
XQuery

Priscilla Walmsley

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

XQuery
by Priscilla Walmsley

Copyright © 2007 Priscilla Walmsley. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Simon St.Laurent
Production Editor: Lydia Onofrei
Proofreader: Lydia Onofrei
Indexer: Ellen Troutman-Zaig

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano and Jessamyn Read

Printing History:

April 2007: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. XQuery, the image of a satyr tragopan, and related trade dress are trademarks of
O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-00634-9

ISBN-13: 978-0-596-00634-1

[M]

v

Table of Contents

Preface . xi

1. Introduction to XQuery . 1
What Is XQuery? 1
Easing into XQuery 3
Path Expressions 5
FLWORs 6
Adding XML Elements and Attributes 7
Functions 10
Joins 10
Aggregating and Grouping Values 11

2. XQuery Foundations . 12
The Design of the XQuery Language 12
XQuery in Context 13
Processing Queries 15
The XQuery Data Model 17
Types 24
Namespaces 24

3. Expressions: XQuery Building Blocks . 26
Categories of Expressions 26
Keywords and Names 27
Whitespace in Queries 27
Literals 28
Variables 28
Function Calls 29

vi | Table of Contents

Comments 29
Evaluation Order and Parentheses 30
Comparison Expressions 30
Conditional (if-then-else) Expressions 35
Logical (and/or) Expressions 37

4. Navigating Input Documents Using Paths . 39
Path Expressions 39
Predicates 46
Dynamic Paths 52
Input Documents 52
A Closer Look at Context 55

5. Adding Elements and Attributes to Results . 57
Including Elements and Attributes from the Input Document 57
Direct Element Constructors 58
Computed Constructors 68

6. Selecting and Joining Using FLWORs . 72
Selecting with Path Expressions 72
FLWOR Expressions 72
Quantified Expressions 79
Selecting Distinct Values 81
Joins 81

7. Sorting and Grouping . 85
Sorting in XQuery 85
Grouping 93
Aggregating Values 94

8. Functions . 99
Built-in Versus User-Defined Functions 99
Calling Functions 99
User-Defined Functions 103

9. Advanced Queries . 110
Copying Input Elements with Modifications 110
Working with Positions and Sequence Numbers 115
Combining Results 118
Using Intermediate XML Documents 119

Table of Contents | vii

10. Namespaces and XQuery . 123
XML Namespaces 123
Namespaces and XQuery 127
Namespace Declarations in Queries 128
Controlling Namespace Declarations in Your Results 135

11. A Closer Look at Types . 141
The XQuery Type System 141
The Built-in Types 143
Types, Nodes, and Atomic Values 145
Type Checking in XQuery 146
Automatic Type Conversions 147
Sequence Types 151
Constructors and Casting 155

12. Queries, Prologs, and Modules . 160
Structure of a Query: Prolog and Body 160
Assembling Queries from Multiple Modules 163
Variable Declarations 166
Declaring External Functions 168

13. Using Schemas with XQuery . 170
What Is a Schema? 170
Why Use Schemas with Queries? 171
W3C XML Schema: A Brief Overview 172
In-Scope Schema Definitions 175
Schema Validation and Type Assignment 178
Sequence Types and Schemas 183

14. Static Typing . 185
What Is Static Typing? 185
The Typeswitch Expression 187
The Treat Expression 189
Type Declarations 190
The zero-or-one, one-or-more, and exactly-one Functions 192

15. Principles of Query Design . 193
Query Design Goals 193
Clarity 193
Modularity 196

viii | Table of Contents

Robustness 196
Error Handling 199
Performance 201

16. Working with Numbers . 204
The Numeric Types 204
Constructing Numeric Values 205
Comparing Numeric Values 206
Arithmetic Operations 207
Functions on Numbers 211

17. Working with Strings . 213
The xs:string Type 213
Constructing Strings 213
Comparing Strings 214
Substrings 216
Finding the Length of a String 217
Concatenating and Splitting Strings 218
Manipulating Strings 220
Whitespace and Strings 222
Internationalization Considerations 223

18. Regular Expressions . 226
The Structure of a Regular Expression 226
Representing Individual Characters 228
Representing Any Character 229
Representing Groups of Characters 230
Character Class Expressions 233
Reluctant Quantifiers 235
Anchors 236
Back-References 237
Using Flags 238
Using Sub-Expressions with Replacement Variables 239

19. Working with Dates, Times, and Durations . 242
The Date and Time Types 242
The Duration Types 246
Extracting Components of Dates, Times, and Durations 248
Using Arithmetic Operators on Dates, Times, and Durations 249
The Date Component Types 252

Table of Contents | ix

20. Working with Qualified Names, URIs, and IDs . 254
Working with Qualified Names 254
Working with URIs 259
Working with IDs 264

21. Working with Other XML Components . 267
XML Comments 267
Processing Instructions 269
Documents 272
Text Nodes 274
XML Entity and Character References 278
CDATA Sections 280

22. Additional XQuery-Related Standards . 282
Serialization 282
XQueryX 284
XQuery Update Facility 285
Full-Text Search 285
XQuery API for Java (XQJ) 287

23. Implementation-Specific Features . 289
Conformance 289
XML Version Support 290
Setting the Query Context 290
Option Declarations and Extension Expressions 291
Specifying Serialization Parameters 293

24. XQuery for SQL Users . 294
Relational Versus XML Data Models 294
Comparing SQL Syntax with XQuery Syntax 296
Combining SQL and XQuery 303
SQL/XML 306

25. XQuery for XSLT Users . 307
XQuery and XPath 307
XQuery Versus XSLT 307
Differences Between XQuery 1.0/XPath 2.0 and XPath 1.0 314

x | Table of Contents

A. Built-in Function Reference . 319

B. Built-in Types . 411

C. Error Summary . 440

Index . 465

xi

Preface1

This book provides complete coverage of the W3C XQuery 1.0 standard that was
finalized in January 2007. In addition, it provides the background knowledge in
namespaces, schemas, built-in types, and regular expressions that is relevant to writ-
ing XML queries.

This book is designed for query writers who have some knowledge of XML basics
but not necessarily advanced knowledge of XML-related technologies. It can be used
as a tutorial, by reading it cover to cover, and as a reference, by using the compre-
hensive index and appendixes.

Contents of This Book
The book is organized into six parts:

1. Chapters 1 and 2 provide a high-level overview and quick tour of XQuery.

2. Chapters 3–9 provide enough information to write sophisticated queries, with-
out being bogged down by the details of types, namespaces, and schemas.

3. Chapters 10–15 introduce some advanced concepts for users who want to take
advantage of modularity, namespaces, typing, and schemas.

4. Chapters 16–23 provide guidelines for working with specific types of data, such
as numbers, strings, dates, URIs, and processing instructions.

5. Chapters 24 and 25 describe XQuery’s relationship to SQL and XSLT.

6. Appendixes A, B, and C provide a complete alphabetical reference to the built-in
functions, types, and error messages.

Reading the Syntax Diagrams
This book includes syntax diagrams as an option for readers who want a more visual
representation of XQuery expression syntax. Each syntax diagram is accompanied by

xii | Preface

explanatory text and examples. Figure P-1 illustrates the components of a syntax dia-
gram, showing the schema import syntax as an example.

Rules for interpreting the syntax diagrams are:

• Parts of the diagram in constant width font are literal values. In Figure P-1,
import schema and at should appear literally in your query.

• Quotes that appear in syntax diagrams also must appear in your query.
Figure P-1 shows that the <namespace-name> must be surrounded by quotes,
whereas the <prefix> must not. Either single or double quotes can be used in
XQuery, but only double quotes are included in the diagrams for simplicity.

• Where you can specify a value, such as a name, a descriptive name for that value
appears in constant width italic and is surrounded by angle brackets. Figure P-1
shows that you fill in the <namespace-name>, <prefix>, and <location> with your
own values.

• Multiple options are indicated by parallel lines in the diagram. Figure P-1 shows
that you may choose to specify a namespace prefix or default element namespace.

• Optional parts of the expression are indicated by an arrow that bypasses the
main arrow. In Figure P-1, it is not necessary to include the namespace <prefix> =
or the default element namespace keywords.

• Repeating parts of an expression are indicated by an arrow that returns to the
beginning. Figure P-1 shows that you can specify multiple <location>s (pre-
ceded by commas) as part of the at clause.

Conventions Used in This Book
Constant width is used for:

• Code examples and fragments

• Anything that might appear in an XML document, including element names,
tags, attribute values, and processing instructions

• Anything that might appear in a program, including keywords, operators,
method names, class names, and literals

Figure P-1. Example syntax diagram

import schema

namespace <prefix> =

default element namespace

"<namespace-name>"

at "<location>"

;

,

Preface | xiii

Constant width bold is used for:

• Emphasis in code examples and fragments

Italic is used for:

• New terms where they are defined

• Emphasis in body text

• Pathnames, filenames, and program names

• Host and domain names

This icon indicates a tip, suggestion, or general note.

This icon indicates a warning or caution.

This icon indicates a situation where compatibility issues may cause
surprises.

Significant code fragments, complete programs, and documents are generally placed
into a separate paragraph like this:

for $prod as element(*,ProductType) in doc("catalog.xml")/catalog/*
order by $prod/name
return $prod/name

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “XQuery by Priscilla Walmsley.
Copyright 2007 Priscilla Walmsley, 978-0-596-00634-1.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

xiv | Preface

Useful Functions
This book contains a series of illustrative examples that are labeled Useful Function.
What sets them apart from regular examples is that they are likely to be directly use-
ful in your own queries. They range from string functions like substring-after-last
and replace-first to functions that modify elements and attributes, such as add-
attribute.

The useful functions included in this book are part of a large library of XQuery
functions called the FunctX XQuery Library, which is available at http://www.
xqueryfunctions.com. This library contains a wide variety of reusable XQuery func-
tions that can be searched or browsed by category. It also includes detailed descrip-
tions and example function calls.

We’d Like to Hear from You
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/9780596006341

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com.

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com.

Acknowledgments
I am deeply indebted to Michael Kay, not only for his detailed review of this book,
but also for his excellent Saxon XQuery implementation, without which I would not
have been able to reliably test the examples.

http://www.xqueryfunctions.com
http://www.xqueryfunctions.com
http://www.oreilly.com/catalog/9780596006341
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Preface | xv

Ron Bourret, Bob DuCharme, Tim Finney, Ashok Malhotra, Darin McBeath, Peter
Meggitt, Shannon Shiflett, and Bruno J. Walmsley (my father) provided extremely
helpful comments on, and assistance with, this book.

This project would not have been possible without Simon St.Laurent, who provided
editorial guidance and championed the book within O’Reilly. Thanks, Simon!

Finally, I would like to thank Doug, my partner, my love, for his constant support
and encouragement during the busy years I have spent writing this book.

1

Chapter 1 CHAPTER 1

Introduction to XQuery1

This chapter provides background on the purpose and capabilities of XQuery. It also
gives a quick introduction to the features of XQuery that are covered in more detail
later in the book. It is designed to provide a basic familiarity with the most com-
monly used kinds of expressions, without getting too bogged down in the details.

What Is XQuery?
The use of XML has exploded in recent years. An enormous amount of information
is now stored in XML, both in XML databases and in documents on a filesystem.
This includes highly structured data, such as sales figures, semistructured data such
as product catalogs and yellow pages, and relatively unstructured data such as let-
ters and books. Even more information is passed between systems as transitory XML
documents.

All of this data is used for a variety of purposes. For example, sales figures may be
useful for compiling financial statements that may be published on the Web, report-
ing results to the tax authorities, calculating bonuses for salespeople, or creating
internal reports for planning. For each of these uses, we are interested in different
elements of the data and expect it to be formatted and transformed according to our
needs.

XQuery is a query language designed by the W3C to address these needs. It allows
you to select the XML data elements of interest, reorganize and possibly transform
them, and return the results in a structure of your choosing.

Capabilities of XQuery
XQuery has a rich set of features that allow many different types of operations on
XML data and documents, including:

• Selecting information based on specific criteria

• Filtering out unwanted information

2 | Chapter 1: Introduction to XQuery

• Searching for information within a document or set of documents

• Joining data from multiple documents or collections of documents

• Sorting, grouping, and aggregating data

• Transforming and restructuring XML data into another XML vocabulary or
structure

• Performing arithmetic calculations on numbers and dates

• Manipulating strings to reformat text

As you can see, XQuery can be used not just to extract sections of XML documents,
but also to manipulate and transform the results. One capability that XQuery 1.0
does not provide is updates, which would be particularly useful in the case of XML
data stored in databases. This is under development for a future version of XQuery.

Uses for XQuery
There are as many reasons to query XML as there are reasons to use XML. Some
examples of common uses for the XQuery language are:

• Extracting information from a relational database for use in a web service

• Generating reports on data stored in a database for presentation on the Web as
XHTML

• Searching textual documents in a native XML database and presenting the
results

• Pulling data from databases or packaged software and transforming it for appli-
cation integration

• Combining content from traditionally non-XML sources to implement content
management and delivery

• Ad hoc querying of standalone XML documents for the purposes of testing or
research

Processing Scenarios
XQuery’s sweet spot is querying bodies of XML content that are stored in databases.
For this reason, it is sometimes called the “SQL of XML.” Some of the earliest
XQuery implementations were in native XML database products. The term “native
XML database” generally refers to a database that is designed for XML content from
the ground up, as opposed to a traditionally relational database. Rather than being
oriented around tables and columns, its data model is based on hierarchical docu-
ments and collections of documents.

Native XML databases are most often used for narrative content and other data that is
less predictable than what you would typically store in a relational database. Examples

Easing into XQuery | 3

of native XML database products that support XQuery are Berkeley DB XML, eXist
(which is open source), MarkLogic Server, TigerLogic XDMS, and X-Hive/DB.
These products provide the traditional capabilities of databases, such as data stor-
age, indexing, querying, loading, extracting, backup, and recovery. Most of them
also provide some added value in addition to their database capabilities. For exam-
ple, they might provide advanced full-text searching functionality, document conver-
sion services, or end-user interfaces.

Major relational database products, including Oracle 10g, IBM DB2 9, and Microsoft
SQL Server 2005, also have support for XML and XQuery. Early implementations of
XML in relational databases involved storing XML in table columns as blobs or char-
acter strings and providing query access to those columns. However, these vendors
are increasingly blurring the line between native XML databases and relational data-
bases with new features that allow you to store XML natively.

Other XQuery processors are not embedded in a database product, but work inde-
pendently. They might be used on physical XML documents stored as files on a file
system or on the Web. They might also operate on XML data that is passed in mem-
ory from some other process. The most notable product in this category is Saxon,
which has both open source and commercial versions.

Easing into XQuery
The rest of this chapter takes you through a set of example queries, each of which
builds on the previous one. Three XML documents are used repeatedly as input doc-
uments to the query examples throughout the book. They will be used so frequently
that it may be worth printing them from the companion web site so that you can
view them alongside the examples.

These three examples are quite simplistic, but they are useful for educational pur-
poses because they are easy to learn and remember while looking at query examples.
In reality, most XQuery queries will be executed against much more complex docu-
ments, and often against multiple documents as a group. However, in order to keep
the examples reasonably concise and clear, this book will work with smaller docu-
ments that have a representative mix of XML characteristics.

The catalog.xml document is a product catalog containing general information
about products (Example 1-1).

Example 1-1. Product catalog input document (catalog.xml)

<catalog>
 <product dept="WMN">
 <number>557</number>
 <name language="en">Fleece Pullover</name>
 <colorChoices>navy black</colorChoices>
 </product>

4 | Chapter 1: Introduction to XQuery

The prices.xml document contains prices for the products, based on effective dates
(Example 1-2).

The order.xml document is a simple order containing a list of products ordered (ref-
erenced by a number that matches the number used in catalog.xml), along with
quantities and colors (Example 1-3).

 <product dept="ACC">
 <number>563</number>
 <name language="en">Floppy Sun Hat</name>
 </product>
 <product dept="ACC">
 <number>443</number>
 <name language="en">Deluxe Travel Bag</name>
 </product>
 <product dept="MEN">
 <number>784</number>
 <name language="en">Cotton Dress Shirt</name>
 <colorChoices>white gray</colorChoices>
 <desc>Our <i>favorite</i> shirt!</desc>
 </product>
</catalog>

Example 1-2. Price information input document (prices.xml)

<prices>
 <priceList effDate="2006-11-15">
 <prod num="557">
 <price currency="USD">29.99</price>
 <discount type="CLR">10.00</discount>
 </prod>
 <prod num="563">
 <price currency="USD">69.99</price>
 </prod>
 <prod num="443">
 <price currency="USD">39.99</price>
 <discount type="CLR">3.99</discount>
 </prod>
 </priceList>
</prices>

Example 1-3. Order input document (order.xml)

<order num="00299432" date="2006-09-15" cust="0221A">
 <item dept="WMN" num="557" quantity="1" color="navy"/>
 <item dept="ACC" num="563" quantity="1"/>
 <item dept="ACC" num="443" quantity="2"/>
 <item dept="MEN" num="784" quantity="1" color="white"/>
 <item dept="MEN" num="784" quantity="1" color="gray"/>
 <item dept="WMN" num="557" quantity="1" color="black"/>
</order>

Example 1-1. Product catalog input document (catalog.xml) (continued)

Path Expressions | 5

Path Expressions
The most straightforward kind of query simply selects elements or attributes from an
input document. This type of query is known as a path expression. For example, the
path expression:

doc("catalog.xml")/catalog/product

will select all the product elements from the catalog.xml document.

Path expressions are used to traverse an XML tree to select elements and attributes of
interest. They are similar to paths used for filenames in many operating systems.
They consist of a series of steps, separated by slashes, that traverse the elements and
attributes in the XML documents. In this example, there are three steps:

1. doc("catalog.xml") calls an XQuery function named doc, passing it the name of
the file to open

2. catalog selects the catalog element, the outermost element of the document

3. product selects all the product children of catalog

The result of the query will be the four product elements, exactly as they appear
(with the same attributes and contents) in the input document. Example 1-4 shows
the complete result.

Path expressions can also return attributes, using the @ symbol. For example, the
path expression:

doc("catalog.xml")/*/product/@dept

Example 1-4. Four product elements selected from the catalog

 <product dept="WMN">
 <number>557</number>
 <name language="en">Fleece Pullover</name>
 <colorChoices>navy black</colorChoices>
 </product>
 <product dept="ACC">
 <number>563</number>
 <name language="en">Floppy Sun Hat</name>
 </product>
 <product dept="ACC">
 <number>443</number>
 <name language="en">Deluxe Travel Bag</name>
 </product>
 <product dept="MEN">
 <number>784</number>
 <name language="en">Cotton Dress Shirt</name>
 <colorChoices>white gray</colorChoices>
 <desc>Our <i>favorite</i> shirt!</desc>
 </product>

6 | Chapter 1: Introduction to XQuery

will return the four dept attributes in the input document. The asterisk (*) can be
used as a wildcard to indicate any element name. In this example, the path will
return any product children of the outermost element, regardless of the outermost
element’s name. Alternatively, you can use a double slash (//) to return product ele-
ments that appear anywhere in the catalog document, as in:

doc("catalog.xml")//product/@dept

In addition to traversing the XML document, a path expression can contain predi-
cates that filter out elements or attributes that do not meet a particular criterion.
Predicates are indicated by square brackets. For example, the path expression:

doc("catalog.xml")/catalog/product[@dept = "ACC"]

contains a predicate. It selects only those product elements whose dept attribute
value is ACC.

When a predicate contains a number, it serves as an index. For example:

doc("catalog.xml")/catalog/product[2]

will return the second product element in the catalog.

Path expressions are convenient because of their compact, easy-to-remember syntax.
However, they have a limitation: they can only return elements and attributes as they
appear in input documents. Any elements selected in a path expression appear in the
results with the same names, the same attributes and contents, and in the same order
as in the input document. When you select the product elements, you get them with
all of their children and with their dept attributes. Path expressions are covered in
detail in Chapter 4.

FLWORs
The basic structure of many (but not all) queries is the FLWOR expression. FLWOR
(pronounced “flower”) stands for “for, let, where, order by, return”, the keywords
used in the expression.

FLWORs, unlike path expressions, allow you to manipulate, transform, and sort
your results. Example 1-5 shows a simple FLWOR that returns the names of all
products in the ACC department.

Example 1-5. Simple FLWOR

Query
for $prod in doc("catalog.xml")/catalog/product
where $prod/@dept = "ACC"
order by $prod/name
return $prod/name
Results
<name language="en">Deluxe Travel Bag</name>
<name language="en">Floppy Sun Hat</name>

Adding XML Elements and Attributes | 7

As you can see, the FLWOR is made up of several parts:

for
This clause sets up an iteration through the product nodes, and the rest of the
FLWOR is evaluated once for each of the four products. Each time, a variable
named $prod is bound to a different product element. Dollar signs are used to
indicate variable names in XQuery.

where
This clause selects only products in the ACC department. This has the same
effect as a predicate ([@dept = "ACC"]) in a path expression.

order by
This clause sorts the results by product name, something that is not possible
with path expressions.

return
This clause indicates that the product element’s name children should be returned.

The let clause (the L in FLWOR) is used to set the value of a variable. Unlike a for
clause, it does not set up an iteration. Example 1-6 shows a FLWOR that returns the
same result as Example 1-5. The second line is a let clause that assigns the product
element’s name child to a variable called $name. The $name variable is then referenced
later in the FLWOR, in both the order by clause and the return clause.

The let clause serves as a programmatic convenience that avoids repeating the same
expression multiple times. Using some implementations, it can also improve perfor-
mance, because the expression is evaluated only once instead of each time it is
needed.

This chapter has provided only very basic examples of FLWORs. In fact, FLWORs
can become quite complex. Multiple for clauses are permitted, which set up itera-
tions within iterations. In addition, complex expressions can be used in any of the
clauses. FLWORs are discussed in detail in Chapter 6. Even more advanced exam-
ples of FLWORs are provided in Chapter 9.

Adding XML Elements and Attributes
Sometimes you want to reorganize or transform the elements in the input docu-
ments into differently named or structured elements. XML constructors can be used
to create elements and attributes that appear in the query results.

Example 1-6. Adding a let clause

for $product in doc("catalog.xml")/catalog/product
let $name := $product/name
where $product/@dept = "ACC"
order by $name
return $name

8 | Chapter 1: Introduction to XQuery

Adding Elements
Suppose you want to wrap the results of your query in a different XML vocabulary,
for example XHTML. You can do this using a familiar XML-like syntax. To wrap the
name elements in a ul element, for instance, you can use the query shown in
Example 1-7. The ul element represents an unordered list in XHTML.

This example is the same as Example 1-5, with the addition of the first and last lines.
In the query, the ul start tag and end tag, and everything in between, is known as an
element constructor. The curly braces around the content of the ul element signify
that it is an expression (known as an enclosed expression) that is to be evaluated. In
this case, the enclosed expression returns two elements, which become children of ul.

