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Preface

Advances in software technologies have promoted the growth of computer-related
applications to a great extent. The proliferation of Internet has gone far beyond
even the most optimistic forecasts. Computers and computer-based systems per-
vade every aspect of our daily lives. This has benefited society and increased our
productivity, but it has also made our lives critically dependent on their correct
functioning. Successful operation of any computer system depends largely on its
software components. In the past three decades abilities to design, test and
maintain software have grown fairly, but the size and design complexities of the
software have also increased manyfolds, and the trend will certainly continue in
future. In addition to this, the critical system operations, in which very high
operational precision is required are also becoming more and more dependent on
the software. There are numerous instances where failure of computer-controlled
systems has led to colossal loss of human lives and money. This is a big challenge
to the software developers and engineers. Producing and maintaining the high
quality of software products and processes are at the core of software engineering,
and only a comprehensive quality improvement and assessment program that have
successful outcome can assure it. A lot of research material and book titles are
available with focus on tools and methods for monitoring and assuring high quality
software. At this stage there is a great need for looking at ways to quantify and
predict the reliability of software systems in various complex embedded operating
systems. Apart from this, cost and budget limitations, schedule, and due dates are
the constraints that encroach on the degree to which software development and
maintenance professional can achieve maximum quality. Our title Software Reli-
ability Assessment with OR Applications provides in-depth knowledge of quanti-
tative techniques for software quality assessment.

The technology of modern embedded software systems is changing at a very
fast rate; such changes are not ever seen in any other areas. On account of these
changes, the techniques and models available to measure the system reliability
have also increased at the same rate. In contrast to the few available books in this
area our book addresses most of the existing research, recent trends, and many
more of these techniques and models. Several areas of software reliability
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assessment and applications, which have gained interest mainly in the last five
years and grown at a very fast pace, have been discussed comprehensively in the
book for the first time. Topics such as

e Change point models in software reliability measurement

e Application of neural networks to software reliability assessment

e Optimization problems of optimum component selection in fault tolerant
systems

Unification methodologies in software reliability assessment

Software reliability growth modeling using stochastic differential equationshave
been included for first time, while topics such as

Literature of reliability analysis for fault tolerant systems

Study of software release time decision

Optimum resource allocation problem

have been addressed comprehensively.

The content of this book is useful and provides solution to the problems faced
by several groups of people working in the different fields of software industry.

These groups in general are the people

1. Who want to acquire the knowledge of the state-of-the-art of software reli-
ability measurement, prediction and control. These people include the man-
agers of the software development organizations, engineering professional
dealing with software, and persons involved in the marketing and use of
software.

2. Who are working in different software development groups such as software
design team, testing and debugging teams, and maintenance and evolution
teams, or practitioners of quality assessment, risk analysis, management, and
decision sciences.

3. Who are involved in the research related to software reliability engineering,
reliability analysis, operations research, applied statistics and mathematics, and
industrial engineering and related disciplines.

The book brings out widespread literature of past 40 years of software reli-
ability assessment. It can serve as a first choice and a complete reference guide.
The book brings out widespread literature of past 40 years of software reliability
assessment. It can serve as a first choice and a complete reference guide

The introduction chapter provides an inclusive material and basic knowledge
required to understand the entire content of the book. Various new concept maps
and pictures have been designed to facilitate the understanding. The content of rest
of the book is organized as follows.

Chapter 2 describes the earlier literature of the software reliability growth
models (SRGM). It covers the software reliability modeling with exponential,
S-shaped and flexible models. Consideration of testing efforts in reliability
growth modeling is also presented. The last section of the chapter concentrates
on reliability assessment models for software developed under distributed
environment.
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Earlier literature of reliability growth modeling assumed a perfect debugging
environment. Testing the efficiency of testing and debugging teams makes an
important aspect of the reliability growth modeling, and its consideration in the
models can give absolutely different results as compared to perfect debugging
models. The literature of software reliability modeling under imperfect debugging
environment is discussed in Chapter 3.

Testing coverage and testing domain measures are the key factors related to the
software reliability growth process. These measures help developers to evaluate
the quality of the tested software and determine the additional testing required to
achieve the desired reliability. On the other hand, it is a quantitative confidence
criterion for the customer in taking the decision to buy the product. A detailed
discussion on the testing coverage, domain, and reliability modeling with respect
to these measures is done in Chapter 4.

The concept of change point is relatively recent in the software reliability
modeling. Developing models using the change point concept provides very
accurate results most of the times. A number of reasons are associated for mod-
eling under change point concept such as changes in the testing environment,
testing strategy, complexity and size of the functions under testing, defect density,
skill, and motivation and constitution of the testing and debugging team. Modeling
using the change point concept provides answers to the number of questions
related to the changing scenarios during testing phase. Reliability modeling with
change point is discussed at length in Chapter 5.

Chapter 6 is addressed to the unification schemes in software reliability growth
modeling. Several existing SRGM consider one or the other aspect of software
testing but none can describe a general testing scenario. As such, for any particular
practical application of reliability analysis one needs to study several models and
then decide the most appropriate one. The selected models are compared based on
the results obtained and then a model is selected for further use. As an alternative,
following a unification approach several SRGM can be obtained from a single
approach giving an insightful investigation of these models without making many
distinctive assumptions. It can make our task of model selection and application
much simpler compared to the other methods. Establishment of unification
methodology is one of the very recent topics of research in software reliability
modeling and is discussed for the first time in this book.

Like unification schemes, software reliability modeling based on the Artificial
Neural Networks has gained interest of software reliability researchers recently.
Only limited work has been done in the field by a group of few researchers. In
Chapter 7 we introduce and discuss the existing literature in this area.

The topic of software reliability modeling with stochastic differential equations
although started in the early nineties but gained much popularity and seen more
useful work only in the current years. A comprehensive study of this topic is
presented in Chapter 8.

The reliability growth models discussed in the previous chapters are the con-
tinuous time models. There is another category of reliability growth models, which
use the test cases as a unit of fault detection/removal period. These models are
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called discrete time models. A large number of models have been developed in the
first group while fewer are there in the second group due to the difficulties in terms
of mathematical complexity. The utility of discrete reliability growth models
cannot be underestimated. As the software failure data sets are discrete, these
models many a time provide better fit than their continuous time counterparts.
Chapter 9 addresses to the study of discrete software reliability growth modeling.

The software reliability models find important OR applications. Determination
of software release time and allocation of testing resources at unit testing level are
among the major applications. Chapters 10 and 11 present an inclusive study of
these optimization applications of the reliability growth models.

Maintaining highest possible reliability is most important for the software
systems used to automate the critical operations. Fault tolerance is designed in
software to achieve the highest level of reliability in these systems as compared to
what can be attained with testing. A complete knowledge of fault tolerant schemes,
reliability growth modeling, and optimum system composition problem has been
described in Chapter 12.

A number of useful references, appendices, and index terms are provided to
help further readings.

We expect that our book will meet the expectations of the readers and provide
the best of the state-of-the-art on the subject.
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Chapter 1
Introduction

A popular theory and explanation of the contemporary changes occurring around
us is that we are in the midst of a third major revolution in human civilization, i.e.,
a Third Wave. First there was the Agricultural Revolution, then the Industrial
Revolution, and now we are in the Information Revolution. Yet we are, in fact, in
the middle of a revolutionary jump. Information and communication technology
and a worldwide system of information exchange have been growing for over a
100 years. Information technology (IT) is playing a crucial role in contemporary
society. It has transformed the whole world into a global village with a global
economy. IT has now become the most important technology in the human world
and it is an excellent example of the law of unintended consequences as it paves
the way for creation of the new technologies (e.g., genetic engineering), extension
of the existing technologies (e.g., telecommunications), and the demise of the
older technologies (e.g., the printing industry). Today almost every business,
industry, services, government agencies, and even our day-to-day activities are
directly or indirectly affected by computing systems. The Computer revolution has
benefited society and increased the global productivity, but a major threat of this
revolution is that the world has become critically dependent on the computing
systems for the proper functioning and timing of all its activities. For example, air
traffic control, nuclear reactors, patient monitoring system in hospitals, automotive
mechanical and safety control, online railways and air ticketing, industrial process
control, global networking of various business, and services which include infor-
mation storing (databases), information sharing and internet marketing, etc. are
some diverse applications of IT. If the computer system shows a failure in such
systems the impact of failures may range from inconvenience in social life to
economic damage to loss of life in the most critical case. A total breakdown of the
system functioning is observed in most of the cases until the fault is repaired, and
even after restoring the system to a normal state, sometime it takes up huge time,
efforts, and resources to make up the losses.

P. K. Kapur et al., Software Reliability Assessment with OR Applications, 1
Springer Series in Reliability Engineering, DOI: 10.1007/978-0-85729-204-9_1,
© Springer-Verlag London Limited 2011
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In the broadest sense, IT refers to both the hardware and software that are used
to store, retrieve, and manipulate information. In the past two decades the hard-
ware has attained high productivity and quality due to advances in technology and
progress of design and test mechanisms. Large-scale improvement in hardware
performance, profound changes in computing architectures, vast increase in
memory and storage capacity, a wide variety of exotic input and output options,
has further increased the demand of software in automation of complex systems,
its use as a problem-solving tool for many complex problems of exponential size,
and to control critical applications. With this, size and design complexities of the
software has also increased many folds and the trend will certainly continue in
future. For instance the NASA Space Shuttle flies with approximately 0.5 million
lines of software code on board and 3.5 million lines of code in ground control and
processing [1-3].

With the escalation in size, complexity, demand, and depends on the computer
systems the risk of crises due to software failures has also increased. There are
numerous reported and unreported instances when software failures have caused
severe losses [3, 4]. Few examples are the crash of Boeing 727 of Mexicana airlines
because the software system did not correctly negotiate the mountain position
(1986), overdose given to the cancer patients by the massive Therac-25 radiation
machine in Marietta due to flaws in the computer program controlling the device
(1985 and 1986), Explosion of the European Space Agency’s Ariane 5 rocket, in
less than 40 s after lift-off on 4 June 1996 due to software design errors and
insufficient testing, blackouts in the North-East US during the month August, 2003
due to an error in the AEPR (Alarm and Event Processing Routine) software, etc.

The abilities to design, test, and maintain software has grown fairly, lot of
further improvements are desired in the field. The software development process
has become really a challenging task for the developers. Accordingly, the main
concern about productivity and quality of computer systems has been changing
from the hardware to the software systems. Now the question arises, what makes
productive and quality software? The answer is, the software that enables a
seamless technology experience for people wherever they are—in the home, in the
office or on the go. Arguably the most important software development problem
is building software to customer demands so that it will be more reliable, built
faster, and built cheaper (in general order of importance) [S]. Success in meeting
these demands affects the market share and profitability of a product for the
developer. These demands conflict, causing risk and overwhelming pressure, and
hence strong need for a practice that can help them to have a tight control over the
software development process and develop software to the need of the software
market.

Software reliability engineering (SRE) discipline came forward to create and
utilize sound engineering principles in order to economically obtain software
systems that are not only reliable but also work proficiently on real machines, in
the early 1970s. This made software reliability study recognized as an engineering
discipline. The next concern of software engineering was scheduling and sys-
tematizing the software development process to monitor the progress of the
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various stages of software development using its tools, methods, and process to
engineer quality software and maintaining a tight control throughout the devel-
opment process. Here the most important thing that must be clearly defined is what
quality refers to in context to the developers and the end users. More often it is
defined in terms of internal quality and external quality with a focus on trans-
forming the user’s requirements (external quality characteristics) into the quality
characteristics of the software system developers (internal quality characteristics).
SRE broadly focuses on quantitatively characterizing the following standardized
six quality characteristics defined by ISO/IEC: functionality, usability, reliability,
efficiency, maintainability, and portability. Software reliability is accepted as the
key characteristic of software quality since it quantifies software failures—the
most unwanted events, and hence is of major concern to the software developers as
well as user. Further it is the multidimensional property including other customer
satisfaction factors such as functionality, usability, performance, serviceability,
capability, installability, maintainability, and documentation. For this reason it is
considered to be a “must be quality” of the software.

One of the major roles of SRE lies in assuring and measuring the reliability of
the software. The tools of SRE known as software reliability growth models
(SRGM) are used successfully to develop test cases, schedule status, to count the
number of faults remaining in the software, and estimate and predict the reliability
of the software during testing and operational environment. Foundation of research
in reliability modeling for software seems to be as old as 40 years however, in the
past 30 years the field has experienced extensive growth. Many reliability engi-
neering scientists and research scholars have done excellent study of the various
aspects of the software quality measurement during the software development and
maintenance phases. Many SRE books are available that focus on software reli-
ability modeling. However, similar to the IT advances, the software reliability
modeling has also advanced, incorporating the many recent and challenging issues
in reliability measurement. In this book we present the state-of-the-art modeling in
software reliability over the past 40 years in one place. Various optimization
applications of reliability modeling solved using the tools of operational research
are also discussed in the later chapters of the book. In the next sections of this
chapter we elaborate some important concepts of SRE, software development and
testing, SRGM classification, and a brief review of the literature.

1.1 Software Reliability Engineering

Software engineering is relatively a young disciple and was first proposed in 1968
at a conference held to discuss the problem known at that time as software crisis.
Software crisis was the result of introduction of the powerful, third-generation
computer hardware. Many software projects run over budget and schedule, were
unreliable, difficult to maintain, and performed poorly. The software crisis was
originally defined in terms of productivity, but evolved to emphasize quality. New
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techniques and methods were needed to control the complexities of the large
software projects and the techniques developed and adopted lead to the foundation
of SRE. The SRE technologies were mainly inherent (such as specification, design,
coding, testing, and maintenance techniques) that aid in software development
directly and management technologies (such as quality and performance assess-
ment and project management) that support the development process indirectly.
Our focus in this book lies on the management technologies.

A number of definitions of SRE are made by several people and it is difficult to
say which definition describes it most appropriately. Here we would like to
mention that the word engineering is an action word, which aims to find out ways
to approach a problem. The problems as well as approaches to resolve them have
changed drastically in the past decade and the changes are continued, the definition
of SRE is also changing and evolving. The IEEE [6] society has defined SRE as
widely applicable, standard, and proven practice that apply systematic, disciplined,
quantifiable approach to the software development, test, operation, maintenance,
and evolution with emphasis on reliability and the study in these approaches.
Further ISO/IEC defined software reliability as “an attribute that a software system
will perform its function without failure for a given period of time under specified
operational environment”.

There are several simultaneous benefits of applying SRE principles on any
software development project; broadly they can be listed as—it insures that
product reliability conforms to the user requirements, lowers the development cost
and time with least maintenance and operation costs, improved customer satis-
faction, increased productivity, reduced risk of product failure [5], etc. Concep-
tually SRE is a layered technology (Fig. 1.1). It rests on the organizational
commitment to quality with a continuous process improvement culture and has its
foundation in the process layer. Process defines the framework for management
control of the software projects, establishes the context in which technical methods
are applied, work products are produced, quality is insured, and change is properly
managed. SRE methods provide the technical “how to’s” for building the software
whereas the tools provide automated or semi-automated support for the processes
and methods [6].

SRE management techniques work by applying two fundamental ideas:

e Deliver the desired functionality more efficiently by quantitatively character-
izing the expected use, use this information to optimize the resource usage
focusing on the most used and/or critical functions, and make testing environ-
ment representative of operational environment.

Fig. 1.1 Software reliability
engineering layers

A quality focus
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e Balances customer needs for reliability, time, and cost-effectiveness. It works by
setting quantitative reliability, schedule and cost objectives, and engineers’
strategies to meet these objectives.

The activities of SRE include:

e Attributes and metrics of product design, development process, system archi-
tecture, software operational environment, and their implications on reliability.

e Software reliability measurement—estimation and prediction.

e The application of this knowledge in specifying and guiding system software
architecture, development, testing, acquisition, use, and maintenance.

There exist sound process models of SRE known as software development life
cycle (SDLC) models, which describe the various stages of software development
in a sequential and planned manner. Most of the models, model the SDLC in the
following stages: requirement analysis and definition, system design, program
design, coding, testing, system delivery, and maintenance. The tools and tech-
niques of SRE provide means to the software engineer to monitor, control, and
improve the software quality throughout the SDLC.

1.2 Software Development Life Cycle

Software development realized using the tools and techniques of SRE enables
developers to deliver enough reliability avoiding both excessive costs and devel-
opment time. Software development involves a set of ordered tasks; each task can
be called as a generic process and the process of software development is known as
SDLC. The IEEE computer dictionary has defined SDLC as “the period of time in
which the software is conceived, developed and used”. The software life cycle
process model describes software products life from the conceptualization stage to
the final implementation and maintenance stage. Many life cycle process models
are described in the software engineering literature. The generic process frame-
work applicable to the vast majority of software projects includes the following
stages:

e Analysis and specification
e Software development

e Verification and validation
e Maintenance and evolution

Each framework activity is populated by a set of software engineering actions
such as software project tracking and control, risk management, quality assurance
and measurement, technical reviews, reusability measurement, etc. Following the
generic framework activities every software development and engineering organi-
zation describes a unique set of activities it adopts with the complemented set of
engineering actions in terms of a task set that identifies the work to be accomplished.
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Fig. 1.2 Waterfall model

—
Specification
. &Design . P .
- Coding Testing

Almost all known process models bear at least some similarity to the preliminary
process model known as waterfall models. The waterfall model was proposed by
Royce in 1970. The framework activities of the model are shown in Fig. 1.2 and can
be illustrated as follows.

Activity 1: Requirement Analysis and Specification

This phase forms the foundation stage for building successful software. Defining
the project scope, software requirements, and providing specifications for the
subsequent phases and activities. Project scope definition includes the study of the
users’ need for the system and their problems. This is accomplished with frequent
interaction with the users. Once the scope is defined the requirement collection
activity starts. Requirement collection is actually the study of product capabilities
and constraints. It includes collection of product functionality, usability, intended
use, future expectations, user environment, and operating constraints. Requirement
analysis concludes with a feasibility study of user requirements, cost benefit
estimation, and documentation of collected information and feasibility report. The
document holds the different specific recommendations for the candidate system
such as project proposal, environmental specifications and budget, schedule, and
method plans. The immediate following activity is system specification. The basic
aim of this activity is to transform the user requirement-oriented document to the
developer-oriented document (design specifications). This is the first document
that goes into the hands of the software engineers and forms the foundation
document of the project; hence, it must precisely define essential system functions,
performances, design constraints, attributes, and external interfaces. In this phase,
the software’s overall structure and its nuances are defined. All activities of this
phase must be accomplished very crucially. A well-developed specification can
reduce the occurrence of faults in the software and minimizes rework.

Activity 2: System Analysis and Design

System design activity is concerned with architectural and detailed project
design. A detailed analysis of the specification document is carried to know the
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performance, security and quality requirements, system assumptions, and con-
straints. This study enables partitioning of full system into smaller subsystems and
definition of internal and external interface relationships. The needed hardware and
software support are also identified. In terms of the client/server technology, the
number of tiers needed for the package architecture, the database design, the data
structure designs, etc. are all defined in this phase. The architectural design is
completed with an architectural document design. This document is followed by a
detailed system design activity. Here the program structure, algorithmic details,
programming language and tools, test plans are specified. The final outcome of this
phase is a detailed design document. The design engineers must take care that the
designed system architecture, program structure, and algorithm design conforms to
the specification document. Any glitch in the design phase could be very expensive
to solve in the later stage of the software development.

Activity 3: Coding

The program structures and algorithms specified in the design document are coded
in some programming language—a hardware readable form. This phase consists in
identifying existing reusable modules, coding of new modules, modifications in
existing modules, code editing, code inspection, and a final test plan preparation. If
the program design is performed in a detailed manner, code implementation can be
accomplished without much complication. Programming tools like compilers,
interpreters, debuggers are used to generate the code. Different high level pro-
gramming languages like C, C++, Visual basic, and Java are used for coding. With
respect to the type of application, the right programming language is chosen. Once
the independent programs are implemented they are linked to form the modular
structure of the software according to the interface relations defined in the design
document.

Activity 4: Testing and Integration

Once the code is generated, the software testing begins. Testing is the key method
for dynamic verification and validation of a system. The objectives of the testing
phase are to uncover and remove as many faults as possible with a minimum cost,
to demonstrate the presence of all specified functionalities, and to predict the
operational reliability of the product. Testing is generally focused on two areas:
internal efficiency and external effectiveness. The goal of internal testing is to
make sure that the computer code is efficient, standardized, and well documented.
The goal of external external testing is to verify that the software is functioning
according to system design and that it is performing all necessary functions or
sub-functions. Initially testing begins with unit testing of independent modules
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then the modules are integrated and system testing is performed followed by
acceptance testing.

Activity 5: Operation and Maintenance

The system or system modifications are installed and made operational in the
operational environment. The phase is initiated after the system has been tested
and accepted by the user. Installation also involves user training primarily based
on major system functions and support. The users are also provided installation
and operation manuals. This phase continues until the system is operating in
accordance with the defined user requirements. Inevitably the system will need
maintenance during its operational use. During this period the software is main-
tained by the developer to conquer the faults that remain in it at its release time.
Software will definitely undergo change once it is delivered to the customer. There
are many reasons for a potential change. Change could happen because of some
unexpected input values into the system. Changes in the system could directly
affect the software operation. The software should be developed to accommodate
changes that could happen during the post-implementation period.

The waterfall model maintains that one should move to a phase only when its
proceeding phase is completed and perfected. Phases of development in the
waterfall model are discrete, and there is no jumping back and forth or overlap
between them. Several modifications of waterfall model are known in the literature
to allow the prototyping such as phased, evolutionary, and agile development of
the software. The basic difference between waterfall model and its modifications is
the flexibility in the sense that the task performed in any stage of the development
can be verified and validated with the previous stages so as to reduce the devel-
opment cost, time, and rework. For example the user and the requirement analyst
can review the specifications once they have been defined to insure that the pro-
posed product is what the users want. This allows the user and the software team to
visualize the actions performed and to find the aspects of further improvements in
the accomplished tasks. Figure 1.3 demonstrates a modified waterfall model that
includes reviews and feedbacks in between various development stages.

1.3 Why Software Testing Is Important

Despite using the best engineering methods and tools during each stage of the
software development the software is subject to testing in order to verify and
validate it (software V&V). The previous discussion on the importance of com-
puting systems and human dependence on them clarifies the need of software
testing. Bugs if appear during software operation in user environment can be fatal
to the users in terms of loss of time, money, and even lives depending on criticality
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Fig. 1.3 Modified waterfall
model
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of the function as well as to the developers in terms of cost of debugging, risk cost
of failure, and goodwill loss. The bugs in the software can be manifested in each
stage of its development. Figure 1.4 shows factors contributing to bugs manifes-
tation in the various stages of SDLC.

The aim of software testing is nothing other than quality improvement in order
to achieve the necessary reliability. Although defined in various ways basically
software quality is defined as the attribute measuring how well the software
product meets the stated user functions and requirements. Table 1.1 illustrates the
standardized desired quality characteristics stated by ISO:IEC. Software testing
involves checking processes such as inspections and reviews at each stage of the
SDLC start from the requirement specification to coding. Ideally the test cases that
are executed on the software to test the software are designed throughout its
development life cycle. Testing is inherent to every phase of the SDLC but the
testing performed in the testing stage gives confidence to developers and users on
the software quality. Software testing in the testing phase is a three-stage process
in which first the systems individual components, programs, and modules are
tested called unit testing, followed by integration testing at subsystem and system
level which includes top-down and bottom-up testing, interface testing, and stress
testing and conclude with the acceptance testing. Figure 1.5 summarizes the dif-
ferent testing levels and their focus.
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Table 1.1 Software quality

o Functionality Engineering Adaptability
characteristics (Exterior quality) (Interior quality) (Future quality)
Correctness Efficiency Flexibility
Reliability Testability Reusability
Usability Documentation Maintainability
Integrity Structure Compatibility

Flg' L5 Software testmg Total system function test to check that it

levels conforms to requirement specifications

At subsystern and systemn level includes
top down and bottorn up testing,
interface testing and stress testing

Systerns individual components,
programs and modules are tested

There is plethora of testing methods and testing techniques which can serve
multiple purposes in different phases of SDLC. Testing is basically of four types:
defect testing, performance testing, security testing, and statistical testing [7].

Defect testing is intended to find the inconsistencies between a program and its
specification in contrast to validation testing that requires the system to perform
correctly using an acceptance test case. A defect test case is considered to be
successful if it shows the presence, not the absence, of a fault in the software.
Defect testing can be performed in many different ways, the number and types of
the method adopted depend on the quality requirement, software size and func-
tionality, etc. Some of the well-known techniques are:

e Black box testing: is a testing method that emphasizes on executing the system
functions using the input data derived from the specification document regardless
to the program structure, also known as functional testing. The system func-
tionality is determined from observing the output only; hence the tester treats the
software as a black box.

o White box testing: Contrary to the black box testing, software is viewed as a
white box or a glass box since the tests are derived from the knowledge of the
software’s structure and implementation hence also known as structural testing.
Analysis of code can determine the approximate number of tests needed to
execute all statements at least once.

e Equivalence partitioning: Is based on identifying equivalence partitions of the
input/output data and designing the test cases so that the inputs and outputs lie
within these partitions.

e Path testing: Here the objective is to exercise every independent path of a
program with the test cases.

There is no clear boundary between these testing approaches, which can be
combined during testing.

Performance testing has always been a great concern and a driving force of
computer evolution which includes: resource usage, throughput, stimulus—response
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time, and queue lengths detailing the average or maximum number of tasks waiting
to be serviced by selected resources. Typical resources that need to be considered
include network bandwidth requirements, CPU cycles, disk space, disk access
operations, and memory usage. The goal of performance testing is performance
bottleneck identification, comparison, evaluation, etc. The typical method of doing
performance testing is using a benchmark program, workload, or trace designed to
be representative of the typical system usage.

Security testing has become a matter of prime concern to the software developer
with the detonation of worldwide web in the IT. Software security is now an
attribute of software comparable to the software quality. Most of the critical and
confidential software applications and services have integrated security measures
against malicious attacks. The purpose of security testing for these systems include
identifying and removing software flaws that may potentially lead to security
violations and validating the effectiveness of security measures.

Statistical testing in contrast to other testing methods, aims to measure software
reliability rather than discovering faults. It is an effective sampling method to
assess system reliability and hence also known as reliability testing. Figure 1.6
illustrates the four stages of reliability assessment. Data collected from other test
methods are used here to predict the reliability level achieved and which can
further be used to depict the time when the desired level of quality in terms of
reliability can be achieved. Reliability assessment is of undue importance to both
the developers and user; it provides a quantitative measure of the number of
remaining faults, failure intensity, and a number of decisions related to the
development, release, and maintenance of the software in the operational phase.
To the users it provides a measure for having confidence in the software quality
and their level of acceptability.

1.4 Software Reliability Modeling

Previous discussion on statistical testing highlights the importance of reliability
assessment in the software testing. Most of the testing methods aim to uncover the
faults lying in the software. When a fault is exposed, the corresponding fault is
repaired. This task of failure observation and fault removal gives an indication of
improved system reliability. One of the most important things here is to know how
much improvement or decline (in the case of error generation) in quality has been
made. Knowledge of this information is necessary to make a quantitative measure
of the software quality. Software reliability assessment during the different phases
of the software development is an attractive approach to the developer as it
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provides a quantitative measure of what is most important to them software
quality. Reliability being the most dynamic software quality characteristic is
preferred by the users as well as developers. As stated earlier the task of statistical
testing is to measure software reliability and is performed following a set of
sequential steps (Fig. 1.5). Now the question arises how we can measure the
observed system reliability. Now comes the role of software reliability modeling, a
sub-field of SRE. The reliability models known as Software Reliability Growth
Models (SRGM) can be used here to estimate the current level of reliability
achieved and to predict the time when the desired system reliability can be
achieved. However, computing an appropriate measure of reliability is difficult [7];
it is associated with many difficulties such as:

e Operational profile uncertainty: It is difficult to simulate operational profile,
which is a reflection of the real user operational profile accurately.

e High costs of test data generation: Defining the large set of test data that covers
each program statement, path, functions, etc. is very costly as it requires long
time, expert experience.

e Statistically uncertainty: Statistically significant number of failure data is
required to allow accurate reliability measurement; measurements made with
insufficient data involve huge uncertainty. With this choice of the appropriate
metric and model used, add to the uncertainty of the reliability measurement.

Despite all these challenges to reliability measurement, reliability of the soft-
ware is assessed during the different phases of the software development and is
used for practical decision making. Before we discuss how the reliability measure
is actually made we must clearly understand the difference between the software
failures, faults, and errors [2, 3]. A software failure is a software functional
imperfection resulting from the occurrence(s) of defects or faults. A software fault
or bug is an unintentional software condition that causes a functional unit to fail to
perform its required function due to some error made by the software designers.
An error is a mistake that unintentionally deviates from what is correct, right, or
true; a human action that results in the creation of a defect or fault.

Reliability assessment typically involves two basic activities—reliability esti-
mation and reliability prediction. Estimation activity is usually retrospective and
determines achieved reliability from a point in the past to present using the failure
data obtained during system test or operation. The prediction activity usually
involves future reliability forecast based on available software metrics and mea-
sures. Depending on the software development stage this activity involves either
early reliability prediction using characteristics of the software and software
development process (case when failure data are unavailable) or parameterization
of the reliability model used for estimation and utilizes this information for reli-
ability prediction (case when failure data are available). In either activity, reli-
ability models are applied on the collected information, and using statistical
inference techniques, reliability assessment is carried out.

Widespread research has been carried in the literature in the field of software
reliability modeling, and several stochastic models and their applications have
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been developed during the past 40 years. Many eminent researchers from the fields
of stochastic modeling, reliability engineering, operational research, etc. have done
excellent work in this field. Reliability growth models have been developed and
validated, investigating various concepts and conditions existing in the real testing
environments. Several approaches have been followed for developing these
models. Many attempts have been made to classify the models into different
categories so as to facilitate their application for a particular case. There exist few
models, which are used widely and provide good results in a number of applica-
tions. However, which model is best for a particular application is still a big
question to be answered, even though many researchers have worked to explore
this aspect and provided some guidelines to select best models for certain appli-
cations. Unification of models is a recent approach in this direction. Looking at
this broad area of research and having strong research interests in this field, since
years we conceptualize this book to bring this literature on a platform which can be
used by every one who wants to get the core knowledge of the field, know the
existing work in the field so as to do the further enhancement and use it for
practical application. Now we briefly discuss some preliminary concepts of soft-
ware reliability modeling.

1.5 Preliminary Concepts of Reliability Engineering

Origin of hardware reliability theory is a long history. It seems to be originated
during the World War II. The fundamental concepts and hardware reliability
models were built on the concepts of probability theory and stochastic model-
ing. In the view of theorists software reliability is a concept originated from
hardware reliability. In this section we discuss the fundamental concepts of
software reliability and other metrics associated with software reliability study.
We also provide some common distribution functions and derive the reliability
measures based on them. In the later sections we discuss the stochastic pro-
cesses used in the reliability study, and a detailed discussion on non-homoge-
neous Poisson process (NHPP)-based reliability modeling is carried to provide
the readers the basic concepts of NHPP-based software reliability growth
modeling.

The reliability measure applied either to hardware or software is related to their
quality. Hardware reliability study aims to systematic system analysis in order to
reduce and eliminate the hardware failures; in contrast the software reliability aims
to analyze the system reliability growth due to testing activity in the software
development. This makes the basic difference between the reliability analysis of
hardware and software systems. Despite this basic difference there exist several
similarities and dissimilarities between hardware reliability and software reli-
ability. First we carry out a comparison between the two, which enables us in
building better understanding of software reliability modeling.
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1.5.1 Let Us Compare: Software Versus Hardware Reliability

Reliability measure applied either to software or hardware refers to the quality of
the product and strives systematically to reduce or eliminate system failures. The
major difference in the reliability analysis of the two systems is due to their failure
mechanism [3, 5]. Failures in hardware is primarily due to material deterioration,
aging, random failures, misuse, changes in environmental factors, design errors,
etc. while software failures are caused by incorrect logic, misinterpretation of
requirements and specifications, design errors, inadequate and insufficient testing,
incorrect input, unexpected usage, etc. Software faults are more difficult to visu-
alize, classify, detect, and correct due to no standard techniques available for the
purpose and require a thorough understanding of the system, uncertain operational
environment, and testing and debugging process.

Another important difference in the reliability analysis of the two systems lies
in their failure trend. Failure curve that is related to hardware systems is typically
a bathtub curve with three phases—burn-in, useful life, and wear-out phase as
shown in Fig. 1.7. Software on the other hand does not have stable reliability in the
life phase instead it enjoys reliability growth or failure decay during testing and
operation since software faults are detected and removed during these phases as
shown in Fig. 1.8. The last phase of the software is different from the hardware in
the sense that it does not wear out but becomes obsolete due to major improvement
in the software functions and technology changes.

Hardware reliability theory relies on the analysis of stationary processes, because
only physical defects are considered. However, with the increase of the software
system size and complexity, reliability theory based on stationary process becomes
unsuitable to address non-stationary phenomenon such as reliability growth. This
makes software reliability a challenging problem, which requires employment of
several intelligent methods to attack [1] and forms a basis for software engineering
method to base on the construction of models representing the system failure and
fault removal process in terms of model parameters. The difference in the affect of
fault removal requires the software reliability to be defined differently from the

Fig. 1.7 Hardware failure Burn in Useful Life Wear out
curve
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hardware reliability. On the removal of a fault, a hardware component returns to its
previous level of reliability subject to the reliability of repair activity. But a software
repair implies either reliability improvement (case of perfect repair) or decline (case
of imperfect repair). The techniques of hardware reliability aim to maintain the
hardware’s standard reliability and improvements if required in the design standards.
On the other hand SRE aims to continuous system reliability improvement.

1.5.2 Reliability Measures

Quantities related to the reliability measurement are most of the time defined in
relation to time. In order to elaborate this point let us first define reliability.
Statistically, reliability is defined as the “probability that software system will
perform its function failure free under the specified environmental conditions and
design limits for a specified period of time”. This definition of reliability needs a
careful understanding; first of all the statement that it will perform its function
means the intended use of the software, defined in the specification and require-
ment documents. The specified environmental and design limits are defined by its
software and hardware compatibility and operational profile. We cannot expect
software working without failure on an input state run for which the software is not
designed or working perfectly without the accurate support of supporting software
and hardware. Now comes the concept of time, here we are interested in three
types of time—execution time, calendar time, and clock time.

e Execution time: It is the processor’s actual time span on an input state run, i.e.,
the time which is spent on running a test case of a specified run of system
function.

e Calendar time: This type of time component is related to the number of days,
weeks, months, or years the processor spends on running a system function.

e Clock time: This time component is related to the elapsed time from the start of
a computer run to its termination. It is clear that the waiting and execution time
of other programs is included in this component on a parallel processor.
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Note that system down time is not included in the execution and clock time
component. It is important to know that most of the software reliability models are
based on the calendar time component as often the actual failure data sets are
defined on the calendar time component, but nowadays the execution time com-
ponent is preferred in many cases as it is accepted by most of the researchers that
results are better with the execution time component. Even then we need to relate
the execution time component to the calendar time as this is more meaningful to
the software engineers and developers. Now we define the software reliability
mathematically.

1.5.2.1 Mathematical Definition of Reliability

If the reliability of a system R(¢) is defined from time O to a time point ¢ then it is
given as

R(t)=P(T >1t), t>0 (1.5.1)
where T is a random variable denoting the time to failure or failure time of the
system.
1.5.2.2 Failure Time Distribution and Reliability Measure
Consider F(T), defined as the probability that if the system will fail at time ¢ then

F(t)=P(T<t), t>0

F(T) is called the failure time distribution function. Now if f(f) is the density
function of random variable 7 then we can write

R(t) = / £(s)ds (1.5.2)

t
which is equivalent to

£18) =~ (R()

Further from (1.5.1) and (1.5.2) we can write
R(t)=1-F(1) (1.5.3)

As such F(T) is also called unreliability measure. On the other hand the density
function can be expressed as limp,—o P(r<T <7+ Ar) meaning that the failure
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time will occur between the operating time ¢ and the next interval of operation
(t + Ap).

It is important to mention here that the reliability measure has a meaning only
when it is defined with a time statement, i.e., if we say reliability of a system is
0.99, it is meaningless until it is defined on a time period. A valid statement of
reliability can be “Reliability of software is 0.99 for a mission time of 4 weeks”.
Hence we can say that “reliability measure is a function of the mission time”.
A direct implication of this statement is that as the time interval on which we
define the reliability measure increases, the system becomes more likely to fail. As
such the reliability defined over a time interval of infinite length is zero. This
statement also follows from (1.5.3) as

F(00) = 1 = R(c0) = 0 (1.5.4)

1.5.2.3 System Mean Time to Failure

We define system mean time to failure (MTTF) as the expected time during which
a system or component is expected to perform successfully without failure.
Mathematically it can be defined in terms of the system failure time density
function f{7) as

o0

MTTE — / f () de (15.5)

0

Using the relationship between reliability and unreliability function we can
define this quantity in terms of reliability function as

MTTF = —/t%R(t) dr = —/ 1d(R(r)) = —[1R(T)]y +/R(t) dr
0 0 0

Now as tR(T) — 0 ast— 0 or t— oo using (1.5.4), this implies

MTTF = [ R(:)d: (1.5.6)
/

MTTF is one of the most widely used reliability measure. The measure is to be
used when the distribution of failure time is known as we can make out from
(1.5.5) and (1.5.6) that it depends on the failure time distribution. One important
point to be noted here is that it is a measure of average time of system failure and
cannot be understood as the guaranteed minimum lifetime of the system.
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1.5.2.4 Hazard Function

The probability of system failure in a given time interval [#,, 7] can be expressed as

5]

/f(t)dtzif(t)dl—]f(l)dl
0 0

n

[0 =Fe) - Fn) (157)

141
Using (1.5.4) we can rewrite (1.5.7) in terms of reliability function as

/f(t) dt = R(1) — R(12)

4

Now we can define the rate at which failures occur in a certain time interval
[t1, 2] as the probability that a failure per unit time occurs in the interval, given
that a failure has not occurred prior to t, i.e., the failure rate is defined mathe-
matically as

15)
“f(r)dt R(t)) — R(t
d (1) = R(r) (1.5.8)

(b —t)R(t1) (2 —t)R(h)

The hazard function is defined as the limit of the failure rate or it can be called
as instantaneous failure rate and can be derived from (1.5.8). If we redefine length
of the time interval as [z, t + Ar], the failure rate can be defined as

R(t) — R(t + A¢)
AR (1.5.9)

and hazard function A(f) can be obtained taking limit Az — 0, hence

. R(t) —R(t+ At)
ht) = im —NR(
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The quantity h(f) df represents the probability that the system age will fall in the
small interval of time [¢, ¢ + Af]. The hazard function reflects the picture of failure
changes over the systems’ or components’ life. The hazard function must satisfy
two conditions:

1. h(t)>0 V>0
2. [h(t)dr =
0

1.5.3 Reliability Function Defined for Some Commonly Used
Distributions in Reliability Modeling

The previous discussion on the reliability measures enables us to define them for
some commonly used distributions in the software reliability modeling. Below we
derive the reliability and hazard functions for the various distribution functions.

1.5.3.1 Binomial Distribution

The binomial distribution is a commonly used discrete random variable distribu-
tion in reliability and quality analysis. The application of the distribution is in the
situations when we are dealing with the cases where an event can be expressed by
binary values, e.g., success or a failure, occurrence or non-occurrence, etc.

The binomial distribution gives the discrete probability distribution of obtaining
exactly x successes out of n Bernoulli trials (where the result of each trial is true
with probability p and false with probability ¢ = 1 — p). The binomial distribu-
tion is, therefore, given by

PX=x)= (Z)pxq”_x; x=0,1,2,...,n (1.5.10)

where <x> = ﬂ(,l"lx)l is the binomial coefficient.

When n = 1, the binomial distribution is a Bernoulli distribution, an event
which can be expressed by binary values.

The reliability function, R(k), meaning here that k out of n items are good is
given by

R(k) = Z (Z)p"q”"‘ (1.5.11)
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1.5.3.2 Poisson Distribution

The Poisson distribution arises in relation to Poisson processes, applicable to
various phenomena of discrete nature (that is, those that may happen 0, 1, 2,
3,... times during a given period of time or in a given area) whenever the
probability of the phenomenon happening is constant in time or space. Appli-
cations of the distribution are similar to that of binomial distribution, the main
difference lies in the fact the sample size n is very large and may be unknown
and probability p of successes is very small. However, it is also a discrete
distribution with pdf given as

() e

PX=x)= 1

: x=0,1,2,..., (15.12)

where 4 is a positive real number, equal to the expected number of occurrences
that occur during the given interval. The probability P(X = x) represents that there
are exactly x occurrences (x being a non-negative integer, x = 0, 1, 2,...) of the
event.

The above density function is the limit of binomial pdf if we substitute A = np
and take limit n — oo.

The reliability function, R(k), the probability that k or lesser number of failures
occurs by time ¢, is given by

R(k) :i% (1.5.13)

x=0

1.5.3.3 Exponential Distribution

Exponential distribution is a continuous time distribution used extensively in the
hardware and software reliability studies. The distribution describes the lengths of
the inter-arrival times in a homogeneous Poison process. The exponential dis-
tribution can be looked as a continuous counterpart of the geometric distribution,
which describes the number of Bernoulli trials necessary for a discrete process to
change state. Exponential distribution describes the time for a continuous process
to change state.

The extensive applications of this distribution in reliability study are due to the
fact that it has a constant hazard function or failure rate, which reduces the
complexity of mathematics involved in analysis. However, the constant hazard
function has the drawback that it is appropriate only when the state of the com-
ponent any time during its operation is identical to its stage at the start of its
operation. This is not true in many cases. Hence the distribution is well suited to
model the constant hazard rate portion of component life cycle, and not for the
over all life time. This property of exponential distribution is called memoryless
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property. Before we define this property mathematically, first we write the pdf of
the distribution.

1 )
flr) = Ee*a =Jde* >0 (1.5.14)

and the reliability function is given as

R(fy=eT=e* >0 (1.5.15)
where 0 = } > 0 is the rate parameter.
The hazard function is calculated as
[ 1
(l‘) === 4
R(r) 6

Now we state the two important properties of the exponential distribution.

Property 1 Memoryless property
The distribution satisfies

PT>t]=P[T>t+s|T>s] fort>0,5s>0

The result means that the conditional reliability function for a component’s
lifetime that is operating by time s starting from 0 is identical to that of a new
component. This is known as “as good as new” assumption for an old component.

Property 2 IfT,,T,,...,T, are independently and identically distributed expo-
nential random variables with a constant failure rate 2 then

20) T ~N2(2n)

n
i=1

where W2(r) is a chi-square distribution with degree of freedom r. This result is
useful for establishing a confidence interval for /.

1.5.3.4 Normal Distribution

Normal distribution, also called the Gaussian distribution, is important continuous
probability distributions. The distribution is defined by two parameters, location
and scale: the mean (“average”, u) and variance (standard deviation squared, 02),
respectively. The pdf is given by

ft) = e _oo<i<oo (1.5.16)




22 1 Introduction

and the reliability function is given as
=) ds (1.5.17)

A closed form solution of the reliability function is not obtainable; however, the
reliability values can be determined from the standard normal density function.
Tables are easily available (see Appendix A) for standard normal distribution,
which can be used to find the normal probabilities.

If Z == is substituted in (1.5.16) we obtain

) = ———=e /7 —co<Z<oo (1.5.18)

the above density function is called standard normal pdf, with mean 0 and variance
1. The standard normal cdf is given by

D(1) = / \/%_He—sz/z ds (1.5.19)

Hence if T is a normal variable with mean u and standard deviation o then,

PT <] :P{ZSI_T’M} — Ot — )/d] (1.5.20)

and the value of ®[(zr — u)/0] can be obtained from the standard normal table.

The normal distribution takes the well-known bell shape and is symmetrical
about the mean whereas the spread is measured by the variance. The importance of
the normal distribution as a model of quantitative phenomena in the natural and
behavioral sciences is due in part to the central limit theorem. Many measurements
ranging from psychological to physical phenomena can be approximated, to
varying degrees, by the normal distribution.

The hazard function of the normal distribution given as

h(t) =—+

(
()
he) = (e74)) / ( /OO ) gy

is a monotonically increasing function of time ¢, as

h/(t) :%(;]@(I)ZO YV —oo<t<oo

f(@)
R
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1.5.3.5 Weibull Distribution

The Weibull distribution is one of the most widely used lifetime distributions in
reliability engineering. It is a versatile distribution in that it can take on the
characteristics of other types of distributions, based on the value of the shape
parameter, 5. As said previously that exponential distribution although used more
often in reliability modeling, suffers from the drawback that hazard function is
constant over the components life. The Weibull distribution on the other hand can
be called as a generalization of the exponential distribution due to its versatile
nature.

The Weibull probability density can be given by a three-, two-, or a one-
parameter function. The three-parameter Weibull pdf is given by

fl) = E(t 7 V)ﬁ_]"f(%)ﬁ (1.5.21)

where f,f(1)>0ory, 5,0 >0, —oo<y<ooand 0 is scale parameter, f§ is shape
parameter (or slope), and 7 is location parameter.
The two-parameter Weibull pdf is obtained by setting y = 0 and is given by

f(1) = g(g) e (1.5.22)

and the one-parameter Weibull pdf is obtained by again setting y = 0 and
assuming § = C (a constant or an assumed value)

10 = %(g) e ) (1.5.23)

where the only unknown parameter is the scale parameter, 6. Note that in the
formulation of the one-parameter Weibull, we assume that the shape parameter f3
is known a priori from past experience on identical or similar products. The
advantage of doing this is that data sets with few or no failures can be analyzed.
The three-parameter Weibull cumulative density function, cdf, is given by

=y B
F(t)=1-¢ (7)
The reliability function for three-parameter Weibull distribution is hence given by
=\
R(t)=1—-¢ (7) (1.5.24)

The Weibull failure rate function, h(¢), is given by

Bl
h(1) _J;T?)_g(t 7)
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It can be shown that the hazard function is decreasing for § < land increasing
for § > 1, and constant for § = 1. Depending on the values of the parameters, the
Weibull distribution can be used to model a variety of life behaviors.

Rayleigh and exponential distributions are special cases of Weibull distribution
at f=2,y=0and f =1, y =0, respectively.

1.5.3.6 Gamma Distribution

The Gamma distribution is widely used in engineering, science, and business to
model continuous variables that are always positive and have skewed distributions.
The gamma distribution is a two-parameter continuous probability distribution.
The failure density function for gamma distribution is

1 /e\"" .
- L (%),
f(@) F(a)ﬁ(ﬁ) e \W;: >0,0f>0 (1.5.25)

where o, f§ are the shape and scale parameters, respectively. The scale parameter f§
has the effect of stretching or compressing the range of the Gamma distribution.
A Gamma distribution with § = 1 is known as the standard Gamma distribution. If
f is an integer, then the distribution represents the sum of f independent expo-
nentially distributed random variables, each of which has a mean of « (which is
equivalent to a rate parameter of o). While o controls the shape of the dis-
tribution, when o < 1, the Gamma distribution is exponentially shaped and
asymptotic to both the vertical and horizontal axes, for « = 1 and scale parameter
b gamma distribution is the same as an exponential distribution of scale parameter
(or mean) b. When o is greater than one, the Gamma distribution assumes a
unimodal, but skewed shape. The skewness reduces as the value of o increases.
The reliability function is given as

R(1) = fﬁ(%) ) g (1.5.26)

The gamma distribution is most often used to describe the distribution of the
amount of time until the nth occurrence of an event in a Poisson process, i.e., when
the underlying distribution is exponential. For example, customer service or
machine repair. Thus if X; is exponentially distributed with parameters 6 = 1/f,
then T = X; + X, + -+ + X,, is gamma distributed with parameters f and n.

1.5.3.7 Beta Distribution

Beta distribution is a continuous distribution function defined on the interval [0, 1]
parameterized by two positive shape parameters, typically denoted by o and f.
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The beta distribution is used as a prior distribution for binomial proportion in
Bayesian analysis. The probability density is given as

B( X, ﬁ) ’ ’ ’ ..
IIeIe B(Of, ﬁ) l.S the beta funCthH ]3(0(7 ﬁ) — l—(‘() (ﬂﬁ)).

The reliability function is given as

R(r) = /Mds (1.5.28)

1.5.3.8 Logistic Distribution

The logistic distribution is a continuous probability distribution whose cumulative
distribution function has the form of logistic function. The logistic distribution and
the S-shaped pattern that results from it have been extensively used in many
different areas. It is used widely in the field of reliability modeling, especially
software reliability. The distribution is often seen in logistic regression and feed
forward neural networks. It resembles the normal distribution in shape but has
heavier tails (higher kurtosis). It is a two-parameter distribution function whose
pdf is given as

_b(1+ ﬁ)e‘h’.
(14 ety

The cumulative density function is given as

£(0) t>0,0<b<1, >0 (1.5.29)

(1.5.30)

The reliability function of the distribution can be obtained from (1.5.30) using

(1+B)e™”

Rt)=1—-F(t) = T fo i

Another type of logistic distribution known as half logistic distribution can be
defined, which is a one-parameter continuous probability distribution; the pdf is
given as

2b —2bt
e

- ) — — )

f(0) =
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and the cdf is given as

t

Fio = [ )5 =

0

1— efbf

T (1.5.31)

In this section we have discussed the various distributions commonly used in
the reliability analysis of software systems. The literature of stochastic models in
reliability study of software systems is pretty wide. Knowing which model is best
for any particular real application is very difficult. It necessitates classification of
existing models into different categories according the various existing and
potential future applications and formulates some guidelines for selection of best
models in a specific situation. In the next section we put on some discussions on
software reliability model classification and model selection.

1.5.4 Software Reliability Model Classification and Selection

1.5.4.1 Model Classification

Reliability models are powerful tools of SRE for estimating, predicting, con-
trolling, and assessing software reliability. A software reliability model specifies
the general form of dependence of the failure process/reliability metrics and
measurements on some of the principle factors that affect it: software and
development process characteristics, fault introduction, fault removal, testing
efficiency and resources, and the operational environment. Software reliability
modeling has been a topic of practical and academic interest since the 1970s.
Today the number of existing models exceeds hundred with more models
developing every year. It is important to classify the existing models in the
literature into different categories so as to simplify the model selection by the
practitioners and further enhancement of the field. There have been various
attempts in the literature to classify the existing models according to various
criteria. Goel [8] classified reliability models into four categories, namely, time
between failure models, error count models, error seeding models, and input
domain models. Classification due to Musa et al. [9] is according to time
domain, category, and the type of probabilistic failure distribution. Some other
classifications are given by Ramamoorthy and Bastani [10], Xie [11], Pop-
stojanova and Trivedi [12]. A recent study due to Asad et al. [13] classified
software reliability models according to their application to the phases of SDLC
into six categories. The proposed classification of software reliability models
according to phases of SDLC is shown in Fig. 1.9 along with the names of some
known models from each category.
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Fig. 1.9 Model classification

Early Prediction Models

These types of models use characteristics of the software development process
from requirements to test and extrapolate this information to predict the behavior
of software during operation.

Architecture-Based Models

These models put emphasis on the architecture of the software and derive relia-
bility estimates by combining estimates obtained for the different modules of the
software. The architecture-based software reliability models are further classified
into State-based models; Path-based models; and Additive models.

Software Reliability Growth Models

These types of models capture failure behavior of software during testing and
extrapolates it to determine its behavior during operation using failure data
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information and observed trends deriving reliability predictions. The SRGM are
further classified as Concave models and S-shaped models.

Input Domain-Based Models

These models use properties of the input domain of the software to derive a
correctness probability estimate from test cases that executed properly.

Hybrid Black Box Models

These models combine the features of input domain-based models and SRGM.

Hybrid White Box Models

The models use selected features from both white box models and black box
models. However, since the models consider the architecture of the system for
reliability prediction, these models are considered as hybrid white box models.

The early prediction and architecture based models are together known as
called as white box models which regard software as consisting of multiple
components, while software reliability growth models and input domain based
models are together known as black box models which regard software as a single
unit. Black box models are studied widely by many eminent research scholars and
engineers. Popstojanova and Trivedi [12] classified black box models as failure
rate models, failure count models, static models, Bayesian models, and Markov
models. Most of the research work in software reliability modeling is done on
failure count models, Bayesian models, and Markov models. We give below a
brief description of these categories.

Fault counting models: A fault counting model describes the number of times
software fails in a specified time interval. Models in this category are assumed to
describe the failure phenomenon by stochastic processes in discrete and continu-
ous time space like homogeneous Poisson process (HPP), NHPP, compound
Poisson process, etc. The majority of these failure count models are based upon the
NHPP. The pioneering attempt in NHPP-based software reliability has been made
by Goel and Okumoto [14]. The content of the book focuses on the development
and application of NHPP based software reliability growth models. Detailed dis-
cussion on these models is carried in the Sect. 1.5.6 of this chapter.

Markovian models: A Markov process represents the number of detected faults
in the software system by a Markov process. The state of the process at time ¢ is
the number of faults remaining at that time. If the fault removal process is perfect it
is represented by a pure death Markov model. If the fault removal is imperfect, i.e.,
new faults could be introduced while debugging, then the model is represented by
a birth—death Markov process. A Markov process is characterized by its state space
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together with the transition probabilities between these states. The Markov
assumption implies the memoryless property of the process, which is a helpful
simplification of many stochastic processes and is associated with the exponential
property. Jelinski and Moranda (JM) [15], Schick and Wolverton [16], Cheung
[17], Goel [8], Littlewood [18] are examples of some Markov models. JM model
was the earliest in this category and the basis of future Markov models.

