


Springer Series in Reliability Engineering

For further volumes:
http://www.springer.com/series/6917



P. K. Kapur • H. Pham • A. Gupta • P. C. Jha

Software Reliability
Assessment with
OR Applications

123



Prof. P. K. Kapur
Faculty of Mathematical Sciences
Department of Operational Research
University of Delhi
Delhi 110007
India
e-mail: pkkapur1@gmail.com

Prof. H. Pham
Department of Industrial and Systems
Engineering
Rutgers University
Frelinghuysen Road 96
Piscataway, NJ 08854-8018
USA
e-mail: hopham@rci.rutgers.edu

Dr. A. Gupta
Faculty of Mathematical Sciences
Department of Operational Research
University of Delhi
Delhi 110007
India
e-mail: guptaanshu.or@gmail.com

Dr. P. C. Jha
Faculty of Mathematical Sciences
Department of Operational Research
University of Delhi
Delhi 110007
India
e-mail: jhapc@yahoo.com

ISSN 1614-7839

ISBN 978-0-85729-203-2 e-ISBN 978-0-85729-204-9

DOI 10.1007/978-0-85729-204-9

Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

� Springer-Verlag London Limited 2011

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the
publishers, or in the case of reprographic reproduction in accordance with the terms of licenses issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be
sent to the publishers.

The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the
information contained in this book and cannot accept any legal responsibility or liability for any errors
or omissions that may be made.

Cover design: eStudio Calamar, Berlin/Figueres

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

Advances in software technologies have promoted the growth of computer-related
applications to a great extent. The proliferation of Internet has gone far beyond
even the most optimistic forecasts. Computers and computer-based systems per-
vade every aspect of our daily lives. This has benefited society and increased our
productivity, but it has also made our lives critically dependent on their correct
functioning. Successful operation of any computer system depends largely on its
software components. In the past three decades abilities to design, test and
maintain software have grown fairly, but the size and design complexities of the
software have also increased manyfolds, and the trend will certainly continue in
future. In addition to this, the critical system operations, in which very high
operational precision is required are also becoming more and more dependent on
the software. There are numerous instances where failure of computer-controlled
systems has led to colossal loss of human lives and money. This is a big challenge
to the software developers and engineers. Producing and maintaining the high
quality of software products and processes are at the core of software engineering,
and only a comprehensive quality improvement and assessment program that have
successful outcome can assure it. A lot of research material and book titles are
available with focus on tools and methods for monitoring and assuring high quality
software. At this stage there is a great need for looking at ways to quantify and
predict the reliability of software systems in various complex embedded operating
systems. Apart from this, cost and budget limitations, schedule, and due dates are
the constraints that encroach on the degree to which software development and
maintenance professional can achieve maximum quality. Our title Software Reli-
ability Assessment with OR Applications provides in-depth knowledge of quanti-
tative techniques for software quality assessment.

The technology of modern embedded software systems is changing at a very
fast rate; such changes are not ever seen in any other areas. On account of these
changes, the techniques and models available to measure the system reliability
have also increased at the same rate. In contrast to the few available books in this
area our book addresses most of the existing research, recent trends, and many
more of these techniques and models. Several areas of software reliability

v



assessment and applications, which have gained interest mainly in the last five
years and grown at a very fast pace, have been discussed comprehensively in the
book for the first time. Topics such as
• Change point models in software reliability measurement
• Application of neural networks to software reliability assessment
• Optimization problems of optimum component selection in fault tolerant
systems

• Unification methodologies in software reliability assessment
• Software reliability growth modeling using stochastic differential equationshave
been included for first time, while topics such as

• Literature of reliability analysis for fault tolerant systems
• Study of software release time decision
• Optimum resource allocation problem

have been addressed comprehensively.
The content of this book is useful and provides solution to the problems faced

by several groups of people working in the different fields of software industry.
These groups in general are the people

1. Who want to acquire the knowledge of the state-of-the-art of software reli-
ability measurement, prediction and control. These people include the man-
agers of the software development organizations, engineering professional
dealing with software, and persons involved in the marketing and use of
software.

2. Who are working in different software development groups such as software
design team, testing and debugging teams, and maintenance and evolution
teams, or practitioners of quality assessment, risk analysis, management, and
decision sciences.

3. Who are involved in the research related to software reliability engineering,
reliability analysis, operations research, applied statistics and mathematics, and
industrial engineering and related disciplines.

The book brings out widespread literature of past 40 years of software reli-
ability assessment. It can serve as a first choice and a complete reference guide.
The book brings out widespread literature of past 40 years of software reliability
assessment. It can serve as a first choice and a complete reference guide

The introduction chapter provides an inclusive material and basic knowledge
required to understand the entire content of the book. Various new concept maps
and pictures have been designed to facilitate the understanding. The content of rest
of the book is organized as follows.

Chapter 2 describes the earlier literature of the software reliability growth
models (SRGM). It covers the software reliability modeling with exponential,
S-shaped and flexible models. Consideration of testing efforts in reliability
growth modeling is also presented. The last section of the chapter concentrates
on reliability assessment models for software developed under distributed
environment.

vi Preface



Earlier literature of reliability growth modeling assumed a perfect debugging
environment. Testing the efficiency of testing and debugging teams makes an
important aspect of the reliability growth modeling, and its consideration in the
models can give absolutely different results as compared to perfect debugging
models. The literature of software reliability modeling under imperfect debugging
environment is discussed in Chapter 3.

Testing coverage and testing domain measures are the key factors related to the
software reliability growth process. These measures help developers to evaluate
the quality of the tested software and determine the additional testing required to
achieve the desired reliability. On the other hand, it is a quantitative confidence
criterion for the customer in taking the decision to buy the product. A detailed
discussion on the testing coverage, domain, and reliability modeling with respect
to these measures is done in Chapter 4.

The concept of change point is relatively recent in the software reliability
modeling. Developing models using the change point concept provides very
accurate results most of the times. A number of reasons are associated for mod-
eling under change point concept such as changes in the testing environment,
testing strategy, complexity and size of the functions under testing, defect density,
skill, and motivation and constitution of the testing and debugging team. Modeling
using the change point concept provides answers to the number of questions
related to the changing scenarios during testing phase. Reliability modeling with
change point is discussed at length in Chapter 5.

Chapter 6 is addressed to the unification schemes in software reliability growth
modeling. Several existing SRGM consider one or the other aspect of software
testing but none can describe a general testing scenario. As such, for any particular
practical application of reliability analysis one needs to study several models and
then decide the most appropriate one. The selected models are compared based on
the results obtained and then a model is selected for further use. As an alternative,
following a unification approach several SRGM can be obtained from a single
approach giving an insightful investigation of these models without making many
distinctive assumptions. It can make our task of model selection and application
much simpler compared to the other methods. Establishment of unification
methodology is one of the very recent topics of research in software reliability
modeling and is discussed for the first time in this book.

Like unification schemes, software reliability modeling based on the Artificial
Neural Networks has gained interest of software reliability researchers recently.
Only limited work has been done in the field by a group of few researchers. In
Chapter 7 we introduce and discuss the existing literature in this area.

The topic of software reliability modeling with stochastic differential equations
although started in the early nineties but gained much popularity and seen more
useful work only in the current years. A comprehensive study of this topic is
presented in Chapter 8.

The reliability growth models discussed in the previous chapters are the con-
tinuous time models. There is another category of reliability growth models, which
use the test cases as a unit of fault detection/removal period. These models are

Preface vii



called discrete time models. A large number of models have been developed in the
first group while fewer are there in the second group due to the difficulties in terms
of mathematical complexity. The utility of discrete reliability growth models
cannot be underestimated. As the software failure data sets are discrete, these
models many a time provide better fit than their continuous time counterparts.
Chapter 9 addresses to the study of discrete software reliability growth modeling.

The software reliability models find important OR applications. Determination
of software release time and allocation of testing resources at unit testing level are
among the major applications. Chapters 10 and 11 present an inclusive study of
these optimization applications of the reliability growth models.

Maintaining highest possible reliability is most important for the software
systems used to automate the critical operations. Fault tolerance is designed in
software to achieve the highest level of reliability in these systems as compared to
what can be attained with testing. A complete knowledge of fault tolerant schemes,
reliability growth modeling, and optimum system composition problem has been
described in Chapter 12.

A number of useful references, appendices, and index terms are provided to
help further readings.

We expect that our book will meet the expectations of the readers and provide
the best of the state-of-the-art on the subject.

viii Preface



Acknowledgments

Prof. Kapur remembers with special fondness, the first in person meeting with
Prof. Pham at the International Conference on Present Practices and Future
Trends in Quality and Reliability, Indian Statistical Institute, Kolkata, in 2008.
They shared thoughts together and their thoughts conceptualized the idea of this
book. Later Prof. Kapur associated Dr. Jha and Dr. Gupta, who happen to be his
former students with his ideas and the concept came into the form of a proposal. It
took almost two years to complete the book and it is the time to have the
opportunity to acknowledge the people who provided their support directly or
indirectly in completing this venture.

This book contains a lot of research material of various researchers across the
globe of over nearly four decades and more. The list of authors whose contribu-
tions have been incorporated in this book is very big. It was not possible to
specifically list them all individually, the authors of the book like to greatly
acknowledge their outstanding contributions, appreciate their work, and thank all
of them.

Prof. Kapur and Prof. Pham are also grateful to their numerous
Ph.D\M.Tech\M.Phil\fellow students for the research work, done jointly with
them. Their contribution is immeasurable to the growth of this book.

The authors wish to express deep sense of gratitude to their parents, spouses,
children, and other family members, who have provided them unconditional and
unfaltering support. Their supportive attitude was always motivating.

We are thankful to almighty God for giving us the strength to complete our
work.

Lastly, we apologize for any omissions.

ix



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Software Reliability Engineering . . . . . . . . . . . . . . . . . . . . . 3
1.2 Software Development Life Cycle . . . . . . . . . . . . . . . . . . . . 5
1.3 Why Software Testing Is Important . . . . . . . . . . . . . . . . . . . 8
1.4 Software Reliability Modeling . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Preliminary Concepts of Reliability Engineering . . . . . . . . . . 13

1.5.1 Let Us Compare: Software Versus Hardware
Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5.2 Reliability Measures . . . . . . . . . . . . . . . . . . . . . . . 15
1.5.3 Reliability Function Defined for Some Commonly

Used Distributions in Reliability Modeling . . . . . . . 19
1.5.4 Software Reliability Model Classification

and Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.5.5 Counting Process . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.5.6 NHPP Based Software Reliability

Growth Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.6 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.6.1 Point Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.6.2 Interval Estimation . . . . . . . . . . . . . . . . . . . . . . . . 39

1.7 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.7.1 Comparison Criteria . . . . . . . . . . . . . . . . . . . . . . . 41
1.7.2 Goodness of Fit Test . . . . . . . . . . . . . . . . . . . . . . . 42
1.7.3 Predictive Validity Criterion. . . . . . . . . . . . . . . . . . 44

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2 Software Reliability Growth Models . . . . . . . . . . . . . . . . . . . . . . 49
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.2 Execution Time Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2.1 The Basic Execution Time Model. . . . . . . . . . . . . . 52
2.2.2 The Logarithmic Poisson Model . . . . . . . . . . . . . . . 53

xi

http://dx.doi.org/10.1007/978-0-85729-204-9_1
http://dx.doi.org/10.1007/978-0-85729-204-9_1
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec1
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec1
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec2
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec2
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec8
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec8
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec9
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec9
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec10
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec10
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec11
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec11
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec11
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec12
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec12
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec17
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec17
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec17
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec26
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec26
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec26
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec35
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec35
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec38
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec38
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec38
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec39
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec39
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec40
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec40
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec44
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec44
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec49
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec49
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec50
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec50
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec51
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec51
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec54
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Sec54
http://dx.doi.org/10.1007/978-0-85729-204-9_1#Bib1
http://dx.doi.org/10.1007/978-0-85729-204-9_2
http://dx.doi.org/10.1007/978-0-85729-204-9_2
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec1
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec1
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec2
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec2
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec3
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec3
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec4
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec4


2.3 Calendar Time Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3.1 Goel–Okumoto Model . . . . . . . . . . . . . . . . . . . . . . 55
2.3.2 Hyper-Exponential Model . . . . . . . . . . . . . . . . . . . 56
2.3.3 Exponential Fault Categorization

(Modified Exponential) Model . . . . . . . . . . . . . . . . 57
2.3.4 Delayed S-Shaped Model. . . . . . . . . . . . . . . . . . . . 57
2.3.5 Infection S-Shaped Model . . . . . . . . . . . . . . . . . . . 58
2.3.6 Failure Rate Dependent Flexible Model. . . . . . . . . . 59
2.3.7 SRGM for Error Removal Phenomenon. . . . . . . . . . 59

2.4 SRGM Defining Complexity of Faults . . . . . . . . . . . . . . . . . 60
2.4.1 Generalized SRGM (Erlang Model) . . . . . . . . . . . . 61
2.4.2 Incorporating Fault Complexity Considering

Learning Phenomenon . . . . . . . . . . . . . . . . . . . . . . 62
2.5 Managing Reliability in Operational Phase . . . . . . . . . . . . . . 64

2.5.1 Operational Usage Models—Initial Studies . . . . . . . 65
2.6 Modeling Fault Dependency and Debugging Time Lag. . . . . . 66

2.6.1 Model for Fault-Correction—The Initial Study . . . . . 67
2.6.2 Fault Dependency and Debugging

Time Lag Model. . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.6.3 Modeling Fault Complexity with Debugging

Time Lag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.7 Testing Effort Dependent Software Reliability Modeling. . . . . 72

2.7.1 Rayleigh Test Effort Model . . . . . . . . . . . . . . . . . . 72
2.7.2 Weibull Test Effort Model . . . . . . . . . . . . . . . . . . . 73
2.7.3 Logistic and Generalized Testing

Effort Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.7.4 Log Logistic Testing Effort Functions . . . . . . . . . . . 76
2.7.5 Modeling the Effect of Fault Complexity

with Respect to Testing Efforts Considering
Debugging Time Lag . . . . . . . . . . . . . . . . . . . . . . 77

2.8 Software Reliability Growth Modeling Under Distributed
Development Environment . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.8.1 Flexible Software Reliability Growth Models

for Distributed Systems . . . . . . . . . . . . . . . . . . . . . 79
2.8.2 Generalized SRGM for Distributed Systems with

Respect to Testing Efforts . . . . . . . . . . . . . . . . . . . 82
2.9 Data Analysis and Parameter Estimation . . . . . . . . . . . . . . . . 84

2.9.1 Application of Time Dependent Models . . . . . . . . . 85
2.9.2 Application of Test Effort Based Models . . . . . . . . . 89

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xii Contents

http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec5
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec5
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec6
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec6
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec7
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec7
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec8
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec8
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec8
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec9
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec9
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec10
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec10
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec11
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec11
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec12
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec12
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec13
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec13
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec14
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec14
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec15
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec15
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec15
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec16
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec16
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec17
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec17
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec18
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec18
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec19
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec19
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec20
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec20
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec20
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec21
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec21
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec21
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec22
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec22
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec23
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec23
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec24
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec24
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec25
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec25
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec25
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec26
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec26
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec27
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec27
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec27
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec27
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec28
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec28
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec28
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec29
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec29
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec29
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec35
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec35
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec35
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec41
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec41
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec42
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec42
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec43
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec43
http://dx.doi.org/10.1007/978-0-85729-204-9_2#Bib1


3 Imperfect Debugging/Testing Efficiency Software Reliability
Growth Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.2 Most Primitive Study in Imperfect Debugging Model . . . . . . . 100
3.3 Exponential Imperfect Debugging SRGM . . . . . . . . . . . . . . . 100

3.3.1 Pure Imperfect Fault Debugging Model . . . . . . . . . . 100
3.3.2 Pure Error Generation Model . . . . . . . . . . . . . . . . . 101
3.3.3 Using Different Fault Content Functions . . . . . . . . . 101
3.3.4 Imperfect Debugging Model Considering

Fault Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.3.5 Modeling Error Generation Considering

Fault Removal Time Delay . . . . . . . . . . . . . . . . . . 104
3.4 S-Shaped Imperfect Debugging SRGM . . . . . . . . . . . . . . . . . 105

3.4.1 An S-Shaped Imperfect Debugging SRGM . . . . . . . 105
3.4.2 General Imperfect Software Debugging Model

with S-Shaped FDR . . . . . . . . . . . . . . . . . . . . . . . 106
3.4.3 Delayed Removal Process Modeling Under

Imperfect Debugging Environment . . . . . . . . . . . . . 107
3.5 Integrated Imperfect Debugging SRGM . . . . . . . . . . . . . . . . 108

3.5.1 Testing Efficiency Model. . . . . . . . . . . . . . . . . . . . 109
3.5.2 Integrated Exponential and Flexible Testing

Efficiency Models. . . . . . . . . . . . . . . . . . . . . . . . . 110
3.6 Test Effort Based Imperfect Debugging Software

Reliability Growth Models. . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.6.1 Pure Imperfect Fault Debugging Model . . . . . . . . . . 112
3.6.2 Pure Error Generation Model . . . . . . . . . . . . . . . . . 113
3.6.3 Integrated Imperfect Debugging Models . . . . . . . . . 113

3.7 Reliability Analysis Under Imperfect Debugging
Environment During Field Use. . . . . . . . . . . . . . . . . . . . . . . 114
3.7.1 A Pure Imperfect Fault Repair Model

for Operational Phase . . . . . . . . . . . . . . . . . . . . . . 115
3.7.2 An Integrated Imperfect Debugging SRGM

for Operational Phase . . . . . . . . . . . . . . . . . . . . . . 116
3.8 Data Analysis and Parameter Estimation . . . . . . . . . . . . . . . . 119

3.8.1 Application of Time Dependent SRGM. . . . . . . . . . 119
3.8.2 An Application for Integrated Test Effort Based

Testing Efficiency SRGM . . . . . . . . . . . . . . . . . . . 123
3.8.3 An Application for Integrated Operational Phase

Testing Efficiency SRGM . . . . . . . . . . . . . . . . . . . 124
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Contents xiii

http://dx.doi.org/10.1007/978-0-85729-204-9_3
http://dx.doi.org/10.1007/978-0-85729-204-9_3
http://dx.doi.org/10.1007/978-0-85729-204-9_3
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec1
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec1
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec2
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec2
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec3
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec3
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec4
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec4
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec5
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec5
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec6
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec6
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec7
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec7
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec7
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec10
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec10
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec10
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec11
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec11
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec12
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec12
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec13
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec13
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec13
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec14
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec14
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec14
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec15
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec15
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec16
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec16
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec17
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec17
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec17
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec18
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec18
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec18
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec19
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec19
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec20
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec20
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec21
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec21
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec22
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec22
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec22
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec23
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec23
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec23
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec24
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec24
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec24
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec27
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec27
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec28
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec28
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec30
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec30
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec30
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec32
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec32
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Sec32
http://dx.doi.org/10.1007/978-0-85729-204-9_3#Bib1


4 Testing-Coverage and Testing-Domain Models . . . . . . . . . . . . . . 131
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.1.1 An Introduction to Testing-Coverage. . . . . . . . . . . . 131
4.1.2 An Introduction to Testing Domain. . . . . . . . . . . . . 135

4.2 Software Reliability Growth Modeling Based
on Testing Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.2.1 Relating Testing Coverage to Software Reliability:

An Initial Study . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.2.2 Enhanced NHPP Based Software Reliability

Growth Model Considering Testing Coverage . . . . . 141
4.2.3 Incorporating Testing Efficiency in ENHPP . . . . . . . 143
4.2.4 Two Dimensional Software Reliability Assessment

with Testing Coverage. . . . . . . . . . . . . . . . . . . . . . 145
4.2.5 Considering Testing Coverage in a Testing Effort

Dependent SRGM. . . . . . . . . . . . . . . . . . . . . . . . . 148
4.2.6 A Coverage Based SRGM for Operational Phase . . . 149

4.3 Software Reliability Growth Modeling Using the Concept
of Testing Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.3.1 Relating Isolated Testing Domain to Software

Reliability Growth: An Initial Study . . . . . . . . . . . . 151
4.3.2 Application of Testing Domain Dependent SRGM

in Distributed Development Environment . . . . . . . . 155
4.3.3 Defining the Testing Domain Functions Considering

Learning Phenomenon of Testing Team. . . . . . . . . . 158
4.4 Data Analysis and Parameter Estimation . . . . . . . . . . . . . . . . 161

4.4.1 Application of Coverage Models . . . . . . . . . . . . . . 161
4.4.2 Application of Testing Domain Based Models . . . . . 164

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5 Change Point Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.2 Change-Point Models: An Initial Study . . . . . . . . . . . . . . . . . 175

5.2.1 Change-Point JM Model . . . . . . . . . . . . . . . . . . . . 176
5.2.2 Change-Point Weibull Model . . . . . . . . . . . . . . . . . 176
5.2.3 Change-Point Littlewood Model . . . . . . . . . . . . . . . 176

5.3 Exponential Single Change-Point Model . . . . . . . . . . . . . . . . 177
5.4 A Generalized Framework for Single Change-Point SRGM. . . 178

5.4.1 Obtaining Exponential SRGM from the Generalized
Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.4.2 Obtaining S-Shaped\Flexible SRGM from the
Generalized Approach . . . . . . . . . . . . . . . . . . . . . . 179

5.4.3 More SRGM Obtained from the Generalized
Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

xiv Contents

http://dx.doi.org/10.1007/978-0-85729-204-9_4
http://dx.doi.org/10.1007/978-0-85729-204-9_4
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec1
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec1
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec2
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec2
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec10
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec10
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec11
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec11
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec11
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec12
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec12
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec12
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec16
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec16
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec16
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec18
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec18
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec19
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec19
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec19
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec23
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec23
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec23
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec24
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec24
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec25
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec25
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec25
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec26
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec26
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec26
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec30
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec30
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec30
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec34
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec34
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec34
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec37
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec37
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec38
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec38
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec40
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Sec40
http://dx.doi.org/10.1007/978-0-85729-204-9_4#Bib1
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec1
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec1
http://dx.doi.org/10.1007/978-0-85729-204-9_5
http://dx.doi.org/10.1007/978-0-85729-204-9_5
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec2
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec2
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec3
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec3
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec4
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec4
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec5
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec5
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec6
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec6
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec7
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec7
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec8
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec8
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec8
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec9
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec9
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec9
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec10
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec10
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec10


5.5 Change-Point SRGM Considering Imperfect Debugging
and Fault Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
5.5.1 Exponential Imperfect Debugging Model. . . . . . . . . 182
5.5.2 Integrated Flexible Imperfect Debugging Model . . . . 183

5.6 Change-Point SRGM with Respect to Test Efforts . . . . . . . . . 185
5.6.1 Exponential Test Effort Models . . . . . . . . . . . . . . . 185
5.6.2 Flexible/S-Shaped Test Efforts Based SRGM. . . . . . 186

5.7 SRGM with Multiple Change-Points . . . . . . . . . . . . . . . . . . . 187
5.7.1 Development of Exponential Multiple

Change-Point Model . . . . . . . . . . . . . . . . . . . . . . . 188
5.7.2 Development of Flexible/S-Shaped Multiple

Change-Point Model . . . . . . . . . . . . . . . . . . . . . . . 189
5.8 Multiple Change-Point Test Effort Distribution . . . . . . . . . . . 190

5.8.1 Weibull Type Test Effort Function with Multiple
Change Points . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

5.8.2 An Integrated Testing Efficiency, Test Effort
Multiple Change Points SRGM . . . . . . . . . . . . . . . 191

5.9 A Change-Point SRGM with Environmental Factor . . . . . . . . 193
5.10 Testing Effort Control Problem . . . . . . . . . . . . . . . . . . . . . . 198
5.11 Data Analysis and Parameter Estimation . . . . . . . . . . . . . . . . 200

5.11.1 Models with Single Change-Point . . . . . . . . . . . . . . 200
5.11.2 Models with Multiple Change Points. . . . . . . . . . . . 203
5.11.3 Change-Point SRGM Based on Multiple

Change-Point Weibull Type TEF . . . . . . . . . . . . . . 205
5.11.4 Application of Testing Effort Control Problem . . . . . 209

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

6 Unification of SRGM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
6.2 Unification Scheme for Fault Detection

and Correction Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
6.2.1 Fault Detection NHPP Models . . . . . . . . . . . . . . . . 218
6.2.2 Fault Correction NHPP Models . . . . . . . . . . . . . . . 218

6.3 Unified Scheme Based on the Concept of Infinite
Server Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
6.3.1 Model Development . . . . . . . . . . . . . . . . . . . . . . . 222
6.3.2 Infinite Server Queuing Model . . . . . . . . . . . . . . . . 223
6.3.3 Computing Existing SRGM for the Unified

Model Based on Infinite Queues. . . . . . . . . . . . . . . 228
6.3.4 A Note on Random Correction Times . . . . . . . . . . . 229

6.4 A Unified Approach for Testing Efficiency Based Software
Reliability Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
6.4.1 Generalized SRGM Considering Immediate

Removal of Faults on Failure Observation Under
Imperfect Debugging Environment . . . . . . . . . . . . . 237

Contents xv

http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec11
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec11
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec11
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec12
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec12
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec13
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec13
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec14
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec14
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec15
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec15
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec16
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec16
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec17
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec17
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec18
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec18
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec18
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec19
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec19
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec19
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec20
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec20
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec21
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec21
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec21
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec25
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec25
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec25
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec27
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec27
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec28
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec28
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec29
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec29
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec30
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec30
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec32
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec32
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec34
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec34
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec34
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec36
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Sec36
http://dx.doi.org/10.1007/978-0-85729-204-9_5#Bib1
http://dx.doi.org/10.1007/978-0-85729-204-9_6
http://dx.doi.org/10.1007/978-0-85729-204-9_6
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec1
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec1
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec2
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec2
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec2
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec3
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec3
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec4
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec4
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec9
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec9
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec9
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec10
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec10
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec12
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec12
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec17
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec17
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec17
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec18
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec18
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec23
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec23
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec23
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec24
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec24
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec24
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec24


6.4.2 Generalized SRGM Considering Time Delay
Between Failure Observation and Correction
Procedures Under Imperfect Debugging
Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

6.5 An Equivalence Between the Three Unified Approaches . . . . . 242
6.5.1 Equivalence of Unification Schemes Based

on Infinite Server Queues for the Hard Faults
and Fault Detection Correction Process
with a Delay Function . . . . . . . . . . . . . . . . . . . . . . 242

6.5.2 Equivalence of Unification Schemes Based
on Infinite Server Queues for the Hard Faults
and One Based on Hazard Rate Concept . . . . . . . . . 243

6.6 Data Analysis and Parameter Estimation . . . . . . . . . . . . . . . . 243
6.6.1 Application of SRGM for Fault Detection

and Correction Process . . . . . . . . . . . . . . . . . . . . . 244
6.6.2 Application of SRGM Based on the Concept

of Infinite Server Queues. . . . . . . . . . . . . . . . . . . . 248
6.6.3 Application of SRGM Based on Unification

Schemes for Testing Efficiency Models. . . . . . . . . . 250
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

7 Artificial Neural Networks Based SRGM. . . . . . . . . . . . . . . . . . . 255
7.1 Artificial Neural Networks: An Introduction . . . . . . . . . . . . . 255

7.1.2 Specific Features of Artificial Neural Network . . . . . 257
7.2 Artificial Neural Network: A Description . . . . . . . . . . . . . . . 258

7.2.1 Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
7.2.2 Network Architecture . . . . . . . . . . . . . . . . . . . . . . 258
7.2.3 Learning Algorithm. . . . . . . . . . . . . . . . . . . . . . . . 260

7.3 Neural Network Approaches in Software Reliability . . . . . . . . 263
7.3.1 Building ANN for Existing Analytical SRGM . . . . . 265
7.3.2 Software Failure Data . . . . . . . . . . . . . . . . . . . . . . 266

7.4 Neural Network Based Software Reliability Growth Model . . . 267
7.4.1 Dynamic Weighted Combinational Model . . . . . . . . 267
7.4.2 Generalized Dynamic Integrated SRGM . . . . . . . . . 270
7.4.3 Testing Efficiency Based Neural Network

Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
7.5 Data Analysis and Parameter Estimation . . . . . . . . . . . . . . . . 277
Referenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

8 SRGM Using SDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
8.2 Introduction to Stochastic Differential Equations . . . . . . . . . . 283

xvi Contents

http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec25
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec25
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec25
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec25
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec25
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec26
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec26
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec27
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec27
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec27
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec27
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec27
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec28
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec28
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec28
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec28
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec29
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec29
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec30
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec30
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec30
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec32
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec32
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec32
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec34
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec34
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Sec34
http://dx.doi.org/10.1007/978-0-85729-204-9_6#Bib1
http://dx.doi.org/10.1007/978-0-85729-204-9_7
http://dx.doi.org/10.1007/978-0-85729-204-9_7
http://dx.doi.org/10.1007/978-0-85729-204-9_7#Sec1
http://dx.doi.org/10.1007/978-0-85729-204-9_7#Sec1
http://dx.doi.org/10.1007/978-0-85729-204-9_7#Sec2
http://dx.doi.org/10.1007/978-0-85729-204-9_7#Sec2
http://dx.doi.org/10.1007/978-0-85729-204-9_7#Sec3
http://dx.doi.org/10.1007/978-0-85729-204-9_7#Sec3
http://dx.doi.org/10.1007/978-0-85729-204-9_7#Sec4
http://dx.doi.org/10.1007/978-0-85729-204-9_7#Sec4
http://dx.doi.org/10.1007/978-0-85729-204-9_7#Sec5
http://dx.doi.org/10.1007/978-0-85729-204-9_7#Sec5
http://dx.doi.org/10.1007/978-0-85729-204-9_7#Sec6
http://dx.doi.org/10.1007/978-0-85729-204-9_7#Sec6
http://dx.doi.org/10.1007/978-0-85729-204-9_7#Sec7
http://dx.doi.org/10.1007/978-0-85729-204-9_7#Sec7
http://dx.doi.org/10.1007/978-0-85729-204-9_7#Sec8
http://dx.doi.org/10.1007/978-0-85729-204-9_7#Sec8
http://dx.doi.org/10.1007/978-0-85729-204-9_7#Sec10
http://dx.doi.org/10.1007/978-0-85729-204-9_7#Sec10
http://dx.doi.org/10.1007/978-0-85729-204-9_7#Sec12
http://dx.doi.org/10.1007/978-0-85729-204-9_7#Sec12
http://dx.doi.org/10.1007/978-0-85729-204-9_7#Sec13
http://dx.doi.org/10.1007/978-0-85729-204-9_7#Sec13
http://dx.doi.org/10.1007/978-0-85729-204-9_7#Sec14
http://dx.doi.org/10.1007/978-0-85729-204-9_7#Sec14
http://dx.doi.org/10.1007/978-0-85729-204-9_7#Sec15
http://dx.doi.org/10.1007/978-0-85729-204-9_7#Sec15
http://dx.doi.org/10.1007/978-0-85729-204-9_7#Sec15
http://dx.doi.org/10.1007/978-0-85729-204-9_7#Sec16
http://dx.doi.org/10.1007/978-0-85729-204-9_7#Sec16
http://dx.doi.org/10.1007/978-0-85729-204-9_7#Bib1
http://dx.doi.org/10.1007/978-0-85729-204-9_8
http://dx.doi.org/10.1007/978-0-85729-204-9_8
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec1
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec1
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec2
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec2


8.2.1 Stochastic Process. . . . . . . . . . . . . . . . . . . . . . . . . 283
8.2.2 Stochastic Analog of a Classical Differential

Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
8.2.3 Solution of a Stochastic Differential Equation . . . . . 284

8.3 Stochastic Differential Equation Based Software
Reliability Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
8.3.1 Obtaining SRGM from the General Solution . . . . . . 290
8.3.2 Software Reliability Measures . . . . . . . . . . . . . . . . 292

8.4 SDE Models Considering Fault Complexity and
Distributed Development Environment . . . . . . . . . . . . . . . . . 295
8.4.1 The Fault Complexity Model . . . . . . . . . . . . . . . . . 295
8.4.2 The Fault Complexity Model Considering

Learning Effect. . . . . . . . . . . . . . . . . . . . . . . . . . . 296
8.4.3 An SDE Based SRGM for Distributed

Development Environment . . . . . . . . . . . . . . . . . . . 297
8.5 Change Point SDE Model . . . . . . . . . . . . . . . . . . . . . . . . . . 298

8.5.1 Exponential Change Point SDE Model . . . . . . . . . . 299
8.5.2 Delayed S-Shaped Change Point SDE Model . . . . . . 299
8.5.3 Flexible Change Point SDE Model . . . . . . . . . . . . . 300

8.6 SDE Based Testing Domain Models . . . . . . . . . . . . . . . . . . . 302
8.6.1 SRGM Development: Basic Testing Domain . . . . . . 302
8.6.2 SRGM for Testing Domain with Skill Factor . . . . . . 303
8.6.3 Imperfect Testing Domain Dependent SDE

Based SRGM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
8.6.4 Software Reliability Measures . . . . . . . . . . . . . . . . 305

8.7 Data Analysis and Parameter Estimation . . . . . . . . . . . . . . . . 307
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

9 Discrete SRGM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

9.1.1 General Assumption . . . . . . . . . . . . . . . . . . . . . . . 314
9.1.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

9.2 Discrete SRGM Under Perfect Debugging Environment . . . . . 315
9.2.1 Discrete Exponential Model . . . . . . . . . . . . . . . . . . 315
9.2.2 Modified Discrete Exponential Model . . . . . . . . . . . 316
9.2.3 Discrete Delayed S-Shaped Model . . . . . . . . . . . . . 317
9.2.4 Discrete SRGM with Logistic Learning Function . . . 318
9.2.5 Modeling Fault Dependency. . . . . . . . . . . . . . . . . . 318

9.3 Discrete SRGM Under Imperfect Debugging Environment . . . 320
9.4 Discrete SRGM with Testing Effort . . . . . . . . . . . . . . . . . . . 321
9.5 Modeling Faults of Different Severity . . . . . . . . . . . . . . . . . . 322

Contents xvii

http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec3
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec3
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec4
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec4
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec4
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec5
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec5
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec11
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec11
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec11
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec12
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec12
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec18
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec18
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec29
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec29
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec29
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec30
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec30
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec31
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec31
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec31
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec35
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec35
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec35
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec36
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec36
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec37
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec37
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec38
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec38
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec39
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec39
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec40
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec40
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec41
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec41
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec42
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec42
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec43
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec43
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec43
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec44
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec44
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec51
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Sec51
http://dx.doi.org/10.1007/978-0-85729-204-9_8#Bib1
http://dx.doi.org/10.1007/978-0-85729-204-9_9
http://dx.doi.org/10.1007/978-0-85729-204-9_9
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec1
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec1
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec2
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec2
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec3
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec3
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec4
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec4
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec5
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec5
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec6
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec6
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec7
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec7
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec8
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec8
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec9
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec9
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec12
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec12
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec13
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec13
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec14
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec14


9.5.1 Generalized Discrete Erlang SRGM . . . . . . . . . . . . 322
9.5.2 Discrete SRGM with Errors of Different Severity

Incorporating Logistic Learning Function . . . . . . . . 324
9.5.3 Discrete SRGM Modeling Severity of Faults

with Respect to Test Case Execution Number . . . . . 328
9.6 Discrete Software Reliability Growth Models for

Distributed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
9.6.1 Modeling the Fault Removal of Reused

Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
9.6.2 Modeling the Fault Removal of Newly Developed

Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
9.6.3 Modeling Total Fault Removal Phenomenon . . . . . . 333

9.7 Discrete Change Point Software Reliability Growth
Modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
9.7.1 Discrete S-Shaped Single Change Point SRGM . . . . 334
9.7.2 Discrete Flexible Single Change Point SRGM . . . . . 335
9.7.3 An Integrated Multiple Change Point Discrete

SRGM Considering Fault Complexity . . . . . . . . . . . 336
9.8 Data Analysis and Parameter Estimation . . . . . . . . . . . . . . . . 339

9.8.1 Application of Fault Complexity Based
Discrete Models . . . . . . . . . . . . . . . . . . . . . . . . . . 342

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

10 Software Release Time Decision Problems . . . . . . . . . . . . . . . . . . 347
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
10.2 Crisp Optimization in Software Release Time Decision . . . . . 352

10.2.1 First Round Studies in SRTD Problem . . . . . . . . . . 352
10.2.2 A Cost Model with Penalty Cost . . . . . . . . . . . . . . 359
10.2.3 Release Policy Based on Testing Effort

Dependent SRGM. . . . . . . . . . . . . . . . . . . . . . . . . 364
10.2.4 Release Policy for Random Software Life Cycle . . . 367
10.2.5 A Software Cost Model Incorporating the

Cost of Dependent Faults Along with
Independent Faults . . . . . . . . . . . . . . . . . . . . . . . . 369

10.2.6 Release Policies Under Warranty and Risk Cost . . . . 372
10.2.7 Release Policy Based on SRGM Incorporating

Imperfect Fault Debugging . . . . . . . . . . . . . . . . . . 376
10.2.8 Release Policy on Pure Error Generation Fault

Complexity Based SRGM . . . . . . . . . . . . . . . . . . . 380
10.2.9 Release Policy for Integrated Testing

Efficiency SRGM . . . . . . . . . . . . . . . . . . . . . . . . . 382
10.2.10 Release Problem with Change Point SRGM. . . . . . . 386

xviii Contents

http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec15
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec15
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec19
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec19
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec19
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec25
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec25
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec25
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec26
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec26
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec26
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec27
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec27
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec27
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec29
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec29
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec29
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec32
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec32
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec33
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec33
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec33
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec34
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec34
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec35
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec35
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec36
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec36
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec36
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec39
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec39
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec41
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec41
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Sec41
http://dx.doi.org/10.1007/978-0-85729-204-9_9#Bib1
http://dx.doi.org/10.1007/978-0-85729-204-9_10
http://dx.doi.org/10.1007/978-0-85729-204-9_10
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec1
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec1
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec2
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec2
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec3
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec3
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec100
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec100
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec7
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec7
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec7
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec9
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec9
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec11
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec11
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec11
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec11
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec13
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec13
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec15
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec15
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec15
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec101
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec101
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec101
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec103
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec103
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec103
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec106
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec106


10.3 Fuzzy Optimization in Software Release Time Decision . . . . . 391
10.3.1 Problem Formulation. . . . . . . . . . . . . . . . . . . . . . . 391
10.3.2 Problem Solution . . . . . . . . . . . . . . . . . . . . . . . . . 393

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

11 Allocation Problems at Unit Level Testing. . . . . . . . . . . . . . . . . . 405
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
11.2 Allocation of Resources based on Exponential SRGM . . . . . . 408

11.2.1 Minimizing Remaining Faults . . . . . . . . . . . . . . . . 408
11.2.2 Minimizing Testing Resource Expenditures . . . . . . . 410
11.2.3 Dynamic Allocation of Resource for Modular

Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
11.2.4 Minimize the Mean Fault Content. . . . . . . . . . . . . . 413
11.2.5 Minimizing Remaining Faults with a Reliability

Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
11.2.6 Minimizing Testing Resources Utilization with

a Reliability Objective. . . . . . . . . . . . . . . . . . . . . . 418
11.2.7 Minimize the Cost of Testing Resources . . . . . . . . . 421
11.2.8 A Resource Allocation Problem to Maximize

Operational Reliability. . . . . . . . . . . . . . . . . . . . . . 425
11.3 Allocation of Resources for Flexible SRGM . . . . . . . . . . . . . 427

11.3.1 Maximizing Fault Removal During Testing
Under Resource Constraint. . . . . . . . . . . . . . . . . . . 428

11.3.2 Minimizing Testing Cost Under Resource
and Reliability Constraint . . . . . . . . . . . . . . . . . . . 435

11.4 Optimal Testing Resource Allocation for Test Coverage
Based Imperfect Debugging SRGM . . . . . . . . . . . . . . . . . . . 441
11.4.1 Problem Formulation. . . . . . . . . . . . . . . . . . . . . . . 442
11.4.2 Finding Properly Efficient Solution. . . . . . . . . . . . . 444
11.4.3 Solution Based on Goal Programming Approach . . . 445

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448

12 Fault Tolerant Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
12.2 Software Fault Tolerance Techniques . . . . . . . . . . . . . . . . . . 455

12.2.1 N-version Programming Scheme. . . . . . . . . . . . . . . 458
12.2.2 Recovery Block Scheme . . . . . . . . . . . . . . . . . . . . 459
12.2.3 Some Advanced Techniques. . . . . . . . . . . . . . . . . . 461

12.3 Reliability Growth Analysis of NVP Systems . . . . . . . . . . . . 463
12.3.1 Faults in NVP Systems . . . . . . . . . . . . . . . . . . . . . 464
12.3.2 Testing Efficiency Based Continuous Time SRGM

for NVP System . . . . . . . . . . . . . . . . . . . . . . . . . . 465
12.3.3 A Testing Efficiency Based Discrete SRGM

for a NVP System. . . . . . . . . . . . . . . . . . . . . . . . . 471

Contents xix

http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec28
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec28
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec29
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec29
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec31
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Sec31
http://dx.doi.org/10.1007/978-0-85729-204-9_10#Bib1
http://dx.doi.org/10.1007/978-0-85729-204-9_11
http://dx.doi.org/10.1007/978-0-85729-204-9_11
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec1
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec1
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec2
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec2
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec3
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec3
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec4
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec4
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec5
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec5
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec5
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec6
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec6
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec7
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec7
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec7
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec9
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec9
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec9
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec1
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec1
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec10
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec10
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec10
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec11
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec11
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec12
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec12
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec12
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec14
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec14
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec14
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec17
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec17
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec17
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec18
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec18
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec19
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec19
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec20
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Sec20
http://dx.doi.org/10.1007/978-0-85729-204-9_11#Bib1
http://dx.doi.org/10.1007/978-0-85729-204-9_12
http://dx.doi.org/10.1007/978-0-85729-204-9_12
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec1
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec1
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec13
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec13
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec17
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec17
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec18
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec18
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec19
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec19
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec25
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec25
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec26
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec26
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec27
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec27
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec27
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec33
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec33
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec33


12.3.4 Parameter Estimation and Model Validation. . . . . . . 476
12.4 COTS Based Reliability Allocation Problem . . . . . . . . . . . . . 487

12.4.1 Optimization Models for Selection of Programs
for Software Performing One Function
with One Program. . . . . . . . . . . . . . . . . . . . . . . . . 490

12.4.2 Optimization Models for Selection of Programs
for Software Performing Each Function with a Set
of Modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

12.4.3 Optimization Models for Recovery Blocks. . . . . . . . 497
12.4.4 Optimization Models for Recovery Blocks

with Multiple Alternatives for Each Version
Having Different Reliability . . . . . . . . . . . . . . . . . . 506

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510

Appendix A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513

Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517

Appendix C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

Answer to Selected Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543

xx Contents

http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec40
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec40
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec48
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec48
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec49
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec49
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec49
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec49
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec54
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec54
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec54
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec54
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec65
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec65
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec75
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec75
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec75
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Sec75
http://dx.doi.org/10.1007/978-0-85729-204-9_12#Bib1


Acronym

ANN Artificial Neural Network
ART Adaptive Resonance Theory
CDF Cumulative Density Function
CER Community Error Recovery
CF Common Faults
CFM Common Failure Mode
CIF Concurrent Independent Failures
CIFM Concurrent Independent Failure Mode
CLNLR Conditional Logic Nonlinear Regression
COTS Commercial Off-The-Shelf
CPU Central Processing Unit
CRB Consensus Recovery Block
DDE Distributed Development Environment
DIM Dynamic Integrated Model
DNA Deoxyribonucleic Acid
DWCM Dynamic Weighted Combinational Model
EDRB Extended Distributed Recovery Block
ENHPP Enhanced Non-Homogeneous Poisson Process
EW Error Derivative of the Weights
FCP Fault Correction Process
FDP Fault Detection Process
FDR Fault Detection Rate
FIR Fault Isolation Rate
FRR Fault Removal Rate
GDIM Generalized Dynamic Integrated SRGM
GINHPP Generalized Imperfect Non-Homogeneous Poisson Process
GO Model Goel and Okumoto Model
GOS Generalized Order Statistic
GPA Goal Programming Approach
HPP Homogeneous Poisson Process

xxi



IBM International Business Machines
IEEE Institute for Electrical and Electronic Engineers
IF Independent Faults
ISO/IEC International Organization for Standardization/International

Electro-Technical Commission
IT Information Technology
KG Model Kapur and Garg Model
KLOC Kilo Lines of Code
KT Kuhn Tucker
LMS Least Mean Squares
LN Levenberg-Marquardt
METEF Modified Exponential Testing Effort Function
MLE Maximum Likelihood Estimate
MOV Modified Optimal Values
MRTEF Modified Rayleigh Testing Effort Function
MSE Mean Square Error
MTBF Mean Time between Failures
MTTF Mean Time to Failure
MWTEF Modified Weibull Testing Effort Function
NDP Normalized Detectability Profile
NHPP Non-Homogeneous Poisson Process
NLLS Non-Linear Least Square
NLR Nonlinear Regression
NMR N-Modular Programming
NN Neural Network
NVP N Version Programming
OOV Original Optimal Values
OS Operating System
PDF Probability Density Function
PE Prediction Error
PGF Probability Generating Function
R&D Research and Development
RB Recovery Blocks
RMSPE Root Mean Square Prediction Error
RPE Relative Predictive Error
SDE Stochastic Differential Equations
SDLC Software Development Life Cycle Models
SPSS Statistical Package for Social Sciences
SQP Sequential Quadratic Programming
SRE Software Reliability Engineering
SRGM Software Reliability Growth Model
SRTD Software Release Time Decision
TEF Testing Effort Function

xxii Acronym



TFN Triangular Fuzzy Number
V&V Verify and Validate
WRC Water Reservoir Control
YDSM Yamada Delayed S-Shaped Model

Acronym xxiii



Chapter 1
Introduction

A popular theory and explanation of the contemporary changes occurring around
us is that we are in the midst of a third major revolution in human civilization, i.e.,
a Third Wave. First there was the Agricultural Revolution, then the Industrial
Revolution, and now we are in the Information Revolution. Yet we are, in fact, in
the middle of a revolutionary jump. Information and communication technology
and a worldwide system of information exchange have been growing for over a
100 years. Information technology (IT) is playing a crucial role in contemporary
society. It has transformed the whole world into a global village with a global
economy. IT has now become the most important technology in the human world
and it is an excellent example of the law of unintended consequences as it paves
the way for creation of the new technologies (e.g., genetic engineering), extension
of the existing technologies (e.g., telecommunications), and the demise of the
older technologies (e.g., the printing industry). Today almost every business,
industry, services, government agencies, and even our day-to-day activities are
directly or indirectly affected by computing systems. The Computer revolution has
benefited society and increased the global productivity, but a major threat of this
revolution is that the world has become critically dependent on the computing
systems for the proper functioning and timing of all its activities. For example, air
traffic control, nuclear reactors, patient monitoring system in hospitals, automotive
mechanical and safety control, online railways and air ticketing, industrial process
control, global networking of various business, and services which include infor-
mation storing (databases), information sharing and internet marketing, etc. are
some diverse applications of IT. If the computer system shows a failure in such
systems the impact of failures may range from inconvenience in social life to
economic damage to loss of life in the most critical case. A total breakdown of the
system functioning is observed in most of the cases until the fault is repaired, and
even after restoring the system to a normal state, sometime it takes up huge time,
efforts, and resources to make up the losses.

P. K. Kapur et al., Software Reliability Assessment with OR Applications,
Springer Series in Reliability Engineering, DOI: 10.1007/978-0-85729-204-9_1,
� Springer-Verlag London Limited 2011

1



In the broadest sense, IT refers to both the hardware and software that are used
to store, retrieve, and manipulate information. In the past two decades the hard-
ware has attained high productivity and quality due to advances in technology and
progress of design and test mechanisms. Large-scale improvement in hardware
performance, profound changes in computing architectures, vast increase in
memory and storage capacity, a wide variety of exotic input and output options,
has further increased the demand of software in automation of complex systems,
its use as a problem-solving tool for many complex problems of exponential size,
and to control critical applications. With this, size and design complexities of the
software has also increased many folds and the trend will certainly continue in
future. For instance the NASA Space Shuttle flies with approximately 0.5 million
lines of software code on board and 3.5 million lines of code in ground control and
processing [1–3].

With the escalation in size, complexity, demand, and depends on the computer
systems the risk of crises due to software failures has also increased. There are
numerous reported and unreported instances when software failures have caused
severe losses [3, 4]. Few examples are the crash of Boeing 727 of Mexicana airlines
because the software system did not correctly negotiate the mountain position
(1986), overdose given to the cancer patients by the massive Therac-25 radiation
machine in Marietta due to flaws in the computer program controlling the device
(1985 and 1986), Explosion of the European Space Agency’s Ariane 5 rocket, in
less than 40 s after lift-off on 4 June 1996 due to software design errors and
insufficient testing, blackouts in the North-East US during the month August, 2003
due to an error in the AEPR (Alarm and Event Processing Routine) software, etc.

The abilities to design, test, and maintain software has grown fairly, lot of
further improvements are desired in the field. The software development process
has become really a challenging task for the developers. Accordingly, the main
concern about productivity and quality of computer systems has been changing
from the hardware to the software systems. Now the question arises, what makes
productive and quality software? The answer is, the software that enables a
seamless technology experience for people wherever they are—in the home, in the
office or on the go. Arguably the most important software development problem
is building software to customer demands so that it will be more reliable, built
faster, and built cheaper (in general order of importance) [5]. Success in meeting
these demands affects the market share and profitability of a product for the
developer. These demands conflict, causing risk and overwhelming pressure, and
hence strong need for a practice that can help them to have a tight control over the
software development process and develop software to the need of the software
market.

Software reliability engineering (SRE) discipline came forward to create and
utilize sound engineering principles in order to economically obtain software
systems that are not only reliable but also work proficiently on real machines, in
the early 1970s. This made software reliability study recognized as an engineering
discipline. The next concern of software engineering was scheduling and sys-
tematizing the software development process to monitor the progress of the

2 1 Introduction



various stages of software development using its tools, methods, and process to
engineer quality software and maintaining a tight control throughout the devel-
opment process. Here the most important thing that must be clearly defined is what
quality refers to in context to the developers and the end users. More often it is
defined in terms of internal quality and external quality with a focus on trans-
forming the user’s requirements (external quality characteristics) into the quality
characteristics of the software system developers (internal quality characteristics).
SRE broadly focuses on quantitatively characterizing the following standardized
six quality characteristics defined by ISO/IEC: functionality, usability, reliability,
efficiency, maintainability, and portability. Software reliability is accepted as the
key characteristic of software quality since it quantifies software failures—the
most unwanted events, and hence is of major concern to the software developers as
well as user. Further it is the multidimensional property including other customer
satisfaction factors such as functionality, usability, performance, serviceability,
capability, installability, maintainability, and documentation. For this reason it is
considered to be a ‘‘must be quality’’ of the software.

One of the major roles of SRE lies in assuring and measuring the reliability of
the software. The tools of SRE known as software reliability growth models
(SRGM) are used successfully to develop test cases, schedule status, to count the
number of faults remaining in the software, and estimate and predict the reliability
of the software during testing and operational environment. Foundation of research
in reliability modeling for software seems to be as old as 40 years however, in the
past 30 years the field has experienced extensive growth. Many reliability engi-
neering scientists and research scholars have done excellent study of the various
aspects of the software quality measurement during the software development and
maintenance phases. Many SRE books are available that focus on software reli-
ability modeling. However, similar to the IT advances, the software reliability
modeling has also advanced, incorporating the many recent and challenging issues
in reliability measurement. In this book we present the state-of-the-art modeling in
software reliability over the past 40 years in one place. Various optimization
applications of reliability modeling solved using the tools of operational research
are also discussed in the later chapters of the book. In the next sections of this
chapter we elaborate some important concepts of SRE, software development and
testing, SRGM classification, and a brief review of the literature.

1.1 Software Reliability Engineering

Software engineering is relatively a young disciple and was first proposed in 1968
at a conference held to discuss the problem known at that time as software crisis.
Software crisis was the result of introduction of the powerful, third-generation
computer hardware. Many software projects run over budget and schedule, were
unreliable, difficult to maintain, and performed poorly. The software crisis was
originally defined in terms of productivity, but evolved to emphasize quality. New

1 Introduction 3



techniques and methods were needed to control the complexities of the large
software projects and the techniques developed and adopted lead to the foundation
of SRE. The SRE technologies were mainly inherent (such as specification, design,
coding, testing, and maintenance techniques) that aid in software development
directly and management technologies (such as quality and performance assess-
ment and project management) that support the development process indirectly.
Our focus in this book lies on the management technologies.

A number of definitions of SRE are made by several people and it is difficult to
say which definition describes it most appropriately. Here we would like to
mention that the word engineering is an action word, which aims to find out ways
to approach a problem. The problems as well as approaches to resolve them have
changed drastically in the past decade and the changes are continued, the definition
of SRE is also changing and evolving. The IEEE [6] society has defined SRE as
widely applicable, standard, and proven practice that apply systematic, disciplined,
quantifiable approach to the software development, test, operation, maintenance,
and evolution with emphasis on reliability and the study in these approaches.
Further ISO/IEC defined software reliability as ‘‘an attribute that a software system
will perform its function without failure for a given period of time under specified
operational environment’’.

There are several simultaneous benefits of applying SRE principles on any
software development project; broadly they can be listed as—it insures that
product reliability conforms to the user requirements, lowers the development cost
and time with least maintenance and operation costs, improved customer satis-
faction, increased productivity, reduced risk of product failure [5], etc. Concep-
tually SRE is a layered technology (Fig. 1.1). It rests on the organizational
commitment to quality with a continuous process improvement culture and has its
foundation in the process layer. Process defines the framework for management
control of the software projects, establishes the context in which technical methods
are applied, work products are produced, quality is insured, and change is properly
managed. SRE methods provide the technical ‘‘how to’s’’ for building the software
whereas the tools provide automated or semi-automated support for the processes
and methods [6].

SRE management techniques work by applying two fundamental ideas:

• Deliver the desired functionality more efficiently by quantitatively character-
izing the expected use, use this information to optimize the resource usage
focusing on the most used and/or critical functions, and make testing environ-
ment representative of operational environment.

Fig. 1.1 Software reliability
engineering layers

4 1 Introduction



• Balances customer needs for reliability, time, and cost-effectiveness. It works by
setting quantitative reliability, schedule and cost objectives, and engineers’
strategies to meet these objectives.

The activities of SRE include:

• Attributes and metrics of product design, development process, system archi-
tecture, software operational environment, and their implications on reliability.

• Software reliability measurement—estimation and prediction.
• The application of this knowledge in specifying and guiding system software
architecture, development, testing, acquisition, use, and maintenance.

There exist sound process models of SRE known as software development life
cycle (SDLC) models, which describe the various stages of software development
in a sequential and planned manner. Most of the models, model the SDLC in the
following stages: requirement analysis and definition, system design, program
design, coding, testing, system delivery, and maintenance. The tools and tech-
niques of SRE provide means to the software engineer to monitor, control, and
improve the software quality throughout the SDLC.

1.2 Software Development Life Cycle

Software development realized using the tools and techniques of SRE enables
developers to deliver enough reliability avoiding both excessive costs and devel-
opment time. Software development involves a set of ordered tasks; each task can
be called as a generic process and the process of software development is known as
SDLC. The IEEE computer dictionary has defined SDLC as ‘‘the period of time in
which the software is conceived, developed and used’’. The software life cycle
process model describes software products life from the conceptualization stage to
the final implementation and maintenance stage. Many life cycle process models
are described in the software engineering literature. The generic process frame-
work applicable to the vast majority of software projects includes the following
stages:

• Analysis and specification
• Software development
• Verification and validation
• Maintenance and evolution

Each framework activity is populated by a set of software engineering actions
such as software project tracking and control, risk management, quality assurance
and measurement, technical reviews, reusability measurement, etc. Following the
generic framework activities every software development and engineering organi-
zation describes a unique set of activities it adopts with the complemented set of
engineering actions in terms of a task set that identifies the work to be accomplished.

1.1 Software Reliability Engineering 5



Almost all known process models bear at least some similarity to the preliminary
process model known as waterfall models. The waterfall model was proposed by
Royce in 1970. The framework activities of the model are shown in Fig. 1.2 and can
be illustrated as follows.

Activity 1: Requirement Analysis and Specification

This phase forms the foundation stage for building successful software. Defining
the project scope, software requirements, and providing specifications for the
subsequent phases and activities. Project scope definition includes the study of the
users’ need for the system and their problems. This is accomplished with frequent
interaction with the users. Once the scope is defined the requirement collection
activity starts. Requirement collection is actually the study of product capabilities
and constraints. It includes collection of product functionality, usability, intended
use, future expectations, user environment, and operating constraints. Requirement
analysis concludes with a feasibility study of user requirements, cost benefit
estimation, and documentation of collected information and feasibility report. The
document holds the different specific recommendations for the candidate system
such as project proposal, environmental specifications and budget, schedule, and
method plans. The immediate following activity is system specification. The basic
aim of this activity is to transform the user requirement-oriented document to the
developer-oriented document (design specifications). This is the first document
that goes into the hands of the software engineers and forms the foundation
document of the project; hence, it must precisely define essential system functions,
performances, design constraints, attributes, and external interfaces. In this phase,
the software’s overall structure and its nuances are defined. All activities of this
phase must be accomplished very crucially. A well-developed specification can
reduce the occurrence of faults in the software and minimizes rework.

Activity 2: System Analysis and Design

System design activity is concerned with architectural and detailed project
design. A detailed analysis of the specification document is carried to know the

Fig. 1.2 Waterfall model

6 1 Introduction



performance, security and quality requirements, system assumptions, and con-
straints. This study enables partitioning of full system into smaller subsystems and
definition of internal and external interface relationships. The needed hardware and
software support are also identified. In terms of the client/server technology, the
number of tiers needed for the package architecture, the database design, the data
structure designs, etc. are all defined in this phase. The architectural design is
completed with an architectural document design. This document is followed by a
detailed system design activity. Here the program structure, algorithmic details,
programming language and tools, test plans are specified. The final outcome of this
phase is a detailed design document. The design engineers must take care that the
designed system architecture, program structure, and algorithm design conforms to
the specification document. Any glitch in the design phase could be very expensive
to solve in the later stage of the software development.

Activity 3: Coding

The program structures and algorithms specified in the design document are coded
in some programming language—a hardware readable form. This phase consists in
identifying existing reusable modules, coding of new modules, modifications in
existing modules, code editing, code inspection, and a final test plan preparation. If
the program design is performed in a detailed manner, code implementation can be
accomplished without much complication. Programming tools like compilers,
interpreters, debuggers are used to generate the code. Different high level pro-
gramming languages like C, C++, Visual basic, and Java are used for coding. With
respect to the type of application, the right programming language is chosen. Once
the independent programs are implemented they are linked to form the modular
structure of the software according to the interface relations defined in the design
document.

Activity 4: Testing and Integration

Once the code is generated, the software testing begins. Testing is the key method
for dynamic verification and validation of a system. The objectives of the testing
phase are to uncover and remove as many faults as possible with a minimum cost,
to demonstrate the presence of all specified functionalities, and to predict the
operational reliability of the product. Testing is generally focused on two areas:
internal efficiency and external effectiveness. The goal of internal testing is to
make sure that the computer code is efficient, standardized, and well documented.
The goal of external external testing is to verify that the software is functioning
according to system design and that it is performing all necessary functions or
sub-functions. Initially testing begins with unit testing of independent modules

1.2 Software Development Life Cycle 7



then the modules are integrated and system testing is performed followed by
acceptance testing.

Activity 5: Operation and Maintenance

The system or system modifications are installed and made operational in the
operational environment. The phase is initiated after the system has been tested
and accepted by the user. Installation also involves user training primarily based
on major system functions and support. The users are also provided installation
and operation manuals. This phase continues until the system is operating in
accordance with the defined user requirements. Inevitably the system will need
maintenance during its operational use. During this period the software is main-
tained by the developer to conquer the faults that remain in it at its release time.
Software will definitely undergo change once it is delivered to the customer. There
are many reasons for a potential change. Change could happen because of some
unexpected input values into the system. Changes in the system could directly
affect the software operation. The software should be developed to accommodate
changes that could happen during the post-implementation period.

The waterfall model maintains that one should move to a phase only when its
proceeding phase is completed and perfected. Phases of development in the
waterfall model are discrete, and there is no jumping back and forth or overlap
between them. Several modifications of waterfall model are known in the literature
to allow the prototyping such as phased, evolutionary, and agile development of
the software. The basic difference between waterfall model and its modifications is
the flexibility in the sense that the task performed in any stage of the development
can be verified and validated with the previous stages so as to reduce the devel-
opment cost, time, and rework. For example the user and the requirement analyst
can review the specifications once they have been defined to insure that the pro-
posed product is what the users want. This allows the user and the software team to
visualize the actions performed and to find the aspects of further improvements in
the accomplished tasks. Figure 1.3 demonstrates a modified waterfall model that
includes reviews and feedbacks in between various development stages.

1.3 Why Software Testing Is Important

Despite using the best engineering methods and tools during each stage of the
software development the software is subject to testing in order to verify and
validate it (software V&V). The previous discussion on the importance of com-
puting systems and human dependence on them clarifies the need of software
testing. Bugs if appear during software operation in user environment can be fatal
to the users in terms of loss of time, money, and even lives depending on criticality

8 1 Introduction



of the function as well as to the developers in terms of cost of debugging, risk cost
of failure, and goodwill loss. The bugs in the software can be manifested in each
stage of its development. Figure 1.4 shows factors contributing to bugs manifes-
tation in the various stages of SDLC.

The aim of software testing is nothing other than quality improvement in order
to achieve the necessary reliability. Although defined in various ways basically
software quality is defined as the attribute measuring how well the software
product meets the stated user functions and requirements. Table 1.1 illustrates the
standardized desired quality characteristics stated by ISO:IEC. Software testing
involves checking processes such as inspections and reviews at each stage of the
SDLC start from the requirement specification to coding. Ideally the test cases that
are executed on the software to test the software are designed throughout its
development life cycle. Testing is inherent to every phase of the SDLC but the
testing performed in the testing stage gives confidence to developers and users on
the software quality. Software testing in the testing phase is a three-stage process
in which first the systems individual components, programs, and modules are
tested called unit testing, followed by integration testing at subsystem and system
level which includes top-down and bottom-up testing, interface testing, and stress
testing and conclude with the acceptance testing. Figure 1.5 summarizes the dif-
ferent testing levels and their focus.

Fig. 1.3 Modified waterfall
model

Fig. 1.4 Sources of faults in
each phase of SDLC

1.3 Why Software Testing Is Important 9



There is plethora of testing methods and testing techniques which can serve
multiple purposes in different phases of SDLC. Testing is basically of four types:
defect testing, performance testing, security testing, and statistical testing [7].

Defect testing is intended to find the inconsistencies between a program and its
specification in contrast to validation testing that requires the system to perform
correctly using an acceptance test case. A defect test case is considered to be
successful if it shows the presence, not the absence, of a fault in the software.
Defect testing can be performed in many different ways, the number and types of
the method adopted depend on the quality requirement, software size and func-
tionality, etc. Some of the well-known techniques are:

• Black box testing: is a testing method that emphasizes on executing the system
functions using the input data derived from the specification document regardless
to the program structure, also known as functional testing. The system func-
tionality is determined from observing the output only; hence the tester treats the
software as a black box.

• White box testing: Contrary to the black box testing, software is viewed as a
white box or a glass box since the tests are derived from the knowledge of the
software’s structure and implementation hence also known as structural testing.
Analysis of code can determine the approximate number of tests needed to
execute all statements at least once.

• Equivalence partitioning: Is based on identifying equivalence partitions of the
input/output data and designing the test cases so that the inputs and outputs lie
within these partitions.

• Path testing: Here the objective is to exercise every independent path of a
program with the test cases.

There is no clear boundary between these testing approaches, which can be
combined during testing.

Performance testing has always been a great concern and a driving force of
computer evolution which includes: resource usage, throughput, stimulus–response

Table 1.1 Software quality
characteristics

Functionality Engineering Adaptability
(Exterior quality) (Interior quality) (Future quality)

Correctness Efficiency Flexibility
Reliability Testability Reusability
Usability Documentation Maintainability
Integrity Structure Compatibility

Fig. 1.5 Software testing
levels

10 1 Introduction



time, and queue lengths detailing the average or maximum number of tasks waiting
to be serviced by selected resources. Typical resources that need to be considered
include network bandwidth requirements, CPU cycles, disk space, disk access
operations, and memory usage. The goal of performance testing is performance
bottleneck identification, comparison, evaluation, etc. The typical method of doing
performance testing is using a benchmark program, workload, or trace designed to
be representative of the typical system usage.

Security testing has become a matter of prime concern to the software developer
with the detonation of worldwide web in the IT. Software security is now an
attribute of software comparable to the software quality. Most of the critical and
confidential software applications and services have integrated security measures
against malicious attacks. The purpose of security testing for these systems include
identifying and removing software flaws that may potentially lead to security
violations and validating the effectiveness of security measures.

Statistical testing in contrast to other testing methods, aims to measure software
reliability rather than discovering faults. It is an effective sampling method to
assess system reliability and hence also known as reliability testing. Figure 1.6
illustrates the four stages of reliability assessment. Data collected from other test
methods are used here to predict the reliability level achieved and which can
further be used to depict the time when the desired level of quality in terms of
reliability can be achieved. Reliability assessment is of undue importance to both
the developers and user; it provides a quantitative measure of the number of
remaining faults, failure intensity, and a number of decisions related to the
development, release, and maintenance of the software in the operational phase.
To the users it provides a measure for having confidence in the software quality
and their level of acceptability.

1.4 Software Reliability Modeling

Previous discussion on statistical testing highlights the importance of reliability
assessment in the software testing. Most of the testing methods aim to uncover the
faults lying in the software. When a fault is exposed, the corresponding fault is
repaired. This task of failure observation and fault removal gives an indication of
improved system reliability. One of the most important things here is to know how
much improvement or decline (in the case of error generation) in quality has been
made. Knowledge of this information is necessary to make a quantitative measure
of the software quality. Software reliability assessment during the different phases
of the software development is an attractive approach to the developer as it

Fig. 1.6 The reliability
measurement model

1.3 Why Software Testing Is Important 11



provides a quantitative measure of what is most important to them software
quality. Reliability being the most dynamic software quality characteristic is
preferred by the users as well as developers. As stated earlier the task of statistical
testing is to measure software reliability and is performed following a set of
sequential steps (Fig. 1.5). Now the question arises how we can measure the
observed system reliability. Now comes the role of software reliability modeling, a
sub-field of SRE. The reliability models known as Software Reliability Growth
Models (SRGM) can be used here to estimate the current level of reliability
achieved and to predict the time when the desired system reliability can be
achieved. However, computing an appropriate measure of reliability is difficult [7];
it is associated with many difficulties such as:

• Operational profile uncertainty: It is difficult to simulate operational profile,
which is a reflection of the real user operational profile accurately.

• High costs of test data generation: Defining the large set of test data that covers
each program statement, path, functions, etc. is very costly as it requires long
time, expert experience.

• Statistically uncertainty: Statistically significant number of failure data is
required to allow accurate reliability measurement; measurements made with
insufficient data involve huge uncertainty. With this choice of the appropriate
metric and model used, add to the uncertainty of the reliability measurement.

Despite all these challenges to reliability measurement, reliability of the soft-
ware is assessed during the different phases of the software development and is
used for practical decision making. Before we discuss how the reliability measure
is actually made we must clearly understand the difference between the software
failures, faults, and errors [2, 3]. A software failure is a software functional
imperfection resulting from the occurrence(s) of defects or faults. A software fault
or bug is an unintentional software condition that causes a functional unit to fail to
perform its required function due to some error made by the software designers.
An error is a mistake that unintentionally deviates from what is correct, right, or
true; a human action that results in the creation of a defect or fault.

Reliability assessment typically involves two basic activities—reliability esti-
mation and reliability prediction. Estimation activity is usually retrospective and
determines achieved reliability from a point in the past to present using the failure
data obtained during system test or operation. The prediction activity usually
involves future reliability forecast based on available software metrics and mea-
sures. Depending on the software development stage this activity involves either
early reliability prediction using characteristics of the software and software
development process (case when failure data are unavailable) or parameterization
of the reliability model used for estimation and utilizes this information for reli-
ability prediction (case when failure data are available). In either activity, reli-
ability models are applied on the collected information, and using statistical
inference techniques, reliability assessment is carried out.

Widespread research has been carried in the literature in the field of software
reliability modeling, and several stochastic models and their applications have

12 1 Introduction



been developed during the past 40 years. Many eminent researchers from the fields
of stochastic modeling, reliability engineering, operational research, etc. have done
excellent work in this field. Reliability growth models have been developed and
validated, investigating various concepts and conditions existing in the real testing
environments. Several approaches have been followed for developing these
models. Many attempts have been made to classify the models into different
categories so as to facilitate their application for a particular case. There exist few
models, which are used widely and provide good results in a number of applica-
tions. However, which model is best for a particular application is still a big
question to be answered, even though many researchers have worked to explore
this aspect and provided some guidelines to select best models for certain appli-
cations. Unification of models is a recent approach in this direction. Looking at
this broad area of research and having strong research interests in this field, since
years we conceptualize this book to bring this literature on a platform which can be
used by every one who wants to get the core knowledge of the field, know the
existing work in the field so as to do the further enhancement and use it for
practical application. Now we briefly discuss some preliminary concepts of soft-
ware reliability modeling.

1.5 Preliminary Concepts of Reliability Engineering

Origin of hardware reliability theory is a long history. It seems to be originated
during the World War II. The fundamental concepts and hardware reliability
models were built on the concepts of probability theory and stochastic model-
ing. In the view of theorists software reliability is a concept originated from
hardware reliability. In this section we discuss the fundamental concepts of
software reliability and other metrics associated with software reliability study.
We also provide some common distribution functions and derive the reliability
measures based on them. In the later sections we discuss the stochastic pro-
cesses used in the reliability study, and a detailed discussion on non-homoge-
neous Poisson process (NHPP)-based reliability modeling is carried to provide
the readers the basic concepts of NHPP-based software reliability growth
modeling.

The reliability measure applied either to hardware or software is related to their
quality. Hardware reliability study aims to systematic system analysis in order to
reduce and eliminate the hardware failures; in contrast the software reliability aims
to analyze the system reliability growth due to testing activity in the software
development. This makes the basic difference between the reliability analysis of
hardware and software systems. Despite this basic difference there exist several
similarities and dissimilarities between hardware reliability and software reli-
ability. First we carry out a comparison between the two, which enables us in
building better understanding of software reliability modeling.

1.4 Software Reliability Modeling 13



1.5.1 Let Us Compare: Software Versus Hardware Reliability

Reliability measure applied either to software or hardware refers to the quality of
the product and strives systematically to reduce or eliminate system failures. The
major difference in the reliability analysis of the two systems is due to their failure
mechanism [3, 5]. Failures in hardware is primarily due to material deterioration,
aging, random failures, misuse, changes in environmental factors, design errors,
etc. while software failures are caused by incorrect logic, misinterpretation of
requirements and specifications, design errors, inadequate and insufficient testing,
incorrect input, unexpected usage, etc. Software faults are more difficult to visu-
alize, classify, detect, and correct due to no standard techniques available for the
purpose and require a thorough understanding of the system, uncertain operational
environment, and testing and debugging process.

Another important difference in the reliability analysis of the two systems lies
in their failure trend. Failure curve that is related to hardware systems is typically
a bathtub curve with three phases—burn-in, useful life, and wear-out phase as
shown in Fig. 1.7. Software on the other hand does not have stable reliability in the
life phase instead it enjoys reliability growth or failure decay during testing and
operation since software faults are detected and removed during these phases as
shown in Fig. 1.8. The last phase of the software is different from the hardware in
the sense that it does not wear out but becomes obsolete due to major improvement
in the software functions and technology changes.

Hardware reliability theory relies on the analysis of stationary processes, because
only physical defects are considered. However, with the increase of the software
system size and complexity, reliability theory based on stationary process becomes
unsuitable to address non-stationary phenomenon such as reliability growth. This
makes software reliability a challenging problem, which requires employment of
several intelligent methods to attack [1] and forms a basis for software engineering
method to base on the construction of models representing the system failure and
fault removal process in terms of model parameters. The difference in the affect of
fault removal requires the software reliability to be defined differently from the

Fig. 1.7 Hardware failure
curve

14 1 Introduction



hardware reliability. On the removal of a fault, a hardware component returns to its
previous level of reliability subject to the reliability of repair activity. But a software
repair implies either reliability improvement (case of perfect repair) or decline (case
of imperfect repair). The techniques of hardware reliability aim to maintain the
hardware’s standard reliability and improvements if required in the design standards.
On the other hand SRE aims to continuous system reliability improvement.

1.5.2 Reliability Measures

Quantities related to the reliability measurement are most of the time defined in
relation to time. In order to elaborate this point let us first define reliability.
Statistically, reliability is defined as the ‘‘probability that software system will
perform its function failure free under the specified environmental conditions and
design limits for a specified period of time’’. This definition of reliability needs a
careful understanding; first of all the statement that it will perform its function
means the intended use of the software, defined in the specification and require-
ment documents. The specified environmental and design limits are defined by its
software and hardware compatibility and operational profile. We cannot expect
software working without failure on an input state run for which the software is not
designed or working perfectly without the accurate support of supporting software
and hardware. Now comes the concept of time, here we are interested in three
types of time—execution time, calendar time, and clock time.

• Execution time: It is the processor’s actual time span on an input state run, i.e.,
the time which is spent on running a test case of a specified run of system
function.

• Calendar time: This type of time component is related to the number of days,
weeks, months, or years the processor spends on running a system function.

• Clock time: This time component is related to the elapsed time from the start of
a computer run to its termination. It is clear that the waiting and execution time
of other programs is included in this component on a parallel processor.

Fig. 1.8 Software failure
curve

1.5 Preliminary Concepts of Reliability Engineering 15



Note that system down time is not included in the execution and clock time
component. It is important to know that most of the software reliability models are
based on the calendar time component as often the actual failure data sets are
defined on the calendar time component, but nowadays the execution time com-
ponent is preferred in many cases as it is accepted by most of the researchers that
results are better with the execution time component. Even then we need to relate
the execution time component to the calendar time as this is more meaningful to
the software engineers and developers. Now we define the software reliability
mathematically.

1.5.2.1 Mathematical Definition of Reliability

If the reliability of a system R(t) is defined from time 0 to a time point t then it is
given as

RðtÞ ¼ PðT[ tÞ; t� 0 ð1:5:1Þ

where T is a random variable denoting the time to failure or failure time of the
system.

1.5.2.2 Failure Time Distribution and Reliability Measure

Consider F(T), defined as the probability that if the system will fail at time t then

FðtÞ ¼ PðT � tÞ; t� 0

F(T) is called the failure time distribution function. Now if f(t) is the density
function of random variable T then we can write

RðtÞ ¼
Z

1

t

f ðsÞ ds ð1:5:2Þ

which is equivalent to

f ðtÞ ¼ � d
dt
ðRðtÞÞ

Further from (1.5.1) and (1.5.2) we can write

RðtÞ ¼ 1� FðtÞ ð1:5:3Þ

As such F(T) is also called unreliability measure. On the other hand the density
function can be expressed as limDt!0 Pðt\T � t þ DtÞ meaning that the failure

16 1 Introduction



time will occur between the operating time t and the next interval of operation
(t ? Dt).

It is important to mention here that the reliability measure has a meaning only
when it is defined with a time statement, i.e., if we say reliability of a system is
0.99, it is meaningless until it is defined on a time period. A valid statement of
reliability can be ‘‘Reliability of software is 0.99 for a mission time of 4 weeks’’.
Hence we can say that ‘‘reliability measure is a function of the mission time’’.
A direct implication of this statement is that as the time interval on which we
define the reliability measure increases, the system becomes more likely to fail. As
such the reliability defined over a time interval of infinite length is zero. This
statement also follows from (1.5.3) as

Fð1Þ ¼ 1) Rð1Þ ¼ 0 ð1:5:4Þ

1.5.2.3 System Mean Time to Failure

We define system mean time to failure (MTTF) as the expected time during which
a system or component is expected to perform successfully without failure.
Mathematically it can be defined in terms of the system failure time density
function f(t) as

MTTF ¼
Z

1

0

tf ðtÞ dt ð1:5:5Þ

Using the relationship between reliability and unreliability function we can
define this quantity in terms of reliability function as

MTTF ¼ �
Z

1

0

t
d
dt
RðtÞ dt ¼ �

Z

1

0

tdðRðtÞÞ ¼ �½tRðTÞ�10 þ
Z

1

0

RðtÞ dt

Now as tRðTÞ ! 0 as t! 0 or t!1 using (1.5.4), this implies

MTTF ¼
Z

1

0

RðtÞ dt ð1:5:6Þ

MTTF is one of the most widely used reliability measure. The measure is to be
used when the distribution of failure time is known as we can make out from
(1.5.5) and (1.5.6) that it depends on the failure time distribution. One important
point to be noted here is that it is a measure of average time of system failure and
cannot be understood as the guaranteed minimum lifetime of the system.

1.5 Preliminary Concepts of Reliability Engineering 17



1.5.2.4 Hazard Function

The probability of system failure in a given time interval [t1, t2] can be expressed as

Z

t2

t1

f ðtÞ dt ¼
Z

t2

0

f ðtÞ dt �
Z

t1

0

f ðtÞ dt

Z

t2

t1

f ðtÞ dt ¼ Fðt2Þ � Fðt1Þ ð1:5:7Þ

Using (1.5.4) we can rewrite (1.5.7) in terms of reliability function as

Z

t2

t1

f ðtÞ dt ¼ Rðt1Þ � Rðt2Þ

Now we can define the rate at which failures occur in a certain time interval
[t1, t2] as the probability that a failure per unit time occurs in the interval, given
that a failure has not occurred prior to t1, i.e., the failure rate is defined mathe-
matically as

R t2
t1
f ðtÞ dt

ðt2 � t1ÞRðt1Þ
¼ Rðt1Þ � Rðt2Þ
ðt2 � t1ÞRðt1Þ

ð1:5:8Þ

The hazard function is defined as the limit of the failure rate or it can be called
as instantaneous failure rate and can be derived from (1.5.8). If we redefine length
of the time interval as [t, t ? Dt], the failure rate can be defined as

RðtÞ � Rðt þ DtÞ
DtRðtÞ ð1:5:9Þ

and hazard function h(t) can be obtained taking limit Dt ? 0, hence

hðtÞ ¼ lim
Dt!0

RðtÞ � Rðt þ DtÞ
DtRðtÞ

¼ 1
RðtÞ �

d
dt
RðtÞ

� �

¼ f ðtÞ
RðtÞ

18 1 Introduction



The quantity h(t) dt represents the probability that the system age will fall in the
small interval of time [t, t ? Dt]. The hazard function reflects the picture of failure
changes over the systems’ or components’ life. The hazard function must satisfy
two conditions:

1. hðtÞ� 0 8 t� 0

2.
R

1

0
hðtÞ dt ¼ 1

1.5.3 Reliability Function Defined for Some Commonly Used

Distributions in Reliability Modeling

The previous discussion on the reliability measures enables us to define them for
some commonly used distributions in the software reliability modeling. Below we
derive the reliability and hazard functions for the various distribution functions.

1.5.3.1 Binomial Distribution

The binomial distribution is a commonly used discrete random variable distribu-
tion in reliability and quality analysis. The application of the distribution is in the
situations when we are dealing with the cases where an event can be expressed by
binary values, e.g., success or a failure, occurrence or non-occurrence, etc.

The binomial distribution gives the discrete probability distribution of obtaining
exactly x successes out of n Bernoulli trials (where the result of each trial is true
with probability p and false with probability q = 1 - p). The binomial distribu-
tion is, therefore, given by

PðX ¼ xÞ ¼ n
x

� �

pxqn�x; x ¼ 0; 1; 2; . . .; n ð1:5:10Þ

where
n
x

� �

¼ n!
x!ðn�xÞ! is the binomial coefficient.

When n = 1, the binomial distribution is a Bernoulli distribution, an event
which can be expressed by binary values.

The reliability function, R(k), meaning here that k out of n items are good is
given by

RðkÞ ¼
X

n

x¼k

n
x

� �

pxqn�x ð1:5:11Þ

1.5 Preliminary Concepts of Reliability Engineering 19



1.5.3.2 Poisson Distribution

The Poisson distribution arises in relation to Poisson processes, applicable to
various phenomena of discrete nature (that is, those that may happen 0, 1, 2,
3,… times during a given period of time or in a given area) whenever the
probability of the phenomenon happening is constant in time or space. Appli-
cations of the distribution are similar to that of binomial distribution, the main
difference lies in the fact the sample size n is very large and may be unknown
and probability p of successes is very small. However, it is also a discrete
distribution with pdf given as

PðX ¼ xÞ ¼ ðktÞ
xe�kt

x!
; x ¼ 0; 1; 2; . . .; ð1:5:12Þ

where k is a positive real number, equal to the expected number of occurrences
that occur during the given interval. The probability P(X = x) represents that there
are exactly x occurrences (x being a non-negative integer, x = 0, 1, 2,…) of the
event.

The above density function is the limit of binomial pdf if we substitute k = np
and take limit n ? ?.

The reliability function, R(k), the probability that k or lesser number of failures
occurs by time t, is given by

RðkÞ ¼
X

k

x¼0

ðktÞxe�kt
x!

ð1:5:13Þ

1.5.3.3 Exponential Distribution

Exponential distribution is a continuous time distribution used extensively in the
hardware and software reliability studies. The distribution describes the lengths of
the inter-arrival times in a homogeneous Poison process. The exponential dis-
tribution can be looked as a continuous counterpart of the geometric distribution,
which describes the number of Bernoulli trials necessary for a discrete process to
change state. Exponential distribution describes the time for a continuous process
to change state.

The extensive applications of this distribution in reliability study are due to the
fact that it has a constant hazard function or failure rate, which reduces the
complexity of mathematics involved in analysis. However, the constant hazard
function has the drawback that it is appropriate only when the state of the com-
ponent any time during its operation is identical to its stage at the start of its
operation. This is not true in many cases. Hence the distribution is well suited to
model the constant hazard rate portion of component life cycle, and not for the
over all life time. This property of exponential distribution is called memoryless

20 1 Introduction



property. Before we define this property mathematically, first we write the pdf of
the distribution.

f ðtÞ ¼ 1
h
e�

t
h ¼ ke�k; t� 0 ð1:5:14Þ

and the reliability function is given as

RðtÞ ¼ e�
t
h ¼ e�k; t� 0 ð1:5:15Þ

where h ¼ 1
k
[ 0 is the rate parameter.

The hazard function is calculated as

hðtÞ ¼ f ðtÞ
RðtÞ ¼

1
h
¼ k

Now we state the two important properties of the exponential distribution.

Property 1 Memoryless property
The distribution satisfies

P½T � t� ¼ P½T � t þ sjT � s� fort[ 0; s[ 0

The result means that the conditional reliability function for a component’s
lifetime that is operating by time s starting from 0 is identical to that of a new
component. This is known as ‘‘as good as new’’ assumption for an old component.

Property 2 If T1; T2; . . .; Tn are independently and identically distributed expo-
nential random variables with a constant failure rate k then

2k
X

n

i¼1
Ti�@2ð2nÞ

where @2(r) is a chi-square distribution with degree of freedom r. This result is
useful for establishing a confidence interval for k.

1.5.3.4 Normal Distribution

Normal distribution, also called the Gaussian distribution, is important continuous
probability distributions. The distribution is defined by two parameters, location
and scale: the mean (‘‘average’’, l) and variance (standard deviation squared, r2),
respectively. The pdf is given by

f ðtÞ ¼ 1

r
ffiffiffiffiffiffiffiffi

2
Q

p e�
1
2

t�l
rð Þ2 ; �1\t\1 ð1:5:16Þ

1.5 Preliminary Concepts of Reliability Engineering 21



and the reliability function is given as

RðtÞ ¼
Z

1

t

1

r
ffiffiffiffiffiffiffiffi

2
Q

p e�
1
2

s�l
rð Þ2 ds ð1:5:17Þ

A closed form solution of the reliability function is not obtainable; however, the
reliability values can be determined from the standard normal density function.
Tables are easily available (see Appendix A) for standard normal distribution,
which can be used to find the normal probabilities.

If Z ¼ t�l
r

is substituted in (1.5.16) we obtain

f ðtÞ ¼ 1
ffiffiffiffiffiffiffiffi

2
Q

p e�z
2=2; �1\Z\1 ð1:5:18Þ

the above density function is called standard normal pdf, with mean 0 and variance
1. The standard normal cdf is given by

UðtÞ ¼
Z

t

�1

1
ffiffiffiffiffiffiffiffi

2
Q

p e�s
2=2 ds ð1:5:19Þ

Hence if T is a normal variable with mean l and standard deviation r then,

P½T � t� ¼ P Z� t � l

r

h i

¼ U½ðt � lÞ=r� ð1:5:20Þ

and the value of U½ðt � lÞ=r� can be obtained from the standard normal table.
The normal distribution takes the well-known bell shape and is symmetrical

about the mean whereas the spread is measured by the variance. The importance of
the normal distribution as a model of quantitative phenomena in the natural and
behavioral sciences is due in part to the central limit theorem. Many measurements
ranging from psychological to physical phenomena can be approximated, to
varying degrees, by the normal distribution.

The hazard function of the normal distribution given as

hðtÞ ¼ f ðtÞ
RðtÞ

hðtÞ ¼ e�
1
2

t�l
rð Þ2

� �

,

Z

1

t

e�
1
2

s�l
rð Þ2 ds

0

@

1

A

is a monotonically increasing function of time t, as

h
0ðtÞ ¼ RðtÞf 0ðtÞ þ f 2

0ðtÞ
R2ðtÞ � 0 8 �1\t\1

22 1 Introduction



1.5.3.5 Weibull Distribution

The Weibull distribution is one of the most widely used lifetime distributions in
reliability engineering. It is a versatile distribution in that it can take on the
characteristics of other types of distributions, based on the value of the shape
parameter, b. As said previously that exponential distribution although used more
often in reliability modeling, suffers from the drawback that hazard function is
constant over the components life. The Weibull distribution on the other hand can
be called as a generalization of the exponential distribution due to its versatile
nature.

The Weibull probability density can be given by a three-, two-, or a one-
parameter function. The three-parameter Weibull pdf is given by

f ðtÞ ¼ b

h

t � c

h

� �b�1
e�

t�c
hð Þb ð1:5:21Þ

where t; f ðtÞ� 0 or c; b; h[ 0; �1\c\1and h is scale parameter, b is shape
parameter (or slope), and c is location parameter.

The two-parameter Weibull pdf is obtained by setting c = 0 and is given by

f ðtÞ ¼ b

h

t

h

� �b�1
e�

t
hð Þb ð1:5:22Þ

and the one-parameter Weibull pdf is obtained by again setting c = 0 and
assuming b = C (a constant or an assumed value)

f ðtÞ ¼ C

h

t

h

� �C�1
e�

t
hð ÞC ð1:5:23Þ

where the only unknown parameter is the scale parameter, h. Note that in the
formulation of the one-parameter Weibull, we assume that the shape parameter b
is known a priori from past experience on identical or similar products. The
advantage of doing this is that data sets with few or no failures can be analyzed.

The three-parameter Weibull cumulative density function, cdf, is given by

FðtÞ ¼ 1� e�
t�c
hð Þb

The reliability function for three-parameterWeibull distribution is hence given by

RðtÞ ¼ 1� e�
t�c
hð Þb ð1:5:24Þ

The Weibull failure rate function, h(t), is given by

hðtÞ ¼ f ðtÞ
RðtÞ ¼

b

h

t � c

h

� �b�1

1.5 Preliminary Concepts of Reliability Engineering 23



It can be shown that the hazard function is decreasing for b\ 1and increasing
for b[ 1, and constant for b = 1. Depending on the values of the parameters, the
Weibull distribution can be used to model a variety of life behaviors.

Rayleigh and exponential distributions are special cases of Weibull distribution
at b = 2, c = 0 and b = 1, c = 0, respectively.

1.5.3.6 Gamma Distribution

The Gamma distribution is widely used in engineering, science, and business to
model continuous variables that are always positive and have skewed distributions.
The gamma distribution is a two-parameter continuous probability distribution.
The failure density function for gamma distribution is

f ðtÞ ¼ 1
CðaÞb

t

b

� �a�1
e�

t
bð Þ; t� 0; a; b[ 0 ð1:5:25Þ

where a, b are the shape and scale parameters, respectively. The scale parameter b
has the effect of stretching or compressing the range of the Gamma distribution.
A Gamma distribution with b = 1 is known as the standard Gamma distribution. If
b is an integer, then the distribution represents the sum of b independent expo-
nentially distributed random variables, each of which has a mean of a (which is
equivalent to a rate parameter of a-1). While a controls the shape of the dis-
tribution, when a\ 1, the Gamma distribution is exponentially shaped and
asymptotic to both the vertical and horizontal axes, for a = 1 and scale parameter
b gamma distribution is the same as an exponential distribution of scale parameter
(or mean) b. When a is greater than one, the Gamma distribution assumes a
unimodal, but skewed shape. The skewness reduces as the value of a increases.

The reliability function is given as

RðtÞ ¼
Z

1

t

1
CðaÞb

s

b

� �a�1
e�

s
bð Þ ds ð1:5:26Þ

The gamma distribution is most often used to describe the distribution of the
amount of time until the nth occurrence of an event in a Poisson process, i.e., when
the underlying distribution is exponential. For example, customer service or
machine repair. Thus if Xi is exponentially distributed with parameters h = 1/b,
then T = X1 ? X2 ? ��� ? Xn is gamma distributed with parameters b and n.

1.5.3.7 Beta Distribution

Beta distribution is a continuous distribution function defined on the interval [0, 1]
parameterized by two positive shape parameters, typically denoted by a and b.

24 1 Introduction



The beta distribution is used as a prior distribution for binomial proportion in
Bayesian analysis. The probability density is given as

f ðtÞ ¼ ta�1ð1� tÞb�1
Bða; bÞ ; 0\t\1; a; b[ 0 ð1:5:27Þ

Here B(a, b) is the beta function Bða; bÞ ¼ CðaÞCðbÞ
CðaþbÞ .

The reliability function is given as

RðtÞ ¼
Z

1

t

sa�1ð1� sÞb�1
Bða; bÞ ds ð1:5:28Þ

1.5.3.8 Logistic Distribution

The logistic distribution is a continuous probability distribution whose cumulative
distribution function has the form of logistic function. The logistic distribution and
the S-shaped pattern that results from it have been extensively used in many
different areas. It is used widely in the field of reliability modeling, especially
software reliability. The distribution is often seen in logistic regression and feed
forward neural networks. It resembles the normal distribution in shape but has
heavier tails (higher kurtosis). It is a two-parameter distribution function whose
pdf is given as

f ðtÞ ¼ bð1þ bÞe�bt

ð1þ be�btÞ2
; t� 0; 0� b� 1; b� 0 ð1:5:29Þ

The cumulative density function is given as

FðtÞ ¼
Z

t

0

f ðsÞ ds ¼ 1� e�bt

1þ be�bt
ð1:5:30Þ

The reliability function of the distribution can be obtained from (1.5.30) using

RðtÞ ¼ 1� FðtÞ ¼ ð1þ bÞe�bt
1þ be�bt

Another type of logistic distribution known as half logistic distribution can be
defined, which is a one-parameter continuous probability distribution; the pdf is
given as

f ðtÞ ¼ 2be�2bt

ð1þ e�btÞ2
; t� 0; 0� b� 1;

1.5 Preliminary Concepts of Reliability Engineering 25



and the cdf is given as

FðtÞ ¼
Z

t

0

f ðsÞ ds ¼ 1� e�bt

1þ e�bt
ð1:5:31Þ

In this section we have discussed the various distributions commonly used in
the reliability analysis of software systems. The literature of stochastic models in
reliability study of software systems is pretty wide. Knowing which model is best
for any particular real application is very difficult. It necessitates classification of
existing models into different categories according the various existing and
potential future applications and formulates some guidelines for selection of best
models in a specific situation. In the next section we put on some discussions on
software reliability model classification and model selection.

1.5.4 Software Reliability Model Classification and Selection

1.5.4.1 Model Classification

Reliability models are powerful tools of SRE for estimating, predicting, con-
trolling, and assessing software reliability. A software reliability model specifies
the general form of dependence of the failure process/reliability metrics and
measurements on some of the principle factors that affect it: software and
development process characteristics, fault introduction, fault removal, testing
efficiency and resources, and the operational environment. Software reliability
modeling has been a topic of practical and academic interest since the 1970s.
Today the number of existing models exceeds hundred with more models
developing every year. It is important to classify the existing models in the
literature into different categories so as to simplify the model selection by the
practitioners and further enhancement of the field. There have been various
attempts in the literature to classify the existing models according to various
criteria. Goel [8] classified reliability models into four categories, namely, time
between failure models, error count models, error seeding models, and input
domain models. Classification due to Musa et al. [9] is according to time
domain, category, and the type of probabilistic failure distribution. Some other
classifications are given by Ramamoorthy and Bastani [10], Xie [11], Pop-
stojanova and Trivedi [12]. A recent study due to Asad et al. [13] classified
software reliability models according to their application to the phases of SDLC
into six categories. The proposed classification of software reliability models
according to phases of SDLC is shown in Fig. 1.9 along with the names of some
known models from each category.

26 1 Introduction



Early Prediction Models

These types of models use characteristics of the software development process
from requirements to test and extrapolate this information to predict the behavior
of software during operation.

Architecture-Based Models

These models put emphasis on the architecture of the software and derive relia-
bility estimates by combining estimates obtained for the different modules of the
software. The architecture-based software reliability models are further classified
into State-based models; Path-based models; and Additive models.

Software Reliability Growth Models

These types of models capture failure behavior of software during testing and
extrapolates it to determine its behavior during operation using failure data

Fig. 1.9 Model classification

1.5 Preliminary Concepts of Reliability Engineering 27



information and observed trends deriving reliability predictions. The SRGM are
further classified as Concave models and S-shaped models.

Input Domain-Based Models

These models use properties of the input domain of the software to derive a
correctness probability estimate from test cases that executed properly.

Hybrid Black Box Models

These models combine the features of input domain-based models and SRGM.

Hybrid White Box Models

The models use selected features from both white box models and black box
models. However, since the models consider the architecture of the system for
reliability prediction, these models are considered as hybrid white box models.

The early prediction and architecture based models are together known as
called as white box models which regard software as consisting of multiple
components, while software reliability growth models and input domain based
models are together known as black box models which regard software as a single
unit. Black box models are studied widely by many eminent research scholars and
engineers. Popstojanova and Trivedi [12] classified black box models as failure
rate models, failure count models, static models, Bayesian models, and Markov
models. Most of the research work in software reliability modeling is done on
failure count models, Bayesian models, and Markov models. We give below a
brief description of these categories.

Fault counting models: A fault counting model describes the number of times
software fails in a specified time interval. Models in this category are assumed to
describe the failure phenomenon by stochastic processes in discrete and continu-
ous time space like homogeneous Poisson process (HPP), NHPP, compound
Poisson process, etc. The majority of these failure count models are based upon the
NHPP. The pioneering attempt in NHPP-based software reliability has been made
by Goel and Okumoto [14]. The content of the book focuses on the development
and application of NHPP based software reliability growth models. Detailed dis-
cussion on these models is carried in the Sect. 1.5.6 of this chapter.

Markovian models: A Markov process represents the number of detected faults
in the software system by a Markov process. The state of the process at time t is
the number of faults remaining at that time. If the fault removal process is perfect it
is represented by a pure death Markov model. If the fault removal is imperfect, i.e.,
new faults could be introduced while debugging, then the model is represented by
a birth–death Markov process. A Markov process is characterized by its state space

28 1 Introduction



together with the transition probabilities between these states. The Markov
assumption implies the memoryless property of the process, which is a helpful
simplification of many stochastic processes and is associated with the exponential
property. Jelinski and Moranda (JM) [15], Schick and Wolverton [16], Cheung
[17], Goel [8], Littlewood [18] are examples of some Markov models. JM model
was the earliest in this category and the basis of future Markov models.

Models based on Bayesian analysis: In the previous two categories the
unknown parameters of the models are estimated either by the least squares
method or by the maximum likelihood method (later in this chapter both these
methods are briefly discussed). But in this category of models, the Bayesian
analysis technique is used to estimate the unknown parameters of the models. This
technique facilitates the use of information obtained by developing similar soft-
ware projects. Based on this information the parameters of given model are
assumed to follow some distribution (known as priori distribution). Given the
software test data and based on a priori distribution, a posterior distribution can be
obtained which in turn describes the failure phenomenon. Littlewood and Verrall
[19] proposed the first software reliability model based on Bayesian analysis.
Littlewood and Sofer [20] presented the Bayesian modification of JM model;
Singpurwalla [21] and Singpurwalla and Wilson [22] have proposed a number of
Bayesian software reliability models for different testing environments.

1.5.4.2 Model Selection

A very important aspect of software reliability modeling and application of the
models to the reliability measurement is to determine which model should be used
for a particular situation. Models that are good in general are not always the best
choice for a particular data set, and it is not possible to know in advance which
model should be used in any particular case. We do not have a guideline with high
confidence level, which can be followed to choose any particular model. No one
has succeeded in identifying a priori the characteristics of software that will insure
that a particular model can be trusted for reliability predictions [13]. Previously
most of the tools and techniques used trend exhibited by the data criterion for
model selection. Among the tools that rank models is AT&T SRE toolkit. This tool
can be used for only few SRGM. Asad et al. [13] discussed various criteria to be
used in the order of their importance to select a model for a particular situation.
Following criteria are specified.

• Life cycle phase
• Output desired by the user
• Input required by model
• Trend exhibited by the data
• Validity of assumptions according to data
• Nature of project

1.5 Preliminary Concepts of Reliability Engineering 29



• Structure of project
• Test process
• Development process

The authors suggests that in order to choose the best model to apply to a
particular reliability measurement situation, first select the life cycle phase and
then find the existing reliability models applicable to that phase. Define deciding
criteria, their order of importance, and assign weights to each criterion. For each
criterion give applicability weights to each model; multiplying the criterion and
applicability weights, one obtains the models with high scores, which can be used
to measure the reliability for that case.

1.5.5 Counting Process

Stochastic modeling has been used to develop models to represent the real system
and analyze their operation since years. There are two main types of stochastic
process: continuous and discrete. Among the class of discrete process, counting
process is used in reliability engineering widely to describe the occurrence of an
event of time (e.g., failure, repair, etc.).

A non-negative, integer-valued stochastic process, N(t), is called a counting
process if N(t) represents the total number of occurrences of an event in the
interval of time [0, t] and satisfies the following two properties:

1. If t1\t2, then Nðt1Þ�Nðt2Þ
2. If t1\ t2, then Nðt2Þ � Nðt1Þ is the number of occurrences of the event in the

time interval [t1, t2]

For example, consider the event N(t) of airline ticket booking. If N(t1) is the
number of tickets booked up to the time t1 and Nðt2Þ � Nðt1Þ is the number of
tickets booked in the time interval [t1, t2], such that Nðt1Þ�Nðt2Þ then N(t) is a
counting process. An event occurs whenever a ticket is booked.

Poisson process is used most widely to describe a counting process in reliability
engineering. NHPP has been used successfully in hardware reliability analysis to
describe the reliability growth and deteriorating trends. Following the trends in
hardware reliability analysis many researchers proposed and validated several
NHPP-based SRGM. SRGM describe the failure occurrence and\or failure
removal phenomenon with respect to time (CPU time, calendar time, or execution
time or test cases as unit of time) and/or resources spent on testing and debugging
during testing and operational phases of the software development.

NHPP-based SRGM are broadly classified into two categories first—continuous
time models, which use time (CPU time, calendar time or execution time) as a unit
of fault detection period and second—discrete time models, which adopt the
number of test occasions/cases as a unit of fault detection period.

30 1 Introduction



1.5.5.1 NHPP in Continuous Time Space

A counting process ðNðtÞ; t� 0Þ is said to be an NHPP with mean value function
m(t), if it satisfies the following conditions:

1. There are no failures experienced at t = 0, that is, N(0) = 0.
2. The counting process has independent increments, i.e., for any finite collection

of times t1\ t2\ ���\tk, the k random variables N(t1), N(t2) - N(t1),…,
N(tk) - N(tk - 1) are independent.

3. Pr(exactly one failure in ðt; t þ DtÞ ¼ kðtÞ þ oðDtÞ.
4. Pr(two or more failures in ðt; t þ DtÞ ¼ oðDtÞ

where k(t) is the intensity function of N(t). If we let mðtÞ ¼
R t
0 kðxÞ dx them m(t) is

a non-decreasing, bounded function representing the mean of number of faults
removed in the time interval (0, t] [2]. It can be shown that

Pr½NðtÞ ¼ k� ¼ ðmðtÞÞ
ke�mðtÞ

k!
; n ¼ 0; 1; 2; . . . ð1:5:32Þ

i.e., N(t) has a Poisson distribution with expected value E½NðtÞ� ¼ mðtÞ for t[ 0.
and the reliability of the software in the time interval of length x is given as

Rðx tj Þ ¼ e� mðtþxÞ�mðtÞð Þ ð1:5:33Þ

1.5.5.2 NHPP in Discrete Time Space

A discrete counting process [N(n), n C 0], (n = 0, 1, 2, …) is said to be an NHPP
with mean value function m(n), if it satisfies the following two conditions:

1. No failures are experienced at n = 0, that is, N(0) = 0.
2. The counting process has independent increments, implies the number of

failures experienced during ðnth; ðnþ 1ÞthÞ test cases is independent of the
history. The state m(n ? 1) of the process depends only on the present state
m(n) and is independent of its past state m(x), for x\ n.

For any two test cases ni and nj where(0 B ni B nj), we have

PrfNðnjÞ � NðniÞ ¼ xg ¼ mðnjÞ � mðniÞ
	 
x

x!
e� mðnjÞ�mðniÞf g ð1:5:34Þ

x = 0, 1, 2, …
The mean value function m(n) which is a non-decreasing in n represents the

expected cumulative number of faults detected by n test cases. Then the NHPP
model is formulated as

PrfNðnÞ ¼ xg ¼ mðnÞf gx
x!

e�mðnÞ

1.5 Preliminary Concepts of Reliability Engineering 31



Let NðnÞ denote the number of faults remaining in the system after execution of
the nth test run. Then we have

�NðnÞ ¼ Nð1Þ � NðnÞ

where, N(?) represents the total initial fault content of the software.
The expected value of NðnÞ is given by

EðnÞ ¼ mð1Þ � mðnÞ

where, m(?) represents the expected number of faults to be eventually detected.
Suppose that nd faults have been detected by the execution of n test cases. The

conditional distribution of NðnÞ, given that N(n) = nd, is given by

Prf�NðnÞ ¼ y NðnÞ ¼ ndj g ¼ EðnÞf gy
y!

e�EðnÞ ð1:5:35Þ

and the probability of no faults detected between the nth and (n ? h)th test cases,
given that nd faults have been detected by n test cases, i.e., software reliability, is
given by

Rðh=nÞ ¼ expð�fmðnþ hÞ � mðnÞgÞ ð1:5:36Þ

1.5.6 NHPP Based Software Reliability Growth Modeling

NHPP-based SRGM are either concave or S-shaped depending upon the shape of the
failure curve described by them. Concave models describe an exponential failure
curve while second category of models describes an S-shaped failure curve [2, 3].
The two types of failure growth curves are shown in Figs. 1.10 and 1.11. The most
important property of thesemodels is that they have the same asymptotic behavior in
the sense that the fault detection rate decreases as the number of detected defects
increases and approaches a finite value asymptotically. The S-shaped curve

Fig. 1.10 Exponential
failure curve

32 1 Introduction



describes the early testing process to be less efficient as compared to the later testing,
i.e., it depicts the learning phenomenon observed during testing and debugging
process.

During the last three decades several researchers devoted their research interest
to NHPP-based software reliability modeling and contributed significantly in
understanding the testing and debugging process and developing quality software.
The primary factors analyzed and incorporated in the reliability modeling for
software systems are software development process, fault tolerance, operational
environment, fault removal process, testing efficiency, resources and coverage,
fault severity and Error generation (Fig. 1.12).

Schneidewind [23] made the preliminary attempt in NHPP-based software
reliability modeling. He assumed exponentially decaying failure intensity and rate
of fault correction proportional to the number of faults to be corrected. Goel and
Okumoto [14] presented a reliability model (GO model); assuming hazard rate is
proportional to the remaining number of faults in the software. This research paper
was a pioneering attempt in the field of software reliability growth modeling and
paved the way for research on NHPP-based software reliability modeling. The
model describes the failure occurrence phenomenon by an exponential curve.

The research following GO model was mainly modifying the existing research
in the way of incorporating the various aspects of the real testing environment and
strategy. Most of the existing NHPP-based SRGM can be categorized as follows
[24]

• Modeling under perfect debugging environment
• Modeling the imperfect debugging and error generation phenomenon
• Modeling with testing effort
• Testing domain dependent software reliability modeling
• Modeling with respect to testing coverage
• Modeling the severity of faults
• Incorporating change point analysis
• Software reliability modeling for distributed software systems
• Modeling Fault detection and correction with time lag

Fig. 1.11 S-shaped failure
curve

1.5 Preliminary Concepts of Reliability Engineering 33



• Managing reliability in operational phase
• Reliability Analysis of Fault Tolerant Systems
• Software reliability assessment using SDE model
• Neural network based software reliability modeling
• Discrete SRGM
• Unification of SRGM

Among the various categories mentioned above the SDE models [25–27],
neural network based SRGM [28–31], unification methodologies [32–37], reli-
ability growth analysis for fault tolerant software [38, 39] are the emerging areas
and are of interest to most of the researchers. Throughout this book we will discuss
several NHPP-based models developed and validated in the literature. We will also
show some Operational Research applications based on these models in the later
chapters of this book with numerical illustrations.

1.6 Parameter Estimation

The task of mathematical model building is incomplete until the unknown
parameter of the model parameters are estimated and validated on actual software
failure data sets. After selecting a model for any application, the next step is
estimation of the unknown parameters of the model. In general, this is accom-
plished by solving an optimization problem in which the objective function (the
function being minimized or maximized) relates the response variable and the
functional part of the model containing the unknown parameters in a way that will
produce parameter estimates that will be close to the true, unknown parameter
values. The unknown parameters are, treated as variables to be solved for in the
optimization, and the data serve as known coefficients of the objective function in

Fig. 1.12 The primary
factors analyzed and
incorporated in software
reliability modeling

34 1 Introduction



this stage of the modeling process. In parameter estimation one can perform either
point estimation or interval estimation or both for the unknown parameters.

1.6.1 Point Estimation

In statistics, the theory of point estimation deals with use of sample data to
calculate a value for the unknown parameters of the model, which can be, said a
‘‘best guess’’. In the statistical terms the best guess mean here that the estimated
value of the parameter satisfies the following properties:

• Unbiasedness
• Consistency
• Efficiency
• Sufficiency

The theory of point estimation assumes that the underlying population dis-
tribution is known and the parameters of the distribution are to be estimated from the
collected failure data. Collected failure data is either based on the actual observa-
tions from the population sample or in case the data is not available it is either
collected from a similar application (population) or simulated from the developed
model.

Example Assume n independent samples from the exponential density

f ðx; kÞ ¼ ke�kx; x[ 0; k[ 0

The joint pdf of the sample observations is given by

f ðx1; kÞ � f ðx2; kÞ � � � f ðxn; kÞ ¼ kne
�k
P

n

i¼1
xi
; xi [ 0; k[ 0

Now the problem of point estimation is to find a function h(X1, X2, …, Xn) such

that if x1, x2, …, xn are the observed sample values X1, X2, …, Xn then k
_

¼
hðx1; x2; . . .; xnÞ is a good estimate of k.

1.6.1.1 Some Definitions

Unbiased estimator: For a given positive integer n, the statistic Y = h(X1,
X2, …, Xn) is called an unbiased estimator of the parameter h if the expectation of
Y is equal to the parameter h, that is

EðYÞ ¼ h

1.6 Parameter Estimation 35



Consistent estimator: The statistic Y is called a consistent estimator of the
parameter h if Y converges stochastically to a parameter h as n approaches infinity.
Where n is the sample size. If 2 is an arbitrarily small positive number when Y is
consistent, then

lim
n!1

PðjY � hj � 2Þ ¼ 1

Efficient estimator: The statistic Y will be called the minimum variance
unbiased estimator of the parameter h if Y is unbiased and the variance of Y is less
than or equal to the variance of every other unbiased estimator of h. An estimator
that has the property of minimum variance in large samples is said to be efficient.

Sufficient estimator: The statistic Y is said to be sufficient estimator for h if the
conditional distribution of X, given Y = y, is independent of h.

Cramer–Rao inequality: Let X1, X2, …, Xn denote a random sample from a
distribution with pdf f(x; h) for h1\ h\ h2, where h1and h2 are known. Let
Y = h(X1, X2, …, Xn) be an unbiased estimator of h. The lower bound inequality
on the variance of Y, Var(Y), is given by

Var Yð Þ� 1

nE o ln f ðx;hÞ
oh

h i2
� �

Asymptotic efficient estimator: an estimator h
_

is said to be asymptotic efficient if
h has a variance that approaches the Cramer–Rao lower bound for large n, that is

lim
n!1

Var

ffiffiffiffiffi

nh
_

q

 !

¼ 1

nE o ln f ðx;hÞ
oh

h i2
� �

Most of the NHPP-based SRGM are described by the non-linear functions.
Method of Non-linear Least Square (NLLS) and Maximum Likelihood Estimate
(MLE) [2, 3, 40–43] are the two widely used estimation techniques for non-linear
models. Unlike traditional linear regression, which is restricted to estimating linear
models, nonlinear regression (NLR) methods can estimate models with arbitrary
relationships between independent and dependent variables.

1.6.1.2 Non-Linear Least Square Method

Consider a set of observed data points (ti, yi); i = 1, 2, … n, where ti is the
observation time and yi is the observed sample value. A mathematical model of the
form m(x,t) is fitted on this data set. The model depends on the parameters

x = {xi; i = 1, 2, … m}, for some x
_ we can compute the residuals,

fiðx_Þ ¼ yi � mðx_; tiÞ

36 1 Introduction



The method of least square determines the unknown parameters of the model by
minimizing the sum square of these residuals between the observed responses and
the fitted value by the model. Unlike linear models, the least squares minimization
cannot be done with simple calculus. It has to be accomplished using iterative
numerical algorithms. Now about the quality of least square estimate, it is difficult
to picture exactly how good the parameter estimates are, they are, in fact, often
quite good. The accuracy of the estimates can be measured based on some
goodness of fit measures (discussed in the later sections).

1.6.1.3 Maximum Likelihood Estimation Method

MLE is one of the most popular and useful statistical method for fitting a math-
ematical model to some data, i.e., deriving the point estimates. The idea behind
MLE parameter estimation is to determine the parameters that maximize the
probability (likelihood) of the sample data. From a statistical point of view, this
method is considered to be more robust (with some exceptions) and yields esti-
mators with good statistical properties. The fact that this method is versatile, apply
to most models and to different types of data make it more popular. In addition, it
provides efficient methods for quantifying uncertainty through confidence bounds.
Although the methodology for maximum likelihood estimation is simple, the
implementation is mathematically intense. Using today’s computer power, how-
ever, mathematical complexity is not a big obstacle.

Consider a random sample X1, X2, …, Xn drawn from a continuous distribution
with pdf

f x; h ¼ h1; h2; . . .; hkð Þð Þ

where h = (h1, h2, …, hk) is the vector of unknown distribution parameters, k in
number. Assuming that the sample observations are independent, the likelihood
function L(X; h) is the product of the pdf of the distribution of the random samples
evaluated at each sample point.

L X; hð Þ ¼ L X1;X2; . . .;Xn; h1; h2; . . .; hkð Þð Þ ¼
Y

k

i¼1
f Xi; hð Þ

The likelihood estimator h
_

can now be computed by maximizing L(X; h) with
respect to h. In practice, it is often easier to maximize ln L(X; h) rather than
L(X; h) due to easy of computations as compared to the actual likelihood function.
The estimates of h = (h1, h2, …, hk) obtained maximizing ln L(X; h) maximize
L(X; h) as logarithm function is monotonic. The log likelihood function is given by

ln L X; hð Þ ¼
X

k

i¼1
ln f Xi; hð Þ

1.6 Parameter Estimation 37



In general the mechanics of obtaining MLE can be summarized as:

(a) Find the joint density function L(X; h).
(b) Take the natural log of the density in L.
(c) Take partial derivatives of ln L with respect to each parameter.
(d) Set partial derivatives to Zero.
(e) Solve for parameters.

Now we formulate the likelihood function for the NHPP-based software
reliability models.

For the interval domain data points(ti, yi); i = 1, 2, … n, where ti is the
observation time and yi is the cumulative observed sample value by the time ti,
based on the NHPP assumptions the likelihood function is defined as

L �
Y

n

i¼1

mðtiÞ � mðti�1Þ½ �yi�yi�1
ðyi � yi�1Þ!

e� mðtiÞ�mðti�1Þf g

If the data set is time domain the likelihood function is defined as

L �
Y

n

i¼1
kðtiÞe �

Z

tn

0

kðxÞ dx

0

@

1

A

Both these methods have one thing in common that the nonlinear objective
function (the sum square residuals in NLLS and the likelihood function in MLE) is
optimized. For finding the optimal solution manually one needs to compute the
first order partial differential equations corresponding to each parameter of the
problem, equate them to zero and solve the resulting system of equations. In most
of the cases solving this system of equations is difficult and contrary to the linear
model fitting, we cannot express analytically the solution of this optimization
problem. As such it requires numerical methods, a programming algorithm to
implement the numerical procedures and huge computation time to solve the
problem, which is not favored by the management and software engineering
practitioners. Numerical procedures are followed by a number of the researchers in
their research articles. One truth related to obtaining the solution of these simul-
taneous equations using numerical algorithm is that the estimates obtained cannot
be guaranteed to be global solution. In most of the cases they converge to the local
optimum solution. As an alternative method that minimizes the efforts with
reduced time requirement is to use statistical software packages such as SPSS,
SAS, Mathematica, etc. in which we can use the inbuilt software functions to solve
these kinds of optimization problems to find the estimates of nonlinear models.
This software also uses well-defined numerical algorithms to obtain the estimates.
The solutions obtained by the use of inbuilt estimation modules of software also
converge to local solutions in most of the cases, but by no means we can guarantee
that which of the solutions, one obtained by self programmed numerical algorithm
or a software module, is better. However, using an advanced version of software

38 1 Introduction



that is designed on more comprehensive numerical procedures and use different
procedures to obtain the estimate can provide us with a better solution. Throughout
the book we have used the Statistical Package for Social Sciences (SPSS 18.0) for
the estimation of unknown parameters of the models. SPSS is a comprehensive and
flexible statistical analysis and data management system. It can take data from
almost any type of file and use them to generate tabulated reports, charts, and plots
of distributions and trends, descriptive statistics, and conduct complex statistical
analysis. SPSS Regression Models [44, 45] enables the user to apply more
sophisticated models to the data using its wide range of NLR models.

NLR and conditional nonlinear regression (CNLR) modules of SPSS have been
used to estimate the unknown parameters. The modules use the iterative estimation
algorithms, namely, sequential quadratic programming (SQP) [46] and Leven-
berg–Marquardt (LM) method [47, 48] to find the least square estimates of the
parameters. Both methods starts with an initial approximation of the parameters
and at each stage improve the objective value until convergence. LM method is
chosen by default in SPSS NLR function, while if there are overflow/underflow
errors and failure to converge; one may select the SQP method. In the other case if
overflow and underflow errors appears, bounds on the parameters are set in the
form of linear constraints or there may be some other constraints on the parameter
values (such as sum of few parameters has to be one) then we have to select the
SQP method. SQP method minimizes the sum square residuals solving a linearly
constrained quadratic sub problem in each stage. Which algorithm is best depends
on the data. If we have to specify a nonlinear model, which has different equations
for different ranges of its domain (change point and fault tolerance system models)
we use the CLNR function of SPSS. In CNLR we can specify a segmented model
using conditional logic. To use conditional logic within a model expression or a
loss function, we form the sum of a series of terms, one for each condition. Each
term consists of a logical expression (in parentheses) multiplied by the expression
that should result when that logical expression is true.

1.6.2 Interval Estimation

A point estimator may not (which is true in many cases) coincide with the actual
value of the parameter. In this situation it is favorable to determine an interval of
possible (or probable) values of an unknown population parameter. This is called
confidence interval estimation of the form [hL, hU], where hL is the lower bound
and hU is the upper bound on the parameter value.

Alternatively interval estimation is supplemented with point estimation in order
to make the point estimates more useful as it provide a tolerance limit of the type
lower and higher values the a point estimate can take. Statistically if [hL, hU] is
interval estimates of the point estimate h with probability (1 - a), then hL and hU
will be called 100(1 - a)% confidence limits and (1 - a) is called the confidence
coefficient.

1.6 Parameter Estimation 39



1.6.2.1 Confidence Intervals for Normal Parameters

The distribution has two unknown parameters, the mean (‘‘average’’, l) and var-
iance (standard deviation squared, r2).

1.6.2.2 Confidence Limits for the Mean l When r2 is Known

We know that the statistic Z ¼ �X�l
r=
ffiffi

n
p follows standard normal distribution where

�X ¼ 1
n

X

n

i¼1
Xi

Hence a 100(1 - a)% confidence interval for the mean l is given by

P �X � Za=2
r
ffiffiffi

n
p \l\�X þ Za=2

r
ffiffiffi

n
p

� �

¼ 1� a

i.e.,

lL ¼ �X � Za=2
r
ffiffiffi

n
p

and

lU ¼ �X þ Za=2
r
ffiffiffi

n
p

1.6.2.3 Confidence Limits for the Mean l When r2 is Unknown

We know the sample standard error is given by

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n� 1

X

n

i¼1
X1 � �Xð Þ2

s

It can be shown that the statistic

T ¼
�X � l

S=
ffiffiffi

n
p

follows t distribution with (n - 1) degrees of freedom. Thus for a given sample
mean and sample standard deviation, we obtain

P Tj j\ta=2;ðn�1Þ

 �

¼ 1� að Þ

40 1 Introduction



Hence a 100(1 - a) % confidence interval for the mean l is given by

P �X � ta=2;ðn�1Þ
S
ffiffiffi

n
p \l\�X þ ta=2;ðn�1Þ

S
ffiffiffi

n
p

� �

¼ 1� a

1.6.2.4 Confidence Limits on r2

Note that n r
_2

r2
has a v2 distribution with (n - 1) degrees of freedom. Correcting for

the bias in r
_2
, ðn� 1Þ r_

2

r2
has the same distribution. Hence

P v2a=2;ðn�1Þ\
ðn� 1ÞS2

r2
\v2ð1�a=2Þ;ðn�1Þ

� �

¼ 1� a

or

P

P

xi � �xð Þ2
v2ð1�a=2Þ;ðn�1Þ

\r2\

P

xi � �xð Þ2
v2a=2;ðn�1Þ

" #

¼ 1� a

Similarly for one-sided limits we can choose v2(1 - a) or v2(a).
Likewise we can determine confidence intervals for the parameters of the other

probability distribution function.

1.7 Model Validation

1.7.1 Comparison Criteria

Once some models have been selected for an application. Their performance can
be judged by their ability to fit the observed data and to predict satisfactorily the
future behavior of the process (predictive validity) (Musa 1989) [50]. Many
established criteria are defined in the literature to validate the goodness of fit of
models on any particular data and choose the most appropriate one. Some of these
criteria are given below.

The mean square error (MSE): The model under comparison is used to simulate
the fault data, the difference between the expected values, ŷðtiÞ; i = 1, 2, … k and
the observed values yi is measured by MSE as follows.

MSE ¼
X

k

i¼1

ðŷðtiÞ � yiÞ2
k � n

1.6 Parameter Estimation 41



where k is the number of observations, n is the number of unknown parameters in
the model. The lower MSE indicates less fitting error, thus better goodness of fit
[2].

Coefficient of multiple determination (R2): is defined as the ratio of the Sum of
Squares (SS) resulting from the trend model to that from a constant model sub-
tracted from 1, that is

R2 ¼ 1� residual SS
corrected SS

R2 measures the percentage of the total variation about the mean accounted for by
the fitted curve. It ranges in value from 0 to 1. Small values indicate that the model
does not fit the data well. The larger the value, the better the model explains the
variation in the data [2].

Prediction error (PE): The difference between the observed and predicted
values at any instant of time i is known as PEi. Lower the value of Prediction Error
better is the goodness of fit [49].

Bias: The average of PE is known as bias. Lower the value of Bias better is the
goodness of fit [49].

Variation: The standard deviation of PE is known as variation.

Variation ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=N � 1

� �

X

PEi � Biasð Þ2
r

Lower the value of Variation better is the goodness of fit [49].
Root mean square prediction error: It is a measure of closeness with which a

model predicts the observation.

RMSPE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Bias2 þ Variation2
� �

q

Lower the value of Root Mean Square Prediction Error better is the goodness of
fit [49].

Observed and estimated values can be plotted on time scale to obtain the
goodness of fit curves.

1.7.2 Goodness of Fit Test

The reason of carry a goodness of fit test of a statistical model is to determine how
well it fits a set of observations. Measures of goodness of fit typically summarize
the discrepancy between observed values and the values expected under the model
in question. Such measures can be used in statistical hypothesis testing, e.g., to test
for normality of residuals, to test whether two samples are drawn from identical
distributions or whether outcome frequencies follow a specified distribution. The
two commonly used goodness of fit tests used for reliability models are v2

42 1 Introduction



goodness of fit test and Kolmogorov–Smirnov ‘‘d’’ test. Both of these tests are non-
parametric. The v2 test assume large sample normality of the observed frequency
about its mean while the ‘‘d’’ test assumes only a continuous distribution.

1.7.2.1 Chi-Square (v2) Test

The statistic v2 ¼
Pk

i¼1
xi�li
ri

� �2
is said to follow chi-squared v2 distribution with

k degree of freedom. The steps involved in carrying the test are as follows:

1. Divide the sample data into the mutually exclusive cells (normally 8–12) such
that the range of the random variable is covered.

2. Determine the frequency, fi, of the sample observations in each cell.
3. Determine the theoretical frequency, Fi, for each cell (area under density

function between cell boundaries Xn-total sample size). Note that the theoretical
frequency for each call should be greater than one. To carry out this step, it
normally requires estimates of the population parameters, which can be
obtained from the sample data.

4. Form the statistic S ¼
Pn

i¼1
fi�Fið Þ2
Fi

.

5. From the v2 tables, choose a value of v2 with the desired significance level and
with the degree of freedom (= n - 1 - r), where r is the number of population
parameter estimated.

6. Reject the hypothesis that the sample distribution is the same as the theoretical
distribution if

S ¼ v2ð1�aÞ;ðn�1�rÞ

where a is the level of significance.

1.7.2.2 The Kolmogorov–Smirnov Test (K–S Test)

The test is based on the empirical distribution function (ECDF). Since it is non-
parametric, it treats individual observations directly and is applicable even in the
case of very small sample size, which is usually the case with SRGM validation.
Lower the value of Kolmogorov–Smirnov test better is the goodness of fit.

Let X1 B X2 B ��� B Xn denotes the ordered sample values. Define the observed
distribution function, Fn(x) as follows

FnðXÞ ¼
0 for x� x1
i
n for xi� x� xiþ1
1 for x� xn

8

<

:

1.7 Model Validation 43



Assume the testing hypothesis

H0 : FðxÞ ¼ F0ðxÞ

where F0(x) is a given continuous distribution and F(x) is an unknown distribution.
Let

dn ¼ sup
�1\x\1

FnðxÞ � F0ðxÞj j

Since F0(x) is a continuous increasing function, we can evaluate
FnðxÞ � F0ðxÞj j for each n. If dn B dn,a then we would not reject the hypothesis
Ho; otherwise, we would reject it when dn[ dn,a. The value dn,a is given in
Appendix A, where n is the sample size and a is the level of significance.

1.7.3 Predictive Validity Criterion

Predictive validity is defined as the ability of the model to determine the future
behavior from present and past behavior of a process. This criterion was proposed
by [9]. Suppose tk be the time, yk is the observed value of the event during the
interval (0, tk], and ŷðtkÞ is the estimated value determined using the actually
observed data up to an arbitrary time te 0\te� tkð Þ, in which (te/tk) denotes the
process progress ratio. The difference between the predicted value ŷðtkÞ and the
reported value yk measures the prediction fault. The ratio ŷðtkÞ � ykð Þ=ykf g is
called Relative Prediction Error (RPE). If the RPE value is negative/positive the
model is said to underestimate/overestimate the future process. A value close to
zero for RPE indicates more accurate prediction, thus more confidence in the
model and better predictive validity. The value of RPE is said to be acceptable if it
is within ±10% [2, 9]. A particular model can also be judged to fit to a given data
if the parameter estimates are relatively stable over some particular intervals for
the various truncations.

Exercises

1. What is software reliability engineering? What are its two fundamental
philosophies?

2. Explain the layered approach of SRE for the improvement of software quality.
3. The waterfall model of SDLC relates the development of software to five

sequential set of process and call for the execution of these stages in sequential
manner in the order they are described. What problems are usually encoun-
tered if one uses the traditional waterfall models for the software develop-
ment? Suggest two alternative approaches.

44 1 Introduction



4. Even if software is tested for an infinite time it cannot be guaranteed that it is
100% reliable. Comment.

5. What makes reliability a key quality characteristic? Give some other measures
of software quality.

6. What is statistical testing? What is the need of quantitatively measuring the
level of reliability in software?

7. Unlike hardware software reliability growth function is increasing over time,
even then software has a finite life cycle. Explain.

8. Explain the difference between the reliability growth curves of hardware and
software.

9. What are prime causes of fault manifestation in the different stages of SDLC?
10. How black box software testing differs from white box software testing?
11. Define failure rate or hazard rate. Derive the mathematical expression of

reliability in terms of the hazard rate.
12. Show that if the hazard rate is constant then the reliability function is

exponential.
13. The pdf of Normal distribution is given by

f ðtÞ ¼ 1

r
ffiffiffiffiffiffiffiffi

2
Q

p e�
1
2

t�l
rð Þ2 �1\t\1

Derive the reliability function.

14. Define a non-homogeneous Poisson process in continuous time space.
15. What are the major factors that affect the reliability growth during testing?

Explain the role of each in brief.
16. What are the properties of a good estimate of unknown parameters of an

SRGM?
17. Describe briefly the least square andmaximum likelihoodmethods of parameter

estimation.
18. Explain sequential quadratic programming iterative parameter estimation

algorithm.
19. How do we determine the predictive validity of a reliability model?

References

1. Lyu MR (1996) Handbook of software reliability engineering. McGraw-Hill, New York
ISBN 0-7-039400-8

2. Kapur PK, Garg RB, Kumar S (1999) Contributions to hardware and software reliability.
World Scientific, Singapore

3. Pham H (2006) System software reliability. Reliability engineering series. Springer, London
4. Garfinkel S (2005) History’s Worst Software Bugs http://www.wired.com/software/coolapps/

news/2005/11/69355?currentPage=all
5. Musa JD (1998) Software reliability engineering. McGraw-Hill, New York ISBN 0-07-

913271-5

1.7 Model Validation 45

http://www.wired.com/software/coolapps/news/2005/11/69355?currentPage=all
http://www.wired.com/software/coolapps/news/2005/11/69355?currentPage=all


6. Pressman RS (2005) Software engineering: a practitioner’s approach, 6th edn. Mc-Graw Hill
Professional, NY ISBN 0-07-285318-2

7. Sommerville L (1995) Software engineering, 5th edn. Addison Wesley Longman Publishing
Co., Inc, Redwood City ISBN:0-201-42765-6

8. Goel AL (1985) Software reliability models: assumptions, limitations and applicability. IEEE
Trans Softw Eng SE-11:1411–1423

9. Musa JD, Iannino A, Okumoto K (1987) Software reliability: measurement, prediction,
application. McGraw-Hill, New York ISBN 0-07-044093-X

10. Ramamoorthy CV, Bastani FB (1982) Software reliability status and perspectives. IEEE
Trans Reliability 37(1):88–91

11. Xie M (1990) Software reliability modeling. World Scientific Publications, Singapore
12. Popstojanova K, Trivedi K (2001) Architecture based approach to reliability assessment of

software systems. Performance Evaluation 45(2):179–204
13. Asad CA, Muhammad Ullah I, Muhammad Rehman J (2004) An approach for software

reliability model selection. In: Proceedings 28th annual international computer software and
applications conference (COMPSAC’04), pp 534–539

14. Goel AL, Okumoto K (1979) Time dependent error detection rate model for software
reliability and other performance measures. IEEE Trans Reliability R-28(3):206–211

15. Jelinski Z, Moranda P (1972) Software reliability research. In: Freiberger W (ed) Statistical
computer performance evaluation. Academic Press, New York, pp 465–484

16. Schick GJ, Wolverton RW (1978) An analysis of competing software reliability models.
IEEE Trans Softw Eng 4(2):104–120

17. Cheung RC (1980) A user oriented software reliability growth model. IEEE Trans Softw Eng
SE-6:118–125

18. Littlewood B (ed) (1987) Software reliability: achievement and assessment. Blackwell,
Oxford

19. Littlewood B, Verrall JL (1973) A Bayesian reliability growth model for computer software.
Appl Stat 22:332–346

20. Littlewood B, Sofer A (1987) A Bayesian modification to the Jelinski–Moranda software
reliability model. Softw Eng J 2(2):30–41

21. Singpurwalla ND (1995) The failure rate of software: does it exist. IEEE Trans Reliability
44(3):463–469

22. Singpurwalla ND, Wilson SP (1999) Statistical methods in software engineering, reliability
and risk. Springer, New York

23. Schneidewind NF (1975) Analysis of error processes in computer software. Sigplan Not
10:337–346

24. Gupta A (2009) Some contributions to modeling and optimization in software reliability and
marketing. Ph.D. Thesis, Department of OR, Delhi University, Delhi

25. Yamada S, Nishigaki A, Kimura M (2003) A stochastic differential equation model for
software reliability assessment and its goodness of fit. Int J Reliability Appl 4(1):1–11

26. Yamada S, Tamura Y (2006) A flexible stochastic differential equation model in distributed
development environment. Eur J Oper Res 168:143–152

27. Kapur PK, Singh VB, Anand S (2007) Effect of change-point on software reliability growth
models using stochastic differential equation. In: 3rd International conference on reliability
and safety engineering (INCRESE-2007), Udaipur, 7–19 December 2007, pp 320–333

28. Su YS, Haung CY (2007) Neural network based approaches for software reliability
estimation using dynamic weighted combinational models. J Syst Softw 80:606–615

29. Kapur PK, Khatri SK, Goswami DN (2008) A generalized dynamic integrated software
reliability growth model based on artificial neural network approach. Verma AK, Kapur PK,
Ghadge SG (eds) Advances in performance and safety of complex systems. Macmillan
advanced research series, pp 813–838

30. Kapur PK, Khatri SK, Basirzadeh M (2008) Software reliability assessment using artificial
neural network based flexible model incorporating faults of different complexity. Int J
Reliability Qual Safety Eng 15(2):113–127

46 1 Introduction



31. Kapur PK, Khatri SK, Yadav K (2008) An artificial neural-network based approach for
developing a dynamic integrated software reliability growth model. Presented in international
conference on present practices and future trends in quality and reliability, ICONQR08,
22–25 January 2008

32. Inoue S, Yamada S (2002) A software reliability growth modeling based on infinite server
queuing theory. In: Proceedings 9th ISSAT international conference on reliability and quality
in design, Honolulu, HI, pp 305–309

33. Dohi T, Osaki S, Trivedi KS (2004) An infinite server queuing approach for describing
software reliability growth—unified modeling and estimation framework. In: Proceedings
11th Asia-Pacific software engineering conference (APSEC’04), pp 110–119

34. Kapur PK, Kumar J, Kumar R (2008) A unified modeling framework incorporating change
point for measuring reliability growth during software testing. OPSEARCH J Oper Res Soc
India 45(4):317–334

35. Kapur PK, Anand S, Inoue S, Yamada S (2010) A unified approach for developing software
reliability growth model using infinite server queuing model. Int J Reliability Qual Safety
Eng, to appear

36. Kapur PK, Pham H, Anand S, Yadav K (2011) A unified approach for developing software
reliability growth models in the presence of imperfect debugging and error generation. IEEE
Trans Softw Reliability, doi 10.1109/TR.2010.2103590

37. Langberg N, Singpurwalla ND (1985) Unification of some software reliability models. SIAM
J Comput 6:781–790

38. Kapur PK, Gupta A, Jha PC (2007) Reliability growth modeling and optimal release policy of
a n-version programming system incorporating the effect of fault removal efficiency. Int J
Autom Comput Springer 4(4):369–379

39. Kapur PK, Gupta A, Gupta D, Jha PC (2008) Optimum software release policy under fuzzy
environment for a n-version programming system using a discrete software reliability growth
model incorporating the effect of fault removal efficiency. Verma AK, Kapur PK, Ghadge SG
(eds) Advances in performance and safety of complex systems. Macmillan advance research
series, pp 803–816

40. Putsis WP (1998) Parameter variation and new product diffusion. J Forecasting 17(3–4):
231–257

41. Hardie BGS, Fader PS, Wisniewski M (1998) An empirical comparison of new product trial
forecasting models. J Forecasting 17:209–229

42. Schmittlein DC, Mahajan V (1982) Maximum likelihood estimation for an innovation
diffusion model of new product acceptance. Marketing Sci 1(1):57–78

43. Meade N, Islamb T (2006) Modeling and forecasting the diffusion of innovation—a 25 year
review. Int J Forecast 22(3):519–545

44. Chen X, Ender P, Mitchell M, Wells C (2003) Regression with SPSS. http://www.ats.ucla.
edu/stat/spss/webbooks/reg/default.htm. Accessed 13 July 2010

45. Garson GD (2009) Nonlinear regression. http://faculty.chass.ncsu.edu/garson/PA765/non
linear.htm. Accessed 13 July 2010

46. Abramson MA, Chrissis JW (1998) Sequential quadratic programming and the ASTROS
structural optimization system. Struct Optim 15:24–32

47. Gill PR, Murray W, Wright MH (1981) Practical optimization. Academic Press, London
48. Madsen K, Nielsen KB, Tingleff O (2004) IMM methods for non-linear least squares

problems. Informatics and Mathematical Modeling, Technical University of Denmark
49. Pillai EEK, Nair VSS (1997) A model for software development effort and cost estimation.

IEEE Trans Softw Eng 23(8):485–497
50. Musa JD, Iannino A, Okumoto K (1989) Software reliability: measurement, prediction,

application. McGraw-Hill, New York. ISBN 0-07-044093-X

References 47

http://dx.doi.org/10.1109/TR.2010.2103590 
http://www.ats.ucla.edu/stat/spss/webbooks/reg/default.htm
http://www.ats.ucla.edu/stat/spss/webbooks/reg/default.htm
http://faculty.chass.ncsu.edu/garson/PA765/nonlinear.htm
http://faculty.chass.ncsu.edu/garson/PA765/nonlinear.htm


Chapter 2
Software Reliability Growth Models

2.1 Introduction

Studies in software reliability modeling started as early as early 1960s. The issues
related to software quality quantification and reliability measurement arose even
during the time when the development of computing systems started. Since in the
1960s the cost of the computing systems was very high, use was limited to few
organizations, hardware design, test and maintainability was immature, the con-
cepts of software reliability were in infancy stage as much of the studies were
concerned with the productivity and quality of the hardware systems. Haugk et al.
[1] presented some experimental results concerning the testing of a switching
system in which software was an essential part and contained many programming
errors, clerical errors, requirement changes and program improvements. yet there
was no direct approach to the study of software reliability.

The first paper on software reliability appears to have been published in 1967
due to Hudson. He viewed software development as a birth and death process in
which fault generation was a birth, and fault-correction was a death. The number
of faults existing at any time defined the state of the process; the transition
probabilities related to the birth and death functions. He confined his work to pure
death processes, for reasons of mathematical tractability. He obtained Weibull
distribution of intervals between failures. Data from the system test phase of one
program were presented. Jelinski and Moranda’s [2] work was recognized as the
second major step. They assumed a hazard rate for failures that was piecewise
constant (hazard rate changed at each fault-correction by a constant amount) and
proportional to the number of faults remaining. Although the hazard rate changed
at each fault-correction by a constant amount, but was constant between correc-
tions. They applied maximum likelihood estimation to determine the total number
of faults existing in the software and the constant of proportionality between
number of faults remaining and hazard rate. They further proposed two variants of
the model known as Jelinski Moranda Geometric model and Moranda Geometric

P. K. Kapur et al., Software Reliability Assessment with OR Applications,
Springer Series in Reliability Engineering, DOI: 10.1007/978-0-85729-204-9_2,
� Springer-Verlag London Limited 2011

49



Poisson model [3]. In the first model hazard rate decreases in steps that form a
geometric progression. The second model has a hazard rate, which also decreases
in a geometric progression, but the decrements occur at fixed intervals rather
than at each failure correction. The period of seventies was most significant in
the software reliability study, some models [2, 4–9] developed in this decade
later formed basis of further research in the field and found many practical
applications.

Shooman [9] introduced some new concepts. He viewed the hazard rate can be
determined by the rate at which execution of the program resulted in the remaining
faults being passed. Thus the hazard rate depended on the instruction processing
rate, the number of instructions in the program and the number of faults remaining
in the program. The number of remaining faults, of course, depended on the
number of faults corrected, and the profile of the latter quantity as a function of
time was assumed to be related to the project personnel profile in time. Several
different fault-correction profiles were proposed; the choice would depend on the
particular project one was working with. Schneidewind [7] investigated different
reliability functions such as the exponential, normal, gamma, and Weibull for
estimating software reliability and suggested to choose the distribution that best fit
the particular project in question. He indicated the importance of determining
confidence intervals for the parameters estimated rather than just relying on point
estimates. He also suggested that the time lag between failure detection and cor-
rection be determined from actual data and used to correct the time scale in
forecasts. Another, early model was proposed by Schick and Wolverton [10]. They
assumed hazard rate to be proportional to the product of the number of faults
remaining and the time spent in debugging. The amount of debugging time
between failures has a Rayleigh distribution.

In early 1975, Musa proposed an execution time model of software reliability.
This model was later studied and applied on many real software applications by
many researchers and yield good results for most of them. Musa postulated that
execution time is the best practical measure of failure inducing stress that was
being placed on the program. Most calendar time models do not account for
varying usage of the program in either test or operation. Musa considered exe-
cution time in two respects; the operating time of a product delivered to the field,
and the cumulative execution time that had occurred during test phases of the
development process and during post delivery maintenance. The hazard rate was
assumed to be constant with respect to operating time but would change as a
function of the faults remaining and hence the cumulative execution time. Use of
two kinds of time separates fault repair and growth phenomena from program
operation phenomena. Musa assumed that the fault-correction rate was propor-
tional to the fault-detection or hazard rate, making consideration of debugging
personnel profiles unnecessary. A calendar time component was developed for the
model that related execution time to calendar time, allowing execution time pre-
dictions to be converted to dates. The calendar time component is based on a
model of the debugging process.

50 2 Software Reliability Growth Models



Littlewood and Verrall [5] worked out a software reliability model based on
Bayesian approach. The idea was to measure of strength of belief that a program
will operate successfully rather than the outcome of an experiment to determine
the number of times a program would operate successfully. Littlewood modeled
the hazard rate as a random process for the failures experienced. Goel and
Okumoto [4] (GO model) proposed a reliability growth model, which describes the
failure detection, as a non-homogeneous Poisson process (NHPP) assuming hazard
rate is proportional to the remaining number of faults in the software. This research
paper was a pioneering attempt in the field of software reliability growth modeling.
Later researchers proposed many SRGM, which describe failure, and fault removal
phenomenon by NHPP following the basic assumption of GO model and the
research is still continuing.

Starting from the late 1960s and in the approximately past 40 years a vast
literature of software reliability models has been developed. Extensive research
exists in modeling the failure detection and fault removal phenomenon by an
NHPP. These models have been widely studied and applied on real software
projects. Many concepts of software reliability modeling have been developed and
models are proposed considering the various dynamic aspects of the software
testing and debugging. In this chapter we will discuss some of the early models.
First of all models based on the execution time are discussed. Execution time
models prove superior to the calendar time models in many cases [11, 12].
However since the quantities expressed in terms of calendar time component are
more meaningful to most engineers and managers most of the models were
developed on the calendar time component. Hence we continue our discussion
with the calendar time models. Most of these models assume a perfect debugging
environment. This means whenever an attempt is made to remove a detected fault
it is removed perfectly and no new faults are generated. The earliest model in this
category was due to Goel and Okumoto [4]. Some other models in this category
are Yamada et al. [13], Ohba [14], Yamada and Osaki [15], Bittanti et al. [16] and
Kapur and Garg [17], etc. SRGM which use calendar time or execution time as the
unit of fault-detection/removal period either assume that the consumption rate of
testing resources is constant, or do not explicitly consider the testing effort and its
effectiveness. The achieved reliability during testing phase is highly related to the
amount of development resources (test-efforts) spent on detecting and correcting
latent software faults. A testing-effort function describes the distribution or con-
sumption pattern of testing resources (CPU time, manpower, etc.) during the
testing period. Hence it is very important to track the reliability growth with
respect to the testing-effort expenditure. Putnam [18], Yamada et al. [19–21],
Bokhari and Ahmad [22], Kapur et al. [23], Kuo et al. [24], Huang [25] and Huang
et al. [26, 27] proposed SRGM describing the relationship among the testing time
(calendar time), testing-effort expenditure and the number of software faults
detected. In the later sections of this chapter we will discuss these SRGM. Models
developed considering fault complexity, fault-detection correction process and
distributed environment assuming perfect debugging environment are also
discussed in this chapter.

2.1 Introduction 51



2.2 Execution Time Models

Basic execution time model due to Musa [6] and the Logarithmic Poisson exe-
cution time model due to Musa and Okumoto [11] are the two most known models
in the execution time models category.

2.2.1 The Basic Execution Time Model

The basic execution time model due to Musa [6] is based on the assumptions:

1. The failure process is described by the NHPP.
2. Whenever a failure is experienced the fault causing the failure is removed

immediately.
3. The debugging process is perfect.
4. The failure intensity is a decreasing function of execution time.
5. The decrement in failure intensity is constant throughout the testing process.

Notation

k Failure intensity
k0 Failure intensity at the start of the execution
m (m(t)) Expected number of failures experienced up to time a given time t
a The total number of that would be experienced in infinite time
t Execution time

The failure intensity expressed as a function of number of failures experienced
is given as

kðmÞ ¼ k0 1� m

a

h i

ð2:2:1Þ

Equation (2.2.1) expressed as a function of time can be rewritten as

d
dt
mðtÞ ¼ kðtÞ ¼ k0 1� m tð Þ

a

� �

ð2:2:2Þ

Solving (2.2.2) under the initial condition m(0) = 0, the mean value function of
the failure process is given as

m tð Þ ¼ a 1� e� k0=að Þt
� �

ð2:2:3Þ

and the failure intensity of the model is given by

k tð Þ ¼ k0e
� k0=að Þt ð2:2:4Þ

52 2 Software Reliability Growth Models



2.2.2 The Logarithmic Poisson Model

The assumptions 1–4 are same as those of the basic execution time model. The
only difference is in the rate of decrement of the failure intensity, which is assumed
to be exponential in contrast to the basic model, i.e. as the testing progresses the
decay in the failure intensity decreases. Initially when the fault corresponding to
the first failure is repaired a substantial decline is observed in the failure intensity
while on the later failures this decrement decreases exponentially.

The failure intensity expressed as a function of number of failures experienced
is given as

k mð Þ ¼ k0e
�hm ð2:2:5Þ

Equation (2.2.5) can be expressed as a function of time

d
dt
m tð Þ ¼ k tð Þ ¼ k0e

�hm tð Þ ð2:2:6Þ

Solving (2.2.2) under the initial condition m(0) = 0 we obtain the mean value
function of the failure process as

m tð Þ ¼ 1
h
ln 1þ k0htð Þ ð2:2:7Þ

and the failure intensity of the model is given by

k tð Þ ¼ k0

1þ k0htð Þ ð2:2:8Þ

Figures 2.1 and 2.2 show the graphical plots of the failure intensity function
and expected number of failures experienced on the mean failures experienced
scale and execution time scales, respectively. It has been demonstrated in the

Fig. 2.1 Failure intensity
functions

2.2 Execution Time Models 53



literature [28, 29] that the basic execution time model is applicable to a uniform
operational profile whereas Logarithmic Poisson model is applicable under highly
non-uniform operational-profile. It may be noted that at infinite execution time, the
failure intensity reduces to zero and the number of failures experienced reaches
infinity for the logarithmic Possion model even though the number of faults in the
software may be finite. This is possible when, either at the time of debugging faults
is being introduced, or the debugging process is imperfect or each fault generates
more than one failure or when combinations of these Possibilities occurs. It is
obvious in this case that the parameters of interest are not the number of errors in
software, but the failure intensity and the rate at which failures are occurring.

Both models have been used by Musa to derive some additional quantities of
interest to the software engineers and developers. The model is used to determine
the additional number of failures that must be experienced (Dm) and the execution
time (Dt) is required to reach a failure intensity objective.

If kp is the present failure intensity and kf is the reqiured failure intensity
objective, then for the basic model

kp ¼ k0 1� m

a

h i

and kf ¼ k0 1� mþ Dm

a

� �

ð2:2:9Þ

Eq. (2.2.9) yields Dm ¼ a
k0

kp � kf
� �

:

And if we write kp and kf in terms of execution time then

kp ¼ k0e
� k0=að Þt and kf ¼ k0e

� k0=að Þ tþDtð Þ ð2:2:10Þ

Eq. (2.2.10) yields Dt ¼ a
k0
ln

kp
kf
:

For the Logarithmic Poisson model these quantities can be derived similarly
and are given as

Dm ¼ 1
h
ln
kp

kf
and Dt ¼ 1

h

1
kf

� 1
kp

� �

ð2:2:11Þ

Fig. 2.2 Mean failures
experienced w.r.t. execution
time

54 2 Software Reliability Growth Models



Both models have been validated by many researchers [29–31], etc. and have
been applied on many real software projects. The models have provided good
results (for details see Musa et al. [32]).

2.3 Calendar Time Models

Most of the SRGM proposed in the literature are based on calendar time, as this is
the time component, which is more meaningful to the software engineers, devel-
opers as well as users. Literature of calendar time model is very vast and as such
all models cannot be discussed here in this chapter. In order to facilitate the study
and application of these models, they have been categorized into various cate-
gories (refer Sect. 1.5.6). We start our discussion in this chapter with the calendar
time models, which are earliest proposed and based on the concept of perfect
debugging. By perfect debugging environment we mean whenever an attempt is
made to remove a detected fault it is removed perfectly and no new faults are
generated. Various models have been proposed in this category. Besides this we
describe here the NHPP models which can be classified as exponential models and
S-shaped models. Goel and Okumoto exponential model proposed in the year 1979
was recognized as a pioneering attempt. Models developed later, mainly attempted
to incorporated more aspects of testing and debugging process and relaxing certain
assumptions of the model.

Notation

m(t) Expected number of failures/removals by time t, with m(0) = 0
mf(t) Expected number of failures by time t, with mf(0) = 0
mr(t) Expected number of removals by time t, with mr(0) = 0
a(ai) Initial error content in software (or module i/type i) before software testing
b(t) Time-dependent fault-detection/removal rate (FDR/FRR) per remaining

faults
b(bi) Constant fault-detection/removal rate per remaining faults in software

(module i/type i) 0\ b\ 1
b, c Constant parameter in the logistic function

2.3.1 Goel–Okumoto Model

The model [4] is based on the following assumptions:

1. Failure observation phenomenon is modeled by NHPP.
2. Failures are observed during execution caused by remaining faults in the

software.

2.2 Execution Time Models 55

http://dx.doi.org/10.1007/978-0-85729-204-9_1


3. Each time a failure is observed, an immediate effort takes place to find the
cause of the failure and the isolated faults are removed prior to future test
occasions.

4. All faults in the software are mutually independent.
5. The debugging process is perfect and no new fault is introduced during

debugging.

Above assumptions can be described mathematically with the following dif-
ferential equation:

d
dt
m tð Þ ¼ b a� m tð Þð Þ ð2:3:1Þ

Solving (2.3.1) with the initial condition m(0) = 0 we get

mðtÞ ¼ a 1� e�bt
� 	

ð2:3:2Þ

The model is known as exponential NHPP model as it describes an exponential
failure curve. GO model has been applied to a variety of testing environment in
practice. In a number of situations it provides good estimation and prediction of
reliability. Hence can be considered as a useful reliability model. The two main
aspects of a good model are that the model must be stable during the test period
and remain stable until the end of the test phase for any particular test environment
and the model must provide a reasonably accurate prediction of the field reliability.