Any content in an element constructor that is not inside curly braces appears in the
results as is. For example:

<h1>There are {count(doc("catalog.xml")//product)} products.</h1>

will return the result:

<h1>There are 4 products.</h1>

The content outside the curly braces, namely the strings “There are ” and “ products.”
appear literally in the results, as textual content of the ul element.

The element constructor does not need to be the outermost expression in the query.
You can include element constructors at various places in your query. For example,
if you want to wrap each resulting name element in its own li element, you could use
the query shown in Example 1-8. An li element represents a list item in XHTML.

Example 1-7. Wrapping results in a new element

Query
{
 for $product in doc("catalog.xml")/catalog/product
 where $product/@dept='ACC'
 order by $product/name
 return $product/name
}
Results

 <name language="en">Deluxe Travel Bag</name>
 <name language="en">Floppy Sun Hat</name>

Example 1-8. Element constructor in FLWOR return clause

Query
{
 for $product in doc("catalog.xml")/catalog/product
 where $product/@dept='ACC'
 order by $product/name

Adding XML Elements and Attributes | 9

Here, the li element constructor appears in the return clause of a FLWOR. Since the
return clause is evaluated once for each iteration of the for clause, two li elements
appear in the results, each with a name element as its child.

However, suppose you don’t want to include the name elements at all, just their con-
tents. You can do this by calling a built-in function called data, which extracts the
contents of an element. This is shown in Example 1-9.

Now no name elements appear in the results. In fact, no elements at all from the input
document appear.

Adding Attributes
You can also add your own attributes to results using an XML-like syntax.
Example 1-10 adds attributes to the ul and li elements.

 return {$product/name}
}
Results

 <name language="en">Deluxe Travel Bag</name>
 <name language="en">Floppy Sun Hat</name>

Example 1-9. Using the data function

Query
{
 for $product in doc("catalog.xml")/catalog/product
 where $product/@dept='ACC'
 order by $product/name
 return {data($product/name)}
}
Results

 Deluxe Travel Bag
 Floppy Sun Hat

Example 1-10. Adding attributes to results

Query
<ul type="square">{
 for $product in doc("catalog.xml")/catalog/product
 where $product/@dept='ACC'
 order by $product/name
 return <li class="{$product/@dept}">{data($product/name)}
}

Example 1-8. Element constructor in FLWOR return clause (continued)

10 | Chapter 1: Introduction to XQuery

As you can see, attribute values, like element content, can either be literal text or
enclosed expressions. The ul element constructor has an attribute type that is
included as is in the results, while the li element constructor has an attribute class
whose value is an enclosed expression delimited by curly braces. In attribute values,
unlike element content, you don’t need to use the data function to extract the value:
it happens automatically.

The constructors shown in these examples are known as direct constructors, because
they use an XML-like syntax. You can also construct elements and attributes with
dynamically determined names, using computed constructors. Chapter 5 provides
detailed coverage of XML constructors.

Functions
There are over 100 functions built into XQuery, covering a broad range of function-
ality. Functions can be used to manipulate strings and dates, perform mathematical
calculations, combine sequences of elements, and perform many other useful jobs.
You can also define your own functions, either in the query itself, or in an external
library.

Both built-in and user-defined functions can be called from almost any place in a
query. For instance, Example 1-9 calls the doc function in a for clause, and the data
function in an enclosed expression. Chapter 8 explains how to call functions and
also describes how to write your own user-defined functions. Appendix A lists all of
the built-in functions and explains each of them in detail.

Joins
One of the major benefits of FLWORs is that they can easily join data from multiple
sources. For example, suppose you want to join information from your product cata-
log (catalog.xml) and your order (order.xml). You want a list of all the items in the
order, along with their number, name, and quantity.

The name comes from the product catalog, and the quantity comes from the order.
The product number appears in both input documents, so it is used to join the two
sources. Example 1-11 shows a FLWOR that performs this join.

Results
<ul type="square">
 <li class="ACC">Deluxe Travel Bag
 <li class="ACC">Floppy Sun Hat

Example 1-10. Adding attributes to results (continued)

Aggregating and Grouping Values | 11

The for clause sets up an iteration through each item from the order. For each item,
the let clause goes to the product catalog and gets the name of the product. It does
this by finding the product element whose number child equals the item’s num
attribute, and selecting its name child. Because the FLWOR iterated six times, the
results contain one new item element for each of the six item elements in the order
document. Joins are covered in Chapter 6.

Aggregating and Grouping Values
One common use for XQuery is to summarize and group XML data. It is sometimes
useful to find the sum, average, or maximum of a sequence of values, grouped by a
particular value. For example, suppose you want to know the number of items con-
tained in an order, grouped by department. The query shown in Example 1-12
accomplishes this. It uses a for clause to iterate over the list of distinct departments,
a let clause to bind $items to the item elements for a particular department, and the
sum function to calculate the totals of the quantity attribute values for the items in
$items.

Chapter 7 covers joining, sorting, grouping, and aggregating values in detail.

Example 1-11. Joining multiple input documents

Query
for $item in doc("order.xml")//item
let $name := doc("catalog.xml")//product[number = $item/@num]/name
return <item num="{$item/@num}"
 name="{$name}"
 quan="{$item/@quantity}"/>
Results
<item num="557" name="Fleece Pullover" quan="1"/>
<item num="563" name="Floppy Sun Hat" quan="1"/>
<item num="443" name="Deluxe Travel Bag" quan="2"/>
<item num="784" name="Cotton Dress Shirt" quan="1"/>
<item num="784" name="Cotton Dress Shirt" quan="1"/>
<item num="557" name="Fleece Pullover" quan="1"/>

Example 1-12. Aggregating values

Query
for $d in distinct-values(doc("order.xml")//item/@dept)
let $items := doc("order.xml")//item[@dept = $d]
order by $d
return <department name="{$d}" totQuantity="{sum($items/@quantity)}"/>
Results
<department name="ACC" totQuantity="3"/>
<department name="MEN" totQuantity="2"/>
<department name="WMN" totQuantity="2"/>

12

Chapter 2CHAPTER 2

XQuery Foundations 2

This chapter provides a brief overview of the foundations of XQuery: its design, its
place among XML-related standards, and its processing model. It also discusses the
underlying data model behind XQuery and the use of types and namespaces in queries.

The Design of the XQuery Language
The XML Query Working Group of the World Wide Web Consortium (W3C) began
work on XQuery in 1999. It used as a starting point an XML query language called
Quilt, which was itself influenced by two earlier XML query languages: XQL and
XML-QL.

The working group set out to design a language that would:

• Be useful for both highly structured and semistructured documents

• Be protocol-independent, allowing a query to be evaluated on any system with
predictable results

• Be a declarative language rather than a procedural one

• Be strongly typed, allowing queries to be “compiled” to identify possible errors
and to optimize evaluation of the query

• Allow querying across collections of documents

• Use and share as much as possible with appropriate W3C recommendations,
such as XML 1.0, Namespaces, XML Schema, and XPath

The XQuery recommendation includes 11 separate documents and over 1,000
printed pages. These documents are listed (with links) at the public XQuery web site
at http://www.w3.org/XML/Query. The various recommendation documents are gen-
erally designed to be used by implementers of XQuery software, and they vary in
readability and accessibility.

http://www.w3.org/XML/Query

XQuery in Context | 13

XQuery in Context
XQuery is dependent on or related to a number of other technologies, particularly
XPath, XSLT, SQL, and XML Schema. This section explains how XQuery fits in with
these technologies.

XQuery and XPath
XPath started out as a language for selecting elements and attributes from an XML
document while traversing its hierarchy and filtering out unwanted content. XPath 1.0
is a fairly simple yet useful recommendation that specifies path expressions and a
limited set of functions. XPath 2.0 has become much more than that, encompassing
a wide variety of expressions and functions, not just path expressions.

XQuery 1.0 and XPath 2.0 overlap to a very large degree. They have the same data
model and the same set of built-in functions and operators. XPath 2.0 is essentially a
subset of XQuery 1.0. XQuery has a number of features that are not included in
XPath, such as FLWORs and XML constructors. This is because these features are
not relevant to selecting, but instead have to do with structuring or sorting query
results.

The two languages are consistent in that any expression that is valid in both lan-
guages evaluates to the same value using both languages.

XPath 2.0 was built with the intention that it would be as backward-compatible with
XPath 1.0 as possible. Almost all XPath 1.0 expressions are still valid in XPath 2.0,
with a few slight differences in the way values are handled. These differences are
identified in Chapter 25.

XQuery Versus XSLT
XSLT is a W3C language for transforming XML documents into other XML docu-
ments or, indeed, documents of any kind. There is a lot of overlap in the capabilities
of XQuery and XSLT. In fact, the XSLT 2.0 standard is based upon XPath 2.0, so it
has the same data model and supports all the same built-in functions and operators
as XQuery, as well as many of the same expressions.

Some of the differences between XQuery and XSLT are:

• XSLT implementations are generally optimized for transforming entire docu-
ments; they load the entire input document into memory. XQuery is optimized for
selecting fragments of data, for example, from a database. It is designed to be scal-
able and to take advantage of database features such as indexes for optimization.

• XQuery has a more compact non-XML syntax, which is sometimes easier to read
and write (and embed in program code) than the XML syntax of XSLT.

14 | Chapter 2: XQuery Foundations

• XQuery is designed to select from a collection of documents as opposed to a sin-
gle document. FLWORs make it easy to join information across (and within)
documents. Also, XSLT 2.0 stylesheets can operate on multiple documents, but
XSLT processors are not particularly optimized for this less common use case.

Generally, when transforming an entire XML document from one XML vocabulary
to another, it makes more sense to use XSLT. When your main focus is selecting a
subset of data from an XML document or database, you should use XQuery. The
relationship between XQuery and XSLT is explored further in Chapter 25.

XQuery Versus SQL
XQuery borrows ideas from SQL, and many of the designers of XQuery were also
designers of SQL. The line between XQuery and SQL may seem clear; XQuery is for
XML, and SQL is for relational data. However, increasingly this line is blurred,
because relational database vendors are putting XML frontends on their products
and allowing XML to be stored in traditionally relational databases.

XQuery is unlikely to replace SQL for the highly structured data that is traditionally
stored in relational databases. Most likely, the two will coexist, with XQuery being
used to query less-structured data, or data that is destined for an XML-based applica-
tion, and SQL continuing to be used for highly structured relational data.

Chapter 24 compares XQuery and SQL, and describes how they can be used together.

XQuery and XML Schema
XML Schema is a W3C standard for defining schemas, that can be used to validate
XML documents and to assign types to XML elements and attributes. XQuery uses
the type system of XML Schema, which includes built-in types that represent com-
mon datatypes such as decimal, date, and string. XML Schema also specifies a lan-
guage for defining your own types based on the built-in types.

If an input document to a query has a schema, the types can be used when evaluat-
ing expressions on the input data. For example, if your item element has a quantity
attribute, and you know from the schema that the type of the quantity attribute is
xs:integer, you can perform sorts or other operations on that attribute’s value with-
out converting it to an integer in the query. This also has the advantages of allowing
the processor to better optimize the query and to catch errors earlier.

XQuery users are not required to use schemas. It is entirely possible to write a com-
plete query with no mention of schemas or any of the schema types. However, a rich
set of functions and operators are provided that generally operate on typed data, so it
is useful to understand the type system and use the built-in types, even if no schema
is present. Chapter 13 covers schemas in more detail.

Processing Queries | 15

Processing Queries
A simple example of a processing model for XQuery is shown in Figure 2-1. This sec-
tion describes the various components of this model.

XML Input Documents
Throughout this book, the term input document is used to refer to the XML data that
is being queried. The data that is being queried can, in fact, take a number of differ-
ent forms, for example:

• Text files that are XML documents

• Fragments of XML documents that are retrieved from the Web using a URI

• A collection of XML documents that are associated with a particular URI

• Data stored in native XML databases

• Data stored in relational databases that have an XML frontend

• In-memory XML documents

Some queries use a hardcoded link to the location of the input document(s), using
the doc or collection function in the query. Other queries operate on a set of input
data that is set by the processor at the time the query is evaluated.

Whether it is physically stored as an XML document or not, an input document
must conform to other constraints on XML documents. For example, an element
may not have two attributes with the same name, and element and attribute names
may not contain special characters other than dashes, underscores, and periods.

The Query
An XQuery query could be contained in a text file, embedded in program code or in
a query library, generated dynamically by program code, or input by the user on a

Figure 2-1. A Basic XQuery processor

XQuery
Query

XQuery
Processor

XML
Results

XML
Input

Documents

Context

Analyze and evaluate
(using context)

Serialize
(or pass on)

Parse

16 | Chapter 2: XQuery Foundations

command line or in a dialog box. Queries can also be composed from multiple files,
known as modules.

A query is made up of two parts: a prolog and a body. The query prolog is an
optional section that appears at the beginning of a query. Despite its name, the pro-
log is often much larger than the body. The prolog can contain various declarations,
separated by semicolons, that affect settings used in evaluating the query. This
includes namespace declarations, imports of schemas, variable declarations, func-
tion declarations, and others. These declarations are discussed in relevant sections
throughout the book and summarized in Chapter 12.

The query body is a single expression, but that expression can consist of a sequence
of one or more expressions that are separated by commas. Example 2-1 shows a
query with a prolog (the first three lines), and a body (the last two lines) that con-
tains two element constructor expressions separated by a comma.

The result of this query will be a firstResult element followed by a prod:secondResult
element. If the comma after firstResult were not there, it would be a syntax error
because there would be two separate expressions in the query body.

The Context
A query is not evaluated in a vacuum. The query context consists of a collection of
information that affects the evaluation of the query. Some of these values can be set
by the processor outside the scope of the query, while others are set in the query pro-
log. The context includes such values as:

• Current date and time, and the implicit time zone

• Names and values of variables that are bound outside the query or in the prolog

• External (non-XQuery) function libraries

• The context item, which determines the context for path expressions in the query

The Query Processor
The query processor is the software that parses, analyzes, and evaluates the query.
The analysis and evaluation phases are roughly equivalent to compiling and execut-
ing program code. The analysis phase finds syntax errors and other static errors that

Example 2-1. A query with prolog and body

declare boundary-space preserve;
declare namespace prod = "http://datypic.com/prod";
declare variable $catalog := doc("catalog.xml")//catalog;

<firstResult>{count($catalog/product)}</firstResult>,
<prod:secondResult>{$catalog/product/number}</prod:secondResult>

The XQuery Data Model | 17

do not depend on the input data. The evaluation phase actually evaluates the results
of the query based on input documents, possibly raising dynamic errors for situa-
tions like missing input documents or division by zero. Either phase may raise type
errors, which result when a value is encountered that has a different type than
expected. All errors in XQuery all have eight-character names, such as XPST0001, and
they are described in detail in Appendix C.

There are a number of implementations of XQuery. Some are open source, while
others are available commercially from major vendors. Many are listed at the official
XQuery web site at http://www.w3.org/XML/Query. This book does not delve into all
the details of individual XQuery implementations but points out features that are
implementation-defined or implementation-dependent, meaning that they may vary
by implementation.

The Results of the Query
The query processor returns a sequence of values as the results. Depending on the
implementation, these results can then be written to a physical XML file, sent to a
user interface, or passed to another application for further processing.

Writing the results to a physical XML document is known as serialization. There may
be some variations in the way different implementations serialize the results of the
query. These variations have to do with whitespace, the encoding used, and the
ordering of the attributes. The implementation you use may allow you to have some
control over these choices.

The XQuery Data Model
XQuery has a data model that is used to define formally all the values used within
queries, including those from the input document(s), those in the results, and any
intermediate values. The XQuery data model is officially known as the XQuery 1.0
and XPath 2.0 Data Model, or XDM. It is not simply the same as the Infoset (the
W3C model for XML documents) because it has to support values that are not com-
plete XML documents, such as sequences of elements (without a single outermost
element) and atomic values.

Understanding the XQuery data model is analogous to understanding tables, columns,
and rows when learning SQL. It describes the structure of both the inputs and outputs
of the query. It is not necessary to become an expert on the intricacies of the data
model to write XML queries, but it is essential to understand the basic components:

Node
An XML construct such as an element or attribute

Atomic value
A simple data value with no markup associated with it

http://www.w3.org/XML/Query

18 | Chapter 2: XQuery Foundations

Item
A generic term that refers to either a node or an atomic value

Sequence
An ordered list of zero, one, or more items

The relationship among these components is depicted in Figure 2-2.

Nodes
Nodes are used to represent XML constructs such as elements and attributes. Nodes
are returned by many expressions, including path expressions and constructors. For
example, the path expression doc("catalog.xml")/catalog/product returns four product
element nodes.

Node kinds

XQuery uses six kinds of nodes:*

Element nodes
Represent an XML element

Attribute nodes
Represent an XML attribute

Figure 2-2. Basic components of the data model

* The data model also allows for namespace nodes, but the XQuery language does not provide any way to
access them or perform any operations on them. Therefore, they are not discussed directly in this book.
Chapter 10 provides complete coverage of namespaces in XQuery.

itemsequence contains

0..n

node

kind
string value

atomic value

type

comment nodeprocessing instruction node

name

text node

typed value

document node element node

name
type
typed value

attribute node

name
type
typed value

The XQuery Data Model | 19

Document nodes
Represent an entire XML document (not its outermost element)

Text nodes
Represent some character data content of an element

Processing instruction nodes
Represent an XML processing instruction

Comment nodes
Represent an XML comment

Most of this book focuses on element and attribute nodes, the ones most often used
within queries. Generally, the book refers to them simply as “elements” and
“attributes” rather than “element nodes” and “attribute nodes,” unless a special
emphasis on the data model is required. The other node kinds are discussed in
Chapter 21.

The node hierarchy

An XML document (or document fragment) is made up of a hierarchy of nodes. For
example, suppose you have the document shown in Example 2-2.

When translated to the XQuery data model, it looks like the diagram in Figure 2-3.*

The node family

A family analogy is used to describe the relationships between nodes in the hierar-
chy. Each node can have a number of different kinds of relatives:

Children
An element may have zero, one, or several other elements as its children. It can
also have text, comment, and processing instruction children. Attributes are not
considered children of an element. A document node can have an element
child (the outermost element), as well as comment and processing instruction
children.

Example 2-2. Small XML example

<catalog xmlns="http://datypic.com/cat">
 <product dept="MEN" xmlns="http://datypic.com/prod">
 <number>784</number>
 <name language="en">Cotton Dress Shirt</name>
 <colorChoices>white gray</colorChoices>
 <desc>Our <i>favorite</i> shirt!</desc>
 </product>
</catalog>

* The figure is actually slightly oversimplified because, in the absence of a DTD or schema, there will also be
text nodes for the line breaks and spaces in between elements.

20 | Chapter 2: XQuery Foundations

Parent
The parent of an element is either another element or a document node. The
parent of an attribute is the element that carries it.*

Ancestors
Ancestors are a node’s parent, parent’s parent, etc.

Descendants
Descendants are a node’s children, children’s children, etc.

Siblings
A node’s siblings are the other children of its parent. Attributes are not consid-
ered to be siblings.

Roots, documents, and elements

A lot of confusion surrounds the term root in XML processing, because it’s used to
mean several different things. XML 1.0 uses the term root element, synonymous with
document element, to mean the top-level, outermost element in a document. Every
well-formed XML document must have a single element at the top level. In
Example 2-2, the root element or document element is the catalog element.

XPath 1.0, by contrast, does not use the term root element and instead would call the
catalog element the document element. XPath 1.0 has a separate concept of a root

* Even though attributes are not considered children of elements, elements are considered parents of
attributes!

Figure 2-3. A node hierarchy

document node

element node (catalog)

element node (product)

attribute node (dept)

element node (number)

text node ("784")

element node (name)

attribute node (language)

text node ("Cotton Dress Shirt")

element node (colorChoices)

text node ("white gray")

element node (desc)

text node ("Our ")

element node (i)

text node ("favorite")

text node (" shirt!")

The XQuery Data Model | 21

node, which is equivalent to a document node in XQuery (and XPath 2.0). A root
node represents the entire document and would be the parent of the catalog ele-
ment in our example.

This terminology made sense in XPath 1.0, where the input to a query was always
expected to be a complete, well-formed XML document. However, the XQuery 1.0/
XPath 2.0 data model allows for inputs that are not complete documents. For exam-
ple, the input might be a document fragment, a sequence of multiple elements, or
even a sequence of processing instruction nodes. Therefore, the root is not one spe-
cial kind of node; it could be one of several different kinds of nodes.

In order to avoid confusion, this book does not use either of the terms root element
or document element. Instead, when referring to the top-level element, it uses the
term outermost element. The term root is reserved for whatever node might be at the
top of a hierarchy, which may be a document node (in the case of a complete XML
document), or an element or other kind of node (in the case of a document fragment).

Node identity and name

Every node has a unique identity. You may have two XML elements in the input doc-
ument that contain the exact same data, but that does not mean they have the same
identity. Note that identity is unique to each node and is assigned by the query pro-
cessor. Identity values cannot be retrieved, but identities can be compared with the
is operator.

In addition to their identity, element and attribute nodes have names. These names
can be accessed using the built-in functions node-name, name, and local-name.

String and typed values of nodes

There are two kinds of values for a node: string and typed. All nodes have a string
value. The string value of an element node is its character data content and that of all
its descendant elements concatenated together. The string value of an attribute node
is simply the attribute value.

The string value of a node can be accessed using the string function. For example:

string(doc("catalog.xml")/catalog/product[4]/number)

returns the string 784, while:

string(<desc>Our <i>favorite</i> shirt!</desc>)

returns the string Our favorite shirt!, without the i start and end tags.

Element and attribute nodes also both have a typed value that takes into account
their type, if any. An element or attribute might have a particular type if it has been
validated with a schema. The typed value of a node can be accessed using the data
function. For example:

data(doc("catalog.xml")/catalog/product[4]/number)

22 | Chapter 2: XQuery Foundations

returns the integer 784, if the number element is declared in a schema to be an inte-
ger. If it is not declared in the schema, its typed value is still 784, but the value is
considered to be untyped (meaning it does not have a specified type).

Atomic Values
An atomic value is a simple data value such as 784 or ACC, with no markup, and no
association with any particular element or attribute. An atomic value can have a spe-
cific type, such as xs:integer or xs:string, or it can be untyped.*

Atomic values can be extracted from element or attribute nodes using the string and
data functions described in the previous section. They can also be created from liter-
als in queries. For example, in the expression @dept = 'ACC', the string ACC is an
atomic value.

The line between a node and an atomic value that it contains is often blurred. That is
because all functions and operators that expect to have atomic values as their oper-
ands also accept nodes. For example, you can call the substring function as follows:

doc("catalog.xml")//product[4]/substring(name, 1, 15)

The function expects a string atomic value as the first argument, but you can pass it
an element node (name). In this case, the atomic value is automatically extracted from
the node in a process known as atomization.