Models based on Bayesian analysis: In the previous two categories the
unknown parameters of the models are estimated either by the least squares
method or by the maximum likelihood method (later in this chapter both these
methods are briefly discussed). But in this category of models, the Bayesian
analysis technique is used to estimate the unknown parameters of the models. This
technique facilitates the use of information obtained by developing similar soft-
ware projects. Based on this information the parameters of given model are
assumed to follow some distribution (known as priori distribution). Given the
software test data and based on a priori distribution, a posterior distribution can be
obtained which in turn describes the failure phenomenon. Littlewood and Verrall
[19] proposed the first software reliability model based on Bayesian analysis.
Littlewood and Sofer [20] presented the Bayesian modification of JM model;
Singpurwalla [21] and Singpurwalla and Wilson [22] have proposed a number of
Bayesian software reliability models for different testing environments.

1.5.4.2 Model Selection

A very important aspect of software reliability modeling and application of the
models to the reliability measurement is to determine which model should be used
for a particular situation. Models that are good in general are not always the best
choice for a particular data set, and it is not possible to know in advance which
model should be used in any particular case. We do not have a guideline with high
confidence level, which can be followed to choose any particular model. No one
has succeeded in identifying a priori the characteristics of software that will insure
that a particular model can be trusted for reliability predictions [13]. Previously
most of the tools and techniques used trend exhibited by the data criterion for
model selection. Among the tools that rank models is AT&T SRE toolkit. This tool
can be used for only few SRGM. Asad et al. [13] discussed various criteria to be
used in the order of their importance to select a model for a particular situation.
Following criteria are specified.

Life cycle phase

Output desired by the user

Input required by model

Trend exhibited by the data

Validity of assumptions according to data
Nature of project
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e Structure of project
e Test process
e Development process

The authors suggests that in order to choose the best model to apply to a
particular reliability measurement situation, first select the life cycle phase and
then find the existing reliability models applicable to that phase. Define deciding
criteria, their order of importance, and assign weights to each criterion. For each
criterion give applicability weights to each model; multiplying the criterion and
applicability weights, one obtains the models with high scores, which can be used
to measure the reliability for that case.

1.5.5 Counting Process

Stochastic modeling has been used to develop models to represent the real system
and analyze their operation since years. There are two main types of stochastic
process: continuous and discrete. Among the class of discrete process, counting
process is used in reliability engineering widely to describe the occurrence of an
event of time (e.g., failure, repair, etc.).

A non-negative, integer-valued stochastic process, N(?), is called a counting
process if N(f) represents the total number of occurrences of an event in the
interval of time [0, #] and satisfies the following two properties:

1. If t; <t,, then N(Il) SN(IQ)
2. If t; < tp, then N(f;) — N(t;) is the number of occurrences of the event in the
time interval [z, t,]

For example, consider the event N(¢) of airline ticket booking. If N(#;) is the
number of tickets booked up to the time #; and N(#;) — N(#;) is the number of
tickets booked in the time interval [#;, ,], such that N(#;) <N(t;) then N(?) is a
counting process. An event occurs whenever a ticket is booked.

Poisson process is used most widely to describe a counting process in reliability
engineering. NHPP has been used successfully in hardware reliability analysis to
describe the reliability growth and deteriorating trends. Following the trends in
hardware reliability analysis many researchers proposed and validated several
NHPP-based SRGM. SRGM describe the failure occurrence and\or failure
removal phenomenon with respect to time (CPU time, calendar time, or execution
time or test cases as unit of time) and/or resources spent on testing and debugging
during testing and operational phases of the software development.

NHPP-based SRGM are broadly classified into two categories first—continuous
time models, which use time (CPU time, calendar time or execution time) as a unit
of fault detection period and second—discrete time models, which adopt the
number of test occasions/cases as a unit of fault detection period.
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1.5.5.1 NHPP in Continuous Time Space

A counting process (N(z),t>0) is said to be an NHPP with mean value function
m(t), if it satisfies the following conditions:

1. There are no failures experienced at t = 0, that is, N(0) = 0.

2. The counting process has independent increments, i.e., for any finite collection
of times t; <t, < - <f;, the k random variables N(t;), N(t;) — N(ty),...,
N(t;) — N(t, _ 1) are independent.

3. Pr(exactly one failure in (¢,7 + At) = A(t) + o(Ar).

4. Pr(two or more failures in (¢,7 + At) = o(Ar)

where /(¢) is the intensity function of N(¢). If we let m(t) = f(; A(x) dx them m(?) is
a non-decreasing, bounded function representing the mean of number of faults
removed in the time interval (0, #] [2]. It can be shown that

(m(1)" e~
k! ’

i.e., N(#) has a Poisson distribution with expected value E[N(7)] = m(t) for ¢ > 0.
and the reliability of the software in the time interval of length x is given as

R(x|t) = e~ (mlrr)=mlx) (1.5.33)

Pr[N(1) = k] = n=0,12,... (1.5.32)

1.5.5.2 NHPP in Discrete Time Space

A discrete counting process [N(n),n > 0], (n = 0, 1, 2, ...) is said to be an NHPP
with mean value function m(n), if it satisfies the following two conditions:

1. No failures are experienced at n = 0, that is, N(0) = 0.

2. The counting process has independent increments, implies the number of
failures experienced during (nth, (n+ 1)th) test cases is independent of the
history. The state m(n + 1) of the process depends only on the present state
m(n) and is independent of its past state m(x), for x < n.

For any two test cases n; and n; where(0 < n; < n;), we have

X
nm\n;) — m\n; _ N .
Pr{N(n;) — N(n;) = x} _ {mly) ' ()} e~ {mlm)—m(m)} (1.5.34)
X
x=0,1,2, ..
The mean value function m(n) which is a non-decreasing in n represents the
expected cumulative number of faults detected by n test cases. Then the NHPP
model is formulated as

Pr{N(n) =x} = Me—m(n)

x!
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Let N(n) denote the number of faults remaining in the system after execution of
the nth test run. Then we have

where, N(o0) represents the total initial fault content of the software.
The expected value of N(n) is given by

E(n) = m(o0) —m(n)

where, m(o0) represents the expected number of faults to be eventually detected.
Suppose that n, faults have been detected by the execution of n test cases. The
conditional distribution of N(n), given that N(n) = ng, is given by

_ E Y
Pr{N(n) =y|N(n) = ng} = %e_ﬂn) (1.5.35)
and the probability of no faults detected between the nth and (rn + h)th test cases,
given that n, faults have been detected by n test cases, i.e., software reliability, is
given by

R(h/n) = exp(—{m(n + h) — m(n)}) (1.5.36)

1.5.6 NHPP Based Software Reliability Growth Modeling

NHPP-based SRGM are either concave or S-shaped depending upon the shape of the
failure curve described by them. Concave models describe an exponential failure
curve while second category of models describes an S-shaped failure curve [2, 3].
The two types of failure growth curves are shown in Figs. 1.10 and 1.11. The most
important property of these models is that they have the same asymptotic behavior in
the sense that the fault detection rate decreases as the number of detected defects
increases and approaches a finite value asymptotically. The S-shaped curve

Fig. 1.10 Exponential
failure curve

Cumulative number of
detected faults

Time
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Fig. 1.11 S-shaped failure
curve

Cumulative number of
detected faults

Time

describes the early testing process to be less efficient as compared to the later testing,
i.e., it depicts the learning phenomenon observed during testing and debugging
process.

During the last three decades several researchers devoted their research interest
to NHPP-based software reliability modeling and contributed significantly in
understanding the testing and debugging process and developing quality software.
The primary factors analyzed and incorporated in the reliability modeling for
software systems are software development process, fault tolerance, operational
environment, fault removal process, testing efficiency, resources and coverage,
fault severity and Error generation (Fig. 1.12).

Schneidewind [23] made the preliminary attempt in NHPP-based software
reliability modeling. He assumed exponentially decaying failure intensity and rate
of fault correction proportional to the number of faults to be corrected. Goel and
Okumoto [14] presented a reliability model (GO model); assuming hazard rate is
proportional to the remaining number of faults in the software. This research paper
was a pioneering attempt in the field of software reliability growth modeling and
paved the way for research on NHPP-based software reliability modeling. The
model describes the failure occurrence phenomenon by an exponential curve.

The research following GO model was mainly modifying the existing research
in the way of incorporating the various aspects of the real testing environment and
strategy. Most of the existing NHPP-based SRGM can be categorized as follows
[24]

Modeling under perfect debugging environment

Modeling the imperfect debugging and error generation phenomenon
Modeling with testing effort

Testing domain dependent software reliability modeling

Modeling with respect to testing coverage

Modeling the severity of faults

Incorporating change point analysis

Software reliability modeling for distributed software systems
Modeling Fault detection and correction with time lag
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Managing reliability in operational phase
Reliability Analysis of Fault Tolerant Systems
Software reliability assessment using SDE model
Neural network based software reliability modeling
Discrete SRGM

Unification of SRGM

Among the various categories mentioned above the SDE models [25-27],
neural network based SRGM [28-31], unification methodologies [32-37], reli-
ability growth analysis for fault tolerant software [38, 39] are the emerging areas
and are of interest to most of the researchers. Throughout this book we will discuss
several NHPP-based models developed and validated in the literature. We will also
show some Operational Research applications based on these models in the later
chapters of this book with numerical illustrations.

1.6 Parameter Estimation

The task of mathematical model building is incomplete until the unknown
parameter of the model parameters are estimated and validated on actual software
failure data sets. After selecting a model for any application, the next step is
estimation of the unknown parameters of the model. In general, this is accom-
plished by solving an optimization problem in which the objective function (the
function being minimized or maximized) relates the response variable and the
functional part of the model containing the unknown parameters in a way that will
produce parameter estimates that will be close to the true, unknown parameter
values. The unknown parameters are, treated as variables to be solved for in the
optimization, and the data serve as known coefficients of the objective function in
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this stage of the modeling process. In parameter estimation one can perform either
point estimation or interval estimation or both for the unknown parameters.

1.6.1 Point Estimation

In statistics, the theory of point estimation deals with use of sample data to
calculate a value for the unknown parameters of the model, which can be, said a
“best guess”. In the statistical terms the best guess mean here that the estimated
value of the parameter satisfies the following properties:

Unbiasedness
Consistency
Efficiency
Sufficiency

The theory of point estimation assumes that the underlying population dis-
tribution is known and the parameters of the distribution are to be estimated from the
collected failure data. Collected failure data is either based on the actual observa-
tions from the population sample or in case the data is not available it is either
collected from a similar application (population) or simulated from the developed
model.

Example Assume n independent samples from the exponential density

fx,A)=Je™™ x>0,1>0

The joint pdf of the sample observations is given by

n

Agx,v

F,2) fOa, 2) - flm A) = Me 5 x>0, 2> 0
Now the problem of point estimation is to find a function h(X;, X», ..., X,,) such
that if x, x,, ..., x,, are the observed sample values Xi, X5, ..., X,, then )=
h(x1,x2,...,X,) is a good estimate of /.

1.6.1.1 Some Definitions
Unbiased estimator: For a given positive integer n, the statistic Y = h(Xj,

X5, ..., X,) is called an unbiased estimator of the parameter 0 if the expectation of
Y is equal to the parameter 0, that is

E(Y) =0
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Consistent estimator: The statistic Y is called a consistent estimator of the
parameter 0 if Y converges stochastically to a parameter 0 as n approaches infinity.
Where n is the sample size. If € is an arbitrarily small positive number when Y is
consistent, then

lim P(JY — 0| < €) =1
n—o0o

Efficient estimator: The statistic Y will be called the minimum variance
unbiased estimator of the parameter 0 if Y is unbiased and the variance of Y is less
than or equal to the variance of every other unbiased estimator of . An estimator
that has the property of minimum variance in large samples is said to be efficient.

Sufficient estimator: The statistic Y is said to be sufficient estimator for 6 if the
conditional distribution of X, given Y = y, is independent of 6.

Cramer—Rao inequality: Let X, X, ..., X,, denote a random sample from a
distribution with pdf flx; 0) for 0; < 0 < 0,, where 0,and 0, are known. Let
Y = h(X;, X5, ..., X,,) be an unbiased estimator of §. The lower bound inequality
on the variance of Y, Var(Y), is given by

Var(Y) >

Asymptotic efficient estimator: an estimator 0 is said to be asymptotic efficient if
0 has a variance that approaches the Cramer—Rao lower bound for large n, that is

lim Var nt

- . 2
n—00 dlnf(x;0)
nk {{ a0 } }

Most of the NHPP-based SRGM are described by the non-linear functions.
Method of Non-linear Least Square (NLLS) and Maximum Likelihood Estimate
(MLE) [2, 3, 40—43] are the two widely used estimation techniques for non-linear
models. Unlike traditional linear regression, which is restricted to estimating linear
models, nonlinear regression (NLR) methods can estimate models with arbitrary
relationships between independent and dependent variables.

1.6.1.2 Non-Linear Least Square Method

Consider a set of observed data points (#;, y;); i = 1, 2, ... n, where ¢; is the
observation time and y; is the observed sample value. A mathematical model of the
form m(x,f) is fitted on this data set. The model depends on the parameters

x={x;i=1,2, ... m}, for some x we can compute the residuals,

fi(x) = yi —m(x, ;)
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The method of least square determines the unknown parameters of the model by
minimizing the sum square of these residuals between the observed responses and
the fitted value by the model. Unlike linear models, the least squares minimization
cannot be done with simple calculus. It has to be accomplished using iterative
numerical algorithms. Now about the quality of least square estimate, it is difficult
to picture exactly how good the parameter estimates are, they are, in fact, often
quite good. The accuracy of the estimates can be measured based on some
goodness of fit measures (discussed in the later sections).

1.6.1.3 Maximum Likelihood Estimation Method

MLE is one of the most popular and useful statistical method for fitting a math-
ematical model to some data, i.e., deriving the point estimates. The idea behind
MLE parameter estimation is to determine the parameters that maximize the
probability (likelihood) of the sample data. From a statistical point of view, this
method is considered to be more robust (with some exceptions) and yields esti-
mators with good statistical properties. The fact that this method is versatile, apply
to most models and to different types of data make it more popular. In addition, it
provides efficient methods for quantifying uncertainty through confidence bounds.
Although the methodology for maximum likelihood estimation is simple, the
implementation is mathematically intense. Using today’s computer power, how-
ever, mathematical complexity is not a big obstacle.

Consider a random sample X, X, ..., X,, drawn from a continuous distribution
with pdf

f(-x70 = (017027 sy 9k>)

where 0 = (04, 0., ..., 0;) is the vector of unknown distribution parameters, k in
number. Assuming that the sample observations are independent, the likelihood
function L(X; 0) is the product of the pdf of the distribution of the random samples
evaluated at each sample point.

k
L(X;0) = L(X1, X2, .., X3 (01,0, ..., 06) = [ [ f(X5:0)

i=1

The likelihood estimator 0 can now be computed by maximizing L(X; 0) with
respect to 0. In practice, it is often easier to maximize In L(X; 0) rather than
L(X; 0) due to easy of computations as compared to the actual likelihood function.
The estimates of 6 = (04, 0,, ..., 6;) obtained maximizing In L(X; ) maximize
L(X; 0) as logarithm function is monotonic. The log likelihood function is given by

k
InL(X;0) = Inf(X;0)
i=1
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In general the mechanics of obtaining MLE can be summarized as:

(a) Find the joint density function L(X; 0).

(b) Take the natural log of the density in L.

(c) Take partial derivatives of In L with respect to each parameter.
(d) Set partial derivatives to Zero.

(e) Solve for parameters.

Now we formulate the likelihood function for the NHPP-based software
reliability models.

For the interval domain data points(?;, y;); i = 1, 2, ... n, where t; is the
observation time and y; is the cumulative observed sample value by the time #;,
based on the NHPP assumptions the likelihood function is defined as

= lj [m(fi)(y— m(ti—i

)]YI—YI—I e~ {mlt)—m(ti1)}

i_yi—l)!

If the data set is time domain the likelihood function is defined as

Lzﬁ/l(t,-)e —//I(x)dx
i=1 0

Both these methods have one thing in common that the nonlinear objective
function (the sum square residuals in NLLS and the likelihood function in MLE) is
optimized. For finding the optimal solution manually one needs to compute the
first order partial differential equations corresponding to each parameter of the
problem, equate them to zero and solve the resulting system of equations. In most
of the cases solving this system of equations is difficult and contrary to the linear
model fitting, we cannot express analytically the solution of this optimization
problem. As such it requires numerical methods, a programming algorithm to
implement the numerical procedures and huge computation time to solve the
problem, which is not favored by the management and software engineering
practitioners. Numerical procedures are followed by a number of the researchers in
their research articles. One truth related to obtaining the solution of these simul-
taneous equations using numerical algorithm is that the estimates obtained cannot
be guaranteed to be global solution. In most of the cases they converge to the local
optimum solution. As an alternative method that minimizes the efforts with
reduced time requirement is to use statistical software packages such as SPSS,
SAS, Mathematica, etc. in which we can use the inbuilt software functions to solve
these kinds of optimization problems to find the estimates of nonlinear models.
This software also uses well-defined numerical algorithms to obtain the estimates.
The solutions obtained by the use of inbuilt estimation modules of software also
converge to local solutions in most of the cases, but by no means we can guarantee
that which of the solutions, one obtained by self programmed numerical algorithm
or a software module, is better. However, using an advanced version of software
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that is designed on more comprehensive numerical procedures and use different
procedures to obtain the estimate can provide us with a better solution. Throughout
the book we have used the Statistical Package for Social Sciences (SPSS 18.0) for
the estimation of unknown parameters of the models. SPSS is a comprehensive and
flexible statistical analysis and data management system. It can take data from
almost any type of file and use them to generate tabulated reports, charts, and plots
of distributions and trends, descriptive statistics, and conduct complex statistical
analysis. SPSS Regression Models [44, 45] enables the user to apply more
sophisticated models to the data using its wide range of NLR models.

NLR and conditional nonlinear regression (CNLR) modules of SPSS have been
used to estimate the unknown parameters. The modules use the iterative estimation
algorithms, namely, sequential quadratic programming (SQP) [46] and Leven-
berg—Marquardt (LM) method [47, 48] to find the least square estimates of the
parameters. Both methods starts with an initial approximation of the parameters
and at each stage improve the objective value until convergence. LM method is
chosen by default in SPSS NLR function, while if there are overflow/underflow
errors and failure to converge; one may select the SQP method. In the other case if
overflow and underflow errors appears, bounds on the parameters are set in the
form of linear constraints or there may be some other constraints on the parameter
values (such as sum of few parameters has to be one) then we have to select the
SQP method. SQP method minimizes the sum square residuals solving a linearly
constrained quadratic sub problem in each stage. Which algorithm is best depends
on the data. If we have to specify a nonlinear model, which has different equations
for different ranges of its domain (change point and fault tolerance system models)
we use the CLNR function of SPSS. In CNLR we can specify a segmented model
using conditional logic. To use conditional logic within a model expression or a
loss function, we form the sum of a series of terms, one for each condition. Each
term consists of a logical expression (in parentheses) multiplied by the expression
that should result when that logical expression is true.

1.6.2 Interval Estimation

A point estimator may not (which is true in many cases) coincide with the actual
value of the parameter. In this situation it is favorable to determine an interval of
possible (or probable) values of an unknown population parameter. This is called
confidence interval estimation of the form [0;, 0], where 0, is the lower bound
and 0y is the upper bound on the parameter value.

Alternatively interval estimation is supplemented with point estimation in order
to make the point estimates more useful as it provide a tolerance limit of the type
lower and higher values the a point estimate can take. Statistically if [0, 0y] is
interval estimates of the point estimate 6 with probability (1 — o), then 6 and 6y
will be called 100(1 — «)% confidence limits and (1 — «) is called the confidence
coefficient.
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1.6.2.1 Confidence Intervals for Normal Parameters

The distribution has two unknown parameters, the mean (“average”, u) and var-
iance (standard deviation squared, 62).

1.6.2.2 Confidence Limits for the Mean g When o” is Known

X—u

YN

1
X:;ZXi

i=1

=

We know that the statistic Z = follows standard normal distribution where

=

Hence a 100(1 — o)% confidence interval for the mean p is given by
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1.6.2.3 Confidence Limits for the Mean g When o” is Unknown

We know the sample standard error is given by

i=1

It can be shown that the statistic

Xy
s/

follows ¢ distribution with (n — 1) degrees of freedom. Thus for a given sample
mean and sample standard deviation, we obtain

T

P[|IT|<typ,n-1)] = (1 — )
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Hence a 100(1 — o) % confidence interval for the mean p is given by
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1.6.2.4 Confidence Limits on o>
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the bias in o, (n — 1) % has the same distribution. Hence
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Similarly for one-sided limits we can choose (1 — o) or y2().
Likewise we can determine confidence intervals for the parameters of the other
probability distribution function.

1.7 Model Validation
1.7.1 Comparison Criteria

Once some models have been selected for an application. Their performance can
be judged by their ability to fit the observed data and to predict satisfactorily the
future behavior of the process (predictive validity) (Musa 1989) [50]. Many
established criteria are defined in the literature to validate the goodness of fit of
models on any particular data and choose the most appropriate one. Some of these
criteria are given below.

The mean square error (MSE): The model under comparison is used to simulate
the fault data, the difference between the expected values, y(#;); i = 1, 2, ... k and
the observed values y; is measured by MSE as follows.

MSE — i G(1:) — vi)?

i=1
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where k is the number of observations, z is the number of unknown parameters in
the model. The lower MSE indicates less fitting error, thus better goodness of fit
[2].

Coefficient of multiple determination (R%): is defined as the ratio of the Sum of
Squares (SS) resulting from the trend model to that from a constant model sub-
tracted from 1, that is

residual SS

RP=1-——""""
corrected SS

R? measures the percentage of the total variation about the mean accounted for by
the fitted curve. It ranges in value from O to 1. Small values indicate that the model
does not fit the data well. The larger the value, the better the model explains the
variation in the data [2].

Prediction error (PE): The difference between the observed and predicted
values at any instant of time 7 is known as PE; Lower the value of Prediction Error
better is the goodness of fit [49].

Bias: The average of PE is known as bias. Lower the value of Bias better is the
goodness of fit [49].

Variation: The standard deviation of PE is known as variation.

Variation = \/(1/N _ 1) Z (PE; — Bias)®

Lower the value of Variation better is the goodness of fit [49].
Root mean square prediction error: It is a measure of closeness with which a
model predicts the observation.

RMSPE = \/ (Bias® + Variation®)

Lower the value of Root Mean Square Prediction Error better is the goodness of
fit [49].

Observed and estimated values can be plotted on time scale to obtain the
goodness of fit curves.

1.7.2 Goodness of Fit Test

The reason of carry a goodness of fit test of a statistical model is to determine how
well it fits a set of observations. Measures of goodness of fit typically summarize
the discrepancy between observed values and the values expected under the model
in question. Such measures can be used in statistical hypothesis testing, e.g., to test
for normality of residuals, to test whether two samples are drawn from identical
distributions or whether outcome frequencies follow a specified distribution. The
two commonly used goodness of fit tests used for reliability models are y*
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goodness of fit test and Kolmogorov—Smirnov “d” test. Both of these tests are non-
parametric. The 7> test assume large sample normality of the observed frequency
about its mean while the “d” test assumes only a continuous distribution.

1.7.2.1 Chi-Square (3%) Test

k
i=1

2
The statistic > = (X%") is said to follow chi-squared > distribution with

k degree of freedom. The steps involved in carrying the test are as follows:

1. Divide the sample data into the mutually exclusive cells (normally 8-12) such
that the range of the random variable is covered.

2. Determine the frequency, f;, of the sample observations in each cell.

3. Determine the theoretical frequency, F;, for each cell (area under density
function between cell boundaries X,,-total sample size). Note that the theoretical
frequency for each call should be greater than one. To carry out this step, it
normally requires estimates of the population parameters, which can be
obtained from the sample data.

4. Form the statistic S = Y|, “%W

5. From the y° tables, choose a value of %> with the desired significance level and
with the degree of freedom (= n — 1 — r), where r is the number of population
parameter estimated.

6. Reject the hypothesis that the sample distribution is the same as the theoretical
distribution if

S= X%l—ot),(n—l—r)

where « is the level of significance.

1.7.2.2 The Kolmogorov—-Smirnov Test (K-S Test)

The test is based on the empirical distribution function (ECDF). Since it is non-
parametric, it treats individual observations directly and is applicable even in the
case of very small sample size, which is usually the case with SRGM validation.
Lower the value of Kolmogorov—Smirnov test better is the goodness of fit.

Let X; < X, < -+ < X, denotes the ordered sample values. Define the observed
distribution function, F,(x) as follows

for x < xy
for x; <x <Xy
for x> x,

Fu(X) =

—_—S~.0



44 1 Introduction

Assume the testing hypothesis
Hy : F(x) = Fy(x)

where Fy(x) is a given continuous distribution and F(x) is an unknown distribution.
Let

dy= sup |Fu(x) — Fow)

—00 <X <0

Since Fo(x) is a continuous increasing function, we can evaluate
|F.(x) — Fo(x)| for each n. If d, < d,,, then we would not reject the hypothesis
Ho; otherwise, we would reject it when d, > d,,. The value d,, is given in
Appendix A, where n is the sample size and « is the level of significance.

1.7.3 Predictive Validity Criterion

Predictive validity is defined as the ability of the model to determine the future
behavior from present and past behavior of a process. This criterion was proposed
by [9]. Suppose #; be the time, y, is the observed value of the event during the
interval (0, %], and y(#) is the estimated value determined using the actually
observed data up to an arbitrary time f,(0 <7, <), in which (z./t;) denotes the
process progress ratio. The difference between the predicted value y(#;) and the
reported value y; measures the prediction fault. The ratio {(¥(#) — yx)/v} is
called Relative Prediction Error (RPE). If the RPE value is negative/positive the
model is said to underestimate/overestimate the future process. A value close to
zero for RPE indicates more accurate prediction, thus more confidence in the
model and better predictive validity. The value of RPE is said to be acceptable if it
is within £10% [2, 9]. A particular model can also be judged to fit to a given data
if the parameter estimates are relatively stable over some particular intervals for
the various truncations.

Exercises

1. What is software reliability engineering? What are its two fundamental
philosophies?

2. Explain the layered approach of SRE for the improvement of software quality.

3. The waterfall model of SDLC relates the development of software to five
sequential set of process and call for the execution of these stages in sequential
manner in the order they are described. What problems are usually encoun-
tered if one uses the traditional waterfall models for the software develop-
ment? Suggest two alternative approaches.
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12.

13.

14.
15.

16.

17.

18.

19.
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. Even if software is tested for an infinite time it cannot be guaranteed that it is

100% reliable. Comment.

. What makes reliability a key quality characteristic? Give some other measures

of software quality.

. What is statistical testing? What is the need of quantitatively measuring the

level of reliability in software?

. Unlike hardware software reliability growth function is increasing over time,

even then software has a finite life cycle. Explain.

. Explain the difference between the reliability growth curves of hardware and

software.

. What are prime causes of fault manifestation in the different stages of SDLC?
10.
11.

How black box software testing differs from white box software testing?
Define failure rate or hazard rate. Derive the mathematical expression of
reliability in terms of the hazard rate.

Show that if the hazard rate is constant then the reliability function is
exponential.

The pdf of Normal distribution is given by

0=

Derive the reliability function.

Define a non-homogeneous Poisson process in continuous time space.

What are the major factors that affect the reliability growth during testing?
Explain the role of each in brief.

What are the properties of a good estimate of unknown parameters of an
SRGM?

Describe briefly the least square and maximum likelihood methods of parameter
estimation.

Explain sequential quadratic programming iterative parameter estimation
algorithm.

How do we determine the predictive validity of a reliability model?
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Chapter 2
Software Reliability Growth Models

2.1 Introduction

Studies in software reliability modeling started as early as early 1960s. The issues
related to software quality quantification and reliability measurement arose even
during the time when the development of computing systems started. Since in the
1960s the cost of the computing systems was very high, use was limited to few
organizations, hardware design, test and maintainability was immature, the con-
cepts of software reliability were in infancy stage as much of the studies were
concerned with the productivity and quality of the hardware systems. Haugk et al.
[1] presented some experimental results concerning the testing of a switching
system in which software was an essential part and contained many programming
errors, clerical errors, requirement changes and program improvements. yet there
was no direct approach to the study of software reliability.

The first paper on software reliability appears to have been published in 1967
due to Hudson. He viewed software development as a birth and death process in
which fault generation was a birth, and fault-correction was a death. The number
of faults existing at any time defined the state of the process; the transition
probabilities related to the birth and death functions. He confined his work to pure
death processes, for reasons of mathematical tractability. He obtained Weibull
distribution of intervals between failures. Data from the system test phase of one
program were presented. Jelinski and Moranda’s [2] work was recognized as the
second major step. They assumed a hazard rate for failures that was piecewise
constant (hazard rate changed at each fault-correction by a constant amount) and
proportional to the number of faults remaining. Although the hazard rate changed
at each fault-correction by a constant amount, but was constant between correc-
tions. They applied maximum likelihood estimation to determine the total number
of faults existing in the software and the constant of proportionality between
number of faults remaining and hazard rate. They further proposed two variants of
the model known as Jelinski Moranda Geometric model and Moranda Geometric

P. K. Kapur et al., Software Reliability Assessment with OR Applications, 49
Springer Series in Reliability Engineering, DOI: 10.1007/978-0-85729-204-9_2,
© Springer-Verlag London Limited 2011
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Poisson model [3]. In the first model hazard rate decreases in steps that form a
geometric progression. The second model has a hazard rate, which also decreases
in a geometric progression, but the decrements occur at fixed intervals rather
than at each failure correction. The period of seventies was most significant in
the software reliability study, some models [2, 4-9] developed in this decade
later formed basis of further research in the field and found many practical
applications.

Shooman [9] introduced some new concepts. He viewed the hazard rate can be
determined by the rate at which execution of the program resulted in the remaining
faults being passed. Thus the hazard rate depended on the instruction processing
rate, the number of instructions in the program and the number of faults remaining
in the program. The number of remaining faults, of course, depended on the
number of faults corrected, and the profile of the latter quantity as a function of
time was assumed to be related to the project personnel profile in time. Several
different fault-correction profiles were proposed; the choice would depend on the
particular project one was working with. Schneidewind [7] investigated different
reliability functions such as the exponential, normal, gamma, and Weibull for
estimating software reliability and suggested to choose the distribution that best fit
the particular project in question. He indicated the importance of determining
confidence intervals for the parameters estimated rather than just relying on point
estimates. He also suggested that the time lag between failure detection and cor-
rection be determined from actual data and used to correct the time scale in
forecasts. Another, early model was proposed by Schick and Wolverton [10]. They
assumed hazard rate to be proportional to the product of the number of faults
remaining and the time spent in debugging. The amount of debugging time
between failures has a Rayleigh distribution.

In early 1975, Musa proposed an execution time model of software reliability.
This model was later studied and applied on many real software applications by
many researchers and yield good results for most of them. Musa postulated that
execution time is the best practical measure of failure inducing stress that was
being placed on the program. Most calendar time models do not account for
varying usage of the program in either test or operation. Musa considered exe-
cution time in two respects; the operating time of a product delivered to the field,
and the cumulative execution time that had occurred during test phases of the
development process and during post delivery maintenance. The hazard rate was
assumed to be constant with respect to operating time but would change as a
function of the faults remaining and hence the cumulative execution time. Use of
two kinds of time separates fault repair and growth phenomena from program
operation phenomena. Musa assumed that the fault-correction rate was propor-
tional to the fault-detection or hazard rate, making consideration of debugging
personnel profiles unnecessary. A calendar time component was developed for the
model that related execution time to calendar time, allowing execution time pre-
dictions to be converted to dates. The calendar time component is based on a
model of the debugging process.
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Littlewood and Verrall [5] worked out a software reliability model based on
Bayesian approach. The idea was to measure of strength of belief that a program
will operate successfully rather than the outcome of an experiment to determine
the number of times a program would operate successfully. Littlewood modeled
the hazard rate as a random process for the failures experienced. Goel and
Okumoto [4] (GO model) proposed a reliability growth model, which describes the
failure detection, as a non-homogeneous Poisson process (NHPP) assuming hazard
rate is proportional to the remaining number of faults in the software. This research
paper was a pioneering attempt in the field of software reliability growth modeling.
Later researchers proposed many SRGM, which describe failure, and fault removal
phenomenon by NHPP following the basic assumption of GO model and the
research is still continuing.

Starting from the late 1960s and in the approximately past 40 years a vast
literature of software reliability models has been developed. Extensive research
exists in modeling the failure detection and fault removal phenomenon by an
NHPP. These models have been widely studied and applied on real software
projects. Many concepts of software reliability modeling have been developed and
models are proposed considering the various dynamic aspects of the software
testing and debugging. In this chapter we will discuss some of the early models.
First of all models based on the execution time are discussed. Execution time
models prove superior to the calendar time models in many cases [11, 12].
However since the quantities expressed in terms of calendar time component are
more meaningful to most engineers and managers most of the models were
developed on the calendar time component. Hence we continue our discussion
with the calendar time models. Most of these models assume a perfect debugging
environment. This means whenever an attempt is made to remove a detected fault
it is removed perfectly and no new faults are generated. The earliest model in this
category was due to Goel and Okumoto [4]. Some other models in this category
are Yamada et al. [13], Ohba [14], Yamada and Osaki [15], Bittanti et al. [16] and
Kapur and Garg [17], etc. SRGM which use calendar time or execution time as the
unit of fault-detection/removal period either assume that the consumption rate of
testing resources is constant, or do not explicitly consider the testing effort and its
effectiveness. The achieved reliability during testing phase is highly related to the
amount of development resources (test-efforts) spent on detecting and correcting
latent software faults. A testing-effort function describes the distribution or con-
sumption pattern of testing resources (CPU time, manpower, etc.) during the
testing period. Hence it is very important to track the reliability growth with
respect to the testing-effort expenditure. Putnam [18], Yamada et al. [19-21],
Bokhari and Ahmad [22], Kapur et al. [23], Kuo et al. [24], Huang [25] and Huang
et al. [26, 27] proposed SRGM describing the relationship among the testing time
(calendar time), testing-effort expenditure and the number of software faults
detected. In the later sections of this chapter we will discuss these SRGM. Models
developed considering fault complexity, fault-detection correction process and
distributed environment assuming perfect debugging environment are also
discussed in this chapter.
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2.2 Execution Time Models

Basic execution time model due to Musa [6] and the Logarithmic Poisson exe-
cution time model due to Musa and Okumoto [11] are the two most known models
in the execution time models category.

2.2.1 The Basic Execution Time Model

The basic execution time model due to Musa [6] is based on the assumptions:

1. The failure process is described by the NHPP.

2. Whenever a failure is experienced the fault causing the failure is removed
immediately.

3. The debugging process is perfect.

4. The failure intensity is a decreasing function of execution time.

5. The decrement in failure intensity is constant throughout the testing process.

Notation

A Failure intensity

Ao Failure intensity at the start of the execution

m (m(t)) Expected number of failures experienced up to time a given time ¢
a The total number of that would be experienced in infinite time

t Execution time

The failure intensity expressed as a function of number of failures experienced
is given as

Am) = 2 [1 - T} (2.2.1)
a
Equation (2.2.1) expressed as a function of time can be rewritten as
d m(t)
— =AMt)=2o|1 ——= 222
(0=l = 7|1 =" (222

Solving (2.2.2) under the initial condition m(0) = 0, the mean value function of
the failure process is given as

m(t) = a(l - e—“vo/”)’) (2.2.3)
and the failure intensity of the model is given by

A1) = Jge~ /o (2.2.4)
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2.2.2 The Logarithmic Poisson Model

The assumptions 1-4 are same as those of the basic execution time model. The
only difference is in the rate of decrement of the failure intensity, which is assumed
to be exponential in contrast to the basic model, i.e. as the testing progresses the
decay in the failure intensity decreases. Initially when the fault corresponding to
the first failure is repaired a substantial decline is observed in the failure intensity
while on the later failures this decrement decreases exponentially.

The failure intensity expressed as a function of number of failures experienced
is given as

A(m) = Jge " (2.2.5)
Equation (2.2.5) can be expressed as a function of time
d
—m
dr
Solving (2.2.2) under the initial condition m(0) = 0 we obtain the mean value
function of the failure process as

(1) = A(t) = dge~ 0 (2.2.6)

m(r) = gin(1 + o) (22.7)

and the failure intensity of the model is given by
M
(1 + }vof)t)

Figures 2.1 and 2.2 show the graphical plots of the failure intensity function
and expected number of failures experienced on the mean failures experienced
scale and execution time scales, respectively. It has been demonstrated in the

At) = (2.2.8)
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literature [28, 29] that the basic execution time model is applicable to a uniform
operational profile whereas Logarithmic Poisson model is applicable under highly
non-uniform operational-profile. It may be noted that at infinite execution time, the
failure intensity reduces to zero and the number of failures experienced reaches
infinity for the logarithmic Possion model even though the number of faults in the
software may be finite. This is possible when, either at the time of debugging faults
is being introduced, or the debugging process is imperfect or each fault generates
more than one failure or when combinations of these Possibilities occurs. It is
obvious in this case that the parameters of interest are not the number of errors in
software, but the failure intensity and the rate at which failures are occurring.

Both models have been used by Musa to derive some additional quantities of
interest to the software engineers and developers. The model is used to determine
the additional number of failures that must be experienced (Am) and the execution
time (A?) is required to reach a failure intensity objective.

If A, is the present failure intensity and A is the reqiured failure intensity
objective, then for the basic model

A
Ty =Jo[1="] and =10 [1 - ”’*J] (2.2.9)
a a
Eq. (2.2.9) yields Am = fﬂ[xp — J¢].
And if we write /4, and /; in terms of execution time then
lp = Joe~ P/t and  Jp = Jge /@A) (2.2.10)

Eq. (2.2.10) yields Ar = £In%.
For the Logarithmic Poisson model these quantities can be derived similarly
and are given as

14 R
Am—alnll—f and At—o[ 4} (2.2.11)
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Both models have been validated by many researchers [29-31], etc. and have
been applied on many real software projects. The models have provided good
results (for details see Musa et al. [32]).

2.3 Calendar Time Models

Most of the SRGM proposed in the literature are based on calendar time, as this is
the time component, which is more meaningful to the software engineers, devel-
opers as well as users. Literature of calendar time model is very vast and as such
all models cannot be discussed here in this chapter. In order to facilitate the study
and application of these models, they have been categorized into various cate-
gories (refer Sect. 1.5.6). We start our discussion in this chapter with the calendar
time models, which are earliest proposed and based on the concept of perfect
debugging. By perfect debugging environment we mean whenever an attempt is
made to remove a detected fault it is removed perfectly and no new faults are
generated. Various models have been proposed in this category. Besides this we
describe here the NHPP models which can be classified as exponential models and
S-shaped models. Goel and Okumoto exponential model proposed in the year 1979
was recognized as a pioneering attempt. Models developed later, mainly attempted
to incorporated more aspects of testing and debugging process and relaxing certain
assumptions of the model.

Notation

m(f)  Expected number of failures/removals by time ¢, with m(0) = 0

my(f) Expected number of failures by time ¢, with mg{0) = 0

m(f) Expected number of removals by time ¢, with m,(0) = 0

a(a;) Initial error content in software (or module i/type i) before software testing

b(t) Time-dependent fault-detection/removal rate (FDR/FRR) per remaining
faults

b(b;) Constant fault-detection/removal rate per remaining faults in software
(module i/type i) 0 < b < 1

p, ¢ Constant parameter in the logistic function

2.3.1 Goel-Okumoto Model

The model [4] is based on the following assumptions:

1. Failure observation phenomenon is modeled by NHPP.
2. Failures are observed during execution caused by remaining faults in the
software.
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3. Each time a failure is observed, an immediate effort takes place to find the
cause of the failure and the isolated faults are removed prior to future test
occasions.

4. All faults in the software are mutually independent.

5. The debugging process is perfect and no new fault is introduced during
debugging.

Above assumptions can be described mathematically with the following dif-
ferential equation:

d
—m(t) = b(a—m(1)) (2.3.1)

Solving (2.3.1) with the initial condition m(0) = 0 we get
m(t) = a(l —e™) (2.3.2)

The model is known as exponential NHPP model as it describes an exponential
failure curve. GO model has been applied to a variety of testing environment in
practice. In a number of situations it provides good estimation and prediction of
reliability. Hence can be considered as a useful reliability model. The two main
aspects of a good model are that the model must be stable during the test period
and remain stable until the end of the test phase for any particular test environment
and the model must provide a reasonably accurate prediction of the field reliability.

Following, the general assumptions of GO model other exponential SRGM are
proposed by Ohba [14] and Yamada and Osaki [15]. Ohba assumed that the
software consists of a number of independent modules whereas Yamada and Osaki
assumed there are two types of errors in the software. Both these models describe
the failure phenomenon for each module\error type by GO model with different
parameters and the mean value function is the sum of mean value function for each
module\error type.

2.3.2 Hyper-Exponential Model

Assuming that the software is consisting of n independent modules, with different
initial number of errors and fault-detection rate for each module, the differential

equation describing the model [14] along with general assumptions is
dm; (t
n;—t():b,-(a,-—mi(t)) i=1,2,...n (2.3.3)

Solution of the above differential equation with the initial condition m;0) = 0
is similar to the GO model and the mean value function of the failure process for
the software can be obtained using

m(t) = zn:m,-(t) = zn:a,-(l —e ) (2.3.4)

i=1
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The model is called hyper-exponential model since sum of exponential distri-
butions is hyper-exponential.

2.3.3 Exponential Fault Categorization (Modified Exponential)
Model

This model [15] assumes that there are two types of faults in the software—Type I
(easy to detect) and Type II (difficult to detect). If ¢; is the proportion of type
i faults, i = 1,2 (g1 + g» = 1) the differential equation describing the model is
dm; (1)
dr

The model equation under the initial condition m,;(0) = 0 is given by

= b,‘(ap,‘ — m,»(t)) i=1,2 (235)

2

m(t) =Y mit) = aZ pi(1—eb) (2.3.6)

i=1

Here it is expected that 0 < b, < by < 1.

The early development in the NHPP modeling assumed that the exponential
models accounting to the uniform operational profiles could describe the failure
process. However the assumption of uniformity seems to be unrealistic in most of
the real testing profiles. There can be several reasons of non-uniform testing
profile. In order to cater to the need of modeling non-uniform operational profile
many researchers later attempted to develop models describing S-shaped failure
curve. In most of the real testing situations an S-shaped curve proved ideal to
describe the non-uniform operational profile. Several S-shaped SRGM have been
proposed in the literature and various authors attributed this S-shapedness to the
distinctive explanations.

First of all Yamada et al. [13] refined the GO model describing testing as a two-
stage process namely fault-detection and removal. S-shaped SRGM proposed by
Ohba [33], Bittanti et al. [16] and Kapur and Garg [17] have similar mathematical
forms but are developed under different set of assumptions. An additional
important characteristic of the S-shaped models is that most of these models can
describe both exponential and S-shaped growth curves depending on the parameter
values and therefore are termed as flexible models. This flexible nature of S-
shaped models makes them more appropriate for real testing projects. Some S-
shaped models are discussed in the following sections.

2.3.4 Delayed S-Shaped Model

This model [13] defines the testing as a two-stage process—failure observation and
the corresponding fault removal phenomenon.



58 2 Software Reliability Growth Models

& (1) = bla — mi(r) (2:3.7)
& met) = bloms(1) — mi(1) (2:338)

Solution of the above differential equations under initial condition mg0) =
my0) = 0, is

me(t) = a(l —e™") (2.3.9)
m(t) = a(l — (1 + bt)e ™) (2.3.10)

Model can be derived alternatively in single stage if we assume (b%t) /(1 + bt)
as the fault detection rate (FDR) in (2.3.1) in place of constant FDR b. This model
is purely S-shaped.

2.3.5 Inflection S-Shaped Model

This model [33] is based on the assumption that the number of detected faults in
(t, t + Ar) is proportional to the remaining faults at time ¢, but the proportionality
gradually increases in the testing period.
If u(m) is the inflection rate function the model can be expressed by the dif-
ferential equation
d

() = Qu(m(r)) (@ — m(r) (23.11)

where

& is the FDR
m is the number of faults detected 0 < m < a

The inflection function is approximated by a linear function with the inflection
parameter r, 0 <r < 1

(I =r)m

ulm) =r+ p

(2.3.12)

The inflection function describes two types of faults in the software. Mutually
independent faults which gets detected on a test case execution and mutually
dependable faults which become detectable on the detection of mutually inde-
pendent faults.

Now if we assume ¥ = @ the model is given by the equation

Loe® } (2.3.13)

) =l e
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If » = 1 the models describe an exponential failure curve otherwise an S-shaped
curve is observed. Hence this is a flexible model.

2.3.6 Failure Rate Dependent Flexible Model

This model has a very important property that it can describe a range of reliability
trends observed during testing. Following the assumptions of the GO model the
intensity function of the model [16] is described by the following differential
equation

d
Smr) = um)(a —m() (23.14)

The FDR u(m) is defined as

u(m) = w; + (us — ui)? (2.3.15)

which is a linear function of the number of faults removed where #; > 0 and u; > 0
are the initial and final FDR.
The solution of the model if u; > 0 is

IZ5 (Cuft —1 )

m(r) = a(m> (2.3.16)

On the other hand if uy = 0 we get

m(t):a( il ) (2.3.17)

1 4+ u;t
Now we have a look at the reliability trends described by the model

If u; = uy = b the model reduces to GO model.

If us < u; failure intensity decreases to zero more rapidly than linearly.

If uy = O failure intensity is proportional quadratically to the remaining faults.
If ug > u; the failure curve has an inflection point, i.e. S-shaped.

In general smaller the ratio ug/u;, the larger the rate of convergence of failure
intensity.

2.3.7 SRGM for Error Removal Phenomenon

This model is proposed by Kapur and Garg [17] (KG model). The model is based
on the assumption that the debugging team can also remove some additional errors
while removing some errors without these errors causing any failure. The faults



60 2 Software Reliability Growth Models

identified on a failure are termed as independent faults while the faults removed
additionally are termed as dependent faults.

Sm(t) = pla—m () + 4"

(a — my(t)) (2.3.18)

where p and g are the FDR for independent and dependent faults respectively. The
mean value function obtained under the initial condition m.(0) = 0 is

1 — e (ta)
1+ (q/p)e@'”q”}

If ¢ = 0 the model reduces to GO model and failure phenomenon is same as
removal else the failure phenomenon is given as

m@/ﬂanmmm%mhlji—} (2.3.20)

q + qe*(ﬁ*‘ﬂt
0

m(t) = a[ (2.3.19)

KG model can be derived alternatively if we assume logistic learning fault-
detection rate given by b(t) = (b/1 + fe) with b = (p + q) and B = (g¢/p).
This is also a flexible model as it can describe both exponential (If § = 0) and
S-shaped (If § > 0). The model can also capture a variety of reliability trends
depending on the value of parameter /5.

Above we have described some S-shaped and flexible SRGM, which are mostly
cited and applied, on the software projects. Different models account different
reasons of S-shapedness in the models as we can see Yamada model attributes
S-shapedness to the time delay between the fault exposure and fault removal. Ohba
attribute it to mutual dependency between software faults, according to Bittanti’s
model it is due to increased fault-detection rate in the later testing phase. Kapur’s
model advocates S-shapedness due to both fault dependency and debugging
time lag.

2.4 SRGM Defining Complexity of Faults

Most of the models discussed in the previous sections were proposed under the
assumption that similar testing efforts and testing strategy is required for removing
each of the faults. However this assumption may not be true in practice, different
faults may require different amount of testing efforts and testing strategy for their
removal from the system. In the literature to incorporate this phenomenon faults
are categorized as of different types and are analyzed separately. The first attempt
in this category was due to Yamada and Osaki [15] who modified GO exponential
SRGM assuming that there are two types of faults in the software (see Sect. 2.3.3).
This model is based on the observations that during the early stages of the testing
phase the testing team removes a large number of simple faults (faults which are
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easy to remove) while the hard faults are removed in the later phases of the testing.
Hence the model is formulated by superposition of two NHPP models one for each
type of fault. The model incorporates the complexity of faults assuming different
FRR for each type of faults. FRR for simple faults is expected to be higher than
hard fault. However the model assumes a constant FRR for each type of fault.
Kareer et al. [34] modified this model assuming time-dependent FRR for both
types of faults. Removal phenomenon of simple faults is described by exponential
SRGM while an S-shaped SRGM is used for hard faults.

Here we would like the reader to note that complexity of faults is not to be
matched with the fault severity. As far as severity of faults is concerned it can be
defined in terms of the impact of fault on the system performance. This is of main
concern basically in the operational phase when on the observation of a failure in
the user environment, the decision to remove the corresponding fault is based on
its impact on the system performance. If the impact is very critical it is removed or
otherwise its removal may be postponed for a future release of the software. In the
testing phase the issue of fault complexity is considered by the researcher in the
sense of the time, efforts and testing strategy required to remove the fault.

Kapur et al. [35] introduced generalized Erlang SRGM classifying the faults in
the software system as simple, hard and complex faults. It is assumed that the time
delay between the failure observation and its subsequent removal represents the
complexity of faults. More severe the fault, more the time delay. The model has
been extended to n-types of faults.

2.4.1 Generalized SRGM (Erlang Model)

For simple faults on the observation of a failure the corresponding fault can be
isolated and removed immediately. Hence the mean value function of the failure
phenomenon is governed by the following differential equation.

dml(t)/dt = bl(al —ml(t)) (241)
mi(t) =a; (1 —e) (2.4.2)

Failure detection and removal is modeled as a two stage process for hard faults

dme(t)/dt = bz(ag — mzf(l‘)) (243)
der([)/dl = bz(mzf([) — mgr(t)) (244)
}’rZz(l‘) = mzr(l‘) = (12(1 — (1 + bzt)e_hzt) (245)

Fault removal phenomenon for complex faults is modeled as a three-stage
process to represent the severity of complex faults

dM3f(l)/dt = b3(6l3 — m3f(t)) (246)
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dm;(1) /dt = bs(ma(1) — m3;(1)) (2.4.7)
dma. (1) /dt = b3 (m3;(t) — m3(t)) (2.4.8)
m3(t) = m3r(t) = a3(l — (1 + b3t + (b%lz/Z))eibSt) (249)

Mean value function for hard and complex faults is expressed by delayed S-
shaped and 3-stage Erlang growth curves. The fault removal rates for simple, hard
and complex faults is

bidy(t) = (b5t/1+bot) and ds(t) = (b3 /(2(1 + b3t + (b37/2))))

d,(t) and d(f) increase monotonically with ¢ and tend to b, and b3 as t — c0.
Failure curves for hard and complex faults behave similar to the simple faults in
the steady state and hence b, and b3 can be assumed equal to b, in steady state. It is
also observed that b; > d,(¢) > ds(¢) in steady state. The mean value function of
the SRGM is

m(t) = mi(t) +mo(t) + ms(1), ar+ar+a3=a (2.4.10)

The mean value function of the SRGM is generalized to include n different
types of faults depending upon their severity

i—1

mt):ia,(l—e Z{ (bjt) /] }) Za,—a (2.4.11)

j=0

The mean value function of the SRGM describes the joint effect of the type of
faults present in the system on the reliability growth. Such an approach can capture
the variability in the reliability growth curve due to the errors of different severity
depending on the testing environment which enables the management of the
software testing to plan and control their testing strategy to tackle each type
of fault lying in the system. Another model in this category is due to Kapur et al.
[36, 37], which describes the implicit categorization of faults based on their time
of detection. However an SRGM should explicitly define the errors of different
severity as it is expected that any type of fault can be detected at any point of
testing time. Therefore it is desired to study the testing and debugging process of
each type of faults separately as in Erlang model. Shatnawi and Kapur [38] also
integrated the effect of learning phenomenon of the testing and debugging teams in
the Erlang model.

2.4.2 Incorporating Fault Complexity Considering Learning
Phenomenon

Mean value function of simple faults is assumed to be same as in the case of
generalized Erlang model (Eq. 2.4.2) [38]. Failure detection and removal is again
modeled as a two-stage process for hard faults, where
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dmzf(t)/dl = bz(az — mgf(l‘)) (2412)

by

dmzr(l‘)/dt = bz(l‘)(mzf(l‘) — er(I)) = W

(ma(t) — my(t))  (2.4.13)

Here fault removal rate per remaining fault b,(f) is assumed to be logistic function
to describe the learning of the testing team. Solving the above equation the mean
value function for hard faults is given as

a (1 — (1 + byr)e )
14 Bre=b

my(t) = mx(t) = (2.4.14)

Fault removal phenomenon for complex faults is modeled as a three-stage
process to represent the severity of complex faults assuming fault removal rate per
remaining fault b5(¢) to be logistic function to describe the learning of the testing
team

dm3f(t)/dt = b3(a3 — M3f‘(l‘)) (2415)
dm3i(t)/dt = b3(m3f(t) — m3i(t)) (2416)

b3

dm3r(t)/dt = b3(m3i(t) — M3r(t)) = m

(m3(1) —ms (1)) (2:4.17)

(1= (1 + b3t + (b3%/2))e ")
1+ Bye b

I’I’L3(l) = M3r(l) = a3 (2418)

The mean value functions for hard and complex faults are expressed by delayed
S-shaped and 3-stage Erlang growth curves with logistic removal rates. The fault
removal rates for simple, hard and complex faults are

1 1
by,dr(t) =b —
b () 2<1+ﬁzeb2f 1+ﬂz+bzt>

and

1 1+ bst
ds(t) = bs — - s . (2.4.19)
L+ fe™™" 1+ By + byt + (b3t)

respectively. d,>(¢) and ds(f) increase monotonically with ¢ and tend to b, and b5 as
t — oo. Failure curves for hard and complex faults behave similar to the simple
faults in the steady state and hence b, and b5 can be assumed equal to b, in steady
state. It is also observed that by > d(f) > d3(¢) in steady state. The mean value
function of the SRGM is

m(t) = my (1) + mo(t) +m3(1), a1 +ar+az=a (2.4.20)
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The mean value function of the SRGM is generalized to include n different
types of faults depending upon their severity

n . 1
m(t):a1<1_eb,t)+;m<l —ehi jzo:{ (bjt) /J }) Za, =a
(2.4.21)

After the development of Erlang models the concept of fault complexity is
integrated by Kapur et al. [39—41] with several other aspects of testing. We will
discuss some of these models in the later chapters.