Following, the general assumptions of GO model other exponential SRGM are
proposed by Ohba [14] and Yamada and Osaki [15]. Ohba assumed that the
software consists of a number of independent modules whereas Yamada and Osaki
assumed there are two types of errors in the software. Both these models describe
the failure phenomenon for each module\error type by GO model with different
parameters and the mean value function is the sum of mean value function for each
module\error type.

2.3.2 Hyper-Exponential Model

Assuming that the software is consisting of n independent modules, with different
initial number of errors and fault-detection rate for each module, the differential
equation describing the model [14] along with general assumptions is

dmi tð Þ
dt

¼ bi ai � mi tð Þð Þ i ¼ 1; 2; . . .; n ð2:3:3Þ

Solution of the above differential equation with the initial condition mi(0) = 0
is similar to the GO model and the mean value function of the failure process for
the software can be obtained using

m tð Þ ¼
X

n

i¼1

mi tð Þ ¼
X

n

i¼1

ai 1� e�bit
� 	

ð2:3:4Þ

56 2 Software Reliability Growth Models



The model is called hyper-exponential model since sum of exponential distri-
butions is hyper-exponential.

2.3.3 Exponential Fault Categorization (Modified Exponential)

Model

This model [15] assumes that there are two types of faults in the software—Type I
(easy to detect) and Type II (difficult to detect). If qi is the proportion of type
i faults, i = 1,2 (q1 ? q2 = 1) the differential equation describing the model is

dmi tð Þ
dt
¼ bi api � mi tð Þð Þ i ¼ 1; 2 ð2:3:5Þ

The model equation under the initial condition mi(0) = 0 is given by

m tð Þ ¼
X

2

i¼1

mi tð Þ ¼ a
X

2

i¼1

pi 1� e�bit
� 	

ð2:3:6Þ

Here it is expected that 0\ b2\ b1\ 1.
The early development in the NHPP modeling assumed that the exponential

models accounting to the uniform operational profiles could describe the failure
process. However the assumption of uniformity seems to be unrealistic in most of
the real testing profiles. There can be several reasons of non-uniform testing
profile. In order to cater to the need of modeling non-uniform operational profile
many researchers later attempted to develop models describing S-shaped failure
curve. In most of the real testing situations an S-shaped curve proved ideal to
describe the non-uniform operational profile. Several S-shaped SRGM have been
proposed in the literature and various authors attributed this S-shapedness to the
distinctive explanations.

First of all Yamada et al. [13] refined the GO model describing testing as a two-
stage process namely fault-detection and removal. S-shaped SRGM proposed by
Ohba [33], Bittanti et al. [16] and Kapur and Garg [17] have similar mathematical
forms but are developed under different set of assumptions. An additional
important characteristic of the S-shaped models is that most of these models can
describe both exponential and S-shaped growth curves depending on the parameter
values and therefore are termed as flexible models. This flexible nature of S-
shaped models makes them more appropriate for real testing projects. Some S-
shaped models are discussed in the following sections.

2.3.4 Delayed S-Shaped Model

This model [13] defines the testing as a two-stage process—failure observation and
the corresponding fault removal phenomenon.

2.3 Calendar Time Models 57



d
dt
mf tð Þ ¼ b a� mf tð Þð Þ ð2:3:7Þ

d
dt
mr tð Þ ¼ b mf tð Þ � mr tð Þð Þ ð2:3:8Þ

Solution of the above differential equations under initial condition mf(0) =
mr(0) = 0, is

mf tð Þ ¼ a 1� e�bt
� 	

ð2:3:9Þ

mr tð Þ ¼ a 1� 1þ btð Þe�bt
� 	

ð2:3:10Þ

Model can be derived alternatively in single stage if we assume b2tð Þ



1þ btð Þ
as the fault detection rate (FDR) in (2.3.1) in place of constant FDR b. This model
is purely S-shaped.

2.3.5 Inflection S-Shaped Model

This model [33] is based on the assumption that the number of detected faults in
(t, t ? Dt) is proportional to the remaining faults at time t, but the proportionality
gradually increases in the testing period.

If u(m) is the inflection rate function the model can be expressed by the dif-
ferential equation

d
dt
m tð Þ ¼ Uu m tð Þð Þ a� m tð Þð Þ ð2:3:11Þ

where

U is the FDR
m is the number of faults detected 0 B m B a

The inflection function is approximated by a linear function with the inflection
parameter r, 0\ r B 1

u mð Þ ¼ r þ 1� rð Þm
a

ð2:3:12Þ

The inflection function describes two types of faults in the software. Mutually
independent faults which gets detected on a test case execution and mutually
dependable faults which become detectable on the detection of mutually inde-
pendent faults.

Now if we assume W ¼ 1�rð Þ
r the model is given by the equation

m tð Þ ¼ a
1� e�Ut

1þWe�Ut

� �

ð2:3:13Þ

58 2 Software Reliability Growth Models



If r = 1 the models describe an exponential failure curve otherwise an S-shaped
curve is observed. Hence this is a flexible model.

2.3.6 Failure Rate Dependent Flexible Model

This model has a very important property that it can describe a range of reliability
trends observed during testing. Following the assumptions of the GO model the
intensity function of the model [16] is described by the following differential
equation

d
dt
m tð Þ ¼ u mð Þ a� m tð Þð Þ ð2:3:14Þ

The FDR u(m) is defined as

u mð Þ ¼ ui þ uf � uið Þm tð Þ
a

ð2:3:15Þ

which is a linear function of the number of faults removed where ui[ 0 and uf C 0
are the initial and final FDR.

The solution of the model if uf C 0 is

mðtÞ ¼ a
ui euf t � 1ð Þ

uf þ ui euf t � 1ð Þ

� �

ð2:3:16Þ

On the other hand if uf = 0 we get

m tð Þ ¼ a
uit

1þ uit

� �

ð2:3:17Þ

Now we have a look at the reliability trends described by the model

If ui = uf = b the model reduces to GO model.
If uf\ ui failure intensity decreases to zero more rapidly than linearly.
If uf = 0 failure intensity is proportional quadratically to the remaining faults.
If uf[ ui the failure curve has an inflection point, i.e. S-shaped.

In general smaller the ratio uf/ui, the larger the rate of convergence of failure
intensity.

2.3.7 SRGM for Error Removal Phenomenon

This model is proposed by Kapur and Garg [17] (KG model). The model is based
on the assumption that the debugging team can also remove some additional errors
while removing some errors without these errors causing any failure. The faults

2.3 Calendar Time Models 59



identified on a failure are termed as independent faults while the faults removed
additionally are termed as dependent faults.

d
dt
mr tð Þ ¼ p a� mr tð Þð Þ þ q

mr tð Þ
a

a� mr tð Þð Þ ð2:3:18Þ

where p and q are the FDR for independent and dependent faults respectively. The
mean value function obtained under the initial condition mr(0) = 0 is

mr tð Þ ¼ a
1� e� pþqð Þt

1þ q=pð Þe� pþqð Þt

� �

ð2:3:19Þ

If q = 0 the model reduces to GO model and failure phenomenon is same as
removal else the failure phenomenon is given as

mf tð Þ ¼
Z

t

0

p a� mr xð Þð Þ dx ¼ ap

q
ln

pþ q

pþ qe� pþqð Þt

� �

ð2:3:20Þ

KG model can be derived alternatively if we assume logistic learning fault-
detection rate given by b tð Þ ¼ b




1þ be�bt
� 	

with b = (p ? q) and b = (q/p).
This is also a flexible model as it can describe both exponential (If b = 0) and
S-shaped (If b[ 0). The model can also capture a variety of reliability trends
depending on the value of parameter b.

Above we have described some S-shaped and flexible SRGM, which are mostly
cited and applied, on the software projects. Different models account different
reasons of S-shapedness in the models as we can see Yamada model attributes
S-shapedness to the time delay between the fault exposure and fault removal. Ohba
attribute it to mutual dependency between software faults, according to Bittanti’s
model it is due to increased fault-detection rate in the later testing phase. Kapur’s
model advocates S-shapedness due to both fault dependency and debugging
time lag.

2.4 SRGM Defining Complexity of Faults

Most of the models discussed in the previous sections were proposed under the
assumption that similar testing efforts and testing strategy is required for removing
each of the faults. However this assumption may not be true in practice, different
faults may require different amount of testing efforts and testing strategy for their
removal from the system. In the literature to incorporate this phenomenon faults
are categorized as of different types and are analyzed separately. The first attempt
in this category was due to Yamada and Osaki [15] who modified GO exponential
SRGM assuming that there are two types of faults in the software (see Sect. 2.3.3).
This model is based on the observations that during the early stages of the testing
phase the testing team removes a large number of simple faults (faults which are

60 2 Software Reliability Growth Models



easy to remove) while the hard faults are removed in the later phases of the testing.
Hence the model is formulated by superposition of two NHPP models one for each
type of fault. The model incorporates the complexity of faults assuming different
FRR for each type of faults. FRR for simple faults is expected to be higher than
hard fault. However the model assumes a constant FRR for each type of fault.
Kareer et al. [34] modified this model assuming time-dependent FRR for both
types of faults. Removal phenomenon of simple faults is described by exponential
SRGM while an S-shaped SRGM is used for hard faults.

Here we would like the reader to note that complexity of faults is not to be
matched with the fault severity. As far as severity of faults is concerned it can be
defined in terms of the impact of fault on the system performance. This is of main
concern basically in the operational phase when on the observation of a failure in
the user environment, the decision to remove the corresponding fault is based on
its impact on the system performance. If the impact is very critical it is removed or
otherwise its removal may be postponed for a future release of the software. In the
testing phase the issue of fault complexity is considered by the researcher in the
sense of the time, efforts and testing strategy required to remove the fault.

Kapur et al. [35] introduced generalized Erlang SRGM classifying the faults in
the software system as simple, hard and complex faults. It is assumed that the time
delay between the failure observation and its subsequent removal represents the
complexity of faults. More severe the fault, more the time delay. The model has
been extended to n-types of faults.

2.4.1 Generalized SRGM (Erlang Model)

For simple faults on the observation of a failure the corresponding fault can be
isolated and removed immediately. Hence the mean value function of the failure
phenomenon is governed by the following differential equation.

dm1 tð Þ=dt ¼ b1 a1 � m1 tð Þð Þ ð2:4:1Þ

m1 tð Þ ¼ a1 1� e�b1t
� 	

ð2:4:2Þ

Failure detection and removal is modeled as a two stage process for hard faults

dm2f tð Þ=dt ¼ b2 a2 � m2f tð Þð Þ ð2:4:3Þ

dm2r tð Þ=dt ¼ b2 m2f tð Þ � m2r tð Þð Þ ð2:4:4Þ

m2 tð Þ ¼ m2r tð Þ ¼ a2 1� 1þ b2tð Þe�b2t
� 	

ð2:4:5Þ

Fault removal phenomenon for complex faults is modeled as a three-stage
process to represent the severity of complex faults

dm3f tð Þ=dt ¼ b3 a3 � m3f tð Þð Þ ð2:4:6Þ

2.4 SRGM Defining Complexity of Faults 61



dm3i tð Þ=dt ¼ b3 m3f tð Þ� m3i tð Þð Þ ð2:4:7Þ

dm3r tð Þ=dt ¼ b3 m3i tð Þ � m3r tð Þð Þ ð2:4:8Þ

m3 tð Þ ¼ m3r tð Þ ¼ a3 1� 1þ b3t þ b23t
2=2

� 	� 	

e�b3t
� 	

ð2:4:9Þ

Mean value function for hard and complex faults is expressed by delayed S-
shaped and 3-stage Erlang growth curves. The fault removal rates for simple, hard
and complex faults is

b1;d2 tð Þ ¼ b22t



1þ b2t
� 	

and d3 tð Þ ¼ b33t
2



2 1þ b3t þ b23t
2=2

� 	� 	� 	� 	

d2(t) and d3(t) increase monotonically with t and tend to b2 and b3 as t ? ?.
Failure curves for hard and complex faults behave similar to the simple faults in
the steady state and hence b2 and b3 can be assumed equal to b1 in steady state. It is
also observed that b1[ d2(t)[ d3(t) in steady state. The mean value function of
the SRGM is

m tð Þ ¼ m1 tð Þ þ m2 tð Þ þ m3 tð Þ; a1 þ a2 þ a3 ¼ a ð2:4:10Þ

The mean value function of the SRGM is generalized to include n different
types of faults depending upon their severity

m tð Þ ¼
X

n

i¼1

ai 1� e�bit
X

i�1

j¼0

bjt
� 	 j

=j!
n o

 !

;
X

n

i¼1

ai ¼ a ð2:4:11Þ

The mean value function of the SRGM describes the joint effect of the type of
faults present in the system on the reliability growth. Such an approach can capture
the variability in the reliability growth curve due to the errors of different severity
depending on the testing environment which enables the management of the
software testing to plan and control their testing strategy to tackle each type
of fault lying in the system. Another model in this category is due to Kapur et al.
[36, 37], which describes the implicit categorization of faults based on their time
of detection. However an SRGM should explicitly define the errors of different
severity as it is expected that any type of fault can be detected at any point of
testing time. Therefore it is desired to study the testing and debugging process of
each type of faults separately as in Erlang model. Shatnawi and Kapur [38] also
integrated the effect of learning phenomenon of the testing and debugging teams in
the Erlang model.

2.4.2 Incorporating Fault Complexity Considering Learning

Phenomenon

Mean value function of simple faults is assumed to be same as in the case of
generalized Erlang model (Eq. 2.4.2) [38]. Failure detection and removal is again
modeled as a two-stage process for hard faults, where

62 2 Software Reliability Growth Models



dm2f tð Þ=dt ¼ b2 a2 � m2f tð Þð Þ ð2:4:12Þ

dm2r tð Þ=dt ¼ b2 tð Þ m2f tð Þ � m2r tð Þð Þ ¼ b2
1þ b2e�b2t

m2f tð Þ � m2r tð Þð Þ ð2:4:13Þ

Here fault removal rate per remaining fault b2(t) is assumed to be logistic function
to describe the learning of the testing team. Solving the above equation the mean
value function for hard faults is given as

m2 tð Þ ¼ m2r tð Þ ¼
a2 1� 1þ b2tð Þe�b2t
� 	

1þ b2e�b2t
ð2:4:14Þ

Fault removal phenomenon for complex faults is modeled as a three-stage
process to represent the severity of complex faults assuming fault removal rate per
remaining fault b3(t) to be logistic function to describe the learning of the testing
team

dm3f tð Þ=dt ¼ b3 a3 � m3f tð Þð Þ ð2:4:15Þ

dm3i tð Þ=dt ¼ b3 m3f tð Þ � m3i tð Þð Þ ð2:4:16Þ

dm3rðtÞ=dt ¼ b3ðm3iðtÞ � m3rðtÞÞ ¼
b3

1þ b3e�b3t
ðm3ðtÞ � m3rðtÞÞ ð2:4:17Þ

m3 tð Þ ¼ m3r tð Þ ¼ a3
1� 1þ b3t þ b23t

2=2
� 	� 	

e�b3t
� 	

1þ b3e�b3t
ð2:4:18Þ

The mean value functions for hard and complex faults are expressed by delayed
S-shaped and 3-stage Erlang growth curves with logistic removal rates. The fault
removal rates for simple, hard and complex faults are

b1; d2 tð Þ ¼ b2
1

1þ b2e�b2t
� 1
1þ b2 þ b2t

� �

and

d3ðtÞ ¼ b3
1

1þ b3e�b3t
� 1þ b3t

1þ b3 þ b3t þ b3tð Þ2

 !

ð2:4:19Þ

respectively. d2(t) and d3(t) increase monotonically with t and tend to b2 and b3 as
t ? ?. Failure curves for hard and complex faults behave similar to the simple
faults in the steady state and hence b2 and b3 can be assumed equal to b1 in steady
state. It is also observed that b1[ d2(t)[ d3(t) in steady state. The mean value
function of the SRGM is

m tð Þ ¼ m1 tð Þ þ m2 tð Þ þ m3 tð Þ; a1 þ a2 þ a3 ¼ a ð2:4:20Þ

2.4 SRGM Defining Complexity of Faults 63



The mean value function of the SRGM is generalized to include n different
types of faults depending upon their severity

m tð Þ ¼ a1 1� e�b1t
� 	

þ
X

n

i¼2

ai
1þ bie�bit

1� e�bit
X

i�1

j¼0

bjt
� 	 j

=j!
n o

 !

;
X

n

i¼1

ai ¼ a

ð2:4:21Þ

After the development of Erlang models the concept of fault complexity is
integrated by Kapur et al. [39–41] with several other aspects of testing. We will
discuss some of these models in the later chapters.

2.5 Managing Reliability in Operational Phase

Most SRGM proposed in the literature are based on the failure pattern observed
during the system-testing phase. The software developers are interested in
knowing the remaining number of errors in the software at the release time and the
field failure rate to track the system performance. The SRGM formulated for the
test phase is usually extended to forecast the failure pattern in the operational
phase. A major drawback of doing this is that the extension of the model to the
operational phase is done under the assumption ‘‘system test environment is as
close to that of the operational phase’’. But this is not true for the real life
application since how close we claim the test environment is to the operational
environment, it cannot be a mirror image. Other realistic issue associated with the
operational phase is the non-instantaneous fault removal and possible fix deferral
of certain faults depending upon the fault criticality, outsourced code, time of
launch of a new release, etc.

Kapur et al. [42] classified the software’s into two categories—1. Project type
software also called special purpose software, designed for specific applications
for known operational environment as specified by the user. However multiple
usage of the software is possible within the user environment either at the same or
different locations. A simple example is software, which is designed to automate
the working of railway reservation system. The developer does not market such
software. 2. Product type software also called as general-purpose software,
developed for a specific application according to the need of the software users in
the market. The need is determined on the basis of market survey, competitive
products in the market, R&D, etc. These types of software are sold in the open
market. Many distinct users may buy a licensed copy of such software and use it
for their own purpose. During the testing phase the type of software under testing
does not affect the reliability growth. However, the type of software under con-
sideration influences the reliability growth during the operational phase. Tracking
the system performance is not difficult for the project type software since it is in
use on a few readily monitored systems under almost constant usage rate. However
it is difficult for the product type software due to wide distribution of this type of

64 2 Software Reliability Growth Models



software where the usage typically builds to several thousand independent
systems.

Kenny [43] argued that the number of failures in operational phase is strongly
influenced by the number of users of the software and proposed a model that
includes a factor for the usage rate during the operational phase.

2.5.1 Operational Usage Models—Initial Studies

The model [43] is based on the assumption that the average number of failures is a
function of the number of encountered defects, which is a function of the number
of instructions executed up to the testing time t

dm
dt
¼ dm

dx
dx
de

de
dt

ð2:5:1Þ

assuming all remaining defects are equally likely to cause a failure.
The first component dm/dx is defined as

dm=dx ¼ b1 ð2:5:2Þ

The second component dx/de is

dx=de ¼ b2r ð2:5:3Þ

and the third component is

de=dt ¼ b3t
k ð2:5:4Þ

Substituting (2.5.2), (2.5.3) and (2.5.4) in (2.5.1) and solving with the initial
conditions m(0) = 0 we obtain

m tð Þ ¼ a 1� e�b t
kþ1

= kþ1ð Þ
� 	

� �

; b ¼ b1b2b3 ð2:5:5Þ

where a is the number of faults at the time of release of the software and r is the
remaining number of faults during the field use. Kenny model uses a power
function to describe the software usage, which grows as the number of software
users increases particularly for product type software. In the marketing literature
power function is seldom used for describing the user growth over time. Kapur
et al. [44] redefined the Kenny’s model using Bass [45] model of innovation
diffusion to describe the user growth.

The model [44] is based on statement coverage. The NHPP failure intensity
function is formulated as

dm
dt

¼ dm
de

de
dW

dW
dt

ð2:5:6Þ

2.5 Managing Reliability in Operational Phase 65



which can be described as ‘‘the number of failures during testing time t is
dependent on the number of executed instructions which is a function of software
usage during the operational environment up to the time t’’.

The first component dm/de is defined as

dm
de
¼ b1 þ b2 m=að Þð Þ a� mð Þ ð2:5:7Þ

where b1 is the rate at which remaining faults cause failures, b2 is the rate of
additional fault removal without causing their failure and e is the number of
executed instructions.

The second component de/dw is

de
dW

¼ b3 ð2:5:8Þ

which defines a constant number of statement execution per additional software
usage. This component gives a measure of statement coverage. Substituting (2.5.7)
and (2.5.8) in (2.5.6) and solving with the initial conditions m(0) = 0 and
W(0) = 0 we obtain

m tð Þ ¼ a 1� e�bW tð Þ� 	

1þ ce�bW tð Þ ; b ¼ b3 b1 þ b2ð Þ and c ¼ b2
b1

ð2:5:9Þ

Software products are similar to the technological products as such the Bass
model of innovation diffusion defining the number of adopters of theses products is
used to forecast the number of software users in the field. The usage function
W(t) is hence modeled as

W tð Þ ¼ N
1� exp� pþqð Þt

1þ q=pð Þ exp� pþqð Þt

� �

ð2:5:10Þ

where N is the total number of potential adopters of the software, p is coefficient of
innovation and q is the coefficient of imitation.

The equation in (2.5.10) represents the number of adopters of the software and
therefore is not suitable to describe the actual usage of the software. With this both
models discussed above apply to product type of software. The usage and hence
the usage function of project type software is different form that of product type
software. Kapur et al. [42] model addresses the reliability growth during the
operational phase classifying software as project and product type and linking an
appropriate usage function to each type of software considering testing efficiency.
This model is discussed Model in Chap. 3.

2.6 Modeling Fault Dependency and Debugging Time Lag

One common assumption of conventional SRGM is that detected faults
are immediately removed. In practice, this assumption may not be realistic in
software development. Software testing and debugging are very time-consuming

66 2 Software Reliability Growth Models

http://dx.doi.org/10.1007/978-0-85729-204-9_3


and expensive process. The time to remove a fault depends on the complexity of
the detected faults, the skills of the debugging team, the available manpower, or
the software development environment, etc. In the general testing environment
fault removal may take a longer time after detection. Further more removals are
likely in the later phase of the testing as compared to the beginning. Therefore, the
time delay in fault-correction process after the detection process can’t be ignored.
Besides, Ohba [14] conceived that there are two types of faults in the software:
mutually independent faults, and mutually dependent faults. KG Model discussed
in Sect. 2.3.7 also considers this underlying fault dependency. During testing,
faults, which are removed on the detection of a failure, are mutually independent
faults or leading fault, while the faults, which get removed during the removal of
some leading faults, are called mutually dependent faults. Mutually dependent
faults can be removed if and only if the faults leading to them are removed.

Schneidewind [8] first modeled the fault-correction process using a constant
delayed fault-detection process. Later, Xie and Zao [46] extended the Schneide-
wind model to a continuous version by substituting a time-dependent delay
function for the constant delay. A key factor of the continuous version of
Schneidewind model is the time-dependent delay function, which measures the
expected time lag to correct a detected fault. Yamada et al. [13] delayed S-shaped
model and fault complexity models discussed earlier are also addressing to the
time lag between the fault-correction and detection. Kapur and Younes [47]
analyzed the software reliability considering the fault dependency and debugging
time lag.

2.6.1 Model for Fault-Correction—The Initial Study

Notation

mf(i) Mean value function of faults detection process
mr(i) Mean value function of faults removal/correction process
mi(i) Mean value function for independent faults
md(i) Mean value function for dependent faults
k(i) Failure intensity
if Estimated time to detect cumulative number of faults mf

ir Estimated time to detect cumulative number of faults mr

a Initial fault content
b Fault-detection/removal rate per remaining fault
p1,p2 Proportion of independent, dependent faults p1 ? p2 = 1

It assumes that [8] the observations have been made for the number of errors,
which have occurred in intervals of unit length, designated by the index, i, from
interval 1 through t.

2.6 Modeling Fault Dependency and Debugging Time Lag 67



Assumptions

1. The number of errors detected in each time interval is independent of the
number of errors detected in any other time interval.

2. The detected error counts have a probability density function of the same form
in each time interval but with different means.

3. The mean number of detected errors decreases from interval to interval as a
result of the continuing detection and correction of original errors.

4. The rate of error detection in an interval is proportional to the number of errors
in the interval.

Following assumption 3 the failure intensity is an exponentially decaying
function

k ið Þ ¼ a exp�bi; a[ 0; b[ 0 ð2:6:1Þ

Equation (2.6.1) implies

mf ið Þ ¼
a

b
1� exp�bi
� 	

ð2:6:2Þ

The time estimated to detect a cumulative number of errors mf is derived from
(2.6.2) is

if ¼ log a= a� bmfð Þð Þ=b ð2:6:3Þ

Cumulative mean number of faults corrected has the same form as that of
(2.6.2) but will lag the mean number of faults detected by a constant delay Di. The
lag equals the time estimated to correct a number of faults equal to mf(i) - mr(i).

Thus for i C Di

mr ið Þ ¼ mfði� DiÞ ¼ a

b
1� exp�a i�Dið Þ
� �

ð2:6:4Þ

The lag Di can be estimated by finding Di such that the relationship
mr(i) = mf(i - Di) is satisfied from the empirical data, where i is the time of
making a forecast. The time estimated to correct a cumulative number of errors mr

obtained from (2.6.4) is

ir ¼ Diþ log a= a� bmrð Þð Þ=b ð2:6:5Þ

The Schneidewind model assumed that Di is same for all i, which means that all
detected fault, will be corrected after a constant delay of time Di. Xie and Zao [46]
revised this model using a time-dependent delay function Dt that measures the
expected delay in correcting a detected fault at any time. However they proposed
the revised model in continuous time instead of discrete time as in case of
Schneidewind model. In this case the mean value function of the fault-correction
process is

mr tð Þ ¼ mf t � Dtð Þ ¼ a

b
1� exp�b t�Dtð Þ
� �

ð2:6:6Þ

68 2 Software Reliability Growth Models



If Dt is a constant, this model is same as the Schneidewind model. Xie and Zao
assumed Dt to be an increasing function on the account of more delays in fault-
correction in the later phases of testing given by

Dt ¼ ln 1þ ctð Þ
b

; c� 0

with this lag function

mr tð Þ ¼
a

b
1� 1þ ctð Þ exp�bt
� 	

ð2:6:7Þ

2.6.2 Fault Dependency and Debugging Time Lag Model

Fault Dependency and Debugging Time Lag Model due to Kapur and Younes [47]
besides NHPP (refer Sect. 2.3.1) assumptions assumes that:

1. The software errors are divided into two categories—(i) leading faults and (ii)
dependent faults.

2. The number of errors in the software system is finite and it is the sum of the
errors in each category.

3. The number of leading errors removed in time (t, t ? Dt) is proportional to the
number of leading errors remaining.

4. The number of dependent errors removed in time (t, t ? Dt) is proportional to
the number of dependent errors remaining and to the ratio of leading errors
removed at time t and the total number of errors.

5. The dependent errors can be removed when the leading error, which they are
dependent on, is removed.

Assumption 4 describes the time lag between the error detection and removal.
Failure intensity of the independent and dependent faults is given as

dmi tð Þ=dt ¼ b ap1 � mi tð Þð Þ ð2:6:8Þ

dmd tð Þ=dt ¼ c ap2 � md tð Þð Þ mi t � Tð Þ=að Þ; aðp1 þ p2Þ ¼ a ð2:6:9Þ

The mean value function obtained under mf(0) = mr(0) = 0, assuming T = 0
are

miðtÞ ¼ ap1 1� e�bt
� 	

and md ¼ ap2 1� e� ap1 1�e�btð Þ�bcap1tð Þ=abð Þ
� �

ð2:6:10Þ

with

m tð Þ ¼ mi tð Þ þ md tð Þ ð2:6:11Þ

2.6 Modeling Fault Dependency and Debugging Time Lag 69



Although this model takes into account the debugging time lag but a closed
form solution is obtained for negligible time lag (T = 0). Huang and Lin [48]
formulated another model based on the assumptions made in Kapur and Younes
model, first modeling the time lag phenomenon for the various time dependent lag
functions and then integrated the fault dependency in the model.

Fault-detection process [48] is described as in the GO model

mf tð Þ ¼ a 1� e�bt
� 	

ð2:6:12Þ

assuming /(t) to be the delay factor the fault-correction process is given by

mr tð Þ ¼ mf t � / tð Þð Þ ¼ a 1� e�b t�/ tð Þð Þ
� �

ð2:6:13Þ

Various conventional models (GO model, Yamada delayed S-shaped model,
inflection S-shaped model, Yamada Weibull-type testing-effort function model,
Logistic growth curve model, etc.) are then derived using the different form of
/(t). For example if we assume /(t) = 0 we obtain GO model, if /(t) = (1/b) ln
(1 ? bt) Yamada delayed S-shaped model is obtained,

For / tð Þ ¼ ð1=bÞ ln 1þbð Þe�bt

1þbe�bt

� �

inflection S-shaped model is obtained.

Fault dependency and debugging time lag is integrated by substituting the time
dependent functional forms of /(t) in place of T in the equation describing the
failure intensity of dependent faults in the Kapur and Younes model.

Lo and Huang [49] also proposed a general formulation for modeling fault-
detection and correction. The proposition given by them is

if D tð Þ ¼
R t
0 k sð Þ ds; C tð Þ ¼

R t
0 l sð Þ ds and the differential equations for

mf(t) and mr(t) are

d
dt
mf tð Þ ¼ k tð Þ a� mf tð Þð Þ and

d
dt
mr tð Þ ¼ l tð Þ mf tð Þ � mr tð Þð Þ ð2:6:14Þ

then we have

mf tð Þ ¼ a 1� e�D tð Þ
� �

and mr tð Þ ¼ e�C tð Þ
Z

t

0

ac sð ÞeC sð Þ 1� e�D sð Þ
� �

ds

ð2:6:15Þ

with mf(0) = 0 and mr(0) = 0. Here k(t) is the fault-detection rate per remaining
fault, and l(t) is the fault-correction rate per detected but not corrected fault.

Singh et al. [50] incorporated the learning of the testing team by using a power
function for fault-detection and removal rates in Huang and Lin [48] and applied it
to the various conventional models (GO model, Yamada delayed S-shaped model,
Kapur and Garg model for error removal phenomenon, etc.). Kapur et al. [41] have
integrated the concept of fault complexity, fault dependency and debugging
time lag.

70 2 Software Reliability Growth Models



2.6.3 Modeling Fault Complexity with Debugging Time Lag

Assuming a1, a2, a3; a1 ? a2 ? a3 = a be the initial fault content of simple, hard
and complex faults, simple faults [41] are described by

dm1 tð Þ=dt ¼ b1 a1 � m1 tð Þð Þ ð2:6:16Þ

m1 tð Þ ¼ a1 1� e�b1t
� 	

ð2:6:17Þ

Fault-detection process for hard faults remains same as that of simple faults
while the fault-correction process is described by

dm2 tð Þ=dt ¼ b2 a2 � m2 tð Þð Þ m1 t � / tð Þð Þ
a1

� �

ð2:6:18Þ

defining

/ tð Þ ¼ 1=b1ð Þ ln 1þ b1tð Þ ð2:6:19Þ

m2 tð Þ ¼ a2 1� e
� 2b2

b1
1�e�b1 tð Þ�b2t 1þe�b1 tð Þ

� �

 !

ð2:6:20Þ

For complex fault also the detection process is described by (2.6.17) while the
correction process is described by

dm2 tð Þ=dt ¼ b3 a3 � m3 tð Þð Þ m1 t � / tð Þð Þ
a1

� �

ð2:6:21Þ

defining

/ tð Þ ¼ 1=b1ð Þ ln 1þ b1t þ b1tð Þ2
.

2
� �

ð2:6:22Þ

m3 tð Þ ¼ a2 1� e
� 3b3

b1
1� 1þb1tð Þe�b1 tð Þ�b3t 1� 1�b1 t

2ð Þe�b1 tð Þ
� �

 !

ð2:6:23Þ

The mean value function of the SRGM is

m tð Þ ¼ m1 tð Þ þ m2 tð Þ þ m3 tð Þ; a1 þ a2 þ a3 ¼ a ð2:6:24Þ

A study of fault-detection process in isolation can be useful to estimate the
number of faults detected in the system however an actual estimate of the achieved
reliability can be determined by an estimate of the fault removal phenomenon. An
ideal model should be able to describe the two processes separately.

The models discussed in the previous sections describe the very basic aspects
of the testing process and can be applied to a variety of software test data.
However none of these models describes the effect on the pace of testing due to
the testing efforts spent. Testing efforts plays a very crucial role on the testing

2.6 Modeling Fault Dependency and Debugging Time Lag 71



progress for example at any instance of time during the testing phase testing can be
made more rigorous through the additional testing efforts. A model that accom-
modates the effect of testing effort on the reliability growth often proves to be
more useful in the later phases of the testing as it can be used to determine the
amount the additional efforts required to reach a specified reliability objective
(testing effort control problem, discussed in Chap. 5). In the next section we
describe several models for incorporating the effect of testing effort on reliability
growth.

2.7 Testing Effort Dependent Software Reliability Modeling

Most of the earlier SRGM were developed based on calendar time or execution
time as the unit of fault-detection/removal period and either assume that the
consumption rate of testing resources is constant, or do not explicitly consider the
testing effort and its effectiveness. A testing effort function describes the distri-
bution or consumption pattern of testing resources (CPU time, manpower, etc.)
during the testing period. Putnam [18], Yamada et al. [19–21], Bokhari and Ahmad
[22], Kapur et al. [23], Kuo et al. [24], Huang [51] and Huang et al. [26, 27]
proposed SRGM describing the relationship among the testing time (calendar
time), testing-effort expenditure and the number of software faults detected. Most
existing SRGM belong to exponential type models. Kapur et al. [23], Huang [51]
and Huang et al. [26, 27] proposed S-shaped testing effort dependent SRGM based
on Yamada delayed S-shaped model which also describe the leaning phenomenon
of the testing team. Testing effort dependent SRGM to describe the distributed
development environments, testing efficiency and fault complexity are proposed
by Kapur et al. [41, 42, 52]. Models due to Lin et al. [53] and Gupta et al. [54]
were developed considering the changes during the process of testing with respect
to test-efforts (change point concept), etc.

Manpower, CPU time and test cases constitute the test-efforts spent on testing.
The testing effort function (TEF) discussed in the literature are mainly parametric
as they predict development effort using a formula of fixed form parameterized
from historical data records.

2.7.1 Rayleigh Test Effort Model

Putnam [18] pioneered the use of Norden Rayleigh Model [55] for the test-effort
consumption estimation. It has been empirically determined that the overall
life-cycle manpower curve can be well represented by a Rayleigh curve of the type

w tð Þ ¼ 2Ke�a2at ð2:7:1Þ

72 2 Software Reliability Growth Models

http://dx.doi.org/10.1007/978-0-85729-204-9_5


where

a 1=2t2d
td Time at which a is maximum
K Area under the curve in the time interval [0,?] and represents the nominal

life-cycle effort in man-years
w(t) pdf of the test-effort function

The cumulative distribution of the test-effort function W(t) obtained from
(2.7.1) is

W tð Þ ¼ 1� eat
2

� �

ð2:7:2Þ

The Rayleigh distribution curve slopes upward, levels off into a plateau and then
tails off gradually. According to Putnam, the Rayleigh curve depicts the profile of a
software development project, with time on the horizontal axis and manpower on
the vertical axis. The test-effort curves given above are non-linear and can be
linearized dividing (2.7.1) by t and taking the natural logarithm on both sides.

ln
w tð Þ
t

� �

¼ ln K=t2d
� 	

þ �1= 2 � t2d
� 	� 	

t2 ð2:7:3Þ

which is a linear equation in t2 with decreasing slope.
Based on this equation, Putnam stated ‘‘if we know the management parameters

K and td, then we can generate the manpower, instantaneous cost, and cumulative
cost of a software project at any time t by using the Rayleigh equation’’.

2.7.2 Weibull Test Effort Model

Yamada et al. [19–21] claimed that instantaneous testing-effort decreases during
the testing life-cycle since it is reasonable to assume that there is a finite limit of
resources available to test the software and proposed Weibull-type distribution to
describe the TEF having the following three cases.

Exponential curve: The cumulative testing effort consumed in time (0,t] according
to exponential curve is

W tð Þ ¼ a 1� e�vtð Þ ð2:7:4Þ

Rayleigh curve: The cumulative testing effort consumed in time (0,t] according to
Rayleigh curve is

W tð Þ ¼ a 1� e�vt2=2
� �

ð2:7:5Þ

2.7 Testing Effort Dependent Software Reliability Modeling 73



Weibull curve: The cumulative testing effort consumed in time (0,t] according to
Weibull curve is

W tð Þ ¼ a 1� e�vtc
� 	

ð2:7:6Þ
where

a Total amount of test-effort expenditures required by software testing
v, c Scale and shape parameters

When c = 1 or 2 the Weibull curve describes the exponential or Rayleigh curve
respectively and hence are special cases of Weibull type curve. If c[ 3 these
testing-effort curves have an apparent peak phenomenon (non-smoothly increasing
and degrading consumption curve) which is not suitable for many test-effort data
sets in practice. Although a Weibull-type curve fits well most of the existing data
sets but due to the existing peak phenomenon for c[ 3 is sometimes not advisable
to use.

Following the general assumptions of the GO model the NHPP exponential test-
effort based SRGM formulated by Yamada et al. [20] is

d
dt
m tð Þ




w tð Þ ¼ b a� m tð Þð Þ ð2:7:7Þ

The mean value function of the model under the initial conditions m(0) =
W(0) = 0 is given as

m tð Þ ¼ a 1� e�bW tð Þ
� �

ð2:7:8Þ

On similar lines we can develop Weibull type test-effort based SRGM for the
various time dependent SRGM discussed through out the book. For application of
model to actual data sets first the testing effort function is fitted to the observed
test-effort data and then parameters of the SRGM for failure or removal process is
determined with respect to the estimated test-effort data.

Note: The testing-effort functions proposed by Yamada et al. [19] can be
derived under the assumption that, ‘‘the testing effort consumption rate at any time
t during the testing process is proportional to the testing resource available at that
time’’ [56].

Differential equation describing the testing-effort expenditure rate is given by

dW tð Þ
dt

¼ v tð Þ a�W tð Þ½ � ð2:7:9Þ
where v(t) is the time-dependent rate at which testing resources are consumed,
with respect to remaining available resources. Solving Eq. (2.4.7) under the initial
condition W(t = 0) = 0, we get

W tð Þ ¼ a 1� exp

Z

t

0

v xð Þ dx

8

<

:

9

=

;

2

4

3

5 ð2:7:10Þ

74 2 Software Reliability Growth Models



Exponential, Rayleigh and Weibull testing-effort functions are obtained when
v(t) = v, v(t) = vt and v(t) = vctc-1, respectively.

2.7.3 Logistic and Generalized Testing Effort Functions

Parr [57] first advocated the use of logistic function to describe the use of resources
consumed by the software testing projects. Although Weibull-type testing-effort
functions provided good results for estimating the testing resource expenditures for
several projects and used for software reliability modeling by various authors, but
due to the peak phenomenon for c[ 3. It is not advisable to use on many occa-
sions. Hence Huang et al. [58] proposed an SRGM using the logistic test-effort
function proposed by Pharr. The logistic test-effort function exhibits similar
behavior to the Rayleigh curve, except during the early part of the project. The
logistic test-effort function over time period (0,t] can be expressed as

W tð Þ ¼ a

1þ be�ct
ð2:7:11Þ

Using the above test-effort function the current testing-effort consumption is
given as

w tð Þ ¼ d
dt
W tð Þ ¼ cbae�ct

1þ be�ctð Þ2
ð2:7:12Þ

The parameters a and c have the meaning same as above and b is a constant.
The current testing-effort produces a smooth bell-shaped curve, which reaches its
maximum value tmax when tmax = (1/c) ln b.

In contrast to the Weibull-type testing-effort function for which W(0) = 0, the
initial condition for the logistic TEF is, W(0) = 0. The divergence between the
Weibull-type curve and Logistic curve is concentrated in the earlier stages of
software development where progress is often least visible and formal accounting
procedures for recording the amount of testing-effort applied may not have been
instituted. It is possible for us to judge between these models using some statistical
test of their relative ability to fit actual failure data, such as adjusting the origin and
scales linearly [57]. The testing-effort function (2.4.11) when used in (2.4.6), the
mean value function of the SRGM is given by

m tð Þ ¼ a 1� e�bW� tð Þ
� �

; W� tð Þ ¼ W tð Þ �W 0ð Þ; W 0ð Þ ¼ a

1þ b
ð2:7:13Þ

Huang et al. [59] extended the logistic testing-effort function to a generalized
form. The generalized logistic testing-effort function has the advantage of relating
a work profile more directly to the natural structure of the software development.
Therefore, it can be used to pertinently describe the resource consumption during
the software development process and get a conspicuous improvement in modeling
the distribution of testing-effort expenditures.

2.7 Testing Effort Dependent Software Reliability Modeling 75



The generalized logistic test-effort function is given as

Wj tð Þ ¼ a
jþ 1ð Þ=A
1þ be�cjt

� �1=j

ð2:7:14Þ

where

j is structuring index with large values
A is a constant

If j = 1 and A = 2 test-effort function (2.7.14) reduces to (2.7.11) and if we set
A = j + 1 a generalized and simple testing-effort function is obtained given as

Wj tð Þ ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ be�cjtk
p ð2:7:15Þ

For (2.7.15) curve reaches its maximum value tmax when

tmax ¼
ln b=j

cj
ð2:7:16Þ

Logistic testing-effort functions have been used by various researchers to for-
mulate SRGM. Kuo et al. [24] used logistic test-effort function to propose several
SRGM with constant, non-decreasing and non-increasing fault-detection rates.
Huang et al. [27] incorporated the effect of testing-effort consumption function in
the Yamada delayed S-shaped model [13].

2.7.4 Log Logistic Testing Effort Functions

Recently, Bokhari and Ahmad [22] presented how to use Exponentiated Weibull,
log-logistic and Burr type III curves to describe the testing-effort function.

The Exponentiated Weibull model was originally proposed by Mudholkar and
Srivastava [60] for reliability analysis of hardware systems. This model can
generate exponential, Rayleigh and Weibull curves as a special case and is given
as

W tð Þ ¼ a 1� e�btc
� 	h

; h[ 0 ð2:7:17Þ

The cumulative log-logistic testing-effort function over the time interval [0,t] is
given by

W tð Þ ¼ a
btð Þc

1þ btð Þc
� �

ð2:7:18Þ

76 2 Software Reliability Growth Models



and the Burr Type XII test-effort function is given as

W tð Þ ¼ a 1� 1þ btð Þcð Þ�mð Þ ð2:7:19Þ

The performance of these test-effort functions is judged on exponential SRGM
(2.7.8) from their relative ability to fit actual failure data.

2.7.5 Modeling the Effect of Fault Complexity with Respect

to Testing Efforts Considering Debugging Time Lag

Assuming a1, a2, a3; a1 ? a2 ? a3 = a be the initial fault content of simple, hard
and complex faults [41], simple faults are described by exponential SRGM
assuming no delay in fault-correction process

dm1 tð Þ=dt
w tð Þ ¼ b1 a1 � m1 tð Þð Þ ð2:7:20Þ

m1 tð Þ ¼ a1 1� e�b1W� tð Þ
� �

; W� tð Þ ¼ W tð Þ �W 0ð Þ ð2:7:21Þ

Fault-detection process for hard faults remains same as that of simple faults
while the fault-correction process is described by

dm2 tð Þ=dt
w tð Þ ¼ b2 a2 � m2 tð Þð Þ m1 W tð Þ � DW tð Þð Þ

a1

� �

ð2:7:22Þ

defining

DW tð Þ ¼ 1=b1ð Þ ln 1þ b1W
� tð Þð Þ ð2:7:23Þ

m2 tð Þ ¼ a2 1� e
2b2
b1

1� e�b1W� tð Þ
� �

� b2W
� tð Þ 1þ e�b1W� tð Þ
� �

� �� �

ð2:7:24Þ

For complex fault also the detection process is described by (2.7.21) while the
correction process is described by

dm2 tð Þ=dt
w tð Þ ¼ b3 a3 � m3 tð Þ½ � m1 W tð Þ � DW tð Þð Þ

a1

� �

ð2:7:25Þ

defining

DW tð Þ ¼ 1=b1ð Þ ln 1þ b1W
� tð Þ þ b1W

� tð Þð Þ2
.

2
� �

ð2:7:26Þ

Equation (2.6.22) implies

2.7 Testing Effort Dependent Software Reliability Modeling 77



m3 tð Þ ¼ a3 1� e

3b3
b1

1� 1þ b1W
� tð Þð Þe�b1W� tð Þ

� �

� b3W
� tð Þ 1� 1� b1W� tð Þ

2

� �

e�b1W� tð Þ
� �

0

B

B

@

1

C

C

A

0

B

B

@

1

C

C

A

ð2:7:27Þ

The mean value function of the SRGM is

m tð Þ ¼ m1 tð Þ þ m2 tð Þ þ m3 tð Þ; a1 þ a2 þ a3 ¼ a

In this section we have defined various testing effort functions proposed in
literature. Many authors have shown how to incorporate these test-effort functions
in software reliability modeling and proposed exponential as well as S-shaped
SRGM using them. We can incorporate the effect of testing-effort functions in
most of the existing calendar time models. In the later chapters of this book we
will discuss some integrated SRGM incorporating the testing-effort functions.

2.8 Software Reliability Growth Modeling Under Distributed
Development Environment

Several challenges are faced by the software developers. Size and complexity
of the software has increased far beyond the most optimistic forecast. Growth in
the abilities to design, test and maintain software is still slower than required.
Along with this software users want faster deliveries with discounted cost. Due to
these associated reasons software developers tend to develop and maintain the
software under distributed development environment (DDE). In a distributed
environment the software development is realized by mapping the full set of
system requirements across the various sub-systems. These subsystems are inte-
grated to make the complete software. Development of each subsystem (module)
is distributed to various teams who develop their piece of software indepen-
dently. Some of the modules are build on the existing software/modules, modified
and extended to engineer the new release while some of them are wholly new
components. Role of software reliability growth models is still important in con-
trolling and managing the development of quality software under distributed
environment.

The first attempt in software reliability growth modeling under DDE was due to
Yamada et al. [61] who assumed that the software is consisting of ‘n’ used and ‘m’
newly developed components. The mean value function of the failure phenomenon
for the used component was described by an exponential curve (GO model) while
it is S-shaped (Yamada delayed S-shaped model) for the newly developed com-
ponents. The mean value function for the software system is the sum of the mean
value functions of its entire components. As such the model can be given as
follows

78 2 Software Reliability Growth Models



m tð Þ ¼ a
X

n

i¼1
pi 1� e�bit
� 	

þ
X

m

j¼1

pnþj 1� 1þ bnþjt
� �

e�bnþj:t
� �

" #

ð2:8:1Þ

where

pi is the proportion of faults in the ith component
bi is the FDR/FRR of the ith component

Kapur et al. [62] formulated a flexible SRGM to describe DDE. They integrated
the concept of fault complexity with software reliability modeling for distributed
development environment. They assumed faults in the used component to be of
simple type and used GO model to describe their failure phenomenon. For newly
developed components (m in number) they assumed some of them contain hard
faults while faults in the remaining are of complex type. Hence as such the failure
and removal phenomenon for these components is described by two- and three-
stage process (as in modeling faults of varying complexities, see Sect. 2.4). They
also incorporated the learning of the testing team in their model.

2.8.1 Flexible Software Reliability Growth Models

for Distributed Systems

Along with the general assumptions of NHPP models [62] distinctive assumptions
of the model are

1. There is finite number of reused and newly developed software sub-systems.
2. The time delay between the failure observation and its subsequent removal is

assumed to represent the complexity of fault. The more severe the fault, more
the time delay.

3. Fault removal rate of the reused sub-system is constant.
4. FRR of newly developed components is a logistic learning function as it is

expected that the debugging team gets learning as the testing progresses.

Notation

a Total fault content
ai Initial fault content of ith component
bi Proportionality constant of FDR/fault isolation rate (FIR) per fault of ith

component
bj(t) Logistic learning FRR of ith component (newly developed)
mir(t) Mean number of faults removed from ith component by time t
mif(t) Mean number of failures observed in the ith component (newly developed)

by time t
miI(t) Mean number of faults isolated from ith component (newly developed) by

time t

2.8 Software Reliability Growth Modeling 79



g A constant parameter in the logistic learning function
p Number of reused components having simple type of faults
q Number of new components having hard faults
s Number of new components having complex faults

2.8.1.1 Model for Reused Components

It is assumed that the faults in the reused components are simple faults, which can
be removed instantly as soon as they are observed. Hence fault removal in reused
components is modeled as one-stage processes

d
dt
mir tð Þ ¼ bi ai � mir tð Þð Þ i ¼ 0; 1; . . .; p ð2:8:2Þ

Mean value function of fault removal process for the reused components
obtained under the boundary condition mir(t = 0) = 0 is

mir tð Þ ¼ ai 1� e�bit
� 	

ð2:8:3Þ

2.8.1.2 Model for Newly Developed Components

Software faults in the newly developed software component can be of different
complexity. Newly developed components are classified into two categories one
containing hard faults and the other containing complex faults.

Components Containing Hard Faults

The fault removal process of these components is modeled as a two-stage process

d
dt
mifðtÞ ¼ bi ai � mifðtÞð Þ i ¼ pþ 1; . . .; pþ q ð2:8:4Þ

d
dt
mir tð Þ ¼ bi tð Þ mif tð Þ � mir tð Þð Þ i ¼ pþ 1; . . .; pþ q ð2:8:5Þ

where

biðtÞ ¼
bi

1þ ge�bit
ð2:8:6Þ

Equation (2.8.6) describes the learning of the debugging process over the
testing period. Mean value function of fault removal process for the new com-
ponents containing hard faults obtained under the boundary condition mif(t = 0) =
mir(t = 0) = 0 is

80 2 Software Reliability Growth Models



mir tð Þ ¼ ai
1� 1þ bitð Þe�bit
� 	

1þ ge�bit
i ¼ pþ 1; . . .; pþ q ð2:8:7Þ

Components Containing Complex Faults

These faults require greater time lag between failure observation and removal.
Hence a three-stage process is used to describe their removal-observation, isolation
and removal.

d
dt
mif tð Þ ¼ bi ai � mif tð Þð Þ i ¼ pþ qþ 1; . . .; pþ qþ s ð2:8:8Þ

d
dt
miI tð Þ ¼ bi mif tð Þ � miI tð Þð Þ i ¼ pþ qþ 1; . . .; pþ qþ s ð2:8:9Þ

d
dt
mir tð Þ ¼ bi tð Þ miI tð Þ � mir tð Þð Þ i ¼ pþ qþ 1; . . .; pþ qþ s ð2:8:10Þ

where bi(t) is as given by (2.8.6).
The fault removal phenomenon is hence given by the following equation under

the boundary condition, mif(t = 0) =miI(t = 0) = mir(t = 0) = 0

mir tð Þ ¼ ai
1� 1þ bit þ b2i t

2=2
� 	� 	

e�bit
� 	

1þ ge�bit
ð2:8:11Þ

2.8.1.3 Modeling Total Fault Removal Phenomenon

Total fault removal phenomenon for the software is superposition of SRGM for ‘p’
reused and ‘q ? s’ newly developed components. From Eqs. (2.8.3), (2.8.7) and
(2.8.3) the SRGM for software developed under DDE is given as

m tð Þ ¼
X

p

i¼1

ai 1� e�bit
� 	

þ
X

pþq

i¼pþ1

ai
1� 1þ bitf ge�bit
� �

1þ ge�bit

þ
X

pþqþs

i¼pþqþ1

ai
1� 1þ bit þ b2i t

2

2

n o

e�bit
h i

1þ ge�bit

ð2:8:12Þ

2.8 Software Reliability Growth Modeling 81



2.8.2 Generalized SRGM for Distributed Systems

with Respect to Testing Efforts

Along with the general assumptions of NHPP (refer Sect. 2.3.1) and 1–2 of
Sect. 2.8.1 specific assumption of the model [52] is

1. Fault removal rate of the reused sub-system is power function of testing-efforts.
2. Fault removal rate of newly developed components power logistic learning

function of testing time as it is expected the debugging team gets learning as the
testing progresses.

Additional Notation

a Total fault content
ai Initial fault content of ith component
bi Proportionality constant of FDR/fault isolation rate (FIR) per fault of

ith component
bj(t) Power logistic learning FRR of ith component (newly developed)
mir(t) Mean number of faults removed from ith component by time t
mif(t) Mean number of failures observed in the ith component (newly

developed) by time t
miI(t) Mean number of faults isolated from ith component (newly developed)

by time t
g A constant parameter in the logistic learning function
p Number of reused components having simple type of faults
q Number of new components having hard faults
s Number of new components having complex faults
d Constant power
W(t), W Cumulative testing-effort by time t

2.8.2.1 Model for Reused Components

It is assumed that the faults in the reused components are simple faults, which can
be removed instantly as soon as they are observed. Hence fault removal of reused
components is modeled as one-stage processes

dmir tð Þ=dt
w tð Þ ¼ biW

d ai � mir tð Þð Þ i ¼ 0; 1; . . .; p ð2:8:13Þ

Mean value function of fault removal process for the reused components
obtained under the boundary conditions mir(t = 0) = 0 and W(0) = 0 is

82 2 Software Reliability Growth Models



mir tð Þ ¼ ai 1� e � biW
dþ1

� 	


d þ 1ð Þ
� 	� 	

ð2:8:14Þ

For different values of d different types of growth curves are captured.

2.8.2.2 Model for Newly Developed Components

Software faults in the newly developed software component can be of different
complexity. Newly developed components are classified into two categories: one
containing hard faults and the other containing complex faults.

Components Containing Hard Faults

The fault removal process of these components is modeled as a two-stage process

dmif tð Þ=dt
w tð Þ ¼ biW

d ai � mif tð Þð Þ i ¼ pþ 1; . . .; pþ q ð2:8:15Þ

dmir tð Þ=dt
w tð Þ ¼ bi Wð Þ mif tð Þ � mir tð Þð Þ i ¼ pþ 1; . . .; pþ q ð2:8:16Þ

where

bi Wð Þ ¼ biWd

1þ ge � biWdþ1ð Þ= d þ 1ð Þð Þ ð2:8:17Þ

Equation (2.8.17) describes the learning of the debugging process over the
testing period. Mean value function of fault removal process for the new com-
ponents containing hard faults obtained under the boundary condition mif(t = 0) =
mir(t = 0) = W(0) = 0 is

mir tð Þ ¼ ai
1� 1þ biWdþ1

� 	


d þ 1ð Þ
� 	

e � biWdþ1
� 	


d þ 1ð Þ
� 	� 	

1þ ge biWdþ1ð Þ= d þ 1ð Þð Þ
i ¼ pþ 1; . . .; pþ q

ð2:8:18Þ

Components Containing Complex Faults

These faults require greater time lag between failure observation and removal.
Hence a three-stage process is used to describe their removal-observation, isolation
and removal.

dmif tð Þ=dt
w tð Þ ¼ biW

d ai � mif tð Þð Þ i ¼ pþ qþ 1; . . .; pþ qþ s ð2:8:19Þ

2.8 Software Reliability Growth Modeling 83



dmiI tð Þ=dt
w tð Þ ¼ biW

d mif tð Þ� miI tð Þð Þ i ¼ pþ qþ 1; . . .; pþ qþ s ð2:8:20Þ

dmir tð Þ=dt
w tð Þ ¼ bi Wð Þ miI tð Þ � mir tð Þð Þ i ¼ pþ qþ 1; . . .; pþ qþ s ð2:8:21Þ

where bi(t) is as given by (2.8.6).
The fault removal phenomenon is hence given by the following equation under

the boundary condition, mif(t = 0) = miI(t = 0) = mir(t = 0) = W(0) = 0

mir tð Þ ¼ ai

1�
1þ biW

dþ1
� 	


d þ 1ð Þ

þ biW
dþ1

� 	


d þ 1ð Þ
� 	2

=2
� �

0

@

1

Ae � biWdþ1
� 	


d þ 1ð Þ
� 	

0

@

1

A

1þ ge � biWdþ1ð Þ= d þ 1ð Þð Þ
i ¼ pþ qþ 1; . . .; pþ qþ s

ð2:8:22Þ

2.8.2.3 Modeling Total Fault Removal Phenomenon

Total fault removal phenomenon for the software is superposition of SRGM for ‘p’
reused and ‘q ? s’ newly developed components and is given by the sum of the
mean value functions in Form Eqs. (2.8.14), (2.8.18) and (2.8.22) the SRGM for
software developed under DDE is given as

m tð Þ ¼
X

p

i¼1

ai 1� e�bit
� 	

þ
X

pþq

i¼pþ1

ai
1� 1þ bitf ge�bit
� �

1þ ge�bit

þ
X

pþqþs

i¼pþqþ1

ai
1� 1þ bit þ b2i t

2

2

n o

e�bit
h i

1þ ge�bit

ð2:8:23Þ

Other SRGM for distributed development environment analyzing testing cov-
erage and fault complexity are formulated by Kapur et al. [63] and Yadav et al.
[64] respectively. We will discuss them in the later chapters.

2.9 Data Analysis and Parameter Estimation

A number of SRGM have been discussed in this chapter. The task of model vali-
dation follows the model development process. Once a model has been validated it
can be used for practical application. In the model validation the unknown param-
eters of the developed model are estimated on some past or collected failure data sets
and using these estimated parameters estimates are obtained for those data. This
process establishes the validity of the model. Successful application of an SRGM
depends on a number of factors: majority of them include the testing profile under

84 2 Software Reliability Growth Models



consideration, major factors affecting the testing process, characteristic of the
selected model, methods used to collect the data and nature, precision and consis-
tency of the collected data. For any practical application some representative models
have been selected (see Sect. 1.5.4). Application of these selected SRGM on the
observed data involves, first estimating the unknown parameter of the models using
the collected data. Our knowledge of statistics helps in this regard. Maximum
Likelihood Estimate (MLE) and Non-linear Least Square (NLLS) [65, 66] are the
two most widely used estimation techniques. Second, predictive power of the
models is judged by estimating the model parameters on the truncated data and
predicting it over the remaining. Third step involves determining which model(s)
accurately fits data. Various criteria are used in the literature to measure the good-
ness of fit and predictive power of the models such as Mean Square, Variation, Bias,
Mean Square Prediction Error, R2, AIC, Relative Prediction Error Chi-squared test,
etc. The model(s) which describe the testing process accurately are chosen to esti-
mate and predict the failure and removal phenomenon and plotted against observed
values on time scale to obtain the goodness offit curves. This information is useful to
quantitatively measure the various aspects of the testing process and environment
and further decisionmaking. Detailed discussion on parameter estimation andmodel
validation has been carried in Sects. 1.6 and 1.7.

Most of the NHPP models existing in the literature are non-linear and solutions
of their first-order equations are difficult to find using NLLS and MLE and require
numerical algorithms to solve. In this book we have used the software package
SPSS for model validation and parameter estimation. We have selected some
models discussed in the chapter and now we show the process of model validation
and parameter estimation on these models.

Failure data set

The interval domain data are taken from Misra [67] in which the number of faults
detected per week (38 weeks) is specified and a total of 231 faults were detected.
Three types of faults—critical (1.73%), major (34.2%) and minor (64.07%) are
present in the software. Mean square of error (MSE) and R2 are taken as the
goodness of fit criteria.

2.9.1 Application of Time Dependent Models

The following models have been selected for illustrating the data analysis and
parameter estimation.

Model 1 (M1) The basic execution time model [6]

m tð Þ ¼ a 1� e� k0=að Þt
� �

2.9 Data Analysis and Parameter Estimation 85

http://dx.doi.org/10.1007/978-0-85729-204-9_1
http://dx.doi.org/10.1007/978-0-85729-204-9_1
http://dx.doi.org/10.1007/978-0-85729-204-9_1


Model 2 (M2) Goel–Okumoto model [4]

m tð Þ ¼ a 1� e�bt
� 	

Model 3 (M3) Yamada–Osaki model [15]

m tð Þ ¼ a
X

2

1

pi 1� e�bit
� 	

Model 4 (M4) Yamada delayed S-shaped model [13]

mr tð Þ ¼ a 1� 1þ btð Þe�bt
� 	

Model 5 (M5) Bittanti’s flexible model [16]

m tð Þ ¼ a
ui euf t � 1ð Þ

uf þ ui euf t � 1ð Þ

� �

Model 6 (M6) SRGM for error removal phenomenon [17]

mr tð Þ ¼ a
1� e� pþqð Þt

1þ q=pð Þe� pþqð Þt

� �

Model 7 (M7) Generalized SRGM (Erlang) [35]

m tð Þ ¼a1 1� e�b1t
� 	

þ a2 1� 1þ b2tð Þe�b2t
� 	

þ a3 1� 1þ b3tþ b23t
2=2

� 	� 	

e�b3t
� 	

;

a1 þ a2 þ a3 ¼ a p1 þ p2 þ p3ð Þ; p1 þ p2 þ p3 ¼ 1

Model 8 (M8) Incorporating fault complexity considering learning phenomenon
(flexible Erlang) [38]

m tð Þ ¼ a1 1� e�b1t
� 	

þ a2 1� 1þ b2tð Þe�b2t
� 	

1þ b2e�b2t

þ a3
1� 1þ b3t þ b23t

2=2
� 	� 	

e�b3t
� 	

1þ b3e�b3t

Model 9 (M9) Xie and Zao model [46]

mr tð Þ ¼
a

b
1� ð1þ ctÞe�bt
� 	

86 2 Software Reliability Growth Models



Model 10 (M10) Fault dependency and debugging time lag model [47]

mi tð Þ ¼ ap1 1� e�bt
� 	

; md ¼ ap2 1� e� ap1 1�e�btð Þ�bcap1tð Þ=abð Þ
� �

The unknown parameters of all these models have been estimated using the
regression module of SPSS. The values of estimated parameters have been tabu-
lated in Table 2.1. Values in the open brackets are the parameters whose values
have been given in the table. Figures 2.3 and 2.4 show the goodness of fit curves
for the estimation results shown in Table 2.1 and future predictions of exponential
and S-shaped failure curves, respectively.

Table 2.1 Estimation result for model 1 to model 10

Model Estimated parameters Comparison criteria

MSE R2

M1 476
(a)

0.0162
(k0)

– – – – 21.23 0.9946

M2 476
(a)

0.0162
(b)

– – – – 21.23 0.9946

M3 615
(a)

0.0083
(b1)

0.0284
(b2)

0.7824
(p1)

0.2176
(p1)

– 22.60 0.9950

M4 230
(a)

0.1010
(b)

– – – – 133.35 0.9660

M5 587
(a)

0.0133
(ui)

0.0083
(uf)

– – – 21.28 0.9950

M6 427
(a)

0.0180
(p)

0.0024
(q)

– – – 22.47 0.9940

M7 537
(a)

0.0226
(b1)

0.0140
(b2)

0.0429
(b3)

– – 22.04 0.9950

M8 389
(a)

0.033
(b1)

0.11275
(b2)

0.3656
(b3)

317.14
(b1)

567.53
(b2)

16.08 0.9960

M9 8
(a)

0.0161
(b)

0.00001
(c)

– – – 23.17 0.9940

M10 668
(a)

0.0162
(b)

0.99999
(c)

0.7108
(p1)

0.2892
(p2)

– 23.16 0.9940

Fig. 2.3 Goodness of fit
curve for exponential SRGM
(M1–M3, M7, M9, and M10)

2.9 Data Analysis and Parameter Estimation 87



For the estimation purpose the percentages of critical, major and minor faults
have been taken according to the collected data. i.e. p1 = 0.6407, p2 = 0.34199
and p3 = 0.01732. From Table 2.1 we can see that model M8 fits best to this
failure data, with MSE = 16.08 and coefficient of determination R2

= 0.9960. As
64% of the faults are of simple type from the data analysis we can say these failure
data shows an exponential trend. Pure S-shaped model (M4) (Yamada et al. [13])
is not applicable to this data set. Mean square error is maximum for this model
(MSE = 133.35) and R2 is least (= 0.9660). All other model has given comparable
results. The MSE and R2 values for these models are nearly same. Excluding
Yamada et al. [13] model other models taken for the analysis were either expo-
nential or flexible. In case of flexible model Kapur and Garg [17] the result of
division of the parameter q and p i.e. q/p = 0.133 is very less to add S-shapedness
to the estimated failure curve. Same is the case of Bittanti’s flexible model. Hence
exponential models well describe this data set.

Five exponential models have been considered in this analysis; all of them have
been formulated on some different set of assumption. For a practical application one
needs to analyze the testing conditions applicable for the testing process under
consideration, characteristics and other dimensions of the software project for an
accurate selection of the model. For example if we consider the case of this failure
data set andwewant tomeasure the reliability of the software with respect to the type
of faults present in the software, flexible Erlang model best describes it. The esti-
mation results of this model can now be used to predict the future behavior of the
testing process and make decisions such as release time, and resource allocation.

The above data analysis establishes the estimation of the unknown parameters
for the various models. Besides estimation results and comparison criteria,
selection of a model for practical application is made on the basis of its predictive
validity. Estimation results of the data shows an exponential trend and flexible
Erlang model gives the best fit. For carrying the predictive validity of any model
the observed failure data is truncated in various proportions and using the results of
estimation on the truncated data series predictions are made for the remaining data.
Now we establish the predictive validity of the flexible Erlang model along with
the basic exponential model, Goel and Okumoto [4] model. The results of pre-
dictive analysis are tabulated in Tables 2.2 and 2.3.

0

50

100

150

200

250

300

350

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

Time (Weeks)
C

u
m

u
la

ti
v
e
 F

a
il
u

re
s

Actual  Data

M4

M5

M6

M8

Fig. 2.4 Goodness of fit
curve for S-shaped and
flexible models (M4–M8)

88 2 Software Reliability Growth Models



Predictive validity of the models is shown on data truncated to 95–60%.
Flexible Erlang model shows better predictive validity as compared to Goel and
Okumoto [4] model (GO model), although both models underestimate the
observed failure data (see column 8 of Table 2.2 and column 4 of Table 2.3).
However the level of underestimation is less in case of flexible Erlang model. For
both models result shows that even 60% of these observed data is sufficient to
predict successfully with relative predictive error (RPE) as low as -5.4% for the
flexible Erlang model and -8.23% for the GO model. The overall range of RPE
varies from 3 to 6% (approx) for the flexible Erlang model and approximately
5–8% for the GO model, suggesting good predictive validity of both the models.
Graphical plot of RPE for both the models is shown in Fig. 2.5.

From the result of predictive validity test we conclude that flexible Erlang
model has both good estimating and predictive power for this data set and the
information obtained from the analysis can now be used to measure the reliability
as well as further decision making.

2.9.2 Application of Test Effort Based Models

The Models chosen above for the numerical analysis and validation were all
formulated based on the time (execution/calendar time). We continue data analysis

Table 2.2 Predictive analysis for flexible Erlang model (M8)

Data
truncation
(%)

Estimated parameters m(38) RPE RPE
(%)

a b1 b2 b3 b1 b2

100 389 0.0340 0.1275 0.3656 317.14 567.53 224 -0.0319 -3.19
95 359 0.0371 0.0841 0.3917 38.73 967.78 219 -0.0516 -5.16
90 347 0.0384 0.0805 0.4315 29.11 967.00 217 -0.0599 -5.99
85 362 0.0360 0.0689 0.2626 19.23 79.70 217 -0.0597 -5.97
80 365 0.0364 0.0820 0.0199 24.27 67.00 224 -0.0305 -3.05
70 372 0.0344 0.0508 0.1845 6.10 35.80 219 -0.0531 -5.31
60 330 0.0390 0.0627 0.3040 6.20 586.31 219 -0.0540 -5.40

Table 2.3 Predictive analysis for Goel and Okumoto model (M2)

Data
truncation (%)

Estimated parameters m(38) RPE RPE (%)

a b1
100 475 0.0162 219 -0.0539 -5.39
95 413 0.0192 214 -0.0736 -7.36
90 405 0.0197 213 -0.0766 -7.66
85 409 0.0194 214 -0.0749 -7.49
80 400 0.0200 213 -0.0790 -7.90
70 421 0.0188 215 -0.069 -6.93
60 397 0.0201 212 -0.082 -8.23

2.9 Data Analysis and Parameter Estimation 89



in this section on the same data set. Now we establish the validity and estimate the
unknown parameters of some test-effort based models. The following SRGM have
been selected.

Model 11 (M11) Test-effort based Goal Okumoto model [20]

m tð Þ ¼ a 1� e�bW� tð Þ
� �

; W� tð Þ ¼ W tð Þ �W 0ð Þ

Model 12 (M12) Test-effort-based fault complexity model considering debugging
time lag [41]

m tð Þ ¼ a1 1� e�b1W� tð Þ
� �

þ a2 1� e
2b2
b1

1� e�b1W� tð Þ
� �

� b2W
� tð Þ 1þ e�b1W� tð Þ
� �

� �� �

þ a3 1� e

3b3
b1

1� 1þ b1W
� tð Þð Þe�b1W� tð Þ

� �

�b3W
� tð Þ 1� 1� b1W� tð Þ

2

� �

e�b1W� tð Þ
� �

0

B

B

B

@

1

C

C

C

A

0

B

B

B

@

1

C

C

C

A

;

W� tð Þ ¼ W tð ÞÞ �W 0ð Þ
a1 þ a2 þ a3 ¼ a p1 þ p2 þ p3ð Þ; p1 þ p2 þ p3 ¼ 1

First we have estimated the unknown parameters of the exponential, Rayleigh,
Weibull and Logistic test-effort functions using the data of cumulative test hours
spent in 38 weeks of testing for the data mentioned above. The results of esti-
mation are given in Table 2.4. On the basis of comparison criteria, the results of
estimation illustrate that the exponential test-effort function best describes this data
set and is hence chosen for further analysis. Using the values of the estimated
parameters of the exponential the test-effort function failure curve of the SRGM
can be estimated for the past 38 weeks period. Hence using these estimated values
parameters of models M11 and M12 are estimated. The results of estimation are

-0.0900

-0.0800

-0.0700

-0.0600

-0.0500

-0.0400

-0.0300

-0.0200

-0.0100

0.0000
100 95 90 85 80 70 60

Data Truncation

R
P

E

RPE for GO Model

RPE Flexible Erlang Model

Fig. 2.5 Relative prediction
error for the predictive
validity test

90 2 Software Reliability Growth Models



shown in Table 2.5. The result illustrates that model M11 fits better to this data set.
Further applicability of this model can be made on the basis of the predictive
validity results. Establishing the predictive validity of the model M11 is left as an
exercise for the readers. Figures 2.6 and 2.7 shows the goodness of fit curves for
the test-effort functions and the test-effort- based SRGM.

Exercises

1. Explain the basic difference between an execution time and calendar time based
software reliability growth model.

2. The failure curve described by most of the software reliability models is either
exponential or S-shaped. State the basic property of testing/operational profile
which explains each of these curves.

Table 2.4 Estimation results for test-effort functions

Test-effort function Estimated parameters Comparison criteria

a v c, b MSE R2

Exponential 25,887 0.0024 – 3,233.35 0.993
Rayleigh 2,241 0.0040 – 24,957.00 0.946
Weibull 5,063 0.0084 1.1639 4,534.14 0.983
Logistic 2,836 0.0985 10.49 9,751.70 0.98

Table 2.5 Estimation result for model 11 and model 12

Model Estimated parameters Comparison criteria

MSE R2

M2 538 (a) 0.0002 (b) – – 17.35 0.995
M8 336 (a) 0.0006 (b1) 0.0016 (b2) 0.00025 (b3) 19.94 0.995

Fig. 2.6 Goodness of fit
curve for test-effort functions

2.9 Data Analysis and Parameter Estimation 91



3. Assume that the mean value function of the detection process during testing of
a software is described by

mf tð Þ ¼ a 1� e�bt
� 	

Obtain the mean value function of the fault repair process if the time lag
function for the repair process is given by

(a)

/ tð Þ ¼ 1=bð Þ ln 1þ btð Þ

(b)

/ tð Þ ¼ 1=bð Þ ln 1þ bð Þe�bt

1þ be�bt

� �

4. What is a testing-effort function? What additional information can be obtained
if one chose to describe the testing process of software using an SRGM
described with respect to the testing-effort consumed?

5. Give the derivation of the Weibull-type test-effort functions based on the
assumption ‘‘the testing-effort consumption rate at any time t during the testing
process is proportional to the testing resource available at that time’’.

6. The models described in Sect. 2.3 are all developed based on the calendar time
component. Obtain the mean value function of the testing-effort-based SRGM
corresponding to the SRGM described in Sects. 2.3.1, 2.3.4 and 2.3.7.

7. Estimate the parameters of the models in Sect. 2.9.1 on a new data set and
analyze the result.

8. The data analysis carried in Sect. 2.9.2 suggests that the exponential test-effort
function best describes the data used. Fit Exponentiated Weibull test-effort
model on the same data and compare the results.

0

50

100

150

200

250

300

350

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

Time (Weeks)

C
u

m
u

la
ti

v
e

 F
a

il
u

re
s

Actual Failure Data

M11

M12

Fig. 2.7 Goodness of fit
curve for the test-effort based
models

92 2 Software Reliability Growth Models



References

1. Haugk G et al (1964) System testing of the no. 1 electronic switching system. Bell Syst Tech
J 9:2575–2592

2. Jelinski Z, Moranda P (1972) Software reliability research. In: Freiberger W (ed) Statistical
computer performance evaluation. Academic Press, New York, pp 465–484

3. Moranda P (1975) Predictions of software reliability during debugging. In: Proceedings
annual reliability and maintainability symposium, Washington, DC, pp 327–332

4. Goel AL, Okumoto K (1979) Time dependent error detection rate model for software
reliability and other performance measures. IEEE Trans Reliab R-28(3):206–211

5. Littlewood B, Verrall JL (1973) A Bayesian reliability growth model for computer software.
Appl Stat 22:332–346

6. Musa JD (1975) A theory of software reliability and its application. IEEE Trans Softw Eng
SE-1:312–327

7. Schneidewind NF (1972) An approach to software in reliability prediction and quality
control. In: Fall joint computer conference, AFIPS conference proceedings. AFIPS Press,
Montvale, pp 837–847

8. Schneidewind NF (1975) Analysis of error processes in computer software. Sigplan Not
10:337–346

9. Shooman M (1972) Probabilistic models for software reliability prediction. In: Freidberger W
(ed) Statistical computer performance evaluation. Academic Press, New York, pp 485–502

10. Schick GL, Wolverton RW (1973) Assessment of software reliability. Proceedings operations
research. Physica-Verlag, Wurzburg Wein, pp 395–422

11. Musa JD, Okumoto K (1984) A logarithmic Poisson execution time model for software
reliability measurement. In: Proceedings 7th international conference on software
engineering, Orlando, pp 230–237

12. Trachtenberg M (1990) A general theory of software reliability modeling. IEEE Trans Reliab
39(1):92–96

13. Yamada S, Ohba M, Osaki S (1983) S-shaped software reliability growth modeling for
software error detection. IEEE Trans Reliab R-32(5):475–484

14. Ohba M (1984) Software reliability analysis models. IBM J Res Dev 28:428–443
15. Yamada S, Osaki S (1985) Software reliability growth modeling: models and applications.

IEEE Trans Softw Eng 11:1431–1437
16. Bittanti S, Bolzern P, Pedrotti E, Pozzi N, Scattolini R (1988) A flexible modeling approach

for software reliability growth. In: Goos G, Harmanis J (eds) Software reliability modelling
and identification. Springer, Berlin, pp 101–140

17. Kapur PK, Garg RB (1992) A software reliability growth model for an error removal
phenomenon. Softw Eng J 7:291–294

18. Putnam LH (1978) A general empirical solution to the macro software sizing and estimating
problem. IEEE Trans Softw Eng 4:345–367

19. Yamada S, Ohtera H, Narihisa H (1986) Software reliability growth models with testing-
effort. IEEE Trans Reliab R-35:19–23

20. Yamada S, Hishitani J, Osaki S (1991) Test-effort dependent software reliability
measurement. Int J Syst Sci 22(1):73–83

21. Yamada S, Hishitani J, Osaki S (1993) Software reliability growth model with Weibull
testing effort: a model and application. IEEE Trans Reliab 42:100–105

22. Bokhari MU, Ahmad N (2006) Analysis of software reliability growth models: the case of
log-logistic test-effort function. In: Proceedings 7th IASTED international conference on
modeling and simulation, Montreal, QC, Canada, pp 540–545

References 93



23. Kapur PK, Goswami DN, Gupta A (2004) A software reliability growth model with testing
effort dependent learning function for distributed systems. Int J Reliab Qual Safety Eng
11(4):365–377

24. Kuo SY, Huang CY, Lyu MR (2001) Framework for modeling software reliability, using
various testing-efforts and fault-detection rates. IEEE Trans Reliab 50(3):310–320

25. Huang CY (2005) Performance analysis of software reliability growth models with testing-
effort and change-point. J Syst Softw 76:181–194

26. Huang CY, Lo JH, Kuo SY, Lyu MR (2002) Optimal allocation of testing resources for
modular software systems. In: Proceedings 13th IEEE international symposium on software
reliability engineering (ISSRE 2002), November 2002, Annapolis, MD, pp 129–138

27. Huang CY, Kuo SY, Lyu MR (2007) An assessment of testing-effort dependent software
reliability growth models. IEEE Trans Reliab 56(2):198–211

28. Downs T (1985) An approach to the modeling of software testing with some applications.
IEEE Trans Softw Eng 11(4):375–386

29. Trachtenberg M (1985) The linear software reliability model and uniform testing. IEEE Trans
Reliab R34(1):8–16

30. Dale CJ (1982) Software reliability evaluation methods. Technical Report ST-26750, British
Aerospace Dynamics Group

31. Ramamoorthy CV, Bastani FB (1982) Software reliability status and perspectives. IEEE
Trans Reliab 37(1):88–91

32. Musa JD, Iannino A, Okumoto K (1987) Software reliability: measurement, prediction,
application. McGraw-Hill, New York ISBN 0–07-044093-X

33. Ohba M (1984) Inflection S-shaped software reliability growth models. In: Osaki S,
Hatoyama Y (eds) Stochastic models in reliability theory. Springer, Berlin, pp 44–162

34. Kareer N, Kapur PK, Grover PS (1990) An S-shaped software reliability growth model with
two types of errors. Microelectron Reliab 30(6):1085–1090

35. Kapur PK, Younes S, Agarwala S (1995) Generalized Erlang software reliability growth
model. ASOR Bull 35(2):273–278

36. Kapur PK, Bardhan AK, Kumar S (2000) On categorization of errors in a software. Int J
Manag Syst 16(1):37–48

37. Kapur PK, Bardhan AK, Shatnawi O (2002) Why software reliability growth modeling
should define errors of different severity. J Indian Stat Assoc 40(2):119–142

38. Shatnawi O, Kapur PK (2008) A generalized software fault classification. WSEAS Trans
Comput 7(9):1375–1384

39. Kapur PK, Kumar A, Yadav K, Kumar J (2007) Software reliability growth modeling for
errors of different severity using change point. Int J Reliab Qual Safety Eng 14(4):311–326

40. Kapur PK, Singh VB, Yang BO (2007) Software reliability growth model for determining
fault types. In: Misra RB, Naikan VNA, Chaturvedi SK, Goyal NK (eds) Proceedings 3rd
international conference on reliability and safety engineering, INCREASE 2007, Udaipur,
pp 334–349

41. Kapur PK, Singh VB, BasirZadeh M (2008) Considering errors of different severity in
software reliability growth modeling using fault dependency and debugging time lag
functions. In: Verma AK, Kapur PK, Ghadge SG (eds) Advances in performance and safety
of complex systems. MacMillan India Ltd, Bangalore, pp 839–849

42. Kapur PK, Gupta A, Jha PC (2007) Reliability analysis of project and product type software
in operational phase incorporating the effect of fault removal efficiency. Int J Reliab Qual
Safety Eng 14(3):219–240

43. Kenny GQ (1993) Estimating defects in a commercial software during operational use. IEEE
Trans Reliab 42(1):107–115

44. Kapur PK, Bardhan AK, Jha PC (2003) Optimal reliability allocation problem for a modular
software system. OPSEARCH J Oper Res Soc India 40(2):133–148

94 2 Software Reliability Growth Models



45. Bass FM (1969) A new product growth model for consumer durables. Manag Sci 15:215–227
46. Xie M, Zao M (1992) The Schneidewind software reliability model revisited. In: Proceedings

3rd international symposium on software reliability engineering, pp 184–192
47. Kapur PK, Younes S (1995) Software reliability growth model with error dependency.

Microelectron Reliab 35(2):273–278
48. Huang CY, Lin CT (2006) Software reliability analysis by considering fault dependency and

debugging time lag. IEEE Trans Reliab 35(3):436–449
49. Lo HJ, Huang CY (2004) Incorporating imperfect debugging into software fault processes.

In: TENCON 2004. 2004 IEEE region 10 conference, vol 2, 21–24 November 2004,
pp 326–329

50. Singh VB, Yadav K, Kapur R, Yadavalli VSS (2007) Considering fault dependency concept
with debugging time lag in software reliability growth modeling using a power function of
testing time. Int J Autom Comput 4(4):359–368

51. Huang CY (2005) Cost reliability optimal release policy for software reliability models
incorporating improvements in testing efficiency. J Syst Softw 77:139–155

52. Kapur PK, Kumar A, Yadavalli VSS (2006) A general software reliability growth models for
a distributed environment. S Afr Stat J 40:151–185

53. Chu-Ti Lin, Chin-Yu Huang, Jun-Ru Chang (2005) Integrating generalized weibull-type
testing-effort function and multiple change-points into software reliability growth models.
APSEC, pp 431–438

54. Gupta A, Kapur R, Jha PC (2008) Considering testing efficiency in estimating software
reliability based on testing variation dependent SRGM. Int J Reliab Qual Safety Eng
15(2):77–81

55. Norden PV (1977) Project life cycle modeling: background and application of the life cycle
curves. Presented at the software life cycle management workshop, Airlie, VA sponsored by
US Army Computer Systems Command

56. Kapur PK, Gupta A, Shatnawi O, Yadavalli VSS (2006) Testing effort control using flexible
software reliability growth model with change point. Int J Performability Eng—Special issue
on Dependability of Software/Computing Systems 2:245–262

57. Parr FN (1980) An alternative to the Rayleigh curve for software development effort. IEEE
Trans Softw Eng SE-6:291–296

58. Huang CY, Kuo SY, Chen IY (1997) Analysis of a software reliability growth model with
logistic testing effort function. In: Proceedings 8th international symposium software
reliability engineering (ISSRE’97), pp 378–388

59. Huang CY, Lo JH, Kuo SY, Lyu MR (1999) Software reliability modeling and cost
estimation incorporating testing-effort and efficiency. In: Proceedings 10th international
symposium software reliability engineering (ISSRE’1999), pp 62–72

60. Mudholkar GS, Srivastava DK (1993) Exponentiated Weibull family analyzing bathtub
failure-rate data. IEEE Trans Reliab 42:299–302

61. Yamada S, Tamura Y, Kimura M (2000) A software reliability growth model for a distributed
development environment. Electron Commun Japan 83(3):1446–1453

62. Kapur PK, Gupta A, Kumar A, Yamada S (2005) Flexible software reliability growth models
for distributed systems. OPSEARCH J Oper Res Soc India 42(4):378–398

63. Kapur PK, Gupta A, Gupta A, Kumar A (2005) Discrete software reliability growth
modeling. In: Kapur PK, Verma AK (eds) Quality, reliability and IT (trends and future
directions). Narora Publications Pvt Ltd, New Delhi, pp 158–166

64. Yadav K, Goswami DN, Kapur PK (2007) Testing-domain based software reliability growth
models for distributed environment. In: Proceedings 3rd international conference on
reliability and safety engineering (INCRESE-2007), Udaipur, pp 614–628

65. Kapur PK, Garg RB, Kumar S (1999) Contributions to hardware and software reliability.
World Scientific, Singapore

66. Pham H (2006) System software reliability. Reliability engineering series. Springer, London
67. Misra PN (1983) Software reliability analysis. IBM Syst J 22:262–270

References 95



Chapter 3
Imperfect Debugging/Testing Efficiency
Software Reliability Growth Models

3.1 Introduction

Software systems are developed and designed, for automated functioning of sev-
eral types of real life functions of the mankind. Even though the creator of soft-
ware systems is the universe most dominant and intelligent creature, we cannot
deny the possibility of software failures during their operational period. These
failures are mainly due to the faults manifested in them by their designers. Pri-
marily, testing of software is performed with a goal to detect and remove most of
the underlying faults. Even though the software testing and debugging team puts
its best efforts, uses distinct methods, engineering techniques, well planed and
controlled strategies or the developers make heavy expenditure on testing and
debugging; we cannot be assure that the software can be made free of all type of
faults at the time of its launch. The faults present in the software at the time of its
release can be of three types. First, faults which remained undetected during
testing process. Second, faults which were detected and isolated but was not
repaired perfectly and third, the faults which got manifested in the software during
the removal of some isolated faults. The number of the first type of faults
remaining is related to the efficiency of testing which can be reduced by improving
the testing methods, testing coverage and resources but still 100% removal cannot
be assured due to the constraint of time and testing resources. The second and third
types of faults are related to the efficiency of the debugging team, a more skilled
debugging team can provide a better debugging service and reduce the number of
these types of faults. In software reliability modeling literature, efficiency of
debugging team is incorporated as in imperfect debugging software reliability
models. Imperfect removal of faults is called as imperfect fault debugging and
incorporation of new faults during removal of some existing fault is called as fault
generation.

Quality of test cases, testing environment, testing efficiency and the testing
efforts spent are some of the major factors influencing the reliability growth

P. K. Kapur et al., Software Reliability Assessment with OR Applications,
Springer Series in Reliability Engineering, DOI: 10.1007/978-0-85729-204-9_3,
� Springer-Verlag London Limited 2011

97



during the testing phase. Efficiency and skill of the testing and debugging team
greatly influence the testing process since it directly influences the software quality
and enables judicious use of testing efforts. Most SRGM formulated in literature
assume a perfect debugging environment, i.e. whenever an attempt is made to
remove a fault, it is removed perfectly and no new faults are generated; but in most
real life situations the debugging process is imperfect due to the reasons described
above. However the degree of imperfection may be very low. On the other hand,
most NHPP-based SRGM are based on the assumption that failure intensity beside
other factors depend on the number of faults remaining in the software. If the
imperfect debugging phenomenon is ignored, then an SRGM may provide an
optimistic estimate of the remaining fault content resulting in a misleading deci-
sion making process later. Thus, as the debugging process plays a very important
role in determining the remaining fault content, an SRGM must consider the effect
of testing efficiency and debugging process.

During the testing phase, a testing environment close to the operational envi-
ronment is created and test cases are executed on the software. Any departure from
specifications or requirements is termed as a failure. An immediate effort is made
to remove the cause of the failure. The fault removal team may not be able to
remove the fault perfectly at the detection of a failure and the original fault may
remain or be replaced by another fault. To ensure that the cause is perfectly fixed,
the software is tested on the same input and if a failure occurs again, the code is
checked again. Two possibilities can occur now [1]. The fault, which was thought
to be fixed perfectly, has been imperfectly repaired and caused same type of failure
again when checked on the same input (imperfect fault debugging-type I). How-
ever, it may also happen that some other kind of failure occurs which might be due
to the fact that the original fault was perfectly removed but some other fault was
generated while removing the cause of the failure (error generation-type II). It may
be noted here that generation of a new fault can be known only when the corrected
code is retested on the same input. Imperfect fault debugging causes more failures
as compared to removals when testing is continued for infinite time period but the
fault content remains the same. When faults are generated, the number of failures
increases because the fault content has increased. Figure 3.1 summarizes the two
types of imperfect debugging phenomenon.

The chapter focuses on software reliability growth models in an imperfect
debugging environment. We will describe various SRGM, some of which are
purely imperfect fault removal models, some describe error generation only while
others describe the integrated effect of two types of imperfect debugging. The
concept of imperfect debugging was first introduced by Goel [2]. He introduced
the probability of imperfect debugging in Jelinski and Moranda [3] model. Kapur
and Garg [4] introduced the imperfect debugging in Goel and Okumoto [5] model.
They assumed that the fault removal rate per remaining faults is reduced due to
imperfect debugging. Due to error generation phenomena failure count by time
infinity becomes more than the initial fault content. These describes the imperfect
debugging phenomenon of type I and the software reliability growth curve is
exponential. Ohba and Chou [6] introduced the effect of error generation

98 3 Imperfect Debugging/Testing Efficiency Software Reliability Growth Models



(imperfect debugging type II) into reliability modeling. Later, based on their
model other researchers in the field of reliability modeling further studied the
effect of error generation. It may be noted here that generally no distinction have
been made between the two types of imperfect debugging during the early stages
of research in imperfect debugging phenomenon. All these models have been
named as imperfect debugging models even though only one type is incorporated.
It has created confusion in providing appropriate insight into the topic as in [7].
Zhang et al. [8] was the first to integrate the two types, modeling it on the number
of failures experienced/removal attempts. However in practice a fault is generated
while removing some fault and existence of a generated fault is known only after
the removal of original fault. Therefore the fault generation rate is expected to be
proportional to the rate of fault removals. It may again be noted here that the
number of failures is not the same as the number of removals. Kapur et al. [1]
comprehensively integrated the two types of imperfect debugging phenomenon in
their model and clearly illustrated the facts related to imperfect debugging.

Notation

mf(t) Mean value function of fault detection process
mr(t) Mean value function of fault removal/correction process
a (ai = adi) Number of error in the software (or module i/type i) at the time of

start of software testing,
P

di ¼ 1
a(t) Expected initial error content at time t, a[ 0
p,(pi) Probability of perfect debugging of a fault, 0\ p, (pi\ 1
a (ai = adi) Number of error in the software (or module i/type i) at the time of

start of software testing,
P

di ¼ 1
a(t) Expected initial error content at time t, a[ 0
p,(pi) Probability of perfect debugging of a fault, 0\ p, (pi)\ 1
a,(ai) Constant rate of error generation, 0\ a,(ai)\ 1
b(t) Time dependent rate of fault removal per remaining faults
b, (bi) Constant rate of fault detection/removal per remaining faults in

software (module i/type i) 0\ b, (bi)\ 1
b, c Constant parameter in the logistic function

Fig. 3.1 Two types of
debugging environments

3.1 Introduction 99



3.2 Most Primitive Study in Imperfect Debugging Model

Goel [2] first considered effect of testing efficiency in reliability growth during
testing. They studied the effect of imperfect debugging on the Markovian model
[3]. Jelinski and Moranda model assumes that software faults at the start of testing
is a and each fault is independent of others and is equally likely to cause a failure
during testing. A detected fault is removed with certainty in a negligible time and
no new faults are introduced during the debugging process. The software failure
rate, or the hazard function, at any time is assumed to be proportional to the current
fault content of the program. In other words, the hazard function during ti, the time
between the (i - 1)th and ith failures, is

ZðtiÞ ¼ /ða� ði� 1ÞÞ ð3:2:1Þ

where / is a proportionality constant denoting failure rate per fault. The hazard
function is constant between failures but decreases in steps of size k (constant)
following the removal of each fault. This model assumes that the faults are
removed with certainty when detected. To overcome this limitation, Goel [2]
proposed an imperfect debugging model as an extension of this model. The
number of faults in the system at time t, X(t), is treated as a Markov process whose
transition probabilities are governed by the probability of imperfect debugging.
The times between the transitions of X(t) are taken to be exponentially distributed
with rates dependent on the current fault content of the system. The hazard
function during the interval between the (i - 1)th and ith failures is given by

ZðtiÞ ¼ /ða� pði� 1ÞÞ ð3:2:2Þ

where p denotes the probability of perfect debugging.

3.3 Exponential Imperfect Debugging SRGM

The models described in this section are based on the general assumptions of
NHPP SRGM. Apart from the NHPP assumption, the models here have some
additional assumptions on imperfect debugging phenomenon.

3.3.1 Pure Imperfect Fault Debugging Model

In this model [4] it is assumed that on a removal attempt, a fault is removed
perfectly with the probability p.

dmrðtÞ
dt

¼ pbða� mrðtÞÞ ð3:3:1Þ

100 3 Imperfect Debugging/Testing Efficiency Software Reliability Growth Models



dmf ðtÞ
dt
¼ bða� pmf ðtÞÞ ð3:3:2Þ

Solving (3.3.1) and (3.3.2) with the initial conditions mr(0) = 0 and mf(0) = 0
we get

mrðtÞ ¼ að1� e�bptÞ ð3:3:3Þ

mf ðtÞ ¼ a=pð Þð1� e�bptÞ ð3:3:4Þ

If p = 1 the model reduces to GO model with mr(t) = mf(t).

3.3.2 Pure Error Generation Model

Ohba and Chou [6] proposed the first SRGM incorporating the effect of error
generation based on GO model. They assumed a constant error generation rate a.
The following equation describes the failure phenomenon of the model

dmðtÞ
dt

¼ bðtÞ½aðtÞ � mðtÞ� with bðtÞ ¼ b; aðtÞ ¼ aþ amðtÞ ð3:3:5Þ

Solving Eq. (3.3.5) under the initial conditions m(0) = 0 we get

mðtÞ ¼ ða=1� aÞð1� e�bð1�aÞtÞ ð3:3:6Þ

3.3.3 Using Different Fault Content Functions

Yamada et al. [9] redefined Ohba and Chou [6] SRGM, proposing linear and
exponential forms of fault content function.

If we assume a(t) = aeat in (3.3.5), the mean value function of the SRGM is
given as

mðtÞ ¼ ab

aþ b
ðeat � e�btÞ ð3:3:7Þ

otherwise for a linear fault content function a(t) = a(1 ? at), mean value function
of the SRGM is given as

mðtÞ ¼ að1� e�btÞ 1� a

b

� �

þ aat ð3:3:8Þ

3.3 Exponential Imperfect Debugging SRGM 101



3.3.4 Imperfect Debugging Model Considering Fault Complexity

Fault categorization in SRGM is an important concept and when it is integrated
with the concept of testing efficiency, can provide very accurate estimation and
prediction of quality measures. Kapur et al. [10] and Lynch et al. [11] formulated
SRGM, integrating the effect of imperfect fault removal and fault generation
respectively considering three levels of fault complexity.

3.3.4.1 Pure Imperfect Fault Debugging Model

One stage debugging process of simple faults in the presence of imperfect fault
removal is defined by the differential equation

d

dt
m1f ðtÞ ¼ b1½a1 � pm1f ðtÞ� ð3:3:9Þ

m1f ðtÞ ¼ ða1=pÞð1� e�b1ptÞ

m1ðtÞ ¼ m1rðtÞ ¼ pm1f ðtÞ ¼ a1ð1� e�b1ptÞ ð3:3:10Þ

while the delay in failure detection and removal for hard faults is incorporated as a
two stage process defined as

d

dt
m2f ðtÞ ¼ b2½a2 � pm2f ðtÞ� ð3:3:11Þ

d

dt
m2rðtÞ ¼ b2½pm2f ðtÞ � m2rðtÞ� ð3:3:12Þ

m2ðtÞ ¼ m2rðtÞ ¼ a2 1� 1
1� p

e�b2pt þ p

1� p
e�b2t

� �

ð3:3:13Þ

The three stage fault removal process for the complex faults is defined as

d

dt
m3f ðtÞ ¼ b3½a3 � pm3f ðtÞ� ð3:3:14Þ

d

dt
m3iðtÞ ¼ b3½pm3f ðtÞ � m3iðtÞ� ð3:3:15Þ

d

dt
m3rðtÞ ¼ b3 m3iðtÞ � m3rðtÞ½ � ð3:3:16Þ

m3ðtÞ ¼ m3rðtÞ ¼ a3 1� 1

ð1� pÞ2
ðe�pb3t � e�b3tÞ � ð1� pð1þ b3tÞÞ

1� p
e�b3t

 !

ð3:3:17Þ

102 3 Imperfect Debugging/Testing Efficiency Software Reliability Growth Models



The fault removal rate per fault for simple, hard and complex faults is

b1; d2ðtÞ ¼
pb2ð1� e�b2ð1�pÞtÞ
1� pe�b2ð1�pÞt

and d3ðtÞ ¼
pb3ð1� ð1þ b3ð1� pÞtÞe�b3ð1�pÞtÞ

1� pðð1� pÞ þ ð1þ b3ð1� pÞtÞÞe�b3ð1�pÞt

d2(t) and d3(t) increase monotonically with t and tend to pb2 and pb3 as t ? ?.
Failure curves for hard and complex faults behave similar to the simple faults in
the steady state and hence pb2 and pb3 can be assumed equal to pb1 in steady state.
It is also observed that b1[ d2(t)[ d3(t) in steady state. The mean value function
of the SRGM is

mðtÞ ¼ m1ðtÞ þ m2ðtÞ þ m3ðtÞ; a1 þ a2 þ a3 ¼ a ð3:3:18Þ

The mean value function of SRGM describes the joint effect of the type of faults
present in the system on the reliability growth in the presence of imperfect repair
facilities.

3.3.4.2 Pure Error Generation Model

Lynch et al. incorporated the consideration of three types of faults in the software
in Ohba and Chou [6] fault generation SRGM. Fault detection rates are defined as
bi, i = 1, 2, 3 for simple, hard and complex faults respectively. Their model can be
described by the following differential equations

dmiðtÞ
dt

¼ bi½aiðtÞ � miðtÞ� ð3:3:19Þ

d

dt
aiðtÞ ¼ ai

d

dt
miðtÞ ð3:3:20Þ

Solving the above equations under the initial conditions ai(0) = adi and
mi(0) = 0, mean value function of the SRGM for simple, hard and complex faults
is given as

miðtÞ ¼ ðadi=1� aiÞð1� ebi 1�aið ÞtÞ i ¼ 1; 2; 3 ð3:3:21Þ

Mean value function of the total failure detection process is given as

mðtÞ ¼
X

3

i¼1

miðtÞ ¼
X

3

i¼1

ðadi=1� aiÞð1� ebið1�aiÞtÞ ð3:3:22Þ

where di is the proportion of the ith type of fault and
P3

i¼1 di ¼ 1:

3.3 Exponential Imperfect Debugging SRGM 103



3.3.5 Modeling Error Generation Considering Fault Removal

Time Delay

Lo and Huang [12] integrated error generation phenomenon in the SRGM, con-
sidering the time lag between failure detection and correction. They claimed that
an SRGM which considers both imperfect debugging and removal time delay can
often provide much realistic estimates as compared to the models assuming
instantaneous fault removal. They modified their generalized detection correction
model (see Section 2.5.2, Lo and Huang [12]) incorporating the constant proba-
bility of error generation. Assuming each time a failure occurs, the new fault may
be introduced in the fault correction process with a probability a, the differential
equations for failure detection and correction process are defined as

d

dt
mf ðtÞ ¼ kðtÞ½aðtÞ � mf ðtÞ�

and

d

dt
mrðtÞ ¼ lðtÞ½mf ðtÞ � mrðtÞ� ð3:3:23Þ

where

d

dt
aðtÞ ¼ a

d

dt
mðtÞ

The initial conditions mf(0) = 0 and mr(0) = 0 provide the solution

aðtÞ ¼ ða=1� aÞð1� ae�ð1�aÞDðtÞÞ ð3:3:24Þ

mf ðtÞ ¼ ða=1� aÞð1� e�ð1�aÞDðtÞÞ

and

mrðtÞ ¼ a=ð1� aÞe�CðtÞ
Z

t

0

cðsÞeCðsÞ 1� e�ð1�aÞDðsÞ
� �

ds

An application of the approach is shown assuming k(t) = k and l(t) = l, the
mean value functions for the failure detection and correction processes are given
as

mf ðtÞ ¼ ða=1� aÞð1� e�ð1�aÞktÞ ð3:3:25Þ

mrðtÞ ¼
a

ð1� aÞ 1þ l

kð1� aÞ � l
e�ð1�aÞkt � kð1� aÞ

kð1� aÞ � l
e�lt

� �

ð3:3:26Þ

104 3 Imperfect Debugging/Testing Efficiency Software Reliability Growth Models



3.4 S-Shaped Imperfect Debugging SRGM

Incorporation of imperfect debugging phenomenon in software reliability model-
ing provided promising improvement in reliability estimation and prediction,
together with better understanding of some aspects of testing and debugging, such
as current testing efficiency, requirements for improvement, expertise of testing
and debugging teams, etc. Earlier studies in imperfect debugging modeling were
mainly focused on exponential SRGM, but due to unrealistic assumption of a
uniform testing profile of exponential models, need of s-shaped and flexible
models was created. Studies in modeling the error generation phenomenon due to
Kapur and Younes [13] first satisfied this need. The s-shaped imperfect debugging
SRGM gained popularity by the work of Pham et al. [14]. Pham et al. [14]
proposed a generalized imperfect debugging fault generation SRGM with s-shaped
fault-detection rate in order to incorporate learning of the debugging team. The
assumption that failure intensity depends on the remaining fault content, neces-
sitates the incorporation of debuggers learning in the SRGM. Learning is a uni-
versal phenomenon and when the experience of the debuggers with the code
grows, it is likely that they remove more faults with increasing efficiency in the
later stages of the testing phase. On this account an SRGM ignoring the learning
phenomenon may provide a pessimistic estimate of the remaining fault content.
Pham et al. [14] compared their models with the existing exponential imperfect
debugging and some perfect debugging models. Fairly good results were obtained
for their models and with improved estimates.

3.4.1 An S-Shaped Imperfect Debugging SRGM

This is pure imperfect fault repair model which assumes the probability of
imperfect debugging, p(t) decreasing with testing time i.e. learning occurs with
testing progress and probability of imperfect debugging is proportional to the
number of errors remaining in the software. Under the other assumptions of NHPP
SRGM, the differential equation for the model is formulated as

d

dt
mrðtÞ ¼ bða� mrðtÞÞ � cpðtÞða� mrðtÞÞ; b[ c[ 0 ð3:4:1Þ

The model describes the removal intensity as intensity of perfect debugging
minus intensity of imperfect debugging. To account, the decreasing probability of
imperfect debugging, the p(t) is defined as

pðtÞ ¼ ða� mrðtÞÞ
a

ð3:4:2Þ

which decreases with time as remaining fault content (a - mr(t)) decreases. The
product cp(t) gives the instantaneous imperfect debugging rate. This rate is
maximum at the beginning of the testing phase (equal to c) and tends to its

3.4 S-Shaped Imperfect Debugging SRGM 105



minimum value (equal to zero) when all the original errors are removed. Further,
when the debugging is perfect, then c = 0 and the model reduces to GO model.
Solving Eq. (3.4.1) using (3.4.2) with the boundary condition mr (0) = 0, we
obtain

mrðtÞ ¼ a
ðb� cÞð1� e�btÞ
ðb� cÞ þ ce�bt

� �

ð3:4:3Þ

and the failure phenomenon is given as

mf ðtÞ ¼
Z

t

0

bða� mrðxÞÞ dx ¼
ab

c
ln

b

ðb� cÞ þ ce�bt

� �

ð3:4:4Þ

It can be noted here that mf ð0Þ ¼ mrð0Þ ¼ 0; mf ð1Þ ¼ ðab
cÞ ln b

b� c

� �

and

mrð1Þ ¼ a. Here mf ð1Þ is greater than a showing the presence of an imperfect
debugging efficiency.

3.4.2 General Imperfect Software Debugging Model with

S-Shaped FDR

Pham et al. [14] first proposed the general solution for the differential equation
(3.3.5) describing Ohba and Chou [6] model. General solution of Eq. (3.3.5) is

mrðtÞ ¼ e�
R t

t0
bðuÞ du

� �

m0 þ
Z

t

t0

aðtÞbðtÞe
R t

t0
bðuÞ du

dt

2

4

3

5 ð3:4:5Þ

where m0 = m(t0), t0 is the time point when testing starts.
The model is analyzed for linear fault content function and non-decreasing

s-shaped fault detection rate per remaining fault.

aðtÞ ¼ að0Þð1þ atÞ and bðtÞ ¼ bð0Þð1þ bÞ
1þ be�bð0Þð1þbÞt ð3:4:6Þ

a(0), b(0) are defined as initial fault content and initial per fault visibility. Mean
value function of the SRGM under the initial condition m(0) = 0 is

mðtÞ ¼ að0Þð1þ bÞ
1þ be�bð0Þð1þbÞt 1� a

bð0Þð1þ bÞ

� �

ð1� e�bð0Þð1þbÞtÞ þ at

� �

ð3:4:7Þ

Later Pham [15] analyzed this model with

aðtÞ ¼ aect or aðtÞ ¼ k þ að1� e�atÞ
and

bðtÞ ¼ b

1þ be�bt
ð3:4:8Þ

106 3 Imperfect Debugging/Testing Efficiency Software Reliability Growth Models



Following are the mean value function for the SRGM obtained with these fault
content functions.

mðtÞ ¼ ab

bþ c

eðbþcÞt � 1
ebt þ b

� �

ð3:4:9Þ

mðtÞ ¼ 1
1þ be�bt

ðk þ aÞð1� e�btÞ � a

b� a
ðe�at � e�btÞ

� �

ð3:4:10Þ

Kapur et al. [16] investigated the effect of imperfect debugging for the various
forms of fault generation function (a(t)) on Yamada et al. [17] delayed S-shaped
model. They also incorporated the learning phenomenon in these models.

3.4.3 Delayed Removal Process Modeling Under Imperfect

Debugging Environment

Kapur et al. [16] defined delayed s-shaped Yamada et al. [17] model in the
imperfect debugging environment using two forms of fault content function.

Assuming that fault generation rate at any time t is proportional to the fault
removal rate at that time i.e. a(t) = a ? am(t) in Yamada et al. [17] model, mean
value function of the failure and fault removal phenomena are obtained as

mf ðtÞ ¼
a

1� a

� �

1þ 1þ ffiffiffi

a
p

2
e�bð1� ffiffi

a
p Þt � 1� ffiffiffi

a
p

2
e�bð1þ ffiffi

a
p Þt

� �

ð3:4:11Þ

and

mrðtÞ ¼
a

1� a

� �

1� 1þ ffiffiffi

a
p

2
ffiffiffi

a
p e�bð1� ffiffi

a
p Þt þ 1� ffiffiffi

a
p

2
ffiffiffi

a
p e�bð1þ ffiffi

a
p Þt

� �

ð3:4:12Þ

On the other hand if a linear function of testing time is used to describe the fault
content, then mean value functions for failure and fault removal phenomena are
given as

mf ðtÞ ¼ a 1� a

b

� �

1� e�bt
	 


þ at
� �

ð3:4:13Þ

and

mrðtÞ ¼ a 1� ð1þ btÞe�bt � 2ða=bÞð1� e�btÞ þ atð1þ e�btÞ
	 


ð3:4:14Þ

Authors have also incorporated the learning phenomenon in this model. The
removal phenomenon in the presence of learning is defined as

d

dt
mrðtÞ ¼

1
1� be�bt

ðmf ðtÞ � mrðtÞÞ ð3:4:15Þ

3.4 S-Shaped Imperfect Debugging SRGM 107



with logistic per fault removal rate, the mean value function for the removal
phenomenon instead of (3.4.11) is given as

mrðtÞ ¼
a

1� be�bt
ð1� ð1þ btÞe�bt � 2ða=bÞð1� e�btÞ þ atð1þ e�btÞÞ ð3:4:16Þ

Authors have defined these models for different fault detection and removal
rates.

Kapur et al. [16] also proposed an alternative derivation of delayed s-shaped
Yamada et al. [17] (see Sect. 2.2.3) model to obtain it in single stage, assuming

dmðtÞ
dt

¼ bðtÞ½a� mðtÞ� where bðtÞ ¼ b2t

1þ bt
ð3:4:17Þ

mean value function of Yamada et al. [17] model can be obtained. The b(t) in
(3.4.14) can be considered as a learning fault detection rate.

The model is redefined, considering error generation for different fault content
functions i.e.

dmðtÞ
dt

¼ bðtÞ½aðtÞ � mðtÞ�

If aðtÞ ¼ aþ amðtÞ the mean value function of the SRGM is

mðtÞ ¼ a

1� a

� �

1� ð1þ btÞ1�ae
�bð1�aÞt� �

ð3:4:18Þ

and if a(t) = a(1 ? at), mean value function of the SRGM is [18]

mðtÞ ¼ a 1þ at � 1þ bt

ebt

� �

� aað1þ btÞ
bebt

lnð1þ btÞ þ
X

1

i¼0

ð1þ btÞðiþ1Þ � 1
ðiþ 1Þ!ðiþ 1Þ

 !

ð3:4:19Þ

All s-shaped models that have logistic fault removal rates are also flexible since
when the parameter b = 0, the SRGM reduces to an exponential type.

3.5 Integrated Imperfect Debugging SRGM

The SRGM discussed in the previous sections incorporates the effect of only one
type of imperfect debugging, either imperfect fault removal or fault generation.
The fact that both types of imperfect debugging may occurs simultaneously cannot
be ignored. On a fault removal occasion, a debugger can both repair the fault
incorrectly as well as introduce a new fault. As SRGM considers only imperfect
fault removal may give an estimate that the number of faults removed in the total

108 3 Imperfect Debugging/Testing Efficiency Software Reliability Growth Models

http://dx.doi.org/10.1007/978-0-85729-204-9_2
http://dx.doi.org/10.1007/978-0-85729-204-9_2


testing time equals the initial fault content ignoring the generation of faults during
debugging. Hence an optimistic estimate of reliability will be obtained. On the
other hand if only error generation is considered, more than one failure can cor-
respond to a single fault, resulting in more failures than removals. An estimate of
reliability based on failure observation may again be optimistic. It means even if
we are incorporating the effect of one type of imperfect debugging ignoring the
other type we may get an optimistic estimate of reliability. In order to obtain a
more accurate estimate of reliability, one must integrate the effect of the two types
of imperfect debugging simultaneously in the software reliability growth model-
ing. Few attempts have been made in the literature for developing comprehensive
models incorporating the two types. We describe these models in this section of
the chapter.

3.5.1 Testing Efficiency Model

Zhang et al. [8] integrated the effect of two types of imperfect debugging by
simultaneously considering the assumption of Kapur and Garg [4] pure imperfect
fault repair model and Ohba and Chou [6] fault generation SRGM. Assuming a
constant fault generation rate a, proportional to the failure intensity and constant
probability of perfectly debugging p, the model is defined as

d

dt
mðtÞ ¼ bðtÞðaðtÞ � pmðtÞÞ ð3:5:1Þ

where a(t) = a ? am(t) and bðtÞ ¼ c
ð1þbe�btÞ

� �

:

Mean value function of the failure phenomenon under the initial condition
mð0Þ ¼ 0 is

mðtÞ ¼ a

p� a
1� ð1þ bÞe�bt

1þ be�bt

� �ðc=bÞðp�aÞ !

ð3:5:2Þ

In the above model Zhang et al. [8] assumed that the fault generation rate is
proportional to the failure intensity in the presence of the possibility of imperfectly
removing a fault. However in practice a fault is generated while removing some
fault and existence of a generated fault is known, when original fault is removed
perfectly and the same test case that has caused the failure is executed to test the
corrected code. On the execution of this test case some other kind of failure is
observed. Therefore the fault generation rate should be defined proportional to the
rate of fault removal. The number of failures is not the same as the number of
removals if we assume that the debugging team may not be able to repair a fault
perfectly. The same fault may manifest on testing the corrected code for the same
input on imperfect removal. Testing efficiency model due to Kapur et al. [1]
corrected this ambiguity in modeling the two types of imperfect debugging.

3.5 Integrated Imperfect Debugging SRGM 109



3.5.2 Integrated Exponential and Flexible Testing Efficiency

Models

An generalized integrated testing efficiency model considering two types of
imperfect debugging is proposed by Kapur et al. [1]. Assuming that fault removal
rate per additional fault removed is reduced by the probability of perfect debug-
ging and a constant proportion of removed faults are generated while removal, the
general differential equation describing the failure and removal phenomenon is
given by

d

dt
mrðtÞ ¼ pbðtÞ½aðtÞ � mrðtÞ� ð3:5:3Þ

d

dt
aðtÞ ¼ aðtÞ � d

dt
mrðtÞ ð3:5:4Þ

d

dt
mf ðtÞ ¼ bðtÞ½aðtÞ � pmf ðtÞ� ð3:5:5Þ

Equations (3.5.3) and (3.5.5) establishes the relation

mrðtÞ ¼ pmf ðtÞ ð3:5:6Þ

Under the initial condition mr(0) = 0 and a(0) = 0 mean value function of the
removal phenomenon can be obtained from the following equation:

mrðtÞ ¼ e�p
R

ð1�aðuÞÞbðuÞ du ap
Z

t

0

bðxÞe�p
R

ð1�aðxÞÞbðxÞ dx dx

2

4

3

5 ð3:5:7Þ

and the failure phenomenon can be described using (3.4.6) and (3.4.7). For the
different forms of fault detection and removal rates per fault and error generation
functions, distinct integrated imperfect debugging SRGM can be obtained for the
perfect debugging model. Few special cases of the model have been analyzed by
the authors.

If a constant fault detection, removal and error generation rate describes the
failure and removal processes and error generation i.e. b(t) = b and a(t) = a, an
imperfect debugging model is obtained for GO model [19], given as

mrðtÞ ¼ ða=ð1� aÞÞð1� e�bpð1�aÞtÞ ð3:5:8Þ

In order to incorporate the efficiency of testing and debugging teams learning
forms of b(t) are used i.e.

bðtÞ ¼ b

ð1þ be�btÞ and bðtÞ ¼ b2t

1þ bt

with a(t) = a ? amr(t).

110 3 Imperfect Debugging/Testing Efficiency Software Reliability Growth Models



Now the mean value function of the removal processes corresponding to the
two learning functions are given as

mrðtÞ ¼
a

1� a
1� ð1þ bÞe�bt

1þ be�bt

� �pð1�aÞ" #

ð3:5:9Þ

and

mrðtÞ ¼
a

1� a
1� ð1þ btÞpð1�aÞe�bpð1�aÞt
h i

ð3:5:10Þ

The mean value function of the failure phenomena are derived from the relation
pmf(t) = mr(t).

It may be noted here that for (3.5.9), mr(?) = a/(1 - a) and mf(?) = a/
(p(1 - a)) whereas in Zhang’s testing efficiency model mf(?) = a/(p - a), which
implies that if testing is carried out for an infinite time more faults are removed as
compared to the initial fault content because there are some errors added to the
software due to error generation. The total number of generated faults by time
infinity as given by Kapur et al. model is a(t = ?) - a = (aa)/(1 - a) whereas
for Zhang’s model it is (a(1 - p ? a))/(p - a). It is important to note that
imperfect repair of faults results in more number of failures than removals and has
no contribution to increasing the fault content. Whereas, the result of Zhang’s
models yields the total number of generated errors as a function of both p and a.

Kumar et al. [20] integrated the concept of delayed fault removal process in
their generalized two type imperfect debugging model. Such a comprehensive
model can prove to be very useful in real life applications as it does not make
simplistic assumptions on many distinct aspects. The effect of imperfect debug-
ging, learning phenomenon and delayed removal process are considered simulta-
neously. The removal processes in hard and complex faults of fault complexity
model discussed in Sect. 2.2.3 is first obtained directly prior to the failure process
definition by alternatively deriving the model in one stage. It can be noted here that
models for hard and complex faults consider the time delay between failure
observation and removal. This is done to first define the removal process in the
presence of imperfect debugging and then obtain the failure process using
Eq. (3.5.6).

The removal process for two stage SRGM [20] (observation and removal)
considering learning and imperfect debugging is obtained using

bðtÞ ¼ b
1

1þ be�bt
� 1
1þ bþ bt

� �

ð3:5:11Þ

The differential equation (3.5.3) with a(t) = a ? a mr(t) using above fault
detection rate yields

mrðtÞ ¼
a

1� a
1� ð1þ bþ btÞe�bt

1þ be�bt

� �pð1�aÞ" #

ð3:5:12Þ

3.5 Integrated Imperfect Debugging SRGM 111

http://dx.doi.org/10.1007/978-0-85729-204-9_2
http://dx.doi.org/10.1007/978-0-85729-204-9_2


Similarly the removal process for three stage SRGM (observation, isolation and
removal) considering learning and imperfect debugging is obtained using

bðtÞ ¼ b
1

1þ be�bt
� ð1þ btÞ
ð1þ bþ bt þ ðb2t2=2ÞÞ

� �

ð3:5:13Þ

The differential equation (3.5.3) with a(t) = a ? a mr(t) using above fault
detection rate yields

mrðtÞ ¼
a

1� a
1� ð1þ bþ bt þ ðb2t2=2ÞÞe�bt

1þ be�bt

� �pð1�aÞ" #

ð3:5:14Þ

These models can also be used to define the fault complexity. Superimposing
the mean value functions (3.5.8), (3.5.12) and (3.5.14) we obtain an SRGM
defining fault complexity, delayed removal process, effect imperfect debugging
and learning phenomenon simultaneously.

3.6 Test Effort Based Imperfect Debugging Software Reliability
Growth Models

In Chap. 2 we explained the importance of testing resource consideration in
software reliability growth modeling. Several SRGM under perfect debugging
environment were discussed there. An SRGM defined with respect to testing effort
function, incorporating effect of imperfect debugging becomes more meaningful in
terms of the useful information it can provide.

3.6.1 Pure Imperfect Fault Debugging Model

Kapur et al. [10] defined an s-shaped imperfect debugging model based on test
efforts. The model is defined as

d

dt
mrðtÞ

�

wðtÞ ¼ bða� mrðtÞÞ � cpðtÞða� mrðtÞÞ ð3:6:1Þ

solution of the above model is given as

mrðtÞ ¼ a
ðb� cÞð1� e�bðWðtÞ�Wð0ÞÞÞ
ðb� cÞ þ ce�bðWðtÞ�Wð0ÞÞ

� �

ð3:6:2Þ

It can be noted here that if W(0) = 0 and a Weibull type test effort function i.e.
W(t) = a(1 - e( - btm)) is used to describe the distribution of test effort, then we
have mrð0Þ ¼ 0 and mrð1Þ ¼ a½ððb� cÞð1� e�baÞÞ=ððb� cÞ þ ce�baÞ� which
implies that even if software, is tested for a long time, some fault will remain in the

112 3 Imperfect Debugging/Testing Efficiency Software Reliability Growth Models

http://dx.doi.org/10.1007/978-0-85729-204-9_2


software, which is contradictory to the imperfect debugging model with respect to
time [13], which gives mrð1Þ ¼ a, i.e. all faults can be eliminated in infinite
testing time. Such an optimistic forecast interferes the purpose of an imperfect
debugging model. This analysis clearly illustrates the benefit of formulating
imperfect debugging models with respect to test efforts. These models can depict
more accurate utilization of test resources as well as reliability prediction at the
time of software release.

3.6.2 Pure Error Generation Model

Huang et al. [21] studied the test effort based pure fault generation SRGM. They
formulated Ohba and Chao [6] model with test efforts.

The differential equation for the model is described as

d

dt
mðtÞ

�

wðtÞ ¼ bðaðtÞ � mðtÞÞ ð3:6:3Þ

Using the fault content function a(t) = a ? amr(t), mean value function of the
SRGM is defined as

mrðtÞ ¼ ða=ð1� aÞÞð1� e�bð1�aÞðWðtÞ�Wð0ÞÞÞ ð3:6:4Þ

3.6.3 Integrated Imperfect Debugging Models

Kapur et al. [1] generalized integrated testing efficiency model proved to be very
useful in terms of analyzing various existing perfect debugging and new models
under imperfect debugging environment. Looking at the usefulness of this gen-
eralization, Kapur et al. [22] reformulated the model based on testing efforts to
obtain more accurate and useful results. The generalized differential equation
describing the failure and removal phenomenon are given by

d

dt
mf ðtÞ

�

wðtÞ ¼ pbðtÞ½aðtÞ � mrðtÞ� ð3:6:5Þ

d

dt
aðtÞ ¼ aðtÞ � d

dt
mrðtÞ ð3:6:6Þ

d

dt
mf ðtÞ

�

wðtÞ ¼ bðtÞ½aðtÞ � pmf ðtÞ� ð3:6:7Þ

Here again Eqs. (3.6.3) and (3.6.5) establishes the relationship

mrðtÞ ¼ pmf ðtÞ ð3:6:8Þ

3.6 Test Effort Based Imperfect Debugging Software Reliability Growth Models 113



Again defining the different forms of fault detection and removal rates per faults
and fault content functions, different SRGM are derived with respect to the test
effort function. This is left as an exercise for the readers to obtain test effort based
models corresponding to the models discussed in Sect. 3.5.2.

The generalization (3.6.5) cannot be used to obtain integrated test effort based
imperfect debugging SRGM considering learning phenomenon. In this case the
fault detection/removal rate per additional fault needs to be redefined. Learning
phenomenon of testing time is directly related to test efforts. Use of sound engi-
neering principles, sophisticated tools and techniques, etc. can bring more learn-
ing. It calls for defining the learning function as a function of test efforts. Kapur
et al. [22] carried a separate analysis for incorporating learning in test effort based
imperfect debugging SRGM. They described the differential equation for the
SRGM as

dmðtÞ
dt
¼ dmðtÞ

dWðtÞ
dWðtÞ
dt

ð3:6:9Þ

which can be defined as ‘‘the failure intensity during testing time t is the product of
the failure intensity with respect to the test efforts and instantaneous test effort
rate’’. Eq. (3.6.9) is expanded as

dmðtÞ
dt
¼ pbðWðtÞÞðaðtÞ � mðtÞÞdWðtÞ

dt
ð3:6:10Þ

where

bðWðtÞÞ ¼ b

1þ be�bWðtÞ and aðtÞ ¼ ðaþ amðtÞÞ ð3:6:11Þ

Solving above equation under the initial condition m(0) = 0 and W(0) = 0 we
get

mrðtÞ ¼
a

1� a
1� ð1þ bÞe�bWðtÞ

1þ be�bWðtÞ

� �pð1�aÞ" #

ð3:6:12Þ

The mean value function of cumulated number of failures up to time t can be
computed from the relationship mf(t) = mr(t)/p.

3.7 Reliability Analysis Under Imperfect Debugging
Environment During Field Use

The reliability growth models discussed up to now are all applicable to the testing
phase. We discussed the necessity of analyzing the operational reliability growth
separately from the testing phase reliability growth in the previous chapters. The
testing environment is usually very different from the operational environment.

114 3 Imperfect Debugging/Testing Efficiency Software Reliability Growth Models



In the testing phase, detection of a failure on the execution of a test case means a
success, since the testing is aimed at detecting and correcting most of the faults
lying in the software prior to release. But we know that software cannot be tested
exhaustively before release due to constraints on time and cost. After a certain
period of testing it is observed that any attempt to increase the reliability, results in
exponential delay in the software release time and increase in cost. Hence testing is
terminated at the time point when desired level of reliability is achieved as
determined by some optimization routine, etc. and software is released for oper-
ational use. This is the reason, why we often hear about failures in operational-
phase. The situation that occurs on detection of failures in the operational phase is
not same as that in testing phase. The debugging activities cannot be started
immediately. During field use, detection of a failure is a burden for the developers
in terms of cost as well as goodwill loses. If a failure occurs in user environment, it
is reported to the developer. The developer decides the amount of time and effort
to be spent on removing the reported fault and testing the corrected code
depending on the criticality and the urgency of the reported fault and agreement
with the user, etc. [23]. Depending on the established strategy, a trouble ticket is
created and assigned to some debuggers for analysis and code modification (i.e.
fault removal) if the removal is not deferred. Firstly the code is tested for that
failure and the fault is isolated and then removed. A perfect removal of fault in
operational phase means reliability growth even during the field use. On account of
the above discussion the SRGM developed for testing phase cannot be used as it is
to predict the reliability growth during field use.

Now it is not unusual for a fault to occur multiple times in the field before it can
be removed perfectly. Along with it some new faults can also be generated during
these removals. Pham [24] mentioned that 22% of the faults are detected and 5%
faults are generated during the operational phase. This implies that effect of both
types of imperfect debugging may exist even during the field use. We have no
doubt, as in case of testing phase, that selection of a perfect debugging SRGM for
reliability estimation in operational phase will yield optimistic estimate. Hence an
SRGM which incorporates the effect of testing efficiency should be a more judi-
cious choice for practical applications even during field use. Only few imperfect
debugging SRGM have been proposed in literature for operational reliability
analysis.

3.7.1 A Pure Imperfect Fault Repair Model for Operational Phase

Jeske et al. [25] analyzed operation reliability growth relating probability of
perfect debugging p, to the average time to remove a detected fault perfectly. They
assumed that the expected time to remove a fault is l times unit, i.e. nl system
time unit (assuming there are n systems in the field). The expected number of
occurrences before it can be removed perfectly is nlb, therefore

3.7 Reliability Analysis Under Imperfect Debugging Environment During Field Use 115



1
p
¼ 1þ nlb ð3:7:1Þ

substituting (3.7.1) in (3.3.4) we obtain the mean value function of the pure
imperfect fault repair model, i.e.

mf ðtÞ ¼
a

p

� �

ð1� e�bptÞ ¼ að1þ nlbÞð1� e�b 1
1þnlbð ÞtÞ ð3:7:2Þ

The authors claimed that the parameters a, b can be estimated from the failure
data, while an estimate of l is often known through experience with previous
releases or some other software product. To account the mismatch between testing
and operational environment, the estimate of b for the operational phase can be
calculated using calibration factor approach, as the system test based estimate of
b is usually very large due to the reason the test environment is set to expose
maximum faults in shortest times.

The authors also proposed to account the reliability growth, accounting the
fixed deferral of removal during operational phase. They distinguished the fault
into two categories, first- faults are those removed from the current release, Type-
F, contributing to reliability growth and second, fault whose removals are deferred
to the future releases, Type-D, contributing to a constant component of overall
software failure rate. The overall software failure rate is thus the sum of a
decreasing and a constant failure rate. With software maturity in the field, the
constant component will begin to dominate. On the other hand if all observed fault
are removed in the field use, constant component would be zero. If k0 is the
constant failure rate due to type-D faults, the failure intensity during operational
phase would be given as

kðtÞ ¼ k0 þ m
0

f ðtÞ ¼ k0 þ kFðtÞ ¼ abe �b 1
1þnlbð Þtð Þ ð3:7:3Þ

The parameters l, b, and a of kF(t) are the one associated with type-F faults.

3.7.2 An Integrated Imperfect Debugging SRGM for

Operational Phase

Kapur et al. [22] extended their integrated testing efficiency model for testing
phase (Eqs. (3.6.8) and (3.6.12)) to the operational phase replacing the test effort
function by the usage function. Assuming

1. The number of failures during operation phase is dependent upon the usage
function.

2. Usage function is a function of time and depends on the number of executions
of the software in field.

116 3 Imperfect Debugging/Testing Efficiency Software Reliability Growth Models



To define appropriate usage functions, they classified the software into two
categories namely

• Project type software, and
• Product type software

as already described in Chap. 2. During the testing phase, the type of software
under testing does not affect the reliability growth since in this phase the testing
environment or resource consumption does not depend on the software type.
However, the type of software under consideration influences the reliability growth
during the operational phase. More often some functions (major functionality of
the software) are executed more frequently than others in the project type software.
However the usage is limited to a particular user environment. On the other hand
product type software are owned by a number of users executing it under different
user environments. One user of product type software may use one function more
frequently while other may use some other function, mostly depending on their
need. These differences in the usage of the two types of software generate the need
of defining distinct usage function for each type. However in literature no dis-
tinction is made between the two types of software. The models due to Kenny [24]
and Kapur et al. [25] address the product type software (see Sect. 2.4)

3.7.2.1 Usage Function for Project Type Software

Project type software is owned by a specific organization for their specific use. In
an organization many users may be accessing it either at a single location or at
different locations. An exponential function is proposed to model the usage
function for such software.

WðtÞ ¼ r þ sð1� e�ctÞ ð3:7:4Þ

where r represent the initial usage of the software when it is implemented in the
user environment. As the time progresses the usage of software grows within the
organization until it reaches the saturation level (time of update) r ? s. Although
some other functional form can also be used depending upon the user environment,
number of people accessing the software and the usage of the software at each
terminal, etc.

3.7.2.2 Usage Function for Product Type Software

Product type software is developed for a specific application according to the need
of the software consumers in the market. Many different customers may buy a
licensed copy of the software. One licensed copy of the software might be used by
many users. For example an educational institution may buy software and many
students’ and\or faculty members might be using it. Number of executions of

3.7 Reliability Analysis Under Imperfect Debugging Environment During Field Use 117

http://dx.doi.org/10.1007/978-0-85729-204-9_2
http://dx.doi.org/10.1007/978-0-85729-204-9_2
http://dx.doi.org/10.1007/978-0-85729-204-9_2


product type software depends on the total number of user of the software and their
usage intensity. Although commercial software products are in the market since
years, identifying the target customers with certainty is impossible. Product soft-
ware comes in the category of technological products and as such behaves as a
new product or an innovative product when released in the market.

Kapur et al. [25] used Bass model of innovation diffusion [26] in marketing, for
predicting the successive growth in the number of adopters of the dynamic market
of software products over its life cycle. The model can adequately describe the
users growth in terms of the factors stated above but it is slightly modified to
describe the software usage appropriately. Adopters (or users) of software report a
failure caused by some fault remaining in the software, to the developer. Once the
number of users of the software is known, the rate at which the software is
executed can be estimated.

For applying the Bass model it is assumed that there exists a finite population of
prospective users who with time increasingly become actual users of the software
(no distinction is made between users and purchasers as the Bass model has been
successfully applied to describe growth in the number of both of them). In each
period there will be both innovators and imitators using the software product.
However as the process continues, the relative number of innovators will diminish
monotonically with time. Imitators are however influenced by the number of
previous buyers and increase relative to the number of innovators as the process
continues.

The Bass model in terms of adoption distribution is given as

FðtÞ ¼ 1� e�ðpþqÞt

1þ ðq=pÞe�ðpþqÞt ð3:7:5Þ

Shape of the resulting sales curve depends on the relative rate of these two
sections of adopters—innovators and imitators. If software product is successful,
the coefficient of imitation is likely to exceed the coefficient of innovation i.e.
p\ q. On the other hand, if p[ q, the sales curve will fall continuously.

If �N denotes upper limit of the number of licensed buyers of the software and c

is the average number of users within each user environment, then the total number
of users of the software by time t is given as

SðtÞ ¼ �NcFðtÞ ¼ mFðtÞ where m ¼ �Nc ð3:7:6Þ

Givon et al. [27] have used the modified version of the above model to estimate
the number of licensed users as well as users of pirated copies of the software. It
can be reasonably assumed that only the licensed-copy holders would report the
failures, and hence Eq. (3.7.6) can be used to find the expected number of users at
any time during the life cycle of the software. If the new software is expected to go
through the same history as some previous software (very likely for different
versions of the same software) the parameters of earlier growth curve may be used
as an approximation.

118 3 Imperfect Debugging/Testing Efficiency Software Reliability Growth Models



Using the expression for expected number of licensed users of software the rate
at which instructions in the software are executed can be estimated. Since the
usage function depends on the number of executions of the software, therefore it is
assumed that the usage function for product type software is a function of the total
number of users of the software. For simplicity, m, a constant average execution
rate is assumed for software usage within a user environment i.e.

WðtÞ ¼ f ðSðtÞÞ ¼ mSðtÞ ð3:7:7Þ

Some other functional relationship can be used depending upon the user
environment and number of people assessing the software within a particular
licensed user environment.

3.8 Data Analysis and Parameter Estimation

The model discussed in this chapter describes the relationship between the failure
observation and/or fault removal process with respect to time or testing effort
expenditure in an imperfect debugging environment. For the pure error generation
models, when the delay in the removal process is assumed to be negligible the
failure process describes the removal process whereas for the pure imperfect fault
debugging models as well as integrated testing efficiency models, the number of
failures is more than the number of removals. For pure error generation models an
estimate of the detection process provides the estimate of the removal process. On
the other hand for the pure imperfect fault debugging models and integrated testing
efficiency models, first we fit the model equation for the detection process on the
collected failure data and using these estimates we estimate the expected number
of removals.

3.8.1 Application of Time Dependent SRGM

Failure Data Set

This data set is from Brooks and Motley [28]. The failure data set is for a radar
system of size 124 KLOC (Kilo Lines of Code) tested for 35 weeks in which 1,301
faults were detected.

The following models have been chosen for data analysis and parameter
estimation.

Model 1 (M1) Pure Imperfect Fault Debugging Model [4]

mrðtÞ ¼ að1� e�bptÞ and mf ðtÞ ¼ ða=pÞð1� e�bptÞ

3.7 Reliability Analysis Under Imperfect Debugging Environment During Field Use 119



Model 2 (M2) Pure Error Generation Model [6]

mðtÞ ¼ ða=1� aÞð1� e�bð1�aÞtÞ

Model 3 (M3) Pure Error Generation Model [9]

mðtÞ ¼ ab

aþ b
ðeat � e�btÞ

Model 4 (M4) Pure Error Generation Model [9]

mðtÞ ¼ að1� e�btÞ 1� a

b

� �

þ aat

Model 5 (M5) General Imperfect-Software-Debugging Model with S-Shaped FDR
(PNZ model) [14]

mðtÞ ¼ að0Þð1þ bÞ
1þ be�bð0Þð1þbÞt 1� a

bð0Þð1þ bÞ

� �

ð1� e�bð0Þð1þbÞtÞ þ at

� �

Model 6 (M6) PNZ model with Alternative Fault Content Function Pham [15]

mðtÞ ¼ 1
1þ be�bt

ðk þ aÞð1� e�btÞ � a

b� a
ðe�at � e�btÞ

� �

Model 7 (M7) Delayed S-shaped Pure Error Generation Model [16]

mðtÞ ¼ a

1� a

� �

1� ð1þ btÞ1�ae
�bð1�aÞt� �

Model 8 (M8) Testing Efficiency Model [8]

mðtÞ ¼ a

p� a
1� ð1þ bÞe�bt

1þ be�bt

� �ðc=bÞðp�aÞ !

Model 9 (M9) Integrated Exponential Testing Efficiency Model [19]

mrðtÞ ¼ ða=1� aÞð1� e�bpð1�aÞtÞ and pmf ðtÞ ¼ mrðtÞ

Model 10 (M10) Integrated Flexible Testing Efficiency Model Kapur et al. [1]

mrðtÞ ¼
a

1� a
1� ð1þ bÞe�bt

1þ be�bt

� �pð1�aÞ" #

and pmf ðtÞ ¼ mrðtÞ

Model 11 (M11) Integrated S-shaped Testing Efficiency Model [20]

mrðtÞ ¼
a

1� a
½1� ð1þ btÞpð1�aÞe�bpð1�aÞt� and pmf ðtÞ ¼ mrðtÞ

120 3 Imperfect Debugging/Testing Efficiency Software Reliability Growth Models



Model 12 (M12) Integrated Flexible Testing Efficiency Model with Different FDR
[20]

mrðtÞ ¼
a

1� a
1� ð1þ bþ btÞe�bt

1þ be�bt

� �pð1�aÞ" #

and pmf ðtÞ ¼ mrðtÞ

Model 13 (M13) Another Integrated Flexible Testing Efficiency Model with Dif-
ferent FDR [20]

mrðtÞ ¼
a

1� a
1� ð1þ bþ bt þ ðb2t2=2ÞÞe�bt

1þ be�bt

� �pð1�aÞ" #

and pmf ðtÞ ¼ mrðtÞ

The unknown parameters of all these models have been estimated using the
regression module of SPSS. The values of estimated parameters have been tabu-
lated in Table 3.1. Figures 3.2 and 3.3 show the goodness of fit curves for the
estimation results tabulated in Table 3.1 and future predictions for exponential and
s-shaped or flexile SRGM respectively.

The graphical plot of observed actual data depicts the s-shaped growth in the
data. The models chosen for data analysis are exponential as well as s-shaped or
flexible models. Models M1–M4 and M9 are all exponential. The data analysis
results support the fact that an exponential model cannot be chosen to describe the
testing process and reliability growth for this data set. The calculated value of
mean square errors is very high for these models as compared to the s-shaped and
flexible models. On the other hand models M5–M7 are flexible or s-shaped, but
MSE value for these models is also high. The common characteristic of these
models is that all of them are pure error generation models. This result suggests
that pure error generation models are also not preferable for the analysis of this

Table 3.1 Estimation result for model 1 to model 13

Model Estimated parameters Comparison criteria

a b p a b c,k MSE R2

M1 8,155 0.0055 0.9000 – – – 9,766.90 0.9580
M2 9,201 0.0049 – 0.0500 – – 9,762.67 0.9580
M3 2,128 0.0217 – 0.0125 – – 10,218.82 0.9650
M4 1,248 0.0351 – 0.0317 – – 9,916.57 0.9570
M5 919 0.0170 – 0.0000 1.61 – 8,969.44 0.9640
M6 1,976 0.9120 – 0.0370 78.00 34.12 6,430.64 0.9820
M7 1,689 0.0899 – 0.0001 – – 2,967.68 0.9870
M8 1,239 0.1650 0.9580 0.0030 30.24 0.38 145.75 0.9990
M9 7,938 0.0060 0.9000 0.0790 – – 12,600.62 0.9580
M10 1,290 0.2030 0.9600 0.0230 19.91 – 249.53 0.9990
M11 1,596 0.0931 0.9745 0.0363 – – 3,116.99 0.9870
M12 1,325 0.1760 0.9970 0.0250 7.43 – 764.06 0.9970
M13 1,361 0.1840 0.9890 0.0200 1.41 – 1,290.49 0.9950

3.8 Data Analysis and Parameter Estimation 121



data set. In general the integrated testing efficiency models M8–M13, excluding
M9 (due to exponential nature) and M11 has fitted well for the actual data. Model
M8 seems to be the best fit model for the data set. However due to the formulation
inconsistency in the model it cannot be chosen for estimating the failure and
removal phenomena and predicting the system reliability. The next best fit model
is M10 (Kapur et al. [1] integrated testing efficiency model) with MSE value close
to M8 and similar R2 values. Our analysis suggest that these models can be chosen
for predicting the future failure/removal phenomena and reliability for the software
project whose data set is been taken for the analysis.

The estimation result of the models M10 depict that the testing efficiency is
96% and the error generation rate is 2.3%. The value 19.91 for the shape parameter
b implies the high s-shapedness of the actual data due to the fact that initially the
failure observation phenomena picked very fast in the beginning then it increased
at a low rate and later the rate of increase started increasing at a higher rate. It is
estimated that a total of 1,308 faults are observed in the 35 months time and out of
the1,308 observed faults 1,295 were removed successfully in the same time period.
Further predictive ability of the model can be established by conducting the pre-
dictive validity test. Establishing predictive ability of this model is left as an
exercise for the readers.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Time (Weeks)
C

u
m

u
la

ti
v
e
 F

a
il

u
re

s

Actual  Data M1

M2 M3

M4 M9

Fig. 3.2 Goodness of fit
curve for model exponential
models (M1–M4 and M9)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Time (Weeks)

C
u

m
u

la
ti

v
e

 F
a

il
u

re
s

Actual  Data M5
M6 M7

M8 M10
M11 M12
M13

Fig. 3.3 Goodness of fit
curve for s-shaped and
flexible models (M5–M8 and
M10–M13)

122 3 Imperfect Debugging/Testing Efficiency Software Reliability Growth Models



3.8.2 An Application for Integrated Test Effort Based Testing

Efficiency SRGM

We have seen in the above analysis that flexible integrated testing efficiency has
provided that best fit on the data set taken for the analysis. This result is true in
general as whether the observed data is exponential or s-shaped, an appropriate
growth curve is captured by data analysis due to the presence of shape parameter
(b in this case). This parameter takes a value either zero or approximately zero
when shape of the growth of collected data is exponential or otherwise it takes a
positive value with magnitude according to the s-shapedness of the growth curve.
On the other hand the magnitude of testing efficiency is captured by the testing
efficiency parameters. For a highly efficient testing, efficiency the parameter
p takes value near to 1 and a takes value near to zero and vice versa. Hence all
types of situations are well captured by flexible testing efficiency models. Now we
show the parameter estimation and model validation of a flexible integrated testing
efficiency SRGM with respect to the testing efforts.

Failure Data Set

This failure data set is for a command, control and communication system cited
in Brooks and Motley [30]. The software was tested for 12 months and 2,657
faults were identified during this period. The following model is taken for the
analysis

Model 14 (M14) Integrated Imperfect Debugging Test Effort based Model [22]

mrðtÞ ¼
a

1� a
1� ð1þ bÞe�bWðtÞ

1þ be�bWðtÞ

� �pð1�aÞ" #

First we have fitted four test effort functions exponential, Rayleigh, Weibull and
logistic on the observed test effort data and then using the best fit function the
parameters of the SRGM are estimated. The estimation results with the compar-
ison criteria values of test effort function are given in Table 3.2. The values of
estimated parameters for the SRGM have been tabulated in Table 3.3. The

Table 3.2 Estimation results for testing effort functions

Test effort function Estimated parameters Comparison criteria

a v c,b MSE R2

Exponential 35,237 0.0297 – 15,443.51 0.999
Rayleigh 10,153 0.0491 – 497,788.67 0.953
Weibull 11,714 0.3488 8.773 34,637.04 0.997
Logistic 33,524 0.0313 1.002 17,426.71 0.998

3.8 Data Analysis and Parameter Estimation 123



goodness of fit curves for the estimation results of test effort functions and SRGM
are shown in Figs. 3.4 and 3.5 respectively.

3.8.3 An Application for Integrated Operational Phase Testing

Efficiency SRGM

In this chapter we have also discussed integrated testing efficiency SRGM appli-
cable for predicting software failure and fault removal phenomena and measuring
the reliability for the operational phase. Two types of SRGM have been discussed,
one developed for the project type software and the other for the product type
software. Now we establish the validity of these SRGM.

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10 11 12

Time (Months)

C
u

m
u

la
ti

v
e

 T
e

s
t 

E
ff

o
rt

s

Actual Test Effort Data

Exponential function

Reyleigh Function

Weibull function

Logistic Function

Fig. 3.4 Goodness of fit
curve for test effort functions

0

500

1000

1500

2000

2500

3000

1 3 5 7 9 11

Time (Month)

C
u

m
u

la
ti

v
e

 F
a

il
u

re
s

Actual Failure Dataa

Estimated Failures Model M14Fig. 3.5 Goodness of fit
curve for test effort based
model M14

Table 3.3 Estimation results of SRGM for testing phase with exponential effort function

Estimated parameters model 14 Comparison criteria

a B b p a MSE R2

3,322 0.000141 0.06468 0.9020 0.000115 1,615.22 0.998

124 3 Imperfect Debugging/Testing Efficiency Software Reliability Growth Models



3.8.3.1 Data Analysis of SRGM for Project Type Software

Failure Data Set

This failure data is for Real time system collected for operational phase cited in
Musa [31]. This is an interval domain data available for 192 days during which 37
faults were identified.

Model 15 (M15) In model 14 the test effort function is replaced by a usage
function. Usage Function for Project Type Software

WðtÞ ¼ r þ sð1� e�ctÞ

Substituting the usage function in the model, equation parameters of the mean
value function for the SRGM in operational phase for project type software are
estimated. The estimation results are tabulated in Table 3.4. The Fitting of the
model is illustrated graphically in Fig. 3.6. Further the data is truncated into dif-
ferent proportions and is used to estimate the parameters of the SRGM. For each
truncation, we have computed the relative prediction error. The Predictive validity
test results are shown in Table 3.5. Figure 3.7 shows the graphical plot of relative
prediction error.

It is observed that the predictive validity of the model varies from one trun-
cation to another. Even 85% of data is sufficient to predict the future failure
behavior well with RPE as low as -10.21% for this SRGM.

Table 3.4 Estimation results of SRGM for operational phase for project type software

Estimated parameters model M15 Comparison criteria

a b b p a r s c MSE R2

37 0.04575 71.267 0.9 0.001 0.1 156 0.01361 2.59 0.9880

0

5

10

15

20

25

30

35

40

3 38 60 77 91
129

185
202

222
242

Time (days)

C
u

m
u

la
ti

v
e
 F

a
il
u

re
s
 

Actual Failure Data
Estimated Failures Model 15

Fig. 3.6 Goodness of fit
curve for model M15

3.8 Data Analysis and Parameter Estimation 125



3.8.3.2 Data Analysis of SRGM for Product Type Software

Failure Data Set

This failure data is for an operating system collected for operational phase cited in
Musa [31]. The interval domain data is available for 148 day during which 112
faults were identified.

Model 16 (M16) Usage Function for Product Type Software

WðtÞ ¼ mm
1� e� pþqð Þt

1þ q=pð Þe� pþqð Þt

Substituting the usage function in the model, equation parameters of the mean
value function for the SRGM in operational phase for product type software are

Table 3.5 Predictive
analysis results for model
M15

Data truncation (%) mr (192) RPE RPE (%)

100 36.53 -0.0127 -1.27
95 34.69 -0.0624 -6.24
90 33.66 -0.0903 -9.03
85 33.22 -0.1021 -10.21
80 32.82 -0.1131 -11.31
70 32.82 -0.1131 -11.31
60 31.64 -0.1447 -14.47

-0.16

-0.12

-0.08

-0.04

0
100 95 90 85 80 70 60

Data Truncation

R
e

la
ti

v
e

 P
re

d
ic

ti
o

n
 E

rr
o

r

RPE

Fig. 3.7 Relative prediction
error for the predictive
validity test of model M15

Table 3.6 Estimation results of SRGM in operational phase for product type software

Estimated parameters model M15 Comparison criteria

a b b p a m r s m MSE R2

142.88 0.0294 7.218 0.9537 0.0466 8.28 0.0081 0.0064 16.5 25.14 0.9925

126 3 Imperfect Debugging/Testing Efficiency Software Reliability Growth Models



estimated. The estimation results are tabulated in Table 3.6. The Fitting of the
model is illustrated graphically in Fig. 3.8. Further we have carriedout predictive
validity analysis on the collected data, truncating collected data into different
proportions. For each truncation the relative prediction error is computed. The
results are tabulated in Table 3.7. Figure 3.9 shows the graphical plot of relative
prediction error.

0

20

40

60

80

100

120

140

2

2
3

3
6

4
8

6
0

7
0

8
4

1
0

1

1
1

6

1
3

4

1
5

0

1
6

4

1
7

8

Time (days)

C
u

m
u

la
ti

v
e
 F

a
il
u

re
s

Actual Failure Data

Estimated Failures Model M16

Fig. 3.8 Goodness of fit
curve for model M16

Table 3.7 Predictive
analysis results for model
M16

Data truncation (%) mr (148) RPE RPE (%)

100 112.60 0.0053 0.535
95 106.52 -0.0490 -4.896
90 105.41 -0.0588 -5.882
85 97.48 -0.1297 -12.968
80 93.92 -0.1614 -16.143
70 89.94 -0.1970 -19.699
60 91.64 -0.1818 -18.179

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

100% 95% 90% 85% 80% 70% 60%

Data Truncation

R
e
la

ti
v
e
 P

re
d

ic
ti

o
n

 E
rr

o
r

RPE

Fig. 3.9 Relative prediction
error for the predictive
validity test of model M16

3.8 Data Analysis and Parameter Estimation 127



Predictive validity results implies that at least 90% of observed data is required
to predict the future failure behavior well with RPE –5.882% for this model on this
data. For 85% of data, the RPE is –12.97%.

Exercises

1. What is imperfect debugging? What types of imperfect debugging can be occur
while testing the software?

2. A test case is executed during the testing of software in the testing phase. The
execution of test case resulted in a failure, indicating the presence of some fault
on some path of the module which is executed on the test run. The software
debuggers identified the fault and attempted to correct it. What would be the
fault count of the software after the fault correction attempt?

3. The failure phenomenon of a pure error generation type SRGM is described as

dmðtÞ
dt
¼ bðtÞ½aðtÞ � mðtÞ�

If the failure rate b(t) = b and a(t) = a ? K(1 - e-ht), obtain the mean value
function of the SRGM.

4. The mean value function of the removal phenomenon of integrated imperfect
debugging SRGM is given by

mrðtÞ ¼ e�p
R

ð1�aðuÞÞbðuÞ du ap
Z t

0
bðxÞe�p

R

ð1�aðxÞÞbðxÞ dx dx

� �

If bðtÞ ¼ b2t
1þbt

� �

and aðtÞ ¼ a then

mrðtÞ ¼
a

1� a
½1� ð1þ btÞpð1�aÞe�bpð1�aÞt�

5. Show that mrðtÞ ¼ pmf ðtÞ if d
dtmrðtÞ ¼ pbðtÞ½aðtÞ � mrðtÞ� and d

dtmf ðtÞ ¼
bðtÞ½aðtÞ � pmf ðtÞ�.

6. Obtain the mean value function of the exponential test effort based integrated
imperfect debugging SRGM if the fault content function is given as
a(t) = a ? amr(t).

7. A model developed to describe the reliability growth of software during testing
phase, fails in adequately describing the reliability growth during the field
usage. Comment.

8. Suppose the usage function of project type software can also be described by
W(t) = r ? stk, where r, s and k are constant. Determine the unknown
parameters of the SRGM for project type software in operational phase using
usage function specified above and compare the result on mean square error
with the results of Sect. 3.8.3.