Atomic values don’t have identity. It’s not meaningful (or possible) to ask whether a
and a are the same string or different strings; you can only ask whether they are
equal.

Sequences
Sequences are ordered collections of items. A sequence can contain zero, one, or
many items. Each item in a sequence can be either an atomic value or a node.

The most common way that sequences are created is that they are returned from
expressions or functions that return sequences. For example, the expression
doc("catalog.xml")/catalog/product returns a sequence of four items, which hap-
pen to be product element nodes.

A sequence can also be created explicitly using a sequence constructor. The syntax of
a sequence constructor is a series of values, delimited by commas, surrounded by
parentheses. For example, the expression (1, 2, 3) creates a sequence consisting of
those three atomic values.

* Technically, if an atomic value is untyped, it is assigned a generic type called xs:untypedAtomic.

The XQuery Data Model | 23

You can also use expressions in sequence constructors. For example, the expression:

(doc("catalog.xml")/catalog/product, 1, 2, 3)

results in a seven-item sequence containing the four product element nodes, plus the
three atomic values 1, 2, and 3, in that order.

Unlike node-sets in XPath 1.0, sequences in XQuery (and XPath 2.0)
are ordered, and the order is not necessarily the same as the docu-
ment order. Another difference from XPath 1.0 is that sequences can
contain duplicate nodes.

Sequences do not have names, although they may be bound to a named variable. For
example, the let clause:

let $prodList := doc("catalog.xml")/catalog/product

binds the sequence of four product elements to the variable $prodList.

A sequence with only one item is known as a singleton sequence. There is no differ-
ence between a singleton sequence and the item it contains. Therefore, any of the
functions or operators that can operate on sequences can also operate on items,
which are treated as singleton sequences.

A sequence with zero items is known as the empty sequence. In XQuery, the empty
sequence is different from a zero-length string (i.e., "") or a zero value. Many of the
built-in functions and operations accept the empty sequence as an argument, and
have defined behavior for handling it. Some expressions will return the empty sequence,
such as doc("catalog.xml")//foo, if there are no foo elements in the document.

Sequences cannot be nested within other sequences; there is only one level of items.
If a sequence is inserted into another sequence, the items of the inserted sequence
become full-fledged items of the new sequence. For example:

(10, (20, 30), 40)

is equivalent to:

(10, 20, 30, 40)

Quite a few functions and operators in XQuery operate on sequences. Some of the
most used functions on sequences are the aggregation functions (min, max, avg, sum).
In addition, union, except, and intersect expressions allow sequences to be com-
bined. There are also a number of functions that operate generically on any
sequence, such as index-of and insert-before.

Like atomic values, sequences have no identity. You can’t ask whether (1,2,3) and
(1,2,3) are the same sequence; you can only compare their contents.

24 | Chapter 2: XQuery Foundations

Types
XQuery is a strongly typed language, meaning that each function and operator
expects its arguments or operands to be of a particular type. This section provides
some basic information about types that is useful to any query author. More detailed
coverage of types in XQuery can be found in Chapter 11.

The XQuery type system is based on that of XML Schema. XML Schema has built-in
simple types representing common datatypes such as xs:integer, xs:string, and xs:
date. The xs: prefix is used to indicate that these types are defined in the XML
Schema specification. Types are assigned to items in the input document during
schema validation, which is optional. If no schema is used, the items are untyped.

The type system of XQuery is not as rigid as it may sound, since there are a number
of type conversions that happen automatically. Most notably, items that are untyped
are automatically cast to the type required by a particular operation. Casting involves
converting a value from one type to another following specified rules. For example,
the function call:

doc("order.xml")/order/substring(@num, 1, 4)

does not require that the num attribute be declared to be of type xs:string. If it is
untyped, it is cast to xs:string. In fact, if you do not plan to use a schema, you can
in most cases use XQuery without any regard for types. However, if you do use a
schema and the num attribute is declared to be of type xs:integer, you cannot use the
preceding substring example without explicitly converting the value of the num
attribute to xs:string, as in:

doc("order.xml")/order/substring(xs:string(@num), 1, 4)

Namespaces
Namespaces are used to identify the vocabulary to which XML elements and
attributes belong, and to disambiguate names from different vocabularies. This sec-
tion provides a brief overview of the use of namespaces in XQuery for those who
expect to be writing queries with basic use of namespaces. More detailed coverage of
namespaces, including a complete explanation of the use of namespaces in XML
documents, can be found in Chapter 10.

Many of the names used in a query are namespace-qualified, including those of:

• Elements and attributes from an input document

• Elements and attributes in the query results

• Functions, variables, and types

Namespaces | 25

Example 2-3 shows an input document that contains a namespace declaration, a spe-
cial attribute whose name starts with xmlns. The prod prefix is mapped to the
namespace http://datypic.com/prod. This means that any element or attribute name
in the document that is prefixed with prod is in that namespace.

Example 2-4 shows a query (and its results) that might be used to select the prod-
ucts from the input document.

The namespace declaration that appears in the first line of the query maps the
namespace http://datypic.com/prod to the prefix prod. The prod prefix is then used
in the body of the query to refer to elements in the input document. The namespace
(not the prefix) is considered to be a significant part of the name of an element or
attribute, so the namespace URIs (if any) in the query and input document must
match exactly. The prefixes themselves are technically irrelevant; they do not have to
be the same in the input document and the query.

Example 2-3. Input document with namespaces (prod_ns.xml)

<prod:product xmlns:prod="http://datypic.com/prod">
 <prod:number>563</prod:number>
 <prod:name language="en">Floppy Sun Hat</prod:name>
</prod:product>

Example 2-4. Querying with namespaces

Query
declare namespace prod = "http://datypic.com/prod";
for $product in doc("prod_ns.xml")/prod:product
return $product/prod:name
Results
<prod:name xmlns:prod="http://datypic.com/prod"
 language="en">Floppy Sun Hat</prod:name>

26

Chapter 3CHAPTER 3

Expressions: XQuery Building Blocks 3

The basic unit of evaluation in the XQuery language is the expression. A query con-
tains expressions that can be made up of a number of sub-expressions, which may
themselves be composed from other sub-expressions. This chapter explains the
XQuery syntax, and covers the most basic types of expressions that can be used in
queries: literals, variables, function calls, and comments.

Categories of Expressions
A query can range in complexity from a single expression such as 2+3, to a com-
plex composite expression like a FLWOR. Within a FLWOR, there may be other
expressions, such as $prodDept = "ACC", which is a comparison expression, and
doc("catalog.xml")/catalog/product, which is a path expression. Within these expres-
sions, there are further expressions, such as "ACC", which is a literal, and $prodDept,
which is a variable reference.

The categories of expressions available are summarized in Table 3-1, along with the
number of the chapter that covers them. Every expression evaluates to a sequence,
which may be a single atomic value, a single node, the empty sequence, or multiple
atomic values and/or nodes.

Table 3-1. Categories of expressions

Category Description Operators or keywords Chapter

Primary The basics: literals, variables, function
calls, and parenthesized expressions

3

Comparison Comparison based on value, node
identity, or document order

=, !=, <, <=, >, >=, eq, ne, lt, le, gt,
ge, is, <<, >>

3

Conditional If-then-else expressions if, then, else 3

Logical Boolean and/or operators or, and 3

Path Selecting nodes from XML documents /, //, .., ., child::, etc. 4

Constructor Adding XML to the results <, >, element, attribute 5

Whitespace in Queries | 27

Keywords and Names
The XQuery language uses a number of keywords and symbols in its expressions. All
of the keywords are case-sensitive, and they are generally lowercase. In some cases, a
symbol (such as *) or keyword (such as in) has several meanings, depending on the
context. The XQuery grammar is defined in such a way that these multiuse opera-
tors are never ambiguous.

Names are used in XQuery to identify elements, attributes, types, variables, and
functions. These names must conform to the rules for XML qualified names, mean-
ing that they can start with a letter or underscore and contain letters, digits, under-
scores, dashes, and periods. Like the keywords, they are also case-sensitive. Because
there are no reserved words in the XQuery language, a name (for example, a variable
or function name) used in a query may be the same as any of the keywords, without
any ambiguity arising.

All names used in XQuery are namespace-qualified names. This means that they can
be prefixed in order to associate them with a namespace name, and that they may be
affected by default namespace declarations.

Whitespace in Queries
Whitespace (spaces, tabs, and line breaks) is allowed almost anywhere in a query to
break up expressions and make queries more readable. You are required to use
whitespace to separate keywords from each other—for example, order by cannot be
written as orderby. Extra whitespace is acceptable, as in order by. By contrast, you
are not required to use whitespace as a separator when using nonword symbols such
as = and (. For example, you can use a=b or a = b.

In most cases, whitespace used in queries has no significance. Whitespace is signifi-
cant in quoted strings, e.g., in the expression "contains spaces", and in constructed
elements and attributes.

FLWOR Controlling the selection and process-
ing of nodes

for, let, where, order by, return 6

Quantified Determining whether sequences fulfill
specific conditions

some, every, in, satisfies 6

Sequence-related Creating and combining sequences to, union (|), intersect, except 9

Type-related Casting and validating values based
on type

instance of, typeswitch, cast as,
castable, treat, validate

11, 14

Arithmetic Adding, subtracting, multiplying,
and dividing

+, -, *, div, idiv, mod 16

Table 3-1. Categories of expressions (continued)

Category Description Operators or keywords Chapter

28 | Chapter 3: Expressions: XQuery Building Blocks

No special end-of-line characters are required in the XQuery language as they might
be in some programming languages. Newline and carriage return characters are
treated like any other whitespace.

Literals
Literals are simply constant values that are directly represented in a query, such as
"ACC" and 29.99. They can be used in expressions anywhere a constant value is
needed, for example the strings in the comparison expression:

if ($department = "ACC") then "accessories" else "other"

or the numbers 1 and 30 in the function call:

substring($name, 1, 30)

There are two kinds of literals: string literals, which must be enclosed in single or
double quotes, and numeric literals, which must not. Numeric literals can take the
form of simple integers, such as 1, decimal numbers, such as 1.5, or floating-point
numbers, such as 1.5E2. The processor makes assumptions about the type of a
numeric literal based on its format.

You can also use type constructors to convert your literal values to the desired type.
For example, to include a literal date in an expression, you can use xs:date("2006-
05-03"). For literal Boolean values, you can use the expressions true() and false().

Variables
Variables in XQuery are identified by names that are preceded by a dollar sign ($).*

The names (not including the dollar sign) must conform to the definition of an XML-
qualified name. This means that they can be prefixed, in which case they are associ-
ated with the namespace mapped to that prefix. If they are not prefixed, they are not
associated with any namespace.

When a query is evaluated, a variable is bound to a particular value. That value may
be any sequence, including a single node, a single atomic value, the empty sequence,
or multiple nodes and/or atomic values. Once the variable is bound to a value, its
value does not change. One consequence of this is that you cannot assign a new
value to the variable as you can in most procedural languages. Instead, you must use
a new variable.

* Variable names are most often preceded immediately by the dollar sign, but the XQuery syntax allows for
whitespace between the dollar sign and the variable name.

Comments | 29

Variables can be bound in several kinds of expressions: in global variable declara-
tions, for or let clauses of a FLWOR, quantified expressions, or typeswitch expres-
sions. For example, evaluation of the FLWOR:

for $prod in doc("catalog.xml")/catalog/product
return $prod/number

binds the $prod variable to a node returned by the path expression doc("catalog.xml")/
catalog/product. The variable is then referenced in the return clause. Function dec-
larations also bind variables to values. For example, the function declaration:

declare function local:addTwo ($value as xs:integer) as xs:integer
 { $value + 2 };

binds the $value variable to the value of the argument passed to it. In this case, the
$value variable is referenced in the function body.

Function Calls
Function calls are another building block of queries. A typical function call might
look like:

substring($prodName, 1, 5)

where the name of the function is substring and there are three arguments, sepa-
rated by commas and surrounded by parentheses. The first argument is a variable
reference, whereas the other two are numeric literals.

The XQuery language has over 100 built-in functions, detailed in Appendix A.
Chapter 8 explains the details of how to read function signatures and call them. It
also explains how to define your own functions.

Comments
XQuery comments, delimited by (: and :), can be added to any query to provide
more information about the query itself. These comments are ignored during process-
ing. XQuery comments can contain any text, including XML markup. For example:

(: This query returns the <number> children :)

XQuery comments can appear anywhere insignificant whitespace is allowed in a
query. If they appear within quoted strings, or directly in the content of element con-
structors, they are not interpreted as comments. XQuery comments can be nested
within other XQuery comments.

You can also include XML comments, delimited by <!-- and -->, in your queries.
Unlike XQuery comments, these comments appear in the result document. They can
include expressions that are evaluated, making them a useful debugging tool. XML
comments are discussed further in Chapter 21.

30 | Chapter 3: Expressions: XQuery Building Blocks

Evaluation Order and Parentheses
A query can contain many nested expressions that are not necessarily delimited by
parentheses. Therefore, it is important to understand which expressions are evalu-
ated first. In most cases, the evaluation order (also known as the precedence) of
expressions is straightforward. For example, in the expression:

if ($x < 12 and $y > 0) then $x + $y else $x - $y

it is easy to see that the if, then, and else keywords are all parts of the same expres-
sion that should be evaluated as a whole after all the sub-expressions have been eval-
uated. In the cases where it is not obvious, this book explains the evaluation order of
that type of expression. For example, any and operators are evaluated before or oper-
ators, so that:

true() and true() or false() and false()

is the same as:

(true() and true()) or (false() and false())

If there is doubt in your mind regarding which expression is evaluated first, it is
likely that others reading your query will be uncertain too. In this case, it is best to
surround the expressions in question with parentheses. For example, you can change
the previous if-then-else expression to:

if (($x < 12) and ($y > 0)) then ($x + $y) else ($x - $y)

The meaning is exactly the same, but the evaluation order is clearer. Parentheses can
also be used to change the evaluation order. For example, if you change the true/
false example to:

true() and (true() or false()) and false()

it now has a different value (false) because the or expression is evaluated first.

Comparison Expressions
Comparison expressions are used to compare values. There are three kinds of com-
parison expressions: general, value, and node.

General Comparisons
General comparisons are used for comparing atomic values or nodes that contain
atomic values. Table 3-2 shows some examples of general comparisons. They use the
operators = (equal to), != (not equal to), < (less than), <= (less than or equal to), >
(greater than), and >= (greater than or equal to). Unlike in XSLT, you don’t need to
escape the < operator as <; in fact, it won’t be recognized if you do.

Comparison Expressions | 31

If either operand is the empty sequence, the expression evaluates to false.

General comparisons on multi-item sequences

General comparisons can operate on sequences of more than one item, as well as
empty sequences. If one or both of the operands is a sequence of more than one
item, the expression evaluates to true if the corresponding value comparison is true
for any combination of two items from the two sequences. For example, the expres-
sion (2, 5) < (1, 3) returns true if one or more of the following conditions is true:

• 2 is less than 1

• 2 is less than 3

• 5 is less than 1

• 5 is less than 3

This example returns true because 2 is less than 3. The expression (2, 5) > (1, 3)
also returns true because there are values in the first sequence that are greater than
values in the second sequence.

General comparisons are useful for determining if any values in a sequence meet a
particular criterion. For example, if you want to determine whether any of the prod-
ucts are in the ACC department, you can use the expression:

doc("catalog.xml")/catalog/product/@dept = 'ACC'

This expression is true if at least one of the four dept attributes is equal to ACC.

General comparisons and types

When comparing two values, their types are taken into account. Values of like types
(e.g., both numeric, or both derived from the same primitive type) can always be
tested for equality using the = and != operators. However, a few types* do not allow
their values to be compared using the other comparison operators such as < and >=.
The processor may raise a type error if the two operands contain any incomparable
values, as shown in the last row of Table 3-2.

Table 3-2. General comparisons

Example Value

doc("catalog.xml")/catalog/product[2]/name = 'Floppy Sun Hat' true

doc("catalog.xml")/catalog/product[4]/number < 500 false

1 > 2 false

() = (1, 2) false

(2, 5) > (1, 3) true

(1, "a") = (2, "b") Type error

* These types are xs:hexBinary, xs:base64Binary, xs:NOTATION, xs:QName, xs:duration, and all the date compo-
nent types starting with g.

32 | Chapter 3: Expressions: XQuery Building Blocks

When comparing any two of the atomic values in each operand, if one value is typed,
and the other is untyped, the untyped value is cast to the other value’s type (or to xs:
double if the specific type is numeric). For example, you can compare the untyped
value of a number element with the xs:integer 500, as long as the number element’s
content can be cast to xs:double. If both operands are untyped, they are compared as
strings.

Parentheses or Curly Braces?
One of the more confusing aspects of XQuery syntax to newcomers is the interaction
of parentheses, commas, and curly braces ({ and }). Curly braces appear in very spe-
cific kinds of expressions, namely XML constructors, validate expressions, ordered
and unordered expressions, and pragmas. Each of these kinds of expressions is dis-
cussed later in this book.

In the case of element and attribute constructors, commas can be used within curly
braces to separate multiple expressions. For example, in the expression:

<myNewEl>{"a", "b", "c"}</myNewEl>

commas are used to separate the three expressions.

Parentheses are part of the syntax of specific kinds of expressions, too, such as function
calls and around if expressions. In addition, parentheses, unlike curly braces, can be
added around any expression to change the evaluation order, or simply to visually for-
mat a query.

Parentheses are also commonly used to construct sequences of multiple items. This is
useful in cases where only one expression is expected but multiple values are desired.
For example, an else expression can only consist of one expression, so if you would like
to return two elements, you need to put them together as a sequence constructor, as in:

if (not($prod))
then (<empty/>)
else (<name>{data($prod/name)}</name>,
 <num>{data($prod/number)}</num>)

The parentheses around the name and num elements, and the comma that separates them,
are used to combine them into a single expression. If they were omitted, the query pro-
cessor would consider the num element to be outside the if-then-else expression.

At the top level of a query, you can omit the parentheses and just list individual expres-
sions separated by commas. For example, to return all the product elements of the cat-
alog, followed by all of the item elements from the order, your entire query can be:

doc("catalog.xml")//product, doc("order.xml")//item

The comma is used to separate the two expressions. All of the results of the first expres-
sion will appear first, followed by the results of the second expression.

Comparison Expressions | 33

Value Comparisons
Value comparisons differ fundamentally from general comparisons in that they can
only operate on single atomic values. They use the operators eq (equal to), ne (not
equal to), lt (less than), le (less than or equal to), gt (greater than), and ge (greater
than or equal to). Table 3-3 shows some examples.

Unlike general comparisons, if either operand is the empty sequence, the empty
sequence is returned. In this respect, the empty sequence behaves like null in SQL.

Each operand of a value comparison must be either a single atomic value, a single
node that contains a single atomic value, or the empty sequence. If either operand is
a sequence of more than one item, a type error is raised. For example, the expression:

doc("catalog.xml")/catalog/product/@dept eq 'ACC'

raises an error, because the path expression on the left side of the operator returns
more than one dept attribute. The difference between general and value compari-
sons is especially important in the predicates of path expressions.

When comparing typed values, value comparisons have similar restrictions to gen-
eral comparisons. The two operands must have comparable types. For example, you
cannot compare the string "4" with the integer 3. In this case, one value must be
explicitly cast to the other’s type, as in:

xs:integer("4") gt 3

However, value comparisons treat untyped data differently from general compari-
sons. Untyped values are always treated like strings by value comparisons. This
means that if you have two untyped elements that contain numbers, they will be
compared as strings unless you explicitly cast them to numbers. For example, the
expression:

xs:integer($prodNum1) gt xs:integer($prodNum2)

explicitly casts the two variables to the type xs:integer.

Table 3-3. Value comparisons

Example Value

3 gt 4 false

"abc" lt "def" true

doc("catalog.xml")/catalog/product[4]/
number lt 500

Type error, if number is untyped or nonnumeric

<a>3 gt <z>2</z> true

<a>03 gt <z>2</z> false, since a and z are untyped and treated like strings

(1, 2) eq (1, 2) Type error

34 | Chapter 3: Expressions: XQuery Building Blocks

You also must perform an explicit cast if you are comparing the value of an untyped
element to a numeric literal. For example, the expression:

doc("catalog.xml")/catalog/product[1]/number gt 1

will raise a type error if the number element is untyped, because you are essentially
comparing a string to a number. Because of these complexities, you may prefer to use
general comparisons if you are using untyped data.

Node Comparisons
Another type of comparison is the node comparison. To determine whether two
operands are actually the same node, you can use the is operator. Each of the oper-
ands must be a single node, or the empty sequence. If one of the operands is the
empty sequence, the result is the empty sequence.

The is operator compares the nodes based on their identity rather than by any value
they may contain. To compare the contents and attributes of two nodes, you can use
the deep-equal built-in function instead.

Table 3-4 shows some examples of node comparisons. They assume that the vari-
ables $n1 and $n2 are bound to two different nodes.

U S E F U L F U N C T I O N

between-inclusive
There is no built-in between function in XQuery, but you can easily write one:

declare namespace functx = "http://www.functx.com";
declare function functx:between-inclusive
 ($value as xs:anyAtomicType, $minValue as xs:anyAtomicType,
 $maxValue as xs:anyAtomicType) as xs:boolean {

 $value >= $minValue and $value <= $maxValue

 };

This function accepts any atomic value and an upper and lower bound. It does a simple
value comparison and returns true if the value is between the bounds. To call this func-
tion, you might use the following function call to test whether a product number is
between 1 and 500:

functx:between-inclusive ($prod/number, 1, 500)

This function is the first of many “useful functions” that are included in this book. You
can use them not just as examples but also directly in your queries. The source for these
functions (and many more) can be found at http://www.xqueryfunctions.com.

http://www.xqueryfunctions.com

Conditional (if-then-else) Expressions | 35

In the last example of the table, even though the second and third products have the
same value for their dept attributes, they are two distinct attribute nodes.

Conditional (if-then-else) Expressions
XQuery allows conditional expressions using the keywords if, then, and else. The
syntax of a conditional expression is shown in Figure 3-1.

The expression after the if keyword is known as the test expression. It must be
enclosed in parentheses. If the test expression evaluates to true, the value of the
entire conditional expression is the value of the then expression. Otherwise, it is the
value of the else expression.

Example 3-1 shows a conditional expression (embedded in a FLWOR).

