 2 –2 3 –1 4 0 5 1
ADD BL, –1 1 –4 2 –3 3 –2 4 –1 5 0
JNZ LOOP1

//inc_al_dec_bl.cpp
//program to determine the contents of registers
//AL and BL after a program has executed
#include "stdafx.h"
int main (void)
{
//define variables

char al_sum, bl_sum;

//continued on next page

//switch to assembly
_asm
{

MOV AL, 00H
MOV BL, -5

LOOP1: ADD BL, 2
INC AL
ADD BL, -1
JNZ LOOP1
MOV al_sum, AL
MOV bl_sum, BL

}
printf ("\nAL = %d\nBL = %d\n\n", al_sum, bl_sum);
return 0;

}

AL = 5
BL = 0

Press any key to continue . . . _

710 Appendix B Answers to Select Problems

9.9 Write an assembly language program — not embedded in a C program —
that removes all nonletters from a string of characters that are entered from
the keyboard.

PAGE 66, 80
;non letters.asm
;--
.STACK

;--
.DATA
PARLST LABEL BYTE
MAXLEN DB 40
ACTLEN DB ?
OPFLD DB 40 DUP(?)
PRMPT DB 0DH, 0AH, 'Enter text $'
RSLT DB 0DH, 0AH, 'Result = $'

;--
//continued on next page

.CODE
BEGIN PROC FAR

;set up pgm ds

MOV AX, @DATA
MOV DS, AX

;read prompt
MOV AH, 9
LEA DX, PRMPT
INT 21H

;kybd rtn to enter characters

MOV AH, 0AH
LEA DX, PARLST
INT 21H

MOV CL, ACTLEN ;get # of chars entered
MOV CH, 0

LEA SI, OPFLD ;source addr to si
LEA DI, RSLT + 11 ;destination addr to di

LP1: MOV AL, [SI] ;get char in opfld

CMP AL, 41H ;compare to uppercase A
JL LP2 ;if < A, jump
CMP AL, 5AH ;compare to uppercase Z
JLE LP4 ;if between A and Z, jump

CMP AL, 7AH ;compare to lowercase z
JG LP2 ;if > z, jump
CMP AL, 61H ;compare to lowercase a
JL LP2 ;if < a, jump

LP4: MOV [DI], AL ;move valid char to dst

INC DI ;inc di to next dst

LP2: INC SI ;addr of next character

LOOP LP1 ;jump, get char in opfld

;display result
MOV AH, 09H
LEA DX, RSLT
INT 21H

BEGIN ENDP

END BEGIN

 Chapter 9 Fixed-Point Arithmetic Instructions 711

Enter text: the6h7h
Result = the
--
Enter text: 7HD3e23kl
Result = HDekl
--
Enter text: 1234567879A
Result = A
--
Enter text: ABcdEF7
Result = ABcdEF
--
Enter text: abcdefghij
Result = abcdefghij
--
Enter text: 123456789
Result =

712 Appendix B Answers to Select Problems

9.17 Let register AL = 61H (9710). Then execute the instruction shown below to
obtain the difference and the state of the following flags: OF, SF, ZF, AF, PF,
and CF.

SUB AL, 65H ;65H = 10110

CF AF
1 1 0 0 1 1

0 1 1 0 0 0 0 1 +97
–) 0 1 1 0 0 1 0 1 +101

1 1 1 1 1 1 0 0 –4

↓

0 1 1 0 0 0 0 1 +97
+) 1 0 0 1 1 01 11 1 –101

1 1 1 1 1 1 0 0 –4
0(1) 0(1)
CF AF

OF = 0, SF = 1, ZF = 0, AF = 1, PF = 1, CF = 1

 Chapter 9 Fixed-Point Arithmetic Instructions 713

9.21 Write an assembly language program — not embedded in a C program — to
reverse the order and change to uppercase all letters that are entered from the
keyboard. The letters that are entered may be lowercase or uppercase.

;reverse uppercase
PAGE 66, 80
;---
.STACK
;---
.DATA
PARLST LABEL BYTE
MAXLEN DB 40
ACTLEN DB ?
OPFLD DB 40 DUP(?)
PRMPT DB 0DH, 0AH, 'Enter characters: $'
RSLT DB 0DH, 0AH, 'Result = $'

.CODE
BEGIN PROC FAR

;setup pgm ds
MOV AX, @DATA ;get addr of data seg
MOV DS, AX ;move addr to ds

;read prompt

MOV AH, 09H ;display string
LEA DX, PRMPT ;put addr of prompt in dx
INT 21H ;dos interrupt

;keyboard request rtn to enter characters

MOV AH, 0AH ;buffered keyboard input
LEA DX, PARLST ;put addr of parlst in dx
INT 21H ;dos interrupt

;setup count and addresses
MOV CL, ACTLEN ;number of characters
MOV CH, 0 ;... entered
MOV BX, CX ;bx is displacement
DEC BX
LEA SI, OPFLD[BX] ;addr of last character
LEA DI, RSLT + 11 ;setup destination addr

;change to uppercase and reverse order
SWAP: MOV AL, [SI] ;move character to al

CMP AL, 61H ;compare to lowercase
JL UPPER ;jump if uppercase
SUB AL, 20H ;if lowercase, change to

;uppercase
//continued on next page

UPPER: MOV [DI], AL ;move char to result area
DEC SI
INC DI
LOOP SWAP ;loop if cx !=0

;display result

MOV AH, 09H ;display string
LEA DX, RSLT ;put addr of rslt in dx
INT 21H ;dos interrupt

BEGIN ENDP

END BEGIN

Enter characters: aBCdeFGh
Result = HGFEDCBA
--
Enter characters: ihgfedcba
Result = ABCDEFGHI
--
Enter characters: ABCDEFGHIJ
Result = JIHGFEDCBA

714 Appendix B Answers to Select Problems

9.23 Write an assembly language program — not embedded in a C program — to
sort n single-digit numbers in ascending numerical order that are entered
from the keyboard. A simple exchange sort is sufficient for this program.
The technique is slow, but appropriate for sorting small lists. The method is
as follows:

1. Search the list to find the smallest number.
2. After finding the smallest number, exchange this number with the first

number.
3. Search the list again to find the next smallest number, starting with the

second number.
4. Then exchange this (second smallest) number with the second number.
5. Repeat this process, starting with the third number, then the fourth num-

ber, etc.

;sort n numbers2.asm

;---
.STACK

;---
.DATA
PARLST LABEL BYTE
MAXLEN DB 15
ACTLEN DB ?
OPFLD DB 15 DUP(?)
PRMPT DB 0DH, 0AH, 'Enter numbers: $'
RSLT DB 0DH, 0AH, 'Sorted numbers = $'

;---
.CODE
BEGIN PROC FAR

;set up pgm ds

MOV AX, @DATA ;get addr of data seg
MOV DS, AX ;move addr to ds

;read prompt
MOV AH, 09H ;display string
LEA DX, PRMPT ;put addr of prompt in dx
INT 21H ;dos interrupt

;keyboard request rtn to enter characters

MOV AH, 0AH ;buffered keyboard input
LEA DX, PARLST ;put addr of parlst in dx
INT 21H ;dos interrupt

;sort numbers

LEA SI, OPFLD ;addr of first byte to si
MOV DL, ACTLEN ;# of bytes to dx
MOV DH, 00H ;... as loop ctr
DEC DX ;loop ctr - 1

LP1: MOV CX, DX ;cx is loop2 ctr

LP2: MOV AL, [SI] ;number to al
MOV BX, CX ;bx is base addr
CMP AL, [BX+SI] ;is number <= to al?
JBE NEXT ;number is <=; get next #
XCHG AL, [BX+SI] ;number is !<=; put in al
MOV [SI], AL ;put # in input buffer

//continued on next page

 Chapter 9 Fixed-Point Arithmetic Instructions 715

NEXT: LOOP LP2 ;loop until #s compared
INC SI ;point to next number
DEC DX ;dec internal loop ctr
JNZ LP1 ;compare remaining #s

;set up src (opfld) and dst (rslt)

LEA SI, OPFLD
LEA DI, RSLT+20
MOV CL, ACTLEN
MOV CH, 00H ;cx is counter

;move sorted numbers to input buffer
INP_BUFF:

MOV BL, [SI] ;opfld to bl
MOV [DI], BL ;byte to result area
INC SI
INC DI
LOOP INP_BUFF

;display sorted numbers

MOV AH, 09H ;display string
LEA DX, RSLT ;put addr of rslt in dx
INT 21H ;dos interrupt

BEGIN ENDP

END BEGIN

Enter numbers: 7658943034
Sorted numbers = 0334456789
--
Enter numbers: 7548391235
Sorted numbers = 1233455789
--
Enter numbers: 9876543210
Sorted numbers = 0123456789

716 Appendix B Answers to Select Problems

9.27 Determine the hexadecimal contents of register AX after the following pro-
gram segment has been executed:

MOV CX, 3
MOV AX, 2 ;AX = 2

LP1: MUL AX ;AX = 4 16 256
LOOP LP1 ;CX = 3 2 1

AX = 0000 0001 0000 0000

 Chapter 9 Fixed-Point Arithmetic Instructions 717

9.30 Write an assembly language module embedded in a C program that uses the
three-operand form for signed multiplication. Enter a signed decimal multi-
plicand from the keyboard and assign an immediate multiplier for the IMUL
operation. Display the multiplicand, the multiplier, and the product.