128 3 Imperfect Debugging/Testing Efficiency Software Reliability Growth Models



References

1. Kapur PK, Kumar D, Gupta A, Jha PC (2006) On how to model software reliability growth in
the presence of imperfect debugging and fault generation. In: Proceedings 2nd international
conference on reliability and safety engineering, INCRESE, pp 261–268

2. Goel AL (1985) Software reliability models: assumptions, limitations and applicability. IEEE
Trans Software Eng SE-11:1411–1423

3. Jelinski Z, Moranda P (1972) Software reliability research. In: Freiberger W (ed) Statistical
computer performance evaluation. Academic Press, New York, pp 465–484

4. Kapur PK, Garg RB (1990) Optimal software release policies for software reliability growth
models under imperfect debugging. Recherché Operationanelle/Operations Research
24:295–305

5. Goel AL, Okumoto K (1979) Time dependent error detection rate model for software
reliability and other performance measures. IEEE Trans Reliability R-28(3):206–211

6. Ohba M, Chou X M (1989) Does imperfect debugging effect software reliability growth. In:
Proceedings 11th international conference of software engineering, pp 237–244

7. Xie M (2003) A study of the effect of imperfect debugging on software development cost.
IEEE Trans Software Eng 29(5):471–473

8. Zhang X, Teng X, Pham H (2003) Considering fault removal efficiency in software reliability
assessment. IEEE Trans Syst Man Cybern Part A Syst Humans 33(1):114–120

9. Yamada S, Tokunou K, Osaki S (1992) Imperfect debugging models with fault introduction
rate for software reliability assessment. Int J Syst Sci 23(12):2253–2264

10. Kapur PK, Grover PS, Younes S (1994) Modeling an imperfect debugging phenomenon with
testing effort. In: Proceedings 5th international symposium on software reliability
engineering (ISSRE’1994). IEEE Computer Society, Monterey, pp 178–183

11. Lynch T, Pham H, Kuo W (1994) Modeling software-reliability with multiple failure-types
and imperfect debugging. In: 1994 proceedings annual reliability and maintainability
symposium, pp 235–240

12. Lo HJ, Huang CY (2004) Incorporating imperfect debugging into software fault processes.
TENCON 2004. In: 2004 IEEE region 10 conference, vol 2, 21–24 November 2004,
pp 326–329

13. Kapur PK, Younes S (1996) Modeling an imperfect debugging phenomenon in software
reliability. Microelectron Reliability 36(5):645–650

14. Pham H, Nordmann L, Zhang XA (1999) General imperfect-software-debugging model with
s-shaped fault-detection rate. IEEE Trans Reliability 48(2):169–175

15. Pham H (2000) Software reliability. Springer-Verlag, New York
16. Kapur P K, Singh O, Gupta A (2005e) Some modeling peculiarities in software reliability.

Quality, reliability and infocom technology, trends and future directions. Narosa Publications
Pt. Ltd., New Delhi, pp 20–34

17. Yamada S, Ohba M, Osaki S (1983) S-shaped software reliability growth modeling for
software error detection. IEEE Trans Reliability R-32(5):475–484

18. Pham H, Zhang X (2003) NHPP software reliability and cost models with testing coverage.
Eur J Oper Res 145(2):443–454

19. Kapur PK, Gupta A, Jha PC (2007) Reliability growth modeling and optimal release policy of
a n-version programming system incorporating the effect of fault removal efficiency. Int J
Autom Comput 4(4):369–379

20. Kumar D, Kapur R, Sehgal VK, Jha PC (2007) On the development of software reliability
growth models with two types of imperfect debugging. Commun Dependability Qual Manag
Int J 10(3):105–122

21. Huang CY, Kuo SY, Lyu MR, Lo HJ (2000) Effort-index-based software reliability growth
models and performance assessment. In: Proceedings 24th annual international computer
software and applications conference (COMPSAC 2000), Taipei, Taiwan, 25–27 October
2000, pp 454–459

References 129



22. Kapur PK, Gupta A, Jha PC (2007) Reliability analysis of project and product type software
in operational phase incorporating the effect of fault removal efficiency. Int J Reliability Qual
Safety Eng 14(3):219–240

23. ESA Board for Software Standardization and Control (1995) Guide to the software operations
and maintenance phase. European Space Agency, 8-10, rue Mario-Nikis, 75738 PARIS
CEDEX, France, ESA PSS-05-07 Issue 1 Revision 1

24. Pham H (2006) System software reliability. Reliability engineering series. Springer, London
25. Jeske DR, Zhang X, Pham L (2001) Accounting for realities when estimating the field failure

rate of software. In: Proceedings 12th international symposium on software reliability
engineering, pp 332–339

26. Kenny GQ (1993) Estimating defects in a commercial software during operational use. IEEE
Trans Reliability 42(1):107–115

27. Kapur PK, Bardhan AK, Jha PC (2003) Optimal reliability allocation problem for a modular
software system. OPSEARCH J Oper Res Soc India 40(2):133–148

28. Bass FM (1969) A new product growth model for consumer durables. Manag Sci 15:215–227
29. Givon M, Mahajan V, Muller E (1980) Software piracy: estimation of lost sales and the

impact on software diffusion. J Marketing 59:29–37
30. Brooks WD, Motley RW (1980) Analysis of discrete software reliability models—technical

report (RADC-TR-80-84). Rome Air Development Center, New York
31. Musa JD (1980) Software reliability data. Data and Analysis Center for software, USA,

www.dacs.dtic.mil

130 3 Imperfect Debugging/Testing Efficiency Software Reliability Growth Models

http://www.dacs.dtic.mil


Chapter 4
Testing-Coverage and Testing-Domain
Models

4.1 Introduction

Software development is a very complex and dynamic process. Every phase of
software development can be further divided into a number of sub-phases, where
each sub-phase has its own contribution to the software development process. Lot
many activities are involved in each phase/sub-phase. Detailed study of each
activity of this development process requires building an understanding of the
various associated philosophies, theories and concepts. Same is true for the soft-
ware testing phase and quality measurement. Reliability is considered as the key
characteristic of quality. Until now in the previous chapters we have seen that there
are various aspects which need to be considered during reliability assessment.
Along with those which have been discussed in the previous chapters, two char-
acteristics of reliability assessment which have not been discussed so far are—
Testing Coverage and Testing Domain Ratio. Both these characteristics play an
important role in reliability estimation and decision related to the testing and
operational phase. In this chapter, the concepts of testing coverage, testing domain
ratio and software reliability growth modeling incorporating these measures have
been discussed in detail.

4.1.1 An Introduction to Testing-Coverage

Planning software release schedule is a very crucial decision. Achieving a level of
quality forms the main basis for deciding the release schedules. The level of testing
required usually depends on the potential consequences of undetected bugs.
Besides testing efficiency, testing efforts, various other facts are incorporated
during reliability estimation such as fault complexity, debugging time lag etc.
There are many other factors that greatly influence the reliability growth. Among

P. K. Kapur et al., Software Reliability Assessment with OR Applications,
Springer Series in Reliability Engineering, DOI: 10.1007/978-0-85729-204-9_4,
� Springer-Verlag London Limited 2011

131



all others, one factor that plays a critical role in reliability assessment is Testing
Coverage. There are various notions on the relationship between testing coverage
and reliability estimation. The most relevant is related to the role of test coverage
in developing more efficient test or in determining an effective and non-effective
test. There are various test methodologies which can be adopted to test a software
such as function testing, white box testing, data flow coverage, decision flow
coverage, mutation testing etc. To each testing method is associated a saturation
effect. An understanding of this saturation effect is key to the understanding of
importance of test coverage in reliability estimation. Saturation effect is defined as
the tendency of testing methods to limit their ability to expose faults in a program
under testing. After reaching this limit, continuing testing adopting the same
method may cause significant over or under estimation of reliability.

More precisely, most of the software reliability models used to assess the
reliability are either time based or effort based. These models use the failure
history obtained during testing to predict the field behavior of the software under
test, under the assumption that testing is performed in accordance with the given
operational profile. Two main difficulties are associated with the use of these
models for practical application. First problem is related to the operational dis-
tribution. The test collection developed from a known operational profile may be
different from the one that would occur in practice. Otherwise the software may be
put to different operational profiles in field or it is also possible that the software is
completely a new and no known operational profile is obtainable. Second, when
software is tested using a collection of test cases, as the testing progresses, more
faults are detected and removed. Testing may be continued using similar collection
developed in accordance to some test methodology. If time between failures is the
only consideration in the reliability estimation, then sever drawback that can result
is over-estimation of reliability than actually achieved. Along with this, another
fact that may cause over estimation is that the test cases generated/executed in the
later phase of testing are less likely to cause the program to fail than those gen-
erated in the earlier phases developed for a known operational profile. This
problem can be solved if we can identify the redundant test efforts i.e. one needs to
determine which test case is redundant and how much test effort is actually desired
for effective testing and accurate reliability estimation.

Conclusively we can say that a less effective test strategy may at many times
prove to be less efficient in finding defects with the same amount of test efforts put
with effective strategy. To ensure the quality and accurately estimate and predict
the reliability of software, it is necessary that it should be tested until all the
constructs in the programs achieve a desired level of coverage. In this context
Gokhale et al. [1] gave a unifying definition for testing coverage which accom-
modates all constructs of the system that are to be covered by the testing. Given a
software product and its companion test set, they defined testing coverage as ‘‘the
ratio of the number of potential fault sites sensitized by the test divided by the total
number of potential fault sites under consideration’’. Test coverage analysis is a
structural testing technique that helps eliminate gaps in a test suite. It helps most in
the absence of a detailed, up-to-date requirements specification. The importance of

132 4 Testing-Coverage and Testing-Domain Models



investigating the effect of testing coverage for reliability measurement has been
established by several researchers. Empirical evidence strongly suggests that
Testing, which is carried out with some form of coverage measurement may fail to
sensitize as much as 45% of the code [1]. More rigorous testing is desired in
complex or more frequently called modules. The testing coverage measure can
directly be related to the code coverage achieved during test case execution.
Testing Coverage measure can assist in assuring the quality of test cases in such a
way that nearly 100% code can be covered thereby assuring the quality of the
software. Greater the level of code coverage higher the level of reliability
achieved. Software designers and testers must develop effective evaluation tools
capable of measuring test coverage and pointing out design deficiencies contrib-
uting to poor software testability. Such tools can also provide data which can lead
to improvement in quality and effectiveness of a software test. Software reliability
models that have been formulated based on testing time and coverage simulta-
neously can use this data for accurate reliability measurement.

Another importance of test coverage measure lies in the fact that it is important
for both software developer’s as well as users. It helps developers to evaluate the
quality of the tested software, determine the additional testing desired to achieve
the necessary reliability and adequately planning the release schedules. On the
other hand, it is a quantitative confidence criterion for the customer in taking the
decision to buy the product. After revealing the importance of testing coverage
measure in reliability measurement, we now give some definitions, related con-
cepts and methods of testing coverage measurement.

On the part of software testers, Test Coverage Analysis is the process of

• Finding areas of a program not covered by a set of test cases
• Creating additional test cases to increase coverage
• Determining a quantitative measure of test coverage
• Identifying redundant test cases that do not increase coverage

In general test coverage measure is defined as how well a test covers all the
potential fault sites in the software under test. Potential fault site here mean
program entities representing either structural or functional program elements
whose sensitization is reckoned essential towards establishing the operational
integrity of the software. A large variety of test coverage measures exist. Now we
give a brief description of some well-known coverage measures [2].

4.1.1.1 Statement Coverage

This is the most simple coverage measure and a number of open source products
exist that measure this level of coverage. It is defined as the fraction of the total
number of statements that have been executed by the test data i.e. this measure
reports whether each statement is executed or not. It is also known as line cov-
erage, segment coverage, and basic block coverage. The chief advantage of this
measure is that it can be applied directly to object code and does not require

4.1 Introduction 133



processing source code. However the measure is discouraged as it does not identify
bugs that arise from the control flow constructs in the source code, such as
compound conditions or consecutive switch labels as it does not check whether all
options in a branch have been covered and is completely insensitive to the logical
operators. This means that even if we can easily get 100% coverage, we may
encounter glaring, uncaught bugs.

4.1.1.2 Branch Coverage

The coverage, also called decision coverage, reports whether a test case has
explored both true and false outcomes of Boolean expressions in control structures.
It considers the entire Boolean expression as a single predicate, evaluating to true
or false, ignoring the branches within the expression which may occur due to
short-circuit logical operators. It contains coverage measures for switch-statement,
exception handlers etc. that are not included in statement coverage. The basic
metric of this measure is its simplicity without the problems of statement coverage.
A disadvantage is that this metric ignores branches within Boolean expressions
which occur due to short-circuit operators.

4.1.1.3 Condition Coverage

Condition coverage measures the sub-expressions occurring in a Boolean
expression independently of each other and reports the true and false outcome for
these, separated by logical-and and logical-or if they occur. It is similar to branch
coverage but has better sensitivity to the control flow. However, full condition
coverage does not guarantee full decision coverage. Another variant of this type is
multiple condition coverage which reports whether every possible combination of
Boolean sub-expressions occurs. The test cases required for full multiple condition
coverage of a condition are given by the logical operator truth table for the con-
dition, hence for this metric determining the minimum set of test cases required
can be tedious, especially for very complex Boolean expressions. A hybrid mea-
sure of this type is also called condition/decision coverage metric composed by the
union of condition coverage and decision coverage. It has the advantage of sim-
plicity but without the shortcomings of its component metrics.

4.1.1.4 Path Coverage

This measure is used for the most thorough testing of software. The metric reports
whether all possible paths in each function of the program have been followed. A
path is defined as a unique sequence of branches from the entry point to the exit of
a function. It is also known as predicate coverage, which views paths as possible
combinations of logical conditions. A large number of variations of this metric

134 4 Testing-Coverage and Testing-Domain Models



exists to cope with loops which may introduce unbounded number of paths, such
as considering only a limited number of looping possibilities. Path coverage has
two sever disadvantages. The first is that it needs a huge number of probes to
monitor all the paths in a program, which are exponential to the number of
branches. The second disadvantage is that many paths considered by it are
impossible to exercise due to relationships of data.

4.1.1.5 Data Flow Coverage

This measure is a variation of path coverage and considers only the sub-paths from
variable assignments to subsequent references of the variables. The advantage of
this measure is that the paths reported are pertinent to the manner in which the
program handles data. It also suffers from two disadvantages: the first is that it
does not include decision coverage and another is that it is very complex which
makes it difficult to implement.

4.1.1.6 Function Coverage

This metric report’s whether each function or procedure has been invoked. It is
useful during preliminary testing to assure at least some coverage in all areas of the
software. Broad, shallow testing finds gross deficiencies in a test suite quickly.

4.1.1.7 Call Coverage

Also known as pair coverage, this metric reports whether each function call is
executed. It is based on the hypothesis that bugs commonly occur in interfaces
between modules.

There are many other coverage measures used in practice depending on the
requirements of the testers such as object code branch coverage, loop coverage,
race coverage, relational operator coverage, table coverage, weak mutation cov-
erage, etc. Names of all these coverage measure’s are reflective of how the metric
computes the coverage.

4.1.2 An Introduction to Testing Domain

The concept of testing domain is closely related to testing coverage. We know the
aim of testing coverage analysis is to quantitatively, define whether all the con-
structs in the programs have been covered or not by the test executed to test the
software. Different types of coverage measures give measure of coverage with
respect to the different aspects of the software such as statement, branch, path etc.

4.1 Introduction 135



On the other hand the testing domain is related to the domain of software influ-
enced by the test cases. The test cases executed on the software in the testing phase
are developed to influence the faults lying dormant in the various modules\func-
tions implemented in the software based on the requirement specifications. These
test cases indeed influence a set of testing paths of these modules and functions.
This set of testing paths, all of which are to be eventually influenced by designed
test cases is called the testing domain [3]. The domain of testing which gets
influenced by the test cases executed by any time in the testing phase is called the
isolated testing domain by that time. The isolated testing domain expands as the
number of executed test cases increases which in turn makes more faults detect-
able by the debuggers. The goal of testing with respect to isolated testing domain is
to expand it over the entire software system. Figure 4.1 illustrates a basic testing
domain.

The isolated testing domain ratio in software is closely related to the quantity and
quality of the executed test cases, which in turn is influenced by the testing skill of the
test case designer. Increase in the number of detectable faults during testing is
strongly influenced by the efficiency of the test case designers. Fujiwara and Yamada
[4] defined two cases of testing skill related to testing domain and developed software
reliability growth models with respect to isolated testing domain for both cases.
Software reliability modeling with respect to the isolated testing domain enables the
software developer to know the relation between the isolated testing domain ratio and
the number of faults detectable by a testing method.

The efficiency of a test case design is related to the isolated testing domain as
follows:

Case of low skill If the test designers are inexperienced or they are not po-
cessing high professional skills. The degree of comprehension of the internal
structure by such test designers of the software is low. It results in deterioration in
the quality of test case design and hence slow testing domain growth rate.

Case of high skill Expert test designers possess high degree of internal structure
comprehension. Using their technical skills and experience, they develop high

Fig. 4.1 A testing domain of
a software system

136 4 Testing-Coverage and Testing-Domain Models



quality test cases and an effective overall test. Their expertise results in increasing
rate of testing domain growth rate and hence an increasing rate of the detectable
faults.

The effect of testing skill on isolated testing domain is most remarkable in the
early stages of testing. When the skill of test designers is low, it is most likely that
only a narrow domain of testing can be isolated as the test cases may not be
efficient in influencing the isolated testing domain. Such a test cannot necessarily
detect many faults. On the other hand if the test developers have experience of
similar projects in the past along with professional skills, then the test designed by
them influence the testing domain at a fast rate and will isolate almost whole of the
software paths. It will result in more number of detectable faults as well as higher
reliability at the end of testing phase.

Only a few attempts have been made in the literature for modeling the testing
domain growth rate, expected number of faults detectable in the isolated testing
domain and software reliability estimation with respect to the expected number of
detectable faults. Along with testing coverage based SRGM in this chapter we
have discusses various software reliability models based on isolated testing
domain.

4.2 Software Reliability Growth Modeling Based on Testing
Coverage

Analysis of effectiveness of testing and test cases using the testing coverage
measure started as early as early 1980s. The initial attempts were related to
measuring coverage for random testing [5], test analysis using structural coverage
[6] and examine fault exposure ratio [7, 8]. The initial attempt to relating testing
coverage to software reliability seems to be made by Malaiya et al. [9] based on
the previous work.

4.2.1 Relating Testing Coverage to Software Reliability:

An Initial Study

In the introduction section we defined a number of coverage measures related to
software testing. In general any testing coverage measure is measured in terms of
structural or data-flow units or enumerables that have been exercised. Malaiya
et al. [2, 5] considered five types of enumerables to formulate their model,
namely—defect, statement, branch, C-use and P-use coverage. Some of them have
already been defined previously. Now we define the remaining.

Defect Coverage the fraction of actual defects initially present that would be
detected by a given test set measures the defect coverage.

4.1 Introduction 137



C-use Coverage the fraction of total number of computational use (C-use) that
has been covered by one C-use path during testing. A C-use path is a path through
a program from each point where the value of a variable is modified to each C-use
(without the variable being modified along the path).

P-use Coverage the fraction of total number of P-uses that have been covered
by one P-use path during testing. A P-use path is a path from each point where the
value of a variable is modified to each P-use, a use in a predictable or decision
(without modifications to the variable along the path).

The coverage increases when more tests are applied, provided that the test cases
are not repeated and complete test coverage has not already been achieved. A
small number of enumerables may not be reachable in practice due to their
infeasibility or very low testability. Authors assumed that the fraction of such
enumerables is negligible. The achieved coverage by a set of tests depends not
only on the number of tests applied (or equivalently, the testing time) but also on
the distribution of testability values of the enumerables. A statement which is
reached more easily is more testable i.e., is more likely to get covered with only a
small number of tests. Along with this, testability also depends on the likelihood
that a fault reached actually causes a failure. Enumerables that have less frequency
of execution in the field use have low testability and may not get exercised by most
of the tests. It is also observed that the distribution of testability values may shift
with the testing progress. The easy testable enumerables gets covered mostly in the
early testing while the hard once remain and gets covered in the later testing at a
less rate. It implies that the rate of growth of testing coverage decreases with
testing progress and reaches a negligible value when almost 100% coverage is
achieved.

Notation

pdi
j Fraction of all enumerables of type j having detectability di

aj(x, x ? dx) Enumerable of type j with detectability between x and x + dx
Cj(n) Expected coverage of the enumerable of type j
mj Parameter of one parameter model
Nj Total number of enumerables of type j
b0
j , b1

j Parameters of logarithmic model
K0(0) Defect exposure ratio at time t = 0
K Overall fault exposure ratio
TL The linear execution time
a0 Parameter describing the variation in the exposure ratio

The model is based on the detectability values of the enumerables. Malaiya
et al. [9] defined detectability (dl

j) as the probability that the lth enumerable of
type j will be exercised by the randomly chosen test and the detectability profile is
the distribution of detectability values in the system under test. The authors pro-
posed discrete Normalized Detectability Profile (NDP) for formulating their
model. NDP for a system under test is defined by the vector

138 4 Testing-Coverage and Testing-Domain Models



p j ¼ p j
d1; p

j
d2; . . .p

j
di; . . .; p

j
du

� �

; d j
i�1\d j

i\d j
iþ1 ð4:2:1Þ

where
Pi

di¼0 p
j
di ¼ 1:

Enumerables may have detectability value 0 as it may not be feasible or testable
due to redundancy in implementation. A continuous function is approximated for
NDP if enumerables are large.

The Continuous NDP for the system under test is defined as

p jðxÞdx ¼ N jðx; xþ dxÞ
N j

; 0� x� 1 and
Z

1

0

p jðxÞdx ¼ 1 ð4:2:2Þ

4.2.1.1 One Parameter Model for Testing Coverage

Now assuming random testing method i.e. any single test can be selected randomly
with replacement, the expected coverage of the enumerables of type j for discrete
NDP is defined as

C jðnÞ ¼ 1�
X

n

i¼1

1� d j
i

� �n
p j
i ð4:2:3Þ

and for continuous NDP it is

C jðnÞ ¼ 1�
Z

1

0

ð1� xÞnpðxÞdx ð4:2:4Þ

However the actual software testing is more likely to be pseudo-random, since
usually any test once applied are not repeated. Random testing is hence a rea-
sonable approximation is this case except when coverage approaches 100%. The
Eqs. (4.2.3) and (4.2.4) requires the knowledge of exact detectability profiles,
which requires lot of computation. An approximation for detectability profiles is
given as follows.

When one test is applied, the probability that an enumerable with detectability
di
j will not be covered is (1 - di

j). The probability that an enumerable will not be
covered by n tests and remains a part of the profile is (1 - di

j)n. Thus if Eq. (4.2.1)
gives the initial discrete NDP, after n tests it is given as

p j
n ¼ p j

d1 1� d j
1

� �n
; p j

d2 1� d j
2

� �n
; . . .; p j

du 1� d j
u

� �n
n o

ð4:2:5Þ

Equivalently the continuous profile is given as

p j
nðxÞ ¼ pnðxÞ 1� xð Þn ð4:2:6Þ

The results suggests an initial detectability profile

p jðxÞ ¼ ðmj þ 1Þ 1� xð Þmj ð4:2:7Þ

4.2 Software Reliability Growth Modeling Based on Testing Coverage 139



Factor (mj ? 1) ensures that the area under the initial profile curve is unity.
Substituting (4.2.7) in (4.2.4) implies

C jðnÞ ¼ 1� ðmj þ 1Þ
Z

1

0

ð1� xÞmjþndx ¼ n

mj þ nþ 1
ð4:2:8Þ

above is a one parameter model for testing coverage based on parameter mj.

4.2.1.2 Logarithmic Coverage Model

Instead of random testing in actual practice, a test case is selected in order to
exercise functionality or enumerable that is remaining untested. It makes testing
more directed and efficient than random testing. The coverage growth depends on
the detectability profile along with test selection strategy. Following the analysis of
Malaiya et al. [7] that the defect coverage growth in practice can be described by a
logarithmic model, it is assumed that the coverage growth of other enumerable
types also be logarithmic. The following model is given

C jðtÞ ¼ 1
N j

b
j
0 lnð1þ b

j
1tÞ ð4:2:9Þ

If single application of test takes Ts seconds then the time needed to apply n test
is nTs hence

C jðnÞ ¼ 1
N j

b
j
0 lnð1þ b

j
1TsnÞ ð4:2:10Þ

defining b j
0 ¼

b
j
0

N j and b j
1 ¼ b

j
1Ts the coverage model can be rewritten as

C jðnÞ ¼ b j
0 lnð1þ b j

1nÞ; C jðnÞ� 1 ð4:2:11Þ

For defect coverage (C0) i.e. enumerables of type j = 0 following interpretation
is drawn for the parameters

b00 ¼ K0ð0ÞN0ð0Þ
� ��

a0TL
� �

and b01 ¼ a0

Solving Eq. (4.2.11) for n and substituting for C0 we obtain

C0 ¼ b00 ln 1þ b01
b j
1

eC
j=b j

0 � 1
� �

 !

; i ¼ 1; 2; 3; 4 ð4:2:12Þ

Defining a00 ¼ b00; a01 ¼
b01
b j
1

; and a j
2 ¼ 1

b j
0

(4.2.12) is rewritten as

C0 ¼ a00 ln 1þ a j
1 eC

ja j
2 � 1

� �� �

; i ¼ 1; 2; 3; 4 ð4:2:13Þ

above is a three parameter logarithmic model for defect coverage in terms of
measureable test coverage metrics.

140 4 Testing-Coverage and Testing-Domain Models



4.2.1.3 Defect Density and Reliability

Failure intensity is defined as
k ¼ K

TL
N ð4:2:14Þ

If N0 be the total number of faults initially present in the program and there is no
new faults introduced during testing process. Then N can be computed as

N ¼ N0ð1� C0Þ ð4:2:15Þ
substituting from (4.2.13) we get

N ¼ N0 1� a00 ln 1þ a j
1 eC

ja j
2 � 1

� �� �� �

ð4:2:16Þ

hence the expected time between successive failure is given as
1
k
¼ TL

KN0 1� a00 ln 1þ a j
1 eC

ja j
2 � 1

� �� �� � ð4:2:17Þ

The model can also be used for estimating reliability for the operational phase
using an appropriate value of the fault exposure ratio.

4.2.2 Enhanced NHPP Based Software Reliability Growth

Model Considering Testing Coverage

Gokhale et al. [1] gave an enhanced non-homogeneous Poisson process (ENHPP)
based software reliability growth model analyzing the effect of testing coverage. An
important property of their formulation is that is offers a unified scheme for the
various finite failure NHPP models relying on some specific forms of coverage
functions.

Notation

a0 Total number of faults present initially in the software
cd(t) Probability of detecting a fault
c(t) Potential fault sites coverage rate
k(t) Failure intensity function
h(t) Hazard function
m(t) Cumulative expected number of faults detected by time t

Assumptions

1. Faults are uniformly distributed over all potential fault sites
2. When a potential fault site is sensitized at time t, any fault present at that site is

detected with probability cd(t)
3. Repairs are affected instantly and without introduction of new faults.

4.2 Software Reliability Growth Modeling Based on Testing Coverage 141



Analytically the model is described as

d
dt
mðtÞ ¼ a0cd tð Þ d

dt
cðtÞ ð4:2:18Þ

general solution of above is given as

mðtÞ ¼ a0
Z

t

0

cd sð Þ � c0ðsÞds

A perfect fault detection coverage implies cd(t) = 1 and perfect testing cov-
erage implies c(?) = 1. If a probability of detecting faults is assumed to be
constant (say K) and we substitute a0k = a then

mðtÞ ¼ acðtÞ ð4:2:19Þ

Using (4.2.19) the failure intensity function is given as

kðtÞ ¼ d
dt
mðtÞ ¼ a

d
dt
cðtÞ ð4:2:20Þ

From (4.2.19) and (4.2.20) failure intensity function can be rewritten as

kðtÞ ¼ ða� mðtÞÞ c0ðtÞ
1� cðtÞ ð4:2:21Þ

This form of failure intensity implies that the failure intensity depends directly
on the rate at which remaining faults are covered and inversely on the uncovered
faults. The failure occurrence rate per fault or the hazard function is thus given by

hðtÞ ¼ c0ðtÞ
1� cðtÞ ð4:2:22Þ

The time dependent form of failure occurrence rate in ENHPP incorporated the
time variation in the rate at which individual fault will surface. The reliability of
this model will completely be dependent on the coverage function, as the proba-
bility that no failure occurs up to time (t ? h) given that the last failure occurred at
time t is given by

RðhjtÞ ¼ e�
R tþh

t
kðsÞds ¼ e�a cðtþhÞ�cðtÞð Þ ð4:2:23Þ

Using this model Gokhale et al. [1] derived several forms of coverage functions
for the various existing NHPP models. The NHPP based SRGM are characterized
by their mean value functions and using (4.2.19) we can obtain the corresponding
coverage function. We explain this with some examples.

Exponential Coverage Function Consider the case of GO model. The mean
value function of GO model is

mðtÞ ¼ a 1� e�bt
� �

142 4 Testing-Coverage and Testing-Domain Models



Hence the coverage and hazard function for this model is given as

cðtÞ ¼ 1� e�bt
� �

and

hðtÞ ¼ b ð4:2:24Þ

Weibull Coverage Function An exponential coverage function depicts
decreasing failure intensity pattern during testing, however in most practical sit-
uations failure intensity increases initially and then decreases. The generalized GO
model captures this increasing–decreasing failure intensity function. The mean
value function of generalized GO model is

mðtÞ ¼ a 1� e�btc
� �

Hence the coverage and hazard function for this model is given as

cðtÞ ¼ 1� e�btc
� �

and

hðtÞ ¼ bctc�1 ð4:2:25Þ

The Weibull coverage function implies a time varying failure occurrence rate
per fault. The hazard function is increasing for c[ 1, decreasing for c\ 1 and is
constant when c = 1.

S-shaped Coverage Function The s-shaped SRGM gives rise to s-shaped cov-
erage functions. Consider the case of inflection s-shaped model due to Yamada
et al. [10]. The mean value function for the model is

mðtÞ ¼ a 1� ð1þ btÞe�bt
� �

The coverage and hazard functions for this model are

cðtÞ ¼ 1� ð1þ btÞe�bt
� �

and

hðtÞ ¼ b2t

1þ bt
ð4:2:26Þ

Similarly various other coverage functions can be derived for the various other
existing SRGM.

4.2.3 Incorporating Testing Efficiency in ENHPP

Pham and Zhang [11] extended the ENHPP, incorporating the very important
concept of testing efficiency in the model. The model is a general formulation for

4.2 Software Reliability Growth Modeling Based on Testing Coverage 143



obtaining the coverage function for the various testing efficiency based NHPP
model. The failure intensity function of the model is formulated as

d
dt
mðtÞ ¼ c0ðtÞ

1� cðtÞ½aðtÞ � mðtÞ� ð4:2:27Þ

The authors used s-shaped coverage function (4.2.26) and a linear testing time
dependent fault content function to account for the fault generation i.e.

cðtÞ ¼ 1� 1þ btð Þe�bt
� �

and

aðtÞ ¼ a 1þ atð Þ ð4:2:28Þ

Solving Eq. (4.2.27) using (4.2.28) and the initial condition m(0) = 0 the mean
value function is obtained as

mðtÞ ¼ a 1þ at � 1þ btð Þ
ebt

	 


� aa 1þ btð Þ
be1þbt

lnð1þ btÞ þ
X

1

i¼0

ð1þ btÞiþ1 � 1
ðiþ 1Þ!ðiþ 1Þ

 !

ð4:2:29Þ

This model is in the category of pure error generation model. The mathematical
form of the mean value function for the above model is complex and may find
limited applications in practice for this reason. As an alternative Kapur et al. [12]
suggested to use other forms of fault content function. They investigated the fault
content function formulated, assuming that a constant proportion of faults removed
during testing can be introduced during the debugging activities, given by
a(t) = a ? am(t). Using this fault content function in the coverage based for-
mulation (4.2.27), the mean value function of this SRGM is given as

mðtÞ ¼ a

1� a
1� ð1þ btÞ 1�að Þe�b 1�að Þt
� �

ð4:2:30Þ

Kapur et al. [12] also proposed a different s-shaped coverage function which
converges slower than the s-shaped coverage function (4.2.26). This type of curve
gives better result if the test strategy is less effective in attaining maximum cov-
erage. This coverage function is given as

cðtÞ ¼ 1� 1þ bt þ btð Þ2
.

2
� �

e�bt
� �

ð4:2:31Þ

The mean value function for this coverage function has been evaluated for the
different forms of fault content function

Case 1 a(t) = a then mðtÞ ¼ a 1� 1þ bt þ btð Þ2
.

2
� �

e�bt
� �

144 4 Testing-Coverage and Testing-Domain Models



Case 2 a(t) = a ? am(t) implies

mðtÞ ¼ a

1� a
1� ð1þ bt þ btð Þ2

.

2Þ 1�að Þe�b 1�að Þt
� �

Case 3 a(t) = a(1 ? at) implies

mðtÞ ¼ a 1þ atð Þ � a
1� 1þ btð Þ2

2ebt

 !

�
aa 1� 1þ btð Þ2
� �

be1þbt

X

1

n¼1

ð�1Þn�1
1þ btð Þ2n�1�1

� �

2n� 1

X

n�1

j¼0

ð�1Þ j
ð2jÞ!

þ
X

1

n¼1

ð�1Þn�1
1þ btð Þ2n�1�1

� �

2n� 1

X

n�1

j¼0

ð�1Þ j
ð2jþ 1Þ!

0

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

A

Pham [13] attempted to integrate fault generation in ENHPP in a different
manner, given as

d
dt
mðtÞ ¼ c0ðtÞ

1� cðtÞ½a� mðtÞ� � dðtÞ½a� mðtÞ� ð4:2:32Þ

where d(t) denotes the fault introduction rate. The failure intensity equation
(4.2.32) can be interpreted as the failure intensity, as described by ENHPP, is
decreased due to fault generation proportional to the fault introduction rate in the
remaining fault content.

If d(t) is assumed to be a decreasing function of testing time say

dðtÞ ¼ d
1þ dt

ð4:2:33Þ

then the mean value function of the SRGM is given as

mðtÞ ¼ a 1� 1þ ðbþ dÞt þ bdt2
� �

e�bt
� �

ð4:2:34Þ

4.2.4 Two Dimensional Software Reliability Assessment

with Testing Coverage

The testing coverage functions and the SRGM described up to now have been
formulated with respect to time component of the testing time. Inoue and Yamada
[14] claimed that SRGM which consider software reliability growth process,
depending only on the testing time may not be very useful in practice. For example

4.2 Software Reliability Growth Modeling Based on Testing Coverage 145



due to an ineffective and inefficient test design, the execution of certain test may
not yield any reliability growth due to their failure in capturing some faults,
although lots of time may be spent in the testing. One solution to this problem is to
develop an SRGM which depends not only on the testing time component but also
simultaneously on other reliability growth factors. Ishii and Dohi [15] proposed
two dimensional software reliability growth modeling, framework by extending a
modeling framework of one dimensional software reliability growth modeling,
based on order statistics. In the two dimensional modeling framework the software
failure occurrence times distribution is defined in two dimensions, one consisting
of testing time and other being the testing effort (in terms of test execution times).

Inoue and Yamada [16] proposed a testing coverage based SRGM character-
izing the relationship between the testing coverage function attainment process and
the software reliability growth process. They described the time dependent
behavior of test coverage considering the testing skill of the test case designers. It
may be noted that the coverage attained is highly related to the skill of the test
designers. In order to counter the problem of one dimensional model, Inoue and
Yamada [14] extended this model in two dimensional SRGM. The approach fol-
lowed for the purpose is different from Ishii and Dohi [15] as this model is based
on testing coverage, a measure which takes values between 0 and 1. Following the
same approach in testing coverage based model, does not conserve the theoretical
means of the framework. Hence based on the notion of Cobb–Douglas production
function on Weibull type SRGM a two dimensional model is developed by Inoue
and Yamada [14] dividing the testing time into two factors—the testing time and
testing efforts. First of all we describe the one dimensional model of Inoue and
Yamada [16].

4.2.4.1 The Coverage Function

The testing coverage function is derived assuming testing coverage rate at any
time t to be proportional to the difference between the attainable and the current
value of the testing coverage.

d
dt
cðtÞ ¼ bðtÞ a� cðtÞð Þ 0\a� 1; bðtÞ[ 0 ð4:2:35Þ

where a is the target value of the testing coverage to be attained. Considering an
attainable value of coverage make SRGM more meaningful in practice as 100%
coverage may not be feasible due to very less testability of uncovered components
remaining in the later phase of testing. b(t) is the testing coverage maturity ratio at
testing time t.

The testing coverage maturity ratio is defined with respect to the test designer’s
skill. It is assumed that the testing skill of the test case designers increase as the
ratio of the testing progress goes on. Hence the testing coverage maturity ratio at
the testing time t is defined as

bðtÞ ¼ bsta r þ ð1� rÞ CðtÞ=að Þð Þ r ¼ bini=bsta ð4:2:36Þ

146 4 Testing-Coverage and Testing-Domain Models



where bini (bsta) are the initial (steady state) testing skill factor of the test case
designers.

The obtained coverage function under C(0) = 0 is

cðtÞ ¼ a 1� e�bstat
� �

1þ be�bstat
; b ¼ 1� rð Þ=r ð4:2:37Þ

The coverage function indicates exponential growth when r = 1 and S-shaped
growth for r = 0 when the program is complex, testing skills of the testing team
grows with the pace of testing and testing efforts increases more and more.

4.2.4.2 The One Dimensional SRGM

The NHPP reliability growth model formulated using the above coverage function
based on the assumptions of a general NHPP model is

d
dt
mðtÞ

�

c0ðtÞ ¼ b a� mðtÞð Þ

or
d
dt
mðtÞ ¼ bc0ðtÞ a� mðtÞð Þ ð4:2:38Þ

here b is defined as the fault detection rate per attained testing coverage per fault
and the corresponding mean value function is

mðtÞ ¼ a 1� e�bcðtÞ
� �

ð4:2:39Þ

4.2.4.3 The Two Dimensional SRGM

For developing a two dimensional SRGM based on coverage function, the one
dimensional time space is expanded to the two dimensions. The testing time factor
of the software reliability growth is classified into the two factors

1. The factors which are related to the testing time such as the calendar time.
2. The factors which are related to the testing effort such as the testing coverage,

testing domain ratio and the number of executed test cases etc.

The two dimensional SRGM based on these two factors simultaneously is
formulated based on the Cobb–Douglas production (or utility) function [17, 18]
applied to the testing time factor of the one dimensional conventional SRGM as
follows

t � smu1�m ð4:2:40Þ

4.2 Software Reliability Growth Modeling Based on Testing Coverage 147



Where m represents the extent of the effect of the factor on the testing time
factor of one dimensional models.

Now let Nðs; uÞ; s� 0; u� 0f g be the two dimensional stochastic process
representing the number of faults detected up to the testing time s and testing
time u. The two dimensional NHPP is formulated as

pr Nðs; uÞ ¼ nf g ¼ mðs; uÞð Þu
n!

e�mðs;uÞ ð4:2:41Þ

mðs; uÞ ¼
Z

s

0

Z

u

0

kðx; yÞdxdy ð4:2:42Þ

where m(s, u), k(x, y) are the mean value function and the intensity functions of the
two dimensional NHPP respectively.

The mean value function of the Weibull type SRGM is given as

mðtÞ ¼ t

q

	 
b

0\b\1; q[ 0 ð4:2:43Þ

b, q are the software reliability growth shape and scale parameters and the failure
intensity function for this model is given as

kðtÞ ¼ d
dt
mðtÞ ¼ btb�1

qb
ð4:2:44Þ

This is an infinite failure model as m(?) = ? meaning that when testing is
continued for infinite time, infinite number of errors will be detected which can be
accounted as imperfect debugging. Following (4.2.40) the two dimensional Wei-
bull type SSRGM is given as

mðs; uÞ ¼ smu1�m

q

	 
b

0\b\1; q[ 0 ð4:2:45Þ

The above model processes a very important property that if m = 1 then (4.2.45)
describes the conventional time dependent SRGM as t = s while if m = 0 it
describes a testing effort dependent SRGM as here t = u.

4.2.5 Considering Testing Coverage in a Testing Effort

Dependent SRGM

Kapur et al. [19] proposed an SRGM which defined the software reliability growth
with respect to testing coverage, testing efforts and time. The failure intensity of
the software during testing is defined as

d
dt
mðtÞ ¼ dm

de
de
dX

dX
dt

ð4:2:46Þ

148 4 Testing-Coverage and Testing-Domain Models



The model can be explained as that, the number of failures detected during
testing is dependent on the testing coverage at that time. Testing coverage
increases as more efforts are applied and testing efforts in turn are a function of
time. Each component of the failure intensity is then defined independently.

Component 1 The rate at which additional faults are identified is directly
proportional to the coverage rate of the uncovered faults and the remaining fault
content. Based on this assumption the first component is defined as

dm
de
¼ b1

c0

a1 � c

	 


ða� mÞ ð4:2:47Þ

where c0 is the coverage rate, a1 is the target value of the testing coverage to be
attained and c is the coverage function at time t. Coverage function of (4.2.37) is
defined with respect to the test efforts as

cðtÞ ¼ a1 1� e�bstaXðtÞ
� �

1þ be�bstaXðtÞ ð4:2:48Þ

using (4.2.48) the hazard rate with coverage target a1 is

c0

a1 � c
¼ bsta

1þ be�bstaX
ð4:2:49Þ

Component 2 This component relates to the number of instructions executed to
the testing efforts and for the sake of simplicity it is assumed to be constant, i.e.,

de
dX

¼ b2 ð4:2:50Þ

while the third component is the testing effort function defined with respect to
time. Any existing test effort function (see Sect. 2.7) can be used here depending
on the testing profile under consideration. Using Eqs. (4.2.47), (4.2.49) and
(4.2.50), (4.2.46) can be expanded as

d
dt
mðXðtÞÞ ¼ b1

bsta
1þ be�bstaXðtÞða� mðXðtÞÞÞb2

dX
dt

ð4:2:51Þ

The mean value function obtained under m(0) = W(0) = 0 is

mðXðtÞÞ ¼ a
1þ be�bstaXðtÞ
� �b1b2� 1þ bð Þe�bstab1b2XðtÞ

1þ be�bstaXðtÞ ð4:2:52Þ

This model is then extended to predict the reliability in the operational phase.

4.2.6 A Coverage-Based SRGM for Operational Phase

The model coverage and effort based model discussed in the previous section is
extended by the authors for the operational phase. In order that the model can be

4.2 Software Reliability Growth Modeling Based on Testing Coverage 149

http://dx.doi.org/10.1007/978-0-85729-204-9_2


used for operational reliability prediction, the proportion of uncovered faults at the
start of the operational phase must be considered in the failure intensity formu-

lation and first component of the model needs to be redefined. Denoting m
_ðtÞas the

number of cumulative fault detected in the operational phase the failure intensity is
defined as

d
dt
m
_ðtÞ ¼ dm

_

de
de
dX

dX
dt

1� c Tð Þð Þ ð4:2:53Þ

where T is the release time. In the operational phase the number of fault
detected/removed directly depend on the number of statements executed and
not on the coverage achieved. As in this phase, fault are detected in the opera-
tional profile during execution by the users and no test case is executed with the
aim of fault detection. Now for defining the first component it is assumed that
along with the removal of detected faults the debuggers can also remove some
additional faults. This can be modeled in the manner of Kapur and Garg [19]
model for error removal formula (see Sect. 2.3). The authors of this model
also proposed an alternative derivation of this phenomenon using a logistic
function for the fault removal rate. For defining the first component of (4.2.53) this
alternative function is used to define the fault detection rate. Along with this the
possibility of imperfect debugging of type fault generation is also considered in
this model.

Hence it is defined as

dm
_

de
¼ b

_

1

1þ b
_

e�b
_

1XðtÞ
ða_ þ b3m� mÞ ð4:2:54Þ

here b
_

1; b
_

are the parameters of the logistic fault detection rate function and b3 is
the constant representing the proportion of removed faults that are generated

during debugging and a
_ ¼ ða� mðTÞÞ, i.e. the faults remaining at the time of

software release. Other components are defined as such as in the previous section.
Using (4.2.54), (4.2.53) can be expanded as

d
dt
m
_ðtÞ ¼ b

_

1

1þ b
_

e�b
_

1XðtÞ
ða_ þ b3m� mÞb2

dX
dt

1� c Tð Þð Þ ð4:2:55Þ

Mean value function of fault removal phenomenon obtained from (4.2.55) is

m
_ðtÞ ¼ a

_

1� b3
1�

1þ b
_� �

e�b
_

1XðtÞ

1þ b
_

e�b
_

1XðtÞ

0

@

1

A

1�b3ð Þb2 1�c Tð Þð Þ0

B

@

1

C

A
ð4:2:56Þ

Note that X(t) here represents the usage function instead of test effort function.
Modeling of usage function is already explained in Sect. 2.5.

150 4 Testing-Coverage and Testing-Domain Models

http://dx.doi.org/10.1007/978-0-85729-204-9_2
http://dx.doi.org/10.1007/978-0-85729-204-9_2


4.3 Software Reliability Growth Modeling Using the Concept
of Testing Domain

Measuring software reliability with respect to the isolated testing domain is an area
in software reliability modeling which has not been much explored by the
researchers. The initial attempts were made by Yamada and Fujiwara [3] who
proposed three types of testing domains i.e. the basic testing domain, the testing
domain with skill factor and the testing domain with imperfect debugging; and
then these domains were closely related to the time dependent behavior of the fault
detection phenomenon of the testing.

Notation

u(t) total number of faults existing in the isolated testing domain at the testing
time t

w(t) number of detectable faults at testing time t
v testing domain growth rate
b the constant fault introduction rate

4.3.1 Relating Isolated Testing Domain to Software Reliability

Growth: An Initial Study

4.3.1.1 Description of Testing Domains

Basic Testing Domain

Based on the definition of testing domain, the relationship between the isolated
testing domain ratio and the number of faults detected by testing is formulated
according to the following assumptions.

1. The debugging process is perfect
2. The latent faults in the testing domain are distributed uniformly
3. The increasing rate of the number of detectable faults in the testing domain is

proportional to the number of faults remaining in the software system outside of
the isolated testing domain at arbitrary testing time

Based on these assumptions the differential equation for the basic testing
domain is

d
dt
uðtÞ ¼ vða� uðtÞÞ ð4:3:1Þ

Hence the basic testing domain under the initial condition u(0) = 0 is defined as

uðtÞ � ubðtÞ ¼ a 1� e�vtð Þ ð4:3:2Þ

4.3 Software Reliability Growth Modeling Using the Concept of Testing Domain 151



where ub(t) represents the basic testing domain isolated representing the expo-
nential growth curve. The testing domain growth function c(t) representing the rate
of the isolated testing domain growth in the software system is given as

cðtÞ ¼ cbðtÞ ¼
d
dt
ubðtÞ ¼ ave�vt ð4:3:3Þ

Testing Domain with Skill Factor

Testing skill represent the test case designer’s potential ability (i.e. fault detection
possibility), which can be measured by the total number of detectable faults. If the
test case designers do not fully understand the internal structure of the software
system, then the test cases designed by them will represent a narrow area of the
modules and functions to be influenced and may not necessarily detect many
faults. In this case, even if the test cases are executed, the testing domain does not
spread at a rate which can be expected otherwise. On the other hand if a profes-
sional and experienced team having a through knowledge of the software internal
structure prepares the test design and the test designed so is executed following
effective strategy, the isolated testing domain can cover many modules and sys-
tems which are targeted by the test and grow speedily with an increasing rate.
Hence based on the assumptions of the basic testing domain and assuming the
testing domain growth rate is proportional to the number of faults existing in the
testing domain, the differential equations is formulated as

d
dt
wðtÞ ¼ vða� wðtÞÞ ð4:3:4Þ

d
dt
uðtÞ ¼ vðwðtÞ � uðtÞÞ ð4:3:5Þ

If p is the skill factor of the test case designers, it is expected that before the
start of the testing by means of test case execution some portion of the testing
domain can be isolated. In such a case the initial size of the isolated testing domain
cannot be zero as in case of basic testing domain. Considering a(1 - p) as the size
of the initial testing domain the testing domain with skill factor is obtained as

uðtÞ � us;pðtÞ ¼ a 1� p 1þ vtð Þe�vtð Þ; 0� p� 1 ð4:3:6Þ
where us,p(t) represents the isolated testing domain with skill factor spreading
along an s-shaped growth curve. If size of initial testing domain is a i.e. no part of
the testing domain can be isolated at the starting time of the testing phase, then the
testing domain with skill factor is obtained as

uðtÞ � usðtÞ ¼ a 1� 1þ vtð Þe�vtð Þ ð4:3:7Þ

and the testing domain growth rate is given as

cðtÞ ¼ csðtÞ ¼
d
dt
usðtÞ ¼ apv2te�vt or av2te�vt ð4:3:8Þ

depending on the initial condition.

152 4 Testing-Coverage and Testing-Domain Models



Testing Domain with Imperfect Debugging

Imperfect debugging is a realistic fact for almost every testing profile. The
definitions of basic testing domain as well as the testing domain with skill
factor, both have been formulated under the assumption of a perfect debugging
environment. In practice introduction of new faults during the debugging
process is frequently experienced. Yamada and Fujiwara [3] claimed that in the
early stage of testing, the correction of detected faults is simple and the
influenced region of the modules and functions by the fault correction is very
narrow. The correction of detected faults becomes complicated with the pro-
gress of testing and the influenced region spreads widely. This phase requires
more careful and skilled debugging activities for the correction of more com-
plicated faults as compared to the earlier phase. This may lead to the increase
in the introduction degree of new faults with progress of testing. However
despite imperfect debugging activities, the testing domain continues to spread
as the testing progresses.

Assuming an imperfect debugging condition, the testing domain is formulated
as

d
dt
uðtÞ ¼ vðaðtÞ � uðtÞÞ ð4:3:9Þ

The number of faults in the system at any moment of testing time is
defined as a function of time and an exponential form of fault content is used
to capture the slow introduction rate in the early phases and higher in the later
stages, i.e.

aðtÞ ¼ aect; c[ 0 ð4:3:10Þ

From (4.3.9) and (4.3.10) the basic testing domain with imperfect debugging is
defined as

uðtÞ � uiðtÞ ¼
av

cþ v
ect � e�vtð Þ ð4:3:11Þ

where ui(t) represents the basic testing domain with imperfect debugging, ignoring
the skill of the test designers. The testing domain growth rate for this domain
function is given as

cðtÞ ¼ ciðtÞ ¼
d
dt
uiðtÞ ¼

av

cþ v
cect þ ve�vtð Þ ð4:3:12Þ

4.3.1.2 Software Reliability Modeling

Yamada and Fujiwara [3] carried reliability analysis based on the three kinds of
testing function domains discussed in the earlier section. The SRGM are formu-
lated based on the following assumptions

4.3 Software Reliability Growth Modeling Using the Concept of Testing Domain 153



Assumptions

1. The detected faults exist in the isolated testing domain
2. The isolated testing domain ratio increases with the progress of testing.
3. Fault detection rate is proportional to the number of faults remaining in the

testing domain at testing time t

The differential equation with respect to mean value function m(t) based on the
above assumption and testing domain functions is

d
dt
mðtÞ ¼ bðtÞðuðtÞ � mðtÞÞ ð4:3:13Þ

here b(t) is defined as the time dependent fault detection rate per fault remaining in
the testing domain. The mean value functions of the SRGM using the four testing
domain functions (4.3.2), (4.3.6), (4.3.7) and (4.3.11) under the initial condition
m(0) = 0 and assuming b(t) = b are respectively

mbðtÞ ¼ a 1þ be�vt � ve�bt

v� b

	 


; v 6¼ b ð4:3:14Þ

ms;pðtÞ ¼ a 1þ bp

v� b
vt þ 2v� b

v� b

	 


e�vt � 1þ bpð2v� bÞ
ðv� bÞ2

 !

e�bt

 !

; v 6¼ b

ð4:3:15Þ

msðtÞ ¼ a
1þ b

v� b
vt þ 2v� b

v� b

	 


e�vt

� v

v� b

� �2
e�bt

0

B

B

@

1

C

C

A

; v 6¼ b ð4:3:16Þ

miðtÞ ¼ abv

ect

cþ vð Þ cþ bð Þ þ
e�vt

cþ vð Þ v� bð Þ

� e�bt

cþ bð Þ v� bð Þ

0

B

B

B

@

1

C

C

C

A

; v 6¼ b ð4:3:17Þ

Kapur et al. [21] integrated learning phenomenon of testing and debugging
teams in the testing domain based software reliability modeling. The general
differential equation for the failure intensity is given as

d
dt
mðtÞ ¼ bðtÞðuðtÞ � mðtÞÞ where bðtÞ ¼ b

1þ be�bt
ð4:3:18Þ

substituting the testing domain functions in (4.3.18), the mean value functions of
the SRGM are given as

mbðtÞ ¼
a

1þ be�bt
1þ be�vt � ve�bt

v� b

	 


; v 6¼ b ð4:3:19Þ

154 4 Testing-Coverage and Testing-Domain Models



ms;pðtÞ ¼
a

1þ be�bt

1þ bp

v� b
vt þ 2v� b

v� b

	 


e�vt

� 1þ bpð2v� bÞ
ðv� bÞ2

 !

e�bt

0

B

B

B

B

@

1

C

C

C

C

A

; v 6¼ bc ð4:3:20Þ

msðtÞ ¼
a

1þ be�bt

1þ b

v� b
vt þ 2v� b

v� b

	 


e�vt

� v

v� b

� �2
e�bt

0

B

B

@

1

C

C

A

; v 6¼ b ð4:3:21Þ

miðtÞ ¼
abv

1þ be�bt

ect

cþ vð Þ cþ bð Þ þ
e�vt

cþ vð Þ v� bð Þ �
e�bt

cþ bð Þ v� bð Þ

	 


; v 6¼ b

ð4:3:22Þ

4.3.2 Application of Testing Domain Dependent SRGM

in Distributed Development Environment

Testing domain dependent SRGM also finds applications in reliability estimation
and prediction for software systems developed under distributed development
environment. Software is realized by mapping the full set of system requirements
across the various sub-systems. These subsystems are integrated to make the
complete software. Independent subsystems are developed by independent teams
possibly at independent locations. Such software is constituted by some pre
existing (used say p in number) and otherwise new components (used say m in
number).

Reliability growth of independent sub components of distributed software can
be analyzed using different SRGM and the reliability growth of the full system will
then be given by the joint effect of the reliability growth of the independent
components. Pre existing components are usually expected to contain simple type
of faults. Therefore most of the reliability studies for distributed components
assume that simple exponential SRGM (GO model, [22]) can be used for analyzing
their reliability growth. On the other hand the new components are assumed to
contain hard and complex faults. For these kinds of faults the assumption of
immediate fault removal on detection proves to be false as the time lag between
their observation and isolation cannot be considered negligible. As already dis-
cussed in Sect. 2.8, the failure and removal phenomenon for these components is
described by two and three stage process. Yadav et al. [23] have shown an
application of testing domain dependent SRGM for estimating the reliability of
new components.

4.3 Software Reliability Growth Modeling Using the Concept of Testing Domain 155

http://dx.doi.org/10.1007/978-0-85729-204-9_2


Notation

a Total fault content
ai Initial fault content of ith component
bi Proportionality constant of FDR/fault isolation rate (FIR) per fault of ith

component
bi(t) Logistic learning FRR of ith component (newly developed)
mir(t) Mean number of faults removed from ith component by time t
mif(t) Mean number of failures observed in the ith component (newly developed)

by time t
miI(t) Mean number of faults isolated from ith component (newly developed) by

time t
g A constant parameter in the logistic learning function
p Number of reused components having simple type of faults
q Number of new components having hard faults
s Number of new components having complex faults

4.3.2.1 Model for Reused Components: the Case of Simple Faults

The fault removal process for faults lying in reused components is described by
exponential SRGM, given as

mirðtÞ ¼ aið1� e�bitÞ; i ¼ 1; 2; . . .; p ð4:3:23Þ

The Goel and Okumoto [22] exponential SRGM can adequately describe the
simple faults present in the reused components.

4.3.2.2 Model for New Components: the Case of Hard and Complex Faults

An SRGM for Hard Faults

The assumption of immediate removal of faults on detection seems unrealistic for
the case of hard faults. The testing team may require spending more time and
efforts to analyze the cause of faults in the newly developed components. The
failure and removal phenomenon for hard faults is thus described by a two stage
process—fault detection followed by its removal.

The failure detection process of such faults can be described by the basic testing
domain function which describes the number of detectable faults in the isolated
basic testing domain. On account of this using basic testing domain function
(4.3.2) the failure process for hard faults in the q newly developed component is
given as

mif ðtÞ ¼ uiðtÞ ¼ ai 1� e�vitð Þ i ¼ pþ 1; . . .; pþ q ð4:3:24Þ

156 4 Testing-Coverage and Testing-Domain Models



After the detection the fault is isolated and removed from its place of existence,
hence the removal process of faults is described as

d
dt
mirðtÞ ¼ biðtÞ mif ðtÞ � mirðtÞ

� �

i ¼ pþ 1; . . .; pþ q ð4:3:25Þ

using a logistic fault detection rate per remaining fault i.e. biðtÞ ¼ bi
1þbie�bit

the

mean value function of the removal process for the components containing hard
faults under the initial condition that mir(0) = 0 is given as

mirðtÞ¼
ai

1þbie�bit
1þbie�vit� vie�bit

vi�bi

	 


; vi 6¼ bi; i¼ pþ1; . . .;pþq ð4:3:26Þ

The second stage of the two stage removal process describes the delayed fault
removal process.

An SRGM for Complex Faults

The fault isolation and removal process of faults present in some components can
be even harder than the hard faults. The faults present in such components are
usually called complex faults. The time delay between the fault detection and
removal is greater in the case of complex faults as compared to hard faults. On
account of this, more efforts are required to isolate and then removal the complex
faults. The failure and removal phenomenon for complex faults is thus described
by a three-stage process—fault detection, isolation followed by removal.

The first two stages of the testing process fault detection and isolation can be
described on the lines of testing domain with skill factor. Here in this case when
the initial size of the isolated testing domain is considered to be zero and not
ai(1 - pi) i.e. no portion of testing domain is visible before testing is started.
Based on the assumptions of the basic testing domain and assuming the testing
domain growth rate is proportional to the number of faults existing in the testing
domain, the differential equations are formulated as:

d
dt
mif ðtÞ ¼

d
dt
wiðtÞ ¼ viðai � wiðtÞÞ i ¼ pþ qþ 1; . . .; pþ qþ r ð4:3:27Þ

d
dt
miIðtÞ ¼

d
dt
uiðtÞ ¼ viðwiðtÞ � uiðtÞÞ i ¼ pþ qþ 1; . . .; pþ qþ r ð4:3:28Þ

Hence the mean value function of the fault isolation process is given as

miIðtÞ ¼ ai 1� 1þ vitð Þe�vitð Þ i ¼ pþ qþ 1; . . .; pþ qþ r ð4:3:29Þ

miI(t) describes the fault isolation process of the complex faults for the newly
developed components.

After the detection and isolation, the fault is removed from its identified
location. Hence the removal process of faults is described as:

d
dt
mirðtÞ ¼ biðtÞ miIðtÞ � mirðtÞð Þ i ¼ pþ qþ 1; . . .; pþ qþ r ð4:3:30Þ

4.3 Software Reliability Growth Modeling Using the Concept of Testing Domain 157



using same form of bi(t) the mean value function of the removal process for the
components containing complex faults under the initial condition that mir(0) = 0
is given as

mirðtÞ ¼
ai

1þ bie�bit

1þ bi
vi � bi

vit þ
2vi � bi
vi � bi

	 


e�vit

� 1þ bið2vi � biiÞ
ðvi � biÞ2

 !

e�bit

0

B

B

B

B

@

1

C

C

C

C

A

; v 6¼ b;

i ¼ pþ qþ 1; . . .; pþ qþ r

ð4:3:31Þ

The delayed removal process described by (4.3.31) describes slower conver-
gence as compared to the (4.3.26) which can adequately describe the case of
complex faults.

4.3.2.3 Modeling Total Fault Removal Phenomenon

Total fault removal phenomenon for the software is superposition of SRGM for ‘p’
reused and ‘q ? r’ newly developed components and is given by the sum of the
mean value functions of removal phenomena. From Eqs. (4.3.23), (4.3.26) and
(4.3.31), the SRGM for software developed under DDE is given as

mðtÞ ¼
X

p

i¼1

aið1� e�bitÞ þ
X

pþq

i¼pþ1

ai
1þ bie�bit

1þ bie�vit � vie�bit

vi � bi

	 


þ
X

pþqþs

i¼pþqþ1

ai
1þ bie�bit

1þ bi
vi � bi

vit þ
2vi � bi
vi � bi

	 


e�vit

� 1þ bið2vi � biÞ
ðvi � biÞ2

 !

e�bit

0

B

B

B

B

@

1

C

C

C

C

A

ð4:3:32Þ

Depending on the number of used and reused components of types containing
hard and complex faults, the mean value function of the removal phenomenon for
the software can be developed and applied to the distribution systems.

4.3.3 Defining the Testing Domain Functions Considering

Learning Phenomenon of Testing Team

The testing domain functions defined in the previous section assumes a constant
testing domain growth rate. However, in practice it may not be constant throughout
the testing phase. Moreover, an application of testing domain function on testing
data may require fitting and comparison of the different domain functions.
Application of an exponential domain function may fail if the data set exhibits

158 4 Testing-Coverage and Testing-Domain Models



s-shaped growth behaviour and vice versa. An answer to this problem is formu-
lation of flexible SRGM which can capture both types of growth behaviour and
provide a good fit to a wide range of actual data sets. Kapur et al. [24] formulated
an SRGM defining a time-dependent testing-domain growth rate. Assuming a
power function of testing time defines the testing growth rate, the differential
equation for the flexible basic testing domain is given as:

d
dt
uðtÞ ¼ vðtÞða� uðtÞÞ ð4:3:33Þ

where v(t) = vtk.
Using this time dependent testing growth rate and initial condition u(0) = 0, the

basic testing domain function is obtained as:

uðtÞ � ubðtÞ ¼ a 1� e�v tkþ1=kþ1ð Þ
� �

ð4:3:34Þ

For k = 0, k = 1 and k = 2 the testing domain function describes an exponential,
Rayleigh and Weibull curve respectively. While formulating the testing domain
function (4.3.2) the fault content distribution is assumed to be uniform over the
software system. However it can be non-uniform. Assuming p denotes the uniformity
factor in error distribution, the testing domain function can be redefined as:

uðtÞ � ub;pðtÞ ¼ a 1� pe�v tkþ1=kþ1ð Þ
� �

ð4:3:35Þ

The testing domain growth function c(t) is given as:

cðtÞ ¼ cb;pðtÞ ¼
d
dt
ub; pðtÞ ¼ apvtke�v tkþ1=kþ1ð Þ ð4:3:36Þ

for the uniform testing domain substitute p = 1 in (4.3.36).

4.3.3.1 Testing Domain with Skill Factor

Similar to the case of flexible basic testing domain, flexible testing domain with
skill factor can be formulated. Based on the assumptions of the basic testing
domain, assuming the testing domain growth rate is proportional to the number of
faults existing in the testing domain and is power function of testing time, the
differential equations are formulated as:

d
dt
wðtÞ ¼ vðtÞða� wðtÞÞ ð4:3:37Þ

d
dt
uðtÞ ¼ vðtÞðwðtÞ � uðtÞÞ ð4:3:38Þ

where v(t) = vtk.

4.3 Software Reliability Growth Modeling Using the Concept of Testing Domain 159



If we consider the size of initial isolated testing domain zero, the flexible testing
domain function with skill factor is given as:

uðtÞ � usðtÞ ¼ a 1� 1þ v tkþ1
�

k þ 1
� �� �

e�v tkþ1=kþ1ð Þ
� �

ð4:3:39Þ

However, if p is the skill factor of the test case designers and the initial size of the
isolated testing domain is a(1 - p), the testing domain with skill factor is obtained
as:

uðtÞ � us;pðtÞ

¼ a 1� p 1þ v tkþ1
�

k þ 1
� �� �

e�v tkþ1=kþ1ð Þ
� �

; 0� p� 1 ð4:3:40Þ

Factor p = 0 indicates that the test designers are expert and experienced
leading to ultra high potential of detecting the faults in initial stages of testing.
However, the case is not true in any situation in the real testing profile.

Similarly, a flexible testing-domain function with imperfect debugging can be
derived using a power function of testing time to define the testing-domain growth
rate. The derivation is left as an exercise to the readers.

4.3.3.2 Software Reliability Modeling

The flexible testing domain function can be used for reliability analysis based on
testing-domain growth rate. As compared to the reliability analysis carried out by
Yamada and Fujiwara [3], SRGM based on flexible testing domain functions
generates flexible reliability growth curves. The differential equation for the
SRGM based on the assumptions of SRGM formulated in Sect. 4.3.1.2 and flexible
testing domain functions is given as:

d
dt
mðtÞ ¼ bðtÞðuðtÞ � mðtÞÞ ð4:3:41Þ

A power logistic form of b(t) is used to defined the fault detection rate per
remaining fault in order to obtain flexible SRGM considering the learning phe-
nomenon of the testing team i.e.

bðtÞ ¼ btk

1þ be�b tkþ1=kþ1ð Þ ð4:3:42Þ

Now using the four flexible testing domain functions given by (4.3.34),
(4.3.35), (4.3.39) and (4.3.40), the mean value functions of the SRGM provided
(v = b)are given as:

mbðtÞ ¼
a

1þ be�b tkþ1=kþ1ð Þ 1þ be�v tkþ1=kþ1ð Þ � ve�b tkþ1=kþ1ð Þ
v� b

 !

ð4:3:43Þ

160 4 Testing-Coverage and Testing-Domain Models



mb;pðtÞ ¼
a

1þ be�b tkþ1=kþ1ð Þ 1þ bpe�v tkþ1=kþ1ð Þ � ðv� bþ bpÞe�b tkþ1=kþ1ð Þ
v� b

 !

ð4:3:44Þ

msðtÞ ¼
a

1þ be�b tkþ1=kþ1ð Þ

1þ b

v� b
v

tkþ1

k þ 1

	 


þ 2v� b

v� b

	 


e�v tkþ1=kþ1ð Þ

� v

ðv� bÞ

	 
2

e�b tkþ1=kþ1ð Þ

0

B

B

B

@

1

C

C

C

A

ð4:3:45Þ

ms;pðtÞ ¼
a

1þ be�b tkþ1=kþ1ð Þ

1þ bp

v� b
v

tkþ1

k þ 1

	 


þ 2v� b

v� b

	 


e�v tkþ1=kþ1ð Þ

� 1þ bpð2v� bÞ
ðv� bÞ2

 !

e�b tkþ1=kþ1ð Þ

0

B

B

B

B

@

1

C

C

C

C

A

ð4:3:46Þ

The testing-domain-dependent SRGM is not limited to those discussed here.
Several SRGMs can be formulated based on the discussed testing domain func-
tions integrating the various other concepts of software reliability modeling and
varying the fault detection rate function.

4.4 Data Analysis and Parameter Estimation

Both testing coverage and testing domain based models find application for a
specific purpose. Coverage-based models are useful when one wants to know the
progress of the testing coverage attained, while testing domain based models
provide information related to the isolated testing domain and the reliability
measures. In this section we have established the validity of several models from
both category and estimated their parameters and drawn comparisons on the
estimation results. Due to the absence of coverage and testing domain growth rate
related actual life observations in the collected data sets, directly software reli-
ability models are fitted on the data sets and using the estimates of SRGM, an
estimate of the attained coverage or the testing domain isolated can be made.

4.4.1 Application of Coverage Models

Failure Data Set

The failure data is for the program that monitors a real-time control system con-
sists of about 200 modules having on average, 1,000 lines of a high level language

4.3 Software Reliability Growth Modeling Using the Concept of Testing Domain 161



such as Fortran. The test data for 111 days is available during which 481 faults
were detected [25]. Since the test data is recorded daily, the test operations per-
formed in a day are regarded to be a test instance.

Following models have been chosen for data analysis and parameter estimation.

Model 1 (M1) Exponential Coverage SRGM [1]

cðtÞ ¼ 1� e�bt
� �

; mðtÞ ¼ a 1� e�bt
� �

Model 2 (M2) Weibull Coverage SRGM [1]

cðtÞ ¼ 1� e�btc
� �

; mðtÞ ¼ a 1� e�btc
� �

Model 3 (M3) S-shaped Coverage SRGM [1]

cðtÞ ¼ 1� ð1þ btÞe�bt
� �

; mðtÞ ¼ a 1� ð1þ btÞe�bt
� �

Model 4 (M4) Testing Efficiency Coverage SRGM [11]

cðtÞ ¼ 1� ð1þ btÞe�bt
� �

; mðtÞ ¼ a

1� a
1� ð1þ btÞ 1�að Þe�b 1�að Þt
� �

Model 5 (M5) S-shaped Coverage SRGM [12]

cðtÞ ¼ 1� 1þ bt þ btð Þ2
.

2
� �

e�bt
� �

;

mðtÞ ¼ a 1� 1þ bt þ btð Þ2
.

2
� �

e�bt
� �

Model 6 (M6) Testing Efficiency S-shaped Coverage SRGM [12]

cðtÞ ¼ 1� 1þ bt þ btð Þ2
.

2
� �

e�bt
� �

;

mðtÞ ¼ a

1� a
1� ð1þ bt þ btð Þ2

.

2Þ 1�að Þe�b 1�að Þt
� �

Model 7 (M7) Testing Efficiency S-shaped Coverage SRGM [13]

cðtÞ ¼ 1� ð1þ btÞe�bt
� �

; mðtÞ ¼ a 1� 1þ ðbþ dÞt þ bdt2
� �

e�bt
� �

Model 8 (M8) Flexible Coverage Function SRGM [16]

cðtÞ ¼ a 1� e�bstat
� �

1þ be�bstat
; b ¼ 1� rð Þ=r;

mðtÞ ¼ a 1� e�bcðtÞ
� �

The unknown parameters of all these models have been estimated using the
regression module of SPSS. The values of estimated parameters have been tabu-
lated in Table 4.1. Figures 4.2 and 4.3 show the goodness of fit curves for the
estimation results tabulated in Table 4.1 and future predictions for SRGM M1–M4
and M5–M8 respectively.

The estimation results shows that exponential SRGM does not give a good fit on
the data. The mean square value of the estimated values is very high for the

162 4 Testing-Coverage and Testing-Domain Models



exponential SRGM M1. However the model M8 is also exponential but due to the
flexible coverage function the model has given a good fit. The s-shaped coverage
function of models M5 and M6 c(t) = (1 - (1 ? bt ? (bt)2/2)e-bt) also does not
give a good fit. This coverage function converges slower than the s-shaped cov-
erage function c(t) = (1 - (1 ? bt)e-bt). The results of the models M3, M4 and
M7 are comparable. Both Weibull-type coverage function and flexible-coverage-
function based SRGM have given a good fit on the data. The shape parameter in
both of these coverage functions offers flexibility to capture a wide range of
coverage curves. The estimates of model M2–M4 and M7 and M8 are stable and

Table 4.1 Estimation result for model 1 to model 8

Model Estimated parameters Comparison criteria

a b c, d, bs t a a b MSE R2

M1 542 0.0254 1.4993 – – 804.93 0.965
M2 484 0.0054 – – – 300.85 0.987
M3 489 0.0662 – – – 331.76 0.985
M4 458 0.0690 – 0.0640 – 334.65 0.985
M5 476 0.1045 – – – 555.25 0.975
M6 450 0.1080 0.0000 0.0540 – 548.60 0.976
M7 489 0.0660 0.0649 – – 335.06 0.985
M8 815 0.9515 1.4993 0.9515 5.85 307.58 0.965

Fig. 4.2 Goodness of fit
curve for model M1–M4

Fig. 4.3 Goodness of fit
curve for model M5–M8

4.4 Data Analysis and Parameter Estimation 163



consistent with the collected data as the estimated value of the number of failure
converges between 483 and 485 faults for these models and not much further
increase in the failure number is observed for these models. This data analysis
concludes that model M2 should be selected for future prediction and reliability
measurement.

These models also give us the information on achieved level of software
coverage with the progress of testing. All of the s-shaped models show that up to
the time period for which the data was observed i.e. 120 days more than 99% of
software coverage is attained. While the exponential models shows less coverage
as compared to the s-shaped models (for model M1 93.75% and M8 94.61% in
109 days). If the developer decide to terminate the testing on the bases of the
coverage information then according to the best fit model 99.78% has been
attained which means that after 109 days of testing the software can be released.
The summary of coverage information is tabulated in Table 4.2.

4.4.2 Application of Testing Domain Based Models

Failure Data Set

We again continue our data analysis on the data set used in Sect. 3.8.1 in this
section. This data set is an interval domain data cited in Brooks and Motley [26].
The failure data set is for a radar system of size 124 KLOC (Kilo Lines of Code)
tested for 35 weeks in which 1,301 faults were detected.

Following models have been chosen for data analysis and parameter estimation.
Yamada and Fujiwara [3] Testing Domain based Models

Model 9 (M9) mbðtÞ ¼ a 1þ be�vt�ve�bt

v�b

� �

; v 6¼ b

Model 10 (M10)

ms;pðtÞ ¼ a 1þ bp

v� b
vt þ 2v� b

v� b

	 


e�vt � 1þ bpð2v� bÞ
ðv� bÞ2

 !

e�bt

 !

; v 6¼ b

Table 4.2 Coverage results
for model 1 to model 8

Model Software coverage
attained in 109 days

m (111)

M1 0.9375 509
M2 0.9978 484
M3 0.9939 486
M4 0.9954 486
M5 0.9999 475
M6 0.9999 475
M7 0.9938 486
M8 0.9461 484

164 4 Testing-Coverage and Testing-Domain Models

http://dx.doi.org/10.1007/978-0-85729-204-9_3


Model 11 (M11) msðtÞ ¼ a
1þ b

v� b
vt þ 2v� b

v� b

	 


e�vt

� v

v� b

� �2
e�bt

0

B

B

@

1

C

C

A

; v 6¼ b

Model 12 (M12) miðtÞ ¼ abv

ect

cþ vð Þ cþ bð Þ þ
e�vt

cþ vð Þ v� bð Þ

þ e�bt

cþ bð Þ v� bð Þ

0

B

B

@

1

C

C

A

; v 6¼ b

Kapur et al. [21] Testing Domain Based SRGM Incorporating Learning
Phenomenon

Model 13 (M13) mbðtÞ ¼ a
1þbe�bt 1þ be�vt � ve�bt

v� b

	 


; v 6¼ b

Model 14 (M14) ms;pðtÞ ¼ a
1þbe�bt

1þ bp

v� b
vt þ 2v� b

v� b

	 


e�vt

� 1þ bpð2v� bÞ
ðv� bÞ2

 !

e�bt

0

B

B

B

@

1

C

C

C

A

; v 6¼ b

Model 15 (M15) msðtÞ ¼ a
1þbe�bt

1þ b

v� b
vt þ 2v� b

v� b

	 


e�vt

� v

v� b

� �2
e�bt

0

B

B

@

1

C

C

A

; v 6¼ b

Model 16 (M16)

miðtÞ ¼
abv

1þ be�bt

ect

cþ vð Þ cþ bð Þ þ
e�vt

cþ vð Þ v� bð Þ þ
e�bt

cþ bð Þ v� bð Þ

	 


; v 6¼ b

Kapur et al. [24] Learning Testing Domain Based SRGM

Model 17 (M17) mbðtÞ ¼ a
1þ be�b tkþ1=kþ1ð Þ 1þ be�v tkþ1=kþ1ð Þ � ve�b tkþ1=kþ1ð Þ

v� b

 !

Model 18 (M18)

mb;pðtÞ ¼
a

1þ be�b tkþ1=kþ1ð Þ 1þ bpe�v tkþ1=kþ1ð Þ � ðv� bþ bpÞe�b tkþ1=kþ1ð Þ
v� b

 !

Model 19 (M19)

msðtÞ ¼ a
1þ be�b tkþ1=kþ1ð Þ

1þ b

v� b
v

tkþ1

k þ 1

	 


þ 2v� b

v� b

	 


e�v tkþ1=kþ1ð Þ

� v

ðv� bÞ

	 
2

e�b tkþ1=kþ1ð Þ

0

B

B

B

@

1

C

C

C

A

4.4 Data Analysis and Parameter Estimation 165



Model 20 (M20)

ms;pðtÞ ¼ a
1þ be�b tkþ1=kþ1ð Þ

1þ bp

v� b
v

tkþ1

k þ 1

	 


þ 2v� b

v� b

	 


e�v tkþ1=kþ1ð Þ

� 1þ bpð2v� bÞ
ðv� bÞ2

 !

e�b tkþ1=kþ1ð Þ

0

B

B

B

B

@

1

C

C

C

C

A

Table 4.3 Estimation result for model 9 to model 20

Model Estimated parameters Comparison criteria

A b v p, c b k MSE R2

M9 1,689 0.0899 0.0899 – – – 2967.63 0.955
M10 1,457 0.1656 0.1630 0.9866 – – 1370.24 0.987
M11 1,449 0.1662 0.1663 – – – 1343.33 0.985
M12 1,865 0.9700 0.0320 0.0042 – – 20611.25 0.945
M13 1,425 0.1715 0.1096 – 4.0055 – 973.89 0.996
M14 1,342 0.1938 0.2214 0.3045 21.2299 – 5747.39 0.976
M15 1,336 0.1977 0.1756 – 0.6292 – 2413.85 0.998
M16 1,720 0.6550 0.0740 0.0280 97.6590 – 9979.99 0.967
M17 1,322 0.1204 0.3280 – 10.7697 0.1752 1289.15 0.994
M18 1,318 0.0054 0.3215 0.2405 0.2926 1.1234 657.71 0.999
M19 1,401 0.2304 0.1164 – 0.2671 0.1077 1341.69 0.989
M20 1,426 0.2304 0.1033 0.7934 8.2962 0.1000 1136.28 0.996

Fig. 4.4 Goodness of fit
curve for models M9–M12

Fig. 4.5 Goodness of fit
curve for models M13–M16

166 4 Testing-Coverage and Testing-Domain Models



The unknown parameters of these models have been estimated and are tabu-
lated in Table 4.3. Figures 4.4, 4.5, and 4.6 show the goodness of fit curves for the
estimation results tabulated in Table 4.3 and future predictions and Figs. 4.7, 4.8,
and 4.9 shows the growth of testing domain with the progress of testing for the
three types of the testing domain models.

The data analysis results on testing domain dependent models show lots of
variability. Mean square error for models M9, M12, M14, M15 and M16 is very
high. Hence none of these models can be chosen for reliability measurements.
Both of the imperfect debugging models fitted very poorly on this data set. As the

Fig. 4.6 Goodness of fit
curve for models M17–M20

Fig. 4.7 Testing domain
growth curve for models
M9–M12

Fig. 4.8 Testing domain
growth curve for models
M13–M16

4.4 Data Analysis and Parameter Estimation 167



observed data shows an s-shaped growth pattern poor fit is observed mostly for
exponential models. The model that fits best on this data is M18 and none of other
model has comparable value of MSE or R2. The best fit model is based on the
testing domain function that considers the learning of testing team and basic
testing domain with non zero size of initial testing domain. For the best fitted
model the size of faults in the software is estimated to be 1,318. The fault detection
rate is 0.0055 and the testing domain growth rate is 0.3215. The learning factor is
estimated to be 1.1234 in the testing domain function and 0.2926 in the reliability
growth model. The result implies that learning occurs both during testing domain
isolation as well as fault debugging.

Exercises

1. What is testing coverage? Give some important measures of testing coverage.
2. Explain the difference between path and branch coverage.
3. What is testing domain? How efficiency of test case design is related to the

isolated testing domain?
4. Show that if the failure intensity function of an SRGM is given as

d
dt
mðtÞ ¼ c0ðtÞ

1� cðtÞ½aðtÞ � mðtÞ�;

where c(t) = (1 - (1 ? bt)e-bt) and a(t) = a ? am(t), then the mean value

function of the SRGM is given as mðtÞ ¼ a
1�a

1� ð1þ btÞ 1�að Þe�b 1�að Þt
� �

:

5. Show with the help of graph, similarity and difference in the two coverage
functions c(t) = (1 - (1 ? bt)e-bt) and c(t) = (1 - (1 ? bt ? (bt)2/2)e-bt).

6. Model discussed in Sect. 4.2.5 defines an SRGM with respect to coverage,
testing effort and time. The failure intensity of the software during testing is
defined as d

dtmðtÞ ¼ dm
de

de
dX

dX
dt . The second component of the model relates the

number of instructions executed to the testing effort, i.e. it can be called as the
statement coverage with respect to the testing efforts. Develop a statement
coverage model, if we define dm

de ¼ b1 þ b2 m=að Þð Þða� mÞ and de
dX ¼ b3Xk, with

the initial condition m(0) = W(0) = 0.

Fig. 4.9 Testing domain
growth curve for models
M17–M20

168 4 Testing-Coverage and Testing-Domain Models



7. Assume that software is developed in distributed development environment
with one old and two new components. The old component contains simple
faults. Fault content of one new component is of hard type while in the other it
is of complex type. Fit the testing domain dependent SRGM for distributed
development environment discussed in the Sect. 4.3.2. Base your analysis on
the following failure data.
Calculate the mean square error and variation in the estimated parameters.

References

1. Gokhale SS, Philip T, Marinos PN, Trivedi KS (1996) Unification of finite failure non-
homogeneous poisson process models through test coverage. In: Proceedings 7th
International Symposium on Software Reliability Engineering, White Plains, pp 299–307

2. Malaiya YK, Li MN, Bieman JM, Karcich R (2002) Software reliability growth with test
coverage. IEEE Trans Reliab 51(4):420–426

3. Yamada S, Fujiwara T (2001) Testing-domain dependent software reliability growth models
and their comparisons of goodness-of-fit. Int J Reliab Qual Saf Eng 8:205–218

4. Fujiwara T, Yamada S (2001) Software reliability growth modeling based on testing skill
characteristics: Model and Application. Electron Commun Jpn 84(3):42–48

5. Malaiya YK, Yang S (1984) The coverage problem for random testing. Proc Int Test Conf
ITC-84:237–245

6. Ramsey J, Basili (1985) Analyzing the test process using structural coverage. In: Proceedings
8th International Conference on Software Engineering, London, England, 306–312

7. Malaiya YK, Karunanithi N, Verma P (1992) Predictability of software reliability models.
IEEE Trans Reliab 41:539–546

8. Malaiya YK, Mayrhauser A, Srimani P (1993) An examination of fault exposure ratio. IEEE
Trans Softw Eng 19(11):1087–1094

9. Malaiya YK, Li N, Bieman J, Karcich R, Skibbe B (1994) The relationship between test
coverage and reliability. In: Proceedings of the 5th International Symposium Software
Reliability Engineering, Monterey, CA, pp 186–195

10. Yamada S, Ohba M, Osaki S (1983) S-shaped software reliability growth modeling for
software error detection. IEEE Trans Reliab R-32(5):475–484

Week Old
component

New
component 1

New
component 2

1 4 7 10
2 1 5 2
3 0 0 4
4 1 4 6
5 1 4 6
6 10 15 8
7 4 6 4
8 1 5 3
9 1 1 1

10 3 7 6
11 0 0 1
12 0 1 4

4.4 Data Analysis and Parameter Estimation 169



11. Pham H, Zhang X (2003) NHPP software reliability and cost models with testing coverage.
Eur J Oper Res 145(2):443–454

12. Kapur PK, Singh O, Gupta A (2005) Some modeling peculiarities in software reliability. In:
Proceedings Kapur PK, Verma AK (eds) Quality, reliability and infocom technology, trends
and future directions. Narosa Publications Pvt. Ltd., New Delhi, pp 20–34

13. Pham H (2006) System software reliability., Reliability engineering seriesSpringer Verlag,
London

14. Inoue S, Yamada S (2008) Two dimensional software reliability assessment with testing
coverage. The 2nd International Conference on Secure System Integration and Reliability
Improvement, pp 150–155

15. Ishii T, Dohi T, (2006) Two-Dimensional Software Reliability Models and Their Application.
In: Proceedings 12th Pacific Rim International Symposium on Dependable Computing
(PRDC’06), pp 3–10

16. Inoue S, Yamada S (2004) Testing coverage dependent software reliability growth modeling.
Int J Reliab Qual Saf Eng 11(4):303–312

17. Varian HR (1991) Intermediate microeconomics—a modern approach, 2nd edn. WW Norton
& Company, New York

18. Ahn CW, Chae KC, Clark GM (1998) Estimating parameters of the power law process with
two measures of failure time. J Qual Technol 30(2):127–132

19. Kapur PK, Singh O, Bardhan A (2005) A software reliability growth model for operational
use with testing coverage. In: Kapur PK, Verma AK (eds) Quality, reliability and IT (trends
and future directions). Narosa Publications Pvt. Ltd., New Delhi, pp 60–73

20. Kapur PK, Garg RB (1992) A software reliability growth model for an error removal
phenomenon. Softw Eng J 7:291–294

21. Kapur PK, Khatri S, Gupta A, Singh VB (2006) Flexible testing-domain dependent software
reliability growth models. In Proceedings Varde PV, Srividya A, Sanyasi Rao VVS, Chauhan
A (eds) Reliability safety and hazards: advances in risk-informed technology, Narosa
Publications Pt. Ltd., New Delhi, pp 166–174

22. Goel AL, Okumoto K (1979) Time dependent error detection rate model for software
reliability and other performance measures. IEEE Trans Reliab R-28(3):206–211

23. Yadav K, Goswami DN, Kapur PK (2007) Testing-domain based software reliability growth
models for distributed environment. In: Proceedings 3rd International Conference on
Reliability and Safety Engineering (INCRESE-2007), Udaipur, pp 614–628

24. Kapur PK, Yadav K, Singh O, Yadavalli VSS (2007) Testing-domain dependent software
reliability growth models with power-logistic function. In: Kapur PK, Verma AK (eds)
Quality reliability and infocom technology. MacMillan India Ltd., pp 284–294

25. Tohma Y, Yamano H, Ohba M, Jacoby R (1991) The estimation of parameters of the
hypergeometric distribution and its application to the software reliability growth model. IEEE
Trans Softw Eng SE-17:483–489

26. Brooks WD, Motley RW (1980) Analysis of discrete software reliability models—technical
report (RADC-TR-80-84). Rome Air Development Center, New York

170 4 Testing-Coverage and Testing-Domain Models



Chapter 5
Change-Point Models

5.1 Introduction

Detection of a failure and successful removal of the fault that has caused the
failure during software testing are affected by many factors. These factors include
testing environment, strategy, testing team constitution and efficiency, test case
effectiveness, resources and many more. The software reliability models formu-
lated to track the reliability growth during testing consider a few or a number of
these factors. Drawing certain assumptions on the testing process the models are
formulated. The model parameters are representative of the various factors about
the reliability growth and depict specified factors about the phenomenon under
consideration, that is software testing. In the applications of SRGM on real testing
environment to estimate the reliability for the period of testing it is assumed that
the parameters of the SRGM can remain smooth over the testing period. However
it may not be the case. For example, consider the situation that after two days of
testing and analyzing the failure data the developer management may decide that
an additional highly professional member should join the testing team and they
also change the existing testing strategy and use some new automated testing tool.
All these efforts are done to pace the testing progress. At this point of time if the
model parameters estimated before changes are implemented may not describe the
further testing progress adequately. Magnitude of some model parameters may
change. Such changes are often observed in the testing environments.

From the point of view of statisticians, the typical situation of change as defined
by change-point models defines a particulars phenomenon in question according to
some structural, physical and environmental factors, for different time periods or
spatial regions different set of model parameter values may be needed in order to
describe the reality adequately. The time points which separate the time periods
are called change points. In the regression literature, the change-point model is
also referred to as two- or multiple-phase regression, switching regression, seg-
mented regression, two-stage least squares or broken-line regression. Important

P. K. Kapur et al., Software Reliability Assessment with OR Applications,
Springer Series in Reliability Engineering, DOI: 10.1007/978-0-85729-204-9_5,
� Springer-Verlag London Limited 2011

171



contexts in question here are to find—Is it necessary to assume that the parameters
are changing? When or where does a change occur? Does the change take place
over a certain period of time? What is the onset and duration of change? Do some
or all of the parameters of the model changes? How much do parameters before
and after the change point differ? What type of model is appropriate in a particular
situation? What are the models in the literature that can be applied for these
situations?—etc. [1, 2].

The bibliography evidence suggests mainly two types of techniques to handle
these variations. First, diagnostic checking methods to identify non-consistencies
using regression or time series analysis methods. Second, incorporating para-
metric variability in models. Variability of parameters in models being the
essential consideration. The change-point problem was first introduced in the
quality control context, which was concerned about the output of a production
line and wanted to find any departure from an acceptable standard of the
products. Although traditionally, control charts are used to detect changes. The
major difference between a change-point analysis and a control chart in this
concern is that the control chart is intended to be updated following the col-
lection of each data point. A change-point analysis is intended to be performed
less frequently to review the performance over a more extended period of time.
The two methods can be used in a complementary fashion. Change-point analysis
determined the number of changes and estimates the time of each change. It
further provides confidence levels for each change and confidence intervals for
the time of each change. Since then the change-point problem has developed into
a fundamental problem in the areas of statistical control theory, stationarity of a
stochastic process, estimation of the current position of a time series, testing and
estimation of change in the patterns of a regression model, and most recently in
the comparison and matching of DNA sequences in micro array data analysis [2].
The problem of abrupt/smooth changes is often encountered in various experi-
mental and mathematical sciences.

Change-point models are also very important for the hardware and software
reliability study. In the vast literature of software reliability modeling, most
researchers assume a constant detection rate per fault in deriving their models.
It is supposed that all faults have equal probability of being detected during the
software testing process, and the rate remains constant over the intervals
between fault occurrences. In reality, the fault detection rate strongly depends
on the skill of test teams, program size, defect density, code expansion factor,
testing efforts in terms of CPU hours and team constitution and software
testability. Therefore, it may not be smooth and can be changed. On the other
hand, if we want to detect more faults in the software in order to reach the
desired reliability objective during testing and meet the scheduled deliveries it
is advisable to purchase new equipments or introduce new tools/techniques,
which are fundamentally different from the methods currently in use, if the
software companies can afford a larger budget for testing and debugging. These
external new methods can give a detailed description of the test methodology,

172 5 Change-Point Models



a complete test report, or an expert analysis of the findings to the clients. These
approaches can provide a conspicuous improvement in software testing and
productivity. In this case, the fault detection rate will be changed during the
software development process whenever any change is brought in the testing
process. In addition to all these factors another reason for observing changes is
the change of the software life cycle phase. We know that software reliability
continues to grow even during the operational phase due to the field failures. A
change-point may occur when the software life cycle phase changes from the
testing phase to the operational phase. It is more appropriate to use the change-
point method for reliability analysis in the changing testing process. SRGM,
which do not consider the effect of change-point in software reliability esti-
mation may not express the factual software reliability behavior [3, 4].

First we describe mathematically the theory of change-point analysis [3, 5] and
then discuss the study carried in software reliability modeling on the lines of
change-point analysis.

A change-point exists in the observations from a sequence of random variables
X1, X2, …, Xn when the observations X1, X2, …, Xs follow the same distributions
F, while the observations Xs+1, Xs+2, …, Xn follow the distribution G, such that
F = G. The index s is called the change-point. This describes a particular situ-
ation which implies the existence of a single change in the phenomenon under
observation. In general the multiple change-points are said to exist in the obser-
vations from a sequence of random variables X1, X2, …, Xn when the observations
X1, X2, …, Xk1 follow the distribution F1, observation Xk1+1, Xk1+2, …, Xk2 fol-
lows the distribution F2, such that Xk1 = Xk1+1, and so on that observation
Xkq+1, Xkq+2, …, Xn follows the distribution Fq, such that Xkq = Xkq+1. Here
1\ k1\ k2\ ���\ kq\ n, q is the number of change-points and k1, k2, …, kq are
respectively the positions of the change-point. The distributions F1, F2, …, Fq

may or may not belong to the same parametric family F(h), h 2 Rp. In case they
belong to the same parametric family then the change-point problem is defined as
that the observations X1, X2, …, Xk1 follows the distribution F, with parameter h1,
observation Xk1+1, Xk1+2, …, Xk2 also follows the distribution F but the parameters
of the distribution have changed, say represented as h2, and so on that observation
Xkq+1, Xkq+2, …, Xn follows the distribution F with parameters hq. Again
1\ k1\ k2\ ���\ kq\ n, q is the number of change-points and k1, k2, …, kq
are, respectively, the positions of the change-point.

The studies related to the change-point analysis were mostly in general related
to estimating the position of change-point, determining the number of change-
points and their respective position in case of multiple change-points and deter-
mining the distributions or the parameters in case the distribution of observations
between two change-points is same for each set of observations. In the statistical
literature the change-point problem has widely been studied by many authors.
Hinkley [6] used maximum likelihood estimation to estimate the single change-
point for the case the distributions F and G are from the same parametric family or
may be arbitrary known distributions. Carlstein [7] discussed the non-parametric

5.1 Introduction 173



estimation of the change-point. Joseph and Wolfson [8] discussed the generalized
concept by studying the multi-path change-points, where several independent
sequences are considered simultaneously with one change-point. Chen and Gupta
[5] carried out test of significance to establish whether a change-point exists or not
and also estimated it if it existed. Xie et al. [9] discussed change points of mean
residual life and hazard functions for certain generic Weibull distributions. Bae
and Kvam [10] showed that reliability estimation could be improved substantially
by using the change-point model to account for product burn-in effects. Zhao and
Wang [11] described new test statistics to test the existence of change-points in
software reliability models. Galeano [12] proposed the use of cumulative sums for
detections of change-points of a Poisson process when the failure rate is piecewise
constant.

Change-point models are very useful for hardware and software reliability
studies. Initial studies in change-point based reliability modeling were carried out
jointly for hardware and software reliability analysis due to Zhao [3]. Later many
researchers formulated various change-point SRGM for the software reliability
measurement and prediction [13–24]. In the software reliability literature the
change-point analysis is mainly related to the parameter variation modeling for
different time intervals between change-points. The number and time horizon of
change-point is mainly determined by observation method from the failure data
sets, while some studies advocate treating them as unknown parameters of the
model and estimating them together with the other parameters of the model.
Software package change-point analyzer can also be used for the purpose of
change-point estimation. Most of the researchers in the SRGM advocate to treat
them as known values in the model since the SRGM are applied to the observed
failure data sets of the real life projects and the reasons of change, number of
changes and their time horizon can be found from the failure data plots and
obtained from the testing and debugging teams. The content of this chapter is
addressed to the description of change-point models in software reliability mod-
eling literature.

Notation

a, ai Expected initial software fault content (i denoting module/fault type),
a, ai[ 0

b(t), bi(t) Time-dependent rate of fault removal per remaining faults
s, si Change-point(s)
F(t), Fi(t) Probability distribution function of failure times, with density

function FðtÞ ¼
R t
0 f ðtÞ dt

N0 Finite, initial fault content in the software
m(t) Expected number of faults detected in the time interval (0, t]
k(t) Failure intensity function
R(x|t) Reliability function for time x given t

174 5 Change-Point Models



5.2 Change-Point Models: An Initial Study

This study [3] is related to single change-point modeling for software reliability
estimation using the parametric variability approach. Let F1 and F2 be two dif-
ferent lifetime distributions with density functions f1(t) and f2(t), X1, X2, …, Xn be
the inter-failure times of the sequential failures in a lifetime testing. A change-
point exists in the observations from a sequence of random variables X1, X2, …,
Xs, Xs+1, Xs+2, …, Xn. Three models are proposed in the study assuming the
failure time distribution to be exponential, Weibull and Pareto. The exponential
and Pareto distribution models are those proposed due to Jelinski and Moranda
(known as JM model) [25] and Littlewood [26]. Before we describe the change-
point models first we briefly describe the JM model.

This model belongs to a class of exponential order statistic model that assumes
that fault detection and correction begins when a program contains a number of
faults and all the faults have the same rate of detection U. The basic assumptions
of the model are

1. The rate of fault detection is proportional to the current fault content of the
software.

2. The fault detection rate remains constant over the intervals between fault
occurrences.

3. A fault is corrected instantaneously without introducing new faults.
4. The software is operated in a similar manner as that in which reliability pre-

dictions are to be made.
5. Every fault has the same chance of being encountered within a severity class as

any other fault in that class.
6. The failures, when the faults are detected, are independent.

If the time between failure occurrences is xi = ti - ti - 1, i = l, …., n, then xi’s
are independent exponentially distributed random variables with mean. Let f(ti) be
probability density function for particular time ti such that

f xi=ti�1ð Þ ¼ U a� ði� 1Þð Þe�Uða�ði�1ÞÞxi ð5:2:1Þ

and cumulative density function be

F tið Þ ¼ 1� e�kiti ; 1=Uða� ði� 1ÞÞ ¼ 1=ki ð5:2:2Þ

where ki is the hazard rate. Equations (5.2.1) and (5.2.2) imply

mðtÞ ¼ a 1� e�Ut
� �

ð5:2:3Þ

kðtÞ ¼ aU exp�Ut ð5:2:4Þ

where m(t) is the mean value function and k(t) is the failure density function.
Now the change-point model for the JM models is formulated under the fol-

lowing assumptions along with the other assumption of the model.

5.2 Change-Point Models: An Initial Study 175



1. There are a finite number a of items under the testing (faults), may or may not
be known.

2. At the beginning all of the items have the same lifetime distribution F. After s
failures are observed the remaining (a - s) items have the distribution G. The
change-point s is assumed unknown.

3. The sequencesX1, X2, …, Xs andXs+1, Xs+2, …, Xn are statistically independent.

Note that JM model is a finite failure model as lim
t!1

mðtÞ ¼ a:

5.2.1 Change-Point JM Model

If F1 and F2 are exponentially distributed with parameters k1 and k2, respectively,
then the inter-failure times X1, X2, …, Xn are independently exponentially dis-
tributed. Specifically, Xi is exponentially distributed with parameter k1(a - (i -
1)), i = 1,2,…,s, and Xj is exponentially distributed with parameter k2(a -

(s ? j - 1)), j = s ? 1, s ? 2, …, n. When the observations X1, X2, …, Xs fol-
low the same distributions F, the observations Xs+1, Xs+2, …, Xn follow the dis-
tribution F2, such that F1 = F2. The index s is called the change-point.

5.2.2 Change-Point Weibull Model

Assume F1 and F2 are Weibull distribution functions with parameters (k1, b1) and
(k2, b2), respectively. That is

F1ðtÞ ¼ 1� e�k1tb1
� �

ð5:2:5Þ

F2ðtÞ ¼ 1� e�k2tb2
� �

ð5:2:6Þ

In this case, the time intervals of failures are dependent. The Weibull model
without change-points is used by Wagoner [27] to describe the fault detection
process. Particularly, when the shape parameter b = 2, the Weibull model reduces
to Schick and Wolverton [28]. In application, one can assume the shape parameter
b1 = b2.

5.2.3 Change-Point Littlewood Model

Assume F1 and F2 are Pareto distribution functions with parameters (k1, b1) and
(k2, b2) respectively, given as

176 5 Change-Point Models



F1ðtÞ ¼ 1� ð1þ t=k1Þb1
� �

ð5:2:7Þ

F2ðtÞ ¼ 1� ð1þ t=k2Þb2
� �

ð5:2:8Þ

5.3 Exponential Single Change-Point Model

The NHPP exponential GO model is modified considering single change-point in
the testing process. According to the theory of change-point the fault detection rate
per remaining fault is varied before and after the change-point, given as

bðtÞ ¼ d
dt
mðtÞ

�

ða� mðtÞÞ ¼ b1 0� t� s;

b2 s\t

�

ð5:3:1Þ

b1, b2 are the fault detection rates before and after the change-point. For
b1, b2 = b the model is equivalent to the GO model. The solution for m(t) under
the initial condition at t = 0, m(0) = 0 and t = s, m(t) = m(s) is

mðtÞ ¼ að1� e�b1tÞ 0� t� s;
a 1� e�ðb1sþb2ðt�sÞ� �

t[ s

�

ð5:3:2Þ

and the failure intensity function is defined as

kðtÞ ¼ m0ðtÞ ¼ ab1e�b1t 0� t� s;
ab2e�ðb1sþb2ðt�sÞÞ t[ s

�

ð5:3:3Þ

The failure intensity function of the change-point models is not continuous, the
discontinuity lies at the time point of change. The reliability function of the model
for time x given t is defined as

R xjtð Þ ¼ e� m tþxð Þ�m tð Þð Þ

¼
e�a e�b1 t�e�b1ðtþxÞð Þ t� t þ x� s

e�a e�b1 t�e� b1sþb2 tþx�sð Þð Þ
� �

t� s\t þ x

e�a e� b1sþb2 t�sð Þð Þ�e� b1sþb2 tþx�sð Þð Þ
� �

t[ s

8

>

>

<

>

>

:

ð5:3:4Þ

This model was proposed by Chang [14]. The authors have suggested using the
method of least square to estimate the unknown parameters. The time horizon of
change-point is also treated as unknown parameter of the SRGM.

5.2 Change-Point Models: An Initial Study 177



5.4 A Generalized Framework for Single Change-Point SRGM

Recent study on change-point models [23] proposed an approach to develop the
change-point models by giving a suitable probability distribution function for the
software failure-occurrence times, F(t). Here we describe this generalisation in
detail and obtain various exponential and S-shaped change-point models from it.
Let {N(t), t[ 0} denote a counting process representing the total number of faults
detected up to testing-time t. Then, the probability that m faults are detected up to
testing time t is derived as

Pr N tð Þ ¼ mf g ¼
X

n

n
m

� 	

FðtÞm 1�F tð Þð Þn�m
Pr N0 ¼ nf g;

m ¼ 0; 1; 2; . . .
ð5:4:1Þ

where the randomvariableN0 represents the initial number offaults in the system and
is finite. If we assumeN0 follows Poisson distribution with mean a, then the counting
process {N(t), t[ 0} follows NHPP with mean value function aF(t). That is,

Pr N tð Þ ¼ mf g ¼ e�a aF tð Þð Þm
m!

X

n

a 1� F tð Þð Þð Þn�m

ðn� mÞ!

¼ aF tð Þð Þm
m!

e�aF tð Þ
ð5:4:2Þ

Equation (5.4.2) implies that an NHPP model can be developed by giving a
suitable probability distribution function for the software failure-occurrence times,
F(t) with pdf f(t). The single change-point model is described by defining different
hazard functions before and after change-point, i.e.

b tð Þ ¼
b1 tð Þ ¼ f1 tð Þ

1� F1 tð Þ 0� t� s;

b2 tð Þ ¼ f2 tð Þ
1� F2 tð Þ s\t

8

>

>

<

>

>

:

ð5:4:3Þ

Using the hazard function defined above the mean value function of the single
change-point SRGM is derived from

k tð Þ ¼ m0 tð Þ ¼ af tð Þ ð5:4:4Þ

Equation (5.4.4) can be rewritten as

kðtÞ ¼ ðf ðtÞ=1� FðtÞÞða� mðtÞÞ ð5:4:5Þ

Solving (5.4.5) using (5.4.3) under the initial conditions at t ¼ 0; mð0Þ ¼ 0 and
at t ¼ s; mðtÞ ¼ mðsÞ we get

m tð Þ ¼ aF1 tð Þ 0� t� s;
a 1� 1� F1 sð Þð Þ 1� F2 sð Þð Þ= 1� F2 sð Þð Þð Þ½ � s\t

�

ð5:4:6Þ

178 5 Change-Point Models



Here Fi(t), i = 1, 2 are defined similarly but with different parameters. Kapur
et al. [23] used various probability distribution functions such as exponential,
Erlang, Logistic, Weibull, Normal, etc. to obtain different single change-point
models from the generalization (5.4.6).

5.4.1 Obtaining Exponential SRGM from the Generalized

Approach

Assuming the software failure-occurrence time distributions before and after
change-points F1(t), F2(t) follows exponential distribution i.e.

F1ðtÞ ¼ 1� e�b1t
� �

; 0� t� s ð5:4:7Þ

and
F2ðtÞ ¼ 1� e�b2t

� �

; s\t ð5:4:8Þ

The mean value function of the change-point SRGM obtained using (5.4.6) is

mðtÞ ¼ a 1� exp �b1tð Þð Þ 0� t� s;
a 1� exp �b1s� b2 t � sð Þð Þð Þ s\ t

�

ð5:4:9Þ

The software failure-occurrence time distribution for single change-point
exponential model can also be derived from [29]

FðtÞ ¼
F1ðtÞ ¼ 1� e�

R t

0
b1ðtÞ dt 0� t� s;

F2ðtÞ ¼ 1� e
�
R s

0
b1ðtÞ dt�

R

t

s

b2ðtÞ dt


 �

s\t

8

>

<

>

:

ð5:4:10Þ

assuming constant hazard rates, i.e. the mean value function of the SRGM is given as

mðtÞ ¼ aFðtÞ
¼ a F1ðtÞU1ðs� tÞ þ F2ðtÞU2ðt � sÞf g

ð5:4:11Þ

where U1(�), U2(�) are the step functions defined as

U1ðxÞ ¼
0 x\0
1 x� 0

�

and U2ðxÞ ¼
0 x� 0
1 x[ 0

ð5:4:12Þ

5.4.2 Obtaining S-Shaped\Flexible SRGM from

the Generalized Approach

Change-point models that describe the S-shaped failure curve are also obtainable
from the above generalized framework. Using the probability distribution

5.4 A Generalized Framework for Single Change-Point SRGM 179



functions that describe an S-shaped curve in (5.4.6) we can obtain mean value
functions of the single change-point SRGM for the various existing S-shaped
SRGM and surely many new ones.

If we assume that F(t) is defined by a two stage Erlangian distribution before
and after the change point, i.e.

F1ðtÞ ¼ 1� ð1þ b1tÞe�b1t
� �

; 0� t� s ð5:4:13Þ

and

F2ðtÞ ¼ 1� ð1þ b2tÞe�b2t
� �

; s\t ð5:4:14Þ

The mean value function of the change-point SRGM obtained using (5.4.6) is

mðtÞ ¼
a 1� ð1þ b1tÞe�b1t
� �

; 0� t� s;

a 1� ð1þ b1sÞ
ð1þ b2sÞ

ð1þ b2tÞe�b1s�b2ðt�sÞ
� 	

s\t

8

>

<

>

:

ð5:4:15Þ

This model is the S-shaped change-point model for the Yamada et al. [30]
delayed S-shaped model. A more flexible S-shaped SRGM is obtained if we
assume

F1ðtÞ ¼ 1� e�b1tk
� �

; 0� t� s ð5:4:16Þ

and

F2ðtÞ ¼ 1� e�b2tk
� �

; s\t ð5:4:17Þ

The mean value function of the change-point SRGM obtained using (5.4.6) is

mðtÞ ¼
a 1� e�b1tk
� �

; 0� t� s;

a 1� e�b1sk�b2ðtk�skÞ
� �

s\t

8

<

:

ð5:4:18Þ

In this the fault detection rate not only depends on the remaining fault content
but depends also on the power function of the testing time. This model has a very
special property that for k = 1 the model describes an exponential curve, for k = 2
it describes a Rayleigh curve while for k[ 2 the failure distribution is Weibull
probability distribution. The shape of the curve changes with the value of k, as
such this model can be used for a number of practical applications since the value
of k captures the shape of the failure curve.

If we define F(t) by a logistic distribution function i.e.

F1ðtÞ ¼
1� e�b1t

1� be�b1t
; 0� t� s ð5:4:19Þ

180 5 Change-Point Models



and

F2ðtÞ ¼
1� e�b2t

1� be�b2t
; s\t ð5:4:20Þ

Here in the logistic distribution the shape parameter can be assumed to be equal
before and after change-point for the sake of mathematical simplicity. The mean
value function of the change-point SRGM is

mðtÞ ¼
a 1� ð1þ bÞe�b1t

1þ be�b1t

� 	

; 0� t� s;

a 1� ð1þ bÞ 1þ be�b2s
� �

1þ be�b1sð Þ 1þ be�b2tð Þe
�b1s�b2ðt�sÞ

� 	

s\t

8

>

>

>

<

>

>

>

:

ð5:4:21Þ

This model is the flexible change-point model for the Kapur and Garg [31]
model for error removal phenomenon; it has been proposed by Kapur et al. [20].
The model describes a flexible learning curve and in most cases provides a good
estimate of software reliability. It may be noted that the parameter b of the failure
time distribution is kept same before and after the change-point. The reason for
keeping this parameter constant is only for obtaining a simple mathematical form
of the model. For any good reason in any practical situation it can be assumed to
vary and the mean value function can be recomputed.

5.4.3 More SRGM Obtained from the Generalized Approach

The distribution the distribution of software failure-occurrence times can be any
known probability distribution function, such as Gamma, Normal distributions etc.
Each of these distributions has some special characteristics associated with them
and in many real life applications can accurately describe the software failure
process during the testing process.

Case 1 If the failure occurrence times T * N(l, r2) (Normal distribution) i.e.

F0
iðtÞ ¼ gðt; li; riÞ ¼

1

ri
ffiffiffiffiffiffiffi

2P
p e � t � lið Þ2

2r2i

 !

; i ¼ 1; 2 ð5:4:22Þ

then the mean value function of the SRGM is

mðtÞ ¼
aUt; l1; r1Þ; 0� t� s;

a 1� 1� Uðs; l1; r1Þð Þ 1� Uðt; l2; r2Þð Þ
1� Uðs; l2; r2Þð Þ

� 	

s\t

8

<

:

U t; l; rð Þ ¼
Z

t

0

gðx; l; rÞ dx

ð5:4:23Þ

Case 2 If the failure occurrence times T * c(a1, b1) (Gamma distribution) i.e.

5.4 A Generalized Framework for Single Change-Point SRGM 181



F0iðtÞ ¼ gðt; ai; biÞ ¼ tai�1b
ai
i e

�bit

C aið Þ ; t[ 0; i ¼ 1; 2 ð5:4:24Þ

then the mean value function of the SRGM is

mðtÞ ¼
aCðt; a1; b1Þ 0� t� s;

a 1� 1� Cðs; a1; b1Þð Þ 1� Cðt; a2; b2Þð Þ
1� Cðs; a2; b2Þð Þ

� 	

s\t

8

<

:

Cðt; a; bÞ ¼
Z

t

0

gðx; a; bÞ dx

ð5:4:25Þ

5.5 Change-Point SRGM Considering Imperfect Debugging
and Fault Complexity

We have studied the importance of considering testing efficiency in measuring the
software reliability. As such a change-point SRGM considering the effect of
imperfect debugging can provide more accurate measure of reliability. Here first
we describe an exponential model [15] which considers only the phenomenon of
error generation then an integrated testing efficiency change-point SRGM is
developed.

5.5.1 Exponential Imperfect Debugging Model

Along with the assumptions of NHPP and change-point GO model it is assumed
that when detected faults are removed at time t, it is possible to introduce new
faults with introduction rate a(t)

aðtÞ ¼ a1 0� t� s;
a2 s\t

�

ð5:5:1Þ

Then the set of differential equations that describe the SRGM is given as

dmðtÞ
dt

¼ bðtÞ aðtÞ � mðtÞð Þ where daðtÞ
dt

¼ aðtÞdmðtÞ
dt

ð5:5:2Þ

Solving Eq. (5.5.1) using (5.3.1) under the initial conditions m(0) = 0 and
a(0) = a we get

182 5 Change-Point Models



mðtÞ ¼

a=1� a1ð Þ 1� e�b1ð1�a1Þt
� �

0� t� s;

a=1� a2ð Þ 1� e�ðb1ð1�a1Þsþb2ð1�a2Þðt�sÞ
� �

þ mðsÞ a1 � a2ð Þ
1� a2

t[ s

8

>

>

>

>

<

>

>

>

>

:

ð5:5:3Þ

To account the multiple types of the faults in the system (concept of fault
complexity) the model can be extended as follows

mðtÞ ¼
X

i

miðtÞ

¼

ami



1� ai;1
� �

1� e�bi;1ð1�ai;1Þt
� �

0� t� s;

ami



1� ai;2
� �

1� e�ðbi;1ð1�ai;1Þsþbi;2ð1�ai;2Þðt�sÞ
� �

0

B

@

1

C

A

þ mðsÞ ai;1 � ai;2
� �

1� ai;2
t[ s

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

ð5:5:4Þ

Here the index i denotes the type of fault and mi, (bi,1, bi,2), (ai,1, ai,2) are the
content proportions, fault detection rate and fault introduction rates of the fault
type i in the software, respectively, such that

P

imi = 1. The second index rep-
resents the parameter value before and after the change-point. This model
describes an exponential failure curve and considers only one aspect of testing
efficiency i.e. fault generation. We know that the imperfect fault debugging and
fault generation together are the measure of testing efficiency and influences the
measure of reliability greatly. We now describe here an integrated testing effi-
ciency single change-point SRGM, which also possess the flexible structure that
can capture both exponential and S-shaped failure curves.

5.5.2 Integrated Flexible Imperfect Debugging Model

Change-point integrated testing efficiency models can be developed for all the
integrated testing efficiency models discussed in Sect. 3.5. Here we show how to
develop change-point model corresponding to these models for one specific case.

Assuming fault removal rate per additional fault removed is reduced by the
probability of perfect debugging and a constant proportion of removed faults are
generated during removal, the differential equation describing the removal phe-
nomenon incorporating change-point with imperfect fault debugging and fault
generation is given by

5.5 Change-Point SRGM Considering Imperfect Debugging and Fault Complexity 183

http://dx.doi.org/10.1007/978-0-85729-204-9_3


dmrðtÞ
dt

¼ pbðtÞ aðtÞ � mrðtÞð Þ ð5:5:5Þ

where

bðtÞ ¼ b1



1þ be�b1t 0� t� s;
b2



1þ be�b2t t[ s�

�

ð5:5:6Þ

and

aðtÞ ¼ aþ a1mrðtÞ 0� t� s

aþ a1mrðsÞ þ a2ðmrðtÞ � mrðsÞÞ t[ s

�

ð5:5:7Þ

The mean value function of the SRGM obtained from the above equations is

mrðtÞ¼

a

ð1�a1Þ
1� 1þbð Þe�b1t

1þbe�b1t

� 	pð1�a1Þ
" #

0�t�s;

a

ð1�a2Þ
1�

1þbe�b1s

1þb

� 	�pð1�a1Þ 1þbe�b2t

1þbe�b2s

� 	�pð1�a2Þ

e�b1spð1�a1Þ�b2ðt�sÞpð1�a2Þ

0

B

B

@

1

C

C

A

2

6

6

4

3

7

7

5

þ aða1�a2Þ
ð1�a1Þð1�a2Þ

1� 1þbð Þe�b1s

1þbe�b1s

� 	pð1�a1Þ
" #

t[s

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð5:5:8Þ

The asymptotic properties of the model are same as SRGM without change
point. The difference lies in the mean value function of the SRGM before and after
the change-point; however, the intensity function of this model is discontinuous at
the change-point. The mean value functions of the failure phenomenon can be
obtained from pmf(t) = mr(t). This model is due to Sehgal et al. [32]. In this
formulation the parameters p and b are taken to be constant and same before and
after the change point just for the sake of simplicity and reduce the number of
unknown parameters. However they can be taken different, as the parameter p is
related to the testing efficiency and changes in this parameter are observed readily
with the testing progress due to experience, more removals in the later testing
phase, reconstitution of testing and debugging teams and adoption of new testing
methods and strategy. Similar changes can be seen in the shape parameter of the
logistic function of fault removal rate.

Similarly change-point models can be derived for other testing efficiency
models. This is left as an exercise to the readers to derive the change-point model
with all parameters different for the above SRGM and change-point models for the
other testing efficiency models.

184 5 Change-Point Models



5.6 Change-Point SRGM with Respect to Test Efforts

In the earlier chapters we have discussed various SRGM defined with respect to
test efforts. If having a measure of reliability is the major purpose of using an
SRGM for practical applications then SRGM developed in respect to time can
provide useful information. If however an SRGM is used to measure the effec-
tiveness of resources spent on testing or used in some optimization model for
decision-making purpose the models developed accounting the effect of testing
resources are more fruitful. Other considerations related to the use of test effort
based SRGM have been discussed in the previous chapters.

5.6.1 Exponential Test Effort Models

Exponential test effort single change-point model based on the general assump-
tions of the NHPP model (GO model) is formulated as

d
dt
mðtÞ 1

wðtÞ ¼ bðtÞða� mðtÞÞ ð5:6:1Þ

where

bðtÞ ¼ b1 0� t� s;

b2 s\t

�

ð5:6:2Þ

w(t) being the density function of test effort distribution W(t). The mean value
function for the failure process is given as

mðtÞ ¼ a 1� e�b1ðWðtÞ�Wð0ÞÞ� �

0� t� s;

a 1� e� b1 WðsÞ�Wð0Þð Þþb2 WðtÞ�WðsÞð Þð Þ� �

s\t

�

ð5:6:3Þ

or

mðtÞ ¼ a 1� e�b1W�ðtÞ� �

; W�ð�Þ ¼ ðWð�Þ �Wð0ÞÞ 0� t� s;

a 1� e�ðb1W�ðsÞþb2Wðt�sÞÞ� �

; s\t

�

Wðt � sÞ ¼ WðtÞ �WðsÞÞ ð5:6:4Þ

and the failure intensity function is given as

kðtÞ ¼ a b1 wðtÞe�b1W�ðtÞ 0� t� s;
ab2wðtÞe� b1W�ðsÞþb2Wðt�sÞð Þ s\t

�

ð5:6:5Þ

Any form of the test effort function discussed in Sect. 2.7 can be used here to
describe the distribution of test efforts. Huang [17] has validated this model using
logistic and generalized logistic test effort functions.

5.6 Change-Point SRGM with Respect to Test Efforts 185

http://dx.doi.org/10.1007/978-0-85729-204-9_2


5.6.2 Flexible/S-Shaped Test Efforts Based SRGM

Development of the flexible test effort models is based on the assumption that the
fault detection rate is a function of the time-dependent testing effort consumption
function. Mathematically the model is stated as

d
dt
mðtÞ 1

wðtÞ ¼ bðWðtÞÞ a� mðtÞð Þ ð5:6:6Þ

where the fault detection rate is defined as

bðtÞ ¼

b1
1þ be�b1WðtÞ 0� t� s;

b2
1þ be�b2WðtÞ s\t

8

>

>

<

>

>

:

ð5:6:7Þ

The mean value function for the failure process is given as

mðtÞ ¼

a
1� e�b1W�ðtÞ

1þ be�b1WðtÞ

� 	

0� t� s;

a 1�
1þ be�b1Wð0Þ

1þ be�b1WðsÞ

� 	

1þ be�b2WðsÞ

1þ be�b2WðtÞ

� 	

e�ðb1W�ðsÞþb2Wðt�sÞÞ

0

B

@

1

C

A

2

6

4

3

7

5
s� t

8

>

>

>

>

>

<

>

>

>

>

>

:

ð5:6:8Þ

W*(�), W(t - s) are as defined in (5.6.4). This model was proposed and validated
by Kapur et al. [20]. Another form of test effort based model is formulated based
on fault detection rate defined as

bðtÞ ¼ b1 WðtÞð Þk 0� t� s;

b2 WðtÞð Þk s\t

�

ð5:6:9Þ

which yields flexible test effort based SRGM. The mean value function for the
failure process in this case is given as

mðtÞ ¼
a 1� e� 1=kþ1ð Þb1ðWðtÞkþ1�Wð0Þkþ1Þ
� �

0� t� s;

a 1� e� 1=kþ1ð Þ b1 WðsÞkþ1�Wð0Þkþ1ð Þþb2 WðtÞkþ1�WðsÞkþ1ð Þð Þ
� �

s\t

8

<

:

ð5:6:10Þ

or

mðtÞ ¼ a 1� e�b1 1=kþ1ð ÞW�ðtÞ� �

; 0� t� s;

a 1� e� 1=kþ1ð Þ b1 W�ðsÞþb2 Wðt�sÞð Þ� �

; s\t

�

ð5:6:11Þ

W�ð�Þ ¼ Wð�Þkþ1 �Wð0Þkþ1
� �

; Wðt � sÞ ¼ WðtÞkþ1 �WðsÞkþ1
� �

This model is studied due to Kapur et al. [24]. This model is basically based on
the assumption that the failure-occurrence time follows Weibull distribution and

186 5 Change-Point Models



hence the mean value function describes a Weibull probability curve. The models
provide a flexible mathematical form of the mean value function. The flexible
nature of these models is due to the parameters b, k, respectively. Value of these
parameters determines the shape of the curve. For b = 0 (k = 1) the model reduces
to GO model type exponential model. Other values of b, k[ 0 capture the vari-
ations of the failure curves.

5.7 SRGM with Multiple Change-Points

First we describe a generalization based on the concept of quasi-arithmetic mean
to obtain the mean value function of the NHPP-based SRGM. This generalization
is then used to obtain various exponential as well as flexible SRGM with multiple
change points [18]. The situation of multiple change points exists in a testing
process if changes are observed not only at one point of time rather at various
different points of time and the fault detection/removal process between these
change points is described by the parameter variation modeling approach, i.e. the
process is described by the different set of parameters from a similar distribution.

Quasi-Arithmetic Mean: Let g be a real-valued and strictly monotonic function.
Also let x and y be two non-negative real numbers. The quasi-arithmetic mean z of
x and y with weights w and 1 - w is defined as

z ¼ g�1 wgðxÞ þ ð1� wÞgðyÞð Þ; 0\w\1 ð5:7:1Þ

where g-1 is the inverse function of g. We can obtain the weighted arithmetic,
weighted geometric and weighted harmonic means from (5.7.1) using g(x) = x,
g(x) = 1/x and g(x) = ln x, respectively.

Now assume m(t ? Dt) be equal to the quasi-arithmetic mean of m(t) and
a with weights w(t, Dt) and 1 - w(t, Dt), then

g mðt þ DtÞð Þ ¼ wðt;DtÞgðmðtÞÞ þ 1� wðt;DtÞð ÞgðaÞ; 0\wðt;DtÞ\1 ð5:7:2Þ

where g is a real-valued, strictly monotonic and differentiable function. That is,

gðmðt þ DtÞÞ � gðmðtÞÞ
Dt

¼ 1� wðt;DtÞ
Dt

gðaÞ � gðmðtÞÞð Þ ð5:7:3Þ

If 1�wðt;DtÞ
Dt ! bðtÞ as Dt ! 0 then we get the differential equation

o

ot
gðmðtÞÞ ¼ bðtÞ gðaÞ � gðmðtÞÞð Þ ð5:7:4Þ

Here, b(t) is the fault detection rate per remaining fault. Various NHPP-based
SRGM can be obtained from the general equation (5.7.4). The result is summa-
rized in the form of a theorem.

5.6 Change-Point SRGM with Respect to Test Efforts 187



Theorem 1 Let g be a real-valued, strictly monotonic and differentiable function
and

o

ot
gðmðtÞÞ ¼ bðtÞ gðaÞ � gðmðtÞÞð Þ

then the mean value function of the NHPP-based SRGM can be obtained from

mðtÞ ¼ g�1ðgðaÞ þ gðmð0ÞÞ � gðaÞÞe�BðtÞ ð5:7:5Þ

and B(t) = $0
t b(u) du, g(x) = x and k ¼ 1� initialcondition

a ; where initial condition is
the value of the mean value function at the boundary point.

5.7.1 Development of Exponential Multiple Change-Point Model

Based on the weighted arithmetic mean assume g(x) = x, k = 1 - m(0)/a and
BðtÞ ¼

R t
0 b du then theorem-1 yields the GO model.

mðtÞ ¼ að1� e�btÞ

Following a similar approach the exponential multiple change-point SRGM can
be obtained defining

bðtÞ ¼

b1 0� t� s1;
b2 s1\t� s2;
:

�
bn sn�1\t

8

>

>

>

>

<

>

>

>

>

:

;

BiðtÞ ¼
Z

t

si�1

biðuÞ du

and

ki ¼ 1� mi�1 si�1ð Þ
a

¼ e�
Pi�1

r¼1
br sr�sr�1ð Þ; i ¼ 1; . . .; n ð5:7:6Þ

Using the above definitions the generalized solution of the GO model with
multiple change points is

miðtÞ ¼ a 1� e
� biðt�si�1Þþ

P

i�1

r¼1

br sr�sr�1ð Þ

� 	

0

B

@

1

C

A
; s0 ¼ 0; i ¼ 1; . . .; n

8

>

<

>

:

ð5:7:7Þ

188 5 Change-Point Models



The value of n depends on the number of time points at which changes are
observed, which as already discussed can be obtained from the failure data plots
and the developers.

5.7.2 Development of Flexible/S-Shaped Multiple

Change-Point Model

Following Theorem 1 multiple change-point model can be obtained for the various

existing SRGM. Defining Bi(t), ki as in (5.7.6) and biðtÞ ¼
bi

1þ be�bit
; i = 1,…, n,

the mean value function of the flexible multiple change-point SRGM is

miðtÞ ¼ a 1� be�bit þ e�bi t�si�1ð Þ

1þ be�bit

Y

i�1

r¼1

be�brtr þ e�br tr�sr�1ð Þ

1þ be�br tr

 !" #

¼ 1; . . .; n:

ð5:7:8Þ

Here also s0 = 0. Following a similar structure various other flexible and S-shaped
SRGM can be derived such as multiple change-point models for Yamada delayed
S-shaped model [30], Weibull model (Eq. 5.6.9), test effort models, etc. The
readers should obtain these models following a similar approach.

So far we have been discussing change-point SRGM. It is said that due to the
various reasons that work collectively, changes are observed in the fault detection
rate, testing efficiency, etc. These changes bring changes in the failure distribution
and parameter variability approach between change-points is used to model the
changes. An important fact has been overlooked by these models. Failure occur-
rence and removal process is described by a numerous factors such as testing
environment, testing strategy, complexity and size of the functions under testing,
skill, motivation and constitution of the testing and debugging teams, etc. wherein
the major role is played by the testing effort expenditure. The reasons that account
to bringing variations in the testing process include application of scientific tools
and techniques to increase the test coverage, forces from parallel projects, bringing
experience and skilled testing professional, distribution of CPU hours, etc. Testing
effort distribution during the test phase is affected by most of the factors affecting
the testing process and changes in them bring changes in the testing effort
consumption rate. Sometimes the testing effort distribution is adjusted to meet the
deadline pressures of the project, to discover and remove more faults during
the end stage of testing to attain maximum possible reliability. The changes in the
testing effort distribution have direct influence on the fault detection and removal
and as such cannot be ignored. Now we develop the multiple change-point models
to describe the testing effort distribution and using these models we develop the
multiple change-point SRGM. Single change-point models can be derived from
these models as a special case.

5.7 SRGM with Multiple Change-Points 189



5.8 Multiple Change-Point Test Effort Distribution

5.8.1 Weibull Type Test Effort Function with Multiple

Change Points

In Chap. 2 we have explained various test effort functions (TEF), these functions
are smooth functions and do not consider the varying pattern of testing effort
consumption during testing in accordance with the changes brought in the testing
strategies, environment, team, etc. to fasten and improve the testing process. Here
we develop the modified Weibull type test effort function to describe the varying
pattern of test effort consumption by re-parameterizing the differential equation
(2.7.9), i.e. assuming the testing effort consumption rate at any time t during the
testing process is proportional to the testing resource available at that time and
following the procedure of change-point models the test effort function is
formulated as

dWðtÞ
dt
¼ viðtÞ½N �WðtÞ�

where

viðtÞ ¼
v
1ðtÞ 0� t� s1;
v
2ðtÞ s1\t� s2;
. . .
vnþ1ðtÞ sn\t

8

>

>

<

>

>

:

ð5:8:1Þ

where N is the total testing resource available and vi(t) is the testing resource
consumption rate per remaining effort. Using the above formulation we have the
following three non-smooth testing effort functions given n change-points in the
testing process.

Case 1: Modified Exponential TEF (METEF) Testing resource consumption rate
is defined as

viðtÞ ¼
v
1 0� t� s1;
v
2 s1\t� s2;
. . .
vnþ1 sn\t

8

>

>

<

>

>

:

ð5:8:2Þ

The METEF under the initial conditions W(0) = 0, W(s = s1) = W(s1),
…, W(s = sn) = W(sn) is

WðtÞ ¼ WeðtÞ ¼

N 1� e�v1tð Þ 0� t� s1;
N 1� e�ðv1s1þv2ðt�s1Þ
� �

s1\t� s2;
. . .

N 1� e�
Pn

1
viðsi�si�1Þþvnþ1ðt�snÞð Þ� �

t[ sn

8

>

>

<

>

>

:

ð5:8:3Þ

190 5 Change-Point Models

http://dx.doi.org/10.1007/978-0-85729-204-9_2
http://dx.doi.org/10.1007/978-0-85729-204-9_2


Case 2: Modified Rayleigh TEF (MRTEF) The testing effort consumption rate
and MRTEF under the initial conditions W(0) = 0, W(s = s1) = W(s1), …,
W(s = sn) = W(sn) are given as

viðtÞ;WrðtÞ ¼

v
1 t; N 1� e�v1t2=2

� �

0� t� s1;

v
2 t; N 1� e� v1s21=2þv2=2 t2�s21ð Þð Þ

� �

s1\t� s2;

. . .

v
n t; N 1� e�

Pn

1
vi=2 s2i �s2i�1ð Þþvnþ1=2 t2�s2nð Þð Þ� �

t[ sn

8

>

>

>

>

>

<

>

>

>

>

>

:

ð5:8:4Þ

Case 3: Modified Weibull TEF (MWTEF) The testing effort consumption rate and
MRTEF under the initial conditions W(0) = 0, W(s = s1) = W(s1), …,
W(s = sn) = W(sn) are given as

viðtÞ;WwðtÞ ¼

v1 c1 tc1�1; N 1� e�v1tc1
� �

0� t� s1;

v2 c2 tc2�1; N 1� e� v1s
c1
1 þv2 tc2�s

c2
1ð Þð Þ

� �

s1\t� s2;

. . .

vn cn tcn�1; N 1� e
�

Pn
1 vi s

ci
i � scii�1

� �

þvnþ1 tcnþ1 � scnþ1
n

� �

� 	0

B

B

@

1

C

C

A

t[ sn

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

ð5:8:5Þ

5.8.2 An Integrated Testing Efficiency, Test Effort Multiple

Change-Points SRGM

The multiple change-point test effort models are used to develop integrated testing
efficiency multiple change-point test effort models. The flexible integrated testing
effort model discussed in Sect. 5.5 is extended with respect to the test effort model
discussed above assuming n change-points. Let us first recall all the assumptions
and considerations that apply to the model.

5.8.2.1 Assumptions

1. Failure observation/fault removal phenomenon is modeled by NHPP.
2. Software failures occur during execution due to faults remaining in the

software.
3. As soon as a failure occurs, the fault causing the failure is immediately iden-

tified and efforts are made to remove the faults.

5.8 Multiple Change-Point Test Effort Distribution 191



4. Weibull type multiple change-point type test effort function describes the
consumption of testing resources.

5. The instantaneous rate of fault removal in time (t, t ? Dt) with respect to
testing effort is proportional to the mean number of remaining faults in the
software.

6. On a removal attempt a fault is removed perfectly with probability p, 0 B p B 1.
7. During the fault removal process, new faults are generated with a constant

probability a, 0 B a B 1.

Under the assumptions 1–7 and applying the theory of change-point modeling
the differential equation for the SRGM is given by

dmrðtÞ
dt
¼

p1b1 aþ a1mrðtÞ � mrðtÞð ÞwðtÞ 0� t� s1;

p2b2 aþ a1mrðs1Þ þ a2 mrðtÞ � mrðs1Þð Þ � mrðtÞð ÞwðtÞ
or p2b2 aþ a1 � a2ð Þmrðs1Þ � 1� a2ð ÞmrðtÞð ÞwðtÞ s1\t� s2;

. . .

pnþ1bnþ1 aþ
X

n

i¼1

ai � aiþ1ð ÞmrðsiÞ � 1� anþ1ð ÞmrðtÞ
 !

wðtÞ

t[ sn

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð5:8:6Þ

Mean value function (MVF) of the model under the initial conditions mr(0) = 0,
mr(s = s1) = mr(s1), …, mr(s = sn - 1) = mr(sn - 1) and W(0) = 0,
W(s = s1) = W(s1),…, W(s = sn) = W(sn) is given as

mrðtÞ ¼

a
�a1

1� e�q1WðtÞ� �

0� t�s1;

1
�a2

a��a1mðs1Þð Þ 1� e�q2 WðtÞ�Wðt1Þð Þ� �

þ�a2mðs1Þ
� �

s1\t�s2;
. . .

1
�anþ1

aþ
X

n�1

i¼1

ai�aiþ1ð ÞmrðsiÞ� 1�anð ÞmrðsnÞ
 !

1� e�qnþ1 WðtÞ�WðtnÞð Þ
� �

0

B

B

B

@

1

C

C

C

A

þ 1�anþ1ð ÞmrðsnÞ

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

t[sn

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð5:8:7Þ

where �ai ¼ 1� ai; qi = bipi(1 - ai); i = 1, 2, …, n.
The study is due to Gupta et al. [4]. Such a model is very useful for the

reliability analysis as the measure of reliability is computed considering the dis-
tribution of testing efforts, influence of the testing efficiency and the changes of the
testing process.

192 5 Change-Point Models



5.9 A Change-Point SRGM with Environmental Factor

The study of reliability models with change points reveals that a great improve-
ment in the accuracy of evaluation of software reliability is achieved with the use
of change-point models as it considers the more realistic situations of the testing
process. The models describe the difference of testing environments before and
after the change point using different fault detection rates, while traditional models
have ignored such differences completely. In fact, there are both differences and
links between the fault detection rates before and after the change point. Software
testing is an integrated and continuous process. The software testing process
consists of several testing stages, including unit testing, integration testing and
system testing. At the stages of testing, the test teams and the operating systems
are similar. So, the fault detection rates before and after the change point should
have some links with each other because of the similarity of the environments and
these links can be described using the environmental factors. Environmental
factors that profile the software development process have much impact on soft-
ware reliability, which is studied by some researchers [33, 34], who identify six
factors that have the most significant impact on software reliability including
software complexity, programmer skill, testing effort, testing coverage, testing
environment and frequency of program specification change. Environmental fac-
tors include many other important factors that affect software reliability, which
need to be considered and incorporated into the software reliability assessment.
These environmental factors can be used to associate the fault detection rate before
the change point with fault detection rates after the change point. In fact, the
environments that respective phases experience during the software testing process
are also different. In order to quantify the environment mismatch due to the
change-point problems of testing, in a study an environmental factor was proposed
[35] which is used to describe the differences between the system test environment
and the field environment. This factor is defined as

ki ¼
�btest
�bfield

ð5:9:1Þ

This factor is used to link the fault detection rates of the testing and the
operational phases. �btest; �bfield respectively represent the long-term average per
fault failure rate during the system test and the field. This factor is assumed to
remain constant. From the aspect of the software testing process, the testing phase
is based on a testing profile, developed test cases and uses various test strategies.
Different test cases have different failure detection capability. At any of the testing
phases, firstly the testers are observed to run the test cases with strong testing
capability and high percentage of coverage to improve the testing speed and
efficiency, which will lead to reduction of the FDR. If the testing transfers to a new
phase, the FDR still decreases similarly. It is very difficult to ensure that the two
FDRs decrease in a same proportion during the testing phases. Therefore, for better
description of the impact of environment on the FDR, a function varying with time

5.9 A Change-Point SRGM with Environmental Factor 193



should be used to describe environmental factors. More precisely, the FDR is used
to measure the effectiveness of fault detection of test techniques and test cases.
Four kinds of FDR functions during software testing are defined in the literature.

1. Constant [36].
2. An increasing function with respect to the testing time [37].
3. A decreasing function with respect to the testing time [30].
4. First increasing and then decreasing function with respect to the testing-time

[38].

If same SRGM is used before and after the change-points, the relationship
between time and FDRs are as shown in Figs. 5.1, 5.2, 5.3 and 5.4. The figures
clearly illustrates that the environmental factor is a constant in the first case and
may be a variable in the other three cases. Thus, more generally, the environmental
factor should be defined as a function of time. Here bbf(t) denotes the FDR before
the change point and baf(t) is the FDR after the change point.

Fig. 5.1 FDR constant with
respect to time

Fig. 5.2 FDR increasing
function with respect to the
testing time

194 5 Change-Point Models



The time-dependent environmental factor is defined as

kðtÞ ¼ bbfðtÞ
bafðtÞ

; t 2 ðs;þ1� ð5:9:2Þ

and the average time-varying environmental factor is defined as

�kðtÞ ¼
�bbfðtÞ
�bafðtÞ

; t 2 ðs;þ1� ð5:9:3Þ

where bbfðtÞ �bbfðtÞð Þ; bafðtÞ �bafðtÞð Þ denote the FDRs (average) before and after the
change-point s. Assume that the testing ends at tend. The expected number of faults
detected and removed by time s is m(s) and the FDR before the change-point is
bbf(t). After change point, the expected and actual number of faults detected and
removed by time t is m(t) and N(t), respectively.

Fig. 5.3 FDR decreasing
function with respect to the
testing time

Fig. 5.4 First increasing and
then decreasing FDR

5.9 A Change-Point SRGM with Environmental Factor 195



The residual number of faults after the change-point is �NðtÞ ¼ a� NðtÞ. �NðtÞ
can be obtained by replacing a with its estimate by applying all the failure data to a
similar type of SRGM without change-point, such as GO model for an exponential
failure curve. This also gives a measure of bbf(t). The failure intensity after the
change-point (case of GO model) is given as

kðtÞ ¼ bafðtÞ a� mðtÞð Þ ð5:9:4Þ

The following equation can be used to calculate average failure intensity

kðtÞ ¼ NðtiÞ � Nðti�1Þ
ti � ti�1

ð5:9:5Þ

Now replacing m(t) with N(t), k(t) with �kðtÞ, the average FDR is calculated as

�bafðtiÞ ¼
kðtiÞ

a� NðtiÞ
ð5:9:6Þ

Discrete and average time-varying environmental factors of �kðtÞ can thus be
calculated as

�kðtiÞ ¼
�bbfðtiÞ
�bafðtiÞ

; ti 2 ðs; tend� ð5:9:7Þ

Zhao et al. [39] carried out a study on two data sets reported by Ohba [40]
and Musa et al. [41]. Firstly plotting the data failure trends was determined. For
Ohba data set GO model, Yamada delayed S-shaped model [30] and logistic
growth curve mðtÞ ¼ a




1þ be�bt
� �� �

are fitted, while on the Musa’s data
observing the S-shaped trend only the S-shaped models (delayed S-shaped and
logistic growth curves) were fitted. Comparison result of parameter estimation
showed that the logistic curve fitted best to both of the data. Using (5.9.4)
bbf(t) is obtained as

bbfðtÞ ¼
a

1þ be�bt
ð5:9:8Þ

bbf(t) of Eq. (5.9.8) is the non-decreasing S-shape, which denotes the testers’
learning process. The learning is closely related to the changes in the efficiency of
testing during a testing phase. The idea is that in organizations that have advanced
software processes, testers might be allowed to improve their testing process as
they learn more about the product. This could result in a fault detection rate
increase monotonically over the testing period. As the testing continues, the
increase of FDR becomes slow gradually, the failure intensity of software will
decrease significantly, the effectiveness of the testing will be lowered, and thus the
tester will adopt new testing technologies and measures to improve the number of
failures detected within a unit time, therefore the change point is generated. Thus
�bbfðtÞ can be approximately replaced by the FDR at the maximum level �bbfðtÞ
before the change-point of testing. While �bafðtÞ, �kðtÞ are derived using (5.9.6) and

196 5 Change-Point Models



(5.9.7). From the above experiments of two data sets, the approximately
decreasing trends of �kðtÞ are derived. This is due to the fact that as the testing
proceeds, the effective use of testing strategies and tools of non-random testing
makes the average FDR after the change point of testing approximately non-
decreasing, thus the average environmental factor is decreasing with time. The
approximately decreasing trend of �kðtÞ can be described as

�kðtÞ ¼ Be�dt ð5:9:9Þ

Now an NHPP-based change-point model assuming perfect debugging envi-
ronment is derived on the basic assumptions of the change-point models and
assuming that before the change point of testing, the fault detection rate captures
the learning process of software testers; and after the change point of testing, the
fault detection rate is the integrated result of environmental effects and the FDR
before the change-point. The mean value function before and after the change
point are derived as

d
dt
mðtÞ ¼ bbf ðtÞða� mðtÞÞ 0� t� s

baf ðtÞða� mðtÞÞ t[ s

�

ð5:9:10Þ

Using the initial conditions at t = 0, m(t) = 0 and t = s, m(t) = m(s) and

approximating baf(t) using baf ðtÞ ¼
�bbf
�kðtÞ ¼

�bbf
Be�dt

the mean value function of the

SRGM before and after the change-point is given as

mðtÞ ¼
a

1þ be�bt
0� t� s

ða� mðsÞÞ 1� e�B�t
� �

t[ s

8

<

:

ð5:9:11Þ

where

B�ðtÞ ¼
Z

tend

s

baf ðtÞ dt ¼
Z

tend

s

�bbf
Be�dt

dt ¼
�bbf e�dtend � e�ds
� �

Bd
t[ s ð5:9:12Þ

Using (5.9.12) the mean value function of the SRGM is given as

mðtÞ ¼
a

1þ be�bt
0� t� s

ða� mðsÞÞ 1� e ��bbf e�dtend � e�ds
� �� �


Bd
� �

þ mðsÞ t[ s

8

<

:

ð5:9:13Þ

The above change-point SRGM describes an S-shaped failure curve considering
the environmental factors for determining the FDR before and after the change-
points. Change-point models find very interesting application which is called
testing effort control problem during software testing. In the next section we
describe how to carry out a testing effort control problem [20] on the testing effort
based change-point flexible SRGM (Eq. 5.6.8).

5.9 A Change-Point SRGM with Environmental Factor 197



5.10 Testing Effort Control Problem

During testing, often the developer management is not satisfied with the progress
of the testing and the growth of the failure growth curve or it may happen that the
reliability level achievable with the current testing level does not match with the
desired level upto the scheduled delivery time. Then there arises need for
employing additional testing efforts in terms of new techniques, testing tools, more
manpower so as to remove more faults than what could be possibly achieved with
the current level of testing efforts in a prespecified time interval. This is a trade of
problem between the aspiration level of reliability and the testing resources. This
analysis gives an insight into the current level of progress in testing and later on
helps in the estimation of extra efforts/cost required to achieve the aspiration level.

Let us consider the case when testing has been in progress for time T1 and the
number of faults removed by time T1 is m(T1). Let T2 be the release time of the
product in the market. Then by time T2, the number of faults removed will rise to
m(T2) if testing is continued and similar efforts are put. The level m(T2) may or
may not coincide with the level to be achieved by the release time (say m*). To
accelerate testing and increase the efficiency of the testing and debugging teams it
is required to put extra resources in terms of additional man-hours, new testing
techniques, tools and more skilled testing personnel. Now the question arises how
much additional efforts above the current level need to be employed to achieve the
level m*. In the testing effort control problem we estimate the requirement for
additional efforts for the aspiration level to achieve.

First using the actual failure data for time (0, T1), we estimate the parameters of
the SRGM (5.6.8). Using the estimated values of the parameters the number of faults,
which can be removed, by time T2 is m(T2). If m*\m(T2), then the current level of
testing is sufficient to reach the target reliability level. The team has just to sustain
the current level following the similar testing environment as earlier and the product
is expected to be ready for the delivery without any urgency. But ifm*[m(T2), then
there is the urgency of accelerating the fault removal rate by increasing efficiency of
the testing. The aim is to estimate the requirement for additional testing efforts for
the time interval [T1, T2) so as to remove (m* - m(T1)) faults by time T2. In this case
time T1 is a change point as from this point onwards the testing team has to follow a
different, advanced set of test efforts, tools and strategy to achieve removal of
(m* - m(T1)) ([(m(T2) - m(T1))) number of faults in the time period [T1, T2). The
change point will deviate the growth curve at an accelerating pace. It may be noted
that the time point T1 may not be that first change point one or more changes point
can occur before time T1. We assume that a change-point have occurred before time
T1 (T1[ s). Then in this case if the current level of testing efficiency is maintained,
then the number of faults removed by time T2 i.e. m(T2) is given as

mðT2Þ ¼ a 1� 1þ be�b1Wð0Þ

1þ be�b1WðsÞ

� 	

1þ be�b2WðsÞ

1þ be�b2WðT2Þ

� 	

e�ðb1W�ðsÞþb2WðT2�sÞÞ

 �

ð5:10:1Þ

198 5 Change-Point Models



Let m* = m(T2) ? m(T2 - T1). Here m(T2 - T1) is the additional number of
faults that need to be removed to reach m* by time T2. LetW(T1) be the cumulative
level of the testing effort used for time (0, T1) andW(T2) be the cumulative level of
the testing effort used in time [T1T2) if testing is continued with the same pace as
up to the time (0, T1). Let W(T2 - T1) be the additional amount of efforts required
to remove m(T2 - T1) faults during interval [T1, T2). This control problem can be
presented graphically as in Fig. 5.5.

For t[ T1 the removal process can be represented by the following differential
equation

dmðtÞ
dt

�

wðtÞ ¼ b2
1þ be�b2WðtÞ a� mðT1Þ � mðtÞð Þ ð5:10:2Þ

Let us define a1 = a - m(T1), then the above differential equation can be
written as

dmðtÞ
dt

�

wðtÞ ¼ b2
1þ be�b2WðtÞ a1 � mðT1Þ � mðtÞð Þ ð5:10:3Þ

mðtÞ ¼ mðT1Þ þ a1
1� e�b2WðtÞ

1þ be�b2WðtÞ

� 	

ð5:10:4Þ

If the desirable level for the fault removal is m*, then the requirement for the
additional efforts can be generated by the following expression

m� ¼ mðT1Þ þ a1
1� e�b2W#

1þ be�b2W#

 !

ð5:10:5Þ

With the estimated values of parameters a1, b2, b and m(T1), the above
expression can be solved to find the value of W# corresponding to different values
of m*.

Here

W# ¼ W T2ð Þ �W T1ð Þ ð5:10:6Þ

Fig. 5.5 Testing effort
control problem

5.10 Testing Effort Control Problem 199



where W# represents the amount of additional efforts required for the time interval
(T1, T2) to remove m* faults from the software.

5.11 Data Analysis and Parameter Estimation

Before discussing the change-point models we stated the fact that these models
describe the changes observed in the testing process during testing, as a result
these models have better estimating and predictive power than those without their
change-point counterparts. This section of the chapter proves this fact. Here we
have established the validity of models from both categories and estimated the
parameters of these models. A comparison is then drawn on their estimating and
predictive capabilities. Several models have been selected describing the various
aspects of the testing process, such as uniform and non-uniform operational pro-
files, testing efficiency model, test effort based model and models based on sta-
tistical Weibull, Normal and Gamma distributions.

5.11.1 Models with Single Change-Point

Failure Data Set

The data set has been cllected during 19 weeks of testing of a real time command
and control system and 328 faults were detected during the testing [40]. Analysis
of the graphical plot of this data set depicts a change-point at 6th week of testing.

Following models have been chosen for data analysis and parameter estimation.

Model 1 (M1) Exponential GO model [36] (refer Sect. 2.3.1)

mðtÞ ¼ að1� e�btÞ

Model 2 (M2) Exponential change-point model [14]

mðtÞ ¼
a 1� e�b1t
� �

0� t� s;

a 1� e�ðb1sþb2ðt�sÞ� �

t[ s

(

Model 3 (M3) Yamada S-shaped model [30] (refer Sect. 2.3.4)

mf ðtÞ ¼ að1� e�btÞ

Model 4 (M4) S-shaped change-point model [23]

mðtÞ ¼
a 1� ð1þ b1tÞe�b1t
� �

; 0� t� s;

a 1� ð1þ b1sÞ
ð1þ b2sÞ

ð1þ b2tÞe�b1s�b2ðt�sÞ
� 	

s\t

8

>

<

>

:

200 5 Change-Point Models

http://dx.doi.org/10.1007/978-0-85729-204-9_2
http://dx.doi.org/10.1007/978-0-85729-204-9_2


Model 5 (M5) Flexible SRGM [31] (refer Sect. 2.3.4)

mðtÞ ¼ a
1� e�bt

1þ be�bt


 �

Model 6 (M6) Flexible change-point model [20]

mðtÞ ¼
a 1� ð1þ bÞe�b1t

1þ be�b1t

� 	

; 0� t� s;

a 1� ð1þ bÞ 1þ be�b2s
� �

1þ be�b1sð Þ 1þ be�b2tð Þ e
�b1s�b2ðt�sÞ

� 	

s\t

8

>

>

>

<

>

>

>

:

Model 7 (M7) Weibull model [23]

a 1� e�btk
� �

Model 8 (M8) Weibull change-point model [23]

mðtÞ ¼
a 1� e�b1tk
� �

; 0� t� s;

a 1� e�b1sk�b2ðtk�skÞ
� �

s\t

8

<

:

Model 9 (M9) Normal distribution change-point model [23]

mðtÞ ¼
aUt; l1; r1Þ; 0� t� s;

a 1� 1� Uðs; l1; r1Þð Þ 1� Uðt; l2; r2Þð Þ
1� Uðs; l2; r2Þð Þ

� 	

s\t

8

<

:

U t; l; rð Þ ¼
Z

t

0

gðx; l; rÞ dx

Model 10 (M10) Gamma distribution change-point model [23]

mðtÞ ¼
aCðt; a1; b1Þ 0� t� s;

a 1� 1� Cðs; a1; b1Þð Þ 1� Cðt; a2; b2Þð Þ
1� Cðs; a2; b2Þð Þ

� 	

s\t

8

<

:

Cðt; a; bÞ ¼
Z

t

0

gðx; a; bÞ dx

Model 11 (M11) Exponential change-point imperfect debugging model [15]

mðtÞ ¼

a=1� a1ð Þð1� e�b1ð1�a1ÞtÞ 0� t� s;

a=1� a2ð Þ 1� e�ðb1ð1�a1Þsþb2ð1�a2Þðt�sÞ� �

t[ s

þ mðsÞða1 � a2Þ
1� a2

8

>

>

>

<

>

>

>

:

5.11 Data Analysis and Parameter Estimation 201

http://dx.doi.org/10.1007/978-0-85729-204-9_2


Model 12 (M12) Exponential test effort model [17]

kðtÞ ¼ a b1 wðtÞe� b1 W�ðtÞ 0� t� s;
a b2 wðtÞe� b1 W�ðsÞþb2 Wðt�sÞð Þ s\t

�

W�ð�Þ ¼ Wð�Þ �Wð0Þð Þ; Wðt � sÞ ¼ WðtÞ �WðsÞð Þ

The parameters of models M1–M13 are estimated using the regression module of
SPSS. Results of estimation for SRGM have been tabulated in Table 5.1 and those
for the test effort functions are tabulated in Table 5.2. Figures 5.6, 5.7, 5.8 and 5.9
show the comparison of goodness of fit and future predictions for the change-point
models and their non-change-point counterparts for the exponential, S-shaped,
flexible and Weibull SRGM, respectively. Goodness of fit curve and future predic-
tions for all change-pointmodels are shown in Fig. 5.10. Fitting of test effort function
and the test effort based SRGM is shown in Figs. 5.11 and 5.12, respectively,

From the estimation results we can see that the change-point models provide
better fit as compared to their without change-point counterparts. The mean square
error of the GO model with change-point is 86.62 while that for the GO model it is
158.71, the difference between the two MSE is 72.09, which is quite big. Similarly
we see the same results for other models also, except for models M3 and M4.