If the then expression and else expression are single expressions, they are not
required to be in parentheses. However, to return the results of multiple expressions,
they need to be concatenated together using a sequence constructor. For example, if in
Example 3-1 you wanted to return an accessoryName element in addition to
accessoryNum, you would be required to separate the two elements by commas and

Table 3-4. Node comparisons

Example Value

$n1 is $n2 false

$n1 is $n1 true

doc("catalog.xml")/catalog/product[1] is
doc("catalog.xml")//product[number = 557]

true

doc("catalog.xml")/catalog/product[2]/@dept is
doc("catalog.xml")/catalog/product[3]/@dept

false

Figure 3-1. Syntax of a conditional expression

Example 3-1. Conditional expression

Query
for $prod in (doc("catalog.xml")/catalog/product)
return if ($prod/@dept = 'ACC')

then <accessoryNum>{data($prod/number)}</accessoryNum>
else <otherNum>{data($prod/number)}</otherNum>

Results
<otherNum>557</otherNum>
<accessoryNum>563</accessoryNum>
<accessoryNum>443</accessoryNum>
<otherNum>784</otherNum>

if (<expr>) then <expr> else <expr>

36 | Chapter 3: Expressions: XQuery Building Blocks

surround them with parentheses, effectively constructing a sequence of two ele-
ments. This is shown in Example 3-2.

The else keyword and the else expression are required. However, if you want the
else expression to evaluate to nothing, it can simply be () (the empty sequence).

Conditional Expressions and Effective Boolean Values
The test expression is interpreted as an xs:boolean value by calculating its effective
Boolean value. This means that if it evaluates to the xs:boolean value false, the num-
ber 0 or NaN, a zero-length string, or the empty sequence, it is considered false. Other-
wise, it is generally considered true. For example, the expression:

if (doc("order.xml")//item) then "Item List: " else ""

returns the string Item List: if there are any item elements in the order document.
The if expression doc("order.xml")//item returns a sequence of element nodes rather
than a Boolean value, but its effective Boolean value is true. Effective Boolean values
are discussed in more detail in Chapter 11.

Nesting Conditional Expressions
You can also nest conditional expressions, as shown in Example 3-3. This provides
an “else if” construct.

Example 3-2. Conditional expression returning multiple expressions

Query
for $prod in (doc("catalog.xml")/catalog/product)
return if ($prod/@dept = 'ACC')
 then (<accessoryNum>{data($prod/number)}</accessoryNum>,
 <accessoryName>{data($prod/name)}</accessoryName>)
 else <otherNum>{data($prod/number)}</otherNum>
Results
<otherNum>557</otherNum>
<accessoryNum>563</accessoryNum>
<accessoryName>Floppy Sun Hat</accessoryName>
<accessoryNum>443</accessoryNum>
<accessoryName>Deluxe Travel Bag</accessoryName>
<otherNum>784</otherNum>

Example 3-3. Nested conditional expressions

Query
for $prod in (doc("catalog.xml")/catalog/product)
return if ($prod/@dept = 'ACC')
 then <accessory>{data($prod/number)}</accessory>
 else if ($prod/@dept = 'WMN')
 then <womens>{data($prod/number)}</womens>
 else if ($prod/@dept = 'MEN')
 then <mens>{data($prod/number)}</mens>
 else <other>{data($prod/number)}</other>

Logical (and/or) Expressions | 37

Logical (and/or) Expressions
Logical expressions combine Boolean values using the operators and and or. They are
most often used in conditional (if-then-else) expressions, where clauses of FLWORs
and path expression predicates. However, they can be used anywhere a Boolean
value is expected.

For example, when used in a conditional expression:

if ($isDiscounted and $discount > 10) then 10 else $discount

an and expression returns true if both of its operands are true. An or expression eval-
uates to true if one or both of its operands is true.

As with conditional test expressions, the effective Boolean value of each of the oper-
ands is evaluated. This means that if the operand expression evaluates to a Boolean
false value, the number 0 or NaN, a zero-length string, or the empty sequence, it is
considered false; otherwise, it is generally considered true. For example:

$order/item and $numItems

returns true if there is at least one item child of $order, and $numItems (assuming it is
numberic) is not equal to 0 or NaN (i.e., not a number).

Evaluation Order of Logical Expressions
The logical operators have lower precedence than comparison operators do, so you
can use:

if ($x < 12 and $y > 15) then ...

without parenthesizing the two comparison expressions.

You can also chain multiple and and or expressions together. The and operator takes
precedence over the or operator. Therefore:

true() and true() or false() and false()

is the same as:

(true() and true()) or (false() and false())

and evaluates to true. It is not equal to:

true() and (true() or false()) and false()

which evaluates to false.

Results
<womens>557</womens>
<accessory>563</accessory>
<accessory>443</accessory>
<mens>784</mens>

Example 3-3. Nested conditional expressions (continued)

38 | Chapter 3: Expressions: XQuery Building Blocks

Negating a Boolean Value
You can negate any Boolean value by using the not function, which turns false to
true and true to false. Because not is a function rather than a keyword, you are
required to use parentheses around the value that you are negating.

The function accepts a sequence of items, from which it calculates the effective Bool-
ean value before negating it. This means that if the argument evaluates to the xs:
boolean value false, the number 0 or NaN, a zero-length string, or the empty
sequence, the not function returns true. In most other cases, it returns false.

Table 3-5 shows some examples of the not function.

There is a subtle but important difference between using the != operator and calling
the not function with an expression that uses the = operator. For example, the
expression $prod/@dept != 'ACC' returns:

• true if the $prod element has a dept attribute that is not equal to ACC

• false if it has a dept attribute that is equal to ACC

• false if it does not have a dept attribute

On the other hand, not($prod/@dept = 'ACC') will return true in the third case—that
is, if the $prod element does not have a dept attribute. This is because the $prod/
@dept expression returns the empty sequence, which results in the comparison evalu-
ating to false. The not function will negate this and return true.

Table 3-5. Examples of the not function

Example Return value

not(true()) false

not($numItems > 0) false if $numItems > 0

not(doc("catalog.xml")/catalog/ product) false if there is at least one product child of
catalog in catalog.xml

not(()) true

not("") true

39

Chapter 4 CHAPTER 4

Navigating Input Documents Using Paths4

Path expressions are used to navigate input documents to select elements and
attributes of interest. This chapter explains how to use path expressions to select ele-
ments and attributes from an input document and apply predicates to filter those
results. It also covers the different methods of accessing input documents.

Path Expressions
A path expression is made up of one or more steps that are separated by a slash (/) or
double slashes (//). For example, the path:

doc("catalog.xml")/catalog/product

selects all the product children of the catalog element in the catalog.xml document.
Table 4-1 shows some other simple path expressions.

Path expressions return nodes in document order. This means that the examples in
Table 4-1 return the product elements in the same order that they appear in the
catalog.xml document. More information on document order and on sorting results
differently can be found in Chapter 7.

Table 4-1. Simple path expressions

Example Explanation

doc("catalog.xml")/catalog The catalog element that is the outermost element of the document

doc("catalog.xml")//product All product elements anywhere in the document

doc("catalog.xml")//product/@dept All dept attributes of product elements in the document

doc("catalog.xml")/catalog/* All child elements of the catalog element

doc("catalog.xml")/catalog/*/number All number elements that are grandchildren of the catalog element

40 | Chapter 4: Navigating Input Documents Using Paths

Path Expressions and Context
A path expression is always evaluated relative to a particular context item, which
serves as the starting point for the relative path. Some path expressions start with a
step that sets the context item, as in:

doc("catalog.xml")/catalog/product/number

The function call doc("catalog.xml") returns the document node of the catalog.xml
document, which becomes the context item. When the context item is a node (as
opposed to an atomic value), it is called the context node. The rest of the path is eval-
uated relative to it. Another example is:

$catalog/product/number

where the value of the variable $catalog sets the context. The variable must select zero,
one or more nodes, which become the context nodes for the rest of the expression.

A path expression can also be relative. For example, it can also simply start with a
name, as in:

product/number

This means that the path expression will be evaluated relative to the current context
node, which must have been previously determined outside the expression. It may have
been set by the processor outside the scope of the query, or in an outer expression.

Steps and changing context

The context item changes with each step. A step returns a sequence of zero, one, or
more nodes that serve as the context items for evaluating the next step. For example, in:

doc("catalog.xml")/catalog/product/number

the doc("catalog.xml") step returns one document node that serves as the context
item when evaluating the catalog step. The catalog step is evaluated using the docu-
ment node as the current context node, returning a sequence of one catalog element
child of the document node. This catalog element then serves as the context node
for evaluation of the product step, which returns the sequence of product children of
catalog.

The final step, number, is evaluated in turn for each product child in this sequence.
During this process, the processor keeps track of three things:

• The context node itself—for example, the product element that is currently
being processed

• The context sequence, which is the sequence of items currently being pro-
cessed—for example, all the product elements

• The position of the context node within the context sequence, which can be
used to retrieve nodes based on their position

Path Expressions | 41

Steps
As we have seen in previous examples, steps in a path can simply be primary expres-
sions like function calls (doc("catalog.xml")) or variable references ($catalog). Any
expression that returns nodes can be on the lefthand side of the slash operator.

Another kind of step is the axis step, which allows you to navigate around the XML
node hierarchy. There are two kinds of axis steps:

Forward step
This step selects descendents or nodes appearing after the context node (or the
context node itself).

Reverse step
This step selects ancestors or nodes appearing before the context node (or the
context node itself).

In the examples so far, catalog, product, and @dept are all axis steps (that happen to
be forward steps). The syntax of an axis step is shown in Figure 4-1.

Axes
Each forward or reverse step has an axis, which defines the direction and relation-
ship of the selected nodes. For example, the child:: axis (a forward axis) can be used
to indicate that only child nodes should be selected, while the parent:: axis (a
reverse axis) can be used to indicate that only the parent node should be selected.
The 12 axes are listed in Table 4-2.

Figure 4-1. Syntax of a step in a path expression

Table 4-2. Axes

Axis Meaning

self:: The context node itself.

child:: Children of the context node. Attributes are not considered children of an element. This is the
default axis if none is specified.

descendant:: All descendants of the context node (children, children of children, etc.). Attributes are not
considered descendants.

descendant-or-self:: The context node and its descendants.

attribute:: Attributes of the context node (if any).

<axis-name> ::
..

<kind-test>

[<expr>]@

.

<name-test>

42 | Chapter 4: Navigating Input Documents Using Paths

An additional forward axis, namespace, is supported (but deprecated)
by XPath 2.0 but not supported at all by XQuery 1.0. It allows you to
access the in-scope namespaces of a node.

Implementations are not required to support the following axes:
following, following-sibling, ancestor, ancestor-or-self, preceding,
and preceding-sibling.

Node Tests
In addition to having an axis, each axis step has a node test. The node test indicates
which of the nodes (by name or node kind) to select, along the specified axis. For
example, child::product only selects product element children of the context node.
It does not select other kinds of children (for example, text nodes), or other product
elements that are not children of the context node.

Node name tests

In previous examples, most of the node tests were based on names, such as product
and dept. These are known as name tests. The syntax of a node name test is shown
in Figure 4-2.

following:: All nodes that follow the context node in the document, minus the context node’s descendants.

following-sibling:: All siblings of the context node that follow it. Attributes of the same element are not consid-
ered siblings.

parent:: The parent of the context node (if any). This is either the element or the document node that
contains it. The parent of an attribute is its element, even though it is not considered a child
of that element.

ancestor:: All ancestors of the context node (parent, parent of the parent, etc.).

ancestor-or-self:: The context node and all its ancestors.

preceding:: All nodes that precede the context node in the document, minus the context node’s ancestors.

preceding-sibling:: All the siblings of the context node that precede it. Attributes of the same element are not
considered siblings.

Figure 4-2. Syntax of a node name test

Table 4-2. Axes (continued)

Axis Meaning

* : <local-name>

<node-name>

*

<prefix> : *

Path Expressions | 43

Node name tests and namespaces

Names used in node tests are qualified names, meaning that they are affected by
namespace declarations. A namespace declaration is in scope if it appears in an outer
element, or in the query prolog. The names may be prefixed or unprefixed. If a name
is prefixed, its prefix must be mapped to a namespace using a namespace declaration.

If an element name is unprefixed, and there is an in-scope default namespace
declared, it is considered to be in that namespace; otherwise, it is in no namespace.
Attribute names, on the other hand, are not affected by default namespace declarations.

Use of namespace prefixes in path expressions is depicted in Example 4-1, where the
prod prefix is first mapped to the namespace, and then used in the steps prod:product
and prod:number. Keep in mind that the prefix is just serving as a proxy for the
namespace name. It is not important that the prefixes in the path expressions match
the prefixes in the input document; it is only important that the prefixes map to the
same namespace. In Example 4-1, you could use the prefix pr instead of prod in the
query, as long as you used it consistently throughout the query.

Node name tests and wildcards

You can use wildcards to match names. The step child::* (abbreviated simply *) can be
used to select all element children, regardless of name. Likewise, @* (or attribute::*)
can be used to select all attributes, regardless of name.

In addition, wildcards can be used for just the namespace and/or local part of a
name. The step prod:* selects all child elements in the namespace mapped to the pre-
fix prod, and the step *:product selects all product child elements that are in any
namespace, or no namespace.

Example 4-1. Prefixed name tests

Input document (prod_ns.xml)
<prod:product xmlns:prod="http://datypic.com/prod">
 <prod:number>563</prod:number>
 <prod:name language="en">Floppy Sun Hat</prod:name>
</prod:product>
Query
declare namespace prod = "http://datypic.com/prod";
<prod:prodList>{
 doc("prod_ns.xml")/prod:product/prod:number
}</prod:prodList>
Results
<prod:prodList xmlns:prod="http://datypic.com/prod">
 <prod:number>563</prod:number>
</prod:prodList>

44 | Chapter 4: Navigating Input Documents Using Paths

Node kind tests

In addition to the tests based on node name, you can test based on node kind. The
syntax of a node kind test is shown in Figure 4-3.

The test node() will retrieve all different kinds of nodes. You can specify node() as
the entire step, and it will default to the child:: axis. In this case, it will bring back
child element, text, comment, and processing-instruction nodes (but not attributes,
because they are not considered children). This is in contrast to *, which selects child
element nodes only.

You can also use node() in conjunction with the axes. For example, ancestor::node()
returns all ancestor element nodes and the document node (if it exists). This is differ-
ent from ancestor::*, which returns ancestor element nodes only. You can even use
attribute::node(), which will return attribute nodes, but this is not often used
because it means the same as @*.

Four other kind tests, text(), comment(), processing-instruction(), and document-
node(), are discussed in Chapter 21.

If you are using schemas, you can also test elements and attributes based on their
type using node kind tests. For example, you can specify element(*, ProductType) to
return all elements whose type is ProductType, or element(product, ProductType) to
return all elements named product whose type is ProductType. This is discussed fur-
ther in the section “Sequence Types and Schemas” in Chapter 13.

Abbreviated Syntax
Some axes and steps can be abbreviated, as shown in Table 4-3. The abbreviations “.”
and “..” are used as the entire step (with no node test). “.” represents the current
context node itself, regardless of its node kind. Likewise, the step “..” represents the
parent node, which could be either an element node or a document node.

Figure 4-3. Syntax of a node kind testa

a The detailed syntax of <element-attribute-test> is shown in Figure 13-4.

comment()

node()

text()

document-node()

processing-instruction(<name>)

<element-attribute-test>

Path Expressions | 45

The @ abbreviation, on the other hand, replaces the axis only, so it is used along with
a node test or wildcard. For example, you can use @dept to select dept attributes, or
@* to select all attributes.

The // abbreviation is a shorthand to indicate a descendant anywhere in a tree. For
example, catalog//number will match all number elements at any level among the
descendants of catalog. You can start a path with .// if you want to limit the selec-
tion to descendants of the current context node.

Table 4-4 shows additional examples of abbreviated and unabbreviated syntax.

Other Expressions As Steps
In addition to axis steps, other expressions can also be used as steps. You have
already seen this in use in:

doc("catalog.xml")/catalog/product/number

where doc("catalog.xml") is a function call that is used as a step. You can include
more complex expressions, for example:

doc("catalog.xml")/catalog/product/(number | name)

which uses the parenthesized expression (number | name) to select all number and name
elements. The | operator is a union operator; it selects the union of two sets of nodes.

Table 4-3. Abbreviations

Abbreviation Meaning

. self::node()

.. parent::node()

@ attribute::

// /descendant-or-self::node()/

Table 4-4. Abbreviated and unabbreviated syntax examples

Unabbreviated syntax Abbreviated equivalent

child::product product

child::* *

self::node() .

attribute::dept @dept

attribute::* @*

descendant::product .//product

child::product/descendant::name product//name

parent::node/number ../number

46 | Chapter 4: Navigating Input Documents Using Paths

If the expression in a step contains an operator with lower precedence than /, it
needs to be in parentheses. Some other examples of more complex steps are pro-
vided in Table 4-5.

The last step (and only the last step) in a path may return atomic values rather than
nodes. The last example in Table 4-5 will return a sequence of atomic values that are
the substrings of the product names. An error is raised if a step that is not the last
returns atomic values. For example:

product/substring(name,1,30)/replace(.,' ','-')

will raise an error because the substring step returns atomic values, and it is not the
last step.

Predicates
Predicates are used in a path expression to filter the results to contain only nodes
that meet specific criteria. Using a predicate, you can, for example, select only the
elements that have a certain value for an attribute or child element, using a predicate
like [@dept = "ACC"]. You can also select only elements that have a particular attribute
child element, using a predicate such as [color], or elements that occur in a particu-
lar position within their parent, using a predicate such as [3].

The syntax of a predicate is simply an expression in square brackets ([and]).
Table 4-6 shows some examples of predicates.

Table 4-5. More complex steps (examples start with doc("catalog.xml")/catalog/)

Example Meaning

product/(number | name) All number AND name children of product.

product/(* except number) All children of product except number. See “Combining Results” in
Chapter 9 for more information on the | and except operators.

product/
(if (desc) then desc else name)

For each product element, the desc child if it exists; otherwise, the
name child.

product/substring(name,1,30) A sequence of xs:string values that are substrings of product names.

Table 4-6. Predicates (examples start with doc("catalog.xml")/catalog/)

Example Meaning

product[name = "Floppy Sun Hat"] All product elements that have a name child whose value is equal to
Floppy Sun Hat

product[number < 500] All product elements that have a number child whose value is less
than 500

product[@dept = "ACC"] All product elements that have a dept attribute whose value is ACC

product[desc] All product elements that have at least one desc child

product[@dept] All product elements that have a dept attribute

product[@dept]/number All number children of product elements that have a dept attribute

Predicates | 47

If the expression evaluates to anything other than a number, its effective Boolean
value is determined. This means that if it evaluates to the xs:boolean value false, the
number 0 or NaN, a zero-length string, or the empty sequence, it is considered false.
In most other cases, it is considered true. If the effective Boolean value is true for a
particular node, that node is returned. If it is false, the node is not returned.

If the expression evaluates to a number, it is interpreted as the position as described
in “Using Positions in Predicates” later in this chapter.

As you can see from the last example, the predicate is not required to appear at the
end of the path expression; it can appear at the end of any step.

Note that product[number] is different from product/number. While both expressions
filter out products that have no number child, in the former expression, the product
element is returned. In the latter case, the number element is returned.

Comparisons in Predicates
The examples in the previous section use general comparison operators like = and <.
You can also use the corresponding value comparison operators, such as eq and lt,
but you should be aware of the difference. Value comparison operators only allow a
single value, while general comparison operators allow sequences of zero, one, or
more values. Therefore, the path expression:

doc("prices.xml")//priceList[@effDate eq '2006-11-15']

is acceptable, because each priceList element can have only one effDate attribute.
However, if you wanted to find all the priceList elements that contain the product
557, you might try the expression:

doc("prices.xml")//priceList[prod/@num eq 557]

This will raise an error because the expression prod/@num returns more than one value
per priceList. By contrast:

doc("prices.xml")//priceList[prod/@num = 557]

returns a priceList if it has at least one prod child whose num attribute is equal to 557.
It might have other prod children whose numbers are not equal to 557.

In both cases, if a particular priceList does not have any prod children with num
attributes, it does not return that priceList, but it does not raise an error.

Another difference is that value comparison operators treat all untyped data like
strings. If we fixed the previous problem with eq by returning prod nodes instead, as
in:

doc("prices.xml")//priceList/prod[@num eq 557]

it would still raise an error if no schema were present, because it treats the num
attribute like a string, which can’t be compared to a number. The = operator, on the
other hand, will cast the value of the num attribute to xs:integer and then compare it
to 557, as you would expect.

48 | Chapter 4: Navigating Input Documents Using Paths

For these reasons, general comparison operators are easier to use than value compar-
ison operators in predicates when children are untyped or repeating. The down side
of general comparison operators is that they also make it less likely that the proces-
sor will catch any mistakes you make. In addition, they may be more expensive to
evaluate because it’s harder for the processor to make use of indexes.

Using Positions in Predicates
Another use of predicates is to specify the numeric position of an item within the
sequence of items currently being processed. These are sometimes called, predict-
ably, positional predicates. For example, if you want the fourth product in the cata-
log, you can specify:

doc("catalog.xml")/catalog/product[4]

Any predicate expression that evaluates to an integer will be considered a positional
predicate. If you specify a number that is greater than the number of items in the
context sequence, it does not raise an error; it simply does not return any nodes. For
example:

doc("catalog.xml")/catalog/product[99]

returns the empty sequence.

Understanding positional predicates

With positional predicates, it is important to understand that the position is the posi-
tion within the current sequence of items being processed, not the position of an ele-
ment relative to its parent’s children. Consider the expression:

doc("catalog.xml")/catalog/product/name[1]

This expression refers to the first name child of each product; the step name[1] is eval-
uated once for every product element. It does not necessarily mean that the name ele-
ment is the first child of product.

It also does not return the first name element that appears in the document as a
whole. If you wanted just the first name element in the document, you could use the
expression:

(doc("catalog.xml")/catalog/product/name)[1]

because the parentheses change the order of evaluation. First, all the name elements
are returned; then, the first one of those is selected. Alternatively, you could use:

doc("catalog.xml")/catalog/descendant::name[1]

because the sequence of descendants is evaluated first, then the predicate is applied.
However, this is different from the abbreviated expression:

doc("catalog.xml")/catalog//name[1]

Predicates | 49

which, like the first example, returns the first name child of each of the products.
That’s because it’s an abbreviation for:

doc("catalog.xml")/catalog/descendant-or-self::node()/name[1]

The position and last functions

The position and last functions are also useful when writing predicates based on
position. The position function returns the position of the context item within the
context sequence (the current sequence of items being processed). The function
takes no arguments and returns an integer representing the position (starting with 1,
not 0) of the context item. For example:

doc("catalog.xml")/catalog/product[position() < 3]

returns the first two product children of catalog. You could also select the first two
children of each product, with any name, using:

doc("catalog.xml")/catalog/product/*[position() < 3]

by using the wildcard *. Note that the predicate [position() = 3] is equivalent to the
predicate [3], so the position function is not very useful in this case.