2.5 Managing Reliability in Operational Phase

Most SRGM proposed in the literature are based on the failure pattern observed
during the system-testing phase. The software developers are interested in
knowing the remaining number of errors in the software at the release time and the
field failure rate to track the system performance. The SRGM formulated for the
test phase is usually extended to forecast the failure pattern in the operational
phase. A major drawback of doing this is that the extension of the model to the
operational phase is done under the assumption “system test environment is as
close to that of the operational phase”. But this is not true for the real life
application since how close we claim the test environment is to the operational
environment, it cannot be a mirror image. Other realistic issue associated with the
operational phase is the non-instantaneous fault removal and possible fix deferral
of certain faults depending upon the fault criticality, outsourced code, time of
launch of a new release, etc.

Kapur et al. [42] classified the software’s into two categories—1. Project type
software also called special purpose software, designed for specific applications
for known operational environment as specified by the user. However multiple
usage of the software is possible within the user environment either at the same or
different locations. A simple example is software, which is designed to automate
the working of railway reservation system. The developer does not market such
software. 2. Product type software also called as general-purpose software,
developed for a specific application according to the need of the software users in
the market. The need is determined on the basis of market survey, competitive
products in the market, R&D, etc. These types of software are sold in the open
market. Many distinct users may buy a licensed copy of such software and use it
for their own purpose. During the testing phase the type of software under testing
does not affect the reliability growth. However, the type of software under con-
sideration influences the reliability growth during the operational phase. Tracking
the system performance is not difficult for the project type software since it is in
use on a few readily monitored systems under almost constant usage rate. However
it is difficult for the product type software due to wide distribution of this type of
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software where the usage typically builds to several thousand independent
systems.

Kenny [43] argued that the number of failures in operational phase is strongly
influenced by the number of users of the software and proposed a model that
includes a factor for the usage rate during the operational phase.

2.5.1 Operational Usage Models—Initial Studies

The model [43] is based on the assumption that the average number of failures is a
function of the number of encountered defects, which is a function of the number
of instructions executed up to the testing time ¢

dm - dmdxde

& drdeds (2.5.1)
assuming all remaining defects are equally likely to cause a failure.
The first component dm/dx is defined as
dm/dx = by (2.5.2)
The second component dx/de is
dx/de = byr (2.5.3)
and the third component is
de/dt = byt* (2.5.4)

Substituting (2.5.2), (2.5.3) and (2.5.4) in (2.5.1) and solving with the initial
conditions m(0) = 0 we obtain

m(t) = a(l - e”(f”'/<k+1>)>, b = bibybs (2.5.5)

where a is the number of faults at the time of release of the software and r is the
remaining number of faults during the field use. Kenny model uses a power
function to describe the software usage, which grows as the number of software
users increases particularly for product type software. In the marketing literature
power function is seldom used for describing the user growth over time. Kapur
et al. [44] redefined the Kenny’s model using Bass [45] model of innovation
diffusion to describe the user growth.

The model [44] is based on statement coverage. The NHPP failure intensity
function is formulated as

dm  dm de AW
G dedw dr (2.5.6)
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which can be described as “the number of failures during testing time ¢ is
dependent on the number of executed instructions which is a function of software
usage during the operational environment up to the time ¢”.

The first component dm/de is defined as

B — (b + balmfa))(a — m) (25.7)

where b; is the rate at which remaining faults cause failures, b, is the rate of
additional fault removal without causing their failure and e is the number of
executed instructions.

The second component de/dw is

de
W b3 (2.5.8)
which defines a constant number of statement execution per additional software
usage. This component gives a measure of statement coverage. Substituting (2.5.7)
and (2.5.8) in (2.5.6) and solving with the initial conditions m(0) = 0 and
W(0) = 0 we obtain

by

a(l _ ebe(l))
etV b=by(by +by) and y= b (2.5.9)

m(t) =

Software products are similar to the technological products as such the Bass
model of innovation diffusion defining the number of adopters of theses products is
used to forecast the number of software users in the field. The usage function
W(¢) is hence modeled as

1— —(p+a)t
W(r) =N xp (2.5.10)
1+ (g/p) exp~(rra)t

where N is the total number of potential adopters of the software, p is coefficient of
innovation and q is the coefficient of imitation.

The equation in (2.5.10) represents the number of adopters of the software and
therefore is not suitable to describe the actual usage of the software. With this both
models discussed above apply to product type of software. The usage and hence
the usage function of project type software is different form that of product type
software. Kapur et al. [42] model addresses the reliability growth during the
operational phase classifying software as project and product type and linking an
appropriate usage function to each type of software considering testing efficiency.
This model is discussed Model in Chap. 3.

2.6 Modeling Fault Dependency and Debugging Time Lag

One common assumption of conventional SRGM is that detected faults
are immediately removed. In practice, this assumption may not be realistic in
software development. Software testing and debugging are very time-consuming
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and expensive process. The time to remove a fault depends on the complexity of
the detected faults, the skills of the debugging team, the available manpower, or
the software development environment, etc. In the general testing environment
fault removal may take a longer time after detection. Further more removals are
likely in the later phase of the testing as compared to the beginning. Therefore, the
time delay in fault-correction process after the detection process can’t be ignored.
Besides, Ohba [14] conceived that there are two types of faults in the software:
mutually independent faults, and mutually dependent faults. KG Model discussed
in Sect. 2.3.7 also considers this underlying fault dependency. During testing,
faults, which are removed on the detection of a failure, are mutually independent
faults or leading fault, while the faults, which get removed during the removal of
some leading faults, are called mutually dependent faults. Mutually dependent
faults can be removed if and only if the faults leading to them are removed.

Schneidewind [8] first modeled the fault-correction process using a constant
delayed fault-detection process. Later, Xie and Zao [46] extended the Schneide-
wind model to a continuous version by substituting a time-dependent delay
function for the constant delay. A key factor of the continuous version of
Schneidewind model is the time-dependent delay function, which measures the
expected time lag to correct a detected fault. Yamada et al. [13] delayed S-shaped
model and fault complexity models discussed earlier are also addressing to the
time lag between the fault-correction and detection. Kapur and Younes [47]
analyzed the software reliability considering the fault dependency and debugging
time lag.

2.6.1 Model for Fault-Correction—The Initial Study

Notation

mg(i) Mean value function of faults detection process

m{i) Mean value function of faults removal/correction process
m;i(i) Mean value function for independent faults

mgq(i) Mean value function for dependent faults

A@) Failure intensity

i Estimated time to detect cumulative number of faults m;
ir Estimated time to detect cumulative number of faults m,
a Initial fault content

b Fault-detection/removal rate per remaining fault

p1,p> Proportion of independent, dependent faults p; + p, = 1

It assumes that [8] the observations have been made for the number of errors,
which have occurred in intervals of unit length, designated by the index, i, from
interval 1 through 7.
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Assumptions

1. The number of errors detected in each time interval is independent of the
number of errors detected in any other time interval.

2. The detected error counts have a probability density function of the same form
in each time interval but with different means.

3. The mean number of detected errors decreases from interval to interval as a
result of the continuing detection and correction of original errors.

4. The rate of error detection in an interval is proportional to the number of errors
in the interval.

Following assumption 3 the failure intensity is an exponentially decaying
function

Miy=aexp™™, a>0, b>0 (2.6.1)
Equation (2.6.1) implies
_4
b

The time estimated to detect a cumulative number of errors m; is derived from
(2.6.2) is

mg (i) (1 —exp™) (2.6.2)

ir = log(a/(a — bmy))/b (2.6.3)

Cumulative mean number of faults corrected has the same form as that of
(2.6.2) but will lag the mean number of faults detected by a constant delay Ai. The
lag equals the time estimated to correct a number of faults equal to mg(i) — m.(i).

Thus for i > Ai

me(i) = me(i — Ai) = % (1 - exp*““*A”) (2.6.4)

The lag Ai can be estimated by finding Ai such that the relationship
m(i) = m{i — Ai) is satisfied from the empirical data, where i is the time of
making a forecast. The time estimated to correct a cumulative number of errors m,
obtained from (2.6.4) is

ir = Ai + log(a/(a — bm,))/b (2.6.5)

The Schneidewind model assumed that Ai is same for all i, which means that all
detected fault, will be corrected after a constant delay of time Ai. Xie and Zao [46]
revised this model using a time-dependent delay function At that measures the
expected delay in correcting a detected fault at any time. However they proposed
the revised model in continuous time instead of discrete time as in case of
Schneidewind model. In this case the mean value function of the fault-correction
process is

mi(t) = me(t — A,) = g (1 - exp*b@*Af)) (2.6.6)
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If Atz is a constant, this model is same as the Schneidewind model. Xie and Zao
assumed At to be an increasing function on the account of more delays in fault-
correction in the later phases of testing given by

In(1 +ct)

At —
t b ;

c>0
with this lag function

my(t) = g (1= (1+ct)exp™) (2.6.7)

2.6.2 Fault Dependency and Debugging Time Lag Model

Fault Dependency and Debugging Time Lag Model due to Kapur and Younes [47]
besides NHPP (refer Sect. 2.3.1) assumptions assumes that:

1. The software errors are divided into two categories—(i) leading faults and (ii)
dependent faults.

2. The number of errors in the software system is finite and it is the sum of the
errors in each category.

3. The number of leading errors removed in time (¢, t + At) is proportional to the
number of leading errors remaining.

4. The number of dependent errors removed in time (¢, f + Af) is proportional to
the number of dependent errors remaining and to the ratio of leading errors
removed at time ¢ and the total number of errors.

5. The dependent errors can be removed when the leading error, which they are
dependent on, is removed.

Assumption 4 describes the time lag between the error detection and removal.
Failure intensity of the independent and dependent faults is given as

dm;(¢) /dr = b(ap; — my(1)) (2.6.8)
dmy(t)/dt = c(apy — ma(1))(mi(t — T)/a), a(p1+p2)=a (2.6.9)

The mean value function obtained under mg0) = m,(0) = 0, assuming 7 = 0
are

mi(t) — apl(l _ e—bt) and my = ap2(1 _ e—((aﬁl(l—e*br)—b(-apll)/uli))
(2.6.10)
with

m(t) = mi(t) + mq(t) (2.6.11)
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Although this model takes into account the debugging time lag but a closed
form solution is obtained for negligible time lag (7 = 0). Huang and Lin [48]
formulated another model based on the assumptions made in Kapur and Younes
model, first modeling the time lag phenomenon for the various time dependent lag
functions and then integrated the fault dependency in the model.

Fault-detection process [48] is described as in the GO model

me(t) = a(l —e™") (2.6.12)
assuming ¢(f) to be the delay factor the fault-correction process is given by
m(t) = me(t — $(1)) = a(l - e-b<f—¢<f>>) (2.6.13)

Various conventional models (GO model, Yamada delayed S-shaped model,
inflection S-shaped model, Yamada Weibull-type testing-effort function model,
Logistic growth curve model, etc.) are then derived using the different form of
¢(t). For example if we assume ¢(f) = O we obtain GO model, if ¢(r) = (1/b) In
(1 + bt) Yamada delayed S-shaped model is obtained,

For ¢(1) = (1/b)In ((iiﬁii:”) inflection S-shaped model is obtained.

Fault dependency and debugging time lag is integrated by substituting the time
dependent functional forms of ¢(#) in place of T in the equation describing the
failure intensity of dependent faults in the Kapur and Younes model.

Lo and Huang [49] also proposed a general formulation for modeling fault-
detection and correction. The proposition given by them is

if D(f) = [, A(s)ds, C(t) = [yu(s)ds and the differential equations for
m(t) and m(t) are

d

Smil) = A(0(a—mi(0) and  Zmi(t) = u(e)(m(r) = me(r))  (2.6.14)

then we have

t
me(t) = a(l - e_D(’)) and m.(1) = e €0 /ac(s)ec(‘v) (1 - e_D(“‘)) ds
0

(2.6.15)

with mg0) = 0 and m,(0) = 0. Here A(¢) is the fault-detection rate per remaining
fault, and u(7) is the fault-correction rate per detected but not corrected fault.

Singh et al. [50] incorporated the learning of the testing team by using a power
function for fault-detection and removal rates in Huang and Lin [48] and applied it
to the various conventional models (GO model, Yamada delayed S-shaped model,
Kapur and Garg model for error removal phenomenon, etc.). Kapur et al. [41] have
integrated the concept of fault complexity, fault dependency and debugging
time lag.
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2.6.3 Modeling Fault Complexity with Debugging Time Lag

Assuming ay, a,, as; a; + a, + az = a be the initial fault content of simple, hard
and complex faults, simple faults [41] are described by

dml(t)/dt = b](d] —ml(t)) (2616)

mi(t) = ar (1 —e™"") (2.6.17)

Fault-detection process for hard faults remains same as that of simple faults
while the fault-correction process is described by

dms (1) /dt = ba(a — my (1)) (M) (2.6.18)

defining
o) = (1/by) In(1 + by1) (2.6.19)
m(t) = a (1 —e (e (i) ) (2.6.20)

For complex fault also the detection process is described by (2.6.17) while the
correction process is described by

dmy(1)/dt = by(a3 — m3(t)) (M)

a

(2.6.21)

defining

o(t) = (1/by) ln(l + b+ (blt)2/2> (2.6.22)

(22 (1-(14by)e 1) —bar(1— (1= et
m3(t) =a (1 —_e ([71( ( + 1[)6 ! ) 3t( ( 2)6 ! ))) (2623)

The mean value function of the SRGM is
m(t) = m(t) + my(t) + ms(t), a+ax+az=a (2.6.24)

A study of fault-detection process in isolation can be useful to estimate the
number of faults detected in the system however an actual estimate of the achieved
reliability can be determined by an estimate of the fault removal phenomenon. An
ideal model should be able to describe the two processes separately.

The models discussed in the previous sections describe the very basic aspects
of the testing process and can be applied to a variety of software test data.
However none of these models describes the effect on the pace of testing due to
the testing efforts spent. Testing efforts plays a very crucial role on the testing
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progress for example at any instance of time during the testing phase testing can be
made more rigorous through the additional testing efforts. A model that accom-
modates the effect of testing effort on the reliability growth often proves to be
more useful in the later phases of the testing as it can be used to determine the
amount the additional efforts required to reach a specified reliability objective
(testing effort control problem, discussed in Chap. 5). In the next section we
describe several models for incorporating the effect of testing effort on reliability
growth.

2.7 Testing Effort Dependent Software Reliability Modeling

Most of the earlier SRGM were developed based on calendar time or execution
time as the unit of fault-detection/removal period and either assume that the
consumption rate of testing resources is constant, or do not explicitly consider the
testing effort and its effectiveness. A testing effort function describes the distri-
bution or consumption pattern of testing resources (CPU time, manpower, etc.)
during the testing period. Putnam [18], Yamada et al. [19-21], Bokhari and Ahmad
[22], Kapur et al. [23], Kuo et al. [24], Huang [51] and Huang et al. [26, 27]
proposed SRGM describing the relationship among the testing time (calendar
time), testing-effort expenditure and the number of software faults detected. Most
existing SRGM belong to exponential type models. Kapur et al. [23], Huang [51]
and Huang et al. [26, 27] proposed S-shaped testing effort dependent SRGM based
on Yamada delayed S-shaped model which also describe the leaning phenomenon
of the testing team. Testing effort dependent SRGM to describe the distributed
development environments, testing efficiency and fault complexity are proposed
by Kapur et al. [41, 42, 52]. Models due to Lin et al. [53] and Gupta et al. [54]
were developed considering the changes during the process of testing with respect
to test-efforts (change point concept), etc.

Manpower, CPU time and test cases constitute the test-efforts spent on testing.
The testing effort function (TEF) discussed in the literature are mainly parametric
as they predict development effort using a formula of fixed form parameterized
from historical data records.

2.7.1 Rayleigh Test Effort Model

Putnam [18] pioneered the use of Norden Rayleigh Model [55] for the test-effort
consumption estimation. It has been empirically determined that the overall
life-cycle manpower curve can be well represented by a Rayleigh curve of the type

w(t) = 2Ke @ at (2.7.1)
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where

a 1/ 21‘31

ty Time at which a is maximum

K Area under the curve in the time interval [0,00] and represents the nominal

life-cycle effort in man-years
w(f) pdf of the test-effort function

The cumulative distribution of the test-effort function W(z) obtained from
(2.7.1) is

W(r) = (1 - e‘”2) (27.2)

The Rayleigh distribution curve slopes upward, levels off into a plateau and then
tails off gradually. According to Putnam, the Rayleigh curve depicts the profile of a
software development project, with time on the horizontal axis and manpower on
the vertical axis. The test-effort curves given above are non-linear and can be
linearized dividing (2.7.1) by ¢ and taking the natural logarithm on both sides.

1(@) —n(K/2) + (~1/(2-2))2 (2.73)

which is a linear equation in #* with decreasing slope.

Based on this equation, Putnam stated “if we know the management parameters
K and 1, then we can generate the manpower, instantaneous cost, and cumulative
cost of a software project at any time ¢ by using the Rayleigh equation”.

2.7.2 Weibull Test Effort Model

Yamada et al. [19-21] claimed that instantaneous testing-effort decreases during
the testing life-cycle since it is reasonable to assume that there is a finite limit of
resources available to test the software and proposed Weibull-type distribution to
describe the TEF having the following three cases.

Exponential curve: The cumulative testing effort consumed in time (0,f] according
to exponential curve is

W(t) =a(l —e™) (2.7.4)

Rayleigh curve: The cumulative testing effort consumed in time (0,] according to
Rayleigh curve is

W(r) = oc(l - e’v’2/2) (2.7.5)
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Weibull curve: The cumulative testing effort consumed in time (0,f] according to
Weibull curve is »
W(t)=o(l—e™) (2.7.6)

where

o Total amount of test-effort expenditures required by software testing
v, ¢ Scale and shape parameters

When ¢ = 1 or 2 the Weibull curve describes the exponential or Rayleigh curve
respectively and hence are special cases of Weibull type curve. If ¢ > 3 these
testing-effort curves have an apparent peak phenomenon (non-smoothly increasing
and degrading consumption curve) which is not suitable for many test-effort data
sets in practice. Although a Weibull-type curve fits well most of the existing data
sets but due to the existing peak phenomenon for ¢ > 3 is sometimes not advisable
to use.

Following the general assumptions of the GO model the NHPP exponential test-
effort based SRGM formulated by Yamada et al. [20] is

() /() = bla— m(o) (27.7)

The mean value function of the model under the initial conditions m(0) =
W(0) = 0 is given as

m(r) = a(l - e*bwm) (2.7.8)

On similar lines we can develop Weibull type test-effort based SRGM for the
various time dependent SRGM discussed through out the book. For application of
model to actual data sets first the testing effort function is fitted to the observed
test-effort data and then parameters of the SRGM for failure or removal process is
determined with respect to the estimated test-effort data.

Note: The testing-effort functions proposed by Yamada et al. [19] can be
derived under the assumption that, “the testing effort consumption rate at any time
t during the testing process is proportional to the testing resource available at that
time” [56].

Differential equation describing the testing-effort expenditure rate is given by

dw(z)
dr
where v(f) is the time-dependent rate at which testing resources are consumed,
with respect to remaining available resources. Solving Eq. (2.4.7) under the initial
condition W(r = 0) = 0, we get

=v(t)[o — W(1)] (2.7.9)

1

W) = a|1 - exp / v(x) dx (2.7.10)
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Exponential, Rayleigh and Weibull testing-effort functions are obtained when
v(f) = v, v(t) = vt and v(f) = ver, respectively.

2.7.3 Logistic and Generalized Testing Effort Functions

Parr [57] first advocated the use of logistic function to describe the use of resources
consumed by the software testing projects. Although Weibull-type testing-effort
functions provided good results for estimating the testing resource expenditures for
several projects and used for software reliability modeling by various authors, but
due to the peak phenomenon for ¢ > 3. It is not advisable to use on many occa-
sions. Hence Huang et al. [58] proposed an SRGM using the logistic test-effort
function proposed by Pharr. The logistic test-effort function exhibits similar
behavior to the Rayleigh curve, except during the early part of the project. The
logistic test-effort function over time period (0,7] can be expressed as

o

WO =T e

(2.7.11)
Using the above test-effort function the current testing-effort consumption is
given as

_ i _ cfae™
S de wie) = (1 + pe—i)?

The parameters o and ¢ have the meaning same as above and f3 is a constant.
The current testing-effort produces a smooth bell-shaped curve, which reaches its
maximum value t,,,, when #,.x = (1/c) In .

In contrast to the Weibull-type testing-effort function for which W(0) = 0, the
initial condition for the logistic TEF is, W(0) # 0. The divergence between the
Weibull-type curve and Logistic curve is concentrated in the earlier stages of
software development where progress is often least visible and formal accounting
procedures for recording the amount of testing-effort applied may not have been
instituted. It is possible for us to judge between these models using some statistical
test of their relative ability to fit actual failure data, such as adjusting the origin and
scales linearly [57]. The testing-effort function (2.4.11) when used in (2.4.6), the
mean value function of the SRGM is given by

w(t) (2.7.12)

o
1+p

Huang et al. [59] extended the logistic testing-effort function to a generalized
form. The generalized logistic testing-effort function has the advantage of relating
a work profile more directly to the natural structure of the software development.
Therefore, it can be used to pertinently describe the resource consumption during
the software development process and get a conspicuous improvement in modeling
the distribution of testing-effort expenditures.

m(t) = a(l - e’bW*(’)); W (1) = W(1) — W(0), W(0) = (2.7.13)
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The generalized logistic test-effort function is given as

” 1/k
W, (t) = a(ijﬁi)_/ft) (2.7.14)

where

K is structuring index with large values
A is a constant

Ifj = 1 and A = 2 test-effort function (2.7.14) reduces to (2.7.11) and if we set
A =k + 1 a generalized and simple testing-effort function is obtained given as

o
Wi (t) = —— 2.7.15
O =g (2.7.15)
For (2.7.15) curve reaches its maximum value #,,,, when
1
= B (2.7.16)
cK

Logistic testing-effort functions have been used by various researchers to for-
mulate SRGM. Kuo et al. [24] used logistic test-effort function to propose several
SRGM with constant, non-decreasing and non-increasing fault-detection rates.
Huang et al. [27] incorporated the effect of testing-effort consumption function in
the Yamada delayed S-shaped model [13].

2.7.4 Log Logistic Testing Effort Functions

Recently, Bokhari and Ahmad [22] presented how to use Exponentiated Weibull,
log-logistic and Burr type III curves to describe the testing-effort function.

The Exponentiated Weibull model was originally proposed by Mudholkar and
Srivastava [60] for reliability analysis of hardware systems. This model can
generate exponential, Rayleigh and Weibull curves as a special case and is given
as

W(r) = a(l - e—/frf)e; 0>0 (2.7.17)

The cumulative log-logistic testing-effort function over the time interval [0,7] is

given by
W(t) = a(%) (2.7.18)
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and the Burr Type XII test-effort function is given as

W(t) = a(l— (1+ (B))™) (2.7.19)

The performance of these test-effort functions is judged on exponential SRGM
(2.7.8) from their relative ability to fit actual failure data.

2.7.5 Modeling the Effect of Fault Complexity with Respect
to Testing Efforts Considering Debugging Time Lag

Assuming ay, a,, az; a; + a> + a; = a be the initial fault content of simple, hard
and complex faults [41], simple faults are described by exponential SRGM
assuming no delay in fault-correction process

%tt))/dt = bl(al — ml(t)) (2720)
mi () = a (1 - e’h‘W*(”); W(1) = W(z) — W(0) (2.7.21)

Fault-detection process for hard faults remains same as that of simple faults
while the fault-correction process is described by

dmy (1) /dt
w(r)

ai

— by(a — mo(1)) (’”‘(W(‘) - AW“”) (2.7.22)

defining
AW(t) = (1/b)) In(1 + byW* (1)) (2.7.23)
my(1) = a (1 - e(zb—bf(l e tW' ) bW (¢ )(1 n e”lW*W))) (2.7.24)

For complex fault also the detection process is described by (2.7.21) while the
correction process is described by

L pfas = o] [HZED] 2725)
w ay
defining

AW(1) = (1/by) 1n(1 bW (1) + (bW (1 /2) (2.7.26)

Equation (2.6.22) implies
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3b .
—3(1 — (14 bW ())e W <f>)
by

my(t) =a3|1—e P <1 - (1 B ZMWT*(I))C_;;IW*OO

The mean value function of the SRGM is

(2.7.27)

m(t) =m(t) + ma(t) + ms3(t), a1+ax+az=a

In this section we have defined various testing effort functions proposed in
literature. Many authors have shown how to incorporate these test-effort functions
in software reliability modeling and proposed exponential as well as S-shaped
SRGM using them. We can incorporate the effect of testing-effort functions in
most of the existing calendar time models. In the later chapters of this book we
will discuss some integrated SRGM incorporating the testing-effort functions.

2.8 Software Reliability Growth Modeling Under Distributed
Development Environment

Several challenges are faced by the software developers. Size and complexity
of the software has increased far beyond the most optimistic forecast. Growth in
the abilities to design, test and maintain software is still slower than required.
Along with this software users want faster deliveries with discounted cost. Due to
these associated reasons software developers tend to develop and maintain the
software under distributed development environment (DDE). In a distributed
environment the software development is realized by mapping the full set of
system requirements across the various sub-systems. These subsystems are inte-
grated to make the complete software. Development of each subsystem (module)
is distributed to various teams who develop their piece of software indepen-
dently. Some of the modules are build on the existing software/modules, modified
and extended to engineer the new release while some of them are wholly new
components. Role of software reliability growth models is still important in con-
trolling and managing the development of quality software under distributed
environment.

The first attempt in software reliability growth modeling under DDE was due to
Yamada et al. [61] who assumed that the software is consisting of ‘n’ used and ‘m’
newly developed components. The mean value function of the failure phenomenon
for the used component was described by an exponential curve (GO model) while
it is S-shaped (Yamada delayed S-shaped model) for the newly developed com-
ponents. The mean value function for the software system is the sum of the mean
value functions of its entire components. As such the model can be given as
follows
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m(t)=a|> pi(l—e )+ puy{l = {1+ byythe '} (2.8.1)
i=1 j=1

where

p; is the proportion of faults in the ith component
b; is the FDR/FRR of the ith component

Kapur et al. [62] formulated a flexible SRGM to describe DDE. They integrated
the concept of fault complexity with software reliability modeling for distributed
development environment. They assumed faults in the used component to be of
simple type and used GO model to describe their failure phenomenon. For newly
developed components (m in number) they assumed some of them contain hard
faults while faults in the remaining are of complex type. Hence as such the failure
and removal phenomenon for these components is described by two- and three-
stage process (as in modeling faults of varying complexities, see Sect. 2.4). They
also incorporated the learning of the testing team in their model.

2.8.1 Flexible Software Reliability Growth Models
for Distributed Systems

Along with the general assumptions of NHPP models [62] distinctive assumptions
of the model are

1. There is finite number of reused and newly developed software sub-systems.

2. The time delay between the failure observation and its subsequent removal is

assumed to represent the complexity of fault. The more severe the fault, more

the time delay.

Fault removal rate of the reused sub-system is constant.

4. FRR of newly developed components is a logistic learning function as it is
expected that the debugging team gets learning as the testing progresses.

(O8]

Notation

a Total fault content

a; Initial fault content of ith component

b; Proportionality constant of FDR/fault isolation rate (FIR) per fault of ith
component

bi(t)  Logistic learning FRR of ith component (newly developed)

m;(t) Mean number of faults removed from ith component by time ¢

m;(t) Mean number of failures observed in the ith component (newly developed)
by time ¢

m;(f)  Mean number of faults isolated from ith component (newly developed) by
time ¢
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A constant parameter in the logistic learning function
Number of reused components having simple type of faults
Number of new components having hard faults

Number of new components having complex faults

v =

2.8.1.1 Model for Reused Components

It is assumed that the faults in the reused components are simple faults, which can
be removed instantly as soon as they are observed. Hence fault removal in reused
components is modeled as one-stage processes
d
de
Mean value function of fault removal process for the reused components
obtained under the boundary condition m;(t = 0) = 0 is

mir(t) = bi(ai — m,-,(t)) i=0,1,...,p (282)

m(t) = a;(1 —e™"") (2.8.3)

2.8.1.2 Model for Newly Developed Components
Software faults in the newly developed software component can be of different

complexity. Newly developed components are classified into two categories one
containing hard faults and the other containing complex faults.

Components Containing Hard Faults

The fault removal process of these components is modeled as a two-stage process

d
am,-f(t) :b,-(a,-—m,-f(t)) l:p+ 1,,p—‘rq (284)
d .
d—tm[r(t) =bi(t)(mg(t) —my(2)) i=p+1,...p+¢q (2.8.5)
where
b;

Equation (2.8.6) describes the learning of the debugging process over the
testing period. Mean value function of fault removal process for the new com-
ponents containing hard faults obtained under the boundary condition m;{(t = 0) =
my(t =0)=0is
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(1= (1+ bir)e )
1 + nebit

mir(t) = a; i=p+1,...p+q (2.8.7)

Components Containing Complex Faults
These faults require greater time lag between failure observation and removal.

Hence a three-stage process is used to describe their removal-observation, isolation
and removal.

d

am,-f(t) =bi(a;—ms(t)) i=p+q+1,...p+qg+s (2.8.8)
d .
amil(t) =bi(mg(t) —ma(t)) i=p+qg+1,...p+qg+s (2.8.9)

%mir(t) =bi(t)(ma(t) —my(1)) i=p+q+1l,...p+qg+s  (2.8.10)

where b,(f) is as given by (2.8.6).

The fault removal phenomenon is hence given by the following equation under
the boundary condition, m;{(t = 0) =m;(t = 0) = m;(t = 0) =0

(1= (14 bit + (b712/2) )e )

mir([) =4 1 + ne_hit

(2.8.11)

2.8.1.3 Modeling Total Fault Removal Phenomenon

Total fault removal phenomenon for the software is superposition of SRGM for ‘p’
reused and ‘g + s’ newly developed components. From Egs. (2.8.3), (2.8.7) and
(2.8.3) the SRGM for software developed under DDE is given as

: P 1 (14 bitje ]
m(t) = ai(1 - e’b"’) + a —
; i;l I+ et
2.2
prats {1 — {1 + bit + b"Tt}e’bi’]
+ Z a; [

i=p+q+1

(2.8.12)
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2.8.2 Generalized SRGM for Distributed Systems
with Respect to Testing Efforts

Along with the general assumptions of NHPP (refer Sect. 2.3.1) and 1-2 of
Sect. 2.8.1 specific assumption of the model [52] is

1. Fault removal rate of the reused sub-system is power function of testing-efforts.

2. Fault removal rate of newly developed components power logistic learning
function of testing time as it is expected the debugging team gets learning as the
testing progresses.

Additional Notation

a Total fault content

a; Initial fault content of ith component

b; Proportionality constant of FDR/fault isolation rate (FIR) per fault of
ith component

bi(1) Power logistic learning FRR of ith component (newly developed)

m; (1) Mean number of faults removed from ith component by time ¢

m;e(t) Mean number of failures observed in the ith component (newly
developed) by time ¢

m;i(t) Mean number of faults isolated from ith component (newly developed)
by time ¢

n A constant parameter in the logistic learning function

p Number of reused components having simple type of faults

q Number of new components having hard faults

s Number of new components having complex faults

d Constant power

W(¢), W  Cumulative testing-effort by time ¢

2.8.2.1 Model for Reused Components

It is assumed that the faults in the reused components are simple faults, which can
be removed instantly as soon as they are observed. Hence fault removal of reused
components is modeled as one-stage processes

dm;,(¢)/dt
w(t)

Mean value function of fault removal process for the reused components
obtained under the boundary conditions m;(t = 0) = 0 and W(0) = 0 is

= bW (a; —my(t)) i=0,1,....p (2.8.13)
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mi(t) = a;(1 — e(— (B;W) /(d + 1)) (2.8.14)

For different values of d different types of growth curves are captured.

2.8.2.2 Model for Newly Developed Components

Software faults in the newly developed software component can be of different
complexity. Newly developed components are classified into two categories: one
containing hard faults and the other containing complex faults.

Components Containing Hard Faults

The fault removal process of these components is modeled as a two-stage process

dmfu((lz))/dt =biWia —ma(t)) i=p+1,...pty (2.8.15)
%?)/dt = bi(W)(ms(t) —mae(1) i=p+1,...p+q (2.8.16)

where
bi(W) b (2.8.17)

T T+ ne(—(BWH) /(d + 1))

Equation (2.8.17) describes the learning of the debugging process over the
testing period. Mean value function of fault removal process for the new com-
ponents containing hard faults obtained under the boundary condition m;(t = 0) =
my(t =0) = W(0) =0 is

(L= (14 (W) /(d+ D)e(—(bW™!) /(d +1)))
1+ ne((WH) /(d + 1)) (2.8.18)

mi(t) = a;

i=p+1,...p+q

Components Containing Complex Faults

These faults require greater time lag between failure observation and removal.
Hence a three-stage process is used to describe their removal-observation, isolation
and removal.

dmye(t) /dt

o = W@ ma0) i=ptatl.ptqts (2819
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% = bW/ (mie(t) —ma(1)) i=p+q+1,...p+q+s (2820)
%tt))/m‘_bi(w)(mil(t)_mir(t)) i=p+q+l,...p+rq+s (2821)

where b,(f) is as given by (2.8.6).
The fault removal phenomenon is hence given by the following equation under
the boundary condition, m;{t = 0) = mu(t = 0) = m;(t = 0) = W(0) =0

1+ (bW /(d+1)

+((ew) /@ +1)/2)

1+ ne(—(b;Wiatl) /(d + 1))
i=p+qg+1l,...p+q+s

1- e(— (bW /(d + 1))

mi(t) = a;

(2.8.22)

2.8.2.3 Modeling Total Fault Removal Phenomenon

Total fault removal phenomenon for the software is superposition of SRGM for ‘p’
reused and ‘g + s” newly developed components and is given by the sum of the
mean value functions in Form Egs. (2.8.14), (2.8.18) and (2.8.22) the SRGM for
software developed under DDE is given as

p 1= {1+ bitye ]
_ —b; !
m(t) = Zai(l —e t) + Z a; 1 —|—1’]C_h"l
i=1 i=p+1
2 2.8.23
s [t {1+ b+ o] (2823)
+ Z a; [

i=p+q+1

Other SRGM for distributed development environment analyzing testing cov-
erage and fault complexity are formulated by Kapur et al. [63] and Yadav et al.
[64] respectively. We will discuss them in the later chapters.

2.9 Data Analysis and Parameter Estimation

A number of SRGM have been discussed in this chapter. The task of model vali-
dation follows the model development process. Once a model has been validated it
can be used for practical application. In the model validation the unknown param-
eters of the developed model are estimated on some past or collected failure data sets
and using these estimated parameters estimates are obtained for those data. This
process establishes the validity of the model. Successful application of an SRGM
depends on a number of factors: majority of them include the testing profile under
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consideration, major factors affecting the testing process, characteristic of the
selected model, methods used to collect the data and nature, precision and consis-
tency of the collected data. For any practical application some representative models
have been selected (see Sect. 1.5.4). Application of these selected SRGM on the
observed data involves, first estimating the unknown parameter of the models using
the collected data. Our knowledge of statistics helps in this regard. Maximum
Likelihood Estimate (MLE) and Non-linear Least Square (NLLS) [65, 66] are the
two most widely used estimation techniques. Second, predictive power of the
models is judged by estimating the model parameters on the truncated data and
predicting it over the remaining. Third step involves determining which model(s)
accurately fits data. Various criteria are used in the literature to measure the good-
ness of fit and predictive power of the models such as Mean Square, Variation, Bias,
Mean Square Prediction Error, R2, AIC, Relative Prediction Error Chi-squared test,
etc. The model(s) which describe the testing process accurately are chosen to esti-
mate and predict the failure and removal phenomenon and plotted against observed
values on time scale to obtain the goodness of fit curves. This information is useful to
quantitatively measure the various aspects of the testing process and environment
and further decision making. Detailed discussion on parameter estimation and model
validation has been carried in Sects. 1.6 and 1.7.

Most of the NHPP models existing in the literature are non-linear and solutions
of their first-order equations are difficult to find using NLLS and MLE and require
numerical algorithms to solve. In this book we have used the software package
SPSS for model validation and parameter estimation. We have selected some
models discussed in the chapter and now we show the process of model validation
and parameter estimation on these models.

Failure data set

The interval domain data are taken from Misra [67] in which the number of faults
detected per week (38 weeks) is specified and a total of 231 faults were detected.
Three types of faults—critical (1.73%), major (34.2%) and minor (64.07%) are
present in the software. Mean square of error (MSE) and R” are taken as the
goodness of fit criteria.

2.9.1 Application of Time Dependent Models

The following models have been selected for illustrating the data analysis and
parameter estimation.

Model 1 (M1) The basic execution time model [6]

m(r) = a1~ e taler)


http://dx.doi.org/10.1007/978-0-85729-204-9_1
http://dx.doi.org/10.1007/978-0-85729-204-9_1
http://dx.doi.org/10.1007/978-0-85729-204-9_1
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Model 2 (M2) Goel-Okumoto model [4]

m(t) =a(l —e™)

Model 3 (M3) Yamada—Osaki model [15]

2

m(t) = aZp,-(l —e P

1

Model 4 (M4) Yamada delayed S-shaped model [13]

m(t) = a(1l — (1 + bt)e ")

Model 5 (M5) Bittanti’s flexible model [16]

/A (e“f’ — 1)
) = _—
m( ) a(l/lf T ui(e“ft _ 1))
Model 6 (M6) SRGM for error removal phenomenon [17]

1 — e_(p""C/)l
1+ (q/p)ewq)f}

my(t) = a[

Model 7 (M7) Generalized SRGM (Erlang) [35]

m(t) =a; (1 —e ") +ay (1 — (1 +bot)e ™) +az(1 — (1 + byt + (b3£2/2))e >);
ai+ay+as=a(pi+p2+ps), pi+ptps=1

Model 8 (M8) Incorporating fault complexity considering learning phenomenon
(flexible Erlang) [38]

1 — (14 byt)e >
a2 2

(1= (14 b3t + (b312/2))e ")
1+ pyebst

+a3

Model 9 (M9) Xie and Zao model [46]

my(t) :% (1= (1+ct)e™)
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Table 2.1 Estimation result for model 1 to model 10

Model  Estimated parameters Comparison criteria
MSE R’
M1 476  0.0162 - - - - 21.23 0.9946
(@  (do)
M2 476 00162 - - - - 21.23 0.9946
(@ O
M3 615  0.0083  0.0284 0.7824  0.2176 - 22.60 0.9950
(@ () (b2) (v (20)
M4 230 0.1010 - - - - 133.35 0.9660
(@ O
M5 587  0.0133  0.0083 - - - 21.28 0.9950
(@ () (ue)
M6 427  0.0180  0.0024 - - - 22.47 0.9940
@ @ @
M7 537  0.0226  0.0140 0.0429 - - 22.04 0.9950
(@ (b)) (b2) (b3)
M8 389  0.033 0.11275  0.3656  317.14  567.53 16.08 0.9960
(@ (b)) (b2) (b3) B (B2)
M9 8 0.0161  0.00001 - - - 23.17 0.9940
(@ O (0)
M10 668  0.0162  0.99999  0.7108  0.2892 - 23.16 0.9940
(@ O (c) (o) p2)
Fig. 2.3 Goodness of fit BED Actual Data  —-=-- M1
curve for exponential SRGM A m? cecacnal mg
(M1-M3, M7, M9, and M10) @ G005 e M10 ’-_',_...-"'
5 2504 - e
£ 200 | -
W
E 150 “,‘4"’}
£ 100 o
S ol
TR TEEE
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Model 10 (M10) Fault dependency and debugging time lag model [47]
m;i(t) = ap; (1 — e_}”), mg = ap» (1 - e’((“"l(lfefb')*b"”mf)/“b))

The unknown parameters of all these models have been estimated using the
regression module of SPSS. The values of estimated parameters have been tabu-
lated in Table 2.1. Values in the open brackets are the parameters whose values
have been given in the table. Figures 2.3 and 2.4 show the goodness of fit curves
for the estimation results shown in Table 2.1 and future predictions of exponential
and S-shaped failure curves, respectively.
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For the estimation purpose the percentages of critical, major and minor faults
have been taken according to the collected data. i.e. p; = 0.6407, p, = 0.34199
and p; = 0.01732. From Table 2.1 we can see that model M8 fits best to this
failure data, with MSE = 16.08 and coefficient of determination R? = 0.9960. As
64% of the faults are of simple type from the data analysis we can say these failure
data shows an exponential trend. Pure S-shaped model (M4) (Yamada et al. [13])
is not applicable to this data set. Mean square error is maximum for this model
(MSE = 133.35) and R? is least (= 0.9660). All other model has given comparable
results. The MSE and R* values for these models are nearly same. Excluding
Yamada et al. [13] model other models taken for the analysis were either expo-
nential or flexible. In case of flexible model Kapur and Garg [17] the result of
division of the parameter g and p i.e. ¢/p = 0.133 is very less to add S-shapedness
to the estimated failure curve. Same is the case of Bittanti’s flexible model. Hence
exponential models well describe this data set.

Five exponential models have been considered in this analysis; all of them have
been formulated on some different set of assumption. For a practical application one
needs to analyze the testing conditions applicable for the testing process under
consideration, characteristics and other dimensions of the software project for an
accurate selection of the model. For example if we consider the case of this failure
data set and we want to measure the reliability of the software with respect to the type
of faults present in the software, flexible Erlang model best describes it. The esti-
mation results of this model can now be used to predict the future behavior of the
testing process and make decisions such as release time, and resource allocation.

The above data analysis establishes the estimation of the unknown parameters
for the various models. Besides estimation results and comparison criteria,
selection of a model for practical application is made on the basis of its predictive
validity. Estimation results of the data shows an exponential trend and flexible
Erlang model gives the best fit. For carrying the predictive validity of any model
the observed failure data is truncated in various proportions and using the results of
estimation on the truncated data series predictions are made for the remaining data.
Now we establish the predictive validity of the flexible Erlang model along with
the basic exponential model, Goel and Okumoto [4] model. The results of pre-
dictive analysis are tabulated in Tables 2.2 and 2.3.
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Table 2.2 Predictive analysis for flexible Erlang model (M8)

Data Estimated parameters m(38) RPE RPE
zf;r)lcatlon a b, by bs B B2 (%)
100 389 0.0340 0.1275 0.3656 317.14 567.53 224 —-0.0319 -3.19
95 359 0.0371 0.0841 0.3917 38.73 967.78 219 —0.0516 -5.16
90 347 0.0384 0.0805 0.4315 29.11 967.00 217 —0.0599 —-5.99
85 362 0.0360 0.0689 0.2626 19.23  79.70 217 —0.0597 —-5.97
80 365 0.0364 0.0820 0.0199 2427 67.00 224 —0.0305 -—-3.05
70 372 0.0344 0.0508 0.1845 6.10 35.80 219 —0.0531 —5.31
60 330 0.0390 0.0627 0.3040 6.20 586.31 219 —0.0540 —-5.40

Table 2.3 Predictive analysis for Goel and Okumoto model (M2)

Data Estimated parameters m(38) RPE RPE (%)
truncation (%)
a b,

100 475 0.0162 219 —0.0539 -5.39
95 413 0.0192 214 —0.0736 —7.36
90 405 0.0197 213 —0.0766 —7.66
85 409 0.0194 214 —0.0749 —7.49
80 400 0.0200 213 —0.0790 —7.90
70 421 0.0188 215 —0.069 —6.93
60 397 0.0201 212 —0.082 —8.23

Predictive validity of the models is shown on data truncated to 95-60%.
Flexible Erlang model shows better predictive validity as compared to Goel and
Okumoto [4] model (GO model), although both models underestimate the
observed failure data (see column 8 of Table 2.2 and column 4 of Table 2.3).
However the level of underestimation is less in case of flexible Erlang model. For
both models result shows that even 60% of these observed data is sufficient to
predict successfully with relative predictive error (RPE) as low as —5.4% for the
flexible Erlang model and —8.23% for the GO model. The overall range of RPE
varies from 3 to 6% (approx) for the flexible Erlang model and approximately
5-8% for the GO model, suggesting good predictive validity of both the models.
Graphical plot of RPE for both the models is shown in Fig. 2.5.

From the result of predictive validity test we conclude that flexible Erlang
model has both good estimating and predictive power for this data set and the
information obtained from the analysis can now be used to measure the reliability
as well as further decision making.

2.9.2 Application of Test Effort Based Models

The Models chosen above for the numerical analysis and validation were all
formulated based on the time (execution/calendar time). We continue data analysis
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Fig. 2.5 Relative prediction 0.0000 : : : : : : ‘
error for the predictive 2001004 100 95 90 85 80 70 60
validity test —— RPE for GO Model
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-0.0300

-0.0400 -
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-0.0800 +
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Data Truncation

in this section on the same data set. Now we establish the validity and estimate the
unknown parameters of some test-effort based models. The following SRGM have
been selected.

Model 11 (M11) Test-effort based Goal Okumoto model [20]

m(t) = a(l - e—bW*<f>); W (1) = W(1) — W(0)

Model 12 (M12) Test-effort-based fault complexity model considering debugging
time lag [41]

m(t) = a (1 — e’b‘W*@)

+az (1 - e(zb—bf(l - e*bIW*@) - b2W*(t)(1 + ebIW"“))))

3bs Y bt W (1)
. (1 (1+ bW (1))e )

_b3W*(t)(] - (1 _MWTM)G_”‘W“’O ;
Wi (1) = W(0) = W(0)

aj+ay+az=alp+p2+p3); pi+pr+p3=1

+az|1—e

First we have estimated the unknown parameters of the exponential, Rayleigh,
Weibull and Logistic test-effort functions using the data of cumulative test hours
spent in 38 weeks of testing for the data mentioned above. The results of esti-
mation are given in Table 2.4. On the basis of comparison criteria, the results of
estimation illustrate that the exponential test-effort function best describes this data
set and is hence chosen for further analysis. Using the values of the estimated
parameters of the exponential the test-effort function failure curve of the SRGM
can be estimated for the past 38 weeks period. Hence using these estimated values
parameters of models M11 and M12 are estimated. The results of estimation are
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Table 2.4 Estimation results for test-effort functions

Test-effort function Estimated parameters Comparison criteria

o v ¢ B MSE R’
Exponential 25,887 0.0024 - 3,233.35 0.993
Rayleigh 2,241 0.0040 - 24,957.00 0.946
Weibull 5,063 0.0084 1.1639 4,534.14 0.983
Logistic 2,836 0.0985 10.49 9,751.70 0.98

Table 2.5 Estimation result for model 11 and model 12

Model Estimated parameters Comparison criteria
MSE R’
M2 538 (a) 0.0002 (b) - - 17.35 0.995
M8 336 (a) 0.0006 (by) 0.0016 (by) 0.00025 (b3) 19.94 0.995
Fig. 2.6 Goodness of fit — — — - Actual Test Effort Data
curve for test-effort functions =1 [ Exponential Function Lt
— - - — - Rayleigh Function s
B Weibull Function /
8 2400 Logistic Function e =
w W =
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L) -~
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o
=
5
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E
=1
o
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Time (Weeks)

n o M
s =

shown in Table 2.5. The result illustrates that model M11 fits better to this data set.
Further applicability of this model can be made on the basis of the predictive
validity results. Establishing the predictive validity of the model M11 is left as an
exercise for the readers. Figures 2.6 and 2.7 shows the goodness of fit curves for
the test-effort functions and the test-effort- based SRGM.

Exercises

1. Explain the basic difference between an execution time and calendar time based
software reliability growth model.

2. The failure curve described by most of the software reliability models is either
exponential or S-shaped. State the basic property of testing/operational profile
which explains each of these curves.
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Fig. 2.7 Goodness of fit
curve for the test-effort based
models
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. Assume that the mean value function of the detection process during testing of
a software is described by

me(t) = a(l —e™")

Obtain the mean value function of the fault repair process if the time lag
function for the repair process is given by

(@)
¢(t) = (1/b) In(1 + bt)
(b)
(1+pe
o) = 1oy (G EEET)

. What is a testing-effort function? What additional information can be obtained
if one chose to describe the testing process of software using an SRGM
described with respect to the testing-effort consumed?

. Give the derivation of the Weibull-type test-effort functions based on the
assumption “the testing-effort consumption rate at any time t during the testing
process is proportional to the testing resource available at that time”.

. The models described in Sect. 2.3 are all developed based on the calendar time
component. Obtain the mean value function of the testing-effort-based SRGM
corresponding to the SRGM described in Sects. 2.3.1, 2.3.4 and 2.3.7.

. Estimate the parameters of the models in Sect. 2.9.1 on a new data set and
analyze the result.

. The data analysis carried in Sect. 2.9.2 suggests that the exponential test-effort
function best describes the data used. Fit Exponentiated Weibull test-effort
model on the same data and compare the results.
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Chapter 3
Imperfect Debugging/Testing Efficiency
Software Reliability Growth Models

3.1 Introduction

Software systems are developed and designed, for automated functioning of sev-
eral types of real life functions of the mankind. Even though the creator of soft-
ware systems is the universe most dominant and intelligent creature, we cannot
deny the possibility of software failures during their operational period. These
failures are mainly due to the faults manifested in them by their designers. Pri-
marily, testing of software is performed with a goal to detect and remove most of
the underlying faults. Even though the software testing and debugging team puts
its best efforts, uses distinct methods, engineering techniques, well planed and
controlled strategies or the developers make heavy expenditure on testing and
debugging; we cannot be assure that the software can be made free of all type of
faults at the time of its launch. The faults present in the software at the time of its
release can be of three types. First, faults which remained undetected during
testing process. Second, faults which were detected and isolated but was not
repaired perfectly and third, the faults which got manifested in the software during
the removal of some isolated faults. The number of the first type of faults
remaining is related to the efficiency of testing which can be reduced by improving
the testing methods, testing coverage and resources but still 100% removal cannot
be assured due to the constraint of time and testing resources. The second and third
types of faults are related to the efficiency of the debugging team, a more skilled
debugging team can provide a better debugging service and reduce the number of
these types of faults. In software reliability modeling literature, efficiency of
debugging team is incorporated as in imperfect debugging software reliability
models. Imperfect removal of faults is called as imperfect fault debugging and
incorporation of new faults during removal of some existing fault is called as fault
generation.

Quality of test cases, testing environment, testing efficiency and the testing
efforts spent are some of the major factors influencing the reliability growth

P. K. Kapur et al., Software Reliability Assessment with OR Applications, 97
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during the testing phase. Efficiency and skill of the testing and debugging team
greatly influence the testing process since it directly influences the software quality
and enables judicious use of testing efforts. Most SRGM formulated in literature
assume a perfect debugging environment, i.e. whenever an attempt is made to
remove a fault, it is removed perfectly and no new faults are generated; but in most
real life situations the debugging process is imperfect due to the reasons described
above. However the degree of imperfection may be very low. On the other hand,
most NHPP-based SRGM are based on the assumption that failure intensity beside
other factors depend on the number of faults remaining in the software. If the
imperfect debugging phenomenon is ignored, then an SRGM may provide an
optimistic estimate of the remaining fault content resulting in a misleading deci-
sion making process later. Thus, as the debugging process plays a very important
role in determining the remaining fault content, an SRGM must consider the effect
of testing efficiency and debugging process.

During the testing phase, a testing environment close to the operational envi-
ronment is created and test cases are executed on the software. Any departure from
specifications or requirements is termed as a failure. An immediate effort is made
to remove the cause of the failure. The fault removal team may not be able to
remove the fault perfectly at the detection of a failure and the original fault may
remain or be replaced by another fault. To ensure that the cause is perfectly fixed,
the software is tested on the same input and if a failure occurs again, the code is
checked again. Two possibilities can occur now [1]. The fault, which was thought
to be fixed perfectly, has been imperfectly repaired and caused same type of failure
again when checked on the same input (imperfect fault debugging-type I). How-
ever, it may also happen that some other kind of failure occurs which might be due
to the fact that the original fault was perfectly removed but some other fault was
generated while removing the cause of the failure (error generation-type II). It may
be noted here that generation of a new fault can be known only when the corrected
code is retested on the same input. Imperfect fault debugging causes more failures
as compared to removals when testing is continued for infinite time period but the
fault content remains the same. When faults are generated, the number of failures
increases because the fault content has increased. Figure 3.1 summarizes the two
types of imperfect debugging phenomenon.