Table 5.1 Estimation results for model 1 to model 12

Model Estimated parameters Comparison criteria

a b, b1, l1, b1 b2, l2, b2 k, b r1, a1 r2, a2 MSE R2

M1 761 0.032 – – – – 158.71 0.986
M2 423 0.055 0.098 – – – 86.62 0.993
M3 374 0.198 – – – – 188.60 0.984
M4 393 0.196 0.175 – – – 192.03 0.984
M5 382 0.179 – 2.886 – – 98.26 0.992
M6 405 0.079 0.122 0.461 – – 91.26 0.993
M7 428 0.036 – 1.284 – – 121.79 0.990
M8 429 0.058 0.112 0.951 – – 91.16 0.993
M9 339 –0.097 9.355 – 5.550 4.536 52.79 0.996
M10 411 5.240 6.012 – 1.920 2.321 266.85 0.965
M11 451 0.051 0.085 – 0.007 0.001 106.33 0.994
M12 438 0.018 0.033 – – – 252.43 0.993

Table 5.2 Estimation results for test effort functions

Test effort function Estimated parameters Comparison criteria

a v c, b MSE R2

Exponential 590 0.004 – 25.71 0.99
Rayleigh 49 0.014 – 26.49 0.974
Weibull 180 0.009 1.192 28.22 0.996
Logitic 55 0.226 13.033 1.93 0.992

202 5 Change-Point Models



The normal distribution based SRGM provided the best fit for this data set with
MSE value 52.79 and R2 value 0.996.

5.11.2 Models with Multiple Change Points

In this section we show an application of multiple change-point SRGM. Such a
case is observed when the testing process is reviewed frequently and the reliability

0

100

200

300

400

500

600

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Time (Weeks)
C

u
m

u
la

ti
v

e
 F

a
il

u
re

s

Actual Data

GO Model
Change Point Go Model

Fig. 5.6 Goodness of fit
curve for models 1 and 2

0

50

100

150

200

250

300

350

400

450

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Time (Weeks)

C
u

m
u

la
ti

v
e
 F

a
il
u

re
s

Actual Data

Yamada S-Shape Model

Change Point S-Shaped Model

Fig. 5.7 Goodness of fit
curve for models 3 and 4

0

50

100

150

200

250

300

350

400

450

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Time (Weeks)

C
u

m
u

la
ti

v
e

 F
a

il
u

re
s

Actual Data

Flexible KG Model

Change Point  KG Model

Fig. 5.8 Goodness of fit
curve for models 5 and 6

5.11 Data Analysis and Parameter Estimation 203



growth curve changes shape due to the changes made in the testing process at
various review points.

Failure Data Set

We continue with the data chosen in the previous section as they can facilitate
the comparison of the without change-point, single change-point and multiple

0

50

100

150

200

250

300

350

400

450

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Time (Weeks)
C

u
m

u
la

ti
v
e
 F

a
il
u

re
s

Actual Data

Weibull Model

Change Point Weibull Model

Fig. 5.9 Goodness of fit
curve for models 7 and 8

0

50

100

150

200

250

300

350

400

450

500

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Time (Weeks)

C
u

m
u

la
ti

v
e
 F

a
il
u

re
s

Actual Data M2
M4 M6
M8 M9
M10 M11

Fig. 5.10 Goodness of fit
curve for all change-point
models

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25

Time (Weeks)

C
u

m
u

la
ti

v
e

 T
e

s
t 

E
ff

o
rt

s

Actual Test Effort Data

Exponential  Function

Rayleigh Function
Weibull Function

Logistic Function

Fig. 5.11 Goodness of fit
curve for test effort functions

204 5 Change-Point Models



change-point models. Analysis of the graphical plot of the data set depicts that
after the change-point at 6th week of testing another changing pattern is observed
in the data at the 9th week of testing. We assume the observed failure data have
two change-points at the 6th and 9th weeks respectively.

Following model has been chosen for data analysis and parameter estimation.
Model 13 (M13) Multiple change-point exponential GO model [18]

miðtÞ ¼ a 1� e� biðt�si�1Þþ
Pi�1

r¼1
br sr�sr�1ð Þ

� 	

; s0 ¼ 0; i ¼ 1; . . .; n

�

Comparing the estimation results of GO model without change-point, with
single change-point and two change-points (Table 5.3 and Fig. 5.13) we can see
that the GO exponential model with single change-point provides a better fit with
MSE 86.62 and R2 value 0.993. The poor fitting of model with two change-points
suggests that data have only one point at which changes are observed in the testing
process. The occurrence of another shift in the data may not be significant.
Although if the multiple change-points exist in the data, the multiple change-point
models provide better fit than single change-point and without change-point
models.

5.11.3 Change-Point SRGM Based on Multiple Change-Point

Weibull Type TEF

Section 5.8 describes the development of the multiple change-point models based
on modified Weibull type testing effort functions. These testing effort functions

0

50

100

150

200

250

300

350

400

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Time (Weeks)
C

u
m

u
la

ti
v

e
 F

a
il

u
re

s

Actual Data

Change Point Exponential Test

Effort Model

Fig. 5.12 Goodness of fit
curve for test effort based
model (M12)

Table 5.3 Estimation results for test effort functions

Model Estimated parameters Comparison criteria

a b1 b2 b3 MSE R2

M13 428 0.057 0.0933 0.0893 112.12 0.991

5.11 Data Analysis and Parameter Estimation 205



have been modeled accounting the changes observed at the one or more change-
points observed in the testing process. As already discussed the progress of the
testing process largely depends on testing efforts, which are reviewed and adjusted
during testing to control the progress. In order to incorporate these changes the
traditional test effort functions defined in the literature are modified. In this section
we demonstrate an application of modified test effort functions and SRGM
developed based on them.

Failure Data Set

This data set is from Brooks and Motley [42]. The failure data set is for a radar
system of size 124 KLOC (Kilo Lines of Code) tested for 35 weeks (1846.92 CPU
hours) in which 1,301 faults were detected. This application is based on single
change point both in the test effort and failure data. The single change point is
observed at the time point 7 weeks, i.e. s1 = 7. In this application we have also
shown the comparison of the estimating and predicting powers of with and without
change-point test effort functions as well as the SRGM.

Traditional and Modified Weibull type test effort functions selected for appli-
cation are

Model 14 (M14) Exponential TEF [43]

WðtÞ ¼ WeðtÞ ¼ Nð1� e�vtÞ

Model 15 (M15) Modified exponential TEF [4]

WðtÞ ¼ WeðtÞ ¼
Nð1� e�v1tÞ 0� t� s1;
N 1� e�ðv1s1þv2ðt�s1Þ
� �

t[ s1

�

Model 16 (M16) Rayleigh TEF [43]

WrðtÞ ¼ N 1� e�vt2=2
� �

0

100

200

300

400

500

600

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Time (Weeks)

C
u

m
u

la
ti

v
e

 F
a

il
u

re
s

Actual Data

GO Model

Single Change Point Go Model

Two Change Point Exponential Model

Fig. 5.13 Goodness of fit
curve of exponential model
with one, two and no change
points

206 5 Change-Point Models



Model 17 (M17) Modified Rayleigh TEF [4]

WrðtÞ ¼
N 1� e�v1t2=2
� �

0� t� s1;

N 1� e� v1s21=2þv2=2 t2�s21ð Þð Þ
� �

t\s1;

8

<

:

Model 18 (M18) Weibull TEF [43]

WwðtÞ ¼ N 1� e�vtc
� �

Model 19 (M19) Modified Weibull TEF [4]

WwðtÞ ¼
N 1� e�v1tc1
� �

0� t� s1;

N 1� e� v1s
c1
1 þv2 tc2�s

c2
1ð Þð Þ

� �

t[ s1;

8

<

:

and the SRGM selected for application are

Model 20 (M20) Exponential test effort based SRGM incorporating testing effi-
ciency [4]

mrðtÞ ¼ a= 1� að Þð Þ 1� e�bpð1�aÞWðtÞ
� �

Model 21 (M21) Exponential change-point test effort based SRGM with multiple
change-points incorporating testing efficiency [4]

mrðtÞ ¼

a= 1� a1ð Þð Þ 1� e�b1p1ð1�a1ÞWðtÞ� �

0� t� s1;

a=
1� a1ð Þ
1� a2ð Þ

 ! ! 1� a2ð Þ � a1 � a2ð Þe�b1p1ð1�a1ÞWðt1Þ

� 1� a1ð Þe
�

b1p1ð1� a1ÞWðt1Þ
þb2p2ð1� a2Þ WðtÞ �Wðt1Þð Þ

� 	

0

B

B

@

1

C

C

A

t[ s1

8

>

>

>

>

<

>

>

>

>

:

Estimated values of parameters of the test effort functions are tabulated in
Table 5.4. Goodness of fit curves for the test effort exponential, Rayleigh and
Weibull functions and their respective change-point forms are shown in Figs. 5.14,
5.15, and 5.16.

Table 5.4 Estimation results for with- and without-change-point test effort functions

Model Estimated parameters Comparison criteria

N v, v1 v2 c1 c2 MSE R2

M14 2,679 0.0226 – – – 56,629.76 0.8492
M15 2,956 0.0073 0.0264 – – 29,793.66 0.9384
M16 2,873 0.0018 – – – 1,200.86 0.9983
M17 2,791 0.0016 0.0018 – – 1,069.02 0.9983
M18 2,692 0.0008 2.0650 – – 999.08 0.9983
M19 2,809 0.0002 0.0009 2.695 1.999 586.94 0.9984

5.11 Data Analysis and Parameter Estimation 207



The modified Weibull test effort function best describes this data set. We
estimated the test effort values corresponding to the observed data using the
modified Weibull test effort function and using these values estimates of param-
eters of model M21 are obtained. For model M20 the actual test effort values are
taken for the purpose of estimation. Estimated values of parameters of the SRGM
are tabulated in Table 5.5. Goodness of fit curve for the SRGM M20 and M21 is
shown in Fig. 5.17.

0

500

1000

1500

2000

2500

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

Time (Weeks)
C

u
m

u
la

ti
v
e
 F

a
il

u
re

s

Actual Data

Exponential TEF

Change Point Exponential TEF

Fig. 5.14 Goodness of fit
curve of exponential and
modified exponential TEF

0

500

1000

1500

2000

2500

3000
1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

Time (Weeks)

C
u

m
u

la
ti

v
e
 F

a
il
u

re
s

Actual Data

 Rayleigh TEF

Change Point Rayleigh TEF

Fig. 5.15 Goodness of fit
curve of Rayleigh and
modified Rayleigh TEF

0

500

1000

1500

2000

2500

3000

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

Time (Weeks)

C
u

m
u

la
ti

v
e
 F

a
il
u

re
s

Actual Data

Weibull TEF

Change Point Weibull  TEF

Fig. 5.16 Goodness of fit
curve of Weibull and
modified Weibull TEF

208 5 Change-Point Models



The estimation results suggests that the model M21, i.e. testing efficiency and
test effort based change point SRGM provides better fit as compared to the without
change-point counterpart.

5.11.4 Application of Testing Effort Control Problem

Testing effort control problem discussed in Sect. 5.10 is widely used during the
testing process to adjust the progress of testing. After certain period of continu-
ation of the testing process, testing managers predict the status of the reliability
level that can be achieved with the same level of testing after certain period of
further testing. By the application of software release time problem managers are
able to predict the delivery date of the software with a predetermined level of
quality measure to be attained by that time. Sometimes the delivery date as
determined from the optimization routine falls after the time when the software is
scheduled to release. It is quite possible that in such a case many esteemed top
management may not be ready to pay any sort of penalty cost due to late delivery,
but they can spent extra resources now to accelerate the testing growth and achieve
their required measure of quality by the scheduled delivery time. Now the problem
is to determine how much resources are just sufficient to accelerate the testing so
that the required quality measure can be attained by a specified time. Now we
discuss a practical application of a testing effort control problem and illustrate how
all these decisions can be made.

Table 5.5 Estimation results of models M20 and M21

Model Estimated parameters Comparison criteria

a b, b1 b2 p, p1 p2 a, a1 a2 MSE R2

M20 1,393 0.0014 – 0.9927 – 0.01040 – 3,539.14 0.9893
M21 1,657 0.0012 0.0010 0.9254 0.9638 0.00005 0.00004 1,647.93 0.9930

0

200

400

600

800

1000

1200

1400

1600

1800

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

Time (Weeks)

C
u

m
u

la
ti

v
e

 F
a

il
u

re
s

Actual Data

M20

M21

Fig. 5.17 Goodness of fit
curve of models M20 and
M21

5.11 Data Analysis and Parameter Estimation 209



Failure Data Set

This data set is from Brooks and Motley [42]. The failure data set is for a radar
system of size 124 KLOC (Kilo Lines of Code) tested for 35 weeks in which 1,301
faults were detected. In this data set a change-point is observed around the 17th
observation, hence we assume s = 17th week.

The following SRGM is used in the application of testing effort control
problem.

Model 22 (M22) Flexible/S-shaped test efforts based change-point SRGM [20]

mðtÞ ¼

a
1� e�b1W�ðtÞ

1þ be�b1WðtÞ

� 	

0 � t � s;

a 1�
1þ be�b1Wð0Þ

1þ be�b1WðsÞ

� 	

1þ be�b2WðsÞ

1þ be�b2WðtÞ

� 	

e�ðb1W�ðsÞþb2Wðt�sÞÞ

0

B

@

1

C

A

2

6

4

3

7

5
s\t

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Consider the testing process at the end of 30th week. At this time moment the
testing manager decides to release the software at the 35th week of testing with
some desired level of reliability. First we truncate the data to 30 weeks and
estimate the parameters of the SRGM developed due to Kapur et al. [20] (refer
Sect. 5.10). To estimate the parameters of the SRGM first we estimate the
parameter of the exponential, Rayleigh, Weibull and logistic testing effort func-
tions and using these estimates, parameters of the SRGM are estimated. The
estimation results of the testing effort functions are tabulated in Table 5.6. The
Rayleigh curve fits best to these data. Parameters of the SRGM are estimated based
on the Rayleigh effort function. The results of the estimation of SRGM are given in
Table 5.7.

Using the results in Tables 5.6 and 5.7, we calculate the expected number of
faults that can be removed with the same level of testing if testing is to be

Table 5.6 Estimation results for test effort functions

Test effort function Estimated parameters Comparison criteria

a v c, b MSE R2

Exponential 962,053 0.000046 – 494.46 0.89
Rayleigh 3,254 0.000744 – 168.69 0.985
Weibull 3,767 0.000750 1.939 345.84 0.921
Logistic 1,895 0.172650 40.300 11,875.25 0.762

Table 5.7 Estimation results of model M22

Model Estimated parameters Comparison criteria

a b1 b2 b MSE R2

M22 1325 0.0028 0.0027 2.43 191.01 0.998

210 5 Change-Point Models



terminated by the end of 35th week. From Eq. (5.10.1) we get m(T2) = 1,302
while m(T1) = 1,267. It means that additional 35 faults (1,302 – 1,267) can be
removed if we continue the testing for 5 weeks after 30th week. Now if want to
release software after 35 weeks of testing and to attain a specified level of reli-
ability we need to remove more than 35 faults in this time period and more
resources should be added to accelerate the testing. Using Eqs. (5.10.5) and
(5.10.6) we can determine the additional resources required. The estimated values
of W# with respect to different levels m* are tabulated in Table 5.8.

Exercises

1. What are the two important techniques to handle the changes in processes
mathematically? Give some important applications of change-point analysis.

2. Explain how change-point analysis is related to the measurement of software
reliability growth during testing.

3. Describe the mathematics of change-point theory.
4. Develop an integrated flexible imperfect debugging model, if the fault removal

intensity function is given as follows

dmrðtÞ
dt
¼ b p; tð Þ aðtÞ � mrðtÞð Þ

with bðp; tÞ ¼ b1p



1þ be�b1pt 0� t� s;

b2p



1þ be�b2pt t[ s

�

and aðtÞ ¼ aþ a1mrðtÞ 0� t� s

aþ a1mrðsÞ þ a2ðmrðtÞ � mrðsÞÞ t[ s

�

5. Estimate the unknown parameters of the model developed in exercise 4 and the
one discussed in Sect. 5.5.2 using the data of application in Sect. 5.11.1.
Analyze and compare your results.

6. Incorporate the single change-point in the Yamada delayed S-shaped SRGM
with respect to the test effort. The model without change-point is given as

mðtÞ ¼ að1� ð1þ bWðtÞÞe�bWðtÞÞ

7. Fit the model developed in exercise 6 on data of application in Sect. 5.11.1.
Reanalyze the results of this application to reflect the goodness of fit of this
model.

Table 5.8 Results of testing effort control problem

m* 1,303 1,304 1,305 1,306 1,307
Faults to be removed between week (30, 35) of testing 36 37 38 39 40
Additional testing resources required 365.23 382.60 400.81 419.94 440.10

5.11 Data Analysis and Parameter Estimation 211



References

1. Hackl TP, Westlund AH (1989) Statistical analysis of ‘‘structural change’’: an annotated
bibliography. In: EMPEC, vol 14, pp 167–192

2. Khodadadi A, Asgharian M (2008) Change-point problem and regression: an annotated
bibliography. COBRA Preprint Series. Article 44. http://biostats.bepress.com/cobra/ps/art44

3. Zhao M (1993) Change-point problems in software and hardware reliability. Commun Stat
Theory Methods 22:757–768

4. Gupta A, Kapur R, Jha PC (2008) Considering testing efficiency in estimating software
reliability based on testing variation dependent SRGM. Int J Reliab Qual Safety Eng
15(2):77–81

5. Chen J, Gupta AK (2001) On change-point detection and estimation. Commun Stat
Simulation Comput 30(3):665–697

6. Hinkley DV (1970) Inference about the change-point in a sequence of binomial variable.
Biometrika 57:477–488

7. Carlstein E (1988) Nonparametric change-point estimation. Ann Stat 16(1):188–197
8. Joseph L, Wolfson DB (1992) Estimation in multi-path change-point problems. Commun Stat

Theory Methods 21(4):897–914
9. Xie M, Goh TN, Tang Y (2004) On changing points of mean residual life and failure rate

function for some generalized Weibull distributions. Reliab Eng Syst Safety 84(3):293–299
10. Bae SJ, Kvam PH (2006) A change-point analysis for modeling incomplete burn in for light

displays. IIE Trans 38(6):489–498
11. Zhao J, Wang J (2007) Testing the existence of change-point in NHPP software reliability

models. Commun Stat Simulation Comput 36(3):607–619
12. Galeano P (2007) The use of cumulative sums for detection of change-points in the rate

parameter of a Poisson process. Comput Stat Data Anal 51(12):6151–6165
13. Chang YP (1997) An analysis of software reliability with change-point models. NSC 85-

2121-M031-003; National Science Council, Taiwan
14. Chang YP (2001) Estimation of parameters for non-homogeneous Poisson process: software

reliability with change-point model. Commun Stat Simulation Comput 30(3):623–635
15. Shyur HJ (2003) A stochastic software reliability model with imperfect debugging and

change-point. J Syst Softw 66:135–141
16. Zou FZ (2003) A change-point perspective on the software failure process. Softw Testing

Verification Reliab 13:85–93
17. Huang CY (2005) Performance analysis of software reliability growth models with testing-

effort and change-point. J Syst Softw 76:181–194
18. Huang CY, Lin CT (2005) Reliability prediction and assessment of fielded software based on

multiple change-point models. In: Proceedings 11th pacific rim international symposium on
dependable computing (PRDC’05), pp 379–386

19. Lin CT, Huang CY (2008) Enhancing and measuring the predictive capabilities of testing-
effort dependent software reliability models. J Syst Softw 81:1025–1038

20. Kapur PK, Gupta A, Shatnawi O, Yadavalli VSS (2006) Testing effort control using flexible
software reliability growth model with change-point. Int J Performability Eng special issue
on Dependability of Software/Computing Systems 2:245–262

21. Kapur PK, Kumar A, Yadav K, Kumar J (2007) Software reliability growth modeling for
errors of different severity using change-point. Int J Reliab Qual Safety Eng 14(4):311–326

22. Kapur PK, Singh VB, Anand S (2007) Effect of change-point on software reliability growth
models using stochastic differential equation. In: 3rd International conference on reliability
and safety engineering (INCRESE-2007), Udaipur, 7–19 Dec 2007, pp 320–333

23. Kapur PK, Kumar J, Kumar R (2008) A unified modeling framework incorporating change-
point for measuring reliability growth during software testing. OPSEARCH J Oper Res Soc
India 45(4):317–334

212 5 Change-Point Models

http://biostats.bepress.com/cobra/ps/art44


24. Kapur PK, Singh VB, Anand S, Yadavalli VSS (2008) Software reliability growth model
with change-point and effort control using a power function of testing time. Int J Prod Res
46(3):771–787

25. Jelinski Z, Moranda P (1972) Software reliability research. In: Freiberger W (ed) Statistical
computer performance evaluation. Academic Press, New York, pp 465–484

26. Littlewood B (1981) Stochastic reliability growth: a model for fault removal in computer
programs and hardware design. IEEE Trans Reliab R-30:312–320

27. Wagoner WL (1973) The final report on a software reliability measurement study. Aerospace
Corporation, Report TOR-007 (4112), p 1

28. Schick GL, Wolverton RW (1973) Assessment of software reliability. In: Proceedings
operations research. Physica-Verlag, Wurzburg Wein, pp 395–422

29. Inoue S, Yamada S (2008) Optimal Software release policy with change-point. In: IEEE
international conference on industrial engineering and engineering management IEEM 2008,
Singapore, 8–11 Dec 2008, pp 531–535

30. Yamada S, Ohba M, Osaki S (1983) S-shaped software reliability growth modeling for
software error detection. IEEE Trans Reliab R32(5):475–484

31. Kapur PK, Garg RB (1992) A software reliability growth model for an error removal
phenomenon. Softw Eng J 7:291–294

32. Sehgal VK, Kapur R, Yadav K, Kumar D (2010) Software reliability growth models
incorporating change-point with imperfect fault removal and error generation. Int J
Simulation Process Modeling (accepted for publication)

33. Zhang X, Pham H (2000) An analysis of factors affecting software reliability. J Syst Softw
50:43–56

34. Zhang X, Shin MY, Pham H (2001) Exploratory analysis of environmental factors for
enhancing the software reliability assessment. J Syst Softw 57:73–78

35. Zhang XM, Jeske DR, Pham H (2002) Calibrating software reliability models when the test
environment does not match the user environment. Appl Stochastic Models Business Industry
18:87–99

36. Goel AL, Okumoto K (1979) Time dependent error detection rate model for software
reliability and other performance measures. IEEE Trans Reliab R28(3):206–211

37. Pham H, Nordmann L, Zhang XA (1999) General imperfect-software-debugging model with
S-shaped fault-detection rate. IEEE Trans Reliab 48(2):169–175

38. Liu HW, Yang XZ, Qu F, Dong J (2005) A software reliability growth model with bell-
shaped fault detection rate function. Chin J Comput 28(5):908–913

39. Zhao J, Liu HW, Cui G, Yang XZ (2006) Software reliability growth model with change-
point and environmental function. J Syst Softw 79:1578–1587

40. Ohba M (1984) Software reliability analysis models. IBM J Res Dev 28:428–443
41. Musa JD, Iannino A, Okumoto K (1987) Software reliability: measurement, prediction,

application. McGraw-Hill, New York. ISBN 0–07-044093-X
42. Brooks WD, Motley RW (1980) Analysis of discrete software reliability models—technical

report (RADC-TR-80-84). Rome Air Development Center, New York
43. Yamada S, Hishitani J, Osaki S (1993) Software reliability growth model with Weibull

testing effort: a model and application. IEEE Trans Reliab 42:100–105

References 213



Chapter 6
Unification of SRGM

6.1 Introduction

We are aware that it is the computer systems on which the entire modern infor-
mation society rolls over. Computer hardware systems have attained high pro-
ductivity, quality and reliability but it is still not true for the software systems.
Software engineers and concerned managements put more labor for improving
these characteristics of software nowadays. Unlike hardware components, every
new software must be tested even though various techniques are employed
throughout the software development process to satisfy software quality require-
ments. The achieved quality level through testing has no meaning unless it is
measured quantitatively to build a confidence in the level of reliability achieved.
Besides this, many decisions such as release time, those related to the postrelease
can be made more accurately only if a quantitative measurement of quality is
known. For example if we know the reliability level we can determine the post-
delivery maintenance cost and warranty on the software more accurately and with
more confidence. All this needs measurement technologies to assess the software
quality. At this point we know that software reliability models based on stochastic
and statistical principles are the important and most successful tools to assess
software reliability quantitatively. Up to now we have discussed various software
reliability modeling categories and several non-homogenous Poisson process (NHPP)
based models under each category and will discuss more in the later chapters.

The existing NHPP models are formulated considering diverse testing and
debugging (T&D) environments and have been applied successfully to typical
reliability growth phenomenon observed during testing but not in general, i.e. a
particular SRGM cannot be applied in general as the physical interpretation of the
T&D is not general. A solution to this problem is to develop a unified modeling
(UM) approach [1–9]. Although the SRGM existing in the literature considered
one or other aspect of the software-testing but as mentioned above none can
describe a general testing scenario. As such for any particular practical application

P. K. Kapur et al., Software Reliability Assessment with OR Applications,
Springer Series in Reliability Engineering, DOI: 10.1007/978-0-85729-204-9_6,
� Springer-Verlag London Limited 2011

215



of reliability analysis one needs to study several models and then decide the most
appropriate ones. The selected models are compared based on the results obtained
and then a model is selected for further use. As an alternative following a unifi-
cation approach several SRGM can be obtained from a single approach giving an
insightful investigation on these models without making many distinctive
assumptions. It can make our task of model selection and application much simpler
than the usual methods. Establishment of unification methodology is one of the
recent topics of research in software reliability modeling.

Some researchers have worked for formulating generalized approaches to
robust software reliability assessment, which proved to be promising approachs for
reliability estimation and prediction. The work in this area started with Shan-
tikumar [1, 2] by proposing a generalized birth process model to describe Jelinski
and Moranda [10] and GO model [11]. Langberg and Singpurwalla [3] showed that
several Software Reliability Models (SRMs) can be comprehensively viewed from
the Bayesian point of view. Miller [4] and Thompson Jr. [5] extended the Lang-
berg and Singpurwalla’s idea to a wider range of SRMs using the framework of
theory of generalized order statistics (GOS) and record value. The NHPP models
selection problem is reduced to a simple selection problem of fault-detection time
distribution. Based on their result, the mean value function in NHPP models can be
characterized by theoretical probability distribution function of fault-detection
time. Gokhale et al. [6] and Gokhale and Trivedi [8] introduced the concept of
testing coverage and proposed the similar modeling framework to the GOS theory.
Chen and Singpurwalla [7] proved that all SRMs as well as the NHPP models
developed in the past literature can be unified by self-exciting point processes.
Huang et al. [9] discussed a unified scheme for discrete time NHPP models
applying the concept of means. Xie et al. [23] proposed a unification scheme for
modeling the fault detection and correction process. Kapur et al. [12, 13] proposed
two approaches: one based on infinite server queuing theory and the other based on
fault-detection time distribution. Using the UM approaches [12, 13, 23] several
existing SRGM are obtainable, which have been developed considering diverse
concepts of testing and debugging. In this chapter we will discuss these three
unification methodologies and the SRGM obtained from them. In the later part of
this chapter we have discussed the findings due to Kapur et al. [14] which yields
the equivalence between the three approaches.

Before we proceed to the unification methodologies we feel it essential to dis-
cuss an important concept of software-testing. It is related to the existing time lag
between fault-detection and its subsequent removal. In practice, fault removal is not
immediate to its detection. Let us understand the software-testing process. It con-
sists of exercising a program with intent to detect faults lying in it prior to software
delivery to the users. This can be achieved by means of inspection, test runs and
formal verification. On detection of a fault the debugging process starts. Fault
debugging includes several intermediate steps such as failure report, fault isolation
and correction with the subsequent verification. The goal of isolation activity is to
identify the root cause of the fault, which is achieved through forming a hypo-
thesis with the gathered information and then testing the hypothesis. As the fault is

216 6 Unification of SRGM



isolated it is corrected and verified by the programmers. Fault correction
personnel also formulate a hypothesis and make predictions based on the
hypothesis. Furthermore, they run the software, observe its output and confirm
the hypothesis on removal. The time to remove a fault depends on the com-
plexity of the detected faults, the skills of the debugging team, the available
manpower and the software development environment, etc. As such the
assumption of immediate removal of fault on failure may not be realistic in many
actual software-testing processes and provides a poor estimate of reliability. In
practical testing scenario fault removal process follows detection process. This
discussion enables us to know the importance of modeling the fault correction
process (FCP) separately and simultaneously to the detection process. A few
attempts have been made in the literature to model the fault-detection and cor-
rection process (FDCP) separately. Schneidewind [15] first modeled the FCP by
using a constant delayed fault-detection process (FDP). Later, Xie and Zhao [16]
extended the Schneidewind model using a time-dependent delay function.
Yamada delayed S-shaped model [17] also considers the time lag between the
fault correction and detection. Kapur and Younes [18] analyzed the software
reliability considering the fault dependency and debugging time lag. Following
the idea of using deterministic and random delay functions some researchers
have emphasized importance of fault correction process modeling with FDP
modeling [19–23]. The unified approaches we are going to discuss in this chapter
incorporate the idea of modeling FDCP separately.

6.2 Unification Scheme for Fault Detection
and Correction Process

When the information is available about both FDP and FCP, correction process has
to be analyzed as a process separate from fault-detection. The analysis of fault
correction mechanism follows similar to that for traditional NHPP-based SRGM.
Each fault correction process is connected to a detection process as faults can only
be corrected if they are detected. FCP can hence be assumed to be a delayed FDP.
Therefore fault correction SRGM can be defined for all existing fault-detection
SRGM by using the different forms of the time delay between these two processes.
Following this approach and considering the importance of generalization and
extension of the existing fault-detection SRGM recently Xie et al. [23] have
proposed a unification scheme for modeling the FDCP. Using their scheme they
obtained several SRGM for FDCP using distinct random delay functions. Wu et al.
[22] further studied their unification scheme and obtained new SRGM using other
type of random delay functions. This approach may be developed further in two
ways: firstly, different existing NHPP models could be used to describe the FDP
and using it we can obtain the SRGM for FCP; secondly, different time delay
forms could be generated under different fault correction conditions.

6.1 Introduction 217



6.2.1 Fault Detection NHPP Models

The mean value function, md(t) of the FDP, N(t) under the general assumptions of
an NHPP-based SRGM with intensity kd(t) satisfies

mdðtÞ ¼
Z

t

0

kdðsÞ ds ð6:2:1Þ

Using (6.2.1) we can obtain several existing fault-detection models, either
concave or S-shaped. An exponential decreasing intensity describes a concave
SRGM while an increasing then decreasing intensity describes an S-shaped FDP,
which could be interpreted as a learning process.

6.2.2 Fault Correction NHPP Models

NHPP-based fault correction process is characterized by a mean value function
mc(t) similar to md(t). Mean value function of the FCP is obtainable from the kdðtÞ
using the delay function D(t) as

mcðtÞ ¼
Z

t

0

kcðsÞ ds ¼
Z

t

0

E kdðs� DðsÞÞ½ � ds ð6:2:2Þ

Let us now discuss the various delay functions that can be used to describe the
time lag between fault-detection and correction and obtain various existing SRGM
for FDCP. It is assumed here that the mean value function of the GO model
describes the detection process, i.e.

mdðtÞ ¼ a 1� e�bt
� �

ð6:2:3Þ

which implies

kdðtÞ ¼ abe�bt ð6:2:4Þ

Case 1: Constant Correction Time Assuming that each detected fault takes the
same amount of time to be corrected, i.e. D(t) = D, with the known intensity for
the FDP, the intensity function for the correction process is given as

kcðtÞ ¼
0 t\D

kdðt � DÞ t�D

�

ð6:2:5Þ

With the intensity function (6.2.5) mean value function for the correction
process is given as

218 6 Unification of SRGM



mcðtÞ ¼
0 t\D
R

t

D

kd t � Dð Þ dt t�D

8

<

:

ð6:2:6Þ

This can be further evaluated as

mcðtÞ ¼ mdðt � DÞ ¼ a 1� e�bðt�DÞ
� �

; t�D ð6:2:7Þ

The model in (6.2.7) has the same form as Schneidewind’s [15] correction
model, although the latter is derived from the assumption that the fault correction
rate is proportional to the number of faults to be corrected. Actually, these two
assumptions are the same, as they both regard all of the detected faults as identical
from the correction time point of view.

Case 2: Time-Dependent Correction Time Schneidewind’s fault correction model
was further studied by Xie and Zhao [16]. They proposed a time-dependent delay
function to describe the time lag between failure observation and correction given as

DðtÞ ¼ lnð1þ ct � c=bÞ
b

; c\b ð6:2:8Þ

Using this delay function the intensity function for the correction process is
given as

kcðtÞ ¼ kdðt � DðtÞÞ ð6:2:9Þ

Hence the mean value function for the correction process is given as

mcðtÞ ¼
Z

t

D

kd t � DðtÞð Þ dt ¼ a 1� ð1þ ctÞe�bt
� �

ð6:2:10Þ

The model in (6.2.10) is the general form of the Yamada delayed S-shaped
SRGM as in this model author has assumed c = b.

Case 3: Random Correction Time In cases 1 and 2 the correction time functions
were deterministic. The deterministic assumptions on correction time are sim-
plistic. In general it is not realistic as correction process is related to a human
activity, which has lots of uncertainty in practice. Faults of any software are not
usually same and their appearance sequence is random in system testing. There-
fore, Xie et al. [23] proposed to model correction time with a random variable.

6.2.2.1 Exponentially Distributed Correction Time

Musa et al. [24] claimed that the correction time follows an exponential distri-
bution. Following them Xie et al., defined the delay function as an exponential
distribution, i.e.

DðtÞ� expðlÞ

6.2 Unification Scheme for Fault Detection and Correction Process 219



With an exponentially distributed delay function and a known intensity of the
detection process the failure correction intensity function is given as

kcðtÞ ¼ E kdðt � DðtÞÞ½ � ¼
Z

1

0

kdðt � xÞle�lx dx ð6:2:11Þ

Hence the mean value function for the correction process with detection process
described by GO model is given as

mcðtÞ ¼
a 1� ð1þ btÞe�bt
� �

l ¼ b

a 1� l

l� b
e�bt þ b

l� b
e�lt

� �

l 6¼ b

8

>

<

>

:

ð6:2:12Þ

Further Xie et al. [23] and Wu et al. [22] proposed to use various other types of
random distribution functions for modeling the correction time such as Gamma,
Weibull, Erlang, Normal distribution, etc. Table 6.1 summarizes the various
SRGM for the fault correction process obtained using distinct randomly distributed
delay functions.

The unification scheme discussed above is a comprehensive study of the fault-
detection and correction mechanism and offers a great flexibility for modeling

Table 6.1 Fault correction SRGM

Model Probability density function
of the correction time D(t)

Mean value function of the SRGM
for fault correction process (mc(t))

M1 Exponential time delay
gðx;lÞ ¼ le�lx; x� 0

að1� ð1þ btÞe�btÞ l ¼ b

a 1� l
l�be

�bt þ b
l�be

�lt
� �

l 6¼ b

M2 Weibull time delay

gðx; a;bÞ ¼ a
b

x
b

� �a�1
e�

x
bð Þa ; x� 0

P1
i¼0

ðbbÞi
i!

R t
0 abe

�btc i
a
þ 1; t

� �

dt where
c(a, x) is incomplete Gamma function

M3 Erlang time delay

gðx; a;bÞ ¼ baxa�1e�bx

ða�1Þ! ; x[ 0

abba

ðb�bÞkða�1Þ!
R t
0 e

�btcða; ðb� bÞtÞ dt where the

shape parameter a is an integer, the rate
parameter b is a real number and c(a, x) is
the lower incomplete Gamma function

M4 Normal time delay

gðx;l;rÞ ¼ 1
r
ffiffiffiffiffi

2P
p e �ðx�lÞ2

2r2

� � � aeð�btþlbþðbrÞ2=2Þ
Uðt; br2 þ l;rÞ�

þUð0; br2 þ l;rÞ

 !

þ aðUðt;l;rÞ � Uð0; l; rÞÞ

M5 Chi-square time delay

gðx;bÞ ¼ ð1=2Þb=2xðb=2�1Þe�x=2

Cðb=2Þ ; x� 0
abba

ð1�2bÞb=2Cðb=2Þ

R t
0 e

�btc
b=2;

ð1� 2bÞt=2

 !

dt

M6 Gamma time delay

gðx; a;bÞ ¼ xa�1bae�bx

CðaÞ ; x[ 0
aCðt; a; bÞ � ae�bt

ð1�bbÞaC t; a; b
ð1�bbÞ

� �

220 6 Unification of SRGM



the delay time function. With any known delay time function and based on an
existing SRGM for FDP we can formulate the SRGM for fault correction process.
Although the scheme analyzes the detection–correction mechanism very com-
prehensively, but it suffers from one major limitation. As mentioned above the
deterministic assumptions on correction time are not realistic as correction process
is related to a human activity and the faults manifested in any software are not
usually same and their appearance sequence is random in system testing. As such it
may not be appropriate to describe the time lag between their removals by same
deterministic or randomly distributed delay function. One solution to this problem
is to distinguish the faults based on their complexity of removal and accordingly
forming the delay functions. The UM approach discussed in the next section
incorporates this idea—a unified scheme based on the concept of infinite queues.

6.3 Unified Scheme Based on the Concept
of Infinite Server Queue

Queuing models are very useful for several practical problems. These models
have also been used successfully by the software engineering researchers for
management and reliability estimation of software. Early attempts were related
to the project staffing and software management [25, 26]. In the recent
practices researchers have shown how to use queuing approaches to explain
testing and debugging behavior of software. The underlying idea is that fault-
detection phenomenon can be looked as an arrival in the queue and FCP can
be seen as a service. If we assume the debugging activity starts as soon as a
fault is detected, FDCP can be viewed as an infinite server queue. Inoue and
Yamada [27] applied infinite server queuing theory to the basic assumptions
of delayed S-shaped SRGM, i.e. FDP consists of successive failure detection
and isolation processes considering time distribution of fault isolation process
(FIP) and obtained several NHPP models describing FDP as a two-stage
process.

The unification approach due to Inoue et al. describes FDP in two successive
stages and no consideration is made for the removal phenomenon of the
detected faults. Dohi et al. [28] proposed a unification method for NHPP
models describing test input and program path searching times stochastically by
an infinite server queuing theory. They assumed test cases are executed
according to a homogeneous Poisson process (HPP) with parameter k. Kapur
et al. [12] proposed a comprehensive unified approach applying the infinite
server queuing theory based on the basic assumptions of an SRGM defining the
three level complexities of faults ([18], see section 2.4) with a consideration to
FRP on the detection and isolation of a fault. The two separate approaches of
modeling namely the time lag modeling between removal of fault on a failure
observation and fault categorization incorporated in the unified scheme due to

6.2 Unification Scheme for Fault Detection and Correction Process 221



Kapur et al. share a common thing that is the consideration of time lag between
the failure observation, isolation and/or removal. It makes their methodology
more general as it can be used to obtain several distinct categories of the
models. These categories include models which consider testing a one-stage
process with no fault categorization [11, 17] a two-stage process considering the
various deterministic and random delay functions [22] and model which cate-
gorizes faults in two and three level complexity considering the time delay in
failure observation, isolation and removal [18]. Let us now discuss their models
in detail.

6.3.1 Model Development

Consider the case when a number of test cases are executed on software in
accordance with an NHPP with rate k(t). The execution of test cases may result in
the software failures. The failures observed at the end of execution of test cases
form an arrival process. Here, number of failures observed at the end of testing
period is equivalent to number of customers in theM�=G=1 queuing system. Here
arrival process, represented byM* is an NHPP with mean m(t) and service time has
general distribution.

The Erlang model due to Kapur et al. [18] implies that a failure observation
does not always imply that the fault is removed immediately. As in case of
hard and complex faults the time spent in isolating and removing a fault on the
observation of a failure is random due to the complexity of faults. In case of
hard faults it is assumed that fault removal follows immediate to isolation
while in case of complex fault delay happens in removal after the isolation.
Hence first we need to discuss the concept of conditional distributions of arrival
times (failures in this case) for developing the model based on infinite server
queue theory [27].

6.3.1.1 Conditional Distribution of Arrival Times

Let S1, S2, …, Sn be the n arrival times of a counting process {N(t), t C 0} which
follows an NHPP with MVF m(t) and the intensity function k(t). The conditional
distribution of first arrival time, S1, given that there was an event in the time
interval [0, t] [29], i.e. for S1\t, the conditional distribution is

Pr S1 � s1jNðtÞ ¼ 1f g ¼ mðs1Þ
mðtÞ ¼

Z

s1

0

kðxÞ
mðtÞ dx ð6:3:1Þ

Similarly, the joint conditional distribution of S1 and S2 is given as

222 6 Unification of SRGM



Pr S1 � s1; S2 � s2jNðtÞ ¼ 2f g ¼ 2!
mðs1Þ mðs2Þ � mðs1Þð Þ

mðtÞ2

¼ 2!
Z

s1

0

Z

s2

s1

Q2
i¼1 kðxiÞ
mðtÞ2

dx1 dx2 ð6:3:2Þ

where s1\ s2 B t. Hence if N(T) = n, the joint conditional distribution of n arrival
times is given by

Pr S1� s1;S2� s2; . . .;Sn� snjNðtÞ ¼ nf g ¼ n!
Z

s1

0

Z

s2

s1

. . .

Z

sn

sn�1

Qn
i¼1mðxiÞ
mðtÞn dx1 dx2. . .dxn

ð6:3:3Þ

Therefore, the joint conditional distribution of n arrival times given that
N(T) = n is given as

Pr t1; t2; . . .; tnjNðtÞ ¼ nf g ¼ n!

Qn
i¼1 kðtiÞ
mðtÞn ð6:3:4Þ

Equation (6.3.4) implies that if N(T) = n the unordered random variables of
n arrival times S1, S2, …, Sn are independent and identically distributed with the
density

f ðxÞ ¼
kðxÞ
mðtÞ 0� x� t

0 otherwise

8

<

:

ð6:3:5Þ

Also if s\ t and 0 B m B n, then

Pr NðtÞ ¼ mjNðtÞ ¼ nf g ¼ Pr Nðt � sÞ ¼ n� m;NðsÞ ¼ mf g
Pr NðtÞ ¼ nf g

¼
n

m

 !

mðsÞ
mðtÞ

� �m

1� mðsÞ
mðtÞ

� �n�m

ð6:3:6Þ

Equation (6.3.6) means that the conditional distribution of N(s) given
N(T) = n follows a binomial distribution with parameter (n, (m(s)/m(t))).

6.3.2 Infinite Server Queuing Model

The model is based on the following assumptions:

1. Faults in the software system are classified as complex, hard and simple.
2. Time delay between the failure observation and its subsequent removal rep-

resents the complexity of faults.

6.3 Unified Scheme Based on the Concept of Infinite Server Queue 223



3. The expected cumulative number of software failures is observed according to
an NHPP with the MVF mf(t)(mfi(t)) for type i fault (i = 1, 2, 3) and the
intensity function k(t)(ki(t)) for type i fault (i = 1, 2, 3).

The model can be easily explained with Fig. 6.1.

6.3.2.1 Model for Complex Faults

Assumptions for fault isolation and removal process of complex faults are

1. For complex faults the observed software failures are analyzed in the FIP,
which results in the detection of faults corresponding to observed failures.

2. The fault isolation times are assumed to be independent with a common dis-
tribution F1(t).

3. Fault removal process follows the detection process in which the detected
complex faults are removed.

4. The fault removal times are assumed to be independent with a common dis-
tribution G1(t).

Fig. 6.1 Physical interpretation of the infinite server queuing model

224 6 Unification of SRGM



Let the counting processes X1ðtÞ; t� 0f g; R1ðtÞ; t� 0f g; N1ðtÞ; t� 0f g represent
the cumulative number of software failures observed, faults isolated and faults
removed, respectively, up to time t corresponding to the complex faults and the
test begun at time t = 0. Then the distribution of N1(t) is given by

Pr N1ðtÞ ¼ nf g ¼
X

1

j¼0

Pr N1ðtÞ ¼ njX1ðtÞ ¼ jf g mf1ðtÞ
� � j

e�mf 1ðtÞ

j!
ð6:3:7Þ

If failure observations count is j then probability that n faults are removed via
the fault isolation and removal process is given as

Pr N1ðtÞ ¼ njX1ðtÞ ¼ jf g ¼
j

n

 !

p1ðtÞð Þn 1� p1ðtÞð Þj�n ð6:3:8Þ

where p1(t) is the probability that an arbitrary fault is removed by time t, which can
be defined using the Stieltjes convolution and the concept of the conditional dis-
tribution of arrival times, given as

p1ðtÞ ¼
Z

t

0

Z

t�u

0

G1ðt � u� vÞ dF1ðuÞ
dmf1ðvÞ
mf1ðtÞ

ð6:3:9Þ

The distribution function of cumulative number of faults removed up to time
t using Eqs. (6.3.8) and (6.3.9) is given as a

Pr N1ðtÞ ¼ nf g ¼
Z

t

0

Z

t�u

0

G1ðt � u� vÞ dF1ðuÞ dmf1ðvÞ

0

@

1

A

n

� e�
R t

0

R t�u

0
G1ðt�u�vÞ dF1ðuÞ dmf1ðvÞ

n!
ð6:3:10Þ

Equation (6.3.10) describes that N1(t) follows an NHPP with MVF
R t
0

R t�u
0 G1ðt � u� vÞ dF1ðuÞ dmf1ðvÞ i.e.

m1ðtÞ ¼
Z

t

0

Z

t�u

0

G1ðt � u� vÞ dF1ðuÞ dmf1ðvÞ ð6:3:11Þ

Hence knowing the MVF mf1(	) and distributions of F1(	) and G1(	) one can
compute the MVF of a three-stage fault-detection and removal process for the
various existing SRGM.

6.3 Unified Scheme Based on the Concept of Infinite Server Queue 225



6.3.2.2 Model for Hard Faults

Assumptions for fault isolation/removal process of hard faults are

1. For hard faults the observed software failures are analyzed in the FIP which
result in the detection of faults corresponding to observed failures, the detected
faults can be removed immediately with no delay (i.e. the removal time dis-
tribution is a unit function).

2. The fault isolation and removal times are assumed to be independent with a
common distribution G2(t).

Let the counting processes X2ðtÞ; t� 0f g; N2ðtÞ; t� 0f g represent the cumula-
tive number of software failures observed and faults detected/removed, respec-
tively, up to time t corresponding to the hard faults and the test begun at time
t = 0. Then the distribution of N2(t) is given by

Pr N2ðtÞ ¼ nf g ¼
X

1

j¼0

Pr N2ðtÞ ¼ njX2ðtÞ ¼ jf g mf2ðtÞ
� � j

e�mf 2ðtÞ

j!
ð6:3:12Þ

If failure observations count is j then probability that n faults are removed via
the fault isolation/removal process is given as

Pr N2ðtÞ ¼ njX2ðtÞ ¼ jf g ¼
j

n

 !

p2ðtÞð Þn 1� p2ðtÞð Þj�n ð6:3:13Þ

where p2(t) is the probability that an arbitrary fault is removed by time t, which can
be defined using the Stieltjes convolution and the concept of the conditional dis-
tribution of arrival times, given as

p2ðtÞ ¼
Z

t

0

G2ðt � uÞdmf2ðuÞ
mf2ðtÞ

ð6:3:14Þ

The distribution function of cumulative number of faults removed up to time
t using Eqs. (6.3.13) and (6.3.14) is given as

Pr N2ðtÞ ¼ nf g ¼
Z

t

0

G2ðt � uÞ dmf2ðuÞ

0

@

1

A

n

e�
R t

0
G2ðt�uÞ dmf 2ðuÞ

n!
ð6:3:15Þ

Equation (6.3.15) describes that N2(t) follows an NHPP with MVF
R t
0 G2ðt � uÞ dmf2ðuÞ i.e.

m2ðtÞ ¼
Z

t

0

G2ðt � uÞ dmf2ðuÞ ð6:3:16Þ

226 6 Unification of SRGM



Hence knowing the MVF mf2(	) and distribution of G2(	) we can compute the
MVF of a two-stage fault-detection and removal process for the various existing
SRGM.

6.3.2.3 Model for Simple Faults

For simple faults it is assumed that the faults are removed as soon as they are
observed and hence if X3ðtÞ; t� 0f g; N3ðtÞ; t� 0f g are the counting processes
represent the cumulative number of software failures observed and removed,
respectively, up to time t corresponding to the simple faults and the test begun at
time t = 0 then the distribution of N3(t) is given by

Pr N3ðtÞ ¼ nf g ¼
X

1

j¼0

Pr N3ðtÞ ¼ njX3ðtÞ ¼ jf g mf3ðtÞ
� � j

e�mf 3ðtÞ

j!
ð6:3:17Þ

If failure observations count is j then probability that n faults are removed via
the fault isolation/removal process is given as

Pr N3ðtÞ ¼ njX3ðtÞ ¼ jf g ¼
j

n

 !

p3ðtÞð Þn 1� p3ðtÞð Þj�n ð6:3:18Þ

where p3(t) is the probability that an arbitrary fault is removed by time t, which can
be defined using the Stieltjes convolution and the concept of the conditional dis-
tribution of arrival times, given as

p3ðtÞ ¼
Z

t

0

G3ðt � uÞdmf3ðuÞ
mf3ðtÞ

¼
Z

t

0

1ðt � uÞdmf3ðuÞ
mf3ðtÞ

ð6:3:19Þ

The distribution function of cumulative number of faults removed up to time
t using Eqs. (6.3.18) and (6.3.19) is given as

Pr N3ðtÞ ¼ nf g ¼
Z

t

0

1ðt � uÞ dmf3ðuÞ

0

@

1

A

n

e
�
R

t

0

1ðt�uÞ dmf 3ðuÞ

n!

¼ mf3ðtÞ
� �n

e�mf3ðtÞ

n!

ð6:3:20Þ

Equation (6.3.20) describes that N3(t) follows an NHPP with MVF mf3(t).
Hence,

m3ðtÞ ¼
Z

t

0

1ðt � uÞ dmf3ðuÞ ¼ mf3ðtÞ ð6:3:21Þ

6.3 Unified Scheme Based on the Concept of Infinite Server Queue 227



6.3.2.4 Model for Total FRP

If {N(t), t C 0} are the counting processes that represent the cumulative number of
software fault removals up to time t then N(t) is derived as

NðtÞ ¼ N1ðtÞ þ N2ðtÞ þ N3ðtÞ

¼ m1ðtÞ þ m2ðtÞ þ m3ðtÞð Þn
n!

e�½m1ðtÞþm2ðtÞþm3ðtÞ�
ð6:3:22Þ

hence

mðtÞ ¼ m1ðtÞ þ m2ðtÞ þ m3ðtÞ ð6:3:23Þ

where m1(t), m2(t) and m3(t) are given by (6.3.11), (6.3.16) and (6.3.23). It may be
noted here in view of simplifying the computations of m1(t), m2(t) and m3(t) we
can use the associative property of Stieltjes convolutions and can be rewritten as

m1ðtÞ ¼
Z

t

0

Z

t�u

0

G1ðt � u� vÞ dF1ðuÞ dmf1ðvÞ

¼
Z

t

0

Z

t�u

0

mf1ðt � u� vÞ dF1ðuÞ dG1ðvÞ ð6:3:24Þ

m2ðtÞ ¼
Z

t

0

G2ðt � uÞ dmf2ðuÞ ¼
Z

t

0

mf2ðt � uÞ dG2ðuÞ ð6:3:25Þ

m3ðtÞ ¼
Z

t

0

1ðt � uÞ dmf3ðuÞ ¼ mf3ðtÞ ¼
Z

t

0

mf3ðt � uÞ d1ðuÞ ð6:3:26Þ

Using the above modeling approach we can explain a number of existing
SRGM formulated for different T&D scenario. In the next section we will discuss
how this unified approach can be used to obtain MVF of the various existing
SRGM.

6.3.3 Computing Existing SRGM for the Unified Model Based

on Infinite Queues

The unified model given by Eqs. (6.3.23) to (6.3.26) characterizes the time-
dependent behavior of fault-detection and removal phenomenon by determining
mfi(t), i = 1, 2, 3, F1(t) and Gi(t), i = 1, 2 and many existing SRGM formulated
under different testing scenarios can be obtained. Accordingly, we can easily
reflect the phenomenon of successive software failure occurrence, fault-isolation

228 6 Unification of SRGM



and fault removal depending on the testing scenario and assumptions on the fault
type/debugging process. Hence this modeling approach can be considered as a
general description of several existing NHPP models.

If we assume

mfiðtÞ ¼ ai 1� e�bit
� �

; i ¼ 1; 2; 3

F1ðtÞ ¼ 1� e�b1t

and

GiðtÞ ¼ 1� e�bit; i ¼ 1; 2

then mi(t), i = 1, 2, 3 describe the MVF of FRP for complex, hard and simple
faults and using (6.3.23) we obtain the MVF of total FRP for the Kapur et al. [18]
Generalized Erlang model.

Similarly, we can describe the various other existing SRGM from our UM
approach. We can obtain the models, which consider the various levels (1, 2, 3) of
fault complexity, as well as several models, which consider each software fault to
be of same type. It is very important to note here that this unification scheme can
be used to obtain all models obtained with the unification scheme discussed in
Sect. 6.2, which considers the fault-detection and the time delay in fault obser-
vation. All types of correction models with constant, time-dependent as well as
random time delay function are obtainable from this scheme. The authors have
obtained various fault-detection correction models from this scheme.

Table 6.2 summarizes the relationships between unified infinite server model-
ing approach and some of the existing NHPP-based SRGM.

The table summarizes models obtained from UM approach based on the con-
cept of infinite queues. Many other existing models can also be obtained similarly.

6.3.4 A Note on Random Correction Times

Kapur et al. [14] have also explained the particular situations, when different
random delay functions viz. Exponential, Weibull, Gamma, etc. are useful and
need—to be considered. Here we discuss the particular use of some randomly
distributed delay functions or correction times proposed by Xie et al. [23].

6.3.4.1 Exponential Distribution for Removal Times

This is the most simple and widely used distribution in reliability engineering
modeling because it has a constant rate. It indicates the uniform distribution of
faults in the software code where each and every fault has same probability for its
removal. The pdf for exponential distribution is given by

6.3 Unified Scheme Based on the Concept of Infinite Server Queue 229



T
ab

le
6.
2

S
om

e
ex
is
ti
ng

S
R
G
M

ob
ta
in
ed

us
in
g
un

ifi
ed

m
od

el
in
g
ap
pr
oa
ch

ba
se
d
on

in
fi
ni
te

qu
eu
es

M
od

el
m

fi
tðÞ

m
f
tðÞ

�
�

F
1
tðÞ

G
1
tðÞ

G
2
tðÞ

or
g 2

tðÞ
th
e
pd

f
of

G
2
tðÞ

0 B @

1 C A

m
tðÞ

C
om

m
en
ts

M
1

ap
i
1
�
e�

b i
t

�
�

i
¼

1;
2;
3

1ð
tÞ

1ð
tÞ

1ð
tÞ

ap
1
1
�
e�

b 1
t

�
�

þ
ap

2
1
�
e�

b 2
t

�
�

þ
ap

3
1
�
e�

b 3
t

�
�

A
ss
um

es
th
re
e
ty
pe
s
of

fa
ul
ts

an
d
ea
ch

M
V
F
of

F
R
P
is
de
sc
ri
be
d
by

G
O

m
od

el
w
it
h
di
ff
er
en
t
F
R
R

M
2

ap
i
1
�
e�

b i
t

�
�

i
¼

1;
2;
3

T
�
ex
pð
b 1
Þ

T
�
ex
pð
b 1
Þ

T
�
ex
pð
b 2
Þ

ap
1

1
�

1
þ
b 1
tþ

b2 1
t2 2

0 B @

1 C A
e�

b 1
t

0 B @

1 C A

þ
ap

2

�

1
�
ð1

þ
b 2
tÞe

�
b 2
t�

þ
ap

3
1
�
e�

b 3
t

�
�

K
ap
ur

et
al
.g

en
er
al
iz
ed

E
rl
an
g
S
R
G
M

w
it
h

di
ff
er
en
t
F
R
R
fo
r
ea
ch

ty
pe

of
fa
ul
t

M
3

ap
i
1
�
e�

bt
�

�

i
¼

1;
2;
3

T
�
ex
pð
bÞ

T
�
ex
pð
bÞ

T
�
ex
pð
bÞ

ap
1

1
�

1
þ
bt
þ

b2
t2 2

0 B @

1 C A
e�

bt

0 B @

1 C A

þ
ap

2
1
�
ð1

þ
bt
Þe

�
bt

�
�

þ
ap

3
1
�
e�

bt
�

�

K
ap
ur

et
al
.g

en
er
al
iz
ed

E
rl
an
g
S
R
G
M

w
it
h

sa
m
e
F
R
R
fo
r
ea
ch

ty
pe

of
fa
ul
t

(c
o
n
ti
n
u
ed
)

230 6 Unification of SRGM



T
ab

le
6.
2

(c
on

ti
nu

ed
)

M
od

el
m

fi
tðÞ

m
f
tðÞ

�
�

F
1
tðÞ

G
1
tðÞ

G
2
tðÞ

or
g 2

tðÞ
th
e
pd

f
of

G
2
tðÞ

0 B @

1 C A

m
tðÞ

C
om

m
en
ts

M
4

ap
i
1
�
e�

b i
t

�
�

i
¼

1;
2;
3

T
�
ex
pð
b 4
Þ

T
�
ex
pð
b 5
Þ

T
�
ex
pð
b 6
Þ

ap
1

1
�
R S

�
�

þ
ap

2
1
�

1
b 2

�
b 6

ð
Þ

b 2
e�

b 6
t

�
b 6
e�

b 2
t

 
!

 
!

þ
ap

3
1
�
e�

b 3
t

�
�

R
¼

b2 1

b 4
e�

b 5
t

�
b 5
e�

b 4
t

0 @

1 A

þ

b2 4

b 5
e�

b 1
t

�
b 1
e�

b 5
t

0 @

1 A

þ

b2 5

b 1
e�

b 4
t �

b 4
e�

b 1
t

0 @

1 A

0 B B B B B B B B B B B B B B @

1 C C C C C C C C C C C C C C A

S
¼

b 1
�
b 4

ð
Þ

b 4
�
b 5

ð
Þ

b 5
�
b 1

ð
Þ

0 B @

1 C A

G
en
er
al
iz
ed

E
rl
an
g

S
R
G
M

w
it
h

di
ff
er
en
t
ra
te
s
of

fa
il
ur
e

ob
se
rv
at
io
n,

fa
ul
t

is
ol
at
io
n
an
d/
or

re
m
ov

al
fo
r
ea
ch

fa
ul
t
co
m
pl
ex
it
y

(c
o
n
ti
n
u
ed
)

6.3 Unified Scheme Based on the Concept of Infinite Server Queue 231



T
ab

le
6.
2

(c
on

ti
nu

ed
)

M
od

el
m

fi
tðÞ

m
f
tðÞ

�
�

F
1
tðÞ

G
1
tðÞ

G
2
tðÞ

or

g 2
tðÞ
th
e
pd

f
of

G
2
tðÞ

0 B B @

1 C C A

m
tðÞ

C
om

m
en
ts

M
od

el
s
w
it
h
on

e
ty
pe

of
fa
ul
t

M
5

a
1
�
e�

b 1
t

�
�

T
�
ex
pð
b 2
Þ

T
�
ex
pð
b 3
Þ

–
a
1
�

R S

�
�

R
¼

b2 1
b 2
e�

b 3
t
�
b 3
e�

b 2
t

�
�

þ

b2 2
b 3
e�

b 1
t
�
b 1
e�

b 3
t

�
�

þ

b2 3
b 1
e�

b 2
t
�
b 2
e�

b 1
t

�
�

0 B B @

1 C C A

S
¼

b 1
�
b 2

ð
Þ

b 2
�
b 3

ð
Þ

b 3
�
b 1

ð
Þ

0 B @

1 C A

K
-3

st
ag
e
m
od

el
w
it
h

di
ff
er
en
t
ra
te
s

M
6

a
1
�
e�

bt
�

�

–
–

gð
x;
bÞ

¼
be

�
bx

x
[

0

a
1
�
ð1

þ
bt
Þe

�
bt

�
�

E
xp

on
en
ti
al

di
st
ri
bu

te
d

re
m
ov

al
ti
m
e
de
la
y

m
od

el

M
7

a
1
�
e�

bt
�

�

–
–

gð
x;
l
Þ

¼
l
e�

l
x

x
[

0
a

1
�

l

l
�
be

�
bt

þ
b

l
�
be

�
l
t

0 B B @

1 C C A

E
xp

on
en
ti
al

di
st
ri
bu

te
d

re
m
ov

al
ti
m
e
de
la
y

m
od

el
w
it
h
di
ff
er
en
t

pa
ra
m
et
er
s

M
8

a
1
�
e�

bt
�

�

–
–

gð
x;
l
;r
Þ

¼
1

r
ffi
ffi
ffi
ffi
ffi
ffi
ffi

2P
p

S

S
¼

e�
x�

l
ð

Þ2
2r

2

U
0;
t

ð
Þ;
l
;r

ð
Þ¼

R

t 0
gð
x;
l
;r
Þ

a

�
e

�
bt
þ
l
bþ

brð
Þ2
=
2

ð
Þ

U
0;
t

ð
Þ;
br

2
þ
l
;r

�
�

0 @

1 A

þ
U

0;
t

ð
Þ;
l
;r

ð
Þ

0 B B @

1 C C A

N
or
m
al

di
st
ri
bu

te
d
re
m
ov

al
ti
m
e
de
la
y
m
od

el

(c
o
n
ti
n
u
ed
)

232 6 Unification of SRGM



T
ab

le
6.
2

(c
on

ti
nu

ed
)

M
od

el
m

fi
tðÞ

m
f
tðÞ

�
�

F
1
tðÞ

G
1
tðÞ

G
2
tðÞ

or
g 2

tðÞ
th
e
pd

f
of

G
2
tðÞ

0 B @

1 C A

m
tðÞ

C
om

m
en
ts

M
9

a
1
�
e�

bt
�

�

–
–

gð
x;
a
;b
Þ¼

xa
�
1
b
a

e�
b
x

 
!

C
að
Þ

;

x
[

0

C
t;
a
;b

ð
Þ¼

Z

t

0
gð
x;
a
;b
Þ

a
C

t;
a
;b

ð
Þ�

S
ð

Þ

S
¼

e�
bt

1
�
bb

ð
Þa

C
t;
a
;

b

1
�
bb

ð
Þ

�
�

0 B B B @

1 C C C A

G
am

m
a
di
st
ri
bu

te
d
re
m
ov

al
ti
m
e
de
la
y
m
od

el

M
10

at
–

–
gð
x;
a
;b
Þ¼

a
m

a
x

ð
Þm

�
1

e�
a
x

ð
Þm

0 @

1 A

;

x
[

0
C
1
is
G
am

m
a

fu
nc
ti
on

ap
2
t�

S m
a

�
�

S
¼

m
C
1

1
þ

1 m

�
�

�
C
2

1 m
;
a
t

ð
Þm

�
�

C
2
is

up
pe
r
in
co
m
pl
et
e

G
am

m
a
fu
nc
ti
on

W
ei
bu

ll
di
st
ri
bu

te
d

re
m
ov

al
ti
m
e
de
la
y

m
od

el

(c
o
n
ti
n
u
ed
)

6.3 Unified Scheme Based on the Concept of Infinite Server Queue 233



T
ab

le
6.
2

(c
on

ti
nu

ed
)

M
od

el
m

fi
tðÞ

m
f
tðÞ

�
�

F
1
tðÞ

G
1
tðÞ

G
2
tðÞ

or
g 2

tðÞ
th
e
pd

f
of

G
2
tðÞ

0 B @

1 C A

m
tðÞ

C
om

m
en
ts

So
m
e
ne
w

m
od

el
s
fo
r
th
re
e
le
ve
l
ca
te
go

ri
za
ti
on

of
fa
ul
ts

M
11

ap
i
1
�
e�

b i
t

�
�

i
¼

1;
2;
3

1ð
tÞ

gð
x;
a
;b
Þ¼

xa
�
1
b
a
e�

b
x

C
að
Þ
;

x
[

0

C
t;
a
;b

ð
Þ¼

R

t 0
gð
x;
a
;b
Þ

T
�
ex
pð
b 2
Þ

ap
1
C

t;
a
;b

ð
Þ�

S
ð

Þ
þ
ap

2
1
�
ð1

þ
b 2
tÞe

�
b 2
t

�
�

þ
ap

3
1
�
e�

b 3
t

�
�

S
¼

e�
b 1
t

1
�
b 1
b

ð
Þa

C
t;
a
;

b

1
�
b 1
b

ð
Þ

�
�

0 B B B @

1 C C C A

T
hr
ee

ty
pe
s
of

fa
ul
ts

an
d

F
R
P
is
de
sc
ri
be
d
by

G
O

m
od

el
fo
r
si
m
pl
e

Y
D
S
M

fo
r
ha
rd

an
d

G
am

m
a
ti
m
e
de
la
y

m
od

el
fo
r
co
m
pl
ex

fa
ul
ts

M
12

ap
i
1
�
e�

b i
t

�
�

i
¼

1;
2;
3

1ð
tÞ

gð
x;
l
;r
Þ¼

1

r
ffi
ffi
ffi
ffi
ffi
ffi
ffi

2P
p

S

S
¼

e�
x�

l
ð

Þ2
2r

2

U
0;
t

ð
Þ;
l
;r

ð
Þ¼

Z

t

0
gð
x;
l
;r
Þ

T
�
ex
pð
b 2
Þ

ap
1

�
e

�
b 1
tþ

l
b 1
þ

b 1
r

ð
Þ2

2

�
�

U
0;
t

ð
Þ;
b 1
r
2
þ
l
;r

�
�

0 B @

1 C A

þ
U

0;
t

ð
Þ;
l
;r

ð
Þ

0 B B B B B @

1 C C C C C A

þ
ap

2
1
�
ð1

þ
b 2
tÞe

�
b 2
t

�
�

þ
ap

3
1
�
e�

b 3
t

�
�

T
hr
ee

ty
pe
s
of

fa
ul
ts

an
d

F
R
P
is
de
sc
ri
be
d
by

G
O

m
od

el
fo
r
si
m
pl
e,

Y
D
S
M

fo
r
ha
rd

an
d

no
rm

al
ti
m
e
de
la
y

m
od

el
fo
r
co
m
pl
ex

fa
ul
ts

234 6 Unification of SRGM



gðx; bÞ ¼ be�bx ð6:3:27Þ

Here b is the parameter of exponential distribution and it represents the mean
rate at which the observed/isolated faults are removed. Here removals are assumed
to take place at a constant rate.

Though in most of the software-testing projects, for sake of simplicity, the
removal times are assumed to follow exponential distribution, but to achieve a
more flexible modeling of removal times, we can use Weibull or Gamma distri-
bution. Both of these distributions are generalization of Exponential distribution
only and have very similar shapes.

6.3.4.2 Weibull Distribution for Removal Times

It can represent different types of curves depending on the values of its shape
parameter. It is very appropriate for representing the processes with fluctuating
rate i.e. increasing/decreasing rates. The pdf for Weibull distribution is given by

gðx; a; bÞ ¼ ab axð Þb�1e� axð Þb ; x[ 0 ð6:3:28Þ

Here a, b are the parameters of Weibull distribution where b is shape parameter
and a is scale parameter. When the shape parameter 0\ b\ 1, the removal rate
decreases monotonically over time, for b = 1, the removal rate is constant and for
b[ 1, the removal rate increases monotonically over time. For b = 1, it reduces
to exponential distribution, for b = 2 it is same as Rayleigh distribution and for
b = 3.4 it behaves like Normal distribution.

6.3.4.3 Gamma Distribution for Removal Times

Gamma distribution is an extension of exponential distribution where the fault
removal consists of multiple steps, e.g., generation of failure report, its analysis
and correction time followed by verification and validation. The pdf for Gamma
distribution is given by:

gðx; a; bÞ ¼ xa�1b
ae�bx

C að Þ ; x[ 0 ð6:3:29Þ

Here a, b are the shape and scale parameters of Gamma distribution and rep-
resent the distribution of a number of independently and identically distributed
exponential random variables, each with parameter b. This property of gamma
distribution makes it appropriate for modeling processes consisting of a number of
steps.

6.3 Unified Scheme Based on the Concept of Infinite Server Queue 235



6.3.4.4 Normal Distribution for Removal Times

During testing, there are numerous factors, which affect the fault correction pro-
cess. These factors can be internal, e.g., defect density, complexity of the faults,
the internal structure of the software or the factors can be external and come from
the testing environment itself, e.g., design of the test cases, skill of the testers/test
case designers, testing effort availability/consumption, etc. This two-parameter
distribution can describe the correction times quite well for the cases where
correction time depends on multiple factors. The pdf for Normal distribution is
given by:

gðx; l; rÞ ¼ 1

r
ffiffiffiffiffiffiffi

2P
p exp �ðx� lÞ2

2r2

 !

ð6:3:30Þ

Here l, r are the location and scale parameters of Normal distribution. They
represent mean and standard deviation of Normal distribution, respectively.

6.4 A Unified Approach for Testing Efficiency Based Software
Reliability Modeling

The unified approaches discussed yet can be used to obtain SRGM developed
under perfect debugging testing profile. As highlighted in Chap. 3 incorporation of
effect of testing efficiency is very important while developing an SRGM. Inclusion
of testing efficiency considerations in SRGM enables us to compute a more
appropriate estimate of reliability growth during both testing and operational
phases of SDLC. After the detection of a fault during the removal a fault may not
be perfectly repaired or a new fault can be generated. In the first case we again
come across a failure due to a fault, which has already been detected, resulting in
more number of failures than removals. While in the second case more faults are
observed compared to the initial number estimated in the infinite test period.
However both of these cases make the testing and debugging environment entirely
different from the perfect debugging environment. Hence the physical structure of
software reliability modeling under imperfect debugging environment is different
from software reliability modeling under perfect debugging. However it is very
important to know here that an imperfect debugging model corresponds to a
perfect debugging model when the estimated values of the parameters of testing
efficiency attain an insignificant value, i.e. the case of perfect repairs and no
generation applied to an SRGM developed under imperfect debugging environ-
ment. For the literature of SRGM developed incorporating imperfect debugging
environment refer to Chap. 3.

In this section we discuss a unification scheme of SRGM, which can be used to
obtain almost all of the SRGM developed under imperfect debugging environment

236 6 Unification of SRGM

http://dx.doi.org/10.1007/978-0-85729-204-9_3
http://dx.doi.org/10.1007/978-0-85729-204-9_3


in the literature up to now. The said unification scheme can also be used to
formulate many other SRGM under imperfect debugging environment as it is
capable of handling any general distribution function and is thus an important step
toward the unification of the NHPP software reliability measurement models,
which rely on specific distribution functions.

The unified scheme of SRGM proposed due to Kapur et al. [13] discussed here
is an insightful investigation for the study of general models without making many
assumptions. They proposed two types of schemes for generalized imperfect non-
homogeneous Poisson process (GINHPP) software reliability models, when there
is no differentiation between failure observation/detection and fault removal/cor-
rection processes i.e. a fault is removed as soon as it is detected/observed (GIN-
HPP-1). Second, when we incorporate the time delay between the fault observation
and correction processes (GINHPP-2).

6.4.1 Generalized SRGM Considering Immediate Removal

of Faults on Failure Observation Under Imperfect

Debugging Environment

Under the general assumptions (see Chap. 2) of NHPP-based software reliability
model under perfect debugging environment the mean value function of the
generalized SRGM can be represented as [6, 8, 24]

mðtÞ ¼ aF tð Þ ð6:4:1Þ

where a is the finite number of faults detected in the infinite testing time, F(t) is a
distribution function.

Hence the instantaneous failure intensity k(t) is given as

kðtÞ ¼ aF
0
tð Þ ð6:4:2Þ

The above equation can be rewritten as

kðtÞ ¼ a� mðtÞð Þ F
0
tð Þ

1� F tð Þ ¼ a� mðtÞð Þs tð Þ ð6:4:3Þ

where s(t) is the failure occurrence/observation/detection rate per remaining fault
of the software, or the rate at which the individual faults manifest themselves as
failures during testing or hazard rate. The expression [a - m(t)] denotes the
expected number of faults remaining in the software at time t and hence has to be a
monotonically non-increasing function of time. Hence the nature of the failure
intensity, k(t), is governed by the nature of failure occurrence rate per fault i.e. s(t).

If we incorporate the effect of testing efficiency i.e. possibility of imperfect fault
removal with p as the probability of perfect debugging and error generation during
the debugging of observed faults with a constant fault introduction rate a, the

6.4 A Unified Approach for Testing Efficiency 237

http://dx.doi.org/10.1007/978-0-85729-204-9_2


general model under perfect debugging environment can be modified accordingly.
The total number of faults present at any moment of testing time, say a(t) is a
function of time and can be expressed as a linear function of the expected number
of faults detected by time t, i.e.

aðtÞ ¼ aþ amðtÞ ð6:4:4Þ

Hence the intensity function of the generalized model under imperfect
debugging environment becomes

kðtÞ ¼ m0ðtÞ ¼ dm tð Þ
dt
¼ aðtÞ � mðtÞð Þp F

0
tð Þ

1� F tð Þ ð6:4:5Þ

Substituting for a(t) in (6.4.5) and solving under the initial condition that at
t = 0, m(0) = 0, we obtain

mðtÞ ¼ a

1� a
1� 1� FðtÞð Þpð1�aÞ
h i

ð6:4:6Þ

The mean value function in (6.4.6) represents the expected number of faults
detected/corrected for the generalized SRGM incorporating the effect of testing
efficiency under the assumption of immediate removal of faults on failure obser-
vation (GINHPP-1). Now we can obtain mean value functions of the various
existing and several new SRGM from (6.4.6) using the different forms of the
distribution function F(t).

Now we will show how to obtain existing as well as new models from the
GINHPP-1. Suppose we assume that an exponential distribution function describes
the F(t) i.e.

FðtÞ ¼ 1� e�bt ð6:4:6Þ

then

F0ðtÞ
1� FðtÞ ¼ b

it implies

mðtÞ ¼ a

1� a
1� e�bpð1�aÞt
h i

ð6:4:7Þ

The mean value function (6.4.7) describes the imperfect debugging model
given by Kapur et al. [14] defining imperfect debugging and error generation. For
this model when t ? ?, mðtÞ ! a

1�a
which implies that if testing is carried out for

an infinite time, more faults are removed as compared to the initial fault content
because some faults are manifested in the software due to error generation during
the debugging activity. If p = 1 and a = 0, the case of no error generation and
perfect repair, we obtain the pure perfect debugging exponential GO model due to
Goel and Okumoto [11]. Similarly for the distinct distribution functions F(t) dif-
ferent models can be obtained. The mean value functions m(t) of several SRGM

238 6 Unification of SRGM



corresponding to different forms of distribution functions F(t) are summarized in
Table 6.3.

Model M2 is the imperfect debugging model given by Kumar et al. [30]
defining imperfect debugging and error generation. For this model
F0ðtÞ

1�FðtÞ ¼ b2t
1þbtwhich is the hazard rate of the Yamada delayed S-shaped [17] perfect

debugging model which is obtainable if p = 1 and a = 0, i.e. perfect debugging.
In model M3 if k = 3, the mean value function reduces to

mðtÞ ¼ a
1�a

1� 1þ bt þ b2t2

2

� �

e�bt
� �pð1�aÞ


 �

. In this model if we substitute p = 1

and a = 0, we have an SRGM expressed by three-stage Erlang growth curve [18].
Model M4 is a generalized imperfect debugging model accounting for the expe-
rience gained by the testing team as time and testing progresses. A major
advantage of following this unification scheme comes from the fact that we can
obtain the mean value functions of the SRGM with Weibull, Gamma and Normal
correction times under imperfect debugging environment. The model expressions
obtained in M5, M6 and M7 are rather not obtainable if we follow the usual
procedure of formulating an imperfect debugging model as the differential equa-
tion which can describe the physical form of these models becomes very complex.

6.4.2 Generalized SRGM Considering Time Delay Between

Failure Observation and Correction Procedures Under

Imperfect Debugging Environment

To incorporate the concept of FDCP with a delay the unification scheme discussed
above is further generalized with the two distribution functions F(t) and G(t). The
distribution F(t) defines the failure detection and G(t) defines the correction

Table 6.3 SRGM obtained from unification scheme in Sect. 6.4.1

Model Distribution function (F(t)) Mean value function m(t)

M1 An exponential distribution 1� e�bt a
1�a

1� e�bpð1�aÞt� 


M2 Two-stage Erlang distribution 1� 1þ btð Þe�bt a
1�a

1� 1þ btð Þe�bt
� �pð1�aÞ

h i

M3 k-stage Erlang distribution

1� Pk�1
i¼0 btð Þi=i!

� �

e�bt
a

1�a
1� Pk�1

i¼0 btð Þi=i!
� �

e�bt
� �pð1�aÞ


 �

M4
P tð Þ ¼ 1� bþ

Pk�1

i¼0

btð Þi
i!

� �

e�bt

1þbe�btð Þ

� �

a
1�a

1� bþ
Pk�1

i¼0

btð Þi
i!

� �

e�bt

1þbe�btð Þ

� �pð1�aÞ" #

M5 Weibull distribution T � Wei b; kð Þ a
1�a

1� e�bpð1�aÞtk
h i

M6 Normal distribution T � Nðl; r2Þ a
1�a

1� 1� u t;l;rð Þð Þpð1�aÞ
h i

M7 Gamma distribution T � cða1; b1Þ a
1�a

1� 1� C t; a1;b1ð Þð Þpð1�aÞ
h i

6.4 A Unified Approach for Testing Efficiency 239



processes and the delay between the two process is described using the Stieltjes
convolution. Hence the mean value function of the generalized model expressed in
(6.4.1) is modified as (on the lines of Musa et al. [24])

m tð Þ ¼ a F 
 Gð Þ tð Þ ð6:4:8Þ

The intensity function k(t) is given by

kðtÞ ¼ dm tð Þ
dt
¼ a F 
 Gð Þ tð Þ½ �0¼ a f � gð Þ tð Þ ð6:4:9Þ

The above equation can be rewritten as

dm tð Þ
dt

¼ a� m tð Þ½ � f � gð Þ tð Þ
1� F 
 Gð Þ tð Þ½ � ð6:4:10Þ

or

dm tð Þ
dt

¼ h tð Þ a� m tð Þ½ �

where h tð Þ ¼ f�gð Þ tð Þ
1� F
Gð Þ tð Þ½ � is the failure observation/fault correction rate.

Now incorporating the concepts of imperfect debugging and error generation in
the manner similar to (6.4.5) we have

dm tð Þ
dt

¼ f � gð Þ tð Þ
1� F 
 Gð Þ tð Þ½ �p aþ am tð Þ � m tð Þ½ � ð6:4:11Þ

Solving the above differential equation, we get the final exact solution

m tð Þ ¼ a

1� að Þ 1� 1� ðF 
 GÞðtÞð Þp 1�að Þ
h i

ð6:4:12Þ

Mean value function in (6.4.12) is the generalized SRGM considering time
delay between failure observation and correction procedures under imperfect
debugging environment. Using this generalized model we can obtain the mean
value functions of the several existing and new SRGM distinguishing FDCP. The
mean value functions m(t) corresponding to different forms of distribution func-
tions F(t) and G(t) are summarized in Table 6.4.

In the above models if we substitute p = 1 and a = 0 we obtain the corre-
sponding SRGM under perfect debugging environment. With this statement it
follows that we can call this unification scheme due to Kapur et al. [13] as the
unification scheme for all the other unification schemes discussed up to now due to
the reason that we can obtain almost all of the existing SRGM both defined under
perfect and imperfect debugging environment from it. It makes it very important to
build a thorough understanding of this unification scheme for the software engi-
neers and software reliability practitioners.

240 6 Unification of SRGM



T
ab

le
6.
4

S
R
G
M

ob
ta
in
ed

fr
om

un
ifi
ca
ti
on

sc
he
m
e
in

S
ec
t.
6.
4.
2

M
od

el
F
(t
)

G
(t
)

m
(t
)

M
8

t�
ex
pð
bÞ

1ð
tÞ

a
1�

a
1
�
e�

bp
ð1
�
a
Þt

�



M
9

t�
ex
pð
bÞ

t�
ex
pð
bÞ

a
1�

a
1
�

1
þ
bt

ð
Þe

�
bt

�
�

pð
1�

a
Þ

h
i

M
10

t�
ex
pð
bÞ

t�
ex
pð
b 2
Þ

a
1�

a
1
�

1
b 1
�
b 2

b 1
e�

b 2
t

�
b 2
e�

b 1
t

 
!

(
)

p
1�

a
ð

Þ
2 4

3 5

M
11

t�
E
rl
an
g
�
2
bð
Þ

t�
ex
pð
bÞ

a
1�

a
1
�

1
þ
bt

þ
b2
t2 2

�
�

e�
bt

�
�

pð
1�

a
Þ



�

M
12

t�
ex
pð
bÞ

t�
N
ðl
;r

2
Þ

a
1�

a
1
�

1
�
u

t;
l
;r

ð
Þþ

u
t;
l
þ
br

2
;r

�
�

ex
p

�
bt

þ
l
b
þ

brð
Þ2

2

 
!

0 B B @

1 C C A

0 B B B B B @

1 C C C C C A

pð
1�

a
Þ

2 6 6 6 6 6 6 4

3 7 7 7 7 7 7 5

M
13

t�
ex
pð
bÞ

t�
cð
a
1
;b

1
Þ

a
1�

a
1
�

1
�
C

t;
a
1
;b

1
ð

Þþ
e�

bt

1
�
bb

1
ð

Þa 1

C
t;
a
1
;

b
1

1
�
bb

1

�
�

0 B B B @

1 C C C A

0 B B B B B B @

1 C C C C C C A

p
1�

a
ð

Þ
2 6 6 6 6 6 6 6 4

3 7 7 7 7 7 7 7 5

M
14

t�
U
ð0
;1
Þ

t�
W
ei
bð
a
;m

Þ

a
1�

a
1
�

1
�

t�

1
m
a
1

m
C
1

1
þ

1 m

�
�

�
C
2

1 m
;

a
t

ð
Þm

0 B @

1 C A

8 > > > > > > < > > > > > > :

9 > > > > > > = > > > > > > ;

0 B B B B B B B B B @

1 C C C C C C C C C A

0 B B B B B B B B B @

1 C C C C C C C C C A

p
1�

a
ð

Þ
2 6 6 6 6 6 6 6 6 6 6 4

3 7 7 7 7 7 7 7 7 7 7 5

w
he
re

C
1
is
a
G
am

m
a
fu
nc
ti
on

;
C
2
is

an
up

pe
r
in
co
m
pl
et
e
G
am

m
a
fu
nc
ti
on

6.4 A Unified Approach for Testing Efficiency 241



6.5 An Equivalence Between the Three Unified Approaches

In this chapter we have discussed three unification methodologies

1. Unification of SRGM for FDCP [23].
2. Infinite server queuing methodology [12].
3. A unified approach in the presence of imperfect debugging and error generation

[13].

Recently Kapur et al. [14] have shown that although these unifying schemes,
derived under different sets of assumptions, are mathematically equivalent.

The unification methodology of infinite server Queues for the hard faults, fault-
detection correction process with a delay function and one based on detection
correction using the hazard function concept under perfect debugging environment
is proved equivalent by them.

6.5.1 Equivalence of Unification Schemes Based on Infinite

Server Queues for the Hard Faults and

Fault Detection Correction Process

with a Delay Function

Consider the unification methodology of Xie et al. [23] based on the concept of
time lag between fault-detection and correction, where (refer to Eq. (6.2.2)),

mcðtÞ ¼
Z

t

0

kcðsÞ ds ¼
Z

t

0

E kdðs� DðsÞÞ½ � ds ð6:5:1Þ

If f(x) is the pdf of the random correction time then we have

kcðtÞ ¼ E kdðt � DðtÞÞ½ � ¼
Z

s

0

kdðs� xÞf ðxÞ dx ð6:5:2Þ

From (6.5.1) and (6.5.2) we have

mcðtÞ ¼
Z

t

0

Z

s

0

kdðs� xÞf ðxÞ dx ds

¼
Z

t

0

Z

t

x

kdðs� xÞ dsf ðxÞ dx

ð6:5:3Þ

242 6 Unification of SRGM



mcðtÞ ¼
Z

t

0

mdðt � xÞf ðxÞ dx ð6:5:4Þ

mcðtÞ ¼
Z

t

0

Fðt � xÞ dmdðxÞ ð6:5:5Þ

which is same as (6.3.16), the unified SRGM for the hard faults based on the
concept of infinite queues. It may also be noted here that for obtaining the SRGM
for detection and correction process only the unified SRGM for hard faults needs
to be considered for the unification scheme in Sect. 6.3.

6.5.2 Equivalence of Unification Schemes Based on Infinite

Server Queues for the Hard Faults and One Based

on Hazard Rate Concept

The next step establishes the equivalence of infinite server queuing model to
unification scheme based on hazard rate [13].

Consider Eq. (6.5.5)

mc tð Þ ¼
Z

t

0

F t � xð Þ dmd xð Þ ¼ FðtÞ 
 md tð Þ

¼
Z

t

0

Fc t � xð Þ dmd xð Þ

¼ FcðtÞ 
 md tð Þ ð6:5:6Þ

Now using (6.4.1) we have md tð Þ ¼ aFd tð Þ

) mcðtÞ ¼ a F 
 Fdð Þ tð Þ ¼ a Fd 
 Fð Þ tð Þ ð6:5:7Þ

which is the same as (6.4.8), the unification scheme based on the hazard rate
(Sect. 6.4) under perfect debugging environment. From (6.5.7) it follows that the
three unification schemes discussed in this chapter are mathematically equivalent.

6.6 Data Analysis and Parameter Estimation

As we have learned that the development of unification schemes for SRGM
development and application makes it easy for the practitioners to apply SRGM in

6.5 An Equivalence Between the Three Unified Approaches 243



practice. Several models with different characteristics get a same structural
interpretation and a single approach for the development of various SRGM enables
the non-mathematical practitioners to conveniently select diverse types of SRGM
and select the best for their particular application. Several existing and new SRGM
are developed through the three unification schemes discussed in the chapter. Data
analysis of many of them is already discussed in the previous chapters. Here we
have discussed the application of some new SRGM developed through the unifi-
cation methodology.

6.6.1 Application of SRGM for Fault Detection

and Correction Process

SRGM for FDCP can be obtained from the unification scheme for FDCP
(Sect. 6.2) and testing efficiency based software reliability modeling (Sect. 6.4).
Here we have chosen some models discussed in both of the sections.

Failure Data Set

The software-testing data sets reported in the literature are obtained generally from
the failure process. Xie et al. [23] reported a joint software-testing data for both
failure observation and correction. The data set is from the testing process on a
middle-size software project grouped in number of faults per week. The testing
data are for 17 weeks during which 144 faults were observed and 143 of them are
corrected. The fault correction process seems to be slow in the beginning for three
weeks which picked up afterwards.

Following models are chosen for data analysis and parameter estimation. The
failure observation process of all these models except model M7 is described by
the GO model [11], i.e.

mdðtÞ ¼ a 1� e�bt
� �

or a 1� e�b1t
� �

For the model M7 detection process is described by the two-stage Erlang
distribution.

mdðtÞ ¼ a 1� ð1þ btÞe�bt
� �

Model 1 (M1) Constant correction time SRGM [23]

mcðtÞ ¼ mdðt � DÞ ¼ a 1� e�bðt�DÞ
� �

; t�D

Model 2 (M2) Time dependent correction time SRGM [23]

mcðtÞ ¼ a 1� ð1þ ctÞe�bt
� �

244 6 Unification of SRGM



Model 3 (M3) Exponentially distributed correction time SRGM [23]

mcðtÞ ¼ a 1� l

l� b
e�bt þ b

l� b
e�lt

� �

l 6¼ b

Model 4 (M4) Normal correction time delay SRGM [23]

mcðtÞ ¼ �ae �btþlbþ brð Þ2=2ð Þ U t; br2 þ l; r
� �

�
þU 0; br2 þ l; r
� �

 !

þ a U t; l; rð Þ � U 0;l; rð Þð Þ

Model 5 (M5) Gamma correction time delay SRGM [23]

mcðtÞ ¼ aC t; a; bð Þ � ae�bt

1� bbð ÞaC t; a;
b

1� bbð Þ

� �

Model 6 (M6) Exponentially distributed correction time, testing efficiency based
SRGM [13]

mcðtÞ ¼
a

1� a
1� 1

b1 � b2

b1e
�b2t

�b2e
�b1t

 !( )p 1�að Þ2

4

3

5

Model 7 (M7) Two-stage Erlang type detection process with exponentially dis-
tributed correction time, testing efficiency based SRGM [13]

mcðtÞ ¼
a

1� a
1� 1þ bt þ b2t2

2

� �

e�bt

� �pð1�aÞ" #

Model 8 (M8) Normal delay correction time, testing efficiency based SRGM [13]

mcðtÞ ¼
a

1� a
1� 1� u t; l; rð Þ þ

u t; lþ br2; r
� �

exp �bt þ lbþ brð Þ2
2

 !

0

B

B

@

1

C

C

A

0

B

B

@

1

C

C

A

pð1�aÞ2

6

6

4

3

7

7

5

Model 9 (M9) Gamma delay correction time, testing efficiency based SRGM [13]

mcðtÞ ¼
a

1� a
1� 1� C t; a1; b1ð Þ þ

e�bt

1� bb1ð Þa1

C t; a1;
b1

1� bb1

� �

0

B

B

B

@

1

C

C

C

A

0

B

B

B

@

1

C

C

C

A

p 1�að Þ
2

6

6

6

6

4

3

7

7

7

7

5

The results of parameter estimations are listed in Table 6.5 and the goodness of
fit curves for the fault observation and correction process for models M1–M5 are
shown in Figs. 6.2 and 6.3, respectively, and the goodness of fit curves for the
imperfect debugging models M6–M9 for observation and correction process are
shown, respectively, in Figs. 6.4 and 6.5.

6.6 Data Analysis and Parameter Estimation 245



The software-testing data corresponding to the correction process are used
here to fit the SRGM for the correction processes. Using the estimates of the
correction process (parameter a, b) we have estimated the detection process.

Table 6.5 Estimation results of models M1–M9

Models Estimated parameters Comparison criteria

a a b, b1 b, b1 b2, c l, a1 r p MSEd MSEc R2

M1 178 – – 0.0999 1.0000 – – – 87.48 86.99 0.967
M2 168 – – 0.1193 0.0279 – – – 65.83 184.20 0.942
M3 156 – – 0.1404 – 0.5811 – – 57.39 72.55 0.979
M4 149 – – 0.1790 – 2.1987 1.0283 – 117.61 26.75 0.991
M5 150 16.69 0.1169 0.1537 – – – – 58.98 40.43 0.988
M6 145 0.0202 – 0.2522 0.2676 – – 0.9901 413.60 70.59 0.979
M7 136 0.0214 – 0.4517 – – – 0.9840 83.46 36.38 0.988
M8 164 0.0769 – 0.2002 – 1.9012 1.7430 0.9195 657.72 41.24 0.988
M9 143 0.0155 0.5733 0.1834 – 1.9179 – 0.9823 85.30 22.25 0.992

0

20

40

60

80

100

120

140

160

180

200

1 4 7
1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

Time (Weeks)

C
u

m
u

la
ti

v
e
 F

a
il
u

re
s

Actual Data M1

M2 M3

M4 M5

Fig. 6.2 Goodness of fit
curve of detection process for
models M1–M5

0

20

40

60

80

100

120

140

160

180

1 4 7
1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

Time (Weeks)

C
u

m
u

la
ti

v
e
 R

e
m

o
v
a
ls

Actual Data M1

M2 M3

M4 M5

Fig. 6.3 Goodness of fit
curve of correction process
for models M1–M5

246 6 Unification of SRGM



Here the R2 figures are corresponding to the data analysis of the fault cor-
rection process. We have calculated the mean square errors for both the
detection (MSEd) and correction (MSEc) process. Results in Table 6.5 depict
that the correction process is best described by the testing efficiency based
Gamma correction delay time model (M9), but the Mean Square errors (MSE)
corresponding to the detection process for this model is higher compared to
the other models. On the other hand if we see the result of model M5 which
is also based on Gamma distributed correction delay time model, but assumes
perfect debugging, we can say that this model can be chosen for the analysis
of the testing process of this software project. Although the MSE for the
correction process is higher for this model compared to M9 it has better value
of MSE for the detection process and both of the MSE are comparable.
However in such a case it remains the subjective choice of the practitioners to
decide which models are to use depending on their own testing and envi-
ronmental profile.

0

20

40

60

80

100

120

140

160

180

1 4 7 1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

Time (Weeks)

C
u

m
u

la
ti

v
e

 F
a

il
u

re
s

Actual Data M6

M7 M8

M9

Fig. 6.4 Goodness of fit
curve of detection process for
models M6–M9

0

20

40

60

80

100

120

140

160

1 4 7 1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

Time (Weeks)

C
u

m
u

la
ti

v
e
 R

e
m

o
v
a
ls

Actual Data M6

M7 M8

M9

Fig. 6.5 Goodness of fit
curve of correction process
for models M6–M9

6.6 Data Analysis and Parameter Estimation 247



6.6.2 Application of SRGM Based on the Concept of Infinite

Server Queues

Failure Data Set

The interval domain data is taken from Misra [31] in which the number of faults
detected per week (38 weeks) is specified and a total of 231 faults were detected.
Three types of faults—critical (1.73%), major (34.2%) and minor (64.07%), are
present in the software.

The following models have been selected for illustrating the data analysis and
parameter estimation. In the following models p1, p2 and p3 are the proportion of
complex, hard and simple faults, respectively. Here we have chosen the fault
complexity models although the technique of infinite server queues can also be
used for the development of models for the one type faults. We have discussed in
Sect. 6.5 that each of the three unification scheme discussed in this chapter are
equivalent. The data analysis for the new models of single types developed using
this scheme is already discussed in the previous section.

Model 10 (M10) Fault complexity SRGM where fault removal process for each
fault is described by GO model with different Fault Removal Rate (FRR) [12]

mðtÞ ¼ ap1 1� e�b1t
� �

þ ap2 1� e�b2t
� �

þ ap3 1� e�b3t
� �

; p1 þ p2 þ p3 ¼ 1

Model 11 (M11) Generalized Erlang SRGM with same FRR for each type of fault
[12]

mðtÞ ¼ ap1 1� 1þ bt þ b2t2

2

� �

e�bt

� �

þ ap2 1� ð1þ btÞe�bt
� �

þ ap3 1� e�bt
� �

; p1 þ p2 þ p3 ¼ 1

Model 12 (M12) Generalized Erlang SRGM with different FRR for each type of
fault [12]

mðtÞ ¼ ap1 1� 1þ b1t þ
b21t

2

2

� �

e�b1t

� �

þ ap2 1� ð1þ b2tÞe�b2t
� �

þ ap3 1� e�b3t
� �

; p1 þ p2 þ p3 ¼ 1

Model 13 (M13) Three types of faults and FRP are described by GO model for
simple, delayed S-shaped for hard and Gamma time delay model for complex
faults [12]

mðtÞ ¼ ap1 C t; a; bð Þ � e�b1 t

1� b1bð ÞaC t; a;
b

1� b1bð Þ

� �� �� �

þ ap2 1� ð1þ b2tÞe�b2t
� �

þ ap3 1� e�b3t
� �

; p1 þ p2 þ p3 ¼ 1

248 6 Unification of SRGM



Model 14 (M14) Three types of faults and FRP are described by GO model for
simple, delayed S-shaped for hard and normal time delay model for complex
faults [12]

mðtÞ ¼ ap1 �U 0; tð Þ; b1r2 þ l; r
� �

e
�b1tþlb1þ

b1rð Þ2
2

� �

 !

þ U 0; tð Þ; l; rð Þ
 !

þ ap2 1� ð1þ b2tÞe�b2t
� �

þ ap3 1� e�b3t
� �

; p1 þ p2 þ p3 ¼ 1

The results of regression analysis of models M10–M14 are listed in
Table 6.6 and the goodness of fit curve against the actual data is shown in
Fig. 6.6. From the table we can conclude that model M10 fits best on this data
set. This model describes the removal process for each type of fault by the
exponential models with different fault removal rates. It means that the soft-
ware is tested under a uniform operational profile and the complexity of each
type of fault can be described similarly with different values of parameters.
Another interpretation of the results is that the removal rate of simple faults is
quite high as compared to the hard and complex faults. On the other hand
removal rate for the other two types of faults is similar, indicating the presence
of only two types of faults in the system.

0

50

100

150

200

250

300

350

1 6 1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

Time (Weeks)

C
u

m
u

la
ti

v
e

 F
a

il
u

re
s

Actual Data M10

M11 M12

M13 M14

Fig. 6.6 Goodness of fit
curve for models M10–M14

Table 6.6 Estimation results of models M10–M14

Models Estimated parameters Comparison criteria

a l, a r, b b, b1 b2 b3 MSE R2

M10 675 – – 0.0099 0.0098 0.8580 14.30 0.992
M11 413 – – 0.0286 – – 20.91 0.994
M12 655 – – 0.0184 0.0065 0.0344 19.83 0.995
M13 511 1.7633 0.0086 0.0237 0.0168 0.0270 19.89 0.995
M14 569 1.1660 0.0059 0.0210 0.0141 0.0001 20.16 0.999

6.6 Data Analysis and Parameter Estimation 249



6.6.3 Application of SRGM Based on Unification Schemes

for Testing Efficiency Models

Two types of testing efficiency SRGM can be developed using the unification
schemes for the testing efficiency based SRGM. First the SRGM where the
detection process is assumed to describe the removal process also or in other
words the SRGM which assumes no time delay in fault removal after detection.
The second type of SRGM where the detection and removal process is described
by the different model equations and it is assumed that the removal process
defers the detection process. Application of the second type of SRGM is already
discussed in Sect. 6.6.3. Now we show the application of the first type SRGM in
this section.

Failure Data Set

This data set was collected in the bug tracking system on the website of Xfce [32].
Xfce is a lightweight desktop environment for UNIX-like OS. The observation
period for the data is 21 weeks and during the 21 weeks of testing 167 faults was
observed.

The following models have been selected for illustrating the data analysis and
parameter estimation.

Model 15 (M15) Exponential imperfect debugging model [13]

a

1� a
1� e�bpð1�aÞt
h i

Model 16 (M16) Two-stage Erlang distribution based imperfect debugging model
[13]

a

1� a
1� e�bpð1�aÞt
h i

Model 17 (M17) Weibull distribution based imperfect debugging model [13]

a

1� a
1� e�bpð1�aÞtk
h i

Model 18 (M18) Normal distribution based imperfect debugging model [13]

a

1� a
1� 1� u t; l; rð Þð Þpð1�aÞ
h i

Model 19 (M19) Normal distribution based imperfect debugging model [13]

a

1� a
1� 1� C t; a1; b1ð Þð Þpð1�aÞ
h i

The results of regression analysis of models M15–M19 are listed in Table 6.7
and the goodness of fit curve against the actual data is shown in Fig. 6.7. From the

250 6 Unification of SRGM



table we can conclude that model M10 fits best on this data set. This model
describes the removal process for each type of fault by the exponential models with
different fault removal rates. It means that the software is tested under a uniform
operational profile and the complexity of each type of fault can be described
similarly with different values of parameters. Another interpretation of the results
is that the removal rate of simple faults is quite high as compared to the hard and
complex faults. On the other hand removal rate for the other two types of faults is
similar, indicating the presence of only two types of faults in the system.

Exercises

1. Why unification in software reliability growth modeling have been developed?
2. Assume FDP of a software can be described by the mean value function of an

exponential SRGM, i.e. mf ðtÞ ¼ a 1� e�bt
� �

and the fault isolation and
removal times are assumed to be independent with a common distribution G(t),

with pdf gðx; l; rÞ ¼ 1
r
ffiffiffiffiffi

2P
p e�

x�lð Þ2
2r2 . Obtain the mean value function of the SRGM

for the isolation and removal process using the infinite server queue based
unification technique.

0

50

100

150

200

250

1 4 7 1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

Time (Weeks)

C
u

m
u

la
ti

v
e
 F

a
il
u

re
s

Actual Data M15

M16 M17

M18 M19

Fig. 6.7 Goodness of fit
curve for models M15–M19

Table 6.7 Estimation results for models M10–M14

Models Estimated parameters Comparison criteria

a a b, b1, b2, c, k l, a1 r, b1 p MSE R2

M15 470 0.0399 0.0219 – – – 0.9241 23.05 0.991
M16 176 0.0271 0.1746 – – – 0.9545 78.98 0.971
M17 405 0.0233 0.0237 1.0172 – – 0.9734 25.10 0.988
M18 498 0.0202 – – 1.0120 21.86 0.9780 29.79 0.986
M19 514 0.0323 – – 0.9782 0.0180 0.9665 24.20 0.986

6.6 Data Analysis and Parameter Estimation 251



3. If the distribution of failures and removal of faults is exponential with
parameters b1 and b2, respectively, then show using the unification technique
discussed in Sect. 6.4.2 the mean value function of SRGM is given as

a

1� a
1� 1

b1 � b2

b1e
�b2t

�b2e
�b1t

 !( )p 1�að Þ2

4

3

5

References

1. Shanthikumar JG (1981) A general software reliability model for performance prediction.
Microelectron Reliab 21(5):671–682

2. Shanthikumar JG (1983) Software reliability models: a review. Microelectron Reliab
23(5):903–943

3. Langberg N, Singpurwalla ND (1985) Unification of some software reliability models. SIAM
J Comput 6:781–790

4. Miller DR (1986) Exponential order statistic models of software reliability growth. IEEE
Trans Softw Eng SE-12:12–24

5. Thompson WA Jr (1988) Point process models with applications to safety and reliability.
Chapman and Hall, New York

6. Gokhale SS, Philip T, Marinos PN, Trivedi KS (1996) Unification of finite failure non-
homogeneous Poisson process models through test coverage. In: Proceedings 7th
international symposium on software reliability engineering, White Plains, pp 299–307

7. Chen Y, Singpurwalla ND (1997) Unification of software reliability models by self-exciting
point processes. Adv Appl Probab 29:337–352

8. Gokhale SS, Trivedi KS (1999) A time/structure based software reliability model. Ann Softw
Eng 8(1–4):85–121

9. Huang CY, Lyu MR, Kuo SY (2003) A unified scheme of some non-homogeneous Poisson
process models for software reliability estimation. IEEE Trans Softw Eng 29:261–269

10. Jelinski Z, Moranda P (1972) Software reliability research. In: Freiberger W (ed) Statistical
computer performance evaluation. Academic Press, New York, pp 465–484

11. Goel AL, Okumoto K (1979) Time dependent error detection rate model for software
reliability and other performance measures. IEEE Trans Reliab R-28(3):206–211

12. Kapur PK, Anand S, Inoue S, Yamada S (2010) A unified approach for developing software
reliability growth model using infinite server queuing model. Int J Reliab Qual Safety Eng,
17(5):401–424, doi No: 10.1142/S0218539310003871

13. Kapur PK, Pham H, Anand S, Yadav K (2011) A unified approach for developing software
reliability growth models in the presence of imperfect debugging and error generation. IEEE
Trans Softw Reliab, in press, doi:10.1109/TR.2010.2103590

14. Kapur PK, Aggarwal AG, Anand S (2009) A new insight into software reliability growth
modeling. Int J Performability Eng 5(3):267–274

15. Schneidewind NF (1975) Analysis of error processes in computer software. Sigplan Not
10:337–346

16. Xie M, Zhao M (1992) The Schneidewind software reliability model revisited. In:
Proceedings 3rd international symposium on software reliability engineering, pp 184–192

17. Yamada S, Ohba M, Osaki S (1983) S-shaped software reliability growth modeling for
software error detection. IEEE Trans Reliab R-32(5):475–484

252 6 Unification of SRGM

http://dx.doi.org/doi No: 10.1142/S0218539310003871
http://dx.doi.org/doi:10.1109/TR.2010.2103590


18. Kapur PK, Younes S (1995) Software reliability growth model with error dependency.
Microelectron Reliab 35(2):273–278

19. Huang CY, Lin CT (2006) Software reliability analysis by considering fault dependency and
debugging time lag. IEEE Trans Reliab 35(3):436–449

20. Lo HJ, Huang CY (2006) An integration of fault-detection and correction processes in
software reliability analysis. J Syst Softw 79:1312–1323

21. Singh VB, Yadav K, Kapur R, Yadavalli VSS (2007) Considering fault dependency concept
with debugging time lag in software reliability growth modeling using a power function of
testing time. Int J Autom Comput 4(4):359–368

22. Wu YP, Hu QP, Xie M, Ng SH (2007) Modeling and analysis of software fault-detection and
correction process by considering time dependency. IEEE Trans Reliab 56(4):629–642

23. Xie M, Hu QP, Wu YP, Ng SH (2007) A study of the modeling and analysis of software
fault-detection and fault-correction processes. Qual Reliab Eng Int 23:459–470

24. Musa JD, Iannino A, Okumoto K (1987) Software reliability: measurement, prediction,
application. McGraw-Hill, New York ISBN 0–07-044093-X

25. Luong B, Liu DB (2001) Resource allocation model in software development. In:
Proceedings 47th IEEE annual reliability and maintainability symposium, Philadelphia,
USA, January 2001, pp 213–218

26. Antoniol G, Cimitile A, Lucca GA, Penta MD (2004) Assessing staffing needs for a software
maintenance project through queuing simulation. IEEE Trans Softw Eng 30(1):43–58

27. Inoue S, Yamada S (2002) A software reliability growth modeling based on infinite server
queuing theory. In: Proceedings 9th ISSAT international conference on reliability and quality
in design, Honolulu, HI, pp 305–309

28. Dohi T, Osaki S, Trivedi KS (2004) An infinite server queuing approach for describing
software reliability growth—unified modeling and estimation framework. In: Proceedings
11th Asia-Pacific software engineering conference (APSEC’04), pp 110–119

29. Ross, S.M. (1970) Applied probability models with optimization applications. Holden-Day,
San Francisco

30. Kumar Deepak, Kapur R, Sehgal VK, Jha PC (2007) On the development of software
reliability growth models with two types of imperfect debugging. Int J Communications in
Dependability and Quality Management 10(3):105–122

31. Misra PN (1983) Software reliability analysis. IBM Syst J 22:262–270
32. Tamura Y, Yamada S (2005) Comparison of software reliability assessment methods for open

source software. In: Proceedings 11th international conference on parallel and distributed
systems (ICPADS 2005), Los Almitos, CA, USA, pp 488–492

References 253



Chapter 7
Artificial Neural Networks Based SRGM

7.1 Artificial Neural Networks: An Introduction

An Artificial Neural Network (ANN) is a computational paradigm that is inspired
by the behavior of biological nervous system. The key element of this paradigm is
the novel structure of the information processing system. It is composed of a large
number of highly interconnected processing elements (neurons) working in unison
to solve specific problems capable of revealing complex global behavior, deter-
mined by the connections between the processing elements and element parame-
ters. ANN, like people, learns by example. An ANN is configured for a specific
application, such as pattern recognition or data classification, through a learning
process. In more practical terms neural networks are non-linear statistical data
modeling or decision making tools. Learning in biological systems involves
adjustments to the synaptic connections that exist between the neurons. This is true
for ANN as well.

Neural network simulation appears to be a recent development. However, this
field was established before the advent of computers and has survived at least one
major setback and several eras. Many important advances have been boosted by
the use of inexpensive computer emulations. A brief history [1] of the develop-
ment of the neural networks can be described diving into several periods.

• First Attempts: There were some initial simulations using formal logic. McCulloch
and Pitts [2] developed models of neural networks based on their understanding of
neurology. These models made several assumptions about how neurons worked.
Their networks were based on simple neurons which were considered to be binary
devices with fixed thresholds. The results of their model were simple logic func-
tions such as ‘‘a or b’’ and ‘‘a and b.’’ Another attempt was using computer
simulations by two groups [3, 4]. The first group (IBM researchers) maintained
close contact with neuroscientists at McGill University. So whenever their models
did not work, they consulted the neuroscientists. This interaction established a
multidisciplinary trend which continues to the present day.

P. K. Kapur et al., Software Reliability Assessment with OR Applications,
Springer Series in Reliability Engineering, DOI: 10.1007/978-0-85729-204-9_7,
� Springer-Verlag London Limited 2011

255



• Promising and Emerging Technology: Not only the Nero-science was influential
in the development of neural networks, but psychologists and engineers also
contributed to the progress of neural network simulations. Rosenblatt [5] stirred
considerable interest and designed and developed the Perceptron. The Percep-
tron had three layers with the middle layer known as the association layer. This
system could learn to connect or associate a given input to a random output unit.
Another system was the adaptive linear element (ADALINE) which was
developed by Widrow and Hoff [6]. The ADALINE was an analogue electronic
device made from simple components. The method used for learning was dif-
ferent to that of the Perceptron, it employed the Least-Mean-Squares (LMS)
learning rule.

• Period of Frustration and Disrepute: Minsky and Papert [7] wrote a book in
which they generalized the limitations of single layer Perceptrons to multilay-
ered systems. In the book they said: ‘‘…our intuitive judgment that the extension
(to multilayer systems) is sterile.’’ The significant result of their book was to
eliminate funding for research with neural network simulations. The conclusions
supported the disenchantment of researchers in the field. As a result, consid-
erable prejudice against this field was activated.

• Innovation: Although public interest and available funding were minimal,
several researchers continued working to develop neuromorphically based
computational methods for problems such as pattern recognition. During this
period several paradigms were generated. Carpenter and Grossberg [8] influence
founded a school of thought which explores resonating algorithms. They
developed the Adaptive Resonance Theory (ART) networks based on biologi-
cally plausible models. Klopf [9] developed a basis for learning in artificial
neurons based on a biological principle for neuronal learning called heterostasis.
Werbos [10] developed and used the back-propagation learning method, how-
ever several years passed before this approach was popularized. Back-propa-
gation networks are probably the most well known and widely applied neural
networks today. In essence, the back-propagation network is a Perceptron with
multiple layers, a different threshold function in the artificial neuron, and a more
robust and capable learning rule. Anderson and Kohonen developed associative
techniques independent of each other. Amari [11–13] was involved with theo-
retical developments: he published a paper which established a mathematical
theory for a learning basis (error-correction method) dealing with adaptive
pattern classification.

• Re-Emergence: Progress during the late 1970s and early 1980s was important to
the re-emergence on interest in the neural network field. Several factors influ-
enced this movement. For example, comprehensive books and conferences
provided a forum for people in diverse fields with specialized technical lan-
guages, and the response to conferences and publications was quite positive. The
news media picked up on the increased activity and tutorials helped disseminate
the technology. Academic programs appeared and courses were introduced at
most major Universities (in USA and Europe). Attention is now focused on
funding levels throughout Europe, Japan and the USA and as this funding

256 7 Artificial Neural Networks Based SRGM



becomes available, several new commercial applications in industry and
financial institutions are emerging.

• Today: Significant progress has been made in the field of neural networks,
enough to attract a great deal of attention and fund further research. Advance-
ment beyond current commercial applications appears to be possible, and
research is advancing the field on many fronts. Neurally based chips are
emerging and applications to complex problems developing. Clearly, today is a
period of transition for neural network technology.

Notations

x(t)(xi(t)) The input to the hidden layer (ith neuron of hidden layer)
h(t)(hi(t)) Output from the hidden layer (ith neuron of hidden layer)
a(x)(ai(x)) Activation function in the hidden layer (ith neuron of hidden layer)
y(t) The input to the output layer
g(t) Output from the network (output layer)
b(x) The activation function in the output layer
w1(w1i) Weights assigned to the input to the hidden layer
w2(w2i) Weights assigned to the input to the output layer
b1(b1i) Bias in the hidden layer
b0(b0i) Bias in the output layer

7.1.1 Specific Features of Artificial Neural Network

Neural networks find application because of their remarkable ability to derive
meaning from complicated or imprecise data. These can be used to extract patterns
and detect trends that are too complex to be noticed by either human beings or
other computer techniques. A trained neural network can be thought of as an
‘‘expert’’ in the category of information it has been given to analyze. This expert
can then be used to provide projections given new situations of interest and answer
‘‘what if’’ questions.

Other advantages include

1. Adaptive learning: An ability to learn how to do tasks based on the data given
for training or initial experience.

2. Self organization: An ANN can create its own organization or representation of
the information it receives during learning time.

3. Real time operation: ANN computations may be carried out in parallel, and
special hardware devices are being designed and manufactured which take
advantage of this capability.

7.1 Artificial Neural Networks: An Introduction 257



4. Fault tolerance via redundant information coding: Partial destruction of a
network leads to the corresponding degradation of performance. However,
some network capabilities may be retained even with major network damage.

7.2 Artificial Neural Network: A Description

In general, neural networks consist of three components [14]

1. Neurons
2. Network architecture
3. Learning algorithm

7.2.1 Neurons

An artificial neuron is a device with many inputs and one output. Neurons receive
input signals, process the signals and finally produce an output signal. The neuron
has two modes of operation; the training mode and the using mode. In the training
mode, the neuron can be trained to fire (or not), for particular input patterns. In the
using mode, when a taught input pattern is detected at the input, its associated
output becomes the current output. If the input pattern does not belong in the
taught list of input patterns, the firing rule is used to determine whether to fire or
not. Figure 7.1 shows a neuron, where f is the activation function that processes
the input signals and produces an output of the neuron, xi are the inputs of the
neuron which may be the outputs from the previous layers, and wi are the weights
connected to the neurons of the previous layer.

7.2.2 Network Architecture

Artificial neural network is an interconnected group of artificial neurons that uses a
computational model for information processing based on a connectionist

Fig. 7.1 A neuron

258 7 Artificial Neural Networks Based SRGM



approach. An adaptive ANN changes its structure based on information that flows
through the network. In general there are two most common types of neural
network architectures—feed-forward networks and feedback networks.

A typical feed-forward neural network comprises a layer of neurons called
input layer that receive inputs (suitably encoded) from the outside world, a layer
called output layer that sends outputs to the external world, and one or more layers
called hidden layers that have no direct communication with the external world.
This hidden layer of neurons receives inputs from the previous layer and converts
them to an activation value that can be passed on as input to the neurons in the next
layer. The input layer neurons do not perform any computation; they merely copy
the input values and associate them with weights, feeding the neurons in the first
hidden layer. The input corresponds to the attributes measured for each training
sample. The number of hidden layers is arbitrary. The weighted outputs of last
hidden layer are input to units making up the output layer, which emits the net-
work’s prediction for given samples. An example of such a feed-forward network
is shown in Fig. 7.2. In this figure there are p input units, q hidden units and
r output units. Feed-forward networks can propagate activations only in the for-
ward direction. There is no feedback (loops), i.e., the output of any layer does not
affect that same layer. Feed-forward ANN tends to be straightforward networks
that associate inputs with outputs. They are extensively used in pattern recognition.
This type of organization is also referred to as bottom-up or top-down. On the
other hand feedback networks can have signals traveling in both directions by
introducing loops in the network. Feedback networks are very powerful and can
get extremely complicated. Feedback networks are dynamic; their ‘‘state’’ is
changing continuously until they reach an equilibrium point. They remain at the
equilibrium point until the input changes and a new equilibrium needs to be found.
Feedback architectures are also referred to as interactive or recurrent, although the

Fig. 7.2 A multilayer feed-
forward neural network

7.2 Artificial Neural Network: A Description 259



latter term is often used to denote feedback connections in single-layer
organizations.

7.2.3 Learning Algorithm

The learning algorithm describes a process to adjust the weights [1]. During the
learning processes, the weights of network are adjusted to reduce the errors of the
network outputs as compared to the standard answers. We can teach a three-layer
network to perform a particular task by using the following procedure.

1. We present the network with training examples, which consist of a pattern of
activities for the input units together with the desired pattern of activities for the
output units.

2. We determine how closely the actual output of the network matches the desired
output.

3. We change the weight of each connection so that the network produces a better
approximation of the desired output.

The memorization of patterns and the subsequent response of the network can
be categorized into two general paradigms

Associative mapping in which the network learns to produce a particular pattern
on the set of input units whenever another particular pattern is applied on the set of
input units. The associative mapping can generally be broken down into two
mechanisms:

• Auto-association. An input pattern is associated with itself and the states of
input and output units coincide. This is used to provide pattern completion, i.e.,
to produce a pattern whenever a portion of it or a distorted pattern is presented.
In the second case, the network actually stores pairs of patterns building an
association between two sets of patterns.

• Hetero-association. Is related to two recall mechanisms:

– nearest-neighbor recall, where the output pattern produced corresponds to the
input pattern stored, which is closest to the pattern presented, and

– interpolative recall, where the output pattern is a similarity dependent inter-
polation of the patterns stored corresponding to the pattern presented. Yet
another paradigm, which is a variant associative mapping, is classification,
i.e., when there is a fixed set of categories into which the input patterns are to
be classified.

Regularity detection in which, units learn to respond to particular properties of
the input patterns. Whereas in associative mapping the network stores the rela-
tionships among patterns, in regularity detection the response of each unit has a
particular ‘‘meaning.’’ This type of learning mechanism is essential for feature
discovery and knowledge representation.

260 7 Artificial Neural Networks Based SRGM



Every neural network possesses knowledge which, is contained in the values of
the connections weights. Modifying the knowledge stored in the network as a
function of experience implies a learning rule for changing the values of the
weights. Information is stored in the weight matrix of a neural network. Learning
is the determination of the weights. Following the way learning is performed, we
can distinguish two major categories of neural networks

• Fixed networks in which the weights cannot be changed. In such networks, the
weights are fixed a priori according to the problem to solve.

• Adaptive networks which are able to change their weights.

All learning methods used for adaptive neural networks can be classified into
two major categories:

Supervised learning which incorporates an external teacher, so that each output
unit is told what its desired response to input signals ought to be. During the
learning process global information may be required. Paradigms of supervised
learning include error-correction learning, reinforcement learning and stochastic
learning. An important issue concerning supervised learning is the problem of
error convergence, i.e., the minimization of error between the desired and com-
puted unit values. The aim is to determine a set of weights which minimizes the
error. One well-known method, which is common to many learning paradigms, is
the least mean square (LMS) convergence.

Unsupervised learning uses no external teacher and is based upon only local
information. It is also referred to as self-organization, in the sense that it self-
organizes data presented to the network and detects their emergent collective
properties. Paradigms of unsupervised learning are: Hebbian learning and com-
petitive learning.

We say that a neural network learns off-line if the learning phase and the
operation phase are distinct. A neural network learns on-line if it learns and
operates at the same time. Usually, supervised learning is performed off-line,
whereas unsupervised learning is performed on-line.

In order to train a neural network to perform some task, we must adjust the
weights of each unit in such a way that the error between the desired output and
the actual output is reduced. This process requires that the neural network compute
the error derivative of the weights (EW). In other words, it must calculate how
the error changes as each weight is increased or decreased slightly. The back-
propagation algorithm is the most widely used method for determining the EW and
is also adopted for training the ANN discussed in this chapter. Back propagation is
a supervised learning technique used for training ANNs. It was first described by
Werbos [10], but the algorithm has been rediscovered a number of times. It is most
useful for feed-forward networks. In back-propagation algorithm, the weights of
the network are iteratively trained with the errors propagated back from the output
layer. Back propagation learns by iteratively processing a set of training samples,
comparing the network’s prediction for each sample with the actual known value.
For each training sample, the weights are modified so as to minimize the mean
squared error between the network’s prediction and the actual value. It uses the

7.2 Artificial Neural Network: A Description 261



gradient of the sum-squared error (with respect to weights) to adapt the network
weights so that the error measure is smaller in future epochs. The method requires
that the transfer function used by the artificial neurons (or ‘‘nodes’’) be differen-
tiable. Training terminates when the sum-squared error is below a specified tol-
erance limit.

The algorithm computes each EW by first computing the EA, the rate at which
the error changes as the activity level of a unit is changed. For output units, the EA
is simply the difference between the actual and the desired output. To compute the
EA for a hidden unit in the layer just before the output layer, we first identify all
the weights between that hidden unit and the output units to which it is connected.
We then multiply those weights by the EAs of those output units and add the
products. This sum equals the EA for the chosen hidden unit. After calculating all
the EAs in the hidden layer just before the output layer, we can compute in like
fashion the EAs for other layers, moving from layer to layer in a direction opposite
to the way activities propagate through the network. This is what gives back
propagation its name. Once the EA has been computed for a unit, it is straight
forward to compute the EW for each incoming connection of the unit. The EW is
the product of the EA and the activity through the incoming connection. Note that
for non-linear units, the back-propagation algorithm includes an extra step. Before
back-propagating, the EA must be converted into the EI, the rate at which the error
changes as the total input received by a unit is changed. Back propagation usually
allows quick convergence on satisfactory local minima for error in the kind of
networks to which it is suited. For software reliability modeling cumulative exe-
cution time is used as input and the corresponding cumulative faults as the desired
output to form a training pair. Here the units of the network are non linear as most
of the software reliability models describe nonlinear mathematical forms. The
neural network can be described in a mathematical form. The objective of neural
networks is to approximate a non-linear function that can receive the input vector
ðx1; x2; . . .; xpÞin Rp and output the vector ðy1; . . .; yrÞ in Rr.

Thus, the network can be denoted as:

y ¼ bðiÞ ð7:2:1Þ

where i ¼ i1; i2; i3; . . .; ip
� �

and y ¼ y1; y2; y3; . . .; yrð Þ. The value of any yk is
given by

yk ¼ b bk þ
X

q

j¼i
w2
jkhj

 !

k ¼ 1; 2; . . .; r ð7:2:2Þ

where w2
jk is the weight from hidden layer node j to output layer node k, bk is the

bias of the node k in output layer, hj is the output from node j of the hidden layer,
and b is an activation function in output layer. The output value of the nodes in
hidden layer is given by

262 7 Artificial Neural Networks Based SRGM



hj ¼ a bj þ
X

p

z¼1
w1
zjiz

 !

j ¼ 1; 2; . . .; q ð7:2:3Þ

where w1
zj is the weight from input layer node z to hidden layer node j, bj is the bias

of the node j, iz is the value in the input layer, and a is an activation function in
hidden layer.

7.3 Neural Network Approaches in Software Reliability

A number of factors that normally demonstrate non-linear patterns such as soft-
ware development methodology, software development environment, complexity
of the software, software personnel, etc. affect the behavior of software reliability
growth. This imposes several limitations on existing statistical modeling methods
that depend highly on making assumptions on the testing process. Neural network
models have a significant advantage over analytical models, because they require
only failure history as input and no assumptions. Consequently, they have drawn
attention of many researchers in recent years. It has been found that neural network
methods can be applied to estimate the number of faults and predict the number of
software failures as they often offered better results than existing statistical ana-
lytical models.

As reliability growth models exhibit different predictive capabilities at different
testing phases both within a project and across projects, researchers are finding it
nearly impossible to develop a universal model that will provide accurate pre-
dictions under all circumstances. A possible solution is to develop models that do
not require making assumptions about either the development environment or
external parameters. Recent advances in neural networks show that they can be
used in applications that involve predictions. Neural network methods may handle
numerous factors and approximate any non-linear continuous function.

Many papers are published in the literature addressing that neural networks
offer promising approaches to software reliability estimation and prediction.
Karunanithi and co-workers [15–18] first applied some kinds of neural network
architecture to estimate the software reliability and used the execution time as
input, the cumulative number of detected faults as desired output and encoded the
input and output into the binary bit string. Furthermore, they also illustrated the
usefulness of connectionist models for software reliability growth prediction and
showed that the connectionist approach is capable of developing models of varying
complexity. Khoshgoftaar and co-workers [19, 20] used the neural network as a
tool for predicting the number of faults in programs. They introduced an approach
for static reliability modeling and concluded that the neural networks produce
models with better quality of fit and predictive quality.

Sherer [21] applied neural networks for predicting software faults in several
NASA projects. Khoshgoftaar et al. [22] used the neural network as a tool for

7.2 Artificial Neural Network: A Description 263



predicting the number of faults in a program and concluded that the neural net-
works produce models with better quality of fit and predictive quality. Sitte [23]
compared the predictive performance of two different methods of software reli-
ability prediction: ‘‘neural networks’’ and ‘‘recalibration for parametric models.’’
Cai et al. [24] used the recent 50 inter-failure times as the multiple-delayed-inputs
to predict the next failure time and found the effect of the number of input neurons,
the number of neurons in the hidden layer and the number of hidden layers by
independently varying the network architecture. They advocated the development
of fuzzy software reliability growth models in place of probabilistic software
reliability models.

Most of the neural networks used for software reliability modeling can be
classified into two classes. One used cumulative execution time as inputs and the
corresponding accumulated failures as desired outputs. This class focuses on
modeling software reliability modeling by varying different kind of neural network
such as recurrent neural network [16]; Elman network [23]. The other class,
models the software reliability based on multiple-delayed input single-output
neural network. Cai and co-workers [24, 25] used the recent 50 inter-failure times
as the multiple-delayed-inputs to predict the next failure time.

There was a common problem with all these of approaches. We have to pre-
determine the network architecture such as the number of neurons in each layer
and the numbers of the layers. In Cai’s experiment, he found the effect of the
number of input neurons, the number of neurons in hidden layer and the number of
hidden layers by independently varying the network architecture. Another problem
is that since several fast training algorithms are investigated for reducing the
training time, these advanced algorithms focus on the model fitting and this will
cause the over fitting. When the network is trained, the error of training set is small
for training data, but when new data is available to the network, the error maybe
extremely large. Since the modeling approaches mentioned above treat the neural
network as a black box, researchers consider the combinations of the network
architecture to find a solution that can be suggested for us to build a network that
can perform more accurate prediction. But we still cannot know about the meaning
of each element of the network. Su et al. [14] proposed a neural-network-based
approach to software reliability assessment. Unlike the traditional neural network
modeling approach, they first explain the network networks from the mathematical
viewpoints of software reliability modeling and then derived some very useful
mathematic expressions that can directly applied to neural networks from tradi-
tional SRGM. They also showed how to apply neural network to software reli-
ability modeling by designing different elements of the network architecture. The
proposed neural-network-based approach can also combine various existing
models into a dynamic weighted combinational model (DWCM). Kapur et al. [26]
proposed an ANN based Dynamic Integrated Model (DIM), which is an
improvement over DWCM given by Su et al. [14]. In another research Kapur et al.
[27] have proposed generalized dynamic integrated ANN models for the existing
fault complexity models. Khatri et al. [28] have proposed ANN based SRGM
considering testing efficiency.

264 7 Artificial Neural Networks Based SRGM



7.3.1 Building ANN for Existing Analytical SRGM

The objective function y of the neural network can be considered as compound
function. By deriving a compound function from the conventional statistical
SRGM, we can build a neural network based SRGM having all the properties of
the existing SRGM. Simple feed forward neural network architecture for basic
SRGM can be consisting of one hidden layer and one neuron each in input, hidden
and output layer as shown in Fig. 7.3.

Neural network approach for software reliability measurement in general is
based on building a network of neurons with weights. These weights have some
initial value which is changed during training using back-propagation method to
minimize the mean squared error. For each training sample, the weights are
modified so as to minimize the mean squared error between the network’s pre-
diction and the actual value. These modifications are made in the backward
direction, that is, from the output layer, through each hidden layer down to the first
hidden layer.

Network design is a trial-and-error process and may affect the accuracy of the
resulting trained network. There are no clear rules to the best number of hidden
layer units. The initial values of the weights may also affect the resulting accuracy.
Once a network has been trained and its accuracy is not considered acceptable, it is
common to repeat the training process with a different network topology or a
different set of initial weights.

Cai et al. [24] had depicted some relationships between the neural network and
conventional NHPP models as follows:

• b(t) is equivalent to the mean value function of SRGM.
• w1 is the failure rate.
• w2 is the proportion of expected total number of faults latent in the system.

The output of the hidden layer, a(x), is similar to the distribution function.
For example, if we construct a neural network with an activation function

aðiÞ ¼ 1� e�i in the hidden layer, a pure linear activation function b(i) = i in the
output layer and no bias in hidden as well as in output layer, i.e. the input to the
hidden layer with weight w1 is

xðtÞ ¼ w1t þ b1 ð7:3:1Þ

where b1 is the bias, then the output of the hidden layer is given by

hðtÞ ¼ a xðtÞð Þ ¼ 1� e�xðtÞ ð7:3:2Þ

Fig. 7.3 Feed-forward
network with single neuron in
each layer

7.3 Neural Network Approaches in Software Reliability 265



If the bias b1 is negligible such that it can assumed to be zero then the output
from the hidden layer is

hðtÞ ¼ 1� e�w1t ð7:3:3Þ

Now the input to the output layer is

yðtÞ ¼ hðtÞw2 þ b0 ð7:3:4Þ

If the bias b0 is negligible such that it can be assumed to be zero then the output
from the output layer is

gðtÞ ¼ bðyðtÞÞ ¼ w2 1� e�w1tð Þ ð7:3:5Þ

If we assume w1 = b and w2 = a then Eq. (7.3.5) corresponds to the conven-
tional Goel and Okumoto [29] model.

Back propagation algorithm used to train the network requires that the acti-
vation functions should be continuous and differentiable everywhere. The acti-
vation functions we have used above are continuous and differentiable everywhere.
The parameters of the models are estimated based on the data. For training the
ANN we use back propagation method. Kapur et al. [26] have written a software
program written in C programming language for training of the ANN. The pro-
gram can be modified according to the activation function used and the network
architecture. The program requires a failure data set as input and generates esti-
mates of the parameters of the network models as output. Using these estimated
values reliability measurements are made.

7.3.2 Software Failure Data

Software failure is an incorrect result with respect to the specification or an
unexpected software behavior perceived by the user, while software fault is the
identified or hypothesized cause of the software failure. When a time basis is
determined, failures can be expressed in the form of cumulative failure function.
The cumulative failure function (also called the mean value function) denotes the
average cumulative failures associated with each point of time. In software failure
process, m(ti) is the cumulative number of faults removed by execution time ti.
Software reliability data are arranged in pairs as {ti, m(ti)}. Each pair of software
reliability data is passed on to the neural network to determine the weights and
then the trained ANN is used for estimating the cumulative failures in software at
time ti or predicting the cumulative failures at any future time.

7.3.2.1 Normalization

Software reliability data are normalized before applying on the neural-network.
Normalization is performed by scaling the value of the collected data within a

266 7 Artificial Neural Networks Based SRGM



small-specified range of 0.0–1.0. There are many methods for normalization such
as min–maxnormalization, z-scorenormalization and normalization by decimal
scaling. In this paper, we have used min–max normalization, which performs a
linear transformation on the original data. For a data variable x having its mini-
mum and maximum value minx and maxx, respectively, min–max normalization
maps a data valuex to new_valuex in the range [new_minx, new_maxx] using the
formula

new valuex ¼
valuex �minx
maxx �minx

new maxx � new minxð Þ þ new minx ð7:3:6Þ

Min–max normalization preserves the relationships among the original data
values.

7.4 Neural Network Based Software Reliability Growth Model

7.4.1 Dynamic Weighted Combinational Model

Dynamic Weighted Combinational Model (DWCM) proposed by Su et al. [14] is a
neural-network-based approach to software reliability assessment by combining
various existing models. The design methodology of the network elements is
described in detail by the authors. The model considers feedforward neural net-
work architecture with single neuron in each of the input and output layers and
three neurons in the hidden layer. Each of the neurons in the hidden layer receives
a weighted input form the single input neuron. The output from each of the
neurons in the hidden layer is weighted in different proportions and the combined
weighted output (so the name of the model) of the hidden layer is fed as the input
to the output layer which then determines the output of the network based on the
activation function in the output layer. The activation function in each of the three
neurons in the hidden layer is defined according to the Goel and Okumoto [29],
Yamada et al. [30] delayed s-shaped and logistic growth curve models [31]. The
neural network architecture for this scenario is depicted in Fig. 7.4.

The activation function for the three neurons in the hidden layers is given by
Eqs. (7.4.1)–(7.4.3), respectively.

The jth neuron in hidden layer will have the activation function aj(x). The
activation functions for the units in hidden layer in Fig. 7.4 are defined as

a1ðxÞ ¼ 1� e�x ð7:4:1Þ

a2ðxÞ ¼ 1� ð1þ xÞe�x ð7:4:2Þ

a3ðxÞ ¼
1

1þ e�x
ð7:4:3Þ

7.3 Neural Network Approaches in Software Reliability 267



The activation function for the neuron in output layer is defined as

bðxÞ ¼ x ð7:4:4Þ

w1j, w2j (j = 1, 2 and 3) are the weights assigned in the network form input
layer to hidden layer and hidden layer to output layer, respectively. This network
architecture assumes no bias in the neurons of hidden layer and output layer.

Input to the first, second and third neurons of hidden layer are, respectively,

x1ðtÞ ¼ w11t ð7:4:5Þ

x2ðtÞ ¼ w12t ð7:4:6Þ

x3ðtÞ ¼ w13t ð7:4:7Þ

Corresponding to the above inputs, outputs from each of the neurons in hidden
layers is, respectively,

h1ðtÞ ¼ a1ðw11tÞ ¼ 1� e�w11t ð7:4:8Þ

h2ðtÞ ¼ a2ðw12tÞ ¼ 1� ð1þ w12tÞe�w12t ð7:4:9Þ

h3ðtÞ ¼ a3ðw13tÞ ¼
1

1þ e�ðw13tÞ ð7:4:10Þ

Input to the single unit of output layer is

yðtÞ ¼ b w21 1� e�w11tð Þ þ w22 1� ð1þ w12tÞe�w12tð Þ þ w23
1

1þ e�ðw13tÞ

� �� �

ð7:4:11Þ
hence the output from the single unit of output layer is

gðtÞ ¼ w21 1� e�w11tð Þ þ w22 1� ð1þ w12tÞe�w12tð Þ þ w23
1

1þ e�ðw13tÞ

� �

ð7:4:12Þ

Fig. 7.4 Network
architecture of the dynamic
weighted combinational
model

268 7 Artificial Neural Networks Based SRGM



Note that if we assume w1j (j = 1, 2 and 3) are equivalent to the fault detection
rates of the conventional SRGM and w2j (j = 1, 2 and 3) are equivalent to the
proportion of total fault content in the software, i.e., w11 = b1, w21 = a1,
w12 = b2, w22 = a2, w13 = b3 and w23 = a3, Eq. (7.4.12) can be written as

mðtÞ ¼ a1 1� e�b1t
� �

þ a2 1� ð1þ b2tÞe�b2t
� �

þ a3
1þ e�b3t

ð7:4:13Þ

Also note that w2j are the weights of each individual model and their values can
be determined by the training algorithm. Actually application of models in practice
becomes more effective by combining them. The approach can automatically
determine the weight of each model according to the characteristics of the selected
data sets.

The above discussion describes in detail how a neural network is constructed
for the selected conventional SRGM. Prediction of the software reliability using
the neural network approach consists of the following sequential steps.

1. Select some appropriate (and suitable) SRGM (at least one).
2. Construct the neural network of selected models by designing the activation

functions and bias.
3. Gather the data set of the software failure history. Normalize the cumulative

execution time ti and compute its corresponding accumulated number of soft-
ware failure mi

4. Feed all pairs of {ti,mi} to the network and train the network by using the back-
propagation algorithm.

5. When the network is trained, feed the future testing time to the network, and the
network output is the possible cumulative number of software failures in the
future.

The activation functions for the three neurons in the hidden layers in the above
model are defined corresponding to Goel and Okumoto [29], Yamada et al. [30]
and logistic growth curve, respectively. The logistic growth curve is quite often
used in statistical literature for describing the growth of the various types of the
phenomena such as population growth and in general gives good results in many
cases. The literature of software reliability also support the use of logistic function
for the reliability growth modeling however in software reliability modeling it is
more often called a learning curve as it can be modified to capture the learning
phenomena which is of most common occurrence in most of the testing process.
Kapur and Garg [32] SRGM is among the earliest and most commonly used
SRGM that address to the learning phenomena in the testing process. The logistic
growth curve in the DWCM can be replaced by this learning curve if we do not
ignore the bias in the third neuron of the hidden layer while again ignoring the bias
in the output layer [26]. In that case the above model is redefined as follows.

If we do not ignore the bias in the third neuron of the hidden layer then the input
to this neuron will be

x3ðtÞ ¼ w13t þ c ð7:4:14Þ

7.4 Neural Network Based Software Reliability Growth Model 269



where c is the bias. Corresponding to the above input, output from this neurons in
hidden layer is

h3ðtÞ ¼ a3ðw13t þ cÞ ¼ 1

1þ e�ðw13tþcÞ ¼
1

1þ c e�ðw13tÞ ð7:4:15Þ

where c ¼ e�c: In this case the combined input to the single unit of output layer is

yðtÞ ¼ b w21 1� e�w11tð Þ þ w22 1� ð1þ w12tÞe�w12tð Þ þ w23
1

1þ c e�ðw13tÞ

� �� �

ð7:4:16Þ

hence the output from the single unit of output layer is

gðtÞ ¼ w21 1� e�w11tð Þ þ w22 1� ð1þ w12tÞe�w12tð Þ þ w23
1

1þ c e�ðw13tÞ

� �

ð7:4:17Þ

In this way considering the substantial bias in the third neuron of the hidden
layer the ANN can incorporate the learning nature of the testing process. Now
similar to (7.4.13), Eq. (7.4.17) can be written as

mðtÞ ¼ a1 1� e�b1t
� �

þ a2 1� ð1þ b2tÞe�b2t
� �

þ a3
1þ ce�b3t

ð7:4:18Þ

The above ANN model is the dynamic weighted combinational ANN model for
the exponential [29], s-shaped [30] and flexible [32] learning model. As this model
combined all the three types exponential, s-shaped and flexible model into a single
model it provides a good fit for a number of real life applications.

7.4.2 Generalized Dynamic Integrated SRGM

The NHPP based software reliability growth models discussed throughout the
book are either exponential or s-shaped in nature. In exponential software reli-
ability growth models, software reliability growth is defined by the mathematical
relationship that exists between the time span of using (or testing) a program and
the cumulative number of errors discovered. In contrast, s-shaped software reli-
ability growth is more often observed in real life projects. There are many reasons
why observed software reliability growth curves often become s-shaped. S-Shaped
software reliability growth curve is typically caused by the definition of failures.
The growth is also caused by the continuous test effort increase in which the test
effort has been incrementally increased through the test period. Some of these
causative factors or influences can be described by making the basic assumptions
of the exponential growth model more realistic.

270 7 Artificial Neural Networks Based SRGM



A number of models discussed in the book refer to the complexity of faults in
the software. These models define that any software can be assumed to contain
n different types of faults, the type of fault is distinguished based on the delay time
between their observation and removal. Application of fault complexity based
models on real life projects in general produces good results as different types of
faults are treated differently. The neural network approach for reliability estima-
tion and prediction [14] can combine a number of SRGM with different weights.
This idea generates the thought of developing a neural-network-based model that
can in general combine n different SRGM, one for each type of fault.

This section presents an ANN-based Generalized Dynamic Integrated SRGM
(GDIM) [27] that can be applied for reliability estimation for a software project
expected to contain different (n) types of faults. Recall that the time delay between
the failure observation and subsequent fault removal represents the complexity of
the faults. More severe the fault more will be time delay. The faults are classified
as simple, hard and complex. The fault is classified as simple if the time delay
between failure observation, isolation and removal is negligible. If there is a time
delay between failure observation and isolation, the fault is classified as a hard
fault. If there is a time delay between failure observation, isolation and removal,
the fault is classified as a complex fault. For detailed modeling refer to Sect. 2.4.

Assuming that the software consists of n different types of faults and on each
type of fault, a different strategy is required to remove the cause of failures,
Kapur et al. [33] assumed that for a type i (i = 1, 2, …, n) fault, i different
processes (stages) are required to remove the cause of the failure. We can apply the
neural-network-based approaches to build a GDIM to predict and estimate the
reliability of software consisting of n different types of faults depending upon
their complexity. The neural network is constructed with single input, single
output but with more than one neuron in the hidden layer. The number of units
in the hidden layer depends on the types of faults in the software system. For
software having n different types of faults on basis of their complexity, there will
be n units in the hidden layer. Such a feedforward neural network is shown in
Fig. 7.5.

In practice, we can design different activation functions on different units in the
hidden layer. The jth neuron in the hidden layer will have the activation function
for jth type of fault. The weights w1j, from the input layer to the jth node in the
hidden layer, represent the fault detection rate of jth type of fault and weights w2j,
from the jth node in the hidden layer to the single node in the output layer
represent the proportionality of total number of jth type of faults latent in the
system. There will be no bias in units of hidden layer and in the single unit of
output layer. The activation function for the jth node in the hidden layer is defined
as

ajðxÞ ¼ 1� e�x
X

j�1

i¼0

ðxÞi
i!

ð7:4:19Þ

7.4 Neural Network Based Software Reliability Growth Model 271

http://dx.doi.org/10.1007/978-0-85729-204-9_2


While the activation function for the node in the output layer can be defined
same as in (7.4.3). Proceeding in the similar manner as in case of Su et al. [14]
model we can define the network output. w1j, w2j (j = 1, 2,…, n) are the weights
assigned in the network form input layer to hidden layer and hidden layer to output
layer, respectively. If we assume no bias in both of hidden layer and output layer
input to ith unit of hidden layer is given by

xjðtÞ ¼ w1jt ð7:4:20Þ

The activation function aj(x) determines the outputs from the neurons in hidden
layers

hjðtÞ ¼ ajðw1jtÞ ¼ 1� e�x
X

j�1

i¼0

ðw1jÞi
i!

ð7:4:21Þ

The weighted output of the hidden layer is fed as input to the output layer, i.e.

yðtÞ ¼ b
X

n

j¼1

w2j 1� e�x
X

j�1

i¼0

ðw1jÞi
i!

 ! !

ð7:4:22Þ

hence the output from the single unit of output layer is

gðtÞ ¼
X

n

j¼1

w2j 1� e�x
X

j�1

i¼0

ðw1jÞi
i!

 !

ð7:4:23Þ

In Eq. (7.4.23) if we replace the weights w1j by bj, j = 1, 2,…, n (fault
detection rate for ith type of fault) j = 1, 2,…, n and weights w2j by aj, j = 1, 2,…,
n (proportion of total fault content for ith type of fault) then the network output can
be represented as

Fig. 7.5 Network
Architecture of GDIM for
n types of faults

272 7 Artificial Neural Networks Based SRGM



mðtÞ ¼
X

n

j¼1
aj 1� e�x

X

j�1

i¼0

ðbjÞi
i!

 !

ð7:4:24Þ

A trained ANN of this type determines the weight of each network connection
according to the characteristics of the selected data sets hence can determine the
types of faults present in the software and their proportion in the total fault content.

An application

If the software contains two types of faults then the network architecture is GDIM
as shown in (Fig. 7.6).

In this case the network output is

gðtÞ ¼ w21 1� e�w11tð Þ þ w22 1� ð1þ w12tÞe�w12tð Þ ð7:4:25Þ

This network output corresponds to the weighted sum of Goel and Okumoto [29]
exponential SRGM for the simple faults and Yamada delayed s-shaped SRGM for
the hard types of faults. The combined weighted mean value function of the SRGM
corresponding to this network output is

mðtÞ ¼ a1 1� e�b1t
� �

þ a2 1� ð1þ b2tÞe�b2t
� �

ð7:4:26Þ

Similarly different ANN models can be designed for the different number of
faults in the software according to their complexity.

The generalized dynamic integrated neural network model accounts for a very
important aspect of software testing, i.e., fault complexity. However, as noted
earlier learning is a major factor that effect the testing progress and a model that
incorporates the learning factor provides good results in a number of cases.
Besides that a learning model having flexible formulation which can describe both
of the most common types of failure growth curves, i.e., exponential as well as
s-shaped depending on the observed failure data characteristics turns out to be
more useful. With this view Kapur et al. [34] further modified the neural network
design of GDIM to incorporate the learning phenomenon so that the model can be

Fig. 7.6 Network
architecture of GDIM with
two types of faults

7.4 Neural Network Based Software Reliability Growth Model 273



applied to a verity of failure data sets. To accommodate the impact of leaning in
the generalized DIM catering to fault of different complexity the activation
functions on the neurons of the hidden layer are redefined incorporating the
learning parameters. If there is only one neuron in the hidden layer then the
software is assumed to contain only one type of fault. If we assume this fault type
to be simple then an exponential activation function can be chosen for this neuron.
Hence for the first neuron we continue with the activation function given by

a1ðxÞ ¼ 1� e�x ð7:4:27Þ

and for the other neurons the general functional form of the activation function in
the hidden layer is

ajðxÞ ¼
1� e�xþcj�1

Pj�1
i¼0 ðx� cj�1Þi=i!

1þ e�x
j ¼ 2; . . .; n ð7:4:28Þ

assuming a total of n neurons in the hidden layer. The activation function in the
single neuron in the output layer will remain the same as in GDIM.

Proceeding in the similar manner with weights w1j, w2j (j = 1,2, …,n) in the
transformations from input layer to hidden layer and hidden layer to output layer,
respectively. It is assumed that there will be no bias in first unit of hidden layer and
in the single unit of the output layer. All other neurons in hidden layer has a bias
cj-1, i.e., c1 is the bias in the second unit, c2 is the bias in the third unit and so on in
the hidden layers.

Input to the units of hidden layers is given by

x1ðtÞ ¼ w11t ð7:4:29Þ

xjðtÞ ¼ w1jt þ cj�1; j ¼ 2; . . .; n ð7:4:30Þ

The activation function aj(x) determines the outputs from the neurons in hidden
layers

hjðtÞ ¼ aj xjðtÞ
� �

¼
1� e�w11 ; j ¼ 1

1� e�w1j
Pj�1

i¼1 ðw1jÞi=i!
1þ e�ðw1jþcj�1Þ ; j ¼ 2; . . .; n

8

<

:

¼
1� e�w11; j ¼ 1

1� e�w1j
Pj�1

i¼1 ðw1jÞi=i!
1þ cje

�w1j
; j ¼ 2; . . .; n

8

>

<

>

:

ð7:4:31Þ

where cj ¼ cj�1 j ¼ 2; . . .; n.
The weighted output of the hidden layer is fed as input to the output layer, i.e.

yðtÞ ¼ b w21 1� e�w11ð Þ þ
X

n

j¼2

w2j
1� e�w1j

Pj�1
i¼1 ðw1jÞi=i!

1þ cje�w1j

 ! !

ð7:4:32Þ

274 7 Artificial Neural Networks Based SRGM



hence the output from the single unit of output layer is

gðtÞ ¼ w21 1� e�w11ð Þ þ
X

n

j¼2

w2j
1� e�w1j

Pj�1
i¼1 ðw1jÞi=i!

1þ cje�w1j

 !

ð7:4:33Þ

Assuming weights w1j = bj, and w2j = ai, j = 1,…, n the network output can
be represented as

mðtÞ ¼ a1 1� e�b1
� �

þ
X

n

j¼2

aj
1� e�bj

Pj�1
i¼1 ðbjÞ

i=i!

1þ cje�bj

 !

ð7:4:34Þ

An application

We now demonstrate neural network architecture for the flexible GDIM for
software expected to contain three types of faults. The pictorial architecture of
such a network is shown in Fig. 7.4. This type of neural network is having one
neuron in the input and the output layers and three neurons in the single hidden
layer.

The activation functions in the three neurons of the hidden layer will be

a1ðxÞ ¼ 1� e�x ð7:4:35Þ

a2ðxÞ ¼
1� ð1þ x� c1Þe�xþc1

1þ e�x
ð7:4:36Þ

a3ðxÞ ¼
1� 1þ ðx� c2Þ þ ððx� c2Þ2=2Þ

� �

e�xþc2

1þ e�x
ð7:4:37Þ

With these activation functions and inputs from the hidden layers according to
(7.4.29) and (7.4.30) and following the similar procedure as above the network
output will be given by

gðtÞ ¼ w21 1� e�w11tð Þ þ w22
1� ð1þ w12tÞe�w12tð Þ

1þ e�w12t�c1

þ w23

1� 1þ w13t þ w13tð Þ2
2

� �

e�w13t
� �

1þ e�w13t�c1
ð7:4:38Þ

this network output correspond to the weighted sum of Goel and Okumoto [29]
exponential SRGM for the simple faults and flexible delayed s-shaped SRGM for
the hard types of faults and flexible Erlang 3-stage SRGM for the complex faults.
The combined weighted mean value function of the SRGM corresponding to this
network output is

7.4 Neural Network Based Software Reliability Growth Model 275



mðtÞ ¼ a1 1� e�b1t
� �

þ a2 1� ð1þ b2tÞe�b2t
� �

1þ c2e�b2t

þ a3
1� 1þ b3t þ b3tð Þ2=2

� �� �

e�b3t
� �

1þ c3e�b3t
ð7:4:39Þ

7.4.3 Testing Efficiency Based Neural Network Architecture

Neural network architecture for a testing efficiency based SRGM [28] consist of
multiple hidden layers. ANN architecture for a software reliability growth model
that can address to the two types of imperfect debugging can be designed con-
sidering three hidden layers each with a single neuron. Such a neural network is
represented pictorially in Fig. 7.7.