When using positional predicates, you should be aware that the to
keyword does not work as you might expect when used in predicates.
If you want the first three products, it may be tempting to use the
syntax:

doc("catalog.xml")/catalog/product[1 to 3]

However, this will raise an error* because the predicate evaluates to
multiple numbers instead of a single one. You can, however, use the
syntax:

doc("catalog.xml")/catalog/product[position() = (1 to 3)]

You can also use the subsequence function to limit the results based
on position, as in:

doc("catalog.xml")/catalog/subsequence(product, 1, 3)

The last function returns the number of nodes in the current sequence. It takes no
arguments and returns an integer representing the number of items. The last func-
tion is useful for testing whether an item is the last one in the sequence. For exam-
ple, catalog/product[last()] returns the last product child of catalog.

Table 4-7 shows some examples of predicates that use the position of the item. The
descriptions assume that there is only one catalog element, which is the case in the
catalog.xml example.

* Although several implementations erroneously support this construct.

50 | Chapter 4: Navigating Input Documents Using Paths

In XQuery, it’s very unusual to use the position or last functions anywhere except
within a predicate. It’s not an error, however, as long as the context item is defined.
For example, a/last() returns the same number as count(a).

Positional predicates and reverse axes

Oddly, positional predicates have the opposite meaning when using reverse axes
such as ancestor, ancestor-or-self, preceding, or preceding-sibling. These axes,
like all axes, return nodes in document order. For example, the expression:

doc("catalog.xml")//i/ancestor::*

returns the ancestors of the i element in document order, namely the catalog ele-
ment, followed by the fourth product element, followed by the desc element. How-
ever, if you use a positional predicate, as in:

doc("catalog.xml")//i/ancestor::*[1]

you might expect to get the catalog element, but you will actually get the nearest
ancestor, the desc element. The expression:

doc("catalog.xml")//i/ancestor::*[last()]

will give you the catalog element.

Using Multiple Predicates
Multiple predicates can be chained together to filter items based on more than one
constraint. For example:

doc("catalog.xml")/catalog/product[number < 500][@dept = "ACC"]

selects only product elements with a number child whose value is less than 500 and
whose dept attribute is equal to ACC. This can also be equivalently expressed as:

doc("catalog.xml")/catalog/product[number < 500 and @dept = "ACC"]

It is sometimes useful to combine the positional predicates with other predicates, as
in:

doc("catalog.xml")/catalog/product[@dept = "ACC"][2]

Table 4-7. Position in predicates (examples start with doc("catalog.xml")/catalog/)

Example Description

product[2] The second product child of catalog

product[position() = 2] The second product child of catalog

product[position() > 1] All product children of catalog after the first one

product[last()-1] The second to last product child of catalog

product[last()] The last product child of catalog

*[2] The second child of catalog, regardless of name

product[3]/*[2] The second child of the third product child of catalog

Predicates | 51

which represents “the second product child that has a dept attribute whose value is
ACC,” namely the third product element. The order of the predicates is significant. If
the previous example is changed to:

doc("catalog.xml")/catalog/product[2][@dept = "ACC"]

it means something different, namely “the second product child, if it has a dept
attribute whose value is ACC.” This is because the predicate changes the context, and
the context node for the second predicate in this case is the second product element.

More Complex Predicates
So far, the examples of predicates have been simple path expressions, comparison
expressions, and numbers. In fact, any expression is allowed in a predicate, making it
a very flexible construct. For example, predicates can contain function calls, as in:

doc("catalog.xml")/catalog/product[contains(@dept, "A")]

which returns all product children whose dept attribute contains the letter A. They
can contain conditional expressions, as in:

doc("catalog.xml")/catalog/product[if ($descFilter)
 then desc else true()]

which filters product elements based on their desc child only if the variable
$descFilter is true. They can also contain expressions that combine sequences, as in:

doc("catalog.xml")/catalog/product[* except number]

which returns all product children that have at least one child other than number.
General comparisons with multiple values can be used, as in:

doc("catalog.xml")/catalog/product[@dept = ("ACC", "WMN", "MEN")]

which returns products whose dept attribute value is any of those three values. This
is similar to a SQL “in” clause.

To retrieve every third product child of catalog, you could use the expression:

doc("catalog.xml")/catalog/product[position() mod 3 = 0]

because it selects all the products whose position is divisible by 3.

Predicates can even contain path expressions that themselves have predicates. For
example:

doc("catalog.xml")/catalog/product[*[3][self::colorChoices]]

can be used to find all product elements whose third child element is colorChoices.
The *[3][self::colorChoices] is part of a separate path expression that is itself
within a predicate. *[3] selects the third child element of product, and [self::
colorChoices] is a way of testing the name of the current context element.

Predicates are not limited to use with path expressions. They can be used with any
sequence. For example:

(1 to 100)[. mod 5 = 0]

52 | Chapter 4: Navigating Input Documents Using Paths

can be used to return the integers from 1 to 100 that are divisible by 5. Another
example is:

 (@price, 0.0)[1]

which selects the price attribute if it exists, or the decimal value 0.0 otherwise.

Dynamic Paths
It is a common requirement that the paths in your query will not be static but will
instead be calculated based on some input to the query. For example, if you want to
provide users with a search capability where they choose the elements in the input
document to search, you can’t use a static path in your query. XQuery does not pro-
vide any built-in support for evaluating dynamic paths, but you do have a couple of
alternatives.

For simple paths, it is easy enough to test for an element’s name using the name func-
tion instead of including it directly as a step in the path. For example, if the name of
the element to search and its value are bound to the variables $elementName and
$searchValue, you can use a path like:

doc("catalog.xml")//*[name() = $elementName][. = $searchValue]

If the dynamic path is more complex than a simple element or attribute name, you
can use an implementation-specific function. Most XQuery implementations pro-
vide a function for dynamic evaluation of paths or entire queries. For example, in
Saxon, it is the saxon:evaluate function, while in Mark Logic it is called xdmp:eval.
In Saxon, I could use the following expression to get the same results as the previous
example:

saxon:evaluate(concat('doc("catalog.xml")//',$elementName,
 '[. = "',$searchValue,'"]'))

Input Documents
A single query can access many input documents. The term input document is used in
this book to mean any XML data that is being queried. Technically, it might not be
an entire XML document; it might be a document fragment, such as an element or
sequence of elements, possibly with children. Alternatively, it might not be a physical
XML file at all; it might be data retrieved from an XML database, or an in-memory
XML representation that was generated from non-XML data.

If the input document is physically stored in XML syntax, it must be well-formed
XML. This means that it must comply with XML syntax rules, such as that every
start tag has an end tag, there is no overlap among elements, and special characters
are used appropriately. It must also use namespaces appropriately. This means that if
colons are used in element or attribute names, the part before the colon must be a
prefix that is mapped to a namespace using a namespace declaration.

Input Documents | 53

Whether it is physically stored as an XML document or not, an input document
must conform to other constraints on XML documents. For example, an element
may not have two attributes with the same name, and element and attribute names
may not contain special characters other than dashes, underscores, and periods.

There are four ways that input documents could be accessed from within a query.
They are described in the next four sections.

Accessing a Single Document
The doc function can be used to open one input document based on its URI. It takes
as an argument a single URI as a string, and returns the document node of the
resource associated with the specified URI.

Implementations interpret the URI passed to the doc function in different ways.
Some, like Saxon, will dereference the URI, that is, go out to the URL and retrieve
the resource at that location. For example, using Saxon:

doc("http://datypic.com/order.xml")

will return the document node of the document that can be found at the URL http://
datypic.com/order.xml.

Other implementations, such as those embedded in XML databases, consider the
URIs to be just names. The processor might take the name and look it up in an inter-
nal catalog to find the document associated with that name. The doc function is cov-
ered in detail in Appendix A.

Accessing a Collection
The collection function returns the nodes that make up a collection. A collection
may be a sequence of nodes of any kind, identified by a URI. Exactly how the URI is
associated with the nodes is defined by the implementation. For example, one imple-
mentation might accept a URI that is the name of a directory on a filesystem, and
return the document nodes of the XML documents stored in that directory. Another
implementation might associate a URI with a particular database. A third might
allow you to specify the URI of an XML document that contains URIs for all the
XML documents in the collection.

The function takes as an argument a single URI. For example, the function call:

collection("http://datypic.com/orders")

might return all the document nodes of the XML documents associated with the col-
lection http://datypic.com/orders. It is also possible to use the function without any
parameters, as in collection(), to retrieve a default collection as defined by the
implementation.

54 | Chapter 4: Navigating Input Documents Using Paths

Some XQuery implementations support a function called input, with
no arguments. This function appeared in earlier drafts of the XQuery
recommendation but is no longer part of the standard. It is equivalent
to calling the collection function with no arguments.

Setting the Context Node Outside the Query
The context node can be set by the processor outside the query. In this case, it may
not be necessary to use the doc or collection functions, unless you want to open sec-
ondary data sources.

For example, a hypothetical XQuery implementation might allow you to set the con-
text node in the Java code that executes the query, as in:

Document catalogDocument = new Document(File("catalog.xml"));
String query = "catalog/product[@dept = 'ACC']";
List productElements = catalogDocument.evaluateXQuery(query);

In that case, the XQuery expression catalog/product might be evaluated in the con-
text of the catalog document node itself. If the processor had not set the context
node, a path expression starting with catalog/product would not be valid.

Another implementation might allow you to select a document to query in a user
interface, in which case it uses that document as the context node.

Using Variables
The processor can bind external variables to input documents or document frag-
ments. These variables can then be used in the query to access the input document.
For example, an implementation might allow an external variable named $input to
be defined, and allow the user to specify a document to be associated with that vari-
able. The hypothetical query processor could be invoked from the command line
using:

xquery -input catalog.xml

and the query could use expressions like $input/catalog/product to retrieve the
product elements. The name $input is provided as an example; the implementation
could use any name for the variable.

You should consult the documentation for your XQuery implementation to deter-
mine which of these four methods are appropriate for accessing input documents.

A Closer Look at Context | 55

A Closer Look at Context
The processor can set the context node outside the query. Alternatively, the context
node can be set by an outer expression. In XQuery, the only operators that change the
context node are the slash and the square brackets used in predicates.* For example:

doc("catalog.xml")/catalog/product/(if (desc) then desc else name)

In this case, the if expression uses the paths desc and name. Because it is entirely con-
tained in one step of another (outer) path expression, it is evaluated with the context
node being the product element. Therefore, desc and name are tested as children of
product.

In some cases, no context node is defined. This might occur if the processor does not
set the context node outside the scope of the query, as described earlier in “Setting
the Context Node Outside the Query” and there is no outer expression that sets the
context. In addition, the context node is never defined inside the body of a function.
In these cases, using a relative path such as desc raises an error.

Working with the Context Node
It is sometimes useful to be able to reference the context node, either in a step or in a
predicate. A prior example retrieved product elements whose number child is less than
500 using the expression:

doc("catalog.xml")/catalog/product[number < 500]

Suppose, instead, you want to retrieve the number child itself. You can do this using
the expression:

doc("catalog.xml")/catalog/product/number[. < 500]

The period (.) is used to represent the context node itself in predicates and in paths.
You can also use the period as a parameter to functions, as in:

doc("catalog.xml")/catalog/product/name[starts-with(., "T")]

which passes the context item to the starts-with function. Some functions, when
they are not passed any arguments, automatically use the context node. For example:

doc("catalog.xml")/catalog/product/desc[string-length() > 20]

uses the string-length function to test the length of the desc value. It was not neces-
sary to pass the “.” to the string-length function. This is because the defined behav-
ior of this particular function is such that if no argument is passed to the function, it
defaults to the context node.

* This is in contrast to XSLT, where several kinds of expressions change the context node, including the
xsl:for-each element and template matching.

56 | Chapter 4: Navigating Input Documents Using Paths

Accessing the Root
When the context node is part of a complete XML document, the root is a docu-
ment node (not the outermost element). However, XQuery also allows nodes to par-
ticipate in tree fragments, which can be rooted at any kind of node.

There are several ways of accessing the root of the current context node. When a
path expression starts with one forward slash, as in:

/catalog/product

the path is evaluated relative to the root of the tree containing the current context
node. For example, if the current context node is a number element in the catalog.xml
document, the path /catalog/product retrieves all product children of catalog in
catalog.xml.

When a path expression starts with two forward slashes, as in:

//product/number

it is referring to any product element in the tree containing the current context node.
Starting an expression with / or // is allowed only if the current context node is part
of a complete XML document (with a document node at its root). / can also be used
as an expression in its own right, to refer to the root of the tree containing the con-
text node (provided this is a document node).

The root function also returns the root of the tree containing a node. It can be used
in conjunction with path expressions to find siblings and other elements that are in
the same document. For example, root($myNode)//product retrieves all product ele-
ments that are in the same document (or document fragment) as $myNode. When
using the root function, it’s not necessary for the tree to be rooted at a document
node.

57

Chapter 5 CHAPTER 5

Adding Elements and Attributes
 to Results5

Most queries include some XML elements and attributes that structure the results. In
the previous chapter, we saw how to use path expressions to copy elements and
attributes from input documents. After a brief review of this technique, this chapter
explains how you can create entirely new elements and attributes and include them
in your results.

There are two ways to create new elements and attributes: direct constructors and
computed constructors. Direct constructors, which use an XML-like syntax, are use-
ful for creating elements and attributes whose names are fixed. Computed construc-
tors, on the other hand, allow for names that are generated dynamically in the query.

Including Elements and Attributes from the Input
Document
Some queries simply include elements and attributes from the input document in the
results. Example 5-1 includes certain selected name elements in the results.

Note that because the entire name element is returned, the results include the name
elements, not just their atomic values. In fact, if the query returns elements that have
attributes and descendants, they are all part of the results. This is exhibited in
Example 5-2.

Example 5-1. Including elements from the input document

Query
for $prod in doc("catalog.xml")/catalog/product[@dept = 'ACC']
return $prod/name
Results
<name language="en">Floppy Sun Hat</name>
<name language="en">Deluxe Travel Bag</name>

58 | Chapter 5: Adding Elements and Attributes to Results

The product elements are included as they appear in the input document, with all
attributes and children. If they are in a namespace in the input document, they will
be in that same namespace in the results. There is no opportunity to add or remove
children or attributes, or change the namespace name, when using path expressions.
Techniques for making such modifications are covered later in this chapter.

Direct Element Constructors
You can also insert your own XML elements and attributes into the query results
using XML constructors. There are two kinds of XML constructors: direct construc-
tors, which use familiar XML-like syntax, and computed constructors, that allow you
to generate dynamically the XML names used in the results.

A direct element constructor is a constructor of the first kind; it specifies an XML ele-
ment (optionally with attributes) using XML-like syntax, as shown in Example 5-3.
The result of the query is an XHTML fragment that presents the selected data.

Example 5-2. Including complex elements from the input document

Query
for $prod in doc("catalog.xml")/catalog/product[@dept = 'ACC']
return $prod
Results
<product dept="ACC">
 <number>563</number>
 <name language="en">Floppy Sun Hat</name>
</product>
<product dept="ACC">
 <number>443</number>
 <name language="en">Deluxe Travel Bag</name>
</product>

Example 5-3. Constructing elements using XML-like syntax

Query
<html>
 <h1>Product Catalog</h1>
 {
 for $prod in doc("catalog.xml")/catalog/product
 return number: {data($prod/number)}, name: {data($prod/name)}
 }
</html>
Results
<html>
 <h1>Product Catalog</h1>

 number: 557, name: Fleece Pullover
 number: 563, name: Floppy Sun Hat
 number: 443, name: Deluxe Travel Bag
 number: 784, name: Cotton Dress Shirt

</html>

Direct Element Constructors | 59

The h1, ul, and li elements appear in the results as XML elements. The h1 element
constructor simply contains literal characters Product Catalog, which appear in the
results as the content of h1. The ul element constructor, on the other hand, contains
another XQuery expression enclosed in curly braces. This is known as an enclosed
expression, and its value becomes the content of the ul element in the results. In this
case, the enclosed expression evaluates to a sequence of li elements, which then
appear as children of the ul element in the results. An enclosed expression may also
evaluate to one or more atomic values, which appear in the results as character data.

The li element constructor contains a combination of both literal characters (the
strings number: and , name:) and enclosed expressions, each of which evaluates to an
atomic value. Any element constructor content outside curly braces is considered a
literal, no matter how much it looks like an expression.

Direct element constructors use a syntax that looks very much like XML. The tags
use the same angle-bracket syntax, the names must be valid XML names, and every
start tag must have a matching end tag that is properly nested. In addition, prefixed
names can be used, and even namespace declarations included. As with regular
XML, the attributes of a direct element constructor must have unique names. But
there are a few differences from real XML. For example, expressions within curly
braces can use the < operator without escaping it.

As shown in Example 5-3, element constructors can contain literal characters, other
element constructors, and enclosed expressions, in any combination.

Containing Literal Characters
Literal characters are characters that appear outside of enclosed expressions in ele-
ment constructor content. Literal characters from Example 5-3 include the string
Product Catalog in the h1 element constructor, and the string , name: in the li ele-
ment constructor.

In addition, the literal characters can include character and predefined entity refer-
ences such as and < and CDATA sections (described in Chapter 21). As in
XML content, the literal characters may not include unescaped less-than (<) or
ampersand (&) characters; they must be escaped using < and &, respectively.

When a curly brace is to be included literally in the content of an element, it must be
escaped by doubling it, that is, {{ for the left curly brace, or }} for the right.

Containing Other Element Constructors
Direct element constructors can also contain other direct element constructors. In
Example 5-4, the html element constructor contains constructors for h1 and ul. They are
included directly within the content of html, without curly braces. No special separator
is used between them. The p element constructor contains a combination of character

60 | Chapter 5: Adding Elements and Attributes to Results

data content, a direct element constructor (for the element i), and an enclosed expres-
sion. As you can see, these three things can be intermingled as necessary.

Containing Enclosed Expressions
In Example 5-3, the enclosed expression of the ul element evaluates to a sequence of
elements. In fact, it is possible for the enclosed expression to evaluate to a sequence
of attributes or other nodes, atomic values, or even a combination of nodes and
atomic values. It can even evaluate to a document node, in which case that docu-
ment node is replaced by its children.

Enclosed expressions that evaluate to elements

As you have seen with the li elements, elements in the sequence become children of
the element being constructed (in this case, ul). Atomic values, on the other hand,
become character data content. If the enclosed expression evaluates to a sequence of
both elements and atomic values, as shown in Example 5-5, the result element has
mixed content, with the order of the child elements and character data preserved.

The prior examples used the data function in enclosed expressions to extract the val-
ues of the elements number and name. In this example, the number element is included
without applying the data function. The results are somewhat different; instead of
just the number value itself, the entire number element is included.

Example 5-4. Embedded direct element constructors

Query
<html>
 <h1>Product Catalog</h1>
 <p>A <i>huge</i> list of {count(doc("catalog.xml")//product)} products.</p>
</html>
Results
<html>
 <h1>Product Catalog</h1>
 <p>A <i>huge</i> list of 4 products.</p>
</html>

Example 5-5. Enclosed expressions that evaluate to elements

Query
for $prod in doc("catalog.xml")/catalog/product
return number: {$prod/number}
Results
number: <number>557</number>
number: <number>563</number>
number: <number>443</number>
number: <number>784</number>

Direct Element Constructors | 61

Enclosed expressions that evaluate to attributes

If an element constructor contains an enclosed expression that evaluates to one or
more attributes, these attributes become attributes of the element under construc-
tion. This is exhibited in Example 5-6, where the enclosed expression {$prod/@dept}
has been added at the beginning of the li constructor content.

The dept attribute appears in the results as an attribute of the li element rather than
as content of the element. If the example had used the data function within the
enclosed expression, the value of the dept attribute would have been the first charac-
ter data content of the li element.

Enclosed expressions that evaluate to attributes must appear first in the element con-
structor content, before any other kinds of nodes.

Enclosed expressions that evaluate to atomic values

If an enclosed expression evaluates to one or more atomic values, those values are
simply cast to xs:string and included as character data content of the element.
When adjacent atomic values appear in the expression sequence, they are separated
by a space in the element content. For example:

{"x", "y", "z"}

will return x y z, with spaces. To avoid this, you can use three separate
expressions, as in:

{"x"}{"y"}{"z"}

Another option is to use the concat function to concatenate them together into a sin-
gle expression, as in:

{concat("x", "y", "z")}

Enclosed expressions with multiple subexpressions

Enclosed expressions may include more than one subexpression inside the curly
braces, using commas as separators. In Example 5-7, the enclosed expression in the
li constructor contains four different subexpressions, separated by commas.

Example 5-6. Enclosed expressions that evaluate to attributes

Query
for $prod in doc("catalog.xml")/catalog/product
return {$prod/@dept}number: {$prod/number}
Results
<li dept="WMN">number: <number>557</number>
<li dept="ACC">number: <number>563</number>
<li dept="ACC">number: <number>443</number>
<li dept="MEN">number: <number>784</number>

62 | Chapter 5: Adding Elements and Attributes to Results

The first subexpression, $prod/@dept, evaluates to an attribute, and therefore
becomes an attribute of li.

The next two subexpressions, "string" and 5+3, evaluate to atomic values: a string
and an integer, respectively. Note that they are separated by a space in the results.

The final subexpression, $prod/number, is an element, which is not separated from the
atomic values by a space.

Specifying Attributes Directly
You have seen how attributes can be included with the result elements by including
enclosed expressions that evaluate to attributes. Attributes can also be constructed
directly using XML-like syntax. Attribute values can be specified using literal text or
enclosed expressions, or a combination of the two.

In Example 5-8, class and dep attributes are added to the h1 and li elements, respec-
tively. The class attribute of h1 simply includes literal text that is repeated in the
results. The dep attribute of li, on the other hand, includes an enclosed expression
that evaluates to the value of the dept attribute of that item. Do not let the quotes
around the expression fool you; anything in curly braces is evaluated as an enclosed
expression.

Example 5-7. Enclosed expressions with multiple subexpressions

Query
for $prod in doc("catalog.xml")/catalog/product
return {$prod/@dept,"string",5+3,$prod/number}
Results
<li dept="WMN">string 8<number>557</number>
<li dept="ACC">string 8<number>563</number>
<li dept="ACC">string 8<number>443</number>
<li dept="MEN">string 8<number>784</number>

Example 5-8. Specifying attributes directly using XML-like syntax

Query
<html>
<h1 class="itemHdr">Product Catalog</h1>
{
 for $prod in doc("catalog.xml")/catalog/product
 return <li dep="{$prod/@dept}">number: {data($prod/number)
 }, name: {data($prod/name)}
}
</html>
Results
<html>
<h1 class="itemHdr">Product Catalog</h1>

 <li dep="WMN">number: 557, name: Fleece Pullover
 <li dep="ACC">number: 563, name: Floppy Sun Hat

Direct Element Constructors | 63

Note that the dep attribute will appear regardless of whether there is a dept attribute
of the $prod element. If the $prod element has no dept attribute, the dep attribute’s
value will be a zero-length string. This is in contrast to Example 5-7, where li will
have a dept attribute only if $prod has a dept attribute.