//imul_3_opnds.cpp
//signed decimal multiplication using 3 operands

#include "stdafx.h"
int main (void)
{
//define variables

long mpcnd, product;

printf ("Enter a signed decimal multiplicand: \n");
scanf ("%d", &mpcnd);

//switch to assembly
_asm
{

MOV EBX, mpcnd
IMUL EAX, EBX, 10 ;EAX = EBX x 10
MOV product, EAX

}

printf ("\nMultiplicand = %d", mpcnd);
printf ("\nMultiplier = 10");
printf ("\nProduct = %d\n\n", product);

return 0;
}

Enter a signed decimal multiplicand:
450

Multiplicand = 450
Multiplier = 10
Product = 4500

Press any key to continue . . . _
--

//continued on next page

Enter a signed decimal multiplicand:
–5

Multiplicand = –5
Multiplier = 10
Product = –50

Press any key to continue . . . _
--
Enter a signed decimal multiplicand:
6000

Multiplicand = 6000
Multiplier = 10
Product = 60000

Press any key to continue . . . _
--
Enter a signed decimal multiplicand:
–6000

Multiplicand = –6000
Multiplier = 10
Product = –60000

Press any key to continue . . . _
--
Enter a signed decimal multiplicand:
65535

Multiplicand = 65535
Multiplier = 10
Product = 655350

Press any key to continue . . . _
--
Enter a signed decimal multiplicand:
–65535

Multiplicand = –65535
Multiplier = 10
Product = –655350

Press any key to continue . . . _

718 Appendix B Answers to Select Problems

 Chapter 9 Fixed-Point Arithmetic Instructions 719

9.34 Write an assembly language module embedded in a C program to perform
unsigned division (DIV) on two decimal integers that are entered from the
keyboard. Print the dividend, divisor, quotient, and remainder.

//div.cpp
//unsigned division of two integers
#include "stdafx.h"
int main (void)
{
//define variables

unsigned short dvdnd, dvsr, quot, rem;

printf ("Enter a decimal dividend and divisor: \n");
scanf ("%d %d", &dvdnd, &dvsr);

//switch to assembly
_asm
{

MOV AX, dvdnd
CWD
DIV dvsr

MOV quot, AX
MOV rem, DX

}

printf ("\nDividend = %d\nDivisor = %d\n",
dvdnd, dvsr);

printf ("\nQuotient = %d\nRemainder = %d\n\n",
quot, rem);

return 0;
}

Enter a decimal dividend and divisor:
450 20

Dividend = 450
Divisor = 20

Quotient = 22
Remainder = 10

Press any key to continue . . . _
--
Enter a decimal dividend and divisor:
25000 250

Dividend = 25000
Divisor = 250

Quotient = 100
Remainder = 0

Press any key to continue . . . _
--
Enter a decimal dividend and divisor:
25000 30

Dividend = 25000
Divisor = 30

Quotient = 833
Remainder = 10

Press any key to continue . . . _
--
Enter a decimal dividend and divisor:
4660 86

Dividend = 4660
Divisor = 86

Quotient = 54
Remainder = 16

Press any key to continue . . . _

720 Appendix B Answers to Select Problems

 Chapter 9 Fixed-Point Arithmetic Instructions 721

9.38 Write an assembly language module embedded in a C program that evaluates
the expression shown below, where x = 40010 (019016), y = 510 (000516), z =
100010 (03E816), and v = 400010 (0FA016).

[v – (x × y + z – 500)] / x

[v – (x × y + z – 500)] / x
= [4000 – (400 × 5 + 1000 – 500)] / 400
= [4000 – 2500] / 400
= 1500 / 400
= 3.75
= Quotient = 310 (316), Remainder = 30010 (12C16)

//solve_eqn.cpp
//use imul, add, sub, and idiv to solve the equation:
//[V - (X x Y + Z - 500)]/X

#include "stdafx.h"

int main (void)
{
//define variables

short x, y, z, v, quot, rem;

x = 0x0190;
y = 0x0005;
z = 0x03E8;
v = 0x0FA0;

//switch to assembly
_asm
{

//X x Y
MOV AX, x
IMUL y
MOV CX, AX
MOV BX, DX

//+Z
MOV AX, z
CWD
ADD CX, AX
ADC BX, DX

//continued on next page

//-500
SUB CX, 01F4H //500
SBB BX, 0

//V-()
MOV AX, v
CWD
SUB AX, CX
SBB DX, BX

///400
IDIV x

//move ax to quotient and dx to remainder
MOV quot, AX
MOV rem, DX

}

printf ("\nQuotient = %X, Remainder = %X\n\n",
quot, rem);

return 0;
}

Quotient = 3, Remainder = 12C

Press any key to continue . . . _

722 Appendix B Answers to Select Problems

 Chapter 10 Binary-Coded Decimal Arithmetic Instructions 723

Chapter 10 Binary-Coded Decimal
Arithmetic Instructions

10.5 In each part below, assume that the following instructions are executed:

ADD AL, BL
DAA

(a) Give the values of AL after the ADD instruction has been executed, but
before the DAA instruction has been executed for the indicated register
values shown below.

(b) Give the values of AL, the carry flag (CF), and the auxiliary carry flag
(AF) after the DAA instruction has been executed for the indicated reg-
ister values shown below.

After ADD After DAA CF AF
(1) AL = 35H, BL = 48H Sum = 7DH Sum = 83 0 1
(2) AL = 47H, BL = 61H Sum = A8H Sum = 08 1 0
(3) AL = 75H, BL = 46H Sum = BBH Sum = 21 1 1

Then write an assembly language module embedded in a C program to verify
the results.

//daa3.cpp
//illustrates the use of the daa instruction

#include "stdafx.h"

int main (void)
{
//define variables

unsigned char augend, addend, add_sum, daa_sum,
flags;

printf ("Enter two 2-digit hexadecimal numbers:
\n");

scanf ("%X %X", &augend, &addend);

//continued on next page

//switch to assembly
_asm
{

//obtain sum
MOV AL, augend
ADD AL, addend
MOV add_sum, AL
DAA
MOV daa_sum, AL

//save flags
PUSHF
POP AX
MOV flags, AL

}

printf ("\nAugend = %X, Addend = %X\n",
augend, addend);

printf ("\nADD sum = %X, DAA sum = %X\n",
add_sum, daa_sum);

printf ("Flags = %X\n\n", flags);

return 0;
}

Enter two 2-digit hexadecimal numbers:
35 48

Augend = 35, Addend = 48

ADD sum = 7D, DAA sum = 83 //DAA sum = 083
Flags = 92 //SF, AF

Press any key to continue . . . _
--

//continued on next page

724 Appendix B Answers to Select Problems

--
Enter two 2-digit hexadecimal numbers:
47 61

Augend = 47, Addend = 61

ADD sum = A8, DAA sum = 8 //DAA sum = 108
Flags = 3 //CF

Press any key to continue . . . _
--
Enter two 2-digit hexadecimal numbers:
75 46

Augend = 75, Addend = 46

ADD sum = BB, DAA sum = 21 //DAA sum = 121
Flags = 17 //AF, PF, CF

Press any key to continue . . . _

 Chapter 10 Binary-Coded Decimal Arithmetic Instructions 725

10.8 Perform a subtraction and adjustment of the following two operands: 07 –
09. Show the details of the subtraction and adjustment.

AH AL
0 0 0 7

+) F 7 (–9)
F E (–2)

AAS Subtract 6 +) F A (–6)
0 8

AH – 1: F F 0 8 AF = 1
 CF = 1
 Clear high half of AL

726 Appendix B Answers to Select Problems

10.17 Write an assembly language program — not embedded in a C program —
that multiplies a five-digit multiplicand by a one-digit multiplier using the
MUL instruction in combination with the AAM instruction. The ADD
instruction and the AAA instruction will also be used in implementing the
program.

The five-digit multiplicand and the one-digit multiplier are entered from
the keyboard and stored in the OPFLD, as shown below using a multiplicand
of 12345 and a multiplier of 6. Enter several different multiplicands and
multipliers, then display the operands and the resulting product.

Multiplicand Multiplier

MAX ACT OP +1 +2 +3 +4 +5
PARLST 31 32 33 34 35 36

The paper-and-pencil example shown below may help to illustrate the
algorithm used in the program.

7 8 9
×) 9

8 1 AAM, then store 1 in result area
+) 7 2

8 0 AAM, AAA, then store 0 in result area
+) 6 3

7 1 AAM, AAA, then store 7 and 1 in result area
 Product = 7101

;aam4.asm
;obtain the product of a 5-digit multiplicand
;and a 1-digit multiplier

;---
.STACK

;---
.DATA
PARLST LABEL BYTE
MAXLEN DB 10
ACTLEN DB ?
OPFLD DB 10 DUP(?)
PRMPT DB 0DH, 0AH, 'Enter 5-digit mpcnd and

1-digit mplyr: $'
RSLT DB 0DH, 0AH, 'Product = $'

//continued on next page

.CODE
BEGIN PROC FAR

;set up pgm ds
MOV AX, @DATA ;get addr of data seg
MOV DS, AX ;move addr to ds

;read prompt

MOV AH, 09H ;display string
LEA DX, PRMPT ;put addr of prompt in dx
INT 21H ;dos interrupt

;keyboard request rtn to enter characters

MOV AH, 0AH ;buffered keyboard input
LEA DX, PARLST ;put addr of parlst in dx
INT 21H ;dos interrupt

;---
;perform the multiplication

MOV CX, 05 ;five loops

LEA SI, OPFLD+4 ;si = addr of low-order
;mpcnd digit

LEA DI, RSLT+17 ;di = addr of low-order
;product digit

AND OPFLD+5, 0FH ;unpack multiplier

LP1: MOV AL, [SI] ;get next low-order

;mpcnd digit
AND AL, 0FH ;unpack it
MUL OPFLD+5 ;multiply by the mplyr
AAM ;adjust the product

ADD AL, [DI] ;add low-order product

;digit to al
AAA ;adjust the sum
OR AL, 30H ;add ascii bias
MOV [DI], AL ;move to low-order

;result area

DEC DI ;get addr of next
;low-order result area

OR AH, 30H ;add ascii bias
MOV [DI], AH ;move to next low-order

;result area
DEC SI ;address next high-order

;mpcnd digit
LOOP LP1 ;loop if cx != 0

//continued on next page

 Chapter 10 Binary-Coded Decimal Arithmetic Instructions 727

;display product
MOV AH, 09H ;display string
LEA DX, RSLT ;addr of product in dx
INT 21H ;dos interrupt

BEGIN ENDP

END BEGIN

Enter 5-digit mpcnd and 1-digit mplyr: 123456
Product = 074070
--
Enter 5-digit mpcnd and 1-digit mplyr: 007899
Product = 007101
--
Enter 5-digit mpcnd and 1-digit mplyr: 999999
Product = 899991
--
Enter 5-digit mpcnd and 1-digit mplyr: 556667
Product = 389662
--
Enter 5-digit mpcnd and 1-digit mplyr: 111118
Product = 088888
--
Enter 5-digit mpcnd and 1-digit mplyr: 765432
Product = 153086

728 Appendix B Answers to Select Problems

10.19 Repeat Problem 10.18, this time using an assembly language module embed-
ded in a C program. Note the simplicity of this program. There is no require-
ment to remove the ASCII bias for the numbers that are entered from the
keyboard, or to restore the ASCII bias before displaying the hours, minutes,
and seconds. It is also not necessary to establish stack or data segments. The
range is the same: 10,000 to 60,000 seconds.