Each of the activation function on each of the neuron in the hidden layer may or
may not have similar activation function. The SRGM we address to in this section
considers different activation functions on each of the neuron. The activation
function aj(x) on the jth hidden layer hj is defined as follows

a1ðxÞ ¼ x ð7:4:40Þ

a2ðxÞ ¼ x ð7:4:41Þ

a3ðxÞ ¼ 1� e�x ð7:4:42Þ

The activation function for the output layer is defined as

bðxÞ ¼ x

1� a
ð7:4:43Þ

If w1 is the weight from the input layer to first hidden layer, w2 is the weight
from the first hidden layer to second hidden layer, w3 is the weight from the second
hidden layer to third hidden layer and w4 is the weight from the third hidden layer
to output layer and there is no bias in any of the transformations then mathe-
matically the network architecture is defined as:

Input to the first hidden layer is

x1ðtÞ ¼ w1t

output of the first hidden layer is

Fig. 7.7 Neural network
architecture for testing
efficiency based SRGM

276 7 Artificial Neural Networks Based SRGM



h1ðtÞ ¼ a1ðx1ðtÞÞ ¼ a1ðw1tÞ ¼ w1t

second hidden layer receives the input

x2ðtÞ ¼ w2w1t

from the first hidden layer and generates the output

h2ðtÞ ¼ a2ðx2ðtÞÞ ¼ a2ðw2w1tÞ ¼ w2w1t

the input that goes to the third hidden layer is

x3ðtÞ ¼ w3w2w1t

and the output generated from the third hidden layer is

h3ðtÞ ¼ a2ðx3ðtÞÞ ¼ a3ðw3w2w1tÞ ¼ 1� e�w3w2w1t

The input to the output layer is

yðtÞ ¼ w4 1� e�w3w2w1tð Þ

Output from the output layer is

gðtÞ � mðtÞ ¼ bðyðtÞÞ ¼ w4

ð1� aÞ 1� e�w3w2w1tð Þ

if we assume w4 ¼ a;w3 ¼ b;w2 ¼ p andw1 ¼ ð1� aÞ then it represents the mean
value function for SRGM incorporating two types of imperfect, i.e.

gðtÞ � mðtÞ ¼ a

ð1� aÞð1� e�bpð1�aÞtÞ: ð7:4:44Þ

7.5 Data Analysis and Parameter Estimation

Neural network approach for software reliability assessment is based on building a
network of units with initialized weights which are changed during training using
training algorithm to minimize the mean squared error. We choose the back
propagation algorithm to train the network. Back-propagation algorithm trains the
neural network by minimizing the squares of the distance between the network
output value and the corresponding desired output value. The method is preferred as
its formulas are identical to the method of least squares which minimizes the sum of
squares of the distance between the best fit line and the actual data points with
identical formulas. However there is a lot of difference between the two methods
but due to the identical approach is chosen here for the performance analysis of the
NN models discussed in this chapter. Su and Huang used the NN methods proposed
by Karunanithi and Malaiya [18] and Tian and Noore [35] for the purpose. While

7.4 Neural Network Based Software Reliability Growth Model 277



Kapur et al. [26] programmed the method in C programming language which can be
modified easily according to the number of hidden layers and the number of neu-
rons in each hidden layer. The program requires approximation for the initial
weights, based on them train the network and determines the network output. One
can also use the neural network module available in many software such as SPSS,
Matlab, Mathematica, etc. for the purpose. The results of our analysis are based on
Kapur et al. [26] approach. Time and Cumulative failure information is normalized
between 0 and 1 before passing to neural network architecture.

Failure Data Set

Most of the NN models are weighted combinational models and can be used to
represent the fault of different complexity. Therefore, the data set which illustrates
different types of faults in the software is taken for the analysis. The interval
domain data is taken from Misra [36] in which the number of faults detected per
week (38 weeks) is specified and a total of 231 failures are observed. The data
describes that three types of faults—minor (64.07%), major (34.2%) and critical
(1.73%) are present in the software. Mean square of error (MSE) and root mean
square prediction error (RMSPE) are taken as the goodness of fit criteria.

Following neural network models have been chosen for data analysis and
parameter estimation.

Model 1 (M1): DWCM [14]

mðtÞ ¼ a1 1� e�b1t
� �

þ a2 1� ð1þ b2tÞe�b2t
� �

þ a3
1þ e�b3t

Model 2 (M2): DWCM [26]

mðtÞ ¼ a1 1� e�b1t
� �

þ a2 1� ð1þ b2tÞe�b2t
� �

þ a3
1þ ce�b3t

Model 3 (M3): GDIM [27], corresponding to three neurons in the hidden layer.

mðtÞ ¼ a1 1� e�b1t
� �

þ a2 1� ð1þ b2tÞe�b2t
� �

þ a3 1� 1þ b3t þ b23t
2=2

� �� �

e�b3t
� �

Model 4 (M4): Flexible GDIM [34], corresponding to three neurons in the hidden
layer.

mðtÞ ¼ a1 1� e�b1t
� �

þ a2 1� ð1þ b2tÞe�b2t
� �

1þ c2e�b2t

þ a3
1� 1þ b3t þ b3tð Þ2=2

� �� �

e�b3t
� �

1þ c3e�b3t

Model 5 (M5): Testing efficiency model [28]

278 7 Artificial Neural Networks Based SRGM



mðtÞ ¼ a

ð1� aÞ 1� e�bpð1�aÞt
� �

The values of estimated parameters have been tabulated in Table 7.1. Fig-
ure 7.8 shows the goodness of fit curves for the estimation results and future
predictions.

Model M1–M4 all define faults of different complexity and have given very
close result on the data. However, the model M1 yields the best fit curve with
lowest values of MSE (15.35) and RMSPE (3.64). The testing efficiency model
does not give a good fit on the data. The proportions of faults of type simple, hard
and complex according to the model M1 is p1 = 50.5%, p2 = 45% and
p3 = 4.5%, respectively, which also seems to be following the actual data sets.
The result of models M3 and M4 shows a very high proportion of critical faults,
although the actual data reflects a very less proportion of critical faults. Consider
the case of M3 according to which the a total of 144 simple faults are present in the
software, however the actual data specifies that in 38 period of testing 148 simple
faults have already been removed. This is contradictory. Also the estimated figure
of hard fault content according to model M2 is very low in contrast to the actual
data. All this suggest that model M1 adequately describe this data set.

0

50

100

150

200

250

300

350

1 5 9
1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

Time (Weeks)

C
u

m
u

la
ti

v
e

 F
a

il
u

re
s

Actual Data M1

M2 M3

M4 M5

Fig. 7.8 Goodness of fit curve for models M1–M5

Table 7.1 Estimation result for models 1–5

Model Estimated parameters Comparison criteria

a, a1 a2 a3 b, b1 b2 b3 c, c1, p c2, a MSE RMSPE

M1 228 203 20 0.0270 0.0290 0.0150 – – 15.35 3.64
M2 367 11 72 0.0120 0.0050 0.0310 10.85 – 18.12 4.15
M3 144 4 303 0.0860 0.0010 0.0660 – – 18.64 4.03
M4 106 116 228 0.1400 0.0640 0.0970 228 0.10 18.30 3.85
M5 466 – – 0.0170 – – 0.9530 0.0190 27.44 5.65

7.5 Data Analysis and Parameter Estimation 279



We have discussed several neural network based models for software reliability
estimation. However, the research is this area is still in infancy stage. Lot more
idea generation and application is required. Apart from this the area also demands
to develop new methods and algorithms to train the network.

Exercises

1. Explain the basic structure of an artificial neural network.
2. What is the difference between a feed-forward and a feedback neural network?
3. Explain the back propagation learning algorithm for feed forward neural

network.
4. Explain how we can build an ANN for the exponential SRGM given by the

equation.

mðtÞ ¼ a 1� e�bt
� �

5. Describe the structure of an ANN to describe the failure process of software
containing four types of fault, giving mathematically inputs and outputs from
the layers of the network.

6. Using the data from Sect. 7.5 estimate the model parameters of the SRGM
developed in exercise 5. Compute the mean square error of estimation.

References

1. Stergiou C, Siganos D (1996) Neural networks. www.doc.ic.ac.uk/*nd/surprise_96/
journal/vol4/cs11/report.html

2. McCulloch WS, Pitts WH (1943) A logical calculus of the ideas immanent in nervous
activity. Bull Math Biophys 5:115–133

3. Farley BG, Clark WA (1954) Simulation of self-organizing systems by digital computers.
Trans IRE PGIT 4:76–84

4. Rochester N, Holland JH, Habit LH, Duda WL (1956) Tests on a cell assembly theory of the
action of the brain, using a large digital computer. IRE Trans Info Theory IT-2:80–93

5. Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and
organization in the Brain, Cornell Aeronautical Laboratory. Psychol Rev 65(6):386–408. doi:
10.1037/h0042519

6. Widrow B, Hoff ME Jr (1960) Adaptive switching circuits. IRE WESCON Conv Rec
4:96–104

7. Minsky ML, Papert SA (1969) Perceptrons: an introduction to computational geometry,
expanded edition. MIT Press, Cambridge

8. Carpenter GA, Grossberg S (1988) The ART of adaptive pattern recognition by a self-
organizing neural network. Computer 21(3):77–88

9. Klopf AH (1972) Brain function and adaptive systems—a heterostatic theory. Air Force
Cambridge Research Laboratories Research, Bedford

10. Werbos PJ (1974) Beyond regression: new tools for prediction and analysis in the behavioral
sciences. Ph.D., Harvard University, Cambridge

280 7 Artificial Neural Networks Based SRGM

http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html
http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html
http://dx.doi.org/10.1037/h0042519


11. Anderson JA (1977) Neural models with cognitive implications. In: LaBerge D, Samuels SJ
(eds) Basic processes in reading perception and comprehension. Erlbaum, Hillsdale,
pp 27–90

12. Kohonen T (1977) Associative memory: a system theoretical approach. Springer, New York
13. Amari S (1967) A theory of adaptive pattern classifiers. IEEE Trans Electron Comput

16(3):299–307
14. Su YS, Huang CY (2007) Neural network based approaches for software reliability

estimation using dynamic weighted combinational models. J Syst Softw 80:606–615
15. Karunanithi N, Malaiya YK, Whitley D (1991) Prediction of software reliability using neural

networks. In: Proceedings 2nd IEEE international symposium on software reliability
engineering, Los Alamitos, CA, pp 124–130

16. Karunanithi N, Whitley D, Malaiya YK (1992) Using neural networks in reliability
prediction. IEEE Softw 9:53–59

17. Karunanithi N, Malaiya YK (1992) The scaling problem in neural networks for software
reliability prediction. In: Proceedings 3rd international IEEE symposium of software
reliability engineering, Los Alamitos, CA, pp 76–82

18. Karunanithi N, Malaiya YK (1996) Neural networks for software reliability engineering. In:
Lyu MR (ed) Handbook of software reliability engineering. McGraw-Hill, New York,
pp 699–728

19. Khoshgoftaar TM, Pandya AS, More HB (1992) A neural network approach for predicting
software development faults. In: Proceedings 3rd IEEE international symposium on software
reliability engineering, Los Alamitos, CA, pp 83–89

20. Khoshgoftaar TM, Szabo RM (1996) Using neural networks to predict software faults during
testing. IEEE Trans Reliab 45(3):456–462

21. Sherer SA (1995) Software fault prediction. J Syst Softw 29(2):97–105
22. Khoshgoftaar TM, Allen EB, Hudepohl JP, Aud SJ (1997) Application of neural networks to

software quality modeling of a very large telecommunications system. IEEE Trans Neural
Netw 8(4):902–909

23. Sitte R (1999) Comparison of software reliability growth predictions: neural networks vs.
parametric recalibration. IEEE Trans Reliab 48(3):285–291

24. Cai KY, Cai L, Wang WD, Yu ZY, Zhang D (2001) On the neural network approach in
software reliability modeling. J Syst Softw 58(1):47–62

25. Cai KY (1998) Software defect and operational profile modeling. Kluwer Academic
Publishers, Dordrecht

26. Kapur PK, Khatri SK, Yadav K (2008) An artificial neural-network based approach for
developing a dynamic integrated software reliability growth model. Presented in international
conference on present practices and future trends in quality and reliability, ICONQR08,
22–25 Jan 2008

27. Kapur PK, Khatri SK, Goswami DN (2008) A generalized dynamic integrated software
reliability growth model based on artificial neural network approach. In: Verma AK, Kapur
PK, Ghadge SG (eds) Advances in performance and safety of complex systems. Macmillan
advanced research series. MacMillan India Ltd, New Delhi, pp 813–838

28. Khatri SK, Kapur R, Sehgal VK (2008) Neural-network based software reliability growth
modeling with two types of imperfect debugging. Presented in the 40th Annual Convention
of ORSI, 4–6 Dec 2008

29. Goel AL, Okumoto K (1979) Time dependent error detection rate model for software
reliability and other performance measures. IEEE Trans Reliab R-28(3):206–211

30. Yamada S, Ohba M, Osaki S (1983) S-shaped software reliability growth modeling for
software error detection. IEEE Trans Reliab R-32(5):475–484

31. Su YS, Huang CY, Chen YS (2005) An artificial neural-network based approach to software
reliability assessment. In: CD-ROM proceedings 2005 IEEE region 10 conference (TENCON
2005), Nov. 2005, Melbourne, Australia, EI

32. Kapur PK, Garg RB (1992) A software reliability growth model for an error removal
phenomenon. Softw Eng J 7:291–294

References 281



33. Kapur PK, Younes S, Agarwala S (1995) Generalized Erlang software reliability growth
model. ASOR Bull 35(2):273–278

34. Kapur PK, Khatri SK, Basirzadeh M (2008) Software reliability assessment using artificial
neural network based flexible model incorporating faults of different complexity. Int J Reliab
Qual Saf Eng 15(2):113–127

35. Tian L, Noore A (2005) Evolutionary neural network modeling for software cumulative
failure time prediction. Reliab Eng Syst Saf 87:45–51

36. Misra PN (1983) Software reliability analysis. IBM Syst J 22:262–270

282 7 Artificial Neural Networks Based SRGM



Chapter 8
SRGM Using SDE

8.1 Introduction

A number of NHPP based SRGM have been discussed in the previous chapters.
These models treat the event of software fault detection/removal in the testing and
operational phase as a counting process in discrete state space. If the size of
software system is large, the number of software faults detected during the testing
phase becomes large, and the change in the number of faults, which are detected
and removed through debugging activities, becomes sufficiently small compared
with the initial fault content at the beginning of the testing phase. Therefore, in
such a situation, the software fault detection process can be well described by a
stochastic process with continuous state space. This chapter focuses on the
development of stochastic differential equation based software reliability growth
models to describe the stochastic process with continuous state space. Before
developing any model we introduce the readers with the theoretical and mathe-
matical background of stochastic differential equations.

8.2 Introduction to Stochastic Differential Equations

8.2.1 Stochastic Process

A stochastic process fXðtÞ; t 2 Tg is a collection of random variables, i.e., for each
t 2 T ;X(t) is a random variable. The index t is interpreted as time and as a result,
we refer to X(t) as the state of the process at time t.

The set T is called the index set of the process. When T is a countable set, the
stochastic process is said to be a discrete time process. If T is an interval of
real time, the stochastic process is said to be a continuous time process. For
instance, {Xn, n = 0, 1, …} is a discrete time stochastic process indexed by the

P. K. Kapur et al., Software Reliability Assessment with OR Applications,
Springer Series in Reliability Engineering, DOI: 10.1007/978-0-85729-204-9_8,
� Springer-Verlag London Limited 2011

283



non-negative integers, while {X(t), t C 0} is a continuous time stochastic process
indexed by the non-negative real numbers.

8.2.2 Stochastic Analog of a Classical Differential Equation

If we allow for some randomness in some of the coefficients of a differential
equation, we often obtain a more realistic mathematical model of the situation.

Consider the simple population growth model

dN tð Þ
dt
¼ a tð ÞN tð Þ ð8:2:1Þ

where

N 0ð Þ ¼ N0 a constantð Þ

and N(t) is the size of the population at time t and a(t) is the relative rate of growth
at time t. It might happen that a(t) is not completely known, but subject to some
random environment effects, so that we have

a tð Þ ¼ r tð Þ þ ‘‘noise’’ ð8:2:2Þ

We do not know the exact behavior of the noise term, only its probability
distribution and the function r(t) is assumed to be a non-random.

8.2.3 Solution of a Stochastic Differential Equation

Stating the problem based on stochastic differential equations, we now explain the
method to solve the problem.

The mathematical model for a random quantity is a random variable. A
stochastic process is a parameterized collection of random variables fXðtÞ; t 2 Tg
defined on a probability space (X, F, p) and assuming values in Rn.

8.2.3.1 r-Algebra

If X is a given set, then a r-algebra F on X is a family F of subset of X with the
following properties:

1. u 2 F
2. F1 62 F ) FC

1 ) F; where F1
C is complement of F in X.

3. A1;A2; . . . 2 F ) A ¼ S1i¼1 Ai 2 F

The pair (X, F) is called a measurable space.

284 8 SRGM Using SDE



8.2.3.2 Probability Measure

A probability measure p on a measurable space (X, F) is function p: F ? [0, 1]
such that

1. p Uð Þ ¼ 0; p Xð Þ ¼ 1
2. if A1;A2; . . . 2 F and fAig1i¼1 is disjoint, i.e., ðAi ^ Aj ¼ U if i 6¼ jÞ then

P
S1

i¼1 Ai

� �

¼
P1

i¼1 P Aið Þ

8.2.3.3 Probability Space

The triplet (X, F, P) is called the probability space.

8.2.3.4 Brownian Motion

In 1828 the Scottish botanist Robert Brown observed that pollen grains suspended
in liquid perform irregular motions. He and others noted that the path of a given
particle is very irregular, having a tangent at no point, and the motion of two
distinct particles appears to be independent. The motion was later explained by the
random collision with the molecules of the liquid. To describe the motion math-
ematically it is natural to use the concept of a stochastic process W(t), interpreted
as the position at time t.

Definition A real-valued stochastic process W(�) is called a Brownian or Wiener
process if

1. W 0ð Þ ¼ 0
2. W tð Þ �W sð Þ is N 0; t � sð Þ for t� s� 0
3. for times 0\t1\t2\ � � �\tn the random variables W(t1), W(t2) -

W(t1), …, W(tn) - W(tn-1) are independent.

In particular

p W 0ð Þ ¼ 0½ � ¼ 1

E W tð Þ½ � ¼ 0;

E W2 tð Þ
� �

¼ t for real time t� 0 � i:e: Var W tð Þð Þ ¼ t

and

E W tð ÞWðt0Þ½ � ¼ Min t; t0½ �

W(t) follows normal distribution with mean 0 and variance t, so for all t[ 0 and
a B b we have

8.2 Introduction to Stochastic Differential Equations 285



p a�W tð Þ� b½ � ¼ 1
ffiffiffiffiffiffiffi

2pt
p

Z

b

a

e�1=2ðW2ðtÞÞ dw tð Þ ð8:2:3Þ

8.2.3.5 ItÔ Integrals [1, 2]

We now turn to the question of finding a reasonable mathematical interpretation of
the ‘‘noise’’ term in Eq. (8.2.2)

dN tð Þ
dt

¼ N tð Þ r tð Þ þ ‘‘noise’’ð Þ ð8:2:4Þ

or more generally in equation of the form

dN tð Þ
dt

¼ b t;N tð Þð Þ þ r t;N tð Þð Þ � noise ð8:2:5Þ

where b and r are some given functions.
Let us first concentrate on the case where the noise is one-dimensional. It is

reasonable to look for some stochastic process c(t) to represent the noise term, so
that

dN tð Þ
dt

¼ b t;N tð Þð Þ þ r t;N tð Þð Þc tð Þ ð8:2:6Þ

Nevertheless it is possible to represent c(t) as a generalized stochastic process
called the white noise process. The process is generalized means so that it can be
constructed as a probability measure on the space s, of tempered distribution on
[0, ?], and not as probability measure on the much smaller space R[0,?], like an
ordinary process.

The time derivative of the Wiener process (or Brownian motion) is white noise
so

dW tð Þ
dt

¼ c tð Þ ð8:2:7Þ

and Eq. (8.2.6) can be rewritten as

dN tð Þ ¼ b t;N tð Þð Þdt þ r t;N tð Þð ÞdWðtÞ ð8:2:8Þ

286 8 SRGM Using SDE



This is called a stochastic differential equation of ItÔ type.

Result The one-dimensional ItÔ formula.
Let Xt be an ItÔ process given by

dxt ¼ u dt þ v dW tð Þ ð8:2:9Þ

and g t; xð Þ 2 C2 0;1½ Þ� Rð Þ (i.e., g is twice continuously differentiable on
([0, ?) 9 R) then

Yt ¼ g t;Xtð Þ ð8:2:10Þ

is again an ItÔ process, and

dYt ¼
og

ot
dt þ og

oxt
dxt þ

1
2
o
2g

ox2t
dxtð Þ2 ð8:2:11Þ

where (dxt)
2
= (dxt�dxt) is computed according to the rules

dt � dt ¼ dt � dW tð Þ ¼ dW tð Þ � dt ¼ 0 and dW tð Þ � dW tð Þ ¼ dt ð8:2:12Þ

Solution of Eq. (8.2.1) with a(t) = b(t) ? rc(t), r is a constant representing the
magnitude of the irregular fluctuations and c(t) is a standardized Gaussian white
noise, assuming b(t) = b (constant), i.e.,

dN tð Þ
dt

¼ bN tð Þ þ rc tð ÞN tð Þ ð8:2:13Þ

or

dN tð Þ ¼ bN tð Þdt þ rN tð ÞdW tð Þ ð8:2:14Þ

is

N tð Þ ¼ N0e
b�1=2ð ÞtþrW tð Þ ð8:2:15Þ

8.3 Stochastic Differential Equation Based Software
Reliability Models

A number of NHPP based SRGM have been discussed in the previous chapters.
These models treat the event of software fault detection/removal in the testing and
operational phase as a counting process in discrete state space. If the size of
software system is large, the number of software faults detected during the testing
phase becomes large, and the change of the number of faults, which are detected
and removed through debugging activities, becomes sufficiently small compared
with the initial fault content at the beginning of the testing phase. Therefore,

8.2 Introduction to Stochastic Differential Equations 287



in such a situation, the software fault detection process can be well described by a
stochastic process with a continuous state space.

Under the general assumptions of NHPP software reliability growth models,
i.e.,

1. Failure observation phenomenon is modeled by NHPP.
2. Failures are observed during execution caused by remaining faults in the

software.
3. Each time a failure is observed, an immediate effort takes place to find the

cause of the failure and the isolated faults are removed prior to future test
occasions.

4. All faults in the software are mutually independent.
5. The debugging process is perfect and no new fault is introduced during

debugging.

The following linear differential equation

dN tð Þ
dt
¼ b tð Þ a� N tð Þ½ � ð8:3:1Þ

is used to describe the fault detection process, where b(t) is fault detection rate per
remaining fault and is a non-negative function

The testing progress is influenced by various factors all of which may not be
deterministic in nature such as the testing effort expenditure, testing efficiency and
skill, testing methods and strategy and so on. In order to account the uncertain
factors influencing the testing process we should consider the fact that the behavior
of b(t) is influenced by these random factors. Hence we extend the differential
Eq. (8.3.1) to the realistic equation that reflects the stochastic property of the
testing process. Assuming irregular fluctuations in b(t) this basic differential
equation can be extended as the following stochastic differential equation

dN tð Þ
dt

¼ b tð Þ þ rc tð Þf g a� N tð Þf g ð8:3:2Þ

where r is the constant representing a magnitude of irregular fluctuation and
rc(t) is a standardized Gaussian white noise. We extend the above equation to the
following stochastic differential equation of an ItÔ type

dN tð Þ ¼ b tð Þ � 1
2
r2

� �

a� N tð Þf gdt þ r a� N tð Þ½ �dW tð Þ ð8:3:3Þ

Using (8.2.9), (8.2.10) and (8.2.12), let

Yt ¼ g t;N tð Þð Þ ¼ Ln a� N tð Þð Þ ð8:3:4Þ

then

288 8 SRGM Using SDE



dYt ¼ d Ln a� N tð Þð Þð Þ ¼ � dN tð Þ
a� N tð Þð Þ �

dN tð Þð Þ2

2 a� N tð Þð Þ2
ð8:3:5Þ

Using (8.2.12) we get

dN tð Þð Þ2¼ r2 a� N tð Þð Þ2dW tð Þ � dW tð Þ ) dN tð Þð Þ2

¼ r2 a� N tð Þð Þ2dt as dW tð Þ � dW tð Þ ¼ dt ð8:3:6Þ

Now, from (8.3.5) and using the equation of (dN(t))2, we have

dN tð Þ
a� N tð Þ ¼ �d Ln a� N tð Þð Þð Þ � 1

2
r2dt ð8:3:7Þ

Integrating

Z

t

0

dN tð Þ
a� N tð Þ ¼ �

Z

t

0

d Ln a� N tð Þð Þð Þ �
Z

t

0

1
2
r2 dt

)
Z

t

0

dN tð Þ
a� N tð Þ ¼

Z

t

0

b tð Þdt � 1
2
r2t þ rW tð Þ

�Ln a� N tð Þð Þt0�
1
2
r2t ¼

Z

t

0

b tð Þdt � 1
2
r2t þ rW tð Þ

� Ln a� N tð Þð Þ � Ln að Þ½ � ¼
Z

t

0

b tð Þdt þ rW tð Þ

Ln
a� N tð Þ

a

	 


¼ �
Z

t

0

b tð Þdt � rW tð Þ

1� N tð Þ
a

¼ e�
R t

0
b tð Þdt�rW tð Þ

N tð Þ ¼ a 1� e�
R t

0
b tð Þdt�rW tð Þ

� �

ð8:3:8Þ

Equation (8.3.8) gives the general solution of an SDE based SRGM of type
(8.3.2) under the initial condition N(0) = 0. Several SDE based SRGM

8.3 Stochastic Differential Equation 289



corresponding to the various NHPP based SRGM developed ignoring the noise
factor in the fault detection rate can be obtained from (8.3.8) substituting a suitable
form for the non-random factor of fault detection rate b(t).

8.3.1 Obtaining SRGM from the General Solution

8.3.1.1 Exponential SDE Model

An initial attempt in SDE based software reliability growth modelling was made
due to Yamada et al. [3] who derived an exponential type SDE based SRGM. If we
assume b(t) = b in (8.3.8) then we obtain

N tð Þ ¼ a 1� e�bt�rW tð Þ

 �

ð8:3:9Þ

Taking expectation on both sides of Eq. (8.3.9) we have

E N tð Þ½ � ¼ E a 1� e�bt�rW tð Þ

 �h i

ð8:3:10Þ

E N tð Þ½ � ¼ a� a e�btE e�rW tð Þ
h i
 �

ð8:3:11Þ

Consider

E e�rW tð Þ
h i

¼
Z

1

�1

e�rW tð Þ 1
ffiffiffiffiffiffiffi

2pt
p e� W tð Þ2=2tf g

2

4

3

5dW tð Þ

¼ 1
ffiffiffiffiffiffiffi

2pt
p

Z

1

�1

eðW tð Þ2þ2rtW tð Þþr2t2�r2tÞ=2t

2

4

3

5dW tð Þ

¼ 1
ffiffiffiffiffiffiffi

2pt
p

Z

1

�1

e W tð Þþrtð Þ2ð Þ=2te1=2ðr2tÞ
2

4

3

5dW tð Þ

¼ e1=2ðr
2tÞ

Z

1

�1

1
ffiffiffiffiffiffiffi

2pt
p e�1=2t W tð Þþrtð Þ2ð Þ 1

2t

� �

2

4

3

5dW tð Þ

¼ e1=2ðr
2tÞ

Substituting in (8.3.11) we get

290 8 SRGM Using SDE



E N tð Þ½ � ¼ a 1� e� bt�1=2ðr2tÞð Þ

 �

ð8:3:12Þ

Equation (8.3.12) defines the mean value function of an exponential SRGM
accounting the noise factor in the fault detection rate. On similar lines, we can
compute the mean value function corresponding to the various SRGM existing in
the literature accounting the noise factor in the rate functions.

8.3.1.2 SDE Model for Some Other Popular NHPP Models

Delayed S-Shaped SDE Model

If we define b(t) in (8.3.8) as

b tð Þ ¼ b2t

1þ btð Þ

then we obtain the delayed S-shaped SDE model [4]

N tð Þ ¼ a 1� 1þ btð Þe�bt�rW tð Þ
h i

ð8:3:13Þ

and the expected value of N(t) is given by

E N tð Þ½ � ¼ a 1� 1þ btð Þe� bt�1=2ðr2tÞð Þ

 �

ð8:3:14Þ

Flexible SDE Model

The flexible SDE model due to Yamada et al. [4] is given as

N tð Þ ¼ a 1� 1þ bð Þ
1þ b e�btð Þe

�bt�rW tð Þ
� �

ð8:3:15Þ

hence the mean value function of the SRGM is

E N tð Þ½ � ¼ a 1� 1þ bð Þ
1þ b e�btð Þ e

� bt�1=2ðr2tÞð Þ
� �

ð8:3:16Þ

Three-Stage SDE Model

The three-stage SDE model which describes the fault detection and correction as a
three-stage process namely—fault detection, fault isolation and removal can be
obtained if we define

8.3 Stochastic Differential Equation 291



b tð Þ ¼ b3t2

2 1þ bt þ b2t2=2ð Þð Þ

which gives

N tð Þ ¼ a 1� 1þ bt þ b2t2

2

	 


e�bt�rW tð Þ
� �

ð8:3:17Þ

and the expected value is given as

E N tð Þ½ � ¼ a 1� 1þ bt þ b2t2

2

	 


e� bt�1=2ðr2tÞð Þ
� �

ð8:3:18Þ

8.3.2 Software Reliability Measures

8.3.2.1 Instantaneous MTBF

Let DN(t) be the change of N(t) in the time interval [t, t ? Dt], the quantity (Dt/
DN(t)) gives an average fault detection interval (or average time interval between
software failures) in the infinitesimal time interval [t, t ? Dt]. Thus, the limit of
[t, t ? Dt] such that

lim
Dt!0

Dt

DN tð Þ

	 


¼ dt
dN tð Þ ¼

1
dNðtÞ=dt ð8:3:19Þ

gives an instantaneous time interval for failure occurrences.
Then the instantaneous mean time between failures (MTBF) is given as the

expected value of (8.3.19), given as

MTBFIðtÞ ¼ E
1

dNðtÞ=dt

� �

ð8:3:20Þ

For simplicity it is approximated as

MTBFIðtÞ ¼
1

E dNðtÞ=dt½ � ð8:3:21Þ

Now from (8.3.3)

dN tð Þ ¼ b tð Þ � 1
2
r2

� �

a� N tð Þ½ �dt þ r a� N tð Þ½ �dW tð Þ

and

292 8 SRGM Using SDE



N tð Þ ¼ a 1� e
�
R t

0
b xð Þdx�rW tð Þ


 �

" #

hence

E dN tð Þ½ � ¼ b tð Þ � 1
2
r2

	 


E a e
�
R t

0
b xð Þdx�rW tð Þ


 �

dt

" #

since the Wiener process has the independent increment property, W(t) and
dW(t) are statistically independent with each other and E[dW(t)] = 0.

Further

E dN tð Þ½ � ¼ a b tð Þ � 1
2
r2

	 


e
�
R t

0
b xð Þdx


 �

e 1=2ðr2tÞð ÞE½dt�

which implies

MTBFIðtÞ ¼
1

a b tð Þ � 1=2ðr2Þ½ �e
�
R t

0
b xð Þdx�1=2ðr2tÞ

h i
 � ð8:3:22Þ

Now using (8.3.22) we can compute the instantaneous MTBF for the various
SDE based models discussed above.

Exponential SDE Model

MTBFIðtÞ ¼
1

a b� 1=2ðr2Þ½ �e� b�1=2ðr2Þ½ �t ð8:3:23Þ

Delayed S-Shaped SDE Model

MTBFIðtÞ ¼
1

a 1þ btð Þ ðb2t=1þ btÞ � 1=2ðr2Þ½ �e� b�1=2ðr2Þ½ �t ð8:3:24Þ

Flexible SDE Model

MTBFIðtÞ ¼
1

ða 1þ bð ÞÞ=ð1þ b e�btÞ b=ð1þ b e�btÞ � 1=2ðr2Þð Þe� b�1=2ðr2Þð Þt

ð8:3:25Þ

8.3 Stochastic Differential Equation 293



Three-Stage SDE Model

MTBFIðtÞ ¼
1

a 1þ bt þ ðb2t2=2Þð Þ b3t2=ð1þ bt þ b2t2Þ � 1=2ðr2Þ½ �e� b�1=2ðr2Þ½ �t

ð8:3:26Þ

8.3.2.2 Cumulative MTBF

The quantity (t/N(t)) gives an average fault detection time interval (or average time
interval between software failures) per one fault up to time t. Thus its expected
value gives the MTBF measured from the initial time of testing phase up to the
testing time t, called cumulative MTBF, given as,

MTBFcðtÞ ¼ E
t

N tð Þ

� �

ð8:3:27Þ

It is approximated as

MTBFIðtÞ ¼
t

E N tð Þ½ � ð8:3:28Þ

hence the cumulative MTBF of SDE based SRGM discussed above are obtained as
follows.

Exponential SDE Model

MTBFcðtÞ ¼
t

a 1� e � bt�1=2ðr2tÞð Þð Þ½ � ð8:3:29Þ

Delayed S-Shaped SDE Model

MTBFcðtÞ ¼
t

a 1� 1þ btð Þe� bt�1=2ðr2tÞð Þ½ � ð8:3:30Þ

Flexible SDE Model

MTBFcðtÞ ¼
t

a 1� 1þ bð Þ= 1þ b e�btð Þ e� bt�1=2ðr2tÞð Þ½ � ð8:3:31Þ

294 8 SRGM Using SDE



Three-Stage SDE Model

MTBFcðtÞ ¼
t

a 1� 1þ bt þ ðb2t2=2Þð Þe� bt�1=2ðr2tÞð Þ½ � ð8:3:32Þ

Large value of MTBFc(t) depicts a high level of achieved reliability.

8.4 SDE Models Considering Fault Complexity
and Distributed Development Environment

8.4.1 The Fault Complexity Model

Different fault complexity based SRGM can be formulated using the SDE models
discussed in the previous sections. Kapur et al. [5] used exponential SDE model to
describe the failure and removal phenomena of simple faults, delayed S-shaped
SDE Model for the hard faults and three-stage SDE model to describe the complex
faults. The total fault removal phenomenon of the fault complexity model is hence
given as

N tð Þ ¼ a1 1� e�b1t�r1W tð Þ
h i

þ a2 1� 1þ b2tð Þe�b2t�r2W tð Þ
h i

þ a3 1� 1þ b3t þ
b23 t2

2

	 


e�b3t�r3W tð Þ
� �

ð8:4:1Þ

where a1 = ap1, a2 = ap2, a3 = ap3, and p1 ? p2 ? p3 = 1 and pi is the pro-
portion of ith type of fault in the total fault content a.

The expected value of N(t) is given as

E N tð Þ½ � ¼ E N1 tð Þ þ N2 tð Þ þ N3 tð Þ½ � ð8:4:2Þ

i.e.,

E N tð Þ½ � ¼ a1 1� e� b1t�1=2ðr21tÞð Þ

 �

þ a2 1� 1þ b2tð Þe� b2t�1=2 r22 t


 �
 �

 !

þ a3 1� 1þ b3t þ
b23 t2

2

	 


e
� b3t�1=2 r23 t


 �
 �

" #

ð8:4:3Þ

The various reliability measures such as instantaneous MTBF and cumulative
MTF for different types of faults are defined as in Sect. 8.3.2. The model is
further extended [6] to incorporate the learning effect of the testing and debug-
ging teams.

8.3 Stochastic Differential Equation 295

http://dx.doi.org/10.1007/978-0-85729-204-9_8


8.4.2 The Fault Complexity Model Considering Learning Effect

In Chap. 2 we have discussed the NHPP fault complexity SRGM considering the
learning effect in the discrete state space. The fault removal rates for simple, hard
and complex faults for that model are computed respectively as follows

b1ðtÞ ¼ b1;b2ðtÞ ¼ b2
1

1þ b2e�b2t
� 1
1þ b2 þ b2t

	 


and

b3ðtÞ ¼ b3
1

1þ b3e�b3t
� 1þ b3t

1þ b3 þ b3t þ b3tð Þ2

 !

ð8:4:4Þ

Using these forms of b(t) in (8.3.8) we can derive the fault complexity based
SDE model in the presence of learning effect. Substituting the forms of b(t) given
in (8.4.4) in Eq. (8.4.4) we obtain the number of faults removed for simple, hard
and complex faults, given as

N1 tð Þ ¼ a1 1� e�b1t�r1W1 tð Þ
n oh i

N2 tð Þ ¼ a2 1� 1þ b
2
þ b2 t

� �

e�b2t�r2W2 tð Þ� �

1þ b2e�b2t

" #

and

N3 tð Þ ¼ a3 1� 1þ b3 þ b3t þ b23t
2=2

� �

e�b3t�r3W3 tð Þ� �

1þ b3 e�b3t

" #

ð8:4:5Þ

The total fault removal phenomenon of the fault complexity model is

N tð Þ ¼ N1 tð Þ þ N2 tð Þ þ N3 tð Þ

hence the mean value function of the total fault removal phenomenon is

E N tð Þð Þ ¼ a1 1� e �b1tþðr21t=2Þð Þ
n oh i

þ a2 1� 1þ b2 þ b2tð Þe �b2tþr22t=2ð Þ
1þ b2e�b2t

" #

þ a3 1� 1þ b3 þ b3t þ b23t
2=2

� �

e �b3tþr23t=2ð Þ
1þ b3 e

�b3 t

" #

ð8:4:6Þ

Now using the results of Sect. 8.3.2 we obtain the instantaneous MTBF and
cumulative MTBF for the different types of faults.

296 8 SRGM Using SDE

http://dx.doi.org/10.1007/978-0-85729-204-9_2


8.4.2.1 Simple Faults

MTBFI tð Þ ¼
1

a1 b1 � 1=2ðr2Þð Þe� b1�1=2ðr2Þð Þt ð8:4:7Þ

MTBFCðtÞ ¼
t

a1 1� e� b1�1=2ðr2Þð Þt½ � ð8:4:8Þ

8.4.2.2 Hard Faults

MTBFIðtÞ¼
1

a2
1þbþb2t

1þbe�b2t

� �

b2 1þbþb2tð Þ�b2 1þbe�b2t
� �� �

1þbþb2tð Þ 1þbe�b2tð Þð Þ � 1
2r

2
2

� �

e� b2�1
2r

2
2ð Þt

ð8:4:9Þ

MTBFCðtÞ ¼
t

a2 1� 1þbþb2tð Þe� b2t�r2
2
t=2ð Þ

1þb e�b2 t

� � ð8:4:10Þ

8.4.2.3 Complex Faults

MTBFIðtÞ ¼
1

a3 S
1þbe�b3 t

h i

b3 Sð Þ�b3 1þbe�b3tð Þ 1þb3tð Þð Þ
Sð Þ 1þbe�b3 tð Þð Þ � r23

2

h i

e
� b3�

r2
3
2


 �

t

ð8:4:11Þ

where

S ¼ 1þ bþ b3t þ
b23t

2

2

MTBFCðtÞ ¼
t

a3 1� 1þ bþ b3t þ b23t
2=2

� �

e� b3t�r23t=2ð Þ

 �.

1þ b e�b3tð Þ
h i

ð8:4:12Þ

8.4.3 An SDE Based SRGM for Distributed Development

Environment

The fault complexity models are usually extended to describe the growth of
software systems developed under the distributed development environment

8.4 SDE Models Considering Fault Complexity 297



(DDE). Let us assume that, the software is consisting of n used and m newly
developed components. Used components are the software modules, which have
been developed for some other application and have some supporting function,
which is also required for the new software under consideration. The old code is
used either as such or with certain modifications to suit the current need. These
modules are generally assumed to contain only simple types of faults as they have
been tested in their previous applications. On the other hand the newly developed
components are developed anew for specific functions of the new software as such
they are assumed to contain mostly hard or complex types of faults which depends
on their complexity and size characteristics.

The fault detection and removal phenomenon of the used components can be
described by either of the above two models developed for the simple faults and
the concerned phenomenon for the new components can be described by the
models corresponding to the hard and complex faults [7]. If we assume that
p components of m new contain hard faults and remaining q components contain
complex faults, then the mean value function of the DDE software is

E N tð Þ½ � ¼
X

n

i¼0
ai 1� e� bit�1=2 r2i tð Þð Þ

 �

þ
X

nþ1þp

i¼nþ1

ai 1� 1þ bitð Þe� bit�1=2 r2i tð Þð Þ

 �

þ
X

nþm

i¼nþpþ2

ai 1� 1þ bit þ
b2i t2

2

	 


e� bit�1=2 ri
2tð Þð Þ

� �

ð8:4:13Þ

Incorporating the learning effect the DDE model becomes

E N tð Þ½ � ¼
X

n

i¼0

ai 1� e� bit�1=2ðr2i tÞð Þ

 �

þ
X

nþ1þp

i¼nþ1

ai 1� 1þ bi þ bitð Þe �bitþr2i t=2ð Þ
1þ bi e�bit

" #

þ
X

nþm

i¼nþpþ2

ai 1� 1þ bi þ bit þ b2i t
2=2

� �

e �bitþr2i t=2ð Þ
1þ bie�bit

" #

ð8:4:14Þ

8.5 Change Point SDE Model

Owing to the improved estimation power of change point model, SDE based
software reliability modelling is also extended to the change point models. Here
we show the development of change point models for exponential, delayed S-
shaped and flexible SDE Models [8].

298 8 SRGM Using SDE



8.5.1 Exponential Change Point SDE Model

The fault detection rates with random factor for the change point models are

b tð Þ ¼ b1 þ rc tð Þ 0� t� s

b2 þ rc tð Þ t[ s

�

ð8:5:1Þ

The stochastic differential equation for the model is then formulated as

dNðtÞ
dt

¼ b1 þ rcðtÞð Þ a� NðtÞ½ � 0� t� s

b2 þ rcðtÞð Þ a� NðtÞ½ � t[ s

�

ð8:5:2Þ

The transition probability distribution of this model is

N tð Þ ¼ a 1� e �b1t�rW tð Þð Þ� �

0� t� s

a 1� e �b1s�b2 t�sð Þ�rW tð Þð Þ� �

t[ s

�

ð8:5:3Þ

The mean number of detected faults is obtained taking expectation of N(t)

E N tð Þ½ � ¼
a 1� e �b1tþðr2tÞ=2ð Þ
h i

0� t� s

a 1� e �b1s�b2 t�sð Þþðr2tÞ=2ð Þ
h i

t[ s

8

<

:

ð8:5:4Þ

Following the results of Sect. 8.3.2 the instantaneous and cumulative MTBF are
obtained

MTBFI tð Þ ¼

1

a b1 � 1=2 r2e �b1tþðr2tÞ=2ð Þð Þ½ � 0� t� s

1

a b2 � 1=2 r2e �b1s�b2 t�sð Þþðr2tÞ=2ð Þð Þ½ � t[ s

8

>

>

<

>

>

:

ð8:5:5Þ

MTBFCðtÞ ¼

t

a 1� e �b1tþðr2tÞ=2ð Þ½ � 0� t� s

t

a 1� e �b1s�b2 t�sð Þþðr2tÞ=2ð Þ½ � t[ s

8

>

>

<

>

>

:

ð8:5:6Þ

8.5.2 Delayed S-Shaped Change Point SDE Model

The following S-shaped random fault detection rates describe the failure and
removal process by a delayed S-shaped curve

b tð Þ ¼
b21t

1þ b1t
þ rc tð Þ 0� t� s

b22t

1þ b2t
þ rc tð Þ t[ s

8

>

>

<

>

>

:

ð8:5:7Þ

8.5 Change Point SDE Model 299



Accordingly the stochastic SDE model is formulated as

dNðtÞ
dt
¼

b21t

1þ b1t
þ rc tð Þ

� �

a� NðtÞ½ � 0� t� s

b22t

1þ b2t
þ rc tð Þ

� �

a� NðtÞ½ � t[ s

8

>

>

<

>

>

:

ð8:5:8Þ

Therefore, the transition probability distribution of this model is obtained as
follows

N tð Þ ¼
a 1� 1þ b1tð Þe �b1t�rW tð Þð Þ� �

0� t� s

a 1� 1þ b1sð Þ
1þ b2sð Þ 1þ b2tð Þe �b1s�b2 t�sð Þ�rW tð Þð Þ

� �

t[ s

8

<

:

ð8:5:9Þ

The mean number of detected faults is given by

E N tð Þ½ � ¼
a 1� 1þ b1tð Þ exp �b1tþðr2tÞ=2ð Þ
h i

0� t� s

a 1� 1þ b1sð Þ
1þ b2sð Þ

	 


1

þb2t

 !

e �b1s�b2 t�sð Þþðr2tÞ=2ð Þ
" #

t[ s

8

>

>

<

>

>

:

ð8:5:10Þ

and Eqs. (8.5.11) and (8.5.12) give the instantaneous and cumulative values of the
MTBF

MTBFI tð Þ ¼

1

a 1þ b1tð Þ b21t
1þb1t

� 1
2 r

2

 �

e �b1tþr2 t
2ð Þ

h i 0� t� s

1

a
1þb1sð Þ
1þb2sð Þ


 � 1
þb2t

	 
 b22t
1þb2t

�1=2r2

 !

e

�b1sþ r2t
2

�b2 t � sð Þ

	 


2

6

4

3

7

5

t[ s

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð8:5:11Þ

MTBFC tð Þ¼

t

a 1� 1þb1tð Þe �b1tþðr2tÞ=2ð Þ½ � 0� t�s

t

a 1� 1þb1sð Þ= 1þb2sð Þð Þ 1þb2tð Þe �b1s�b2 t�sð Þþðr2tÞ=2ð Þ½ � t[s

8

>

<

>

:

ð8:5:12Þ

8.5.3 Flexible Change Point SDE Model

Fault detection rates for the flexible SDE Model for reliability growth measure-
ment incorporating the effect of random factors are defined by Eq. (8.5.13)

300 8 SRGM Using SDE



b tð Þ ¼
b1

1þ be�b1t
þ rc tð Þ 0� t� s

b2
1þ be�b2t

þ rc tð Þ t[ s

8

>

>

<

>

>

:

ð8:5:13Þ

Here b is assumed to be same before and after the change point for the sake of
simplicity. The intensity function of the stochastic model is hence formulated
according to the following stochastic differential equation

dNðtÞ
dt

¼

b1
1þ be�b1t

þ rc tð Þ
� �

a� NðtÞ½ � 0� t� s

b2
1þ be�b2t

þ rc tð Þ
� �

a� NðtÞ½ � t[ s

8

>

>

<

>

>

:

ð8:5:14Þ

The transition probability distribution of this model is obtained as follows

N tð Þ ¼
a 1� 1þ bð Þ

1þ b e�b1t
e �b1t�rW tð Þð Þ

� �

0� t� s

a 1�
1þ bð Þ 1þ b e�b2s

� ��

1þ b e�b1s
� �

1þ b e�b2t
� �

e �b1s�b2 t�sð Þ�rW tð Þð Þ

 !" #

t[ s

8

>

>

>

<

>

>

>

:

ð8:5:15Þ

The expected value of the removal process is given as

E N tð Þ½ � ¼

a 1� 1þ bð Þ
1þ b e�b1tð Þe

�b1tþðr2tÞ=2ð Þ
� �

0� t� s

a 1� 1þ bð Þ 1þ be�b2s
� �

1þ be�b1sð Þ 1þ be�b2tð Þe
�b1sþ ðr2tÞ=2
�b2 t � sð Þ

	 


2

6

4

3

7

5
t[ s

8

>

>

>

>

>

<

>

>

>

>

>

:

ð8:5:16Þ

The MTBF functions for this model are

MTBFI tð Þ

1

a 1þbð Þ
1þbe�b1 tð Þ

b1
1þbe�b1 t

� 1
2 r

2

 �

e �b1tþr2 t
2ð Þ

h i 0� t� s

t

a
1þbð Þ 1þbe�b2sð Þ

1þbe�b1sð Þ 1þbe�b2 tð Þ

b2
1þbe�b2 t

� 1
2 r

2

 �

e �b1s�b2 t�sð Þþr2t
2

� �

0

@

1

A

2

4

3

5

t[ s

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð8:5:17Þ

MTBFCðtÞ¼

t

a 1� 1þbð Þ= 1þbe�b1tð Þe �b1tþðr2tÞ=2ð Þ½ � 0� t�s

t

a 1� 1þbð Þ 1þbe�b2sð Þ= 1þbe�b1sð Þ 1þbe�b2tð Þe �b1s�b2 t�sð Þþðr2tÞ=2ð Þ½ � t[s

8

>

<

>

:

ð8:5:18Þ

8.5 Change Point SDE Model 301



8.6 SDE Based Testing Domain Models

In Chap. 4, we have developed a number of functions, which can describe the
growth of testing domain, and then used the domain functions to analyze
the software reliability. The software reliability growth models, which measure the
measure of reliability with respect to the testing domain growth, can be used to
obtain the domain growth dependent fault detection functions, which can then be
used in (8.3.8) to obtain the SRGM with random factor.

8.6.1 SRGM Development: Basic Testing Domain

Refer to Sect. 4.3.1, expected number of faults detected is expressed as

mb tð Þ ¼ a 1þ b e�vt � v e�bt

v� b

	 


; v 6¼ b ð8:6:1Þ

in the basic testing domain dependent exponential SRGM.
The above SRGM describes a two-stage process, namely—testing domain

isolation and fault detection. The mean value function of the SRGM model is
derived formulating the intensity function as

d
dt
mb tð Þ ¼ b ub tð Þ � mb tð Þð Þ ð8:6:2Þ

whereas the basic testing domain ub(t) is obtained from the differential equation

d
dt
ub tð Þ ¼ v a� ub tð Þð Þ ð8:6:3Þ

The SRGM (8.6.1) can be obtained in one stage using the fault detection rate
per remaining fault, obtained from

bb tð Þ ¼ m
0
b tð Þ

a� mb tð Þ ð8:6:4Þ

This implies

bb tð Þ ¼ vb e�bt � e�vt
� �

v e�bt � b e�vtð Þ ð8:6:5Þ

and substituting in equation

302 8 SRGM Using SDE

http://dx.doi.org/10.1007/978-0-85729-204-9_4
http://dx.doi.org/10.1007/978-0-85729-204-9_4


d
dt
mb tð Þ ¼ bb tð Þ ub tð Þ� mb tð Þð Þ ð8:6:6Þ

If we substitute bb(t) in place of b(t) in (8.3.8), we obtain the basic testing
domain dependent SDE model, assuming bb(t) has irregular fluctuation. Substi-
tuting and solving (8.3.8) we obtain the transition probability distribution of the
exponential basic testing domain dependent SDE model [9]

Nb tð Þ ¼ a 1� v e�bt � b e�vt
� �

e�rWðtÞ

v� bð Þ

" #

ð8:6:7Þ

Thus the mean number of detected faults up to testing time t for the basic
testing domain model is

E Nb tð Þð Þ ¼ a 1�
v e �btþ r2t=2ð Þð Þ � b e �vtþ r2t=2ð Þð Þ

 �

v� bð Þ

2

4

3

5 ð8:6:8Þ

8.6.2 SRGM for Testing Domain with Skill Factor

The mean value function of SRGM derived from testing domain with skill factor
ignoring the random fluctuation is (refer to Sect. 4.3.1)

ms;p tð Þ ¼ a 1þ bp

v� bð Þ vt þ 2v� b

v� b

	 


e�vt � 1þ bp
2v� b

v� bð Þ2

 !

e�bt

" #

ð8:6:9Þ

The testing domain with skill is formulated as a two-stage process. The first
stage describes the faults existing in the isolated testing domain and the second
stage describes the detectable faults in the domain. With the detectable fault
domain function, the SRGM can be obtained for the fault detection process. The
SRGM (8.6.9) can also be obtained in one stage if we define

bs;p tð Þ ¼ m
0
b tð Þ

a� mb tð Þ

¼
b ðv� bÞ2 þ bpð2v� bÞ
h i

e�bt � ð1þ ðv� bÞtÞv2p e�vt
n o

ðv� bÞ2 þ bpð2v� bÞ
h i

e�bt � bpðvtðv� bÞ þ 2v� bÞe�vt
n o ð8:6:10Þ

Using the fault detection rate bs,p(t) in Eq. (8.3.8) we derive the transition
probability distribution Ns,p(t) of the testing domain with skill factor dependent
SDE model

8.6 SDE Based Testing Domain Models 303

http://dx.doi.org/10.1007/978-0-85729-204-9_4


Ns;p tð Þ ¼ a 1þ bp

v� bð Þ vtþ 2v� b

v� b

	 


e�vte�r�rW tð Þ � 1þ bp
2v� b

v� bð Þ2

 !

e�bte�r�rW tð Þ

" #

ð8:6:11Þ

The mean number of detected faults up to testing time t for the testing domain
with skill factor is then given as

E Ns;p tð Þ
� �

¼ a 1þ bp

v� bð Þ vt þ 2v� b

v� b

	 


e �vtþðr2tÞ=2ð Þ � 1þ bp
2v� b

v� bð Þ2

 !

e �btþðr2tÞ=2ð Þ
" #

ð8:6:12Þ

For this SRGM if we assume that the size of initial testing domain is a, i.e., no
part of the testing domain can be isolated at the starting time of the testing phase,
then from the testing domain function (4.3.7) and SRGM (4.3.16) we obtain the
modified fault detection rate bs,p(t), denoted as bs(t)

bs tð Þ ¼
bv2 e�bt � ð1þ ðv� bÞtÞe�vt
� �

v2e�bt � bðvtðv� bÞ þ 2v� bÞe�vt½ � ð8:6:13Þ

so the transition probability distribution and the mean value function of the SDE
model for testing domain with skill factor become

Ns tð Þ ¼ a 1� v

v� b


 �2
e�bte�rW tð Þ þ b

v� b
vt þ 2v� b

v� b

	 


e�vte�rW tð Þ
� �

ð8:6:14Þ

E Ns tð Þð Þ ¼ a
1� v

v� b


 �2
e �btþðr2tÞ=2ð Þ

þ b

v� b
vt þ 2v� b

v� b

	 


e �vtþðr2tÞ=2ð Þ

2

6

6

4

3

7

7

5

ð8:6:15Þ

8.6.3 Imperfect Testing Domain Dependent SDE Based SRGM

Based on the similar analysis we obtain the single stage, fault detection rate for
imperfect testing domain based SRGM derived from ordinary differential equation
(Sect. 4.3.1)

bi tð Þ ¼
vb aðv� bÞeat � vðaþ bÞe�vt þ bðaþ vÞe�bt
� �

ðaþ vÞðv� bÞðaþ bÞ � vbððv� bÞeat þ ðaþ bÞe�vt � ðaþ vÞe�btÞ½ �
ð8:6:16Þ

Assuming irregular fluctuations in the fault detection rate (8.6.16) yields the
transition probability distribution Ni(t) and SDE based SRGM E[Ni(t)]

304 8 SRGM Using SDE

http://dx.doi.org/10.1007/978-0-85729-204-9_4
http://dx.doi.org/10.1007/978-0-85729-204-9_4
http://dx.doi.org/10.1007/978-0-85729-204-9_4


NiðtÞ ¼ avb
e�ð�atþrWðtÞÞ

ðaþ vÞðaþ bÞ þ
e�ðvtþrWðtÞÞ

ðaþ vÞðv� bÞ �
e�ð�btþrWðtÞÞ

ðv� bÞðaþ bÞ

� �

ð8:6:17Þ

E NiðtÞð Þ ¼ avb
e at þ ðr2tÞ=2ð Þ
ðaþ vÞðaþ bÞ þ e �vt þ ðr2tÞ=2ð Þ

ðaþ vÞðv� bÞ � e �bt þ ðr2tÞ=2ð Þ
ðv� bÞðaþ bÞ

� �

ð8:6:18Þ

8.6.4 Software Reliability Measures

Using the results of the previous sections here, we define the instantaneous and
cumulative MTBF for the testing domain dependent SRGM, discussed above.

8.6.4.1 Instantaneous MTBF for Basic Testing Domain
Dependent SRGM

MTBFIb tð Þ ¼ 1

a
vbðe�bt � e�vtÞ
ðve�bt � be�vtÞ �

r2

2

� �

1
ðv� bÞ ve

�btþ
r2

2
t

	 


� b
e �vtþ

r2

2
t

	 


2

6

4

3

7

5

ð8:6:19Þ

8.6.4.2 Instantaneous MTBF for Testing Domain with Skill Factor
Dependent SRGM

MTBFIs;p tð Þ ¼

a
b ðv� bÞ2 þ bpð2v� bÞ
h i

e�bt � ð1þ ðv� bÞtÞv2p e�vt
n o

ðv� bÞ2 þ bpð2v� bÞ
h i

e�bt � bpðvtðv� bÞ þ 2v� bÞe�vt
n o� r2

2

2

4

3

5

1þ bp
2v� b

ðv� bÞ2

 !

e �btþðr2=2Þtð Þ

� bp

ðv� bÞ vt þ 2v� b

v� b

	 


e �vtþðr2tÞ=2ð Þ

2

6

6

6

6

6

4

3

7

7

7

7

7

5

0

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

A

�1

ð8:6:20Þ

MTBFIs tð Þ ¼
a

v2bðe�bt � ð1þ ðv� bÞtÞe�vtÞ
ðv2e�bt � bðvtðv� bÞ þ 2v� bÞe�vtÞ �

r2

2

� �

v

v� b


 �2
e �btþðr2=2Þtð Þ � b

v� b
vt þ 2v� b

v� b

	 


e �vtþðr2=2Þtð Þ
� �

0

B

B

B

@

1

C

C

C

A

�1

ð8:6:21Þ

8.6 SDE Based Testing Domain Models 305



8.6.4.3 Instantaneous MTBF for Imperfect Testing Domain
Dependent SRGM

MTBFIi tð Þ ¼
a

vb aðv� bÞeat � vðaþ bÞe�vt þ bðaþ vÞe�bt
� �

ðaþ vÞðaþ bÞðv� bÞ � vb ðv� bÞeat þ ðaþ bÞe�vt � ðaþ vÞe�bt½ � �
r2

2

� �

1� vb
eðaþðr2=2ÞÞt

ðaþ vÞðaþ bÞ þ
e�ðv�ðr2=2ÞÞt

ðaþ vÞðv� bÞ �
e�ðb�ðr2=2ÞÞt

ðv� bÞðaþ bÞ

 !" #

0

B

B

B

B

@

1

C

C

C

C

A

�1

ð8:6:22Þ

8.6.4.4 Cumulative MTBF for Basic Testing Domain Dependent SRGM

MTBFcb tð Þ ¼ t a 1�
v e �btþ r2t=2ð Þð Þ � b e �vtþ r2t=2ð Þð Þ

 �

v� bð Þ

2

4

3

5

0

@

1

A

�1

ð8:6:23Þ

8.6.4.5 Cumulative MTBF for Testing Domain with Skill Factor
Dependent SRGM

MTBFcs;p tð Þ ¼ t a

1þ bp

v� bð Þ vt þ 2v� b

v� b

	 


e �vtþðr2t=2Þð Þ

� 1þ bp
2v� b

v� bð Þ2

 !

e �btþðr2t=2Þð Þ

2

6

6

6

6

4

3

7

7

7

7

5

0

B

B

B

B

@

1

C

C

C

C

A

�1

ð8:6:24Þ

MTBFcs tð Þ¼ t a 1� v

v�b


 �2
e �btþðr2t=2Þð Þþ b

v�b
vtþ2v�b

v�b

	 


e �vtþðr2t=2Þð Þ
� �	 
�1

ð8:6:25Þ

8.6.4.6 Cumulative MTBF for Imperfect Testing Domain
Dependent SRGM

MTBFci tð Þ ¼ t avb
e atþðr2t=2Þð Þ

ðaþ vÞðaþ bÞ þ
e �vtþðr2t=2Þð Þ
ðaþ vÞðv� bÞ �

e �btþðr2t=2Þð Þ
ðv� bÞðaþ bÞ

" # !�1

ð8:6:26Þ

306 8 SRGM Using SDE



8.7 Data Analysis and Parameter Estimation

In this chapter we have discussed various stochastic differential equation based
SRGM describing different aspects of testing process viz. uniform and non-uni-
form operational profile, S-shaped, flexible, fault complexity based, change point
and testing domain dependent models. Now we show an application of these
models by estimating the parameters of the various models discussed in the chapter
and predicting the testing process by means of the goodness of fit curves.

Failure Data Set

The failure data is obtained during testing of software that runs on an element
within a wireless network switching centre. Its main functions include routing
voice channels, signaling messages to relevant radio resources and processing
entities within the switching centre. Multiple systems were used in parallel to test
the software. The software reliability data was obtained [10] by aggregating (on a
weekly basis) the test time and the number of failures across all the test systems.
During 34 weeks the software is tested for 1,001 days and a total of 181 failures
were observed.

Following SDE models have been chosen for data analysis and parameter
estimation.

Model 1 (M1) Exponential SDE Model [3]

E N tð Þ½ � ¼ a 1� e� bt�1=2ðr2tÞð Þ

 �

Model 2 (M2) Delayed S-shaped SDE Model [4]

E N tð Þ½ � ¼ a 1� 1þ btð Þe� bt�1=2ðr2tÞð Þ

 �

Model 3 (M3) Flexible SDE Model [4]

E N tð Þ½ � ¼ a 1� 1þ bð Þ
1þ b e�btð Þe

� bt�1
2r

2tð Þ
� �

Model 4 (M4) Three-Stage SDE Model [4]

E N tð Þ½ � ¼ a 1� 1þ bt þ b2t2

2

	 


e� bt�1=2ðr2tÞð Þ
� �

Model 5 (M5) The Fault Complexity Model [5]

8.7 Data Analysis and Parameter Estimation 307



E N tð Þ½ � ¼ a1 1� e� b1t�1=2 r21tð Þð Þ

 �

þ a2 1� 1þ b2tð Þe� b2t�1=2 r22 t


 �
 �

 !

þ a3 1� 1þ b3t þ
b23 t2

2

	 


e� b3t�1=2ðr23tÞð Þ
� �

Model 6 (M6) The Fault Complexity Model with Learning Effect [6]

E N tð Þð Þ ¼ a1 1� e �b1tþðr21t=2Þð Þ
n oh i

þ a2 1� 1þ b2 þ b2tð Þe �b2tþr22t=2ð Þ
1þ b2 e�b2t

" #

þ a3 1� 1þ b3 þ b3t þ b23t
2=2

� �

e �b3tþr23t=2ð Þ
1þ b3 e

�b3 t

" #

Model 7 (M7) Exponential Change Point SDE Model [8]

E N tð Þ½ � ¼
a 1� e �b1tþðr2t=2Þð Þ
h i

0� t� s

a 1� e �b1s�b2 t�sð Þþðr2t=2Þð Þ
h i

t[ s

8

<

:

Model 8 (M8) Delayed S-shaped Change Point SDE Model [8]

E N tð Þ½ � ¼
a 1� 1þ b1tð Þ exp �b1tþðr2t=2Þð Þ
h i

0� t� s

a 1� 1þ b1sð Þ
1þ b2sð Þ

	 


1

þb2t

 !

e �b1s�b2 t�sð Þþðr2t=2Þð Þ
" #

t[ s

8

>

>

<

>

>

:

Model 9 (M9) Basic Testing Domain based SDE SRGM [9]

E Nb tð Þð Þ ¼ a 1�
v e �btþ r2t=2ð Þð Þ � b e �vtþ r2t=2ð Þð Þ

 �

v� bð Þ

2

4

3

5

Model 10 (M10) SDE based SRGM for Testing Domain with Skill Factor [9]

E Ns;p tð Þ
� �

¼ a 1þ bp

v� bð Þ vt þ 2v� b

v� b

	 


e �vtþðr2t=2Þð Þ � 1þ bp
2v� b

v� bð Þ2

 !

e �btþðr2t=2Þð Þ
" #

Model 11 (M11) Imperfect Testing Domain Dependent SDE based SRGM [9]

E NiðtÞð Þ ¼ avb
e atþðr2t=2Þð Þ

ðaþ vÞðaþ bÞ þ
e �vtþðr2t=2Þð Þ
ðaþ vÞðv� bÞ �

e �btþðr2t=2Þð Þ
ðv� bÞðaþ bÞ

" #

Results of parameter estimations are shown in Table 8.1. Analysis of results
depicts that the exponential SDE models estimate a very high value of initial fault
content in contrast to all other models with a reasonably good value of comparison

308 8 SRGM Using SDE



criteria MSE and R2. Flexible SDE model, fault complexity models and testing
domain with skill factor based SRGM provide good fit on the data, while the
flexible SDE models fits best on this data. The fitting of imperfect testing domain
dependent SDE model suggests that the fault generation model cannot be applied

Table 8.1 Estimation results of models M1–M11

Model Estimated parameters Comparison
criteria

a, a1 a2 a3 b, b1 b2, v b3 r b, b2, p b3, a MSE R2

M1 1249 – – 0.00545 – – 0.03714 – – 20.70 0.994
M2 225 – – 0.08812 – – 0.00010 – – 21.42 0.994
M3 229 – – 0.08761 – – 8.95e-5 3.69 – 6.60 0.999
M4 189 – – 0.16593 – – 4.80e-8 – – 68.80 0.98
M5 102 86 64 0.09598 0.08492 0.1327 0.20456 – – 7.59 0.998
M6 55 113 40 0.09866 0.14300 0.2451 0.09812 19.54 0.0095 7.64 0.998
M7 265 – – 0.05225 0.07265 – 0.24061 – – 12.67 0.995
M8 234 – – 0.08616 0.08196 – 1.04e-5 – – 21.90 0.994
M9 350 – – 0.02409 0.31482 – 0.00199 – – 12.19 0.996
M10 245 – – 0.06837 0.13863 – 0.01581 0.699 – 7.09 0.998
M11 123 – – 0.00012 0.00015 – 0.32709 – 0.0035 292.15 0.894

0

50

100

150

200

250

300

1 5 9 1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

Time (Weeks)

C
u

m
u

la
ti

v
e

 F
a

il
u

re
s

Actual Data M1

M2 M3

M4

Fig. 8.1 Goodness of fit
curve models M1–M4

0

50

100

150

200

250

1 5 9 1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

Time (Weeks)

C
u

m
u

la
ti

v
e
 F

a
il
u

re
s

Actual Data M5 M6

Fig. 8.2 Goodness of fit
curve for Fault complexity
based SDE models
(M5 and M6)

8.7 Data Analysis and Parameter Estimation 309



on this data set. The mean square error for this model is very high with magnitude
292.15 and R2 value is low (0.894) as compared to the best fit model with MSE
equals 6.60 and R2 value 0.999. The goodness of fit curve for models M1–M4 is
shown in Fig. 8.1, for fault complexity models in Fig. 8.2, for change point models
in Fig. 8.3 and for testing domain based models in Fig. 8.4.

Exercises

1. Under what condition one should apply stochastic differential equation based
SRGM.

2. Define the following
a. Stochastic process
b. Brownian motion
c. ItÔ Integrals

3. Fault detection rate per remaining fault is known to have irregular fluctuations,
i.e., it is represented as b tð Þ þ rc tð Þ, where rc(t) represents a standardized
Gaussian white noise. In such a case the differential equation for basic SDE
model is given by

dN tð Þ
dt
¼ b tð Þ þ rc tð Þf g a� N tð Þf g:

0

50

100

150

200

250

1 5 9 1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

Time (Weeks)
C

u
m

u
la

ti
v

e
 F

a
il

u
re

s

Actual Data M7 M8

Fig. 8.3 Goodness of fit
curve for change point based
SDE models (M7 and M8)

0

100

200

300

400

500

600

1 5 9 1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

Time (Weeks)

C
u

m
u

la
ti

v
e

 F
a

il
u

re
s

Actual Data M9

M10 M11

Fig. 8.4 Goodness of fit
curve for testing domain
based SDE models
(M9–M11)

310 8 SRGM Using SDE



Derive the solution of the above differential equation. Here N(t) is a random
variable which represents the number of software faults detected in the software
system up to testing time t.

4. Derive the Exponential SDE based software reliability growth model. Give the
expression of instantaneous and cumulative MTBF for the model.

5. Using the real life software project data given below
a. Compute the estimates of unknown parameters of the models M1–M4, M7

and M8.
b. Analyze and compare the results of estimation based on root mean square

prediction error.
c. Draw the graphs for the goodness of fit.

References

1. Arnold L (1974) Stochastic differential equations. Wiley, New York
2. Wong E (1971) Stochastic processes in information and dynamical systems. McGraw-Hill,

New York
3. Yamada S, Kimura M, Tanaka H, Osaki S (1994) Software reliability measurement and

assessment with stochastic differential equations. IEICE Trans Fundam Electron Comput Sci
E77-A(1):109–116

4. Yamada S, Nishigaki A, Kimura M (2003) A stochastic differential equation model for
software reliability assessment and its goodness of fit. Int J Reliab Appl 4(1):1–11

5. Kapur PK, Anand S, Yadavalli VSS, Beichelt F (2007) A generalised software growth model
using stochastic differential equation. Communication in Dependability and Quality
Management Belgrade, Serbia, pp 82–96

6. Kapur PK, Anand S, Yamada S, Yadavalli VSS (2009) Stochastic differential equation-based
flexible software reliability growth model. Math Prob Eng, Article ID 581383, 15 pages. doi:
10.1155/2009/581383

7. Tamura Y, Yamada S (2006) A flexible stochastic differential equation model in distributed
development environment. Eur J Oper Res 168:143–152

8. Kapur PK, Singh VB, Anand S (2007) Effect of change-point on software reliability growth
models using stochastic differential equation. In: 3rd international conference on reliability
and safety engineering (INCRESE-2007), Udaipur, 7–19 Dec, 2007, pp 320–333

Testing
time (days)

Cumulative
failures

Testing
time (days)

Cumulative
failures

1 2 12 24
2 3 13 26
3 4 14 30
4 5 15 31
5 7 16 37
6 9 17 38
7 11 18 41
8 12 19 42
9 19 20 45
10 21 21 46
11 22

8.7 Data Analysis and Parameter Estimation 311

http://dx.doi.org/10.1155/2009/581383


9. Kapur PK, Anand S, Yadav K (2008) Testing-domain based software reliability growth
models using stochastic differential equation. In: Verma AK, Kapur PK, Ghadge SG (eds)
Advances in performance and safety of complex systems. MacMillan India Ltd, New Delhi,
pp 817–830

10. Jeske DR, Zhang X, Pham L (2005) Adjusting software failure rates that are estimated from
test data. IEEE Trans Reliab 54(1):107–114

312 8 SRGM Using SDE



Chapter 9
Discrete SRGM

9.1 Introduction

In Chap. 1, we familiarized the readers that non-homogeneous Poisson process
(NHPP) based software reliability growth models (SRGM) are generally classified
into two groups. The first group of models uses the execution time (i.e. CPU time)
or calendar time to describe the software failure and fault removal phenomena.
Such models are called continuous time models. The focus of Chaps. 2–8 was
mainly on the continuous time models. Most of the research in software reliability
modeling has been carried on the continuous time models. The second type of
models are known as discrete time models, these models use the number of test
cases executed as a unit for measuring the testing process [1, 2, 3]. A test case can
be a single computer test run executed in second(s), minute(s), hour(s), day(s),
weeks(s) or even month(s). Therefore, it includes the computer test run and length
of time spent on its execution. A large number of models have been developed in
the first group while fewer are there in the second group. The reason why the
second group of models finds limited interest of researchers is the difficulties in
terms of mathematical complexity involved in formulating and finding closed form
solution of these models. In spite of all these the utility of discrete reliability
growth models cannot be underestimated. Most of the observed/cited software
failure data sets are discrete and as such these models many times provide better fit
than their continuous time counterparts. There are only a few studies in the lit-
erature on the discrete software reliability modeling and most of the books
addressing to the reliability measurement and assessment have avoided the dis-
cussion on these models. The book aims to provide the widespread knowledge to
its readers on every aspect of NHPP based software reliability modeling so, this
chapter is devoted entirely to the study of discrete software reliability modeling.

An NHPP based SRGM describes the failure or removal phenomenon during
testing and operational phase. Using the data collected over a period of time of the
ongoing testing and based on some assumption of the testing environment, one can

P. K. Kapur et al., Software Reliability Assessment with OR Applications,
Springer Series in Reliability Engineering, DOI: 10.1007/978-0-85729-204-9_9,
� Springer-Verlag London Limited 2011

313

http://dx.doi.org/10.1007/978-0-85729-204-9_1
http://dx.doi.org/10.1007/978-0-85729-204-9_2
http://dx.doi.org/10.1007/978-0-85729-204-9_8


estimate the number of faults that can be removed by a specific time t and hence
the reliability. The discrete counting process has already been explained in
Sect. 1.5.5. Several discrete SRGM have been proposed in the literature under
different set of assumptions. Here we endeavor to describe the development of
discrete SRGM considering all the aspects of the testing environment that affect
the testing process firstly stating the general assumption of discrete NHPP based
SRGM.

9.1.1 General Assumption

1. Failure observation/fault removal phenomenon is modeled by NHPP with mean
value function m(n).

2. Software is subject to failures during execution caused by remaining software
faults.

3. On a failure observation, an immediate effort takes place to remove the cause of
failure.

4. Failure rate is equally affected by all the faults remaining in the software.

Under these general assumptions and some specific assumptions based on the
testing environment different models are developed.

Notation

a Initial fault content of the software
b Constant fault removal rate per remaining fault per test case
m(n) The expected mean number of faults removed by the nth test case
mf (n) The expected mean number of failures occurred by the nth test case
mr(n) The expected mean number of removal occurred by the nth test case
d Constant for rate of increase in delay
p Proportion of leading faults in the software
m1(t) Expected number of leading faults detected in the interval (0, t]
m2(t) Expected number of dependent faults detected in the interval (0, t]
n Number of test occasions
ai Fault content of type i ; with

Pk
i¼1 ai ¼ a, where a is the total fault

content
bi Constant failure rate/fault isolation rate per fault of type i
bi(n) Logistic learning function, i.e. fault removal rate per fault of type i
mif(n) Mean number of failure caused by fault-type i by n test cases
mii(n) Mean number of fault-isolated of fault-type i by n test cases
mir(n) Mean number of fault-removed of fault-type i by n test cases
b Constant parameter in the logistic learning-process function

314 9 Discrete SRGM

http://dx.doi.org/10.1007/978-0-85729-204-9_1


W(n) The cumulative testing resources spent up to the nth test run
w(n) The testing resources spent on the nth test run

9.1.2 Definition

Define

t ¼ nd and lim
x!0
ð1þ xÞ1=x ¼ e ð9:1:1Þ

9.2 Discrete SRGM Under Perfect Debugging Environment

The early development of discrete SRGM was mainly under the perfect debugging
environment. The continuous time SRGM developed under perfect debugging
environment have been discussed in Chap. 2. A perfect debugging environment
basically means that the testing and debugging teams are perfect in their jobs, are
experienced professionals and know the detailed structure of the programs under
testing. Now we describe the development of some perfect debugging SRGM in
the discrete time space.

9.2.1 Discrete Exponential Model

Under the basic assumption that the expected cumulative number of faults
removed between the nth and the (n ? 1)th test cases is proportional to the number
of faults remaining after the execution of the nth test run, satisfies the following
difference equation [4]

mðnþ 1Þ � mðnÞ
d

¼ bða� mðnÞÞ ð9:2:1Þ

Multiplying both sides of (9.2.1) by zn and summing over n from 0 to ? we get

X

1

n¼0

znmðnþ 1Þ �
X

1

n¼0

znmðnÞ ¼ abd
X

1

n¼0

zn � bd
X

1

n¼0

znmðnÞ

Solving the above difference equation under the initial condition m(n = 0) = 0
and using Probability Generating Function (PGF) given as

PðzÞ ¼
X

1

n¼0

znmðnÞ ð9:2:2Þ

9.1 Introduction 315

http://dx.doi.org/10.1007/978-0-85729-204-9_2


We get the mean value function of the exponential SRGM

mðnÞ ¼ að1� ð1� bdÞnÞ ð9:2:3Þ

The model describes an exponential failure growth curve. The equivalent
continuous SRGM corresponding to (9.2.3) is obtained taking limit d ? 0 and
using the definition (9.1.1), i.e.

mðnÞ ¼ að1� ð1� bdÞnÞ ! að1� e�btÞ as d ! 0 ð9:2:4Þ

Goel and Okumoto [5] model is the continuous equivalent model of the above
discrete exponential model. It may be noted here the continuous counterpart of
most of the SRGM discussed in this chapter is discussed in the previous chapters,
which can be obtained from their discrete versions following the procedure as
above, i.e. taking limit d ? 0 and using the definition (9.1.1).

9.2.2 Modified Discrete Exponential Model

Assuming that the software contains two types of errors [4] type I and type II, we
can write the difference equation corresponding to faults of each type as

m1ðnþ 1Þ � m1ðnÞ
d

¼ b1ða1 � m1ðnÞÞ ð9:2:5Þ

and

m2ðnþ 1Þ � m2ðnÞ
d

¼ b2ða2 � m2ðnÞÞ ð9:2:6Þ

where a = a1 ? a2 and b1[ b2.
Solving the above equation by the method of PGF as above we get the mean

value function for the SRGM in discrete time space.

m1ðnÞ ¼ a1ð1� ð1� b1dÞnÞ

m2ðnÞ ¼ a2ð1� ð1� b2dÞnÞ

mðnÞ ¼ m1ðnÞ þ m2ðnÞ ¼
X

2

i¼1

aið1� ð1� bidÞnÞ ð9:2:7Þ

The equivalent continuous SRGM corresponding to (9.2.7) is obtained taking
limit d ? 0.

mðnÞ ¼
X

2

i¼1

aið1� ð1� bidÞnÞ !
X

2

i¼1

aið1� e�bitÞ as d ! 0 ð9:2:8Þ

316 9 Discrete SRGM



The continuous equivalent model is proposed by [4]. The models discussed in
this section describe an exponential curve. In a number of practical applications
exponential models are used. The main reason for this is due to their simple
mathematical forms and less number of unknown parameters. However we know
that exponential models account to a uniform operational profile, which seems to
be unrealistic in many practical applications. It led to the development of S-shaped
and flexible models as they can well describe the non-uniform environment. In the
following sections we describe some of the S-shaped and flexible models in dis-
crete times.

9.2.3 Discrete Delayed S-Shaped Model

This model [6] describes the debugging process as a two-stage process—first, on
the execution of a test case a failure is observed and second, on a failure the
corresponding fault is removed. Accordingly, following the general assumptions of
a discrete SRGM the testing process is modeled by the following difference
equations

mf ðnþ 1Þ � mf ðnÞ
d

¼ bða� mf ðnÞÞ ð9:2:9Þ

and

mrðnþ 1Þ � mrðnÞ
d

¼ bðmf ðnþ 1Þ � mrðnÞÞ ð9:2:10Þ

Solving (9.2.10) by the method of PGF and initial condition mf(n = 0) = 0, we
get

mf ðnÞ ¼ að1� ð1� bdÞnÞ ð9:2:11Þ

Substituting value of mf (n ? 1) from (9.2.11) in (9.2.10) and solving by the
method of PGF with initial condition mr(n = 0) = 0, we get

mrðnÞ ¼ a½1� ð1þ bndÞð1� bdÞn� ð9:2:12Þ

The equivalent continuous SRGM corresponding to (9.2.12), is obtained taking
limit d ? 0, i.e.

mrðnÞ ¼ a½1� ð1þ bndÞð1� bdÞn� ! að1� ð1þ btÞe�btÞ ð9:2:13Þ

The continuous model is due to [7] and describes the delayed fault removal
phenomenon.

9.2 Discrete SRGM Under Perfect Debugging Environment 317



9.2.4 Discrete SRGM with Logistic Learning Function

The SRGM discussed above assume a constant rate of fault removal per remaining
error. However in practical situation as the testing goes on the experience of the
testing team increases with the software under testing and therefore it is expected
that fault removal rate per remaining error will follow a logistic learning function.
The model discussed in this section [8] incorporates the learning process of testing
team into the SRGM. The difference equation for the model is given as

mðnþ 1Þ � mðnÞ
d

¼ b

1þ bð1� bdÞnþ1ða� mðnÞÞ ð9:2:14Þ

The mean value function corresponding to the above difference equation with
the initial condition m(n = 0) = 0 is

mðnÞ ¼ a

1þ bð1� bdÞn½1� ð1� bdÞn� ð9:2:15Þ

The equivalent continuous SRGM corresponding to above discrete SRGM is
obtained taking limit d ? 0, i.e.

mðnÞ ¼ a

1þ bð1� bdÞn½1� ð1� bdÞn� ! a

1þ be�bt
1� e�bt
� �

ð9:2:16Þ

9.2.5 Modeling Fault Dependency

The test team can remove some additional faults in the software, without these
faults causing any failure during the removal of identified faults, although this may
involve some additional effort. However, removal of these faults saves the testing
time in terms of their removal with failure observation. Faults, which are removed
consequent to a failure, are known as a leading fault whereas the additional faults
removed, which may have caused failure in future are known as dependent faults.
In this section we develop some of the models in this category in discrete time
space.

9.2.5.1 Discrete SRGM for Error Removal Phenomenon

In addition to considering underling fault dependency this model also describes the
debugging time lag-after failure observation [9]. In the previous chapters we
explained the need of modeling fault detection and fault removal processes sep-
arately. In general the assumption of immediate removal of faults on the detection
of a failure does not hold true. Usually there is a time lag in the removal process

318 9 Discrete SRGM



after the detection process. The removal time indeed can also be not negligible,
due to its dependence on a number of factors such as complexity of the detected
faults, skills of the debugging team, available manpower, software development
environment, etc. Hence in general testing environment fault removal may take a
longer time after detection.

Under the assumption that while removing leading faults the testing team may
remove some dependent faults, the difference equation for the fault removal
process can be written as

mrðnþ 1Þ � mrðnÞ
d

¼ p a� mrðnÞ½ � þ q

a
mrðnþ 1Þ a� mrðnÞ½ � ð9:2:17Þ

where q and p are the rates of leading and dependent fault detection, respectively.
Solving (9.2.17) by the method of PGF and initial condition m(n = 0) = 0, we

obtain the mean value function of a flexible SRGM, given as

mrðnÞ ¼ a
1� 1� dðpþ qÞf gn

1þ q=pð Þ 1� dðpþ qÞf gn
� �

ð9:2:18Þ

The equivalent continuous SRGM [10] corresponding to (9.2.18), is obtained
taking limit d ? 0, i.e.

mrðnÞ ¼ a
1� 1� ðpþ qÞf gn

1þ q=pð Þ 1� ðpþ qÞf gn
� �

! m
1� e�ðpþqÞt

1þ q=pð Þe�ðpþqÞt

� �

as d ! 0

ð9:2:19Þ

9.2.5.2 Discrete Time Fault Dependency with Lag Function

This model is based on the assumption that there exists definite time lag between
the detection of leading faults and the corresponding dependent faults [11].
Assuming that the intensity of dependent fault detection is proportional to the
number of dependent faults remaining in the software and the ratio of leading
faults removed to the total leading faults, the difference equation for leading faults
is given as

m1ðnþ 1Þ � m1ðnÞ ¼ b ap� m1ðnÞ½ � ð9:2:20Þ

The leading faults with the initial condition m1(n = 0) = 0 are described by the
mean value function

m1ðnÞ ¼ a 1� ð1� bÞn½ � ð9:2:21Þ

The dependent fault detection can be put as the following differential equation

m2ðnþ 1Þ � m2ðnÞ ¼ c að1� pÞ � m2ðnÞ½ �m1ðnþ 1� DnÞ
ap

; ð9:2:22Þ

9.2 Discrete SRGM Under Perfect Debugging Environment 319



where Dn is the lag depending upon the number of test occasions.
When Dn ¼ logð1�bÞ�1ð1þ dnÞ; we get m2(n) under the initial condition

m2(n = 0) = 0 as

m2ðnÞ ¼ að1� pÞ 1�
Y

n

i¼1

1� c 1� ð1� bÞið1þ ði� 1Þd
� �� �

" #

ð9:2:23Þ

Hence, the expected total number of faults removed in n test occasion is

mðnÞ ¼ a 1� pð1� bÞn þ ð1� pÞ
Y

n

i¼1

1� c 1� ð1� bÞið1þ ði� 1Þd
� �� �

" #

ð9:2:24Þ

The equivalent continuous SRGM corresponding to above discrete SRGM is

mðtÞ ¼ a 1� pe�bt � ð1� pÞe�cf ðtÞ
h i

; ð9:2:25Þ

where f ðtÞ ¼ t þ 1
b 1þ d

b

� �

e�bt � 1
� �

þ d
b te

�bt:

9.3 Discrete SRGM under Imperfect Debugging
Environment

A number of imperfect debugging continuous time SRGM have been discussed in
Chap. 3. Considering the imperfect debugging phenomena in reliability modeling
is very important to the reliability measurement as it is related to the efficiency of
the testing and debugging teams. Besides this consideration, helps the developers
in having an insight the measure of testing efficiency, which they can use to
formulate the testing teams and strategies and make decisions related to the
changes in the testing strategies and team compositions required to pace up the
testing at any stage. The study of imperfect debugging environment is very limited
in discrete time space owning to the complexity of exact form solution of the mean
value function. In this section we discuss a discrete SRGM with two types of
imperfect debugging namely—imperfect fault debugging and error generation.
The difference equation for a discrete SRGM under imperfect debugging envi-
ronment incorporating two types of imperfect debugging and learning process of
the testing team as testing progresses is given by [12]

mrðnþ 1Þ � mrðnÞ
d

¼ bðnþ 1Þ aðnÞ � mrðnÞð Þ: ð9:3:1Þ

Let us define

aðnÞ ¼ a0ð1þ adÞn ð9:3:2Þ

320 9 Discrete SRGM

http://dx.doi.org/10.1007/978-0-85729-204-9_3


bðnþ 1Þ ¼ b0p

1þ bð1� b0pdÞnþ1 ð9:3:3Þ

An increasing a(n) implies an increasing total number of faults, and thus reflects
fault generation. Whereas, b(n ? 1) is a logistic learning function representing the
learning of the testing team and is affected by the probability of fault removal on a
failure.

Substituting the above forms of a(n) and b(n ? 1) in the difference equation
(9.3.1) and solving by the method of PGF, the closed form solution is as given
below

mrðnÞ ¼
a0b0pd

1þ bð1� b0pdÞn
ð1þ adÞn � ð1� b0pdÞn

ðadþ b0pdÞ

� �

; ð9:3:4Þ

where mr(n = 0) = 0.
If the imperfect fault debugging parameter p = 1 and fault generation rate

a = 0, i.e. the testing process is perfect, then mean value function of the removal
process, mr(n) given by expression (9.3.4) reduces to

mrðnÞ ¼ a0
1� ð1� b0dÞn
1þ bð1� b0dÞn

� �

ð9:3:5Þ

which is perfect debugging flexible discrete SRGM (9.2.19) with b0 = p ? q and
b = q/p. The equivalent continuous SRGM corresponding to (9.3.4) is obtained
taking limit d ? 0, i.e.

a0b0pd

1þ bð1� b0pdÞn
ð1þ adÞn � ð1� b0pdÞn

ðadþ b0pdÞ

� �

! a0b0p

1þ be�b0pt

eat � e�b0pt

aþ b0p

� �

ð9:3:6Þ

The imperfect debugging discrete SRGM discussed above is a flexible model,
as it possesses the properties of exponential as well as s-shaped models.

9.4 Discrete SRGM with Testing Effort

Failure observation, fault identification and removal are dependent upon the nature
and amount of testing efforts spent on testing. The time dependent behavior of the
testing effort has been studied by many researchers in the literature (refer to
Sect. 2.6) but most of the work relates the testing resources to the testing time. A
discrete test effort function describes the distribution or consumption pattern of
testing resources with respect to the executed test cases. Here we discuss a discrete
SRGM with testing effort, assuming that the cumulative testing resources spent up
to the nth test run, W(n), is described by a discrete Rayleigh curve, i.e.

wðnþ 1Þ ¼ Wðnþ 1Þ �WðnÞ ¼ bðnþ 1Þ a�WðnÞ½ � ð9:4:1Þ

9.3 Discrete SRGM under Imperfect Debugging Environment 321

http://dx.doi.org/10.1007/978-0-85729-204-9_2


Solving (9.4.1) following PGF method we get

WðnÞ ¼ a 1�
Y

n

i¼0

ð1� ibÞ
 !

ð9:4:2Þ

and hence

wðnÞ ¼ abn
Y

n�1

i¼0

ð1� ibÞ ð9:4:3Þ

Under the above assumptions, the difference equation for an exponential SRGM
is written as

mðnþ 1Þ � mðnÞ
wðnÞ ¼ b a� mðnÞð Þ ð9:4:4Þ

Mean value function corresponding to the above difference equation is

mðnÞ ¼ a 1�
Y

n

i¼0

1� bwðiÞð Þ
 !

ð9:4:5Þ

This model is due to [13].

9.5 Modeling Faults of Different Severity

SRGM which categorise the faults based on the complexity of fault detection and
removal process, provides in most cases very accurate estimation and prediction of
the reliability measures. Complexity of faults is considered in terms of the delay
occurring in the removal process after the failure observation. More complex the
fault more is delay in the fault isolation and removal after the failure observation.
Various continuous time fault complexity based SRGM have been discussed in the
previous chapters under the varying sets of assumptions and considering different
aspects of software testing process and the factors that influence the reliability
growth. In the next section we discuss the models conceptualizing the concept of
faults of different complexity in the discrete time space.

9.5.1 Generalized Discrete Erlang SRGM

Assuming that the software consists of n different types of faults and on each type
of fault a different strategy is required to remove the cause of failure due to that
fault, we assume that for a type i (i = I, II,���, k) fault, i different processes (stages)

322 9 Discrete SRGM



are required to remove the cause of failure. Accordingly we may write the fol-
lowing difference equations for faults of each type [1].

9.5.1.1 Modeling Simple Faults (Fault-Type I)

The simple fault removal is modeled as a one-stage process

m11ðnþ 1Þ � m11ðnÞ ¼ b1ða1 � m11ðnÞÞ ð9:5:1Þ

9.5.1.2 Modeling the Hard Faults (Fault-Type II)

The harder type of faults is assumed to take more testing effort. The removal
process for such faults is modeled as a two-stage process.

m21ðnþ 1Þ � m21ðnÞ ¼ b2ða2 � m21ðnÞÞ
m22ðnþ 1Þ � m22ðnÞ ¼ b2ðm21ðnþ 1Þ � m22ðnÞÞ

ð9:5:2Þ

9.5.1.3 Modeling the Fault-Type k

The modeling procedure of the hard fault can be extended to formulate a model
that describes the removal of a fault-type k with k stages in removal.

mk1ðnþ 1Þ � mk1ðnÞ ¼ bkðak � mk1ðnÞÞ
mk2ðnþ 1Þ � mk2ðnÞ ¼ bkðmk1ðnþ 1Þ � mk2ðnÞÞ

. . .

mkkðnþ 1Þ � mkkðnÞ ¼ bkðmk;k�1ðnþ 1Þ � mkkðnÞÞ

ð9:5:3Þ

Here mij(.) represent the mean value function for the ith type of fault in the jth
stage. Solving the above difference equations, we get the general solution for the
mean value function for the removal process for each type of fault

miðnÞ ¼ miiðnÞ ¼ aið1� ð1� biÞn
X

i�1

j¼0

b j
i

j!ðnþ jÞ
Y

j

l¼0

ðnþ lÞ
 !

i ¼ 1; . . .; k

ð9:5:4Þ

Since mðnÞ ¼
Pk

i¼1 miðnÞ; we get

mðnÞ ¼
X

k

i¼1

ai 1� ð1� biÞnð Þ
X

i�1

j¼0

b j
i

j!ðnþ jÞ
Y

j

l¼0

ðnþ lÞ
 !

ð9:5:5Þ

9.5 Modeling Faults of Different Severity 323



In particular, we have

m1ðnÞ ¼ m11ðnÞ ¼ a1ð1� ð1� b1ÞnÞ

m2ðnÞ ¼ m22ðnÞ ¼ a2ð1� ð1þ b2nÞð1� b2ÞnÞ

and

m3ðnÞ ¼ m33ðnÞ ¼ a3 1� 1þ b3nþ b23nðnþ 1Þ
�

2
� �� �� �

ð1� b3Þn
� �

ð9:5:6Þ

The removal rate per fault for the above three types of faults is given as

d1ðnÞ ¼ b; d2ðnÞ ¼
b22ðnþ 1Þ
b2nþ 1

and d3ðnÞ ¼
b33ðn2 þ 3nþ 2Þ

2 b23nðnþ 1Þ
�

2
� �

þ b3nþ 1
� �;

respectively. We observe that d1(n) is constant with respect to n1 while d2(n) and
d3(n) increase with n and tend to b2 and b3 as n ? ?. Thus in the steady state,
m2(n)and m3(n) behave similarly as m1(n) and hence there is no loss of generality
in assuming steady state rates b2 and b3 equal to b1. Generalizing for arbitrary k,
we can assume b1 = b2 = … = bk = b(say). We thus have

miðnÞ � miiðnÞ ¼ aið1� ð1� bÞn
X

i�1

j¼0

b j

j!ðnþ jÞ

Y

j

l¼0

ðnþ lÞ

 !

; ð9:5:7Þ

and

mðnÞ ¼
X

k

i¼1

ai 1� ð1� bÞnð Þ
X

k

i¼1

X

i�1

j¼0

b j

j!ðnþ jÞ

Y

j

l¼0

ðnþ lÞ

 !

ð9:5:8Þ

The equivalent continuous time model [14], modeling errors of different
severity is

mðtÞ ¼
X

k

i¼1

ai 1� e�bit
X

i�1

j¼0

ðbitÞ
j

j!

 !" #

ð9:5:9Þ

which can be derived as a limiting case of discrete model substituting t = nd and
taking limit d ? 0.

9.5.2 Discrete SRGM with Errors of Different Severity

Incorporating Logistic Learning Function

Kapur et al. [15] incorporated a logistic learning function during the removal
phase, for capturing variability in the growth curves depending on software test

324 9 Discrete SRGM



conditions and learning process of the test team as the number of test runs
executed increases for modeling errors of different severity in the above model.
Such framework is very much suited for object-oriented programming and dis-
tributed development environments. Assuming software contains finite number of
fault types and the time delay between the failure observations and its subsequent
removal represents the severity of the faults, the concept of errors of different
severity with logistic rate of fault removal per remaining fault can be modeled as
follows

9.5.2.1 Modeling the Simple Faults (Fault-Type I)

The simple fault removal process is modeled as a one-stage process

m1rðnþ 1Þ � m1rðnÞ ¼ b1ðnþ 1Þða1 � m1rðnÞÞ; ð9:5:10Þ

where b1(n ? 1) = b1.
Solving the above difference equation using the PGF with the initial condition

m1r(n = 0) = 0, we get

m1rðnÞ ¼ a1ð1� ð1� b1ÞnÞ ð9:5:11Þ

9.5.2.2 Modeling the Hard Faults (Fault-Type II)

The harder type of faults is assumed to take more testing-effort. The removal
process for such faults is modeled as a two-stage process,

m2f ðnþ 1Þ � m2f ðnÞ ¼ b2ða2 � m2f ðnÞÞ ð9:5:12Þ

m2rðnþ 1Þ � m2rðnÞ ¼ b2ðnþ 1Þðm2f ðnþ 1Þ � m2rðnÞÞ ð9:5:13Þ

where b2ðnþ 1Þ ¼ b2
1þbð1�b2Þnþ1.

Solving the above system of difference equations using the PGF with the initial
conditions m2f(n = 0) = 0 and m2r(n = 0) = 0 we get

m2rðnÞ ¼ a2
1� ð1þ b2nÞð1� b2Þn

1þ bð1� b2Þn
ð9:5:14Þ

9.5.2.3 Modeling the Complex Faults (i.e. Fault-Type III)

The complex fault removal process is modeled as a three-stage process,

m3f ðnþ 1Þ � m3f ðnÞ ¼ b3ða3 � m3f ðnÞÞ ð9:5:15Þ

9.5 Modeling Faults of Different Severity 325



m3iðnþ 1Þ � m3iðnÞ ¼ b3ðm3f ðnþ 1Þ � m3iðnÞÞ ð9:5:16Þ

m3rðnþ 1Þ � m3rðnÞ ¼ b3ðnþ 1Þðm3iðnþ 1Þ � m3rðnÞÞ; ð9:5:17Þ

where b3ðnþ 1Þ ¼ b3
1þbð1�b3Þnþ1:

Solving the above system of difference equations using the PGF with the initial
conditions m3f(n = 0) = 0, m3i(n = 0) = 0 and m3r(n = 0) = 0, we get

m3rðnÞ ¼ a3
1� ð1� b3nþ b23nðnþ1Þ

2 Þð1� b3Þn

1þ bð1� b3Þn
ð9:5:18Þ

9.5.2.4 Modeling the Fault-Type k

The modeling procedure of the complex fault can be extended to formulate a
model that describes the removal of a fault-type k with r stages (r can be equal
to k) of removal.

mkf ðnþ 1Þ � mkf ðnÞ ¼ bkðak � mkf ðnÞÞ ð9:5:19Þ

mkqðnþ 1Þ � mkqðnÞ ¼ bkðmkf ðnþ 1Þ � mkqðnÞÞ ð9:5:20Þ

� � �

mkrðnþ 1Þ � mkrðnÞ ¼ bkðnþ 1Þðmkðr�1Þðnþ 1Þ � mkrðnÞÞ; ð9:5:21Þ

where bkðnþ 1Þ ¼ bk
1þbð1�bkÞnþ1:

Solving the above system of difference equations using the PGF with the initial
conditions, mkf(n = 0) = mkf(n = 0) = ,…, mkr(n = 0) = 0, we get

mkrðnÞ ¼ ak
1� 1þ

Pk�1
j¼1

b j
k

j!ðnþjÞ
Q j

l¼0 ðnþ lÞ
	 


ð1� bkÞn

ð1þ bð1� bkÞnÞ
ð9:5:22Þ

9.5.2.5 Modeling the Total Fault Removal Phenomenon

The total fault removal phenomenon is the superposition of the NHPP with mean
value functions given in Eqs. (9.5.11), (9.5.14), (9.5.18) and (9.5.22). Thus, the
mean value function of the SRGM is

326 9 Discrete SRGM



mðnÞ ¼
Xk

i¼1 mirðnÞ ¼ aið1� ð1� biÞnÞ

þ
X

k

i¼2

ai
1� 1þPi�1

j¼1
b j
i

j!ðnþjÞ
Q j

l¼0 ðnþ lÞ
	 


ð1� biÞn

ð1þ bð1� biÞnÞ

ð9:5:23Þ

where m(n) provides the general framework with k types of faults.
The fault removal rate per fault for fault-types, 2 and 3 are given, respectively,

as follows

d1ðnÞ ¼
m1ðnþ 1Þ � m1ðnÞ

ai � m1ðnÞ
¼ b1 ð9:5:24Þ

d2ðnÞ ¼
m2ðnþ 1Þ � m2ðnÞ

a2 � m1ðnÞ
¼ b2ð1þ bþ b2nÞ � b2ð1þ bð1� b2ÞnÞ

ð1þ bð1� b2ÞnÞð1þ bþ b2nÞ
ð9:5:25Þ

d3ðnÞ ¼
b3ð1þ bþ b3nþ b23nðnþ1Þ

2 Þ � b3ð1þ bð1� b3ÞnÞð1þ b3nÞ
ð1þ bð1� b3ÞnÞð1þ bþ b3nþ b23nðnþ1Þ

2 Þ
ð9:5:26Þ

It is observed that d1(n) is constant with respect to n while d2(n) and
d3(n) increase monotonically with n and tend to constants b2 and b3 as n ? ?.
Thus, in the steady state, m2r(n) and m3r(n) behave similarly as m1r(n) and hence
without loss of generality we can assume the steady state rates b2 and b3 to be
equal to b1. After substituting b2 = b3 = b1 in the right-hand side of Eqs. (9.5.25)
and (9.5.26), one can see that b1[ d2(n)[ d3(n), which is in accordance with the
severity of the faults. Generalizing for arbitrary k, assuming b1 = b2 = … =

bk = b (say) we may write (9.5.23) as follows

mðnÞ ¼
X

n

i¼1

mirðnÞ ¼ a1 1� ð1� bÞnð Þ

þ
X

k

i¼2

ai
1� 1þ

Pi�1
j¼1

b j

j!ðnþjÞ
Q j

l¼1 ðnþ lÞ
	 


ð1� bÞn

ð1þ bð1� bÞnÞ

ð9:5:27Þ

The equivalent continuous time model [16], modeling errors of different
severity is

mðtÞ ¼
X

n

i¼1

mirðtÞ ¼ a1 1� e�bt
� �

þ
X

k

i¼2

ai
1�

Pk�1
j¼0

ðbtÞ j
j!

	 


e�bt

ð1þ be�btÞ ð9:5:28Þ

which can be derived as a limiting case of discrete model substituting t = nd and
taking limit d ? 0.

9.5 Modeling Faults of Different Severity 327



9.5.3 Discrete SRGM Modeling Severity of Faults with Respect

to Test Case Execution Number

In the fault complexity based software reliability growth modeling faults can be
categorized on the basis of their time to detection. During the early stage of testing
the faults are easily detectable and can be called simple faults or trivial faults. As
the complexity of faults increases, so does their detection time. Faults, which take
maximum time for detection, are termed as complex faults.

For classification of faults on the basis of their detection times [17], first we
define non-cumulative instantaneous error detection function f(n) using discrete
SRGM for error removal phenomenon discussed in Sect. 9.2.5, which is given by
first-order difference equation of m(n).

f nð Þ ¼ Dm nð Þ ¼ m nþ 1ð Þ� mðnÞ
d

¼ Np pþ qð Þ2 1� d pþ qð Þ½ �n

pþ q 1� d pþ qð Þð Þn½ � pþ q 1� d pþ qð Þð Þnþ1
h i ð9:5:29Þ

Above, f(n) defines the mass function for non-cumulative fault detection. It
takes the form of a bell-shaped curve and it represents the rate of fault removal for
n. Peak of f(n) occurs when

n ¼ ½n�� if f ð½n��Þ� f ð½n�� þ 1Þ
½n�� þ 1 otherwise

� �

ð9:5:30Þ

where n� ¼ log p=qð Þ
log 1�dðpþqÞð Þ � 1 and n�½ � ¼ n : max n� n�ð Þ; n 2 Zf g:

Then as d ? 0, i.e. n� converges to inflection point of continuous s-shaped
SRGM due to [10]. Using t = nd we get

t� ¼ d log p=qð Þ
log 1� d pþ qð Þð Þ � d ! �log p=qð Þ

pþ q
as d ! 0

The corresponding f ðn�Þ is given by

f n�ð Þ ¼ N pþ qð Þ2
2q 2� d pþ qð Þð Þ ! f t�ð Þ ¼ N pþ qð Þ2

4q
as d ! 0

The curve for f(n), the non-cumulative error detection is symmetric about point
n� up to 2n� þ 1: Here f 0ð Þ ¼ f 2n� þ 1ð Þ ¼ Np

�

1� dqð Þ=. As d ? 0 is sym-

metric about t� up to 2t� then, f t ¼ 0ð Þ ¼ f 2t�
� �

¼ Np: To get the insight into type
of trend shown by f(n), we need to find Df(n), i.e. rate of change in non-cumu-
lative error detection f(n).

328 9 Discrete SRGM



Df nð Þ ¼ f nþ 1ð Þ� f ðnÞ
d

Df nð Þ ¼
�Np pþ qð Þ3 1� d pþ qð Þ½ �n p� q 1� d pþ qð Þð Þnþ1

h i

pþ q 1� d pþ qð Þð Þn½ � pþ q 1� d pþ qð Þð Þnþ1
h i

: pþ q 1� d pþ qð Þð Þnþ2
h i

ð9:5:31Þ

The trend shown by f(n) can be summarized as in Table 9.1 and the size of each
fault category is shown in Table 9.2.

Here we observe that error removal rate increases for (0, n1
*) with increasing

rate and decreasing rate for ðn�1 þ 1 to n�Þ: It is because of the fact that as the
testing grows so does the skill of the testing team. The faults detected during (0,
n1
*) are relatively easy faults while those detected during ðn�1 þ 1; n�Þ are relatively

difficult errors. The n� is point of maxima for f(n). For (n1
*
? 1, n2

*), the error
detection rate decreases, i.e. lesser number of errors are detected upon failure.
These errors can be defined as relatively hard errors. For (n2

*
? 1, ?), very few

errors are detected upon failure. So testing is terminated. Errors detected beyond
n2
*
? 1 are relatively complex errors. Here, n1

*and n2
* are points of inflection for

f(n).

Point of maxima of Df(n)

n�1 ¼
½n1� if Df ½n1�Þ�Df ð½n1� þ 1Þ
½n1� þ 1 otherwise

�

; ð9:5:32Þ

where n1 ¼ 1
log 1�d pþqð Þð Þ log

p
q

2� d pþ qð Þð Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� d pþ qð Þð Þ2þ 2� d pþ qð Þð Þ
q

1�d pþqð Þð Þ

8

>

>

>

>

>

<

>

>

>

>

>

:

9

>

>

>

>

>

=

>

>

>

>

>

;

2

6

6

6

6

6

4

3

7

7

7

7

7

5

� 1

and n1½ � ¼ njmax n� n1ð Þ; n 2 Zf g:

Point of minima of Df(n)

n�2 ¼
½n2� if Df ½n2�Þ�Df ð½n2� þ 1Þ
½n2� þ 1 otherwise

�

; ð9:5:33Þ

Table 9.1 Trends in rate of
change in non-cumulative
error detection

No. of test cases Trends in f(n)

Zero to n1
* Increasing at an increasing rate

n1
*
? 1 to n* Increasing at a decreasing rate

n* ? 1 to n2
* Decreasing at an increasing rate

n2
*
? 1 to ? Decreasing at a decreasing rate

9.5 Modeling Faults of Different Severity 329



where n2 ¼ 1
log 1�d pþqð Þð Þ log

p
q

2� d pþ qð Þð Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� pþ qð Þdð Þ2þ 2� d pþ qð Þð Þ
q

1�d pþqð Þð Þ

8

>

>

>

>

>

<

>

>

>

>

>

:

9

>

>

>

>

>

=

>

>

>

>

>

;

2

6

6

6

6

6

4

3

7

7

7

7

7

5

� 1

and n2½ � ¼ njmax n� n2ð Þ; n 2 Zf g:
It may be noted that the corresponding inflection points T1 and T2, for the

continuous case can be derived from n1 and n2 as d ? 0, i.e.

n1 ! T1 ¼ � 1
pþ q

log
p

q
2�

ffiffiffi

3
p	 


� �

as d ! 0

n2 ! T2 ¼ � 1
pþ q

log
p

q
2þ

ffiffiffi

3
p	 


� �

as d ! 0

9.6 Discrete Software Reliability Growth Models
for Distributed Systems

We are aware that computing systems has reached the state of distributed com-
puting which is built on the following three components: (a) personal computers,
(b) local and fast wide area networks, and (c) system and application software. By
amalgamating computers and networks into one single computing system and
providing appropriate system software, a distributed computing system has created
the possibility of sharing information and peripheral resources. Furthermore, these
systems improved performance of a computing system and individual users.
Distributed computing systems are also characterized by enhanced availability,
and increased reliability. A distributed development project with some or all of the
software components generated by different teams presents complex issues of
quality and reliability of the software.

The SRGM for distributed development environment discussed in this section
[18] considers that software system consists of finite number of reused and newly
developed components and takes into account the time lag between the failure and
fault isolation/removal processes for the newly developed components. Faults in
the reused components are assumed to be of simple types and an exponential

Table 9.2 Size of different
fault categories

No. of test cases Fault category Expression for the
fault category size

Zero to n1
* Easy faults m(n1)

n1
*
? 1 to n* Difficult fault m(n*)–m(n1)

n* ? 1 to n2
* Hard faults m(n2)–m(n

*)
Beyond n2

* Complex fault �N � m n2ð Þ

330 9 Discrete SRGM



failure curve is suggested to describe the failure/fault removal phenomenon. S-
shaped failure curves are used to describe the failure and fault removal phenomena
of hard and complex faults present in the newly developed components. The fault
removal rate for these components is described by a discrete logistic learning
function as it is expected the learning process will grow with time.

Additional Notation

ai Initial fault content of type i reused component
aj Initial fault content of type j newly developed components with hard

faults
ak Initial fault content of type k newly developed component with complex

faults
bi Proportionality constant failure rate per fault of ith reused component
bj Proportionality constant failure rate per fault of jth newly developed

component
bk Proportionality constant failure rate per fault of kth newly developed

component
bj(n) Fault removal rate per fault of jth newly developed component
bk(n) Fault removal rate per fault of kth newly developed component
mir(n) Mean number of faults removed from ith reused component by n test

cases
mjf(n) Mean number of failures caused by jth newly developed component by

n test cases
mjr(n) Mean faults removal number from jth newly developed component by

n test cases
mkf(n) Mean failures number caused by kth newly developed component by

n test cases
mku(n) Mean faults isolation number of kth newly developed component by

n test cases
mkr(n) Mean faults removal number from kth newly developed component by

n test cases.

9.6.1 Modeling the Fault Removal of Reused Components

9.6.1.1 Modeling Simple Faults

Fault removal process of reused components is modeled as one-stage processes

mirðnþ 1Þ � mirðnÞ
d

¼ biðnþ 1Þ ai � mirðnÞð Þ;

9.6 Discrete Software Reliability Growth Models for Distributed Systems 331



where

biðnþ 1Þ ¼ bi ð9:6:1Þ

Solving the above difference equation using PGF method with the initial con-
dition mir(n = 0) = 0, we get

mirðnÞ ¼ ai 1� 1� dbið Þnð Þ ð9:6:2Þ

9.6.2 Modeling the Fault Removal of Newly Developed

Components

Software faults in the newly developed software component are assumed to be of
hard or complex types. Time required for fault removal depends on the complexity
of isolation and removal processes. The removal phenomenon of these faults is
modeled as two-stage or three-stage process according to the time lag for removal.

9.6.2.1 Components Containing Hard Faults

The removal process for hard faults is modeled as a two-stage process, given as

mjf ðnþ 1Þ � mjf ðnÞ
d

¼ bj aj � mjf ðnÞ
� �

ð9:6:3Þ

mjrðnþ 1Þ � mjrðnÞ
d

¼ bjðnþ 1Þ mjf ðnþ 1Þ � mjrðnÞ
� �

; ð9:6:4Þ

where

bjðnþ 1Þ ¼ bj

1þ bð1� bjÞnþ1

Solving the above system of difference equations using PGF method with the
initial conditions mif(n = 0) = 0 and mjr(n = 0) = 0, we get

mjrðnÞ ¼ aj
1� 1þ dbjn

� �

1� dbj
� �n

1þ b 1� bj
� �n ð9:6:5Þ

9.6.2.2 Components Containing Complex Faults

There can be components having more complex faults. These faults can require
more effort for removal after isolation. Hence they need to be modeled with greater

332 9 Discrete SRGM



time lag between failure observation and removal. The third stage added below to
the model for hard faults serves the purpose.

mkf ðnþ 1Þ � mkf ðnÞ
d

¼ bk ak � mkf ðnÞ
� �

ð9:6:6Þ

mkuðnþ 1Þ � mkuðnÞ
d

¼ bk mkf ðnþ 1Þ � mkuðnÞ
� �

ð9:6:7Þ

mkrðnþ 1Þ � mkrðnÞ
d

¼ bkðnþ 1Þ mkuðnþ 1Þ � mkrðnÞð Þ; ð9:6:8Þ

where

bkðnþ 1Þ ¼ bk

1þ bð1� bkÞnþ1

Solving the above system of difference equations using PGF method with the
initial conditions mkf(n = 0) = 0, mku(n = 0) = 0 and mkr(n = 0) = 0, we get

mkrðnÞ ¼ a3

1� 1þ bkndþ b2knd nþ 1ð Þd
� ��

2
� �

1� dbkð Þn

1þ b 1� bkð Þn ð9:6:9Þ

9.6.3 Modeling Total Fault Removal Phenomenon

The model is the superposition of the NHPP of ‘p’ reused and ‘q’ newly developed
components with hard faults and ‘s’ newly developed components with complex
faults. Thus, the mean value function of superposed NHPP is

mðnÞ ¼
X

p

i¼1

mirðnÞ þ
X

pþq

j¼pþ1

mjrðnÞ þ
X

pþqþs

k¼pþqþ1

mkrðnÞ

or

mðnÞ ¼
X

p

i¼1

ai 1� ð1� dbiÞnð Þ þ
X

pþq

j¼pþ1

aj
1� ð1þ dbjnÞð1� dbjÞn

1þ bð1� bjÞn

þ
X

pþqþs

k¼pþqþ1

ak
1� 1þ dbknþ b2kndðnþ1Þd

2

	 


1� dbkð Þn

1þ bð1� bkÞn

ð9:6:10Þ

where
Ppþqþs

i¼1 ai ¼ a (the total fault content of the software). Note that a dis-
tributed system can have any number of used and newly developed components.
The equivalent continuous can be derived taking limit d ? 0, i.e.

9.6 Discrete Software Reliability Growth Models for Distributed Systems 333



mðnÞ ! mðtÞ ¼
X

p

i¼1
ai 1� e�bt
� �

þ
X

pþq

j¼pþ1

aj
1�ð1þbtÞe�bt

1þbe�bt

þ
Ppþqþs

k¼pþqþ1
ak

1� 1þbtþ b2 t2ð Þ=2ð Þe�bt

1þbe�bt

 !

The continuous model is due to [19].

9.7 Discrete Change Point Software Reliability Growth
Modeling

Change point analysis for software reliability modeling is of predominant interest.
Although changes are observed in almost every process and system but for the
software reliability analysis phenomenon of change is a common observation.
Software reliability growth during testing phase depends on a number of factors
and changes either forced or continuous are observable in many of these factors
such as testing strategy, defect density, testing efficiency, testing environment etc.
Consideration of change point provides significant improvement in the reliability
prediction. Several change point SRGM have been discussed in Chap. 5 consid-
ering diverse testing phenomena. Some studies in change point based software
reliability modeling also focus on discrete time space. This section gives an insight
into how to develop discrete time change point based SRGM.

9.7.1 Discrete S-Shaped Single Change Point SRGM

The delayed s-shaped discrete SRGM discussed in Sect. 9.2.3 due to [7] can be
derived alternatively in one stage as follows

mrðnþ 1Þ � mrðnÞ
d

¼ bðnÞ a� mrðnÞð Þ; ð9:7:1Þ

where bðnÞ ¼ b2 nþ1ð Þ
1þbn :

Change point modeling in software reliability is based on the parametric var-
iability modeling approach, i.e. to incorporate the phenomena of change, fault
detection rate before the change point is assumed to be different from the fault
detection rate after change-point. Under the basic assumption, the expected
cumulative number of faults removed between the nth and the (n ? 1)th test cases
is proportional to the number of faults remaining after the execution of the nth test
run, satisfies the following difference equation (Kapur et al. [20])

mðnþ 1Þ � mðnÞ
d

¼ bðnÞ a� mðnÞð Þ; ð9:7:2Þ

334 9 Discrete SRGM

http://dx.doi.org/10.1007/978-0-85729-204-9_5


where

bðnÞ ¼
b21 nþ1ð Þ
1þb1n 0� n\g1
b22 nþ1ð Þ
1þb2n

n� g1

( !

ð9:7:3Þ

and g1 is the test case number from whose execution onward change in the fault
detection rate is observed.

Case 1 (0 B n\ g1)
Solving the difference equation (9.7.2) substituting b(n) from (9.7.3), under the

initial condition at n = 0, m(n) = 0, we get

mðnÞ ¼ a 1� 1þ db1nð Þ 1� db1ð Þnð Þ ð9:7:4Þ

The equivalent continuous of (9.7.4) can be derived taking limit d ? 0,

mðnÞ ¼ a 1� 1þ db1nð Þ 1� db1ð Þnð Þ ! a 1� ð1þ btÞe�bt
� �

Case 2 (n C g1)
Substituting the fault detection rate applicable after the change point in dif-

ference equation (9.7.2) and using the initial condition at n = g1, m(n) = m(g1),
we get

mðnÞ ¼ a 1� 1þ db1g1ð Þ
1þ db2g1ð Þ 1þ db2nð Þ 1� db2ð Þ n�g1ð Þ 1� db1ð Þg1

� �

ð9:7:5Þ

The equivalent continuous of (9.7.6) can be derived taking limit d ? 0

mðnÞ ! mðtÞ ¼ a 1� 1þ b1t1
1þ b2t1

� �

1þ b2tð Þe�ðb1t1þb2ðt�t1ÞÞ
� �

9.7.2 Discrete Flexible Single Change Point SRGM

The change point model discussed in the previous section produces a pure
s-shaped model. We know that flexible models are always preferred for a variety
of real life applications as they can describe both exponential as well as s-shaped
failure curves. Besides flexible models also well captures the variability of the s-
shaped curves. In this section we describe a flexible change point SRGM which
can support a wider range of practical applications [8].

Assuming a logistic function with parameter variability defines the fault
detection rate before and after the change point the difference equation for the
model under the general assumptions of the discrete NHPP models is formulated as

mrðnþ 1Þ � mrðnÞ
d

¼ bðnÞ a� mrðnÞð Þ ð9:7:6Þ

9.7 Discrete Change Point Software Reliability Growth Modeling 335



where

bðnÞ ¼
b1

1þbð1�b1dÞn 0� n\g1
b2

1þbð1�b2dÞn n� g1

(

ð9:7:7Þ

The mean value function of the SRGM based on the difference equation (9.7.6)
and the fault detection rate defined by (9.7.7) under the initial conditions at n = 0,
m(n) = 0; and n = g1, m(n) = m(g1) is given by

mðnÞ ¼
a 1�ð1�b1dÞn

1þbð1�b1dÞn
	 


0� n\g1

a 1� 1þbð Þ 1þbð1�b2dÞn1ð Þð1�b1dÞn1 ð1�b2dÞn�n1

1þbð1�b1dÞn1ð Þ 1þbð1�b2dÞnð Þ

	 


n� g1

8

<

:

ð9:7:8Þ

For b = 0 this model produces an exponential failure curve while for other
values of b[0 of it produces an S-shaped curve. The continuous model equivalent
to the flexible change point model can be derived taking limit d ? 0.

mðnÞ ! mðtÞ ¼
a 1� ð1þbÞe�b1 t

1þbe�b1 t

	 


0� t� s;

a 1� ð1þbÞ 1þbe�b2sð Þ
1þbe�b1sð Þ 1þbe�b2 tð Þe

�b1s�b2ðt�sÞ
� �

s\t

8

>

<

>

:

9.7.3 An Integrated Multiple Change Point Discrete SRGM

Considering Fault Complexity

All the fault complexity based models discussed in the book up to now have been
formulated on the assumption that the nature of the failure and fault removal
process for each type of fault remain same throughout the testing process. There
are many factors that affect software testing. These factors are unlikely to be kept
stable during the entire process of software testing, with the result that the
underlying statistics of the failure process is likely to experience changes. The
fault detection/removal rates for all the faults lying in the software differ on the
basis of their complexity. While modeling for simple faults it is assumed that using
a constant fault detection rate the failure and removal process of simple faults can
be described in single stage. The assumption of constancy of detection rate may
not hold true in many situations. All the factors that bring changes in the overall
testing process can also be operating simultaneously or due to some abrupt
changes brought forcefully in the testing process can change the testing processes
of simple faults. The similar arguments hold true even for other types of faults.
Hence it is a wise thinking to describe the failure and removal phenomena of each
type of fault on the change point concept.

The model discussed in this section [21] first develops a general model on the
basis of above arguments, i.e. it first describes how to model the testing process of

336 9 Discrete SRGM



different types of faults on the change point concept for the case of n change
points. Then following the general formulation, two special cases are developed
for two and three change points, respectively, and models for total testing pro-
cesses are developed. In this model the removal phenomena of each type of fault in
each change point interval are derived in single stage. Firstly we explain the
readers how we can develop the mean value functions for the different types of
faults directly in one stage considering the delay of the removal process.

The two-stage removal process for the hard faults in (9.5.6) and (9.5.13) can be
derived in one stage directly assuming fault detection rate per remaining fault to be

b̂2ðnþ 1Þ ¼ b22ðnþ 1Þ
ð1þ b2ðnþ 1ÞÞ ð9:7:9Þ

b̂2ðnþ 1Þ ¼ b2ð1þ b2 þ b2ðnþ 1ÞÞ� b2ð1þ b2ð1� b2Þnþ1Þ
ð1þ b2ð1� b2Þnþ1Þð1þ b2 þ b2nÞ

ð9:7:10Þ

in the difference equation

m2rðnþ 1Þ � m2rðnÞ ¼ b̂2ðnþ 1Þ a2 � m2rðnÞð Þ ð9:7:11Þ

Similarly we can define the removal rates for the complex or other types of the
faults and derive the time lag models in the single stage. On these lines we
formulate general change point based fault complexity SRGM.

The difference equation describing the model can be given as

m
0

i nð Þ ¼ bij api � mi nð Þ½ � i ¼ 1; . . .; k; j ¼ 1; . . .; q ð9:7:12Þ

where

bij ¼

bi1ðnÞ 0� n� g1

bi2ðnÞ g1\n� g2

. . .

. . .

biqðnÞ n[ gq

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð9:7:13Þ

Index i denotes the type of fault and j corresponds to the change point. k, q is the
number of fault types and change points respectively.

The exact solution of the above model equations can be obtained on substituting
the functional forms of the fault removal rates in (9.7.13) and defining the number
of change points based on past data or by the experience. Now the mean value
function of the expected total number of faults removed from the system is given
as

mðnÞ ¼
X

r

i¼1

miðnÞ ð9:7:14Þ

9.7 Discrete Change Point Software Reliability Growth Modeling 337



Various diverse testing environment and testing strategies existing for different
types of software can be analyzed from the above model by choosing the appro-
priate forms of the fault removal rates bij(t) (based on the past failure data and
experience of the developer). One of the most simple and general case would be the
one when we consider fault removal rates for each type of fault in each change point
interval to be constant but distinct for each i and j, if we observe exponential failure
curve growth pattern for each type of fault. However in case of general purpose
software we may expect that the fault removal rates for each type of fault may
increase with time as the testing team gains experience with the code and learning
occurs and reaches a certain constant level toward the end of the testing phase.

The fault detection rate of hard and/or complex faults is slightly less than that of
simple fault type. We may also observe a decreasing FRR toward the end of testing
phase since most of the faults lying in the software are removed and failure intensity
has become very less. Increasing and/or decreasing trend in FRR can be depicted
with the time dependent forms of bij(t). From the study of various fault detection
rates used in reliability growth modeling we summarize in Table 9.3 the fault
removal rates of a model referring to three types of faults with two change points.

In the above definition of the fault removal rates it is assumed that due to
experience and learning process the removal rate increases after the first change
point g1, further it is assumed that after the second change point g2 the removal
process is described by constant rates as the testing skill of the testing personnel
reaches a level of stability. Now using the difference equation (9.7.12) and the
fault removal rates defined in Table 9.3 we compute the mean value functions for
the removal process for each type of fault.

9.7.3.1 Model for Simple Faults

The mean value function for the simple faults using the initial conditions n ¼
0; m1 nð Þ ¼ 0 n ¼ g1; m1 nð Þ ¼ m1ðg1Þ and n ¼ g2; m1 nð Þ ¼ m1ðg2Þ; respectively,
in each change point interval is given as

m1 nð Þ ¼
a1 1� 1� b11ð Þnð Þ 0� n� g1
a1 1� 1� b11ð Þg1 1� b12ð Þn�g1½ � g1\n� g2
a1 1� 1� b11ð Þg1 1� b12ð Þg2�g1 1� b13ð Þn�g2½ � n[ g2

8

<

:

ð9:7:15Þ

Table 9.3 Fault removal
rates for the fault complexity
based change point SRGM

Time
interval/type
of fault

Simple Hard Complex
Fault detection
rates

0 B n B g1 b11 b221n
1þb21n

b331nðnþ1Þð Þ=2
1þb31nþ b231nðnþ1Þð Þ=2

g1\ n B g2 b12 b22 b232n
1þb32n

n[ g2 b13 b23 b33

338 9 Discrete SRGM



9.7.3.2 Model for Hard and Complex Faults

Using the same initial conditions as in case of simple faults the mean value
function for the hard and complex faults in each change point interval is given
respectively as

m2 nð Þ ¼
a2 1� 1þ b21nð Þ 1� b21ð Þnð Þ 0� n� g1
a2 1� 1þ b21g1ð Þ 1� b21ð Þg 1 1� b22ð Þn�g1½ � g1\n� g2
a2 1� 1þ b21g1ð Þ 1� b21ð Þg 1 1� b22ð Þg2�g 1 1� b23ð Þn�g2½ � n[ g2

8

<

:

ð9:7:16Þ

m3 nð Þ¼

a3 1� 1þb31nþ b331nðnþ1Þ
� �

=2
� �

1�b31ð Þn
� �

0�n�g1

a3 1� 1þb32nð Þ
1þb32g1ð Þ

1þb31g1þ
b231g1ðg1þ1Þ

2

0

@

1

A 1�b31ð Þg1 1�b32ð Þn�g1

2

4

3

5 g1\n�g2

a2 1� 1þb32g2ð Þ
1þb32g1ð Þ

1þb31g2

þb231g1ðg1þ1Þ
2

0

@

1

A

1�b31ð Þg1 1�b32ð Þg2�g1

1�b33ð Þn�g2

 !

2

4

3

5n[g2

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

ð9:7:17Þ

The mean value function of the total fault removal formula is formulated using
the mean value functions defined in (9.7.15), (9.7.16) and (9.7.17) given as

mðnÞ ¼ m1ðnÞ þ m2ðnÞ þ m3ðnÞ ð9:7:18Þ

The fault removal rates in Table 9.3 depicts a particular case, where initially the
removal rate is slow than it accelerate and ultimately reaches a stable value for
both hard and complex faults. This is a situation observed commonly due to the
learning process of the testing. Various other combinations of fault removal rates
may be chosen to describe the particular application in consideration. The current
state-of-the-art in discrete software reliability growth modeling is illustrated in this
chapter. The development of discrete modeling is still immature. Lot of scope of
research is left in the field together with research on the new techniques which can
resolve the problem of mathematical complexity in this type of model
development.

9.8 Data Analysis and Parameter Estimation

Starting from Chaps. 2–8 we emphasize on the development and application of
continuous time software reliability growth models. Majority of study in reliability
modeling lies in the continuous time models that form the very reason why
practitioner prefer to use continuous time models. Mathematical complexity and
complicated functional forms of discrete models are among the other reason.
Analysis on discrete modeling suggests that if the software failure data relates

9.7 Discrete Change Point Software Reliability Growth Modeling 339

http://dx.doi.org/10.1007/978-0-85729-204-9_2
http://dx.doi.org/10.1007/978-0-85729-204-9_8


number of test runs to the failure observed then it is more justified to apply a
discrete model then a continuous one to obtain more authenticated and accurate
result. On the other hand use of statistical software to carry out the model analysis
and parameter estimation makes not much difference if one uses a continuous
model or a discrete model in terms of mathematical complexity. This section of the
chapter is focused on the data analysis and parameter estimation of several
selected models discussed here.

Failure Data Set

The failure data is cited in [22]. The data is obtained during testing of software that
runs on a wireless network product and the software ran on an element within a
wireless network switching centre. The software testing observation period is for
51 weeks during which a total of 203 faults are observed. The software is tested
for 1,001 days and a total of 181 failures were observed. The data is recorded in
calendar time. While developing a discrete model we defined t = nd, where, d is a
constant and represents the average time difference interval between consecutive
test runs. For the sake of simplicity assume d = 1 then the calendar time data can
be assumed to represent the test run data. So we treat this data as the one where 51
test runs are executed, which resulted in 203 failures during testing phase.

Following discrete models discussed in the chapter have been chosen for data
analysis and parameter estimation.

Model 1 (M1) Discrete Exponential Model [4]

mðnÞ ¼ að1� ð1� bdÞnÞ

Model 2 (M2) Modified Discrete Exponential Model [4]

mðnÞ ¼ m1ðnÞ þ m2ðnÞ ¼
X

2

i¼1

aið1� ð1� bidÞnÞ

Model 3 (M3) Discrete Delayed S–Shaped Model [13]

mrðnÞ ¼ a½1� ð1þ bndÞð1� bdÞn�

Model 4 (M4) Discrete SRGM with Logistic Learning Function [23]

mðnÞ ¼ a

1þ bð1� bdÞn½1� ð1� bdÞn�

Model 5 (M5) Discrete SRGM for Error Removal Phenomenon [9]

mrðnÞ ¼ a
1� 1� dðpþ qÞf gn

1þ q=pð Þ 1� dðpþ qÞf gn
� �

Model 6 (M6) Discrete SRGM under Imperfect Debugging Environment [12]

mrðnÞ ¼
a0b0pd

1þ bð1� b0pdÞn
ð1þ adÞn � ð1� b0pdÞn

ðadþ b0pdÞ

� �

340 9 Discrete SRGM



Model 7 (M7) Discrete S-shaped Single Change Point SRGM Kapur et al. [20]

mðnÞ ¼
a 1� 1þ db1nð Þ 1� db1ð Þnð Þ 0� n\g1

a 1� 1þdb1g1ð Þ
1þdb2g1ð Þ 1þ db2nð Þ 1� db2ð Þ n�g1ð Þ 1� db1ð Þg1

h i

n� g1

(

Model 8 (M8) Discrete Flexible Single Change Point SRGM [8]

mðnÞ ¼
a 1�ð1�b1dÞn

1þbð1�b1dÞn
	 


0� n\g1

a 1� 1þbð Þ 1þbð1�b2dÞn1ð Þð1�b1dÞn1 ð1�b2dÞn�n1

1þbð1�b1dÞn1ð Þ 1þbð1�b2dÞnð Þ

	 


n� g1

8

<

:

The results of data analysis and estimated parameters of the models M1–M8 are
listed in Table 9.4. The goodness of fit curve is shown in Fig. 9.1.

The goodness of fit curve clearly reveals the s-shaped nature of failure curve on
the test run axis. This observation agrees with the result of data analysis as the
mean square error of fitting is very high for both of the exponential models (M1
and M2) as compared to the other s-shaped and flexible models. The fault
detection rates for fault-types I and II come out to be same and the total fault
content (a1 ? a2 = 149 ? 152 = 301) coincides with the exponential model M1,
which means that failure process of software does not require the distinction on the
basis of fault complexity for its description. MSE and R2 measures corresponding

Table 9.4 Data analysis results of models M1–M8

Model Estimated parameters Comparison criteria

a,a1 a2,p b,b1, b2,q, a b MSE R2

M1 301 – 0.0240 – – 79.56 0.981
M2 149 152 0.0240 0.0240 – 76.44 0.981
M3 215 – 0.0862 – – 14.13 0.997
M4 206 – 0.1015 – 4.681 6.67 0.998
M5 206 0.0179 – 0.0837 – 6.67 0.998
M6 206 0.9700 0.1044 0.0000 4.655 6.67 0.998
M7 235 – 0.0790 0.0478 – 10.36 0.997
M8 242 – 0.0771 0.7010 3.393 18.44 0.996

0

50

100

150

200

250

1 6 1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

Test Runs

C
u

m
u

la
ti

v
e

 F
a

il
u

r
e

s

Actual Data M1
M2 M3
M4 M5
M6 M7
M8

Fig. 9.1 Goodness of fit
curves for models M1–M8

9.8 Data Analysis and Parameter Estimation 341



to models M4, M5 and M6 overlap each other. This can be interpreted as all these
models are flexible models, If we assume (p ? q) = b and (q/p) = b as in case of
continuous counterparts then there remains no difference between the models M4
and M5. But both of the models have different assumptions and interpretations.
Although it seems unrealistic but the parameter a in model M6 comes out to be
zero denying the presence of error generation, which again makes the results of
model M6 equivalent to those of model M4. Hence any of the models M4–M6 can
be chosen for further analysis and represent the testing process, the choice can be
subjective of the decision maker. One more interesting observation can be made
from the data analysis results is that both of the change point models are not
among the best fits models illustrating a smooth testing process up to the point of
data observation, i.e. 51 test runs.

We have seen the data analysis results reveal the presence of only one type of
faults in the data and no change point, hence we choose a different data set to show
the application of fault complexity and integrated change point and fault com-
plexity discrete models.

9.8.1 Application of Fault Complexity Based Discrete Models

Failure Data Set

The failure data is also cited in [24]. This data set is obtained during from a real
software project on Brazilian Switching system, TROPICO R-1500, for 1,500
telephone subscribers. The software size is about 300 Kb written in assembly
language. During the 81 weeks of software testing 461 faults were removed. Again
we assume the data is corresponding to the 81 test runs instead of calendar time
execution period for the reasons stated above.

Following models discussed in the chapter have been chosen

Model 9 (M9) Generalized Discrete Erlang SRGM [1]

mðtÞ ¼ a1ð1� ð1� b1ÞnÞ þ a2ð1� ð1þ b2nÞð1� b2ÞnÞ
þ a3 1� 1þ b3nþ b23nðnþ 1Þ

�

2
� �� �� �

ð1� b3Þn
� �

Model 10 (M10) Discrete SRGM with faults of Different Complexity Incorporating
Logistic Learning Function [15]

mðtÞ ¼ a1ð1� ð1� b1ÞnÞ þ a2
1� ð1þ b2nÞð1� b2Þn

1þ bð1� b2Þn

þ a3
1� ð1� b3nþ b23nðnþ1Þ

2 Þð1� b3Þn

1þ bð1� b3Þn

342 9 Discrete SRGM



Model 11 (M11) Integrated Multiple Change Point Discrete SRGM Considering
Fault Complexity [21]

Models for Simple, Hard and Complex Faults are, respectively, defined as

m1 nð Þ ¼
a1 1� 1� b11ð Þnð Þ 0� n� g1
a1 1� 1� b11ð Þg1 1� b12ð Þn�g1½ � g1\n� g2
a1 1� 1� b11ð Þg1 1� b12ð Þg2�g1 1� b13ð Þn�g2½ � n[ g2

8

<

:

m2 nð Þ ¼
a2 1� 1þ b21nð Þ 1� b21ð Þnð Þ 0� n� g1
a2 1� 1þ b21g1ð Þ 1� b21ð Þg1 1� b22ð Þn�g1½ � g1\n� g2
a2 1� 1þ b21g1ð Þ 1� b21ð Þg 1 1� b22ð Þg2�g 1 1� b23ð Þn�g2½ � n[ g2

8

<

:

m3 nð Þ ¼

a3 1� 1þ b31nþ b331nðnþ 1Þ
� �

=2
� �

1� b31ð Þn
� �

0� n� g1

a3 1� 1þ b32nð Þ
1þ b32g1ð Þ

1þ b31g1þ

b231g1ðg1 þ 1Þ
2

0

B

@

1

C

A
1� b31ð Þg1 1� b32ð Þn�g1

2

6

4

3

7

5
g1\n� g2

a2 1� 1þ b32g2ð Þ
1þ b32g1ð Þ

1þ b31g2

þ b231g1ðg1 þ 1Þ
2

0

B

@

1

C

A

1� b31ð Þg1 1� b32ð Þg2�g1

1� b33ð Þn�g2

 !

2

6

4

3

7

5
n[ g2

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

mðnÞ ¼ m1ðnÞ þ m2ðnÞ þ m3ðnÞ

The results of data analysis and estimated parameters of the models M9–M11
are listed in Table 9.5. The goodness of fit curve is shown in Fig. 9.2.

Data analysis results depict that the fault complexity models which incorporate
the learning phenomenon (M10) best describe this data set among the chosen
models, which show a high value of the learning parameter b = 598.11. They also
depict that the largest population of faults in the software is among the simple
category (59.04%) and rest of the faults are of hard and complex category.

Table 9.5 Data analysis results of models M9–M11

Model Estimated parameters Comparison criteria

MSE R2

M9 187 208 205 0.0471 0.0681 0.0272 – 83.39 0.997
(a1) (a2) (a3) (b1) (b2) (b3)

M10 285 96 102 0.0457 0.2341 0.1025 598.11 41.19 0.998
(a1) (a2) (a3) (b1) (b2) (b3) (b)

M11 184 219 129 0.95586 0.00041 0.00029 – 102.67 0.995
(a1) (a2) (a3) (b11) (b21) (b31)

0.99959 0.97071 0.00268 0.00041 0.00041 0.02592 –
(b12) (b22) (b32) (b13) (b23) (b33)

9.8 Data Analysis and Parameter Estimation 343



Exercises

1. Describe a non-homogeneous Poisson process in discrete time space.
2. What are the merits and demerits of formulating SRGM in discrete time space

over the continuous time models?
3. The difference equation of the discrete time exponential SRGM is given by

mðnþ1Þ�mðnÞ
d

¼ bða� mðnÞÞ . Use the method of PGF to derive the mean value
function of the SRGM.

4. Derive the mean value function of single change point exponential model. Use
the software failure data of a real testing process of software given below and
estimate the unknown parameters of the exponential single change point model
and other single change point model discussed in the chapter. Which model fits
best to this data set? Assume a change point occurs at the execution time 656
after the detection of 21 faults.

0

50

100

150

200

250

300

350

400

450

500

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

Test Runs
C

u
m

u
la

ti
v

e
 F

a
il

u
r
e

s

Actual Data M9 M10 M11

Fig. 9.2 Goodness of fit
curves for models M9–M11

Failure number Exposure time (hrs) Failure number Exposure time (hrs)

1 24 17 520
2 80 18 520
3 96 19 560
4 120 20 632
5 200 21 656
6 200 22 656
7 201 23 776
8 224 24 888
9 256 25 952
10 424 26 952
11 424 27 976
12 456 28 992
13 464 29 1144
14 488 30 1328
15 488 31 1360
16 496

344 9 Discrete SRGM



5. Section 9.7.3 describes general formulation for an integrated multiple change
point discrete SRGM considering fault complexity. A two change model is
developed to describe the testing process for software containing three types of
faults. Suppose during the testing process three change points are observed and
the fault detection rates for the three types of faults can be expressed as listed in
the following table.

Develop an SRGM to describe the above situation.

References

1. Kapur PK, Younes S (1995) Software reliability growth model with error dependency.
Microelectron Reliab 35(2):273–278

2. Kapur PK, Garg RB, Kumar S (1999) Contributions to hardware and software reliability.
World Scientific, Singapore

3. Kapur PK, Jha PC, Singh VB (2008) On the development of discrete software reliability
growth models. In: Misra KB (ed) Handbook on performability engineering. Springer, 1239–
1254.

4. Yamada S, Osaki S (1985) Discrete software reliability growth models. Appl Stoch Models
Data Anal 1:65–77

5. Goel AL, Okumoto K (1979) Time dependent error detection rate model for software
reliability and other performance measures. IEEE Tran Reliab R 28(3):206–211

6. Kapur PK, Bai M, Bhushan S (1992) Some stochastic models in software reliability based on
NHPP. In: Venugopal N (ed) Contributions to stochastics. Wiley Eastern Limited, New
Delhi.

7. Yamada S, Ohba M, Osaki S (1983) S-shaped software reliability growth modeling for
software error detection. IEEE Tran Reliab R 32(5):475–484

8. Kapur PK, Goswami DN, Khatri SK, Johri P (2007c) A flexible discrete software reliability
growth model with change-point. In: Proceedings of the national conference on computing
for nation development, INDIACom- 2007, pp 285–290

9. Kapur PK, Gupta A, Gupta A, Kumar A (2005) Discrete software reliability growth
modeling. In: Kapur PK, Verma AK (eds) Quality, Reliability and IT (Trends & Future
Directions). Narora Publications Pvt. Ltd., New Delhi, pp 158–166

10. Kapur PK, Garg RB (1992) A software reliability growth model for an error removal
phenomenon. Softw Eng J 7:291–294

11. Bardhan AK (2002) Modeling in software reliability and its interdisciplinary nature. Ph.D.
Thesis, University of Delhi, Delhi

Time interval/
Type of fault

Simple Fault Hard Complex
detection rates

0 B n B g1 b11 b21 b31
g1\ n B g2 b12 b222n

1þ b22n
b332nðnþ 1Þ
� �

=2

1þ b32nþ b232nðnþ 1Þ
� �

=2

g2\ n B g3 b13 b23 b233n

1þ b33n
n[ g3 b14 b24 b34

9.8 Data Analysis and Parameter Estimation 345



12. Kapur PK, Singh OP, Shatnawi O, Gupta A (2006e) A discrete NHPP model for software
reliability growth with imperfect fault debugging and fault generation. Int. J Performability
Eng 2(4):351–368

13. Kapur PK, Agarwal S, Garg RB (1994) Bi-criterion release policy for exponential software
reliability growth models. Recherche Operationanelle/Oper Res 28:165–180

14. Kapur PK, Younes S, Agarwala S (1995) Generalized Erlang software reliability growth
model. ASOR Bull 35(2):273–278

15. Kapur PK, Shatnawi O, Singh O (2005) Discrete time fault classification model. In: Kapur
PK, Verma AK (eds) Quality, reliability and IT (Trends & Future Directions). Narora
Publications Pvt. Ltd., New Delhi, pp 132–145

16. Shatnawi O, Kapur PK (2008) A generalized software fault classification. WSEAS Tran
Comput 7(9):1375–1384

17. Kapur PK, Gupta A, Singh OP (2005b) On discrete software reliability growth model and
categorization of faults. OSEARCH 42(4):340–354

18. Kapur PK, Singh OP, Kumar A, Yamada S (2006d) Discrete software reliability growth
models for distributed systems. In: Kapur PK, Verma AK (eds) Proceedings of international
conference on quality, reliability and infocom technology. MacMillan Advanced Research
Series, pp 101–115

19. Kapur PK, Gupta A, Kumar A, Yamada S (2005) Flexible software reliability growth models
for distributed systems. OPSEARCH, J Oper Res Soc India 42(4):378–398

20. Kapur PK, Khatri SK, Jha PC, Johri P (2007) Using change-point concept in software
reliability growth. Quality, reliability and infocom technology (Proceedings of ICQRT-2006),
Macmillan, India pp 219–230

21. Goswami DN, Khatri SK, Kapur R (2007) Discrete software reliability growth modeling for
errors of different severity incorporating change-point concept. Int J Autom Comput
4(4):395–405

22. Jeske DR, Zhang X, Pham L (2005) Adjusting software failure rates that are estimated from
test data. IEEE Tran Reliab 54(1):107–114

23. Kapur PK, Anand S, Yadavalli VSS, Beichelt F (2007) A generalised software growth model
using stochastic differential equation. Communication dependability quality management.
Belgrade, Serbia, pp 82–96

24. Kanoun K, Martini M, Souza J (1991) A method for software reliability analysis and
prediction application to the TROPICO-R switching system. IEEE Tran Softw Eng
17(4):334–344

346 9 Discrete SRGM



Chapter 10
Software Release Time Decision Problems

Notation

a(ai) Expected number of faults existing in the software (of fault type i)
before testing

b(bi) Constant fault detection/removal rate per remaining fault per unit time
(of fault type i)

m(t) Expected mean number of failures/removal (of fault type i) by time
(mi(t)) t, m(0) = 0
mf(t) Expected mean number of failures detected by time t, mf(0) = 0
mr(t) Expected mean number of faults removed by time t, mr(0) = 0
p Probability of perfect debugging of a fault, 0\ p\ 1
a Constant rate of error generation, 0\ a\ 1
k(t) Failure intensity function k(t) = m0(t)
C1(C1

0
) Cost incurred on perfect (imperfect) debugging of fault during testing

phase
C2 C02
� �

Cost incurred on a perfect (imperfect) debugging of fault after release of
the software system C2 [C1;C02 [C01

� �

C3 Testing cost per unit testing time
CB Total budget allocated for the software testing
T Release time of the software
T* Optimal release time
R0 Desired level of software reliability to be achieved at the release time

(0\R0\ 1)
k0 Desired level of failure intensity to be achieved at the release time

(0\ k0\ 1)
x The mission time of reliability
R(x|T) The reliability function
E(T) Expected cost of software systems at time T
Y Variable representing time to remove an error during testing phase

P. K. Kapur et al., Software Reliability Assessment with OR Applications,
Springer Series in Reliability Engineering, DOI: 10.1007/978-0-85729-204-9_10,
� Springer-Verlag London Limited 2011

347



ly Expected time to remove an error during testing phase
W Variable representing time to remove an error during warranty period in

operation phase
lw Expected time to remove an error during warranty period in operation

phase
Tw Period of warranty time
Tl Life cycle of the software
ri Proportion of the fault type i in the software, i = 1, 2

10.1 Introduction

Reliability, scheduled delivery and cost are the three main quality attributes for
almost all software. The primary objective of the software developer’s to attain
them at their best values, then only they can obtain long-term profits and make a
brand image in the market for longer survival. The importance of reliability
objective has escalated many folds as it is a user-oriented measure of quality.
Other reasons being, diversified implementation of software in the various
domains around the world, critical dependency of the various systems worldwide
on computing systems, global trades, highest order growth in the information
technology and competition. Notwithstanding its unassailable value, there is still
no way to test whether software is completely fault-free or can be made fault-free
so that the highest possible value of reliability can be attained how long the testing
is continued. On the other hand software users’ requirements conflict with the
developers. Software users demand faster deliveries, cheaper software and quality
product, whereas software developers aim at minimizing their development cost,
maximizing the profit margins and meeting the competitive requirements. The
resulting situation calls for tradeoffs between conflicting objectives of software
users’ requirements with the developers. As a course of best alternative the
developer management must determine optimally when to stop testing and release
the software system to the user focusing on the users’ requirements, simulta-
neously satisfying their own objectives. Such a problem is known as software
release time decision (SRTD) problem in the literature of software reliability
engineering. Timely release of software provides dual advantage to the developers.
First, they obtain maximum returns on their investments, reduce the development
costs, meet the competitive goals and increase the organizational goodwill in the
market. Second, they can satisfy the conflicting user requirements if the software
release time is determined by minimizing the total software cost whereas the goal
of reliability is achieved, etc. This implies the advantage of offering the software at
an economic price with higher quality level. Delay in software release imposes the
burden of penalty cost\revenue loss and the product may suffer from obsolescence
in the market. In contrast to this in case of a premature release the developer may
have to spend lot of time and effort to fix the software faults after release and suffer

348 10 Software Release Time Decision Problems



from goodwill loss. Hence one must determine the optimal time to release the
software before launching in order to reduce the dual losses that can be imposed on
the developers related to both early release and late release. Such a problem of
software reliability engineering discipline can be formulated as an optimization
problem with single or multiple objectives under some well-defined sets of system,
technical and management or user-defined constraints.

Operational research has its primary concern with the formulation of mathe-
matical models. A mathematical model is an abstraction of the assumed real world,
expresses in an amenable manner the mathematical functions that represent the
behavior of the assumed system [1]. A model can be developed with respect to a
system to measure some particular quantity of interest such as a cost model or a
profit model or it may represent the assumed system as a whole used to optimize
the system performance, the optimization model. The optimization models
developed for the engineering and business professional allow them to choose the
best course of action and experiment with the various possible alternative
decisions. The software reliability growth models developed to estimate and
predict software reliability can be used to formulate an optimization model for
software release time decision. The field of operational research offers a number of
crisp and soft computing methodologies, optimization techniques and routines to
solve such problems. Various researchers in the field of software reliability
engineering and operational research have formulated different types of release
problems and used several optimization techniques depending on the model
formulation and application under consideration. This chapter focuses on the
formulation of different classes of release time problems, analysis of the formu-
lated problems, problem solution using different optimization techniques both
under crisp and soft environment and real life applications of the problems.

The optimal release time is a function of several factors, viz., size, level of
reliability desired, skill and efficiency of testing personal, market environment,
penalty and/or opportunity loss costs due to delay in release and penalties/warranty
cost due to failure in user phase, etc. Software release time determination has
remained a prime field of study for many eminent researchers in the field of
software engineering, reliability modeling and optimization over the years.
Many problems have been formulated and solved by many researchers in the
literature [2–18]. The optimization problem of determining the optimal time of
software release is mainly formulated based on goals set by the management in
terms of cost, reliability and failure intensity, etc. subject to the constraints. It may
be noted here that the release time optimization models make use of software
reliability growth models to determine the relationship between the testing pro-
gress (in terms of cost incurred, failure exposure or reliability growth) and time.
Okumoto and Goel [2] derived simplest release time policies based on exponential
SRGM in two ways. In the first approach they considered an unconstrained cost
objective while in the other, they considered the unconstrained reliability objec-
tive. The problem was formulated assuming all the costs (testing and fault removal
during testing and operational phases) are deterministic and well defined, as well
as the level of reliability required to achieve is determined on the basis of

10.1 Introduction 349



experience by the management. Later other researchers followed the approach
with different considerations and improvements. Most of the problems on release
time even up to the recent times have been formulated assuming static conditions.
More specifically most of the problems were formulated assuming that the
criterion, activity constant coefficients and resource, requirement and structural
conditional constants can be computed exactly; the inequalities in the constraints
are well defined and remain the same throughout. Crisp optimization techniques
such as the method of calculus, Lagrange multipliers or crisp mathematical
programming techniques were used to solve the problem. There is a vast literature
of crisp SRTD problems. The first part of this chapter focuses on this part of
literature and invocates the knowledge of this literature in detail to the readers. The
chapter is continued with the discussion of SRTD problems in the fuzzy envi-
ronment. It is only recently that Kapur et al. [19–20], Jha et al. [21] and Gupta [22]
realized the need for formulating the release time problems in the fuzzy
environment and also gave many arguments for this reconsideration. In the next
paragraph we discuss in detail why a SRTD problem be defined in the fuzzy
environment and what procedures are followed to solve such problems.