The chapter focuses on software reliability growth models in an imperfect
debugging environment. We will describe various SRGM, some of which are
purely imperfect fault removal models, some describe error generation only while
others describe the integrated effect of two types of imperfect debugging. The
concept of imperfect debugging was first introduced by Goel [2]. He introduced
the probability of imperfect debugging in Jelinski and Moranda [3] model. Kapur
and Garg [4] introduced the imperfect debugging in Goel and Okumoto [5] model.
They assumed that the fault removal rate per remaining faults is reduced due to
imperfect debugging. Due to error generation phenomena failure count by time
infinity becomes more than the initial fault content. These describes the imperfect
debugging phenomenon of type I and the software reliability growth curve is
exponential. Ohba and Chou [6] introduced the effect of error generation
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(imperfect debugging type II) into reliability modeling. Later, based on their
model other researchers in the field of reliability modeling further studied the
effect of error generation. It may be noted here that generally no distinction have
been made between the two types of imperfect debugging during the early stages
of research in imperfect debugging phenomenon. All these models have been
named as imperfect debugging models even though only one type is incorporated.
It has created confusion in providing appropriate insight into the topic as in [7].
Zhang et al. [8] was the first to integrate the two types, modeling it on the number
of failures experienced/removal attempts. However in practice a fault is generated
while removing some fault and existence of a generated fault is known only after
the removal of original fault. Therefore the fault generation rate is expected to be
proportional to the rate of fault removals. It may again be noted here that the
number of failures is not the same as the number of removals. Kapur et al. [1]
comprehensively integrated the two types of imperfect debugging phenomenon in
their model and clearly illustrated the facts related to imperfect debugging.

Notation
m(t) Mean value function of fault detection process
m,(t) Mean value function of fault removal/correction process

a (a; = ad;)) Number of error in the software (or module i/type i) at the time of
start of software testing, > d; = 1

a(t) Expected initial error content at time ¢, a > 0

p.(pi) Probability of perfect debugging of a fault, 0 < p, (p; < 1

a (a; = ad;) Number of error in the software (or module i/type i) at the time of
start of software testing, > d; = 1

a(t) Expected initial error content at time ¢, a > 0

p,(p) Probability of perfect debugging of a fault, 0 < p, (p;) <1

o, (o) Constant rate of error generation, 0 < o,(o;) < 1

b(t) Time dependent rate of fault removal per remaining faults

b, (b)) Constant rate of fault detection/removal per remaining faults in

software (module i/type i) 0 < b, (b;) < 1
B, c Constant parameter in the logistic function
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3.2 Most Primitive Study in Imperfect Debugging Model

Goel [2] first considered effect of testing efficiency in reliability growth during
testing. They studied the effect of imperfect debugging on the Markovian model
[3]. Jelinski and Moranda model assumes that software faults at the start of testing
is a and each fault is independent of others and is equally likely to cause a failure
during testing. A detected fault is removed with certainty in a negligible time and
no new faults are introduced during the debugging process. The software failure
rate, or the hazard function, at any time is assumed to be proportional to the current
fault content of the program. In other words, the hazard function during #;, the time
between the (i — 1)th and ith failures, is

Z() = pla— (i— 1)) (3.2.1)

where ¢ is a proportionality constant denoting failure rate per fault. The hazard
function is constant between failures but decreases in steps of size k (constant)
following the removal of each fault. This model assumes that the faults are
removed with certainty when detected. To overcome this limitation, Goel [2]
proposed an imperfect debugging model as an extension of this model. The
number of faults in the system at time 7, X(), is treated as a Markov process whose
transition probabilities are governed by the probability of imperfect debugging.
The times between the transitions of X(¢) are taken to be exponentially distributed
with rates dependent on the current fault content of the system. The hazard
function during the interval between the (i — 1)th and ith failures is given by

Z() = pla—pli—1) (3.22)

where p denotes the probability of perfect debugging.

3.3 Exponential Imperfect Debugging SRGM

The models described in this section are based on the general assumptions of
NHPP SRGM. Apart from the NHPP assumption, the models here have some
additional assumptions on imperfect debugging phenomenon.

3.3.1 Pure Imperfect Fault Debugging Model

In this model [4] it is assumed that on a removal attempt, a fault is removed
perfectly with the probability p.
dm,(1)
dr

= pb(a — m, (1)) (3.3.1)
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d"gt(’) — b(a — pmy (1)) (33.2)

Solving (3.3.1) and (3.3.2) with the initial conditions m,(0) = 0 and m/0) = 0
we get

m,(t) = a(l — e ") (3.3.3)

mg (1) = (a/p)(1 — e ") (3.3.4)

If p = 1 the model reduces to GO model with m,(f) = m(t).

3.3.2 Pure Error Generation Model

Ohba and Chou [6] proposed the first SRGM incorporating the effect of error
generation based on GO model. They assumed a constant error generation rate o.
The following equation describes the failure phenomenon of the model

dm(r)
dr
Solving Eq. (3.3.5) under the initial conditions m(0) = 0 we get

= b()a(r) — m(r)] with b(r) = b, a(r) = a + am(7) (3.3.5)

m(r) = (a/1 — a)(1 — e b= (3.3.6)

3.3.3 Using Different Fault Content Functions

Yamada et al. [9] redefined Ohba and Chou [6] SRGM, proposing linear and
exponential forms of fault content function.

If we assume a(f) = ae* in (3.3.5), the mean value function of the SRGM is
given as

_ab
T oa+4b

m(r) (e — e ) (3.3.7)

otherwise for a linear fault content function a(f) = a(1 + of), mean value function
of the SRGM is given as

m(r) = a(l —e—’”)(l —%) + oat (3.3.8)
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3.3.4 Imperfect Debugging Model Considering Fault Complexity

Fault categorization in SRGM is an important concept and when it is integrated
with the concept of testing efficiency, can provide very accurate estimation and
prediction of quality measures. Kapur et al. [10] and Lynch et al. [11] formulated
SRGM, integrating the effect of imperfect fault removal and fault generation
respectively considering three levels of fault complexity.

3.3.4.1 Pure Imperfect Fault Debugging Model

One stage debugging process of simple faults in the presence of imperfect fault
removal is defined by the differential equation

S mig(t) = bilan — pmig (1) (33.9)
my(1) = (a1 /p)(1 — e™""")
my(t) = my,(t) = pmys(t) = a; (1 — e 27") (3.3.10)

while the delay in failure detection and removal for hard faults is incorporated as a
two stage process defined as

%lef(l) = bg[az —mef(l)} (3311)
%er(I) = szvmzf(t) — mZ,(t)] (3312)
le(l‘) = I’I’lzr(l) = 612(1 — 1 lpé’_thl + 1 {pé’_hzf) (3313)

The three stage fault removal process for the complex faults is defined as

d

a1 = bslas = pmy (1)) (3.3.14)
%’"31‘0) = bs[pmy (1) — msi(7)] (3.3.15)
%’"3’(’) = bs[msi(1) — ma, (1)) (3.3.16)
m3(t) = ms, (1) = as ( T _lp)z(e-ﬂ’sf — ety — wﬂﬂ

(3.3.17)
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The fault removal rate per fault for simple, hard and complex faults is
pby(1 — e~ »2017P))
- 1 _pe_hz(l_[’>t

_ pby(1 = (1 +b3(1 — p)t)era1-P))
i (1) = 1—p((1 =p)+ (1 4+ b3(1 = p)t))ebts0-p1

bl" dz(t)

d,(f) and ds(¢) increase monotonically with ¢ and tend to pb, and pb; as t — co.
Failure curves for hard and complex faults behave similar to the simple faults in
the steady state and hence pb, and pb; can be assumed equal to pb; in steady state.
It is also observed that b; > d,(f) > ds(¢) in steady state. The mean value function
of the SRGM is

m(t) = my (1) + mo(t) +m3(1), a1 +ax+az=a (3.3.18)

The mean value function of SRGM describes the joint effect of the type of faults
present in the system on the reliability growth in the presence of imperfect repair
facilities.

3.3.4.2 Pure Error Generation Model

Lynch et al. incorporated the consideration of three types of faults in the software
in Ohba and Chou [6] fault generation SRGM. Fault detection rates are defined as
b;, i = 1,2, 3 for simple, hard and complex faults respectively. Their model can be
described by the following differential equations

dmi(t) . o
5 = bilailt) —mi(1)] (3.3.19)
%aiO) = “i%mi(t> (3320)

Solving the above equations under the initial conditions a;(0) = ad; and
m;(0) = 0, mean value function of the SRGM for simple, hard and complex faults
is given as

mi(1) = (ad;/1 — o) (1 — 1720y i =123 (3.3.21)
Mean value function of the total failure detection process is given as

3

mi(t) = (ad;/1 — o) (1 — ")) (3.3.22)

i=1 i=1

N

m(t) =

where d; is the proportion of the ith type of fault and Z?:1 di=1.
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3.3.5 Modeling Error Generation Considering Fault Removal
Time Delay

Lo and Huang [12] integrated error generation phenomenon in the SRGM, con-
sidering the time lag between failure detection and correction. They claimed that
an SRGM which considers both imperfect debugging and removal time delay can
often provide much realistic estimates as compared to the models assuming
instantaneous fault removal. They modified their generalized detection correction
model (see Section 2.5.2, Lo and Huang [12]) incorporating the constant proba-
bility of error generation. Assuming each time a failure occurs, the new fault may
be introduced in the fault correction process with a probability «, the differential
equations for failure detection and correction process are defined as

%mf(t) = A(0)]alt) — mp (1))

and
d
Smt) = () (6) = m 1) (3.3.23)
where
d d
&a(z‘) = oc$m(t)

The initial conditions m/(0) = 0 and m,(0) = 0 provide the solution
a(t) = (a/1 —a)(1 — ae—(l—oc)D(z)) (3.3.24)
me(1) = (a/1 — a)(1 — e (170PW)

and

t
m(t) = a/(1 — a)e= W / c(s5)eCV (1 _ e%H)D(s)) ds
0

An application of the approach is shown assuming A(f) = 4 and u(t) = p, the
mean value functions for the failure detection and correction processes are given
as

m(t) = (a/1 — a)(1 — e~ (179%) (3.3.25)

m,(f) = ) (1 +- i _’; - #e—“—“)“ — %ﬂ’) (3.3.26)
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3.4 S-Shaped Imperfect Debugging SRGM

Incorporation of imperfect debugging phenomenon in software reliability model-
ing provided promising improvement in reliability estimation and prediction,
together with better understanding of some aspects of testing and debugging, such
as current testing efficiency, requirements for improvement, expertise of testing
and debugging teams, etc. Earlier studies in imperfect debugging modeling were
mainly focused on exponential SRGM, but due to unrealistic assumption of a
uniform testing profile of exponential models, need of s-shaped and flexible
models was created. Studies in modeling the error generation phenomenon due to
Kapur and Younes [13] first satisfied this need. The s-shaped imperfect debugging
SRGM gained popularity by the work of Pham et al. [14]. Pham et al. [14]
proposed a generalized imperfect debugging fault generation SRGM with s-shaped
fault-detection rate in order to incorporate learning of the debugging team. The
assumption that failure intensity depends on the remaining fault content, neces-
sitates the incorporation of debuggers learning in the SRGM. Learning is a uni-
versal phenomenon and when the experience of the debuggers with the code
grows, it is likely that they remove more faults with increasing efficiency in the
later stages of the testing phase. On this account an SRGM ignoring the learning
phenomenon may provide a pessimistic estimate of the remaining fault content.
Pham et al. [14] compared their models with the existing exponential imperfect
debugging and some perfect debugging models. Fairly good results were obtained
for their models and with improved estimates.

3.4.1 An S-Shaped Imperfect Debugging SRGM

This is pure imperfect fault repair model which assumes the probability of
imperfect debugging, p(¢) decreasing with testing time i.e. learning occurs with
testing progress and probability of imperfect debugging is proportional to the
number of errors remaining in the software. Under the other assumptions of NHPP
SRGM, the differential equation for the model is formulated as

d
dr
The model describes the removal intensity as intensity of perfect debugging
minus intensity of imperfect debugging. To account, the decreasing probability of
imperfect debugging, the p(¢) is defined as
(@ —m, (1))
p(t) =—= (3.4.2)

a

m,(t) = b(a — m,(t)) — cp(t)(a—m,(t)); b>c>0 (3.4.1)

which decreases with time as remaining fault content (a — m,(f)) decreases. The
product cp(f) gives the instantaneous imperfect debugging rate. This rate is
maximum at the beginning of the testing phase (equal to ¢) and tends to its
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minimum value (equal to zero) when all the original errors are removed. Further,
when the debugging is perfect, then ¢ = 0 and the model reduces to GO model.
Solving Eq. (3.4.1) using (3.4.2) with the boundary condition m, (0) = 0, we
obtain

w} (3.4.3)

(b—c)+cet

m, (1) = a[

and the failure phenomenon is given as
t

my (1) = / b(a — my(x)) d :%m [(b_c)bw} (3.4.4)

0

It can be noted here that m;(0) = m,(0) =0, ms(c0) = (ab) ln<b é c) and
m,(00) = a. Here my(co) is greater than a showing the presence of an imperfect

debugging efficiency.

3.4.2 General Imperfect Software Debugging Model with
S-Shaped FDR

Pham et al. [14] first proposed the general solution for the differential equation
(3.3.5) describing Ohba and Chou [6] model. General solution of Eq. (3.3.5) is

t
mo(1) = (e_ fm”“”‘f”) mo + / a(0)b(r)e o "4 4t (3.4.5)
10
where my = m(ty), ty is the time point when testing starts.

The model is analyzed for linear fault content function and non-decreasing
s-shaped fault detection rate per remaining fault.

a(t) =a(0)(1+ o) and b(r) = m (3.4.6)

a(0), b(0) are defined as initial fault content and initial per fault visibility. Mean
value function of the SRGM under the initial condition m(0) = 0 is

a(0)(1 o - 1+p8)t
) =15 oo (i) ) G40

Later Pham [15] analyzed this model with
a(t) =ae” or a(t)=k+a(l —e™)
and

b

PO = T e

(3.4.8)
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Following are the mean value function for the SRGM obtained with these fault
content functions.

ab e(b+c)t -1
m(t) = TH(W) (3.4.9)
m(t) = %ﬁf’”((k +a)(1—e ™) — ﬁ(e’“’ — e’b’)) (3.4.10)

Kapur et al. [16] investigated the effect of imperfect debugging for the various
forms of fault generation function (a(¢)) on Yamada et al. [17] delayed S-shaped
model. They also incorporated the learning phenomenon in these models.

3.4.3 Delayed Removal Process Modeling Under Imperfect
Debugging Environment

Kapur et al. [16] defined delayed s-shaped Yamada et al. [17] model in the
imperfect debugging environment using two forms of fault content function.

Assuming that fault generation rate at any time ¢ is proportional to the fault
removal rate at that time i.e. a(f) = a + omn(r) in Yamada et al. [17] model, mean
value function of the failure and fault removal phenomena are obtained as

my(t) =

a 1 + \/& —b(1— 1— \/& _
14—V b=V - = Vb4V 4.11
(1 - oc) ( Ty 2 ¢ (3.4.10)

and

R s Vo b(—vay L= Vo —b(1+y/)t
(1) = (1 _a) (1 L i N (3.4.12)

On the other hand if a linear function of testing time is used to describe the fault
content, then mean value functions for failure and fault removal phenomena are
given as

my (1) = a((l f%)(l — e ) +fxt) (3.4.13)
and
me(t) =a(l— (1+bt)e™™ —2(a/b)(1 — ™) + at(1 + ")) (3.4.14)

Authors have also incorporated the learning phenomenon in this model. The
removal phenomenon in the presence of learning is defined as

%m,(f) - 1_;lje_m(mf(t) — my (1)) (3.4.15)
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with logistic per fault removal rate, the mean value function for the removal
phenomenon instead of (3.4.11) is given as

a
1 — et

Authors have defined these models for different fault detection and removal
rates.

Kapur et al. [16] also proposed an alternative derivation of delayed s-shaped
Yamada et al. [17] (see Sect. 2.2.3) model to obtain it in single stage, assuming

m,(1) = (1 — (1 +bt)e™™ —2(a/b)(1 — ™) + ar(1 + 7)) (3.4.16)

dm(r) b*t
P b(t)[a—m(r)] where b(t) = T b

(3.4.17)

mean value function of Yamada et al. [17] model can be obtained. The b(¢) in
(3.4.14) can be considered as a learning fault detection rate.

The model is redefined, considering error generation for different fault content
functions i.e.

dm(t)
0 — ) fa(t) = m(o)

If a(t) = a + am(t) the mean value function of the SRGM is

m(r) = (IL) (1-a+ bz)“‘e’b(l’“”) (3.4.18)

and if a(f) = a(l + at), mean value function of the SRGM is [18]

1+br\  ao(l+ bt) e —|—bt)’+' 1
m(t):a(l—i—oct— o )— beb ( (14 b1) —I—Z CESNIES)

i=

(3.4.19)

All s-shaped models that have logistic fault removal rates are also flexible since
when the parameter § = 0, the SRGM reduces to an exponential type.

3.5 Integrated Imperfect Debugging SRGM

The SRGM discussed in the previous sections incorporates the effect of only one
type of imperfect debugging, either imperfect fault removal or fault generation.
The fact that both types of imperfect debugging may occurs simultaneously cannot
be ignored. On a fault removal occasion, a debugger can both repair the fault
incorrectly as well as introduce a new fault. As SRGM considers only imperfect
fault removal may give an estimate that the number of faults removed in the total
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testing time equals the initial fault content ignoring the generation of faults during
debugging. Hence an optimistic estimate of reliability will be obtained. On the
other hand if only error generation is considered, more than one failure can cor-
respond to a single fault, resulting in more failures than removals. An estimate of
reliability based on failure observation may again be optimistic. It means even if
we are incorporating the effect of one type of imperfect debugging ignoring the
other type we may get an optimistic estimate of reliability. In order to obtain a
more accurate estimate of reliability, one must integrate the effect of the two types
of imperfect debugging simultaneously in the software reliability growth model-
ing. Few attempts have been made in the literature for developing comprehensive
models incorporating the two types. We describe these models in this section of
the chapter.

3.5.1 Testing Efficiency Model

Zhang et al. [8] integrated the effect of two types of imperfect debugging by
simultaneously considering the assumption of Kapur and Garg [4] pure imperfect
fault repair model and Ohba and Chou [6] fault generation SRGM. Assuming a
constant fault generation rate o, proportional to the failure intensity and constant
probability of perfectly debugging p, the model is defined as

d

() = b(0)(a(t) — pm() (35.1)

where a(f) = a + am(t) and b(t) = (UH;T“))

Mean value function of the failure phenomenon under the initial condition

m(0) =0 is
a (1+ ﬁ)e—bt (c/b)(p—)
m(t) == oc(l — ( T+ pe ) (3.5.2)

In the above model Zhang et al. [8] assumed that the fault generation rate is
proportional to the failure intensity in the presence of the possibility of imperfectly
removing a fault. However in practice a fault is generated while removing some
fault and existence of a generated fault is known, when original fault is removed
perfectly and the same test case that has caused the failure is executed to test the
corrected code. On the execution of this test case some other kind of failure is
observed. Therefore the fault generation rate should be defined proportional to the
rate of fault removal. The number of failures is not the same as the number of
removals if we assume that the debugging team may not be able to repair a fault
perfectly. The same fault may manifest on testing the corrected code for the same
input on imperfect removal. Testing efficiency model due to Kapur et al. [1]
corrected this ambiguity in modeling the two types of imperfect debugging.
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3.5.2 Integrated Exponential and Flexible Testing Efficiency
Models

An generalized integrated testing efficiency model considering two types of
imperfect debugging is proposed by Kapur et al. [1]. Assuming that fault removal
rate per additional fault removed is reduced by the probability of perfect debug-
ging and a constant proportion of removed faults are generated while removal, the
general differential equation describing the failure and removal phenomenon is
given by

& mo(e) = pb(0)lale) — mi(0) (353)
%a(r) = a(t) -%m,(t) (3.5.4)
om0 = b(0)la(t) — pry (1) (355)
Equations (3.5.3) and (3.5.5) establishes the relation
m,(t) = pmyg(1) (3.5.6)

Under the initial condition m,(0) = 0 and a(0) = 0 mean value function of the
removal phenomenon can be obtained from the following equation:

t
mr(t) _ efpf(lfaz(u))b(u)du ap/b(x)efpf(lfoc(x))b(x)dx dx (357)
0

and the failure phenomenon can be described using (3.4.6) and (3.4.7). For the
different forms of fault detection and removal rates per fault and error generation
functions, distinct integrated imperfect debugging SRGM can be obtained for the
perfect debugging model. Few special cases of the model have been analyzed by
the authors.

If a constant fault detection, removal and error generation rate describes the
failure and removal processes and error generation i.e. b(f) = b and a(f) = «, an
imperfect debugging model is obtained for GO model [19], given as

m, (1) = (a/ (1 — a))(1 — e™r01=) (3.5.8)

In order to incorporate the efficiency of testing and debugging teams learning
forms of b(t) are used i.e.

b bt

b(r) = TFpem and b(t) = T bt

with a(t) = a + am,(1).
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Now the mean value function of the removal processes corresponding to the
two learning functions are given as

a e bt p(1-0)
mo (1) = [1— (&> ] (3.5.9)

1+ pe?

and

_a
T 1l-u

m, (t) [1 1+ bt)f’“*“)e—”f’“—“)’} (3.5.10)

The mean value function of the failure phenomena are derived from the relation
pmft) = m(1).

It may be noted here that for (3.5.9), m,(o0) = a/(1 — o) and myc0) = a/
(p(1 — o)) whereas in Zhang’s testing efficiency model m(c0) = a/(p — ), which
implies that if testing is carried out for an infinite time more faults are removed as
compared to the initial fault content because there are some errors added to the
software due to error generation. The total number of generated faults by time
infinity as given by Kapur et al. model is a(t = ) — a = (an)/(1 — «) whereas
for Zhang’s model it is (a(l — p + a))/(p — «). It is important to note that
imperfect repair of faults results in more number of failures than removals and has
no contribution to increasing the fault content. Whereas, the result of Zhang’s
models yields the total number of generated errors as a function of both p and o.

Kumar et al. [20] integrated the concept of delayed fault removal process in
their generalized two type imperfect debugging model. Such a comprehensive
model can prove to be very useful in real life applications as it does not make
simplistic assumptions on many distinct aspects. The effect of imperfect debug-
ging, learning phenomenon and delayed removal process are considered simulta-
neously. The removal processes in hard and complex faults of fault complexity
model discussed in Sect. 2.2.3 is first obtained directly prior to the failure process
definition by alternatively deriving the model in one stage. It can be noted here that
models for hard and complex faults consider the time delay between failure
observation and removal. This is done to first define the removal process in the
presence of imperfect debugging and then obtain the failure process using
Eq. (3.5.6).

The removal process for two stage SRGM [20] (observation and removal)
considering learning and imperfect debugging is obtained using

1 1
b(t):b[1+ﬁebf_1+ﬁ+bt} (3.5.11)

The differential equation (3.5.3) with a(¥) = a + « m,(¢) using above fault
detection rate yields

a b\ P11~
(1) = ll_(ﬂtixgt > 1 (3.5.12)
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Similarly the removal process for three stage SRGM (observation, isolation and
removal) considering learning and imperfect debugging is obtained using
1 1+ bt
b(r) = b _ (1 +br)
L+ pe (14 p+bt+ (b°2)2))

The differential equation (3.5.3) with a(f) = a + « m,(¢) using above fault
detection rate yields

a 2.2 b\ P12
m,(z)zl_al1_ <(1+ﬁ+1b’++ﬁ(ebbi /2) ) ] (3.5.14)

(3.5.13)

These models can also be used to define the fault complexity. Superimposing
the mean value functions (3.5.8), (3.5.12) and (3.5.14) we obtain an SRGM
defining fault complexity, delayed removal process, effect imperfect debugging
and learning phenomenon simultaneously.

3.6 Test Effort Based Imperfect Debugging Software Reliability
Growth Models

In Chap. 2 we explained the importance of testing resource consideration in
software reliability growth modeling. Several SRGM under perfect debugging
environment were discussed there. An SRGM defined with respect to testing effort
function, incorporating effect of imperfect debugging becomes more meaningful in
terms of the useful information it can provide.

3.6.1 Pure Imperfect Fault Debugging Model

Kapur et al. [10] defined an s-shaped imperfect debugging model based on test
efforts. The model is defined as

d

Emr(t)/w(t) =b(a—m (1)) —cp(t)(a — m,(1)) (3.6.1)

solution of the above model is given as

b—c)(1 — e bWO-W(0)
() — a[ L= = )
(b — ¢) 4 cebW(H)-W(0)

(3.6.2)

It can be noted here that if W(0) = 0 and a Weibull type test effort function i.e.
W) = a(1 — e( — ff™)) is used to describe the distribution of test effort, then we
have m,(0) =0 and m,(c0) = a[((b—c)(1 — e "*))/((b — c) + ce™")] which
implies that even if software, is tested for a long time, some fault will remain in the
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software, which is contradictory to the imperfect debugging model with respect to
time [13], which gives m,(c0) = a, i.e. all faults can be eliminated in infinite
testing time. Such an optimistic forecast interferes the purpose of an imperfect
debugging model. This analysis clearly illustrates the benefit of formulating
imperfect debugging models with respect to test efforts. These models can depict
more accurate utilization of test resources as well as reliability prediction at the
time of software release.

3.6.2 Pure Error Generation Model

Huang et al. [21] studied the test effort based pure fault generation SRGM. They
formulated Ohba and Chao [6] model with test efforts.
The differential equation for the model is described as

)/ w0) = blatt) () (3:63)

Using the fault content function a(f) = a + am,(t), mean value function of the
SRGM is defined as

m,(f) = (a/(1 — 2))(1 — e PI=0WO-W(O)y (3.6.4)

3.6.3 Integrated Imperfect Debugging Models

Kapur et al. [1] generalized integrated testing efficiency model proved to be very
useful in terms of analyzing various existing perfect debugging and new models
under imperfect debugging environment. Looking at the usefulness of this gen-
eralization, Kapur et al. [22] reformulated the model based on testing efforts to
obtain more accurate and useful results. The generalized differential equation
describing the failure and removal phenomenon are given by

o)/ wlt) = ph(fatt) =m0 (3.6.5)
%Mﬂ:a@-%mﬁ) (3.6.6)
o)/ w(0) = b0la() = py 1) (3:6.)

Here again Eqgs. (3.6.3) and (3.6.5) establishes the relationship

m,(t) = pmy (1) (3.6.8)
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Again defining the different forms of fault detection and removal rates per faults
and fault content functions, different SRGM are derived with respect to the test
effort function. This is left as an exercise for the readers to obtain test effort based
models corresponding to the models discussed in Sect. 3.5.2.

The generalization (3.6.5) cannot be used to obtain integrated test effort based
imperfect debugging SRGM considering learning phenomenon. In this case the
fault detection/removal rate per additional fault needs to be redefined. Learning
phenomenon of testing time is directly related to test efforts. Use of sound engi-
neering principles, sophisticated tools and techniques, etc. can bring more learn-
ing. It calls for defining the learning function as a function of test efforts. Kapur
et al. [22] carried a separate analysis for incorporating learning in test effort based
imperfect debugging SRGM. They described the differential equation for the
SRGM as

dm(t) dm(r) dW(r)

dr :dW(t) dr (369)

which can be defined as “the failure intensity during testing time # is the product of
the failure intensity with respect to the test efforts and instantaneous test effort
rate”. Eq. (3.6.9) is expanded as

LA _ po(w (o) a(e) — m(0) (3.6.10)
where
b(W(1)) = W and  a(r) = (a + oam(7)) (3.6.11)

Solving above equation under the initial condition m(0) = 0 and W(0) = 0 we

get
_a | (g0 " 3.6.12
mr(t)_l—oc _<1— + fe? ”(’)> (36.12)

The mean value function of cumulated number of failures up to time ¢ can be
computed from the relationship mAz) = m(¢)/p.

3.7 Reliability Analysis Under Imperfect Debugging
Environment During Field Use

The reliability growth models discussed up to now are all applicable to the testing
phase. We discussed the necessity of analyzing the operational reliability growth
separately from the testing phase reliability growth in the previous chapters. The
testing environment is usually very different from the operational environment.
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In the testing phase, detection of a failure on the execution of a test case means a
success, since the testing is aimed at detecting and correcting most of the faults
lying in the software prior to release. But we know that software cannot be tested
exhaustively before release due to constraints on time and cost. After a certain
period of testing it is observed that any attempt to increase the reliability, results in
exponential delay in the software release time and increase in cost. Hence testing is
terminated at the time point when desired level of reliability is achieved as
determined by some optimization routine, etc. and software is released for oper-
ational use. This is the reason, why we often hear about failures in operational-
phase. The situation that occurs on detection of failures in the operational phase is
not same as that in testing phase. The debugging activities cannot be started
immediately. During field use, detection of a failure is a burden for the developers
in terms of cost as well as goodwill loses. If a failure occurs in user environment, it
is reported to the developer. The developer decides the amount of time and effort
to be spent on removing the reported fault and testing the corrected code
depending on the criticality and the urgency of the reported fault and agreement
with the user, etc. [23]. Depending on the established strategy, a trouble ticket is
created and assigned to some debuggers for analysis and code modification (i.e.
fault removal) if the removal is not deferred. Firstly the code is tested for that
failure and the fault is isolated and then removed. A perfect removal of fault in
operational phase means reliability growth even during the field use. On account of
the above discussion the SRGM developed for testing phase cannot be used as it is
to predict the reliability growth during field use.

Now it is not unusual for a fault to occur multiple times in the field before it can
be removed perfectly. Along with it some new faults can also be generated during
these removals. Pham [24] mentioned that 22% of the faults are detected and 5%
faults are generated during the operational phase. This implies that effect of both
types of imperfect debugging may exist even during the field use. We have no
doubt, as in case of testing phase, that selection of a perfect debugging SRGM for
reliability estimation in operational phase will yield optimistic estimate. Hence an
SRGM which incorporates the effect of testing efficiency should be a more judi-
cious choice for practical applications even during field use. Only few imperfect
debugging SRGM have been proposed in literature for operational reliability
analysis.

3.7.1 A Pure Imperfect Fault Repair Model for Operational Phase

Jeske et al. [25] analyzed operation reliability growth relating probability of
perfect debugging p, to the average time to remove a detected fault perfectly. They
assumed that the expected time to remove a fault is u times unit, i.e. ny system
time unit (assuming there are n systems in the field). The expected number of
occurrences before it can be removed perfectly is nub, therefore
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1
I;: 1+ nub (3.7.1)

substituting (3.7.1) in (3.3.4) we obtain the mean value function of the pure
imperfect fault repair model, i.e.

ny@)::<§>(1—e@s::a(1+num(1—e—“rmﬁ) (3.7.2)

The authors claimed that the parameters a, b can be estimated from the failure
data, while an estimate of u is often known through experience with previous
releases or some other software product. To account the mismatch between testing
and operational environment, the estimate of b for the operational phase can be
calculated using calibration factor approach, as the system test based estimate of
b is usually very large due to the reason the test environment is set to expose
maximum faults in shortest times.

The authors also proposed to account the reliability growth, accounting the
fixed deferral of removal during operational phase. They distinguished the fault
into two categories, first- faults are those removed from the current release, Type-
F, contributing to reliability growth and second, fault whose removals are deferred
to the future releases, Type-D, contributing to a constant component of overall
software failure rate. The overall software failure rate is thus the sum of a
decreasing and a constant failure rate. With software maturity in the field, the
constant component will begin to dominate. On the other hand if all observed fault
are removed in the field use, constant component would be zero. If 1y is the
constant failure rate due to type-D faults, the failure intensity during operational
phase would be given as

At) = Go + mi(1) = o + Ap(t) = abel " (mm)) (3.7.3)

The parameters p, b, and a of 1x(¢) are the one associated with type-F faults.

3.7.2 An Integrated Imperfect Debugging SRGM for
Operational Phase

Kapur et al. [22] extended their integrated testing efficiency model for testing
phase (Egs. (3.6.8) and (3.6.12)) to the operational phase replacing the test effort
function by the usage function. Assuming

1. The number of failures during operation phase is dependent upon the usage
function.

2. Usage function is a function of time and depends on the number of executions
of the software in field.
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To define appropriate usage functions, they classified the software into two
categories namely

e Project type software, and
® Product type software

as already described in Chap. 2. During the testing phase, the type of software
under testing does not affect the reliability growth since in this phase the testing
environment or resource consumption does not depend on the software type.
However, the type of software under consideration influences the reliability growth
during the operational phase. More often some functions (major functionality of
the software) are executed more frequently than others in the project type software.
However the usage is limited to a particular user environment. On the other hand
product type software are owned by a number of users executing it under different
user environments. One user of product type software may use one function more
frequently while other may use some other function, mostly depending on their
need. These differences in the usage of the two types of software generate the need
of defining distinct usage function for each type. However in literature no dis-
tinction is made between the two types of software. The models due to Kenny [24]
and Kapur et al. [25] address the product type software (see Sect. 2.4)

3.7.2.1 Usage Function for Project Type Software

Project type software is owned by a specific organization for their specific use. In
an organization many users may be accessing it either at a single location or at
different locations. An exponential function is proposed to model the usage
function for such software.

W(t)=r+s(l—e) (3.7.4)

where r represent the initial usage of the software when it is implemented in the
user environment. As the time progresses the usage of software grows within the
organization until it reaches the saturation level (time of update) » + s. Although
some other functional form can also be used depending upon the user environment,
number of people accessing the software and the usage of the software at each
terminal, etc.

3.7.2.2 Usage Function for Product Type Software

Product type software is developed for a specific application according to the need
of the software consumers in the market. Many different customers may buy a
licensed copy of the software. One licensed copy of the software might be used by
many users. For example an educational institution may buy software and many
students’ and\or faculty members might be using it. Number of executions of
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product type software depends on the total number of user of the software and their
usage intensity. Although commercial software products are in the market since
years, identifying the target customers with certainty is impossible. Product soft-
ware comes in the category of technological products and as such behaves as a
new product or an innovative product when released in the market.

Kapur et al. [25] used Bass model of innovation diffusion [26] in marketing, for
predicting the successive growth in the number of adopters of the dynamic market
of software products over its life cycle. The model can adequately describe the
users growth in terms of the factors stated above but it is slightly modified to
describe the software usage appropriately. Adopters (or users) of software report a
failure caused by some fault remaining in the software, to the developer. Once the
number of users of the software is known, the rate at which the software is
executed can be estimated.

For applying the Bass model it is assumed that there exists a finite population of
prospective users who with time increasingly become actual users of the software
(no distinction is made between users and purchasers as the Bass model has been
successfully applied to describe growth in the number of both of them). In each
period there will be both innovators and imitators using the software product.
However as the process continues, the relative number of innovators will diminish
monotonically with time. Imitators are however influenced by the number of
previous buyers and increase relative to the number of innovators as the process
continues.

The Bass model in terms of adoption distribution is given as

1 — ¢~ (pta)

T e

(3.7.3)

Shape of the resulting sales curve depends on the relative rate of these two
sections of adopters—innovators and imitators. If software product is successful,
the coefficient of imitation is likely to exceed the coefficient of innovation i.e.
p < g. On the other hand, if p > ¢, the sales curve will fall continuously.

If N denotes upper limit of the number of licensed buyers of the software and y
is the average number of users within each user environment, then the total number
of users of the software by time ¢ is given as

S(t) = NyF(t) = mF(t) where m = Ny (3.7.6)

Givon et al. [27] have used the modified version of the above model to estimate
the number of licensed users as well as users of pirated copies of the software. It
can be reasonably assumed that only the licensed-copy holders would report the
failures, and hence Eq. (3.7.6) can be used to find the expected number of users at
any time during the life cycle of the software. If the new software is expected to go
through the same history as some previous software (very likely for different
versions of the same software) the parameters of earlier growth curve may be used
as an approximation.
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Using the expression for expected number of licensed users of software the rate
at which instructions in the software are executed can be estimated. Since the
usage function depends on the number of executions of the software, therefore it is
assumed that the usage function for product type software is a function of the total
number of users of the software. For simplicity, v, a constant average execution
rate is assumed for software usage within a user environment i.e.

W(t) = £(S(t)) = vS(t) (3.7.7)

Some other functional relationship can be used depending upon the user
environment and number of people assessing the software within a particular
licensed user environment.

3.8 Data Analysis and Parameter Estimation

The model discussed in this chapter describes the relationship between the failure
observation and/or fault removal process with respect to time or testing effort
expenditure in an imperfect debugging environment. For the pure error generation
models, when the delay in the removal process is assumed to be negligible the
failure process describes the removal process whereas for the pure imperfect fault
debugging models as well as integrated testing efficiency models, the number of
failures is more than the number of removals. For pure error generation models an
estimate of the detection process provides the estimate of the removal process. On
the other hand for the pure imperfect fault debugging models and integrated testing
efficiency models, first we fit the model equation for the detection process on the
collected failure data and using these estimates we estimate the expected number
of removals.

3.8.1 Application of Time Dependent SRGM

Failure Data Set

This data set is from Brooks and Motley [28]. The failure data set is for a radar
system of size 124 KLOC (Kilo Lines of Code) tested for 35 weeks in which 1,301
faults were detected.

The following models have been chosen for data analysis and parameter
estimation.

Model 1 (M1) Pure Imperfect Fault Debugging Model [4]

m(t) = a(l — ™) and my(s) = (a/p)(1 — ")
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Model 2 (M2) Pure Error Generation Model [6]
m(t) = (a/1 — o)(1 — e 2021
Model 3 (M3) Pure Error Generation Model [9]

ab

m(t) _ = b(eoét _ e—bt)

Model 4 (M4) Pure Error Generation Model [9]

m(t) = a(l — e_b’)<l —%) + aat

Model 5 (M5) General Imperfect-Software-Debugging Model with S-Shaped FDR
(PNZ model) [14]

a(0)(1 OV 148)
) = et () 0 )

Model 6 (M6) PNZ model with Alternative Fault Content Function Pham [15]

1
m(l) _ W (efott _ efbt)>

Model 7 (M7) Delayed S-shaped Pure Error Generation Model [16]
m(t) = ( a )(1 — (1 +bt)“‘“e_b('_“>’)

1 —o

a

(ka1 —e -

Model 8§ (M8) Testing Efficiency Model [8]

_a (1+ ﬁ)g—bt (c/b)(p—2)
mir) _p—a((l a ( 1+ et )

Model 9 (M9) Integrated Exponential Testing Efficiency Model [19]

m.(t) = (a/1 — o) (1 — e 140 and  pme(r) = m, (1)
Model 10 (M10) Integrated Flexible Testing Efficiency Model Kapur et al. [1]

a e b p(1-0)
(1) = - _“[1 _ (%) ] and  pmy() = m, (1)

Model 11 (M11) Integrated S-shaped Testing Efficiency Model [20]

my (1) = < - (1= (U b)) and - pmg(e) = m (1)
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Model 12 (M12) Integrated Flexible Testing Efficiency Model with Different FDR
[20]

a bt p(1—a)
(1) = P—(“ﬁﬁgﬂ ) ]am prg(t) = my (1)

Model 13 (M13) Another Integrated Flexible Testing Efficiency Model with Dif-
ferent FDR [20]

a 2. ot p(1-0)
mo(t) = ab—(“+ﬁ+“+“’”” ) ] and pry(6) = m, (1)

- 1+ fet

The unknown parameters of all these models have been estimated using the
regression module of SPSS. The values of estimated parameters have been tabu-
lated in Table 3.1. Figures 3.2 and 3.3 show the goodness of fit curves for the
estimation results tabulated in Table 3.1 and future predictions for exponential and
s-shaped or flexile SRGM respectively.

The graphical plot of observed actual data depicts the s-shaped growth in the
data. The models chosen for data analysis are exponential as well as s-shaped or
flexible models. Models M1-M4 and M9 are all exponential. The data analysis
results support the fact that an exponential model cannot be chosen to describe the
testing process and reliability growth for this data set. The calculated value of
mean square errors is very high for these models as compared to the s-shaped and
flexible models. On the other hand models M5-M7 are flexible or s-shaped, but
MSE value for these models is also high. The common characteristic of these
models is that all of them are pure error generation models. This result suggests
that pure error generation models are also not preferable for the analysis of this

Table 3.1 Estimation result for model 1 to model 13

Model  Estimated parameters Comparison criteria
a b p o B ok MSE R?

Ml 8,155  0.0055 0.9000 - - - 9,766.90 0.9580
M2 9,201  0.0049 - 0.0500 - - 9,762.67 0.9580
M3 2,128  0.0217 - 0.0125 - - 10,218.82 0.9650
M4 1,248  0.0351 - 0.0317 - - 9,916.57 0.9570
M5 919 0.0170 - 0.0000  1.61 - 8,969.44 0.9640
M6 1,976 09120 - 0.0370  78.00  34.12 6,430.64 0.9820
M7 1,680  0.0899 - 0.0001 - - 2,967.68 0.9870
M3 1,239 0.1650 09580  0.0030 3024 0.38 145.75 0.9990
M9 7,938  0.0060 0.9000 0.0790 - - 12,600.62 0.9580
MI10 1,290 02030 09600  0.0230 1991 - 249.53 0.9990
Ml1 1,596 0.0931 09745 0.0363 - - 3,116.99 0.9870
MI12 1,325  0.1760 09970  0.0250  7.43 - 764.06 0.9970

M13 1,361 0.1840 09890  0.0200  1.41 - 1,290.49 0.9950
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data set. In general the integrated testing efficiency models M8-M13, excluding
M9 (due to exponential nature) and M11 has fitted well for the actual data. Model
MBS seems to be the best fit model for the data set. However due to the formulation
inconsistency in the model it cannot be chosen for estimating the failure and
removal phenomena and predicting the system reliability. The next best fit model
is M10 (Kapur et al. [1] integrated testing efficiency model) with MSE value close
to M8 and similar R values. Our analysis suggest that these models can be chosen
for predicting the future failure/removal phenomena and reliability for the software
project whose data set is been taken for the analysis.

The estimation result of the models M10 depict that the testing efficiency is
96% and the error generation rate is 2.3%. The value 19.91 for the shape parameter
[ implies the high s-shapedness of the actual data due to the fact that initially the
failure observation phenomena picked very fast in the beginning then it increased
at a low rate and later the rate of increase started increasing at a higher rate. It is
estimated that a total of 1,308 faults are observed in the 35 months time and out of
the1,308 observed faults 1,295 were removed successfully in the same time period.
Further predictive ability of the model can be established by conducting the pre-
dictive validity test. Establishing predictive ability of this model is left as an
exercise for the readers.
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3.8.2 An Application for Integrated Test Effort Based Testing
Efficiency SRGM

We have seen in the above analysis that flexible integrated testing efficiency has
provided that best fit on the data set taken for the analysis. This result is true in
general as whether the observed data is exponential or s-shaped, an appropriate
growth curve is captured by data analysis due to the presence of shape parameter
(f in this case). This parameter takes a value either zero or approximately zero
when shape of the growth of collected data is exponential or otherwise it takes a
positive value with magnitude according to the s-shapedness of the growth curve.
On the other hand the magnitude of testing efficiency is captured by the testing
efficiency parameters. For a highly efficient testing, efficiency the parameter
p takes value near to 1 and « takes value near to zero and vice versa. Hence all
types of situations are well captured by flexible testing efficiency models. Now we
show the parameter estimation and model validation of a flexible integrated testing
efficiency SRGM with respect to the testing efforts.

Failure Data Set

This failure data set is for a command, control and communication system cited
in Brooks and Motley [30]. The software was tested for 12 months and 2,657
faults were identified during this period. The following model is taken for the
analysis

Model 14 (M14) Integrated Imperfect Debugging Test Effort based Model [22]

(P P
1+ ﬁe*bWO)
First we have fitted four test effort functions exponential, Rayleigh, Weibull and
logistic on the observed test effort data and then using the best fit function the
parameters of the SRGM are estimated. The estimation results with the compar-

ison criteria values of test effort function are given in Table 3.2. The values of
estimated parameters for the SRGM have been tabulated in Table 3.3. The

Table 3.2 Estimation results for testing effort functions

Test effort function Estimated parameters Comparison criteria

a v of MSE R?
Exponential 35,237 0.0297 - 15,443.51 0.999
Rayleigh 10,153 0.0491 - 497,788.67 0.953
Weibull 11,714 0.3488 8.773 34,637.04 0.997

Logistic 33,524 0.0313 1.002 17,426.71 0.998
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Table 3.3 Estimation results of SRGM for testing phase with exponential effort function

Estimated parameters model 14 Comparison criteria
a B B P o MSE R’
3,322 0.000141 0.06468 0.9020 0.000115 1,615.22 0.998
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goodness of fit curves for the estimation results of test effort functions and SRGM
are shown in Figs. 3.4 and 3.5 respectively.

3.8.3 An Application for Integrated Operational Phase Testing
Efficiency SRGM

In this chapter we have also discussed integrated testing efficiency SRGM appli-
cable for predicting software failure and fault removal phenomena and measuring
the reliability for the operational phase. Two types of SRGM have been discussed,
one developed for the project type software and the other for the product type
software. Now we establish the validity of these SRGM.
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3.8.3.1 Data Analysis of SRGM for Project Type Software
Failure Data Set

This failure data is for Real time system collected for operational phase cited in
Musa [31]. This is an interval domain data available for 192 days during which 37
faults were identified.

Model 15 (M15) In model 14 the test effort function is replaced by a usage
function. Usage Function for Project Type Software

Wit)=r+s(1—e)

Substituting the usage function in the model, equation parameters of the mean
value function for the SRGM in operational phase for project type software are
estimated. The estimation results are tabulated in Table 3.4. The Fitting of the
model is illustrated graphically in Fig. 3.6. Further the data is truncated into dif-
ferent proportions and is used to estimate the parameters of the SRGM. For each
truncation, we have computed the relative prediction error. The Predictive validity
test results are shown in Table 3.5. Figure 3.7 shows the graphical plot of relative
prediction error.

It is observed that the predictive validity of the model varies from one trun-
cation to another. Even 85% of data is sufficient to predict the future failure
behavior well with RPE as low as —10.21% for this SRGM.

Table 3.4 Estimation results of SRGM for operational phase for project type software

Estimated parameters model M15 Comparison criteria
a b p p o r s c MSE R?

37 0.04575 71267 09  0.001 0.1 156 0.01361 2.59 0.9880
Fig. 3.6 Goodness of fit 40 - — -~ - - Actual Failure Data

curve for model M15 ———— Estimated Failures Model 15

Cumulative Failures

&) ® O 11 N QP 0% 922 a2
Time (days)
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Table 3.5 Predictive Data truncation (%)  m, (192)  RPE RPE (%)
analysis results for model
Mi15 100 36.53 —0.0127 —1.27
95 34.69 —0.0624 —6.24
90 33.66 —0.0903 —9.03
85 33.22 —0.1021 —10.21
80 32.82 —0.1131 —11.31
70 32.82 —0.1131 —11.31
60 31.64 —0.1447 —14.47
Fig. 3.7 Relative prediction 0 T T T T T T 1
error for the predictive 100 95 90 85 80 70 60
validity test of model M15 5
L5 -0.04 -
c —— RPE
=}
s
g -0.08 A
o
o
=
3 -0.12
]
o
-0.16

Data Truncation

3.8.3.2 Data Analysis of SRGM for Product Type Software

Failure Data Set

This failure data is for an operating system collected for operational phase cited in
Musa [31]. The interval domain data is available for 148 day during which 112
faults were identified.

Model 16 (M16) Usage Function for Product Type Software

1 — e~ ta)

W(t) = v
O alpe

Substituting the usage function in the model, equation parameters of the mean
value function for the SRGM in operational phase for product type software are

Table 3.6 Estimation results of SRGM in operational phase for product type software

Estimated parameters model M15 Comparison criteria

a b p P o m r s v MSE R?
142.88 0.0294 7.218 0.9537 0.0466 8.28 0.0081 0.0064 16.5 25.14 0.9925
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Table 3.7 Predictive Data truncation (%)  m, (148)  RPE RPE (%)
analysis results for model
M16 100 112.60 0.0053 0.535
95 106.52 —0.0490 —4.896
90 105.41 —0.0588 —5.882
85 97.48 —0.1297 —12.968
80 93.92 —0.1614 —16.143
70 89.94 —0.1970 —19.699
60 91.64 —0.1818 —18.179
Fig. 3.9 Relative prediction 0.05 -
error for the predictive 5
validity test of model M16 E 000 —4< , , , , , ,
w 100%\_95% 90% 85% 80% 70% 60%
S 005
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5 -0.10
o
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s
S 020 ~— RPE
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Data Truncation

estimated. The estimation results are tabulated in Table 3.6. The Fitting of the
model is illustrated graphically in Fig. 3.8. Further we have carriedout predictive
validity analysis on the collected data, truncating collected data into different
proportions. For each truncation the relative prediction error is computed. The
results are tabulated in Table 3.7. Figure 3.9 shows the graphical plot of relative
prediction error.
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Predictive validity results implies that at least 90% of observed data is required

to predict the future failure behavior well with RPE —5.882% for this model on this
data. For 85% of data, the RPE is —12.97%.

Exercises

1.

2.

What is imperfect debugging? What types of imperfect debugging can be occur
while testing the software?

A test case is executed during the testing of software in the testing phase. The
execution of test case resulted in a failure, indicating the presence of some fault
on some path of the module which is executed on the test run. The software
debuggers identified the fault and attempted to correct it. What would be the
fault count of the software after the fault correction attempt?

. The failure phenomenon of a pure error generation type SRGM is described as

dm(r)
0 _ () fa(t) ~ m(o)

If the failure rate b(t) = b and a(t) = a + K(1 — e_G’), obtain the mean value
function of the SRGM.

. The mean value function of the removal phenomenon of integrated imperfect

debugging SRGM is given by
my(£) = o [ (1=2()b ) du [ap /lb(x)epf(la(x))b(x)dx dx
0
If b(r) = (”—2’) and o(f) = o then

1+bt

() = {1 = (1 by

. Show that m,(t) = pms(t) if Sm.(t) = pb(t)[a(t) —m,(1)] and Smy(r) =

b(1)[a(t) — pmy (1)), v

. Obtain the mean value function of the exponential test effort based integrated

imperfect debugging SRGM if the fault content function is given as
a(t) = a + am(1).

. A model developed to describe the reliability growth of software during testing

phase, fails in adequately describing the reliability growth during the field
usage. Comment.

. Suppose the usage function of project type software can also be described by

W) =r+ s, where r, s and k are constant. Determine the unknown
parameters of the SRGM for project type software in operational phase using
usage function specified above and compare the result on mean square error
with the results of Sect. 3.8.3.
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Chapter 4

Testing-Coverage and Testing-Domain
Models

4.1 Introduction

Software development is a very complex and dynamic process. Every phase of
software development can be further divided into a number of sub-phases, where
each sub-phase has its own contribution to the software development process. Lot
many activities are involved in each phase/sub-phase. Detailed study of each
activity of this development process requires building an understanding of the
various associated philosophies, theories and concepts. Same is true for the soft-
ware testing phase and quality measurement. Reliability is considered as the key
characteristic of quality. Until now in the previous chapters we have seen that there
are various aspects which need to be considered during reliability assessment.
Along with those which have been discussed in the previous chapters, two char-
acteristics of reliability assessment which have not been discussed so far are—
Testing Coverage and Testing Domain Ratio. Both these characteristics play an
important role in reliability estimation and decision related to the testing and
operational phase. In this chapter, the concepts of testing coverage, testing domain
ratio and software reliability growth modeling incorporating these measures have
been discussed in detail.

4.1.1 An Introduction to Testing-Coverage

Planning software release schedule is a very crucial decision. Achieving a level of
quality forms the main basis for deciding the release schedules. The level of testing
required usually depends on the potential consequences of undetected bugs.
Besides testing efficiency, testing efforts, various other facts are incorporated
during reliability estimation such as fault complexity, debugging time lag etc.
There are many other factors that greatly influence the reliability growth. Among

P. K. Kapur et al., Software Reliability Assessment with OR Applications, 131
Springer Series in Reliability Engineering, DOI: 10.1007/978-0-85729-204-9_4,
© Springer-Verlag London Limited 2011
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all others, one factor that plays a critical role in reliability assessment is Testing
Coverage. There are various notions on the relationship between testing coverage
and reliability estimation. The most relevant is related to the role of test coverage
in developing more efficient test or in determining an effective and non-effective
test. There are various test methodologies which can be adopted to test a software
such as function testing, white box testing, data flow coverage, decision flow
coverage, mutation testing etc. To each testing method is associated a saturation
effect. An understanding of this saturation effect is key to the understanding of
importance of test coverage in reliability estimation. Saturation effect is defined as
the tendency of testing methods to limit their ability to expose faults in a program
under testing. After reaching this limit, continuing testing adopting the same
method may cause significant over or under estimation of reliability.

More precisely, most of the software reliability models used to assess the
reliability are either time based or effort based. These models use the failure
history obtained during testing to predict the field behavior of the software under
test, under the assumption that testing is performed in accordance with the given
operational profile. Two main difficulties are associated with the use of these
models for practical application. First problem is related to the operational dis-
tribution. The test collection developed from a known operational profile may be
different from the one that would occur in practice. Otherwise the software may be
put to different operational profiles in field or it is also possible that the software is
completely a new and no known operational profile is obtainable. Second, when
software is tested using a collection of test cases, as the testing progresses, more
faults are detected and removed. Testing may be continued using similar collection
developed in accordance to some test methodology. If time between failures is the
only consideration in the reliability estimation, then sever drawback that can result
is over-estimation of reliability than actually achieved. Along with this, another
fact that may cause over estimation is that the test cases generated/executed in the
later phase of testing are less likely to cause the program to fail than those gen-
erated in the earlier phases developed for a known operational profile. This
problem can be solved if we can identify the redundant test efforts i.e. one needs to
determine which test case is redundant and how much test effort is actually desired
for effective testing and accurate reliability estimation.