//hrs_min_sec.cpp
//given a 5-digit number of seconds, calculate the
//equivalent number of hours, minutes, and seconds
#include "stdafx.h"
int main (void)
{

unsigned short seconds, hrs, min, sec;

printf ("Enter 5-digit #: range 10000 -- 60000:
\n");

scanf ("%d", &seconds);
//continued on next page

//switch to assembly
_asm
{

MOV DX, 0
MOV AX, seconds
MOV BX, 3600
DIV BX
MOV hrs, AX

MOV AX, DX
MOV DX, 0
MOV BX, 60
DIV BX
MOV min, AX

MOV sec, DX
}

printf ("\nHours = %d", hrs);
printf ("\nMinutes = %d", min);
printf ("\nSeconds = %d\n\n", sec);

return 0;
}

Enter 5-digit #: range 10000 -- 60000:
43210

Hours = 12
Minutes = 0
Seconds = 10

Press any key to continue . . . _
--
Enter 5-digit #: range 10000 -- 60000:
10000

Hours = 2
Minutes = 46
Seconds = 40

Press any key to continue . . . _
--

//continued on next page

 Chapter 10 Binary-Coded Decimal Arithmetic Instructions 729

Enter 5-digit #: range 10000 -- 60000:
00060

Hours = 0
Minutes = 1
Seconds = 0

Press any key to continue . . . _
--
Enter 5-digit #: range 10000 -- 60000:
00059

Hours = 0
Minutes = 0
Seconds = 59

Press any key to continue . . . _
--
Enter 5-digit #: range 10000 -- 60000:
20000

Hours = 5
Minutes = 33
Seconds = 20

Press any key to continue . . . _
--
Enter 5-digit #: range 10000 -- 60000:
39760

Hours = 11
Minutes = 2
Seconds = 40

Press any key to continue . . . _

730 Appendix B Answers to Select Problems

10.20 Write an assembly language program to repeat Problem 10.18 — not embed-
ded in a C program — that calculates the number of hours, minutes, and sec-
onds from a number of seconds that are entered from the keyboard. This time
use a loop to calculate the sum that is represented by the digits that are
entered from the keyboard. The number of seconds entered ranges from
10,000 to 60,000. Enter several different 5-digit numbers of seconds. This
program will use the MUL, DIV, and AAM instructions.

;hrs_min_sec2.asm
;given a 5-digit number of seconds,
;calculate the equivalent number of
;hours, minutes, and seconds

;--
.STACK

;--
.DATA
PARLST LABEL BYTE
MAXLEN DB 10
ACTLEN DB ?
OPFLD DB 10 DUP(?)
PRMPT DB 0DH, 0AH, 'Enter 5-digit #:

 range 10000 -- 60000: $'
SUM DW 8 DUP(0)
HOURS DB 0DH, 0AH, 'Hours = $'
MINUTES DB 0DH, 0AH, 'Minutes = $'
SECONDS DB 0DH, 0AH, 'Seconds = $'

;--
.CODE
BEGIN PROC FAR

;--
;set up pgm ds

MOV AX, @DATA ;get addr of data seg
MOV DS, AX ;move addr to ds

;read prompt

MOV AH, 09H ;display string
LEA DX, PRMPT ;put addr of prompt in dx
INT 21H ;dos interrupt

;keyboard request rtn to enter characters

MOV AH, 0AH ;buffered keyboard input
LEA DX, PARLST ;put addr of parlst in dx
INT 21H ;dos interrupt

;--
;obtain the 5-digit number as a sum

LEA SI, OPFLD ;addr of first digit
MOV BX, 10000 ;bx = 2710h
MOV CX, 5 ;five loops

//continued on next page

 Chapter 10 Binary-Coded Decimal Arithmetic Instructions 731

LP1: MOV AL, [SI] ;get next digit
AND AL, 0FH ;unpack it
MOV AH, 00H ;ax = 00 al
MUL BX ;dx ax = product
ADD SUM, AX ;accumulate sum

MOV AX, BX ;move multiply amount

;to ax for divide
MOV DX, 00H ;dx ax = 00 ax
MOV DI, 10 ;10 is the divisor
DIV DI ;divide bx (ax) by 10
MOV BX, AX ;move quot in ax to bx
INC SI ;si points to next digit
LOOP LP1 ;loop if cx != 0

;--
;calculate the hours

MOV DX, 0 ;clear dx
MOV AX, SUM ;move sum to ax
MOV BX, 3600 ;to divide ax for hours
DIV BX ;quot (hrs) in ax;

;rem (min) in dx
AAM ;2 unpacked bcd #s in ax
OR AX, 3030H ;add ascii bias
MOV HOURS+10, AH ;move units hours
MOV HOURS+11, AL ;move tens hours

;calculate the minutes

MOV AX, DX ;move rem (min) to ax
MOV DX, 0 ;clear dx
MOV BX, 60 ;to divide ax for min
DIV BX ;quot (min) in ax;

;rem (sec) in dx
AAM ;2 unpacked bcd #s in ax
OR AX, 3030H ;add ascii bias
MOV MINUTES+12, AH ;move units minutes
MOV MINUTES+13, AL ;move tens minutes

;calculate the seconds

MOV AX, DX ;move rem (sec) to ax
MOV DX, 0 ;clear dx
AAM ;2 unpacked bcd #s in ax
OR AX, 3030H ;add ascii bias
MOV SECONDS+12, AH ;move units seconds
MOV SECONDS+13, AL ;move tens seconds

;--
//continued on next page

732 Appendix B Answers to Select Problems

;display hours
MOV AH, 09H ;display string
LEA DX, HOURS ;put addr of hours in dx
INT 21H ;dos interrupt

;display minutes

MOV AH, 09H ;display string
LEA DX, MINUTES ;put addr of min in dx
INT 21H ;dos interrupt

;display seconds
MOV AH, 09H ;display string
LEA DX, SECONDS ;put addr of sec in dx
INT 21H ;dos interrupt

;--
BEGIN ENDP

END BEGIN

Enter 5-digit #: range 10000 -- 60000: 43210
Hours = 12
Minutes = 00
Seconds = 10
--
Enter 5-digit #: range 10000 -- 60000: 10000
Hours = 02
Minutes = 46
Seconds = 40
--
Enter 5-digit #: range 10000 -- 60000: 12345
Hours = 03
Minutes = 25
Seconds = 45
--
Enter 5-digit #: range 10000 -- 60000: 00060
Hours = 00
Minutes = 01
Seconds = 00
--
Enter 5-digit #: range 10000 -- 60000: 00059
Hours = 00
Minutes = 00
Seconds = 59
--

//continued on next page

 Chapter 10 Binary-Coded Decimal Arithmetic Instructions 733

Enter 5-digit #: range 10000 -- 60000: 20000
Hours = 05
Minutes = 33
Seconds = 20
--
Enter 5-digit #: range 10000 -- 60000: 39760
Hours = 11
Minutes = 02
Seconds = 40
--
Enter 5-digit #: range 10000 -- 60000: 60000
Hours = 16
Minutes = 40
Seconds = 00
--
Enter 5-digit #: range 10000 -- 60000: 50000
Hours = 13
Minutes = 53
Seconds = 20

734 Appendix B Answers to Select Problems

 Chapter 11 Floating-Point Arithmetic Instructions 735

Chapter 11 Floating-Point Arithmetic
Instructions

11.4 The floating-point number shown below has an unbiased exponent and an
unnormalized fraction. Show the same floating-point number with a biased
exponent and a normalized fraction in the single-precision floating-point for-
mat.

s exponent fraction
1 1 0 1 1 0 0 1 1 0 0 0 1 1 1 0 1 0 … 0 0 0

Add bias: 1011 0011 + 0111 1111 = 0011 0010 (for unnormalized fraction)
Normalize: shift fraction left 4 to yield an implied 1

s exponent fraction
1 0 0 1 0 1 1 1 0 1 1 0 1 0 0 0 0 0 … 0 0 0

11.10 Write an assembly language module embedded in a C program that uses the
add (FADDP) instruction and the add (FIADD) instruction. For the FADDP
instruction, use the FADDP ST(i), ST(0) version. Enter three floating-point
numbers and one integer number from the keyboard. Display the results of
the program and show the register stack for each sequence of the program.

//fadd_versions2.cpp
//show the use of the FADDP and FIADD instructions

#include "stdafx.h"

int main (void)
{
//define variables

float flp1_num, flp2_num, flp3_num, int1_num,
flp_rslt1, flp_rslt2, flp_rslt3;

int int1_num;
//continued on next page

printf ("Enter 3 floating-point numbers
and 1 integer: \n");

scanf ("%f %f %f %d", &flp1_num, &flp2_num,
&flp3_num, &int1_num);

//switch to assembly
_asm
{

FLD flp1_num //flp1_num -> ST(0)
FLD flp2_num //flp2_num -> ST(0)

//flp1_num -> ST(1)
FLD flp3_num //flp3_num -> ST(0)

//fld2_num -> ST(1)
//fld1_num -> ST(2)

FADDP ST(2), ST(0)//ST(0) + ST(2) -> ST(2),
//pop

FST flp_rslt1 //ST(0) -> flp_rslt1

FADDP ST(1), ST(0)//ST(0) + ST(1) -> ST(1),
//pop

FST flp_rslt2 //ST(0) -> flp_rslt2

FIADD int1_num //ST(0) + int1_num -> ST(0)
FST flp_rslt3 //ST(0) -> flp_rslt3

}

//print result
printf ("\nflp_rslt1 = %f\n", flp_rslt1);

printf ("flp_rslt2 = %f\n", flp_rslt2);

printf ("flp_rslt3 = %f\n\n", flp_rslt3);

return 0;
}

//continued on next page

736 Appendix B Answers to Select Problems

Enter 3 floating-point numbers and 1 integer:
1.2 2.3 3.4 5

flp_rslt1 = 2.300000
flp_rslt2 = 6.900000
flp_rslt3 = 11.900000

Press any key to continue . . . _
--
Enter 3 floating-point numbers and 1 integer:
32.456 45.789 16.123 10

flp_rslt1 = 45.789001
flp_rslt2 = 94.368004
flp_rslt3 = 104.368004

Press any key to continue . . . _

 FLD flp1_num FLD flp2_num

 FLD flp3_num FADDP ST(2), ST(0)