If literal text is used in a direct attribute constructor, it follows similar rules to the lit-
eral text in element constructors. Also, as with XML syntax, quote characters in
attribute values must be escaped if they match the kind of quotes (single or double)
used to delimit that value. However, you don’t need to escape quotes appearing in an
expression inside curly braces. The following example is valid because the inner pair
of double quotes is inside curly braces:

 <li dep="{substring-after($prod/@dept, "-")}"/>

The evaluation of enclosed expressions in attribute values is slightly different from
those in element content. Because attributes cannot themselves have children or
attributes, the attribute value must evaluate to an atomic value. Therefore, if an
enclosed expression in an attribute value evaluates to one or more elements or
attributes, the value of the node(s) is extracted and converted to a string.

In Example 5-8, the enclosed expression {$prod/@dept} for the dep attribute of li
evaluates to an attribute. The processor did not attempt to add a dept attribute to the
dep attribute (which would not make sense). Instead, it extracted the value of the
dept attribute and used this as the value of the dep attribute.

Just as in XML, you can specify multiple attributes on an element, as long as they
have unique names. The order of the attributes is never considered significant in
XML, so your attributes might not appear in your result document in the same order
as you specified them in the query. There is no way to force the processor to pre-
serve attribute order.

Declaring Namespaces in Direct Constructors
In addition to regular attributes, you can also include namespace declarations in
direct element constructors. These namespace declaration attributes affect the ele-
ment itself and all its descendants, and override any namespace declarations in the
prolog or in outer element constructors. Example 5-9 shows the use of a namespace
declaration in an element constructor. This is discussed in detail in the section
“Namespace Declarations in Element Constructors” in Chapter 10.

 <li dep="ACC">number: 443, name: Deluxe Travel Bag
 <li dep="MEN">number: 784, name: Cotton Dress Shirt

</html>

Example 5-8. Specifying attributes directly using XML-like syntax (continued)

64 | Chapter 5: Adding Elements and Attributes to Results

Use Case: Modifying an Element from the Input Document
Suppose you want to include elements from the input document but want to make
minor modifications such as adding or removing a child or attribute. To do this, a
new element must be created using a constructor. For example, suppose you want to
include product elements from the input document, but add an additional attribute
id that is equal to the letter P plus the product number. The query shown in
Example 5-10 accomplishes this.

The query makes a new copy of the product element, which contains the enclosed
expression {$prod/(@*, *)} to copy all of the attributes and child elements from
the original product element. You could also use the broader expression {$prod/
(@*, node())} to copy all the child nodes of the element, including text, com-
ments, and processing instructions.

Example 5-9. Using a namespace declaration in a constructor

Query
<xhtml:html xmlns:xhtml="http://www.w3.org/1999/xhtml">
 <xhtml:h1 class="itemHdr">Product Catalog</xhtml:h1>
 <xhtml:ul>{
 for $prod in doc("catalog.xml")/catalog/product
 return <xhtml:li class="{$prod/@dept}">number: {
 data($prod/number)}</xhtml:li>
 }</xhtml:ul>
</xhtml:html>
Results
<xhtml:html xmlns:xhtml="http://www.w3.org/1999/xhtml">
 <xhtml:h1 class="itemHdr">Product Catalog</xhtml:h1>
 <xhtml:ul>
 <xhtml:li class="WMN">number: 557</xhtml:li>
 <xhtml:li class="ACC">number: 563</xhtml:li>
 <xhtml:li class="ACC">number: 443</xhtml:li>
 <xhtml:li class="MEN">number: 784</xhtml:li>
 </xhtml:ul>
</xhtml:html>

Example 5-10. Adding an attribute to an element

Query
for $prod in doc("catalog.xml")/catalog/product[@dept = 'ACC']
return <product id="P{$prod/number}">
 {$prod/(@*, *)}
 </product>
Results
<product dept="ACC" id="P563">
 <number>563</number>
 <name language="en">Floppy Sun Hat</name>
</product>
<product dept="ACC" id="P443">
 <number>443</number>
 <name language="en">Deluxe Travel Bag</name>
</product>

Direct Element Constructors | 65

As another example, suppose you want to copy some product elements from the
input document but remove the number child. This can be accomplished using the
query in Example 5-11. The enclosed expression $prod/(@*, * except number) selects
all the attributes and all of the child elements of product except number.

Additional examples of making “modifications” to elements and attributes can be
found in the section “Copying Input Elements with Modifications” in Chapter 9.

Direct Element Constructors and Whitespace
Whitespace is often used in direct element constructors. For example, you may use
line breaks and tabs to indent result XML elements for readability, or spaces to sepa-
rate enclosed expressions. Sometimes the query author intends for whitespace to be
significant (included in the results); sometimes it is just used for formatting the query
for visual presentation.

Boundary whitespace

Boundary whitespace is whitespace that occurs by itself (without any nonwhitespace
characters) in direct element constructors. It may appear between two element con-
structor tags, between two enclosed expressions, or between a tag and an enclosed
expression. It can be made up of any of the XML whitespace characters, namely
space, tab, carriage return, and line feed.

For example, in the constructor shown in Example 5-12, there is boundary whitespace
in the ul constructor between the ul start tag and the left curly brace, as well as
between the right curly brace and the ul end tag. In the li constructor, there is
boundary whitespace between the li start tag and the b start tag, between the b end
tag and the left curly brace, and between the right curly brace and the li end tag.

Example 5-11. Removing a child from an element

Query
for $prod in doc("catalog.xml")/catalog/product[@dept = 'ACC']
return <product>
 {$prod/(@*, * except number)}
 </product>
Results
<product dept="ACC">
 <name language="en">Floppy Sun Hat</name>
</product>
<product dept="ACC">
 <name language="en">Deluxe Travel Bag</name>
</product>

Example 5-12. Constructor with boundary whitespace

 { number: { $prod/number } }

66 | Chapter 5: Adding Elements and Attributes to Results

With boundary whitespace discarded,* the results look something like:

 number:<number>557</number>

Note that the whitespace before the text number: is not discarded because it appears
with other characters.

Whitespace inside enclosed expressions that is not in quotes is never considered sig-
nificant. It is simply the normal whitespace allowed by XQuery syntax. In the ul con-
structor, the spaces between the left curly brace and the li start tag fall into this
category. It is not technically considered boundary whitespace, and it is always
discarded.

There is no boundary whitespace in attribute values. For example, in the expression:

<product dept=" {$d} "/>

the whitespace between the quotes and the enclosed expression is considered signifi-
cant and therefore is preserved. The expression:

<product dept="{ $d }"/>

has no boundary whitespace either, only whitespace in an enclosed expression. This
whitespace is not preserved. Line breaks are never preserved in attribute values; they
are converted to spaces. This is a standard feature of XML itself, known as attribute
value normalization.

The boundary-space declaration

By default, a query processor discards all boundary whitespace. Sometimes you want
to preserve the boundary whitespace in your query results because it is significant.
The boundary-space declaration, specified in the query prolog, instructs the proces-
sor how to handle boundary whitespace in direct element constructors.† Its syntax is
shown in Figure 5-1.

The two valid values are:

preserve
This value results in boundary whitespace being preserved.

strip
This value results in boundary whitespace being deleted.

The default is strip. For example, the boundary-space declaration:

declare boundary-space preserve;

* Although the boundary whitespace will be discarded, if you choose to serialize your results, your processor
may add whitespace to indent them. Therefore, your results may vary.

† By contrast, the xml:space attribute on a constructed element has no effect on boundary whitespace.

Direct Element Constructors | 67

causes whitespace to be preserved. With this boundary-space declaration, the result
of the constructor in Example 5-12 becomes:

 number: <number>557</number>

Table 5-1 shows some additional examples of results with and without preserved
whitespace.

Forcing boundary whitespace preservation

If you don’t want to preserve all whitespace but wish to preserve it in one or more
specific elements, you can do this in one of two ways. The first way is to include an
enclosed expression that evaluates to whitespace. For example, <e>{" x "}</e> evalu-
ates to <e> x </e>, regardless of the boundary-space declaration. This is because the
whitespace is part of the value of the expression (the literal string).

Another method is to use a character reference to a whitespace character. Whitespace
that is the result of a character reference is always considered significant. For exam-
ple, <e> {"x"}</e> always evaluates to <e> x</e>. Character references are
described further in the section “XML Entity and Character References” in
Chapter 21.

Figure 5-1. Syntax of a boundary-space declaration

Table 5-1. Stripping boundary whitespace

Expression
Value with boundary whitespace
preserved

Value with boundary whitespace
stripped

<e>
 <c></c>
</e>

<e>
 <c></c>
</e>

<e><c></c></e>

<e> {"x"} </e> <e> x </e> <e>x</e>

<e> {()} </e> <e> </e> <e></e>

<e>{"x"} {"y"}</e> <e>x y</e> <e>xy</e>

<e> x {"y"}</e> <e> x y</e> <e> x y</e>

<e>{" x "}</e> <e> x </e> <e> x </e>

<e>{ "x" }</e> <e>x</e> <e>x</e>

<e> {"x"}</e> <e> x</e> <e> x</e>

<e> </e> <e> </e> <e></e>

declare boundary-space

strip

preserve ;

68 | Chapter 5: Adding Elements and Attributes to Results

Computed Constructors
Generally, if you know the element or attribute name that you want to use in your
results, you can use XML-like syntax as described in the previous sections. How-
ever, sometimes you may want to compute the name dynamically, so you cannot
include the literal names in the query. In this case, you use computed constructors.
This can be useful when:

• You want to simply copy elements from the input document (regardless of
name) but make minor changes to their content. For example, to add an id
attribute to every element, or to move all the elements to a different namespace.

• You want to turn content from the input document into element or attribute
names. For example, you want to create an element whose name is the value of
the dept attribute in the input document, without a predefined list of elements.

• You want to look up element names in a separate dictionary, e.g., for language
translation purposes.

You can use computed constructors for elements, attributes, and other kinds of nodes.

Computed Element Constructors
A computed element constructor uses the keyword element, followed by a name and
some content in curly braces. The syntax of a computed element constructor is
shown in Figure 5-2.

Example 5-13 shows a query that is equivalent to Example 5-3, except that it uses
computed element constructors instead of direct ones.

Figure 5-2. Syntax of a computed element constructor

Example 5-13. Simple computed constructor

Query
element html {
 element h1 { "Product Catalog" },
 element ul {
 for $prod in doc("catalog.xml")/catalog/product
 return element li {"number:",data($prod/number),", name:",data($prod/name)}
 }
}
Results
<html>
 <h1>Product Catalog</h1>

element <element-name>

{ <name-expr> }

{

<content-expr>

}

Computed Constructors | 69

Names of computed element constructors

The name in a computed element constructor is represented by either a qualified
name or an expression (in curly braces) that evaluates to a qualified name. This is
then followed by an enclosed expression (also in curly braces) that contains the con-
tent of the element. For example, the constructor:

element h1 { "Product Catalog" }

uses a literal name to construct the element <h1>Product Catalog</h1>, while:

element {concat("h",$level)} { "Product Catalog" }

uses an expression, enclosed in curly braces, to dynamically generate the name by
concatenating the literal h with a variable value.

You could also copy the name of the new node from an existing node, using the
node-name function. For example:

element {node-name($myNode)} { "contents" }

will give the new element the same name as the node that is bound to the $myNode
variable.

The expression used for the name can be untyped, or it can be either an xs:QName
(which is what node-name returns) or an xs:string value. It can even be a node, in
which case it is atomized to extract its typed value (not its name).

Default namespace declarations apply to element constructors. If you do not prefix
your names, and you declare a default element namespace (e.g., in an outer expres-
sion or in the query prolog), the new elements are considered to be in that
namespace.

Content of computed element constructors

After the name, the next part of the computed element constructor is an enclosed
expression that contains the contents of the element, including attributes, character
data, and child elements. As with direct XML constructors, any elements returned by
the enclosed expression become children of the new element, attributes become
attributes, and atomic values become character data content. Computed construc-
tors have the same rule that the attributes must appear before any elements or char-
acter data.

 number: 557 , name: Fleece Pullover
 number: 563 , name: Floppy Sun Hat
 number: 443 , name: Deluxe Travel Bag
 number: 784 , name: Cotton Dress Shirt

</html>

Example 5-13. Simple computed constructor (continued)

70 | Chapter 5: Adding Elements and Attributes to Results

The syntax is slightly different for computed constructors in that there can only be
one pair of curly braces, containing the attributes and contents of the element. If sev-
eral expressions are needed for the attributes, child elements, and character data con-
tent, they are separated by commas. For example, when using a direct element
constructor, you can construct the li element this way:

number: {data($prod/number)} , name: {data($prod/name)}

where you intersperse literal text and enclosed expressions. To create an identical li
element using a computed constructor, you would use the syntax:

element li {"number:", data($prod/number), ", name:", data($prod/name)}

Note that the literal text is in quotes and is separated from the expressions by com-
mas. Also, the expressions, such as data($prod/number), are not themselves enclosed
in curly braces as they were with the direct constructor.

The values of each of the four expressions in the li constructor will be separated by
spaces in the results. If you do not wish to have those spaces in the results, you can
use the concat function to concatenate the values together, as in:

element li {concat("number:", data($prod/number), ", name:", data($prod/name))}

If you want the constructed element to be empty, you can put nothing between the
curly braces (as in { }), but the braces are still required.

Computed Attribute Constructors
A computed attribute constructor has syntax identical to a computed element con-
structor, except that it uses the keyword attribute. Its syntax is shown in Figure 5-3.

For example, the constructors:

attribute myattr { $prod/@dept }

and:

attribute {concat("my", "attr")} { $prod/@dept }

both construct an attribute whose name is myattr and whose value is the same as the
dept attribute of $prod. As with direct attribute constructors, any elements or attributes
that are returned by the expression have their values extracted and converted to strings.

Computed attribute constructors are not just for use in computed element construc-
tors. They can be used in direct element constructors as well, if they are included in
an enclosed expression. For example, the expression:

<result>{attribute {concat("my", "attr")} { "xyz" } }</result>

Figure 5-3. Syntax of a computed attribute constructor

attribute <attribute-name>

{ <name-expr> }

{

<value-expr>

}

Computed Constructors | 71

will return the result:

<result myattr="xyz"/>

You cannot construct namespace declarations using computed attribute construc-
tors. If the name specified for an attribute constructor is xmlns, or a name whose pre-
fix is xmlns, an error is raised. For example, the following constructor is invalid:

attribute xmlns:prod { "http://datypic.com/prod" }

Instead, you should declare the namespace in the query prolog or in an outer direct
element constructor.

Use Case: Turning Content to Markup
One application of computed constructors is to transform content into markup. For
example, suppose you want to create a product catalog that has the names of the
departments as element names instead of attribute values. The query in Example 5-14
can be used for this purpose.

In the results, the department names are now element names. The second expres-
sion in curly braces returns all the name elements for products in that department.

Computed constructors are also useful to recursively process elements regardless of
their name. Example 5-10 showed how to add an id attribute to a product element.
Suppose you wanted to add an id attribute to every element in a document, regard-
less of its name. It is necessary to use computed constructors for this, because you
will not know the name of the constructed elements in advance. “Copying Input Ele-
ments with Modifications” in Chapter 9 shows some further examples of using com-
puted constructors to generically handle elements with any name.

Example 5-14. Turning content into markup

Query
for $dept in distinct-values(doc("catalog.xml")/catalog/product/@dept)
return element {$dept}
 {doc("catalog.xml")/catalog/product[@dept = $dept]/name}
Results
<WMN>
 <name language="en">Fleece Pullover</name>
</WMN>
<ACC>
 <name language="en">Floppy Sun Hat</name>
 <name language="en">Deluxe Travel Bag</name>
</ACC>
<MEN>
 <name language="en">Cotton Dress Shirt</name>
</MEN>

72

Chapter 6CHAPTER 6

Selecting and Joining Using FLWORs 6

This chapter describes the facilities in XQuery for selecting, filtering, and joining
data from one or more input documents. It covers the syntax of FLWORs (for, let,
where, order by, return) and quantitative expressions.

Selecting with Path Expressions
Chapter 4 described how to use path expressions to select elements from input docu-
ments. For example, the expression:

doc("catalog.xml")//product[@dept = "ACC"]/name

can be used to select the names of all the products in the ACC department. You can
add multiple predicates (expressions in square brackets) to filter the results based on
more than one criterion. You can even add logical and other expressions to predi-
cates, as in:

doc("catalog.xml")//product[@dept = "ACC" or @dept = "WMN"]/name

A path expression can be the entire content of a query; there is no requirement that
there be a FLWOR expression in every query. Path expressions are useful for queries
where no new elements and attributes are being constructed and the results don’t
need to be sorted. A path expression can be preferable to a FLWOR because it is
more compact and some implementations will be able to evaluate it faster.

FLWOR Expressions
FLWOR expressions, also known simply as FLWORs, are used for queries that are
more complex. In addition to allowing more readable and structured selections, they
allow functionality such as joining data from multiple sources, constructing new ele-
ments and attributes, evaluating functions on intermediate values, and sorting
results.

FLWOR Expressions | 73

FLWOR (pronounced “flower”), stands for “for, let, where, order by, return,” the
keywords that are used in the expression. Example 6-1 shows a FLWOR that is
equivalent to the second path expression from the previous section.

Of course, this is far more verbose, and for such a simple example, the path expres-
sion is preferable. However, this example is useful as an illustration before moving
on to examples that are more complex. As you can see, the FLWOR is made up of
several parts:

for
This clause sets up an iteration through the product elements returned by the
path expression. The variable $prod is bound, in turn, to each product in the
sequence. The rest of the FLWOR is evaluated once for each product, in this
case, four times.

let
This clause binds the $prodDept variable to the value of the dept attribute.

where
This clause selects elements whose dept attribute is equal to ACC or WMN.

return
This clause returns the name child of each of the three product elements that pass
the where clause.

The overall syntax of a FLWOR is shown in Figure 6-1. The details of the syntax of
the for and let clauses are provided in the following sections.

There can be multiple for and let clauses, in any order, followed by an optional
where clause, followed by an optional order by clause, followed by the required
return clause. A FLWOR must have at least one for or let clause.

FLWORs can be the whole query, or they can appear in other expressions such as in
the return clause of another FLWOR or even in a function call, as in:

max(for $prod in doc("catalog.xml")//product
 return xs:integer($prod/number))

Example 6-1. FLWOR

for $prod in doc("catalog.xml")//product
let $prodDept := $prod/@dept
where $prodDept = "ACC" or $prodDept = "WMN"
return $prod/name

Figure 6-1. Syntax of a FLWOR

<for-clause>

<let-clause> where <expr> <order-clause>

return <expr>

74 | Chapter 6: Selecting and Joining Using FLWORs

The for and return keywords are aligned vertically here to make the structure of the
FLWOR more obvious. This is generally good practice, though not always possible.

Let’s take a closer look at the clauses that make up the FLWOR. The order by clause
is covered in Chapter 7.

XPath 2.0 does not support FLWORs, but instead supports a simpli-
fied subset called for expressions, which can only have one for clause
and a return clause. Any for expression is also a valid FLWOR that
returns the same results.

The for Clause
A for clause, whose syntax is shown in Figure 6-2, sets up an iteration that allows
the rest of the FLWOR to be evaluated multiple times, once for each item in the
sequence returned by the expression after the in keyword. This sequence, also
known as the binding sequence, can evaluate to any sequence of zero, one or more
items. In the previous example, it was a sequence of product elements, but it could
also be atomic values, or nodes of any kind, or a mixture of items. If the binding
sequence is the empty sequence, the rest of the FLWOR is simply not evaluated (it
iterates zero times).

The FLWOR expression with its for clause is similar to loops in procedural lan-
guages such as C. However, one key difference is that in XQuery, because it is a func-
tional language, the iterations are considered to be in no particular order. They do
not necessarily occur sequentially, one after the other. One manifestation of this is
that you cannot keep variable counters that are incremented with each iteration, or
continuously append to the end of a string variable with each iteration. “Working
with Positions and Sequence Numbers” in Chapter 9 provides more information
about simulating counters.

Range expressions

Another useful technique is to supply a sequence of integers in the for clause in
order to specify the number of times to iterate. This can be accomplished through a
range expression, which creates a sequence of consecutive integers. For example, the

Figure 6-2. Syntax of a for clausea

a The at clause, which allows for positional variables, is described in “Working with Positions and Sequence
Numbers” in Chapter 9. An additional as clause, useful for static typing, is allowed as part of the first vari-
able declaration; this is described in “Type Declarations in FLWORs” in Chapter 14.

for

at $ <variable-name>

in <expr>$ <variable-name>

,

FLWOR Expressions | 75

range expression 1 to 3 evaluates to a sequence of integers (1, 2, 3). The FLWOR
shown in Example 6-2 iterates three times and returns three oneEval elements.

Range expressions can be included within parenthesized expressions, as in (1 to 3,
6, 8 to 10). They can also use variables, as in 1 to $prodCount. Each of the expres-
sions before and after the to keyword must evaluate to an integer.

If the first integer is greater than the second, as in 3 to 1, or if either operand is the
empty sequence, the expression evaluates to the empty sequence. The reason for this
is to ensure that for $i in 1 to count($seq) does the expected thing even if $seq is an
empty sequence.

You can use the reverse function if you want to descend in value, as in:

for $i in reverse(1 to 3)

You can also increment by some value other than 1 using an expression like:

for $i in (1 to 100)[. mod 2 = 0]

which gives you every other number (2, 4, 6, etc.) up to 100.

Multiple for clauses

You can use multiple for clauses in a FLWOR, which is similar to nested loops in a
programming language. The result is that the rest of the FLWOR is evaluated for
every combination of the values of the variables. Example 6-3 shows a query with
two for clauses, and demonstrates the order of the results.

The order is significant; it uses the first value of the first variable ($i) and iterates
over the values of the second variable ($j), then takes the second value of $i and iter-
ates over the values of $j.

Example 6-2. Using a range expression

Query
for $i in 1 to 3
return <oneEval>{$i}</oneEval>
Result
<oneEval>1</oneEval>
<oneEval>2</oneEval>
<oneEval>3</oneEval>

Example 6-3. Multiple for clauses

Query
for $i in (1, 2)
for $j in ("a", "b")
return <oneEval>i is {$i} and j is {$j}</oneEval>
Result
<oneEval>i is 1 and j is a</oneEval>
<oneEval>i is 1 and j is b</oneEval>
<oneEval>i is 2 and j is a</oneEval>
<oneEval>i is 2 and j is b</oneEval>

76 | Chapter 6: Selecting and Joining Using FLWORs

Also, multiple variables can be bound in a single for clause, separated by commas.
This has the same effect as using multiple for clauses. The example shown in
Example 6-4 returns the same results as Example 6-3. This syntax is shorter but can
be less clear in the case of complex expressions.