Conclusively we can say that a less effective test strategy may at many times
prove to be less efficient in finding defects with the same amount of test efforts put
with effective strategy. To ensure the quality and accurately estimate and predict
the reliability of software, it is necessary that it should be tested until all the
constructs in the programs achieve a desired level of coverage. In this context
Gokhale et al. [1] gave a unifying definition for testing coverage which accom-
modates all constructs of the system that are to be covered by the testing. Given a
software product and its companion test set, they defined testing coverage as “the
ratio of the number of potential fault sites sensitized by the test divided by the total
number of potential fault sites under consideration”. Test coverage analysis is a
structural testing technique that helps eliminate gaps in a test suite. It helps most in
the absence of a detailed, up-to-date requirements specification. The importance of
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investigating the effect of testing coverage for reliability measurement has been
established by several researchers. Empirical evidence strongly suggests that
Testing, which is carried out with some form of coverage measurement may fail to
sensitize as much as 45% of the code [1]. More rigorous testing is desired in
complex or more frequently called modules. The testing coverage measure can
directly be related to the code coverage achieved during test case execution.
Testing Coverage measure can assist in assuring the quality of test cases in such a
way that nearly 100% code can be covered thereby assuring the quality of the
software. Greater the level of code coverage higher the level of reliability
achieved. Software designers and testers must develop effective evaluation tools
capable of measuring test coverage and pointing out design deficiencies contrib-
uting to poor software testability. Such tools can also provide data which can lead
to improvement in quality and effectiveness of a software test. Software reliability
models that have been formulated based on testing time and coverage simulta-
neously can use this data for accurate reliability measurement.

Another importance of test coverage measure lies in the fact that it is important
for both software developer’s as well as users. It helps developers to evaluate the
quality of the tested software, determine the additional testing desired to achieve
the necessary reliability and adequately planning the release schedules. On the
other hand, it is a quantitative confidence criterion for the customer in taking the
decision to buy the product. After revealing the importance of testing coverage
measure in reliability measurement, we now give some definitions, related con-
cepts and methods of testing coverage measurement.

On the part of software testers, Test Coverage Analysis is the process of

Finding areas of a program not covered by a set of test cases
Creating additional test cases to increase coverage
Determining a quantitative measure of test coverage
Identifying redundant test cases that do not increase coverage

In general test coverage measure is defined as how well a test covers all the
potential fault sites in the software under test. Potential fault site here mean
program entities representing either structural or functional program elements
whose sensitization is reckoned essential towards establishing the operational
integrity of the software. A large variety of test coverage measures exist. Now we
give a brief description of some well-known coverage measures [2].

4.1.1.1 Statement Coverage

This is the most simple coverage measure and a number of open source products
exist that measure this level of coverage. It is defined as the fraction of the total
number of statements that have been executed by the test data i.e. this measure
reports whether each statement is executed or not. It is also known as line cov-
erage, segment coverage, and basic block coverage. The chief advantage of this
measure is that it can be applied directly to object code and does not require
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processing source code. However the measure is discouraged as it does not identify
bugs that arise from the control flow constructs in the source code, such as
compound conditions or consecutive switch labels as it does not check whether all
options in a branch have been covered and is completely insensitive to the logical
operators. This means that even if we can easily get 100% coverage, we may
encounter glaring, uncaught bugs.

4.1.1.2 Branch Coverage

The coverage, also called decision coverage, reports whether a test case has
explored both true and false outcomes of Boolean expressions in control structures.
It considers the entire Boolean expression as a single predicate, evaluating to true
or false, ignoring the branches within the expression which may occur due to
short-circuit logical operators. It contains coverage measures for switch-statement,
exception handlers etc. that are not included in statement coverage. The basic
metric of this measure is its simplicity without the problems of statement coverage.
A disadvantage is that this metric ignores branches within Boolean expressions
which occur due to short-circuit operators.

4.1.1.3 Condition Coverage

Condition coverage measures the sub-expressions occurring in a Boolean
expression independently of each other and reports the true and false outcome for
these, separated by logical-and and logical-or if they occur. It is similar to branch
coverage but has better sensitivity to the control flow. However, full condition
coverage does not guarantee full decision coverage. Another variant of this type is
multiple condition coverage which reports whether every possible combination of
Boolean sub-expressions occurs. The test cases required for full multiple condition
coverage of a condition are given by the logical operator truth table for the con-
dition, hence for this metric determining the minimum set of test cases required
can be tedious, especially for very complex Boolean expressions. A hybrid mea-
sure of this type is also called condition/decision coverage metric composed by the
union of condition coverage and decision coverage. It has the advantage of sim-
plicity but without the shortcomings of its component metrics.

4.1.1.4 Path Coverage

This measure is used for the most thorough testing of software. The metric reports
whether all possible paths in each function of the program have been followed. A
path is defined as a unique sequence of branches from the entry point to the exit of
a function. It is also known as predicate coverage, which views paths as possible
combinations of logical conditions. A large number of variations of this metric
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exists to cope with loops which may introduce unbounded number of paths, such
as considering only a limited number of looping possibilities. Path coverage has
two sever disadvantages. The first is that it needs a huge number of probes to
monitor all the paths in a program, which are exponential to the number of
branches. The second disadvantage is that many paths considered by it are
impossible to exercise due to relationships of data.

4.1.1.5 Data Flow Coverage

This measure is a variation of path coverage and considers only the sub-paths from
variable assignments to subsequent references of the variables. The advantage of
this measure is that the paths reported are pertinent to the manner in which the
program handles data. It also suffers from two disadvantages: the first is that it
does not include decision coverage and another is that it is very complex which
makes it difficult to implement.

4.1.1.6 Function Coverage

This metric report’s whether each function or procedure has been invoked. It is
useful during preliminary testing to assure at least some coverage in all areas of the
software. Broad, shallow testing finds gross deficiencies in a test suite quickly.

4.1.1.7 Call Coverage

Also known as pair coverage, this metric reports whether each function call is
executed. It is based on the hypothesis that bugs commonly occur in interfaces
between modules.

There are many other coverage measures used in practice depending on the
requirements of the testers such as object code branch coverage, loop coverage,
race coverage, relational operator coverage, table coverage, weak mutation cov-
erage, etc. Names of all these coverage measure’s are reflective of how the metric
computes the coverage.

4.1.2 An Introduction to Testing Domain

The concept of testing domain is closely related to testing coverage. We know the
aim of testing coverage analysis is to quantitatively, define whether all the con-
structs in the programs have been covered or not by the test executed to test the
software. Different types of coverage measures give measure of coverage with
respect to the different aspects of the software such as statement, branch, path etc.
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Fig. 4.1 A testing domain of
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On the other hand the testing domain is related to the domain of software influ-
enced by the test cases. The test cases executed on the software in the testing phase
are developed to influence the faults lying dormant in the various modules\func-
tions implemented in the software based on the requirement specifications. These
test cases indeed influence a set of testing paths of these modules and functions.
This set of testing paths, all of which are to be eventually influenced by designed
test cases is called the testing domain [3]. The domain of testing which gets
influenced by the test cases executed by any time in the testing phase is called the
isolated testing domain by that time. The isolated testing domain expands as the
number of executed test cases increases which in turn makes more faults detect-
able by the debuggers. The goal of testing with respect to isolated testing domain is
to expand it over the entire software system. Figure 4.1 illustrates a basic testing
domain.

The isolated testing domain ratio in software is closely related to the quantity and
quality of the executed test cases, which in turn is influenced by the testing skill of the
test case designer. Increase in the number of detectable faults during testing is
strongly influenced by the efficiency of the test case designers. Fujiwara and Yamada
[4] defined two cases of testing skill related to testing domain and developed software
reliability growth models with respect to isolated testing domain for both cases.
Software reliability modeling with respect to the isolated testing domain enables the
software developer to know the relation between the isolated testing domain ratio and
the number of faults detectable by a testing method.

The efficiency of a test case design is related to the isolated testing domain as
follows:

Case of low skill If the test designers are inexperienced or they are not po-
cessing high professional skills. The degree of comprehension of the internal
structure by such test designers of the software is low. It results in deterioration in
the quality of test case design and hence slow testing domain growth rate.

Case of high skill Expert test designers possess high degree of internal structure
comprehension. Using their technical skills and experience, they develop high
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quality test cases and an effective overall test. Their expertise results in increasing
rate of testing domain growth rate and hence an increasing rate of the detectable
faults.

The effect of testing skill on isolated testing domain is most remarkable in the
early stages of testing. When the skill of test designers is low, it is most likely that
only a narrow domain of testing can be isolated as the test cases may not be
efficient in influencing the isolated testing domain. Such a test cannot necessarily
detect many faults. On the other hand if the test developers have experience of
similar projects in the past along with professional skills, then the test designed by
them influence the testing domain at a fast rate and will isolate almost whole of the
software paths. It will result in more number of detectable faults as well as higher
reliability at the end of testing phase.

Only a few attempts have been made in the literature for modeling the testing
domain growth rate, expected number of faults detectable in the isolated testing
domain and software reliability estimation with respect to the expected number of
detectable faults. Along with testing coverage based SRGM in this chapter we
have discusses various software reliability models based on isolated testing
domain.

4.2 Software Reliability Growth Modeling Based on Testing
Coverage

Analysis of effectiveness of testing and test cases using the testing coverage
measure started as early as early 1980s. The initial attempts were related to
measuring coverage for random testing [5], test analysis using structural coverage
[6] and examine fault exposure ratio [7, 8]. The initial attempt to relating testing
coverage to software reliability seems to be made by Malaiya et al. [9] based on
the previous work.

4.2.1 Relating Testing Coverage to Software Reliability:
An Initial Study

In the introduction section we defined a number of coverage measures related to
software testing. In general any testing coverage measure is measured in terms of
structural or data-flow units or enumerables that have been exercised. Malaiya
et al. [2, 5] considered five types of enumerables to formulate their model,
namely—defect, statement, branch, C-use and P-use coverage. Some of them have
already been defined previously. Now we define the remaining.

Defect Coverage the fraction of actual defects initially present that would be
detected by a given test set measures the defect coverage.
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C-use Coverage the fraction of total number of computational use (C-use) that
has been covered by one C-use path during testing. A C-use path is a path through
a program from each point where the value of a variable is modified to each C-use
(without the variable being modified along the path).

P-use Coverage the fraction of total number of P-uses that have been covered
by one P-use path during testing. A P-use path is a path from each point where the
value of a variable is modified to each P-use, a use in a predictable or decision
(without modifications to the variable along the path).

The coverage increases when more tests are applied, provided that the test cases
are not repeated and complete test coverage has not already been achieved. A
small number of enumerables may not be reachable in practice due to their
infeasibility or very low testability. Authors assumed that the fraction of such
enumerables is negligible. The achieved coverage by a set of tests depends not
only on the number of tests applied (or equivalently, the testing time) but also on
the distribution of testability values of the enumerables. A statement which is
reached more easily is more testable i.e., is more likely to get covered with only a
small number of tests. Along with this, testability also depends on the likelihood
that a fault reached actually causes a failure. Enumerables that have less frequency
of execution in the field use have low testability and may not get exercised by most
of the tests. It is also observed that the distribution of testability values may shift
with the testing progress. The easy testable enumerables gets covered mostly in the
early testing while the hard once remain and gets covered in the later testing at a
less rate. It implies that the rate of growth of testing coverage decreases with
testing progress and reaches a negligible value when almost 100% coverage is
achieved.

Notation

Pl Fraction of all enumerables of type j having detectability di
@/(x, x + dx) Enumerable of type j with detectability between x and x + dx
C(n) Expected coverage of the enumerable of type j

m; Parameter of one parameter model

N Total number of enumerables of type j

B, B Parameters of logarithmic model

K°(0) Defect exposure ratio at time = 0

K Overall fault exposure ratio

T;, The linear execution time

o’ Parameter describing the variation in the exposure ratio

The model is based on the detectability values of the enumerables. Malaiya
et al. [9] defined detectability (df) as the probability that the /th enumerable of
type j will be exercised by the randomly chosen test and the detectability profile is
the distribution of detectability values in the system under test. The authors pro-
posed discrete Normalized Detectability Profile (NDP) for formulating their
model. NDP for a system under test is defined by the vector
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P = DDl Pl Dl i <df <, (2.1

where ol = 1.

Enumerables may have detectability value O as it may not be feasible or testable
due to redundancy in implementation. A continuous function is approximated for
NDP if enumerables are large.

The Continuous NDP for the system under test is defined as

1

N/ dx .
Mxx+d). 6 <1 and /pf(x)dle (4.2.2)

J _
p (x)dx - NJ ’

0

4.2.1.1 One Parameter Model for Testing Coverage

Now assuming random testing method i.e. any single test can be selected randomly
with replacement, the expected coverage of the enumerables of type j for discrete
NDP is defined as

Clin)y=1-> (1-d)p} (4.2.3)
i=1
and for continuous NDP it is

C'(n)=1- / (1 —x)"p(x)dx (4.2.4)
0

However the actual software testing is more likely to be pseudo-random, since
usually any test once applied are not repeated. Random testing is hence a rea-
sonable approximation is this case except when coverage approaches 100%. The
Egs. (4.2.3) and (4.2.4) requires the knowledge of exact detectability profiles,
which requires lot of computation. An approximation for detectability profiles is
given as follows.

When one test is applied, the probability that an enumerable with detectability
& will not be covered is (1 — &). The probability that an enumerable will not be
covered by n tests and remains a part of the profile is (1 — &)". Thus if Eq. (4.2.1)
gives the initial discrete NDP, after n tests it is given as

pl={ph (1 =)' (1 = )" pf, (1 = )"} (4.25)
Equivalently the continuous profile is given as
Pl(x) = pa(x)(1 = x)" (4.2.6)

The results suggests an initial detectability profile

pl(x) = (mj+1)(1 —x)™ (4.2.7)
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Factor (m; + 1) ensures that the area under the initial profile curve is unity.
Substituting (4.2.7) in (4.2.4) implies
1

Cj(n):1—(mj_|_1)/(1_x)m,-+ndx_ n

= 4.2.8
m;+n+ 1 ( )

0
above is a one parameter model for testing coverage based on parameter m;.

4.2.1.2 Logarithmic Coverage Model

Instead of random testing in actual practice, a test case is selected in order to
exercise functionality or enumerable that is remaining untested. It makes testing
more directed and efficient than random testing. The coverage growth depends on
the detectability profile along with test selection strategy. Following the analysis of
Malaiya et al. [7] that the defect coverage growth in practice can be described by a
logarithmic model, it is assumed that the coverage growth of other enumerable
types also be logarithmic. The following model is given

Ci(r) = %ﬁg In(1 + pir) (4.2.9)

If single application of test takes 7T seconds then the time needed to apply n test
is nT, hence

. 1. .
C/(n) = mﬁ{) In(1 + p{Tsn) (4.2.10)

defining bé = f,—é and b{ = [3{ T, the coverage model can be rewritten as
Ci(n) = b)In(1 +bin); C/(n)<1 (4.2.11)

For defect coverage (C°) i.e. enumerables of type j = 0 following interpretation
is drawn for the parameters

B = ((K°(0)N°(0)) /o°T;) and f° = o°

Solving Eq. (4.2.11) for n and substituting for C° we obtain

I /1
C°b81n<1+b}<ec’/”ol)>; i=1,2,34 (4.2.12)
1
Defining a) = ), d¥ = Z—?, and a) = bl—(,] (4.2.12) is rewritten as
C‘J:agln(1+a{(e0’“§—1)); i=1,2,3,4 (4.2.13)

above is a three parameter logarithmic model for defect coverage in terms of
measureable test coverage metrics.
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4.2.1.3 Defect Density and Reliability

Failure intensity is defined as %
A=— (4.2.14)
Ty

If Ny be the total number of faults initially present in the program and there is no
new faults introduced during testing process. Then N can be computed as

N = Ny(1 —C% (4.2.15)
substituting from (4.2.13) we get

N =No(1-a)in(1+af (e 1)) (4.2.16)

hence the expected time between successive failure is given as
1 Ty

A KNO(I —al ln(l +a] (ecj”é - 1)))

The model can also be used for estimating reliability for the operational phase
using an appropriate value of the fault exposure ratio.

(4.2.17)

4.2.2 Enhanced NHPP Based Software Reliability Growth
Model Considering Testing Coverage

Gokhale et al. [1] gave an enhanced non-homogeneous Poisson process (ENHPP)
based software reliability growth model analyzing the effect of testing coverage. An
important property of their formulation is that is offers a unified scheme for the
various finite failure NHPP models relying on some specific forms of coverage
functions.

Notation

d Total number of faults present initially in the software

cy(t) Probability of detecting a fault

c(t)  Potential fault sites coverage rate

A(t)  Failure intensity function

h(t)  Hazard function

m(t) Cumulative expected number of faults detected by time ¢

Assumptions

1. Faults are uniformly distributed over all potential fault sites

2. When a potential fault site is sensitized at time ¢, any fault present at that site is
detected with probability c,(f)

3. Repairs are affected instantly and without introduction of new faults.
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Analytically the model is described as

& mit) = dealt) Se(t) (42.18)

general solution of above is given as
t
m(t) =d / ca(s) * c'(s)ds
0

A perfect fault detection coverage implies c,(f) = 1 and perfect testing cov-
erage implies c(o0) = 1. If a probability of detecting faults is assumed to be
constant (say K) and we substitute a’k = a then

m(t) = ac(t) (4.2.19)

Using (4.2.19) the failure intensity function is given as

Mﬂ:%m@:a%dﬁ (4.2.20)

From (4.2.19) and (4.2.20) failure intensity function can be rewritten as
c(1)
1—c(r)

This form of failure intensity implies that the failure intensity depends directly
on the rate at which remaining faults are covered and inversely on the uncovered
faults. The failure occurrence rate per fault or the hazard function is thus given by

At) = (a — m(r)) (4.2.21)

M”:1520 (4.2.22)

The time dependent form of failure occurrence rate in ENHPP incorporated the
time variation in the rate at which individual fault will surface. The reliability of
this model will completely be dependent on the coverage function, as the proba-
bility that no failure occurs up to time (¢ + £) given that the last failure occurred at
time ¢ is given by

1+h} N7
R(ht) = =i A0 _ o-ale(trm—c(o) (4.2.23)

Using this model Gokhale et al. [1] derived several forms of coverage functions
for the various existing NHPP models. The NHPP based SRGM are characterized
by their mean value functions and using (4.2.19) we can obtain the corresponding
coverage function. We explain this with some examples.

Exponential Coverage Function Consider the case of GO model. The mean
value function of GO model is

m(t) =a(l —e™)
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Hence the coverage and hazard function for this model is given as

c(t)=(1—e)
and
h(r) =b (4.2.24)

Weibull Coverage Function An exponential coverage function depicts
decreasing failure intensity pattern during testing, however in most practical sit-
uations failure intensity increases initially and then decreases. The generalized GO
model captures this increasing—decreasing failure intensity function. The mean
value function of generalized GO model is

m(t) =a(l —e ™)
Hence the coverage and hazard function for this model is given as
c()y=(1—-e")
and
h(t) = bet™! (4.2.25)

The Weibull coverage function implies a time varying failure occurrence rate
per fault. The hazard function is increasing for ¢ > 1, decreasing for ¢ < 1 and is
constant when ¢ = 1.

S-shaped Coverage Function The s-shaped SRGM gives rise to s-shaped cov-
erage functions. Consider the case of inflection s-shaped model due to Yamada
et al. [10]. The mean value function for the model is

m(t) =a(l — (1 +br)e™)
The coverage and hazard functions for this model are
c(t) = (1= (1+br)e™)

and
b
1+t

h(r) (4.2.26)

Similarly various other coverage functions can be derived for the various other
existing SRGM.

4.2.3 Incorporating Testing Efficiency in ENHPP

Pham and Zhang [11] extended the ENHPP, incorporating the very important
concept of testing efficiency in the model. The model is a general formulation for
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obtaining the coverage function for the various testing efficiency based NHPP
model. The failure intensity function of the model is formulated as
d (1)
— 1) =
dtm< ) 1 — (1)

la(t) — m(r)] (4.2.27)

The authors used s-shaped coverage function (4.2.26) and a linear testing time
dependent fault content function to account for the fault generation i.e.

c(t) = (1= (1+br)e™)
and

a(t) = a(l + az) (4.2.28)

Solving Eq. (4.2.27) using (4.2.28) and the initial condition m(0) = 0 the mean
value function is obtained as

(1+b)\ _ax(l+br) () e +bt)’“
m(t):a<1+oct— o el 1—|—bt—|—Z (ES

i=l

(4.2.29)

This model is in the category of pure error generation model. The mathematical
form of the mean value function for the above model is complex and may find
limited applications in practice for this reason. As an alternative Kapur et al. [12]
suggested to use other forms of fault content function. They investigated the fault
content function formulated, assuming that a constant proportion of faults removed
during testing can be introduced during the debugging activities, given by
a(t) = a + am(t). Using this fault content function in the coverage based for-
mulation (4.2.27), the mean value function of this SRGM is given as

m(t) = (1 1+ bt)“*“)e*b“*“”) (4.2.30)

1 —o

Kapur et al. [12] also proposed a different s-shaped coverage function which
converges slower than the s-shaped coverage function (4.2.26). This type of curve
gives better result if the test strategy is less effective in attaining maximum cov-
erage. This coverage function is given as

c(t) = (1 - (1 + bt + (bt)2/2>e_b’) (4.2.31)

The mean value function for this coverage function has been evaluated for the
different forms of fault content function

Case 1 a(f) = a then m(r) = a(l — (1 bt + (bt)2/2>e—bt)
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Case 2 a(t) = a + am(t) implies

m(t)

_a
T l-u

(1= (14 br+ (b f2)!em020)

Case 3 a(t) = a(l + o) implies

m(t) = a(1 + ar) — a<ﬂ>

2ebt
) (—1)n1((1 + 60" 171) — (=1
aoc(] —(1 +bt)2) =l 2n—1 Jj=0 (2))!
B beltbt ( 2n—1
~ (e ) e gy
+;(_1) 2n—1 (2 +1)!

Pham [13] attempted to integrate fault generation in ENHPP in a different
manner, given as

la — m(t)] — d(t)[a — m(1)] (4.2.32)

where d(f) denotes the fault introduction rate. The failure intensity equation
(4.2.32) can be interpreted as the failure intensity, as described by ENHPP, is
decreased due to fault generation proportional to the fault introduction rate in the
remaining fault content.

If d(¢) is assumed to be a decreasing function of testing time say

d
d(t) = 4.2.33
©) 1 +ds ( )
then the mean value function of the SRGM is given as
m(1) = a(1 — (14 (b +d)t 4 bdi*)e™") (4.2.34)

4.2.4 Two Dimensional Software Reliability Assessment
with Testing Coverage

The testing coverage functions and the SRGM described up to now have been
formulated with respect to time component of the testing time. Inoue and Yamada
[14] claimed that SRGM which consider software reliability growth process,
depending only on the testing time may not be very useful in practice. For example
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due to an ineffective and inefficient test design, the execution of certain test may
not yield any reliability growth due to their failure in capturing some faults,
although lots of time may be spent in the testing. One solution to this problem is to
develop an SRGM which depends not only on the testing time component but also
simultaneously on other reliability growth factors. Ishii and Dohi [15] proposed
two dimensional software reliability growth modeling, framework by extending a
modeling framework of one dimensional software reliability growth modeling,
based on order statistics. In the two dimensional modeling framework the software
failure occurrence times distribution is defined in two dimensions, one consisting
of testing time and other being the testing effort (in terms of test execution times).

Inoue and Yamada [16] proposed a testing coverage based SRGM character-
izing the relationship between the testing coverage function attainment process and
the software reliability growth process. They described the time dependent
behavior of test coverage considering the testing skill of the test case designers. It
may be noted that the coverage attained is highly related to the skill of the test
designers. In order to counter the problem of one dimensional model, Inoue and
Yamada [14] extended this model in two dimensional SRGM. The approach fol-
lowed for the purpose is different from Ishii and Dohi [15] as this model is based
on testing coverage, a measure which takes values between 0 and 1. Following the
same approach in testing coverage based model, does not conserve the theoretical
means of the framework. Hence based on the notion of Cobb—Douglas production
function on Weibull type SRGM a two dimensional model is developed by Inoue
and Yamada [14] dividing the testing time into two factors—the testing time and
testing efforts. First of all we describe the one dimensional model of Inoue and
Yamada [16].

4.2.4.1 The Coverage Function

The testing coverage function is derived assuming testing coverage rate at any
time ¢ to be proportional to the difference between the attainable and the current
value of the testing coverage.

%c(t) = B)(o—c(r)) O<a<1, B(t)>0 (4.2.35)

where o is the target value of the testing coverage to be attained. Considering an
attainable value of coverage make SRGM more meaningful in practice as 100%
coverage may not be feasible due to very less testability of uncovered components
remaining in the later phase of testing. f(¢) is the testing coverage maturity ratio at
testing time ¢.

The testing coverage maturity ratio is defined with respect to the test designer’s
skill. It is assumed that the testing skill of the test case designers increase as the
ratio of the testing progress goes on. Hence the testing coverage maturity ratio at
the testing time ¢ is defined as

B(t) = bsu(r+ (1 —r)(C(t)/2)) 7 = bini/bsa (4.2.36)
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where b;,; (bg,) are the initial (steady state) testing skill factor of the test case
designers.
The obtained coverage function under C(0) = 0 is

() = o1 — e bwl)

T g P= (L=r)/r (4.2.37)

The coverage function indicates exponential growth when r = 1 and S-shaped

growth for r = 0 when the program is complex, testing skills of the testing team
grows with the pace of testing and testing efforts increases more and more.

4.2.4.2 The One Dimensional SRGM

The NHPP reliability growth model formulated using the above coverage function
based on the assumptions of a general NHPP model is

%m(r) / ¢ (1) = bla — m(r))
d = b 4.2.38
g;m(0) = be'()(a —m(1)) (4.2.38)

here b is defined as the fault detection rate per attained testing coverage per fault
and the corresponding mean value function is

m(t) = a(l - e*”6<'>) (4.2.39)

4.2.4.3 The Two Dimensional SRGM

For developing a two dimensional SRGM based on coverage function, the one
dimensional time space is expanded to the two dimensions. The testing time factor
of the software reliability growth is classified into the two factors

1. The factors which are related to the testing time such as the calendar time.
2. The factors which are related to the testing effort such as the testing coverage,
testing domain ratio and the number of executed test cases etc.

The two dimensional SRGM based on these two factors simultaneously is
formulated based on the Cobb—Douglas production (or utility) function [17, 18]
applied to the testing time factor of the one dimensional conventional SRGM as
follows

t=su'"" (4.2.40)
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Where v represents the extent of the effect of the factor on the testing time
factor of one dimensional models.

Now let {N(s,u); s>0,u>0} be the two dimensional stochastic process
representing the number of faults detected up to the testing time s and testing
time u. The two dimensional NHPP is formulated as

pr{N(s,u) = n} = Me—mw (4.2.41)
m(s, u) ://)h(x,y)dxdy (4.2.42)
0 0

where m(s, u), A(x, y) are the mean value function and the intensity functions of the
two dimensional NHPP respectively.
The mean value function of the Weibull type SRGM is given as

B
m(t) = G) 0<f<l, p>0 (4.2.43)

B, p are the software reliability growth shape and scale parameters and the failure
intensity function for this model is given as

d p—1
) = ) = ﬁ’pﬁ

This is an infinite failure model as m(c0) = oo meaning that when testing is
continued for infinite time, infinite number of errors will be detected which can be
accounted as imperfect debugging. Following (4.2.40) the two dimensional Wei-
bull type SSRGM is given as

(4.2.44)

Svulf\f B
m(s,u) = < > 0<p<l, p>0 (4.2.45)
p

The above model processes a very important property that if v = 1 then (4.2.45)
describes the conventional time dependent SRGM as ¢ = s while if v =10 it
describes a testing effort dependent SRGM as here ¢ = u.

4.2.5 Considering Testing Coverage in a Testing Effort
Dependent SRGM

Kapur et al. [19] proposed an SRGM which defined the software reliability growth
with respect to testing coverage, testing efforts and time. The failure intensity of
the software during testing is defined as

d _dmde dX

Loy =2 424
"= (4.2.46)
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The model can be explained as that, the number of failures detected during
testing is dependent on the testing coverage at that time. Testing coverage
increases as more efforts are applied and testing efforts in turn are a function of
time. Each component of the failure intensity is then defined independently.

Component 1 The rate at which additional faults are identified is directly
proportional to the coverage rate of the uncovered faults and the remaining fault
content. Based on this assumption the first component is defined as

‘(11_’: — b ( < )(a —m) (4.2.47)

o —C

where ¢’ is the coverage rate, o, is the target value of the testing coverage to be
attained and c is the coverage function at time ¢. Coverage function of (4.2.37) is
defined with respect to the test efforts as

B o (1 _ e_bslax(l))

) = T pepuxt (4.2.48)
using (4.2.48) the hazard rate with coverage target o is
/
b
< sa (4.2.49)

o —c 14 febuX

Component 2 This component relates to the number of instructions executed to
the testing efforts and for the sake of simplicity it is assumed to be constant, i.e.,

de

—=b 4.2.50
e=bh (42.50)
while the third component is the testing effort function defined with respect to
time. Any existing test effort function (see Sect. 2.7) can be used here depending
on the testing profile under consideration. Using Eqs. (4.2.47), (4.2.49) and
(4.2.50), (4.2.46) can be expanded as

d bta dx

3 "X0) = i (e = m(X(0)ba g (4.2.51)

The mean value function obtained under m(0) = W(0) = 0 is

(1+ ﬁe*bstax(l))b]bzi (1 4 R)e—bubib2X(0)

m(X(1)) = a 1+ febuX(®

(4.2.52)

This model is then extended to predict the reliability in the operational phase.

4.2.6 A Coverage-Based SRGM for Operational Phase

The model coverage and effort based model discussed in the previous section is
extended by the authors for the operational phase. In order that the model can be
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used for operational reliability prediction, the proportion of uncovered faults at the
start of the operational phase must be considered in the failure intensity formu-

lation and first component of the model needs to be redefined. Denoting m(7)as the
number of cumulative fault detected in the operational phase the failure intensity is
defined as

d dm de dX

am(t) = @ﬁg(l —c(T)) (4.2.53)
where T is the release time. In the operational phase the number of fault
detected/removed directly depend on the number of statements executed and
not on the coverage achieved. As in this phase, fault are detected in the opera-
tional profile during execution by the users and no test case is executed with the
aim of fault detection. Now for defining the first component it is assumed that
along with the removal of detected faults the debuggers can also remove some
additional faults. This can be modeled in the manner of Kapur and Garg [19]
model for error removal formula (see Sect. 2.3). The authors of this model
also proposed an alternative derivation of this phenomenon using a logistic
function for the fault removal rate. For defining the first component of (4.2.53) this
alternative function is used to define the fault detection rate. Along with this the
possibility of imperfect debugging of type fault generation is also considered in
this model.

Hence it is defined as

dm b _
pallp Ailﬁ(a + bsm —m) (4.2.54)
de 1 + Beb1X(0)

here Zl,ﬁ are the parameters of the logistic fault detection rate function and b3 is
the constant representing the proportion of removed faults that are generated

during debugging and a = (a — m(T)), i.e. the faults remaining at the time of
software release. Other components are defined as such as in the previous section.
Using (4.2.54), (4.2.53) can be expanded as

m(t) = bi _

= (a+bsm—m)b, dx (1 —¢(T)) (4.2.55)
1+ BebrX() ds

d
dr
Mean value function of fault removal phenomenon obtained from (4.2.55) is

- (1 n B)e_;lx([) (1=b3)by(1—¢(T))
- |~ (4.2.56)
1+ﬁe‘h1x(’)

=175,

Note that X(¢) here represents the usage function instead of test effort function.
Modeling of usage function is already explained in Sect. 2.5.
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4.3 Software Reliability Growth Modeling Using the Concept
of Testing Domain

Measuring software reliability with respect to the isolated testing domain is an area
in software reliability modeling which has not been much explored by the
researchers. The initial attempts were made by Yamada and Fujiwara [3] who
proposed three types of testing domains i.e. the basic testing domain, the testing
domain with skill factor and the testing domain with imperfect debugging; and
then these domains were closely related to the time dependent behavior of the fault
detection phenomenon of the testing.

Notation

u(t)  total number of faults existing in the isolated testing domain at the testing

time ¢
w(t) number of detectable faults at testing time ¢
1 testing domain growth rate
p the constant fault introduction rate

4.3.1 Relating Isolated Testing Domain to Software Reliability
Growth: An Initial Study

4.3.1.1 Description of Testing Domains

Basic Testing Domain

Based on the definition of testing domain, the relationship between the isolated
testing domain ratio and the number of faults detected by testing is formulated
according to the following assumptions.

1. The debugging process is perfect

2. The latent faults in the testing domain are distributed uniformly

3. The increasing rate of the number of detectable faults in the testing domain is
proportional to the number of faults remaining in the software system outside of
the isolated testing domain at arbitrary testing time

Based on these assumptions the differential equation for the basic testing
domain is

d
au(r) =v(a —u(t)) (4.3.1)

Hence the basic testing domain under the initial condition #(0) = 0 is defined as

ut) = up(t) = a(l —e™) (4.3.2)
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where u,(f) represents the basic testing domain isolated representing the expo-
nential growth curve. The testing domain growth function y(¢) representing the rate
of the isolated testing domain growth in the software system is given as

(1) = 7(1) = %’/lb(t) = ave™" (4.3.3)

Testing Domain with Skill Factor

Testing skill represent the test case designer’s potential ability (i.e. fault detection
possibility), which can be measured by the total number of detectable faults. If the
test case designers do not fully understand the internal structure of the software
system, then the test cases designed by them will represent a narrow area of the
modules and functions to be influenced and may not necessarily detect many
faults. In this case, even if the test cases are executed, the testing domain does not
spread at a rate which can be expected otherwise. On the other hand if a profes-
sional and experienced team having a through knowledge of the software internal
structure prepares the test design and the test designed so is executed following
effective strategy, the isolated testing domain can cover many modules and sys-
tems which are targeted by the test and grow speedily with an increasing rate.
Hence based on the assumptions of the basic testing domain and assuming the
testing domain growth rate is proportional to the number of faults existing in the
testing domain, the differential equations is formulated as

d

() = via - w(n) (434)
d
Su(t) = vwlr) - u(n) (43.5)

If p is the skill factor of the test case designers, it is expected that before the
start of the testing by means of test case execution some portion of the testing
domain can be isolated. In such a case the initial size of the isolated testing domain
cannot be zero as in case of basic testing domain. Considering a(l — p) as the size
of the initial testing domain the testing domain with skill factor is obtained as

u(t) = us, (1) = a(l —p(1+vr)e™); 0<p<l1 (4.3.6)
where u, ,(f) represents the isolated testing domain with skill factor spreading
along an s-shaped growth curve. If size of initial testing domain is a i.e. no part of

the testing domain can be isolated at the starting time of the testing phase, then the
testing domain with skill factor is obtained as

u(t) = us(t) = a(l — (1 +vr)e™) (4.3.7)

and the testing domain growth rate is given as

p(t) = 7,(t) = aus(t) =apv’te™ or avite™ (4.3.8)

depending on the initial condition.
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Testing Domain with Imperfect Debugging

Imperfect debugging is a realistic fact for almost every testing profile. The
definitions of basic testing domain as well as the testing domain with skill
factor, both have been formulated under the assumption of a perfect debugging
environment. In practice introduction of new faults during the debugging
process is frequently experienced. Yamada and Fujiwara [3] claimed that in the
early stage of testing, the correction of detected faults is simple and the
influenced region of the modules and functions by the fault correction is very
narrow. The correction of detected faults becomes complicated with the pro-
gress of testing and the influenced region spreads widely. This phase requires
more careful and skilled debugging activities for the correction of more com-
plicated faults as compared to the earlier phase. This may lead to the increase
in the introduction degree of new faults with progress of testing. However
despite imperfect debugging activities, the testing domain continues to spread
as the testing progresses.

Assuming an imperfect debugging condition, the testing domain is formulated
as

d
3140 = v(ar) — u(n)) (4.3.9)

The number of faults in the system at any moment of testing time is
defined as a function of time and an exponential form of fault content is used
to capture the slow introduction rate in the early phases and higher in the later
stages, i.e.

a(t) =ae”; >0 (4.3.10)

From (4.3.9) and (4.3.10) the basic testing domain with imperfect debugging is
defined as
av
H=u(t)=——/(" —e™ 4.3.11
) = () = 2 — ) (43.11)
where u;(f) represents the basic testing domain with imperfect debugging, ignoring
the skill of the test designers. The testing domain growth rate for this domain
function is given as

ay 1 —vt
= —ui(f) = ——(ye’ 43.12
0 ijv(/e +ve™) ( )

4.3.1.2 Software Reliability Modeling
Yamada and Fujiwara [3] carried reliability analysis based on the three kinds of

testing function domains discussed in the earlier section. The SRGM are formu-
lated based on the following assumptions



154 4 Testing-Coverage and Testing-Domain Models

Assumptions

1. The detected faults exist in the isolated testing domain

2. The isolated testing domain ratio increases with the progress of testing.

3. Fault detection rate is proportional to the number of faults remaining in the
testing domain at testing time ¢

The differential equation with respect to mean value function m(f) based on the
above assumption and testing domain functions is

d
m(t) = b(1)(u(1) = m(r)) (4.3.13)

here b(¢) is defined as the time dependent fault detection rate per fault remaining in
the testing domain. The mean value functions of the SRGM using the four testing

domain functions (4.3.2), (4.3.6), (4.3.7) and (4.3.11) under the initial condition
m(0) = 0 and assuming b(¢#) = b are respectively

v—>b

b 2v—1> . bp(2v — D) _u
ms"’(t)a<1+v—pb<w+v—b>ev<1+%>eb>; v#b

—vt __ —bt
my (1) —a(l—l—u); v#£b (4.3.14)

(4.3.15)
b 2v—b\ _,
1+ b vt + b e
my(1) = a v v . v#b (4.3.16)
_( v )ze—ht
v—>b
eVt eVt
G+0+0) G —b)
m;(t) = abv / {bt / i vED (4.3.17)
€

S +b)v—b)

Kapur et al. [21] integrated learning phenomenon of testing and debugging
teams in the testing domain based software reliability modeling. The general
differential equation for the failure intensity is given as

d b

g0 = PO = m(0) where  b(1) = (4.3.18)

substituting the testing domain functions in (4.3.18), the mean value functions of
the SRGM are given as

a be " — et
my(t) = T ﬁe—’”(l + F— >; v#D (4.3.19)
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b 2v—>b
1+-2 (vt + 2 )ew
. Y N b 43.20
spll) = ———= ; 3.
n; ‘P( ) 1 + ﬂe,bt bp(2v . b) i v 7é C ( )
— 1+ e
(v—0)
b 2—b\ _,
4 1+ — vt + — e
s(t)) =———— N - ; b 4.3.21
() = e (Y vAb  (4321)
- €
v—>b
abv e’ eV et
m;(t) = + — i VvED
0= (e s Tre=w)

(4.3.22)

4.3.2 Application of Testing Domain Dependent SRGM
in Distributed Development Environment

Testing domain dependent SRGM also finds applications in reliability estimation
and prediction for software systems developed under distributed development
environment. Software is realized by mapping the full set of system requirements
across the various sub-systems. These subsystems are integrated to make the
complete software. Independent subsystems are developed by independent teams
possibly at independent locations. Such software is constituted by some pre
existing (used say p in number) and otherwise new components (used say m in
number).

Reliability growth of independent sub components of distributed software can
be analyzed using different SRGM and the reliability growth of the full system will
then be given by the joint effect of the reliability growth of the independent
components. Pre existing components are usually expected to contain simple type
of faults. Therefore most of the reliability studies for distributed components
assume that simple exponential SRGM (GO model, [22]) can be used for analyzing
their reliability growth. On the other hand the new components are assumed to
contain hard and complex faults. For these kinds of faults the assumption of
immediate fault removal on detection proves to be false as the time lag between
their observation and isolation cannot be considered negligible. As already dis-
cussed in Sect. 2.8, the failure and removal phenomenon for these components is
described by two and three stage process. Yadav et al. [23] have shown an
application of testing domain dependent SRGM for estimating the reliability of
new components.


http://dx.doi.org/10.1007/978-0-85729-204-9_2
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Notation

a Total fault content

a; Initial fault content of ith component

b; Proportionality constant of FDR/fault isolation rate (FIR) per fault of ith
component

bi(f)  Logistic learning FRR of ith component (newly developed)

m;(t) Mean number of faults removed from ith component by time ¢

mi(t) Mean number of failures observed in the ith component (newly developed)
by time ¢

m;(t) Mean number of faults isolated from ith component (newly developed) by

time ¢

A constant parameter in the logistic learning function

Number of reused components having simple type of faults

Number of new components having hard faults

Number of new components having complex faults

LT =

4.3.2.1 Model for Reused Components: the Case of Simple Faults

The fault removal process for faults lying in reused components is described by
exponential SRGM, given as

mi () = a;(1 —e P, i=1,2,...,p (4.3.23)

The Goel and Okumoto [22] exponential SRGM can adequately describe the
simple faults present in the reused components.

4.3.2.2 Model for New Components: the Case of Hard and Complex Faults

An SRGM for Hard Faults

The assumption of immediate removal of faults on detection seems unrealistic for
the case of hard faults. The testing team may require spending more time and
efforts to analyze the cause of faults in the newly developed components. The
failure and removal phenomenon for hard faults is thus described by a two stage
process—fault detection followed by its removal.

The failure detection process of such faults can be described by the basic testing
domain function which describes the number of detectable faults in the isolated
basic testing domain. On account of this using basic testing domain function
(4.3.2) the failure process for hard faults in the g newly developed component is
given as

my(t) = ui(t) =a;(1—e™) i=p+1,...p+¢q (4.3.24)
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After the detection the fault is isolated and removed from its place of existence,
hence the removal process of faults is described as

d
dt

using a logistic fault detection rate per remaining fault i.e. b;(7)

mir(t) :bi(t)(mlf(t) _mir(t)) i=p+ 177p+q (4325)
— bi

= W the
mean value function of the removal process for the components containing hard
faults under the initial condition that m;(0) = O is given as

a bie ™Vt —v;e b
(1) = ' 1+ d ; ViFEDbi= I,... 4.3.26
mir (1) l-i—ﬂ,-ebf[( + vi—b; ) viFbii=p+ r+a ( )
The second stage of the two stage removal process describes the delayed fault
removal process.

An SRGM for Complex Faults

The fault isolation and removal process of faults present in some components can
be even harder than the hard faults. The faults present in such components are
usually called complex faults. The time delay between the fault detection and
removal is greater in the case of complex faults as compared to hard faults. On
account of this, more efforts are required to isolate and then removal the complex
faults. The failure and removal phenomenon for complex faults is thus described
by a three-stage process—fault detection, isolation followed by removal.

The first two stages of the testing process fault detection and isolation can be
described on the lines of testing domain with skill factor. Here in this case when
the initial size of the isolated testing domain is considered to be zero and not
a1 — p;) i.e. no portion of testing domain is visible before testing is started.
Based on the assumptions of the basic testing domain and assuming the testing
domain growth rate is proportional to the number of faults existing in the testing
domain, the differential equations are formulated as:

d d
Emif(t) = aw[(t) =vi(a;—wi(t)) i=p+q+1,...p+qg+r (43.27)

d d
&mil(t) T

Hence the mean value function of the fault isolation process is given as

ui(t) = vilwi(t) —ui(t)) i=p+q+1,...p+q+r (43.28)

my(t) =a;(1—(1+vit)e™) i=p+q+1,...p+q+r (4.3.29)

m;(t) describes the fault isolation process of the complex faults for the newly
developed components.
After the detection and isolation, the fault is removed from its identified
location. Hence the removal process of faults is described as:
d

&mir(t) :bi(f)(mi[([) 7”1,‘,(2‘)) l:p+q+ 1,...,p+q+r (4330)
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using same form of b,(¢) the mean value function of the removal process for the
components containing complex faults under the initial condition that m;(0) = 0

is given as
2
14— (vit Vi l) it
a; Vi bi i bz b
i) = —— ; :
mir(t) = 75 p e () @i PEb (4331
(vi — b;)?

i=p+q+1,...p+qg+r

The delayed removal process described by (4.3.31) describes slower conver-
gence as compared to the (4.3.26) which can adequately describe the case of
complex faults.

4.3.2.3 Modeling Total Fault Removal Phenomenon
Total fault removal phenomenon for the software is superposition of SRGM for ‘p’
reused and ‘g + r’ newly developed components and is given by the sum of the

mean value functions of removal phenomena. From Eqs. (4.3.23), (4.3.26) and
(4.3.31), the SRGM for software developed under DDE is given as

)4 rtq —vit —b;t
a; b,-e f=vyie
mt) =Y a1 —e ) + (1 " )

i=p+1
b[ < 2V,' - b,) —vit
1+ vit + e
piq:ﬂ @ vi — b; vi —b;
n 4 (4.3.32)
i=prat] 1+ ﬁie bit 1+ b,-(2v,~ - b,) —bit
- - €
(vi — bi)

Depending on the number of used and reused components of types containing
hard and complex faults, the mean value function of the removal phenomenon for
the software can be developed and applied to the distribution systems.

4.3.3 Defining the Testing Domain Functions Considering
Learning Phenomenon of Testing Team

The testing domain functions defined in the previous section assumes a constant
testing domain growth rate. However, in practice it may not be constant throughout
the testing phase. Moreover, an application of testing domain function on testing
data may require fitting and comparison of the different domain functions.
Application of an exponential domain function may fail if the data set exhibits
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s-shaped growth behaviour and vice versa. An answer to this problem is formu-
lation of flexible SRGM which can capture both types of growth behaviour and
provide a good fit to a wide range of actual data sets. Kapur et al. [24] formulated
an SRGM defining a time-dependent testing-domain growth rate. Assuming a
power function of testing time defines the testing growth rate, the differential
equation for the flexible basic testing domain is given as:

d
&u(t) =v(t)(a — u(t)) (4.3.33)
where v(t) = vi*.

Using this time dependent testing growth rate and initial condition #(0) = 0, the
basic testing domain function is obtained as:

u(t) = uy(t) = a(l - e*v(’”'/k“)) (4.3.34)

For k = 0,k = 1 and k = 2 the testing domain function describes an exponential,
Rayleigh and Weibull curve respectively. While formulating the testing domain
function (4.3.2) the fault content distribution is assumed to be uniform over the
software system. However it can be non-uniform. Assuming p denotes the uniformity
factor in error distribution, the testing domain function can be redefined as:

u(t) = up,(t) = a(l —pe_v(’kﬂ/"“)) (4.3.35)
The testing domain growth function y(¥) is given as:
d -
§(e) = (1) = T, p(0) = apvte (/1) (4.3.36)

for the uniform testing domain substitute p = 1 in (4.3.36).

4.3.3.1 Testing Domain with Skill Factor

Similar to the case of flexible basic testing domain, flexible testing domain with
skill factor can be formulated. Based on the assumptions of the basic testing
domain, assuming the testing domain growth rate is proportional to the number of

faults existing in the testing domain and is power function of testing time, the
differential equations are formulated as:

—w(t) = v(t)(a — w(t)) (4.3.37)

Sut) = v(r)(w(t) — ulr)) (4.3.38)

where v(t) = vi*.
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If we consider the size of initial isolated testing domain zero, the flexible testing
domain function with skill factor is given as:

u() = (1) = a1 = (14 v( e 1))e (/) (4.3.39)

However, if p is the skill factor of the test case designers and the initial size of the
isolated testing domain is a(l — p), the testing domain with skill factor is obtained
as:

u(t) = ugp(t)

=a(1=p(1+v(# k4 1)) 0<p<t (4340)

Factor p = 0 indicates that the test designers are expert and experienced
leading to ultra high potential of detecting the faults in initial stages of testing.
However, the case is not true in any situation in the real testing profile.

Similarly, a flexible testing-domain function with imperfect debugging can be
derived using a power function of testing time to define the testing-domain growth
rate. The derivation is left as an exercise to the readers.

4.3.3.2 Software Reliability Modeling

The flexible testing domain function can be used for reliability analysis based on
testing-domain growth rate. As compared to the reliability analysis carried out by
Yamada and Fujiwara [3], SRGM based on flexible testing domain functions
generates flexible reliability growth curves. The differential equation for the
SRGM based on the assumptions of SRGM formulated in Sect. 4.3.1.2 and flexible
testing domain functions is given as:

d
am(r) = b(t)(u(r) —m(r)) (4.3.41)

A power logistic form of b(?) is used to defined the fault detection rate per
remaining fault in order to obtain flexible SRGM considering the learning phe-
nomenon of the testing team i.e.

bk

Now using the four flexible testing domain functions given by (4.3.34),
(4.3.35), (4.3.39) and (4.3.40), the mean value functions of the SRGM provided
(v # b)are given as:

a be_v(tkﬂ/kﬂ) — ve_b(lkﬂ/kﬂ)
mb(t) Yy <1 + (4.3.43)

T 1+ pet v—b
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a (1 N bpe—v(t/‘+l/k+l) _ (V — b+ bp)e_h(tk+l/k+l)>

mb.ﬁ(t) = 1+ ﬁe_b<tk+1/k+1)

v—>b
(4.3.44)
b AN 2v—b
1 sy
" a +v—b<v<k+1>+v—b)e
ms(t) = ————7—~
1+ et /ks1) B v ze—b(fk+1/k+1)
(v—0)
(4.3.45)
bp l‘k+1 2v — b\ _ (e
1 V(t /k+1)
o ; +v—b<v<k+1 YA
Mep 1) = I b1 ien) -
14 fe (@ f) o b(P1 fir1)
(v—1b)
(4.3.46)

The testing-domain-dependent SRGM is not limited to those discussed here.
Several SRGMs can be formulated based on the discussed testing domain func-
tions integrating the various other concepts of software reliability modeling and
varying the fault detection rate function.

4.4 Data Analysis and Parameter Estimation

Both testing coverage and testing domain based models find application for a
specific purpose. Coverage-based models are useful when one wants to know the
progress of the testing coverage attained, while testing domain based models
provide information related to the isolated testing domain and the reliability
measures. In this section we have established the validity of several models from
both category and estimated their parameters and drawn comparisons on the
estimation results. Due to the absence of coverage and testing domain growth rate
related actual life observations in the collected data sets, directly software reli-
ability models are fitted on the data sets and using the estimates of SRGM, an
estimate of the attained coverage or the testing domain isolated can be made.

4.4.1 Application of Coverage Models

Failure Data Set

The failure data is for the program that monitors a real-time control system con-
sists of about 200 modules having on average, 1,000 lines of a high level language
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such as Fortran. The test data for 111 days is available during which 481 faults
were detected [25]. Since the test data is recorded daily, the test operations per-
formed in a day are regarded to be a test instance.

Following models have been chosen for data analysis and parameter estimation.

Model 1 (M1) Exponential Coverage SRGM [1]
c)=(1-e"); m@t)=a(l—e™)
Model 2 (M2) Weibull Coverage SRGM [1]
c()=(1—-e"); mt)=a(l-e")
Model 3 (M3) S-shaped Coverage SRGM [1]
c(t) = (1= (1+bt)e™™); m(t) =a(l — (1+bt)e™™)
Model 4 (M4) Testing Efficiency Coverage SRGM [11]

C(t) = (1 — (1 +bt)e_’”); m(t) = { i(x(l _ (1 +bt)(l—x)e—h(]—o:)t)

Model 5 (M5) S-shaped Coverage SRGM [12]
c(t) = (1 — (1 + bt + (bt)z/z)e"");
m(t) = a(l - (1 + bt + (bt)2/2>e_b’)
Model 6 (M6) Testing Efficiency S-shaped Coverage SRGM [12]
e(r) = (1 - (1 bt (bt)2/2>e’b’);

m(t) = = (1= (14 b+ () [2) =000

Model 7 (M7) Testing Efficiency S-shaped Coverage SRGM [13]
ety = (1= (1+bt)e™™); m(t) =a(l — (1+ (b+d)t+bd*)e™)
Model 8 (M8) Flexible Coverage Function SRGM [16]

1— —bgat
() =% p=(1-r)r

m(t) = a(l — e’bcm)

The unknown parameters of all these models have been estimated using the
regression module of SPSS. The values of estimated parameters have been tabu-
lated in Table 4.1. Figures 4.2 and 4.3 show the goodness of fit curves for the
estimation results tabulated in Table 4.1 and future predictions for SRGM M1-M4
and M5-M8 respectively.

The estimation results shows that exponential SRGM does not give a good fit on
the data. The mean square value of the estimated values is very high for the
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Table 4.1 Estimation result for model 1 to model 8
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Model Estimated parameters Comparison criteria
a b ¢, d, by, o B MSE R?