//continued on next page

R0 32.456 ST(0) 45.789 ST(0)
R1 ST(1) 32.456 ST(1)
R2 ST(2) ST(2)
R3 ST(3) ST(3)
R4 ST(4) ST(4)
R5 ST(5) ST(5)
R6 ST(6) ST(6)
R7 ST(7) ST(7)

R0 16.123 ST(0) 16.123 ST(0)
R1 45.789 ST(1) 45.789 ST(1)
R2 32.456 ST(2) 48.579 ST(2)
R3 ST(3) ST(3)
R4 ST(4) ST(4)
R5 ST(5) ST(5)
R6 ST(6) ST(6)
R7 ST(7) ST(7)

 Chapter 11 Floating-Point Arithmetic Instructions 737

 FADDP ST(1), ST(0) FIADD int1_num
R0 45.789 ST(0) → flp_rslt1 94.368001 ST(0) → flp_rslt2
R1 48.579 ST(1) ST(1)
R2 ST(2) ST(2)
R3 ST(3) ST(3)
R4 ST(4) ST(4)
R5 ST(5) ST(5)
R6 ST(6) ST(6)
R7 ST(7) ST(7)

738 Appendix B Answers to Select Problems

11.20 Perform the following operation on the two operands: (–47.25) – (–18.75).

True subtraction
Before alignment

A = 1 . 1 0 1 1 1 1 0 1 × 26 –47.25

B = 1 . 1 0 0 1 0 1 1 0 × 25 –18.75
After alignment

A = 1 . 1 0 1 1 1 1 0 1 × 26 –47.25

B = 1 . 0 1 0 0 1 0 1 1 × 26 –18.75

Subtract fractions (Add 2s compl B)
A = 1 . 1 0 1 1 1 1 0 1 × 26

+) B ' + 1 = 1 . 1 0 1 1 0 1 0 1 × 26

 1 . 0 1 1 1 0 0 1 0 ×26

Postnormalize 1 . 1 1 1 0 0 1 0 0 ×25 –28.5

 Chapter 11 Floating-Point Arithmetic Instructions 739

11.22 Write an assembly language module embedded in a C program that uses the
mul (FMULP) and the mul (FIMUL) instructions. For the FMULP instruc-
tion, use the FMULP ST(i), ST(0) version. Use the three sequences shown
below to execute the FMULP, FMULP, and FIMUL instructions in that
order and display the results of the program. Show the register stack for the
third sequence of the program.

+1.200 +2.300 +3.400 +5
+32.400 +45.700 +16.100 +10
–23.600 +28.500 –27.400 –12

//fmul_versions2.cpp
//show the use of the FMULP and FIMUL instructions
#include "stdafx.h"
int main (void)
{
//define variables

float flp1_num, flp2_num, flp3_num,
flp_rslt1, flp_rslt2, flp_rslt3;

int int1_num;

printf ("Enter 3 floating-point numbers and
1 integer: \n");

scanf ("%f %f %f %d", &flp1_num, &flp2_num,
&flp3_num, &int1_num);

//switch to assembly
_asm
{

FLD flp1_num //flp1_num -> ST(0)
FLD flp2_num //flp2_num -> ST(0)

//flp1_num -> ST(1)
FLD flp3_num //flp3_num -> ST(0)

//fld2_num -> ST(1)
//fld1_num -> ST(2)

//--

FMULP ST(2), ST(0)//ST(2) × ST(0)->ST(2), pop
FST flp_rslt1 //ST(0) -> flp_rslt1

//--

FMULP ST(1), ST(0)//ST(1) × ST(0)->ST(1), pop
FST flp_rslt2 //ST(0) -> flp_rslt2

//--
//continued on next page

//--

FIMUL int1_num //ST(0) × int1_num->ST(0)
FST flp_rslt3 //ST(0) -> flp_rslt3

//--
}

//print result
printf ("\nflp_rslt1 = %f\n", flp_rslt1);
printf ("flp_rslt2 = %f\n", flp_rslt2);
printf ("flp_rslt3 = %f\n\n", flp_rslt3);

return 0;
}

Enter 3 floating-point numbers and 1 integer:
1.2 2.3 3.4 5

flp_rslt1 = 2.300000
flp_rslt2 = 9.384001
flp_rslt3 = 46.920002

Press any key to continue . . . _
--
Enter 3 floating-point numbers and 1 integer:
32.4 45.7 16.1 10

flp_rslt1 = 45.700001
flp_rslt2 = 23838.949219
flp_rslt3 = 238389.500000

Press any key to continue . . . _
--
Enter 3 floating-point numbers and 1 integer:
–23.6 +28.5 –27.4 –12

flp_rslt1 = 28.500000
flp_rslt2 = 18429.240234
flp_rslt3 = –221150.875000

Press any key to continue . . . _

740 Appendix B Answers to Select Problems

 FMULP ST(2), ST(0)

 FMULP ST(1), ST(0) FIMUL int1_num

R0 –27.400 ST(0) +28.500 ST(0) →flp_rslt1
R1 +28.500 ST(1) +646.640 ST(1)
R2 –23.600 ST(2) ST(2)
R3 ST(3) ST(3)
R4 ST(4) ST(4)
R5 ST(5) ST(5)
R6 ST(6) ST(6)
R7 ST(7) ST(7)

(a) (b)

R0 +18429.240 ST(0) →flp_rslt2 –221150.88 ST(0) →flp_rslt3
R1 ST(1) ST(1)
R2 ST(2) ST(2)
R3 ST(3) ST(3)
R4 ST(4) ST(4)
R5 ST(5) ST(5)
R6 ST(6) ST(6)
R7 ST(7) ST(7)

(c) (d)

 Chapter 11 Floating-Point Arithmetic Instructions 741

11.28 A resistor is one of four passive circuit elements: resistor, capacitor, induc-
tor, and the recently discovered memristor. The equivalent resistance Req —
specified in ohms — of resistors connected in series is the sum of the resistor
values. However, the equivalent resistance of resistors connected in parallel
is shown in the equation below.

1 1 1 1 1
Req R1 R2 R3 Rn

. . .+ + += +

The value of Req is smaller than the resistance of the smallest resistor in the
parallel circuit. The circuit shown below contains three parallel resistors.

R1 R2 R3 Requivalent

742 Appendix B Answers to Select Problems

Write an assembly language module embedded in a C program that calcu-
lates the equivalent resistance of a three-resistor parallel network. Enter four
sets of values for the resistors and display the equivalent resistance.

//parallel_resistors.cpp
//find the equivalent resistance of a
//three-resistor parallel network

#include "stdafx.h"

int main (void)
{

float res1, res2, res3,
res1_inv, res2_inv, res3_inv,
resn_sum, res_equiv;

printf ("Enter three resistor values: \n");

scanf ("%f %f %f", &res1, &res2, &res3);

//continued on next page

//switch to assembly
_asm
{

//--
//calculations for resistor 1

FLD1 //+1.0 -> ST(0)
FLD res1 //res1 -> ST(0)

//+1.0 -> ST(1)
FDIVP ST(1), ST(0)//+1.0 / res1 -> ST(1), pop
FST res1_inv //ST(0) (+1.0 / res1) ->

//res1_inv
//--
//calculations for resistor 2

FLD1 //+1.0 -> ST(0)
//+1.0 / res1 -> ST(1)

FLD res2 //res2 -> ST(0)
//+1.0 -> ST(1)
//+1.0 / res1 -> ST(2)

FDIVP ST(1), ST(0)//+1.0 / res2 -> ST(1), pop
FST res2_inv //ST(0) (+1.0 / res2) ->

//res2_inv
//--
//calculations for resistor 3

FLD1 //+1.0 -> ST(0)
//+1.0 / res2 -> ST(1)
//+1.0 / res1 -> ST(2)

FLD res3 //res3 -> ST(0)
//+1.0 -> ST(1)
//+1.0 / res2 -> ST(2)
//+1.0 / res1 -> ST(3)

FDIVP ST(1), ST(0)//+1.0 /res3 -> ST(1), pop
FST res3_inv //ST(0) (+1.0 / res3) ->

//res3_inv
//--
//calculate the sum of the inverted resistors

FADD ST(0), ST(1)//(+1.0 / res3) +
//(+1.0 / res2) -> ST(0)

FADD ST(0), ST(2)//ST(0) + (+1.0 / res1) ->
//ST(0). Sum of inverted
//resistors -> ST(0)

FST resn_sum //sum of inverted resistors
//-> resn_sum

//--
//continued on next page

 Chapter 11 Floating-Point Arithmetic Instructions 743

//--
//calculate the equivalent resistance

FLD1 //+1.0 -> ST(0)
FDIV resn_sum //+1.0 / resn_sum -> ST(0)
FST res_equiv //ST(0) -> equivalent

//resistance
//--
}

//print result
printf ("\nEquivalent resistance = %f ohms\n\n",

res_equiv);

return 0;
}

Enter three resistor values:
1000.0 1000.0 1000.0

Equivalent resistance = 333.333344 ohms

Press any key to continue . . . _
--
Enter three resistor values:
72.25 1000 64.38

Equivalent resistance = 32.923325 ohms

Press any key to continue . . . _
--
Enter three resistor values:
750.0 75000.0 3600.0

Equivalent resistance = 615.595032 ohms

Press any key to continue . . . _
--
Enter three resistor values:
1.0 2.0 3.0

Equivalent resistance = 0.545455 ohms

Press any key to continue . . . _

744 Appendix B Answers to Select Problems

 Chapter 11 Floating-Point Arithmetic Instructions 745

11.33 Write an assembly language module embedded in a C program that calcu-
lates the result of the expression shown below for different values of the
floating-point variables flp1 and flp2.