Specifying multiple variable bindings (or multiple for clauses) is especially useful for
joining data. This is described further in the section “Joins,” later in this chapter.

The let Clause
A let clause is a convenient way to bind a variable to a value. Unlike a for clause, a
let clause does not result in iteration; it binds the whole sequence to the variable
rather than binding each item in turn. The let clause serves as a programmatic con-
venience that avoids repeating the same expression multiple times. Using some
implementations, it can also improve performance, because the expression is evalu-
ated only once instead of each time it is needed.

The syntax of a let clause is shown in Figure 6-3.

To illustrate the difference between for and let clauses, compare Example 6-5 with
Example 6-2.

The FLWOR with the let clause returns only a single oneEval element, because no
iteration takes place and the return clause is evaluated only once.

One or more let clauses can be intermingled with one or more for clauses. Each of
the let and for clauses may reference a variable bound in any previous clause. The
only requirement is that they all appear before any where, order by, or return clauses
of that FLWOR. Example 6-6 shows such a FLWOR.

Example 6-4. Multiple variable bindings in one for clause

for $i in (1, 2), $j in ("a", "b")
return <oneEval>i is {$i} and j is {$j}</oneEval>

Figure 6-3. Syntax of a let clause

Example 6-5. Using a let clause with a range expression

Query
let $i := (1 to 3)
return <oneEval>{$i}</oneEval>
Result
<oneEval>1 2 3<oneEval>

let $ <variable-name> := <expr>

,

FLWOR Expressions | 77

As with for clauses, adjacent let clauses can be represented using a slightly short-
ened syntax that replaces the let keyword with a comma, as in:

let $prodDept := $prod/@dept, $prodName := $prod/name

Another handy use for the let clause is to perform several functions or operations in
order. For example, suppose I want to take a string and replace all instances of at
with @, replace all instances of dot with a period (.), and remove any remaining
spaces. I could write the expression:

replace(replace(replace($myString,'at','@'),'dot','.'),' ','')

but that is difficult to read and debug, especially as more functions are added. An
alternative is the expression:

let $myString2 := replace($myString,'at','@')
let $myString3 := replace($myString2,'dot','.')
let $myString4 := replace($myString3,' ','')
return $myString4

which makes the query clearer.

The where Clause
The where clause is used to specify criteria that filter the results of the FLWOR. The
where clause can reference variables that were bound by a for or let clause. For
example:

where $prodDept = "ACC" or $prodDept = "WMN"

references the $prodDept variable. In addition to expressing complex filters, the where
clause is also very useful for joins.

Only one where clause can be included per FLWOR, but it can be composed of many
expressions joined by and and or keywords, as shown in Example 6-7.

Example 6-6. Intermingled for and let clauses

let $doc := doc("catalog.xml")
for $prod in $doc//product
let $prodDept := $prod/@dept
let $prodName := $prod/name
where $prodDept = "ACC" or $prodDept = "WMN"
return $prodName

Example 6-7. A where clause with multiple expressions

for $prod in doc("catalog.xml")//product
let $prodDept := $prod/@dept
where $prod/number > 100
 and starts-with($prod/name, "F")
 and exists($prod/colorChoices)
 and ($prodDept = "ACC" or $prodDept = "WMN")
return $prod

78 | Chapter 6: Selecting and Joining Using FLWORs

Note that when using paths within the where clause, they need to start with an
expression that sets the context. For example, it has to say $prod/number > 100 rather
than just number > 100. Otherwise, the processor does not know where to look for the
number child.

The effective Boolean value of the where expression is calculated. This means that if
the where expression evaluates to a Boolean value false, a zero-length string, the
number 0 or NaN, or the empty sequence, it is considered false, and the return expres-
sion is not evaluated. If the effective Boolean value is true, the return expression is
evaluated. For example, you could use:

where $prod/name

which returns true if $prod has a name child, and false if it does not. As another
example, you could use:

where $numProds

which returns true if $numProds is a numeric value that is not zero (and not NaN).
However, these types of expressions are somewhat cryptic, and it is preferable to use
clearer expressions, such as:

where exists($prod/name)
and $numProds > 0

The return Clause
The return clause consists of the return keyword followed by the single expression
that is to be returned. It is evaluated once for each iteration, assuming the where
expression evaluated to true. The result value of the entire FLWOR is a sequence of
items returned by each evaluation of the return clause. For example, the value of the
entire FLWOR:

for $i in (1 to 3)
return <oneEval>{$i}</oneEval>

is a sequence of three oneEval elements, one for each time the return clause was
evaluated.

If more than one expression is to be included in the return clause, they can be com-
bined in a sequence. For example, the FLWOR:

for $i in (1 to 3)
return (<one>{$i}</one>, <two>{$i}</two>)

returns a sequence of six elements, two for each time the return clause is evaluated.
The parentheses and comma are used in the return clause to indicate that a sequence
of the two elements should be returned. If no parentheses or comma were used, the
two element constructors would not be considered part of the FLWOR.

Quantified Expressions | 79

The Scope of Variables
When a variable is bound in a for or let clause, it can be referenced anywhere in that
FLWOR after the clause that binds it. For example, if it is bound in a let clause, it
can be referenced anywhere in the FLWOR after that let clause. This includes other
subsequent let or for clauses, the where clause, or the return clause. It cannot be ref-
erenced in a for clause that precedes the let clause, and it should not be referenced
in the let clause itself, as in:

let $count := $count + 1

This is not illegal, but it will have unexpected results, as described in “Adding
Sequence Numbers to Results” in Chapter 9.

If you bind two variables with the same name with the same containing expression,
such as two for or let clauses that are part of the same FLWOR, you may again get
unexpected results. This is because it will create two separate variables with the same
name, where the second masks the first and makes it inaccessible.

Quantified Expressions
A quantified expression determines whether some or all of the items in a sequence
meet a particular condition. For example, if you want to know whether any of the
items in an order are from the accessory department, you can use the expression
shown in Example 6-8. This expression will return true.

Alternatively, if you want to know if every item in an order is from the accessory
department, you can simply change the word some to every, as shown in
Example 6-9. This expression will return false.

A quantified expression always evaluates to a Boolean value (true or false). As such,
it is not useful for selecting the elements or attributes that meet certain criteria, but
rather for simply determining whether any exist. Quantified expressions can gener-
ally be easily rewritten as FLWORs or even as simple path expressions. However, the
quantified expression can be more compact and easier for implementations to optimize.

Example 6-8. Quantified expression using the some keyword

some $dept in doc("catalog.xml")//product/@dept
satisfies ($dept = "ACC")

Example 6-9. Quantified expression using the every keyword

every $dept in doc("catalog.xml")//product/@dept
satisfies ($dept = "ACC")

80 | Chapter 6: Selecting and Joining Using FLWORs

A quantified expression is made of several parts:

• A quantifier (the keyword some or every)

• One or more in clauses that bind variables to sequences

• A satisfies clause that contains the test expression

The syntax of a quantified expression is shown in Figure 6-4.

The processor tests the satisfies expression (using its effective Boolean value) for
every item in the sequence. If the quantifier is some, it returns true if the satisfies
expression is true for any of the items. If the quantifier is every, it returns true only if
the satisfies expression is true for all items. If there are no items in the sequence,
an expression with some always returns false, while an expression with every always
returns true.

You can use the not function with a quantified expression to express “not any”
(none), and “not every.” Example 6-10 returns true if none of the product elements
have a dept attribute equal to ACC. For our particular catalog, this returns false.

Binding Multiple Variables
You can bind multiple variables in a quantified expression by separating the clauses
with commas. As with the for clauses of FLWORs, the result is that every combina-
tion of the items in the sequences is taken. Example 6-11 returns true because there
is a combination of values (where $i is 3 and $j is 10) where the satisfies expres-
sion is true.

Figure 6-4. Syntax of a quantified expressiona

a An additional as clause, useful for static typing, is allowed as part of the variable declaration; this is described
in “Type Declarations in Quantified Expressions” in Chapter 14.

Example 6-10. Combining the not function with a quantified expression

not(some $dept in doc("catalog.xml")//product/@dept
 satisfies ($dept = "ACC"))

Example 6-11. Binding multiple variables in a quantified expression

some $i in (1 to 3), $j in (10, 11)
 satisfies $j - $i = 7

some $ <variable-name> in <expr>

,

every

satisfies <expr>

Joins | 81

Selecting Distinct Values
The distinct-values function selects distinct atomic values from a sequence. For
example, the function call:

distinct-values(doc("catalog.xml")//product/@dept)

returns all the distinct values of the dept attribute, namely ("WMN", "ACC", "MEN").
This function determines whether two values are distinct based on their value equal-
ity using the eq operator.

It is also common to select a distinct set of combinations of values. For example, you
might want to select all the distinct department/product number combinations from
the product catalog. You cannot use the distinct-values function directly for this,
because it accepts only one sequence of atomic values, not multiple sequences of
multiple values. Instead, you could use the expression shown in Example 6-12.

For each distinct department, assigned to $d, it generates a list of distinct product
numbers within that department using the predicate [@dept = $d]. It then returns the
resulting combination of values as a result element. The order in which the values
are returned is implementation-dependent, so it can be unpredictable.

Additional data items can be added by adding for clauses with the appropriate
predicates.

Joins
One of the major benefits of FLWORs is that they can easily join data from multiple
sources. For example, suppose you want to join information from your product cata-
log (catalog.xml) and your order (order.xml). You want a list of all the items in the
order, along with their number, name, and quantity. Example 6-13 shows a FLWOR
that performs this join.

Example 6-12. Distinctness on a combination of values

Query
let $prods := doc("catalog.xml")//product
for $d in distinct-values($prods/@dept),
 $n in distinct-values($prods[@dept = $d]/number)
return <result dept="{$d}" number="{$n}"/>
Results
<result dept="WMN" number="557"/>
<result dept="ACC" number="563"/>
<result dept="ACC" number="443"/>
<result dept="MEN" number="784"/>

82 | Chapter 6: Selecting and Joining Using FLWORs

U S E F U L F U N C T I O N

distinct-deep
Suppose you want to find distinct elements based on all of their children and
attributes. You could use an expression similar to the one shown in Example 6-12, but
it could get complicated if there are many elements and attributes to compare. Also,
you would be required to know the names of all the attributes and child elements in
advance. A more generic function, shown here, can be used to select distinct nodes
based on all of their contents:

declare namespace functx = "http://www.functx.com";
declare function functx:distinct-deep ($nodes as node()*) as node()*
 {
 for $x in (1 to count($nodes))
 let $node := $nodes[$x]
 let $restOfNodes := subsequence($nodes, $x + 1)
 return if (some $otherNode in $restOfNodes satisfies
 (deep-equal($otherNode, $node)))
 then ()
 else $node
 };

For each node in a sequence, the function determines whether the node has the same
contents as any nodes that occur later in the sequence. Any nodes that have later
matches are eliminated. The function makes use of the deep-equal function, which
compares two elements based on their attributes and children. It is also a good exam-
ple of the usefulness of quantified expressions.

For example, suppose your product catalog is very large, and you suspect that there are
duplicate entries that need to be eliminated from the query results. The function call:

functx:distinct-deep(doc("catalog.xml")//product)

returns only distinct product elements, based on all of their content and attributes.

Example 6-13. Two-way join in a predicate

Query
for $item in doc("order.xml")//item,
 $product in doc("catalog.xml")//product[number = $item/@num]
return <item num="{$item/@num}"
 name="{$product/name}"
 quan="{$item/@quantity}"/>
Results
<item num="557" name="Fleece Pullover" quan="1"/>
<item num="563" name="Floppy Sun Hat" quan="1"/>
<item num="443" name="Deluxe Travel Bag" quan="2"/>
<item num="784" name="Cotton Dress Shirt" quan="1"/>
<item num="784" name="Cotton Dress Shirt" quan="1"/>
<item num="557" name="Fleece Pullover" quan="1"/>

Joins | 83

The first part of the for clause selects each item from the order, and the second part
selects the matching product element from the catalog.xml document, using a predi-
cate to identify the one whose number matches the item’s num attribute. Another way
to accomplish the same thing is by using a where clause instead of a predicate, as
shown in Example 6-14. This query yields the same results.

Whether to use a predicate or a where clause is a matter of personal preference.
When many conditions apply, a where clause can be more readable. However, for
simple conditions, a predicate may be preferable because it is less verbose. In some
implementations, predicates perform faster than where clauses.

Three-Way Joins
Joins can be extended to allow more than two sources to be joined together. For
example, suppose that, along with catalog.xml and order.xml, you also want to
join the prices.xml document, which contains current pricing information for each
product.

The query shown in Example 6-15 joins the prices.xml document with the others to
provide pricing information in the results. It uses two expressions in the where clause
to implement the two joins.

Example 6-14. Two-way join in a where clause

for $item in doc("order.xml")//item,
 $product in doc("catalog.xml")//product
where $item/@num = $product/number
return <item num="{$item/@num}"
 name="{$product/name}"
 quan="{$item/@quantity}"/>

Example 6-15. Three-way join in a where clause

Query
for $item in doc("order.xml")//item,
 $product in doc("catalog.xml")//product,
 $price in doc("prices.xml")//prices/priceList/prod
where $item/@num = $product/number and $product/number = $price/@num
return <item num="{$item/@num}"
 name="{$product/name}"
 price="{$price/price}"/>
Results
<item num="557" name="Fleece Pullover" price="29.99"/>
<item num="563" name="Floppy Sun Hat" price="69.99"/>
<item num="443" name="Deluxe Travel Bag" price="39.99"/>
<item num="557" name="Fleece Pullover" price="29.99"/>

84 | Chapter 6: Selecting and Joining Using FLWORs

Outer Joins
The previous join examples in this section are known as inner joins; the results do
not include items without matching products or products without matching items.
Suppose you want to create a list of products and join it with the price information.
Even if there is no price, you still want to include the product in the list. This is
known in relational databases as an outer join.

The query in Example 6-16 performs this join. It uses two FLWORs, one embedded
in the return clause of the other. The outer FLWOR returns the list of products,
regardless of the availability of price information. The inner FLWOR selects the
price, if it is available.

Product 784 doesn’t have a corresponding price in the prices.xml document, so the
price attribute has an empty value for that product.

Joins and Types
The where clauses in the join examples use the = operator to determine whether two
values are equal. Keep in mind that XQuery considers type when determining
whether two values are equal. If schemas are not used with these documents, both
values are untyped, and the join shown in Example 6-16 compares the values as
strings. Unless they are cast to numeric types, the join does not consider different
representations of the same number equal, for example 0557 and 557.

On the other hand, if number in catalog.xml is declared as an xs:integer, and the num
attribute in prices.xml is declared as an xs:string, the join will not work. One value
would have to be explicitly cast to the other’s type, as in:

where $product/number = xs:integer($price/@num)

Example 6-16. Outer join

Query
for $product in doc("catalog.xml")//product
return <product number="{$product/number}">{
 attribute price
 {for $price in doc("prices.xml")//prices/priceList/prod
 where $product/number = $price/@num
 return $price/price}
 }</product>
Results
<product number="557" price="29.99"/>
<product number="563" price="69.99"/>
<product number="443" price="39.99"/>
<product number="784" price=""/>

85

Chapter 7 CHAPTER 7

Sorting and Grouping7

This chapter explains how to sort and group data from input documents. It covers
sorting in FLWORs, grouping results together, and calculating summary values using
the aggregation functions.

Sorting in XQuery
Path expressions, which are most often used to select elements and attributes from
input documents, always return items in document order. FLWORs by default
return results based on the order of the sequence specified in the for clause, which is
also often document order if a path expression was used.

The only way to sort data in an order other than document order is by using the
order by clause of the FLWOR. Therefore, in some cases it is necessary to use a
FLWOR where it would not otherwise be necessary. For example, if you simply want
to select all of your items from an order, you can use the path expression doc("order.
xml")//item. However, if you want to sort those items based on their num attribute,
you have to use a FLWOR.

The order by Clause
Example 7-1 shows an order by clause in a FLWOR.

The results will be sorted by item number. The syntax of an order by clause is shown
in Figure 7-1.

The order by clause is made up of one or more ordering specifications, separated by
commas, each of which consists of an expression and an optional modifier. The

Example 7-1. The order by clause

for $item in doc("order.xml")//item
order by $item/@num
return $item

86 | Chapter 7: Sorting and Grouping

expression can only return one value for each item being sorted. In Example 7-1, there
is only one num attribute of $item. If instead, you had specified order by $item/@*,
which selects all attributes of item, a type error would have been raised because more
than one value is returned by that expression.

Unlike SQL, XQuery allows you to order by a value that is not returned by the
expression. For example, you can order by $item/@dept and only return $item/@num in
the results.

Using multiple ordering specifications

In order to sort on more than one expression, you can include multiple ordering
specifications, as shown in Example 7-2.

This sorts the results first by department, then by item number. An unlimited num-
ber of ordering specifications can be included.

Sorting and types

When sorting values, the processor considers their type. All the values returned by a
single ordering specification expression must have comparable types. For example,
they could be all xs:integer or all xs:string. They could also be a mix of xs:integer
and xs:decimal, since values of these two types can be compared.

However, if integer values are mixed with string values, a type error is raised. It is
acceptable, of course, for different ordering specifications to sort on values of differ-
ent types; in Example 7-2, item numbers could be integers while departments are
strings.

Untyped values are treated like strings. If your values are untyped but you want them
to be treated as numeric for sorting purposes, you can use the number function, as in:

order by number($item/@num)

Figure 7-1. Syntax of an order by clausea

a The syntax of <order-modifier> is shown in Figure 7-2.

Example 7-2. Using multiple ordering specifications

for $item in doc("order.xml")//item
order by $item/@dept, $item/@num
return $item

<expr>

,

stable

order by

<order-modifier>

Sorting in XQuery | 87

This allows the untyped value 10 to come after the untyped value 9. If they were
treated as strings, the value 10 would come before 9.

Order modifiers

Several order modifiers can optionally be specified for each ordering specification.

• ascending and descending specify the sort direction. The default is ascending.

• empty greatest and empty least specify how to sort the empty sequence.

• collation, followed by a collation URI in quotes, specifies a collation used to deter-
mine the sort order of strings. Collations are described in detail in Chapter 17.

The syntax of an order modifier is shown in Figure 7-2.

Order modifiers apply to only one order specification. For example, if you specify:

order by $item/@dept, $item/@num descending

the descending modifier applies only to $item/@num, not to $item/@dept. If you want
both to be sorted in descending order, you have to specify:

order by $item/@dept descending, $item/@num descending

Empty order

The order modifiers empty greatest and empty least indicate whether the empty
sequence and NaN should be considered a low value or a high value. If empty greatest
is specified, the empty sequence is greater than NaN, and NaN is greater than all other
values. If empty least is specified, the opposite is true; the empty sequence is less
than NaN, and NaN is less than all other values. Note that this applies to the empty
sequence and NaN only, not to zero-length strings.

You can also specify the default behavior for all order by clauses in the query prolog,
using an empty order declaration, whose syntax is shown in Figure 7-3.

Figure 7-2. Syntax of an order modifier

Figure 7-3. Syntax of an empty order declaration

ascending "<collation-name>"

descending

empty greatest

empty least

collation

declare default order empty greatest

empty least

;

88 | Chapter 7: Sorting and Grouping

Example 7-3 shows a query that uses an empty order declaration and sorts the results
by the color attributes. Because the greatest option is chosen, the items with no
color attribute appear last in the results.

The setting in the empty order declaration applies unless it is overridden by an order
modifier in an individual ordering specification. The empty order declaration in the
prolog applies only when an order by clause is present; otherwise, the results are not
sorted. If no empty order declaration is present, the default order for empty sequences
is implementation-defined.

Stable ordering

When you sort on $item/@num, several values may be returned that have the same sort
value. If stable ordering is not in use, the implementation is free to return those val-
ues that have equal sort values in any order. If you want those with equal sort values
to be sorted in the order of the input sequence, or if you simply want to ensure that
every implementation returns the values in the same order for the query, you can use
the stable keyword before the keywords order by. For example, if you specify:

stable order by $item/@num

the items with the same num value are always returned in the order returned by the
for expression, within the sorted results.

More complex order specifications

So far, the order specifications have been simple path expressions. You can sort
based on almost any expression, as long as it only returns a single item. For exam-
ple, you could sort on the result of a function call, such as:

order by substring($item/@dept, 2, 2)

which sorts on a substring of the department, or you could sort on a conditional
expression, as in:

order by (if ($item/@color) then $item/@color else "unknown")

Example 7-3. Using an empty order declaration

Query
declare default order empty greatest;
for $item in doc("order.xml")//item
order by $item/@color
return $item
Results
<item dept="WMN" num="557" quantity="1" color="black"/>
<item dept="MEN" num="784" quantity="1" color="gray"/>
<item dept="WMN" num="557" quantity="1" color="navy"/>
<item dept="MEN" num="784" quantity="1" color="white"/>
<item dept="ACC" num="563" quantity="1"/>
<item dept="ACC" num="443" quantity="2"/>

Sorting in XQuery | 89

which sorts on the color if it exists or the string unknown if it does not. In addition,
you could use a path expression that refers to a completely different XML docu-
ment, as in:

order by doc("catalog.xml")//product[number = $item/@num]/name

which orders the results based on a name it looks up in the catalog.xml document.

A common requirement is to parameterize the sort key—that is, to decide at run-
time what sort key to use. In some cases you can use:

 order by $item/@*[name()=$param]

In other cases you may need to use an extension function, as described in “Dynamic
Paths” in Chapter 4.

Document Order
Every XML document (or document fragment) has an order, known as document
order, which defines the sequence of nodes. Document order is significant because
certain expressions return nodes in document order. Additionally, document order is
used when determining whether one node precedes another. Note that, unlike in
XPath 1.0, items in sequences are not always arranged in document order; it depends
on how the sequence was constructed.

Document order defined

The document order of a set of nodes is:

• The document node itself

• Each element node in order of the appearance of its first tag, followed by:

— Its attribute nodes, in an implementation-dependent order

— Its children (text nodes, child elements, comments, and processing instruc-
tions) in the order they appear

Sorting a sequence of nodes in document order will remove any duplicate nodes.

If a sequence containing nodes from more than one document is sorted in document
order, it is arbitrary (implementation-dependent) which document comes first, but
all of the nodes from one document come before all of the nodes from the other doc-
ument. For nodes that are not part of a document, such as those that are con-
structed in your query, the order is implementation-dependent, but stable.

There is no such thing as a document order on atomic values.