M1 542 0.0254 1.4993 - - 804.93 0.965
M2 484 0.0054 - - - 300.85 0.987
M3 489 0.0662 - - - 331.76 0.985
M4 458 0.0690 - 0.0640 - 334.65 0.985
M5 476 0.1045 - - - 555.25 0.975
M6 450 0.1080 0.0000 0.0540 - 548.60 0.976
M7 489 0.0660 0.0649 - - 335.06 0.985
M8 815 0.9515 1.4993 0.9515 5.85 307.58 0.965
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exponential SRGM M1. However the model M8 is also exponential but due to the
flexible coverage function the model has given a good fit. The s-shaped coverage
function of models M5 and M6 c(f) = (1 — (1 + bt + (b1)*/2)e™"") also does not
give a good fit. This coverage function converges slower than the s-shaped cov-
erage function c(¥) = (1 — (1 + bt)efb’). The results of the models M3, M4 and
M7 are comparable. Both Weibull-type coverage function and flexible-coverage-
function based SRGM have given a good fit on the data. The shape parameter in
both of these coverage functions offers flexibility to capture a wide range of
coverage curves. The estimates of model M2-M4 and M7 and M8 are stable and
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Table 4.2 Coverage results Model Software coverage m (111)
for model 1 to model 8 attained in 109 days
M1 0.9375 509
M2 0.9978 484
M3 0.9939 486
M4 0.9954 486
M5 0.9999 475
M6 0.9999 475
M7 0.9938 486
M8 0.9461 484

consistent with the collected data as the estimated value of the number of failure
converges between 483 and 485 faults for these models and not much further
increase in the failure number is observed for these models. This data analysis
concludes that model M2 should be selected for future prediction and reliability
measurement.

These models also give us the information on achieved level of software
coverage with the progress of testing. All of the s-shaped models show that up to
the time period for which the data was observed i.e. 120 days more than 99% of
software coverage is attained. While the exponential models shows less coverage
as compared to the s-shaped models (for model M1 93.75% and M8 94.61% in
109 days). If the developer decide to terminate the testing on the bases of the
coverage information then according to the best fit model 99.78% has been
attained which means that after 109 days of testing the software can be released.
The summary of coverage information is tabulated in Table 4.2.

4.4.2 Application of Testing Domain Based Models

Failure Data Set

We again continue our data analysis on the data set used in Sect. 3.8.1 in this
section. This data set is an interval domain data cited in Brooks and Motley [26].
The failure data set is for a radar system of size 124 KLOC (Kilo Lines of Code)
tested for 35 weeks in which 1,301 faults were detected.
Following models have been chosen for data analysis and parameter estimation.
Yamada and Fujiwara [3] Testing Domain based Models

Model 9 (M9) my(1) = a(l + ”%,,) v#D
Model 10 (M10)

bp 2v—>b\ _ bp(2v—0b)\ _,
— 1 vt 1 r ).
m (1) a( —|—vb<vt—|— Vb)e ( +7(V_b)2 e |; v#Db
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Kapur et al. [21] Testing Domain Based SRGM Incorporating Learning
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Table 4.3 Estimation result for model 9 to model 20

4 Testing-Coverage and Testing-Domain Models

Model  Estimated parameters

Comparison criteria

A b v Py B k MSE R?
M9 1,689  0.0899 0.0899 - - - 2967.63 0.955
MI10 1,457 0.1656  0.1630 0.9866 - - 1370.24 0.987
Mil 1,449  0.1662 0.1663 - - - 1343.33 0.985
MI12 1,865 09700 0.0320 0.0042 - - 20611.25 0.945
MI13 1,425 0.1715 0.1096 - 4.0055 - 973.89 0.996
Mi4 1,342 0.1938 02214 03045 21.2299 - 5747.39 0.976
MI15 1,336 0.1977 0.1756 - 0.6292 - 2413.85 0.998
Ml16 1,720  0.6550  0.0740  0.0280 97.6590 - 9979.99 0.967
M17 1,322 0.1204 0.3280 - 10.7697  0.1752 1289.15 0.994
MI18 1,318 0.0054  0.3215  0.2405 0.2926 1.1234 657.71 0.999
MI19 1,401 0.2304 0.1164 - 0.2671  0.1077 1341.69 0.989
M20 1,426 0.2304 0.1033  0.7934 8.2962  0.1000 1136.28 0.996
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Fig. 4.6 Goodness of fit
curve for models M17-M20

Fig. 4.7 Testing domain
growth curve for models
M9-M12

Fig. 4.8 Testing domain
growth curve for models
M13-M16
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The unknown parameters of these models have been estimated and are tabu-
lated in Table 4.3. Figures 4.4, 4.5, and 4.6 show the goodness of fit curves for the
estimation results tabulated in Table 4.3 and future predictions and Figs. 4.7, 4.8,
and 4.9 shows the growth of testing domain with the progress of testing for the
three types of the testing domain models.

The data analysis results on testing domain dependent models show lots of
variability. Mean square error for models M9, M12, M14, M15 and M16 is very
high. Hence none of these models can be chosen for reliability measurements.
Both of the imperfect debugging models fitted very poorly on this data set. As the
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observed data shows an s-shaped growth pattern poor fit is observed mostly for
exponential models. The model that fits best on this data is M18 and none of other
model has comparable value of MSE or R. The best fit model is based on the
testing domain function that considers the learning of testing team and basic
testing domain with non zero size of initial testing domain. For the best fitted
model the size of faults in the software is estimated to be 1,318. The fault detection
rate is 0.0055 and the testing domain growth rate is 0.3215. The learning factor is
estimated to be 1.1234 in the testing domain function and 0.2926 in the reliability
growth model. The result implies that learning occurs both during testing domain
isolation as well as fault debugging.

Exercises

1. What is testing coverage? Give some important measures of testing coverage.

2. Explain the difference between path and branch coverage.

3. What is testing domain? How efficiency of test case design is related to the
isolated testing domain?

4. Show that if the failure intensity function of an SRGM is given as

d (1)
"0 = T cgla) = m0)

where c¢(t) = (1 — (1 + bt)efb’) and a(t) = a + am(t), then the mean value
function of the SRGM is given as m(t) = 1%1(1 —(1+ bt)(l’”e*b(l*%)t).

5. Show with the help of graph, similarity and difference in the two coverage
functions ¢(r) = (1 — (1 4+ be ™) and c(r) = (1 — (1 + br + (br)*2)e™").

6. Model discussed in Sect. 4.2.5 defines an SRGM with respect to coverage,
testing effort and time. The failure intensity of the software during testing is
defined as %m(t) = %%%‘ The second component of the model relates the
number of instructions executed to the testing effort, i.e. it can be called as the
statement coverage with respect to the testing efforts. Develop a statement
coverage model, if we define ¥ = (b; + by(m/a))(a — m) and & = b3X*, with
the initial condition m(0) = W(0) = 0.



4.4 Data Analysis and Parameter Estimation 169

7.

Week Old New New
component component 1 component 2

4 7

—_—_ O =
A~ B~ O W
—_
(@]

10 1

[ —
— O O 0 N N W =
SO W= = B
—_ O N = LN
A== W kRO BN

—
[\

Assume that software is developed in distributed development environment
with one old and two new components. The old component contains simple
faults. Fault content of one new component is of hard type while in the other it
is of complex type. Fit the testing domain dependent SRGM for distributed
development environment discussed in the Sect. 4.3.2. Base your analysis on
the following failure data.

Calculate the mean square error and variation in the estimated parameters.
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Chapter 5
Change-Point Models

5.1 Introduction

Detection of a failure and successful removal of the fault that has caused the
failure during software testing are affected by many factors. These factors include
testing environment, strategy, testing team constitution and efficiency, test case
effectiveness, resources and many more. The software reliability models formu-
lated to track the reliability growth during testing consider a few or a number of
these factors. Drawing certain assumptions on the testing process the models are
formulated. The model parameters are representative of the various factors about
the reliability growth and depict specified factors about the phenomenon under
consideration, that is software testing. In the applications of SRGM on real testing
environment to estimate the reliability for the period of testing it is assumed that
the parameters of the SRGM can remain smooth over the testing period. However
it may not be the case. For example, consider the situation that after two days of
testing and analyzing the failure data the developer management may decide that
an additional highly professional member should join the testing team and they
also change the existing testing strategy and use some new automated testing tool.
All these efforts are done to pace the testing progress. At this point of time if the
model parameters estimated before changes are implemented may not describe the
further testing progress adequately. Magnitude of some model parameters may
change. Such changes are often observed in the testing environments.

From the point of view of statisticians, the typical situation of change as defined
by change-point models defines a particulars phenomenon in question according to
some structural, physical and environmental factors, for different time periods or
spatial regions different set of model parameter values may be needed in order to
describe the reality adequately. The time points which separate the time periods
are called change points. In the regression literature, the change-point model is
also referred to as two- or multiple-phase regression, switching regression, seg-
mented regression, two-stage least squares or broken-line regression. Important
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contexts in question here are to find—Is it necessary to assume that the parameters
are changing? When or where does a change occur? Does the change take place
over a certain period of time? What is the onset and duration of change? Do some
or all of the parameters of the model changes? How much do parameters before
and after the change point differ? What type of model is appropriate in a particular
situation? What are the models in the literature that can be applied for these
situations?—etc. [1, 2].

The bibliography evidence suggests mainly two types of techniques to handle
these variations. First, diagnostic checking methods to identify non-consistencies
using regression or time series analysis methods. Second, incorporating para-
metric variability in models. Variability of parameters in models being the
essential consideration. The change-point problem was first introduced in the
quality control context, which was concerned about the output of a production
line and wanted to find any departure from an acceptable standard of the
products. Although traditionally, control charts are used to detect changes. The
major difference between a change-point analysis and a control chart in this
concern is that the control chart is intended to be updated following the col-
lection of each data point. A change-point analysis is intended to be performed
less frequently to review the performance over a more extended period of time.
The two methods can be used in a complementary fashion. Change-point analysis
determined the number of changes and estimates the time of each change. It
further provides confidence levels for each change and confidence intervals for
the time of each change. Since then the change-point problem has developed into
a fundamental problem in the areas of statistical control theory, stationarity of a
stochastic process, estimation of the current position of a time series, testing and
estimation of change in the patterns of a regression model, and most recently in
the comparison and matching of DNA sequences in micro array data analysis [2].
The problem of abrupt/smooth changes is often encountered in various experi-
mental and mathematical sciences.

Change-point models are also very important for the hardware and software
reliability study. In the vast literature of software reliability modeling, most
researchers assume a constant detection rate per fault in deriving their models.
It is supposed that all faults have equal probability of being detected during the
software testing process, and the rate remains constant over the intervals
between fault occurrences. In reality, the fault detection rate strongly depends
on the skill of test teams, program size, defect density, code expansion factor,
testing efforts in terms of CPU hours and team constitution and software
testability. Therefore, it may not be smooth and can be changed. On the other
hand, if we want to detect more faults in the software in order to reach the
desired reliability objective during testing and meet the scheduled deliveries it
is advisable to purchase new equipments or introduce new tools/techniques,
which are fundamentally different from the methods currently in use, if the
software companies can afford a larger budget for testing and debugging. These
external new methods can give a detailed description of the test methodology,
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a complete test report, or an expert analysis of the findings to the clients. These
approaches can provide a conspicuous improvement in software testing and
productivity. In this case, the fault detection rate will be changed during the
software development process whenever any change is brought in the testing
process. In addition to all these factors another reason for observing changes is
the change of the software life cycle phase. We know that software reliability
continues to grow even during the operational phase due to the field failures. A
change-point may occur when the software life cycle phase changes from the
testing phase to the operational phase. It is more appropriate to use the change-
point method for reliability analysis in the changing testing process. SRGM,
which do not consider the effect of change-point in software reliability esti-
mation may not express the factual software reliability behavior [3, 4].

First we describe mathematically the theory of change-point analysis [3, 5] and
then discuss the study carried in software reliability modeling on the lines of
change-point analysis.

A change-point exists in the observations from a sequence of random variables
X1, X5, ..., X,, when the observations X;, X5, ..., X, follow the same distributions
F, while the observations X.,;, X;42, ..., X,, follow the distribution G, such that
F # G. The index 7 is called the change-point. This describes a particular situ-
ation which implies the existence of a single change in the phenomenon under
observation. In general the multiple change-points are said to exist in the obser-
vations from a sequence of random variables X;, X», ..., X,, when the observations
X1, Xo, ..., X;, follow the distribution F;, observation X;.;, Xi142, ..., Xz fol-
lows the distribution F,, such that X;; # X;;.;, and so on that observation
Xig+1> Xig2s .-, X, follows the distribution Fy, such that Xj, # Xj,.;. Here
1 <k <k, < <k, <n, qis the number of change-points and ki, k5, ..., k, are
respectively the positions of the change-point. The distributions Fy, F>, ..., F,
may or may not belong to the same parametric family F(6), 0 € R’. In case they
belong to the same parametric family then the change-point problem is defined as
that the observations X, X, ..., X;; follows the distribution F, with parameter 0,
observation Xy.1, X142, ---» X2 also follows the distribution F but the parameters
of the distribution have changed, say represented as 05, and so on that observation
Xig+1s> Xkge2s -, X, follows the distribution F with parameters 0, Again
1 <k <k, < <kyz<n, qis the number of change-points and ki, ks, ..., k,
are, respectively, the positions of the change-point.

The studies related to the change-point analysis were mostly in general related
to estimating the position of change-point, determining the number of change-
points and their respective position in case of multiple change-points and deter-
mining the distributions or the parameters in case the distribution of observations
between two change-points is same for each set of observations. In the statistical
literature the change-point problem has widely been studied by many authors.
Hinkley [6] used maximum likelihood estimation to estimate the single change-
point for the case the distributions F' and G are from the same parametric family or
may be arbitrary known distributions. Carlstein [7] discussed the non-parametric



174 5 Change-Point Models

estimation of the change-point. Joseph and Wolfson [8] discussed the generalized
concept by studying the multi-path change-points, where several independent
sequences are considered simultaneously with one change-point. Chen and Gupta
[5] carried out test of significance to establish whether a change-point exists or not
and also estimated it if it existed. Xie et al. [9] discussed change points of mean
residual life and hazard functions for certain generic Weibull distributions. Bae
and Kvam [10] showed that reliability estimation could be improved substantially
by using the change-point model to account for product burn-in effects. Zhao and
Wang [11] described new test statistics to test the existence of change-points in
software reliability models. Galeano [12] proposed the use of cumulative sums for
detections of change-points of a Poisson process when the failure rate is piecewise
constant.

Change-point models are very useful for hardware and software reliability
studies. Initial studies in change-point based reliability modeling were carried out
jointly for hardware and software reliability analysis due to Zhao [3]. Later many
researchers formulated various change-point SRGM for the software reliability
measurement and prediction [13-24]. In the software reliability literature the
change-point analysis is mainly related to the parameter variation modeling for
different time intervals between change-points. The number and time horizon of
change-point is mainly determined by observation method from the failure data
sets, while some studies advocate treating them as unknown parameters of the
model and estimating them together with the other parameters of the model.
Software package change-point analyzer can also be used for the purpose of
change-point estimation. Most of the researchers in the SRGM advocate to treat
them as known values in the model since the SRGM are applied to the observed
failure data sets of the real life projects and the reasons of change, number of
changes and their time horizon can be found from the failure data plots and
obtained from the testing and debugging teams. The content of this chapter is
addressed to the description of change-point models in software reliability mod-
eling literature.

Notation

a, a; Expected initial software fault content (i denoting module/fault type),
a,a; >0

b(t), bi(t) Time-dependent rate of fault removal per remaining faults

T, T; Change-point(s)

F(t), F(t) Probability distribution function of failure times, with density
function F(r) = [y f(¢) dt

No Finite, initial fault content in the software
m(t) Expected number of faults detected in the time interval (0, 7]
A®) Failure intensity function

R(x|t) Reliability function for time x given ¢
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5.2 Change-Point Models: An Initial Study

This study [3] is related to single change-point modeling for software reliability
estimation using the parametric variability approach. Let F| and F, be two dif-
ferent lifetime distributions with density functions f;(¢) and f>(¢), Xy, X5, ..., X,, be
the inter-failure times of the sequential failures in a lifetime testing. A change-
point exists in the observations from a sequence of random variables X;, X5, ...,
X Xev1, Xeq2s +.., X, Three models are proposed in the study assuming the
failure time distribution to be exponential, Weibull and Pareto. The exponential
and Pareto distribution models are those proposed due to Jelinski and Moranda
(known as JM model) [25] and Littlewood [26]. Before we describe the change-
point models first we briefly describe the JM model.

This model belongs to a class of exponential order statistic model that assumes
that fault detection and correction begins when a program contains a number of
faults and all the faults have the same rate of detection ®. The basic assumptions
of the model are

1. The rate of fault detection is proportional to the current fault content of the
software.

2. The fault detection rate remains constant over the intervals between fault

occurrences.

. A fault is corrected instantaneously without introducing new faults.

4. The software is operated in a similar manner as that in which reliability pre-
dictions are to be made.

5. Every fault has the same chance of being encountered within a severity class as
any other fault in that class.

6. The failures, when the faults are detected, are independent.

(O8]

If the time between failure occurrences isx; = t; — t; _ ,i=1, ...., n, then x;’s
are independent exponentially distributed random variables with mean. Let f(¢;) be
probability density function for particular time #; such that

flxi/ting) = ®(a — (i — 1))e P li=D (5.2.1)
and cumulative density function be
F(t)=1—¢% 1/®a—(i—1)) =1/ (5.2.2)
where 4; is the hazard rate. Equations (5.2.1) and (5.2.2) imply
m(t) =a(l—e ™) (5.2.3)
A1) = a®exp™ ¥ (5.2.4)

where m(¢) is the mean value function and A(¢) is the failure density function.
Now the change-point model for the JM models is formulated under the fol-
lowing assumptions along with the other assumption of the model.
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1. There are a finite number a of items under the testing (faults), may or may not
be known.

2. At the beginning all of the items have the same lifetime distribution F. After t
failures are observed the remaining (¢ — t) items have the distribution G. The
change-point 7 is assumed unknown.

3. Thesequences X, X, ..., X;and X1, X,», ..., X, are statistically independent.

Note that JM model is a finite failure model as tlim m(t) = a.

5.2.1 Change-Point JM Model

If Fy and F, are exponentially distributed with parameters A; and /,, respectively,
then the inter-failure times Xj, X, ..., X,, are independently exponentially dis-
tributed. Specifically, X; is exponentially distributed with parameter A;(a — (i —
1)), i =1.2,...,7, and X; is exponentially distributed with parameter A>(a —
t+j—1),j=1t4+ 1,7+ 2, ..., n. When the observations X;, X, ..., X; fol-
low the same distributions F, the observations X1, X;42, ..., X,, follow the dis-
tribution F,, such that F; # F,. The index t is called the change-point.

5.2.2 Change-Point Weibull Model

Assume F; and F, are Weibull distribution functions with parameters (41, ;) and
(42, B), respectively. That is

Filt) = (1 - e**lf”‘> (5.2.5)

Fa(t) = (1 - e—iﬂ"z) (5.2.6)

In this case, the time intervals of failures are dependent. The Weibull model
without change-points is used by Wagoner [27] to describe the fault detection
process. Particularly, when the shape parameter § = 2, the Weibull model reduces
to Schick and Wolverton [28]. In application, one can assume the shape parameter

B = Po.

5.2.3 Change-Point Littlewood Model

Assume F; and F, are Pareto distribution functions with parameters (4, ;) and
(42, B») respectively, given as
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Fi(t) = (1 (14 t//ll)ﬁ‘) (5.2.7)

Fa(t) = (1 —(1+ t//lz)ﬂz) (5.2.8)

5.3 Exponential Single Change-Point Model

The NHPP exponential GO model is modified considering single change-point in
the testing process. According to the theory of change-point the fault detection rate
per remaining fault is varied before and after the change-point, given as

b(1) :%m(t)/(a—m(t)) :{bl Ostsw, (5.3.1)

by <t

by, b, are the fault detection rates before and after the change-point. For
b1, b, = b the model is equivalent to the GO model. The solution for m(f) under
the initial condition at t = 0, m(0) = 0 and 1 = 7, m(t) = m(7) is

a(l —e ) 0<t<r,
m(t) = {a(l —e(bimbe0) sy (53.2)

and the failure intensity function is defined as

\ abje " 0<t<r,
AMt) =m (1) = {ab;e—<blf+bz<f—f>> Pl (5.3.3)

The failure intensity function of the change-point models is not continuous, the
discontinuity lies at the time point of change. The reliability function of the model
for time x given ¢ is defined as

R(x|t) _ ef(m(tﬂ)fm(t))

e—a(e’bl’—e’bl(’“))

t<t+x<rt (5.3.4)
_ —byt _ o= (b t+by (t+x—1) o N
= { eole e i) t<t<t+x
o d (ef(blH»bz(rfT))_e*(bl'H»bz(H»xfr))) fe o

This model was proposed by Chang [14]. The authors have suggested using the
method of least square to estimate the unknown parameters. The time horizon of
change-point is also treated as unknown parameter of the SRGM.
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5.4 A Generalized Framework for Single Change-Point SRGM

Recent study on change-point models [23] proposed an approach to develop the
change-point models by giving a suitable probability distribution function for the
software failure-occurrence times, F(f). Here we describe this generalisation in
detail and obtain various exponential and S-shaped change-point models from it.
Let {N(¢), t > 0} denote a counting process representing the total number of faults
detected up to testing-time ¢. Then, the probability that m faults are detected up to
testing time ¢ is derived as

n m n—m _ .

Pr{N(t) = m} = Z (m> F(0)"(1=F(1))""Pr{Ny = n}; (5.4.1)
m=20,1,2,...

where the random variable N, represents the initial number of faults in the system and

is finite. If we assume N, follows Poisson distribution with mean a, then the counting
process {N(?), t > 0} follows NHPP with mean value function aF (). That is,

—alaF ()" 3 (a1 = F(0)"™

m! - (n—m)!

(aF(f))me_aF(z)
m!

Pr{N(t) =m} =¢

(5.4.2)

Equation (5.4.2) implies that an NHPP model can be developed by giving a
suitable probability distribution function for the software failure-occurrence times,
F(r) with pdf f(r). The single change-point model is described by defining different
hazard functions before and after change-point, i.e.

A
o) b1<t>_1——F1(t) 0<r<r, 543
N =29, -

> 1— Fy(1)

Using the hazard function defined above the mean value function of the single
change-point SRGM is derived from

AMt) =m'(t) = af (1) (5.4.4)
Equation (5.4.4) can be rewritten as
Alr) = (f()/1 = F(1))(a — m(t)) (54.5)

Solving (5.4.5) using (5.4.3) under the initial conditions at = 0, m(0) = 0 and
at r =1, m(t) = m(t) we get

_ aFl(t) 0<r<r,
m(t) = {a[l — (1 =F1(0)(1 = Fy(0)) /(1 = F2(1)))] t<t (5.4.6)
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Here Fy(t), i = 1, 2 are defined similarly but with different parameters. Kapur
et al. [23] used various probability distribution functions such as exponential,
Erlang, Logistic, Weibull, Normal, etc. to obtain different single change-point
models from the generalization (5.4.6).

5.4.1 Obtaining Exponential SRGM from the Generalized
Approach

Assuming the software failure-occurrence time distributions before and after
change-points F(f), F»(#) follows exponential distribution i.e.

Fi(f)=(1—e™), 0<r<t (5.4.7)

and
Fa(r) = (1—e™™), <t (5.4.8)

The mean value function of the change-point SRGM obtained using (5.4.6) is

_ Ja(l —exp(—by1)) 0<r<m,
m(r) = {a(l (bt byi—1)) 1<t (5:4.9)

The software failure-occurrence time distribution for single change-point
exponential model can also be derived from [29]

(5.4.10)

assuming constant hazard rates, i.e. the mean value function of the SRGM is given as

m(t) = aF (1)
(5.4.11)
=a{F1(OU(t — 1) + F2(1) Up(t — 1)}
where U(-), U,(-) are the step functions defined as
0 x<O0 0 x<0
Ul(x)—{l x>0 and U(x) = 1 x>0 (54.12)

5.4.2 Obtaining S-Shaped\Flexible SRGM from
the Generalized Approach

Change-point models that describe the S-shaped failure curve are also obtainable
from the above generalized framework. Using the probability distribution
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functions that describe an S-shaped curve in (5.4.6) we can obtain mean value
functions of the single change-point SRGM for the various existing S-shaped
SRGM and surely many new ones.

If we assume that F(¢) is defined by a two stage Erlangian distribution before
and after the change point, i.e.

Fi(t)=(1—(14+bi)e™), 0<r<z (5.4.13)

and
)= (1—(1+ba)e ™), 1<t (5.4.14)
The mean value function of the change-point SRGM obtained using (5.4.6) is

a(l = (14 byr)e™), 0<r<r,

m(t) = (14 by7)
11— " 7(1+p —byt—by(t—7)
a( (1+b21)( + byt)e <t

(5.4.15)

This model is the S-shaped change-point model for the Yamada et al. [30]
delayed S-shaped model. A more flexible S-shaped SRGM is obtained if we
assume

Fit) = (1 —e*bﬂk), 0<r<t (5.4.16)

and
Falt) = (1 - e’bﬂk), T<t (5.4.17)
The mean value function of the change-point SRGM obtained using (5.4.6) is

a(lfe’b"k), 0<r<r,

= 5.4.18
m(t) a(l 7efb|t"fb2(t"f‘t")) <t ( )

In this the fault detection rate not only depends on the remaining fault content
but depends also on the power function of the testing time. This model has a very
special property that for k = 1 the model describes an exponential curve, for k = 2
it describes a Rayleigh curve while for k > 2 the failure distribution is Weibull
probability distribution. The shape of the curve changes with the value of k, as
such this model can be used for a number of practical applications since the value
of k captures the shape of the failure curve.

If we define F(r) by a logistic distribution function i.e.

1— efblt

Fl(f)zmy

0<t<rt (5.4.19)
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and

1 _ e—bzt

F>(1) ST pe b

T<t (5.4.20)

Here in the logistic distribution the shape parameter can be assumed to be equal
before and after change-point for the sake of mathematical simplicity. The mean
value function of the change-point SRGM is

(14 B
a(l—m 5 OSIST,

(1 + ﬁ)(l + Beibﬂ) a—biT—by(t—1
a<1 — (1 +ﬁe*blr)(] +ﬁe—b2t)° bit—by( )) <t

m(r) = (5.4.21)

This model is the flexible change-point model for the Kapur and Garg [31]
model for error removal phenomenon; it has been proposed by Kapur et al. [20].
The model describes a flexible learning curve and in most cases provides a good
estimate of software reliability. It may be noted that the parameter /3 of the failure
time distribution is kept same before and after the change-point. The reason for
keeping this parameter constant is only for obtaining a simple mathematical form
of the model. For any good reason in any practical situation it can be assumed to
vary and the mean value function can be recomputed.

5.4.3 More SRGM Obtained from the Generalized Approach

The distribution the distribution of software failure-occurrence times can be any
known probability distribution function, such as Gamma, Normal distributions etc.
Each of these distributions has some special characteristics associated with them
and in many real life applications can accurately describe the software failure
process during the testing process.

Case 1 1If the failure occurrence times 7 ~ N(u, 02) (Normal distribution) i.e.

1 t— )’ .
Fi(t) = g(t; 1y, 07) = G‘\/ﬁg( ( 202) >; i=1,2 (5.4.22)

1

then the mean value function of the SRGM is
aq)t;ul7o-l)7 OSIS‘C,
1) = 1—®(t; 1 —®(z
m(r) a<1 (1= o)1 = O ,uz,az») -
(1 _(D(T;M2>O-2))

(5.4.23)

1

(D(t,,u,a)z/g(x;,u,o)dx
0

Case 2 If the failure occurrence times 7' ~ (o, ;) (Gamma distribution) i.e.
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F) = gl f) = 2P S0 i1 (5.4.24)
i 8\IL; %, i F(oc,) 9 ) ) .
then the mean value function of the SRGM is
al'(t; o, By) 0<r<r,
m(t): a<1(l_r(f;“lvﬁ))(1_ t“ZaﬁZ )
(1 =Tz, f)) (5.4.25)
I'(t;a,f) = /g x; o, ) dx
0

5.5 Change-Point SRGM Considering Imperfect Debugging
and Fault Complexity

We have studied the importance of considering testing efficiency in measuring the
software reliability. As such a change-point SRGM considering the effect of
imperfect debugging can provide more accurate measure of reliability. Here first
we describe an exponential model [15] which considers only the phenomenon of
error generation then an integrated testing efficiency change-point SRGM is
developed.

5.5.1 Exponential Imperfect Debugging Model

Along with the assumptions of NHPP and change-point GO model it is assumed
that when detected faults are removed at time ¢, it is possible to introduce new
faults with introduction rate o(f)

s OSIS‘C,
ot) = {a2 2= (5.5.1)

Then the set of differential equations that describe the SRGM is given as

dm(t) da(t)  .dm(t)
e b(t)(a(t) — m(t)) where ke a(r) o

Solving Eq. (5.5.1) using (5.3.1) under the initial conditions m(0) = 0 and
a(0) = a we get

(55.2)
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(a/1—oy)(1 —e =) 0<t<r,
1— 1 — e~ (i(1=2)t+br(1-2)(1=7)
mit) = { @/ “2)( © ) (5.5.3)
n m(t) (o — o) f> 1
1-— Ol

To account the multiple types of the faults in the system (concept of fault
complexity) the model can be extended as follows

m(t) = 3 m(0)
(avi/1 — o) (1 — e~buli=2r) 0<t<r,
(av,-/l — “i,2)

= (1 _ e*(bi,l(1*%21)T+b[2(1*0(/.2)(l*f))

(5.5.4)

m(r) (OC,"I — 06572)

+ 1— o2

>

Here the index i denotes the type of fault and v;, (b;;, b;2), (21, ;) are the
content proportions, fault detection rate and fault introduction rates of the fault
type i in the software, respectively, such that Y ;v; = 1. The second index rep-
resents the parameter value before and after the change-point. This model
describes an exponential failure curve and considers only one aspect of testing
efficiency i.e. fault generation. We know that the imperfect fault debugging and
fault generation together are the measure of testing efficiency and influences the
measure of reliability greatly. We now describe here an integrated testing effi-
ciency single change-point SRGM, which also possess the flexible structure that
can capture both exponential and S-shaped failure curves.

5.5.2 Integrated Flexible Imperfect Debugging Model

Change-point integrated testing efficiency models can be developed for all the
integrated testing efficiency models discussed in Sect. 3.5. Here we show how to
develop change-point model corresponding to these models for one specific case.

Assuming fault removal rate per additional fault removed is reduced by the
probability of perfect debugging and a constant proportion of removed faults are
generated during removal, the differential equation describing the removal phe-
nomenon incorporating change-point with imperfect fault debugging and fault
generation is given by
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D0 _ pb(s)(alt) ~ mi 1) (555)
where
by /14 e P 0<t<r,
br) = {b;?l +pe 1> (5.5.6)
and

a(f):{a—i—oclmr(t) 0<t<t

a+oym,(t) + oa(m,(t) —my(7)) t> T (5.5.7)

The mean value function of the SRGM obtained from the above equations is

a _1 (14 B)e-bin\ P oo
(1—ay 1+ Pe—brt =I=5

1+ﬁe*blf —p(l-o) 1+ﬁe—b21 —p(1-u)
m(f) =4 |1 (1+ﬁ) <1+ﬁe‘b2) (5.5.8)

1 _
( 062) e—b]rp(lfm)*bz(f*T)P(I*W)

~—

a(og —o) [1((1"'/3)6[”1)[)(1_“')] 1>1

M=o (1=m) 1+ et

The asymptotic properties of the model are same as SRGM without change
point. The difference lies in the mean value function of the SRGM before and after
the change-point; however, the intensity function of this model is discontinuous at
the change-point. The mean value functions of the failure phenomenon can be
obtained from pmg(t) = m,(f). This model is due to Sehgal et al. [32]. In this
formulation the parameters p and f§ are taken to be constant and same before and
after the change point just for the sake of simplicity and reduce the number of
unknown parameters. However they can be taken different, as the parameter p is
related to the testing efficiency and changes in this parameter are observed readily
with the testing progress due to experience, more removals in the later testing
phase, reconstitution of testing and debugging teams and adoption of new testing
methods and strategy. Similar changes can be seen in the shape parameter of the
logistic function of fault removal rate.

Similarly change-point models can be derived for other testing efficiency
models. This is left as an exercise to the readers to derive the change-point model
with all parameters different for the above SRGM and change-point models for the
other testing efficiency models.
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5.6 Change-Point SRGM with Respect to Test Efforts

In the earlier chapters we have discussed various SRGM defined with respect to
test efforts. If having a measure of reliability is the major purpose of using an
SRGM for practical applications then SRGM developed in respect to time can
provide useful information. If however an SRGM is used to measure the effec-
tiveness of resources spent on testing or used in some optimization model for
decision-making purpose the models developed accounting the effect of testing
resources are more fruitful. Other considerations related to the use of test effort
based SRGM have been discussed in the previous chapters.

5.6.1 Exponential Test Effort Models

Exponential test effort single change-point model based on the general assump-
tions of the NHPP model (GO model) is formulated as

(0 = b0)(a = m(o) (56.1)
where
b() = {Z; 0=r=r (5.622)

w(t) being the density function of test effort distribution W(¢). The mean value
function for the failure process is given as

mit) = { 28 _ Z:Zf (V::?ﬂwv(v(z:)))?wﬂwo)w<r>>>) Sf ; =" (5.6.3)
or
fa(l—e V@) W ()= (W()—W(0)) 0<r<r,
m(t) = {a(l — e (W @ W), <t
W(t—1)=W(t) — W(1)) (5.6.4)
and the failure intensity function is given as
0= { e o iy 550 669

Any form of the test effort function discussed in Sect. 2.7 can be used here to
describe the distribution of test efforts. Huang [17] has validated this model using
logistic and generalized logistic test effort functions.
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5.6.2 Flexible/S-Shaped Test Efforts Based SRGM

Development of the flexible test effort models is based on the assumption that the
fault detection rate is a function of the time-dependent testing effort consumption
function. Mathematically the model is stated as

d 1
- — —p — .6.
G0 = PV O) @ = m(o) (56.6)
where the fault detection rate is defined as
b
—— 0<t<7
“bW =fr="%

b= 1T . (5.6.7)

11 ety =

The mean value function for the failure process is given as

1— efb1W‘(t)
(5 gw) veEe
m(t) = (1 + ﬁe—bIW«))) (1 + ﬂe_bzw(f)) (5.6.8)
a|l— | \1+Be W J\1+ fe-b2¥0) <t
ef(bl W*(2)+b,W(t—1))

W*(-), W(t — t) are as defined in (5.6.4). This model was proposed and validated
by Kapur et al. [20]. Another form of test effort based model is formulated based
on fault detection rate defined as

bW 0<i<nt,
b(t)—{b;<W(t>>k o (5.6.9)

which yields flexible test effort based SRGM. The mean value function for the
failure process in this case is given as

a1 — e OBV w0 0<r<t,
t) = ) )
" a1 - RO o (e )y
(5.6.10)
or
a(l — e h (/W 0), 0<t<r,
m(r) = {a(l e (B W@ WD), oy (5.6.11)

W) = (W(.)k+l B W(O)k+1); W(t—1) = (W(t>k+l B W(T)k+l>

This model is studied due to Kapur et al. [24]. This model is basically based on
the assumption that the failure-occurrence time follows Weibull distribution and
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hence the mean value function describes a Weibull probability curve. The models
provide a flexible mathematical form of the mean value function. The flexible
nature of these models is due to the parameters f3, k, respectively. Value of these
parameters determines the shape of the curve. For § = 0 (k = 1) the model reduces
to GO model type exponential model. Other values of f8, k > 0 capture the vari-
ations of the failure curves.

5.7 SRGM with Multiple Change-Points

First we describe a generalization based on the concept of quasi-arithmetic mean
to obtain the mean value function of the NHPP-based SRGM. This generalization
is then used to obtain various exponential as well as flexible SRGM with multiple
change points [18]. The situation of multiple change points exists in a testing
process if changes are observed not only at one point of time rather at various
different points of time and the fault detection/removal process between these
change points is described by the parameter variation modeling approach, i.e. the
process is described by the different set of parameters from a similar distribution.

Quasi-Arithmetic Mean: Let g be a real-valued and strictly monotonic function.
Also let x and y be two non-negative real numbers. The quasi-arithmetic mean z of
x and y with weights w and 1 — w is defined as

z=g '(wg(x) + (1 —w)g(y)); O<w<l (5.7.1)

where g~' is the inverse function of g. We can obtain the weighted arithmetic,
weighted geometric and weighted harmonic means from (5.7.1) using g(x) = x,
g(x) = 1/x and g(x) = In x, respectively.

Now assume m(t + Af) be equal to the quasi-arithmetic mean of m(f) and
a with weights w(t, Af) and 1 — w(¢, Ar), then

g(m(t + Ar)) = w(t,Ar)g(m()) + (1 — w(t, At))g(a); O<w(t,Ar)<1 (5.7.2)
where g is a real-valued, strictly monotonic and differentiable function. That is,

sl 20) — sl =B ) —glme))  (573)

If I_WT(;‘M — b(t) as At — 0 then we get the differential equation

Zelm(n) = b(1)(sa) — glm(1) (574)

Here, b(?) is the fault detection rate per remaining fault. Various NHPP-based
SRGM can be obtained from the general equation (5.7.4). The result is summa-
rized in the form of a theorem.
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Theorem 1 Let g be a real-valued, strictly monotonic and differentiable function
and

% (m(1)) = b(¢)(g(a) — g(m(1)))

then the mean value function of the NHPP-based SRGM can be obtained from

m(t) = g~ (g(a) + g(m(0)) — g(a))e " (5.7.5)

and B(t) = ff)b(u) du, gix) =xandk=1— w7 where initial condition is

the value of the mean value function at the boundary point.

5.7.1 Development of Exponential Multiple Change-Point Model

Based on the weighted arithmetic mean assume g(x) = x, k = 1 — m(0)/a and
B(t) = f(; bdu then theorem-1 yields the GO model.
m(t) = a(l —e™)

Following a similar approach the exponential multiple change-point SRGM can
be obtained defining

by 0<t<1y,
by 1<t<1y,

and
. . i—1
k=1 ) oY e, oy, (5.7.6)
a

Using the above definitions the generalized solution of the GO model with
multiple change points is

i—1
_<bi(l—fz’1)+zby(r,—1,l)>
mi(t)=<all—e =1 i 10=0,i=1,....,n (57.7)

i
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The value of n depends on the number of time points at which changes are

observed, which as already discussed can be obtained from the failure data plots
and the developers.

5.7.2 Development of Flexible/S-Shaped Multiple
Change-Point Model

Following Theorem 1 multiple change-point model can be obtained for the various

existing SRGM. Defining B,(1), k; as in (5.7.6) and b;(¢) = m i=1,.,n,
the mean value function of the flexible multiple change-point SRGM is
—bit —bi(t—1i_1) i=1 p.—bit b (t—7r-1)
mi(t)—a[1—<ﬁe +e,b., Hﬂe +eibt )] =1,..,n
1+ pebi ! 1+ Be—brr
(5.7.8)

Here also 7o = 0. Following a similar structure various other flexible and S-shaped
SRGM can be derived such as multiple change-point models for Yamada delayed
S-shaped model [30], Weibull model (Eq. 5.6.9), test effort models, etc. The
readers should obtain these models following a similar approach.

So far we have been discussing change-point SRGM. It is said that due to the
various reasons that work collectively, changes are observed in the fault detection
rate, testing efficiency, etc. These changes bring changes in the failure distribution
and parameter variability approach between change-points is used to model the
changes. An important fact has been overlooked by these models. Failure occur-
rence and removal process is described by a numerous factors such as testing
environment, testing strategy, complexity and size of the functions under testing,
skill, motivation and constitution of the testing and debugging teams, etc. wherein
the major role is played by the testing effort expenditure. The reasons that account
to bringing variations in the testing process include application of scientific tools
and techniques to increase the test coverage, forces from parallel projects, bringing
experience and skilled testing professional, distribution of CPU hours, etc. Testing
effort distribution during the test phase is affected by most of the factors affecting
the testing process and changes in them bring changes in the testing effort
consumption rate. Sometimes the testing effort distribution is adjusted to meet the
deadline pressures of the project, to discover and remove more faults during
the end stage of testing to attain maximum possible reliability. The changes in the
testing effort distribution have direct influence on the fault detection and removal
and as such cannot be ignored. Now we develop the multiple change-point models
to describe the testing effort distribution and using these models we develop the
multiple change-point SRGM. Single change-point models can be derived from
these models as a special case.
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5.8 Multiple Change-Point Test Effort Distribution

5.8.1 Weibull Type Test Effort Function with Multiple
Change Points

In Chap. 2 we have explained various test effort functions (TEF), these functions
are smooth functions and do not consider the varying pattern of testing effort
consumption during testing in accordance with the changes brought in the testing
strategies, environment, team, etc. to fasten and improve the testing process. Here
we develop the modified Weibull type test effort function to describe the varying
pattern of test effort consumption by re-parameterizing the differential equation
(2.7.9), i.e. assuming the testing effort consumption rate at any time ¢ during the
testing process is proportional to the testing resource available at that time and
following the procedure of change-point models the test effort function is
formulated as

W v - wir)
where
v, (1) 0<r<1y,
wp=q 0 m<sw (5.8.1)

Va1 (1) <t

where N is the total testing resource available and v;(¢) is the testing resource
consumption rate per remaining effort. Using the above formulation we have the
following three non-smooth testing effort functions given n change-points in the
testing process.

Case 1: Modified Exponential TEF (METEF) Testing resource consumption rate
is defined as

v, 0<t<1y,
<
win=4"m TEE™ (5.8.2)
V1 Ta <t

The METEF under the initial conditions W(0) = 0, W(t = 1;) = W(1)),
o W(t = 1,) = W(t,) is

N(1 —e™) 0<r <1y,
N(l —Ci(VITIJrVZ(FT')) T <t <1,
W) = W.(¢) = (5.8.3)

N(l B e_(ZT v:i(f.;.—fifl)‘*"’w'(’_T"))) t>1,
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Case 2: Modified Rayleigh TEF (MRTEF) The testing effort consumption rate
and MRTEF under the initial conditions W(0) = 0, W(r = ;) = W(1y), ...,
W(r = 1,) = W(z,) are given as

vt N(l—e*v'fz/z) 0<t<y,
W W) = 4wt N(1—e (D) n<t<n,
i N1 (IR0 s,
(5.8.4)

Case 3: Modified Weibull TEF (MWTEF) The testing effort consumption rate and
MRTEF under the initial conditions W(0) =0, W(z = 1;) = W(1)), ...,
W(t = 1,,) = W(z,) are given as

vic el N(l —e“’"”) 0<r<1y,

Vs Co th*l; N(l _ e—(vlr’l'l +vz(t‘2_f‘lz))> n<t<m,

vt —iy) )
t>1,

B Cntl . 7Cntl
Vi Cp tCnil; N|l1l—e <+Vn+1 (t T” )

(5.8.5)

5.8.2 An Integrated Testing Efficiency, Test Effort Multiple
Change-Points SRGM

The multiple change-point test effort models are used to develop integrated testing
efficiency multiple change-point test effort models. The flexible integrated testing
effort model discussed in Sect. 5.5 is extended with respect to the test effort model
discussed above assuming n change-points. Let us first recall all the assumptions
and considerations that apply to the model.

5.8.2.1 Assumptions

1. Failure observation/fault removal phenomenon is modeled by NHPP.

2. Software failures occur during execution due to faults remaining in the
software.

3. As soon as a failure occurs, the fault causing the failure is immediately iden-
tified and efforts are made to remove the faults.
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4. Weibull type multiple change-point type test effort function describes the
consumption of testing resources.

5. The instantaneous rate of fault removal in time (f, t + Af) with respect to
testing effort is proportional to the mean number of remaining faults in the
software.

6. On aremoval attempt a fault is removed perfectly with probability p, 0 <p < 1.

7. During the fault removal process, new faults are generated with a constant
probability o, 0 < o < 1.

Under the assumptions 1-7 and applying the theory of change-point modeling
the differential equation for the SRGM is given by

pibi(a+ oym,(t) — m(1))w(r) 0<r<1y,
paba(a + aymy(t1) + o (my (1) — me(z1)) — my(1))w(t)

or paby(a+ (o — a)my(t1) — (1 — a)m, (1) )w(t) 71 <t<1s,
dm,(t
dt

~—

Pni1bpii (d + '” (o — iy )me(7i) — (1 — “n+1)mr(f)> w(t)

i=1

r>1,
(5.8.6)
Mean value function (MVF) of the model under the initial conditions m,(0) = 0,

mft =1y) = mA(ty), ..., m((t =71, _1)=m(t, _ 1) and w(0) =0,
W(t = 11) = W(ty),..., W(t = 1,) = W(t,) is given as

~(1—emn) 0<r<1y,
o1
1
&—((a —oym(ty))(1 —e*‘h(W(’)*W(’l))) +8m(t1)) T <t<1p,
2
n—1
mr(t): <Q+Z(ai_ai+1)mr(ri)_(l_an)mr(fn)>
1 i=1
— > 1,
Tnt1 (1 _ efqn+1<w<t>fw<ru>>)
+ (1= oty 1)m(t5)
(5.8.7)

where o, =1 — oy g; = bp(1 —o);i=1,2, ..., n.

The study is due to Gupta et al. [4]. Such a model is very useful for the
reliability analysis as the measure of reliability is computed considering the dis-
tribution of testing efforts, influence of the testing efficiency and the changes of the
testing process.
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5.9 A Change-Point SRGM with Environmental Factor

The study of reliability models with change points reveals that a great improve-
ment in the accuracy of evaluation of software reliability is achieved with the use
of change-point models as it considers the more realistic situations of the testing
process. The models describe the difference of testing environments before and
after the change point using different fault detection rates, while traditional models
have ignored such differences completely. In fact, there are both differences and
links between the fault detection rates before and after the change point. Software
testing is an integrated and continuous process. The software testing process
consists of several testing stages, including unit testing, integration testing and
system testing. At the stages of testing, the test teams and the operating systems
are similar. So, the fault detection rates before and after the change point should
have some links with each other because of the similarity of the environments and
these links can be described using the environmental factors. Environmental
factors that profile the software development process have much impact on soft-
ware reliability, which is studied by some researchers [33, 34], who identify six
factors that have the most significant impact on software reliability including
software complexity, programmer skill, testing effort, testing coverage, testing
environment and frequency of program specification change. Environmental fac-
tors include many other important factors that affect software reliability, which
need to be considered and incorporated into the software reliability assessment.
These environmental factors can be used to associate the fault detection rate before
the change point with fault detection rates after the change point. In fact, the
environments that respective phases experience during the software testing process
are also different. In order to quantify the environment mismatch due to the
change-point problems of testing, in a study an environmental factor was proposed
[35] which is used to describe the differences between the system test environment
and the field environment. This factor is defined as

k= Dt (5.9.1)
briela

This factor is used to link the fault detection rates of the testing and the
operational phases. by, bricla Tespectively represent the long-term average per
fault failure rate during the system test and the field. This factor is assumed to
remain constant. From the aspect of the software testing process, the testing phase
is based on a testing profile, developed test cases and uses various test strategies.
Different test cases have different failure detection capability. At any of the testing
phases, firstly the testers are observed to run the test cases with strong testing
capability and high percentage of coverage to improve the testing speed and
efficiency, which will lead to reduction of the FDR. If the testing transfers to a new
phase, the FDR still decreases similarly. It is very difficult to ensure that the two
FDRs decrease in a same proportion during the testing phases. Therefore, for better
description of the impact of environment on the FDR, a function varying with time
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should be used to describe environmental factors. More precisely, the FDR is used
to measure the effectiveness of fault detection of test techniques and test cases.
Four kinds of FDR functions during software testing are defined in the literature.

1. Constant [36].

2. An increasing function with respect to the testing time [37].

3. A decreasing function with respect to the testing time [30].

4. First increasing and then decreasing function with respect to the testing-time
[38].

If same SRGM is used before and after the change-points, the relationship
between time and FDRs are as shown in Figs. 5.1, 5.2, 5.3 and 5.4. The figures
clearly illustrates that the environmental factor is a constant in the first case and
may be a variable in the other three cases. Thus, more generally, the environmental
factor should be defined as a function of time. Here by¢(f) denotes the FDR before
the change point and b(f) is the FDR after the change point.

Fig. 5.1 FDR constant with A
respect to time
b :
: >
T t
Fig. 5.2 FDR increasing A
function with respect to the :
testing time :
g :
2
- >

N
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Fig. 5.3 FDR decreasing A
function with respect to the : b af(t)
testing time H
&
Q H b(t)
uw H _l,/_, ﬁ,'f_(. -
: >
T t
Fig. 5.4 First increasing and A
then decreasing FDR
&
w
>
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The time-dependent environmental factor is defined as
bbf(l‘)
k(t) = ; te(r,+oo 59.2
() =gy 1€ (rod) (59.2)
and the average time-varying environmental factor is defined as
- by (1)
k(t) == ; te(r,+o0 59.3
() =3 1€ (red (59.)

where by (t) (bor(2)), bar (1) (bar(t)) denote the FDRs (average) before and after the
change-point 7. Assume that the testing ends at 7.,4. The expected number of faults
detected and removed by time t is m(t) and the FDR before the change-point is
bye(t). After change point, the expected and actual number of faults detected and
removed by time ¢ is m(f) and N(f), respectively.
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The residual number of faults after the change-point is N(¢) = a — N(t). N(t)
can be obtained by replacing a with its estimate by applying all the failure data to a
similar type of SRGM without change-point, such as GO model for an exponential
failure curve. This also gives a measure of b,(f). The failure intensity after the
change-point (case of GO model) is given as

A1) = bye(2)(a — m(r)) (5.9.4)
The following equation can be used to calculate average failure intensity

At) = % (5.9.5)

Now replacing m(z) with N(t), A(f) with E(t), the average FDR is calculated as

bu(t) = 105 (5.9.6)

Discrete and average time-varying environmental factors of k(¢) can thus be
calculated as

k(ti) =7 i € (Tatend] (597)

S
o
=
—~
B
~

Zhao et al. [39] carried out a study on two data sets reported by Ohba [40]
and Musa et al. [41]. Firstly plotting the data failure trends was determined. For
Ohba data set GO model, Yamada delayed S-shaped model [30] and logistic
growth curve (m(t) =a/(1+ Be?)) are fitted, while on the Musa’s data
observing the S-shaped trend only the S-shaped models (delayed S-shaped and
logistic growth curves) were fitted. Comparison result of parameter estimation
showed that the logistic curve fitted best to both of the data. Using (5.9.4)
bye(t) is obtained as

a

bu(t) = T5pen

(5.9.8)
bpi(t) of Eq. (5.9.8) is the non-decreasing S-shape, which denotes the testers’
learning process. The learning is closely related to the changes in the efficiency of
testing during a testing phase. The idea is that in organizations that have advanced
software processes, testers might be allowed to improve their testing process as
they learn more about the product. This could result in a fault detection rate
increase monotonically over the testing period. As the testing continues, the
increase of FDR becomes slow gradually, the failure intensity of software will
decrease significantly, the effectiveness of the testing will be lowered, and thus the
tester will adopt new testing technologies and measures to improve the number of
failures detected within a unit time, therefore the change point is generated. Thus
bye(t) can be approximately replaced by the FDR at the maximum level by (t)
before the change-point of testing. While b, (t), k(t) are derived using (5.9.6) and
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(5.9.7). From the above experiments of two data sets, the approximately
decreasing trends of k(z) are derived. This is due to the fact that as the testing
proceeds, the effective use of testing strategies and tools of non-random testing
makes the average FDR after the change point of testing approximately non-
decreasing, thus the average environmental factor is decreasing with time. The
approximately decreasing trend of k(f) can be described as

k(t) = Be™ (5.9.9)

Now an NHPP-based change-point model assuming perfect debugging envi-
ronment is derived on the basic assumptions of the change-point models and
assuming that before the change point of testing, the fault detection rate captures
the learning process of software testers; and after the change point of testing, the
fault detection rate is the integrated result of environmental effects and the FDR
before the change-point. The mean value function before and after the change
point are derived as

d biy(1)(a —m(r)) 0<r<t
—m(t) = - 5.9.10
a0 {baf(t)(a —m(t) 1> < (5.9.10)
Using the initial conditions at t = 0, m(f) = 0 and ¢ = 1, m(f) = m(t) and
b b
approximating b,(t) using by (1) = ﬁbtf) = Bebf"" the mean value function of the
SRGM before and after the change-point is given as
a
— 0<t<t
m(r) = { 1+ pe” (5.9.11)
(a—m(1))(1—eB") 1>1
where
Tend lend  _ _ N
“(p [ by biy(en e
B*(1) = / by (t)dt = / Be-éfdt = 55 t>1 (5.9.12)

Using (5.9.12) the mean value function of the SRGM is given as
a

()= § 1+
(a—m(7))(1 — e(—byr (e % — e %)) /BS) +m(zr) t>1
(5.9.13)

0<r<t

The above change-point SRGM describes an S-shaped failure curve considering
the environmental factors for determining the FDR before and after the change-
points. Change-point models find very interesting application which is called
testing effort control problem during software testing. In the next section we
describe how to carry out a testing effort control problem [20] on the testing effort
based change-point flexible SRGM (Eq. 5.6.8).
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5.10 Testing Effort Control Problem

During testing, often the developer management is not satisfied with the progress
of the testing and the growth of the failure growth curve or it may happen that the
reliability level achievable with the current testing level does not match with the
desired level upto the scheduled delivery time. Then there arises need for
employing additional testing efforts in terms of new techniques, testing tools, more
manpower so as to remove more faults than what could be possibly achieved with
the current level of testing efforts in a prespecified time interval. This is a trade of
problem between the aspiration level of reliability and the testing resources. This
analysis gives an insight into the current level of progress in testing and later on
helps in the estimation of extra efforts/cost required to achieve the aspiration level.