flp1 flp2×2π

1

//square_root.cpp
//uses FMUL, FSQRT, FLDPI, FLD1, FDIV instructions
#include "stdafx.h"
int main (void)
{

float flp1, flp2, denom_rslt, flp_rslt;
float two;
two = 2.0;

printf ("Enter two floating-point numbers: \n");
scanf ("%f %f", &flp1, &flp2);

//switch to assembly
_asm
{

FLD flp1 //flp1 -> ST(0)
FMUL flp2 //flp1 x flp2 -> ST(0)
FSQRT //sq root of ST(0) -> ST(0)
FMUL two //sq root of ST(0) x 2.0 ->

//ST(0)
FLDPI //pi -> ST(0)

//sq root of ST(0) x 2.0 ->
//ST(1)

FMUL ST(0), ST(1)//2.0 x sq root x pi ->
//ST(0)

FSTP denom_rslt //denominator ->
//denom_rslt, pop stack

FLD1 //1.0 -> ST(0)
FDIV denom_rslt //1.0 / denom_rslt -> ST(0)
FST flp_rslt //result -> flp_rslt area

}
//print result

printf ("\nResult = %f\n\n", flp_rslt);

return 0;
}

Enter two floating-point numbers:
10.0 10.0

Result = 0.015915

Press any key to continue . . . _
--
Enter two floating-point numbers:
20.0 30.0

Result = 0.006497

Press any key to continue . . . _
--
Enter two floating-point numbers:
0.5 0.5

Result = 0.318310

Press any key to continue . . . _
--
Enter two floating-point numbers:
0.05 0.08

Result = 2.516461

Press any key to continue . . . _
--
Enter two floating-point numbers:
0.05 0.05

Result = 3.183099

Press any key to continue . . . _

746 Appendix B Answers to Select Problems

 Chapter 12 Procedures 747

Chapter 12 Procedures

12.1 Write an assembly language program — not embedded in a C program —
that uses a procedure to multiply two single-digit operands. Enter several
operands for the multiplicand and multiplier and display the products.

;mul_proc.asm
;---
.STACK
;---
.DATA
PARLST LABEL BYTE
MAXLEN DB 5
ACTLEN DB ?
OPFLD DB 5 DUP(?)
PRMPT DB 0DH, 0AH, 'Enter two single-digit integers: $'
RSLT DB 0DH, 0AH, 'Product = $'
;---
.CODE
BEGIN PROC FAR

;set up pgm ds

MOV AX, @DATA ;get addr of data seg
MOV DS, AX

;read prompt
MOV AH, 09H ;display string
LEA DX, PRMPT
INT 21H ;dos interrupt

;kybd rtn to enter chars

MOV AH, 0AH ;buffered kybd input
LEA DX, PARLST
INT 21H

;get the two integers

MOV AL, OPFLD ;get 1st digit (mpcnd) fm opfld
AND AL, 0FH ;remove ascii bias
MOV AH, 00H ;clear ah
PUSH AX
MOV BL, OPFLD+1 ;get 2nd digit (mplyr) fm opfld
AND BL, 0FH ;remove ascii bias
MOV BH, 00H ;clear bh
PUSH BX

CALL CALC ;push ip. call calc rtn
//continued on next page

;return to here after calc procedure
;move the sum to result

MOV RSLT+12, AH
MOV RSLT+13, AL

;display the resulting sum

MOV AH, 09H ;display string
LEA DX, RSLT
INT 21H

BEGIN ENDP
;---
CALC PROC NEAR

PUSH BP ;bp will be used
MOV BP, SP ;bp points to tos
MOV AX, [BP+4] ;get opnd a (mpcnd)
MUL [BP+6] ;mul opnd b (mplyr). prod to ax
AAM ;ascii adjust for mul
OR AX, 3030H ;convert to ascii
POP BP ;restore bp
RET 4 ;pop ip. add 4 to sp so that

;sp points to initial location
CALC ENDP
END BEGIN

Enter two single-digit integers: 23
Product = 6
--
Enter two single-digit integers: 91
Product = 09
--
Enter two single-digit integers: 54
Product = 20
--
Enter two single-digit integers: 78
Product = 56
--
Enter two single-digit integers: 98
Product = 72
--
Enter two single-digit integers: 99
Product = 81
--
Enter two single-digit integers: 90
Product = 00

748 Appendix B Answers to Select Problems

 Chapter 12 Procedures 749

12.4 Write an assembly language program — not embedded in a C program —
that uses a procedure to exclusive-OR six hexadecimal characters that are
entered from the keyboard. The following characters are exclusive-ORed:
the first and third; the second and fourth; the third and fifth; and the fourth
and sixth. The keyboard data can be any hexadecimal characters; for exam-
ple, 2T/}b*.

;xor_proc.asm
;exclusive-OR characters
;opfld xor opfld2
;opfld2 xor opfld4
;opfld3 xor opfld5
;opfld4 xor opfld6
;---
.STACK
;---
.DATA
PARLST LABEL BYTE
MAXLEN DB 10
ACTLEN DB ?
OPFLD DB 10 DUP(?)
PRMPT DB 0DH, 0AH, 'Enter six hexadecimal

characters: $'
RSLT DB 0DH, 0AH, 'Result = $'
;---
.CODE
BEGIN PROC FAR

;set up pgm ds
MOV AX, @DATA
MOV DS, AX

;read prompt

MOV AH, 09H
LEA DX, PRMPT
INT 21H

;keyboard request rtn to enter characters

MOV AH, 0AH
LEA DX, PARLST
INT 21H

;set up addresses

LEA SI, OPFLD ;1st number
LEA DI, OPFLD+2 ;3rd number
LEA BX, RSLT+12 ;result area

CALL EXOR ;push ip. call exor rtn

//continued on next page

;--
;return to here after exor procedure
;display result

MOV AH, 09H ;display string
LEA DX, RSLT
INT 21H

BEGIN ENDP

;--
EXOR PROC NEAR

MOV CX, 4 ;loop control
LP1: MOV AL, [SI]

MOV AH, [DI]
XOR AL, AH
OR AL, 30H
MOV [BX], AL
INC SI
INC DI
INC BX
LOOP LP1
RET

EXOR ENDP

;--
END BEGIN

Enter six hexadecimal characters: 123456
Result = 2662
--
Enter six hexadecimal characters: F0E2CF
Result = 326t
--
Enter six hexadecimal characters: B67dMt
Result = urz0
--
Enter six hexadecimal characters: F05urM
Result = suw8
--
Enter six hexadecimal characters: :/<?]+
Result = 60q4

750 Appendix B Answers to Select Problems

 Chapter 13 String Instructions 751

Chapter 13 String Instructions

13.2 Determine the contents of RSLT after execution of the following program:

;movs_byte5.asm
;---
.STACK

;---
.DATA
RSLT DB 0DH, 0AH, '123456789 $'

;---
.CODE
BEGIN PROC FAR

;set up pgm ds
MOV AX, @DATA ;get addr of data seg
MOV DS, AX ;move addr to ds
MOV ES, AX ;move addr to es

;---
;move string elements

CLD
MOV CX, 4 ;count in cx
LEA SI, RSLT+2 ;addr of rslt+2 -> si as src
LEA DI, RSLT+4 ;addr of rslt+4 -> di as dst

REP MOVSB ;move bytes to dst

;---
;display result

MOV AH, 09H ;display string
LEA DX, RSLT ;put addr of rslt in dx
INT 21H ;dos interrupt

BEGIN ENDP

END BEGIN
;---
//121212789

752 Appendix B Answers to Select Problems

13.8 Given the program segment shown below, determine the contents of the
count in register CL and the ZF flag after the program has been executed.
Then write an assembly language program — not embedded in a C program
— to verify the results.

. . .
.DATA
STR1 DB 'ABCDEF $'
STR2 DB 'AB1234 $'
CL_RSLT DB 0DH, 0AH, 'CL = $'
FLAGS DB 0DH, 0AH, 'ZF flag = $'

;---
.CODE
BEGIN PROC FAR

;set up pgm ds and es
 MOV AX, @DATA ;get addr of data seg
 MOV DS, AX ;move addr to ds
 MOV ES, AX ;move addr to es

;---
 LEA SI, STR1 ;addr of str1 -> si
 LEA DI, STR2 ;addr of str2 -> di
 CLD ;left-to-right
 MOV CL, 6 ;count in cl

REPNE
 CMPSB ;compare strings while not equal

. . .

CL = 5
ZF flag = 1

//complete program on next page

;cmps_repne.asm
;use cmps with repne prefix
;---
.STACK
;---
.DATA
STR1 DB 'ABCDEF $'
STR2 DB 'AB1234 $'
CL_RSLT DB 0DH, 0AH, 'CL = $'
FLAGS DB 0DH, 0AH, 'ZF flag = $'
;---
.CODE
BEGIN PROC FAR

;set up pgm ds and es

MOV AX, @DATA ;get addr of data seg
MOV DS, AX ;move addr to ds
MOV ES, AX ;move addr to es

;---
LEA SI, STR1 ;addr of str1 -> si
LEA DI, STR2 ;addr of str2 -> di
CLD ;left-to-right
MOV CL, 6 ;count in cl

REPNE
CMPSB ;comp while not equal

PUSHF ;push flags
POP AX
AND AL, 40H ;isolate zf
SHR AL, 6 ;shift right logical 6
OR AL, 30H ;add ascii bias
MOV FLAGS+12, AL ;move zf to flag area

;---
;display residual count

OR CL, 30H ;add ascii bias
MOV CL_RSLT+7, CL ;move to result area

MOV AH, 09H ;display string
LEA DX, CL_RSLT ;addr of cl_rslt -> dx
INT 21H ;dos interrupt

;---
;display flags

MOV AH, 09H ;display string
LEA DX, FLAGS ;addr of flags -> dx
INT 21H ;dos interrupt

BEGIN ENDP
END BEGIN

 Chapter 13 String Instructions 753

754 Appendix B Answers to Select Problems

13.9 Given the program segment shown below, obtain the count in register CL
after the program executes.

. . .
.DATA
STR DB 'ABCDEFGHI $'
CL_RSLT DB 0DH, 'CL = $'
FLAGS DB 0DH, 0AH, 'ZF flag = $'

;---
.CODE
BEGIN PROC FAR

;set up pgm ds and es

MOV AX, @DATA ;get addr of data seg
MOV DS, AX ;move addr to ds
MOV ES, AX ;move addr to es

;---

MOV AL, 'G'
LEA DI, STR ;addr of str2 -> di
CLD ;left-to-right
MOV CL, 9 ;count in cl

REPNE
SCASB ;compare char while ≠

. . .
;---
CL = 1
;---

 Chapter 14 Arrays 755

Chapter 14 Arrays

14.3 Write an assembly language module embedded in a C program that adds,
subtracts, and multiplies two select floating-point numbers. Three positive
and three negative floating-point numbers are to be defined, then used in the
calculations. Perform two calculations on each arithmetic operation and dis-
play the corresponding results.