In the actual software development environment, the computation of various
constants of such optimization problem is based on large input data, information
processing and past experience. Most of the SRTD problems formulated consid-
ering cost, reliability or failure intensity and number of faults removed require the
exact computation of cost function coefficients, amount of available resources,
reliability/failure intensity aspiration levels, etc. The values of these quantities
besides some static factors depend on a number of factors, which are non-deter-
ministic in nature [23]. For example, if we consider components of cost function,
i.e. cost per unit testing time and cost of debugging during testing and operational
phases, values of their constant coefficients are determined on the basis of setup
cost, CPU time and personnel cost. These costs depend on a number of non-static
factors such as testing strategy, testing environment, team constitution, skill and
efficiency of testing personal, infrastructure, etc. Besides this the software industry
suffers from the dilemma that it sees most frequent changes in the team consti-
tutions due to its employees changing jobs frequently. With this, most of the
information and data available to the decision makers are ambiguously defined.
Due to these stated reasons an exact definition of these costs is not feasible for the
developers. Similarly due to conditions prevailing in the market and competitive
reasons, the developers can only make ambiguous statements on the organization
goals and available resources bringing uncertainty in the problem definition. There
are various other sources that bring uncertainty in the computation such as system
complexity, subject’s awareness, communication and thinking about uncertainty,
intended flexibility, complex relationships between the various variables and
economics of information, etc. [24]. Actually it is difficult to define the goals and
constraints of such optimization problems precisely for practical purposes. One
widely accepted solution of this problem is to define the problem under fuzzy
environment, as it offers the opportunity to model subjective imagination of the

350 10 Software Release Time Decision Problems



decision maker and computations of the model constants as precisely as a decision
maker and available information is able to describe.

Traditionally the ambiguous information is usually processed to obtain a
representative value of the quantity desired assuming a deterministic environment
or determined stochastically based on the distribution of sample information due to
the absence or lack of actual data or correct method to quantify these techniques.
The system goals and constraints are roughly defined, the problem is solved and the
solution is implemented on the system [23]. The optimal solution of the problem so
obtained is not actually representative of the complete and exact system informa-
tion. Implementation of such solution may result in huge losses due to a vague
definition of the system model. It may be possible that a small violation of a stated
goal, given constraint or the model constants may lead to a more efficient and
practical solution of the problem [25]. For example, a high level of system reli-
ability is desired to be achieved by the release time, first the definition of the high
level is vague, and giving a precise value of target reliability is very difficult due to
the randomness present in the progress of testing. Second a small violation in the
desired level of reliability may give more efficient solution for the model. Fuzzy set
theory [26–28] builds a model to represent a subjective computation of possible
effect of the given values on the problem and permits the incorporation of vague-
ness in the conventional set theory that can be used to deal with uncertainty
quantitatively. Fuzzy optimization is a flexible approach that permits a more ade-
quate solution of real problems in the presence of vague information, providing the
well-defined mechanisms to quantify the uncertainties directly. It has proven to be
an efficient tool for the treatment of fuzzy problems. Another advantage of fuzzy set
theory is that it saves lot of time required for enormous information processing in
order to determine average values in the classical modeling due to its capability to
directly operate on vague information [23].

Fuzzy set theory is a constituent of so-called soft computing. The guiding
principle of soft computing [29] is to exploit the tolerance for imprecision,
uncertainty, partial truth and approximation to achieve tractability; robustness and
low solution cost and solve the fundamental problem associated with the current
technological development. The principal constituents of soft computing are:
fuzzy systems, evolutionary computation, neural networks and probabilistic rea-
soning. What is important to note is that soft computing is not a mélange. Rather, it
is a partnership in which each of the partners contributes a distinct methodology
for addressing problems in its domain. Fuzzy theory (fuzzy set and fuzzy logic)
plays a leading role in soft computing and this stems from the fact that human
reasoning is not crisp. From the times when fuzzy logic and fuzzy set theory were
first propounded by Zadeh [26] they emerged as a new paradigm in which lin-
guistic uncertainty could be modeled systematically. The fuzzy set-based opti-
mization was introduced by Bellman and Zadeh [30] in their seminal paper on
decision making in a fuzzy environment, in which the concepts of fuzzy constraint,
fuzzy objective and fuzzy decision were introduced. These concepts were subse-
quently used and applied by many researchers. Literature on this exciting field
grew by leaps and bounds. Among other fields, optimization was one of the main

10.1 Introduction 351



beneficiaries of this ‘‘revolution’’. In the last two decades, the principles of fuzzy
optimization were critically studied, and the technologies and solution procedures
have been investigated within the scope off fuzzy sets. A number of researchers
have contributed to the development of fuzzy optimization technique [23, 25, 27,
30–32], etc. Today, similar to the developments in crisp optimization, different
kinds of mathematical models have been proposed and many practical applications
have been implemented by using the fuzzy set theory in various engineering fields,
such as mechanical design and manufacturing [25, 33–34], power systems [35],
water resources research [36], control systems [37–38], etc. some of the pre-
liminary concepts of fuzzy set theory are given in Appendix B.

The existing literature of SRTD problem up to recent times is based on the
classical optimization methods formulated under crisp environment. On the other
hand there are only a few formulations of SRTD problem defined under the
fuzzy environment. We know that an SRTD problem can be formulated in a
crisp environment or a fuzzy environment. There are no specific guidelines to
tell in what situation, which of the two formulations should be adopted. As far as
our discussion from the previous sections can be concluded, we may have a
notion that fuzzy approach can be preferred in most situations. But in fact this
decision depends on a number of factors such as the kind of software under
consideration, the nature of data, what information can be made available, in
what phase of software development we are in, when looking for this decision,
management choice and experience, etc. All, some or many other factors we can
think of, can take part in this decision. Research on fuzzy optimization in this
field is very limited. This may also contribute to be one of the factors for one to
apply the crisp techniques. Well in general there are no hard rules and any of the
two can be adopted keeping in mind the suitability of the technique for the
project.

10.2 Crisp Optimization in Software Release Time Decision

Considerable amount of work has been done in the literature on the crisp opti-
mization of software release time. Different policies were formulated based on
both exponential and s-shaped SRGM in considering different aspects of the
software release time. This section in the chapter focuses on a number of problems
that have been formulated in the literature and discusses the solution methodol-
ogies with numerical examples.

10.2.1 First Round Studies in SRTD Problem

Since the earlier work, the software release time optimization is mainly concerned
with cost minimization or reliability maximization. Okumoto and Goel [2] were

352 10 Software Release Time Decision Problems



the first to discuss the optimal release policy in the literature. They have discussed
unconstrained problem with either cost minimization or reliability maximization
objective. Yamada and Osaki [3] discussed release time problems with cost
minimization objective under reliability aspiration constraint and reliability
maximization objective under cost constraint based on exponential, modified
exponential and s-shaped SRGM. The following work was mainly concerned with
modifying the cost function based on many criteria. Even the simplest cost
function for computing the cost of testing and debugging was formulated based on
many arguments.

The software performance during the field is dependent on the reliability level
achieved during testing. In general, it is observed the longer the testing phase, the
better the performance. Better system performance also ensures less number of
faults required to be fixed during operational phase. On the other hand prolonged
software testing unduly delays the software release as during the later phases of
testing, detection and removal of an additional fault results in exponential increase
in time and cost suggesting an early release. Considering the two conflicting
objectives of better performance with longer testing and reduced costs with early
release, Okumoto and Goel [2] formulated the cost function for the total expected
cost incurred during testing and debugging in testing and operational phases given
as

C Tð Þ ¼ C1mðTÞ þ C2ðmðTlÞ � mðTÞÞ þ C3T ð10:2:1Þ

The cost model (10.2.1) was formulated by Okumoto and Goel with respect to
the Goel and Okumoto [39] (refer to Sect. 2.3.1) exponential SRGM. The expected
cost function included simple costs such as the cost of isolating and removing an
observed fault during testing and operational phases and the cost of testing per
unit testing time. They focused on determining the release time by minimizing this
cost function. Thus the problem that has been first considered was simply
unconstrained minimization of expected cost function.

Minimize C Tð Þ ¼ C1mðTÞ þ C2ðmðTlÞ � mðTÞÞ þ C3T ðP1Þ

The release time is obtained by differentiating the cost function with respect to
time, T and computing the time point where the first derivative is zero based on the
method of calculus

C0 Tð Þ ¼ � C2 � C1ð Þm0ðTÞ þ C3 ¼ 0 ð10:2:2Þ

) m0 Tð Þ ¼ C3

C2 � C1ð Þ wherem0 Tð Þ ¼ abe�bT ð10:2:3Þ

It can be seen that m0 Tð Þ ¼ kðTÞ is a decreasing function in T with k(0) = ab
and k(?) = 0. Based on (10.2.3) the release time can be obtained based on
Theorem 10.1.

10.2 Crisp Optimization in Software Release Time Decision 353

http://dx.doi.org/10.1007/978-0-85729-204-9_2


Theorem 10.1

1. If ab[ C3
C2�C1

then C0ðTÞ\0 for 0\ T\ T0 and C0ðTÞ[ 0 for T[ T0. Thus,

there exist a finite and unique T = T0([0) minimizing the total expected cost.
2. If ab� C3

C2�C1
then C0ðTÞ[ 0 for T [ 0 and hence C(T) is minimum for T = 0.

Determining release time with only cost minimization objective becomes
purely a developer-oriented policy for software release. Such a decision may not
truly prove to be optimization of release time. Release time decision is related to
the marketing activities of the software development. In the era of customer-
oriented marketing, deciding release time by minimizing the cost of testing and
debugging incurred during testing and operational phases may completely ignore
the customer requirement of developing software with high reliability. In view of
this, the policy of reliability maximization [2] at the release time can give a
reasonably affirmative solution. Such a policy for any of the NHPP-based SRGM
can be formulated as

Maximize RðxjTÞ ¼ exp� mðTþxÞ�mðTÞð Þ ðP2Þ

The policy (P2) may require to test the software for an infinite time as reliability
is defined as the probability that a software failure does not occur in time interval
(T, T ? x), given that the last failure occurrence time T C 0 (x C 0) is an
increasing function of time. But this is not the solution we are looking for as
software cannot be tested for infinite time. After a certain time of testing the time
required to detect an additional fault increases exponentially which in turn also
increases the cost of testing. Consider the case of any firm; no one neither pos-
sesses unlimited amount of resources to dispose on testing nor can they continue
testing for infinite time. For such a policy we can specify a target level of reli-
ability and release our software at the time point where that level is achieved,
irrespective of the cost incurred.

It can be observed that Rðxj0Þ ¼ e�mðxÞ;Rðxj1Þ ¼ 1;RðxjTÞ is an increasing
function of time, for T[ 0. Differentiating RðxjTÞ with respect to T, we have

R0ðxjTÞ ¼ exp� mðTþxÞ�mðTÞð Þ abe�bT 1� e�bx
� �� �

ð10:2:4Þ

Since R0ðxjTÞ[ 0 8 T � 0; RðxjTÞ is increasing for all T[ 0. Thus, if
Rðxj0Þ\R0 there exists T = T1([0) such that RðxjT1Þ ¼ R0: Hence the optimal
release time policy based on achieving a desired level of reliability R0 can be
determined based on Theorem 10.2.

Theorem 10.2 Assuming Tl[T

1. If Rðxj0Þ\R0 then T* C T1, but\Tl
2. If R(x|0) C R0 then T* C 0, but\Tl.

Both of the former policies considered only one of the aspects of release time;
considering any one of them ignores the other. Reliability being a key measure of

354 10 Software Release Time Decision Problems



quality should be considered keeping in mind the customer’s requirement; on the
other hand, resources are always limited so that they must be spent judiciously.
It is important to have a tradeoff between software cost and reliability. Yamada
and Osaki [3] formulated constrained release time problems which minimize the
expected software development cost subject to reliability not less than a predefined
reliability level or maximize reliability subject to cost not exceeding a predefined
budget.

Minimize CðTÞ
Subject to RðxjTÞ�R0

ðP3Þ

Or

Maximize RðxjTÞ
Subject to CðTÞ�CB

ðP4Þ

The optimal release time for Problem (P3) and (P4) can be obtained combining
the results of Theorems 10.1 and 10.2 for the exponential SRGM according to the
Theorems 10.3 and 10.4, respectively.

Theorem 10.3 Assuming Tl [T0 and Tl[ T1 then release time is determined
based on following observations, where T0, T1 are as defined in theorem (10.1)
and (10.2)

1. If ab[ C3
C2�C1

and Rðxj0Þ�R0; then T* = T0.

2. If ab[ C3
C2�C1

and Rðxj0Þ\R0; then T* = max (T0, T1).

3. If ab� C3
C2�C1

and Rðxj0Þ�R0; then T* = 0.

4. If ab� C3
C2�C1

and Rðxj0Þ\R0 then T* = T1.

Theorem 10.4 Assume Tl [ T0; Tl [ T1; Tl [ TA and Tl [ TB

1. If ab� C3
C2�C1

and C(0)[CB, or

2. If ab� C3
C2�C1

and C(0)\CB, then the budget constraint is met for all

T(0 B T B TA), where C Tð ÞT¼TA
¼ CB; then T* = TA.

3. If ab[ C3
C2�C1

and C(T0)[CB, then more budget is required in order to release

the software to meet the above objective.
4. If ab[ C3

C2�C1
and C(T0)\CB, then the budget constraint is met for all

T(0 B T B TA), where C Tð ÞT¼TB � 0\T0ð Þ¼ CB and C Tð ÞT¼TA [T0ð Þ¼ CB; then

T* = TA.

If obtaining more resources is not a problem or very high level of reliability is
required then one can follow (P4) otherwise if the level of reliability required can
be fixed prior to this decision, then one can follow (P3). There is no general rule
and based on the type of project, one of the above two policies may be used. The
Theorems (10.1–10.4) all have been formulated with respect to the exponential

10.2 Crisp Optimization in Software Release Time Decision 355



SRGM Goel and Okumoto [39]. Similar studies have been carried out by the
authors for the modified exponential as well as s-shaped SRGM. Reader can refer
to the original manuscript for details.

Application 10.1

For computing the release time of any software project using any of the above
policies first of all the practitioners require the software failure data. Using the
collected data we first determine the unknown parameters of the SRGM taken into
consideration. Now after obtaining the parameters of the cost and/or reliability
function and bounds on the budget or reliability based on the above theorems, we
can determine the release time. In this section we describe in detail how a release
policy is applied on any collected data. For numerical illustration let us consider
the data set from one of the major releases of Tandem Computers software projects
[40]; this software is tested for 20 weeks, spending 10,000 CPU hours and 100
faults were observed in this period.

Using this data set the parameters of Goel and Okumoto [39] SRGM are
estimated to be a = 130.30 and b = 0.083. Let us assume the cost parameters to
be C1 = $10, C2 = $50 and C3 = $500, where C1 is the cost of removing a fault
in the testing phase, C2 is the corresponding cost for the operational phase and is
usually much higher than the cost incurred during testing phase for fault removal,
C3 is the testing cost per unit time and the life cycle of the software is 3 years
(156 weeks). It may be noted that removal of software faults in the operational
phase is not same as that of testing phase. Fault removal in testing phase is a
continuous process while it is not so for operational phase. A number of overheads
are incurred before any fault removal in the operational phase. On the other hand
the cost of testing is in general very high as compared to fault removal cost.
Its components include cost of CPU hours, manpower cost, etc. The software data
we are concerned here with are for 20 weeks; it means that the software has
already been tested for almost 5 months. Using the estimates of the SRGM we
make estimate of the software failures that have been taken place in 20 weeks.
The estimation results yield that 105.53 faults have been removed in 20 weeks out
of the total number 130.30, thus a total of 24.77 faults are remaining. If testing is
continued only for 20 weeks we will spend $12294.02 in testing and debugging
during testing and operational phases and if we assume that the mission time, i.e.
x = 1, then the software reliability achieved by this time point is 0.1390.

Policy P1

Let us first consider the policy (P1), i.e. cost minimization. In this period of testing
using the estimated values of parameters of the SRGM and cost information, we
found that ab B C3/(C2 - C1). This is the case 2 of Theorem 10.1 which implies
that the optimal release time is T* = 0 weeks as the cost function is always
increasing (see Fig. 10.1) and minima occur at T = 0 weeks. The software pos-
sesses the reliability level zero at this release time. Now assume that if the cost of
testing, i.e. C3 = $100; in this case we have obtained a first decreasing and then
increasing cost function (Fig. 10.2). The result of case 1 of Theorem 10.1 becomes

356 10 Software Release Time Decision Problems



true, i.e. ab[C3/(C2 - C1) the release time coincides with the point where cost
function attains its minimum, i.e. T0 = T* = 17.65 weeks. At this release time the
total cost incurred is C* = 4272.46 and the reliability level achieved is 0.0909.
We can see that the results obtained in both of the cases cannot be accepted by the
users or developers as when the software would have been released very low level
of reliability will be achieved. Such a software would not be suitable for
functioning in the operational phase. Let us now compare our results with the
policy (P2).

Policy P2

Policy (P1) yields us very low level of reliability. Now consider that the developer
wants that the software should not be released in the market prior to the time when
the level of reliability is greater than or equal to 0.80, i.e. R0 = 0.80. In this case
testing has to be continued at least up to a time period of 46.27 weeks, i.e. software
can be released at any time after this period of testing, hence T* = 46.27 weeks. If
we consider C1 = $10, C2 = $50 and C3 = $100 then $6035.64 budget is required
for achieving the reliability level of 0.80. In Table 10.1 we summarize the results of
this policy for the various cases. From the table we can see that for the case when
testing cost is $100 and R0 = 0.80 then the budget consumed is $6035.64 while if
this cost is increased to $500 then the budget increases to $24547.53. Hence there is
no check on the budget when only reliability aspiration is kept as an objective for
the release policy. Results from both of the policies support our findings that
unconstrained optimization of either cost minimization or reliability maximization
is not sufficient to determine optimally the release time. Figure 10.3 shows the
reliability growth curve for the given data.

0

5

10

15

20

25

30

1 5 9 13 17 21 25 29 33 37 41 45 49

Time (week)

C
o

s
t 

(i
n

 1
0

0
0

$
)

Cost function for
testing cost $500 

Fig. 10.1 Cost function
when testing cost is $500

0

2

4

6

8

10

1 6 11 16 21 26 31 36 41 46 51 56 61

Time (week)

C
o

s
t 

(i
n

 1
0

0
0

 $
)

Cost function for
testing cost $100 

Fig. 10.2 Cost function
when testing cost is $100

10.2 Crisp Optimization in Software Release Time Decision 357



Policy P3

In the previous sections we have derived the optimal results for both of the
unconstrained policies of either cost minimization or reliability maximization.
In both of the cases the optimal results obtained may not be acceptable either from
the developers’ view or the users’ view. In case of cost minimization we may end up
with very less level of reliability. On the other hand if we keep reliability maxi-
mization as our objective then we have no check on the cost and the developers may
not have sufficient resources for continuing the testing for long. Now consider that
we change our release policy as in problem (P3). Let the developer specify that at
least reliability aspiration level be R0 = 0.80 with the cost parameters C1 = $10,
C2 = $50 and C3 = $500 then in this case we have ab B C3/(C2 - C1). Following
Theorem 3 we get optimal release time T* = 46.26 weeks. In this time period the
cost incurred is C(T*) = $24515.64. On the other hand if R0 = 0.85 then
T* = 50.08 weeks and C(T*) = $26424.63. If we further change the testing cost
C3 to C3 = $100 then ab[C3/(C2 - C1). In this case with R0 = 0.80,
T* = 46.26 weeks and C(T*) = $6041.08 and if R0 = 0.85, T* = 50.08 weeks
and C(T*) = $6392.63.

Policy P4

If the developer is not flexible with the budget and wants to achieve maximum
level of reliability in the limited amount of resources then he should apply policy
(P4) to determine the optimal release policy. If we consider the cost parameters as
C1 = $10, C2 = $50 and C3 = $500 with a and budget of $80,000 then we have
T* = 39.245 weeks and achieved reliability R* = 0.6707. Table 10.2 summarizes
the results of policy (P4) for various cost parameters and budgets.

Table 10.1 Release policies for the reliability maximization policies

R0 Cost parameters (in $) T* (weeks) Budget consumed
(in $)

0.80 C1 = $10, C2 = $50 C3 = $100 46.27 6035.64
0.80 C1 = $10, C2 = $50 C3 = $500 46.26 24547.53
0.85 C1 = $10, C2 = $50 C3 = $100 50.09 6393.56
0.85 C1 = $10, C2 = $50 C3 = $500 50.09 26429.56

0

0.2

0.4

0.6

0.8

1

1 6 11 16 21 26 31 36 41 46 51 56

Time (week)

R
e
ll
ia

b
il
it

y

Reliability growth
curve

Fig. 10.3 Reliability growth
curve for Application 10.1

358 10 Software Release Time Decision Problems



Most of the release policies discussed in the literature fall in the category of any
one of the problems (P1–P4), i.e. either constrained or unconstrained minimization
of cost or maximization of reliability remained primary concern in the release time
optimization problem. Some problems also considered maximization of gain or
minimization of failure intensity. The cost model of policy (P1) is formulated on
simple assumptions. Several modifications have been carried out in the literature in
this cost functions to include the penalty or opportunity loss cost due to delivering
the software after scheduled time [4, 13], risk cost of failure in field [14], con-
sidering random product life cycle [10], expected time of fixing a fault [14], etc. In
the next sections of this chapter we will discuss various other release policies
formulated on different SRGM and the modifications carried out in the cost
function.

10.2.2 A Cost Model with Penalty Cost

In the previous chapters we have discussed that software is either a project type or
a product type. Project type software is designed for specific users. Most of the
users specify a scheduled delivery time for the delivery of software, making
agreement with the developer that if the delivery is delayed then the developer has
to pay the penalty cost. Kapur and Garg [4] introduced the concept of releasing the
software at scheduled delivery time set by the management and\or with an
agreement between the user and developer on release time problem. An expected
penalty cost pc(t) in (0,T] due to delay in the scheduled delivery time is included in
the simple cost function (10.2.1) in addition to all the traditional costs. The
modified cost function is given as

C Tð Þ ¼ C1mðTÞ þ C2ðmðTlÞ � mðTÞÞ þ C3T þ
Z

T

0

pcðT � tÞdGðtÞ ð10:2:5Þ

The fourth term in the cost model (10.2.5) describes the expected penalty cost
in [Ts, T]. Ts is the scheduled delivery time assumed to be a random variable with
cdf G(t) and finite pdf g(t). Optimal release policies minimizing expected cost
subject to the reliability requirement are hence stated as

Table 10.2 Alternative results for policy P4

Budget (in $) Cost parameters (in $) T* (Weeks) Reliability
achieved R*

80,000 C1 = $10, C2 = $50 C3 = $500 39.245 0.6707
6,000 C1 = $10, C2 = $50 C3 = $100 45.811 0.7939
1,00,000 C1 = $10, C2 = $50 C3 = $500 49.305 0.8409
8,000 C1 = $10, C2 = $50 C3 = $100 66.765 0.9601

10.2 Crisp Optimization in Software Release Time Decision 359



Minimize C Tð Þ ¼ C1mðTÞ þ C2ðmðTlÞ � mðTÞÞ þ C3T

þ
Z

T

0

pcðT � tÞdGðtÞ

Subject to RðxjTÞ�R0

ðP5Þ

The release policy is described for an exponential [39], modified exponential
[41] and s-shaped SRGM [42] (refer to Sect. 2.2). Release policies in the previous
section have been discussed on the exponential SRGM. In this section we will
discuss the release policy with respect to the s-shaped SRGM. For other policies
the reader can refer to Kapur and Garg [4].

Differentiating the cost function C(T) with respect to T and equating it to zero,
we obtain

C2 � C1ð ÞkmðTÞ �
Z

T

0

dpcðT � tÞ
dT

dGðtÞ ¼ C3 ð10:2:6Þ

where kmðTÞ ¼ m0ðTÞ ¼ ab2Te�bT : It is noted that km(T) is increasing in 0 B T\ 1/
b and decreasing in 1/b\T B ?.

Case (i) When Ts is deterministic, let GðtÞ ¼
1; t� Ts
0; t\Ts

(

; then from (10.2.6) we

have

QðTÞ � ðC2 � C1Þm
0ðTÞ �

dpcðT � TsÞ

dT
¼ C3 ð10:2:7Þ

Assuming pc(T - Ts) to be increasing in Ts\T B ?, we have Q(?)\ 0 and
QðTsÞ ¼ ðC2 � C1Þm0ðTsÞ[ 0: Furthermore, Q(T) is always decreasing in
1/b\ T B ?. Therefore, if Ts C 1/b and Q(Ts)[C3, there exists a finite and
unique T(T0)[Ts satisfying (10.2.7) minimizing C(T). Moreover there exists a
unique T = T6([T0) satisfying C(T) = C(Ts). If Q(Ts) B C3, dC(T)/dT[ 0, and
(10.2.7) has no solution for T[ Ts. Therefore T0 = Ts minimizes C(T). If Ts\ 1/b
and Q(Ts)[C3, Q(T) is decreasing in Ts\ T B ?, there exists a finite and unique
T(T0)[ Ts satisfying (10.2.7) minimizing C(T). Also there exists a unique
T = T6([T0) satisfying C(T) = C(Ts). If Ts\ 1/b and Q(Ts) B C3, and Q(T) is
deceasing in Ts\T B ?, (10.2.7) has no solution for T[ Ts. Therefore T0 = Ts
minimizes C(T). If Ts\ 1/b, Q(Ts) C C3 and Q(T) is increasing in (Ts, 1/b), there
exists a finite and unique T(T0)[ Ts satisfying (10.2.7) minimizingC(T). If Ts\ 1/b
andQ(Ts)\C3, andQ(T) is increasing (Ts, 1/b) and the maximum value attained by
Q(T) B C3, T0 = Ts minimizes C(T), and if maximum value attained by Q(T)[C3

there exist two positive solutions T = Ta and T = Tb(Ts\ Ta\ Tb\?) satisfying

360 10 Software Release Time Decision Problems

http://dx.doi.org/10.1007/978-0-85729-204-9_2#Sec2


(10.2.7) (d2CðTÞ=dT2
\0jT¼Ta and d2CðTÞ=dT2

[ 0jT¼Tb : Furthermore, if
C(Tb)\C(Ts) there exist two positive and unique T = Te and T = Tf(Ts\Te\
Tb\ Tf\?) satisfying C(T) = C(Ts).

Moreover, for a specific operational time requirement x C 0 and reliability
objective R0 we have

RðxjTsÞ ¼ e �a ð1þbTsÞeð�bTsÞ� 1þb Tsþxð Þð Þe�b Tsþxð Þð Þð Þ;
Rðxj1Þ ¼ 1:

It is noted that R0ðxjTÞ\0 for 0\ T\Tx and R0ðxjTÞ[ 0 for Tx\T\?
where Tx ¼ xe�bx

� ��

1� e�bx
� �

: Therefore if Ts C Tx and RðxjTsÞ\R0; there exists
a unique T(T1)[Ts satisfying RðxjTsÞ ¼ R0; T [ Ts: If Ts C Tx and RðxjTsÞ�R0

then T1 = Ts and if Ts\Tx and RðxjTsÞ\R0; there exist a finite and unique
T(T2)[ Ts satisfying RðxjTsÞ ¼ R0; T [ Ts: If Ts\Tx and RðxjTxÞ\R0\RðxjTsÞ
there exist two solutions T = T3 and T = T4(T3\Tx\ T4\?) satisfying
R(x|Ts) = R0, T[ Ts. Thus the optimal release policies minimizing the total
expected testing cost subject to reliability requirement can be summarized as in
Theorem 10.5.

Theorem 10.5 Assuming C2[C1[ 0, C3[ 0, x C 0, 0\R0\ 1

(a) If Ts C 1/b and Q(Ts)[C3 and

(i) If R(x|Ts)\R0, then T* = max (T0, T1)
(ii) If Ts C Tx and RðxjTsÞ�R0; then T* = T0
(iii) If Ts\ Tx and RðxjTsÞ ¼ R0 for T0 C T2, T* = T0; for T0\ T2 and

T2[ T6, T* = T5; for T0\T2 and T2\ T6, T* = T2 and for T0\ T2
and T2 = T6, T* = Ts or T2

(iv) If Ts\ Tx and RðxjTxÞ\R0\RðxjTsÞ; for T0 B T3 or T0 C T4,
T* = T0; for T4 C T6, T* = T3; for T4\ T6 if C(T3)\C(T4) then
T* = T3 and if C(T3)[C(T4) then T* = T4, else T* = T3 or T4

(v) If Ts\ Txand 0\R0�RðxjTxÞ then T* = T0

(b) If Ts C 1/b and Q(Ts) B C3

(i) If RðxjTsÞ\R0 then T* = T1
(ii) If RðxjTsÞ�R0 then T* = Ts

(c) If Ts\ 1/b and Q(Ts)[C3 and Q(T) is decreasing in (Ts,?), T* is obtained
as in (a) above.

(d) If Ts\ 1/b and Q(Ts) B C3 and Q(T) is decreasing in (Ts,?), T* is obtained
as in (b) above.

(e) If Ts\ 1/b and Q(Ts) C C3 and Q(T) is increasing in (Ts, 1/b), T* is
obtained as in (a) above.

(f) If Ts\ 1/b and Q(Ts)\C3, Q(T) is increasing in (Ts, 1/b) and the maximum
value reached by Q(T) B C3, T* is obtained as in (b) above.

10.2 Crisp Optimization in Software Release Time Decision 361



(g) If Ts\ 1/b and Q(Ts)\C3, Q(T) is increasing in (Ts, 1/b) and the maximum
value reached by Q(T)[C3

(i) If C(Tb)[C(Ts), for R(x|Ts)\R0 if T1\ Tc then T* = T1, else if
Tc B T1 B Tb then T* = Tb and if T1[ Tb then T* = T1 and for
RðxjTsÞ�R0; T� ¼ Ts

(ii) If C(Tb) = C(Ts)
If RðxjTsÞ\R0 then T* = max (T1, Tb)
If Ts C Tx and RðxjTsÞ�R0 then T* = Tb
If Ts\ Tx and RðxjTsÞ ¼ R0 then for T2[ Tb, T* = Ts; for T2 = Tb,
T* = Ts or Tb and for T2\Tb, T* = Tb
If Ts\ Tx and RðxjTxÞ\R0\RðxjTsÞ then for Tb B T4, T* = Ts; for
Tb[ T4 if RðxjTsÞ[RðxjTbÞ then T* = Ts else if RðxjTsÞ\RðxjTbÞ
then T* = Tb and if RðxjTsÞ ¼ RðxjTbÞ then T* = Ts or Tb
If Ts\ Tx and 0\R0�RðxjTxÞ then for RðxjTsÞ[RðxjTbÞ; T� ¼ Ts for
RðxjTsÞ\RðxjTbÞ; T� ¼ Tb and for RðxjTsÞ ¼ RðxjTbÞ; T� ¼ Ts or Tb

(iii) If C(Tb)\C(Ts)
If RðxjTsÞ\R0 then T* = max (Tb, T1)
If Ts C Tx and RðxjTsÞ�R0 then T* = Tb
If Ts\ Tx and RðxjTsÞ ¼ R0 then for T2[ Tf, T* = Ts; for T2 = Tf,
T* = Ts or Tf; for Tb\T2\ Tf, T* = T2 and for Ts\ T2 B Tb,
T* = Tb
If Ts\Tx and RðxjTxÞ\R0\RðxjTsÞ for Tb B T3 or Tb C T4, T* = Tb;
for T3 B Te or T4 C Tf, T* = Ts; for T3[ Te or T4 C Tf, T* = T3; for
T3 B Te or T4\ Tf, T* = T4 and for T3[ Te and T4\ Tf if
C(T3)\C(T4) then T* = T3 else if C(T3)[C(T4) then T* = T4 and if
C(T3) = C(T4) then T* = T3 or T4
If Ts\ Tx and 0\R0�RðxjTxÞ then T* = Tb

Case (ii) When Ts has an arbitrary distribution G(t) with finite mean l then

PðTÞ � ðC2 � C1ÞkmðTÞ �
Z

T

0

dpcðT � tÞ

dt
dGðtÞ ¼ C3 ð10:2:8Þ

Assuming pc(T - t) to be an increasing function in T for all t(0 B t B T) we
have P(0) = (C2 - C1)km(0) = 0, P(?)\ 0. It can be noted that P(T) is a
decreasing in (1/b, ?). Therefore, if P(T) is decreasing in (0, 1/b), (10.2.8) has no
solution for T[ 0, dC(T)/dT[ 0 for all T and T0 = 0 minimizes C(T). If P(T) is
increasing in (0, 1/b), the maximum value reached by P(T) is[C3. There exist two
positive solutions T = Ta and T = Tb(0\ Ta\ Tb\?) satisfying (10.2.8)
(d2CðTÞ=dT2

\0jT¼Ta
and d2CðTÞ=dT2

[ 0jT¼Tb
: Furthermore, if C(Tb)\C(0)

362 10 Software Release Time Decision Problems



there exist Tc[ 0 satisfying C(T) = C(0). Moreover, for a specific operational
time requirement x C 0 and reliability objective R0 we have

Rðxj0Þ ¼ e �mðxÞð Þ;

Rðxj1Þ ¼ 1:

It is noted that R0ðxjTÞ\0 for 0\T\ Tx and R0ðxjTÞ[ 0 for T[ Tx where
Tx ¼ xe�bx

� ��

1� e�bx
� �

: Therefore if Rðxj0Þ\R0\1 there exist a unique
T(T1)[ 0 satisfying RðxjTÞ ¼ R0; T [ 0: If RðxjTxÞ\R0 ¼ Rðxj0Þ there exist
T2 C 0 satisfying RðxjTÞ ¼ R0; T [ 0: If RðxjTxÞ\R0\Rðxj0Þ there exist T3 and
T4(0\T3\ T4) satisfying R(x|T) = R0, T[ 0.

Thus the optimal release policies minimizing the total expected cost subject to
reliability requirement for this case can be summarized as in Theorem 10.6.

Theorem 10.6 Assume C2[C1[ 0, C3[ 0, x C 0, 0\R0\ 1, and l is finite
then the following apply

(a) If P(T) is decreasing in (0, ?)

(i) If Rðxj0Þ\R0 then T* = T1
(ii) If Rðxj0Þ�R0 then T* = 0

(b) If P(T) is increasing in (0, 1/b) and the maximum value reached by
P(T) B C3

(i) If Rðxj0Þ\R0 then T* = T1
(ii) If Rðxj0Þ�R0 then T* = 0

(c) If P(T) is increasing in (0, 1/b) and the maximum value reached by
P(T)[C3

(i) If C(0)\C(Tb) and Rðxj0Þ\R0 then for T1\ Tc, T* = T1; for
Tc B T1 B Tb, T* = Tb and for T1[ Tb, T* = T1.

(ii) If C(0)\C(Tb) and Rðxj0Þ�R0 then T* = 0
(iii) If C(0) = C(Tb) and Rðxj0Þ\R0 then T* = max (Tb, T1)
(iv) If C(0) = C(Tb) and Rðxj0Þ ¼ R0 [RðxjTxÞ then for T2[ Tb, T

*
= 0

and for T2 = Tb, T
*
= 0 or T2

(v) If C(0)[C(Tb) and Rðxj0Þ\R0 then T* = max (T1, Tb)
(vi) If C(0)[C(Tb) and Rðxj0Þ ¼ R0 [RðxjTxÞ then for

T2 B Tb, T* = Tb; for Tb\ T2\ Tf, T* = T2; for T2 = Tf, T* = 0 or
T2 and for T2[Tf, T* = 0

(vii) If C(0)[C(Tb) and RðxjTxÞ\R0\Rðxj0Þ then for Tb B T3 or
Tb C T4, T* = Tb; for T3 B Tc or T4 C Tf, T* = 0; for T3[ Tc or
T4 C Tf, T* = T3; for T3 B Tc or T4\ Tf, T* = T4 and for T3[ Tc or
T4\ Tf if C(T3)\C(T4) then T* = T3; else if C(T3)[C(T4) then
T* = T4 and if C(T3) = C(T4) then T* = T3 or T4

(viii) If C(0)[C(Tb) and 0\R0�RðxjTxÞ then T* = Tb

10.2 Crisp Optimization in Software Release Time Decision 363



Application 10.2

We continue with the problem taken in Application 1. Using the same data set the
parameters of s-shaped SRGM [42] are estimated to be a = 103.984 and
b = 0.265. Let us assume the cost parameters to be C1 = $10, C2 = $80 and
C3 = $700. If we assume the scheduled delivery time to be deterministic, define
pc(T) = CT2 = 150T2, and assume R0 = 0.87, then the problem can be defined as

Minimize C Tð Þ ¼ 10mðTÞ þ 80ðmðTlÞ � mðTÞÞ þ 700T þ 150ðT � TsÞ2

Subject to RðxjTÞ� 0:87
ðP6Þ

For a specific operational time requirement x = 1 week, scheduled delivery
time Ts = 30 weeks from the time when testing starts and software life cycle time
3 years, it is estimated if testing is terminated in 20 weeks then the total testing
and debugging cost incurred would be $3268.74 and the achieved reliability level
is 0.519. Now following Theorem 10.5 we obtain T* = Ts = 30 weeks, the
achieved level of reliability by the release time is R* = 0.9339 and the total
resources required are C(T*) = $22062.81.

Consider another case that when testing is started, only 4 weeks is remaining in
the scheduled delivery, in this case the reliability achieved in 4 weeks of testing is
estimated to be approximately zero, hence the software cannot be released at this
time and software developer would have to pay the penalty cost to the user in order
to achieve the reliability to the decided level of 0.87. So for this case again
following Theorem 10.5 we obtain T* = Ts = 26.95 weeks, R* = Ts = 0.87 and
C(T*) = $21347.11. Figures 10.4, 10.5 and 10.6 shows the cost curves and reli-
ability growth curves for Application 10.2.

The release policies we have discussed up to now have been based on the time-
dependent SRGM. The expected cost function includes the cost of testing per unit
time. In reality testing cost increases with time and no software developer would
spend infinite resources on testing the software, as instantaneous testing resources
will decrease during the testing life cycle so that the cumulative testing effort
approaches a finite limit [43]. The total testing effort expenditure never exceeds a
predefined level (say a) even if the software is tested for an infinitely large time
before release. In the literature many SRGM have been developed which describe
the growth of testing process with respect to the testing efforts spent. If we use
such an SRGM to formulate the cost model of the release time problem then the
testing cost can be defined per unit testing effort expenditure. In the next section
we will discuss the release policy based on a testing effort dependent SRGM.

10.2.3 Release Policy Based on Testing Effort Dependent SRGM

Kapur and Garg [6] discussed release policies using exponential, modified expo-
nential and S-shaped test effort based SRGM for maximizing expected gain

364 10 Software Release Time Decision Problems



function subject to achieving a given level of failure intensity. Mathematically
stated as

Maximize GðTÞ ¼ C2 � C1ð ÞmðTÞ � C3WðTÞ
Subject to kðTÞ� k0

ðP7Þ

where C3 is now the expected cost per unit testing effort expenditure and m(t) is the
mean value function of a test effort based SRGM (see Sect. 2.7). In the previous
sections of the chapter we have discussed the release policies for exponential and
s-shaped SRGM. Now in this section we choose the modified exponential SRGM
[41, 43] to formulate the release policy. The mean value function of the test effort
based modified exponential model is given as

0

20

40

60

80

100

120

140

160

1 5 9 13 17 21 25 29 33 37 41 45 49

Time (week)

C
o

s
t 

(i
n

 1
0
0
0
$
)

Cost function for Ts = 30 weeksFig. 10.4 Cost function of
Application 10.2 for
Ts = 30 weeks

0

100

200

300

400

500

1 5 9 13 17 21 25 29 33 37 41 45 49

Time (week)

C
o

s
t 

(i
n

 1
0
0
0
$
)

Cost function for Ts=4 weeksFig. 10.5 Cost function of
Application 10.2 for
Ts = 4 weeks

0

0.2

0.4

0.6

0.8

1

1 6 11 16 21 26 31 36 41 46

Time (week)

R
e

li
a

b
il

it
y

Reliability growth
curve

Fig. 10.6 Reliability growth
curve for Application 10.2

10.2 Crisp Optimization in Software Release Time Decision 365

http://dx.doi.org/10.1007/978-0-85729-204-9_2


mðtÞ ¼
X

2

i¼1
miðtÞ ¼ a

X

2

i¼1
ri 1� e�biWðtÞ
� �

and the failure intensity function is given as

kðtÞ ¼ awðtÞ
X

2

i¼1

ribi 1� e�biWðtÞ
� �

ð10:2:9Þ

where W(t) is the distribution of the testing effort and can be described by
exponential, Rayleigh, Weibull, logistic, etc. curves (see Sect. 2.7). Hence the
release policy for this SRGM can be rewritten as

Maximize GðTÞ ¼
X

2

i¼1

C2i � C1ið ÞmiðTÞ � C3WðTÞ

Subject to kðTÞ� k0

ðP8Þ

The first derivative of the gain function is zero when

a
X

2

i¼1
C2i � C1ið Þribie�biWðTÞ ¼ C3 ð10:2:10Þ

Hence if a
P2

i¼1 C2i � C1ið Þribi [C3 and a
P2

i¼1 C2i � C1ið Þribie�biWðTÞ
\C3

there exists a finite and unique T = T0(0\ T\ Tl) satisfying (10.2.10). If

G0ðTÞ\0 for T [ 0; a
P2

i¼1 C2i � C1ið Þribi�C3; and if G0ðTÞ[ 0 for T\Tl;

a
P2

i¼1 C2i � C1ið Þribie�biWðTÞ �C3: From (10.2.9) it may be observed that either
k(t) is decreasing in T(0 B T B Tl) or is increasing in (0, tx) and decreasing in
(tx, Tl) where T = tx satisfies k0ðtÞ ¼ 0: Thus when k(t) is decreasing in
T(0 B T B Tl), k(0)[ k0 and k(Tl) B k0, there exists a finite and unique
T = T1(BTl) satisfying k(T) = k0. If k(t) is increasing in (0, tx) and decreasing in
(tx, Tl), k(0)[ k0 and k(Tl) B k0 there exists a finite and unique
T = T1(Tx\T1 B Tl) satisfying k(T) = k0. Combining the gain and intensity
requirements, we may state the following theorem for optimal release policy.

Theorem 10.7 Assume C2i[C1i[ 0(i = 1, 2), C3[ 0, k0[ 0 and k(Tl) B k0.

(a) If a
P2

i¼1 C2i � C1ið Þribi [C3 and a
P2

i¼1 C2i � C1ið Þribie�biWðTlÞ
\C3 then

(i) when k(T) is decreasing in T,
T* = max (T0, T1), for k(0)[ k0 or T* = T0 for k(0) B k0

(ii) when k(T) is increasing in (0, tx) and decreasing in (tx, Tl)
T* = max (T0, T1), for k(tx)[ k0 or T* = max (T0, tx) for k(tx) B k0

(b) If a
P2

i¼1 C2i � C1ið Þribi�C3 then

(i) when k(T) is decreasing in T,
T* = T1, for k(0)[ k0 or T* = 0 for k(0) B k0

366 10 Software Release Time Decision Problems

http://dx.doi.org/10.1007/978-0-85729-204-9_2


(ii) when k(T) is increasing in (0, tx) and decreasing in (tx, Tl)
T* = T1, for k(tx)[ k0 or T* = tx for k(tx) B k0

(c) If a
P2

i¼1 C2i � C1ið Þribie�biWðTlÞ �C3 then T* = T1.

It may be noted that if kðTlÞ[ k0; software may not be released as the failure
intensity constraint has not been met. In such a situation more testing resources may
be needed to achieve the desired failure intensity before releasing the software.

Application 10.3

We again continue with the problem taken in Application 10.1. Using the same
data set the parameters of the modified exponential SRGM are estimated. First an
exponential test effort function W(t) = a(1 - e-bt) is chosen to describe the
testing effort expenditure and its parameters are estimated to be
a = 35,390 CPU hours and b = 0.017. Using the estimates of testing effort
function the parameters of the SRGM are estimated to be a = 120.03, r1 = 0.425,
r2 = 0.575, b1 = 0.000178 and b2 = 0.00018. Let us assume the cost parameters
C11 = $100, C12 = $150, C21 = $1,500, C22 = $1,700 and C3 = $5. Let the
software life cycle be Tl = 200 weeks. Now if the software is release untested, the
failure intensity of the software is k(0) = 1.309 which is of a high level and the
reliability of the software at that time would be negligible and the value of gain
function would be $15243.34. When testing is continued only up to the time for
which data are available (20 weeks) in that case failure intensity would be very
high, k(20) = 7.809 (note that failure intensity function first increases and then
decreases in this case) and reliability R(20) = 0.654 and the value of gain function
would be $99132.01. Although the gain function is reaching near its peak at this
time [peak value is (G(20.27) = $99137.90], the software cannot be released at
this time as the failure intensity is very high. The failure intensity has its peak at
T = 18.67, it is increasing before this time and decreasing later. Now we apply the
release policy (P8) to find the optimal time to release for k0 = 0.8 then the optimal
solution obtained following Theorem 10.7 is T* = 164.03 weeks. At this time
R(T*) = 0.9933, and G(T*) = 11883.55. If we further decrease the failure
intensity requirement to k0 = 0.6 in that case T* = 180.96 weeks. At this time
R(T*) = 0.9939 and G(T*) = $9202.81. Graphical plots of gain and failure
intensity functions are shown in Figs. 10.7 and 10.8, respectively.

10.2.4 Release Policy for Random Software Life Cycle

Yun and Bai [8] proposed that software release time problems should assume
software life cycle to be random as several factors such as availability of alter-
native competitive product in the market, a better product announcement by the
developer himself, etc. plays a role in the determination of the software life cycle
length. They obtained the optimal release time solutions numerically using
bisection method for exponential, modified exponential and S-shaped distribution,

10.2 Crisp Optimization in Software Release Time Decision 367



maximizing the total average profit with random life cycle. Later Kapur et al. [10]
determined release policies for a software system based on minimizing expected
cost subject to achieve a desired level of intensity assuming software life cycle to
be random. To describe the software release time policy with random life cycle
assume that h(t), H(t) and r(t) be the pdf, cdf and hazard rate of the software life
cycle length. The expected software cost during the software life cycle (if the
software is released at time T) is

CðTÞ ¼ C1

Z

T

0

mðtÞhðtÞdtþC3

Z

T

0

thðtÞdtþC1

Z

1

T

mðTÞhðtÞdt

þ C3THðTÞ þ C2

Z

1

T

mðtÞ � mðTÞð ÞhðtÞdt

ð10:2:11Þ

Hence if we state the problem as minimizing the expected software cost subject
to the failure intensity requirement k(T) B k0, simplifying the cost function is
stated as

Minimize CðTÞ¼C1

Z

T

0

mðtÞhðtÞdtþC3

Z

T

0

thðtÞdtþ C1�C2ð ÞmðTÞHðTÞ

þC3THðTÞþC2

Z

1

T

mðtÞhðtÞdt

Subject to k Tð Þ�k0 ðP9Þ

0

20

40

60

80

100

120

1 20 39 58 77 96 115 134 153 172 191

Time (week)

G
a

in
 (

in
 1

0
0
0
$
)

Gain functionFig. 10.7 Gain function for
Application 10.3

0

1

2

3

4

5

6

7

8

1 19 37 55 73 91 109 127 145 163 181

Time (week)

F
a

il
u

re
 I

n
te

n
s

it
y

Failure intensity

function

Fig. 10.8 Failure intensity
function for Application 10.3

368 10 Software Release Time Decision Problems



The conditional failure intensity at T is given as IðTÞ ¼
R1
T m0ðTÞhðtÞdt; IðTÞ is

decreasing in T, if I(0)[k0 there exists a finite and unique T T1ð Þ satisfying
I Tð ÞjT¼T1 ¼ k0. Combining the cost and intensity requirements the theoremobtained is

Theorem 10.8

1. If ab� C3
C2�C1ð Þ and I(0) B k0, then T* = 0.

2. If ab� C3
C2�C1ð Þ and I(0)[ k0, then T* = T1

3. If ab[ C3
C2�C1ð Þ and I(0) B k0, then T* = T0

4. If ab[ C3
C2�C1ð Þ and I(0)[ k0, then T* = max (T0, T1)

where T0 is the time as described in Theorem 10.1.

Application 10.4

Consider the problem discussed in Application 10.1. Since this policy is also
discussed for the Goel and Okumoto [39] exponential SRGM we have a = 130.30
and b = 0.083. Let us again assume the cost parameters to be C1 = $10,
C2 = $50 and C3 = $500. If we assume the pdf of the software life cycle length
h(t) = 0.005 exp (-208t) and if testing is continued for 20 weeks only and
then terminates, the total expected cost that would be incurred in the software
testing is $5991.04 and the achieved failure intensity would be I(20) = 1.943,
which is not an acceptable level if we want to achieve failure intensity less than or
equal to 0.1. Now we apply Theorem 10.8 to obtain the release policy for this case.
It is computed that the optimal release time is T* = 53.78 weeks and
C(T*) = $20740.55. At this time R(T*) = 0.8873. Graphical plots of cost and
failure intensity functions are shown in Figs. 10.9 and 10.10, respectively.

10.2.5 A Software Cost Model Incorporating the Cost

of Dependent Faults Along with Independent Faults

Often in the testing process the software debugging team removes some additional
faults while debugging a fault that has caused the failure. The faults which are
removed on the go are called dependent faults and those which become the

0

5

10

15

20

25

1 5 9 13 17 21 25 29 33 37 41 45 49

Time (week)

C
o

s
t 

(i
n

 1
0

0
0

$
)

Cost functionFig. 10.9 Cost function for
Application 10.4

10.2 Crisp Optimization in Software Release Time Decision 369



primary cause of a failure are called independent faults in the literature. Most of
the release policies that have been discussed so far in this chapter or literature
ignore the removal of dependent faults. Although there is no testing cost incurred
for the detection and removal of these faults there is some additional removal cost
associated with these removals. In this section we are addressing one such release
policy. The formulation of such a policy requires an SRGM that accounts for the
removal of dependent faults along with the independent faults. Kapur and Garg [7]
SRGM for error removal phenomenon (refer to Sect. 2.3.7) describes this aspect of
the testing process. The authors in the original article have proposed this SRGM
and formulated the release policy using the model. They modified the simple cost
model to include the cost of additional removals. Note that in this case there are
more removals as compared to the failures and at any time t, the number of
dependent faults removed is given by the difference of mean number of removals
and failures, i.e. mr(t) - mf(t).

Now if we assume C1
0
is the cost removal of a dependent fault in the testing

phase and C02 is the corresponding cost for the operational phase then the simple
cost model can be modified as

C Tð Þ ¼ C1mf ðTÞ þ C01 mrðTÞ � mf ðTÞ
� �

þ C2 mf ðTlÞ � mf ðTÞ
� �

þ C0
2 mrðTlÞ � mrðTÞ � mf ðTlÞ � mf ðTÞ

� �� �

þ C3T
ð10:2:12Þ

Using the cost model (10.2.12) the release policy is stated as

Minimize C Tð Þ ¼ C1mf ðTÞ þ C0
1 mrðTÞ � mf ðTÞ
� �

þ C2 mf ðTlÞ � mf ðTÞ
� �

þ C0
2 mrðTlÞ � mrðTÞ � mf ðTlÞ � mf ðTÞ

� �� �

þ C3T

Subject to RðxjTÞ�R0

ðP10Þ

The optimal release policies are obtained by differentiating the expected cost
function with respect to time and equating to zero, i.e., C0(T) = 0. We have
C0(T) = 0 if

m0
rðTÞ þ ðD� 1Þm0

f ðTÞ ¼
C3

C0
2 � C0

1

ð10:2:13Þ

0

2

4

6

8

10

12

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

Time (week)

F
a

il
u

re
 I

n
te

n
s

it
y

Failure intensity
function

Fig. 10.10 Failure intensity
function for Application 10.4

370 10 Software Release Time Decision Problems

http://dx.doi.org/10.1007/978-0-85729-204-9_2


where D ¼ C2�C1
C0
2�C0

1
: It may be observed that if pD C q and apD[

C3
C0
2�C0

1
(p and q are

the parameters of the SRGM), finite and unique T = T0([0) exists, satisfying
Eq. (10.2.13). If pD C q and apD� C3

C02�C0
1
;C0ðTÞ[ 0 for T[ 0 and T = 0 mini-

mizes C(T). If pD\ q, C0(T)[ 0 and m0
rðTmÞ þ ðD� 1Þm0

jðTmÞ� C3
C02�C0

1
for

T[ 0, or if pD\ q, and apD� C3
C0
2�C0

1
a finite and unique T = T2([Tm) exists,

satisfying Eq. (10.2.13). On the other hand if pD\ q, apD\ C3
C0
2�C0

1
and m0

rðTmÞ þ
ðD� 1Þm0

jðTmÞ[ C3
C0
2�C0

1
T ¼ Ty and T = Tz(0\ Ty\ Tz) exists, satisfying

Eq. (10.2.13). It may be noted that C00(T)\ 0 for T = Ty and C00(T)[ 0 for
T = Tz. Moreover, if C(0)\C(Tz), a finite and unique T = Tc(\Ty) exists, sat-
isfying C(T) = C(Tz); whereas if C(0)[C(Tz) finite and unique T = Tc and
T = Tf exist, satisfying C(T) = C(0). Combining the cost and reliability require-
ments the release time can be determined according to the Theorem 10.9.

Theorem 10.9 Assume C1[C1
0
[ 0, C2[C1 , C2[C2

0
[C1

0
, C3[ 0, x[ 0,

0\R0\ 1 states that

(a) when aD C b,

(i) NaD[
C3

C0
2�C0

1
; T� ¼ maxðT0; T1Þfor Rðxj0Þ\R0\1;or T* = T0 for

Rðxj0Þ�R0 [ 0:
(ii) NaD� C3

C02�C0
1
; T� ¼ T1 for Rðxj0Þ\R0\1; or T* = 0 for

Rðxj0Þ�R0 [ 0:

(b) when aD\ b,

(i) m0
rðTmÞ þ ðD� 1Þm0

jðTmÞ� C3
C;
2�C0

1
; T� ¼ T1 for Rðxj0Þ\R0\1; or

T* = 0 for Rðxj0Þ�R0:

(ii) NaD� C3
C0
2�C0

1
; T� ¼ maxðT2; T1Þ for Rðxj0Þ\R0\1; or T* = T2 for

Rðxj0Þ�R0 [ 0:
(iii) NaD\ C3

C0
2�C0

1
and m0

rðTmÞ þ ðD� 1Þm0
f ðTmÞ[ C3

C0
2�C0

1

If C(0) = C(Tz)T* = max (Tz, T1) for Rðxj0Þ\R0\1; or
T* = 0 or Tz for Rðxj0Þ�R0 [ 0:
else if C(0)\C(Tz)T* = 0 or Tz for Rðxj0Þ�R0 [ 0; or
else if C(0)\C(Tz) and Rðxj0Þ\R0\1 T� ¼ T1 for T1\ Tc
T* = Tc or Tz for T1 = Tc; T* = max (Tz, T1) for T1[ Tc
and if C(0)[C(Tz)T* = max (Tz, T1) for Rðxj0Þ\R0\1; or
T* = Tz for Rðxj0Þ�R0 [ 0:

Here T0 and T1 are as defined in Theorems 10.1 and 10.2.

Application 10.5

For application of the above release policy we again continue with the data set
chosen in Application 10.1. First we estimate the parameters of the Kapur and

10.2 Crisp Optimization in Software Release Time Decision 371



Garg [7] software reliability growth model using these data. The estimated values
of the parameters of the SRGM are a = 273.825, p = 0.035 and q = 0.136. Let
the cost parameters be C1 = $10, C01 = $5, C2 = $50, C02 = $40 and C3 = $300.
The operational mission time is x = 1 week, the software life cycle length is
3 years (156 weeks). The reliability level achieved in 20 weeks of testing (time
period for which data are available) is 0.2836 and the total testing cost in software
life cycle for this level of reliability would be $43324.47. Now using the available
information in Theorem 10.9 we obtain the optimal release time of the
software, T* = 32.55 weeks for a reliability requirement of R0 = 0.85 and
C(T*) = $11874.76. Graphical plots of cost and reliability growth functions are
shown in Figs. 10.11 and 10.12, respectively.

10.2.6 Release Policies Under Warranty and Risk Cost

The focal role of cost function in determining the optimal release time of software
enforced [14] to further modify the cost function by incorporating warranty and
risk costs associated with the testing life cycle. Authors claimed that the different
faults take different times for their removal and for this reason associated the time
factor with the cost of fault removal. The cost model (10.2.1) is modified and total
expected software cost is defined as

0

5

10

15

20

25

30

35

1 8 15 22 29 36 43 50 57 64 71 78 85 92

Time (weeks)

C
o

s
t 

(i
n

 1
0

0
0

$
)

Cost function
Fig. 10.11 Cost function for
Application 10.5

0

0.2

0.4

0.6

0.8

1

1 17 33 49 65 81 97 113 129 145

Time (weeks)

R
e
li
a
b

il
it

y

Reliability growth
curve

Fig. 10.12 Reliability
growth function for
Application 10.5

372 10 Software Release Time Decision Problems



EðTÞ � C Tð Þ ¼ C0 þ C1mðTÞly þ C3T
a

þ C4lW m T þ TWð Þ � m Tð Þð Þ þ C5 1� R xjTð Þð Þ
ð10:2:14Þ

Now we explain each term in the cost function. Here C0 is defined as the fixed
setup cost of testing. Under the assumption that it takes time to remove faults and
removal time of each fault follows a truncated exponential distribution the prob-
ability density function of the time to remove a fault during testing period, Y, is
given by

sðyÞ ¼

kye
�kyy

R

T0

0

ky
�kyx

for 0� y� T0

0 for y[ T0

8

>

<

>

:

where ky is a constant parameter associated with truncated exponential density
function Y and T0 is the maximum time to remove any error during testing period.
Then the expected time to remove each error is given by

E Yð Þ ¼ ly ¼

Z

T0

0

ysðyÞdy ¼
1� kyT0 þ 1

� �

e�kyT0

ky 1� e�kyT0ð Þ

Hence, the expected total time to remove N(T) faults corresponding to all
failures experienced up to time T is given by

E
X

NðTÞ

i¼1

Yi

 !

¼ E N Tð Þð Þ � E Yið Þ ¼ m Tð Þ � ly

Thus, the expected cost to remove all errors detected by time T in the testing
phase, where C1 is now the cost of removing an error per unit time during testing
phase is given by

E1 Tð Þ ¼ C1E
X

NðTÞ

i¼1

Yi

 !

¼ C1mðTÞly ð10:2:15Þ

The cost of testing per unit time is assumed to be a power function of time
T since the cost of testing increases with higher gradient in the beginning and
slows down later.

E2 Tð Þ ¼ C3T
a ð10:2:16Þ

Further it is assumed that the software developer does not maintain the software
for the whole of its operational life cycle. This is because the software developers
always keep on improving their software and come up with newer versions with
added features and improved reliability. The newer versions are usually launched
even before the earlier version obsoletes and the developer encourages the users of
the previous versions to improve their version with the new one as it has enhanced
features. So given any version of the software, developer decides a warranty period

10.2 Crisp Optimization in Software Release Time Decision 373



for which they provide aftersales services and after that period if a failure is
encountered no removal is made from the part of the developer. Hence now instead
of calculating the cost for the whole life cycle of the software we need to calculate
it only up to the time when the warranty period ends. The expected cost to remove
all faults during warranty period [T, T ? Tw] is given by

E3 Tð Þ ¼ C4lW m T þ TWð Þ� m Tð Þð Þ ð10:2:17Þ

A new cost i.e. risk cost of failure in the operational phase is also added to the
expected cost function. Consideration of risk cost is an important attribute for the
complex software systems, which are designed for implementation in critical
system environments and applications. Failure in critical systems can result in
huge risk cost to software developers hence long run testing and very high level of
reliability are desired for these systems. The risk cost due to software failure after
releasing the software can be expressed as

E4 Tð Þ ¼ C5 1� R xjTð Þð Þ ð10:2:18Þ

The optimal release time is determined minimizing the unconstrained expected
total development software cost function for the Goel and Okumoto [39] expo-
nential SRGM. The policy can be stated as

Minimize EðTÞ � C Tð Þ ¼ C0 þ C1mðTÞly þ C3T
a

þ C4lW m T þ TWð Þ � m Tð Þð Þ þ C5 1� R xjTð Þð Þ
ðP11Þ

Release time is determined by differentiating E(T) with respect to time, i.e.

E0 Tð Þ ¼ aC3T
a�1 � C4lWabe

�bT 1� e�bTW
� �

� abe�bT C5 1� e�bx
� �

R xjTð Þ � C1ly
� �

The second derivative of E(T) with respect to time is

E00 Tð Þ ¼ e�bT
a a� 1ð ÞC3T

a�2ebT þ C4lWab
2 1� e�bTW
� �

� C1lyab
2

þ C5ab
2 1� e�bx
� �

R xjTð Þ 1� ae�bT 1� e�bx
� �� �� �

 !

Equivalently it can be written as

E00 Tð Þ ¼ e�bT u Tð Þ � Cð Þ

where

uðTÞ ¼ a a� 1ð ÞC3T
a�2ebT þ C5ab

2 1� e�bx
� �

R xjTð Þ 1� ae�bT 1� e�bx
� �� �� �

374 10 Software Release Time Decision Problems



and C ¼ C1lyab
2 � C4lWab

2 1� e�bTW
� �

: Since u0(T)[ 0, u(T) is an increasing
function of time. The following theorem gives the optimal value of release time T*

minimizing the expected total cost of the software.

Theorem 10.10 Given the values C1, C3, C4, C5, x, ly, lw, Tw.

(a) If u(0) C C then u(T) C C for any T and

(i) If E0(0) C 0, then T* = 0.
(ii) If E0 1ð Þ\0; then T� ¼ 1:
(iii) If E0 0ð Þ\0; then there exist a T0 such that E0 Tð Þ\0;for any T 2 ð0; T 0�

and E0 Tð Þ[ 0; for any T 2 ðT 0;1Þhence T* = T0.

(b) If l(?)\C then u(T) B C for any T and

(i) If E0 0ð Þ� 0; then T* = ?.
(ii) If E0 1ð Þ[ 0; then T* = 0.
(iii) If E0 0ð Þ[ 0;E0 1ð Þ\0; then there exist a T00 such that E0 Tð Þ[ 0; for

any T 2 ð0; T 00� and E0 Tð Þ\0; for any T 2 ðT 00;1Þ; then T* = 0 if
E 0ð Þ�Eð1Þ and T* = ? if E(0)[E(?) where T 00 ¼ E0�1 0ð Þ

(c) If u(0)\C, l(?)[C then there exist a T0 such that u(T)\C for T 2
ð0; T0� and u(T)[C for T 2 ðT0;1Þ where T0 = u-1(C), then

(i) If E0 0ð Þ� 0; then T* = 0
(ii) If E(0) B E(Tb) and T* = Tb
(iii) If E(0)[E(Tb) where Tb = inf{T[ Tb:E0(T)[ 0}
(iv) If E0 0ð Þ\0; then T* = Tb00, where T 00

b ¼ E0�1ð0Þ:

Application 10.6

For application of the above release policy let us consider the data set reported by
Musa et al. [44] based on the failures from a real time command and control
system, which represents the failures observed during system testing for
25 CPU hours. During this time period 136 faults have been discovered. The
delivery number of object instructions for this system was 21,700 and was
developed by Bell Laboratories. Using this data set the parameters of Goel and
Okumoto [39] SRGM are estimated to be a = 142.32 and b = 0.1246. if the cost
parameters are C0 = $50, C1 = $60, C3 = $700, C4 = $3,600 and C5 = $50,000.
The cost C5 = $50,000 is usually very high as it represents the risk cost of field
failures and includes the cost of loss of revenue, customers and even the human
life. If the operational mission time x = 1 CPU hour, the warranty period length is
Tw = 450 CPU hours, a = 0.95, lw = 0.5 and ly = 0.1 then if testing is stopped
after 25 CPU hours of testing, the total cost incurred would be $53275.42 and the
reliability would reach to the level of 0.4772. Now if we apply Theorem 10.10 to
determine the release time we obtain T* = 43.76 CPU hours, the total cost
incurred would be C(T*) = $30,804 and in this time period the software will

10.2 Crisp Optimization in Software Release Time Decision 375



become 93.104% reliable. Graphical plots of cost and reliability growth functions
are shown in Figs. 10.13 and 10.14, respectively.

10.2.7 Release Policy Based on SRGM Incorporating

Imperfect Fault Debugging

In Chap. 3 of the book we have discussed a number of testing efficiency based
SRGM clearly stating the need and importance of incorporating testing efficiency
parameters in the SRGM. So it is equally important to formulate the release
policies based on imperfect debugging models. Kapur and Garg [5] made an initial
attempt in introducing the concept of imperfect fault debugging in NHPP based
SRGM, assuming fault removal rate per remaining faults is reduced due to
imperfect fault debugging (see Sect. 3.3.1). They have also discussed the release
policy for the SRGM minimizing the total expected software cost subject to
software reliability not less than a specified reliability objective. The simple cost
model (10.2.1) is modified to include separate cost of fixing a fault due to perfect
and imperfect fault debugging during testing and operational phases along with the
testing cost per unit time. Defining p, as the probability of perfect debugging, the
cost function is redefined as

CðTÞ ¼ C1pþ C01ð1� pÞ
� �

mf ðTÞ þ C2pþ C0
2ð1� pÞ

� �

mf ðTlÞ � mf ðTÞ
� �

þ C3T

ð10:2:19Þ

0

50

100

150

200

250

300

1 14 27 40 53 66 79 92 105 118

Time (CPU hours)

C
o

s
t 

(i
n

 1
0
0
0
$
)

Cost function
Fig. 10.13 Cost function for
Application 10.6

0

0.2

0.4

0.6

0.8

1

1 14 27 40 53 66 79 92 105 118

Time (CPU hours)

R
e

li
a

b
il

it
y

Reliability growth
curve

Fig. 10.14 Reliability
growth function for
Application 10.6

376 10 Software Release Time Decision Problems

http://dx.doi.org/10.1007/978-0-85729-204-9_3
http://dx.doi.org/10.1007/978-0-85729-204-9_3


Using the cost function (10.2.12) the release policy is stated as

Minimize CðTÞ ¼ C1pþ C01ð1� pÞ
� �

mf ðTÞ
þ C2pþ C0

2ð1� pÞ
� �

mf ð1Þ � mf ðTÞ
� �

þ C3T

Subject to RðxjTÞ�R0

ðP12Þ

The optimal release policy is determined using the principles of calculus and
combining the cost and reliability requirements

Theorem 10.11 Assuming C2[C1[ 0, C2
0
[C1

0
[ 0, C3[ 0, x[ 0,

0\R0 B 1, D1 = C1p ? C1
0
(1 - p) and D2 = C2p ? C2

0
(1 - p)

(a) If ab [
C3

D2�D1ð Þ and Rðxj0Þ\R0\1 then T* = max (T0, T1)

(b) If ab[ C3
D2�D1ð Þ and Rðxj0Þ�R0 [ 0 then T* = T0

(c) If ab� C3
D2�D1ð Þ and Rðxj0Þ\R0\1 then T* = T1

where T1 and T0 are as defined in Theorems 10.1 and 10.2.

Application 10.7

Let us again consider the data set considered in Application 10.6. Using this data set
the parameters of Kapur and Garg [5] imperfect fault debugging SRGM are
estimated to be a = 126.39, b = 0.154 and p = 0.903. Let the cost parameters
C1 = $200, C0

1 = $110, C2 = C0
2 = $1,500 and C3 = $50. If the operational

mission time x = 1 CPU hour, the software life cycle length is Tl = 2,920
CPU hours, then if testing is stopped after 25 CPU hours of testing, the total cost
incurred would be $33684.21 and the reliability would reach to the level of 0.5702.
According to Theorem 10.11 the optimal release time for the software is
T* = 44.82 weeks for the reliability requirement of 0.85. The optimal cost value is
C(T*) = $29372.21 with the achieved reliability of 0.9649. The optimal solution
yields more reliability then the aspiration level as the case considered here is part 1
of Theorem 10.11, T* = max (T0, T1) = T0 (point of minima on cost curve).

Xie and Yang [45] also determined the optimal release time policy based on
pure imperfect fault debugging SRGM proposed by Kapur and Garg [5] though
they referred it as the SRGM proposed by Obha and Chou [46] on error generation.
Authors claimed that the cost of testing C3 is a function of perfect debugging
probability p, since the testing cost parameter depends on the testing team com-
position and testing strategy used. If the probability of perfect debugging is to be
increased, it is expected that extra financial resources will be needed to engage
more experienced testing personnel, and that will result in an increase in C3. The
modified cost model is given as

CðT ; pÞ ¼ C1mðTÞ þ C2 mðTlÞ � mðTÞð Þ þ C3T

ð1� pÞ ð10:2:20Þ

Then the optimal release time T and optimal testing level p are determined
minimizing the cost function. Since the SRGM is wrongly assumed to be of error

10.2 Crisp Optimization in Software Release Time Decision 377



generation type, the cost of imperfectly removing error was not included in the
cost function.

Kapur et al. [47] modified the above cost model, incorporating separate cost of
fixing an error due to perfect and imperfect fault debugging during testing and
operational phases

CðT; pÞ ¼ C1pþ C01ð1� pÞ
� �

mf ðTÞ þ C2pþ C0
2ð1� pÞ

� �

mf ðTlÞ � mf ðTÞ
� �

þ C3T

ð1� pÞ
ð10:1:21Þ

The optimal release policy minimizing the total expected software at optimal
testing level p* is formulated as

Minimize CðT ; pÞ ¼ C1pþ C0
1ð1� pÞ

� �

mf ðTÞ

þ C2pþ C0
2ð1� pÞ

� �

mf ðTlÞ � mf ðTÞ
� �

þ C3T

ð1� pÞ
Subject to 0\p\1 and T[ 0

ðP13Þ

subject to 0\p\1 and T[0
Using the principles of calculus the above optimization problem is solved

taking partial derivates of C(T, p) with respect to T and equating it to zero, T can be
expressed in terms of p as

T ¼ gðpÞ ¼ 1
bp

ln
abðD2 � D1Þð1� pÞ

C3

� �

where D1 = C1p ? C1
0
(1 - p), D2 = C2p ? C2

0
(1 - p).

Similarly taking partial derivates of C(T, p) with respect to p and equating it to
zero, give the numerator as

hðpÞ ¼ ð2p� 1ÞC3ðD2 � D1Þ ln
ab D2 � D1ð Þ 1� pð Þ

C3

	 


� C0
1abðD2 � D1Þð1� pÞ2

� C3ðC0
2 � C0

1Þð1� pÞ ¼ 0

h(p) is a continuous function of p on (0,1) and lim
p!0þ

hðpÞ ¼ �K; lim
p!1�

hðpÞ ¼

�1: where K ¼ C3 ln
abðC0

2�C0
1Þ

C3

� �

þ abC0
1 þ C3

� �

C0
2 � C0

1

� �

:

Differentiating h(p) with respect to p again it can be verified that h0 pð Þ is a
continuous and strictly decreasing function on (0,1) where lim

p!1�
h0ðpÞ ¼ �1 and

limp!0þ h0ðpÞ ¼ 2K þ C3 ln
ab C0

2�C0
1ð Þ

C3

� �

þ C0
1ab

� �

C0
2 � C2 � C0

1 þ C1
� �

: The

optimal release policy can now be determined following Theorem 10.12.

378 10 Software Release Time Decision Problems



Theorem 10.12 The optimal values of p and T, denoted by p* and T*, which
minimize the expected software cost are determined as

(a) If K B 0, then p* = inf {p:h(p)\ 0} and T* = g(p*).
(b) If K[ 0, then define p0 ¼ inf p : dh=dp\0f g and

(i) If h(p0)[ 0, then p* ¼ min C p1; T1ð Þ;C p2; T2ð Þf g and T* = g(p*),
where p1 and p2 are the solutions to the equations of h(p) = 0 and
T1 = g(p1), T2 = g(p2).

(ii) If hðp0Þ ¼ 0; then p* equals the unique solution to the equations of
h(p) = 0 and T* = g(p*).

(iii) If hðp0Þ\0; then p* and T* does not exist within 0\ p\ 1 and T[ 0.

Using the above procedure to find the optimal release time first we need to
determine the value inf{p:h(p)\ 0} or p0 ¼ inf p : dh=dp\0f g whatever is the
case assuming a perfect debugging environment, i.e. p = 1 as both h(p) and
h0(p) functions of p in order to determine the optimal value of p and then using this
optimal value of p we estimate the other parameters of the SRGM based on the
collected failure data and determine the optimal release time. The procedure if
repeated for this optimal value and more dense data, we will obtain another set of
optimal values and hence it is an iterative approach. However it is imperative to
estimate the level of perfect fault debugging, i.e. p from the SRGM used to
describe the failure phenomenon using the collected failure data over a period of
time, and not as a decision to be obtained from release time problem by mini-
mizing cost function. The effect of level of perfect debugging on release time can
alternatively be obtained by carrying out a sensitivity analysis on the release
problem.

Application 10.8

Continuing with Application 10.7, let us first consider that the testing efficiency
parameter p = 1, then in this case the Kapur and Garg [5] SRGM reduces to the
Goel and Okumoto [39] SRGM. So the estimate of the parameters of the SRGM
will be same as in Application 10.6, i.e. a = 142.32 and b = 0.1246. Now let the
cost parameters in problem (P13) be C1 = $200, C01 = $110, C2 = C02 = $1,500
and C3 = $50 as in Application 10.7. If the operational mission time
x = 1 CPU hour, the software life cycle length is Tl = 2,920 CPU hours, then if
testing is stopped after 25 CPU hours of testing, the total cost incurred would be
$55415.25 and the reliability will to the level 0.3654. From Theorem 10.12 the
optimal release time minimizing the cost for the software is determined to
T* = 33.84 weeks and the optimal level of testing efficiency parameter is
p* = 0.903. The optimal cost value is C(T*) = $52168.99 with the achieved
reliability 0.6891. The optimal solution yields a very low level of reliability since
there was only cost minimization and no specified requirement of reliability.
Hence the policy needs to be improved to include the reliability requirement as
well. Graphical plots of cost and reliability growth functions for Applications 10.7
and 10.8 are shown in Figs. 10.15 and 10.16, respectively.

10.2 Crisp Optimization in Software Release Time Decision 379



We can see from the above figures that the cost curve of Application 10.7 lies
completely below the cost curve of Application 10.8. Greater value of cost curve
in Application 10.8 is due to the fact that testing per unit cost is defined as a
function of the testing efficiency parameter p, which increases the total cost value.
On the other hand the reliability curve for Application 10.8 lies below the reli-
ability curve of Application 10.7.

10.2.8 Release Policy on Pure Error Generation Fault

Complexity Based SRGM

Release policy in the above section is formulated on the pure imperfect fault
debugging SRGM. Pham [13] discussed a release policy for a fault complexity
based pure fault generation SRGM (refer to Sect. 3.3.4). Along with the traditional
cost function they included the penalty cost in the cost function and defined the
operational life cycle length to be random. The expected total software develop-
ment cost is given by

C Tð Þ ¼
X

3

i¼1
Ci1miðTÞ þ

Z

1

T

X

3

i¼1
Ci2ðmiðtÞ � miðTÞÞ

 !

gðtÞdt þ C3T

þ IðT � TdÞCpðT � TdÞ ð10:2:22Þ

0

50

100

150

200

250

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Time (CPU Hours)
C

o
s

t 
(i

n
 1

0
0

0
$

)

Cost function application 10.7

Cost function application 10.8

Fig. 10.15 Cost function for
Applications 10.7 and 10.8

0

0.2

0.4

0.6

0.8

1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

Time (CPU Hours)

R
e

li
a

b
il

it
y

Reliability growth curve
application 10.7

Reliability growth curve
application 10.8

Fig. 10.16 Reliability
growth function for
Applications 10.7 and 10.8

380 10 Software Release Time Decision Problems

http://dx.doi.org/10.1007/978-0-85729-204-9_3


where Ci1, Ci2, i=1,2,3 are the respective costs of critical, major and minor faults in
the testing and operational phases, g(t) is the probability density of the life cycle
length, Cp(t) is the penalty cost for delay of delivery of the software system and
I(t) is an indicator function that is 1 for t C 0 and 0 otherwise.

The optimal release policy is determined minimizing the cost function based on
Theorem 10.13.

Minimize C Tð Þ ¼
X

3

i¼1
Ci1miðTÞ þ

Z

1

T

X

3

i¼1
Ci2ðmiðtÞ � miðTÞÞ

 !

gðtÞdt

þ C3T þ IðT � TdÞCpðT � TdÞ

ðP14Þ

Theorem 10.13 Define hðTÞ ¼P3
i¼1 Ci2RcðTÞ � Ci1½ �kiðTÞ; where RcðTÞ ¼

R1
T gðtÞdt; and kiðTÞ ¼ m0

iðTÞ: Let Tmin ¼ minfTd; T0g; Tmax ¼ minfTd; T0g;CiR ¼
Ci1
Ci2
; Given C3, Ci1and Ci2, i = 1, 2, 3. Assume CiR = CR, i = 1, 2, 3, there exist

an optimal testing time T* for T that minimizes C(T) and the time point is
determined based on the following points.

(a) If h(0)\C3 then T* = 0.
(b) If h(0) C C3[ h(Td) then T� ¼ T 2 0;Tmin½ � : h�1ðC3Þ

� �

� T1:
(c) If C3 � h Tdð Þ\C3 þ C0

P Tdð Þ then T* = Td.
(d) If C3 þ C0

P Tdð Þ� h Tdð Þ then T� ¼ T 2 Td; Tmax½ � : hðTÞ � CpðTÞ ¼ C3
� �

�

T2:

The release policy (p14) ignores the reliability requirement; the authors have
also discussed the release policy under reliability or the remaining number of faults
of each type remaining as the constraints. The release policy for minimizing the
software cost subject to desired reliability is determined based on the following
corollary.

Corollary Given C3, R0, x, Ci1 and Ci2 for i = 1, 2, 3. Assume CiR = CR, i = 1,
2, 3.

(a) If Rðxj0Þ�R0; then the optimal policy is the same as in Theorem 10.12.
(b) If Rðxj0Þ\R0 and

(i) If h(0)\C3then T* = T3.
(ii) If h(0) C C3[ h(Td) then T* = max{T1, T3}.
(iii) If C3 � h Tdð Þ\C3 þ C0

p Tdð Þ then T* = {Td, T3}
(iv) If C3 þ C0

P Tdð Þ� h Tdð Þ then T* = {T2, T3}

where T3 is the solution of
P3

i¼1 miðxÞe�ð1�aiÞbiðtÞ ¼ ln 1
R0

� �

;T3 and T3 are as in

Theorem 10.13.

10.2 Crisp Optimization in Software Release Time Decision 381



Application 10.9

At an ABC software company a software project on on-line communication sys-
tems project was completed in 2000 [48]. The software failure data in the testing
phase are collected for 12 weeks and during this testing period a total of 136
failures have been observed. The detected faults are categorized into three cate-
gories as critical, major and minor, depending on the severity of the problems. If
we choose to Pham [13] fault complexity based SRGM to obtain the measures of
testing process (reliability, remaining faults, etc.) then the estimation process
yields the parameters of the SRGM given as

a = 390, b1 = 0.039, b2 = 0.038, b3 = 0.037, d1 = 0.19118, d2 = 0.4046,
di = 0.4042, a1 = 0.06, a2 = 0.049, a3 = 0.027.

Now assume that C11 = $200, C21 = $80 and C31 = $30 are the costs of fault
removal in the testing phase, C12 = $1,000, C22 = $400 and C32 = $150 are the
corresponding costs of the operational phase for the critical, major and minor
faults, respectively, and C3 is the testing cost per unit time. Further assume that the
software life cycle in the operational phase follows exponential distribution, g(t),
with mean life 260 weeks.

gðtÞ ¼ 0:005 e�t=260; t[ 0

If we assume that the scheduled delivery time is Td = 25 weeks and the penalty
cost function is

CpðtÞ ¼ ct ¼ 50t

Then following Theorem 10.12 we obtain T* = 111.74 weeks,
C(T*) = $36,874.98. For this policy the reliability level of 0.77577 would be
reached. Now if we impose a restriction of RðxjTÞ� 0:8; then following the cor-
ollary in Theorem 10.13 we obtain T* = 115.31 weeks, C(T*) = $40794.26.
Graphical plots of cost and reliability growth functions are shown in Figs. 10.17
and 10.18, respectively.

10.2.9 Release Policy for Integrated Testing Efficiency SRGM

Kapur et al. [47] proposed an SRGM integrating the effect of both imperfect fault
debugging and error generation (refer Sect. 3.5.2). They discussed that the increase
in fault content of software due to fault generation has a direct effect on the
software cost similar to the effect due to imperfect debugging. Since the testing
cost parameter C3 depends on the testing team composition and testing strategy
used, if the probability of perfect debugging is to be increased and probability of
error generation is to be decreased, it is expected that extra financial resources will
be needed to engage more experienced testing personnel, and this will result in an
increase of C3. In other words, C3 should be a function of both the testing level and
error generation, denoted by C3(p,a) and hence this function should possess the
following two properties:

382 10 Software Release Time Decision Problems

http://dx.doi.org/10.1007/978-0-85729-204-9_3


1. C3(p,a) is a monotonous increasing function of p and (1 - a)
2. When p ? 1 and a ? 0, C3(p, a) ? ?.

The second property implies that perfect debugging is impossible in practice or
the cost of achieving it is extremely high. A simple function that meets the above
two properties above is given by

C3ðp; aÞ ¼
C3

1� p 1� að Þð Þ

The optimization problem minimizing the total expected software cost in order
to determine optimal release time T* subject to the software reliability not less
than a specified reliability objective can be formulated as follows

Minimize CðT ; p; aÞ ¼ C1pþ C0
1ð1� pÞ

� �

mf ðTÞ

þ C2pþ C0
2ð1� pÞ

� �

mf ðTlÞ � mf ðTÞ
� �

þ C3T

1� p 1� að Þð Þ
Subject to RðxjTÞ ¼ exp½�ðmðT þ xÞ � mðTÞÞ��R0

where 0\R0\1 and[ 0:

ðP15Þ

0

50

100

150

200

250

1 17 33 49 65 81 97 113 129 145 161

Time (weeks)

C
o

s
t 

(i
n

 $
)

Cost function

Fig. 10.17 Cost function for
Application 10.9

0

0.2

0.4

0.6

0.8

1

1 17 33 49 65 81 97 113 129 145

Time (weeks)

R
e

li
a

b
il

it
y

Reliability growth
curve

Fig. 10.18 Reliability
growth function for
Application 10.9

10.2 Crisp Optimization in Software Release Time Decision 383



To determine the optimal release time taking partial derivative of C(T) with
respect to T and equating it to zero we obtain

kðtÞ ¼ C

ðD2 � D1Þð1� pð1� aÞÞ ð10:2:23Þ

where D1, D2 as defined in Theorem 10.11, k(t) = ab exp (-bp(1 - a)t),
k(0) = ab and k(?) = 0, k(t) is a decreasing function in time. If
ab[ C

D2�D1ð Þ 1�pð1�aÞð Þ then C(T) is decreasing for T\ T0 and increasing for T[ T0
thus, there exists a finite and unique T = T0([0) minimizing the total expected
cost. And if ab� C

D2�D1ð Þ 1�pð1�aÞð Þ then C0ðTÞ[ 0 for T [ 0 and hence C(T) is

minimum for T = 0. Also

Rðxj0Þ ¼ e�mðxÞ; Rðxj1Þ ¼ 1 ð10:2:24Þ

It is known that RðxjtÞ; t[ 0 is an increasing function of time. Thus Rðxj0Þ\R0

there exists T = T1([0) such that RðxjTÞ ¼ R0 and if Rðxj0Þ�R0 then
RðxjtÞ�R0 8 t� 0 and T = T1 = 0. Combining the cost and reliability
requirements the following theorem determines the optimal release policy.

Theorem 10.14 AssumingC2 [C1 [ 0; C0
2 [C0

1 [ 0; x[ 0 and 0\R0� 1

(a) If ab[ C3
D2�D1ð Þ 1�pð1�aÞð Þ and Rðxj0Þ\R0\1 then T* = max (T0, T1)

(b) If ab[ C3
D2�D1ð Þ 1�pð1�aÞð Þ and Rðxj0Þ�R0 [ 0then T* = T0

(c) If ab� C3
D2�D1ð Þ 1�pð1�aÞð Þand Rðxj0Þ\R0\1 then T* = T1

(d) If ab� C3
D2�D1ð Þ 1�pð1�aÞð Þ and 0\R0�Rðxj0Þ then T* = 0

Application 10.10

The parameters a, b, p and a of the SRGM are estimated again using the data
set from Application 10.6 and the estimated values of the unknown parameters
be a = 134, b = 0.14024, p = 0.99842 and a = 0.01256. Let the cost param-
eters are C1 = $200, C1

0
= $110, C2 ¼ C02 = $1,500 and C3 = $10. If minimum

reliability requirement by the release time is 0.85, then following Theorem
10.14 we obtain T* = 31.57 CPU hours. The minimum total expected software
cost at T*, i.e. C(T*) = $138641.52. Graphical plots of cost and reliability
growth functions are shown in Figs. 10.19 and 10.20, respectively.

Authors also showed a sensitive analysis on the optimal release policy to study
the effect of variations in minimum reliability requirement by the release time,
most sensitive costs involved in cost function and level of perfect debugging, on
the optimal release time and total expected software testing cost.

Define

Relative change ðRCÞ ¼ MOV� OOV
OOV

ð10:2:25Þ

384 10 Software Release Time Decision Problems



where OOV is the original optimal values and MOV is the modified optimal values
obtained when there is a variation is some attribute of the release time problem.

10.2.9.1 Effect of Variations in Minimum Reliability
Requirement by the Release Time

The optimal value of the release time obtained for the desired reliability level may
be too late as compared to the scheduled delivery time, in such a case the man-
agement and/or the user of a project-based software may agree to release the
software at some lower reliability level with some warranty on the failures, which
in turn will change the optimal release time to an earlier time and consequently
lower the cost. On the other hand if the scheduled delivery is later than the optimal
release time the management may wish to increase the desired reliability level at
some additional testing cost.

Assuming the values of parameters and various costs associated with cost
model to be same as above. If minimum reliability requirement by the release time
increased to 0.95 (about 12% increase) then we obtain T* = 42.21 CPU hours
(about 33.7% increase) and its RC is 0.33703. The minimum total expected
software cost at T*, i.e. C(T*) = $174587.11 (about 25.93% increase), its RC is
0.25927 and if minimum reliability requirement by the release time decreased to
0.75 (about 12% decrease) then we obtain T* = 29.73 CPU hours (about 5.83%
decrease) and its RC is -0.05828. The minimum total expected software testing
cost at T*, i.e. C(T*) = $132776.98 (about 4.23% decrease), its RC is -0.0423.

0

50

100

150

200

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Time (CPU hours)

C
o

s
t 

(i
n

 $
1

0
0

0
)

Cost functionFig. 10.19 Cost function for
Application 10.10

0

0.2

0.4

0.6

0.8

1

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

Time (CPU hours)

R
e
li
a
b

il
it

y

Reliability growth
curve

Fig. 10.20 Reliability
growth function for
Application 10.10

10.2 Crisp Optimization in Software Release Time Decision 385



Figure 10.21 plots the relative change in the optimal release time and cost for the
case of 12% increase and decrease in reliability objective.

10.2.9.2 Effect of Variations in Level of Perfect Fault Debugging

Now investigate the sensitivity of variations in level of perfect fault debugging
parameter p. If the testing personals were skilled personal the level of perfect fault
debugging would be more or vice versa. Variations in level of perfect debugging
have significant effect on the optimal time of software release. If the level of
perfect debugging increases for a testing process it is expected that the software
can be released earlier as compared to the optimal release time determined
otherwise and vice versa.

Assume the values of parameters a, b and a of the SRGM and the cost involved
in cost function to be same as above with reliability requirement 0.85. Let the
testing efficiency parameter p = 0.9, then we have T* = 37.63 CPU hours and
C(T*) = $42480.16. Now if p is to be increased by 10%, i.e. p = 0.99, then we
obtain T* = 43.16 CPU hours (about 9.22% decrease) and its RC is -0.09221 and
with C(T*) = $102307.67 (about 140.83% increase), its RC is 1.40836. On the
other hand if p decreases by 10%, i.e. p = 0.81 then we obtain T* = 41.86 (about
11.24% increase) and its RC is 0.11241. The minimum total expected software
cost at T* i.e. C(T*) = $35601.43 (about 16.19% decrease), its RC is -0.16193.
Figure 10.22 plots the relative change in the optimal release time and cost for the
case of 10% increase and decrease in perfect fault debugging parameter p.

Similar conclusion can be obtained for the costs and the other parameters of the
SRGM such as C1;C01;C2;C02;C3,a,b and a. Such an analysis helps to determine
the changes in release time, cost, reliability, etc. when some parameter of the
optimization problem changes during the testing process without resolving the
problem as a new.

10.2.10 Multi-Criteria Release Time Problems

The release time problems discussed in this chapter are all considering single
objective of either cost minimization or reliability maximization. Some of the
problems are unconstrained while others have the lower and/or upper bound type

-0.2

-0.1

0

0.1

0.2

0.3

0.4

1 2

R
C

Time Cost RelaibilityFig. 10.21 Relative change
in release policy for 12%
increase and decrease in
reliability

386 10 Software Release Time Decision Problems



constraints. Unconstrained optimization of cost or reliability most often provides
solution which is not acceptable to the developer or user or both as seen in
Application 10.1. It encouraged the researchers to formulate constrained problems
with lower bound on reliability when the objective is cost minimization and vice
versa. A lower bound of 0.85 on reliability may result in substantial increase in
cost as compared to unconstrained cost minimization or reliability maximization
under a given budget may yield a solution with very low level of reliability. In
practice cost minimization and reliability maximization are the conflicting
objectives for determining the release time and requires tradeoff between them.
Kapur et al. [11] started multi-objective optimization in release time determina-
tion. They propose to make reliability maximization and cost minimization as two
simultaneous objectives of the release time problem and then assigning weights to
the two objectives according to their relative importance one can find the optimal
solution. Such a problem is specifically called a bi-criterion release time optimi-
zation problem. We can also impose bounds on one or both of the objectives of the
problem. The problem considered by the authors considers minimization of the
total expected software cost and maximization of reliability simultaneously such
that total expected cost during the software life cycle does not exceed the specific
budget and conditional reliability is not less than a prescribed reliability objective.
The solution procedure is discussed for exponential and S-shaped SRGM.

Maximize RðxjTÞ ðor log RðxjTÞ
Minimize CðTÞ ðor �CðTÞÞ
Subject to CðTÞ�CB ðor �CðTÞ� 1Þ

RðxjTÞ�R0

T � 0; 0\R0\1

ðP15Þ

where �CT ¼ CT=CB; logRðxjTÞ ¼ mðTÞ � mðT þ xÞ; �CðTÞ ¼ �C1mðTÞ þ �C2 mðTlÞ�ð
mðTÞÞþ �C3T; �Ci ¼ Ci=CB; i ¼ 1; 2; 3 and m(T) is the mean value function of the
SRGM.

In this formulation we either maximize reliability or log of reliability as we
know that maximization of a function is same as maximization of its log function.
This is the usual procedure to state the problem with cost minimization objective
but the problem is normalized before solving to bring both the objectives on the
same scale, i.e. having their value lie in the range of (0,1), i.e. minimization of

-0.5

0

0.5

1

1.5

1 2

R
C

Time costFig. 10.22 Relative change
in release policy for 10%
increase and decrease in
perfect fault debugging
parameter p

10.2 Crisp Optimization in Software Release Time Decision 387



�CðTÞ �CT ¼ CT=CBð Þ: It may be noted that the values 0 and 1 can be included in or
excluded from the set, it depends on the objective. For example in case of cost
minimization we may spend the whole budget so 1 is included while reliability
level of 1 practically impossible hence it is excluded in this case.

The approach of multi-criteria optimization suggests to reduce the problem to a
single objective by introducing k ¼ ki; i ¼ 1; . . .; nj j 2 Rn; ki � 0 and

Pn
i¼1 ki ¼ 1;

where ki (i = 1, 2) is the weight assigned to the ith objective, and n is the total
number of objectives. Using k1 and k2 (P15) is reformulated as

Maximize FðTÞ ¼ k1 log RðxjTÞ � k2 �CðTÞ
Subject to RðxjTÞ�R0

�CðTÞ� 1

T � 0; 0\R0\1:

ðP16Þ

Such a release policy gives enough flexibility to the software developers to find
out the optimal release time based on their priority in respect of reliability and cost
components. If reliability is more important then higher weight may be attached to
reliability objective as in case of safety critical projects. Similarly, for business
application software packages, more weight may be attached to the cost objective.
This form introduces flexibility over the earlier release policies where we opti-
mized either the cost or reliability functions.

Kapur et al. [11] suggested to use the method of calculus to solve the above
problem, similar to the approach followed in case of the single optimization of
release time discussed throughout the chapter. The theorem given to solve the
problem is very long and complex and requires a lot of time to determine the
solution. Throughout the book we have favored the use of software for the purpose
of computation. A number of software are available which can be used to solve
large size optimization problems with very little effort and in very less time such as
LINGO, LINDO, QSB, MATLAB, etc. For detailed analytical solution reader can
refer to the original manuscript Kapur et al. [11]. Here we use the software
package LINGO to solve the problem for different values of weights for the two
objectives.

Application 10.11

We consider the problem based on Goel and Okumoto [39] exponential SRGM
and the data set taken in Application 10.1 with the same specification of cost
parameters and the estimated values of the unknown parameters, i.e. a = 130.30,
b = 0.083, C1 = $10, C2 = $50 and C3 = $100 and software life cycle length
Tl = 156 weeks. Let operational reliability requirement R0 = 0.75 for x = 1 and
budget CB = 20,000. Using these information we solved the problem for the
different values of the weights k1 and k2. The result is summarized in Table 10.3.

It can be seen from the above table that when more weight is attached to the
reliability objective release of the software gets delayed with added cost and vice

388 10 Software Release Time Decision Problems



versa. The practitioners can solve the problem for the different values of the
weights and accept the most desirable solution.

10.2.11 Release Problem with Change Point SRGM

In Chap. 5 we have discussed several change point SRGM. As we have already
discussed in the chapter that these SRGM often provide better fit then the models
which does not consider the changing behavior of the testing process. Owing to the
importance of change point models in the reliability estimation Kapur et al. [49]
formulated release policy for the exponential change point SRGM. The simple cost
model (10.2.1) is modified to include separate cost of fault removal before and
after change point.

C Tð Þ ¼ C1m1ðsÞ þ C01 m2ðTÞ � m1ðsÞð Þ þ C2 a� m2ðTÞð Þ þ C3T ð10:2:26Þ

In the above cost model C1 is the fault removal cost per fault before the change
point s, in the testing phase and C0

1 is the corresponding cost after change point and
before release. Other costs are same as in (10.2.1). Here the third component of
cost function is changed to C2(a - m2(T)) in contrast to C2(m2(Tl) - m2(T)). The
component has entirely the same behavior as m2(Tl) ^ a. Here m1(t) and m2(t) are
mean value functions for the fault removal process before and after the change
point (refer to Sect. 5.4.1). The release policy can be stated as

Minimize C Tð Þ ¼ C1a 1� e�b1s
� �

þ C0
1a e�b1s � e�b1s�b2ðT�sÞ
� �

þ C2ae
�b1s�b2ðT�sÞ þ C3T

Subject to RðxjTÞ�R0

ðP17Þ

To find the optimal solution of the problem the cost function is differentiated
with respect to T and equated to zero, i.e.

�ab2 C2 � C0
1

� �

e�b1s�b2ðT�sÞ þ C3 ¼ 0

Table 10.3 Summary of bi-criteria release policy for different weights of the objectives

k1 k2 T* (in weeks) �CðT�Þ C (T*) (in $) R (T*)

0.9 0.1 88.54 0.5080 10160.74 0.9933
0.8 0.2 78.81 0.4596 9192.07 0.9851
0.7 0.3 72.37 0.4277 8553.34 0.9748
0.6 0.4 67.12 0.4017 8035.13 0.9613
0.5 0.5 62.34 0.3783 7566.17 0.9429
0.4 0.6 57.60 0.3553 7106.54 0.9166
0.3 0.7 52.51 0.3311 6621.22 0.8756
0.2 0.8 46.49 0.3031 6061.82 0.8033
0.1 0.9 43.20 0.2884 5767.51 0.7500

10.2 Crisp Optimization in Software Release Time Decision 389

http://dx.doi.org/10.1007/978-0-85729-204-9_5
http://dx.doi.org/10.1007/978-0-85729-204-9_5


Here if ab2 C02 � C0
1

� �

�C3 then the cost function will be monotonically

increasing and will be minimum for T ¼ s: If ab2 C02 � C0
1

� �

[C3 then there exists
a finite T (say T0) such that C0ðTÞ ¼ 0: In this case the cost function C(T) first
decreases for T\ T0 then increases for T[ T0. In this case C(T, s) will be min-
imum for T = T0, where T0 ¼ 1

b2
ln ab2 C0

2 � C0
1

� �

eðb2�b1Þs
� �

=C3
� �

: Now Rðxj0Þ ¼
e�mðxÞ; Rðxj1Þ ¼ 1 and R(x|T) is an increasing function for T[ 0. Differentiating
R(x|T) with respect to T, we get

R0 xjTð Þ ¼ a b2e
�b1s�b2 T�sð Þ � b2e

�b1s�b2 Tþx�sð Þ
h i

R0 xjTð Þ[ 0 for 8 T [ 0 thus, if Rðxj0Þ ¼ R0: there exists T = T1([0) such that
RðxjT1Þ ¼ R0: The optimal release policy can be obtained from Theorem 10.15.

Theorem 10.15 Given that C1\C0
1 \C2

(a) If ab2 C0
2 � C0

1

� �

�C3 and RðxjsÞ�R0; then T* = s

(b) If ab2 C0
2 � C0

1

� �

�C3 and, RðxjsÞ\R0 then T* = T1
(c) If ab2 C02 � C0

1

� �

[C3 and RðxjsÞ�R0;then T* = T0
(d) If ab2 C2 � C0

1

� �

[C3 and RðxjsÞ\R0; then T* = max (T0, T1)

Application 10.12

In Application 10.1 we have obtained the release policy minimizing cost subject to
the required reliability level based on exponential SRGMwithout change point [39].
We use the same failure data and cost parameter to estimate the parameters of the
change point exponential SRGM and obtain the release policy in this application.
The estimated values of the parameters of the SRGM for the change point equal to
8 weeks, i.e. s = 8 weeks, are a = 103.599, b1 = 0.105 and b2 = 0.24. The cost
parameters are C1 = $5, C0

1=$10, C2 = $50 and C3 = $500. The operation reli-
ability requirement is R0 = 0.80 for mission time x = 1. Applying Theorem 10.15
we obtain T* = 23.65 weeks and C(T*) = $12608.44. The cost function is of ever
increasing type. The cost and reliability curves are shown in Figs. 10.23 and 10.24.

If we decrease the testing cost C3 from $500 to $100 then the cost function first
decreases and then increases. The cost function for this case is shown in
Fig. 10.25. It attains its minima at the 14.07 week time, i.e. T0 = 14.07 weeks.

0

5

10

15

20

25

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Time (week)

C
o

s
t 

(i
n

 1
0

0
0

$
)

Cost function for
testing cost $500 

Fig. 10.23 Cost function for
the Application 10.12
(C3 = $500)

390 10 Software Release Time Decision Problems



The optimal release policy for this case corresponds to part (d) of Theorem
10.15 and is given as T* = max (T0 = 14.07, T1 = 23.65) = 23.65 weeks and
C(T*) = $3148.44. One can compare the results obtained from this policy with the
one for SRGM without change point. Policy (P17) suggests an early release.

10.3 Fuzzy Optimization in Software Release Time Decision

We have discussed several release policies under crisp environment in the previous
section. The Sect. 10.1 describes the limitations of using crisp optimization in
release time and the role of fuzzy set theory and fuzzy optimization in release time
optimization. In this section we are describing in detail how to formulate a fuzzy
optimization problem for the release time determination and the solution approach
with numerical application. The release policy is formulated with cost minimization
goal subject to the failure intensity constraint defined under fuzzy environment.

10.3.1 Problem Formulation

Gupta [22] formulated a release time optimization problem with cost minimization
objective based on the SRGM for error removal phenomenon due to Kapur et al.
[50]. Author claimed that this model is chosen for various reasons such that the
model is simple, easy to apply, all the parameters of the model have clear

0

0.2

0.4

0.6

0.8

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Time (week)

R
e
ll
ia

b
il
it

y

Reliability growth 
curve

Fig. 10.24 Reliability
growth curve for Application
10.12

0

1

2

3

4

5

6

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Time (week)

C
o

s
t 

(i
n

 1
0
0
0
$
)

Cost function for
testing cost $100

Fig. 10.25 Cost function for
the Application 10.12
(C3 = $100)

10.2 Crisp Optimization in Software Release Time Decision 391



interpretation, not too many unknown parameters are involved and is a flexible
model in the sense that it can describe either an exponential or S-shaped failure
curve depending on the values of the parameters (refer to Sect. 2.3.7).

10.3.1.1 The Cost Model

Section (10.2.5) describes the release policy for the Kapur and Garg [7] SRGM. The
cost model (10.2.12) is first modified to include the risk cost of field failure. The risk
is measured by the unreliability of the software, hence including this cost in the cost
model takes care of the reliability objective and hence the quality from the users,
point of view. Incorporating the failure intensity constraint on the other hand
specifies the quality from the point of view of the developer. Hence in this way
quality level is satisfied both from the users, as well as developers point of view.

Introducing the risk cost of failure in field and rearranging the like terms the
modified cost model (10.2.12) is given as

C Tð Þ ¼ C1mf ðTÞ þ C01 mrðTÞ � mf ðTÞ
� �

þ C2 � C0
2

� �

mf ðTlÞ � mf ðTÞ
� �

þ C0
2 mrðTlÞ � mrðTÞð Þ þ C3T þ C4ð1� RðxjTÞÞ

ð10:3:1Þ

The values of cost function constant coefficients Ci; i ¼ 1; 2; 3; 4 and C0
i; i ¼

1; 2 depend on a number of factors such as testing strategy, testing environment,
team constitution, skill and efficiency of testing and debugging teams, infra-
structure, etc., which are non-static and are subject to change during testing. The
information and data available to compute these quantities are usually defined
imprecisely. Defining a fuzzy model of the above cost function provides us a
method to deal with these uncertainties directly. The cost function (3.1.8) can be
defined under fuzzy environment as

~C Tð Þ ¼ ~C1mf ðTÞ þ ~C0
1 mrðTÞ � mf ðTÞ
� �

þ ~C2 � ~C0
2

� �

mf ðTlÞ � mf ðTÞ
� �

þ ~C0
2 mrðTlÞ � mrðTÞð Þ þ ~C3T þ ~C4ð1� RðxjTÞÞ

ð10:3:2Þ

The cost coefficients represents that they are fuzzy numbers. Fuzzy numbers are
assumed to be Triangular Fuzzy Numbers (TFN) [51].

The problem is formulated with cost minimization objective with a lower bound
on the desired quality level in terms of failure intensity to be achieved by the
release time. In most of the cases developers provide ambiguous statements on the
bounds as they want to be flexible due to competitive considerations and a slight
shift on bounds can provide more efficient solutions. It renders the resource and
requirement constants of the problem vague and soft inequalities in the constraints.
Fuzzy cost function, soft inequalities and ambiguous statements by the developers
make it necessary to define the SRTD problem under fuzzy environment. The
problem considered here can now be stated as

392 10 Software Release Time Decision Problems

http://dx.doi.org/10.1007/978-0-85729-204-9_2
http://dx.doi.org/10.1007/978-0-85729-204-9_3


Minimize ~CðTÞ
Subject to kðTÞ.~k0

ðP18Þ

T � 0

The symbol Jð.Þ is called ‘‘fuzzy greater (less) than or equal to’’ and has
linguistic interpretation ‘‘essentially greater (less) than or equal to’’. Crisp opti-
mization techniques cannot be applied directly to solve the problem since these
methods provide no well-defined mechanism to handle the uncertainties quanti-
tatively. Fuzzy optimization approach is used here to solve the problem. The
problem with cost minimization objective subject to achieving a desired level of
failure intensity can also be considered as a multiple objective problem of cost and
failure intensity minimization while solving with the fuzzy optimization. The two
objectives can be assigned different weights according to the relative importance
and the problem can be solved with the fuzzy weighted min–max approach.

10.3.2 Problem Solution

Algorithm 10.1 specifies the sequential steps to solve the fuzzy mathematical
programming problems. Figure 10.26 illustrates the solution methodology in the
form of a flowchart.

Algorithm 10.1

Step 1: compute the crisp equivalent of the fuzzy parameters using a defuzz-
ification function (ranking of fuzzy numbers). Same defuzzification
function is to be used for each of the parameters. We use the
defuzzification function of type F2ðAÞ ¼ a1 þ 2aþ auð Þ=4.

Step 2: incorporate the objective function of the fuzzifier min (max) as a fuzzy
constraint with a restriction (aspiration) level. The inequalities are defined
softly if the requirement (resource) constants are defined imprecisely.

Step 3: define appropriate membership functions for each fuzzy inequality as
well as constraint corresponding to the objective function. The
membership functions for the fuzzy numbers less than or equal to and
greater than or equal to type are given as

lðTÞ ¼
1 ;GðTÞ0
G��GðTÞ
G��G0

;G0\GðTÞ�G�

0 ; GðTÞ[G�

8

<

:

9

=

;

l
_ðTÞ ¼

1 ;QðTÞ�Q0

QðTÞ � Q�

Q0 � Q� ;Q��QðTÞ\Q0

0 ;QðTÞ\Q�

8

>

>

<

>

>

:

9

>

>

=

>

>

;

10.3 Fuzzy Optimization in Software Release Time Decision 393



respectively, where G0 and Q0 are the restriction and aspiration levels,
respectively, and G* and Q* are the corresponding tolerance levels. The
membership functions can be a linear or piecewise linear function that is
concave or quasiconcave.

Step 4: Employ extension principle [51] to identify the fuzzy decision, which
results in a crisp mathematical programming problem given by

Maximize a

Subject to liðTÞ� a; i ¼ 1; 2; . . .n;
a� 0; a� 1; T � 0

ðP�Þ

(P*) can be solved by the standard crisp mathematical programming
algorithms.

Fig. 10.26 A flowchart of solution procedure for fuzzy optimization problem

394 10 Software Release Time Decision Problems



Step 5: While solving the problem following steps 1–4, objective of the problem
is also treated as a constraint. In the release time decision problem under
consideration each constraint corresponds to one major factor effecting
the release time. Hence we can consider each constraint to be an
objective for the decision maker and the problem can be looked as a
fuzzy multiple objective mathematical programming problem. Further
each objective can have different level of importance and can be
assigned weight to measure the relative importance. The resulting
problem can be solved by the fuzzy weighted min–max approach. The
crisp formulation of the weighted problem is given as

Maximize a

Subject to uiðTÞ ¼ wia; i ¼ 1; 2; . . .; n

a� 0; a� 1; T � 0;
X

n

i¼1

wi ¼ 1

ðP��Þ

where n is the number of constraints in (P**) and a represents the degree
up to, which the aspiration of the decision maker is met. The problem
(P**) can be solved using standard mathematical programming approach.

Step 6: If a feasible solution is not obtainable for the problem (P*) or (P**) then
we can use fuzzy goal programming approach to obtain a compromised
solution [32]. The method is discussed in detail in the numerical example.

In the next section using the above algorithm we give an application of the
above algorithm.

Application 10.13

For this application we again consider the data set from Application 10.6. Estimated
values of parameters for the Kapur and Garg [7] SRGM are a = 147, p = 0.11073
and q = 0.012. The fuzzy cost coefficient constants ~Ci; i ¼ 1; 2; 3; 4 and ~C0

i; i ¼ 1; 2

and the minimum level of failure intensity desired at the release time ~k0 are specified
as TFN represented as A = (a1, a, au). The values of these fuzzy numbers are
specified by themanagement based on the past experience and/or expert opinion.We
choose the defuzzification function F2ðAÞ ¼ a1 þ 2aþ auð Þ=4 to defuzzify the
fuzzy numbers. The TFN corresponding to the cost coefficients and failure intensity
aspiration are tabulated in Table 10.4. Defuzzified values of these parameters are
also given in the table.

The Problem (P18) is restated using the defuzzification function F2(A) as

Minimize F2ð~CðTÞÞ
Subject to kðTÞ.Fð~k0Þ

ðP19Þ

T � 0

10.3 Fuzzy Optimization in Software Release Time Decision 395



where

F2ð~CðTÞÞ ¼ F2
~C1
� �

T þ F2
~C2
� �

mf ðTÞ
þ F2

~C4
� �

� F2
~C5
� �� �

mf ðTlcÞ � mf ðTÞ
� �

þ F2
~C3
� �

mrðTÞ � mf ðTÞ
� �

þ F2 ~C5
� �

mrðTlcÞ � mrðTÞð Þ þ F2 ~C6
� �

ð1� RðxjTÞÞ

Assume the software life cycle in operational phase to be
6 months = Tlc = T ? 4,032 h (release time ? number of hours in 6 months).
Using the values of TFN given in Table 10.4 and substituting in the defuzzification
function F2(A) to obtain the defuzzified values of these constant coefficients, the
Problem (P19) is rewritten as

Minimize CðTÞ ¼ 4:5T þ 10mf ðTÞ þ 5 mrðTÞ � mf ðTÞ
� �

þ 5 mf ðT þ 4; 032Þ � mf ðTÞ
� �

þ 20 mrðT þ 4; 032Þ � mrðTÞð Þ
þ 3; 000ð1� Rð4; 032jTÞÞ

Subject to kðTÞ.0:0012

T � 0

ðP20Þ

where mðTÞ ¼ 147 � 0:11073
0:0012

ln
0:11073þ 0:0012

0:11073þ 0:0012e�ð0:11073þ0:0012ÞT


 �

mðT þ 4032Þ ¼ 147 � 0:11073
0:0012

ln
0:11073þ 0:0012

0:11073þ 0:0012e�ð0:11073þ0:0012ÞðTþ4032Þ


 �

and kðtÞ ¼ 147 � ð0:11073þ 0:0012Þe�ð0:11073þ0:0012ÞT

1þð0:0012=0:11073Þe�ð0:11073þ0:0012ÞT :

Now the cost objective function is introduced as a constraint with imprecise
definition of the available budget. If the available budget is specified as a TFN
given as ~C0 ¼($1,815, $1,855, $1,875) again using the defuzzification function
F2(A) we get F2ð~C0Þ ¼ C0 ¼ $1,850. The Problem (P20) can now be restated as

Table 10.4 Triangle fuzzy
and defuzzified values of the
cost coefficients (in $) and
intensity aspiration level

Fuzzy parameter (A) a1 a au Defuzzified
value (F2(A))

C1 4 4.6 4.8 4.5
~C0
1

8 10 12 10

C2 4 5.2 5.6 5
~C0
2

22 25.5 27 25

C3 18 20.5 21 20
C4 2,700 2,900 3,500 3,000
k 0.001 0.0011 0.0016 0.0012

396 10 Software Release Time Decision Problems



Find T

Subject to 4:5Tþ10mf ðTÞþ5 mrðTÞ�mf ðTÞ
� �

þ5 mf ðTþ4;032Þ�mf ðTÞ
� �

þ20 mrðTþ4;032Þ�mrðTÞð Þþ3;000ð1�Rð4;032jTÞÞ.1850

kðTÞ.0:0012

T�0

ðP21Þ

The membership functions li(T); i = 1, 2 for each of the fuzzy inequalities in
Problem (P21) are defined. Definition of membership function requires upper
tolerance level in the cost (C*) and failure intensity (k*). Let C* = $1,950 and
k* = 0.0015, then

l 1ðTÞ ¼
1 CðTÞ\1; 850
1; 950� CðTÞ
19; 050� 1; 850

1; 850�CðTÞ� 1; 950

0 CðTÞ[ 1; 950

8

>

<

>

:

9

>

=

>

;

ð10:3:3Þ

l2ðTÞ ¼
1 kðTÞ\0:0012
0:0015� kðTÞ
0:0015� 0:0012

0:0012� kðTÞ� 0:0015

0 kðTÞ[ 0:0015

8

>

<

>

:

9

>

=

>

;

ð10:3:4Þ

The cost and failure intensity curves plotted on time scale are shown in
Figs. 10.27 and 10.28. The cost and failure intensity membership functions plotted
on cost and failure intensity scales, respectively, are shown in Figs. 10.29 and
10.30.

Here it can be seen that the membership functions are piecewise linear
(quasiconcave). Now we formulate the crisp optimization problem to identify the
fuzzy decision based on extension principle and solve the fuzzy system of
inequalities corresponding to the problem.

0

1000

2000

3000

4000

5000

6000

7000

1 46 91 136 181 226 271

Time (CPU hours)

C
o

s
t 

(i
n

$
)

cost

Fig. 10.27 Cost curve for
Application 10.13

10.3 Fuzzy Optimization in Software Release Time Decision 397



Maximize a

Subjectto l1ðTÞ ¼
1950� CðTÞ
1950� 1850

� a

l2ðTÞ ¼
0:0015� kðTÞ
0:0015� 0:0012

� a

a� 0

a� 0 a� 1

T [ 0

ðP22Þ

The Problem (P22) is a crisp non-linear programming problem and can be
solved using standard mathematical programming methods. Mathematical soft-
ware such as LINGO, LINDO, QSB, Mathematica, etc. have inbuilt functions to
solve the non-linear programming problems. Solving problem using these

0

2

4

6

8

10

12

14

16

1 13 25 37 49 61 73 85 97

Time (CPU hours)

F
a

il
u

re
 I

n
te

n
s

it
y

failure intensity

Fig. 10.28 Failure intensity
curve for Application 10.13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

50 58 66 74 82 90 98 106 114 122

Cost

M
e
m

b
e
rs

h
ip

 V
a
lu

e

cost Membership FunctionFig. 10.29 Cost membership
function for Application
10.13

0

0.2

0.4

0.6

0.8

1

1.2

80 80.8 81.6 82.4 83.2 84 84.1 84.2 84.2

Failure Intensity

M
e

m
b

e
rs

h
ip

 V
a

lu
e

Failure Intensity Membership FunctionFig. 10.30 Failure intensity
function for Application
10.13

398 10 Software Release Time Decision Problems



software, we can save a lot of computation time. The Problem (P22) is solved in
the LINGO software [52] and the solution gives the optimal release time
T* = 84.45 h. Degree of aspiration of the management goals is a = 0.6935. The
total amount of testing resources spent by the optimal release time is
C(T*) = $1880.66 and the achieved level of failure intensity is k(T*) = 0.001292.
The risk cost of failure in field is $34.43, which implies the achieved level of
reliability R(T*) = 0.9885. The optimal solution of Problem (P22) solves Problem
(P18). Here it can be noted that the fuzzy optimization method provides sub-
optimal solution due to the subjective nature of the method. However since the
method provides huge amount of flexibility to the management in decision making,
it is widely used.

The constraints corresponding to cost and intensity function in this problem are
the two important objectives in the SRTD problem, which may have different
relative importance. We can assign weights to the cost and intensity membership
constraints and use the weighted min–max approach to solve the problem (problem
P**). It is reasonable to assign a higher weight to the cost objective. If
w = {0.6, 0.4} be the weights assigned to the two objectives, we obtain the
optimal release time T* = 85.18 h and a = 0.4125. The total amount of testing
resources spent is C(T*) = $1881.26 and the achieved level of failure intensity is
k(T*) = 0.00119. The risk cost of failure in field is $31.74, which implies the
achieved level of reliability R(T*) = 0.9894. We can see that this solution is more
acceptable in terms of risk cost, achieved level of failure intensity and reliability.
The risk cost decreases by amount $2.69 and failure intensity and reliability levels
improve by amounts 0.0001 and 0.0009, respectively. However the cost and
release time have increased by amount $0.585 and 0.73 h, respectively. Similarly
we can solve the problem for different values of weights. Table 10.5 summarizes
some alternative solution of the problem for different values of the weights.

From the table we can see that if a higher weight is assigned to the cost
function, risk cost decreases and there is an improvement in the achieved level of
failure intensity, reliability and a, however the total cost and release time increase.
On the other hand the situation is vice versa if a lower weight is assigned to the
cost function. This flexible solution methodology provides us the various alter-
native solutions for the problem to choose from as well as a method for achieving
maximum possible level of management goals. This is another reason for studying
the optimization problems under fuzzy environment.

Table 10.5 Solution of Problem (P15) for different values of weights

Weights Release time
(in hrs)

a Cost
(in $)

Failure
intensity

Risk cost
(in $)

Reliability

(0.5,0.5) 84.45 0.6935 1880.66 0.00129 34.43 0.9885
(0.6,04) 85.18 0.4125 1881.26 0.00119 31.74 0.9894
(0.7,0.3) 86.47 0.47 1882.78 0.00103 27.48 0.9908
(0.4,0.6) 83.98 0.2784 1881.41 0.00136 36.25 0.9879

10.3 Fuzzy Optimization in Software Release Time Decision 399



Exercises

1. Reliability, scheduled delivery and cost are the three main quality attributes for
almost all software. How a release time optimization problem handles these
attributes of software while determining the optimal release time?

2. Before any software development process is realized, the management mostly
decide the schedule for software delivery. Even then software reliability
engineering principles say optimally determine the release time. Comment.

3. Explain the importance of soft computing principles and techniques for for-
mulating and solving release time problems.

4. The simplest cost model in release time determination is

C Tð Þ ¼ C1mðTÞ þ C2ðmðTlcÞ � mðTÞÞ þ C3T :

The cost model has three components. Give interpretations for each of the
components, how they handle the various concerns related to the release time
determination.

5. In Sect. 10.2.2 a release policy is formulated using a cost model that includes
the penalty cost due to late delivery. The solution is discussed for an s-shaped
SRGM. Using the same cost function and the exponential SRGM
m(t) = a(1 - e-bt) derive the solution of the release time problem.

6. Release policy discussed in Sect. 10.2.8 for a pure error generation fault
complexity based SRGM is formulated to minimize the total expected cost.
Reformulate and solve the problem adding the constraints to the number of
remaining faults of each type in the system before its release.

7. Using the data given in Application 10.2 determine the release time for the
policy formulated in exercise 5.

8. Given the fuzzy release time problem, which minimizes the fuzzy risk cost
(RC) subject to fuzzy total cost, fuzzy failure intensity constraint and non-
negativity restriction constraint formulated on the Erlang SRGM describing
three levels of fault complexity.

Minimize RC ¼ ~C4 1� Rðx=TÞð Þ

Subject to ~CðTÞ ¼

~C11m1ðTÞ þ ~C21m2ðTÞ þ ~C31m3ðTÞ

þ ~C12 m1ðTlcÞ �m1ðTÞð Þ

þ ~C22 m2ðTlcÞ �m2ðTÞð Þ

þ ~C32 m3ðTlcÞ �m3ðTÞð Þ þ ~C3T

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

.Z

kðTÞ.~k0

T� 0

400 10 Software Release Time Decision Problems



where all notations have their usual meaning, Z is the total budget and ~k0 is the
desired failure intensity.

mðtÞ ¼ m1ðtÞ þ m2ðtÞ þ m3ðtÞ

¼
ap1ð1� e�b1tÞ þ ap2ð1� ð1þ b2tÞe�b2tÞ

þap3 1� 1þ b3t þ b23t
2=2

� �� �

e�b3t
� �

 !

;

ap1 þ ap2 þ ap3 ¼ a

Use the fuzzy optimization technique to determine the release time of the
software. The following data are given:

The software was tested for 12 weeks during which 136 failures were reported.
The faults were categorized as 55 simple, 55 hard and 26 complex with respect to
time in isolating and removing them after their detection. The estimated values of
parameters are a = 180, b1 = 0.12667, b2 = 0.21499 and b3 = 0.41539. Use the
defuzzification function F2ðAÞ ¼ al þ 2aþ auð Þ=4: The fuzzy cost coefficients
along with permissible tolerance level of failure intensity and budget are specified
as Triangular Fuzzy Numbers in the following table.

References

1. Taha HA (2006) Operations research: an introduction, 8th edn. Prentice Hall, India
2. Okumoto K, Goel AL (1980) Optimum release time for software systems based on reliability

and cost criteria. J Syst Softw 1:315–318
3. Yamada S, Osaki S (1987) Optimal software release policies with simultaneous cost and

reliability requirements. Eur J Oper Res 31:46–51
4. Kapur PK, Garg RB (1989) Cost-reliability optimum release policies for software system

under penalty cost. Int J Syst Sci 20:2547–2562
5. Kapur PK, Garg RB (1990) Optimal software release policies for software reliability growth

models under imperfect debugging. Recherché Operationanelle/Oper Res 24:295–305

Fuzzy parameter (A) a1 (in $) a (in $) au (in $)

C11 14.4 15.1 15.4
C21 17 18 19
C31 20.5 21.5 24.5
C12 23 24.5 28
C22 31 36 37
C32 46 48 58
C3 74 81.5 83
C4 17000 20750 21500
k 0.0008 0.00105 0.0011
Z 8600 8650 8900

10.3 Fuzzy Optimization in Software Release Time Decision 401



6. Kapur PK, Garg RB (1991) Optimal release policies for software systems with testing effort.
Int J Syst Sci 22(9):1563–1571

7. Kapur PK, Garg RB (1992) A software reliability growth model for an error removal
phenomenon. Softw Eng J 7:291–294

8. Yun WY, Bai DS (1990) Optimum software release policy with random life cycle. IEEE
Trans Reliab 39(2):167–170

9. Kapur PK, Bhalla VK (1992) Optimal release policy for a flexible software reliability growth
model. Reliab Eng Syst Saf 35:49–54

10. Kapur PK, Garg RB, Bhalla VK (1993) Release policies with random software life cycle and
penalty cost. Microelectron Reliab 33(1):7–12

11. Kapur PK, Agarwal S, Garg RB (1994) Bi-criterion release policy for exponential software
reliability growth models. Recherche Operationanelle/Oper Res 28:165–180

12. Kapur PK, Xie M, Garg RB, Jha AK (1994) A discrete software reliability growth model with
testing effort. In: Proceedings 1st International conference on software testing, reliability and
quality assurance (STRQA), 21–22 December 1994, New Delhi, pp 16–20

13. Pham H (1996) A software cost model with imperfect debugging, random life cycle and
penalty cost. Int J Syst Sci 27:455–463

14. Pham H, Zhang X (1999) A software cost model with warranty and risk costs. IEEE Trans
Comp 48(1):71–75

15. Huang CY, Kuo SY, Lyu MR (1999) Optimal software release policy based on cost and
reliability with testing efficiency. In: Proceedings 23rd IEEE annual international computer
software and applications conference, Phenoix, AZ, pp 468–473

16. Huang CY, Lo JH, Kuo SY, Lyu MR (1999) Software reliability modeling and cost
estimation incorporating testing-effort and efficiency. In: Proceedings 10th international
symposium software reliability engineering (ISSRE’1999), pp 62–72

17. Huang CY (2005) Cost reliability optimal release policy for software reliability models
incorporating improvements in testing efficiency. J Syst Softw 77:139–155

18. Huang CY, Lyu MR (2005) Optimal release time for software systems considering cost,
testing effort and test efficiency. IEEE Trans Reliab 54(4):583–591

19. Kapur PK, Gupta A, Jha PC (2007) Reliability growth modeling and optimal release policy of
a n-version programming system incorporating the effect of fault removal efficiency. Int J
Autom Comput 4(4):369–379

20. Kapur PK, Gupta A, Gupta D, Jha PC (2008) Optimum software release policy under fuzzy
environment for a n-version programming system using a discrete software reliability growth
model incorporating the effect of fault removal efficiency. In: Verma AK, Kapur PK, Ghadge
SG (eds) Advances in performance and safety of complex systems, Macmillan Advance
Research Series, pp 803–816

21. Jha PC, Gupta D, Gupta A, Kapur PK (2008) Release time decision policy of software
employed for the safety of critical system under uncertainty. OPSEARCH. J Oper Res Soc
India 45(3):209–224

22. Gupta A (2009) Some contributions to modeling and optimization in software reliability and
marketing. Ph.D. thesis, Department of OR, Delhi University, Delhi

23. Rommelfanger HJ (2004) The advantages of fuzzy optimization models in practical use.
Fuzzy Optim Decis Mak 3:295–309

24. Gupta CP (1996) Capital budgeting decisions under fuzzy environment. Financ India
10(2):385–388

25. Xiong Y, Rao SS (2004) Fuzzy nonlinear programming for mixed-discrete design
optimization through hybrid genetic algorithm. Fuzzy Sets Syst 146:167–186

26. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353
27. Zimmermann H J (1991) Fuzzy set theory and its applications. Academic Publisher, New

York
28 Lee KH (2005) First course on fuzzy theory and applications. Springer, Berlin. doi:

10.1007/3-540-32366-X

402 10 Software Release Time Decision Problems

http://dx.doi.org/10.1007/3-540-32366-X


29. Ramik J (2001) Soft computing: overview and recent developments in fuzzy optimization.
Research Report, JAIST Hokuriku

30. Bellman RE, Zadeh LA (1973) Decision making in a fuzzy environment. Manage Sci
17:141–164

31. Tiwari RN, Dharmar S, Rao JR (1987) Fuzzy goal programming—an additive model. Fuzzy
Sets Syst 24:27–34

32. Mohamed RH (1997) The relationship between goal programming and fuzzy programming.
Fuzzy Sets Syst 89:215–222

33. Sandgren E (1990) Nonlinear integer and discrete programming in mechanical design
optimization. ASME J Mech Des 112:223–229

34. Tang J, Wang D (1996) Modeling and optimization for a type of fuzzy nonlinear
programming problems in manufacturing systems. In: Proceeding 35th IEEE conference on
decision and control, pp 4401–4405

35. Guan XH, Liu WHE, Papalexopoulos AD (1995) Application of a fuzzy set method in an
optimal power flow. Elect Power Syst Res? 34:11–18

36. Xiang H, Verma BP, Hoogenboom G (1994) Fuzzy irrigation decisions support system. In:
Proceedings 12th national conference on artificial intelligence, Part 2(2), Seattle, WA

37. Kuntze HB, Sajidman M, Jacubasch A (1995) Fuzzy-logic concept for highly fast and
accurate position control of industrial robots. In: Proceedings 1995 IEEE international
conference on robotics and automation, Part 1(3), pp 1184–1190

38. Sousa JM, Babuska R, Verbruggen HB (1997) Fuzzy predictive control applied to an air-
conditioning system. Control Eng Prac 5(10):1395–1406

39. Goel AL, Okumoto K (1979) Time dependent error detection rate model for software
reliability and other performance measures. IEEE Trans Reliab R 28(3):206–211

40. Wood A (1996) Predicting software reliability. IEEE Comp 11:69–77
41. Yamada S, Osaki S (1985) Discrete software reliability growth models. Appl Stoch Models

Data Anal 1:65–77
42. Yamada S, Ohba M, Osaki S (1983) S-shaped software reliability growth modeling for

software error detection. IEEE Trans Reliab R 32(5):475–484
43. Yamada S, Ohtera H, Narihisa H (1986) Software reliability growth models with testing-

effort. IEEE Trans Reliab R 35:19–23
44. Musa JD, Iannino A, Okumoto K (1987) Software reliability: measurement, prediction,

application. McGraw-Hill, New York. ISBN 0-07-044093-X
45. Xie M, Yang B (2003) A study of the effect of imperfect debugging on software development

cost. IEEE Trans Softw Eng 29(5):471–473. doi:10.1109/TSE.2003.1199075
46. Ohba M, Chou XM (1989) Does imperfect debugging effect software reliability growth. In:

Proceedings 11th international conference of software engineering, pp 237–244
47. Kapur PK, Gupta D, Gupta A, Jha PC (2008) Effect of introduction of fault and imperfect

debugging on release time. J Ratio Math 18:62–90
48. Pham H, Zhang X (2003) NHPP software reliability and cost models with testing coverage.

Eur J Oper Res 145(2):443–454
49. Kapur P K, Garg RB, Aggarwal A G, Tandon A (2010) General framework for change point

problem in software reliability and related release time problem. In: Proceedings ICQRIT
2009

50. Kapur PK, Bai M, Bhushan S (1992) Some stochastic models in software reliability based on
NHPP. In: Venugopal N (ed) Contributions to stochastics, Wiley, New Delhi

51. Bector CR, Chandra S (2005) Fuzzy mathematical programming and fuzzy matrix games.
Springer, Berlin

52. Thirez H (2000) OR software LINGO. Eur J Oper Res 124:655–656

References 403

http://dx.doi.org/10.1109/TSE.2003.1199075


Chapter 11
Allocation Problems at Unit Level Testing

Notation

pr {.} Probability
{N(t), t C 0} Counting process representing the cumulative number of software

faults detected in the time interval [0, t]
m(t) Mean value function in the NHPP model, m(0) = 0
mf(t) Mean value function of the failure process in the NHPP model,

mf(0) = 0
mr(t) Mean value function of the removal process in the NHPP model,

mr(0) = 0
w(t), W(t) Current testing-resource expenditures at testing time t for (wi(t),

Wi(t)) software (module i) and its integral form, i.e.,
WðtÞ ¼

R t
0 wðxÞdx; WiðtÞ ¼

R t
0 wiðxÞdx;

a(ai) Expected initial fault content in software (module i), a[ 0
b (bi) Constant fault detection/removal rate per remaining faults in

software (module i) 0\ b\1
i Subscript for each software-module number i = 1, 2, …, N
vi Weighted importance for each software module, vi[ 0
zi, Z The number of software faults remaining in each software module

and the whole system
W The specified total testing-resource expenditures before module

testing, W[ 0
R(s) Software reliability which means that no software failures occur

during the time interval (0, s](s C 0) after the testing process
c Constant parameter related to the failure rate, c[ 0
R0 Objective value of the software reliability, 0\R0\ 1
* Superscript that denotes the optimal solution of the test resource

allocation problem
Ai viaibi (detectability of module i)
L, k Lagrangian, Lagrange multiplier k

P. K. Kapur et al., Software Reliability Assessment with OR Applications,
Springer Series in Reliability Engineering, DOI: 10.1007/978-0-85729-204-9_11,
� Springer-Verlag London Limited 2011

405



11.1 Introduction

As mentioned in previous chapter reliability, scheduled delivery and cost are the
three main quality attributes for almost all software. By determining the releases
time of the software optimally taking into consideration the various constraints and
aspects of the software enables to best achieve these objectives. Many a time in the
software release time problems we have seen keeping the cost minimization
objective alone may leave us with a solution that the reliability achieved is low. On
the other hand reliability maximization objective alone may require large budget.
The two objectives simultaneously are conflicting and demands bounds on budget
and achievable reliability. The release time problem by no means controls the
consumption of the testing resources. The total software testing cost as well as
reliability depends largely on the consumption of the testing resources during the
testing process. Judicious consumption of the testing resources can enable us to
achieve much higher reliability in the same expenditure or even less. It has direct
impact on the software release decision, the quality level of the software achieved
and the cost incurred. Hence before one builds a model for software release time
one should determine how the testing resources should be allocated in the different
levels of testing and software components. The time-dependent use of testing
resources can be observed as a consumption curve of testing resources.

In the software reliability literature this problem is widely studied as the
problem of allocating the limited testing resources among the different modules of
the software so as to optimize some performance index (such as maximize reli-
ability or number of faults removed, minimize failure intensity or cost, etc.) with
respect to the software. Such optimization problems are known as Resource
Allocation Problems. More specifically the problem can be explained as follows.

Software life cycle consists mainly of the following phases: requirement and
specification, design, coding, testing and operations/maintenance. During the
testing stage software is tested and detected faults are corrected. Most of the real
life software are designed based on modular structure. Each module or a group of
modules together are capable of performing some function of the software.
The testing process for such software usually consists of three stages—module
testing, integration testing and acceptance testing. In module testing each module
is tested independently for its intended function. In integration testing, all the
software modules are interconnected according to predetermined logical structure
and the whole software system is tested. In acceptance testing the software
system is tested by customers or is tested using the test sets supplied by the
customer. Testing resources get consumed in each of them. The problem of
testing-resource allocation has mainly two concerns firstly how much testing
resources are to be allocated to each of the testing stages. Secondly how much
testing resources should be allocated to each of the modules so that the software
performance can be optimized measured in terms of reliability, number of
remaining faults, failure intensity, total resources consumed, etc. The studies in
the literature are mainly concerned with the second problem. Allocation of

406 11 Allocation Problems at Unit Level Testing



testing resources among the testing stages is mainly based on expert opinion, past
project data, or sometimes independent budget for the different stages is kept. In
case of resource allocation at unit testing level one who is not aware of why
such an allocation is required may say that allocate equal resources to each
module, as every module, is an integrated part of the software. But it maynot be
an optimal policy. Although, each module has its unique importance in the
software but all of them may not be equally important. Some can provide major
functionality to the software while some may only be supporting some functions.
Some modules might be frequently called or used while some can have rare or
middle order calling frequency. Some can be very large in size while others may
not be so. During testing the detectability of faults in some modules can be high
while low in others. Some modules can have only simple types of faults while
faults in others can have varying degrees of complexity. The complexity level of
faults with a module may also vary. Like that we can face a number of different
situations in unit testing. It requires an appropriate measurement of the testing
process progress as well as judicious allocation of the testing resources among
the modules to achieve an overall high level of reliability. Therefore the software
project manager should monitor the testing process closely and effectively
allocate the resources in order to reduce the testing cost and to meet the given
reliability requirements.

All the testing activities of different modules should be completed within a
limited time, and these activities normally consume approximately 40–50% of the
total amount of limited software development resources [1]. Typically, module
testing is the most time-critical part of testing to be performed. Therefore, project
managers should know how to allocate the specified testing-resources among all
the modules. Scope of this chapter is restricted to resource allocation problem for
module testing (unit testing) level. It may be noted that most of the allocation
problems studied in the literature are related to the allocation of testing resources
to each of the modules at the module testing level considering each module to be
independent of each other. However dependency of modules can also be consid-
ered with ease if we optimize the resource allocation at the system testing level
when on an input a sequence of modules are called to get the desired output. At the
module testing level modules can be considered to be independent of each other
since they are designed independently. Since the allocation problem discussed in
this chapter considers the testing at the modular level, we therefore consider the
modules to be independent of each other. Each module may contain different
number of faults and that of different severity. Hence fault detection/removal
phenomenon in modules can be represented through distinct SRGM. Throughout
this book we have discussed a number of SRGM and their applications on real life
data sets. In this chapter we will discuss how these models can be used to depict
the reliability growth of independent modules during unit testing and using this
information we will build optimization models to determine the optimal allocation
of testing resources to the software modules so that the software performance can
be optimized.

11.1 Introduction 407



11.2 Allocation of Resources based on Exponential SRGM

Ohtera and Yamada [1] were the first to discuss two management problems to
achieve a reliable software system efficiently during module testing stage in the
software development process by applying NHPP-based software reliability
growth model [2]. The relationship between the testing resources spent during the
module testing and the detected software faults can be described by the test effort
based SRGM. The software development manager has to decide how to use the
specified testing resources effectively in order to maximize the software quality
measured in terms of reliability. That is, to develop the reliable software system,
the manager must allocate the specified amount of testing- resource expenditures
for each software module. Two kinds of testing-resource allocation problems are
considered to make the best use of a specified total testing-resource expenditure in
module testing. The manager has to allocate it appropriately to each software
module which is tested independently and simultaneously.

11.2.1 Minimizing Remaining Faults

Based on the test effort based exponential software reliability growth model (refer
Sect. 2.7) the testing-resource allocation problem is formulated under the fol-
lowing assumptions

1. The software system is composed of N independent modules. The number of
software faults remaining in each module can be estimated from the test effort
based exponential software reliability growth model.

2. Each software module is subject to failure at random times caused by the faults
remaining in it.

3. If any of the software modules fails, the software system fails.
4. The failure process of the software module i is modeled by a non-homogeneous

Poisson process with mean value function mi(t).
5. The total amount of testing-resource expenditures for the module testing is

specified.
6. The manager has to allocate the specified total testing-resource expenditures to

each software module so that the number of software faults remaining in the
system may be minimized.

Following the SRGM in Sect. 2.7 the mean value function of the SRGM [3] for
module i is given as

miðtÞ ¼ ai 1� e�biWiðtÞ
� �

; i ¼ 1; 2; . . .;N ð11:2:1Þ

and the expected number of software faults remaining in ith module is thus given as

ziðtÞ ¼ ai � miðtÞ ¼ aie
�biWiðtÞ; i ¼ 1; 2; . . .;N ð11:2:2Þ

408 11 Allocation Problems at Unit Level Testing

http://dx.doi.org/10.1007/978-0-85729-204-9_2
http://dx.doi.org/10.1007/978-0-85729-204-9_2


Any software cannot be tested indefinitely to detect/remove all the faults
lying in the software, since the software has to be released in the market or to
the specified user for a project kind of software at a predefined software
release time. Hence software-testing time is almost fixed (say T). Therefore,
without any loss of generality the number of faults removed by time T can be
assumed to be a function of testing effort explicitly in Eq. (11.2.2). So if Wi

be the testing effort that has to be spent on the ith module during testing time
T, the expected number of software faults remaining in ith module can be
rewritten as

ziðWiÞ ¼ ai � miðtÞ ¼ aie
�biWi ; i ¼ 1; 2; . . .;N ð11:2:3Þ

If vi is the weighting factor to measure the relative importance of ith module,
the testing resource allocation problem that minimizes the expected total faults
remaining in all modules is formulated as

Minimize Z ¼
X

N

i¼1

viai:e
�biWi

Subject to
X

N

i¼1

Wi�W ; Wi � 0 i ¼ 1; 2; . . .N:

ðP1Þ

For solving such a problem first one must determine the unknown parameters of
the SRGM, ai and bi either using real software failure data of some previous period
or similar software. Assuming that these unknowns have already been estimated
using some real life data (refer Sect. 2.9) the above mentioned problem is solved
by the method of Lagrange multiplier. Consider the following Lagrangian for the
problem (P1)

L ¼
X

N

i¼1

viai:e
�biWi þ k

X

N

i¼1

Wi �W

 !

; ð11:2:4Þ

and the necessary and sufficient conditions [11] for the minimum are

oL

oWi
¼ �viaibie

�biWi þ k� 0;

Wi:
oL

oWi
¼ 0; i ¼ 1; 2; . . .;N;

X

N

i¼1

Wi ¼ W ; Wi � 0 i ¼ 1; 2; . . .;N:

ð11:2:5Þ

Without loss of generality, we can assume that the following condition is
satisfied for the modules

A1 �A2 � . . .�AK�1 �AKþ1 � . . .�AN ð11:2:6Þ

11.2 Allocation of Resources based on Exponential SRGM 409

http://dx.doi.org/10.1007/978-0-85729-204-9_2


This means modules are arranged in order of fault detectability. Now, if
Ak C k C Ak+1, from (11.2.5) we have

Wi ¼ max 0;
1
bi
ðlnAi � ln kÞ

� �

;

i.e.,

Wi ¼
1
bi
ðlnAi � ln kÞ i ¼ 1; 2; . . .; k;

Wi ¼ 0 i ¼ k þ 1; . . .;N:
ð11:2:7Þ

From (11.2.5) and (11.2.7), ln k is given by

ln k ¼
X

k

i¼1

1
bi
lnAi �W

 !,

X

k

i¼1

1
bi

 !

k ¼ 1; 2; . . .;N ð11:2:8Þ

Let kk denote the value of the right-hand side of (11.2.8). Then, the optimal
Lagrange multiplier k* exists in the set {k1, k2, …, kN}. Hence, we can obtain k*
by the following algorithm.

Algorithm 11.1

(i) Set k = 1.
(ii) Compute kK by (11.2.8).
(iii) If Ak[ kk C Ak+1, then k* = kk (stop). Otherwise, set k = k ? 1 and go

back to (ii).

The optimal solution Wi
*(i = 1, 2,…., N) is given by

W�i ¼
1
bi
ðlnAi � ln k�Þ i ¼ 1; . . .; k ð11:2:9Þ

W�i ¼ 0 i ¼ k þ 1; . . .;N ð11:2:10Þ

11.2.2 Minimizing Testing Resource Expenditures

The previous problem minimizes the faults remaining in the software in each
module in order to attain maximum reliability subject to the resource availability
constraint. This problem is formulated to minimize the total testing-resource
expenditure in module testing such that the number of software errors remaining in
the system is Z at the termination of module testing again assuming N independent
modular structure.

410 11 Allocation Problems at Unit Level Testing



The problem is formulated as

Minimize
X

N

i¼1
Wi ¼ W

Subject to Z ¼
X

N

i¼1
viaie

�biWi

Wi� 0 i ¼ 1; 2; . . .;N

ðP2Þ

Again preceding in the same way as in case of problem (P1) the Lagrange is
formulated

L ¼
X

M

i¼1
Wi þ k

X

N

i¼1
viaie

�biWi � Z

 !

ð11:2:11Þ

Solving the above Lagrange the optimal solution Wi
* is obtained

W�i ¼ ln
Ai

Z

X

k�1

j¼1

1
bj

 !" #,

bi; i ¼ 1; 2; . . .; k � 1 ð11:2:12Þ

W�i ¼ 0; otherwise ð11:2:13Þ

11.2.3 Dynamic Allocation of Resources for Modular Software

The allocation problems discussed by Ohtera and Yamada [1] and Yamada et al.
[4] considered (1) minimization of the mean number of remaining faults in the
modules when a fixed amount of resources is given and (2) minimization of
the required amount of resources while the mean number of remaining faults in the
modules is equal to a given requirement. In these problems, only the mean number
of remaining faults in the modules was considered. However, even when a fixed
amount of testing resources is allocated to a software module, the number of faults
that can be detected in this module is not fixed. Consider an example that after a
certain period of testing of modular software the decision maker estimates the
remaining fault content in the software and the fault detection rate. Using this
information the allocation of the testing resources is determined based on problem
(P1) under a specified budget. If we assume the total amount of allocated resources
is spend uniformly over the remaining testing period the number of detected faults
may vary from the expected values, due to the random nature of the fault detection
process. Also the fault detection process is not solely determined by the testing
resources consumption, rather there are a number of factors that influence the
testing process such as test case coverage, defect density, fault dependencies etc.
Hence when software-module testing is completed, the actual number of

11.2 Allocation of Resources based on Exponential SRGM 411



remaining faults in the modules may turn out to be much larger than the expected
one. To reduce this possibility, we should reduce the variance of the number of
remaining faults in the software modules.

Leung [5] proposed a dynamic resource allocation strategy for software-module
testing, which provides a method to reduce this variance. This strategy considers
the number of faults detected in each module as module testing is proceeding, re-
estimates the model parameters using all the available fault detection data and
adjusts the resource allocation dynamically.

The policy can be explained in detail as follows
Divide the total testing time for software module testing into K testing periods, of
say 1-week duration each. Duration of time period may or may not be fixed. The
software project manager first records the fault detection times and the total
number of detected faults in each software module in testing periods. At the end of
this testing period, the project manager selects a model to represent the testing
process, uses the data recorded in the first period to estimate the unknown
parameters of this model and then determines the mean number of remaining faults
for each software module. With these estimates, he now determines the amount of
resources that should be allocated to each software module in the next testing
period. The above process is repeated for the K time periods.

Allocation of testing resources following the above policy can reduce the final
fault content variance. Consider the following example, at the end of a testing
period, suppose the mean number of remaining faults in module 1 is large while
the mean number of remaining faults in module 2 is small. The project manager
will allocate more testing resources to module 1 but fewer resources to module 2 in
the next testing period. After several testing periods, if the mean number of
remaining faults in module 1 becomes relatively small but that in module 2
becomes relatively large, then the project manager allocates less testing resources
to module 1 and allocates more testing resources to module 2. By taking into
account the variations of the number of detected faults during testing and re-
allocating resources to the software modules in each testing period, the variance of
the number of remaining faults in software module 1 or software module 2 at the
end of software-module testing can be reduced.

Leung [5] explained this allocation procedure with respect to the allocation
policies discussed by Ohtera and Yamada [1]. In the jth testing period which starts
at time Tj and ends at Tj+1, the mean number of remaining faults at the beginning
of the jth testing period is

zij ¼ aije
�bijWij ð11:2:14Þ

where aij is the remaining fault content, bij is the fault detection rate and Wij is the
total amount of resources allocated to module i in the jth testing period. If we
assume resources are spent uniformly over the testing period then

Wij ¼ wijðTjþ1 � TjÞ ð11:2:15Þ

412 11 Allocation Problems at Unit Level Testing



Now to determine resource allocation Wij = wij(Tj+1 - Tj) reconsider the
problem (P1).

11.2.4 Minimize the Mean Fault Content

Given the total amount of available resources W, let the amount of resources Wj be
expendable in the jth testing period to N modules. Allocation of these resources
among the N modules can be done according to the following model

Minimize
X

N

i¼1
viaije

�bijWij

Subject to Wij� 0

X

N

i¼1
Wij ¼ Wj

ðP3Þ

If we ignore the subscript j the problem (P3) is same as (P1) and can be solved
using Algorithm 11.1. Now follow the sequential steps given in Algorithm 11.2 to
dynamically allocate the testing resources to N modules in K testing periods after
observing the testing period for certain time initially.

Algorithm 11.2

1. Set j / 1.
2. Estimate the parameters bij and aij for module i for i = 1, 2, …,N from the

recorded data. Note: In case the decision is to be made before the start of the
testing process let Wi0 C 0 units of testing resources be allocated to software
module i, and using the estimates of the model parameters determined from
some earlier similar project or expert judgment generate a fault detection
process for each software module. Using this generated testing data now esti-
mate bi1 and ai1, i = 1,…N.

3. Calculate the optimal resource allocation {Wij
*, i = 1, 2, …, N} for the jth

testing period. We can assume that Wj ¼ Tjþ1�Tj
Tkþ1�T1

� �

W :

4. Start the jth testing period.
5. Record the total number of detected faults Xij and the fault detection times

tðijÞ1 ; tðijÞ2 ; . . .; tðijÞXij
for software module i, i = 1, 2, …, N.

6. At the end of the jth testing period, if j\K, then j / j ? 1 and go to step (2),
otherwise stop.

The model parameters bij and aij are re-estimated at the end of each testing
period based on all the available fault detection data. Therefore, in each step better
estimation accuracy is achieved as more data is available and estimates are based
on all available data. It makes our resource allocation more efficient and judicious.

11.2 Allocation of Resources based on Exponential SRGM 413



To measure the relative accuracy improvement, we define the relative estimation
error for any software module (say module 1) to be

Relative estimation error ¼ E1j j
Ej j

where E is the estimation error when all the available fault detection data are used
in estimation and E1 is the estimation error when only the fault detection data
recorded before software module testing are used. If the relative estimation error is
smaller, then the estimation accuracy improvement is larger. Similar dynamic
allocation policy is formed for the problem (P2) which minimizes the total testing-
resource consumption (for details refer Leung [5]). In fact we can use the similar
steps to dynamically allocate the testing resources for any testing process repre-
sented by any existing SRGM.

Application 11.1

The model finds its application in determining the amount of the testing resources
to be allocated to the different modules of the software during module/unit testing
stage. Consider software with ten independent modules. Given that each software
module has already been tested for some time and test effort based exponential
SRGM is applied on each module to estimate failure process parameters. The
estimates of the parameters of the SRGM [ai, bi (in 10-4)] for each module are
tabulated in Table 11.1. The weights assigned to each module are also tabulated in
the table. The problem is solved with total resources W = 50,000 units. The
allocations made to each module as well as the remaining software faults in each
module are also tabulated in the table.

From the table we can calculate that the total software faults remaining are
Z = 162, whereas before the start of the testing phase the fault content was 442. It
implies that now 63.35% fault content can be reduced from the software when a total
of 50,000 units of testing resources are consumed. Since the whole of the available
testing resources gets consumed in this allocation, if we further want to minimize
the remaining fault content in the unit testing we should increase the amount of
testing resources. For this purpose we can apply the testing effort control problem
as discussed in Chap. 5.

Table 11.1 Data and
allocated testing resources
Wi* for problem (P1)

Module ai vi bi (910-4) Wi
* zi

1 89 1 4.1823 6516.2 5.8
2 25 1 5.0923 3244.9 4.8
3 27 1 3.9611 3731.6 6.2
4 45 1 2.2956 6287.7 10.6
5 39 1 2.5336 5521.6 9.6
6 39 1 1.7246 5881.5 14.1
7 59 1 0.8819 8590.8 27.7
8 68 1 0.7274 9719.4 33.5
9 37 1 0.6824 506.2 35.7
10 14 1 1.5309 0.0 14.0

414 11 Allocation Problems at Unit Level Testing

http://dx.doi.org/10.1007/978-0-85729-204-9_5


As an alternative we can apply the problem (P2) on the data to determine how
much minimum testing efforts are required and how to allocate these resources
among the modules to achieve a particular level of reliability. Remaining fault
content is a determinant of the software reliability. We may specify that we want
to terminate the unit testing when the total remaining fault content equals 100 in
the software instead of 162 as given by the solution of the problem (P1) for testing
resources 50,000. In this case we apply problem (P2) to the data [ai, bi (in 10-4),
vi] given in Table 11.1. The optimal allocation of testing resources and the
remaining fault content according to problem (P2) is tabulated in Table 11.2.

Then, the total amount of testing resource consumed in the module testing is

W ¼
P10

i¼1 W
�
i ¼ 82; 443 units. Comparison of the results of problems (P1) and

(P2) suggests that an extra amount of testing-resource expenditures equals 32,443
(= 82,443 - 50,000) units needs to be spent on testing to reach the remaining fault
content of 100.