Let us consider the case when testing has been in progress for time 7 and the
number of faults removed by time T, is m(T;). Let T, be the release time of the
product in the market. Then by time 75, the number of faults removed will rise to
m(T») if testing is continued and similar efforts are put. The level m(7,) may or
may not coincide with the level to be achieved by the release time (say m*). To
accelerate testing and increase the efficiency of the testing and debugging teams it
is required to put extra resources in terms of additional man-hours, new testing
techniques, tools and more skilled testing personnel. Now the question arises how
much additional efforts above the current level need to be employed to achieve the
level m*. In the testing effort control problem we estimate the requirement for
additional efforts for the aspiration level to achieve.

First using the actual failure data for time (0, 7;), we estimate the parameters of
the SRGM (5.6.8). Using the estimated values of the parameters the number of faults,
which can be removed, by time 75 is m(75). If m* < m(T5,), then the current level of
testing is sufficient to reach the target reliability level. The team has just to sustain
the current level following the similar testing environment as earlier and the product
is expected to be ready for the delivery without any urgency. Butif m* > m(T5,), then
there is the urgency of accelerating the fault removal rate by increasing efficiency of
the testing. The aim is to estimate the requirement for additional testing efforts for
the time interval [T, T5) so as to remove (m* — m(T))) faults by time 75. In this case
time T is a change point as from this point onwards the testing team has to follow a
different, advanced set of test efforts, tools and strategy to achieve removal of
(m* — m(Ty)) >(m(T,) — m(T}))) number of faults in the time period [T, T>). The
change point will deviate the growth curve at an accelerating pace. It may be noted
that the time point 77 may not be that first change point one or more changes point
can occur before time 7. We assume that a change-point have occurred before time
Ty (T, > 7). Then in this case if the current level of testing efficiency is maintained,
then the number of faults removed by time T, i.e. m(T5,) is given as

—biW(0 —baW(e
m(Ty) = a1 — L+ e ®VON /14 pe W0 o (W (D)2 W(Ty—))
1+ ﬂe—blw(f) 14+ ﬁe—bzw(Tz)

(5.10.1)



5.10 Testing Effort Control Problem 199

Let m* = m(T,) + m(T, — T;). Here m(T, — T),) is the additional number of
faults that need to be removed to reach m* by time 75. Let W(T}) be the cumulative
level of the testing effort used for time (0, 7)) and W(T5) be the cumulative level of
the testing effort used in time [7,75) if testing is continued with the same pace as
up to the time (0, 7;). Let W(T, — T) be the additional amount of efforts required
to remove m(T, — T,) faults during interval [T, T>). This control problem can be
presented graphically as in Fig. 5.5.

For ¢ > T the removal process can be represented by the following differential
equation

dn;ﬁt)/w(t) = ﬁ(d —m(Ty) — m(r)) (5.10.2)

Let us define a; = a — m(T)), then the above differential equation can be
written as

dangt)/W(’) - ﬁ(al —m(Ty) —m(1)) (5.10.3)
_ e—bzw(t)
m(1) = m(Ty) + a; <11+/3ehW<t)> (5.10.4)

If the desirable level for the fault removal is m*, then the requirement for the
additional efforts can be generated by the following expression

. | —e W
m = m(Tl) +a; W (5105)

With the estimated values of parameters a;, b, f and m(T;), the above
expression can be solved to find the value of W* corresponding to different values
of m*.

Here
W# = W(Ty) — W(T)) (5.10.6)

Fig. 5.5 Testing effort m* A ,
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where W* represents the amount of additional efforts required for the time interval
(Ty, T>) to remove m* faults from the software.

5.11 Data Analysis and Parameter Estimation

Before discussing the change-point models we stated the fact that these models
describe the changes observed in the testing process during testing, as a result
these models have better estimating and predictive power than those without their
change-point counterparts. This section of the chapter proves this fact. Here we
have established the validity of models from both categories and estimated the
parameters of these models. A comparison is then drawn on their estimating and
predictive capabilities. Several models have been selected describing the various
aspects of the testing process, such as uniform and non-uniform operational pro-
files, testing efficiency model, test effort based model and models based on sta-
tistical Weibull, Normal and Gamma distributions.

5.11.1 Models with Single Change-Point

Failure Data Set

The data set has been cllected during 19 weeks of testing of a real time command
and control system and 328 faults were detected during the testing [40]. Analysis
of the graphical plot of this data set depicts a change-point at 6th week of testing.

Following models have been chosen for data analysis and parameter estimation.

Model 1 (M1) Exponential GO model [36] (refer Sect. 2.3.1)
m(t) = a(l —e™)

Model 2 (M2) Exponential change-point model [14]

m(t) = {a(l e ) 0<i<r,

a(l —e rmthal=0)) > ¢
Model 3 (M3) Yamada S-shaped model [30] (refer Sect. 2.3.4)
my(t) = a(l —e™)
Model 4 (M4) S-shaped change-point model [23]

a(l—(l—&—blt)e’bl’), 0<r<r,

m(t) = (1+by7)
l N 1 b t 7171‘[7172([71’) t
“( (5 by F 02008 T


http://dx.doi.org/10.1007/978-0-85729-204-9_2
http://dx.doi.org/10.1007/978-0-85729-204-9_2

5.11 Data Analysis and Parameter Estimation 201

Model 5 (M5) Flexible SRGM [31] (refer Sect. 2.3.4)

m(t) =a {l_ebt]

14 fe?!
Model 6 (M6) Flexible change-point model [20]
1 —b;t
a(l—%), OSIST,
m(r) = )

(1 + ‘8)(1 + ‘Be*bzf) —01T=ba(1—7T
a0‘0+&hwuwe%ehb(0 T

Model 7 (M7) Weibull model [23]
a (1 - e’b’k>
Model 8 (M8) Weibull change-point model [23]
a(l—e’b"k), 0<t<r,
m(t) =
@ a(l —e_b'fk_’“(’k_rk)) T<t
Model 9 (M9) Normal distribution change-point model [23]

a(I)t;:ulaal)a 0§t§‘c,
m(t) =9 (1 =@ wm,0))(1 = O, 02))\
(l (1= 0t 15, 2)) ) <!

t
O(t, 1,0) = /g(X; 1, o) dx
0
Model 10 (M10) Gamma distribution change-point model [23]
ar(t;alaﬁl) OSIST?
0= o1 -UTE R AN Tem )
(1 =T(t;00,5,))

t

[(t0,B) =/g(xaoc,ﬁ)dx

0

Model 11 (M11) Exponential change-point imperfect debugging model [15]

(a/1 —ap)(1 — e {-=)r) 0<r<t,
(a/l — 0(2)(1 — e_(bl(1_0(1)77""}72(1_9‘2)(1_1)) >
m(‘c)(oc1 — 0(2)

1-— [0%)

m(t) =
+
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Table 5.1 Estimation results for model 1 to model 12

Model  Estimated parameters Comparison criteria
a b, by, i, B boy po, Bo K, B g, 01 02,0 MSE R’
M1 761  0.032 - - - - 158.71 0.986
M2 423 0.055 0.098 - - - 86.62 0.993
M3 374 0.198 - - - - 188.60 0.984
M4 393 0.196 0.175 - - - 192.03 0.984
M5 382 0.179 - 2886 - - 98.26 0.992
M6 405  0.079 0.122 0.461 - - 91.26 0.993
M7 428  0.036 - 1284 - - 121.79 0.990
M8 429  0.058 0.112 0951 - - 91.16 0.993
M9 339 -0.097 9.355 - 5.550 4.536  52.79 0.996
M10 411 5.240 6.012 - 1.920 2321  266.85 0.965
Mil1 451  0.051 0.085 - 0.007  0.001  106.33 0.994
MI12 438 0.018 0.033 - - - 252.43 0.993

Table 5.2 Estimation results for test effort functions

Test effort function Estimated parameters Comparison criteria

o v ¢ p MSE R’
Exponential 590 0.004 - 25.71 0.99
Rayleigh 49 0.014 - 26.49 0.974
Weibull 180 0.009 1.192 28.22 0.996
Logitic 55 0.226 13.033 1.93 0.992

Model 12 (M12) Exponential test effort model [17]

At) = abyw(t)e W0 0<i<r,
T labyw(t)e" W@t We=1) 1y

W) = (W() = W(0)), Wt — 1) = (W(1) = W())

The parameters of models M1-M13 are estimated using the regression module of
SPSS. Results of estimation for SRGM have been tabulated in Table 5.1 and those
for the test effort functions are tabulated in Table 5.2. Figures 5.6, 5.7, 5.8 and 5.9
show the comparison of goodness of fit and future predictions for the change-point
models and their non-change-point counterparts for the exponential, S-shaped,
flexible and Weibull SRGM, respectively. Goodness of fit curve and future predic-
tions for all change-point models are shown in Fig. 5.10. Fitting of test effort function
and the test effort based SRGM is shown in Figs. 5.11 and 5.12, respectively,

From the estimation results we can see that the change-point models provide
better fit as compared to their without change-point counterparts. The mean square
error of the GO model with change-point is 86.62 while that for the GO model it is
158.71, the difference between the two MSE is 72.09, which is quite big. Similarly
we see the same results for other models also, except for models M3 and M4.
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The normal distribution based SRGM provided the best fit for this data set with
MSE value 52.79 and R* value 0.996.

5.11.2 Models with Multiple Change Points

In this section we show an application of multiple change-point SRGM. Such a

case is observed when the testing proc

ess is reviewed frequently and the reliability
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growth curve changes shape due to the changes made in the testing process at

various review points.

Failure Data Set

We continue with the data chosen in the previous section as they can facilitate
the comparison of the without change-point, single change-point and multiple
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Table 5.3 Estimation results for test effort functions

Model Estimated parameters Comparison criteria
a b 1 bz b3 MSE R2
M13 428 0.057 0.0933 0.0893 112.12 0.991

change-point models. Analysis of the graphical plot of the data set depicts that
after the change-point at 6th week of testing another changing pattern is observed
in the data at the 9th week of testing. We assume the observed failure data have
two change-points at the 6th and 9th weeks respectively.
Following model has been chosen for data analysis and parameter estimation.
Model 13 (M13) Multiple change-point exponential GO model [18]

m;(t) = {a(l - e_b"(’_f""HZ: b’“”“”); 10=0,i=1,...,n

Comparing the estimation results of GO model without change-point, with
single change-point and two change-points (Table 5.3 and Fig. 5.13) we can see
that the GO exponential model with single change-point provides a better fit with
MSE 86.62 and R* value 0.993. The poor fitting of model with two change-points
suggests that data have only one point at which changes are observed in the testing
process. The occurrence of another shift in the data may not be significant.
Although if the multiple change-points exist in the data, the multiple change-point
models provide better fit than single change-point and without change-point
models.

5.11.3 Change-Point SRGM Based on Multiple Change-Point
Weibull Type TEF

Section 5.8 describes the development of the multiple change-point models based
on modified Weibull type testing effort functions. These testing effort functions
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have been modeled accounting the changes observed at the one or more change-
points observed in the testing process. As already discussed the progress of the
testing process largely depends on testing efforts, which are reviewed and adjusted
during testing to control the progress. In order to incorporate these changes the
traditional test effort functions defined in the literature are modified. In this section
we demonstrate an application of modified test effort functions and SRGM
developed based on them.

Failure Data Set

This data set is from Brooks and Motley [42]. The failure data set is for a radar
system of size 124 KLOC (Kilo Lines of Code) tested for 35 weeks (1846.92 CPU
hours) in which 1,301 faults were detected. This application is based on single
change point both in the test effort and failure data. The single change point is
observed at the time point 7 weeks, i.e. t; = 7. In this application we have also
shown the comparison of the estimating and predicting powers of with and without
change-point test effort functions as well as the SRGM.

Traditional and Modified Weibull type test effort functions selected for appli-
cation are

Model 14 (M14) Exponential TEF [43]
W(t) =W,(t) =N(1 —e™)

Model 15 (M15) Modified exponential TEF [4]

N —e™") 0<tr<1y,
W(t) = Wg(t) = {N(l B e—(v]‘c]vaz(tfr])) f> 1

Model 16 (M16) Rayleigh TEF [43]

W, (1) = N(l - e*wz/z)
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Model 17 (M17) Modified Rayleigh TEF [4]

N(l —e*wz/z) 0<t<Ty,

W,.(t) =
( ) N(l . ef(vlrf/2+vz/2(t2,rf))) 1<ty

Model 18 (M18) Weibull TEF [43]

W,(t) =N(1—e")
Model 19 (M19) Modified Weibull TEF [4]

N(1—e™™) 0<r<t,

W,(t) = N(l . ef(vlriurvz(ffz*fllz))) t> 1,

and the SRGM selected for application are

Model 20 (M20) Exponential test effort based SRGM incorporating testing effi-
ciency [4]

mi(t) = (a/(1 = o)) (1 = e~V 0))
Model 21 (M21) Exponential change-point test effort based SRGM with multiple
change-points incorporating testing efficiency [4]

(a/(1 — o)) (1 — et (1=2)W() N
(1 — o) — (o — oip)e " rPr==)W(n)

my(t) = (a/<(i—°<1)>> 7(b1p1(17061)W(t1) > r>1
(1—a) S —ap)e \HDapa(l =) (W(H) = W(n)

Estimated values of parameters of the test effort functions are tabulated in
Table 5.4. Goodness of fit curves for the test effort exponential, Rayleigh and
Weibull functions and their respective change-point forms are shown in Figs. 5.14,
5.15, and 5.16.

Table 5.4 Estimation results for with- and without-change-point test effort functions

Model Estimated parameters Comparison criteria

N v, Vi Vs cy [o3 MSE R?
M14 2,679 0.0226 - - - 56,629.76 0.8492
M15 2,956 0.0073 0.0264 - - 29,793.66 0.9384
M16 2,873 0.0018 - - - 1,200.86 0.9983
M17 2,791 0.0016 0.0018 - - 1,069.02 0.9983
Mi18 2,692 0.0008 2.0650 - - 999.08 0.9983

M19 2,809 0.0002 0.0009 2.695 1.999 586.94 0.9984
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Fig. 5.14 Goodness of fit
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Fig. 5.15 Goodness of fit
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Fig. 5.16 Goodness of fit
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modified Weibull TEF
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The modified Weibull test effort function best describes this data set. We
estimated the test effort values corresponding to the observed data using the
modified Weibull test effort function and using these values estimates of param-
eters of model M21 are obtained. For model M20 the actual test effort values are
taken for the purpose of estimation. Estimated values of parameters of the SRGM
are tabulated in Table 5.5. Goodness of fit curve for the SRGM M20 and M21 is

shown in Fig. 5.17.
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Table 5.5 Estimation results of models M20 and M21

Model Estimated parameters Comparison criteria
a b, bl bz P> P1 P2 o, 0 Ol MSE Rz
M20 1,393 0.0014 - 0.9927 - 0.01040 - 3,539.14  0.9893

M21 1,657 0.0012 0.0010 0.9254 0.9638 0.00005 0.00004 1,647.93  0.9930
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The estimation results suggests that the model M21, i.e. testing efficiency and
test effort based change point SRGM provides better fit as compared to the without
change-point counterpart.

5.11.4 Application of Testing Effort Control Problem

Testing effort control problem discussed in Sect. 5.10 is widely used during the
testing process to adjust the progress of testing. After certain period of continu-
ation of the testing process, testing managers predict the status of the reliability
level that can be achieved with the same level of testing after certain period of
further testing. By the application of software release time problem managers are
able to predict the delivery date of the software with a predetermined level of
quality measure to be attained by that time. Sometimes the delivery date as
determined from the optimization routine falls after the time when the software is
scheduled to release. It is quite possible that in such a case many esteemed top
management may not be ready to pay any sort of penalty cost due to late delivery,
but they can spent extra resources now to accelerate the testing growth and achieve
their required measure of quality by the scheduled delivery time. Now the problem
is to determine how much resources are just sufficient to accelerate the testing so
that the required quality measure can be attained by a specified time. Now we
discuss a practical application of a testing effort control problem and illustrate how
all these decisions can be made.
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Failure Data Set

This data set is from Brooks and Motley [42]. The failure data set is for a radar
system of size 124 KLOC (Kilo Lines of Code) tested for 35 weeks in which 1,301
faults were detected. In this data set a change-point is observed around the 17th
observation, hence we assume t = 17th week.

The following SRGM is used in the application of testing effort control
problem.

Model 22 (M22) Flexible/S-shaped test efforts based change-point SRGM [20]

1— e—h]W*(t)
“(m) Osr=w
m(t) = 1+ Be WO /1 + pe=b=W(®)
alt— | \I+fe?¥@ ) \1+ fet0 Tt

e*(bl W*(2)+b,W(t—1))

Consider the testing process at the end of 30th week. At this time moment the
testing manager decides to release the software at the 35th week of testing with
some desired level of reliability. First we truncate the data to 30 weeks and
estimate the parameters of the SRGM developed due to Kapur et al. [20] (refer
Sect. 5.10). To estimate the parameters of the SRGM first we estimate the
parameter of the exponential, Rayleigh, Weibull and logistic testing effort func-
tions and using these estimates, parameters of the SRGM are estimated. The
estimation results of the testing effort functions are tabulated in Table 5.6. The
Rayleigh curve fits best to these data. Parameters of the SRGM are estimated based
on the Rayleigh effort function. The results of the estimation of SRGM are given in
Table 5.7.

Using the results in Tables 5.6 and 5.7, we calculate the expected number of
faults that can be removed with the same level of testing if testing is to be

Table 5.6 Estimation results for test effort functions

Test effort function Estimated parameters Comparison criteria

o v ¢ p MSE R?
Exponential 962,053 0.000046 - 494.46 0.89
Rayleigh 3,254 0.000744 - 168.69 0.985
Weibull 3,767 0.000750 1.939 345.84 0.921
Logistic 1,895 0.172650 40.300 11,875.25 0.762

Table 5.7 Estimation results of model M22
Model Estimated parameters Comparison criteria

a b, b, B MSE R?
M22 1325 0.0028 0.0027 243 191.01 0.998
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Table 5.8 Results of testing effort control problem

m* 1,303 1,304 1,305 1,306 1,307
Faults to be removed between week (30, 35) of testing 36 37 38 39 40
Additional testing resources required 365.23 382.60 400.81 419.94 440.10

terminated by the end of 35th week. From Eq. (5.10.1) we get m(T,) = 1,302
while m(T;) = 1,267. It means that additional 35 faults (1,302 — 1,267) can be
removed if we continue the testing for 5 weeks after 30th week. Now if want to
release software after 35 weeks of testing and to attain a specified level of reli-
ability we need to remove more than 35 faults in this time period and more
resources should be added to accelerate the testing. Using Egs. (5.10.5) and
(5.10.6) we can determine the additional resources required. The estimated values
of W* with respect to different levels m* are tabulated in Table 5.8.

Exercises

1. What are the two important techniques to handle the changes in processes
mathematically? Give some important applications of change-point analysis.
2. Explain how change-point analysis is related to the measurement of software
reliability growth during testing.
. Describe the mathematics of change-point theory.
4. Develop an integrated flexible imperfect debugging model, if the fault removal
intensity function is given as follows

(O8]

dmr(t) _
o= b 0)a(t) = mi(1))
. _ [bip/T4pet 0<r<q,
with b(p, 1) = {bzp/l +pe b >t
_ [ataum(t) Osrst
and a(t) = {a + oym, (1) + op(m,(£) — m(1)) t>71

5. Estimate the unknown parameters of the model developed in exercise 4 and the
one discussed in Sect. 5.5.2 using the data of application in Sect. 5.11.1.
Analyze and compare your results.

6. Incorporate the single change-point in the Yamada delayed S-shaped SRGM
with respect to the test effort. The model without change-point is given as

m(t) = a(l — (1 +bW(1r))e V1)

7. Fit the model developed in exercise 6 on data of application in Sect. 5.11.1.
Reanalyze the results of this application to reflect the goodness of fit of this
model.
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Chapter 6
Unification of SRGM

6.1 Introduction

We are aware that it is the computer systems on which the entire modern infor-
mation society rolls over. Computer hardware systems have attained high pro-
ductivity, quality and reliability but it is still not true for the software systems.
Software engineers and concerned managements put more labor for improving
these characteristics of software nowadays. Unlike hardware components, every
new software must be tested even though various techniques are employed
throughout the software development process to satisfy software quality require-
ments. The achieved quality level through testing has no meaning unless it is
measured quantitatively to build a confidence in the level of reliability achieved.
Besides this, many decisions such as release time, those related to the postrelease
can be made more accurately only if a quantitative measurement of quality is
known. For example if we know the reliability level we can determine the post-
delivery maintenance cost and warranty on the software more accurately and with
more confidence. All this needs measurement technologies to assess the software
quality. At this point we know that software reliability models based on stochastic
and statistical principles are the important and most successful tools to assess
software reliability quantitatively. Up to now we have discussed various software
reliability modeling categories and several non-homogenous Poisson process (NHPP)
based models under each category and will discuss more in the later chapters.
The existing NHPP models are formulated considering diverse testing and
debugging (T&D) environments and have been applied successfully to typical
reliability growth phenomenon observed during testing but not in general, i.e. a
particular SRGM cannot be applied in general as the physical interpretation of the
T&D is not general. A solution to this problem is to develop a unified modeling
(UM) approach [1-9]. Although the SRGM existing in the literature considered
one or other aspect of the software-testing but as mentioned above none can
describe a general testing scenario. As such for any particular practical application
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of reliability analysis one needs to study several models and then decide the most
appropriate ones. The selected models are compared based on the results obtained
and then a model is selected for further use. As an alternative following a unifi-
cation approach several SRGM can be obtained from a single approach giving an
insightful investigation on these models without making many distinctive
assumptions. It can make our task of model selection and application much simpler
than the usual methods. Establishment of unification methodology is one of the
recent topics of research in software reliability modeling.

Some researchers have worked for formulating generalized approaches to
robust software reliability assessment, which proved to be promising approachs for
reliability estimation and prediction. The work in this area started with Shan-
tikumar [1, 2] by proposing a generalized birth process model to describe Jelinski
and Moranda [10] and GO model [11]. Langberg and Singpurwalla [3] showed that
several Software Reliability Models (SRMs) can be comprehensively viewed from
the Bayesian point of view. Miller [4] and Thompson Jr. [5] extended the Lang-
berg and Singpurwalla’s idea to a wider range of SRMs using the framework of
theory of generalized order statistics (GOS) and record value. The NHPP models
selection problem is reduced to a simple selection problem of fault-detection time
distribution. Based on their result, the mean value function in NHPP models can be
characterized by theoretical probability distribution function of fault-detection
time. Gokhale et al. [6] and Gokhale and Trivedi [8] introduced the concept of
testing coverage and proposed the similar modeling framework to the GOS theory.
Chen and Singpurwalla [7] proved that all SRMs as well as the NHPP models
developed in the past literature can be unified by self-exciting point processes.
Huang et al. [9] discussed a unified scheme for discrete time NHPP models
applying the concept of means. Xie et al. [23] proposed a unification scheme for
modeling the fault detection and correction process. Kapur et al. [12, 13] proposed
two approaches: one based on infinite server queuing theory and the other based on
fault-detection time distribution. Using the UM approaches [12, 13, 23] several
existing SRGM are obtainable, which have been developed considering diverse
concepts of testing and debugging. In this chapter we will discuss these three
unification methodologies and the SRGM obtained from them. In the later part of
this chapter we have discussed the findings due to Kapur et al. [14] which yields
the equivalence between the three approaches.

Before we proceed to the unification methodologies we feel it essential to dis-
cuss an important concept of software-testing. It is related to the existing time lag
between fault-detection and its subsequent removal. In practice, fault removal is not
immediate to its detection. Let us understand the software-testing process. It con-
sists of exercising a program with intent to detect faults lying in it prior to software
delivery to the users. This can be achieved by means of inspection, test runs and
formal verification. On detection of a fault the debugging process starts. Fault
debugging includes several intermediate steps such as failure report, fault isolation
and correction with the subsequent verification. The goal of isolation activity is to
identify the root cause of the fault, which is achieved through forming a hypo-
thesis with the gathered information and then testing the hypothesis. As the fault is
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isolated it is corrected and verified by the programmers. Fault correction
personnel also formulate a hypothesis and make predictions based on the
hypothesis. Furthermore, they run the software, observe its output and confirm
the hypothesis on removal. The time to remove a fault depends on the com-
plexity of the detected faults, the skills of the debugging team, the available
manpower and the software development environment, etc. As such the
assumption of immediate removal of fault on failure may not be realistic in many
actual software-testing processes and provides a poor estimate of reliability. In
practical testing scenario fault removal process follows detection process. This
discussion enables us to know the importance of modeling the fault correction
process (FCP) separately and simultaneously to the detection process. A few
attempts have been made in the literature to model the fault-detection and cor-
rection process (FDCP) separately. Schneidewind [15] first modeled the FCP by
using a constant delayed fault-detection process (FDP). Later, Xie and Zhao [16]
extended the Schneidewind model using a time-dependent delay function.
Yamada delayed S-shaped model [17] also considers the time lag between the
fault correction and detection. Kapur and Younes [18] analyzed the software
reliability considering the fault dependency and debugging time lag. Following
the idea of using deterministic and random delay functions some researchers
have emphasized importance of fault correction process modeling with FDP
modeling [19-23]. The unified approaches we are going to discuss in this chapter
incorporate the idea of modeling FDCP separately.

6.2 Unification Scheme for Fault Detection
and Correction Process

When the information is available about both FDP and FCP, correction process has
to be analyzed as a process separate from fault-detection. The analysis of fault
correction mechanism follows similar to that for traditional NHPP-based SRGM.
Each fault correction process is connected to a detection process as faults can only
be corrected if they are detected. FCP can hence be assumed to be a delayed FDP.
Therefore fault correction SRGM can be defined for all existing fault-detection
SRGM by using the different forms of the time delay between these two processes.
Following this approach and considering the importance of generalization and
extension of the existing fault-detection SRGM recently Xie et al. [23] have
proposed a unification scheme for modeling the FDCP. Using their scheme they
obtained several SRGM for FDCP using distinct random delay functions. Wu et al.
[22] further studied their unification scheme and obtained new SRGM using other
type of random delay functions. This approach may be developed further in two
ways: firstly, different existing NHPP models could be used to describe the FDP
and using it we can obtain the SRGM for FCP; secondly, different time delay
forms could be generated under different fault correction conditions.
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6.2.1 Fault Detection NHPP Models

The mean value function, m,(¢) of the FDP, N(¢) under the general assumptions of
an NHPP-based SRGM with intensity A,(r) satisfies

1

my(t) = /)vd(s) ds (6.2.1)

0
Using (6.2.1) we can obtain several existing fault-detection models, either
concave or S-shaped. An exponential decreasing intensity describes a concave

SRGM while an increasing then decreasing intensity describes an S-shaped FDP,
which could be interpreted as a learning process.

6.2.2 Fault Correction NHPP Models

NHPP-based fault correction process is characterized by a mean value function
m(t) similar to m,(r). Mean value function of the FCP is obtainable from the 1,(¢)
using the delay function A(¢) as

t 1

nﬂgz/&@w:/fw@—Mmms (62.2)

0 0

Let us now discuss the various delay functions that can be used to describe the
time lag between fault-detection and correction and obtain various existing SRGM
for FDCP. It is assumed here that the mean value function of the GO model
describes the detection process, i.e.

my(t) = a(l—e™") (6.2.3)
which implies

2a(t) = abe™" (6.2.4)

Case 1: Constant Correction Time Assuming that each detected fault takes the
same amount of time to be corrected, i.e. A(f) = A, with the known intensity for
the FDP, the intensity function for the correction process is given as

0 A
Jo(t) = { Jult— ) ; ; \ (6.2.5)

With the intensity function (6.2.5) mean value function for the correction
process is given as
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Q t<A
me(t) =\ [ig(t—A)ydr 1>A (6.2.6)
A

This can be further evaluated as

me(1) = mg(t — A) = a(l - e’b(”A)>; 1> A (6.2.7)

The model in (6.2.7) has the same form as Schneidewind’s [15] correction

model, although the latter is derived from the assumption that the fault correction

rate is proportional to the number of faults to be corrected. Actually, these two

assumptions are the same, as they both regard all of the detected faults as identical
from the correction time point of view.

Case 2: Time-Dependent Correction Time Schneidewind’s fault correction model
was further studied by Xie and Zhao [16]. They proposed a time-dependent delay
function to describe the time lag between failure observation and correction given as

In(1+ct —c/b)

b )

Using this delay function the intensity function for the correction process is
given as

At) = c<b (6.2.8)

Je(t) = Ju(t — A1) (6.2.9)

Hence the mean value function for the correction process is given as
1
me(t) = /}vd(t —A(t)dt =a(1 — (1 +ct)e™) (6.2.10)
A

The model in (6.2.10) is the general form of the Yamada delayed S-shaped
SRGM as in this model author has assumed ¢ = b.

Case 3: Random Correction Time In cases 1 and 2 the correction time functions
were deterministic. The deterministic assumptions on correction time are sim-
plistic. In general it is not realistic as correction process is related to a human
activity, which has lots of uncertainty in practice. Faults of any software are not
usually same and their appearance sequence is random in system testing. There-
fore, Xie et al. [23] proposed to model correction time with a random variable.

6.2.2.1 Exponentially Distributed Correction Time

Musa et al. [24] claimed that the correction time follows an exponential distri-
bution. Following them Xie et al., defined the delay function as an exponential
distribution, i.e.

A(t) ~ exp(p)



220 6 Unification of SRGM

With an exponentially distributed delay function and a known intensity of the
detection process the failure correction intensity function is given as

Je(t) = EJa(t — A@®)] = / Jalt — x)pe dx (6.2.11)
0

Hence the mean value function for the correction process with detection process
described by GO model is given as

a(l—(1+bt) _h’),u b

me(f) = b 6.2.12
2 a<1— B ety e_m>/,t75b ( )
nw—b u—>b

Further Xie et al. [23] and Wu et al. [22] proposed to use various other types of
random distribution functions for modeling the correction time such as Gamma,
Weibull, Erlang, Normal distribution, etc. Table 6.1 summarizes the various
SRGM for the fault correction process obtained using distinct randomly distributed
delay functions.

The unification scheme discussed above is a comprehensive study of the fault-
detection and correction mechanism and offers a great flexibility for modeling

Table 6.1 Fault correction SRGM

Model Probability density function Mean value function of the SRGM
of the correction time A(r) for fault correction process (m.(t))
Ml Exponential time delay a(l — (1+ bt)e™) u=>a
gl ) = pue™™; x>0 a<] 7,u%beibt +[/,%beiut) 1 b
M2 Weibull time delay » ] cho (#oy fo abe"" ( + l,t) dt where
glxo,B) = %(%) e’(ﬁ) ;x>0 y(a, x) is incomplete Gamma function
i abf” —
M3 Erlang time del;}yx - Wm "e~0'y(a, (B — b)t) dt where the
g(x o, ) o x>0 shape parameter o is an integer, the rate

parameter f3 is a real number and y(a, x) is
the lower incomplete Gamma function

(t,ba* + p, a))

+®(0, b* + 1, 7)
+ a((b(t7 I U) - (I)(()’ I3 U))

M4 Normal time delay
(—p)’

8l 0) = e (54

o ae(—bﬁubﬂha)z/z) (

M5 Chi-square time delay } /2
(]/Z)ﬁ/ B/2-1) g=x/2 “ﬂbig /" efbty ) dr
g p) =g x>0 (12071 (p/2) /0 (1—2b)t/2
M6 G time del
amma time delay al(t, 0, f) — e bﬁ (t a}(}fﬁ})ﬁ))

glrio f) = e x>0
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the delay time function. With any known delay time function and based on an
existing SRGM for FDP we can formulate the SRGM for fault correction process.
Although the scheme analyzes the detection—correction mechanism very com-
prehensively, but it suffers from one major limitation. As mentioned above the
deterministic assumptions on correction time are not realistic as correction process
is related to a human activity and the faults manifested in any software are not
usually same and their appearance sequence is random in system testing. As such it
may not be appropriate to describe the time lag between their removals by same
deterministic or randomly distributed delay function. One solution to this problem
is to distinguish the faults based on their complexity of removal and accordingly
forming the delay functions. The UM approach discussed in the next section
incorporates this idea—a unified scheme based on the concept of infinite queues.

6.3 Unified Scheme Based on the Concept
of Infinite Server Queue

Queuing models are very useful for several practical problems. These models
have also been used successfully by the software engineering researchers for
management and reliability estimation of software. Early attempts were related
to the project staffing and software management [25, 26]. In the recent
practices researchers have shown how to use queuing approaches to explain
testing and debugging behavior of software. The underlying idea is that fault-
detection phenomenon can be looked as an arrival in the queue and FCP can
be seen as a service. If we assume the debugging activity starts as soon as a
fault is detected, FDCP can be viewed as an infinite server queue. Inoue and
Yamada [27] applied infinite server queuing theory to the basic assumptions
of delayed S-shaped SRGM, i.e. FDP consists of successive failure detection
and isolation processes considering time distribution of fault isolation process
(FIP) and obtained several NHPP models describing FDP as a two-stage
process.

The unification approach due to Inoue et al. describes FDP in two successive
stages and no consideration is made for the removal phenomenon of the
detected faults. Dohi et al. [28] proposed a unification method for NHPP
models describing test input and program path searching times stochastically by
an infinite server queuing theory. They assumed test cases are executed
according to a homogeneous Poisson process (HPP) with parameter A. Kapur
et al. [12] proposed a comprehensive unified approach applying the infinite
server queuing theory based on the basic assumptions of an SRGM defining the
three level complexities of faults ([18], see section 2.4) with a consideration to
FRP on the detection and isolation of a fault. The two separate approaches of
modeling namely the time lag modeling between removal of fault on a failure
observation and fault categorization incorporated in the unified scheme due to



222 6 Unification of SRGM

Kapur et al. share a common thing that is the consideration of time lag between
the failure observation, isolation and/or removal. It makes their methodology
more general as it can be used to obtain several distinct categories of the
models. These categories include models which consider testing a one-stage
process with no fault categorization [11, 17] a two-stage process considering the
various deterministic and random delay functions [22] and model which cate-
gorizes faults in two and three level complexity considering the time delay in
failure observation, isolation and removal [18]. Let us now discuss their models
in detail.

6.3.1 Model Development

Consider the case when a number of test cases are executed on software in
accordance with an NHPP with rate A(z). The execution of test cases may result in
the software failures. The failures observed at the end of execution of test cases
form an arrival process. Here, number of failures observed at the end of testing
period is equivalent to number of customers in the M*/G /oo queuing system. Here
arrival process, represented by M is an NHPP with mean m() and service time has
general distribution.

The Erlang model due to Kapur et al. [18] implies that a failure observation
does not always imply that the fault is removed immediately. As in case of
hard and complex faults the time spent in isolating and removing a fault on the
observation of a failure is random due to the complexity of faults. In case of
hard faults it is assumed that fault removal follows immediate to isolation
while in case of complex fault delay happens in removal after the isolation.
Hence first we need to discuss the concept of conditional distributions of arrival
times (failures in this case) for developing the model based on infinite server
queue theory [27].

6.3.1.1 Conditional Distribution of Arrival Times

Let Sy, S», ..., S, be the n arrival times of a counting process {N(?), t > 0} which
follows an NHPP with MVF m(f) and the intensity function A(z). The conditional
distribution of first arrival time, S;, given that there was an event in the time
interval [0, #] [29], i.e. for S;<t, the conditional distribution is

S1

Pe(S) < siIN(r) = 1} = "5 :/@dx (6.3.1)

m(t) m(r)

Similarly, the joint conditional distribution of S; and S, is given as
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PE(S) < 51,8 < saN(7) = 2} = 20 ((s2) = mls1))

(1)°
Ho 23 44 (632)

[l

where s; < 5, < t. Hence if N(T) = n, the joint conditional distribution of n arrival
times is given by

Pr{S) <s51,8 <5, ..., <suN(£) —n}—n'// /idxldxz dx,

(6.3.3)

Therefore, the joint conditional distribution of n arrival times given that
N(T) = n is given as
H? 1 A)
m(1)"

Equation (6.3.4) implies that if N(T) = n the unordered random variables of
n arrival times Sy, S», ..., S, are independent and identically distributed with the
density

Pr{t;,t2,...,t,|N(t) = n} = (6.3.4)

i 0Sxst (6.3.5)

otherwise

Also if s <tand 0 < m < n, then

n m n—m
_ (’”(S)> (1 m(s)> (6.3.6)
m ) \m(t) m(t)
Equation (6.3.6) means that the conditional distribution of N(s) given
N(T) = n follows a binomial distribution with parameter (n, (m(s)/m(t))).

6.3.2 Infinite Server Queuing Model

The model is based on the following assumptions:

1. Faults in the software system are classified as complex, hard and simple.
2. Time delay between the failure observation and its subsequent removal rep-
resents the complexity of faults.
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Software Fault Software Fault
Isolation Process Fy(t) Removal Process Gy
) + ®
O f—
| & | + ] (':-)
| ¢ | + ®
0 — Fault
0 1 Remove
Complex ] 5 5 (.“ .
Ll o
Faulis — Detected |——
F : Fault : )
Software Failure ‘Time t
observation S -
Process my(t oftware Fault
i Isolation and Gylt)
—_— e O Removal Process —o+ —
Observed Failures ; 8

Simple

Faults Software Fault

Removed immediately 1
on Observations

Ps

Time t

Fault
Removed  Timet

Fig. 6.1 Physical interpretation of the infinite server queuing model

. The expected cumulative number of software failures is observed according to

an NHPP with the MVF my(#)(m4(1)) for type i fault (i = 1, 2, 3) and the
intensity function A(#)(4,(¢)) for type i fault (i = 1, 2, 3).

The model can be easily explained with Fig. 6.1.

6.3.2.1 Model for Complex Faults

Assumptions for fault isolation and removal process of complex faults are

1.

2.

For complex faults the observed software failures are analyzed in the FIP,
which results in the detection of faults corresponding to observed failures.
The fault isolation times are assumed to be independent with a common dis-
tribution F ().

Fault removal process follows the detection process in which the detected
complex faults are removed.

The fault removal times are assumed to be independent with a common dis-
tribution G(?).
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Let the counting processes {X;(¢),# >0}, {R;(¢), >0}, {N,(¢),7 > 0} represent
the cumulative number of software failures observed, faults isolated and faults
removed, respectively, up to time ¢ corresponding to the complex faults and the
test begun at time ¢ = 0. Then the distribution of N;(¢) is given by

(mfl (t) ) je—m/’l 6]

5 (6.3.7)

Pr{N;(r) iPT{Nl t) = n|X(t) = j}
=0

If failure observations count is j then probability that n faults are removed via
the fault isolation and removal process is given as

Pr{N, (1) = n[X: (1) = j} = (i) (p1(1))"(1 = pr(0)) ™" (6.3.8)

where p(?) is the probability that an arbitrary fault is removed by time ¢, which can
be defined using the Stieltjes convolution and the concept of the conditional dis-
tribution of arrival times, given as

// Gi(t — u—v)dF;(u )dmfl( ) (6.3.9)

my (1)

The distribution function of cumulative number of faults removed up to time
t using Egs. (6.3.8) and (6.3.9) is given as a

n

Pr{N; (1) = n} = / / Gt — u— v) dF) () dmy1 (v)
0 0

e fol forﬁ Gi(t—u—v) dF, (u) dmyy (v)

X p (6.3.10)

Equation (6.3.10) describes that N;(f) follows an NHPP with MVF
fo TGt — u— v) dFy (u) dmygy (v) e

t):O/O/ Gi(t —u—v)dFi(u)dms (v) (6.3.11)

Hence knowing the MVF my(-) and distributions of F;(-) and G,(-) one can
compute the MVF of a three-stage fault-detection and removal process for the
various existing SRGM.
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6.3.2.2 Model for Hard Faults

Assumptions for fault isolation/removal process of hard faults are

1. For hard faults the observed software failures are analyzed in the FIP which
result in the detection of faults corresponding to observed failures, the detected
faults can be removed immediately with no delay (i.e. the removal time dis-
tribution is a unit function).

2. The fault isolation and removal times are assumed to be independent with a
common distribution G,(t).

Let the counting processes {X,(7),7 >0}, {N,(),# >0} represent the cumula-
tive number of software failures observed and faults detected/removed, respec-
tively, up to time ¢ corresponding to the hard faults and the test begun at time
t = 0. Then the distribution of N,(¢) is given by

. m Ja=mp (1)
Pr{N, (1) = n} = ZPr{Nz(t) = n|X,(1) :j}%

j, (6.3.12)
j=0 :

If failure observations count is j then probability that n faults are removed via
the fault isolation/removal process is given as

Pr{N,(1) = n[Xa (1) = j} = (i) (P2(1))"(1 = pa(t))™" (6.3.13)

where p,(t) is the probability that an arbitrary fault is removed by time ¢, which can
be defined using the Stieltjes convolution and the concept of the conditional dis-
tribution of arrival times, given as

t

_ _ 42 (u)
pa(t) —O/Gz(l‘ )mfz(t) (6.3.14)

The distribution function of cumulative number of faults removed up to time
t using Eqgs. (6.3.13) and (6.3.14) is given as

! ne,‘];GZ(I,M) dm,cz(u)
Pr{N,(t) =n} = /Gg([ —u)dmp(u) | ————
0
Equation (6.3.15) describes that N,(f) follows an NHPP with MVF
f(; Gz(l — u) dl’Hfz(u) i.e.

(6.3.15)

n!

t

my(t) = /Gz(z‘ — u) dmy> (u) (6.3.16)

0
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Hence knowing the MVF my(-) and distribution of G,(-) we can compute the
MVF of a two-stage fault-detection and removal process for the various existing
SRGM.

6.3.2.3 Model for Simple Faults

For simple faults it is assumed that the faults are removed as soon as they are
observed and hence if {X3(¢),#>0},{N;(¢),t>0} are the counting processes
represent the cumulative number of software failures observed and removed,
respectively, up to time ¢ corresponding to the simple faults and the test begun at
time ¢ = O then the distribution of N3(7) is given by

(my3(1)) e

. (6.3.17)

Pr{N(1) = n} = ZPr{N@ = n|X3(1) = j}

If failure observations count is j then probability that n faults are removed via
the fault isolation/removal process is given as

Pr{N3(1) = nX3(1) = j} = (2) (p3(1))"(1 = p3(1))™" (6.3.18)

where p5() is the probability that an arbitrary fault is removed by time ¢, which can
be defined using the Stieltjes convolution and the concept of the conditional dis-
tribution of arrival times, given as

t

P3(I)Z/G3(I—M)M=/I(I—M)M (6.3.19)
0

my3(1) my3(1)
0

The distribution function of cumulative number of faults removed up to time
t using Eqgs. (6.3.18) and (6.3.19) is given as

l jl (t—u) dmy3 (u
e 0/ 1(t = ) dmys (u) ! (6.3.20)
_ (mp(@) e
n!

Equation (6.3.20) describes that N3(¢) follows an NHPP with MVF my(1).
Hence,
t
m3(t) = / 1(l — u) dmf3(u) = mf3(t) (6321)

0
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6.3.2.4 Model for Total FRP

If {N(¢), t = 0} are the counting processes that represent the cumulative number of
software fault removals up to time ¢ then N() is derived as
N(l) =M (l) + Nz(t) + N3(l)
_ (ml (l) + m2(t) + m3 (t))n e—[ln1(1)+m2(t)+l713(l)] (6322)

n!

hence
m(t) = my(t) + ma(t) + ma(t) (6.3.23)

where m(f), my(f) and m;(f) are given by (6.3.11), (6.3.16) and (6.3.23). It may be
noted here in view of simplifying the computations of m(¢), my(f) and ms(t) we
can use the associative property of Stieltjes convolutions and can be rewritten as

:/tt/uGl(t—u—v)dF1(u)dmf1(V)
00

t t—u

= / / myi(t —u —v)dFi(u) dG (v) (6.3.24)
00

t

mz(l) = /Gz(l‘ — M) dﬂlfz(u) = /n’lfz(t — M) dGz(lx[) (6325)
0

0

1

/ £ — ) dmys () = mpa(1) = / ms(t—uw)dl(w)  (6.3.26)

0

Using the above modeling approach we can explain a number of existing
SRGM formulated for different T&D scenario. In the next section we will discuss
how this unified approach can be used to obtain MVF of the various existing
SRGM.

6.3.3 Computing Existing SRGM for the Unified Model Based
on Infinite Queues

The unified model given by Egs. (6.3.23) to (6.3.26) characterizes the time-
dependent behavior of fault-detection and removal phenomenon by determining
mg(t), i =1, 2, 3, Fi(t) and G(f), i = 1, 2 and many existing SRGM formulated
under different testing scenarios can be obtained. Accordingly, we can easily
reflect the phenomenon of successive software failure occurrence, fault-isolation
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and fault removal depending on the testing scenario and assumptions on the fault
type/debugging process. Hence this modeling approach can be considered as a
general description of several existing NHPP models.

If we assume

m(t) = a;(1—e ™), i=1,2,3
Fi(fy=1—¢e"
and
Gi(t)=1—e™ =12

then m(¢), i = 1, 2, 3 describe the MVF of FRP for complex, hard and simple
faults and using (6.3.23) we obtain the MVF of total FRP for the Kapur et al. [18]
Generalized Erlang model.

Similarly, we can describe the various other existing SRGM from our UM
approach. We can obtain the models, which consider the various levels (1, 2, 3) of
fault complexity, as well as several models, which consider each software fault to
be of same type. It is very important to note here that this unification scheme can
be used to obtain all models obtained with the unification scheme discussed in
Sect. 6.2, which considers the fault-detection and the time delay in fault obser-
vation. All types of correction models with constant, time-dependent as well as
random time delay function are obtainable from this scheme. The authors have
obtained various fault-detection correction models from this scheme.

Table 6.2 summarizes the relationships between unified infinite server model-
ing approach and some of the existing NHPP-based SRGM.

The table summarizes models obtained from UM approach based on the con-
cept of infinite queues. Many other existing models can also be obtained similarly.

6.3.4 A Note on Random Correction Times

Kapur et al. [14] have also explained the particular situations, when different
random delay functions viz. Exponential, Weibull, Gamma, etc. are useful and
need—to be considered. Here we discuss the particular use of some randomly
distributed delay functions or correction times proposed by Xie et al. [23].

6.3.4.1 Exponential Distribution for Removal Times

This is the most simple and widely used distribution in reliability engineering
modeling because it has a constant rate. It indicates the uniform distribution of
faults in the software code where each and every fault has same probability for its
removal. The pdf for exponential distribution is given by
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g(x;b) = be ™™ (6.3.27)

Here b is the parameter of exponential distribution and it represents the mean
rate at which the observed/isolated faults are removed. Here removals are assumed
to take place at a constant rate.

Though in most of the software-testing projects, for sake of simplicity, the
removal times are assumed to follow exponential distribution, but to achieve a
more flexible modeling of removal times, we can use Weibull or Gamma distri-
bution. Both of these distributions are generalization of Exponential distribution
only and have very similar shapes.

6.3.4.2 Weibull Distribution for Removal Times

It can represent different types of curves depending on the values of its shape
parameter. It is very appropriate for representing the processes with fluctuating
rate i.e. increasing/decreasing rates. The pdf for Weibull distribution is given by

g, ) = aplox) e @' x>0 (6.3.28)

Here «, [ are the parameters of Weibull distribution where f is shape parameter
and o is scale parameter. When the shape parameter 0 < f§ < 1, the removal rate
decreases monotonically over time, for § = 1, the removal rate is constant and for
f > 1, the removal rate increases monotonically over time. For § = 1, it reduces
to exponential distribution, for § = 2 it is same as Rayleigh distribution and for
B = 3.4 it behaves like Normal distribution.

6.3.4.3 Gamma Distribution for Removal Times

Gamma distribution is an extension of exponential distribution where the fault
removal consists of multiple steps, e.g., generation of failure report, its analysis
and correction time followed by verification and validation. The pdf for Gamma
distribution is given by:

oﬁlﬁ eiﬁx
(o)’

Here o, f§ are the shape and scale parameters of Gamma distribution and rep-
resent the distribution of « number of independently and identically distributed
exponential random variables, each with parameter 5. This property of gamma
distribution makes it appropriate for modeling processes consisting of a number of
steps.

glx;o, ) = x x>0 (6.3.29)
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6.3.4.4 Normal Distribution for Removal Times

During testing, there are numerous factors, which affect the fault correction pro-
cess. These factors can be internal, e.g., defect density, complexity of the faults,
the internal structure of the software or the factors can be external and come from
the testing environment itself, e.g., design of the test cases, skill of the testers/test
case designers, testing effort availability/consumption, etc. This two-parameter
distribution can describe the correction times quite well for the cases where
correction time depends on multiple factors. The pdf for Normal distribution is
given by:

glx;pu,0) = ! exp _(x——u)z (6.3.30)
Y o211 207 -

Here u, o are the location and scale parameters of Normal distribution. They
represent mean and standard deviation of Normal distribution, respectively.

6.4 A Unified Approach for Testing Efficiency Based Software
Reliability Modeling

The unified approaches discussed yet can be used to obtain SRGM developed
under perfect debugging testing profile. As highlighted in Chap. 3 incorporation of
effect of testing efficiency is very important while developing an SRGM. Inclusion
of testing efficiency considerations in SRGM enables us to compute a more
appropriate estimate of reliability growth during both testing and operational
phases of SDLC. After the detection of a fault during the removal a fault may not
be perfectly repaired or a new fault can be generated. In the first case we again
come across a failure due to a fault, which has already been detected, resulting in
more number of failures than removals. While in the second case more faults are
observed compared to the initial number estimated in the infinite test period.
However both of these cases make the testing and debugging environment entirely
different from the perfect debugging environment. Hence the physical structure of
software reliability modeling under imperfect debugging environment is different
from software reliability modeling under perfect debugging. However it is very
important to know here that an imperfect debugging model corresponds to a
perfect debugging model when the estimated values of the parameters of testing
efficiency attain an insignificant value, i.e. the case of perfect repairs and no
generation applied to an SRGM developed under imperfect debugging environ-
ment. For the literature of SRGM developed incorporating imperfect debugging
environment refer to Chap. 3.

In this section we discuss a unification scheme of SRGM, which can be used to
obtain almost all of the SRGM developed under imperfect debugging environment
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in the literature up to now. The said unification scheme can also be used to
formulate many other SRGM under imperfect debugging environment as it is
capable of handling any general distribution function and is thus an important step
toward the unification of the NHPP software reliability measurement models,
which rely on specific distribution functions.

The unified scheme of SRGM proposed due to Kapur et al. [13] discussed here
is an insightful investigation for the study of general models without making many
assumptions. They proposed two types of schemes for generalized imperfect non-
homogeneous Poisson process (GINHPP) software reliability models, when there
is no differentiation between failure observation/detection and fault removal/cor-
rection processes i.e. a fault is removed as soon as it is detected/observed (GIN-
HPP-1). Second, when we incorporate the time delay between the fault observation
and correction processes (GINHPP-2).

6.4.1 Generalized SRGM Considering Immediate Removal
of Faults on Failure Observation Under Imperfect
Debugging Environment

Under the general assumptions (see Chap. 2) of NHPP-based software reliability
model under perfect debugging environment the mean value function of the
generalized SRGM can be represented as [6, 8, 24]

m(t) = aF (1) (6.4.1)

where a is the finite number of faults detected in the infinite testing time, F(f) is a
distribution function.
Hence the instantaneous failure intensity A(¢) is given as

A1) = aF (1) (6.4.2)
The above equation can be rewritten as

F(t
At) = (a— m(t))l——;")(t) = (a —m(1))s(1) (6.4.3)
where s(f) is the failure occurrence/observation/detection rate per remaining fault
of the software, or the rate at which the individual faults manifest themselves as
failures during testing or hazard rate. The expression [a — m(f)] denotes the
expected number of faults remaining in the software at time ¢ and hence has to be a
monotonically non-increasing function of time. Hence the nature of the failure
intensity, A(f), is governed by the nature of failure occurrence rate per fault i.e. s(?).

If we incorporate the effect of testing efficiency i.e. possibility of imperfect fault
removal with p as the probability of perfect debugging and error generation during

the debugging of observed faults with a constant fault introduction rate o, the
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general model under perfect debugging environment can be modified accordingly.
The total number of faults present at any moment of testing time, say a(f) is a
function of time and can be expressed as a linear function of the expected number
of faults detected by time ¢, i.e.

a(t) = a+ am(t) (6.4.4)

Hence the intensity function of the generalized model under imperfect
debugging environment becomes

dm(t) F (1)
M) =m(t) =——= = — —_— 4.
(1) = (1) = T3 = (ale) = m()py— s (6.4.5)
Substituting for a(f) in (6.4.5) and solving under the initial condition that at
t = 0, m(0) = 0, we obtain

m(t)

The mean value function in (6.4.6) represents the expected number of faults
detected/corrected for the generalized SRGM incorporating the effect of testing
efficiency under the assumption of immediate removal of faults on failure obser-
vation (GINHPP-1). Now we can obtain mean value functions of the various
existing and several new SRGM from (6.4.6) using the different forms of the
distribution function F(7).