//array_flp2.cpp
//add, sub, and mul two floating-point numbers
#include "stdafx.h"
int main (void)

{
//define variables

double flp1 = 72.5,
flp2 = -104.8,
flp3 = -56.7,
flp4 = 110.5,
flp5 = -255.3,
flp6 = 30.6;

double sum1, sum2,
diff1, diff2,
prod1, prod2;

//switch to assembly
_asm
{

//addition ---
FLD flp2 //(-104.8) -> ST(0)
FADD flp3 //(-104.8) + (-56.7)

//= (-161.5) -> ST(0)
FST sum1 //(-161.5) -> sum1

FLD flp4 //(110.5) -> ST(0)
FADD flp5 //(110.5) +(-255.3)

//= (-144.8) -> ST(0)
FST sum2 //(-144.8) -> sum2

//continued on next page

//subtraction --
FLD flp5 //(-255.3) -> ST(0)
FSUB flp4 //(-255.3) - (110.5)

//= (-365.8) - > ST(0)
FST diff1 //(-365.8) -> diff1

FLD flp6 //(30.6) -> ST(0)
FSUB flp2 //(30.6) - (-104.8)

//= (135.4) - > ST(0)
FST diff2 //(135.4) -> diff2

//multiplication -------------------------------------
FLD flp2 //(-104.8) -> ST(0)
FMUL flp5 //(-104.8) x (-255.3)

//= 26755.44 -> ST(0)
FST prod1 //(26755.44) -> prod1

FLD flp3 //(-56.7) -> ST(0)
FMUL flp4 //(-56.7) x (110.5)

//= -6265.35 -> ST(0)
FST prod2 //(-6265.35) -> prod2

}

//display results
printf ("(-104.8) + (-56.7) = %f\n", sum1);
printf ("(110.5) + (-255.3) = %f\n\n", sum2);
printf ("(-255.3) - (110.5) = %f\n", diff1);
printf ("(30.6) - (-104.8) = %f\n\n", diff2);
printf ("(-104.8) x (-255.3) = %f\n", prod1);
printf ("(-56.7) x (110.5) = %f\n\n", prod2);
return 0;

}

(-104.8) + (-56.7) = -161.500000
(110.5) + (-255.3) = -144.800000

(-255.3) - (110.5) = -365.800000
(30.6) - (-104.8) = 135.400000

(-104.8) x (-255.3) = 26755.440000
(-56.7) x (110.5) = -6265.350000

Press any key to continue . . . _

756 Appendix B Answers to Select Problems

 Chapter 14 Arrays 757

14.5 Write a C program that calculates the cubes of the integers 1 through 10 using
an array, where array [0] contains a value of 1.

//array_cubes.cpp
//obtain the cubes of numbers 1 through 10

#include "stdafx.h"
int main (void)
{

int cubes[10]; //declare an array of 10 elements
int i; //declare an integer to count

//initialize and print the array
for (i=1; i<11; i++)
{

cubes[i-1] = i*i*i;
printf ("cubes[%d] = %d\n", i-1, cubes[i-1]);

}

printf ("\n");
return 0;

}

cubes[0] = 1
cubes[1] = 8
cubes[2] = 27
cubes[3] = 64
cubes[4] = 125
cubes[5] = 216
cubes[6] = 343
cubes[7] = 512
cubes[8] = 729
cubes[9] = 1000

Press any key to continue . . . _

758 Appendix B Answers to Select Problems

14.8 Write a C program that loads a 3 × 4 array with the products of the indices,
then display the array in a row–column format.

//array_mul_indices.cpp
//load a 3 x 4 array with the products of the indices,
//then display the array in a row-column format

#include "stdafx.h"

int main (void)
{

int array_mul[3][4];
int i, j;

for (i=0;i<3; i++) //i is row index
for (j=0; j<4; j++) //j is column index

array_mul[i][j] = i*j;

for (i=0; i<3; i++)
{

for (j=0; j<4; j++)
printf ("%4d", array_mul[i][j]);
printf ("\n");

}
printf ("\n");

return 0;
}

 0 0 0 0
 0 1 2 3
 0 2 4 6

Press any key to continue . . . _

 Chapter 15 Macros 759

Chapter 15 Macros

15.2 Write an assembly language program using a macro that sorts from two to ten
single-digit integers in ascending numerical order that are entered from the
keyboard. Enter several different sets of integers ranging from two integers
to ten integers and display the results.

;macro_sort2.asm
;sort 2 -- 10 single-digit integers
;in ascending numerical order
;---
;define the sort macro
SORT MACRO

LEA SI, OPFLD ;addr of first byte -> si
MOV DL, ACTLEN ;# of bytes -> dx
MOV DH, 00H ;... as loop ctr
DEC DX ;decrement loop ctr

LP1: MOV CX, DX ;cx is loop2 ctr

LP2: MOV AL, [SI] ;number -> al
MOV BX, CX ;bx is base addr
CMP AL, [BX+SI] ;is the number <= to al?
JBE NEXT ;yes, get next number
XCHG AL, [BX+SI] ;# is !<=; put # in al
MOV [SI], AL ;put small # in opfld

NEXT: LOOP LP2 ;loop until all #s

;... are compared
INC SI ;si points to next number
DEC DX ;decrement loop ctr
JNZ LP1 ;compare remaining

;... numbers
ENDM

;---
.STACK

;---
.DATA
PARLST LABEL BYTE
MAXLEN DB 15
ACTLEN DB ?
OPFLD DB 15 DUP(?)
PRMPT DB 0DH, 0AH, 'Enter numbers: $'
RSLT DB 0DH, 0AH, 'Sorted numbers = $'
;---

//continued on next page

;---
.CODE
BEGIN PROC FAR

;set up pgm ds

MOV AX, @DATA ;addr of data seg -> ax
MOV DS, AX ;move addr to ds

;read prompt
MOV AH, 09H ;display string
LEA DX, PRMPT ;put addr of prompt in dx
INT 21H ;dos interrupt

;keyboard request rtn to enter characters

MOV AH, 0AH ;buffered keyboard input
LEA DX, PARLST ;put addr of parlst in dx
INT 21H ;dos interrupt

;---
;call sort macro

SORT

;---
;set up src (opfld) and dst (rslt)

LEA SI, OPFLD
LEA DI, RSLT+19
MOV CL, ACTLEN
MOV CH, 00H

;move sorted numbers to result area
RSLT_AREA:

MOV BL, [SI] ;opfld number to bl
MOV [DI], BL ;number to result area
INC SI ;set up next source
INC DI ;set up next destination
LOOP RSLT_AREA ;loop if cl != 0

;display sorted numbers

MOV AH, 09H ;display string
LEA DX, RSLT ;put addr of rslt in dx
INT 21H ;dos interrupt

BEGIN ENDP

END BEGIN

760 Appendix B Answers to Select Problems

Enter numbers: 73
Sorted numbers = 37
--
Enter numbers: 360
Sorted numbers = 036
--
Enter numbers: 9845
Sorted numbers = 4589
--
Enter numbers: 48632
Sorted numbers = 23468
--
Enter numbers: 130474
Sorted numbers = 013447
--
Enter numbers: 9766347
Sorted numbers = 3466779
--
Enter numbers: 47589001
Sorted numbers = 00145789
--
Enter numbers: 354657685
Sorted numbers = 345556678
--
Enter numbers: 9876543210
Sorted numbers = 0123456789

 Chapter 15 Macros 761

762 Appendix B Answers to Select Problems

15.5 Write a program that uses two macros. One macro generates an odd parity
bit for an 8-bit code word that is entered from the keyboard. If the parity is
odd, then display a 0; if the parity is even, then display a 1. The other macro
removes all nonletters from data that are entered from the keyboard.

;macro_parity_ltrs2.asm
;use a macro to generate a parity bit for 8 bits
;... if parity is odd, display 0
;... if parity is even, display 1
;use a macro to remove all nonletters from data
;... entered from the keyboard

;---
;define the parity macro
PARITY MACRO
NEXTB:MOV AL, [SI] ;bit -> al

CMP AL, 31H ;is bit = 1?
JNE ZERO ;if bit = 0, jump
XOR BL, 01H ;if bit = 1, toggle parity

ZERO: INC SI ;si points to next bit
LOOP NEXTB ;is cx != 0, get next bit
ENDM

;---
;define ltrs (remove nonletters) macro
LTRS MACRO
NEXTL:MOV AL, [SI] ;opfld char -> al

CMP AL, 41H ;compare to uppercase A
JL LP1 ;if < A, jump to LP1
CMP AL, 5AH ;compare to uppercase Z
JLE LP2 ;if >= A & <= Z, jump to LP2

CMP AL, 7AH ;compare to lowercase z
JG LP1 ;if > z, jump to LP1
CMP AL, 61H ;compare to lowercase a
JL LP1 ;if < a, jump to LP1

LP2: MOV [DI], AL ;valid character -> dst

INC DI ;di -> next dst

LP1: INC SI ;get next char in opfld

LOOP NEXTL
ENDM

;---
.STACK
;---

//continued on next page

.DATA
PARLST LABEL BYTE
MAXLEN DB 40
ACTLEN DB ?
OPFLD DB 40 DUP(?)
PRMPT DB 0DH, 0AH, 'Enter characters: $'
RSLTP DB 0DH, 0AH, 'Parity bit = $'
RSLTL DB 0DH, 0AH, 'Letters = $’

;---
.CODE
BEGIN PROC FAR

;set up pgm ds
MOV AX, @DATA ;addr of data seg -> ax
MOV DS, AX ;move addr to ds

;***
;set up for the parity macro
;read prompt

MOV AH, 09H ;display string
LEA DX, PRMPT ;addr of prompt -> dx
INT 21H ;dos interrupt