11.2.5 Minimizing Remaining Faults with a Reliability

Objective

Section 11.2.1 describes a resource allocation problem with remaining fault
minimization objective, under the limited testing resources. Sometimes the deci-
sion maker may not be satisfied with the results obtained with this model. One
major reason for this dissatisfaction could be that the reliability level achieved
following the allocation made according to problem (P1) is not matching the
decision maker’s aspiration from the testing process. On the other hand due to the
resource allocation made according to formulation (P1), (P2) and (P3) some of
the modules may remain untested due to very hard detectability of faults
(i.e. modules having very low values of Ai’s may not get any allocation of
resources). In order to consider the level of reliability that we may achieve from
testing using the specified amount of testing resources, we can modify the problem
(P1) to include a reliability aspiration constraint for each module and guarantee a

Table 11.2 Testing resource
allocation based on problem
(P2)

Module Wi
* zi

1 7699.6 3.6
2 4216.8 2.9
3 4981.1 4.0
4 8443.9 6.5
5 7475.2 5.9
6 8751.5 8.6
7 14203.2 16.9
8 16523.9 20.5
9 7759.4 21.8
10 2388.4 9.7

11.2 Allocation of Resources based on Exponential SRGM 415



certain level of reliability. It also ensures that each module will be tested so that a
minimum level of reliability is achieved for each. The problem was formulated by
Yamada et al. [4]. Keeping the Assumptions 1–5 of problem (P1) and modifying
the sixth as follows the problem is reformulated.

Assumption 6 modified
6. We need to allocate the amount of testing-resource expenditures to each

module so that the attained software reliability after the testing is greater than
or equal to a reliability objective, say R0

Defining reliability
RðsÞ ¼ e�czðtÞs ð11:2:16Þ

the modified problem is

Minimize Z ¼
X

N

i¼1
viaie

�biWi

Subject to
X

N

i¼1
Wi�W ; Wi� 0 i ¼ 1; 2; . . .N

ðP4Þ

RðsÞ ¼ e�ciai:se
�biWi �R0 i ¼ 1; 2; . . .;N ð11:2:17Þ

Equations (11.2.17) put a reliability aspiration constraint on each module with
aspiration level R0. From this we can see that

Wi� �
1
bi
ln �lnR0

ciais

� �

ð11:2:18Þ

The right-hand side of (11.2.18) is constant for each module, let us denote it by
di. The reliability aspiration constraints can thus be transformed as

Wi� ci; where ci ¼ max 0; dif g; i ¼ 1; 2; . . .N ð11:2:19Þ

i.e. we obtain the following transformed optimal testing-resource allocation problem

Minimize Z ¼
X

N

i¼1
viaie

�biWi

Subject to
X

N

i¼1
Wi�W ; Wi� 0 i ¼ 1; 2; . . .N

Wi� ci i ¼ 1; 2; . . .N

ðP4:1Þ

Denote xi = Wi - ci, so the problem (P4.1) is further transformed as

Minimize Z ¼
X

N

i¼1
viaie

�bicie�bixi

Subject to
X

N

i¼1
xi�W �

X

N

i¼1
ci; xi� 0; i ¼ 1; 2; . . .;N

ðP4:2Þ

416 11 Allocation Problems at Unit Level Testing



Hence the problem under consideration reduces to the optimal testing-resource
allocation problem (P1) if we make the following transformations

W  W �
X

N

i¼1
ci; vi  vie

�bici ; andWi  xi ð11:2:20Þ

Huang et al. [6] reformulated the above problem defining the reliability at time
t as the ratio of the cumulative number of detected faults at time t to the expected
number of initial faults, i.e.

RðtÞ � mðtÞ
a

and followed the similar steps to compute the optimal resource allocation. Along with
this the authors have also discussed the allocation problem of minimizing the amount
of testing effort given the number of remaining faults and a reliability objective. We
will discuss this problem after discussing an application of problem (P4).

Application 11.2

For the application of the problem (P4) on a real life project consider software with
ten modules. The information tabulated in Table 11.3 is available for the estimates
of the parameters of the SRGM [ai, bi (in 10-4)] and the respective weights of
each of the module. For minimizing remaining faults in the system, let the total
amount of testing-resource expenditures available be 97,000 in man-hours units.
First we determine the allocation of testing resources made for each module
according to problem (P1). The results [corresponding to Eqs. (11.2.9) and
(11.2.10)] are also tabulated in Table 11.3.

Next using the information of ci’s as given in Table 11.4 with the same amount
of testing resources we again determine the solution following the problem (P4).
Let the reliability objective be R0 = 0.9 for the mission time s = 1.0 units. The
allocation of resources made is tabulated in Table 11.4.

From Tables 11.3 and 11.4 it can be seen that the total software faults
remaining are Z = 98.6 and 109.1, respectively. It implies that the reduction in
fault content according to problem (P1) is 60.7% while according to problem (P4)

Table 11.3 Data and
allocated testing resources
Wi* according to problem
(P1)

Module ai vi bi (910-4) Wi
* zi

1 63 1 0.5332 25435.2 16.2
2 13 1 2.5230 5280.7 3.4
3 6 1 5.2620 2459.5 1.6
4 51 1 0.5169 21548.7 16.7
5 15 1 1.7070 6354.5 5.1
6 39 1 0.5723 16554.3 15.1
7 21 1 0.9938 8857.3 8.7
8 9 1 1.7430 3412.3 4.9
9 23 1 0.5057 5845.6 17.1
10 11 1 0.8782 1251.9 9.8

11.2 Allocation of Resources based on Exponential SRGM 417



it is 56.5%. The application of (P1) consumes whole of the testing resources, i.e.
W* = 97,000 man-hours whereas following problem (P4) the total consumption of
testing resources is 86,775.90 man-hours. Thus 10,224.10 man-hours are still
remaining and we have achieved a reliability level of 0.9. If one further wants to
increase the reliability level can decide to continue the testing process or if on the
other hand the decision maker wants to release the software before a higher
reliability level is achieved, he/she may decide to pace the consumption pattern of
testing resources as redundant resources are available. Thus allocation problem
with a reliability aspiration constraint provides more flexibility to the decision
maker in controlling their testing process.

11.2.6 Minimizing Testing Resources Utilization

with a Reliability Objective

Huang et al. [6] reformulated the problem (P2) with a reliability objective, in order
to ensure certain minimum level of reliability in each module. The problem is
reformulated as

Minimize
X

N

i¼1
Wi ¼ W

Subject to Z ¼
X

N

i¼1
viaie

�biWi

Wi� 0 i ¼ 1; 2; . . .N

ðP5Þ

R ¼ miðtÞ
ai
¼ 1� e�biWiðtÞ�R0 ð11:2:21Þ

Equations (11.2.21) put a reliability aspiration constraint on each module with
aspiration level R0. Again from this we can see that

Table 11.4 Data and
allocated testing resources
Wi* according to problem
(P4)

Module ci (10
-2) di Wi

* zi
1 0.1800 1,401 23,524.9 16.2
2 1.1240 1,296 4877.0 3.4
3 3.1670 1,121 2265.9 1.6
4 0.2180 1,073 19578.1 16.7
5 0.8560 1,164 5757.8 5.1
6 0.2900 1,214 14,774.5 15.1
7 0.5470 861 7832.3 8.7
8 1.4060 1,050 2827.9 4.9
9 0.4830 1,044 3831.4 17.1
10 1.0850 1,414 1,506.1 9.8

418 11 Allocation Problems at Unit Level Testing



Wi�
1
bi
lnð1þ R0Þ; i ¼ 1; 2; . . .N ð11:2:22Þ

Let Di � 1
bi
lnð1þ R0Þ; i ¼ 1; 2; . . .N; now let Xi = Wi - Ci, where

Ci = max(0, D1, D2, D3, …, DN) we can transform problem (P5) to

Minimize
X

N

i¼1
Xi þ Cið Þ

Subject to Z ¼
X

N

i¼1
viaie

�biCie�biXi

Xi� 0

ðP5:1Þ

The objective and first constraints of problem (P5.1) are combined to form the
following Lagrange

Minimize LðX1;X2; . . .;XN ;kÞ¼
X

N

i¼1
ðXiþCiÞþk viaie

�biCie�biXi
� 	

�Z
� 	

ðP5:2Þ

Based on the Kuhn–Tucker (KT) conditions, the necessary conditions for a
minimum are

A1 :
oLðX1;X2; . . .;XN ; kÞ

oX1
¼ 0; i ¼ 1; 2; . . .N

A2 :
oLðX1;X2; . . .;XN ; kÞ

ok
¼ 0; k� 0

A3 :
X

N

i¼1
Xi�W �

X

N

i¼1
Ci;Wi� 0; i ¼ 1; 2; . . .N

:

From the Kuhn–Tucker conditions we have

oLðX1;X2; . . .;XN ; kÞ
oXi

¼ �kviaibie�biCie�biXi þ 1 ¼ 0; i ¼ 1; . . .;N ð11:2:23Þ

oLðX1;X2; . . .;XN ; kÞ
ok

¼
X

N

i¼1
viaie

�biCie�biXi � Z ¼ 0 ð11:2:24Þ

and the solution Xi
0 is

X0
i ¼ ln k0viaibie

�biCi
� 	

=bi; i ¼ 1; 2; . . .;N ð11:2:25Þ

with k0

k0 ¼
PN

i¼1 ð1=biÞ
Z

" #

ð11:2:26Þ

11.2 Allocation of Resources based on Exponential SRGM 419



That is,

X0
i ¼

ln viaibi
Z e�biCi

P

N

i¼1
1
bi

� �� �

bi
; i ¼ 1; 2; . . .;N ð11:2:27Þ

Hence, we get X0
= (X1

0, X2
0, X3

0,…., XN
0 ) as an optimal solution of the

Lagrangian problem. However, the above X0 may have some negative components
if

viaibie
�biCi

\

Z
PN

i¼1
1
bi

making X0 infeasible for problem (P5.1). In this case, the solution X0 can be
corrected by the following steps.

Algorithm 11.3

1. Set l = 0.
2. Calculate

Xi ¼
1
bi

ln
viaibi
Z

e�biCi
X

N�l

i¼1

1
bi

 ! !

; i ¼ 1; 2; . . .;N � l:

3. Rearrange the index i such that

X�1 �X�2 � � � � �X�N�l:

4. If X�N�l� 0 then stop
Else update X�N�1 ¼ 0; l = l ? 1
End-IF.

5. Go to Step 2. The optimal solution has the following form

X�i ¼
1
bi

ln
viaibi
Z

e�biCi
X

N�l

i¼1

1
bi

 ! !

; i ¼ 1; 2; . . .;N � l:

Algorithm 11.3 always converges in, at worst, N - 1 steps. From Xi
*
C 0 we can

determine the optimal allocations as

W�i ¼ X�i þ Ci:

Application 11.3

Consider the values of ai, bi given in Table 11.1 for a software consisting of ten
modules obtained from exponential test effort based model (Eq. (11.2.1)). Suppose
that the total amount of testing effort expenditures W is 50,000 man-hours and
R0 = 0.9. If we consider the weights vi’s [6] as tabulated in Table 11.5 then the

420 11 Allocation Problems at Unit Level Testing



optimal allocation of resources based on problem (P5) following Algorithm 11.3 is
as tabulated in Table 11.5.

11.2.7 Minimize the Cost of Testing Resources

The problem (P5) minimizes the testing-resources utilization when the faults
remaining in each software module and the minimum reliability level to achieve
for each module are given. Huang et al. [7] formulated another type of resource
allocation problem where instead of testing-resource consumption the cost of
testing resources is minimized. The problem considered is

Minimize
X

N

i¼1
CostiðWiÞ;

Subject to
X

N

i¼1
Wi�W

Wi� 0 i ¼ 1; 2; . . .N

R ¼ miðtÞ
ai
¼ 1� e�biWiðtÞ�R0

ðP6Þ

where the cost function Costi(Wi) is defined as the cost of correcting faults during
testing and operational phase and the per unit testing expenditure cost in testing
phase. Mathematically

CðWðtÞÞ ¼ C01mðtÞ þ C02ðmð1Þ � mðtÞÞ þ C03WðtÞ ð11:2:28Þ

If m(t) is the mean value function of the NHPP and is described by Goel and
Okumoto [8] SRGM for each module then

CostiðWiðtÞÞ ¼ C01miðtÞ þ C02ðmið1Þ � miðtÞÞ þ C03WiðtÞ ð11:2:29Þ

Table 11.5 Resource
allocation results of
Application 11.3

Module vi Wi
*

1 1.0 6,962
2 0.6 2,608
3 0.7 3,302
4 0.4 3,109
5 1.0 6,258
6 0.2 0
7 0.5 2,847
8 0.6 5,263
9 0.1 0
10 0.5 0

11.2 Allocation of Resources based on Exponential SRGM 421



where the cost function Costi(Wi) is the cost required to test module i with testing
resources Wi, C01 is the cost of correcting faults in the testing phase, C02is the fault
correction cost in the operational phase and C03 is the per unit testing expenditure
cost for each software module. As described in Sect. 11.2.1 the planning horizon is
fixed, therefore, without any loss of generality the number of faults removed by
time t can be assumed to be a function of testing effort explicitly in the above
equation. Hence the cost function can be expanded as

CostiðWiÞ ¼ C01viai 1� e�biWi
� 	

þ C02viaie
�biWi þ C03Wi:

Again using the transformations as in (11.2.22) and problem (P5.1) the problem
(P6) is reformulated as

Minimize
X

N

i¼1
Costi Xið Þ;

Subject to
X

N

i¼1
Xi�W �

X

N

i¼1
Ci

Xi� 0 i ¼ 1; . . .;N

ðP6:1Þ

where

X

N

i¼1
Costi Xið Þ ¼ C01

X

N

i¼1
viai 1� e�biXie�biCi
� 	

þ C02
X

N

i¼1
viaie

�biXie�biCi

þ C03 Xi þ Cið Þ:

Here we assume that the cost function is differentiable [9]. Using the Lagrange
multiplier method, the above equation can be reformulated

Minimize

LðX1;X2; . . .;XN ; kÞ ¼ C01
X

N

i¼1
viai 1� e�biXie�biCi
� 	

þ C02
X

N

i¼1
viaie

�biXie�biCi

þ C03 Xi þ Cið Þ þ k
X

N

i¼1
Xi �W þ

X

N

i¼1
Ci

 !

ðP6:2Þ

Based on the Kuhn–Tucker conditions, the necessary conditions for obtaining
the minimum above are

A1 :
oLðX1;X2; . . .;XN ; kÞ

oX1
¼ 0; i ¼ 1; 2; . . .N

A2 : Xi
oLðX1;X2; . . .;XN ; kÞ

Xi
¼ 0; i ¼ 1; 2; . . .N

422 11 Allocation Problems at Unit Level Testing



A3 : k
X

N

i¼1
Xi � W �

X

N

i¼1
Ci

 !( )

¼ 0; i ¼ 1; 2; . . .N :

From A1 to A3 we have the following theorem.

Theorem 11.1 A feasible solution Xi, i = 1, 2, …,N of problem (P6.2) is optimal
if and only if

1. k� viaibi C02 � C01
� 	

e�biXie�biCi � C03
2. Xi kþ C03 � viaibi C02 � C01

� 	

e�biXie�biCi

 �

¼ 0:

From KT conditions we get

X0
i
¼ ln viaibi C02 � C01

� 	

e�biCi
� 	

� ln k0 þ C03
� 	� 	

bi
; i ¼ 1; . . .;N

and

k0 ¼ �C03 þ e

PN

i¼1
1=bið Þ ln viaibi C0

2
�C0

1ð Þe�biCið Þ�Wþ
PN

i¼1
Ci

� �

PN

i¼1
1=bi

0

@

1

A

:

Hence, we get X0
= (X1

0, X2
0, X3

0,…., XN
0 ) as an optimal solution of the problem

(P6.2). However, the above X0 may have some negative components if

viaibi C
0
2 � C01

� 	

e�biCi
\k0 þ C03

making X0 infeasible for problem (P6.1). In this case, the solution X0 can be
corrected by the following steps.

Algorithm 11.4

1. Set l = 0.
2. Calculate

Xi ¼
1
bi

ln viaibi C
0
2 � C01

� 	

e�biCi
� 	

� ln kþ C03
� 	� 	

i ¼ 1; . . .;N � l

k ¼ �C03 þ e

1
PN

i¼1
1=bi

� �

PN

i¼1 1=bið Þ ln viaibi C02�C01ð Þe�biCið Þ�WþPN

i¼1 Ci

� 	� 	

:

3. Rearrange the index i such that

X�1 �X�2 � . . .�X�N�l:

11.2 Allocation of Resources based on Exponential SRGM 423



4. IF XN-l
*

C 0 then stop
Else update X�N�1 ¼ 0; l ¼ lþ 1:
End-IF

5. Go to Step 2. The optimal solution has the following form:

X�
i
¼ 1

bi
ln viaibi C

0
2 � C01

� 	

e�biCi
� 	

� ln kþ C03
� 	� 	

i ¼ 1; . . .;N � l;

X�
i
¼ 0; otherwise

where

k ¼ �C03 þ e

1
PN

i¼1
1=bi

� �

P

N

i¼1
1=bið Þ ln viaibi C02�C01ð Þe�biCið Þ�Wþ

P

N

i¼1
Ci

� �� �

:

Algorithm 11.4 always converges in, at worst, N - 1 steps. From Xi
*
C 0 we can

determine the optimal allocations as

W�i ¼ X�i þ Ci:

Application 11.4

Again continue with the same modular software data (Table 11.1) of software
consisting of ten modules. We need to allocate the expenditures to each module
and minimize the expected cost of software during module testing. Let the cost
parameters C01= 2, C02=10, C

0
3= 0.5 and the weighting vector vi’s be as specified in

Table 11.6. If we assume we have the total testing effort expenditures (W) amount
of 50,000 man-hours and R0 = 0.9, then based on problem (P6) and following
Algorithm 11.4 the optimal testing resources are determined and tabulated in
Table 11.6.

It is noted that the weight of module 9 is 0.05 (very low) and is not assigned any
resources for testing and thus remains untested. From these results we can

Table 11.6 Resource
allocation results of
Application 11.3

Module vi Wi
*

1 1.0 7,632
2 0.6 3,158
3 0.7 4,009
4 0.4 4,329
5 1.5 8,964
6 0.5 4,568
7 0.5 6,032
8 0.6 9,112
9 0.05 0
10 1 2,203

424 11 Allocation Problems at Unit Level Testing



determine the total expected software testing cost. If for some reasons and specific
requirements we intend to decrease more software cost, we have to re-plan and re-
consider the allocation of testing-resource expenditures, i.e., with the same data
optimal testing-effort expenditures should be re-estimated.

11.2.8 A Resource Allocation Problem to Maximize

Operational Reliability

Testing personal, CPU time, test cases, etc., all together are considered as testing
resources. The allocation problems discussed in the previous section do not
mention what exactly is referred to as testing resources or how it is measured. One
can say the total cost of obtaining these resources is testing resource, or the total
CPU time available to test the software is the testing resource etc. Xie and Yang
[19] studied the allocation problem as testing time allocation problem from the
viewpoint of maximizing operational reliability of modular software. To formulate
the allocation problem consider the following assumptions along with assumptions
1–4 of Sect. 11.2.1.

5. The total amount of testing time available for the module testing process of
software is specified, which is denoted by T.

6. The management has to allocate the total testing time of T to each software
module testing process in such a way that the operational reliability of the
software system is maximized.

According to Assumption 4, after Ti unit of testing time the failure intensity of
software module i is ki(Ti). Thus, the operational reliability of software module
i can be defined as

RiðxÞ ¼ e�kiðTiÞ:x; x� 0 ð11:2:30Þ

Authors claimed that, when module i is released after Ti unit of testing
time, the latent faults will not be detected and removed. The times between
failures in the operational phase will follow an exponential distribution with
parameter ki(Ti), which leads to the formulation of Eq. (11.2.30). The usual
equation of reliability [Eq. (1.5.33)] indicates the testing reliability, which
describes the reliability growth during the testing phase when faults are
removed after they are detected. Operational reliability is oriented toward the
customers; hence the formulation (11.2.30) is more appropriate for this
problem.

(11.2.30) describes the reliability of a module, from Assumption 3 the opera-
tional reliability of the software system is

RðxÞ ¼
Y

N

i¼1
RiðxÞ ¼ e�x

PN

i¼1 kiðTiÞ; x� 0 ð11:2:31Þ

11.2 Allocation of Resources based on Exponential SRGM 425

http://dx.doi.org/10.1007/978-0-85729-204-9_1


maximizing R(x) expressed as (11.2.31) is equivalent to minimizing
PN

i¼1
ki Tið Þ,

the optimal testing time allocation problem is formulated as

Minimize
X

N

i¼1
kiðTiÞ

Subject to
X

N

i¼1
Ti� T

Ti� 0; i ¼ 1; 2; . . .;N

ðP5Þ

To solve this optimization problem, the following Lagrange is constructed

L ¼
X

N

i¼1
kiðTiÞ þ k

X

N

i¼1
Ti � T

 !

ð11:2:32Þ

The necessary and sufficient conditions for the minimum are

oL

oTi
¼ o

oTi
kiðTiÞ þ k� 0; i ¼ 1; 2; . . .;N ð11:2:33Þ

Ti
oL

oTi
¼ 0;

X

N

i¼1
Ti ¼ T ; Ti� 0; i ¼ 1; 2; . . .;N ð11:2:34Þ

The optimal solution T1
*, T2

*, …, Tn
* can be obtained by solving the above

equations. The general formulation presented above does not require a particular
model for the mean value function. The author considered a software system
where failure process for each software module is described by the Goel and
Okumoto [8] model, i.e.

kiðtÞ ¼ aibie
�bit; i ¼ 1; 2; . . .;N:

The Lagrange becomes

L ¼
X

N

i¼1
aibie

�bit þ k
X

N

i¼1
Ti � T

 !

; ð11:2:35Þ

and it can be shown that if modules are indexed in the descending order of aibi
2,

i = 1,…, N and akbk
2
[ k C ak+1bk+1

2 for any 0 B k B N, then

T�i ¼
1
bi
ln aib2i � ln k
� 	

i ¼ 1; 2; . . .; k
0 i ¼ k þ 1; . . .;N

�

ð11:2:36Þ

where

k ¼ e

Pk

i¼1
1
bi

ln½aib2i ��T
Pk

i¼1
1
bi

 !

ð11:2:37Þ

426 11 Allocation Problems at Unit Level Testing



The algorithm to obtain Ti
*, i = 1, 2, …, N.

Algorithm 11.5

1. Set k = 1.
2. Calculate the value of the right-hand side of Eq. (11.2.37) and denote it by kk.
3. If akb2k [ kk � akþ1b2kþ1; then k = kk and go to (4); otherwise, set k = k + 1 and

go back to (2).
4. The optimal solution T1

*, T2
*, …, Tn

* can be obtained by Eq. (11.2.36).

Application 11.5

Here we continue with Application 11.1. Consider the same software with a set of
ten modules. The estimated figures for ai’s and bi’s are taken from Table 11.1.
Suppose 85,000 units of testing time are to be allocated between the ten modules
then the application of Algorithm 11.5 yields the allocation of testing time as listed
in Table 11.7. Under the optimal allocation, after the testing phase the operational
reliability of the software system is

RðxÞ ¼ expð�0:01149xÞ; x� 0 ð11:2:38Þ

However, if the management allocates the testing resource to each software
module in proportion to the number of remaining faults in it, then the operational
reliability of the software system after testing will be

RðxÞ ¼ expð�0:01403xÞ; x� 0 ð11:2:39Þ
From Eqs. (11.2.38) and (11.2.39) it can be seen that the reliability of the

software system is significantly improved by the optimal allocation, compared
with that under the other allocation.

11.3 Allocation of Resources for Flexible SRGM

Different types of allocation problems have been discussed in the previous section
on the exponential test effort based NHPP SRGM. Throughout the book we have

Table 11.7 Allocated testing
time according to problem
(P5)

Module Ti
*

1 1087.87
2 7139.78
3 8104.65
4 10594.79
5 11457.15
6 11104.05
7 11198.97
8 10233.75
9 4260.38
10 118.59

11.2 Allocation of Resources based on Exponential SRGM 427



discussed ample number of NHPP-based SRGM. Most of them are classified as
either exponential or s-shaped SRGM. Along with this we have another type of
SRGM called flexible SRGM, the shape parameter of these SRGM for different
values describes either exponential or s-shaped SRGM. The earlier study in the
software reliability growth modeling as well as resource allocation problem was
focused on exponential SRGM. Development of s-shaped and flexible SRGM and
their wide range application in practice invoked the requirement of studying this
optimization problem on these SRGM as well. Kapur et al. [10] initiated this study
and firstly they proposed and validated a test effort based flexible SRGM, and then
formulated resource allocation optimization problems on this model.

11.3.1 Maximizing Fault Removal During Testing Under

Resource Constraint

Under the general NHPP assumptions (refer Sect. 2.3.1) and assuming

• The fault detection rate with respect to testing effort intensity is proportional to
the current fault content in the software and the proportionality increases line-
arly with each additional fault removal.

• Faults present in the software are of two types: mutually independent and
mutually dependent.

The model is formulated as

ðd=dtÞmðtÞ
wðtÞ ¼ /ðtÞða� mðtÞÞ where/ðtÞ ¼ b r þ ð1� rÞmðtÞ

a

� 


ð11:3:1Þ

where r is called the inflection parameter and represents the proportion of inde-
pendent faults present in the software. Other notations have their usual meanings.
The mean value function of the SRGM under the initial condition m(0) = 0 and
W(0) = 0 is

mðtÞ ¼ a 1� e�bWðtÞ
� 	

1þ ð1� rÞ=rð Þe�bWðtÞ ð11:3:2Þ

Depending upon the value of r, the SRGM (108) can describe both exponential
and S-shaped growth curves. The behavior of the testing effort can be described by
any of the testing effort functions discussed in Sect. 2.7.

The Problem Formulation

From the estimates of parameters of SRGM for software modules, the total fault

content in the software
PN

i¼1
ai is known. Module testing aims at detecting max-

imum number of faults within available resources. The SRGM with testing effort
for ith module is given as

428 11 Allocation Problems at Unit Level Testing

http://dx.doi.org/10.1007/978-0-85729-204-9_2
http://dx.doi.org/10.1007/978-0-85729-204-9_2


miðtÞ ¼
ai 1� e�biWiðtÞ
� 	

1þ ð1� riÞ=rð Þie�biWiðtÞ; i ¼ 1; 2; . . .;N ð11:3:3Þ

Again, it is not imperative that software will be tested indefinitely to detect/
remove possible fault content due to the random life cycle of the software, which
has to be released for marketing. Hence, the software-testing time is almost fixed
(say T). Let Wi be the testing effort that has to be spent on the ith module during
testing time T, so the mean value function of SRGM can be rewritten explicitly as
a function of Wi

miðWiÞ ¼
ai 1� e�biWi
� 	

1þ ð1� riÞ=rið Þe�biWi
; i ¼ 1; 2; . . .;N ð11:3:4Þ

With the mean value function (11.3.4) to describe the fault detection process the
allocation problem with the objective of maximum fault removal during testing
subject to the resource availability constraint is formulated as

Maximize
X

N

i¼1
miðWiÞ ¼

X

N

i¼1

ai 1� e�biWi
� 	

1þ ð1� riÞ=rið Þe�biWi

Subject to
X

N

i¼1
Wi�W

Wi� 0; i ¼ 1; 2; . . .;N

ðP7Þ

(P7) can be solved using the Dynamic Programming approach. From Bellman’s
principle of optimality, we can write the following recursive equations [11]

f1ðWÞ ¼ max
W1¼W

ai 1� e�b1W1
� 	

1þ ð1� r1Þ=r1ð Þe�b1W1

� �

ð11:3:5Þ

fnðWÞ ¼ max
0�Wn �W

an 1� e�bnWn
� 	

1þ ð1� rnÞ=rnð Þe�bnWn
þ fn�1ðW �WnÞ

� �

; n ¼ 2; . . .;N

ð11:3:6Þ

Let

piðWiÞ ¼ aið1� e�biWiÞ; qiðWiÞ ¼ 1þ die
�biWi

and

RiðWiÞ ¼ ðpiðWiÞ=qiðWiÞÞ; i ¼ 1; . . .;N:

where

di ¼
ð1� riÞ

ri
; i ¼ 1; . . .;N:

11.3 Allocation of Resources for Flexible SRGM 429



The derivatives of pi(Wi) and qi(Wi) are ever non-increasing and non-decreasing
functions of Wi, respectively. The functions pi(Wi) and qi(Wi), i = 1,…, N, are
hence concave and convex, respectively. The ratio of concave and convex func-
tions is a pseudo-concave function and the sum of pseudo-concave functions is not
necessarily a pseudo-concave function. There does not exist any direct method to
obtain an optimal solution for such a class of problems. Dur et al. [12] proposed a
method to solve such a class of problems converting the sum of ratio functions of
the objective to a multiple objective fractional programming problem. Further, it
has been established that every optimal solution of the original problem is an
efficient solution of the equivalent multiple objective fractional programming
problem. Dur’s equivalent of the problem (P7) can be written as

Maximize RðWÞ ¼ p1ðW1Þ=q1ðW1Þ; p2ðW2Þ=q2ðW2Þ; . . .; pNðWNÞ=qNðWNÞð ÞT

Subject to W 2 S ¼ W 2 RN=
X

N

i¼1
Wi�W ; Wi� 0; i ¼ 1; 2; . . .;N

( )

ðP7:1Þ

Problem (P7.1) can equivalently be written as the following multiple objective
programming problem [13]

Maximize RðWÞ¼ p1ðW1Þ�q1ðW1Þ; p2ðW2Þ�q2ðW2Þ; . . .;pNðWNÞ�qNðWNÞð ÞT

Subject to W 2S¼ W 2RN=
X

N

i¼1
Wi�W ; Wi�0; i¼1;2; . . .;N

( )

ðP7:2Þ

The Geoffrion’s equivalent scalarized formulation [14] with suitable adjustment
(i.e., taking both functions together having the same variable) of the problem
(P7.2) for fixed weights for the objective function is as follows

Maximize
X

N

i¼1
kiðpiðWiÞ � qiðWiÞÞ

Subject to
X

N

i¼1
Wi�W

Wi� 0; i ¼ 1; 2; . . .;N

k 2 X ¼ ðk 2 RN=
X

k ¼ 1i; ki� 0; i ¼ 1; . . .;NÞ

ðP7:3Þ

Based on the following Lemma it can be proved that the optimal solution (Wi
*,

i = 1,…, N) of the problem (P7.3) is an optimal solution (Wi
* for i = 1,…, N) for

the problem (P7).

Lemma 1 [12]: The optimal solution X* of the problem (P7) is an efficient
solution of the problem (P7.2).

430 11 Allocation Problems at Unit Level Testing



Lemma 2 [13]: A properly efficient solution (Wi
* for i=1,…, N) of the problem

(P7.3) is also a properly efficient solution (Wi
* for i = 1,…, N) for the problem

(P7.1).

Lemma 3 [14]: The optimal solution (Wi
* for i = 1,…, N) of the problem (P7.3) is

a properly efficient solution (Wi
* for i = 1,…, N) for the problem (P7.2).

Now, the problem (P7.3) can be solved using the Dynamic Programming
Approach. The recursion equations can be written after substituting the expres-
sions for pi(Wi) and qi(Wi), i = 1,…, N and simplifying

f1ðWÞ ¼ max
W1¼W

ða1 � 1Þ � ða1 þ d1Þe�b1W1

 �

ð11:3:7Þ

fnðWÞ ¼ max
0�Wn �W

ðan � 1Þ � ðan þ dnÞe�bnWn þ fn�1ðW �WnÞ

 �

; n ¼ 2; . . .;N

ð11:3:8Þ

The modules can be rearranged in decreasing order of their values of
(ai ? di)bi; i.e., (a1 ? d1)b1 C (a2 ? d2)b2 C _ C (aN ? dN)bN to index them.
The resources are allocated sequentially to modules starting from the module
having higher detectability, determined by (ai ? di)bi to module having low
detectability. The above problem can be solved through forward recursion in
N stages as follows

Stage 1: Let n = 1, then we have

f1ðWÞ ¼ max
X1¼Z

ða1 � 1Þ � ða1 þ d1Þe�b1W1

 �

¼ ða1 � 1Þ � ða1 þ d1Þe�b1W

 �

Stage 2: Set n = 2, then we have

f2ðWÞ ¼ max
0�X2 �Z

ða2 � 1Þ � ða2 þ d2Þe�b2W2 þ f1ðW �W2Þ

 �

Substitute for f1(W - W2), and let f2ðWÞ ¼ max0�X2 � Z F2ðW2Þf g: The func-
tion F2(W2) can be maximized using the principles of calculus. Proceed by
induction to find the optimal solution for the nth stage. The result can be sum-
marized in the following theorem. For detailed proof see Kapur et al. [10].

Theorem 11.2 If for any n ¼ 2; . . .;N; 1� e�ln�1W � ln�1Vn�1=ðan þ dnÞbnð Þ
then the values of Wn;Wnþ1; . . .;WNare zero and the problem reduces to an (n - 1)
stage problem with

W�r ¼
1

br þ lr�1
lr�1W � log

lr�1Vr�1
ðar þ drÞbr

� �� 


; r ¼ 1; . . .; ðn� 1Þ ð11:3:9Þ

where

lr ¼
1

Pi
j¼1ð1=bjÞ

ð11:3:10Þ

11.3 Allocation of Resources for Flexible SRGM 431



and

liVi ¼ P
i

j¼1
ðaj þ djÞbj
� 	ðli=bjÞ; i ¼ 1; . . .;N ð11:3:11Þ

The objective function value and modulewise faults removed corresponding to
the optimal allocation of testing resource (Wi

* for i = 1,…, N) are given as

fn�1ðWÞ ¼
X

n�1

i¼1
ðai � 1Þ � Vn�1e

�ln�1W ð11:3:12Þ

miðW�i Þ ¼
ai 1� e�biW

�
i

� 	

1þ die�biW
�
i ;
; i ¼ 1; . . .; ðn� 1Þ ð11:3:13Þ

where n may take values varying from 2 to N. In this allocation procedure, some of
the modules may not get any resources. The management may not agree to such a
situation where one or more modules are not tested. It is always desired during
module testing that each of the modules is adequately tested so that a certain
minimum reliability level is achieved for the software as well as for each of the
modules. In other words, a certain percentage of the fault content is desired to be
removed in each module of the software. Hence, allocation problem (P7) needs to
be suitably modified to maximize the removal of faults in the software under
resource and the minimum desired level of faults to be removed from each of the
modules in the software constraints. The resulting testing resource allocation
problem can be stated as follows

Maximize
X

N

i¼1
miðWiÞ ¼

X

N

i¼1

ai 1� e�biWi
� 	

1þ die�biWi

Subject to miðWiÞ ¼
ai 1� e�biWi
� 	

1þ die�biWi
� piai ¼ ai0; i ¼ 1; . . .;N

X

N

i¼1
Wi�W

Wi� 0; i ¼ 1; 2; . . .;N

ðP8Þ

where ai0, i = 1,…, N is the minimum number of faults that must be detected from
each of the software modules.

From constraint

ai 1� e�biWi
� 	

1þ die�biWi
� ai0; i ¼ 1; . . .;N ð11:3:14Þ

we get

432 11 Allocation Problems at Unit Level Testing



Wi� �
1
bi
log

1� ðai0=aiÞ
1þ ðai0=aiÞdi

� 


¼ Zi ðsay); i ¼ 1; . . .;N ð11:3:15Þ

Let
Yi ¼ Wi � Zi; i ¼ 1; . . .;N ð11:3:16Þ

Therefore, (P8) through the problem (P7)–(P7.3) can be restated as

Maximize
X

N

i¼1
ki ð�ai � 1Þ � ð�ai þ diÞe�biY i

 �

Subject to
X

N

i¼1
Yi�W �

X

N

i¼1
Zi ¼ Z ðsayÞ

Yi� 0; i ¼ 1; . . .;N

�ai ¼ ai � ai0; i ¼ 1; . . .;N

ðP8:1Þ

Problem (P8.1) is similar to Problem (P7.3) and, hence, using Theorem 11.2
Problem (P7) can also be solved in the same manner. The result is summarized in
Theorem 11.3.

Theorem 11.3 If for any n ¼ 2; . . .;N; 1� e�ln�1�Z � ln�1 �Vn�1=ð�an þ dnÞbnð Þ;
then values of Yn, Yn+1, …, YN are zero and the problem reduces to an (n - 1)
stage problem with

Y�r ¼
1

br þ lr�1
lr�1Z � log

lr�1Vr�1
ð�ar þ drÞbr

� �� 


; r ¼ 1; . . .; ðn� 1Þ ð11:3:17Þ

where li ¼ 1=
Pi

j¼1 1=bj
� 	

� �

liV i ¼ P
i

j¼1
ð�aj þ djÞbj
� 	

li=bj
� 	

; i ¼ 1; . . .; ðn� 1Þ

and the corresponding objective function value is

fn�1ð�ZÞ ¼
X

n�1

i¼1
ð�ai � 1Þ � �Vn�1e

�ln�1 �Z:

The total number of faults removed from each of the modules is given as

miðW�i Þ ¼ miðZi þ Y�i Þ; i ¼ 1; . . .;N ð11:3:18Þ

Application 11.6

Consider software having eight modules testing. It is assumed that the parameters
ai, bi and ri for the ith module i = 1,…, 8 have already been estimated using the
failure data. The hypothetical parameter values are listed in Table 11.8. Suppose
the total resource available for testing is 110,000 units. Problem (P7) is solved

11.3 Allocation of Resources for Flexible SRGM 433



using the recursion Eqs. (11.3.7) and (11.3.8) and optimal allocations of resources
(Wr

*) for the modules are computed from Eq. (11.3.9). The results are listed in
Table 11.8 along with the corresponding expected number of faults removed
calculated through Eq. (11.3.13), percentages of faults removed and faults
remaining for each module.

The total number of faults that can be removed through this allocation is 126
(i.e., 72% of the total fault content is removed). It is observed that in some
modules, the number of faults remaining after allocation is higher than the
removed faults. This can lead to frequent failure during the operational phase.
Obviously, this will not satisfy the developer and he may desire that at least 50%
of the fault content from each of the modules of the software is removed
(i.e., pi = 0.5 for each i = 1,…, 8). Since faults in each module are integral
values, the nearest integer larger than 50% of the fault content in each module is
taken as the lower limit that has to be removed. The new allocation of resources
along with the expected number of faults removed, percentages of faults removed,
and faults remaining for each module after solving Problem (P8) computed
through Eqs. (11.3.17) and (11.3.18) is summarized in Table 11.9. The total
number of faults that can be removed through this allocation is 107 (i.e., 61% of

Table 11.8 Data and results of Application 11.6 problem (P7)

Module ai bi ri Wi
* mi

* Faults
removed (%)

Faults
remaining (%)

1 45 0.00041 0.85412 05658.82 40 89 11
2 13 0.00032 0.88524 05279.45 10 80 20
3 16 0.00026 0.88959 06416.74 13 80 20
4 35 0.00015 0.78999 11922.74 28 80 20
5 14 0.00009 0.79578 13086.36 9 64 36
6 21 0.00006 0.75492 19814.15 13 62 38
7 20 0.00003 0.58921 27712.49 9 46 54
8 11 3.15115 0.57863 20109.24 4 34 66
Total 175 110,000 126 72 28

Table 11.9 Results of Application 11.6 problem (P8) with aspiration 50%

Module ai ai0 Zi
* Yi

* mi

(Yi)
Wi

* mi
* Faults removed

(%)
Faults remaining
(%)

1 45 23 1935.7 2053.59 10 3989.30 33 73 27
2 13 7 2627.2 587.40 1 3214.60 8 62 38
3 16 8 2851.3 687.87 1 3539.15 9 56 44
4 35 18 5664.3 2573.72 5 8238.05 23 66 34
5 14 7 9086.4 0 0 9086.36 7 50 50
6 21 11 15306 0 0 15306.5 11 52 48
7 20 10 30991 0 0 30990.6 10 50 50
8 11 6 35636 0 0 35635.5 6 55 45
Total 175 90 104097 5902.58 16 110,000 107 61 39

434 11 Allocation Problems at Unit Level Testing



the total fault content is removed from the software). In addition to the above, if it
is desired that a certain percentage of the total fault content is to be removed, then
additional testing resources would be required.

It is interesting to study this tradeoff and Table 11.10 summarizes the corre-
sponding results, where the required percentage of faults removed is 70%. To
achieve this, 10,000 units of additional testing resource are required. The total
number of faults that can be removed through this allocation is 122 (i.e., 70% of
the fault content is removed from the software). The analysis given in Tables 11.8,
11.9 and 11.10 helps in providing the developer to have an insight into resource
allocation and the corresponding fault removal phenomenon, and the objective can
be set accordingly.

11.3.2 Minimizing Testing Cost Under Resource and

Reliability Constraint

The results obtained from the allocation problem of maximizing the fault removal
during testing may suggest consuming all of the available testing resources. On the
other hand the decision maker might be interested in allocating the available
resources such that the cost incurred can be minimized, i.e. some of the available
resources can be saved simultaneously satisfying the reliability requirements. In
Sect. 11.2 we have discussed one such problem on an exponential test effort based
model. In this section we will discuss the formulation and solution methodology of
an allocation problem minimizing testing cost under resource and reliability
constraints in which the fault detection process is described by the flexible SRGM
specified by Eq. (11.3.4) [15].

Problem Formulation

For formulating the allocation problem first we must model the cost function for
the testing phase and the debugging cost incurred during the operational phase.

Table 11.10 Results of Application 11.6 problem (P8) with aspiration 70%

Module ai ai0 Zi
* Yi

* mi(Yi) Wi
* mi

* Faults removed
(%)

Faults remaining
(%)

1 45 23 1935.7 3286.34 16 5222.04 39 86 14
2 13 7 2627.2 2149.9 3 4777.1 10 77 23
3 16 8 2851.3 2751.95 4 5603.23 12 74 26
4 35 18 5664.3 5389.16 8 11,053.5 26 74 26
5 14 7 9086.4 2325.25 1 11,411.6 8 57 43
6 21 11 15,306 0 0 15,306.5 11 52 48
7 20 10 30,991 0 0 30,990.6 10 50 50
8 11 6 35,636 0 0 35,635.5 6 55 45
Total 175 90 104,097 15902.6 31 120,000 122 70 30

11.3 Allocation of Resources for Flexible SRGM 435



Consider the cost function (11.2.19), as we consider the modules to be independent
of each other so is their testing process. In modular software some of the modules
are small and have simple coding, some others are large and complex and few can
be of medium size and/or complexity. The fault removal cost for each software
module is hence usually different. To consider this consideration the cost function
(11.3.29) for the ith module can be modified as

CostiðWiðtÞÞ ¼ C1imiðtÞ þ C2iðmið1Þ� miðtÞÞ þ C03WiðtÞ ð11:3:19Þ

or

CostiðWiðtÞÞ ¼ C1imiðtÞ þ C2iðai � miðtÞÞ þ C03WiðtÞ ð11:3:20Þ

Using cost function (11.3.20) and SRGM (11.3.4), with upper bound of
available resources W and reliability objective R0 the problem is formulated as

Minimize CðWÞ ¼
X

N

i¼1
CiðWiÞ ¼

X

N

i¼1
C1i�C2ið Þvi

fi Wið Þ
gi Wið Þ

þ
X

N

i¼1
C2iaiþC03

X

N

i¼1
Wi

Subject to
X

N

i¼1
Wi�W i¼ 1; . . .;N

Wi�0 i¼ 1; . . .;N

Ri tð Þ ¼
1� e�biWi

1þ die�biWi
�R0 ðP9Þ

where fiðWiÞ ¼ aið1� e�biWiÞ; giðWiÞ ¼ 1þ die�biWi . The derivatives of fi(Wi) and
gi(Wi) are ever non-increasing and non-decreasing functions of Wi, respectively,
therefore the functions fi(Wi) and gi(Wi), i = 1,…, N are, respectively concave and
convex. The ratio of concave and convex functions is pseudo-concave function and
the sum of pseudo-concave functions is not necessarily a pseudo-concave function.
The second term of the cost function is a constant and hence can be dropped and the
third term is a linear function ofWi. Dropping the constant term from the objective
function and rewriting the above problem as the maximization problem, the
equivalent problem can be restated in terms of expected gain as follows

Maximize GðWÞ ¼ �
X

N

i¼1
CiðWiÞ ¼

X

N

i¼1
C2i � C1ið Þvi

fi Wið Þ
gi Wið Þ

� C03
X

N

i¼1
Wi

Subject to
X

N

i¼1
Wi�W ; i ¼ 1; . . .;N

Wi� 0; i ¼ 1; . . .;N

Ri tð Þ ¼
1� e�biWi

1þ die�biWi
�R0 ðP9:1Þ

Such a problem cannot be solved directly to obtain an optimal solution. Dur
et al. [12] transformation of objective function to a multiple objective fractional
programming problem is

436 11 Allocation Problems at Unit Level Testing



Maximize GðWÞ ¼ c1
f1 W1ð Þ
g1 W1ð Þ; . . .;cN

fN WNð Þ
gN WNð Þ;�C

0
3

X

N

i¼1
Wi

 !

Subject to W 2 S¼ W 2RN

,

X

N

i¼1
Wi�W ; Wi�0; Ri tð Þ�R0; i¼ 1; . . .;N

( )

ðP9:2Þ

where ci = (C2i - C1i)vi. Further the problem (P9.1) can equivalently be written
as the following multiple objective programming problem [13]

Maximize GðWÞ¼ c1 f1 W1ð Þ�g1 W1ð Þð Þ;...;cN fN WNð Þ�gN WNð Þð Þ;�C03
X

N

i¼1
Wi

 !

Subject to W 2S¼ W 2RN

,

X

N

i¼1
Wi�W ;Wi�0;Ri tð Þ�R0; i¼1;...;N

( )

ðP9:3Þ

The Geoffrion’s [14] scalarized formulation with suitable adjustment (i.e. tak-
ing both functions together having same variable) of the problem (P9.3) for fixed
weights for the objective function is

Maximize
X

N

i¼1
kici fiðWiÞ � giðWiÞð Þ � kNþ1C

0
3

X

N

i¼1
Wi

Subject to
X

N

i¼1
Wi�W i ¼ 1; . . .;N

Wi� 0 i ¼ 1; . . .;N

Ri tð Þ ¼
1� e�biWi

1þ die�biWi
�R0

k 2 X ¼ k 2 RNþ1=
X

ki ¼ 1; ki � 0; i ¼ 1; . . .;N þ 1
� �

ðP9:4Þ

Lemmas 1–3 of Sect. 11.3.1 applies to problem (P9.1) to (P9.4). Based on the
Lemma the following theorem is derived.

Theorem 11.4 If equal relative importance is attached to each of the objectives of
the problem (P9.4) [i.e. ki = 1/(N ? 1) for i = 1,…, N] or simply we can take
ki = 1 for i = 1,…, N for problem (P9.4) and (Wi

* for i = 1,…, N) is an optimal
solution of the problem (P9.5) then (Wi

* for i = 1,…, N) is also an optimal solution
for the problem (P9.1) and hence problem (P9).

From Theorem 11.4 it remains to find the optimal solution of problem (P9.4)
assuming ki = 1 for i = 1,…, N to find the optimal solution of problem (P9).

11.3 Allocation of Resources for Flexible SRGM 437



Using the constraint on reliability objective for ith module the problem (P9.4) is
transformed as follows

Wi�
�1
bi

ln
1� R0

1þ R0di

� �

� Ci; i ¼ 1; . . .;N sayð Þ ð11:3:20Þ

Let Xi = Wi - Ci, the problem (P9.4) can be rewritten as

Maximize
X

N

i¼1
ci fiðXi þ CiÞ � giðXi þ CiÞð Þ � C03

X

N

i¼1
Xi þ Cið Þ

Subject to
X

N

i¼1
Xi�W �

X

N

i¼1
Ci; i ¼ 1; . . .;N

Xi� 0; i ¼ 1; . . .;N

ðP9:5Þ

Further substituting the values of fi(Xi ? Ci), gi(Xi ? Ci) and ci in (P9.5), it can
be restated as

Maximize

X

N

i¼1
C2i � C1ið Þvi ai 1� e�biðXiþCiÞ

� �

� 1þ die
�biðXiþCiÞ

� �� �

� C03
X

N

i¼1
Xi þ Cið Þ

0

B

B

B

B

B

@

1

C

C

C

C

C

A

Subject to
X

N

i¼1
Xi�W �

X

N

i¼1
Ci; i ¼ 1; . . .;N

Xi� 0 i ¼ 1; . . .;N ðP9:6Þ

In the problem (P9.6) the functions fiðXiÞ ¼ ai 1� e�biðXiþCiÞ
� 	

and giðXiÞ ¼
1þ die�biðXiþCiÞ
� 	

; i ¼ 1; . . .;N are concave and convex, respectively. Negative of a
convex function is a concave function, hence -gi(Wi)i = 1,…, N are concave
functions. Functions Xi ? Ci, i = 1,…, N are linear, hence they may be treated as
convex functions. The positive linear combination of concave functions fi(Wi), -
gi(Wi) and -(Xi ? Ci), i = 1,…, N is concave. Hence the objective function is a
concave function. The constraint other than non-negative restriction is linear. Hence
the above problem is a convex programming problem and the necessary Kuhn–
Tucker conditions of optimality for convex programming problem are also sufficient.
Following saddle value problem is formulated for problem (P9.6).

Max
Xi

Min
h

/ X1;X2; . . .XN ; hð Þ

¼
X

N

i¼1
C2i � C1ið Þvi ai 1� e�biðXiþCiÞ

� �

� 1þ die
�biðXiþCiÞ

� �� �

� C03
X

N

i¼1
Xi þ Cið Þ þ h

X

N

i¼1
Xi �W þ

X

N

i¼1
Ci

 !

ðP9:7Þ

438 11 Allocation Problems at Unit Level Testing



The saddle point of saddle value problem (P9.7) provides an optimal solution to
the problem (P9.5) and hence optimal for problems (P9.4) and (P9). The necessary
and sufficient conditions for (X*, h*), where X*

= {Xi:i = 1,…, N} to be a saddle
point for the saddle value problems are based on the KT conditions and are given
by the following theorem.

Theorem 11.5 A feasible solution Xi, i = 1,…, N of problem (P9.7) is optimal if
and only if

1. h�C03 � C2i � C1ið Þvibie�biðXiþCiÞ ai þ dið Þ:
2. Xi h� C3 þ C2i � C1ið Þvibie�biðXiþCiÞ ai þ dið Þ


 �

¼ 0:

Corollary 11.5 Let Xi be a feasible solution of problem (P9.6)
Xi = 0 if and only if h�C03 � C2i � C1ið Þvib�biCi

ie ai þ dið Þ
If Xi[ 0, then

Xi ¼ ln C2i � C1ið Þvibie�biCi ai þ dið Þ
� 	

� ln C03 � h
� 	
 ��

bi

Finding a Feasible Solution at Optimality Condition

Applying KT conditions to the problem (P9.7) we have

o/ X1;X2; . . .XN ; hð Þ
oXi

¼ C2i � C1ið Þvibi ai þ dið Þe�biðXiþCiÞ � C03 þ h ¼ 0;

i ¼ 1; . . .;N

which implies

X0
i ¼ ln C2i � C1ið Þvibie�biCi ai þ dið Þ

� 	

� ln C03 � h
� 	
 ��

bi; i ¼ 1; . . .;N

ð11:3:21Þ

and

o/ X1;X2; . . .XN ; hð Þ
oh

¼
X

N

i¼1
Xi �W þ

X

N

i¼1
Ci ¼ 0

which implies

h0 ¼ C03 � exp

PN
i¼1 1=bið Þ ln C2i � C1ið Þvibie�biCi ai þ dið Þ

� 	

�W þPN
i¼1 Ci

PN
i¼1 1=bið Þ

" #

ð11:3:22Þ

X0
= (X1

0, X2
0, …, XN

0 ) can have some negative components if C2i � C1ið Þvibie�biCi

ai þ dið Þ\hþ C03; which will make X0 infeasible for problem (P9.6). If the above

11.3 Allocation of Resources for Flexible SRGM 439



case arises, then the solution of X0 can be corrected to obtain a feasible solution by
the following algorithm.

Algorithm 11.6

1. Set S = 0.
2. Calculate Xi, i = 1,…, N - S; h using Eqs. (11.3.21) and (11.3.22)

Xi ¼
1
bi

ln C2i � C1ið Þvibie�biCi ai þ dið Þ
� 	

� ln C03 � h
� 	
 �

; i ¼ 1; . . .;N � S

h ¼ C03 � exp

PN�S
i¼1 1=bið Þ ln C2i � C1ið Þvibie�biCi ai þ dið Þ

� 	

�W þ
PN

i¼1 Ci
PN�S

i¼1 1=bið Þ

" #

3. Rearrange index i in the ascending order of allocation

X1�X2�X3� � � � �XN�S:

4. If XN–S C 0 then Stop (the solution is optimal)
Else XN–S = 0; set S = S ? 1
End if.

5. For re-allocating testing resources to remaining N–S modules go to Step 2.
The optimal solution is given by

X�i ¼
1
bi

ln C2i � C1ið Þvibie�biCi ai þ dið Þ
� 	

� ln C03 � h
� 	
 �

; i ¼ 1; . . .;N � l

X�i ¼ 0; otherwise;

where

h ¼ C03 � exp

PN�S
i¼1 1=bið Þ ln C2i � C1ið Þvibie�biCi ai þ dið Þ

� 	

�W þ
PN

i¼1 Ci
PN�S

i¼1 1=bið Þ

" #

:

Algorithm 11.6 converges in, at worst, (N - 1) steps.
The value of objective function at the optimal solution X�1 ;X

�
2 ; . . .;X

�
N

� 	

is

CðX�Þ ¼
X

N

i¼1
C1i � C2ið Þvi ai 1� e�biðX

�
i þCiÞ

� �

� 1þ die
�biðX�i þCiÞ

� �� �

þ C03
X

N

i¼1
X�i þ Ci

� 	

:

Now Wi
*
= Xi

*
? Ci, i = 1,…, N is an optimal solution of problem (P9.4),

which in turn is an optimal solution of problems (P9.1) and (P9).

440 11 Allocation Problems at Unit Level Testing



Application 11.7
Consider software having six modules that are being tested during module testing.
It is assumed that parameters ai,bi,ri and vi for each of the six modules have already
been estimated using the failure data and are tabulated in Table 11.11. The total
testing resource available is assumed to be 50,000 units. It is desired that each
software module reaches a reliability level of at least 0.9. Assume that the cost of
correcting a fault in testing and operational phase is respectively same for each of
the module and the cost parameters are Ci1 = C01 = 2, Ci2 = C02 = 10, i = 1,…6
and C03 = 0.5 units. Using the above information the problem is solved following
Algorithm 11.6 and the testing effort allocated to each of the modules and the total
expected cost of each of the modules is also listed in Table 11.11.

The calculated amount of total testing effort allocated is W* = 50,000 and the
total minimum expected cost of testing all the modules such that reliability of each
of the modules is at least 0.9 is equal to 25388.67 units.

11.4 Optimal Testing Resource Allocation for Test Coverage
Based Imperfect Debugging SRGM

Testing coverage is an important aspect of software testing. Allocating resources
during the module according to an optimization problem in which the testing
process is represented by a testing coverage based SRGM can some times be more
accurate and favored by the decision makers. Jha et al. [16] proposed a test
coverage measure based imperfect debugging SRGM and formulated an optimi-
zation problem based on this model. Inclusion of imperfect debugging phenom-
enon brings the results more closely to the real testing process. Based on the
general assumptions of NHPP and further assuming

1. No new faults are introduced in the software system during the testing phase.
2. The failure process is dependent upon testing coverage.
3. The fault removal at any time during testing is a function of the number of

failures with a time lag.

The following differential equation is formed

Table 11.11 Data and allocation results of Application 11.7

Module ai bi di vi Wi Cost

1 22 0.001413 0.85412 0.6 3048.687 1640.405
2 16 0.001032 0.885236 0.7 3710.713 1927.949
3 12 0.000642 0.889588 0.4 3908.611 2039.378
4 20 0.000501 0.789985 1.5 8176.666 4053.359
5 11 0.000109 0.795781 0.5 23040.11 11590.46
6 14 0.000315 0.754922 0.6 8115.211 4137.126

Total 50,000 25388.67

11.3 Allocation of Resources for Flexible SRGM 441



m0f ðtÞ
wðtÞ ¼

q0

c� q
a� mf ðtÞ
� �

ð11:4:1Þ

here q0 is the rate (with respect to testing effort) with which the software is covered
through testing and c is the proportion of total software which will be eventually
covered during the testing phase, 0\ c\ 1. If c is closer to 1 one can conclude
that test cases were efficiently chosen to cover the operational profile. For a logistic
fault removal rate we can assume the following form of q0/(c - q)

q ¼ qðWðtÞÞ ¼ c
1� ebpWðtÞ

1þ be�bpWðtÞ
ð11:4:2Þ

Equation (11.4.2) directly relates testing effort to testing coverage, because with
more testing effort we can expect to cover more portion of the software. Here p is
the probability of perfect debugging 0 B p B 1. The mean value function of the
SRGM with respect to (11.4.1) using (11.4.2) with initial conditions mf(0) = 0 and
W(0) = 0 is

mf ðtÞ ¼ a
1� e�bpWðtÞ

1þ be�bpWðtÞ
ð11:4:3Þ

On a failure observation, attempts are made to remove the cause of the failure.
The removal process is dependent upon the number of failures at any time instant.
But there is a definite time lag between the two processes. Hence the fault removal
process can be represented by the following equation

mrðWÞ ¼ mf ðW � DWÞ ð11:4:4Þ

DW is the additional effort during the removal time lag. Different time-dependent
forms of the lag function can be considered depending upon the testing environ-
ment. As the number of faults reduces and the chance of checking the same path
for faults increases it also results in increase in time lag. Hence we assume an
increasing form of Dt [17] as

DW ¼ 1
bp

lnð1þ bpWÞ ð11:4:5Þ

Eq. (11.4.5) implies

mrðtÞ ¼ a
1� ð1þ bpWðtÞÞe�bpWðtÞ
1þ bð1þ bpWðtÞÞe�bpWðtÞ ð11:4:6Þ

Authors have validated the model on several data sets.

442 11 Allocation Problems at Unit Level Testing



11.4.1 Problem Formulation

The optimization problem for maximizing the number of faults that can be
removed during the testing process under the budget constraint and lower bounds
on the number of fault removals from each of the software removal is formulated
here. The lower bounds assure a minimum level of reliability that can be achieved
by the testing resource allocation. Solution methodology of any such optimization
requires that all the problem coefficients must be known a priori. The constant
coefficients involved in the problem are either estimated from the past failure
history or by experience. Therefore assuming that the values of all the coefficients
are known, the product of the coefficients b and p (a constant) is replaced by a
single constant b.

The problem for finding the optimal amount of testing resource to be allocated
to module i, which would maximize the removal of total faults, is formulated by
defining the mean value function of SRGM explicitly as a function of testing
resources. The reason for this as already been stated in the previous sections.

Maximize
X

N

i¼1
miðWiÞ ¼

X

N

i¼1

ai 1� ð1þ biWiÞe�biWi
� 	

1þ bið1þ biWiÞe�biWi

Subject to miðWiÞ ¼
ai 1� ð1þ biWiÞ e�biWi
� 	

1þ bið1þ biWiÞe�biWi
�Ni0; i ¼ 1; . . .;N

X

k

i¼1
Wi� Z; i ¼ 1; . . .;N

Wi� 0; i ¼ 1; . . .;N

ðP10Þ

Here Ni0 is the aspired minimum number of faults to be removed from each of the
modules. As in problems (P8) and (P9) let fiðWiÞ ¼ ai 1� ð1þ biWiÞe�biWi

� 	

;

giðWiÞ ¼ 1þ bið1þ biWiÞe�biWi and Fi(Wi) = fi(Wi)/gi(Wi)i = 1,…, N. Hence
resulting problem (P10) becomes maximization of a sum of ratios (fractional func-
tions) under specified testing-resource expenditure and the minimum level of the
removal offaults of eachmodulewhich is again a fraction and can bewritten as follows

Maximize
X

N

i¼1
FiðWiÞ

Subject to FiðWiÞ�Ni0 i ¼ 1; . . .;N

X

N

i¼1
Wi� Z

Wi� 0 i ¼ 1; . . .;N

ðP10:1Þ

The derivatives of fi(Wi) and gi(Wi), i = 1, …, N are non-increasing and non-
decreasing functions of Wi, respectively, hence the functions fi(Wi) and gi(Wi)

11.4 Optimal Testing Resource Allocation for Test Coverage 443



i = 1, …, N are concave and convex, respectively. The ratio of concave and
convex functions is pseudo-concave function and the sum of pseudo-concave
functions is not necessarily a pseudo-concave function and due to non-existence of
any direct method to obtain an optimal solution for such class of problems we state
the Dur et al. [12] formulation of the problem (P10.1).

Maximize FðWÞ ¼ F1ðW1Þ. . .FKðWKÞð ÞT

Subject to W 2 S
ðP10:2Þ

where S ¼ W 2 Rk=FiðWiÞ�Ni0;
Pk

i¼1 Wi� Z; andWi� 0; i ¼ 1; . . .;N
n o

:

Although the problem (P10.2) can be solved using dynamic programming
approach as applied in Sect. 11.3, here the goal programming approach is chosen
for finding the solution primarily to underscore the importance of tradeoff between
testing effort (that contributes to cost) and number of faults detected in each
module. Through goal programming approach the aspirations of the management
can be controlled. To formulate problem (P10.2) as goal programming problem,
the following concepts of multi-objective programming (i.e. definitions and lem-
mas) have been used.

11.4.2 Finding Properly Efficient Solution

Definition 1 [20] : A function fi(Wi) i = 1, …, N is said to be pseudo concave if
for any two feasible points Fi(Wi1) C Fi(Wi2) implies Fi

0
(Wi1)(Wi2 - Wi1) B 0.

Definition 2 [21] : A feasible solutionW* 2 S is said to be an efficient solution for
the problem (P10.3) if there exists no W 2S such that F(W) C F(W*) and
F(W) = F(W*).

Definition 3 [21]: An efficient solution W* 2S is said to be a properly efficient
solution for the problem (P10.2) if there exists a[ 0 such that for each r,
FrðWÞ � FrðW�Þð Þ= FjðW�Þ � FjðWÞ

� 	

\a for some j with Fj(W)\Fj(W
*) and

Fr(W)[Fr(W
*) for W 2 S.

Let yi = Fi(Wi) = [fi(Wi)/gi(Wi)] i = 1,…, k, then the equivalent parametric
problem for multiple objective fractional programming problem (P10.2) is
given as

444 11 Allocation Problems at Unit Level Testing



Maximize y ¼ y1; . . .; ykð ÞT

Subject to fiðWiÞ � yigiðWiÞ� 0 i ¼ 1; . . .;N

yi �Ni0 i ¼ 1; . . .;N

X

N

i¼1
Wi� Z

Wi� 0 i ¼ 1; . . .;N

ðP10:3Þ

The Geoffrion’s [14] scalarization for the problem (P10.3) for fixed weights of
the objective functions is as follows

Maximize
X

N

i¼1
kiyi

Subject to fiðWiÞ � yigiðWiÞ� 0 i ¼ 1; . . .;N
yi �Ni0 i ¼ 1; . . .;N
X

N

i¼1
Wi� Z

Wi� 0 i ¼ 1; . . .;N

k 2 X ¼ k 2 Rk=
X

ki ¼ 1; ki� 0; i ¼ 1; . . .; k
� �

ðP10:4Þ

Based on Lemma 1, Lemma 2 and Lemma 3 it can be proved that an optimal
solution of the problem (P10.4) taking ki = 1 for i = 1, …, N is also an optimal
solution of the original problem (P10). It remains to obtain an optimal solution of
the problem (P10.4) taking ki = 1 for i = 1, …, N. The problem (P10.4) can be
solved by standard mathematical programming approach using any NLP solver
like LINGO software if there exists a feasible solution. The problem results into an
infeasible solution if either minimum level of fault removal in some or each of the
modules of the software is very high or management is interested in setting target
for total fault removal for the software. In such situation standard mathematical
programming approach may not provide a solution and goal programming
approach (GPA) [18] can be useful.

11.4.3 Solution Based on Goal Programming Approach

In a simpler version of goal programming, management sets goals and relative
importance (weights) for different objectives. Then an optimal solution is defined
as one that minimizes the both positive and negative deviations from set goals
simultaneously or minimizes the amount by which each goal can be violated. Now

if management wishes to remove at least p
PN

i¼1
ai number of total faults from the

software the problem (P10.1) can be rewritten as

11.4 Optimal Testing Resource Allocation for Test Coverage 445



Maximize
X

N

i¼1
FiðWiÞ

Subject to FiðWiÞ�Ni0 i ¼ 1; . . .;N

X

N

i¼1
Wi� Z

Wi� 0 i ¼ 1; . . .;N

X

N

i¼1
FiðWiÞ� p

X

N

i¼1
ai

ðP10:5Þ

In GPA, we first solve the problem using rigid constraints only and then the
goals of objectives are incorporated depending upon whether priorities or relative
importance of different objectives is well defined or not. The problem (P10.5) can
be solved in two stages as follows

Minimize g0ðg; q;WÞ ¼
X

N

i¼1
gi þ qNþ1

Subject to fiðWiÞ � Ni0giðWiÞ þ gi � qi ¼ 0 i ¼ 1; . . .;N

X

N

i¼1
Wi þ gNþ1 � qNþ1 ¼ Z

Wi� 0 i ¼ 1; . . .;N

gi; qi� 0 i ¼ 1; . . .;N þ 1

ðP10:6Þ

where gi and qi are over- and underachievement (positive and negative devi-
ational) variables from the goals for the objective/constraint function i, respec-
tively, and g0(g, q, W) is the goal objective function corresponding to the rigid
constraint functions. The choice of deviational variable in the goal objective
functions, which has to be minimized, depends upon the following rule. Let
f(W) and b be the function and its goal, respectively, and gi and qi be the over- and
underachievement (positive and negative deviational) variables then

• if f(W) B b, q is minimized under the constraints f(W) ? g - q = b
• if f(W) C b, g is minimized under the constraints f(W) ? g - q = b and
• if f(W) = b, g ? q is minimized under the constraints f(W) ? g - q = b.

Let (g0, q0, W0) be the optimal solution for the problem (P10.6) and g0(g
0, q0,

W0) be its corresponding objective function value then the second stage problem
can be formulated using optimal solution of the problem (P10.6) through the
problem (P10.5)

446 11 Allocation Problems at Unit Level Testing



Minimize gðg; q;WÞ ¼
X

2N�1

i¼Nþ2
gi þ q2N

Subject to fiðWiÞ � yigiðWiÞ þ gNþ1þi � qNþ1þi ¼ 0 i ¼ 1; . . .;N

yi þ gi � qi ¼ ai0 i ¼ 1; . . .;N

X

N

i¼1
Wi þ gkþ1 � qkþ1 ¼ Z

X

N

i¼1
yi þ g2Nþ2 � q2Nþ2 ¼ p

X

N

i¼1
ai0

Wi� 0 i ¼ 1; . . .;N

gi; qi� 0 i ¼ 1; . . .; 2N þ 2

g0ðg; q;WÞ ¼ g0 g0; q0;W0
� 	

ðP10:7Þ

where g(g, q, W) is the objective function of GPA corresponding to the objective.
The problem (P10.7) may be solved by standard mathematical programming
approach and numerical solution can be obtained using optimization software such
as LINGO.

Application 11.8

Consider a software that consists of four modules and the values of the parameters
ai, bi, bi and pi of the fault removal SRGM (11.4.6) for the ith software module
(i = 1,…,4) as listed in Table 11.12. Let the total testing effort resource available
be 4,552 units and it is targeted that at least 60% of the total faults should be
removed during testing from each of the modules. With these data, the problem
(P10.3) is solved and the results are given in columns 5 and 6 of Table 11.12. Now
if the management fixes a target of removing at least 60% of the faults from each
of the modules and 70% of the total faults, the resulting problem has no feasible
solution within the available resources. Goal programming approach is used here
to obtain a compromise solution. Columns 7 and 8 of Table 11.12 gives optimal
testing resources allocated (Wi

*, i = 1…4) and the corresponding number of faults
removed (mi(Wi

*), i = 1,…,4) for each of the software modules.

Table 11.12 Data and results of Application 11.8

ai bi pi bi Allocation with 60% removal
from each module

Allocation with 60% removal from
each module and total 70%

Wi
* mi (Wi

*) Wi
* mi (Wi

*)

1,349 0.0034 0.870 1.58 995.84 812 1120.82 918
1,309 0.0037 0.884 2.13 1015.58 825 1126.44 919
1,356 0.0027 0.902 1.33 1153.27 814 1153.27 814
1,332 0.0049 0.925 20.40 1387.30 1044 1442.09 1091

11.4 Optimal Testing Resource Allocation for Test Coverage 447



From the above table we can compute that to have a minimum aspiration of
60% minimum fault removal from each software module following problem (P10),
total of 4,552 units of testing resources are required, i.e. all of the resources get
consumed to remove a total of 3,495 faults from the total 5,346. It implies the
65.38% faults can be removed from this allocation. So now if the management
aims to remove a minimum 70% of the faults from the software then 4842.62 units
of resources are required, i.e. 290.62 extra units of resources are required. The

fault removal count would now increase to 3,742 from 3,495.

Exercises

1. What is an allocation problem of testing resources?
2. Assume that the weights assigned to the modules in Application 11.1 are

changed according to the weighting vector (0.12, 0.08, 0.08, 0.13, 0.11, 0.08,
0.08, 0.14, 0.14, 0.04), What will be the change in the resource allocation if
problem is solved according to Problem P1.

3. Consider software with ten modules. The information tabulated in the following
table is available for the estimates of the parameters of the exponential SRGM
mi tð Þ ¼ ai 1� e�bit

� 	

ai; bi (in 10�4Þ
� 	

and the respective weights of each of
the modules. If the total amount of testing-resource expenditures available is
50,000 in man-hours units. Determine the allocation of testing resources for
each module

4. Suppose after computing the optimal testing effort allocations in Application
11.4 it is found that the estimate of initial fault content of module 1 is wrongly
noted as 89 faults instead of actual 125. Due to this we need to determine the
optimum allocations again, using Algorithm 11.4. Determine the correct allo-
cations. Does the allocation of all the modules change due to this change if yes,
give the correct solution?

5. The cost of correcting faults during testing and operational phases is taken to be
same for all modules in Application 11.7. It may not be true. Assume that the
cost of correcting faults in operational phase for module 1 is 20 units while it

Module ai bi ( 9 10-4) vi

1 89 4.1823 1.0
2 25 5.0923 1.5
3 27 3.9611 1.3
4 45 2.2956 0.5
5 39 2.5336 2.0
6 39 1.7246 0.3
7 59 0.8819 1.7
8 68 0.7274 1.3
9 37 0.6824 1.0
10 14 1.5309 1.0

448 11 Allocation Problems at Unit Level Testing



remains 10 units for all other modules. How the optimal allocation of testing
resources would change due to this change in cost for module 1.

References

1. Ohtera H, Yamada S (1990) Optimal allocation and control problems for software testing
resources. IEEE Trans Reliab 39(2):171–176

2. Kubat P, Koch HS (1983) Managing test-procedure to achieve reliable software. IEEE Trans
Reliab 32(3):299–303

3. Yamada S, Hishitani J, Osaki S (1991) Test-effort dependent software reliability
measurement. Int J Syst Sci 22(1):73–83

4. Yamada S, Ichimori T, Nishiwaki M (1995) Optimal allocation policies for testing-resource
based on a software reliability growth model. Math Comput Model 22:295–301

5. Leung YW (1997) Dynamic resource allocation for software-module testing. J Syst Softw
37(2):129–139

6. HuangCY, Lo JH, Kuo SY, LyuMR (2002) Optimal allocation of testing resources formodular
software systems. In: Proceedings of 13th IEEE International Symposium on Software
Reliability Engineering (ISSRE 2002), Nov 2002, Annapolis, Maryland, pp 129–138

7. Huang CY, Lo JH, Kuo SY, Lyu MR (2004) Optimal allocation of testing-resource
considering cost, reliability, and testing-effort. In: Proceedings of 10th IEEE/IFIP Pacific Rim
International Symposium on Dependable Computing, Papeete, Tahiti, French Polynesia,
pp 103–112

8. Goel AL, Okumoto K (1979) Time dependent error detection rate model for software
reliability and other performance measures. IEEE Trans Reliab R 28(3):206–211

9. Kubat P (1989) Assessing reliability of modular software. Oper Res Lett 8(1):35–41
10. Kapur PK, Jha PC, Bardhan AK (2004) Optimal allocation of testing resource for a modular

software. Asia Pacific J Oper Res 21(3):333–354
11. Hadley G (1964) Nonlinear and dynamic programming. Addison Wesley, Reading, MA
12. Dur M, Horst R, Thoai NV (2001) Solving sum of ratios fractional programs using efficient

points. Optimization 1:447–466
13. Bhatia D, Kumar N, Bhudhiraja RK (1997) Duality theorem for non differential multi-

objective programs. Indian J Pure Appl Math 28(8):1030–1042
14. Geoffrion AM (1968) Proper efficiency and theory of vector maximization. J Math Anal Appl

22:613–630
15. Jha PC, Gupta D, Yang B, Kapur PK (2009) Optimal testing-resource allocation during

module testing considering cost, testing effort and reliability. Comput Ind Eng
57(3):1122–1130

16. Jha PC, Gupta D, Anand S, Kapur PK (2006) An imperfect debugging software reliability
growth model using lag function with testing coverage and related allocation of testing effort
problem. Commun Dependability Qual Manag: Int J 9(4):148–165

17. Xie M, Zhao M (1992) The Schneidewind software reliability model revisited. In:
Proceedings of 3rd International Symposium on Software Reliability Engineering,
pp 184–192

18. Ignizio JP (1994) Linear programming in single and multiple objective functions. Prentice
Hall, Englewood Cliffs, London

19. Xie M , Yang B ( 2000) Optimal testing time allocation for modular system, Int J Qual Reliab
Manag 11(8):854–863.

20. Bazaraa SM, Sherali HD, Setty CM (1993) Non linear programming: Theory and algorithm,
John Wiley and Sons, New York.

21. Steuer RE (1989) Multiple criteria optimization: Theory, computation and application,
Wiley, New York

11.4 Optimal Testing Resource Allocation for Test Coverage 449



Chapter 12
Fault Tolerant Systems

12.1 Introduction

In the 21st century we seldom see any industry or service organization working
without the help of an embedded software system. Such a dependence of mankind
on software systems has made it necessary to produce highly reliable software.
Complex safety critical systems currently being designed and built are often dif-
ficult multi-disciplinary undertakings. Part of these systems is often a computer
control system. In order to ensure that these systems perform without failure, even
under extreme conditions, it is important to build extremely high reliability in
them, both for hardware and software. There are many real life examples when
failures in computer systems of safety critical systems have caused spectacular
failure resulting in calamitous loss to life and economy. In the recent years
hardware systems have attained very high reliability with the introduction of
recent technologies and productive design methods. To increase the reliability
further the technique of building redundancy is quite favorable. Hardware
redundancy techniques simply imply the use of some extra resources in order to
tolerate the faults. Redundancy in hardware is usually implemented in static
(passive), dynamic (active) or hybrid form. The purpose is that concurrent com-
putation can be voted upon, errors can be masked out, or redundant hardware can
be switched automatically to replace failed components.

Means to cope with the existence and manifestation of faults in software are
divided into three main categories

• Fault avoidance/prevention This includes use of software design methodologies,
which attempt to make software provably fault-free.

• Fault removal These methods aim to remove faults after the development stage
is completed. Exhaustive and rigorous testing of the final product does this.

P. K. Kapur et al., Software Reliability Assessment with OR Applications,
Springer Series in Reliability Engineering, DOI: 10.1007/978-0-85729-204-9_12,
� Springer-Verlag London Limited 2011

451



• Fault tolerance This method makes the assumption that the system has
unavoidable and undetectable faults and aims to make provisions for the system
to operate correctly even in the presence of faults.

Beforewe start further discussion on how thesemethodologies can be implemented
to attain very high reliability in software, we tell the readers how important it is to
achieve.

Short Summary of History’s Worst Ten Software Bugs,

Appearance

Software bugs are with us since the times when computing systems came into
existence and show no signs of going extinct. As the line between software and
hardware blurs, coding errors are increasingly playing tricks on our daily lives.
There is a big list of software failures and it is hard to rate their severity. Which is
worse—a security vulnerability that is exploited by a computer worm to shut down
the internet for a few days or a typo that triggers a day-long crash of the nation’s
phone system? The answer depends on whether you want to make a phone call or
check your e-mail.

July 28, 1962—Mariner I Space Probe

A bug in the flight software for the Mariner 1 causes the rocket to divert from its
intended path on launch. Mission control destroys the rocket over the Atlantic
Ocean. The investigation into the accident discovers that a formula written on
paper with pencil was improperly transcribed into computer code, causing the
computer to miscalculate the rocket’s trajectory.

1982—Soviet Gas Pipeline

Operatives working for the Central Intelligence Agency allegedly (.pdf) plant a
bug in a Canadian computer system purchased to control the trans-Siberian gas
pipeline. The Soviets had obtained the system as part of a wide-ranging effort to
covertly purchase or steal sensitive US technology. The CIA reportedly found out
about the program and decided to make it backfire with equipment that would pass
Soviet inspection and then fail once in operation. The resulting event is reportedly
the largest non-nuclear explosion in the planet’s history.

1985–1987—Therac-25 Medical Accelerator

A radiation therapy device malfunctions and delivers lethal radiation doses at
several medical facilities. Based upon a previous design, the Therac-25 was an
‘‘improved’’ therapy system that could deliver two different kinds of radiation:

452 12 Fault Tolerant Systems



either a low-power electron beam (beta particles) or X-rays. The Therac-25’s
X-rays were generated by smashing high-power electrons into a metal target
positioned between the electron gun and the patient. A second ‘‘improvement’’
was the replacement of the older Therac-20’s electromechanical safety interlocks
with software control, a decision made because software was perceived to be more
reliable.What engineers did not know was that both the Therac-20 and Therac-25
were built upon an operating system that had been kludged together by a pro-
grammer with no formal training. Because of a subtle bug called a ‘‘race condi-
tion,’’ a quick-fingered typist could accidentally configure the Therac-25 so the
electron beam would fire in high-power mode but with the metal X-ray target out
of position. At least five patients die; others were seriously injured.

1988—Buffer Overflow in Berkeley Unix Finger Daemon

The first internet worm (the so-called Morris Worm) infects between 2,000 and
6,000 computers in less than a day by taking advantage of a buffer overflow. The
specific code is a function in the standard input/output library routine called gets()
designed to get a line of text over the network. Unfortunately, gets() has no
provision to limit its input, and an overly large input allows the worm to take over
any machine to which it can connect. Programmers respond by attempting to
stamp out the gets() function in working code, but they refuse to remove it from
the C programming language’s standard input/output library, where it remains to
this day.

1988–1996—Kerberos Random Number Generator

The authors of the Kerberos security system neglect to properly ‘‘seed’’ the pro-
gram’s random number generator with a truly random seed. As a result, for 8 years
it is possible to trivially break into any computer that relies on Kerberos for
authentication. It is unknown if this bug was ever actually exploited.

January 15, 1990—AT&T Network Outage

A bug in a new release of the software that controls AT&T’s #4ESS long distance
switches causes these mammoth computers to crash when they receive a specific
message from one of their neighboring machines—a message that the neighbors
send out when they recover from a crash. One day a switch in New York crashes
and reboots, causing its neighboring switches to crash, then their neighbors’
neighbors, and so on. Soon, 114 switches are crashing and rebooting every 6 s,
leaving an estimated 60,000 people without long distance service for 9 h. The fix:
engineers load the previous software release.

12.1 Introduction 453



1993—Intel Pentium Floating Point Divide

A silicon error causes Intel’s highly promoted Pentium chip to make mistakes
when dividing floating-point numbers that occur within a specific range. For
example, dividing 4195835.0/3145727.0 yields 1.33374 instead of 1.33382, an
error of 0.006%. Although the bug affects few users, it becomes a public relations
nightmare. With an estimated 3–5 million defective chips in circulation, at first
Intel only offers to replace Pentium chips for consumers who can prove that they
need high accuracy; eventually the company relents and agrees to replace the chips
for anyone who complains. The bug ultimately costs Intel $475 million.

1995/1996—The Ping of Death

A lack of sanity checks and error handling in the IP fragmentation reassembly code
makes it possible to crash a wide variety of operating systems by sending a
malformed ‘‘ping’’ packet from anywhere on the internet. Most obviously affected
are computers running Windows, which lock up and display the so-called ‘‘blue
screen of death’’ when they receive these packets. But the attack also affects many
Macintosh and UNIX systems as well.

June 4, 1996—Ariane 5 Flight 501

Working code for the Ariane 4 rocket is reused in the Ariane 5, but the Ariane 5’s
faster engines trigger a bug in an arithmetic routine inside the rocket’s flight
computer. The error is in the code that converts a 64-bit floating-point number to a
16-bit signed integer. The faster engines cause the 64-bit numbers to be larger in
the Ariane 5 than in the Ariane 4, triggering an overflow condition that results in
the flight computer crashing. First Flight 501’s backup computer crashes, followed
0.05 s later by a crash of the primary computer. As a result of these crashed
computers, the rocket’s primary processor overpowers the rocket’s engines and
causes the rocket to disintegrate 40 s after launch.

November 2000—National Cancer Institute, Panama City

In a series of accidents, therapy planning software created by Multidata Systems
International, a US firm, miscalculates the proper dosage of radiation for patients
undergoing radiation therapy.

Multidata’s software allows a radiation therapist to draw on a computer screen
the placement of metal shields called ‘‘blocks’’ designed to protect healthy tissue
from the radiation. But the software will only allow technicians to use four
shielding blocks, and the Panamanian doctors wish to use five. The doctors dis-
cover that they can trick the software by drawing all five blocks as a single large

454 12 Fault Tolerant Systems



block with a hole in the middle. What the doctors do not realize is that the
Multidata software gives different answers in this configuration depending on how
the hole is drawn: draw it in one direction and the correct dose is calculated, draw
in another direction and the software recommends twice the necessary exposure.

At least eight patients die, while another 20 receive overdoses likely to cause
significant health problems. The physicians, who were legally required to double-
check the computer’s calculations by hand, are indicted for murder.

It can be understood that all these incidences of software failure would have
created a very critical situation when they occurred. Now if we make a statement
that after the implementation of techniques of fault avoidance and removal we can
assure that no more than 1% of software faults which were present in the software
initially are remaining at its release, can we make out the cost and effort needed to
make a guarantee against this remaining number. There is only one solution which
is, fault tolerance, the only remaining hope to achieve dependable software. Fault
tolerance makes it possible for the software system to provide service without
failure even in the presence of faults. This means that an imminent failure needs to
be prevented or recovered from.

At this stage first we must understand the nature of faults. Software faults are
either permanent (Bohrbugs) or transient (Heisenbugs). A fault is said to be per-
manent if it continues to exist until it can be repaired and most of them can be
removed through rigorous and extensive testing and debugging. Both fault avoid-
ance and removal methodologies employed to attain high system reliability target
mostly on Bohrbugs. A transient software fault is one that occurs and disappears at
an unknown frequency. The remaining faults in software after testing and debug-
ging are usually heisenbugs which eluded detection during the testing. So it is
mainly heisenbugs that need to be tolerated by the technique of fault tolerance.

12.2 Software Fault Tolerance Techniques

There are mainly two strategies for software fault tolerance—error processing and
fault treatment. Error processing aims to remove errors from the software state and

Fig. 12.1 Fault tolerant
strategies for software

12.1 Introduction 455



can be implemented by substituting an error-free state in place of the erroneous
state, called error recovery, or by compensating for the error by providing
redundancy, called error compensation. Error recovery can be achieved by either
forward or backward error recovery. The second strategy is, fault treatment, it aims
to prevent activation of faults and so action is taken before the error creeps in. The
two steps in this strategy are fault diagnosis and fault passivation. Figure 12.1
shows this classification of fault tolerance systems. The nature of faults, which
typically occur in software, has to be thoroughly understood in order to apply these
strategies effectively.

Techniques for tolerating faults in software have been divided into four clas-
ses—design diversity, data diversity, checkpoint and recovery and environment
diversity. Table 12.1 shows the fault tolerance strategies used by these classes.

Design Diversity

Design diversity techniques are specifically developed to tolerate design faults in
software arising out of wrong specifications and incorrect coding. The method
requires redundant software elements that provide alternative means to fulfill the
same specifications. The aim is to obtain system survival on some input by means
of a correct output from at least one of the alternatives hence, no system failure on
most occasions. Software reliability engineering technique suggests using different
specifications; design, programming languages and team, algorithms to build the
alternative versions so that the independent version fails independently with least
possible common failures. These variants are used in a time or space redundant
manner to achieve fault tolerance. Popular techniques, which are based on the
design diversity concept for fault tolerance in software, are—Recovery Block
(RB), N-Version Programming (NVP) and N-self-Checking Programming. Few
hybrid schemes are also proposed by some researchers [1].

Data Diversity

The technique of data diversity, a technique for fault tolerance in software, was
introduced by Ammann and Knight [2]. The approach uses only one version of the
software and relies on the observation that a software sometime fails for certain
values in the input space and this failure could be averted if there is a minor
perturbation of input data which is acceptable to the software. N-copy program-
ming, based on data diversity, has N copies of a program executing in parallel, but

Table 12.1 Strategies used
by different fault tolerance
methods

Technique ? Design
diversity

Data
diversity

Environment
diversityStrategy;

Error compensation Yes Yes –
Error recovery Yes – –
Fault treatment – – Yes

456 12 Fault Tolerant Systems



each copy running on a different input set produced by a diverse-data system. The
diverse-data system produces a related set of points in the data space. Selection of
the system output is done using an enhanced voting scheme which may not be a
majority voting mechanism, with minor perturbation of input data. This technique
might not be acceptable to all programs since equivalent input data transforma-
tions might not be acceptable by the specification. However, in some cases like a
real-time control program, a minor perturbation in sensor values may be able to
prevent a failure since sensor values are usually noisy and inaccurate. This tech-
nique is cheaper to implement than design diversity techniques.

Environment Diversity

Environment diversity is the newest approach to fault tolerance in software.
Although this technique has been used for long in an ad hoc manner, only recently
has it gained recognition and importance. Having its basis on the observation that
most software failures are transient in nature, the environment diversity approach
requires re-executing the software in a different environment [3]. Environment
diversity deals very effectively with Heisenbugs by exploiting their definition and
nature. Adams [4] has proposed that restarting the system is the best approach to
masking software faults. Environment diversity is a generalization of restart.
Environment diversity attempts to provide a new or modified operating environ-
ment for the running software. Usually, this is done at the instance of a failure in
the software. When the software fails, it is restarted in a different, error-free
operating system environment state, which is achieved by some clean up
operations.

Examples of environment diversity techniques include retry operation; restart
application and rebooting the node. The retry and restart operations can be done on
the same node or on another spare (cold/warm/hot) node. Tandem’s fault tolerant
computer system [5] is based on the process pair approach. It was noted that these
failures did not recur once the application was restarted on the second processor.
This was due to the fact that the second processor provided a different environ-
ment, which did not trigger the same error, conditions which led to the failure of
the application on the first processor. Hence in this case, hardware redundancy was
used to tolerate most of the software faults.

Among the three fault tolerant techniques design diversity is a concept that
traces back to the very early age of informatics [6, 7]. The approach is the most
widely used and has become a reality, as witnessed by the real life systems.
The currently privileged domain where design diversity is applied is the
domain of safety related systems and hence is very important to study and
understand. The two most well-documented techniques of design diversity for
tolerating software design faults are—the RB and the NVP that we describe in
detail in the later sections. Both the schemes are based on the technique of
protective software redundancy assuming that the events of coincidental soft-
ware failures are rare.

12.2 Software Fault Tolerance Techniques 457



12.2.1 N-version Programming Scheme

The NVP scheme came into existence with the work of Chen and Avizienis [8] for
the design diversity technique of software fault tolerance. Conceptually the
scheme is to independently generate N[ 2 functionally equivalent programs
(modules) called as ‘‘VERSIONS’’ for the same initial specification of a given task.
This concept is similar to the NMR (N-modular programming) approach in
hardware fault tolerance. By independent generation of programs it means that
different versions are developed by different individuals or groups, who are
independent of each other in the sense that they there is no communication and
interactions between them. The different teams use various design diversity
techniques such as use of different algorithms, techniques, process models, pro-
gramming languages, environment and tools in order to obtain the aim of fault
tolerance by providing a means to avoid coincidental failures in independent
versions. In a NVP system the N-program versions for any particular application
are executed in parallel on identical input and the results are obtained by voting on
the outputs from the individual programs under the assumption that the original
specifications provided to the programming teams are not flawed. Voting is per-
formed by a voting mechanism, which is similar in concept to a decision mech-
anism. It is a voter when more than two versions are installed in parallel and is a
comparator in case of a 2VP system. Several voting techniques have been pro-
posed in the literature. The most commonly seen and the simplest one is the
majority voting, in this usually N is odd and the voter needs at least N=2½ � software
versions to produce the same output to determine the majority as the correct
output. The other commonly known technique is consensus voting designed for
multi-version software with small output space, where software versions can give
identical but incorrect outputs. The voter will select the output given by most of
the versions. Leung [9] proposed the use of maximum likelihood estimation to
decide the most likely correct result for small output spaces. Figure 12.2 shows the
implementation of a NVP scheme. Use of a NVP system is expensive, difficult to
maintain, and its repair is not trivial.

The probability of failure of the NVP scheme, PNVP can be expressed as

PNVP ¼
Y

n

i¼1

ei þ
Y

n

i¼1

1� eið Þe�1
i

Y

n

j¼1

ej þ d ð12:2:1Þ

Fig. 12.2 N-version
programming scheme

458 12 Fault Tolerant Systems



Assume all N versions are statistically independent of each other and have the
same reliability r, and if majority voting is used, then the reliability of the NVP
scheme can be expressed as

RNVP ¼
X

N

i¼ N=2d e

N

i

 !

ri 1� rð ÞN�i ð12:2:2Þ

where ei is the probability of failure in version i. and d is the probability that there
are at least two correct results but the voter fails to deliver the correct result.

12.2.2 Recovery Block Scheme

Recovery blocks were first coined by Horning et al. [10] although they gained
popularity after the study of Randell [7]. This scheme is analogous to the cold
standby scheme for hardware fault tolerance. The basic recovery block relates to
sequential systems. Basically, in this approach, multiple variants of software,
which are functionally equivalent, are deployed in a time redundant fashion. On
entry to a recovery block the state of the system must be saved to permit backward
error recovery, i.e. establish a checkpoint. The primary alternate is executed and
then the acceptance test is evaluated to provide adjudication on the outcome of this
primary alternate. If the acceptance test is passed then the outcome is regarded as
successful and the recovery block can be exited, discarding the information on the
state of the system takes non-entry (i.e. checkpoint). However, if the test fails or if
any errors are detected by other means during the execution of the alternate, then
an exception is raised and backward error recovery is invoked. This restores the
state of the system to what it was on entry. After such recovery, the next alternate
is executed and then the acceptance test is applied again. This sequence continues
until either an acceptance test is passed or all alternates have failed the acceptance
test. If all the alternates either fail the test or result in an exception (due to an
internal error being detected), a failure exception will be signaled to the envi-
ronment of the recovery block. Since recovery blocks can be nested, then the
raising of such an exception from an inner recovery block would invoke recovery
in the enclosing block. Figure 12.3 shows the implementation of a recovery block
and the operation of the recovery block can be illustrated by Fig. 12.4.

The probability of failure of the recovery block scheme, PRB; is defined as

PRB ¼
Y

n

i¼1

ei þ t2ið Þ þ
X

n

i¼1

t1iei
Y

i�1

j¼1

ej þ t2j
� �

 !

ð12:2:3Þ

where t1i is the probability that acceptance test i judges an incorrect result as
correct t2i is the probability that acceptance test i judges an correct result as
incorrect.

12.2 Software Fault Tolerance Techniques 459



The significant difference in the recovery block approach from NVP is that only
one version is executed at a time and the acceptability of results is decided by a
test rather than by majority voting. While the advantage with the NVP is that
average expected time of execution is lesser than the recovery block as all versions
are executed simultaneously. For this reason often recovery block scheme is
avoided for implementation in critical control software where real-time response is
of great concern.

An important concern related to the implementation of fault tolerant schemes
NVP or RB is that although it is sure that there is some degree of reliability
improvement but it incurs a huge cost. One has to carry a tradeoff between the
level of reliability desired and the cost of implementation before implementing any
fault tolerant scheme.

Fig. 12.4 Operation of
recovery block

Fig. 12.3 Recovery block scheme

460 12 Fault Tolerant Systems



12.2.3 Some Advanced Techniques

Many applications and varieties of both NVP and RB have been explored and
developed by various researchers. Some of them also combine the features of both.
Here we give a brief discussion of some of them.

12.2.3.1 Community Error Recovery

NVP has been researched thoroughly during the past years. The sources of failure
of a NVP scheme are the common errors. Design diversity plays the major role in
minimizing these types of faults. As already mentioned that NVP systems are used
more successfully for implementation in the safety critical systems, they suffer
from a drawback that voting at the end of the execution to decide the correct output
may not be acceptable in such systems. As an alternate an alternative scheme
called Community Error Recovery (CER) [11] is proposed. This scheme offers a
higher degree of fault tolerance compared to the basic NVP scheme. In this
scheme, comparisons of results are done at intermediate points; however, it
requires synchronization of various versions at the comparison points.

12.2.3.2 Self-Checking Duplex Scheme

This scheme also adopts an intermediate voting. Generalization of this scheme is
called N-program self-checking scheme [12]. Here each version is subject to an
acceptance test or checking by comparison. When redundancy is implemented at
the two levels, it is called self-checking duplex scheme. The scheme is built on the
observation that if individual versions are made highly reliable, an ultra high
reliability can be achieved merely by building only two versions simultaneously.
Here whenever a particular version raises an exception the correct results are
obtained from the remaining versions and the execution is continued, The
approach is similar to the CER scheme with the difference that the online detection
in the former is carried by an acceptance test rather than a comparison.

12.2.3.3 Distributed Execution of Recovery Blocks

Hecht et al. [13] described a distributed fault tolerant architecture, called the
extended distributed recovery block (EDRB), for nuclear reactor control and safety
functions. It relies on commercially available components and thus allows for
continuous and inexpensive system enhancement. A useful feature of this approach
is the relatively low runtime overhead it requires so that it is suitable for incor-
poration into real-time systems. The basic structure of the distributed recovery
block is—the entire recovery block, two alternates with an acceptance test, fully
replicated on the primary and backup hardware nodes. However, the roles of the

12.2 Software Fault Tolerance Techniques 461



two alternate modules are not the same in the two nodes. The primary node uses
the first alternate as the primary initially, whereas the backup node uses the second
alternate as the initial primary. Outside of the EDRB, forward recovery can be
achieved in effect; but the node affected by a fault must invoke backward recovery
by executing an alternate for data consistency with the other nodes.

12.2.3.4 Consensus Recovery Blocks

The consensus recovery block (CRB) [14] is an attempt to combine the techniques
used in the recovery block and NVP. It is claimed that the CRB technique reduces
the importance of the acceptance test used in the recovery block and is able to
handle the case where NVP would not be appropriate since there are multiple
correct outputs. The CRB requires design and implementation of N variants of the
algorithm, which are ranked (as in the recovery block) in the order of service and
reliance. On invocation, all variants re-executed and their results submitted to an
adjudicator, i.e. a voter (as used in NVP). The CRB compares pairs of results for
compatibility. If two results are the same then the result is used as the output. If no
pair can be found then the results of the variant with the highest ranking are
submitted to an acceptance test. If this fails then the next variant is selected. This
continues until all variants are exhausted or one passes the acceptance test. Scott
et al. [15] developed reliability models for the RB, NVP and the CRB. In com-
parison, the CRB is shown to be superior to the other two. However, the CRB is
largely based on the assumption that there are no common faults between the
variants. In particular, if a matching pair is found, there is no indication that the
result is submitted to the acceptance test, so a correlated failure in two variants
could result in an erroneous output and would cause a catastrophic failure.

12.2.3.5 Retry Blocks with Data Diversity

A retry block developed by Ammann and Knight [2] is a modification of the
recovery block scheme that uses data diversity instead of design diversity. Data
diversity is a strategy that does not change the algorithm of the system (just retry),
but does change the data that the algorithm processes. It is assumed that there are
certain data, which will cause the algorithm to fail, and that if the data were
re-expressed in a different, equivalent (or near equivalent) form the algorithm
would function correctly. A retry block executes the single algorithm normally
and evaluates the acceptance test. If the test passes, the retry block is complete. If
the test fails, the algorithm executes again after the data have been re-expressed.
The system repeats this process until it violates a deadline or produces a satis-
factory output. The crucial elements in the retry scheme are the acceptance test and
the data re-expression routine. Compared to design diversity, data diversity is
relatively easy and inexpensive to implement. Although additional costs are
incurred in the algorithm for data re-expression, data diversity requires only a single

462 12 Fault Tolerant Systems



implementation of a specification. Of course, the retry scheme is not generally
applicable and its expression algorithm must be tailored to the individual problem
at hand and it should be simple enough to eliminate the chance of design faults.

The techniques discussed above are not the only available fault tolerant tech-
niques, but many more have been discussed by many researchers. A detailed
discussion on fault tolerant schemes has been done in [16].

Many researchers in the field of software reliability engineering (SRE) have
done excellent research to study the fault tolerant systems in many ways. Most of
the research in this area is either on optimization problems of optimum selection of
redundant components [17–23] or focus on software diversity modeling and
dependability measures for specific types of software systems [11, 15, 24–27].
Some work has also been done to analyze reliability growth during testing and
debugging for these systems. Study of reliability growth analysis has been done
only for NVP systems [28–30]. In the next sections of this chapter we will discuss
the software reliability growth models for the NVP systems in continuous and
discrete time space and the problems of optimum selection of redundant compo-
nents for recovery blocks, NVP systems and consensus RB.

12.3 Reliability Growth Analysis of NVP Systems

There are only a few studies carried out in the literature for the reliability growth
analysis of NVP systems. An initial attempt has been made by Kanoun et al. [28]
using a hyper-exponential model assuming a perfect debugging environment. The
failure intensity function of the model is given as

hðtÞ ¼ xnsupe
�nsupt þ xninfe

�ninf t

xe�nsupt þ �xe�ninf t
; 0�x� 1; �x � 1� x

where nsup; ninf are hyper-exponential model parameters. h(t) is nonincreasing with
time for 0�x� 1 with hð0Þ ¼ xnsup and hð1Þ ¼ ninf .

Building very high reliability is of extreme importance for fault tolerant soft-
ware hence we must consider the effect of testing efficiency on the reliability
growth modeling for these systems. An imperfect testing efficiency results in
lowering the reliability growth of the system. Teng and Pham [31] proposed a
NHPP-based software reliability growth model for a NVP system considering the
effect of fault removal efficiency using Zhang et al. [32] testing efficiency model
(see Sect. 3.4). Kapur et al. [30] proposed SRGM for NVP systems based on
integrated generalized testing efficiency models in continuous (see Sect. 3.4) and
discrete time space for application software that describes the reliability growth
during testing under two types of imperfect debugging. The models were formu-
lated for the 3VP systems, which are extendable to the NVP type with ease. Before
we discuss the models in detail first we discuss the type of faults and the failure
mechanisms of NVP systems.

12.2 Software Fault Tolerance Techniques 463

http://dx.doi.org/10.1007/978-0-85729-204-9_3
http://dx.doi.org/10.1007/978-0-85729-204-9_3


12.3.1 Faults in NVP Systems

In the literature faults in a NVP system are classified into two categories [31]

• Common faults (CF) and
• Independent faults (IF)

Common-faults are located in at least two functionally equivalent modules of
software versions. Although different versions may be developed independently
using various design diversity techniques, it is expected that programmers are
prone to making similar mistakes.

Independent-faults on the other hand are usually located in different or func-
tionally distinct modules of different software versions.

CF are known to be more critical as compared to the IF. IF can be easily
tolerated since, on a failure due to independent fault only the version containing
that fault is expected to fail which is masked by the NVP system. But if the fault
type is CF, which is expected to occur in multiple versions, then it is possible that
on an input several versions might fail simultaneously. A failure by common-faults
is called common-failure. The voting mechanism might choose the incorrect
output resulting in the system failure. One more type of failure mode also exists in
NVP systems. It is possible that an input results in failure of two or more software
versions simultaneously due to independent faults. These failures by unrelated
independent faults are called concurrent independent failures (CIF). However, the
probability of their occurrence is very less. On the occurrence of these types of
failures the voter is not able to make a correct decision resulting in the total system
failure. The role of faults in NVP systems might change due to imperfect
debugging, and some potential common faults might reduce to low-level common
faults or independent faults. For example in a 3VP system if failure occurs in all
the three versions due to CF and the removal process makes perfect fix only in two
versions and imperfectly in one, it reduces to an IF. Figure 12.5 shows CF and IF
in a 2VP system and Fig. 12.6 shows the various faults in a 3VP system.

Teng and Pham [31] further simplified the fault classification of common and
independent faults as follows

• If at least two versions give identical but all wrong results, then the failures are
caused by the common faults between versions.

• If at least two versions give dissimilar but wrong results, then the faults are
caused by independent software faults.

The faults in a 3VP system (say version A, B, C) are CF in all three versions (of
type ABC), CF in two versions (of type AB, AC, BC) and independent faults (of
type A, B, C). The model formulated model equation for each type of fault sep-
arately since each fault type is independent of each other and that the mean value
function of the failure and removal process of the 3VP system is defined as a
whole.

464 12 Fault Tolerant Systems



12.3.2 Testing Efficiency Based Continuous Time SRGM

for NVP System

Following notations and assumptions are defined for the model.

Notation

m(t) Mean value function in the NHPP model, with m(0) = 0
a Initial number of faults in the software at the time when testing of

software starts
a(t) Expected total fault content (remaining ? removed) at time t
p Probability of debugging of a fault perfectly
a Constant rate of error generation
mr(t) Expected number of removals by time t
mf(t) Expected number of failures by time t
b(t) Time dependent rate of fault removal per remaining faults

Fig. 12.6 Various faults in a
3VP system

Fig. 12.5 Common and independent faults in a 2VP system

12.3 Reliability Growth Analysis of NVP Systems 465



R(x|T) Pr{no failure occurs during (T, T ? x) | testing stops at T}
A, B, C Independent faults in version 1, 2, 3, respectively
AB, BC, AC Common faults between versions i and j, i = j, i, j = 1, 2, 3
ABC Common faults in versions 1, 2, 3, respectively
NU,r(t) Counting process denoting the number of faults of type

U = ABC, …, A removed up to time t
NU�f(t) Counting process denoting the number of faults of type U detected

up to time t
Nc(t)

P

NT(t), T = ABC, AB, AC, BC, counting process for total CF
detected up to time t.

aU tð Þ Expected total fault content (remaining ? removed) of fault of type
U at time t

aU 0ð Þ Initial number of type U faults in the system
b Fault detection\removal rate per remaining fault at time t
ai Constant error generation rate during the debugging process in

version i = 1, 2, 3
pi pr{of debugging of a fault perfectly in version i = 1, 2, 3}:

�pi ¼ 1� pi; pij ¼ pi:pj;pijk ¼ pi � pj � pk; �pij ¼ �pi � �pj; �pijk ¼
�pi � �pj � �pk

XU tð Þ Number of faults of type U remaining in the system at time t
RCF xjTð Þ Reliability of NVP system if only common faults are considered
RIF xjTð Þ Reliability of NVP system if different versions contain only

independent faults
RNVP xjTð Þ Reliability of NVP system
kw Failure intensity per pair of concurrent s-independent failures

W = (A, B) (A, C), (B, C)
Nw(t) Counting process denoting the number of concurrent s-independent

failures for W = (A, B), (A, C), (B, C) up to time t
NI tð Þ

P

NWðtÞ; W ¼ ðA;BÞ; ðA;CÞ; ðB;CÞ counting process for total
concurrent s-independent failures up to time t

mg,r(t) E½Ng;r tð Þg; g = A, …, ABC, (A, B), (A, C), (B, C), c, I,c, I
mg,f(t) E[Ng,f(t)}, g = A, …, ABC, (A, B), (A, C), (B, C),c, I
hw tð Þ d=dtð Þmw tð Þ;W = (A, B), (A, C), (B, C)

Assumption

1. Failure observation/fault removal phenomenon is modeled by NHPP.
2. Faults remaining in the software cause software failures during execution.
3. Each time a failure is observed, an immediate effort takes place to isolate and

remove the fault that has caused the failure.
4. Failure rate is equally affected by all the faults remaining in the software.
5. On a removal attempt a fault is removed perfectly with probability p,

0 B p B 1.

466 12 Fault Tolerant Systems



6. During the fault removal process, new faults are generated with a constant
probability a, 0 B a B 1.

7. Faster versions wait for the slower version to finish the execution prior to the
voter’s decision.

8. Software versions fail during execution caused by faults remaining in the
software.

9. Two or more versions can fail on an input either due to the common faults or
s-independent faults in different versions.

10. Some common faults may reduce to some low-level common faults or inde-
pendent faults due to imperfect fault removal efficiency.

11. Probability of generating a common fault of type ABC while removing a fault
of type ABC or of type AB, AC, BC while removing a fault type AB, AC, BC,
respectively, is negligible and can be assumed to be zero.

12. The fault detection rate per remaining fault in each version is same for all
kinds of faults and is a constant; b(t) = b.

13. Probability of a concurrent independent failure in all the versions i.e. A, B, C is
negligible and can be assumed to be zero.

14. Intensity of concurrent s-independent failure for any two versions is propor-
tional to the remaining number of s-independent pairs in those versions and
each pair of remaining s-independent faults between versions has the same
probability to be activated by some input.

12.3.2.1 Model Development

Using the generalized testing efficiency model [33] with a constant fault
removal\detection rate b and a constant error generation rate a i.e.

bðtÞ ¼ b and
d

dt
aðtÞ ¼ a

d

dt
mrðtÞ ) aðtÞ ¼ aþ amrðtÞ ð12:3:1Þ

the mean value function of the removal phenomenon is given by

mrðtÞ ¼
a

ð1� aÞð1� e�bpð1�aÞtÞ ð12:3:2Þ

and the mean value function of the failure phenomenon using the relationship
mrðtÞ ¼ pmf ðtÞ is given as

mf ðtÞ ¼
a

pð1� aÞ 1� e�bpð1�aÞt
� �

ð12:3:3Þ

The mean value functions of the failure and removal phenomenon of different
type of faults in a 3VP system are given as follows

Case 1 Common faults of type ABC

dmABC;rðtÞ
dt

¼ p123b aABCðtÞ � mABC;rðtÞ
� �

ð12:3:4Þ

12.3 Reliability Growth Analysis of NVP Systems 467



where

aABCðtÞ ¼ aABC ð12:3:5Þ

dmABC;f ðtÞ
dt

¼ b aABCðtÞ � p123mABC;f ðtÞ
� �

ð12:3:6Þ

Substituting (12.3.5) in (12.3.4) and solving under the initial mABC;rð0Þ ¼ 0 we
get

mABC;rðtÞ ¼ aABC 1� e�bp123t
� �

ð12:3:7Þ
and using mABC;rðtÞ ¼ p123mABC;f ðtÞ we have

mABC;f ðtÞ ¼
aABC
p123

1� e�bp123t
� �

ð12:3:8Þ

Case 2 Common faults of type AB, AC and BC

dmAB;rðtÞ
dt

¼ p12b½aABðtÞ � mAB;rðtÞ� ð12:3:9Þ

where

aABðtÞ ¼ aAB þ �p12p3mABC;f ðtÞ ð12:3:10Þ

Substituting (12.3.10) in (12.3.9) and solving under the initial mAB;rð0Þ ¼ 0 we
get

mAB;rðtÞ ¼ aAB 1� e�bp12t
� �

þ
�p12aABC
p12�p3

p3e
�bp12t � e�bp123t þ �p3

� �

ð12:3:11Þ

and using mAB;rðtÞ ¼ p12mAB;f ðtÞ we have

mAB;f ðtÞ ¼
aAB
p12

1� e�bp12t
� �

þ
�p12aABC
p212�p3

p3e
�bp12t � e�bp123t þ �p3

� �

ð12:3:12Þ

Mean value functions of removal (failure) phenomenon for faults of type AC
and BC can be obtained similarly (see Appendix C).

Case 3 Independent faults of type A, B, and C

dmA;rðtÞ

dt
¼ p1b½aAðtÞ � mA;rðtÞ� ð12:3:13Þ

aAðtÞ ¼ aA þ �p1 p23mABC;f ðtÞ þ p2mAB;f ðtÞ þ p3mAC;f ðtÞ
� �

þ a1
X

t

mt;rðtÞ

 !

t ¼ ABC; AB; AC; A
ð12:3:14Þ

468 12 Fault Tolerant Systems



Substituting (12.3.14) in (12.3.13) and solving under the initial mA;rð0Þ ¼ 0 we
get

mA;rðtÞ¼
1

1�a1

� �

aAþ 1�p1ð1�a1ð Þ

aABC
p1

þ
X

3;C

i¼2;V¼B

aAV
p1

þ �p1i
p21pi

aABC

� �

" #

8

>

>

<

>

>

:

9

>

>

=

>

>

;

1� e�bð1�a1Þp1t
� �

þ aABC 1�p1ð1�a1Þð Þ
p23�ð1�a1Þð Þ

� 	

1
p1

þ �p12
p21p2�p3

þ �p13
p21p3�p2

� 	

e�bp123t� e�bð1�a1Þp1t
� �

þ 1�p1ð1�a1Þð Þ
p2�ð1�a1Þð Þ

� �

aAB
p1

þ �p12p3
p21p2�p3

aABC

� �

e�bp12t� e�bð1�a1Þp1t
� �

� 	

þ 1�p1ð1�a1Þð Þ
p3�ð1�a1Þð Þ

� �

aAC
p1

þ �p13p2
p21p3�p2

aABC

� �

e�bp13t� e�bð1�a1Þp1t
� �

� 	

ð12:3:15Þ

and failure phenomenon is obtained using

mA;f ðtÞ ¼ mA;rðtÞ=p1 ð12:3:16Þ

Similarly we can obtain the mean value functions of removal and failure
phenomenon for faults of type B and C (see Appendix C).

12.3.2.2 System Reliability

Reliability of a NVP system can be calculated from a counting process that
describes the total number of system failures by time t. A NVP system fails when a
majority (more than half) of its versions fails assuming the voter mechanism to be
100% reliable. System failure is caused either on a common failure for e.g. when at
least two versions of a 3VP system fail on a common failure or due to concurrent
s-independent failure for e.g. when two or all the versions of a 3VP system fail on
a concurrent s-independent failure [34]. However, the probability that all the three
versions fail on the same input because of independent faults is negligible.

Counting Process of Common Failure Mode

For common failure mode (CFM) the counting process denoting the number of
common failures up to time t is

Nc tð Þ � NABC;f tð Þ þ NAB;f tð Þ þ NAC;f tð Þ þ NBC;f tð Þ ð12:3:17Þ

Equation (12.3.17) implies

E NcðtÞ½ � � E NABC;f ðtÞ þ NAB;f ðtÞ þ NAC; f ðtÞ þ NBC;f ðtÞ

 �

) mc;f ðtÞ � mABC;f ðtÞ þ mAB;f ðtÞ þ mAC;f ðtÞ þ mBC;f ðtÞ ð12:3:18Þ

12.3 Reliability Growth Analysis of NVP Systems 469



The probability that a 3VP system will not fail during (T, T ? x), given that the
last failure occurred at T considering only common faults in the system, is

RCF xjTð Þ ¼ e� mc;f ðTþxÞ�mc;f ðTÞð Þ ð12:3:19Þ

Counting Process of Concurrent Independent Failure Mode

From Assumptions 13 and 14

hðA;BÞ tð Þ ¼ k A;Bð Þ XA tð ÞXB tð Þ ð12:3:20Þ
where

XA tð Þ ¼ aA tð Þ � mA;;r tð Þ ð12:3:21Þ

XB tð Þ ¼ aB tð Þ � mB;;r tð Þ ð12:3:22Þ

Hence the mean value function of number of CIF in versions A and B is

mðA;BÞ;f ðtÞ ¼
Z

t

0

hðA;BÞðuÞdu ð12:3:23Þ

Similarly we obtain

mðA;CÞ;f ðtÞ ¼
Z

t

0

hðA;CÞðuÞdu where hðA;CÞðtÞ ¼ kðA;CÞ XAðtÞXCðtÞ ð12:3:24Þ

mðB;CÞ;f ðtÞ ¼
Z

t

0

hðB;CÞðuÞdu where hðB;CÞðtÞ ¼ kðB;CÞ XBðtÞXCðtÞ ð12:3:25Þ

For CIF mode the counting process denoting the number of CIF up to time t is
given as

NI tð Þ � NðA;BÞ tð Þ þ NðA;CÞ tð Þ þ NðB;CÞ tð Þ ð12:3:26Þ

Equation (12.3.26) implies

mI;f ðtÞ � mðA;BÞ;f ðtÞ þ mðA;CÞ;f ðtÞ þ mðB;CÞ;f ðtÞ ð12:3:27Þ

Reliability of a 3VP system considering only independent faults in the system is

RI xjTð Þ ¼ e� mI;f ðTþxÞ�mI;f ðTÞð Þ ð12:3:28Þ

Reliability of 3VP System

Since the common failure and concurrent independent failure modes (CIF) are
independent, therefore total system reliability of a 3VP system using (12.3.19) and
(12.3.28) is given by

470 12 Fault Tolerant Systems



R3VP xjTð Þ ¼ RCFðxjTÞ � RI xjTð Þ ¼ e� mc;f ðTþxÞþmI;f ðTþxÞ�mc;f ðTÞ�mI;f ðTÞð Þ ð12:3:29Þ

As already mentioned, only a few attempts have been made in the literature to
analyze the reliability growth during testing and debugging of NVP systems. Most
of these efforts are made in continuous time space. Recently Kapur et al. [35]
analyzed the reliability growth of NVP systems in discrete time space. In this
section we discuss the model in detail with the numerical application. Similar to
the case of continuous SRGM, the SRGM in discrete time space is formulated for
3VP systems, based on an integrated testing efficiency model for independent
software. The model can be extended to NVP systems equivalently.

12.3.3 A Testing Efficiency Based Discrete SRGM

for a NVP System

The model integrates the effect of both imperfect debugging and error generation
on reliability growth of software based on the following notations.

Notation

mr(n) Expected number of removals by the nth test input, with mr 0ð Þ ¼ 0
mf(n) Expected number of failures by the nth test input, with mf 0ð Þ ¼ 0
b Constant rate of fault removal/detection per remaining faults
a Initial number of faults in the software at the time when testing of

software starts
a(t) Expected total fault content (remaining ? removed) at the nth test

input, with a 0ð Þ ¼ a
p Probability of debugging of a fault perfectly
a Constant rate of fault generation
R x Njð Þ pr{no failure occurs up to the execution of (N ? x)th test case

given that last failure occurred at the execution of Nth test case}
A, B, C Independent faults in version 1, 2, 3, respectively
AB, BC, AC Common faults (CF) between versions i and j, i = j, i, j = 1, 2, 3
ABC Common faults in versions 1, 2, 3
NU;r nð Þ Counting process denoting the number of faults of type U, U ¼

ABC; . . .;A removed by the nth test input
NU:f nð Þ Counting process denoting the number of faults of type U,

U = ABC, …, A detected by the nth test input
Nc nð Þ

P

N!ðnÞ; ! ¼ ABC; AB; AC; BC counting process for total CF
detected by the nth test input

a nð Þ; aU nð Þ Expected total fault content (remaining ? removed) of fault of type
U, U ¼ ABC; . . .;A at the nth test input

aU 0ð Þ Initial number of type U, U ¼ ABC; . . .;A faults in the system
b Fault detection\removal rate per remaining fault at the nth test input

12.3 Reliability Growth Analysis of NVP Systems 471



a; ai Constant error generation rate during the debugging process in
version i = 1, 2, 3, respectively

p, pi pr [of debugging of a fault perfectly in version i = 1, 2, 3] �pi ¼
1� pi; pij ¼ pi � pj;pijk ¼ pi � pj � pk; �pij ¼ �pi � �pj; �pijk ¼ �pi � �pj � �pk

XU nð Þ Number of faults of type U remaining in the system at the nth test
input

RCF xjNð Þ Reliability of NVP system if only common faults are considered
RIF xjNð Þ Reliability of NVP system if different versions contain only

independent faults
RNVP xjNð Þ Reliability of NVP system
kw Failure intensity per pair of concurrent s-independent failures

W ¼ ðA;BÞ; ðA;CÞ; ðB;CÞ
Nw nð Þ Counting process denoting the number of concurrent s-independent

failures for W ¼ ðA;BÞ; ðA;CÞ; ðB;CÞ by the nth test input
NI nð Þ

P

NWðtÞ; W ¼ ðA;BÞ; ðA;CÞ; ðB;CÞ counting process for total
concurrent independent failures by the nth test input

mg;r nð Þ E½Ng;r nð Þg; g ¼ A; . . .;ABC; ðA;BÞ; ðA;CÞ; ðB;CÞ; c; I
mg;f nð Þ E½Ng;f ðnÞg; g ¼ A; . . .;ABC; ðA;BÞ; ðA;CÞ; ðB;CÞg; c; I
hw nð Þ Failure intensity function of concurrent s-independent failures

W ¼ ðA;BÞ; ðA;CÞ; ðB;CÞ

12.3.3.1 Model Development

Here a discrete testing efficiency SRGM with a constant fault removal\detection
rate b and a constant error generation rate a is used to formulate the SRGM of 3VP
systems.

The mean value function of the removal phenomenon is given as

mrðnÞ ¼
a

1� a
1� 1� bpdð1� aÞð Þnð Þ ð12:3:30Þ

and reliability of the software is

RðxjNÞ ¼ e� mf ðNþxÞ�mf ðNÞð Þ ð12:3:31Þ

Based on the Assumptions 1–14 in Sect. 12.3.2, the mean value functions of the
failure and removal phenomenon for the different type of faults in a NVP system in
discrete time space are given as follows

Case 1 Common faults of type ABC

mABC;rðnþ 1Þ � mABC;rðnÞ
� �

d
¼ p123b aABCðnÞ � mABC;rðnÞ

� �

ð12:3:32Þ

472 12 Fault Tolerant Systems



where aABCðnÞ ¼ aABC

mABC;f ðnþ 1Þ � mABC;f ðnÞ
� �

d
¼ b aABCðnÞ � p123mABC;f ðnÞ
� �

ð12:3:33Þ

Using the method of PGF under the initial condition mABC;rð0Þ ¼ 0 we get

mABC;rðnÞ ¼ aABC 1� 1� bp123dð Þnð Þ ð12:3:34Þ

And using mABC;rðnÞ ¼ pmABC;f ðnÞ we have

mABC;f ðnÞ ¼
aABC
p123

1� 1� bp123dð Þnð Þ ð12:3:35Þ

The equivalent continuous SRGM corresponding to (12.3.34) and (12.3.35) is
obtained taking limit d ! 0 and defining t ¼ nd as given by Eqs. (12.3.7) and
(12.3.8).

Case 2 Common faults of type AB, AC and BC

mAB;rðnþ 1Þ � mAB;rðnÞ
� �

d
¼ p12b aABðnÞ � mAB;rðnÞ

� �

ð12:3:36Þ

where

aABðnÞ ¼ aAB þ �p12p3mABC;f ðnÞ ð12:3:37Þ

Substituting (12.3.37) in (12.3.36) and solving using the method of PGF under
the initial condition mAB;rð0Þ ¼ 0 we get

mAB;rðnÞ ¼ aAB 1� 1� bp12dð Þnð Þ
þ aABC�p12

p12�p3
p3ð1� bp12dÞn � ð1� bp123dÞn þ �p3ð Þ ð12:3:38Þ

and using mAB;rðnÞ ¼ pmAB;f ðnÞwe have

mAB;f ðtÞ ¼
aAB
p12

1� 1� bp12dð Þnð Þ

þ aABC�p12
p212�p3

p3ð1� bp12dÞn � ð1� bp123dÞn þ �p3ð Þ ð12:3:39Þ

Mean value functions of failure and removal phenomenon for faults of type AC
and BC can be obtained similarly (see Appendix C). The equivalent continuous

12.3 Reliability Growth Analysis of NVP Systems 473



SRGM corresponding to Eqs. (12.3.38) and (12.3.39) is obtained taking limit d! 0
and defining t ¼ nd; as given by Eqs. (12.3.11) and (12.3.12).

Case 3 Independent faults of type A, B and C

mA;rðnþ 1Þ � mA;rðnÞ
� �

d
¼ p1b aAðnÞ � mA;rðnÞ

� �

ð12:3:40Þ

aAðnÞ ¼ aA þ �p1 p23mABC;f ðnÞ þ p2mAB;f ðnÞ þ p3mAC;f ðnÞ
� �

þ a1 mABC;rðnÞ þ mAB;rðnÞ þ mAC;rðnÞ þ mA;rðnÞ
� � ð12:3:41Þ

Substituting (12.3.41) in (12.3.40) and solving under the initial mA;rð0Þ ¼ 0
using the method of PGF we get

mA;rðnÞ ¼
1

1� a1

� �

aA þ 1� p1ð1� a1ð Þ

aABC
p1

þ
X

ði;VÞ¼ð2;BÞ;ð3;CÞ

aAV
p1

þ �p1i
p2
1
pi
aABC

� �

2

4

3

5

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

� 1� ð1� bp1dð1� a1ÞÞ
nð Þ

þ
aABC 1� p1ð1� a1Þð Þ

p23 � ð1� a1Þð Þ

� 	

1
p1

þ
�p12

p21p2�p3
þ

�p13
p21p3�p2

� 	

� ð1� bp123dÞ
n � ð1� bp1dð1� a1ÞÞ

nð Þ

þ
1� p1ð1� a1Þð Þ

p2 � ð1� a1Þð Þ

� �

aAB
p1

þ
�p12p3
p21p2�p3

aABC

� ��

� ð1� bp12dÞ
n � ð1� bp1dð1� a1ÞÞ

nð Þ

	

þ
1� p1ð1� a1Þð Þ

p3 � ð1� a1Þð Þ

� �

aAC
p1

þ
�p13p2
p21p3�p2

aABC

� ��

� ð1� bp13dÞ
n � ð1� bp1dð1� a1ÞÞ

nð Þ

	

ð12:3:42Þ

and using

mA;rðnÞ ¼ pmA;f ðnÞ ð12:3:43Þ

we can obtain the mean value function for the failure phenomenon of fault type A.
Similarly we can obtain the mean value functions of removal and failure

474 12 Fault Tolerant Systems



phenomenon for faults of type B and C (see Appendix C). The equivalent con-
tinuous SRGM for the common faults of type A, B, C can also be obtained taking
limit d! 0 and defining t ¼ nd:

12.3.3.2 System Reliability

A NVP system fails when a majority (more than half) of its versions fails assuming
the voter mechanism to be 100% reliable. System failure is caused either on a
common failure or due to concurrent s-independent failure. However, the proba-
bility that all the three versions fail on the same input because of independent
faults is negligible.

Counting Process of Common Failure Mode

For CFM the counting process denoting the number of common failures up to the
execution of nth test input is

Nc nð Þ � NABC;f nð Þ þ NAB;f nð Þ þ NAC;f nð Þ þ NBC;f nð Þ ð12:3:44Þ

Equation (12.3.44) implies

E NcðnÞ½ � � E NABC;f ðnÞ þ NAB;f ðnÞ þ NAC;f ðnÞ þ NBC;f ðnÞ

 �

) mc;f ðnÞ � mABC;f ðnÞ þ mAB;f ðnÞ þ mAC;f ðnÞ þ mBC;f ðnÞ
ð12:3:45Þ

The probability that a 3VP system will not fail between the execution of Nth
and (N ? x)th test cases, given that the latest failure occurred at the execution of
Nth test case considering only common faults in the system, is

RCF xjNð Þ ¼ e� mc;f ðNþxÞ�mc;f ðNÞð Þ ð12:3:46Þ

Counting Process of CIF Mode

Similar to the case of continuous time SRGM

hðA;BÞ nð Þ ¼ kðA;BÞXA nð ÞXB nð Þ ð12:3:47Þ

where

XA nð Þ ¼ aA nð Þ � mA;r nð Þ ð12:3:48Þ

XB nð Þ ¼ aB nð Þ � mB;r nð Þ ð12:3:49Þ

Hence the mean value function of number of CIF in versions A and B is

mðA;BÞ;f ðnÞ ¼
X

n

i¼0

hðA;BÞðiÞ ð12:3:50Þ

12.3 Reliability Growth Analysis of NVP Systems 475



Similarly we obtain

mðA;CÞ;f ðnÞ ¼
X

n

i¼0
hðA;CÞðiÞ where hðA;CÞðnÞ ¼ kðA;CÞ XAðnÞXCðnÞ ð12:3:51Þ

mðB;CÞ;f ðnÞ ¼
X

n

i¼0
hðA;BÞðiÞ where hðB;CÞðnÞ ¼ kðB;CÞ XBðnÞXCðnÞ ð12:3:52Þ

For CIF mode the counting process denoting the number of common failures up
to the execution of nth test input is

NI nð Þ � NðA;BÞ nð Þ þ NðA;CÞ nð Þ þ NðB;CÞ nð Þ ð12:3:53Þ

Equation (12.3.53) implies

mI;f ðnÞ � mðA;BÞ;f ðnÞ þ mðA;CÞ;f ðnÞ þ mðB;CÞ;f ðnÞ ð12:3:54Þ

Reliability of a 3VP system considering only s-independent faults in the system is

RI xjNð Þ ¼ e� mI;f ðNþxÞ�mI;f ðNÞð Þ ð12:3:55Þ

Reliability of 3VP System

Since the common failure and concurrent s-independent failure modes are s-
independent, therefore total system reliability of a 3VP system using (12.3.46) and
(12.3.55) is given by

R3VP xjNð Þ ¼ RCFðxjNÞ � RI xjNð Þ ¼ e� mc;f ðNþxÞþmI;f ðNþxÞ�mc;f ðNÞ�mI;f ðNÞð Þ ð12:3:56Þ

12.3.4 Parameter Estimation and Model Validation

The successful application of a software reliability growth model depends
heavily on the quality of failure data collected. The parameters of the SRGM are
estimated based upon these data. Mostly the method of maximum likelihood
estimation or least square is used to estimate the unknown parameters of the
nonlinear models. The system failure in a 3VP system can be due to common
fault in all the three versions or due to fault in any two versions. Hence the
regression module of SPSS is not sufficient to estimate the unknown parameters
of the models discussed in this chapter. Conditional nonlinear regression (CNLR)
method in SPSS solves this problem and it can conditionally determine the
failure process of the 3VP system. This method is used in our analysis to find the
unknown parameters of the models.

476 12 Fault Tolerant Systems



12.3.4.1 Data Analysis for the Continuous Time Model

Failure Data Sets

Data analysis for this model is shown for two data sets, one for the 2VP system and
other for the 3VP system. The observed failure data of a 2VP system are for a fault
tolerant software control logic of a water reservoir control (WRC) system. Water is
supplied via a source pipe controlled by a source valve and removed via a drain
pipe controlled by a drain valve. There are two level sensors, positioned at the high
and low limits; the high sensor does an output action ‘‘above’’ if the level is above
it and the low sensor outputs ‘‘below’’ if the level is below it. The control system
should maintain the water level between these two limits, allowing for rainfall-into
and seepage-from the reservoir. If, however, the water rises above the high level,
an alarm should sound. The WRC system achieves fault tolerance and high reli-
ability by using VP software control logic with WRC system [31]. The testing data
for the WRC system are available for 100 test periods and during this period 26
failures were observed. Some of them were of common types while the others
were of independent type.

Failure data set for a real 3VP system was unavailable, so Kapur et al. [30]
simulated a failure data set for the 3VP system. The simulated data are tabulated in
Table 12.2.

Data Analysis of a 2VP System

It is reasonable to assume sufficiently high testing efficiency. Therefore in order to
simplify the estimation process p1 = p2 are assumed to be known, equal to 0.9.
Generally, for a NVP system N C 3, so that a voting mechanism can be applied to

Table 12.2 Simulated
failure data for a 3VP system

Fault Failure time Fault Failure time

# A B C # A B C

1 1 2.4 1.3 15 35.2 25 25.2
2 3.5 3.5 2.4 16 39 26.9 29.5
3 6.3 4 4.9 17 42 29.5 30
4 7 4.7 6.3 18 45.8 35.2 32.8
5 9.1 6.3 7 19 47.1 39.5 34
6 10 7.2 8.6 20 48 43.3 35.2
7 14 8.6 10.3 21 50 45.8 38.4
8 18 10 12.8 22 51 48.1 47.1
9 20.3 12.5 15.1 23 52.5 52.6 50.6
10 21.6 14.6 17.6 24 54.3 58.7 52.5
11 23 15 20.4 25 54.8 59.2 55.3
12 27 18 21.6 26 57.6 60 59.2
13 29 19.7 21.9 27 59.2 63.3 60.2
14 30.7 20.2 23.5 28 60.6 67 64

12.3 Reliability Growth Analysis of NVP Systems 477



choose the correct output. However, for a 2VP system the reliability of the voter is
assumed to be one and is self decision maker, i.e., the voter can decide which
version(s) has failed on a failure. Further a 2VP system fails only when both of its
versions fail on a same input. The observed failure data for WRC system show some
data points at which both the versions fail simultaneously. At these time points
system failure is observed which may be either due to common faults or inde-
pendent common faults. Here it is assumed that each system failure is only due to
common faults i.e. no system failure occurs due to concurrent independent failure.
A 2VP system contains common faults of type AB and independent faults of type
A and B. The mean value functions of the failure phenomenon of a 2VP system are
derived similar to 3VP system and are given by the following equations.

mAB;f ðtÞ ¼
aAB
p12

1� e�bp12t
� �

ð12:3:57Þ

mA;f ðtÞ ¼
1
p1

aA
1� a1

1� e�bð1�a1Þp1t
� �

þ aAB 1� p1ð1� a1Þð Þ
p1 1� a1ð Þ 1þ 1� a1ð Þe�bp12t � p2e�bð1�a1Þp1t

p2 � ð1� a1Þ

� 	� �

8

>

>

<

>

>

:

9

>

>

=

>

>

;

ð12:3:58Þ

Similarly the mean value function of failure phenomenon for faults of type
B can be obtained. Total system reliability of a 2VP system is given as

R2VP xjTð Þ ¼ RCFðxjTÞ � RI xjTð Þ ¼ e� mAB;f ðTþxÞþmðA;BÞ;f ðTþxÞ�mAB;f ðTÞ�mðA;BÞ;f ðTÞð Þ

ð12:3:59Þ

Since failure in both versions on an input is assumed only due to common faults
therefore the system reliability is

R2VP xjTð Þ ¼ RCFðxjTÞ ¼ e� mAB;f ðTþxÞ�mAB;f ðTÞð Þ ð12:3:60Þ

Table 12.4 Variance–
covariance matrix

aAB aA aB b a1 a2

aAB 16.78 47.47 60.18 -0.06 -1.93 -2.16
aA 47.47 149.57 182.02 -0.18 -6.39 -6.51
aB 60.18 182.02 234.4 -0.23 -7.37 -8.53
b -0.06 -0.18 -0.23 0 0.01 0.01
a1 -1.93 -6.39 -7.37 0.01 0.3 0.26
a2 -2.16 -6.51 -8.53 0.01 0.26 0.32

Table 12.3 Estimated values of unknown parameters and their standard errors

Proposed model aAB aA aB b a1 a2

Estimated values 8.59 16 19.83 0.0194 0.04 1.00E-04
Standard error 4.09 12.23 15.31 0.0149 0.547 0.566

478 12 Fault Tolerant Systems



Estimating the parameters of the 2VP system using CNLR function of SPSS
software package, the estimates of the unknown parameters and their respective
standard error as shown in Table 12.3 are obtained. The variance–covariance
matrix of the parameters for the proposed model is given in Table 12.4. The
goodness of fit curves for the fault type AB, A and B are illustrated graphically in
Figs. 12.7, 12.8, and 12.9, respectively. The system reliability curve is shown in
Fig. 12.10.

Data Analysis of a 3VP System

From the simulated failure data of 3VP system (Table 12.2) failure times and
number of faults for each type of faults (ABC, …, C) can be extracted. We assume
that each system failure is only due to common faults (fault type ABC, AB, AC,
BC) i.e. no system failure due to concurrent independent failures. In the data
analysis of a 2VP we have assumed p1 = p2 = 0.9. In practice we may expect
these parameters to be different for each version since different and independent
teams may debug the software. Therefore from this point of view in the data
analysis of a 3VP system p1 = 0.9, p2 = 0.92, p3 = 0.89 are taken. Since the
expressions of the mean value functions are very large, therefore for the sake of

0

5

10

15

20

0

1
0

2
4

3
4

4
0

4
5

5
6

9
2

1
1
8

Time

C
u

m
u

la
ti

v
e
 R

e
m

o
v
a
ls

Actual Data

Estimated Values (Faults AB)

Fig. 12.7 Goodness of fit
curve for fault type AB

1

2

3

4

5

6

7

8

9

8

2
0

2
8

3
1

3
7

3
9

6
2

1
0
0

Time

C
u

m
u

la
ti

v
e
 R

e
m

o
v
a
ls

Actual Data

Estimated Values (Faults A)

Fig. 12.8 Goodness of fit
curve for fault type A

12.3 Reliability Growth Analysis of NVP Systems 479



simplicity the fault generation parameters are also assumed to be known. It is
reasonable to assume sufficiently high testing efficiency, hence a small value of the
fault generation rate is observed. Assume a1 = 0.055, a2 = 0.04 and a3 = 0.05.

Table 12.6 Variance–covariance matrix

aABC aAB aAC aBC aA aB aC b

aABC 357.59 362.59 446.69 414.41 1087.49 966.85 887.64 -0.0162
aAB 362.59 429.32 501.14 464.88 1218.91 1083.93 995.01 -0.0182

aAC 446.69 501.14 635.54 572.7 1501.81 1336.04 1223.71 -0.0224
aBC 414.41 464.88 572.7 556.49 1393.46 1238.89 1137.38 -0.0207
aA 1087.49 1218.91 1501.81 1393.46 3661.46 3250.79 2982.31 -0.0544
aB 966.85 1083.93 1336.04 1238.89 3250.79 2896.59 2652.85 -0.0484

aC 887.64 995.01 1223.71 1137.38 2982.31 2652.85 2439.37 -0.0444
b -0.0162 -0.0182 -0.0224 -0.0207 -0.0544 -0.0484 -0.0444 8.10E-07

0

0.2

0.4

0.6

0.8

1
0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

Time

R
e
li
a
b

il
it

y

3VP System

Fig. 12.10 System reliability
growth

Table 12.5 Estimated values of unknown parameters and their standard errors

Proposed model aABC aAB aAC aBC aA aB aC b

Estimated values 41.7 47.8 59.26 54.29 140 128 116 0.00188
Standard error 18.91 20.72 25.21 23.59 60.51 53.82 49.39 0.0009

0

5

10

15

20

0

1
0

2
4

3
4

4
0

4
5

5
6

9
2

Time
C

u
m

u
la

ti
v

e
 R

e
m

o
v

a
ls

Actual Data

Estimated Values (Faults B)

Fig. 12.9 Goodness of fit
curve for fault type B

480 12 Fault Tolerant Systems



These values are taken for the sake of illustration and can be determined form the
past failure data and experience. The other unknown parameters are estimated
using CNLR estimation method and estimation results and standard error of the
estimated parameters are tabulated in Table 12.5. The variance–covariance matrix
is given in Table 12.6. Goodness of fit curve for fault type ABC, AB, AC,BC, A,
B and C are given in Figs. 12.11, 12.12, 12.13, 12.14, 12.15, 12.16, and 12.17 and
system reliability curve is shown in Fig. 12.18.

0

2

4

6

8

10

6 20 35 59 75 88 94 97 115

Time

C
u

m
u

la
ti

v
e

  
R

e
m

o
v

a
ls

Actual Data

Estimated Values (Faults ABC)

Fig. 12.11 Goodness of fit
curve for fault type ABC

0

2

4

6

8

10

12

14

4 18 59 84
107

126

Time

C
u

m
u

la
ti

v
e
 R

e
m

o
v
a
ls Actual Data

Estimated Values (Faults AB)

Fig. 12.12 Goodness of fit
curve for fault type AB

0

2

4

6

8

10

12

14

2 9 30 67 100 120

Time

C
u

m
u

la
ti

v
e

 R
e

m
o

v
a

ls Actual Data

Estimated Values (Faults BC)

Fig. 12.13 Goodness of fit
curve for fault type AC

12.3 Reliability Growth Analysis of NVP Systems 481



From the estimation results and goodness of fit curves of 2VP and 3VP systems
it can be seen that the continuous time model fairly estimates the failure phe-
nomenon of the NVP systems. In the beginning of this section we discussed the
importance of reliability improvement and building fault tolerance in real-time
safety and critical systems. The importance of building highest possible reliability
in these systems also necessitates an accurate estimation of the achieved reliability.
The continuous time model describes failure occurrence and fault removal in
continuous time space and adopts time (the CPU time or calendar time) as a unit of
fault detection period. As we know discrete time models (refer to Chap. 9), which
adopt the number of test occasions/cases as a unit of fault detection period

0

10

20

30

40

1 31 50 76 81 85 89 97 12
2

Time

C
u

m
u

la
ti

v
e
 R

e
m

o
v
a
ls Actual Data

Estimated Values (Faults A)

Fig. 12.15 Goodness of fit
curve for fault type A

0

10

20

30

40

4 25 63 77 91 106 149 167

Time

C
u

m
u

la
ti

v
e

 R
e

m
o

v
a

ls Actual Data

Estimated Values (Faults B)

Fig. 12.16 Goodness of fit
curve for fault type B

0

2

4

6

8

10

12

14

2 9 30 67 100 120

Time
C

u
m

u
la

ti
v

e
 R

e
m

o
v

a
ls Actual Data

Estimated Values (Faults BC)

Fig. 12.14 Goodness of fit
curve for fault type BC

482 12 Fault Tolerant Systems

http://dx.doi.org/10.1007/978-0-85729-204-9_9


sometimes, provide better estimates of testing process when observed data sets are
defined in discrete time space. So we also validate the discrete time model dis-
cussed in the previous section in the following section.

12.3.4.2 Parameter Estimation and Model Validation of Discrete SRGM

Similar to the case of continuous SRGM conditional nonlinear regression (CNLR)
method is used to estimate the unknown parameters of a 2 and 3VP system on
simulated failure data sets tabulated in Tables 12.7 and 12.8, respectively. The real
life failure data were not available.

Data Analysis of a 2VP System

The model equations are very lengthy therefore in order to simplify the estimation
process p1 and p2 are assumed to be known values. Since it is reasonable to assume
sufficiently high testing efficiency therefore p1 = 0.9 and p2 = 0.94 are taken.
A 2VP system fails only when both of its versions fail on a same input. The failure
data for 2VP system show some data points at which both the versions fail
simultaneously. At these time points system failure is observed which may be either
due to common faults or independent common faults. Here also it is assumed that

0

10

20

30

40

1 24 38 79 86 10
3

11
8

12
8

14
7

Time
C

u
m

u
la

ti
v

e
 R

e
m

o
v

a
ls Actual Data

Estimated Values (Faults C)

Fig. 12.17 Goodness of fit
curve for fault type C

0

0.2

0.4

0.6

0.8

1

0 180 360 540 720 900 1080 1260

Time

R
e

li
a

b
il

it
y

Reliability Growth CurveFig. 12.18 System reliability
growth

12.3 Reliability Growth Analysis of NVP Systems 483



each system failure is only due to common faults, i.e., no system failure occurs due
to concurrent independent failure. The mean value functions of the failure phe-
nomenon of a 2VP system can be derived similar to 3VP system. The mean value
functions of the failure phenomenon due to fault type AB, A, and B are as follows

mAB;f ðnÞ ¼
aAB
p12

1� 1� bp12dð Þnð Þ ð12:3:61Þ

mA;f ðtÞ

¼ 1
p1

aA
1�a1

1� 1�bp1ð1�a1Þdð Þnð Þ

þaAB 1�p1ð1�a1Þð Þ
p1 1�a1ð Þ 1þ 1�a1ð Þ 1�bp12dð Þn�p2 1�bp1ð1�a1Þdð Þn

p2�ð1�a1Þ

� 	� �

8

>

>

<

>

>

:

9

>

>

=

>

>

;

Similarly we can obtain the mean value function of failure phenomenon for
faults of type B and total system reliability of a 2VP system is given as

Table 12.7 Simulated discrete failure data (2VP system)

Fault # Test
case #

Fault # Test
case #

Fault # Test
case #

Fault # Test
case #

Fault # Test case
#

A B A B A B A B A B

1 2 4 15 20 18 29 34 29 43 44 38 57 80 60
2 3 8 16 24 20 30 36 31 44 45 39 58 92 62
3 8 13 17 28 23 31 37 35 45 54 41 59 99 98
4 10 14 18 29 25 32 39 36 46 56 42 60 99
5 16 17 19 31 27 33 40 37 47 62 46 61 100

Table 12.8 Simulated failure data (discrete 3VP SRGM)

Fault # Failure time Fault Failure time Fault Failure time Fault Failure time

A B C # A B C # A B C # A B C

1 1 3 3 14 40 41 47 27 86 84 80 40 132 137 139
2 3 6 5 15 43 45 49 28 88 95 84 41 135 140 143
3 6 7 8 16 47 47 54 29 89 93 89 42 139 146 148
4 8 8 9 17 49 50 56 30 95 99 93 43 146 149 151
5 11 9 15 18 55 53 59 31 99 101 99 44 148 153 157
6 15 11 18 19 58 55 60 32 103 104 103 45 153 157 162
7 20 13 20 20 60 62 62 33 107 105 108 46 158 161 165
8 23 19 24 21 61 63 63 34 110 107 115 47 159 170 168
9 24 20 28 22 63 69 67 35 112 115 117 48 162 178 171
10 27 26 29 23 71 74 70 36 117 120 124 49 164 174
11 28 29 33 24 74 76 72 37 120 122 132 50 169
12 32 32 39 25 79 80 77 38 126 127 136
13 34 34 45 26 84 83 79 39 129 132 137

484 12 Fault Tolerant Systems



R2VP xjNð Þ ¼ RCFðxjNÞ � RI xjNð Þ

¼ e� mAB;f ðNþxÞþmðA;BÞ;f ðNþxÞ�mAB;f ðNÞ�mðA;BÞ;f ðNÞð Þ
ð12:3:63Þ

Since it is assumed that failure in both versions on an input is only due to
common faults therefore the system reliability would be given by

R2VP xjNð Þ ¼ RCFðxjN Þ ¼ e� mAB;f ðNþxÞ�mAB;f ðNÞð Þ ð12:3:64Þ

Estimating the parameters of the 2VP system using CNLR function of SPSS
software package we obtain the estimates of the unknown parameters and their
respective standard errors as shown in Table 12.9. The variance–covariance matrix
is given in Table 12.10. The goodness of fit curve for the fault type AB, A, and
B are illustrated graphically in Figs. 12.19, 12.20 and 12.21, respectively. The
system reliability curve is shown in Fig. 12.22.

Table 12.9 Estimated values of unknown parameters and their standard errors (discrete 2VP
SRGM)

Proposed model aAB aA aB b a1 a2

Estimated values 9.527 15.126 17.458 0.019536 0.0043 0.01023
Standard error 2.2275 5.728829 6.51 0.007148 0.24767 0.24175

Table 12.10 Variance–covariance matrix (discrete 2VP SRGM)

aAB aA aB b a1 a2

aAB 4.96 12.05 13.90 -0.0155 -0.4736 -0.4994
aA 12.05 32.82 35.84 -0.0398 -1.3612 -1.2861
aB 13.90 35.84 42.38 -0.0460 -1.3990 -1.5522
B -0.02 -0.04 -0.05 0.0001 0.0016 0.0016
a1 -0.47 -1.36 -1.40 0.0016 0.0613 0.0502
a2 -0.50 -1.29 -1.55 0.0016 0.0502 0.0584

1

3

5

7

9

11

8

2
0

2
9

3
1

3
6

3
7

3
9

6
2

9
9

Test case

C
u

m
u

la
ti

v
e

 R
e

m
o

v
a

ls

Actual Data

Estimated Values (Faults AB)

Fig. 12.19 Goodness of fit
curve for fault type AB
(discrete 2VP SRGM)

12.3 Reliability Growth Analysis of NVP Systems 485



Data Analysis of a 3VP System

From the data in Table 12.8 failure times and number of faults for each type of
fault (ABC, …, C) can be extracted. Here also it is assumed that each system
failure is only due to common faults (fault type ABC, AB, AC, BC). In the data
analysis of a 3VP system p1 = 0.9, p2 = 0.92, p3 = 0.89 are taken. Since the
expressions of the mean value functions is very large, therefore for the sake of
simplicity the fault generation parameters are also assumed to be known. It is
reasonable to assume sufficiently high testing efficiency hence a small value of the
fault generation rate is observed. a1 = 0.055, a2 = 0.04 and a3 = 0.05 are
assumed. These values are taken for the sake of illustration and can be determined

1

6

11

16

2

1
0

2
4

3
4

4
4

5
4

8
0

9
7

Test cases
C

u
m

u
la

ti
v

e
 R

e
m

o
v

a
ls Actual Data

Estimated Values (Faults A)

Fig. 12.20 Goodness of fit
curve for fault type
A (discrete 2VP SRGM)

1

6

11

16

21
2

1
0

2
4

3
4

4
4

5
4

8
0

9
7

Test cases

C
u

m
u

la
ti

v
e

 R
e

m
o

v
a

ls

Actual Data

Estimated Values (Faults B)

Fig. 12.21 Goodness of fit
curve for fault type
B (discrete 2VP SRGM)

0

0.2

0.4

0.6

0.8

1

2

2
2

4
2

6
2

8
2

1
0
2

1
2
2

1
4
2

1
6
2

1
8
2

2
0
2

Test case

R
e

li
a

b
il

it
y

Reliability
Fig. 12.22 System reliability
growth (discrete 2VP SRGM)

486 12 Fault Tolerant Systems



from the past failure data and experience. The other unknown parameters are
estimated using CNLR estimation method and estimation results and standard
error of the estimated parameters are tabulated in Table 12.11. The variance-
covariance matrix is given in Table 12.12. Goodness of fit curves for fault type
ABC, AB, AC, BC, A, B, and C are given in Figs. 12.23, 12.24, 12.25, 12.26, 12.27,
12.28, and 12.29 and system reliability curves is shown in Fig. 12.30.

From the estimation results and goodness offit curves of 2 and 3VP systems it can
be seen that themodel can fairly predict the failure phenomenon of theNVP systems.

12.4 COTS Based Reliability Allocation Problem

All fault tolerance techniques provide some degree of reliability improvement. On
the other hand all techniques of fault tolerance rely on design or data redundancy
to mask failure or recover from the state of failure. A direct implication of building

Table 12.11 Estimated values of unknown parameters and their standard errors (discrete 3VP
SRGM)

Proposed model aABC aAB aAC aBC aA aB aC b

Estimated values 28.07 36.47 37.396 34.39 59.54 58.09 55.06 0.0023
Standard error 7.083 8.89 9.02 8.34 14.63 14.02 13.54 0.0006

Table 12.12 Variance–covariance matrix (discrete 3VP SRGM)

aABC aAB aAC aBC aA aB aC b

aABC 50.17 60.61 61.75 56.85 100.84 96.48 93.30 -0.0042
aAB 60.61 79.03 78.84 72.57 128.49 123.12 118.93 -0.0054
aAC 61.75 78.84 81.36 73.96 130.95 125.50 121.17 -0.0055
aBC 56.85 72.57 73.96 69.56 120.56 115.49 111.52 -0.0050
aA 100.84 128.49 130.95 120.56 214.04 204.60 197.58 -0.0089
aB 96.48 123.12 125.50 115.49 204.60 196.56 189.32 -0.0085
aC 93.30 118.93 121.17 111.52 197.58 189.32 183.33 -0.0082
b -0.0042 -0.0054 -0.0055 -0.0050 -0.0089 -0.0085 -0.0082 3.7E-07

0

1

2

3

4

5

6

7

8

8 20 47 63 84 99 132

Test Case Number

C
u

m
u

la
ti

v
e

 R
e

m
o

v
a

ls

Actual Data

Estimated Values (Faults ABC)

Fig. 12.23 Goodness of fit
curve for fault type ABC
(discrete 3VP SRGM)

12.3 Reliability Growth Analysis of NVP Systems 487



0

2

4

6

8

10

12

14

15 28 60 89 117 148

Test Case Number

C
u

m
u

la
ti

v
e
 R

e
m

o
v
a
ls

Actual Data

Estimated Values (Faults AC)

Fig. 12.25 Goodness of fit
curve for fault type AC
(discrete 3VP SRGM)

0

2

4

6

8

10

12

3 9 29 45 62 80 93 115 137 157

Test Case Number

C
u

m
u

la
ti

v
e
 R

e
m

o
v
a
ls Actual data

Estimated Values (Faults BC)

Fig. 12.26 Goodness of fit
curve for fault type BC
(discrete 3VP SRGM)

0

5

10

15

20

25

1

2
3

4
0

5
8

7
1

8
8

1
1

2

1
2

9

1
4

6

1
5

9

1
6

9

Test Case Number

C
u

m
u

la
ti

v
e
 R

e
m

o
v
a
ls Actual Data

Estimated Values (Faults A)

Fig. 12.27 Goodness of fit
curve for fault type
A (discrete 3VP SRGM)

0

2

4

6

8

10

12

6 11 32 34 55 74 95 107 120 153

Test Case Number
C

u
m

u
la

ti
v
e
 R

e
m

o
v
a
ls Actual Data

Estimated Values (Faults AB)

Fig. 12.24 Goodness of fit
curve for fault type AB
(discrete 3VP SRGM)

488 12 Fault Tolerant Systems



redundancy is the additional cost. As we are all aware that with the growth of
complexity and requirement of software in critical systems fault tolerance cannot
be avoided. Hence it is desired that the developers must weigh the cost of fault
tolerance against the cost of failure. Instead of applying ad hoc methods, use of
optimization techniques is always preferred in such decision-making situations.
Optimization problems of optimum selection of redundant components are widely
studied by many researchers in the literature [18–22, 36]. Different optimization
models were formulated each applicable to a different software system structure,
ranging from a very simple configuration to more sophisticated ones. The earliest
work in this field appears to be done by Belli and Jedrzejowicz [17] but it gained
popularity with the work of Ashrafi and Berman [18].