Now we will show how to obtain existing as well as new models from the
GINHPP-1. Suppose we assume that an exponential distribution function describes
the F(1) i.e.

_a
T l-u

[1 —(1— F(t))f’“—“)} (6.4.6)

FiHy=1—¢" (6.4.6)
then
P
175?@ =0
it implies
m() = - - [1- e*”"“*“)f] (6.4.7)

The mean value function (6.4.7) describes the imperfect debugging model
given by Kapur et al. [14] defining imperfect debugging and error generation. For
this model when ¢ — oo, m(t) — % which implies that if testing is carried out for
an infinite time, more faults are removed as compared to the initial fault content
because some faults are manifested in the software due to error generation during
the debugging activity. If p = 1 and o = 0O, the case of no error generation and
perfect repair, we obtain the pure perfect debugging exponential GO model due to
Goel and Okumoto [11]. Similarly for the distinct distribution functions F(¢) dif-
ferent models can be obtained. The mean value functions m(¢) of several SRGM
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corresponding to different forms of distribution functions F(¢) are summarized in
Table 6.3.

Model M2 is the imperfect debugging model given by Kumar et al. [30]
defining imperfect debugging and error generation. For this model

li(p'()) =1 H”whlch is the hazard rate of the Yamada delayed S-shaped [17] perfect

debugging model which is obtainable if p = 1 and « = 0, i.e. perfect debugging.
In model M3 if k=3, the mean value function reduces to

2 (17‘1)
m(t) = % {1 - ((l + bt + %) e’b’>p } . In this model if we substitute p = 1

and « = 0, we have an SRGM expressed by three-stage Erlang growth curve [18].
Model M4 is a generalized imperfect debugging model accounting for the expe-
rience gained by the testing team as time and testing progresses. A major
advantage of following this unification scheme comes from the fact that we can
obtain the mean value functions of the SRGM with Weibull, Gamma and Normal
correction times under imperfect debugging environment. The model expressions
obtained in M5, M6 and M7 are rather not obtainable if we follow the usual
procedure of formulating an imperfect debugging model as the differential equa-
tion which can describe the physical form of these models becomes very complex.

6.4.2 Generalized SRGM Considering Time Delay Between
Failure Observation and Correction Procedures Under
Imperfect Debugging Environment

To incorporate the concept of FDCP with a delay the unification scheme discussed
above is further generalized with the two distribution functions F(¢) and G(¢). The
distribution F(¢) defines the failure detection and G(f) defines the correction

Table 6.3 SRGM obtained from unification scheme in Sect. 6.4.1
Model Distribution function (F(f)) Mean value function m(t)

MI  An exponential distribution 1 —e™ [l —etr(i=a)]

M2 Two-stage Erlang distribution 1 — (1 + bt)e™ — (1 +br) —hr) (1- 1)]

M3 k-stage Erlang distribution {l ( {(01 br) /z'> 7}’[)1)(14)}

1= (S o) fit)e

M4 Py =1 - ((/“'Z:J U;;,‘)’)cflv) . /“'Zk ! o) oon p(1-2)
T (et

1 — ebp(1= x)t":|

(1+pe)
[
[1 ot 1, 0))1~ }
e[t = =10, )]

M5  Weibull distribution 7' ~ Wei(b, k)

M6  Normal distribution 7 ~ N(p, 6?)

M7  Gamma distribution T ~ y(ay, ;)
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processes and the delay between the two process is described using the Stieltjes
convolution. Hence the mean value function of the generalized model expressed in
(6.4.1) is modified as (on the lines of Musa et al. [24])

m(t) = a(F ® G)(¢) (6.4.8)

The intensity function A(¢) is given by

dm(t ,
M) = dE ) =a[(FRG)()]=al(f xg)(t) (6.4.9)
The above equation can be rewritten as
dm1) (f *2)()
——=la— —_— 6.4.10
a MO T FE e G (6.4.10)
or
d
") h()la -~ m(o)
where h(t) = % is the failure observation/fault correction rate.

Now incorporating the concepts of imperfect debugging and error generation in
the manner similar to (6.4.5) we have

dm(t) (f*8)()

dr [1 —(F®G) (t)}p[a + om(t) — m(t)} (6.4.11)

Solving the above differential equation, we get the final exact solution

(11—

Mean value function in (6.4.12) is the generalized SRGM considering time
delay between failure observation and correction procedures under imperfect
debugging environment. Using this generalized model we can obtain the mean
value functions of the several existing and new SRGM distinguishing FDCP. The
mean value functions m(f) corresponding to different forms of distribution func-
tions F(¢) and G(¢) are summarized in Table 6.4.

In the above models if we substitute p = 1 and o« = 0 we obtain the corre-
sponding SRGM under perfect debugging environment. With this statement it
follows that we can call this unification scheme due to Kapur et al. [13] as the
unification scheme for all the other unification schemes discussed up to now due to
the reason that we can obtain almost all of the existing SRGM both defined under
perfect and imperfect debugging environment from it. It makes it very important to
build a thorough understanding of this unification scheme for the software engi-
neers and software reliability practitioners.

m(r) = [1 —(1— (FoG)@n)y"™ (6.4.12)
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6.5 An Equivalence Between the Three Unified Approaches

In this chapter we have discussed three unification methodologies

1. Unification of SRGM for FDCP [23].

2. Infinite server queuing methodology [12].

3. A unified approach in the presence of imperfect debugging and error generation
[13].

Recently Kapur et al. [14] have shown that although these unifying schemes,
derived under different sets of assumptions, are mathematically equivalent.

The unification methodology of infinite server Queues for the hard faults, fault-
detection correction process with a delay function and one based on detection
correction using the hazard function concept under perfect debugging environment
is proved equivalent by them.

6.5.1 Equivalence of Unification Schemes Based on Infinite
Server Queues for the Hard Faults and
Fault Detection Correction Process
with a Delay Function

Consider the unification methodology of Xie et al. [23] based on the concept of
time lag between fault-detection and correction, where (refer to Eq. (6.2.2)),

t t

me(t) = / Je(s) ds = / Elja(s — A(s))] ds (6.5.1)

0 0

If f(x) is the pdf of the random correction time then we have
Je(t) = E[2a(t — A(2))] = /),d(s —x)f (x) dx (6.5.2)
0

From (6.5.1) and (6.5.2) we have

%M=/]MW%W@M®

s (6.5.3)
!!@@xmwmm
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t

me(t) = /md(t — x)f (x) dx (6.5.4)

0

t

W@:/fmﬂmmm (6.5.5)

0

which is same as (6.3.16), the unified SRGM for the hard faults based on the
concept of infinite queues. It may also be noted here that for obtaining the SRGM
for detection and correction process only the unified SRGM for hard faults needs
to be considered for the unification scheme in Sect. 6.3.

6.5.2 Equivalence of Unification Schemes Based on Infinite
Server Queues for the Hard Faults and One Based
on Hazard Rate Concept

The next step establishes the equivalence of infinite server queuing model to
unification scheme based on hazard rate [13].
Consider Eq. (6.5.5)

1

me(t) = /F(t —x)dmy(x) = F(t) @ my(t)
0

:/nmﬁmmm
0
= F.(1) @ my(1) (6.5.6)

Now using (6.4.1) we have my(t) = aF,(t)
= m.(t) = a(F Q@ Fy)(t) = a(F4 ® F)(¢) (6.5.7)

which is the same as (6.4.8), the unification scheme based on the hazard rate
(Sect. 6.4) under perfect debugging environment. From (6.5.7) it follows that the
three unification schemes discussed in this chapter are mathematically equivalent.

6.6 Data Analysis and Parameter Estimation

As we have learned that the development of unification schemes for SRGM
development and application makes it easy for the practitioners to apply SRGM in
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practice. Several models with different characteristics get a same structural
interpretation and a single approach for the development of various SRGM enables
the non-mathematical practitioners to conveniently select diverse types of SRGM
and select the best for their particular application. Several existing and new SRGM
are developed through the three unification schemes discussed in the chapter. Data
analysis of many of them is already discussed in the previous chapters. Here we
have discussed the application of some new SRGM developed through the unifi-
cation methodology.

6.6.1 Application of SRGM for Fault Detection
and Correction Process

SRGM for FDCP can be obtained from the unification scheme for FDCP
(Sect. 6.2) and testing efficiency based software reliability modeling (Sect. 6.4).
Here we have chosen some models discussed in both of the sections.

Failure Data Set

The software-testing data sets reported in the literature are obtained generally from
the failure process. Xie et al. [23] reported a joint software-testing data for both
failure observation and correction. The data set is from the testing process on a
middle-size software project grouped in number of faults per week. The testing
data are for 17 weeks during which 144 faults were observed and 143 of them are
corrected. The fault correction process seems to be slow in the beginning for three
weeks which picked up afterwards.

Following models are chosen for data analysis and parameter estimation. The
failure observation process of all these models except model M7 is described by
the GO model [11], i.e.

ma() =a(l—e?) or a(l—e)

For the model M7 detection process is described by the two-stage Erlang
distribution.

my(t) = a(l — (1 + bt)e ™)
Model 1 (M1) Constant correction time SRGM [23]

me(t) = my(t — A) = a(l - e_b(’_A)); 1>A

Model 2 (M2) Time dependent correction time SRGM [23]

me(t) = a(l — (1 +ct)e™™)
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Model 3 (M3) Exponentially distributed correction time SRGM [23]
me(t) = a(l B ey be”’),u #b
u—>b w—>b
Model 4 (M4) Normal correction time delay SRGM [23]
d)(t, bo* + U, J)—

me(t) = _ae(—bt+ub+(h(r)2/2)
0 —|—CD(0, bao* + u, a)

> +a(®(t, u,0) — 0, 1, 0))

Model 5 (M5) Gamma correction time delay SRGM [23]

aefbt

B
me(t) = al'(t, o, ) ( —bﬁ)“r(t’a’ = bﬂ))

Model 6 (M6) Exponentially distributed correction time, testing efficiency based

SRGM [13]
0=—"1| ATRCAN K
Me\l) = 1—a by — b, —bze_b't

Model 7 (M7) Two-stage Erlang type detection process with exponentially dis-
tributed correction time, testing efficiency based SRGM [13]

2.2 p(l—a)
mc(t)—li“[1—<<l+bt+b7t>ebt) ]

Model 8 (M8) Normal delay correction time, testing efficiency based SRGM [13]

(p(t,,u—i-baz,a) p(l-a)

me(t) = 1—|1—o(t,uo)+ ba)?
() l—a ot ,0) exp(—bt+ub+%>

Model 9 (M9) Gamma delay correction time, testing efficiency based SRGM [13]

_ p(l—o
e—bt (1-0)

S P P W R (=5
- I'(¢to L)
7151_bﬁ]

The results of parameter estimations are listed in Table 6.5 and the goodness of
fit curves for the fault observation and correction process for models M1-MS5 are
shown in Figs. 6.2 and 6.3, respectively, and the goodness of fit curves for the
imperfect debugging models M6-M9 for observation and correction process are
shown, respectively, in Figs. 6.4 and 6.5.

me(t) =
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Table 6.5 Estimation results of models M1-M9

Models Estimated parameters

Comparison criteria

a o B, p1 b,by byc w0 0o P MSEd MSEc R?
M1 178 - - 0.0999 1.0000 - - - 8748 86.99 0.967
M2 168 — - 0.1193 0.0279 - - - 65.83 184.20 0.942
M3 156 — - 0.1404 — 0.5811 — - 57.39 7255 0979
M4 149 - - 0.1790 — 2.1987 1.0283 - 117.61 26.75 0.991
M5 150 16.69 0.1169 0.1537 - - - - 58.98 40.43 0.988
M6 145 0.0202 - 0.2522 0.2676 - - 0.9901 413.60 70.59 0.979
M7 136 0.0214 - 0.4517 - - - 0.9840 83.46 36.38 0.988
M8 164 0.0769 - 0.2002 — 1.9012 1.7430 0.9195 657.72 41.24 0.988
M9 143 0.0155 0.5733 0.1834 - 19179 - 0.9823 8530 22.25 0.992
Fig. 6.2 Goodness of fit 200 -
curve of detection process for 180 -
models M1-M5 » 160 - D
4 .-
5 140
E 120 1
® 100 A
T 801 — —— - Actual Data M1
2 604 —eM2 e M3
3 40 ---- M4 M5
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o+r—r—rrr—r—rr-rrrr—rrrrrrrrrrrrrrorrrrrm
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Time (Weeks)
Fig. 6.3 Goodness of fit 180 -
curve of correction process 160 caxmaTe?
for models M1-M5 P S gty 5 ekl br sl S )
5 1401
o J
g 120
2 100 -
2 80 -
E 60 — —— - Actual Data
5 i —-=--M2 0 eeeees M3
E 401 - ——-M4 M5
O 204
o +=H¥—r—r—r—r—rrrrrr—r—rrrrrrr-rrrrrrrrrrm
NX A D D 0 0 @ o
Time (Weeks)

The software-testing data corresponding to the correction process are used
here to fit the SRGM for the correction processes. Using the estimates of the
correction process (parameter a, b) we have estimated the detection process.
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Fig. 6.4 Goodness of fit 180 -
curve of detection process for 160 A
models M6-M9 140 4
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Here the R* figures are corresponding to the data analysis of the fault cor-
rection process. We have calculated the mean square errors for both the
detection (MSEd) and correction (MSEc) process. Results in Table 6.5 depict
that the correction process is best described by the testing efficiency based
Gamma correction delay time model (M9), but the Mean Square errors (MSE)
corresponding to the detection process for this model is higher compared to
the other models. On the other hand if we see the result of model M5 which
is also based on Gamma distributed correction delay time model, but assumes
perfect debugging, we can say that this model can be chosen for the analysis
of the testing process of this software project. Although the MSE for the
correction process is higher for this model compared to M9 it has better value
of MSE for the detection process and both of the MSE are comparable.
However in such a case it remains the subjective choice of the practitioners to
decide which models are to use depending on their own testing and envi-
ronmental profile.
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6.6.2 Application of SRGM Based on the Concept of Infinite
Server Queues

Failure Data Set

The interval domain data is taken from Misra [31] in which the number of faults
detected per week (38 weeks) is specified and a total of 231 faults were detected.
Three types of faults—critical (1.73%), major (34.2%) and minor (64.07%), are
present in the software.

The following models have been selected for illustrating the data analysis and
parameter estimation. In the following models p;, p, and p; are the proportion of
complex, hard and simple faults, respectively. Here we have chosen the fault
complexity models although the technique of infinite server queues can also be
used for the development of models for the one type faults. We have discussed in
Sect. 6.5 that each of the three unification scheme discussed in this chapter are
equivalent. The data analysis for the new models of single types developed using
this scheme is already discussed in the previous section.

Model 10 (M10) Fault complexity SRGM where fault removal process for each
fault is described by GO model with different Fault Removal Rate (FRR) [12]

m(t) =api (1 —e ™) +aps(1 —e ™) +aps(1 —e™™), pi+p+ps=1

Model 11 (M11) Generalized Erlang SRGM with same FRR for each type of fault
[12]

b’
m(t) = ap, (1 - <l +bt+7>eb’> +aps (1 — (1 +bt)e™)
—|—ap3(1 —efht), pr+p2+p3=1

Model 12 (M12) Generalized Erlang SRGM with different FRR for each type of
fault [12]

b
m(t) = ap (1 — <1 + b]l‘—l—]T)e—bn) + Clpz(l _ (1 +b2t)e—h2t)
+ap3(1 _e*b:ﬂ‘)’ pr+p2+p3=1

Model 13 (M13) Three types of faults and FRP are described by GO model for
simple, delayed S-shaped for hard and Gamma time delay model for complex
faults [12]

e*bl t

m(t) = ap; (F(t’ %8) - ((1 - blﬁ)“r<t’ o —ﬁbll”)))

+apy (1 — (1+bot)e™) +aps(1—e ™), pi+pr+p3=1
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Table 6.6 Estimation results of models M10-M14

Models  Estimated parameters Comparison criteria
a H, o a, ﬁ b, bl bz b'; MSE R2

M10 675 - - 0.0099  0.0098 0.8580  14.30 0.992
Ml11 413 - - 0.0286 - - 2091 0.994
MI12 655 - - 0.0184  0.0065  0.0344  19.83 0.995
M13 511 1.7633  0.0086  0.0237  0.0168  0.0270  19.89 0.995
M14 569  1.1660  0.0059  0.0210 0.0141  0.0001  20.16 0.999
Fig. 6.6 Goodness of fit 3504 — —— -Actual Data M10

curve for models M10-M14 300 il "/ M12

- - - M13 M14

Cumulative Failures
o
o

N R R PP R
Time (Weeks)

Model 14 (M14) Three types of faults and FRP are described by GO model for
simple, delayed S-shaped for hard and normal time delay model for complex
faults [12]

(W)

—bytuib

m(t) = ap, <<—(D((0,t),b102 + u,o)e( O > + @((O,t),u,o))
+ apz(l —(1 +b21‘)eibﬂ) +ap3(1 - e%l), pr+pr+p3=1

The results of regression analysis of models M10-M14 are listed in
Table 6.6 and the goodness of fit curve against the actual data is shown in
Fig. 6.6. From the table we can conclude that model M10 fits best on this data
set. This model describes the removal process for each type of fault by the
exponential models with different fault removal rates. It means that the soft-
ware is tested under a uniform operational profile and the complexity of each
type of fault can be described similarly with different values of parameters.
Another interpretation of the results is that the removal rate of simple faults is
quite high as compared to the hard and complex faults. On the other hand
removal rate for the other two types of faults is similar, indicating the presence
of only two types of faults in the system.
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6.6.3 Application of SRGM Based on Unification Schemes
Jor Testing Efficiency Models

Two types of testing efficiency SRGM can be developed using the unification
schemes for the testing efficiency based SRGM. First the SRGM where the
detection process is assumed to describe the removal process also or in other
words the SRGM which assumes no time delay in fault removal after detection.
The second type of SRGM where the detection and removal process is described
by the different model equations and it is assumed that the removal process
defers the detection process. Application of the second type of SRGM is already
discussed in Sect. 6.6.3. Now we show the application of the first type SRGM in
this section.

Failure Data Set

This data set was collected in the bug tracking system on the website of Xfce [32].
Xfce is a lightweight desktop environment for UNIX-like OS. The observation
period for the data is 21 weeks and during the 21 weeks of testing 167 faults was
observed.

The following models have been selected for illustrating the data analysis and
parameter estimation.

Model 15 (M15) Exponential imperfect debugging model [13]

a
1 — —hp(l—o:)t:|
1- (x[ ¢

Model 16 (M16) Two-stage Erlang distribution based imperfect debugging model
[13]

a |:1 _ efbp(lfoz)t:|
1 -«

Model 17 (M17) Weibull distribution based imperfect debugging model [13]

a [1 _ efbp(lfx)t":|
1 —ua

Model 18 (M18) Normal distribution based imperfect debugging model [13]

1 - oz[l — (1= o(t,u, g))p(lw)}

Model 19 (M19) Normal distribution based imperfect debugging model [13]

a

a

(1= (1= T, )y

1—o

The results of regression analysis of models M15-M19 are listed in Table 6.7
and the goodness of fit curve against the actual data is shown in Fig. 6.7. From the
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Table 6.7 Estimation results for models M10-M14

Models Estimated parameters Comparison criteria
a o b, by, by, ¢,k p, o a, P p MSE R?
MI15 470 0.0399 0.0219 - - - 0.9241 23.05 0.991
Mi16 176  0.0271 0.1746 - - - 0.9545 78.98 0.971
M17 405 0.0233 0.0237 1.0172 - - 09734 25.10 0.988
M18 498 0.0202 - - 1.0120 21.86 0.9780 29.79 0.986
M19 514 0.0323 - - 09782 0.0180 0.9665 24.20 0.986
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table we can conclude that model M10 fits best on this data set. This model
describes the removal process for each type of fault by the exponential models with
different fault removal rates. It means that the software is tested under a uniform
operational profile and the complexity of each type of fault can be described
similarly with different values of parameters. Another interpretation of the results
is that the removal rate of simple faults is quite high as compared to the hard and
complex faults. On the other hand removal rate for the other two types of faults is
similar, indicating the presence of only two types of faults in the system.

Exercises

1. Why unification in software reliability growth modeling have been developed?
2. Assume FDP of a software can be described by the mean value function of an
exponential SRGM, ie. mys(f) =a(l —e™) and the fault isolation and
removal times are assumed to be independent with a common distribution G(¢),

(x=?
with pdf g(x; u,0) = ﬁefﬁ. Obtain the mean value function of the SRGM

for the isolation and removal process using the infinite server queue based
unification technique.
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3.

6 Unification of SRGM

If the distribution of failures and removal of faults is exponential with
parameters b; and b,, respectively, then show using the unification technique
discussed in Sect. 6.4.2 the mean value function of SRGM is given as

a 1 bleibzt P(lfx)
1—
1 —ua b1 — by \ —pye
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Chapter 7
Artificial Neural Networks Based SRGM

7.1 Artificial Neural Networks: An Introduction

An Artificial Neural Network (ANN) is a computational paradigm that is inspired
by the behavior of biological nervous system. The key element of this paradigm is
the novel structure of the information processing system. It is composed of a large
number of highly interconnected processing elements (neurons) working in unison
to solve specific problems capable of revealing complex global behavior, deter-
mined by the connections between the processing elements and element parame-
ters. ANN, like people, learns by example. An ANN is configured for a specific
application, such as pattern recognition or data classification, through a learning
process. In more practical terms neural networks are non-linear statistical data
modeling or decision making tools. Learning in biological systems involves
adjustments to the synaptic connections that exist between the neurons. This is true
for ANN as well.

Neural network simulation appears to be a recent development. However, this
field was established before the advent of computers and has survived at least one
major setback and several eras. Many important advances have been boosted by
the use of inexpensive computer emulations. A brief history [1] of the develop-
ment of the neural networks can be described diving into several periods.

o First Attempts: There were some initial simulations using formal logic. McCulloch
and Pitts [2] developed models of neural networks based on their understanding of
neurology. These models made several assumptions about how neurons worked.
Their networks were based on simple neurons which were considered to be binary
devices with fixed thresholds. The results of their model were simple logic func-
tions such as “a or b” and “a and b.” Another attempt was using computer
simulations by two groups [3, 4]. The first group (IBM researchers) maintained
close contact with neuroscientists at McGill University. So whenever their models
did not work, they consulted the neuroscientists. This interaction established a
multidisciplinary trend which continues to the present day.

P. K. Kapur et al., Software Reliability Assessment with OR Applications, 255
Springer Series in Reliability Engineering, DOI: 10.1007/978-0-85729-204-9_7,
© Springer-Verlag London Limited 2011
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e Promising and Emerging Technology: Not only the Nero-science was influential
in the development of neural networks, but psychologists and engineers also
contributed to the progress of neural network simulations. Rosenblatt [5] stirred
considerable interest and designed and developed the Perceptron. The Percep-
tron had three layers with the middle layer known as the association layer. This
system could learn to connect or associate a given input to a random output unit.
Another system was the adaptive linear element (ADALINE) which was
developed by Widrow and Hoff [6]. The ADALINE was an analogue electronic
device made from simple components. The method used for learning was dif-
ferent to that of the Perceptron, it employed the Least-Mean-Squares (LMS)
learning rule.

e Period of Frustration and Disrepute: Minsky and Papert [7] wrote a book in
which they generalized the limitations of single layer Perceptrons to multilay-
ered systems. In the book they said: “...our intuitive judgment that the extension
(to multilayer systems) is sterile.” The significant result of their book was to
eliminate funding for research with neural network simulations. The conclusions
supported the disenchantment of researchers in the field. As a result, consid-
erable prejudice against this field was activated.

e Innovation: Although public interest and available funding were minimal,
several researchers continued working to develop neuromorphically based
computational methods for problems such as pattern recognition. During this
period several paradigms were generated. Carpenter and Grossberg [8] influence
founded a school of thought which explores resonating algorithms. They
developed the Adaptive Resonance Theory (ART) networks based on biologi-
cally plausible models. Klopf [9] developed a basis for learning in artificial
neurons based on a biological principle for neuronal learning called heterostasis.
Werbos [10] developed and used the back-propagation learning method, how-
ever several years passed before this approach was popularized. Back-propa-
gation networks are probably the most well known and widely applied neural
networks today. In essence, the back-propagation network is a Perceptron with
multiple layers, a different threshold function in the artificial neuron, and a more
robust and capable learning rule. Anderson and Kohonen developed associative
techniques independent of each other. Amari [11-13] was involved with theo-
retical developments: he published a paper which established a mathematical
theory for a learning basis (error-correction method) dealing with adaptive
pattern classification.

e Re-Emergence: Progress during the late 1970s and early 1980s was important to
the re-emergence on interest in the neural network field. Several factors influ-
enced this movement. For example, comprehensive books and conferences
provided a forum for people in diverse fields with specialized technical lan-
guages, and the response to conferences and publications was quite positive. The
news media picked up on the increased activity and tutorials helped disseminate
the technology. Academic programs appeared and courses were introduced at
most major Universities (in USA and Europe). Attention is now focused on
funding levels throughout Europe, Japan and the USA and as this funding
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becomes available, several new commercial applications in industry and
financial institutions are emerging.

e Today: Significant progress has been made in the field of neural networks,
enough to attract a great deal of attention and fund further research. Advance-
ment beyond current commercial applications appears to be possible, and
research is advancing the field on many fronts. Neurally based chips are
emerging and applications to complex problems developing. Clearly, today is a
period of transition for neural network technology.

Notations

x(#)(x{#))  The input to the hidden layer (ith neuron of hidden layer)
h(t)(h{t))  Output from the hidden layer (ith neuron of hidden layer)
a(x)(a;(x))  Activation function in the hidden layer (ith neuron of hidden layer)

(1) The input to the output layer

g Output from the network (output layer)

px) The activation function in the output layer
wi(wy;) Weights assigned to the input to the hidden layer
wo(Wa;) Weights assigned to the input to the output layer
b1(byy) Bias in the hidden layer

bo(boi) Bias in the output layer

7.1.1 Specific Features of Artificial Neural Network

Neural networks find application because of their remarkable ability to derive
meaning from complicated or imprecise data. These can be used to extract patterns
and detect trends that are too complex to be noticed by either human beings or
other computer techniques. A trained neural network can be thought of as an
“expert” in the category of information it has been given to analyze. This expert
can then be used to provide projections given new situations of interest and answer
“what if” questions.

Other advantages include

1. Adaptive learning: An ability to learn how to do tasks based on the data given
for training or initial experience.

2. Self organization: An ANN can create its own organization or representation of
the information it receives during learning time.

3. Real time operation: ANN computations may be carried out in parallel, and
special hardware devices are being designed and manufactured which take
advantage of this capability.
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4. Fault tolerance via redundant information coding: Partial destruction of a
network leads to the corresponding degradation of performance. However,
some network capabilities may be retained even with major network damage.

7.2 Artificial Neural Network: A Description

In general, neural networks consist of three components [14]

1. Neurons
2. Network architecture
3. Learning algorithm

7.2.1 Neurons

An artificial neuron is a device with many inputs and one output. Neurons receive
input signals, process the signals and finally produce an output signal. The neuron
has two modes of operation; the training mode and the using mode. In the training
mode, the neuron can be trained to fire (or not), for particular input patterns. In the
using mode, when a taught input pattern is detected at the input, its associated
output becomes the current output. If the input pattern does not belong in the
taught list of input patterns, the firing rule is used to determine whether to fire or
not. Figure 7.1 shows a neuron, where f is the activation function that processes
the input signals and produces an output of the neuron, x; are the inputs of the
neuron which may be the outputs from the previous layers, and w; are the weights
connected to the neurons of the previous layer.

7.2.2 Network Architecture

Artificial neural network is an interconnected group of artificial neurons that uses a
computational model for information processing based on a connectionist

Fig. 7.1 A neuron P
X fi=b+ Zx;w,}-

i=l

Activation
function
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approach. An adaptive ANN changes its structure based on information that flows
through the network. In general there are two most common types of neural
network architectures—feed-forward networks and feedback networks.

A typical feed-forward neural network comprises a layer of neurons called
input layer that receive inputs (suitably encoded) from the outside world, a layer
called output layer that sends outputs to the external world, and one or more layers
called hidden layers that have no direct communication with the external world.
This hidden layer of neurons receives inputs from the previous layer and converts
them to an activation value that can be passed on as input to the neurons in the next
layer. The input layer neurons do not perform any computation; they merely copy
the input values and associate them with weights, feeding the neurons in the first
hidden layer. The input corresponds to the attributes measured for each training
sample. The number of hidden layers is arbitrary. The weighted outputs of last
hidden layer are input to units making up the output layer, which emits the net-
work’s prediction for given samples. An example of such a feed-forward network
is shown in Fig. 7.2. In this figure there are p input units, ¢ hidden units and
r output units. Feed-forward networks can propagate activations only in the for-
ward direction. There is no feedback (loops), i.e., the output of any layer does not
affect that same layer. Feed-forward ANN tends to be straightforward networks
that associate inputs with outputs. They are extensively used in pattern recognition.
This type of organization is also referred to as bottom-up or top-down. On the
other hand feedback networks can have signals traveling in both directions by
introducing loops in the network. Feedback networks are very powerful and can
get extremely complicated. Feedback networks are dynamic; their “state” is
changing continuously until they reach an equilibrium point. They remain at the
equilibrium point until the input changes and a new equilibrium needs to be found.
Feedback architectures are also referred to as interactive or recurrent, although the

Fig. 7.2 A multilayer feed- Input Hidden Output
forward neural network |a¥er |a¥er Iayer
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latter term is often used to denote feedback connections in single-layer
organizations.

7.2.3 Learning Algorithm

The learning algorithm describes a process to adjust the weights [1]. During the
learning processes, the weights of network are adjusted to reduce the errors of the
network outputs as compared to the standard answers. We can teach a three-layer
network to perform a particular task by using the following procedure.

1. We present the network with training examples, which consist of a pattern of
activities for the input units together with the desired pattern of activities for the
output units.

2. We determine how closely the actual output of the network matches the desired
output.

3. We change the weight of each connection so that the network produces a better
approximation of the desired output.

The memorization of patterns and the subsequent response of the network can
be categorized into two general paradigms

Associative mapping in which the network learns to produce a particular pattern
on the set of input units whenever another particular pattern is applied on the set of
input units. The associative mapping can generally be broken down into two
mechanisms:

e Auto-association. An input pattern is associated with itself and the states of
input and output units coincide. This is used to provide pattern completion, i.e.,
to produce a pattern whenever a portion of it or a distorted pattern is presented.
In the second case, the network actually stores pairs of patterns building an
association between two sets of patterns.

e Hetero-association. Is related to two recall mechanisms:

— nearest-neighbor recall, where the output pattern produced corresponds to the
input pattern stored, which is closest to the pattern presented, and

— interpolative recall, where the output pattern is a similarity dependent inter-
polation of the patterns stored corresponding to the pattern presented. Yet
another paradigm, which is a variant associative mapping, is classification,
i.e., when there is a fixed set of categories into which the input patterns are to
be classified.

Regularity detection in which, units learn to respond to particular properties of
the input patterns. Whereas in associative mapping the network stores the rela-
tionships among patterns, in regularity detection the response of each unit has a
particular “meaning.” This type of learning mechanism is essential for feature
discovery and knowledge representation.
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Every neural network possesses knowledge which, is contained in the values of
the connections weights. Modifying the knowledge stored in the network as a
function of experience implies a learning rule for changing the values of the
weights. Information is stored in the weight matrix of a neural network. Learning
is the determination of the weights. Following the way learning is performed, we
can distinguish two major categories of neural networks

e Fixed networks in which the weights cannot be changed. In such networks, the
weights are fixed a priori according to the problem to solve.
o Adaptive networks which are able to change their weights.

All learning methods used for adaptive neural networks can be classified into
two major categories:

Supervised learning which incorporates an external teacher, so that each output
unit is told what its desired response to input signals ought to be. During the
learning process global information may be required. Paradigms of supervised
learning include error-correction learning, reinforcement learning and stochastic
learning. An important issue concerning supervised learning is the problem of
error convergence, i.e., the minimization of error between the desired and com-
puted unit values. The aim is to determine a set of weights which minimizes the
error. One well-known method, which is common to many learning paradigms, is
the least mean square (LMS) convergence.

Unsupervised learning uses no external teacher and is based upon only local
information. It is also referred to as self-organization, in the sense that it self-
organizes data presented to the network and detects their emergent collective
properties. Paradigms of unsupervised learning are: Hebbian learning and com-
petitive learning.

We say that a neural network learns off-line if the learning phase and the
operation phase are distinct. A neural network learns on-line if it learns and
operates at the same time. Usually, supervised learning is performed off-line,
whereas unsupervised learning is performed on-line.

In order to train a neural network to perform some task, we must adjust the
weights of each unit in such a way that the error between the desired output and
the actual output is reduced. This process requires that the neural network compute
the error derivative of the weights (EW). In other words, it must calculate how
the error changes as each weight is increased or decreased slightly. The back-
propagation algorithm is the most widely used method for determining the EW and
is also adopted for training the ANN discussed in this chapter. Back propagation is
a supervised learning technique used for training ANNSs. It was first described by
Werbos [10], but the algorithm has been rediscovered a number of times. It is most
useful for feed-forward networks. In back-propagation algorithm, the weights of
the network are iteratively trained with the errors propagated back from the output
layer. Back propagation learns by iteratively processing a set of training samples,
comparing the network’s prediction for each sample with the actual known value.
For each training sample, the weights are modified so as to minimize the mean
squared error between the network’s prediction and the actual value. It uses the
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gradient of the sum-squared error (with respect to weights) to adapt the network
weights so that the error measure is smaller in future epochs. The method requires
that the transfer function used by the artificial neurons (or “nodes”) be differen-
tiable. Training terminates when the sum-squared error is below a specified tol-
erance limit.

The algorithm computes each EW by first computing the EA, the rate at which
the error changes as the activity level of a unit is changed. For output units, the EA
is simply the difference between the actual and the desired output. To compute the
EA for a hidden unit in the layer just before the output layer, we first identify all
the weights between that hidden unit and the output units to which it is connected.
We then multiply those weights by the EAs of those output units and add the
products. This sum equals the EA for the chosen hidden unit. After calculating all
the EAs in the hidden layer just before the output layer, we can compute in like
fashion the EAs for other layers, moving from layer to layer in a direction opposite
to the way activities propagate through the network. This is what gives back
propagation its name. Once the EA has been computed for a unit, it is straight
forward to compute the EW for each incoming connection of the unit. The EW is
the product of the EA and the activity through the incoming connection. Note that
for non-linear units, the back-propagation algorithm includes an extra step. Before
back-propagating, the EA must be converted into the EI, the rate at which the error
changes as the total input received by a unit is changed. Back propagation usually
allows quick convergence on satisfactory local minima for error in the kind of
networks to which it is suited. For software reliability modeling cumulative exe-
cution time is used as input and the corresponding cumulative faults as the desired
output to form a training pair. Here the units of the network are non linear as most
of the software reliability models describe nonlinear mathematical forms. The
neural network can be described in a mathematical form. The objective of neural
networks is to approximate a non-linear function that can receive the input vector

(x1,X2,...,X,)in R” and output the vector (yi,...,y,) in R".
Thus, the network can be denoted as:
v = B(i) (72.1)

where i = (iy, iz, i3, ..., i,) and y = (y1, ¥2,¥3,--.,y,). The value of any y, is
given by

q
k= ﬂ(bk + § w_,?kh,> k=1,2,...,r (7.2.2)
J=i

where w3 is the weight from hidden layer node j to output layer node k, by is the
bias of the node k in output layer, A; is the output from node j of the hidden layer,
and f is an activation function in output layer. The output value of the nodes in
hidden layer is given by
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P
hj:a<bj+zwzljiz> i=12,...,q (7.2.3)

z=1

where Wzli is the weight from input layer node z to hidden layer node j, b; is the bias

of the node j, i, is the value in the input layer, and « is an activation function in
hidden layer.

7.3 Neural Network Approaches in Software Reliability

A number of factors that normally demonstrate non-linear patterns such as soft-
ware development methodology, software development environment, complexity
of the software, software personnel, etc. affect the behavior of software reliability
growth. This imposes several limitations on existing statistical modeling methods
that depend highly on making assumptions on the testing process. Neural network
models have a significant advantage over analytical models, because they require
only failure history as input and no assumptions. Consequently, they have drawn
attention of many researchers in recent years. It has been found that neural network
methods can be applied to estimate the number of faults and predict the number of
software failures as they often offered better results than existing statistical ana-
lytical models.

As reliability growth models exhibit different predictive capabilities at different
testing phases both within a project and across projects, researchers are finding it
nearly impossible to develop a universal model that will provide accurate pre-
dictions under all circumstances. A possible solution is to develop models that do
not require making assumptions about either the development environment or
external parameters. Recent advances in neural networks show that they can be
used in applications that involve predictions. Neural network methods may handle
numerous factors and approximate any non-linear continuous function.

Many papers are published in the literature addressing that neural networks
offer promising approaches to software reliability estimation and prediction.
Karunanithi and co-workers [15—18] first applied some kinds of neural network
architecture to estimate the software reliability and used the execution time as
input, the cumulative number of detected faults as desired output and encoded the
input and output into the binary bit string. Furthermore, they also illustrated the
usefulness of connectionist models for software reliability growth prediction and
showed that the connectionist approach is capable of developing models of varying
complexity. Khoshgoftaar and co-workers [19, 20] used the neural network as a
tool for predicting the number of faults in programs. They introduced an approach
for static reliability modeling and concluded that the neural networks produce
models with better quality of fit and predictive quality.

Sherer [21] applied neural networks for predicting software faults in several
NASA projects. Khoshgoftaar et al. [22] used the neural network as a tool for
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predicting the number of faults in a program and concluded that the neural net-
works produce models with better quality of fit and predictive quality. Sitte [23]
compared the predictive performance of two different methods of software reli-
ability prediction: “neural networks” and “recalibration for parametric models.”
Cai et al. [24] used the recent 50 inter-failure times as the multiple-delayed-inputs
to predict the next failure time and found the effect of the number of input neurons,
the number of neurons in the hidden layer and the number of hidden layers by
independently varying the network architecture. They advocated the development
of fuzzy software reliability growth models in place of probabilistic software
reliability models.

Most of the neural networks used for software reliability modeling can be
classified into two classes. One used cumulative execution time as inputs and the
corresponding accumulated failures as desired outputs. This class focuses on
modeling software reliability modeling by varying different kind of neural network
such as recurrent neural network [16]; Elman network [23]. The other class,
models the software reliability based on multiple-delayed input single-output
neural network. Cai and co-workers [24, 25] used the recent 50 inter-failure times
as the multiple-delayed-inputs to predict the next failure time.

There was a common problem with all these of approaches. We have to pre-
determine the network architecture such as the number of neurons in each layer
and the numbers of the layers. In Cai’s experiment, he found the effect of the
number of input neurons, the number of neurons in hidden layer and the number of
hidden layers by independently varying the network architecture. Another problem
is that since several fast training algorithms are investigated for reducing the
training time, these advanced algorithms focus on the model fitting and this will
cause the over fitting. When the network is trained, the error of training set is small
for training data, but when new data is available to the network, the error maybe
extremely large. Since the modeling approaches mentioned above treat the neural
network as a black box, researchers consider the combinations of the network
architecture to find a solution that can be suggested for us to build a network that
can perform more accurate prediction. But we still cannot know about the meaning
of each element of the network. Su et al. [14] proposed a neural-network-based
approach to software reliability assessment. Unlike the traditional neural network
modeling approach, they first explain the network networks from the mathematical
viewpoints of software reliability modeling and then derived some very useful
mathematic expressions that can directly applied to neural networks from tradi-
tional SRGM. They also showed how to apply neural network to software reli-
ability modeling by designing different elements of the network architecture. The
proposed neural-network-based approach can also combine various existing
models into a dynamic weighted combinational model (DWCM). Kapur et al. [26]
proposed an ANN based Dynamic Integrated Model (DIM), which is an
improvement over DWCM given by Su et al. [14]. In another research Kapur et al.
[27] have proposed generalized dynamic integrated ANN models for the existing
fault complexity models. Khatri et al. [28] have proposed ANN based SRGM
considering testing efficiency.
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7.3.1 Building ANN for Existing Analytical SRGM

The objective function y of the neural network can be considered as compound
function. By deriving a compound function from the conventional statistical
SRGM, we can build a neural network based SRGM having all the properties of
the existing SRGM. Simple feed forward neural network architecture for basic
SRGM can be consisting of one hidden layer and one neuron each in input, hidden
and output layer as shown in Fig. 7.3.

Neural network approach for software reliability measurement in general is
based on building a network of neurons with weights. These weights have some
initial value which is changed during training using back-propagation method to
minimize the mean squared error. For each training sample, the weights are
modified so as to minimize the mean squared error between the network’s pre-
diction and the actual value. These modifications are made in the backward
direction, that is, from the output layer, through each hidden layer down to the first
hidden layer.

Network design is a trial-and-error process and may affect the accuracy of the
resulting trained network. There are no clear rules to the best number of hidden
layer units. The initial values of the weights may also affect the resulting accuracy.
Once a network has been trained and its accuracy is not considered acceptable, it is
common to repeat the training process with a different network topology or a
different set of initial weights.

Cai et al. [24] had depicted some relationships between the neural network and
conventional NHPP models as follows:

e [3(¢) is equivalent to the mean value function of SRGM.
e w, is the failure rate.
® w, is the proportion of expected total number of faults latent in the system.

The output of the hidden layer, a(x), is similar to the distribution function.

For example, if we construct a neural network with an activation function
(i) = 1 — e~' in the hidden layer, a pure linear activation function (i) = i in the
output layer and no bias in hidden as well as in output layer, i.e. the input to the
hidden layer with weight w, is

x(t) =wit+ by (731)
where b is the bias, then the output of the hidden layer is given by

h(t) = a(x(t)) = 1 — e (7.3.2)

Fig. 7.3 Feed-forward X(t)
network with single neuron in

h(®) g(®
each layer . i ,. i ,.
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If the bias b, is negligible such that it can assumed to be zero then the output
from the hidden layer is

h(t)=1—¢e™ (7.3.3)
Now the input to the output layer is
y(t) = h(t)wz + by (7.3.4)

If the bias by is negligible such that it can be assumed to be zero then the output
from the output layer is

g(1) = BOy(1) = wa(l —e™) (7.3.5)

If we assume w; = b and w, = a then Eq. (7.3.5) corresponds to the conven-
tional Goel and Okumoto [29] model.

Back propagation algorithm used to train the network requires that the acti-
vation functions should be continuous and differentiable everywhere. The acti-
vation functions we have used above are continuous and differentiable everywhere.
The parameters of the models are estimated based on the data. For training the
ANN we use back propagation method. Kapur et al. [26] have written a software
program written in C programming language for training of the ANN. The pro-
gram can be modified according to the activation function used and the network
architecture. The program requires a failure data set as input and generates esti-
mates of the parameters of the network models as output. Using these estimated
values reliability measurements are made.

7.3.2 Software Failure Data

Software failure is an incorrect result with respect to the specification or an
unexpected software behavior perceived by the user, while software fault is the
identified or hypothesized cause of the software failure. When a time basis is
determined, failures can be expressed in the form of cumulative failure function.
The cumulative failure function (also called the mean value function) denotes the
average cumulative failures associated with each point of time. In software failure
process, m(t;) is the cumulative number of faults removed by execution time #;.
Software reliability data are arranged in pairs as {¢;, m(t;)}. Each pair of software
reliability data is passed on to the neural network to determine the weights and
then the trained ANN is used for estimating the cumulative failures in software at
time #; or predicting the cumulative failures at any future time.

7.3.2.1 Normalization

Software reliability data are normalized before applying on the neural-network.
Normalization is performed by scaling the value of the collected data within a
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small-specified range of 0.0—1.0. There are many methods for normalization such
as min—-maxnormalization, z-scorenormalization and normalization by decimal
scaling. In this paper, we have used min—-max normalization, which performs a
linear transformation on the original data. For a data variable x having its mini-
mum and maximum value min, and max,, respectively, min—max normalization
maps a data value, to new_value, in the range [new_min,, new_max,] using the
formula

new_value, = M(new_maxx — new_min,) +new_min,  (7.3.6)

max, — miny

Min-max normalization preserves the relationships among the original data

values.

7.4 Neural Network Based Software Reliability Growth Model
7.4.1 Dynamic Weighted Combinational Model

Dynamic Weighted Combinational Model (DWCM) proposed by Su et al. [14] is a
neural-network-based approach to software reliability assessment by combining
various existing models. The design methodology of the network elements is
described in detail by the authors. The model considers feedforward neural net-
work architecture with single neuron in each of the input and output layers and
three neurons in the hidden layer. Each of the neurons in the hidden layer receives
a weighted input form the single input neuron. The output from each of the
neurons in the hidden layer is weighted in different proportions and the combined
weighted output (so the name of the model) of the hidden layer is fed as the input
to the output layer which then determines the output of the network based on the
activation function in the output layer. The activation function in each of the three
neurons in the hidden layer is defined according to the Goel and Okumoto [29],
Yamada et al. [30] delayed s-shaped and logistic growth curve models [31]. The
neural network architecture for this scenario is depicted in Fig. 7.4.

The activation function for the three neurons in the hidden layers is given by
Egs. (7.4.1)—(7.4.3), respectively.

The jth neuron in hidden layer will have the activation function o (x). The
activation functions for the units in hidden layer in Fig. 7.4 are defined as

o(x)=1—e"" (7.4.1)
m(x)=1—=(1+x)e " (7.4.2)
a3 (x) ! (7.4.3)

- 14+e*
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Fig. 7.4 Network
architecture of the dynamic
weighted combinational
model

The activation function for the neuron in output layer is defined as
B(x) =x (7.4.4)

wij, Wi (j = 1, 2 and 3) are the weights assigned in the network form input
layer to hidden layer and hidden layer to output layer, respectively. This network
architecture assumes no bias in the neurons of hidden layer and output layer.

Input to the first, second and third neurons of hidden layer are, respectively,

)C](l‘) = wiit (745)
Xg(l‘) = Wit (746)
X3(l‘) = wst (747)

Corresponding to the above inputs, outputs from each of the neurons in hidden
layers is, respectively,

hy (l) = OCl(Wlll‘) =1—e " (748)
hz(l) = O(z(lel) =1- (1 + let)eiwlzt (749)
1

hs(t) = o5 (wist) = (7.4.10)

1 4 e~(wis0)
Input to the single unit of output layer is
—w —w 1
Y = ﬂ<Wzl<1 =) Hwn(l = (14 wiat)e™) + wx <1+e<>)>
(74.11)

hence the output from the single unit of output layer is

1 + ef(W]}l‘)
(7.4.12)

1
g(l) = W21(1 — eiw]lt) + sz(l — (1 + lel)eiwm) —+ wo3 (7)
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Note that if we assume wy; (j = 1, 2 and 3) are equivalent to the fault detection
rates of the conventional SRGM and w,; (j = 1, 2 and 3) are equivalent to the
proportion of total fault content in the software, i.e., wi; = by, wy; = ay,
Wia = by, Way = ap, w1z = by and wo3 = a3, Eq. (7.4.12) can be written as

as

m(t) = an(1 =) +ar (1= (14 batje ™)+

(7.4.13)

Also note that w,; are the weights of each individual model and their values can
be determined by the training algorithm. Actually application of models in practice
becomes more effective by combining them. The approach can automatically
determine the weight of each model according to the characteristics of the selected
data sets.

The above discussion describes in detail how a neural network is constructed
for the selected conventional SRGM. Prediction of the software reliability using
the neural network approach consists of the following sequential steps.

1. Select some appropriate (and suitable) SRGM (at least one).

2. Construct the neural network of selected models by designing the activation
functions and bias.

3. Gather the data set of the software failure history. Normalize the cumulative
execution time ¢; and compute its corresponding accumulated number of soft-
ware failure m;

4. Feed all pairs of {#,m;} to the network and train the network by using the back-
propagation algorithm.

5. When the network is trained, feed the future testing time to the network, and the
network output is the possible cumulative number of software failures in the
future.

The activation functions for the three neurons in the hidden layers in the above
model are defined corresponding to Goel and Okumoto [29], Yamada et al. [30]
and logistic growth curve, respectively. The logistic growth curve is quite often
used in statistical literature for describing the growth of the various types of the
phenomena such as population growth and in general gives good results in many
cases. The literature of software reliability also support the use of logistic function
for the reliability growth modeling however in software reliability modeling it is
more often called a learning curve as it can be modified to capture the learning
phenomena which is of most common occurrence in most of the testing process.
Kapur and Garg [32] SRGM is among the earliest and most commonly used
SRGM that address to the learning phenomena in the testing process. The logistic
growth curve in the DWCM can be replaced by this learning curve if we do not
ignore the bias in the third neuron of the hidden layer while again ignoring the bias
in the output layer [26]. In that case the above model is redefined as follows.

If we do not ignore the bias in the third neuron of the hidden layer then the input
to this neuron will be

X3(l‘) =wpit+c (7414)
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where c is the bias. Corresponding to the above input, output from this neurons in
hidden layer is

1 1
1+ ef(w13t+c) = 1+ q/ef(w];t)

h3([) = O(3(W13l + C) = (7415)

where y = e™“. In this case the combined input to the single unit of output layer is

1
_ —wi it —wiat
y(t) _ﬁ(WZI(l —¢€ )+ waa(1 = (14 wppt)e ™) + w3 (m))

(7.4.16)

hence the output from the single unit of output layer is

1
_ —wiit —wiat
(1) =wa (1 —e™) +wyn(l — (1 +wipt)e ‘)+W23<m>

(7.4.17)

In this way considering the substantial bias in the third neuron of the hidden
layer the ANN can incorporate the learning nature of the testing process. Now
similar to (7.4.13), Eq. (7.4.17) can be written as

as

m(t) = qa (1 — e’b”) +(12(1 — (1 +b2t)eib2f) +m

(7.4.18)

The above ANN model is the dynamic weighted combinational ANN model for
the exponential [29], s-shaped [30] and flexible [32] learning model. As this model
combined all the three types exponential, s-shaped and flexible model into a single
model it provides a good fit for a number of real life applications.

7.4.2 Generalized Dynamic Integrated SRGM

The NHPP based software reliability growth models discussed throughout the
book are either exponential or s-shaped in nature. In exponential software reli-
ability growth models, software reliability growth is defined by the mathematical
relationship that exists between the time span of using (or testing) a program and
the cumulative number of errors discovered. In contrast, s-shaped software reli-
ability growth is more often observed in real life projects. There are many reasons
why observed software reliability growth curves often become s-shaped. S-Shaped
software reliability growth curve is typically caused by the definition of failures.
The growth is also caused by the continuous test effort increase in which the test
effort has been incrementally increased through the test period. Some of these
causative factors or influences can be described by making the basic assumptions
of the exponential growth model more realistic.
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A number of models discussed in the book refer to the complexity of faults in
the software. These models define that any software can be assumed to contain
n different types of faults, the type of fault is distinguished based on the delay time
between their observation and removal. Application of fault complexity based
models on real life projects in general produces good results as different types of
faults are treated differently. The neural network approach for reliability estima-
tion and prediction [14] can combine a number of SRGM with different weights.
This idea generates the thought of developing a neural-network-based model that
can in general combine n different SRGM, one for each type of fault.

This section presents an ANN-based Generalized Dynamic Integrated SRGM
(GDIM) [27] that can be applied for reliability estimation for a software project
expected to contain different (n) types of faults. Recall that the time delay between
the failure observation and subsequent fault removal represents the complexity of
the faults. More severe the fault more will be time delay. The faults are classified
as simple, hard and complex. The fault is classified as simple if the time delay
between failure observation, isolation and removal is negligible. If there is a time
delay between failure observation and isolation, the fault is classified as a hard
fault. If there is a time delay between failure observation, isolation and removal,
the fault is classified as a complex fault. For detailed modeling refer to Sect. 2.4.

Assuming that the software consists of n different types of faults and on each
type of fault, a different strategy is required to remove the cause of failures,
Kapur et al. [33] assumed that for a type i (i = 1, 2, ..., n) fault, i different
processes (stages) are required to remove the cause of the failure. We can apply the
neural-network-based approaches to build a GDIM to predict and estimate the
reliability of software consisting of n different types of faults depending upon
their complexity. The neural network is constructed with single input, single
output but with more than one neuron in the hidden layer. The number of units
in the hidden layer depends on the types of faults in the software system. For
software having n different types of faults on basis of their complexity, there will
be n units in the hidden layer. Such a feedforward neural network is shown in
Fig. 7.5.

In practice, we can design different activation functions on different units in the
hidden layer. The jth neuron in the hidden layer will have the activation function
for jth type of fault. The weights wy;, from the input layer to the jth node in the
hidden layer, represent the fault detection rate of jth type of fault and weights wy;,
from the jth node in the hidden layer to the single node in the output layer
represent the proportionality of total number of jth type of faults latent in the
system. There will be no bias in units of hidden layer and in the single unit of
output layer. The activation function for the jth node in the hidden layer is defined
as

oj(x) =1—e" x]zl:l') (7.4.19)

i=0
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Fig. 7.5 Network hl(t)
Architecture of GDIM for

n types of faults

While the activation function for the node in the output layer can be defined
same as in (7.4.3). Proceeding in the similar manner as in case of Su et al. [14]
model we can define the network output. wy;, wy; (j = 1, 2,..., n) are the weights
assigned in the network form input layer to hidden layer and hidden layer to output
layer, respectively. If we assume no bias in both of hidden layer and output layer
input to ith unit of hidden layer i