;keyboard request to enter characters
MOV AH, 0AH ;buffered keyboard input
LEA DX, PARLST ;addr of parlst -> dx
INT 21H ;dos interrupt

;---
;initialize parity flag to 1 and count in cx to 8
;initialize source (si) and destination (di) addr

MOV BL, 01H ;set parity in bl to 1
MOV CX, 08H ;number of bits is 8
LEA SI, OPFLD ;addr of opfld -> si
LEA DI, RSLTP+11 ;addr of result -> di

;---
;call parity macro
 PARITY
;---

OR BL, 30H ;add ascii bias to parity
MOV [DI], BL ;parity -> result area

;---
;display result

MOV AH, 09H ;display string
LEA DX, RSLTP ;addr of result -> dx
INT 21H ;dos interrupt

//continued on next page

 Chapter 15 Macros 763

;***
;set up for the ltrs (remove nonletters) macro
;read prompt

MOV AH, 09H ;display string
LEA DX, PRMPT ;addr of prompt -> dx
INT 21H ;dos interrupt

;keyboard request to enter characters
MOV AH, 0AH ;buffered keyboard input
LEA DX, PARLST ;addr of parlst -> dx
INT 21H ;dos interrupt

;get number of characters entered
MOV CL, ACTLEN ;# of characters -> cl
MOV CH, 00H ;cx = 00 actlen

;set up source (opfld) and destination (rslt) addr
LEA SI, OPFLD ;source addr -> si
LEA DI, RSLTL+11 ;destination addr -> di

;---
;call ltrs (remove nonletters) macro
 LTRS

;---
;display result

MOV AH, 09H ;display string
LEA DX, RSLTL ;addr of result -> dx
INT 21H ;dos interrupt

BEGIN ENDP
END BEGIN

Enter characters: 11001010 //parity is even
Parity bit = 1
Enter characters: ab34deFG7H
Letters = abdeFGH
--
Enter characters: 01100111 //parity is odd
Parity bit = 0
Enter characters: A678Fth9jk0Lm
Letters = AFthjkLm
--
Enter characters: 01111111 //parity is odd
Parity bit = 0
Enter characters: 65abcdef89GH
Letters = abcdefGH //continued on next page
--

764 Appendix B Answers to Select Problems

Enter characters: 00000000 //parity is even
Parity bit = 1
Enter characters: 1mno56PQr3
Letters = mnoPQr
--
Enter characters: 11110000 //parity is even
Parity bit = 1
Enter characters: 1a23455678
Letters = a
--
Enter characters: 00011111 //parity is odd
Parity bit = 0
Enter characters: 1234567890B
Letters = B
--
Enter characters: 00111100 //parity is even
Parity bit = 1
Enter characters: 54689v7675t99
Letters = vt
--
Enter characters: 10101010 //parity is even
Parity bit = 1
Enter characters: 456h8996
Letters = h
--
Enter characters: 00110011 //parity is even
Parity bit = 1
Enter characters: 1234567890
Letters =
--
Enter characters: 00011100 //parity is odd
Parity bit = 0
Enter characters: 6
Letters =
--
Enter characters: 11100000 //parity is odd
Parity bit = 0
Enter characters: 23vB^&JK(t
Letters = vBJKt

 Chapter 15 Macros 765

766 Appendix B Answers to Select Problems

15.8 Write a program using a macro with no parameters that multiplies two sin-
gle-digit integers that are entered from the keyboard. Enter several integers
and display the results.

;macro_mul2.asm
;obtain the product of two single-digit integers

;---
;define the mult macro
MULT MACRO

MOV AL, OPFLD ;get multiplicand
AND AL, 0FH ;remove ascii bias
MOV AH, OPFLD+1 ;get multiplier
AND AH, 0FH ;remove ascii bias

;multiply the #s, adjust using aam, add ascii bias

MUL AH ;ax = al x ah
AAM ;ax = 0d 0d
OR AX, 3030H ;add ascii bias
MOV RSLT+12, AH ;high product -> rslt
MOV RSLT+13, AL ;low product -> rslt
ENDM

;---
.STACK

;---
.DATA
PARLST LABEL BYTE
MAXLEN DB 5
ACTLEN DB ?
OPFLD DB 5 DUP(?)
PRMPT DB 0DH, 0AH, 'Enter two 1-digit integers: $'
RSLT DB 0DH, 0AH, 'Product = $'

;---
.CODE
BEGIN PROC FAR

;set up pgm ds
MOV AX, @DATA ;addr of data seg -> ax
MOV DS, AX ;move addr to ds

//continued on next page

;read prompt
MOV AH, 09H ;display string
LEA DX, PRMPT ;put addr of prompt in dx
INT 21H ;dos interrupt

;keyboard request rtn to enter characters

MOV AH, 0AH ;buffered keyboard input
LEA DX, PARLST ;put addr of parlst in dx
INT 21H ;dos interrupt

;---
;call mult macro

MULT
;---
;display product

MOV AH, 09H ;display string
LEA DX, RSLT ;addr of rslt -> dx
INT 21H ;dos interrupt

BEGIN ENDP
END BEGIN

Enter two single-digit integers: 99
Product = 81
--
Enter two single-digit integers: 87
Product = 56
--
Enter two single-digit integers: 39
Product = 27
--
Enter two single-digit integers: 73
Product = 21
--
Enter two single-digit integers: 08
Product = 00
--
Enter two single-digit integers: 60
Product = 00
--
Enter two single-digit integers: 45
Product = 20

 Chapter 15 Macros 767

768 Appendix B Answers to Select Problems

Chapter 16 Interrupts and Input/Output
Operations

16.3 Explain why interrupt breakpoints occur only at the end of an instruction
cycle.

If interrupt breakpoints occurred during an instruction cycle, for example, at
the end of a CPU cycle, then control would be transferred to the ISR and the
current instruction would not be completed. Therefore, interrupt breakpoints
occur only at the end of an instruction cycle, that is, when the current instruc-
tion has completed execution.

16.7 Explain why DMA access to main memory has a higher priority than central
processing units access to main memory.

Input/output devices equipped with DMA hardware have highest priority
over central processing units when transferring data to or from main mem-
ory, because they are inherently slower and cannot have the data transfer
stopped temporarily. Thus, data would be lost. Disk drives and tape drives
are examples of I/O subsystems in this category.

 Chapter 17 Additional Programming Examples 769

Chapter 17 Additional Programming
Examples

17.2 Write a program in assembly language — not embedded in a C program —
that counts the number of times that a number occurs in an array of eight
numbers. The first number entered from the keyboard is the number that is
being compared to the remaining eight numbers. Display the result.

;count_occurrence2.asm
;count the number of times that a number
;occurs in an array of eight numbers.
;the first number entered from the keyboard
;is the number that is being compared to
;the remaining eight numbers
;---
.STACK

;---
.DATA
PARLST LABEL BYTE
MAXLEN DB 12
ACTLEN DB ?
OPFLD DB 12 DUP(?)
PRMPT DB 0DH, 0AH, 'Enter 9 single-digit integers: $'
RSLT DB 0DH, 0AH, 'Occurs = times $'

;---
.CODE
BEGIN PROC FAR

;set up pgm ds
MOV AX, @DATA ;addr of data seg -> ax
MOV DS, AX ;put addr in ds
LEA DI, RSLT + 11 ;put addr of rslt in di

;read prompt
MOV AH, 09H ;display string
LEA DX, PRMPT ;addr of prmpt -> dx
INT 21H ;dos interrupt

;keyboard rtn to enter characters
MOV AH, 0AH ;buffered keyboard input
LEA DX, PARLST ;load addr of parlst
INT 21H ;dos interrupt

//continued on next page

;keyboard rtn to enter characters
MOV AH, 0AH ;buffered keyboard input
LEA DX, PARLST ;load addr of parlst
INT 21H ;dos interrupt

;---
MOV DL, OPFLD ;number to compare -> dl
LEA SI, OPFLD + 1 ;put addr of list in si
MOV CX, 8 ;qty of #s to comp -> cx
MOV AH, 30H ;init # of occurrences

LP1: MOV AL, [SI] ;move number to al

CMP DL, AL ;compare dl to al
JE INC_COUNT ;if equal, jump
INC SI ;point to next number
LOOP LP1 ;loop to compare next #
JMP MOVE_COUNT ;comparison is finished

INC_COUNT:

INC AH ;incr the occurrences
INC SI ;point to next number
LOOP LP1 ;if cx != 0,

;compare next number

MOVE_COUNT:
MOV [DI], AH ;# of occurrences

;-> result area
;---
;display result

MOV AH, 09H ;display string
LEA DX, RSLT ;put addr of rslt in dx
INT 21H ;dos interrupt

BEGIN ENDP
END BEGIN

Enter 9 single-digit integers; 612634656
Occurs = 3 times
--
Enter 9 single-digit integers; 123151611
Occurs = 4 times
--
Enter 9 single-digit integers; 912345679
Occurs = 1 times
--
Enter 9 single-digit integers; 712345689
Occurs = 0 times
--

//continued on next page

770 Appendix B Answers to Select Problems

--
Enter 9 single-digit integers; 222222222
Occurs = 8 times
--
Enter 9 single-digit integers; 412344544
Occurs = 4 times

 Chapter 17 Additional Programming Examples 771

17.6 Write an assembly language module embedded in a C program to obtain the
sum of cubes for the numbers 1 through 5. Display the resulting sum of
cubes.

//sum_of_cubes7.cpp
//obtain the sum of cubes for numbers 1 through 5
#include "stdafx.h"
int main (void)
{
//define variables

unsigned char n, sum;
n = 1;
sum = 1;

//switch to assembly
_asm
{

//--
LP1: INC n

MOV CX, 2
MOV AL, n

LP2: MUL n
LOOP LP2
ADD sum, AL
CMP n, 5
JB LP1

}
//print sum

printf ("Sum of cubes 1 through 5 = %d\n\n", sum);
return 0;

}

Sum of cubes 1 through 5 = 225

Press any key to continue . . . _

772 Appendix B Answers to Select Problems

17.9 Write an assembly language module embedded in a C program to evaluate
the expression shown below for Y using a floating-point number for the vari-
able X. The range for X is –3.0 ≤ X ≤ +3.0. Enter several numbers for X and
display the corresponding results.