0

5

10

15

20

25

7 19 41 53 76 10
1

10
5

12
7

14
6

16
1

17
8

Test Case Number
C

u
m

u
la

ti
v

e
 R

e
m

o
v

a
ls Actual Data

Estimated Values (Faults B)

Fig. 12.28 Goodness of fit
curve for fault type
B (discrete 3VP SRGM)

0

5

10

15

20

25

5 33 54 59 70 77 12
4

14
3

16
5

17
1

Test Case Number

C
u

m
u

la
ti

v
e

 R
e

m
o

v
a

ls Actual Data

Estimated Values (Faults C)

Fig. 12.29 Goodness of fit
curve for fault type
C (discrete 3VP SRGM)

0

0.2

0.4

0.6

0.8

1

1.2

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00
50

00

Test Case Number

R
e
li
a
b

il
it

y

Reliability

Fig. 12.30 System reliability
growth (discrete 3VP SRGM)

12.4 COTS Based Reliability Allocation Problem 489



12.4.1 Optimization Models for Selection of Programs for

Software Performing One Function with One Program

The first problem [18] addressed by the authors is that different organizations pur-
chase software programs to perform their different functions where each program can
be weighted according to the usage frequency of the function it performs. For per-
forming each function several programs may be available in market with known
market cost and reliability. The optimization problems under consideration maximize
the average reliability of a software package consisting of several programs to per-
form distinct functions by purchasing the best reliable programs in the market such
that the total cost of package remains within the available budget. It can be noted here
that the assumption of using the ready programs available in the market to make the
package implies the use of COTS (Commercial Off-the-shelf) programs. For the
COTS programs it is possible to have information on reliability and cost. Hence the
models are applicable only to those software packages that are designed using COTS
products. As COTS programs/modules are often developed by completely different
groups, tools and in different environment, failure independence of these programs is
more acceptable. The authors have formulated two types of models one which does
not consider maintaining redundancy for performing each function and the other
which maintains redundancy under budget limits.

Notation

K Number of functions the software package is required to perform
Fk Frequency of use of function k; k ¼ 1; 2; . . .;K
mk Number of programs available for function k
Rkj Reliability of program j, which performs function k
Xkj are indicator variable =

1 program is selected to perform function
0 otherwise

�

R Average reliability of the software package
ckj Cost of developing program j that performs function k
B Available budget

Assumption

1. Each program has a distinct, known reliability and cost.
2. The budget is limited.
3. Usage frequency for each function is known, viz, provided by the user.

12.4.1.1 Model Without Redundancy

The software package performs several functions but due to financial limitations
and/or non-critical nature of the functions, keeping multiple programs that are
functionally equivalent is not possible. The objective is to select one program for

490 12 Fault Tolerant Systems



each function such that the average reliability is maximized and the cost of pur-
chasing programs remains within the budget. Hence the problem of maximizing
average reliability by choosing the optimal set of programs is formulated as

Maximize R ¼
X

K

k¼1
FkRk ð12:4:1Þ

Subject to
X

mk

j¼1
Xkj ¼ 1; k ¼ 1; . . .;K ð12:4:2Þ

X

K

k¼1

X

mk

j¼1
XkjCkj �B ð12:4:3Þ

Xkj ¼ 0; 1; for k ¼ 1; 2; . . .;K and j ¼ 1; 2; . . .;mk ðP1Þ

Rk �
X

mk

j¼1

XkjRkj ð12:4:4Þ

The objective function of the above problem reflects that the average reli-
ability of the software package is maximized which is a weighted sum of the
reliability of the K functions; reliability of each program is multiplied by the
usage frequency of the corresponding function. The constraint set ensures that
exactly one program is selected for each function and the total expenditure does
not exceed the budget. Since the functions are required for entirely different
purposes they should be considered not as a series of functions but as a set of s-
independent functions.

Maximizing the average reliability, R, is equivalent to minimizing the average
failure rate Z,

Z � N=Hð Þ
X

K

k¼1

Fk 1� Rkð Þ ð12:4:5Þ

where
H is the operation time,
N the number of runs duringH and 1� Rk the probability of failure for function k.

Using
PK

k¼1 Fk ¼ 1 Eq. (12.4.5) can be rewritten as

Z ¼ N=Hð Þ 1�
X

K

k¼1

FkRk

 !

¼ N=Hð Þ 1� R
� �

12.4 COTS Based Reliability Allocation Problem 491



The problem (P1) is an integer programming problem and can be solved using
software packages such as LINGO, LINDO, Mathematica, etc. The problem has
sum of mk; k = 1,2,…, K variables and K ? 1 constraints. The authors have also
proposed a Lagrangian Relaxation algorithm to solve the problem if K and mk are
large. However, now a days the professional versions of these software are
available which can solve problems of very high dimensions.

Application 12.1

A software with two functions is required to be built with a budget of $12. Four
programs are available for function 1 with reliability and cost R11 ¼ 0:90; R12 ¼
0:80; R13 ¼ 0:85; R14 ¼ 0:95;C11 ¼ $6; C12 ¼ $4; C13 ¼ $5; C14 ¼ $8: For
function 2, 3 alternatives are available with specifications R21 ¼ 0:70; R22 ¼
0:80; R23 ¼ 0:85;C21 ¼ $2; C22 ¼ $4; C23 ¼ $6: The weight assigned to the
usage frequency of functions 1 and 2 is F1 ¼ 0:75; F2 ¼ 0:25:

Solving the above application according to the above formulation selects pro-
gram 4 for function 1 and program 2 for function 2. The optimal level of reliability
is 0.9125 at the cost of $12.

12.4.1.2 Model with Redundancy

The previous model denies the selection of more than one component for per-
forming a specific function. Hence such software does not allow fault tolerance.
Assuming the recovery block scheme of fault tolerance the problem (P1) can be
reformulated as follows

Maximize R ¼
X

K

k¼1
FkRk

Subject to
X

mk

j¼1
Xkj � 1; k ¼ 1; . . .;K

ð12:4:6Þ

X

K

k¼1

X

mk

j¼1

XkjCkj �B

Xkj ¼ 0; 1; for k ¼ 1; 2; . . .;K and j ¼ 1; 2; . . .;mk ðP2Þ

Rk � 1�
Y

mk

j¼1

1� Rkj

� �Xkj ð12:4:7Þ

In contrast to (12.4.2), (12.4.6) allows selection of more than one program for
any particular function. Here it is assumed that the cost of performing the
acceptance test for each program is negligible compared to the purchase cost. A
failure state occurs only when all alternative programs for any function give an
incorrect output. Thus Rk is the probability that at least one of the programs

492 12 Fault Tolerant Systems



selected for the function k is working. This probability is hence same as that for a
parallel system. The problem (P2) can be rewritten as a minimization of failure rate
using (12.4.7) with the objective function

Minimize
X

K

k¼1
Fk

Y

mk

j¼1
1� Rkj

� �Xkj ð12:4:8Þ

Like problem (P1), (P2) can also be solved using any integer-programming
package. However, the authors have proposed a dynamic programming algorithm
to solve the problem, as due to its nonlinear nature it cannot be solved with
Lagrangian Relaxation algorithm.

Application 12.2

For the same data as in Application 12.1, the formulation (P2) gives the same
solution as given by (P1) as the solution exhausts the whole budget i.e. $12. Now if
the budget is increased to $14, an increase in budget by $2 allows redundancy.
Program 4 is selected for function 1 and programs 1 and 2 for function 2.
Redundancy of program in function 2 improves reliability from 0.9125 to 0.9475,
i.e. approximately by 3.5%.

In another research Berman and Ashrafi [19] formulated the optimum com-
ponent selection problem for a different system structure. Here instead of assuming
that software is capable of performing different functions, each being performed
by specific program with known reliability and cost, they considered the system
architecture where software is required to perform one or more functions. Each
function is performed by executing a program, where each program consists of a
series of modules which, upon sequential execution, performs the function. Each
module may be called by more than one program. The optimal redundancy level is
to be determined at the modular level.

12.4.2 Optimization Models for Selection of Programs for Soft-

ware Performing Each Function with a Set of Modules

Four types of optimization problems were discussed applicable to the different
system structures. First two models consider software performing only one function
with and without maintaining redundancy at modular level and later two models
consider more than one function software, again with and without redundancy.

Notation

K Number of functions the software package is required to perform
n Number of modules in the software
Fk Frequency of use of function k; k ¼ 1; 2; . . .;K
mi Number of versions available for module i

12.4 COTS Based Reliability Allocation Problem 493



Rij Reliability of version j, for module i
Xij are indicator variable =

1 Version j is selected for module i
0 otherwise

�

Ri Estimated reliability of module i
R Estimated reliability of the software
cij Cost of developing version j for module i
B Available budget
Sk Set of modules corresponding to program k

Assumption

1. Software is developed using modular programming
2. Functionally equivalent versions developed independently are available for

each module, with known estimated reliability and cost.
3. The budget is limited.
4. Usage frequency for each function is known, viz, provided by the user.

12.4.2.1 Optimization Models for One Function Software

These models consider software performing only one major function by executing
a set of modules sequentially. Alternative versions are available for different
modules.

Model 1 Without Redundancy

Due to the limitation of budget or non-critical nature of the software operation
redundancy of software modules is not allowed, hence the problem can be for-
mulated as follows

Maximize R ¼
Y

n

i¼1
Ri ð12:4:9Þ

Subject to
X

mi

j¼1
Xij ¼ 1; i ¼ 1; . . .; n ð12:4:10Þ

X

n

i¼1

X

mi

j¼1
XijCij �B

Xij ¼ 0; 1 i ¼ 1; . . .; n j ¼ 1; . . .;mi ðP3Þ

494 12 Fault Tolerant Systems



where

Ri ¼
X

mi

j¼1
XijRij ð12:4:11Þ

The objective function of (P3) reflects that the modules are executed sequen-
tially. The constraint set ensures that exactly one version is selected for each
module and total expenditures will not exceed B. This problem is a nonlinear
integer-programming problem. Authors suggested a branch and bound approach to
solve the problem, although it can also be solved using any nonlinear integer-
programming software package.

Application 12.3

Consider single function software consisting of a set of three modules (say A, B,
and C). The number of alternatives available for modules A, B, and C is 3, 3, and 2.
The reliability and cost of the modules are R11 ¼ 0:90; R12 ¼ 0:80;
R13¼0:85;R21 ¼ 0:95; R22 ¼ 0:80; R31 ¼ 0:98;R32 ¼ 0:94;C11 ¼ $3; C12 ¼ $1;
C13 ¼ $2; C21 ¼ $3; C22 ¼ $2;C23 ¼ $1;C31 ¼ $3;C32 ¼ $2: The budget is $6.

The optimal solution obtained selects the versions 2, 1, and 2 respectively for
modules A, B, and C. The reliability level achieved is 0.714 with the total
expenditure of $6.

Model 2 With Redundancy

This model considers software, which performs a more critical function, whose
failure can be severe. Fault tolerance is built by keeping redundant versions for
modules. Hence the problem (P3) is restated as

Maximize R ¼
Y

n

i¼1
Ri

Subject to
X

mi

j¼1
Xi j � 1; i ¼ 1; . . .; n

ð2:3:12Þ

X

n

i¼1

X

mi

j¼1

Xi jCi j �B

Xi j ¼ 0; 1 i ¼ 1; . . .; n j ¼ 1; . . .;mi ðP4Þ

where

Ri ¼ 1�
Y

mi

j¼1

1� Ri j

� �Xi j ð12:3:13Þ

12.4 COTS Based Reliability Allocation Problem 495



The reliability of modules i is defined as the probability that at least one of the
mi versions is performing correctly. The constraint set guarantees that for each
module i at least one version will be selected. Again this problem is also a non-
linear integer-programming problem. Authors have suggested a Dynamic pro-
gramming algorithm for solving the problem. Since this problem can be solved
using software packages we avoid discussing the algorithm.

Application 12.4

Consider the same data as in Application 12.3 with a budget of $10, the optimal
solution found is X12 = X13 = 1; X21 = X23 = 1; X31 = 1. The overall reliability
achieved is 0.9359 and cost $10. Reliability is 22.19% more as compared to the
one obtained in without redundancy formulation with an increased cost of $4.

12.4.2.2 Optimization Models for Multiple (K) Function Software

These models consider software system consisting of several programs each
consisting of a set of modules and performing a specific function. Programs can
call any module and alternative versions are available for different modules.

Model 3 Without Redundancy

Due to the limitation of budget or non-critical nature of the software operation
redundancy of software modules is not allowed, hence the problem of determining
the optimal set of modules maximizing reliability within the budget constraint can
be formulated as follows

Maximize R ¼
X

K

k¼1
Fk

Y

i2Sk
Ri

Subject to
X

mi

j¼1
Xi j ¼ 1; i ¼ 1; . . .; n

X

n

i¼1

X

mi

j¼1
Xi jCi j �B

Xi j ¼ 0; 1 i ¼ 1; . . .; n j ¼ 1; . . .;mi ðP5Þ

where Ri ¼
P

mi

j¼1
Xi jRij:

The objective function (P5) reflects that the modules in any program are exe-
cuted sequentially each having usage frequency Fk. The constraint set is same as in
(P3). Authors suggested a branch and bound approach as well as the use of any
nonlinear integer-programming software package to solve the problem.

496 12 Fault Tolerant Systems



Application 12.5

Consider two-function software consisting of a set of three modules (say A, B, and
C). Two alternatives are available for each module. Function one is performed by
executing program one consisting of modules A and B sequentially. While another
program consisting of modules B and C performs the function 2 on sequential
execution of its modules. The usage frequency of functions 1 and 2 is F1 = 0.70
and F2 = 0.30. The reliability and cost of the modules are R11 = 0.80,
R12 = 0.85, R21 = 0.70, R22 = 0.90, R31 = 0.95, R32 = 0.90, C11 = $2,
C12 = $3, C21 = $1, C22 = $3, C31 = $4, C32 = $3. The budget is $8.

The optimal solution is (X11, X22, X32) at the cost of $8 with the achieved level
of reliability 0.747. If the budget is $10 then the optimal solution changes to (X12,
X22, X31) with the total expenditure of $10 and reliability level 0.792.

Model 4 With Redundancy

Permitting redundancy in (P5) the problem is restated as

Maximize R ¼
X

K

k¼1
Fk

Y

i2Sk
Ri

Subject to
X

mi

j¼1
Xi j � 1; i ¼ 1; . . .; n

ð12:4:14Þ

X

n

i¼1

X

mi

j¼1

Xi jCi j �B

Xi j ¼ 0; 1 i ¼ 1; . . .; n j ¼ 1; . . .;mi ðP6Þ

where Ri ¼ 1�
Q

mi

j¼1
1� Ri j

� �Xi j :

Again the problem is nonlinear integer-programming problem and can be
solved with the help of software packages.

Application 12.6

Considering the same data as in Application 12.5 with a budget of $9 the optimal
solution is (X11,X21, X22, X32) with the achieved level of reliability 0.8052. Note
that the achieved level of reliability is even better than the case of Application 12.5
when the budget is $10.

12.4.3 Optimization Models for Recovery Blocks

The optimization models discussed in the previous sections do not consider any
of the fault tolerance schemes such as recovery block or NVP. They merely

12.4 COTS Based Reliability Allocation Problem 497



consider the programs consisting of set of modules, which on sequential execution
perform the function. Berman and Kumar [22] studied the problem of optimum
selection of component for the recovery blocks for the first time. Specifically they
have formulated optimization problems for two types of recovery blocks namely—
Independent and CRB schemes.

Notation

n Number of versions in the recovery block
Pð:Þ Probability of the event (.)
pi Failure probability of version i
Ci Cost of version i
t Maximum time available for a version to submit output to the testing

segment
t1 Probability that the testing segment can not perform successful recovery of

the input state
t2 Probability that the testing segment rejects a correct result
t3 Probability that the testing segment accepts an incorrect result
B Available budget
Rn Reliability of a recovery block with n versions
RCn Reliability of a consensus recovery block (CRB) with n versions
Zj Binary variable =

1 if version j is included in the software
0 otherwise

�

Zi;j Binary

variable =
1 if version i is placed at position j in the software
0 otherwise

�

Rj Reliability for the partial solution Z1; Z2; . . .; Z j

� 


1=ki Mean execution time for version i

12.4.3.1 Independent Recovery Block

Different types of errors that can result in failure of a recovery block are

1. A version produces correct result, but the testing segment labels it incorrect
2. A version produces incorrect result, but the testing segment labels it correct
3. A testing segment cannot perform successful recovery upon failure of a version

To compute the reliability of a recovery block based on the failure modes
observed two types of events are defined. Let

Yi: event that version i produces a correct result and testing segment accepts it as
correct

Xj: event that either version i produces an incorrect result or produces a correct
result and the testing segment rejects it; in both cases the testing segment
performs a successful recovery of the input states.

498 12 Fault Tolerant Systems



The probabilities corresponding to the above two events are given as

PðYiÞ ¼ 1� pið Þ 1� t2ð Þ

PðXiÞ ¼ 1� t1ð Þ pi 1� t3ð Þ þ 1� pið Þt2½ �

Now the reliability of a recovery block scheme with a single version 1, R1, is
defined as

R1 ¼ P Y1ð Þ

In general reliability of a recovery block with n versions is

Rn ¼ PðY1Þ þ
X

n

i¼2

Y

i�1

k¼2

PðXkÞ

" #

PðY iÞ; n� 2 ð12:4:15Þ

Recursively,

Rn ¼ Rn�1 þ
Y

n�1

k¼1

PðXkÞ

" #

PðYnÞ; n� 2 ð12:4:16Þ

To attain the largest possible reliability of a recovery block the different ver-
sions are to be installed in the order from smallest to the largest based on failure
probabilities. This has been proved by Berman and Kumar [22] stating

Theorem 12.1 For a recovery block scheme with n independent versions, the list
ordered from smallest to the largest based on failure probabilities is at least as
reliable as any other list of the n versions.

Proof Let Rn
1 and Rn

2 be the reliability of recovery block, respectively, for list 1
and 2 where

List 1 1, 2, 3, …j, j ? 1, …, n
List 2 1, 2, 3, … j - 1, j ? 1, j, j ? 2, …, n
This is sufficient to prove that if P1 B P2 B P3 B, …, Pn then Rn

1
C Rn

2
h

From Eq. (12.4.15) Rn
1 and Rn

2 are given by

R1
n ¼ PðY1Þ þ

X

j�2

i¼1

Y

i

k¼1

PðXkÞ

" #

PðYiþ1Þ þ
Y

j�1

k¼1

PðXkÞ

" #

PðYjÞ

þ
Y

j

k¼1

PðXkÞ

" #

PðYjþ1Þ þ
X

n�1

i¼jþ1

Y

i

k¼1

PðXiÞ

" #

PðYiþ1Þ ð12:4:17Þ

R2
n ¼ PðY1Þ þ

X

j�2

i¼1

Y

i

k¼1

PðXkÞ

" #

PðYiþ1Þ þ
Y

j�1

k¼1

PðXkÞ

" #

PðYjþ1Þ

þ
Y

j�1

k¼1

PðXkÞ

" #

PðXjþ1ÞPðYjÞ þ
X

n�1

i¼jþ1

Y

i

k¼1

PðXiÞ

" #

PðYiþ1Þ

ð12:4:18Þ

12.4 COTS Based Reliability Allocation Problem 499



R1
n � R2

n � 0

, PðYjÞ þ PðXjÞPðYjþ1Þ � PðYjþ1Þ � PðXjþ1ÞPðYjÞ� 0 ð12:4:19Þ

Substituting the values of P(Yj), P(Yj+1), P(Xj) and P(Xj+1) we get

ð1� t2ÞðPjþ1 � PjÞ � ð1� t1Þð1� t2Þð1� t3ÞðPjþ1 � PjÞ� 0 ð12:4:20Þ

above inequality is true only if Pj+1 - Pj C 0, hence Rn
1
C Rn

2.
Now the problem of maximizing reliability by choosing an optimal set of

versions subject to a budget constraint is

Maximize Rn ¼
X

n

i¼1

Zi
Y

i�1

k¼1

PðXkÞ
Zk

 !

PðYiÞ
Zi ð12:4:21Þ

Subject to
X

n

i¼1

CiZi �B

Zi ¼ 0; 1 i ¼ 1; . . .; n ðP7Þ

Equation (12.4.21) defines the reliability of a recovery block scheme chosen
from n versions corresponding to a solution{Z1, Z2,…, Zj}. The constraint ensures
the budget restriction. Berman and Kumar [22] developed a branch and bound
algorithm to solve the problem, although they have also suggested to use any
mathematical programming software package to solve the problem. Hence here we
avoid discussing their algorithm and use software package LINGO to solve the
problem. h

Application 12.7

Consider a recovery block scheme with four versions. The budget is B = $22. The
probability of failure and cost of the four versions are p1 = 0.1, p2 = 0.2, p3 = 0.3,
p4 = 0.4, c1 = 9, c2 = 7, c3 = 8, c4 = 6 and t1 = 0.01, t2 = 0.05 and t3 = 0.3.

From these data we have P(X1) = 0.1425, P(X2) = 0.2356, P(X3) = 0.3286,
P(X4) = 0.4217, P(X4) = 0.4217, P(Y1) = 0.855, P(Y2) = 0.76, P(Y3) = 0.665,
P(Y4) = 0.57. The optimal solution found is Z1 ¼ 1; Z2 ¼ 1; Z3 ¼ 0; Z4 ¼ 1

� 


:

The corresponding objective function value is 0.9824 and the total cost = $22.

12.4.3.2 Consensus Recovery Block

Constitutes of a CRB are n independent versions of a program, an acceptance test
and voting procedure. The versions are ranked, based on their failure procedure.
Upon invocation of CRB, all versions are executed simultaneously and submit
their outputs to a voting procedure. If the outputs of two or more versions are in

500 12 Fault Tolerant Systems



agreement that output is designated as correct. Otherwise the next stage is entered.
At this stage the best version is examined by an acceptance test. If the output is
accepted, it is treated as correct. However, if the output is not accepted, the next
best version is subject to testing. This process continues until acceptable output is
found or all the n outputs are exhausted.

Define the following probabilities

P Gnð Þ ¼ P 2 or more outputs agreeð Þ

P Gcð Þ ¼ P recurring output is correctð Þ

P Dnð Þ ¼ P all the outputs are differentð Þ

Reliability of CRB is hence given as

RCn ¼ P Gnð ÞP Gcð Þ þ P Dnð ÞRn

RCn ¼ 1� P Dnð Þð ÞP Gcð Þ þ P Dnð ÞRn ð12:4:22Þ

where Rn is the reliability of a recovery block scheme with n versions as given by
(12.4.15) or (12.4.16). For CRB t1 = 0 hence the probabilities of events Yi and Xi

are

PðYiÞ ¼ ð1� piÞð1� t2ÞÞ ð12:4:23Þ

PðXiÞ ¼ pi 1� t3ð Þ þ 1� pið Þt2 ð12:4:24Þ

Here P(Dn) is the probability that at least (n - 1) versions of the n versions fail.
Therefore

P Dnð Þ ¼
X

n

i¼1

1
pi

Y

n

k¼1

pk

" #

1� pið Þ þ
Y

n

i¼1

pi ¼ P Dn�1ð Þpn þ
Y

n�1

i¼1

pi

 !

1� pnð Þ

ð12:4:25Þ

To simplify it is assumed that P(Gc) = 1.

RCn ¼ 1�P Dnð ÞþP Dnð ÞRn ¼ 1þP Dnð Þ Rn�1½ �

hence RCn ¼ 1þ
X

n

i¼1

1
pi

Y

n

k¼1

pk

" #

1�pið Þþ
Y

n

i¼1

pi

" #

X

n

i¼1

Y

i�1

k¼1

P Xkð Þ

" #

P Yið Þ�1

" #

ð12:4:26Þ

Improvement in reliability of CRB scheme over recovery block is

RCn � Rn ¼ 1� P Dnð Þ þ P Dnð ÞRn � Rn

¼ 1� P Dnð Þð Þ 1� Rnð Þ
ð12:4:27Þ

12.4 COTS Based Reliability Allocation Problem 501



Similar to the case of independent recovery blocks reliability of a CRB is
largest if the n versions are arranged in the order of their reliability. It is proved in
the following theorem.

Theorem 12.2 For a CRB scheme with n versions, the list of versions ordered
from smallest to largest based on failure probability is more reliable than any
other list of versions.

This theorem can be proved on the similar lines of the theorem established for
the case of independent recovery blocks.

Now the problem of maximizing reliability by choosing an optimal set of
versions subject to a budget constraint is

Maximize RCn ¼ 1þ

X

n

i¼1

1
pzii

Y

n

k¼1
pzii

" #

1� pziið Þ þ
Y

n

i¼1

pzii

" #

X

n

i¼1

zi
Y

i�1

k¼1

P Xkð Þzk
" #

P Yið Þzi�1

" #

8

>

>

>

>

>

<

>

>

>

>

>

:

9

>

>

>

>

>

=

>

>

>

>

>

;

ð12:4:28Þ

Subject to
X

n

i¼1

CiZi �B

Zi ¼ 0; 1 i ¼ 1; . . .; n ðP8Þ

Equation (12.4.28) defines the reliability of a CRB scheme chosen from
n versions corresponding to a solution{Z1, Z2, …, Zj}. The constraint ensures the
budget restriction. Berman and Kumar [22] developed a branch and bound algo-
rithm to solve the problem, although they have also suggested to use any math-
ematical programming software package to solve the problem. We use software
package LINGO to solve the problem.

Application 12.8

Consider a CRB scheme with four versions and the data same as in Application
12.7. Again t1 = 0, t2 = 0.05, and t3 = 0.01.P(X1) = 0.144, P(X2) = 0.238,
P(X3) = 0.332, P(X4) = 0.426, P(Y1) = 0.855, P(Y2) = 0.76, P(Y3) = 0.665,
P(Y4) = 0.57. The optimal solution found is Z1 ¼ 1; Z2 ¼ 1; Z3 ¼ 0; Z4 ¼ 1

� 


:

The corresponding objective function value is 0.9980 and the total cost = $22.
Improvement in the reliability of CRB over independent recovery block is 0.0156
(= 0.9980-0.9824).

12.4.3.3 Independent Recovery Block with Exponential Execution Time

In the previous models it is assumed that all the versions of a block submit the
output to the acceptance test. However, some versions may enter into infinite loop

502 12 Fault Tolerant Systems



and may not submit any output at all. In this model it is assumed that the execution
time of each version follows an exponential distribution with rate ki, for version
i. Kumar [20] defined the errors that can result in failure of a recovery block with
exponential execution time

1. A version produces incorrect result (i.e. completes execution by time t) and the
testing segment labels it incorrect.

2. A version fails to complete execution by time t.
3. A version produces correct result, but the testing segment labels it incorrect.
4. A version produces incorrect result, but the testing segment labels it correct.
5. The testing segment cannot perform successful recovery upon failure of a

version.

To compute the reliability of a recovery block based on the failure modes
observed two types of events are defined. Let

Yi: Event that version i produces a correct result by time t and testing segment
accepts the correct result.

Xj: Event that (1) the version i produces an incorrect result and the testing
segment rejects it or that the version i produces a correct result and testing
segment rejects or (2) the version does not complete execution by time t. In
each case the testing segment performs a successful recovery of the input
states.

The probabilities corresponding to the above two events are given as

PðYiÞ ¼ 1� pið Þ 1� t2ð Þ 1� exp �kitð Þð Þ

PðXiÞ ¼ 1� t1ð Þ exp �kitð Þ þ 1� exp �kitð Þð Þ pi 1� t3ð Þ þ 1� pið Þt2ð Þ½ �

Now the reliability of a recovery block scheme with a single version 1, R1, is
defined as

R1 ¼ PðY1Þ

In general reliability of a recovery block with n versions having exponential
execution times is

Rn ¼ PðY1Þ þ
X

n�1

i¼1

Y

i

k¼1

PðXkÞ

" #

PðY iþ1Þ; n� 2 ð12:4:29Þ

Recursively,

Rn ¼ Rn�1 þ
Y

n�1

k¼1

PðXkÞ

" #

PðYnÞ; n� 2 ð12:4:30Þ

12.4 COTS Based Reliability Allocation Problem 503



To attain the largest possible reliability of a recovery block the different ver-
sions are to be installed in the order from smallest to the largest based on failure
probabilities. This has been proved by Kumar [20] that for a recovery block
scheme with exponential execution time of versions the optimal sequence is based
on the value Vi, where

Vi ¼
P Yið Þ

1� P Xið Þð Þ

Theorem 12.3 For a recovery block scheme with n independent versions and
exponential execution time, the list ordered from largest to smallest based on Vi is
at least as reliable as any other list of n versions.

Proof: Let Rn
1 and Rn

2 be the reliability of recovery block, respectively, for list 1
and 2 where

List 1 1, 2, 3, …, i - 1, i, i ? 1, …, n
List 2 1, 2, 3, …, i - 1, i ? 1, i, i ? 2, …, n h

This is sufficient to prove that, R1
C R2 iff Vi C Vi+1.

The expression for R1 and R2 iss

R1 ¼ R1 þ
X

i�2

j¼1

Y

j

k¼1

P Xkð Þ
" #

P Yjþ1

 �

þ
Y

i�1

k¼1

P Xkð Þ
" #

P Yið Þ

þ
Y

i�1

k¼1

P Xkð Þ
" #

P Xið ÞP Yiþ1ð Þ þ
X

n�1

j¼iþ1

Y

j

k¼1

P Xkð Þ
" #

P Yjþ1
� �

R2 ¼ R1 þ
X

i�2

j¼1

Y

j

k¼1

P Xkð Þ
" #

P Yjþ1

 �

þ
Y

i�1

k¼1

P Xkð Þ
" #

P Yiþ1ð Þ

þ
Y

i�1

k¼1

P Xkð Þ
" #

P Xiþ1ð ÞP Yið Þ þ
X

n�1

j¼iþ1

Y

j

k¼1

P Xkð Þ
" #

P Yjþ1
� �

R1 � R2 ¼
Y

i�1

k¼1

P Xkð ÞP Yið Þ þ
Y

i�1

k¼1

P Xkð Þ
" #

P Xið ÞP Yiþ1ð Þ

�
Y

i�1

k¼1

P Xkð Þ
" #

P Yiþ1ð Þ �
Y

i�1

k¼1

P Xkð Þ
" #

P Xiþ1ð ÞP Yið Þ

R1 � R2 � 0 , P Yið Þ 1� P Xiþ1ð Þð Þ � P Yiþ1ð Þ 1� P Xið Þð Þ� 0

,
P Yið Þ

1� P Xj

� �� ��
P Yiþ1ð Þ

1� P Xiþ1ð Þð Þ
; i:e Vi �Viþ1:

Now the problem of maximizing reliability subject to a budget constraint is

504 12 Fault Tolerant Systems



Model 1

Maximize Rn ¼
X

n

i¼1
P Yið ÞZi;1 þ

X

n�1

j¼1

Y

j

k¼1

X

n

i¼1

P Xið ÞZi;k
" #

X

n

i¼1

P Yið ÞZi;jþ1

" #

ð12:4:31Þ

Subject to
X

n

i¼1

CiZi;j �B ðP9Þ

X

n

i¼1

Zi;j ¼ 1; j ¼ 1; 2; . . .; n

X

n

j¼1

Zi;j ¼ 1; i ¼ 1; 2; . . .; n

Zi;j ¼ 0; 1 i ¼ 1; . . .; n; j ¼ 1; . . .; n

Equation (12.4.21) defines the reliability of an independent recovery block
scheme. The constraint ensures the budget restriction, and that each version is exe-
cuted only once. The problem can be solved using any mathematical programming
software package. Here we use software package LINGO to solve the problem.

Application 12.9

Consider a recovery block scheme with four versions. The budget is B = $22. The
probability of failure, cost and mean execution time of the four versions are
p1 = 0.05, p2 = 0.1, p3 = 0.15, p4 = 0.2; c1 = 9, c2 = 7, c3 = 8, c4 = 5;
1=k1ð Þ ¼ 10; 1=k2ð Þ ¼ 8; 1=k3ð Þ ¼ 5; 1=k4ð Þ ¼ 4 and t1 = 0.01, t2 = 0.05 and
t3 = 0.01 and t = 10. From these data we have P(X1) = 0.45431, P(X2) =
0.45173, P(X3) = 0.41818, P(X4) = 0.46838, P(Y1) = 0.54046, P(Y2) = 0.54225,
P(Y3) = 0.575, P(Y4) = 0.52321, V1 = 0.9919, V2 = 0.9925, V3 = 0.9938,
V4 = 0.9931. The optimal solution found is {Z3,1 = 1, Z3,k = 0, k = 1; Z4,2 =
1, Z4,k = 0, k = 2; Z2,3 = 1, c2,k = 0, k = 3}. The corresponding objective
function value is 0.9597 and the total cost = $20.

Model 2

In this model an additional ‘‘time constraint’’ is introduced.

Time Constraint :
X

n

i¼1

X

n

j¼1

1=kið ÞZi;j � T ðP10Þ

Time constraint guarantees that the total execution time of the recovery block is
within the maximum allowed time.

12.4 COTS Based Reliability Allocation Problem 505



Application 12.10

Consider the same data as in Application 12.10 with T = 20. The optimal solution
found is {Z3,1 = 1, Z3,k = 0, k = 3; Z4,2 = 1, Z4,k = 0, k = 2; Z2,3 = 1, c2,k = 0,
k = 3}. The corresponding objective function value is 0.9597, total cost = $20
and T = 17.

12.4.4 Optimization Models for Recovery Blocks

with Multiple Alternatives for Each Version Having

Different Reliability

The optimal component selection problem addressed due to Kapur et al. [36]
considers software built by assembling COTS component performing multiple
functions. Each function is performed calling a set of modules. Modules can be
assembled in a recovery block scheme to provide the fault tolerance. For per-
forming the function of each module alternative COTS component is available in
the market. Again for each alternative version multiple choices are available from
the supplier with distinct reliability and cost. The version for any alternative
having higher reliability has higher cost. Two models are formulated for weighted
maximization of system reliability, weights being decided with respect to access
frequency of functions with in the available budget.

Notation

R Estimated reliability of the software
Fl Frequency of use of function l; l ¼ 1; 2; . . .L
Sl Set of modules required for function l
Ri Estimated reliability of module i
L Number of functions the software package is required to perform
n Number of modules in the software
mi Number of alternatives available for module i
V ij Number of versions available for i
Rij Reliability of alternative j, for module i
Rijk Reliability of version k of alternative j, for module i
Xijk Is indicator =

1 Version k of alternative j is selected for module i
0 otherwise

�

Cijk Cost of version k of alternative j for module i
B Available budget
M Large number greater than 1
Yi Is indicator =

1 if constraint i is inactive
0 otherwise

�

z Number of alternatives compatible for module with respect to another
module

506 12 Fault Tolerant Systems



Assumption

1. Codes written for integration of modules do not contain any bug.
2. Other than available cost-reliability versions of an alternative, existence of

virtual versions is assumed having negligible reliability of 0.001 and zero cost.
Existence of virtual versions allows no redundancy, in case of insufficient
budget. These components are denoted by index one in the third subscript of
xijk, cijk and rijk; for example, rij1 is reliability of first version of alternatives j for
module i, having the above property.

Model 1

The optimization problem of model 1 is

Maximize �R ¼
X

L

l¼1
Fl

Y

i2sl
Ri

Subject to
X

n

i¼1

X

mi

j¼1

X

Vij

k¼1
Cijk Xijk � B ðP11Þ

Ri ¼ 1�
Y

mi

j¼1

1� Rij

� �

; i ¼ 1; 2; . . .; n

Rij ¼
X

Vij

k¼1

XijkRijk i ¼ 1; 2; . . .:n; j ¼ 1; 2; . . .mi

X

Vij

k¼1

Xijk ¼ 1; i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .;mi

Ri [ 1�
Y

mi

j¼1

1� Rij1
� �

Objective function maximizes software reliability through a weighted function
of functional usage frequencies. Reliability of functions that are performed more
frequently, consequently the modules that are invoked more frequently during use
are given higher weights. The first constraint ensures the budget restriction. As it is
assumed that the exception raising and control transfer programs work perfectly, a
module fails if all attached alternatives fail. Hence the reliability expression is
similar to parallel structure as in second constraint. Third constraint computes the
reliability of the jth alternative for module i. Fourth constraint ensures that only
one version will be chosen for any particular alternative, which can also be the
dummy version. The last constraint ensures not all the selected alternatives for any
module are dummies. This model is a 0-1 nonlinear integer-programming

12.4 COTS Based Reliability Allocation Problem 507



problem. We now illustrate the model with an application solved using software
package LINGO.

Application 12.11

Consider software capable of performing four functions consisting of a set of five
modules. More than one alternative is available for each module with two versions
available for each alternative. One virtual version is assumed to exist for each
alternative indexing them with index one in the third subscript. The cost-reliability
data are as summarized in the following Table 12.13.

Assume the budget is $38. S1 = {1, 2, 3, 4, 5}, S2 = {1, 2, 5}, S3 = {1, 2, 3,
5}, S4 = {1, 2, 4, 5}, F1 = 0.5, F2 = 0.1, F3 = 0.2, F4 = 0.2. The optimal
solution obtained is x111 = x123 = x131 = 1; x211 = x221 = x233 = 1;
x313 = x321 = 1; x413 = x421 = 1; x513 = x522 = x531 = 1. From the solution it
can be seen that only one alternative is chosen for first to fourth modules.
Redundancy is allowed only in the fifth module. The redundant component for
fifth module i.e. X522 (one having lesser reliability) does not have the highest
reliability among the available versions, this is due to budget limitation. For all
other alternatives, the virtual version is chosen in the solution. The achieved level
of reliability is 0.8344 at the cost of $38.

Model 2

A very common problem associated to the use of COTS component is that some of
the alternatives available for one module may not be compatible with some
alternatives of another module. This issue must be considered with formulating the
optimum component selection problem. None of the models discussed so far
accounts it. The model 2 formulated due to Kapur et al. [36] accounts the com-
patibility of the module in forming the model. The additional constraints included
in the optimization problem of model 2 are

Table 12.13 Data for
Application 12.11

Module Alternatives Versions (Cost in $)
1 2 3

1 1 0.0 8.2 9.0
2 0.0 7.5 9.0
3 0.0 8.5 9.5

2 1 0.0 6.7 8.0
2 0.0 7.9 8.2
3 0.0 6.8 7.8

3 1 0.0 3.2 4.0
2 0.0 3.4 4.3

4 1 0.0 5.0 6.8
2 0.0 4.8 6.8

5 1 0.0 3.8 6.2
2 0.0 4.2 6.0

Rijk 0.001 0.85 0.95

508 12 Fault Tolerant Systems



xgsq � xhutc � Myt q ¼ 2; . . .;Vgs; c ¼ 2; . . .;Vhut ; s ¼ 1; . . .;mg ð12:4:32Þ

X

d

t¼1

yt ¼ d � 1 ð12:4:33Þ

where

d ¼ Vgs � 1
� �

Vhut � 1ð Þ ðP12Þ

The constraints (12.4.32) and (12.4.33) make use of binary variable yt to choose
one pair of alternatives from among different alternative pairs of modules. If more
than one alternative compatible component is to be chosen for redundancy, con-
straint (12.4.33) can be relaxed as follows,

X

d

t¼1

yt � d � 1

This model is also a 0-1 nonlinear integer-programming problem. We now
illustrate the model with an application solved using software package
LINGO.

Application 12.12

Consider the data same as in Application 12.11 and that first alternative of module
1 is compatible with second and third alternatives of module 2. The first alternative
of second module is compatible with second alternative of module 3. Lastly the
first alternative of fourth module is compatible with second and third alternatives
of module 5. The solution obtained with the budget of $38 is x111 = x123 =
x131 = 1; x211 = x221 = x233 = 1; x313 = x321 = 1; x411 = x423 = 1; x513 = x522 =
x531 = 1; It is observed that due to the compatibility condition, first alternative of
module 5 is not chosen as in case of Application 12.11. The system reliability is
0.8343.

Exercises

1. What SRE techniques can be used to minimize the system failure during field
use?

2. Software used to control and operate critical system applications have very high
reliability requirement. Why one needs to build fault tolerance in such systems
even though reliability of such software can be assured at very high level by the
use of scientific testing techniques and continuing testing for long duration.
Comment.

3. Write short note on the following techniques of fault tolerance.

a. Design diversity
b. Data diversity
c. Environment diversity.

12.4 COTS Based Reliability Allocation Problem 509



4. What are the two important design diversity techniques used in software
industry? Explain.

5. What is a hybrid design diversity technique?
6. Classify the faults in NVP system. Give a pictorial representation of these

faults in a 3VP system.
7. What is the COTS technology?
8. Explain the optimum component selection problem related to the development

of COTS product with the help of a diagram.
9. A software is supposed to perform three functions; different alternative soft-

ware programs are available for each function with varying cost and reliability
as given in the following table. The frequency of use of functions 1, 2, and 3 is
0.2, 0.5, and, 0.3, respectively. If a budget of $34 is available what will be the
optimum structure of the software assuming redundancy is not required.

Alternative Program 1 Program 2 Program 3

Reliability Cost ($) Reliability Cost ($) Reliability Cost ($)

1 0.85 9 0.9 4 0.78 8
2 0.86 13 0.93 8 0.82 12
3 0.9 20 0.95 10 0.84 15
4 0.92 24 – – – –

10. Assume that redundancy is allowed in exercise 9. what will be the optimum
structure of the software if budget is kept same? Also determine the optimum
solution for a budget of $50. Give the system reliability in each case.

11. Determine the optimal solution of Application 12.12, if the budget is changed
from $38 to $68, keeping all other data same. What will be the level of
reliability achieved?

References

1. Avizienis A, Kelly JPJ (1984) Fault tolerance by design diversity: concepts and experiments.
IEEE Computer 17(8):67–80

2. Ammann PE, Knight JC (1988) Data diversity: an approach to software fault tolerance. IEEE
Trans Comput. 37(4):418–425

3. Jalote P, Huang Y, Kintala C (1995) A framework for understanding and handling transient
software failures. In: Proceedings of the 2nd ISSAT International Conference on Reliability
and Quality in Design, Orlando, pp 231–237

4. Adams E (1994) Optimizing preventive service of the software products. IBM J R&D
28(1):2–14

5. Lee I, Iyer RK (1995) Software dependability in the tandem GUARDIAN system. IEEE
Trans Softw Eng 21(5):455–467

6. Avizienis A (1975) Fault-tolerance and fault-intolerance: complementary approaches to
reliable computing. Presented at international conference on reliable software, Los Angeles,
California

510 12 Fault Tolerant Systems



7. Randell B (1975) System structure for software fault tolerance. IEEE Trans Softw Eng SE-
1(2):220–232

8. Chen L, Avizienis A (1978) N-version programming: a fault tolerance approach to the
reliable software. In: Proceedings of the 8th international symposium fault-tolerant
computing, Toulouse, pp 3–9

9. Leung YW (1995) Maximum likelihood voting for fault tolerant software with finite output
spaces. IEEE Trans Reliability 44(3):419–426

10. Horning JJ, Lauer HC, Melliar PM, Randell B (1974) A program structure for error detection
and recovery. Lect Notes Comput Sci 16:177–193

11. Nicola VF, Goyal A (1990) Modeling of correlated failures and community error recovery in
multi-version software. IEEE Trans Softw Eng 16(3):350–359

12. Yau SS, Cheung RC (1975) Design of self-checking software. In: Proceedings of the
international conference on reliable software, IEEE Computer Society Press, Los Angeles
pp 450–457

13. Hecht M, Agron J, Hochhauser S (1989) A distributed fault tolerant architecture for nuclear
reactor control and safety functions. In: Proceedings of the real-time system symposium,
Santa Monica, pp 214–221

14. Scott RK, Gault JW, McAllister DF (1985) Fault tolerant software reliability modeling. IEEE
Trans Softw Eng 13(5):582–592

15. Scott RK, Gault JW, McAllister DF (1987) Fault-tolerant reliability modeling. IEEE Trans
Softw Eng SE-13(5):582–592

16. Lyu MR (1995) Software fault tolerance. Wiley, New York
17. Belli F, Jedrzejowicz P (1990) Fault-tolerant programs and their reliability. IEEE Trans

Reliability 29(2):184–192
18. Ashrafi A, Berman O (1992) Optimal design of large software systems considering reliability

and cost. IEEE Trans Reliability 41(2):281–287
19. Berman O, Ashrafi A (1993) Optimization models for reliability of modular software

systems. IEEE Transactions on Software Engineering 19(11):1119–1123
20. Kumar UD (1998) Reliability analysis of fault tolerant recovery blocks. OPSEARCH, J Oper

Res Soc India 35(4):281–294
21. Ashrafi A, Berman O, Cutler M (1994) Optimal design of large software systems using N-

version programming. IEEE Trans Reliability 43(2):344–350
22. Berman O, Kumar UD (1999) Optimization models for recovery block schemes. Eur J Oper

Res 115:368–379
23. Kapur PK, Bardhan AK, Shatnawi O (2002) Why software reliability growth modeling

should define errors of different severity. J Indian Stat Assoc 40(2):119–142
24. Scott RK, Gault JW, McAllister DF, Wiggs J (1984) Experimental validation of six fault-

tolerant software reliability models. In: Proceedings of the IEEE 14th fault-tolerant
computing symposium, pp 102–107

25. Eckhardt D, Lee L (1985) A theoretical basis for the analysis of multi-version software
subject to coincident errors. IEEE Trans Softw Eng SE-11(12):1511–1517

26. Littlewood B, Miller DR (1989) Conceptual modeling of coincident failures in multi-version
software. IEEE Trans Softw Eng 15(12):1596–1614

27. Dugan JB, Lyu MR (1994) System reliability analysis of an N-version programming
application. IEEE Trans Reliability 43(4):513–519

28. Kanoun K, Kaaniche M, Beounes C (1993) Reliability growth of fault-tolerant software.
IEEE Trans Reliability 42(2):205–218

29. Chatterjee S, Misra RB, Alam SS (2004) N-version programming with imperfect debugging.
Comput Electr Eng 30:453–463

30. Kapur PK, Gupta A, Jha PC (2007) Reliability growth modeling and optimal release policy of
a n-version programming system incorporating the effect of fault removal efficiency. Int J
Autom Comput., Springer, Heidelberg 4(4):369–379

31. Teng X, Pham H (2002) A software reliability growth model for N-version programming
systems. IEEE Trans Reliability 51(3):311–321

References 511



32. Zhang XM, Jeske DR, Pham H (2002) Calibrating software reliability models when the test
environment does not match the user environment. Appl Stoch Models Bus Indus 18:87–99

33. Kapur PK, Kumar D, Gupta A, Jha PC (2006) On how to model software reliability growth in
the presence of imperfect debugging and fault generation. In: Proceedings of the 2nd
international conference on reliability and safety engineering, INCRESE, pp 261–268

34. Pham H (2006) System software reliability, Reliability Engineering Series. Springer, London
35. Kapur PK, Gupta A, Gupta D, Jha PC (2008) Optimum software release policy under fuzzy

environment for a n-version programming system using a discrete software reliability growth
model incorporating the effect of fault removal efficiency. Verma AK, Kapur PK, Ghadge SG
(eds) Advances in performance and safety of complex system. Macmillan Advance Research
Series, 803–816

36. Kapur PK, Jha PC, Bardhan AK (2002) Optimal component selection for fault tolerant COTS
based software system. Presented at the international conference on operational research for
development (ICORD’2002), Anna University, Chennai

512 12 Fault Tolerant Systems



Appendix A

A.1 Standard Normal (Z) Table

The Standard Normal distribution is used in various hypothesis tests including
tests on single means, the difference between two means, and tests on proportions.
The Standard Normal distribution has a mean of 0 and a standard deviation of 1.
As shown in the illustration below, the values inside the given table represent the
areas under the standard normal curve for values between 0 and the relative
z-score. For example, to determine the area under the curve between 0 and 2.36,
look in the intersecting cell for the row labeled 2.30 and the column labeled 0.06.
The area under the curve is 0.4909. To determine the area between 0 and a
negative value, look in the intersecting cell of the row and column which sums to
the absolute value of the number in question. For example, the area under the
curve between -1.3 and 0 is equal to the area under the curve between 0 and 1.3,
so look at the cell on the 1.3 row and the 0.00 column (the area is 0.4032).

Area Between 0 and z

513



Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517
0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879
0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224
0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549
0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852
0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389
1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621
1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319
1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441
1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767
2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817
2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857
2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890
2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916
2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936
2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952
2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964
2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974
2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981
2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986
3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990

514 Appendix A



A.2 Kolmogorov–Smirnov Test Table

The value in the table represents dn,a, where n is the sample size and a is the level
of significance.

Sample size(n) Level of significance A for dn ¼ sup
�1\x\1

FnðxÞ � F0ðxÞj j

0.20 0.15 0.10 0.05 0.01

1 0.900 0.925 0.950 0.975 0.995
2 0.684 0.726 0.776 0.842 0.929
3 0.565 0.597 0.642 0.708 0.828
4 0.494 0.525 0.564 0.624 0.733
5 0.446 0.474 0.510 0.565 0.669
6 0.410 0.436 0.470 0.521 0.618
7 0.381 0.405 0.438 0.486 0.577
8 0.358 0.381 0.411 0.457 0.543
9 0.339 0.360 0.388 0.432 0.514
10 0.322 0.342 0.368 0.410 0.490
11 0.307 0.326 0.352 0.391 0.468
12 0.295 0.313 0.338 0.375 0.450
13 0.284 0.302 0.325 0.361 0.433
14 0.274 0.292 0.314 0.349 0.418
15 0.266 0.283 0.304 0.338 0.404
16 0.258 0.274 0.295 0.328 0.392
17 0.250 0.266 0.286 0.318 0.381
18 0.244 0.259 0.278 0.309 0.371
19 0.237 0.252 0.272 0.301 0.363
20 0.231 0.246 0.264 0.294 0.356
25 0.210 0.220 0.240 0.270 0.320
30 0.190 0.200 0.220 0.240 0.290
35 0.180 0.190 0.210 0.230 0.270
Over 35 1:07

ffiffi

n
p 1:14

ffiffi

n
p 1:22

ffiffi

n
p 1:36

ffiffi

n
p 1:63

ffiffi

n
p

Appendix A 515



Appendix B

B.1 Preliminary Concepts of Fuzzy Set Theory

Fuzzy Set

Let X be the universe whose generic element is denoted by x. A fuzzy set A in X is
a function A:X ? [0, 1]. Fuzzy set A is characterized by its membership function
lA:X ? [0, 1] which, associates with each x in X, a real number lA(x) in [0,1]
representing the grade of x in A.

Support of a Fuzzy Set

The support of a fuzzy set A in X, denoted by S(A), is the crisp set given by
S(A) = {x [ X:lA(x)[ 0}.

Normal Fuzzy Set

The height h(A) of a fuzzy set A is defined as

hðAÞ ¼ sup
x2X

lAðxÞ[ 0

�

if h(A) = 1, then the fuzzy set A is called a normal fuzzy set, otherwise subnormal
which can be normalized as

lAðxÞ
hðAÞ ; x 2 X:

517



Standard Union

The standard union of two fuzzy sets A and B is a fuzzy set C whose membership
function is given by lC(x) = max (lA(x), lB(x)) for all x [ X. This we express as
C = A [ B.

Standard Intersection

The standard intersection of two fuzzy sets A and B is a fuzzy set D whose
membership function is given by lD(x) = min (lA(x), lB(x)) for all x [ X. This we
express as C = A \ B.

a-Cut

The a-cut of the fuzzy set A in X is the crisp set Aa given by
Aa = {x [ X:lA(x)[ a} where a [ (0, 1].

Convex Fuzzy Set

A fuzzy set A in Rn is said to be a convex fuzzy set if its a-cuts Aa are (crisp)
convex sets for all a [ (0, 1].

Theorem 1 A fuzzy set A in Rn is said to be a convex fuzzy iff for all x1; x2 2 Rn

and 0 B k B 1

lA kx1 þ ð1� kx2Þð Þ� min lA x1ð Þ; lA x2ð Þð Þ

Zadeh’s Extension Principle

Let f:X ? Y be a crisp function and F(X)(F(Y)) be the set of all fuzzy sets of X(Y).
The function f:X ? Y induces two functions f:F(X) ? F(Y) and f-1:
F(X) ? F(Y). The extension principle gives formulas to compute the
membership function of fuzzy sets f(A) in Y ( f -1(B) in X) in terms of
membership function of fuzzy set A in X (B in Y). The principle states that

1.

lf ðAÞðyÞ ¼ sup ðlAðxÞÞ; 8 A 2 FðXÞ

2.

lf�1ðBÞðxÞ ¼ lBðxÞ; 8 B 2 FðYÞ

518 Appendix B



If the function f maps a n-tuple in X to a point in Y and f:X ? Y given by
y = f(x1, x2, …, xn). Let A1, A2, …, An be n fuzzy sets in X1, X2, …, Xn

respectively. The extension principle of Zadeh allows to extend the crisp
function y = f(x1, x2, …, xn) to act on n fuzzy subsets of X, namely A1, A2, …, An

such that B = f(A1, A2, …, An).
The fuzzy set B is defined as

B ¼ y; lBðyÞð Þ : y ¼ f ðx1; x2; . . .; xnÞ; ðx1; x2; . . .; xnÞ 2 X1 � . . . � Xnf g

and lBðyÞ ¼ sup
x2X;y2f ðxÞ

min lA1
ðx1Þ; . . .; lAn

ðxnÞ
� �

B.1.1 Fuzzy Number

A fuzzy set A in R is called a fuzzy number if is satisfies the following conditions

1. A is normal
2. A is convex
3. lA is upper semi-continuous
4. Support of A is bounded

Theorem 2 Let A be a fuzzy set in R: Then A is a fuzzy number if and only if
there exists a closed interval (which may be singleton) ½a; b� 6¼ U such that

lAðxÞ ¼
1; x 2 ½a; b�
lðxÞ; x 2 ½�1; a�
rðxÞ; x 2 ½b;1�

8

<

:

9

=

;

where

1. l:(-?, a) ? [0, 1] is non-decreasing, continuous from the right and l(x) = 0
for x 2 (-?, w1), w1\ a

2. r:(b, ?) ? [0, 1] is non-increasing, continuous from the left and r(x) = 0 for
x 2 (w2, ?), w2[ b and lA(x) is called ‘Membership Function’ of fuzzy set
A on R:

An element mapping to the value 0 means that the member is not included in
the given set, 1 describes a fully included member. Values strictly between 0 and 1
characterize the fuzzy members. Figure B.1 illustrate a fuzzy set graphically.

Appendix B 519



B.1.2 Triangular Fuzzy Number (TFN)

A fuzzy number A denoted by the triplet A = (a1, a, au) having the shape of a
triangle is called a TFN. The a-cut of a TFN is the closed interval
Aa = [aa

L, aa
R] = [(a - a1)a + a1, (a - au)a + au], a [ (0, 1] and its membership

function lA is given by

lAðxÞ ¼
0; x\al; x[ au;
x� alð Þ= a� alð Þ; al � x� a;
au � xð Þ= au � að Þ; a\x� au

8

<

:

9

=

;

B.1.3 Ranking of Fuzzy Numbers

Ranking of fuzzy number is an important issue in the study of fuzzy set theory and
is useful in various applications. Fuzzy mathematical programming is one of the
applications. There are numerous methods proposed in literature for ranking the
fuzzy numbers such as ranking function (index) approach, k-preference index
approach and possibility theory approach, useful in particular context but not in
general. We use the Ranking function (index) approach for ranking the fuzzy
numbers for our problem.

B.1.3.1 Ranking Function (Index) Approach

Let NðRÞ be the set of all fuzzy numbers in R and A;B;2 NðRÞ: Define a function
F : NðRÞ ! R; called a ranking function or ranking index, where F(A) B F(B) is
equivalent to A (B) B. Following indices are proposed by Yager ().

Fig. B.1 A fuzzy set

520 Appendix B



1. F1ðAÞ ¼
R au
a1

xlAðxÞdx
� �.

R au
a1

lAðxÞdx

� �

; Where a1 and au are the lower and

upper limits of the support of A. The value F1(A) is the centroid of the fuzzy
number A 2 NðRÞ: For example, If A = (a1, a, au) is a triangular fuzzy number
(TFN) where a1 and au are the lower and upper limits of the support of A and
a is the model value then F1ðAÞ ¼ a1 þ aþ auð Þ=3.

2. F2ðAÞ ¼
R amax

0 m aLa ; a
R
a

� 	

da
� �

; Where amax is the height of A, Aa = [aa
L, aa

R] is a
a-cut, a 2 (0, 1], and m[aa

L, aa
R] is the mean value of elements of the a-cut. For

example, If A = (a1, a, au) is a TFN, amax = 1 and Aa = [aa
L, aa

R] = [(a -

a1)a + a1, (a - au)a + au] then m[aa
L, aa

R] = ((2a - a1 - au)a + (a1 + au))/
((2a - a1 - au)a + (a1 + au))/2 and F2ðAÞ ¼ a1 þ 2aþ auð Þ=4:

Appendix B 521



Appendix C

C.1 Mean Value Functions of Failure and Removal Phenomenon
for Faults of Type AC, BC, B and C

C.1.1 Continuous Time SRGM for the 3VP System

Mean value functions of the removal phenomena of fault type AC, BC, B and A are

mAC;rðtÞ ¼ aAC 1� e�bp13t
� �

þ �p13aABC
p13�p2

p2e
�bp13t � e�bp123t þ �p2

� �

mBC;rðtÞ ¼ aBC 1� e�bp23t
� �

þ �p23aABC
p23�p1

p1e
�bp23t � e�bp123t þ �p1

� �

mB;rðtÞ ¼
1

1� a2


 �

aB þ 1� p2ð1� a2ð ÞÞ aABC
p2
þ

X

ði;VÞ¼ð1;AÞ;ð3;CÞ

aBV
p2
þ �p2i
p22pi

aABC


 �

2

4

3

5

8

<

:

9

=

;

� 1� e�bð1�a2Þp2t
� �

þ aABC 1� p2ð1� a2Þð Þ
p13 � ð1� a2Þð Þ

� �

1
p2
þ �p21
p22p1�p3

þ �p23
p22p3�p2

� �

e�bp123t � e�bð1�a2Þp2t
� �

þ 1� p2ð1� a2Þð Þ
p1 � ð1� a2Þð Þ


 �

aAB
p2
þ �p21p3
p22p1�p3

aABC


 �

e�bp21t � e�bð1�a2Þp2t
� �

� �

þ 1� p2ð1� a2Þð Þ
p3 � ð1� a1Þð Þ


 �

aBC
p2
þ �p23p1
p22p3�p1

aABC


 �

e�bp23t � e�bð1�a2Þp2t
� �

� �

523



mC;rðnÞ ¼
1

1� a3


 �

aC þ 1� p3ð1� a3ð Þ aABC
p3
þ

X

ði;VÞ¼ð1;AÞ;ð2;BÞ

aCV
p3
þ �p3i
p23pi

aABC


 �

2

4

3

5

8

<

:

9

=

;

� 1� e�bð1�a3Þp3t
� �

þ aABC 1� p3ð1� a3Þð Þ
p12 � ð1� a3Þð Þ

� �

1
p3
þ �p31
p23p1�p2

þ �p32
p23p2�p1

� �

e�bp123t � e�bð1�a3Þp3t
� �

þ 1� p3ð1� a3Þð Þ
p2 � ð1� a1Þð Þ


 �

aBC
p3
þ �p32p1
p23p2�p1

aABC


 �

e�bp32t � e�bð1�a3Þp3t
� �

� �

þ 1� p3ð1� a3Þð Þ
p1 � ð1� a1Þð Þ


 �

aAC
p3
þ �p13p2
p23p1�p2

aABC


 �

e�bp13t � e�bð1�a3Þp3t
� �

� �

Note here aij = aji and pij = pji.
The mean value functions of the failure phenomena can be obtained from the

corresponding mean value function of the removal phenomena using the relation
mr(t) = pmf(t).

C.1.2 Discrete Time SRGM for the 3VP System

Mean value functions of the removal phenomena of fault type AC, BC, B and A are

mAC;rðnÞ ¼ aAC 1� 1� bp13dð Þnð Þ
þ aABC�p13

p13�p2
p2ð1� bp13dÞn � ð1� bp123dÞn þ �p2ð Þ

mBC;rðnÞ ¼ aBC 1� 1� bp23dð Þnð Þ
þ aABC�p23

p23�p1
p1ð1� bp23dÞn � ð1� bp123dÞn þ �p1ð Þ

524 Appendix C



mB;rðnÞ ¼
1

1� a2


 �

aB þ 1� p2ð1� a2ð Þ aABC
p2
þ

X

ði;VÞ¼ð1;AÞ;ð3;CÞ

aBV
p2
þ �p2i
p22pi

aABC


 �

2

4

3

5

8

<

:

9

=

;

� 1� ð1� bp2dð1� a2ÞÞnð Þ

þ aABC 1� p2ð1� a2Þð Þ
p13 � ð1� a2Þð Þ

� �

1
p2
þ �p21
p22p1�p3

þ �p23
p22p3�p2

� �

ð1� bp123dÞn � ð1� bp2dð1� a2ÞÞnð Þ

þ 1� p2ð1� a2Þð Þ
p1 � ð1� a2Þð Þ


 �

aAB
p2
þ �p21p3
p22p1�p3

aABC


 �

ð1� bp21dÞn � ð1� bp2dð1� a2ÞÞnð Þ
� �

þ 1� p2ð1� a2Þð Þ
p3 � ð1� a1Þð Þ


 �

aBC
p2
þ �p23p1
p22p3�p1

aABC


 �

ð1� bp23dÞn � ð1� bp2dð1� a2ÞÞnð Þ
� �

mC;rðnÞ¼
1

1�a3


 �

aCþ 1�p3ð1�a3ð ÞÞ aABC
p3
þ

X

ði;VÞ¼ð1;AÞ;ð2;BÞ

aCV
p3
þ �p3i
p23pi

aABC


 �

2

4

3

5

8

<

:

9

=

;

1�ð1�bp3dð1�a3ÞÞnð Þ

þ aABC 1�p3ð1�a3Þð Þ
p12�ð1�a3Þð Þ

� �

1
p3
þ �p31
p23p1�p2

þ �p32
p23p2�p1

� �

ð1�bp123dÞn�ð1�bp2dð1�a2ÞÞnð Þ

þ 1�p3ð1�a3Þð Þ
p2�ð1�a1Þð Þ


 �

aBC
p3
þ �p32p1
p23p2�p1

aABC


 �

ð1�bp32dÞn�ð1�bp3dð1�a3ÞÞnð Þ
� �

þ 1�p3ð1�a3Þð Þ
p1�ð1�a1Þð Þ


 �

aAC
p3
þ �p13p2
p23p1�p2

aABC


 �

ð1�bp13dÞn�ð1�bp3dð1�a3ÞÞnð Þ
� �

Here again aij = aji and pij = pji and the mean value functions of the failure
phenomena can be obtained from the corresponding mean value function of the
removal phenomena using the relation mr(n) = pmf(n).

Appendix C 525



Answers to the Selected Exercises

Chapter 1

1. Software Reliability Engineering (SRE) is a scientific discipline that creates
and utilizes sound engineering principles in order to economically obtain
software systems that are not only reliable but also work proficiently on real
machines. The IEEE society has defined SRE as widely applicable, standard
and proven practice that apply systematic, disciplined, quantifiable approach to
the software development, test, operation, maintenance and evolution with
emphasis on reliability and the study in these approaches. The software
engineering is concerned with scheduling and systematizing the software
development process to monitor the progress of the various stages of software
development using its tools, methods and process to engineer quality software
and maintaining a tight control throughout the development process. SRE
broadly focuses on quantitatively characterizing the following standardized six
quality characteristics defined by ISO/IEC: functionality, usability, reliability,
efficiency, maintainability and portability. One of the major roles of SRE lies in
assuring and measuring the reliability of the software.
SRE management techniques work by applying two fundamental philosophies

• Deliver the desired functionality more efficiently by quantitatively
characterizing the expected use, use this information to optimize the
resource usage focusing on the most used and/or critical functions and make
testing environment representative of operational environment.

• Balances customer needs for reliability, time and cost effectiveness. It works
by setting quantitative reliability, schedule and cost objectives and engineers’
strategies to meet these objectives.

2. Refer to figure 1.1 and Pressman (2005)

527



3. The main limitations for the waterfall model includes
• The model implies that you should attempt to complete a given stage before
moving on to the next stage

• Does not account for the fact that requirements constantly change.
• Freezing the requirements usually requires choosing the hardware (since it
forms a part of the requirement specification). A large project might take a
few years to complete. If the hardware is selected early, then due to the speed
at which hardware technology is changing, it is quite likely that the final
software will employ a hardware technology that is on the verge of becoming
obsolete. This is clearly not desirable for such expensive software.

• It also means that customers can not use anything until the entire system is
complete.

• The model makes no allowances for prototyping.
• It implies that you can get the requirements right by simply writing them
down and reviewing them.

• The model implies that once the product is finished, everything else is
maintenance.

Alternative to the waterfall model one can choose Prototyping Software Life
Cycle Model or Iterative Enhancement Life Cycle Model

5. Software Reliability is the accepted as key characteristic of software quality
since it quantifies software failures – the most unwanted events and hence is of
major concern to the software developers as well as users. Further it is the
multidimensional property including other customer satisfaction factors such
as functionality, usability, performance, serviceability, capability,
installability, maintainability and documentation. For this reason it is
considered to be a ‘‘must be quality’’ of the software. Other measures of
software quality are software availability, software maintainability, mean time
to failure, mean time between failures etc.

6. Statistical testing aims to measure software reliability rather than discovering
faults. It is an effective sampling method to assess system reliability and hence
also known as reliability testing. Data collected from other test methods is
used here to predict the reliability level achieved and which can further be
used to depict the time when the desired level of quality in terms of reliability
can be achieved. Reliability assessment is of undue importance to both the
developers and user; it provides a quantitative measure of the number of
remaining faults, failure intensity, and a number of decisions related to the
development, release and maintenance of the software in the operational
phase. To the users it provides a measure for having confidence in the software
quality and their level of acceptability.

7. Refer to section 1.5.1
9. Refer to figure 1.4

10. Refer to section 1.3

528 Answers to the Selected Exercises



13. The reliability function is RðtÞ ¼
R1
t

1

r
ffiffiffiffiffiffiffi

2
Q

p e�
1
2

s�l
rð Þ2ds

14. Refer section 1.5.5
15. Refer figure 1.12
16. Refer section 1.6.1
17. Refer section 1.6.1
18. See reference Abramson M A, Chrissis J W (1998) Sequential quadratic

programming and the ASTROS structural optimization system. Structural
Optimization 15:24–32

19. Refer section 1.7.3

Chapter 2

2. Exponential curve describes a uniform operational profile whereas an S-shaped
curve describes a non uniform operational profile

3. a. mrðtÞ ¼ a 1� ð1þ btÞe�bt
� �

b. mrðtÞ ¼ a 1�e�bt
1þbe�bt
h i

4. Refer to section 2.7
5. Refer to section 2.7.2
6. The test effort based models are

mðtÞ ¼ a 1� e�bWðtÞ
� �

mrðtÞ ¼ a 1� 1þ bWðtÞð Þe�bWðtÞ
� �

mrðtÞ ¼ a
1� e�ðpþqÞWðtÞ

1þ q=pð Þe�ðpþqÞWðtÞ

 �

7. The data set used in chapter 8 is used to estimate the parameters of the models
analyzed in section 2.9.1. The estimated values of the parameters are given in
the following table.

Answers to the Selected Exercises 529



Chapter 3

2. If the fault is removed perfectly with no new fault generation then the fault
content will decrease by one, however if the fault has been repaired imperfectly
with no new fault introduction then the fault content will remain same as
earlier, while if the current fault is removed imperfectly and some new fault is
also manifested then the fault content will increase.

3. The mean value function of the SRGM is

mðtÞ ¼ aþ kð Þ 1� e�bt
� �

� kb

b� h
e�ht � e�bt
� �


 �

4. See section 3.5.2

530 Answers to the Selected Exercises

Model Estimated Parameters Comparison Criteria

MSE R2

M1 5611
(a)

0.0010
(k0)

- - - - 17.82 0.995

M2 1753
(a)

0.0033
(b)

- - - - 18.66 0.994

M3 1610
(a)

0.0023
(b1)

0.0040
(b2)

0.2192
(p1)

0.7808
(p1)

- 20.98 0.994

M4 225
(a)

0.0881
(b)

- - - - 20.75 0.994

M5 229
(a)

0.0187
(ui)

0.0876
(uf)

- - - 6.38 0.998

M6 229
(a)

0.0187
(p)

0.0689
(q)

- - - 6.38 0.998

M7

334
(a)

0.0361
(b1)

0.0621
(b2)

0.1329
(b3)

- - 8.16 0.998

0.2872
(p1)

0.5614
(p2)

0.1513
(p3)

M8

216
(a)

0.1280
(b1)

0.5709
(b2)

0.1330
(b3)

83.1192
(b1)

4.3708
(b2)

7.68 0.998

0.1924
(p1)

0.0774
(p2)

0.7301
(p3)

M9 17
(a)

0.0601
(b)

0.0477
(c)

- - - 7.58 0.998

M10 1211
(a)

0.9591
(b)

0.1879
(c)

0.0283
(p1)

0.9717
(p2)

- 29.08 0.992



6. mrðtÞ ¼ a
1�a 1� e�bpð1�a ÞWðtÞ
� 	

7. Refer section 3.7
8. The mean value function of the SRGM with the usage function is

WðtÞ ¼ r þ stk ismf ðtÞ ¼ a
pð1�aÞ 1� ð1þbÞ e�b rþstkð Þ

1þb e�b rþstkð Þ


 �pð1�a Þ
" #

The estimated values of the parameters are given in the following table

Chapter 4

1. Refer to introduction section.
2. Refer to introduction section.
3. Refer to introduction section.
4. Both coverage functions generate an s-shaped curve. The later converges

slowly as compared to the former. This type of curve gives better result if the
test strategy is less effective in attaining maximum coverage.

6. The mean value function of the SRGM is

mðtÞ ¼ a
1� e

�d
XðtÞð Þkþ1
k þ 1

1þ be
�d

XðtÞð Þkþ1
k þ 1

0

B

B

B

B

@

1

C

C

C

C

A

; d ¼ b3ðb1 þ b2Þ and b ¼ b2=b1

7. The software reliability growth model based on the model discussed in
section 4.3.2 applicable to this software will be

mrðtÞ ¼ a1ð1� e�b1tÞ þ a2
1þ b2e�b2t

1þ b2e�v2t � v2e�b2t

v2 � b2


 �

þ a3
1þ b3e�b3t

1þ b3
v3 � b3

v3t þ
2v3 � b3
v3 � b3


 �

e�v3t

� 1þ b3ð2v3 � b3Þ
ðv3 � b3Þ2

 !

e�b3t

0

B

B

B

B

@

1

C

C

C

C

A

;

v2 6¼ b2; v3 6¼ b3;

Answers to the Selected Exercises 531

Estimated Parameters Comparison Criteria

a b b p a r s k MSE R2

36 0.2578 219.99 0.9987 0.0012 5.04 0.5837 0.7788 2.32 0.993



8. Estimated values of the parameters are

Chapter 5

1. Refer to Introduction section.
2. Refer to Introduction section.
3. Refer to Introduction section.
4. The mean value functions for the SRGM is given as

mrðtÞ ¼

a

ð1� a1Þ
1� 1þ bð Þ expð�b1ptÞ

1þ b expð�b1ptÞ


 �ð1�a1Þ
" #

0� t� s;

a

ð1� a2Þ
1�

1þ be�b1sp

1þ b


 ��ð1�a1Þ 1þ be�b2tp

1þ be�b2sp


 ��ð1�a2Þ

e�b1spð1�a1Þ�b2ðt�sÞpð1�a2Þ

0

B

B

@

1

C

C

A

2

6

6

4

3

7

7

5

þ aða1 � a2Þ
ð1� a1Þð1� a2Þ

1� 1þ bð Þe�b1sp

1þ be�b1sp


 �ð1�a1Þ
" #

t[ s

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

6. The differential equation of the model is

m0 tð Þ
w tð Þ ¼ b tð Þ a� m tð Þ½ �

where b tð Þ ¼

b21W tð Þ
1þ b1W tð Þ 0� t� s

b22W tð Þ
1þ b2W tð Þ t[ s

8

>

>

>

<

>

>

>

:

and the mean value function is

532 Answers to the Selected Exercises

Estimated Parameters Comparison Criteria

a1 a2 a3 b1 b2 b3 b2 b3 v1 v2 MSE Variation

27 57 56 0.8272 0.8774 0.6507 80.24 86.92 0.6374 0.6221 138.41 12.55



m tð Þ ¼

a 1� 1þ b1W tð Þð Þe�b1W tð Þ
� �

0� t� s;

m tð Þ ¼ a 1� 1þ b1W sð Þ
1þ b2W sð Þ


 � 1þ b2W tð Þð Þ

e� b1W sð Þþb2W t�sð Þð Þ

 !" #

t[ s

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

where W t � sð Þ ¼ W tð Þ �W sð Þ
7. The Logistic test effort function fits best on this data as shown in application

5.11.1. Using the data analysis results of the logistic testing effort function the
unknown estimates of the model developed in exercise 6 are given in the
following table.

This model gives better estimation result on this data set as compared to the
exponential test effort based change point model.

Chapter 6

1. Refer to the introduction section.
2. Mean value function for the isolation and removal process is given as

mðtÞ ¼ a �e �btþlbþ brð Þ2=2ð Þ
U 0; tð Þ; br2 þ l; r
� �

� �

þ U 0; tð Þ; l; rð Þ
� �

Chapter 7

1. Refer to section 7.2.
2. See paragraph, Network architecture section 7.2.
3. See paragraph, learning algorithm section 7.2.
4. Refer to section 7.3.1
5. Neural network to describe the failure process of software containing four types

of faults is given as

Answers to the Selected Exercises 533

Estimated Parameters Comparison Criteria

a1 b1 b2 MSE R2

386 0.0902 0.0713 149.40 0.995



Use the above network, the activation function for the jth node in the hidden
layer

ajðxÞ ¼ 1� e�x
X

j�1

i¼0

ðxÞi
i!

j ¼ 1; 2; 3; 4

and the activation function for the neuron in output layer bðxÞ ¼ x. Now
following the equation (7.4.20) to (7.4.24) we can describe the failure process.

6. The estimates of the model parameters are

Chapter 8

1. Refer Introduction section.
2. See section 8.2
3. See section 8.3.
4. See section 8.3.1 and 8.3.2.

534 Answers to the Selected Exercises

Estimated Parameters Comparison Criteria

a1 a2 a3 a4 b1 b2 b3 b4 MSE R2

72 30 154 23 0.22 0.09 0.47 0.23 18.54 0.996



5.

Goodness of fit curve models M1–M4

Goodness of fit curve for change point based SDE models (M7 and M8)

Chapter 9

1. Refer section 1.5.5
2. See introduction section.
3. See introduction section.
4. See introduction section 9.2.1.

Answers to the Selected Exercises 535

Model Estimated Parameters Comparison Criteria

a b, b1 b2,b r MSE R2 RMSPE

M1 661 0.0275 - 0.2199 7.80 0.969 2.643632
M2 77 0.0966 - 1E-06 1.73 0.993 1.245796
M3 59 0.1684 8.28 1E-06 1.48 0.994 1.120364
M4 55 0.2100 - 1E-06 3.37 0.987 1.736672
M7 118 0.0154 0.0309 1E-06 2.70 0.99 1.514483
M8 91 0.0880 0.0795 1E-06 1.76 0.993 1.222912

0

20

40

60

80

1 4 7 10 13 16 19 22 25 28 31 34

Time (Weeks)

C
u

m
u

la
ti

v
e

 F
a

il
u

re
s Actual Data

M1

M2

M3

M4

0

20

40

60

80

1 4 7
1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

Time (Weeks)

C
u

m
u

la
ti

v
e
 F

a
il
u

re
s

Actual Data

M7

M8



5. Single change point Discrete exponential SRGM is

mðnÞ ¼
a 1� ð1� b1dÞnð Þ 0� n\g1

a 1� ð1� b1dÞn1ð1� b2dÞn�n1ð Þ n� g1

(

Estimation results for discrete exponential, Delayed S –Shaped and flexible
change point SRGM

Exponential and flexible models provide similar results, however the results of
flexible model shows the data shows an exponential trend due to negligible
value of the shape parameter b = 0.00001

6. Mean value functions for the removal process for each type of faults are

Model for Simple Faults

m1 nð Þ ¼

a1 1� 1� b11ð Þnð Þ 0� n� g1

a1 1� 1� b11ð Þg1 1� b12ð Þ n�g
1ð Þ� �

g1\n� g2

a1 1� 1� b11ð Þg1 1� b12ð Þ g
2
�g

1ð Þ 1� b13ð Þ n�g
2ð Þ� �

g2\n� g3

a1 1�
1� b11ð Þg1 1� b12ð Þ g

2
�g

1ð Þ

1� b13ð Þ g
3
�g

2ð Þ 1� b14ð Þ n�g
3ð Þ

0

B

@

1

C

A

2

6

4

3

7

5
n[ g3

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

a1 ¼ ap1

536 Answers to the Selected Exercises

Model Estimated Parameters Comparison Criteria

a b1, b2 b MSE R2

Exponential 3206 0.01084 0.030591 - 2477.23 0.982
S-shaped 1395 0.0751 0.1592 - 6047.69 0.958
Flexible 3314 0.0104 0.0292 0.00001 2567.12 0.983



Model for Hard Faults

m2 nð Þ¼

a2 1� 1�b21ð Þnð Þ 0�n�g1

a2 1� 1þb22nð Þ
1þb22s1ð Þ 1�b21ð Þs1 1�b22ð Þ n�s1ð Þh i

g1\n�g2

a2 1� 1þb22s2ð Þ
1þb22s1ð Þ 1�b21ð Þs1 1�b22ð Þ s2�s1ð Þ 1�b23ð Þ n�s2ð Þ


 �

g2\n�g3

a2 1� 1þb22s2ð Þ
1þb22s1ð Þ

1�b21ð Þs1 1�b22ð Þ s2�s1ð Þ

1�b23ð Þ s3�s2ð Þ 1�b24ð Þ n�s3ð Þ

0

B

@

1

C

A

2

6

4

3

7

5
n[g3

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

a2 ¼ap2

Model for Complex Faults

m2 nð Þ¼

a3 1� 1�b31ð Þnð Þ 0�n�g1

a3

1�S 1�b31ð Þg1 1�b32ð Þ n�g
1ð Þ2

4

3

5 g1\n�g2

a3

1�S1
1þb33n

1þb33g2


 � 1�b31ð Þg1 1�b32ð Þ g
2
�g

1ð Þ

1�b33ð Þ n�g
2ð Þ

0

B

@

1

C

A

2

6

6

6

6

6

4

3

7

7

7

7

7

5

g2\n�g3

a3

1�S1
1þb33g3
1þb33g2


 � 1�b31ð Þg1 1�b32ð Þ g
2
�g

1ð Þ

1�b33ð Þ g
3
�g

2ð Þ 1�b34ð Þ n�g
3ð Þ

0

B

@

1

C

A

2

6

6

6

6

6

4

3

7

7

7

7

7

5

n[g3

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

S¼ 1þb32nþ b232nðnþ1Þ
2

1þb32g1þ
b232g1ðg1þ1Þ

2

 !

; S1 ¼
1þb32g2þ

b232g2ðg2þ1Þ
2

1þb32g1þ
b232g1ðg1þ1Þ

2

 !

a3 ¼ ap3

Answers to the Selected Exercises 537



Chapter 10

1. See introduction section
2. See introduction section.
3. See introduction section.
4. The operational performance of a software system is to a large extent dependent

on the time spent in testing. In general, the longer the testing phase, better the
performance. Also, the cost of fixing a fault during testing phase is generally
much lesser than during operational phase. However, the time spent in testing,
delays the release of the system for operational use, and incurs additional cost.
This suggests a reduction in test time and an early release of the system. The
first and third component of the cost function represents the cost of fault
removal and testing during the testing phase and the second component is the
cost of fault removal in the operational use. If the software is tested for a longer
time the value of first and third component will increase and the third
component will decrease. However if an early release of the software is decided
the second component will exceed over the other two. Thus considering the two
conflicting objectives of better performance with longer testing and reduces
costs with early release the cost model determines the optimal cost.

5. The cost function is

C Tð Þ ¼ C1mðTÞ þ C2ðmðTlÞ � mðTÞÞ þ C3T þ
Z

T

0

pcðTs � tÞdGðtÞ

Optimal release policies minimizing the cost function subject to reliability
requirement for an exponential SRGM m tð Þ ¼ a 1� e�bt

� �

is given as follows.
Ts (the scheduled delivery time) is defined a random variable with cdf G(t) and
finite pdf g(t).

Case(i) When Ts is deterministic, let GðtÞ ¼ 1 ; t� Ts
0 ; t\ Ts

(

Equating the first derivative of cost function to be zero

QðTÞ � ðC2 � C1Þm0ðTÞ �
d

dT
p0ðT � TsÞ ¼ C3

QðTsÞ is a decreasing function in TðTs � T\1Þwhere QðTsÞ ¼ ðC2 � C1Þ
m0ðTsÞ[ 0 and Qð1Þ\0. Combining cost and reliability requirements and
assuming Tl [ T0 and Tl [ T1 and Tl [ Ts the release policy is stated as
1. if Q Tsð Þ�C3 and RðxjTsÞ�R0; then T� ¼ Ts
2. if Q Tsð Þ�C3 and RðxjTsÞ\R0; then T� ¼ T1

538 Answers to the Selected Exercises



3. if Q Tsð Þ[C3 and RðxjTsÞ�R0; then T� ¼ T0
4. if Q Tsð Þ[C3 and RðxjTsÞ\R0; then T� ¼ maxðT0; T1Þ
Case(ii) When Ts has an arbitrary distribution G(t) with finite mean l, then
equating the first derivative of cost function to be zero

PðTÞ � ðC2 � C1Þm0ðTÞ �
Z T

0

d

dT
pcðT � tÞdGðtÞ ¼ C3

P(T) is a decreasing function in T with Pð0Þ ¼ ðC2 � C1Þm0ð0Þ[ 0
and Pð1Þ\0. Combining cost and reliability requirement and assuming
Tl [ T0 and Tl [ T1 the release policy is stated as

1. if P 0ð Þ�C3 and Rðxj0Þ�R0; then T� ¼ 0
2. if P 0ð Þ�C3 and Rðxj0Þ\R0; then T� ¼ T1
3. if P 0ð Þ[C3 and Rðxj0Þ�R0; then T� ¼ T0
4. if P 0ð Þ[C3 and Rðxj0Þ\R0; then T� ¼ maxðT0; T1Þ.

6. Refer to the reference Pham (1996)
8. Refer to

Jha PC, Gupta D, Gupta A, Kapur PK (2008), Release time decision policy of
software employed for the safety of critical system under uncertainty.
OPSEARCH, Journal of Operational research Society of India, 45(3):209–224.

Chapter 11

1. Refer to the introduction section
2. The resource allocation will change as given in following table.

Answers to the Selected Exercises 539

Module ai vi bi ðin10�4Þ W�
i zi

1 89 0.12 4.1823 6688.85 5.4
2 25 0.08 5.0923 2590.42 6.7
3 27 0.08 3.9611 2890.29 8.6
4 45 0.13 2.2956 6951.04 9.1
5 39 0.11 2.5336 5463.26 9.8
6 39 0.08 1.7246 3949.16 19.7
7 59 0.08 0.8819 4812.07 38.6
8 68 0.14 0.7274 12831.46 26.7
9 37 0.14 0.6824 3823.42 28.5
10 14 0.04 1.5309 0.00 14.0



4. Refer to Huang CY, Lo J H, Kuo S Y, Lyu M R (2004) Optimal allocation of
testing-resource considering cost, reliability, and testing-effort. Proceedings
10th IEEE/IFIP Pacific Rim International Symposium on Dependable
Computing, Papeete, Tahiti, French Polynesia, 103–112.

5. Refer to Jha P C, Gupta D, Yang B, Kapur P K (2009) Optimal testing-resource
allocation during module testing considering cost, testing effort and reliability.
Computers & Industrial Engineering 57(3):1122–1130.

Chapter 12

1. These techniques are namely- Fault avoidance/prevention during
development, fault removal by means of testing and fault tolerance during
use. For detail refer to introduction section.

2. Refer to introduction section 12.1 and reference Pham H (2006) System
software reliability. Reliability Engineering Series, Springer Verlag, London

3. Refer to section 12.2
4. Two important design diversity techniques are—Recovery Block and N-

Version Programming. For details refer to 12.2
5. Refer to the advanced design diversity techniques in section 12.2
6. See figure 12.5 and 12.6 in section 12.3
7. See section 12.4
8. The following figure portraits the component selection problem of a software

that performs l different function, consisting of n modules. For performing
each function different set of modules are required. For each modules different
version are available. Versions differ in their design but are capable of
performing same task. For each version different alternatives are available
with different cost and reliability. The problem is to find the optimal
component for each of the module so that either the reliability or cost or both
can be optimized for the total software.

540 Answers to the Selected Exercises



9. The problem can solved with the model without redundancy in section 12.4.1.
The solution is X11 = X23 = X33 = 1 and X12 = X13 = X14 = X21 = X22 =

X31 = X32 = 0. System reliability 0.897 and budget consumed = $34.
10. If budget is $34 the solution is same as in exercise 9 and if budget is $50 the

solution changes to X11 = X13 = X21 = X33 = 1 and X12 = X14 = X22 =

X23 = X31 = X32 = 0. System reliability 0.899 and budget consumed = $48.

Answers to the Selected Exercises 541



Index

A
3-Stage Erlang, 62
Acceptance testing, 8, 9, 406
Activation function, 258, 263
ADALINE, 256
Adaptive ANN, 259
Adaptive learning, 257
Adaptive network, 261
Applications, 161, 164, 209, 244, 248, 250,

273, 356, 364, 414, 492
Architectural design, 7
Architecture based models, 27
Arrival times, 20, 222
Artificial neural network, 255, 258
Asymptotic efficient estimator, 36

B
Back propagation, 256, 261
Basic execution time model, 52, 85
Bass model, 66, 118
Bathtub curve, 14
Bayesian analysis, 25, 29
Bayesian models, 28
Bellman and Zadeh, 351
Bernoulli trials, 19
Beta distribution, 24
Bias, 42, 85, 257, 262, 269
Binomial distribution, 19, 223
Birth–death Markov process, 28
Black box testing, 10
Bohrbugs, 455
Branch coverage, 134, 168
Brooks and Motley, 119, 123, 164,

206, 210
Brownian motion, 285, 310
Burr type XII test-effort function, 76

C
Calendar time, 15, 50, 55, 313
Calendar time models, 50, 55
Calibration factor, 116
Categorization of faults, 62, 234, 346
Change-point, 39, 171, 298, 334, 389
Change-point test effort distribution, 190
Change-point analysis, 172, 334
Chi-square (@2) test, 43, 85
Chi-square distribution, 21, 43
Chi-square time delay, 220
Clock time, 15
Cobb–Douglas production function, 146
Coding, 4, 7
Coefficient of multiple

determination (R2), 42
Commercial off-the-shelf, 490
Common distribution functions, 13
Common failure mode, 469, 475
Common faults, 462, 464, 467, 470
Community error recovery, 461
Comparison criteria, 41
Complex faults, 61, 102, 155, 222, 275,

295, 325
Concave Model, 28
Concurrent independent failure mode, 470
Condition coverage, 134
Conditional distribution, 32, 222
Conditional nonlinear regression, 39, 476, 483
Confidence limits, 39
Consensus recovery blocks, 462
Consistent estimator, 36
Constraints, 115, 349, 381, 406, 432, 435,

446, 509
Continuous time space, 31, 45, 471, 482
Conventional models, 70
Convex programming problem, 438

543



Cost model, 353, 359, 369, 372, 378, 385,
389, 392

Counting process, 30, 178, 222, 283, 314, 405,
466, 469, 471, 475

Coverage function, 141, 162
Cramer–Rao inequality, 36
Crisp optimization, 350, 352, 391
Critical systems, 374, 451, 461, 482, 489
Critical, major and minor faults, 88, 381
Cumulative MTBF, 294
C-use coverage, 138

D
Data analysis, 84, 119, 161–162, 200, 243,

277, 307, 339, 477, 483
Data diversity, 456, 462
Data flow coverage, 135
Debugging environment, 33, 51, 55, 98, 99,

113, 237, 315, 379, 463
Debugging process, 14, 33, 50, 62, 80, 98, 100,

151, 216, 288, 317, 466
Decision flow coverage, 132
Defect coverage, 137
Defect density, 141, 172
Defect testing, 10
Definition, 4, 15, 16, 35, 132, 285, 315,

397, 444
Defuzzification function, 393, 395
Delayed s-shaped, 57, 62, 67, 70, 72, 78, 86,

108, 120
Dependent faults, 58, 60, 67, 69, 314,

318, 369
Design, 5, 10, 64, 136, 265, 271, 406, 451,

456, 489
Design complexities, 2
Design diversity, 456, 464, 510
Detectability, 138, 405, 410, 415, 431
Development environment, 67, 72, 155, 169,

217, 263, 295, 311, 330, 350
Development resources, 51, 407
Discrete counting process, 31, 314
Discrete SRGM, 34, 313, 471, 483
Distributed execution of recovery

blocks, 461
Dynamic allocation of resources, 411
Dynamic integrated model, 264
Dynamic weighted combinational model,

264, 267

E
Early prediction models, 27
Efficient estimator, 36

Efficient solution, 351, 392, 430, 444
Enhanced non-homogeneous Poisson

process, 141
Enumerables, 137
Environment diversity, 456, 509
Environmental factors, 14, 171, 193, 213
Equivalence partitioning, 10
Equivalent continuous SRGM, 316–321,

473, 475
Erlang model, 61, 88, 222, 229
Erlang time delay, 220
Error compensation, 456
error derivative of the weights (EW), 261
Error generation, 11, 98, 101, 144, 182, 237,

320, 342, 347, 377, 380, 465, 471
Error processing, 455
Error recovery, 456, 459
Error removal phenomenon, 59, 70, 86, 93,

170, 181, 213, 281, 318, 340, 370,
391, 402

Estimation result, 87, 91, 121, 161, 202, 279,
309, 356, 481

Execution time, 15, 30, 50, 138, 263, 313, 344,
498, 502

Execution time model, 50, 85, 93
Exponential distribution, 20, 179, 219, 229,

235, 373, 382, 425, 503
Exponentiated Weibull model, 76
Extension principle, 394, 518
External quality, 3

F
Failure count models, 28
Failure data set, 34, 85, 119, 161, 200, 244,

266, 278, 307, 340, 342, 477
Failure intensity, 11, 33, 52, 98, 105, 114, 141,

168, 177, 196, 237, 338, 347, 359,
365, 391, 425, 463

Failure mechanism, 14
Failure rate, 18, 28, 59, 174, 193, 265, 314,

331, 405, 466, 491, 493
Failure rate models, 28
Failure time distribution, 16, 175, 181
Failure trend, 14
Failures, faults, and errors, 12
Fault avoidance, 451
Fault complexity, 61, 71, 77, 84, 182, 221,

248, 264, 295, 336, 380, 400
Fault content functions, 101, 107, 114
Fault correction, 33, 49, 67, 104, 128, 153,

218, 220, 422
Fault dependency and debugging time lag, 60,

66, 217, 253

544 Index



Fault detection, 30, 32, 55, 56, 67, 76, 110,
142, 147, 151, 160, 172, 177, 180,
193, 216, 242, 269, 271

Fault detection and correction, 70, 175,
217–218, 291

Fault detection rate, 32, 58, 103, 111, 147,
154, 157, 172, 177, 186, 193, 269,
288, 299, 334, 411, 428

Fault isolation, 79, 156, 216, 224, 291, 314,
322, 330

Fault removal rate, 62, 79, 82, 98, 107, 150,
183, 198, 248, 296, 331, 339, 376,
442

Fault severity, 33, 61
Fault tolerance techniques, 455, 487
Fault tolerant systems, 34, 451
Fault treatment, 455
Feasible solution, 395, 423, 439, 444
Feed forward neural networks, 25
Feedback networks, 259
Fixed networks, 261
Flexible model, 59
Fujiwara, 136, 151
Function coverage, 135
Fuzzy cost function, 392
Fuzzy environment, 350, 392
Fuzzy goal programming, 395
Fuzzy number, 392, 519
Fuzzy optimization, 351, 391
Fuzzy set, 351, 517
Fuzzy set theory, 351, 391, 517

G
Gamma distribution, 24, 181, 201, 235, 239
Gamma time delay, 220, 234, 248
Gaussian distribution, 21
Generalized Erlang model, 62, 229
Generalized imperfect debugging model, 239
Generalized logistic test effort function, 76
Generalized Order Statistics, 216
Goal programming, 395, 444
Goel and Okumoto, 28, 55, 98, 238,

353, 356, 369, 374–375,
379, 388, 421, 426

Goodness of fit, 42

H
Half logistic distribution, 25
Hard faults, 61, 102, 156, 222, 295, 323,

331, 337
Hazard function, 18, 100, 141, 178, 242
Heisenbugs, 455
Hidden layer, 257, 259

Homogeneous Poisson process, 28, 221
Huang, 51, 70, 94, 277, 417
Hybrid black box models, 28
Hybrid white box models, 28
Hyper-exponential model, 56, 463

I
IEEE, 4, 5
Imitators, 118
Imperfect debugging, 97, 148, 153, 182, 236,

276, 320, 441, 463
Independent faults, 58, 60, 67, 369, 428,

464, 468
Infinite server queue, 221
Inflection function, 58
Inflection s-shaped model, 70, 143
Information technology, 1, 348
Innovation diffusion, 47, 65, 118
Innovators, 118
Input domain based models, 28
Input layer, 259, 263
Instantaneous MTBF, 292, 305
Integer programming problem, 492, 495
Integration testing, 9, 193, 406
Internal quality, 3
Interval domain data, 38, 85, 125, 164,

248, 278
Interval estimation, 35, 39
ISO/IEC, 3, 4
Isolated testing domain, 136, 151, 303
ItÔ integrals, 286

J
Jelinski and moranda, 29, 49, 98, 100,

175, 216
Jelinski moranda geometric

model, 49

K
Karunanithi, 263, 277
Kenny, 65, 117
Kg model, 59, 67, 203
Kolmogorov–smirnov test, 43, 515
Kuhn–tucker conditions, 419, 438

L
Lagrange multiplier, 405, 409, 422
Layered technology, 4
Leading errors, 69
Learning algorithm, 258

Index 545



L (cont.)
Learning phenomenon, 33, 62, 105, 154, 158,

273, 343
Levenberg–marquardt, 39
Likelihood function, 37
Lingo, 388, 445, 492
List of software failures, 452
Littlewood, 29, 51, 175
Log logistic testing effort, 76
Logarithmic coverage model, 140
Logarithmic poisson model, 53
Logistic distribution, 25, 181
Logistic function, 25, 63, 75, 150, 269, 335
Logistic test-effort function, 75, 93

M
Maintainability, 3, 10
Malaiya, 137, 277
Management technologies, 4
Markov models, 28
Maximum likelihood estimation, 37
Mean square error, 41
Mean value function, 31
Measurable space, 284
Measurement model, 11
Membership functions, 393, 397
Memoryless property, 21, 29
Misra, 85, 248
Mission time, 17, 347, 356, 372, 417
Model selection, 29
Model classification, 26, 33
Model validation, 41, 84, 123, 476
Modified exponential model, 57, 365
Modified waterfall model, 8
modified Weibull type test effort function,

190
Modules, 7, 9, 39, 56, 78, 133, 406, 408, 458,

464, 490
Moranda geometric Poisson model, 49
Multi-criteria release time problems, 386
Multiple change point, 173, 187, 336
Multiple phase regression, 171
Musa, 26, 41, 50, 125, 219, 375

N
Network architecture, 258
Neural networks, 255
Neurons, 258, 268
Newly developed components, 78, 156,

298, 330
Noise, 284, 286
Non-homogeneous poisson process, 13, 30, 51

Non-linear least square method, 36
Non-linear programming problem, 398
Normal distribution, 21, 40, 45, 181, 236, 239,

250, 285, 513
Normal time delay, 220, 249
Normalization, 266
Normalized detectability profile, 138
N-self-checking programming, 456
N-version programming, 456

O
One dimensional model, 146
Operation and maintenance, 8
Operational environment, 3, 8, 14, 64, 66,

98, 114
Operational phase, 8, 64, 115, 124, 141, 173,

193, 353, 422
Operational reliability, 114, 150, 388, 425
Operational-profile, 12, 15, 54, 57, 132,

150, 442
Optimal component selection, 506
Optimal release time, 349, 354
Optimistic forecast, 78, 113
Optimization model, 185, 349
Optimization techniques, 349, 489
Organizational goodwill, 348
Output layer, 259, 262

P
Parameter estimation, 34, 84, 119, 161, 196,

243, 277, 307, 339, 476
Parameter variability, 189, 335
Path coverage, 134
Path testing, 10
Penalty cost, 209, 348, 359
Perfect debugging, 52, 55, 98
Performance testing, 10
PNZ model, 120
Point estimation, 35
Poisson distribution, 20, 31, 178
Power function, 65, 159, 180, 213,

253, 373
Prediction error, 42, 125
Predictive validity, 41, 44, 89, 125
Probability generating function, 315
Probability theory, 13
Product type software, 64, 117, 124
Productive and quality software, 2
Project type software, 64, 117,

124, 359
Prototyping, 8
P-use coverage, 137

546 Index



Q
Quality assurance, 5, 402
Quality software, 2, 11, 33
Quasi-arithmetic mean, 187

R
Random correction times, 229
Random failures, 14
Random software life cycle, 367
Rayleigh distribution, 50, 73, 235
Rayleigh test effort, 72
Recovery block, 456, 497
Redundancy, 139, 451, 487
Regression models, 39
Relative estimation error, 414
Relative prediction error, 44, 85, 125
Reliability aspiration constraint, 353, 415
Reliability estimation, 46, 105, 115, 131, 155,

174, 216, 252, 271, 280, 389
Reliability function, 17, 45, 50, 174, 177,

347, 356
Reliability measures, 15, 161, 292, 305
Reliability prediction, 12, 150, 212, 264, 334
Repair, 15, 24, 50
Requirement analysis and specification, 6
Resource allocation problems, 406
Retry blocks with data diversity, 462
Reused components, 80, 156, 330
Risk cost, 9, 359, 372, 392
Root mean square prediction error, 42, 278
Royce, 6

S
Saddle value problem, 438
Scalarized formulation, 430, 437
Scale parameter, 23, 148, 235
Scheduled delivery, 198, 209, 348, 406
Schneidewind, 33, 50, 67, 217
Security testing, 10
Segmented regression, 171
Self-checking duplex scheme, 461
Sensitivity analysis, 379
Sequential quadratic

programming , 39, 45
Shape parameter, 23, 74, 123, 163, 176, 181,

235, 428
Simple faults, 60, 71, 77, 80, 82, 102, 156,

227, 248, 273, 295, 323, 336
Single change point, 173, 175, 178, 185,

204, 334
Skill factor, 147, 152, 159, 303
Software crisis, 3

Software development cost, 129, 355, 403
Software development life cycle, 5
Software failures, 3, 12, 14, 97, 191, 224, 263,

269, 292, 356, 405, 452, 510
Software release time, 115, 209, 347, 406
Software reliability, 2, 4, 11, 14, 19, 32, 354,

405, 416, 476
Software reliability engineering, 2, 348,

456, 463
Software reliability growth model, 3, 12, 27,

32, 49, 97, 131, 267, 290, 313, 349,
408, 463, 476, 511

Software reliability modeling, 3, 11, 19
Software versus hardware, 14
Sources of faults, 9
SPSS, 38, 85, 121, 162, 202, 278, 476
SRE technologies, 4
S-shaped curve, 32, 57, 180, 299, 336
S-shaped models, 28, 55, 108, 164, 196, 321
Standard Normal distribution, 22, 40, 513
Statement coverage, 65–66, 133–134, 168
Static models, 28
Stationary process, 14
Statistical testing, 10, 45
Stieltjes Convolution, 225, 240
Stochastic differential equation, 46, 283
Stochastic modeling, 13, 30
Stochastic process, 30, 148, 172, 283, 310
Sufficient estimator, 36
Supervised learning, 261
Switching regression, 171
System analysis and design, 6
System mean time to failure, 17

T
Target reliability, 198, 351
Test case execution number, 328
Test cases, 3, 9, 30, 72, 97, 132, 147, 152, 193,

221, 313, 425, 475, 486
Testing and integration, 7
Testing cost, 347, 421, 435
Testing coverage, 97, 131, 193, 216, 441
Testing domain, 33, 131, 151, 302
Testing domain ratio, 131, 136, 147
Testing efficiency, 97
Testing effort, 33, 51, 72, 89, 112, 146, 172,

190, 209, 321, 364, 409
Testing effort control problem, 198, 209
Testing environment, 56, 62, 98, 114, 171,

189, 198, 236, 336, 350, 392
Testing strategy, 60, 171, 334, 377, 382
Testing effort expenditure, 51, 72, 119, 189,

288, 364

Index 547



T (cont.)
Time lag, 50, 60, 66, 77, 104, 131, 155, 217,

318, 330, 441
Time-dependent delay function, 67, 217
Tolerance level, 397
Two dimensional SRGM, 146
Two stage Erlangian distribution, 180

U
Unbiased estimator, 35
Uncertainty, 12, 37, 219, 350, 402
Unification, 13, 215
Unification methodologies, 34, 216, 242
Uniform operational profile, 57, 251, 307
Unit testing, 7, 193, 350, 407
Unreliability measure, 16
Unsupervised learning, 261
Usage function, 66, 117, 150

V
Vague definition, 351
Variance–covariance matrix, 479, 481, 485
Variation, 42, 85, 138, 172, 187, 212, 385
Verify and validate, 8

W
Warranty cost, 349
Waterfall model, 6, 44
Weibull distribution, 23, 49, 174, 186, 212,

235, 239, 250
Weibull test effort, 73, 92, 208
Weibull time delay, 220
Weighted min–max approach, 393, 399
White box testing, 10, 132
Wiener process, 285, 293

X
Xie, 26, 67, 174, 216, 377, 425

Y
Yamada, 51, 56, 73, 101, 136, 153, 221, 239,

291, 353, 408, 416

Z
Zhang, 109, 143, 463
r-algebra, 284

548 Index


	Software Reliability Assessment with OR Applications
	Preface
	Acknowledgments
	Contents
	Acronym

	1 Introduction
	Outline placeholder
	1.5.1 Let Us Compare: Software Versus Hardware Reliability
	1.5.2 Reliability Measures
	1.5.2.1 Mathematical Definition of Reliability
	1.5.2.2 Failure Time Distribution and Reliability Measure
	1.5.2.3 System Mean Time to Failure
	1.5.2.4 Hazard Function

	1.5.3 Reliability Function Defined for Some Commonly Used Distributions in Reliability Modeling
	1.5.3.1 Binomial Distribution
	1.5.3.2 Poisson Distribution
	1.5.3.3 Exponential Distribution
	1.5.3.4 Normal Distribution
	1.5.3.5 Weibull Distribution
	1.5.3.6 Gamma Distribution
	1.5.3.7 Beta Distribution
	1.5.3.8 Logistic Distribution

	1.5.4 Software Reliability Model Classification and Selection
	1.5.4.1 Model Classification
	1.5.4.1 
	1.5.4.1 
	1.5.4.1 
	1.5.4.1 
	1.5.4.1 
	1.5.4.1 
	1.5.4.2 Model Selection

	1.5.5 Counting Process
	1.5.5.1 NHPP in Continuous Time Space
	1.5.5.2 NHPP in Discrete Time Space

	1.5.6 NHPP Based Software Reliability Growth Modeling
	1.6.1 Point Estimation
	1.6.1.1 Some Definitions
	1.6.1.2 Non-Linear Least Square Method
	1.6.1.3 Maximum Likelihood Estimation Method

	1.6.2 Interval Estimation
	1.6.2.1 Confidence Intervals for Normal Parameters
	1.6.2.2 Confidence Limits for the Mean mu When sigma 2 is Known
	1.6.2.3 Confidence Limits for the Mean mu When sigma 2 is Unknown
	1.6.2.4 Confidence Limits on sigma 2

	1.7.1 Comparison Criteria
	1.7.2 Goodness of Fit Test
	1.7.2.1 Chi-Square ( chi 2) Test
	1.7.2.2 The Kolmogorov--Smirnov Test (K--S Test)

	1.7.3 Predictive Validity Criterion

	 
	References

	2 Software Reliability Growth Models
	2.1…Introduction
	2.2…Execution Time Models
	2.2.1 The Basic Execution Time Model
	2.2.2 The Logarithmic Poisson Model

	2.3…Calendar Time Models
	2.3.1 Goel--Okumoto Model
	2.3.2 Hyper-Exponential Model
	2.3.3 Exponential Fault Categorization (Modified Exponential) Model
	2.3.4 Delayed S-Shaped Model
	2.3.5 Inflection S-Shaped Model
	2.3.6 Failure Rate Dependent Flexible Model
	2.3.7 SRGM for Error Removal Phenomenon

	2.4…SRGM Defining Complexity of Faults
	2.4.1 Generalized SRGM (Erlang Model)
	2.4.2 Incorporating Fault Complexity Considering Learning Phenomenon

	2.5…Managing Reliability in Operational Phase
	2.5.1 Operational Usage Models---Initial Studies

	2.6…Modeling Fault Dependency and Debugging Time Lag
	2.6.1 Model for Fault-Correction---The Initial Study
	2.6.2 Fault Dependency and Debugging Time Lag Model
	2.6.3 Modeling Fault Complexity with Debugging Time Lag

	2.7…Testing Effort Dependent Software Reliability Modeling
	2.7.1 Rayleigh Test Effort Model
	2.7.2 Weibull Test Effort Model
	2.7.3 Logistic and Generalized Testing Effort Functions
	2.7.4 Log Logistic Testing Effort Functions
	2.7.5 Modeling the Effect of Fault Complexity with Respect to Testing Efforts Considering Debugging Time Lag

	2.8…Software Reliability Growth Modeling Under Distributed Development Environment
	2.8.1 Flexible Software Reliability Growth Models for Distributed Systems
	2.8.1.1 Model for Reused Components
	2.8.1.2 Model for Newly Developed Components
	Components Containing Hard Faults
	Components Containing Complex Faults

	2.8.1.3 Modeling Total Fault Removal Phenomenon

	2.8.2 Generalized SRGM for Distributed Systems with Respect to Testing Efforts
	2.8.2.1 Model for Reused Components
	2.8.2.2 Model for Newly Developed Components
	Components Containing Hard Faults
	Components Containing Complex Faults

	2.8.2.3 Modeling Total Fault Removal Phenomenon


	2.9…Data Analysis and Parameter Estimation
	Outline placeholder
	Outline placeholder
	Failure data set


	2.9.1 Application of Time Dependent Models
	2.9.2 Application of Test Effort Based Models

	References

	3 Imperfect Debugging/Testing Efficiency Software Reliability Growth Models
	3.1…Introduction
	3.2…Most Primitive Study in Imperfect Debugging Model
	3.3…Exponential Imperfect Debugging SRGM
	3.3.1 Pure Imperfect Fault Debugging Model
	3.3.2 Pure Error Generation Model
	3.3.3 Using Different Fault Content Functions
	3.3.4 Imperfect Debugging Model Considering Fault Complexity
	3.3.4.1 Pure Imperfect Fault Debugging Model
	3.3.4.2 Pure Error Generation Model

	3.3.5 Modeling Error Generation Considering Fault Removal Time Delay

	3.4…S-Shaped Imperfect Debugging SRGM
	3.4.1 An S-Shaped Imperfect Debugging SRGM
	3.4.2 General Imperfect Software Debugging Model with S-Shaped FDR
	3.4.3 Delayed Removal Process Modeling Under Imperfect Debugging Environment

	3.5…Integrated Imperfect Debugging SRGM
	3.5.1 Testing Efficiency Model
	3.5.2 Integrated Exponential and Flexible Testing Efficiency Models

	3.6…Test Effort Based Imperfect Debugging Software Reliability Growth Models
	3.6.1 Pure Imperfect Fault Debugging Model
	3.6.2 Pure Error Generation Model
	3.6.3 Integrated Imperfect Debugging Models

	3.7…Reliability Analysis Under Imperfect Debugging Environment During Field Use
	3.7.1 A Pure Imperfect Fault Repair Model for Operational Phase
	3.7.2 An Integrated Imperfect Debugging SRGM for Operational Phase
	3.7.2.1 Usage Function for Project Type Software
	3.7.2.2 Usage Function for Product Type Software


	3.8…Data Analysis and Parameter Estimation
	3.8.1 Application of Time Dependent SRGM
	3.8.2 An Application for Integrated Test Effort Based Testing Efficiency SRGM
	3.8.3 An Application for Integrated Operational Phase Testing Efficiency SRGM
	3.8.3.1 Data Analysis of SRGM for Project Type Software
	Failure Data Set

	3.8.3.2 Data Analysis of SRGM for Product Type Software


	Exercises
	References

	4 Testing-Coverage and Testing-Domain Models
	4.1…Introduction
	4.1.1 An Introduction to Testing-Coverage
	4.1.1.1 Statement Coverage
	4.1.1.2 Branch Coverage
	4.1.1.3 Condition Coverage
	4.1.1.4 Path Coverage
	4.1.1.5 Data Flow Coverage
	4.1.1.6 Function Coverage
	4.1.1.7 Call Coverage

	4.1.2 An Introduction to Testing Domain

	4.2…Software Reliability Growth Modeling Based on Testing Coverage
	4.2.1 Relating Testing Coverage to Software Reliability: An Initial Study
	4.2.1.1 One Parameter Model for Testing Coverage
	4.2.1.2 Logarithmic Coverage Model
	4.2.1.3 Defect Density and Reliability

	4.2.2 Enhanced NHPP Based Software Reliability Growth Model Considering Testing Coverage
	4.2.3 Incorporating Testing Efficiency in ENHPP
	4.2.4 Two Dimensional Software Reliability Assessment with Testing Coverage
	4.2.4.1 The Coverage Function
	4.2.4.2 The One Dimensional SRGM
	4.2.4.3 The Two Dimensional SRGM

	4.2.5 Considering Testing Coverage in a Testing Effort Dependent SRGM
	4.2.6 A Coverage-Based SRGM for Operational Phase

	4.3…Software Reliability Growth Modeling Using the Concept of Testing Domain
	4.3.1 Relating Isolated Testing Domain to Software Reliability Growth: An Initial Study
	4.3.1.1 Description of Testing Domains
	4.3.1.2 Software Reliability Modeling

	4.3.2 Application of Testing Domain Dependent SRGM in Distributed Development Environment
	4.3.2.1 Model for Reused Components: the Case of Simple Faults
	4.3.2.2 Model for New Components: the Case of Hard and Complex Faults
	4.3.2.3 Modeling Total Fault Removal Phenomenon

	4.3.3 Defining the Testing Domain Functions Considering Learning Phenomenon of Testing Team
	4.3.3.1 Testing Domain with Skill Factor
	4.3.3.2 Software Reliability Modeling


	4.4…Data Analysis and Parameter Estimation
	4.4.1 Application of Coverage Models
	4.4.2 Application of Testing Domain Based Models

	References

	5 Change-Point Models
	5.1…Introduction
	5.2…Change-Point Models: An Initial Study
	5.2.1 Change-Point JM Model
	5.2.2 Change-Point Weibull Model
	5.2.3 Change-Point Littlewood Model

	5.3…Exponential Single Change-Point Model
	5.4…A Generalized Framework for Single Change-Point SRGM
	5.4.1 Obtaining Exponential SRGM from the Generalized Approach
	5.4.2 Obtaining S-Shaped\Flexible SRGM from the Generalized Approach
	5.4.3 More SRGM Obtained from the Generalized Approach

	5.5…Change-Point SRGM Considering Imperfect Debugging and Fault Complexity
	5.5.1 Exponential Imperfect Debugging Model
	5.5.2 Integrated Flexible Imperfect Debugging Model

	5.6…Change-Point SRGM with Respect to Test Efforts
	5.6.1 Exponential Test Effort Models
	5.6.2 Flexible/S-Shaped Test Efforts Based SRGM

	5.7…SRGM with Multiple Change-Points
	5.7.1 Development of Exponential Multiple Change-Point Model
	5.7.2 Development of Flexible/S-Shaped Multiple Change-Point Model

	5.8…Multiple Change-Point Test Effort Distribution
	5.8.1 Weibull Type Test Effort Function with Multiple Change Points
	5.8.2 An Integrated Testing Efficiency, Test Effort Multiple Change-Points SRGM
	5.8.2.1 Assumptions


	5.9…A Change-Point SRGM with Environmental Factor
	5.10…Testing Effort Control Problem
	5.11…Data Analysis and Parameter Estimation
	5.11.1 Models with Single Change-Point
	5.11.2 Models with Multiple Change Points
	5.11.3 Change-Point SRGM Based on Multiple Change-Point Weibull Type TEF
	5.11.4 Application of Testing Effort Control Problem

	References

	6 Unification of SRGM
	6.1‡Introduction
	6.2…Unification Scheme for Fault Detection and Correction Process
	6.2.1 Fault Detection NHPP Models
	6.2.2 Fault Correction NHPP Models
	6.2.2.1 Exponentially Distributed Correction Time


	6.3…Unified Scheme Based on the Concept of Infinite Server Queue
	6.3.1 Model Development
	6.3.1.1 Conditional Distribution of Arrival Times

	6.3.2 Infinite Server Queuing Model
	6.3.2.1 Model for Complex Faults
	6.3.2.2 Model for Hard Faults
	6.3.2.3 Model for Simple Faults
	6.3.2.4 Model for Total FRP

	6.3.3 Computing Existing SRGM for the Unified Model Based on Infinite Queues
	6.3.4 A Note on Random Correction Times
	6.3.4.1 Exponential Distribution for Removal Times
	6.3.4.2 Weibull Distribution for Removal Times
	6.3.4.3 Gamma Distribution for Removal Times
	6.3.4.4 Normal Distribution for Removal Times


	6.4…A Unified Approach for Testing Efficiency Based Software Reliability Modeling
	6.4.1 Generalized SRGM Considering Immediate Removal of Faults on Failure Observation Under Imperfect Debugging Environment
	6.4.2 Generalized SRGM Considering Time Delay Between Failure Observation and Correction Procedures Under Imperfect Debugging Environment

	6.5…An Equivalence Between the Three Unified Approaches
	6.5.1 Equivalence of Unification Schemes Based on Infinite Server Queues for the Hard Faults and Fault Detection Correction Process with a Delay Function
	6.5.2 Equivalence of Unification Schemes Based on Infinite Server Queues for the Hard Faults and One Based on Hazard Rate Concept

	6.6…Data Analysis and Parameter Estimation
	6.6.1 Application of SRGM for Fault Detection and Correction Process
	6.6.2 Application of SRGM Based on the Concept of Infinite Server Queues
	6.6.3 Application of SRGM Based on Unification Schemes for Testing Efficiency Models

	References

	7 Artificial Neural Networks Based SRGM
	7.1…Artificial Neural Networks: An Introduction
	7.1.1 Specific Features of Artificial Neural Network
	7.1.2 

	7.2…Artificial Neural Network: A Description
	7.2.1 Neurons
	7.2.2 Network Architecture
	7.2.3 Learning Algorithm

	7.3…Neural Network Approaches in Software Reliability
	7.3.1 Building ANN for Existing Analytical SRGM
	7.3.2 Software Failure Data
	7.3.2.1 Normalization


	7.4…Neural Network Based Software Reliability Growth Model
	7.4.1 Dynamic Weighted Combinational Model
	7.4.2 Generalized Dynamic Integrated SRGM
	7.4.3 
	7.4.4 
	7.4.5 

	7.5…Data Analysis and Parameter Estimation
	References

	8 SRGM Using SDE
	8.1…Introduction
	8.2…Introduction to Stochastic Differential Equations
	8.2.1 Stochastic Process
	8.2.2 Stochastic Analog of a Classical Differential Equation
	8.2.3 Solution of a Stochastic Differential Equation
	8.2.3.1 sigma -Algebra
	8.2.3.2 Probability Measure
	8.2.3.3 Probability Space
	8.2.3.4 Brownian Motion
	8.2.3.5 ItÔ Integrals [1, 2]


	8.3…Stochastic Differential Equation Based Software Reliability Models
	8.3.1 Obtaining SRGM from the General Solution
	8.3.1.1 Exponential SDE Model
	8.3.1.2 SDE Model for Some Other Popular NHPP Models
	Delayed S-Shaped SDE Model
	Flexible SDE Model
	Three-Stage SDE Model


	8.3.2 Software Reliability Measures
	8.3.2.1 Instantaneous MTBF
	Exponential SDE Model
	Delayed S-Shaped SDE Model
	Flexible SDE Model
	Three-Stage SDE Model

	8.3.2.2 Cumulative MTBF
	Exponential SDE Model
	Delayed S-Shaped SDE Model
	Flexible SDE Model
	Three-Stage SDE Model



	8.4…SDE Models Considering Fault Complexity and Distributed Development Environment
	8.4.1 The Fault Complexity Model
	8.4.2 The Fault Complexity Model Considering Learning Effect
	8.4.2.1 Simple Faults
	8.4.2.2 Hard Faults
	8.4.2.3 Complex Faults

	8.4.3 An SDE Based SRGM for Distributed Development Environment

	8.5…Change Point SDE Model
	8.5.1 Exponential Change Point SDE Model
	8.5.2 Delayed S-Shaped Change Point SDE Model
	8.5.3 Flexible Change Point SDE Model

	8.6…SDE Based Testing Domain Models
	8.6.1 SRGM Development: Basic Testing Domain
	8.6.2 SRGM for Testing Domain with Skill Factor
	8.6.3 Imperfect Testing Domain Dependent SDE Based SRGM
	8.6.4 Software Reliability Measures
	8.6.4.1 Instantaneous MTBF for Basic Testing Domain Dependent SRGM
	8.6.4.2 Instantaneous MTBF for Testing Domain with Skill Factor Dependent SRGM
	8.6.4.3 Instantaneous MTBF for Imperfect Testing Domain Dependent SRGM
	8.6.4.4 Cumulative MTBF for Basic Testing Domain Dependent SRGM
	8.6.4.5 Cumulative MTBF for Testing Domain with Skill Factor Dependent SRGM
	8.6.4.6 Cumulative MTBF for Imperfect Testing Domain Dependent SRGM


	8.7…Data Analysis and Parameter Estimation
	References

	9 Discrete SRGM
	9.1…Introduction
	9.1.1 General Assumption
	9.1.2 Definition

	9.2…Discrete SRGM Under Perfect Debugging Environment
	9.2.1 Discrete Exponential Model
	9.2.2 Modified Discrete Exponential Model
	9.2.3 Discrete Delayed S-Shaped Model
	9.2.4 Discrete SRGM with Logistic Learning Function
	9.2.5 Modeling Fault Dependency
	9.2.5.1 Discrete SRGM for Error Removal Phenomenon
	9.2.5.2 Discrete Time Fault Dependency with Lag Function


	9.3…Discrete SRGM under Imperfect Debugging Environment
	9.4…Discrete SRGM with Testing Effort
	9.5…Modeling Faults of Different Severity
	9.5.1 Generalized Discrete Erlang SRGM
	9.5.1.1 Modeling Simple Faults (Fault-Type I)
	9.5.1.2 Modeling the Hard Faults (Fault-Type II)
	9.5.1.3 Modeling the Fault-Type k

	9.5.2 Discrete SRGM with Errors of Different Severity Incorporating Logistic Learning Function
	9.5.2.1 Modeling the Simple Faults (Fault-Type I)
	9.5.2.2 Modeling the Hard Faults (Fault-Type II)
	9.5.2.3 Modeling the Complex Faults (i.e. Fault-Type III)
	9.5.2.4 Modeling the Fault-Type k
	9.5.2.5 Modeling the Total Fault Removal Phenomenon

	9.5.3 Discrete SRGM Modeling Severity of Faults with Respect to Test Case Execution Number

	9.6…Discrete Software Reliability Growth Models for Distributed Systems
	9.6.1 Modeling the Fault Removal of Reused Components
	9.6.1.1 Modeling Simple Faults

	9.6.2 Modeling the Fault Removal of Newly Developed Components
	9.6.2.1 Components Containing Hard Faults
	9.6.2.2 Components Containing Complex Faults

	9.6.3 Modeling Total Fault Removal Phenomenon

	9.7…Discrete Change Point Software Reliability Growth Modeling
	9.7.1 Discrete S-Shaped Single Change Point SRGM
	9.7.2 Discrete Flexible Single Change Point SRGM
	9.7.3 An Integrated Multiple Change Point Discrete SRGM Considering Fault Complexity
	9.7.3.1 Model for Simple Faults
	9.7.3.2 Model for Hard and Complex Faults


	9.8…Data Analysis and Parameter Estimation
	9.8.1 Application of Fault Complexity Based Discrete Models

	Exercises
	References

	10 Software Release Time Decision Problems
	10.1…Introduction
	10.2…Crisp Optimization in Software Release Time Decision
	10.2.1 First Round Studies in SRTD Problem
	10.2.2 A Cost Model with Penalty Cost
	10.2.3 Release Policy Based on Testing Effort Dependent SRGM
	10.2.4 Release Policy for Random Software Life Cycle
	10.2.5 A Software Cost Model Incorporating the Cost of Dependent Faults Along with Independent Faults
	10.2.6 Release Policies Under Warranty and Risk Cost
	10.2.7 Release Policy Based on SRGM Incorporating Imperfect Fault Debugging
	10.2.8 Release Policy on Pure Error Generation Fault Complexity Based SRGM
	10.2.9 Release Policy for Integrated Testing Efficiency SRGM
	10.2.9.1 Effect of Variations in Minimum Reliability Requirement by the Release Time
	10.2.9.2 Effect of Variations in Level of Perfect Fault Debugging

	10.2.10 Multi-Criteria Release Time Problems
	10.2.11 Release Problem with Change Point SRGM

	10.3…Fuzzy Optimization in Software Release Time Decision
	10.3.1 Problem Formulation
	10.3.1.1 The Cost Model

	10.3.2 Problem Solution

	References

	11 Allocation Problems at Unit Level Testing
	11.1…Introduction
	11.2…Allocation of Resources based on Exponential SRGM
	11.2.1 Minimizing Remaining Faults
	11.2.2 Minimizing Testing Resource Expenditures
	11.2.3 Dynamic Allocation of Resources for Modular Software
	11.2.4 Minimize the Mean Fault Content
	11.2.5 Minimizing Remaining Faults with a Reliability Objective
	11.2.6 Minimizing Testing Resources Utilization with a Reliability Objective
	11.2.7 Minimize the Cost of Testing Resources
	11.2.8 A Resource Allocation Problem to Maximize Operational Reliability

	11.3…Allocation of Resources for Flexible SRGM
	11.3.1 Maximizing Fault Removal During Testing Under Resource Constraint
	11.3.1.1 

	11.3.2 Minimizing Testing Cost Under Resource and Reliability Constraint
	11.3.2.1 


	11.4…Optimal Testing Resource Allocation for Test Coverage Based Imperfect Debugging SRGM
	11.4.1 Problem Formulation
	11.4.2 Finding Properly Efficient Solution
	11.4.3 Solution Based on Goal Programming Approach

	References

	12 Fault Tolerant Systems
	12.1…Introduction
	12.1.1 
	12.1.1.0 
	12.1.1.0 
	12.1.1.0 
	12.1.1.0 
	12.1.1.0 
	12.1.1.0 
	12.1.1.0 
	12.1.1.0 
	12.1.1.0 
	12.1.1.0 


	12.2…Software Fault Tolerance Techniques
	12.2.1 N-version Programming Scheme
	12.2.2 Recovery Block Scheme
	12.2.3 Some Advanced Techniques
	12.2.3.1 Community Error Recovery
	12.2.3.2 Self-Checking Duplex Scheme
	12.2.3.3 Distributed Execution of Recovery Blocks
	12.2.3.4 Consensus Recovery Blocks
	12.2.3.5 Retry Blocks with Data Diversity


	12.3…Reliability Growth Analysis of NVP Systems
	12.3.1 Faults in NVP Systems
	12.3.2 Testing Efficiency Based Continuous Time SRGM for NVP System
	12.3.2.1 Model Development
	12.3.2.2 System Reliability

	12.3.3 A Testing Efficiency Based Discrete SRGM for a NVP System
	12.3.3.1 Model Development
	12.3.3.2 System Reliability

	12.3.4 Parameter Estimation and Model Validation
	12.3.4.1 Data Analysis for the Continuous Time Model
	Data Analysis of a 2VP System
	Data Analysis of a 3VP System

	12.3.4.2 Parameter Estimation and Model Validation of Discrete SRGM
	Data Analysis of a 2VP System
	Data Analysis of a 3VP System



	12.4…COTS Based Reliability Allocation Problem
	12.4.1 Optimization Models for Selection of Programs for Software Performing One Function with One Program
	12.4.1.1 Model Without Redundancy
	12.4.1.2 Model with Redundancy

	12.4.2 Optimization Models for Selection of Programs for Software Performing Each Function with a Set of Modules
	12.4.2.1 Optimization Models for One Function Software
	Model 1 Without Redundancy
	Model 2 With Redundancy

	12.4.2.2 Optimization Models for Multiple (K) Function Software
	Model 3 Without Redundancy
	Model 4 With Redundancy


	12.4.3 Optimization Models for Recovery Blocks
	12.4.3.1 Independent Recovery Block
	12.4.3.2 Consensus Recovery Block
	12.4.3.3 Independent Recovery Block with Exponential Execution Time
	Model 1
	Model 2


	12.4.4 Optimization Models for Recovery Blocks with Multiple Alternatives for Each Version Having Different Reliability

	References

	Appendix A
	A.1 Standard Normal (Z) Table
	A.2 Kolmogorov–Smirnov Test Table

	Appendix B
	B.1 Preliminary Concepts of Fuzzy Set Theory

	Appendix C
	C.1 Mean Value Functions of Failure and Removal Phenomenonfor Faults of Type AC, BC, B and C

	Answers to the Selected Exercises
	Index
	Cover
	Software Reliability Assessment with OR Applications
	Preface
	Acknowledgments
	Contents
	Acronym

	1 Introduction
	1.5.1 Let Us Compare: Software Versus Hardware Reliability
	1.5.2 Reliability Measures
	1.5.2.1 Mathematical Definition of Reliability
	1.5.2.2 Failure Time Distribution and Reliability Measure
	1.5.2.3 System Mean Time to Failure
	1.5.2.4 Hazard Function

	1.5.3 Reliability Function Defined for Some Commonly Used Distributions in Reliability Modeling
	1.5.3.1 Binomial Distribution
	1.5.3.3 Exponential Distribution
	1.5.3.2 Poisson Distribution
	1.5.3.4 Normal Distribution
	1.5.3.5 Weibull Distribution
	1.5.3.7 Beta Distribution
	1.5.3.6 Gamma Distribution
	1.5.3.8 Logistic Distribution

	1.5.4 Software Reliability Model Classification and Selection
	1.5.4.1 Model Classification
	1.5.4.1
	1.5.4.1
	1.5.4.1
	1.5.4.1
	1.5.4.1
	1.5.4.1
	1.5.4.2 Model Selection

	1.5.5 Counting Process
	1.5.5.2 NHPP in Discrete Time Space
	1.5.5.1 NHPP in Continuous Time Space

	1.5.6 NHPP Based Software Reliability Growth Modeling
	1.6.1 Point Estimation
	1.6.1.1 Some Definitions
	1.6.1.2 Non-Linear Least Square Method
	1.6.1.3 Maximum Likelihood Estimation Method

	1.6.2 Interval Estimation
	1.6.2.1 Confidence Intervals for Normal Parameters
	1.6.2.2 Confidence Limits for the Mean mu When sigma 2 is Known
	1.6.2.3 Confidence Limits for the Mean mu When sigma 2 is Unknown

	1.7.1 Comparison Criteria
	1.6.2.4 Confidence Limits on sigma 2

	1.7.2 Goodness of Fit Test
	1.7.2.2 The Kolmogorov--Smirnov Test (K--S Test)
	1.7.2.1 Chi-Square ( chi 2) Test

	
	1.7.3 Predictive Validity Criterion

	References

	2 Software Reliability Growth Models
	2.1…Introduction
	2.2…Execution Time Models
	2.2.1 The Basic Execution Time Model
	2.2.2 The Logarithmic Poisson Model

	2.3…Calendar Time Models
	2.3.1 Goel--Okumoto Model
	2.3.2 Hyper-Exponential Model
	2.3.4 Delayed S-Shaped Model
	2.3.3 Exponential Fault Categorization (Modified Exponential) Model
	2.3.5 Inflection S-Shaped Model
	2.3.6 Failure Rate Dependent Flexible Model
	2.3.7 SRGM for Error Removal Phenomenon

	2.4…SRGM Defining Complexity of Faults
	2.4.1 Generalized SRGM (Erlang Model)
	2.4.2 Incorporating Fault Complexity Considering Learning Phenomenon

	2.5…Managing Reliability in Operational Phase
	2.5.1 Operational Usage Models---Initial Studies

	2.6…Modeling Fault Dependency and Debugging Time Lag
	2.6.1 Model for Fault-Correction---The Initial Study
	2.6.2 Fault Dependency and Debugging Time Lag Model
	2.6.3 Modeling Fault Complexity with Debugging Time Lag

	2.7…Testing Effort Dependent Software Reliability Modeling
	2.7.1 Rayleigh Test Effort Model
	2.7.2 Weibull Test Effort Model
	2.7.3 Logistic and Generalized Testing Effort Functions
	2.7.4 Log Logistic Testing Effort Functions
	2.7.5 Modeling the Effect of Fault Complexity with Respect to Testing Efforts Considering Debugging Time Lag

	2.8…Software Reliability Growth Modeling Under Distributed Development Environment
	2.8.1 Flexible Software Reliability Growth Models for Distributed Systems
	2.8.1.1 Model for Reused Components
	2.8.1.2 Model for Newly Developed Components
	Components Containing Hard Faults

	2.8.1.3 Modeling Total Fault Removal Phenomenon
	Components Containing Complex Faults


	2.8.2 Generalized SRGM for Distributed Systems with Respect to Testing Efforts
	2.8.2.1 Model for Reused Components
	2.8.2.2 Model for Newly Developed Components
	Components Containing Complex Faults
	Components Containing Hard Faults



	2.9…Data Analysis and Parameter Estimation
	2.8.2.3 Modeling Total Fault Removal Phenomenon
	2.9.1 Application of Time Dependent Models
	Failure data set

	2.9.2 Application of Test Effort Based Models

	References

	3 Imperfect Debugging/Testing Efficiency Software Reliability Growth Models
	3.1…Introduction
	3.3…Exponential Imperfect Debugging SRGM
	3.2…Most Primitive Study in Imperfect Debugging Model
	3.3.1 Pure Imperfect Fault Debugging Model
	3.3.2 Pure Error Generation Model
	3.3.3 Using Different Fault Content Functions
	3.3.4 Imperfect Debugging Model Considering Fault Complexity
	3.3.4.1 Pure Imperfect Fault Debugging Model
	3.3.4.2 Pure Error Generation Model

	3.3.5 Modeling Error Generation Considering Fault Removal Time Delay

	3.4…S-Shaped Imperfect Debugging SRGM
	3.4.1 An S-Shaped Imperfect Debugging SRGM
	3.4.2 General Imperfect Software Debugging Model with S-Shaped FDR
	3.4.3 Delayed Removal Process Modeling Under Imperfect Debugging Environment

	3.5…Integrated Imperfect Debugging SRGM
	3.5.1 Testing Efficiency Model
	3.5.2 Integrated Exponential and Flexible Testing Efficiency Models

	3.6…Test Effort Based Imperfect Debugging Software Reliability Growth Models
	3.6.1 Pure Imperfect Fault Debugging Model
	3.6.2 Pure Error Generation Model
	3.6.3 Integrated Imperfect Debugging Models

	3.7…Reliability Analysis Under Imperfect Debugging Environment During Field Use
	3.7.1 A Pure Imperfect Fault Repair Model for Operational Phase
	3.7.2 An Integrated Imperfect Debugging SRGM for Operational Phase
	3.7.2.1 Usage Function for Project Type Software
	3.7.2.2 Usage Function for Product Type Software


	3.8…Data Analysis and Parameter Estimation
	3.8.1 Application of Time Dependent SRGM
	3.8.2 An Application for Integrated Test Effort Based Testing Efficiency SRGM
	3.8.3 An Application for Integrated Operational Phase Testing Efficiency SRGM
	3.8.3.1 Data Analysis of SRGM for Project Type Software
	Failure Data Set

	3.8.3.2 Data Analysis of SRGM for Product Type Software


	Exercises
	References

	4 Testing-Coverage and Testing-Domain Models
	4.1…Introduction
	4.1.1 An Introduction to Testing-Coverage
	4.1.1.1 Statement Coverage
	4.1.1.2 Branch Coverage
	4.1.1.3 Condition Coverage
	4.1.1.4 Path Coverage

	4.1.2 An Introduction to Testing Domain
	4.1.1.6 Function Coverage
	4.1.1.7 Call Coverage
	4.1.1.5 Data Flow Coverage


	4.2…Software Reliability Growth Modeling Based on Testing Coverage
	4.2.1 Relating Testing Coverage to Software Reliability: An Initial Study
	4.2.1.1 One Parameter Model for Testing Coverage
	4.2.1.2 Logarithmic Coverage Model

	4.2.2 Enhanced NHPP Based Software Reliability Growth Model Considering Testing Coverage
	4.2.1.3 Defect Density and Reliability

	4.2.3 Incorporating Testing Efficiency in ENHPP
	4.2.4 Two Dimensional Software Reliability Assessment with Testing Coverage
	4.2.4.1 The Coverage Function
	4.2.4.3 The Two Dimensional SRGM
	4.2.4.2 The One Dimensional SRGM

	4.2.5 Considering Testing Coverage in a Testing Effort Dependent SRGM
	4.2.6 A Coverage-Based SRGM for Operational Phase

	4.3…Software Reliability Growth Modeling Using the Concept of Testing Domain
	4.3.1 Relating Isolated Testing Domain to Software Reliability Growth: An Initial Study
	4.3.1.1 Description of Testing Domains
	4.3.1.2 Software Reliability Modeling

	4.3.2 Application of Testing Domain Dependent SRGM in Distributed Development Environment
	4.3.2.1 Model for Reused Components: the Case of Simple Faults
	4.3.2.2 Model for New Components: the Case of Hard and Complex Faults

	4.3.3 Defining the Testing Domain Functions Considering Learning Phenomenon of Testing Team
	4.3.2.3 Modeling Total Fault Removal Phenomenon
	4.3.3.1 Testing Domain with Skill Factor
	4.3.3.2 Software Reliability Modeling


	4.4…Data Analysis and Parameter Estimation
	4.4.1 Application of Coverage Models
	4.4.2 Application of Testing Domain Based Models

	References

	5 Change-Point Models
	5.1…Introduction
	5.2…Change-Point Models: An Initial Study
	5.2.3 Change-Point Littlewood Model
	5.2.1 Change-Point JM Model
	5.2.2 Change-Point Weibull Model

	5.3…Exponential Single Change-Point Model
	5.4…A Generalized Framework for Single Change-Point SRGM
	5.4.1 Obtaining Exponential SRGM from the Generalized Approach
	5.4.2 Obtaining S-Shaped\Flexible SRGM from the Generalized Approach
	5.4.3 More SRGM Obtained from the Generalized Approach

	5.5…Change-Point SRGM Considering Imperfect Debugging and Fault Complexity
	5.5.1 Exponential Imperfect Debugging Model
	5.5.2 Integrated Flexible Imperfect Debugging Model

	5.6…Change-Point SRGM with Respect to Test Efforts
	5.6.1 Exponential Test Effort Models
	5.6.2 Flexible/S-Shaped Test Efforts Based SRGM

	5.7…SRGM with Multiple Change-Points
	5.7.1 Development of Exponential Multiple Change-Point Model
	5.7.2 Development of Flexible/S-Shaped Multiple Change-Point Model

	5.8…Multiple Change-Point Test Effort Distribution
	5.8.1 Weibull Type Test Effort Function with Multiple Change Points
	5.8.2 An Integrated Testing Efficiency, Test Effort Multiple Change-Points SRGM
	5.8.2.1 Assumptions


	5.9…A Change-Point SRGM with Environmental Factor
	5.10…Testing Effort Control Problem
	5.11…Data Analysis and Parameter Estimation
	5.11.1 Models with Single Change-Point
	5.11.2 Models with Multiple Change Points
	5.11.3 Change-Point SRGM Based on Multiple Change-Point Weibull Type TEF
	5.11.4 Application of Testing Effort Control Problem

	References

	6 Unification of SRGM
	6.1‡Introduction
	6.2…Unification Scheme for Fault Detection and Correction Process
	6.2.2 Fault Correction NHPP Models
	6.2.1 Fault Detection NHPP Models
	6.2.2.1 Exponentially Distributed Correction Time


	6.3…Unified Scheme Based on the Concept of Infinite Server Queue
	6.3.1 Model Development
	6.3.1.1 Conditional Distribution of Arrival Times

	6.3.2 Infinite Server Queuing Model
	6.3.2.1 Model for Complex Faults
	6.3.2.2 Model for Hard Faults
	6.3.2.3 Model for Simple Faults

	6.3.3 Computing Existing SRGM for the Unified Model Based on Infinite Queues
	6.3.2.4 Model for Total FRP

	6.3.4 A Note on Random Correction Times
	6.3.4.1 Exponential Distribution for Removal Times
	6.3.4.3 Gamma Distribution for Removal Times
	6.3.4.2 Weibull Distribution for Removal Times


	6.4…A Unified Approach for Testing Efficiency Based Software Reliability Modeling
	6.3.4.4 Normal Distribution for Removal Times
	6.4.1 Generalized SRGM Considering Immediate Removal of Faults on Failure Observation Under Imperfect Debugging Environment
	6.4.2 Generalized SRGM Considering Time Delay Between Failure Observation and Correction Procedures Under Imperfect Debugging Environment

	6.5…An Equivalence Between the Three Unified Approaches
	6.5.1 Equivalence of Unification Schemes Based on Infinite Server Queues for the Hard Faults and Fault Detection Correction Process with a Delay Function

	6.6…Data Analysis and Parameter Estimation
	6.5.2 Equivalence of Unification Schemes Based on Infinite Server Queues for the Hard Faults and One Based on Hazard Rate Concept
	6.6.1 Application of SRGM for Fault Detection and Correction Process
	6.6.2 Application of SRGM Based on the Concept of Infinite Server Queues
	6.6.3 Application of SRGM Based on Unification Schemes for Testing Efficiency Models

	References

	7 Artificial Neural Networks Based SRGM
	7.1…Artificial Neural Networks: An Introduction
	7.1.1 Specific Features of Artificial Neural Network
	7.4.4

	7.2…Artificial Neural Network: A Description
	7.2.1 Neurons
	7.2.2 Network Architecture
	7.2.3 Learning Algorithm

	7.3…Neural Network Approaches in Software Reliability
	7.3.1 Building ANN for Existing Analytical SRGM
	7.3.2 Software Failure Data
	7.3.2.1 Normalization


	7.4…Neural Network Based Software Reliability Growth Model
	7.4.1 Dynamic Weighted Combinational Model
	7.4.5

	7.5…Data Analysis and Parameter Estimation
	References

	8 SRGM Using SDE
	8.2…Introduction to Stochastic Differential Equations
	8.1…Introduction
	8.2.1 Stochastic Process
	8.2.2 Stochastic Analog of a Classical Differential Equation
	8.2.3 Solution of a Stochastic Differential Equation
	8.2.3.1 sigma -Algebra
	8.2.3.4 Brownian Motion
	8.2.3.3 Probability Space
	8.2.3.2 Probability Measure
	8.2.3.5 ItÔ Integrals [1, 2]


	8.3…Stochastic Differential Equation Based Software Reliability Models
	8.3.1 Obtaining SRGM from the General Solution
	8.3.1.1 Exponential SDE Model
	8.3.1.2 SDE Model for Some Other Popular NHPP Models
	Three-Stage SDE Model
	Delayed S-Shaped SDE Model
	Flexible SDE Model


	8.3.2 Software Reliability Measures
	8.3.2.1 Instantaneous MTBF
	Exponential SDE Model
	Delayed S-Shaped SDE Model
	Flexible SDE Model

	8.3.2.2 Cumulative MTBF
	Exponential SDE Model
	Flexible SDE Model
	Three-Stage SDE Model
	Delayed S-Shaped SDE Model



	8.4…SDE Models Considering Fault Complexity and Distributed Development Environment
	8.4.1 The Fault Complexity Model
	Three-Stage SDE Model

	8.4.2 The Fault Complexity Model Considering Learning Effect
	8.4.3 An SDE Based SRGM for Distributed Development Environment
	8.4.2.2 Hard Faults
	8.4.2.3 Complex Faults
	8.4.2.1 Simple Faults


	8.5…Change Point SDE Model
	8.5.1 Exponential Change Point SDE Model
	8.5.2 Delayed S-Shaped Change Point SDE Model
	8.5.3 Flexible Change Point SDE Model

	8.6…SDE Based Testing Domain Models
	8.6.1 SRGM Development: Basic Testing Domain
	8.6.2 SRGM for Testing Domain with Skill Factor
	8.6.3 Imperfect Testing Domain Dependent SDE Based SRGM
	8.6.4 Software Reliability Measures
	8.6.4.2 Instantaneous MTBF for Testing Domain with Skill Factor Dependent SRGM
	8.6.4.1 Instantaneous MTBF for Basic Testing Domain Dependent SRGM
	8.6.4.4 Cumulative MTBF for Basic Testing Domain Dependent SRGM
	8.6.4.3 Instantaneous MTBF for Imperfect Testing Domain Dependent SRGM
	8.6.4.6 Cumulative MTBF for Imperfect Testing Domain Dependent SRGM
	8.6.4.5 Cumulative MTBF for Testing Domain with Skill Factor Dependent SRGM


	8.7…Data Analysis and Parameter Estimation
	References

	9 Discrete SRGM
	9.1…Introduction
	9.1.1 General Assumption

	9.2…Discrete SRGM Under Perfect Debugging Environment
	9.1.2 Definition
	9.2.1 Discrete Exponential Model
	9.2.2 Modified Discrete Exponential Model
	9.2.3 Discrete Delayed S-Shaped Model
	9.2.4 Discrete SRGM with Logistic Learning Function
	9.2.5 Modeling Fault Dependency
	9.2.5.1 Discrete SRGM for Error Removal Phenomenon
	9.2.5.2 Discrete Time Fault Dependency with Lag Function


	9.3…Discrete SRGM under Imperfect Debugging Environment
	9.4…Discrete SRGM with Testing Effort
	9.5…Modeling Faults of Different Severity
	9.5.1 Generalized Discrete Erlang SRGM
	9.5.1.3 Modeling the Fault-Type k
	9.5.1.1 Modeling Simple Faults (Fault-Type I)
	9.5.1.2 Modeling the Hard Faults (Fault-Type II)

	9.5.2 Discrete SRGM with Errors of Different Severity Incorporating Logistic Learning Function
	9.5.2.2 Modeling the Hard Faults (Fault-Type II)
	9.5.2.1 Modeling the Simple Faults (Fault-Type I)
	9.5.2.3 Modeling the Complex Faults (i.e. Fault-Type III)
	9.5.2.5 Modeling the Total Fault Removal Phenomenon
	9.5.2.4 Modeling the Fault-Type k

	9.5.3 Discrete SRGM Modeling Severity of Faults with Respect to Test Case Execution Number

	9.6…Discrete Software Reliability Growth Models for Distributed Systems
	9.6.1 Modeling the Fault Removal of Reused Components
	9.6.1.1 Modeling Simple Faults

	9.6.2 Modeling the Fault Removal of Newly Developed Components
	9.6.2.2 Components Containing Complex Faults
	9.6.2.1 Components Containing Hard Faults

	9.6.3 Modeling Total Fault Removal Phenomenon

	9.7…Discrete Change Point Software Reliability Growth Modeling
	9.7.1 Discrete S-Shaped Single Change Point SRGM
	9.7.2 Discrete Flexible Single Change Point SRGM
	9.7.3 An Integrated Multiple Change Point Discrete SRGM Considering Fault Complexity
	9.7.3.1 Model for Simple Faults


	9.8…Data Analysis and Parameter Estimation
	9.7.3.2 Model for Hard and Complex Faults
	9.8.1 Application of Fault Complexity Based Discrete Models

	Exercises
	References

	10 Software Release Time Decision Problems
	10.1…Introduction
	10.2…Crisp Optimization in Software Release Time Decision
	10.2.1 First Round Studies in SRTD Problem
	10.2.2 A Cost Model with Penalty Cost
	10.2.3 Release Policy Based on Testing Effort Dependent SRGM
	10.2.4 Release Policy for Random Software Life Cycle
	10.2.5 A Software Cost Model Incorporating the Cost of Dependent Faults Along with Independent Faults
	10.2.6 Release Policies Under Warranty and Risk Cost
	10.2.7 Release Policy Based on SRGM Incorporating Imperfect Fault Debugging
	10.2.8 Release Policy on Pure Error Generation Fault Complexity Based SRGM
	10.2.9 Release Policy for Integrated Testing Efficiency SRGM
	10.2.9.1 Effect of Variations in Minimum Reliability Requirement by the Release Time

	10.2.10 Multi-Criteria Release Time Problems
	10.2.9.2 Effect of Variations in Level of Perfect Fault Debugging

	10.2.11 Release Problem with Change Point SRGM

	10.3…Fuzzy Optimization in Software Release Time Decision
	10.3.1 Problem Formulation
	10.3.1.1 The Cost Model

	10.3.2 Problem Solution

	References

	11 Allocation Problems at Unit Level Testing
	11.1…Introduction
	11.2…Allocation of Resources based on Exponential SRGM
	11.2.1 Minimizing Remaining Faults
	11.2.2 Minimizing Testing Resource Expenditures
	11.2.3 Dynamic Allocation of Resources for Modular Software
	11.2.4 Minimize the Mean Fault Content
	11.2.5 Minimizing Remaining Faults with a Reliability Objective
	11.2.6 Minimizing Testing Resources Utilization with a Reliability Objective
	11.2.7 Minimize the Cost of Testing Resources
	11.2.8 A Resource Allocation Problem to Maximize Operational Reliability

	11.3…Allocation of Resources for Flexible SRGM
	11.3.1 Maximizing Fault Removal During Testing Under Resource Constraint
	11.3.2.1

	11.3.2 Minimizing Testing Cost Under Resource and Reliability Constraint

	11.4…Optimal Testing Resource Allocation for Test Coverage Based Imperfect Debugging SRGM
	11.4.1 Problem Formulation
	11.4.2 Finding Properly Efficient Solution
	11.4.3 Solution Based on Goal Programming Approach

	References

	12 Fault Tolerant Systems
	12.1…Introduction
	12.1.1
	12.1.1.0
	12.1.1.0
	12.1.1.0
	12.1.1.0
	12.1.1.0
	12.1.1.0
	12.1.1.0
	12.1.1.0
	12.1.1.0
	12.1.1.0


	12.2…Software Fault Tolerance Techniques
	12.2.1 N-version Programming Scheme
	12.2.2 Recovery Block Scheme
	12.2.3 Some Advanced Techniques
	12.2.3.1 Community Error Recovery
	12.2.3.2 Self-Checking Duplex Scheme
	12.2.3.3 Distributed Execution of Recovery Blocks
	12.2.3.5 Retry Blocks with Data Diversity
	12.2.3.4 Consensus Recovery Blocks


	12.3…Reliability Growth Analysis of NVP Systems
	12.3.1 Faults in NVP Systems
	12.3.2 Testing Efficiency Based Continuous Time SRGM for NVP System
	12.3.2.1 Model Development
	12.3.2.2 System Reliability

	12.3.3 A Testing Efficiency Based Discrete SRGM for a NVP System
	12.3.3.1 Model Development
	12.3.3.2 System Reliability

	12.3.4 Parameter Estimation and Model Validation
	12.3.4.1 Data Analysis for the Continuous Time Model
	Data Analysis of a 2VP System
	Data Analysis of a 3VP System

	12.3.4.2 Parameter Estimation and Model Validation of Discrete SRGM
	Data Analysis of a 2VP System
	Data Analysis of a 3VP System



	12.4…COTS Based Reliability Allocation Problem
	12.4.1 Optimization Models for Selection of Programs for Software Performing One Function with One Program
	12.4.1.1 Model Without Redundancy
	12.4.1.2 Model with Redundancy

	12.4.2 Optimization Models for Selection of Programs for Software Performing Each Function with a Set of Modules
	12.4.2.1 Optimization Models for One Function Software
	Model 1 Without Redundancy
	Model 2 With Redundancy

	12.4.2.2 Optimization Models for Multiple (K) Function Software
	Model 3 Without Redundancy


	12.4.3 Optimization Models for Recovery Blocks
	Model 4 With Redundancy
	12.4.3.1 Independent Recovery Block
	12.4.3.2 Consensus Recovery Block
	12.4.3.3 Independent Recovery Block with Exponential Execution Time
	Model 1
	Model 2


	12.4.4 Optimization Models for Recovery Blocks with Multiple Alternatives for Each Version Having Different Reliability

	References

	Appendix A
	A.1 Standard Normal (Z) Table
	A.2 Kolmogorov–Smirnov Test Table

	Appendix B
	B.1 Preliminary Concepts of Fuzzy Set Theory

	Appendix C
	C.1 Mean Value Functions of Failure and Removal Phenomenonfor Faults of Type AC, BC, B and C

	Answers to the Selected Exercises
	Index