Y = X3 – 10 X2 + 20 X + 30

//eval_expr8.cpp
//evaluate the following expression for Y using a
//floating-point number for the variable X:
//Y = X^3 -10X^2 + 20X + 30, where X has a
//range of -3.0 <= X <= +3.0

#include "stdafx.h"

int main (void)
{
//define variables

float flp_x, flp_rslt_x3, flp_rslt_10x2,
flp_rslt_20x, flp_rslt_y;

int ten;
ten = 10;

int twenty;
twenty = 20;

int thirty;
thirty = 30;

printf ("Enter a floating-point number for x: \n");
scanf ("%f", &flp_x);

//switch to assembly
_asm
{

//calculate X^3
FLD flp_x //X -> ST(0)
FMUL flp_x //X^2 -> ST(0)
FMUL flp_x //X^3 -> ST(0)
FST flp_rslt_x3 //ST(0) (X^3)

//-> flp_rslt_x3

//continued on next page

//calculate 10X^2
FLD flp_x //X -> ST(0)
FMUL flp_x //X^2 -> ST(0)
FIMUL ten //(10) x X^2 -> ST(0)
FST flp_rslt_10x2 //ST(0) (10X^2)

//-> flp_rslt_10x2

//calculate 20X
FLD flp_x //X -> ST(0)
FIMUL twenty //(20) x X -> ST(0)
FST flp_rslt_20x //ST(0) (20X)

//-> flp_rslt_20x

//calculate Y
FLD flp_rslt_x3 //(X^3) -> ST(0)
FSUB flp_rslt_10x2 //(X^3) - (10X^2)

//-> ST(0)

FADD flp_rslt_20x //(X^3) - (10X^2)
//+ (20X) -> ST(0)

FIADD thirty //(X^3) - (10X^2)
//+ (20X) + (30)
//-> ST(0)

FST flp_rslt_y //ST(0) (Y)
//-> flp_rslt_y

}

//printf results
printf ("\nResult X^3 = %f\n\n", flp_rslt_x3);

printf ("\nResult 10X^2 = %f\n\n", flp_rslt_10x2);

printf ("\nResult 20X = %f\n\n", flp_rslt_20x);

printf ("\nResult Y = %f\n\n", flp_rslt_y);

return 0;
}

 Chapter 17 Additional Programming Examples 773

Enter a floating-point number for x:
–1.0

Result X^3 = –1.000000

Result 10X^2 = 10.000000

Result 20X = –20.000000

Result Y = –1.000000

Press any key to continue . . . _

Enter a floating-point number for x:
–2.0

Result X^3 = –8.000000

Result 10X^2 = 40.000000

Result 20X = –40.000000

Result Y = –58.000000

Press any key to continue . . . _

Enter a floating-point number for x:
–3.0

Result X^3 = –27.000000

Result 10X^2 = 90.000000

Result 20X = –60.000000

Result Y = –147.000000

Press any key to continue . . . _

//continued on next page

774 Appendix B Answers to Select Problems

Enter a floating-point number for x:
+1.0

Result X^3 = 1.000000

Result 10X^2 = 10.000000

Result 20X = 20.000000

Result Y = 41.000000

Press any key to continue . . . _

Enter a floating-point number for x:
+2.0

Result X^3 = 8.000000

Result 10X^2 = 40.000000

Result 20X = 40.000000

Result Y = 38.000000

Press any key to continue . . . _

Enter a floating-point number for x:
+3.0

Result X^3 = 27.000000

Result 10X^2 = 90.000000

Result 20X = 60.000000

Result Y = 27.000000

Press any key to continue . . . _

//continued on next page

 Chapter 17 Additional Programming Examples 775

Enter a floating-point number for x:
-1.125

Result X^3 = -1.423828

Result 10X^2 = 12.656250

Result 20X = -22.500000

Result Y = -6.580078

Press any key to continue . . . _

Enter a floating-point number for x:
+2.75

Result X^3 = 20.796875

Result 10X^2 = 75.625000

Result 20X = 55.000000

Result Y = 30.171875

Press any key to continue . . . _

776 Appendix B Answers to Select Problems

17.12 Given the program segment shown below, obtain the results for the follow-
ing floating-point numbers:

flp_num1 = 125.0, flp_num2 = 245.0

flp_num1 = 650.0, flp_num2 = 375.0

flp_num1 = 755.125, flp_num2 = 575.150

. . .
FLD flp_num1
FSQRT
FLD flp_num2
FSQRT
FSUBP ST(1), ST(0)
FST rslt

. . .

//continued on next page

flp_num1 = 125.0, flp_num2 = 245.0
Result = -4.472136

flp_num1 = 650.0, flp_num2 = 375.0
Result = 6.130181

flp_num1 = 755.125, flp_num2 = 575.150
Result = 3.497252

 Chapter 17 Additional Programming Examples 777

17.14 Write an assembly language module embedded in a C program to calculate
the tangent of the following angles using the sine and cosine of the angles:

30°, 45°, and 60°

//tan.cpp
//calculate the tangent of the following angles:
//30 deg, 45 deg, and 60 deg
//using the sine and cosine of the angles
//tangent = sine/cosine

#include "stdafx.h"

int main (void)

{
//define angles in radians

double angle_30, angle_45, angle_60,
rslt_30, rslt_45, rslt_60;

angle_30 = 0.523598775; //30 deg must be
//in radians

angle_45 = 0.785398163; //45 deg must be
//in radians

angle_60 = 1.047197551; //60 deg must be
//in radians

//continued on next page

//switch to assembly
_asm
{

//calculate the tangent of 30 degrees
FLD angle_30 //30 deg -> ST(0)
FSIN //sine 30 -> ST(0)

FLD angle_30 //30 deg -> ST(0)
//sine 30 -> ST(1)

FCOS //cos 30 -> ST(0)
FDIVP ST(1), ST(0) //sine 30 / cos 30

//-> ST(1), pop
//sine 30 / cos 30
//-> ST(0)

FST rslt_30 //store tangent 30

//calculate the tangent of 45 degrees
FLD angle_45 //45 deg -> ST(0)
FSIN //sine 45 -> ST(0)

FLD angle_45 //45 deg -> ST(0)
//sine 45 -> ST(1)

FCOS //cos 45 -> ST(0)
FDIVP ST(1), ST(0) //sine 45 / cos 45

//-> ST(1), pop
//sine 45 / cos 45
//-> ST(0)

FST rslt_45 //store tangent 45

//calculate the tangent of 60 degrees
FLD angle_60 //60 deg -> ST(0)
FSIN //sine 60 -> ST(0)

FLD angle_60 //60 deg -> ST(0)
//sine 60 -> ST(1)

FCOS //cos 60 -> ST(0)
FDIVP ST(1), ST(0) //sine 60 / cos 60

//-> ST(1), pop
//sine 60 / cos 60
//-> ST(0)

FST rslt_60 //store tangent 60
}

//continued on next page

778 Appendix B Answers to Select Problems

//display results
printf ("Tangent_30 = %f\n\n", rslt_30);

printf ("Tangent_45 = %f\n\n", rslt_45);

printf ("Tangent_60 = %f\n\n", rslt_60);

return 0;
}

Tangent 30 = 0.577350

Tangent 45 = 1.000000

Tangent 60 = 1.732051

Press any key to continue . . . _

 Chapter 17 Additional Programming Examples 779

This page intentionally left blankThis page intentionally left blank

This page intentionally left blankThis page intentionally left blank

Computer Science & Engineering

The predominant language used in embedded microprocessors, assembly language lets you
write programs that are typically faster and more compact than programs written in a high-
level language and provide greater control over the program applications. Focusing on the
languages used in X86 microprocessors, X86 Assembly Language and C Fundamentals
explains how to write programs in the X86 assembly language, the C programming
language, and X86 assembly language modules embedded in a C program. A wealth of
program design examples, including the complete code and outputs, help you grasp the
concepts more easily. Where needed, the book also details the theory behind the design.

Assembly language programming requires knowledge of number representations, as well
as the architecture of the computer on which the language is being used. After covering
the binary, octal, decimal, and hexadecimal number systems, the book presents the general
architecture of the X86 microprocessor, individual addressing modes, stack operations,
procedures, arrays, macros, and input/output operations. It highlights the most commonly
used X86 assembly language instructions, including data transfer, branching and looping,
logic, shift and rotate, and string instructions, as well as fixed-point, binary-coded decimal
(BCD), and floating-point arithmetic instructions.

Written for students in computer science and electrical, computer, and software engineering,
the book assumes a basic background in C programming, digital logic design, and computer
architecture. Designed as a tutorial, this comprehensive and self-contained text offers a solid
foundation in assembly language for anyone working with the design of digital hardware.

ISBN: 978-1-4665-6824-2

9 781466 568242

90000

X
8
6

 A
ssem

b
ly Lan

g
u
ag

e
an

d
 C

 Fu
n
d
am

en
tals

C
avan

ag
h

X86 Assembly
 Language

and
C Fundamentals

Joseph Cavanagh

w w w . c r c p r e s s . c o m

K16377
6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.taylorandfrancisgroup.com

K16377 cvr mech.indd 1 11/15/12 10:15 AM

	Front Cover
	Dedication
	Contents
	Preface
	Chapter 1: Number Systems and Number Representations
	Chapter 2: X86 Processor Architecture
	Chapter 3: Addressing Modes
	Chapter 4: C Programming Fundamentals
	Chapter 5: Data Transfer Instructions
	Chapter 6: Branching and Looping Instructions
	Chapter 7: Stack Operations
	Chapter 8: Logical, Bit, Shift, and Rotate Instructions
	Chapter 9: Fixed-Point Arithmetic Instructions
	Chapter 10: Binary-Coded Decimal Arithmetic Instructions
	Chapter 11: Floating-Point Arithmetic Instructions
	Chapter 12: Procedures
	Chapter 13: String Instructions
	Chapter 14: Arrays
	Chapter 15: Macros
	Chapter 16: Interrupts and Input/Output Operations
	Chapter 17: Additional Programming Examples
	Appendix A: ASCII Character Codes
	Appendix B: Answers to Select Problems