90 | Chapter 7: Sorting and Grouping

Sorting in document order

Certain kinds of expressions, including path expressions and operators that combine
sequences (|, union, intersect, and except), return nodes in document order auto-
matically. For example, the path expression:

doc("catalog.xml")//product/(number | name)

retrieves the number and name children of product, in document order. If you want all
the number children to appear before all the name children, you need to use a sequence
constructor, as in:

(doc("catalog.xml")//product/number , doc("catalog.xml")//product/name)

which uses parentheses and a comma. This sequence constructor maintains the order
of the items, putting all the results of the first expression first in the sequence, and all
the results of the second expression next.

If you have a sequence of nodes that are not in document order, but you want them
to be, you can simply use the expression:

$mySequence/.

where $mySequence is a sequence of nodes. The / operator means that it is a path
expression, which always returns nodes in document order.

Inadvertent resorting in document order

If you have used an order by clause to sort the results of a FLWOR, you should use
caution when using the resulting sequence in another expression, since the results
may be resorted to document order. The example shown in Example 7-4 first sorts
the products in order by product number, then returns their names in li elements.

However, this query returns the products in document order, not product number
order. This is because the expression $sortedProds/name resorts the nodes back to
document order. In this case, the expression can easily be rewritten as shown in
Example 7-5. In more complex queries, the error might be more subtle.

Example 7-4. Inadvertent resorting in document order

let $sortedProds := for $prod in doc("catalog.xml")//product
 order by $prod/number
 return $prod
for $prodName in $sortedProds/name
return {string($prodName)}

Example 7-5. FLWOR without inadvertent resorting

for $prod in doc("catalog.xml")//product
order by $prod/number
return {string($prod/name)}

Sorting in XQuery | 91

Order Comparisons
Two nodes can be compared based on their relative position in document order
using the << and >> operators. For example, $n1 << $n2 returns true if $n1 precedes
$n2 in document order. According to the definition of document order, a parent pre-
cedes its children.

Each of the operands of the << and >> operators must be a single node, or the empty
sequence. If one of the operators is the empty sequence, the result of the comparison
is the empty sequence.

Example 7-6 shows a FLWOR that makes use of an order comparison in its where
clause. For each product, it checks whether there are any other products later in the
document that are in the same department. If so, it returns the product element. Spe-
cifically, it binds the $prods variable to a sequence of all four product elements. In the
where clause, it uses predicates to choose from the $prods sequence those that are in
the same department as the current $prod, and then gets the last of those. If the cur-
rent $prod precedes that last product in the department, the expression evaluates to
true, and the product is selected.

In the case of catalog.xml, only the second product element is returned because it
appears before another product in the same department (ACC).

Reversing the Order
The reverse function reverses the order of items in a sequence. For example:

reverse(doc("catalog.xml")//product)

returns the product elements in reverse document order. The function is not just for
reversing document order; it can reverse any sequence. For example:

reverse((6, 2, 3))

returns the sequence (3, 2, 6).

Indicating That Order Is Not Significant
As described in the previous section, several kinds of expressions return results in
document order. In cases where the order of the results does not matter, the proces-
sor may be much more efficient if it does not have to keep track of order. This is
especially true for FLWORs that perform joins. For example, processing multiple

Example 7-6. Using an order comparison

let $prods := doc("catalog.xml")//product
for $prod in $prods
where $prod << $prods[@dept = $prod/@dept][last()]
return $prod

92 | Chapter 7: Sorting and Grouping

variable bindings in a for clause might be significantly faster if the processor can
decide which variable binding controls the join without regard to the order of the
results.

To make a query more efficient, there are three ways for a query author to indicate
that order is not significant: the unordered function, the unordered expression, and
the ordering mode declaration.

The unordered function

A query author can tell the processor that order does not matter for an individual
expression by enclosing it in a call to the unordered function, as shown in Example 7-7.
The unordered function takes as an argument any sequence of items, and returns
those same items in an undetermined order. Rather than being a function that per-
forms some operation on its argument, it is more a signal to the processor to evalu-
ate the expression without regard to order.

The unordered expression

An unordered expression is similar to a call to the unordered function, except that it
affects not just the main expression passed as an argument, but also every embedded
expression. The syntax of an unordered expression is similar, but it uses curly braces
instead of the parentheses, as shown in Example 7-8.

Similarly, an ordered expression will allow you to specify that order matters in a cer-
tain section of your query. This is generally unnecessary except to override an order-
ing mode declaration as described in the next section.

Example 7-7. Using the unordered function

unordered(
for $item in doc("order.xml")//item,
 $product in doc("catalog.xml")//product
where $item/@num = $product/number
return <item number="{$item/@num}"
 name="{$product/name}"
 quantity="{$item/@quantity}"/>
)

Example 7-8. An unordered expression

unordered {
for $item in doc("order.xml")//item,
 $product in doc("catalog.xml")//product
where $item/@num = $product/number
return <item number="{$item/@num}"
 name="{$product/name}"
 quantity="{$item/@quantity}"/>
}

Grouping | 93

The ordering mode declaration

You can specify whether order is significant for an entire query in the query prolog,
using an ordering mode declaration, whose syntax is shown in Figure 7-4.

For example, the prolog declaration:

declare ordering unordered;

allows the processor to disregard order for the scope of the entire query, unless it is
overridden by an ordered expression or an order by clause. If no ordering mode dec-
laration is present, the default is ordered.

Grouping
Queries are often written to summarize or organize information into categories. For
example, suppose you want your list of items to be grouped by department. This can
be accomplished using nested FLWORs, as shown in Example 7-9.

Figure 7-4. Syntax of an ordering mode declaration

Example 7-9. Grouping by department

Query
for $d in distinct-values(doc("order.xml")//item/@dept)
let $items := doc("order.xml")//item[@dept = $d]
order by $d
return <department code="{$d}">{
 for $i in $items
 order by $i/@num
 return $i
 }</department>
Results
<department code="ACC">
 <item dept="ACC" num="443" quantity="2"/>
 <item dept="ACC" num="563" quantity="1"/>
</department>
<department code="MEN">
 <item dept="MEN" num="784" quantity="1" color="white"/>
 <item dept="MEN" num="784" quantity="1" color="gray"/>
</department>
<department code="WMN">
 <item dept="WMN" num="557" quantity="1" color="navy"/>
 <item dept="WMN" num="557" quantity="1" color="black"/>
</department>

declare ordering ordered

unordered

;

94 | Chapter 7: Sorting and Grouping

In this example, the variable $d is iteratively bound to each of the distinct values for
department code, namely WMN, ACC, and MEN. For each department, the variable $items
is bound to all the items that have the particular department code $d. Because $items
is bound in a let clause rather than a for clause, the entire sequence of items (for a
single department) is bound to $items, not each item individually. The order by
clause causes the results to be sorted by department.

The inner FLWOR is used simply to sort $items by item number. If the order of the
items within a department is not a concern, the entire inner FLWOR can simply be
replaced by $items, which returns the items in document order.

Aggregating Values
In addition to simply regrouping items, it is often desirable to perform calculations
on the groups. For example, suppose you want to know the number of item ele-
ments in a department, or the sum of the quantities for a department. This type of
aggregation can be performed using the aggregation functions. Example 7-10 shows
some of these functions in action.

Here is how the aggregation functions work:

count
This function is used to determine the number of items in the sequence. In
Example 7-10, the count function is used to calculate the value of numItems, which
is the number of items in the department. It is also used to calculate the value of
distinctItemNums. In the latter case, the count function is combined with the
distinct-values function to count only the unique numbers in that department.

sum
This function is used to determine the total value of the items in a sequence. In
Example 7-10, the sum function is used to calculate the value of totQuant, the
sum of all the quantity attributes for that department.

Example 7-10. Aggregation

Query
for $d in distinct-values(doc("order.xml")//item/@dept)
let $items := doc("order.xml")//item[@dept = $d]
order by $d
return <department code="{$d}"
 numItems="{count($items)}"
 distinctItemNums="{count(distinct-values($items/@num))}"
 totQuant="{sum($items/@quantity)}"/>
Results
<department code="ACC" numItems="2" distinctItemNums="2" totQuant="3"/>
<department code="MEN" numItems="2" distinctItemNums="1" totQuant="2"/>
<department code="WMN" numItems="2" distinctItemNums="1" totQuant="2"/>

Aggregating Values | 95

min and max
These functions are used to determine the minimum and maximum values of the
items in the sequence.

avg
This function is used to determine the average value of the items in a sequence.

The sum and avg functions accept values that are all numeric, all xs:yearMonthDuration
values, or all xs:dayTimeDuration values. The max and min functions accept values of
any type that is ordered (i.e., values can be compared using < and >). This includes
strings, dates, and many other types.

The sum, min, max, and avg functions treat untyped data as numeric. This means that
if you are not using a schema, and you want to find a maximum string value, you
need to use an expression like:

max(doc("order.xml")//item/string(@dept))

which uses the string function to convert each value to xs:string before the
comparison.

Ignoring “Missing” Values
The sequence passed to an aggregation function may contain nodes that are zero-
length strings, even though the user might think of them as “missing” values. For
example, the minimum value of the color attribute in order.xml is black. However, if
there had been an item with a color attribute whose value was a zero-length string
(as in color=""), the min function would have returned a zero-length string.

U S E F U L F U N C T I O N

max-string
If you are going to be finding the maximum value of many untyped strings, it may be
useful to define a function like this one:

declare namespace functx = "http://www.functx.com";
declare function functx:max-string ($stringSeq as xs:string*) as xs:string?{
 max($stringSeq)
};

Unlike the max function, it accepts an argument of type xs:string*, which means that
untyped values are cast to xs:string automatically. You can call this function with:

functx:max-string(doc("order.xml")//item/@dept)

96 | Chapter 7: Sorting and Grouping

Counting “Missing” Values
On the other hand, there may be cases where you want “missing” values to be taken
into consideration, but they are not. For example, the avg function ignores any
absent nodes. If you want the average product discount, and you use:

avg(doc("prices.xml")//discount)

you get the average of the two discount values. It does not take into account the fact
that there are three products, and that you might want the discount to be counted as
zero for the product with no discount child. To count absent discount children as
zero, you need to calculate the average explicitly, using:

sum(doc("prices.xml")//prod/discount)
 div count(doc("prices.xml")//prod)

On the other hand, if a prod had an empty discount child (i.e., <discount></discount>),
it would be considered a zero-length string and the avg function would raise an error
because this value is not of a numeric or duration type. In that case, you would have
to test for missing values using:

avg(doc("prices.xml")//prod/discount[. != ""])

Aggregating on Multiple Values
So far, the aggregation examples assume that you want to group on one value, the
dept attribute. Suppose you want to group on two values: the dept attribute and the
num attribute. You would like to know the number of items and total quantity for
each department/product number combination. This could be accomplished using
the query shown in Example 7-11.

U S E F U L F U N C T I O N

min-non-empty-string
Suppose you want to find the minimum string value, but you do not want a zero-length
string to count. You can use this function:

declare namespace functx = "http://www.functx.com";
declare function functx:min-non-empty-string
($stringSeq as xs:string*) as xs:string? {
 min($stringSeq[. != ''])
};

This function is similar to the max-string useful function, but it eliminates all zero-
length strings from consideration.

Aggregating Values | 97

The query uses two for clauses to obtain two separate lists of distinct departments
and distinct numbers. Using two for clauses results in the rest of the FLWOR being
evaluated once for every possible combination of department and product number.
The second for clause uses a predicate to choose only numbers that exist in that par-
ticular department.

U S E F U L F U N C T I O N

avg-empty-is-zero
The avg-empty-is-zero function, shown here, can alleviate the problems with counting
missing values in averages:

declare namespace functx = "http://www.functx.com";
declare function functx:avg-empty-is-zero
 ($allNodes as node()*, $values as xs:anyAtomicType*) as xs:double {
 if (empty($allNodes))
 then 0
 else sum($values[. != ""]) div count($allNodes)
};

It takes as its first argument the entire sequence of items for which the average should
be calculated (in this case, the sequence of prod elements). The second argument is the
sequence of values to be averaged. If you use the function call:

let $prods := doc("prices.xml")//prod
return (functx:avg-empty-is-zero($prods, $prods/discount))

it returns 4.66333, which is the average of 10.00 and 3.99 (the two discount values),
and 0 for the prod element that does not have a discount child. The function would
have returned the same result if the discount child were present but empty.

Example 7-11. Aggregation on multiple values

Query
let $allItems := doc("order.xml")//item
for $d in distinct-values($allItems/@dept)
for $n in distinct-values($allItems[@dept = $d]/@num)
let $items := $allItems[@dept = $d and @num = $n]
order by $d, $n
return <group dept="{$d}" num="{$n}"
 numItems="{count($items)}"
 totQuant="{sum($items/@quantity)}"/>
Results
<group dept="ACC" num="443" numItems="1" totQuant="2"/>
<group dept="ACC" num="563" numItems="1" totQuant="1"/>
<group dept="MEN" num="784" numItems="2" totQuant="2"/>
<group dept="WMN" num="557" numItems="2" totQuant="2"/>

98 | Chapter 7: Sorting and Grouping

The let clause binds $items to a list of items that exist for that department/number
combination. If any items exist in $items, the return clause returns a group element
with the summarized information for that combination.

Constraining and Sorting on Aggregated Values
In addition to returning aggregated values in the query results, you can constrain and
sort the results on the aggregated values. Suppose you want to return the similar
results to those shown in Example 7-11, but you only want the groups whose total
quantity (totQuant) is greater than 1, and you want the results sorted by the number
of items (numItems). The query shown in Example 7-12 accomplishes this.

Adjusting the query was a simple matter of adding a where clause that tested the total
quantity, and modifying the order by clause to use the number of items.

Example 7-12. Constraining and sorting on aggregated values

Query
let $allItems := doc("order.xml")//item
for $d in distinct-values($allItems/@dept)
for $n in distinct-values($allItems/@num)
let $items := $allItems[@dept = $d and @num = $n]
where sum($items/@quantity) > 1
order by count($items)
return if (exists($items))
 then <group dept="{$d}" num="{$n}" numItems="{count($items)}"
 totQuant="{sum($items/@quantity)}"/>
 else ()
Results
<group dept="ACC" num="443" numItems="1" totQuant="2"/>
<group dept="WMN" num="557" numItems="2" totQuant="2"/>
<group dept="MEN" num="784" numItems="2" totQuant="2"/>

99

Chapter 8 CHAPTER 8

Functions8

Functions are a useful feature of XQuery that allow a wide array of built-in function-
ality, as well as the ability to modularize and reuse parts of queries. There are two
kinds of functions: built-in functions and user-defined functions.

Built-in Versus User-Def ined Functions
The built-in functions are a standard set, defined in the Functions and Operators rec-
ommendation and supported by all XQuery implementations. A detailed description
of each built-in function is provided in Appendix A, and most are also discussed at
appropriate places in the book.

The Functions and Operators recommendation defines built-in operators in addi-
tion to functions. These operators are like functions, but they cannot be called
directly from a query; instead, they back up a symbol or keyword in the XQuery lan-
guage. For example, the numeric-add operator backs up the + sign when both oper-
ands are numeric. Because they are internal to the implementation, and not used by
the query author, they are not discussed directly in this book.

A user-defined function is one that is specified by a query author, either in the query
itself, or in an external library. The second half of this chapter explains how to define
your own functions in detail.

Calling Functions
The syntax of a function call, shown in Figure 8-1, is the same whether it is a built-in
function or a user-defined function. It is the qualified name of the function, followed
by a parenthesized list of the arguments, separated by commas.* For example, to call
the substring function, you might use:

substring($prodName, 1, 5)

* An argument is the actual value that is passed to a function, while a parameter is its definition.

100 | Chapter 8: Functions

Function calls can be included anywhere an expression is permitted. For example,
you might include a function call in a let clause, as in:

let $name := substring($prodName, 1, 5)

or in element constructor content:

<name>{substring($prodName, 1, 5)}</name>

or in the predicate of a path expression:

doc("catalog.xml")/catalog/product[substring(name, 1, 5) = 'Short']

Function Names
Functions have namespace-qualified names. All of the built-in function names are in
the XPath Functions Namespace, http://www.w3.org/2005/xpath-functions. Since
this is the default namespace for functions, the built-in functions can be referenced
without a namespace prefix (unless you have overridden the default function
namespace, which is not recommended). Some XQuery users still prefer to use the fn
prefix for these functions, but this is normally unnecessary.

If the function is user-defined, it must be called by its prefixed name. If a function is
declared in the same query module, you can call it using the same prefixed name
found in the declaration. Some functions may use the local prefix, a built-in prefix
for locally declared functions. To call these functions, you use the local prefix in the
name, as in:

declare function local:return2 () as xs:integer {2};
<size>{local:return2()}</size>

If the function is in a separate query module, it has a different namespace that needs
to be declared. For example, if you are calling a function named discountPrice in the
namespace http://datypic.com/prod, you must declare that namespace and use the
appropriate prefix when calling the function, as in:

import module namespace prod = "http://datypic.com/prod"
 at "http://datypic.com/prod/module.xq";
<price>{prod:discountPrice()}</price>

Function Signatures
A function signature is used to describe the inputs and outputs of a function. For
example, the signature of the built-in upper-case function is:

upper-case($arg as xs:string?) as xs:string

Figure 8-1. Syntax of a function call

)<function-name>

,

(<expr>

Calling Functions | 101

The signature indicates:

• The name of the function, in this case, upper-case.

• The list of parameters. In this case, there is only one, whose name is $arg and
whose type is xs:string?. The question mark after xs:string indicates that the
function accepts a single xs:string value or the empty sequence.

• The return type of the function, in this case, xs:string.

There may be several signatures associated with the same function name, with a dif-
ferent number of parameters. For example, there are two signatures for the substring
function:

substring($sourceString as xs:string?,
 $startingLoc as xs:double) as xs:string
substring($sourceString as xs:string?,
 $startingLoc as xs:double,
 $length as xs:double) as xs:string

The second signature has one additional parameter, $length.

Argument Lists
When calling a function, there must be an argument for every parameter specified in
the function signature. If there is more than one signature, as in the case of the
substring function, the argument list may match either function signature. If the
function does not take any arguments, the parentheses are still required, although
there is nothing between them, as in:

current-date()

You are not limited to simple variable names and literals in a function call. You can
have complex, nested expressions that are evaluated before evaluation of the func-
tion. For example, the following function call has one argument that is itself a func-
tion call, and another argument that is a parenthesized conditional (if) expression:

concat(substring($name,1,$sublen), (if ($addT) then "T" else ""))

Calling a function never changes the value of any of the variables that are passed to
it. In the preceding example, the value of $name does not change during evaluation of
the substring function.

Argument lists and the empty sequence

Passing the empty sequence or a zero-length string for an argument is not the same
as omitting an argument. For example:

substring($myString, 2)

is not the same as:

substring($myString, 2, ())

102 | Chapter 8: Functions

The first function call matches the first signature of substring, and therefore returns
a substring of $myString starting at position 2. The second matches the second signa-
ture of substring, which takes three arguments. This function call raises a type error
because the third argument of the substring function must be an xs:double value,
and cannot be the empty sequence.

Conversely, if an argument can be the empty sequence, this does not mean it can be
omitted. For example, the upper-case function expects one argument, which can be
the empty sequence. It is not acceptable to use upper-case(), although it is accept-
able to use upper-case(()), because the inner parentheses (()) represent the empty
sequence.

Argument lists and sequences

The syntax of an argument list is similar to the syntax of a sequence constructor, and
it is important not to confuse the two. Each expression in the argument list (sepa-
rated by a comma) is considered a single argument. A sequence passed to a function
is considered a single argument, not a list of arguments. Some functions expect
sequences as arguments. For example, the max function, whose signature is:

max($arg as xs:anyAtomicType*) as xs:anyAtomicType?

expects one argument that is a sequence. Therefore, an appropriate call to max is:

max ((1, 2, 3))

not:

max (1, 2, 3)

which is attempting to pass it three arguments.

Conversely, it is not acceptable to pass a sequence to a function that expects several
arguments that are atomic values. For example, in:

substring(($myString, 2))

the argument list contains only one argument, which happens to be a sequence of
two items, because of the extra parentheses. This raises an error because the func-
tion expects two (or three) arguments.

You may want to pass a sequence of multiple items to a function to apply the func-
tion to each of those items. For example, to take the substring of each of the product
names, you might be tempted to write:

substring(doc("catalog.xml")//name, 1, 3)

but this won’t work because the first argument of substring is not allowed to con-
tain more than one item. Instead, you could use a path expression, as in:

doc("catalog.xml")//name/substring(., 1, 3)

which will return a sequence of four strings: Fle, Flo, Del, and Cot.

User-Defined Functions | 103

Sequence Types
The types of parameters are expressed as sequence types, which specify both the
number and type (and/or node kind) of items that make up the parameter. The
most commonly used sequence types are the name of a specific atomic type, such
as xs:integer, xs:double, xs:date, or xs:string. The sequence type xs:anyAtomicType,
which matches any atomic value, can also be specified. Some of the built-in func-
tions also use numeric to allow values of any numeric type.

Occurrence indicators are used to indicate how many items can be in a sequence.
The occurrence indicators are:

? For zero or one items

* For zero, one, or many items

+ For one or many items

If no occurrence indicator is specified, it is assumed that it means one and only one.
For example, a sequence type of xs:integer matches one and only one atomic value
of type xs:integer. A sequence type of xs:string* matches a sequence that is either
the empty sequence, or contains one or more atomic values of type xs:string.
Sequence types are covered in detail in “Sequence Types” in Chapter 11.

Remember that there is no difference between an item, and a sequence that contains
only that item. If a function expects xs:string* (a sequence of zero to many strings),
it is perfectly acceptable to pass it a single string such as "xyz".

When you call a function, sometimes the type of an argument differs from the type
specified in the function signature. For example, you may pass an xs:integer to a
function that expects an xs:decimal. Alternatively, you may pass an element that
contains a string to a function that expects just the string itself. XQuery defines rules,
known as function conversion rules, for converting arguments to the expected type.
The function conversion rules are covered in detail in “Function Conversion Rules”
in Chapter 11.

Not all arguments can be converted using the function conversion rules, because
function conversion does not involve straight casting from one type to another. For
example, you cannot pass a string to a function that expects an integer. If you
attempt to pass an argument that does not match the sequence type specified in the
function signature, a type error is raised.

User-Defined Functions
XQuery allows you to create your own functions. This allows query fragments to be
reused, and allows code libraries to be developed and reused by other parties. User-
defined functions can also make a query more readable by separating out expres-
sions and naming them. For a starter set of user-defined function examples, see http://
www.xqueryfunctions.com.

http://www.xqueryfunctions.com
http://www.xqueryfunctions.com

104 | Chapter 8: Functions

Why Define Your Own Functions?
There are many good reasons for user-defined functions, such as:

Reuse
If you are evaluating the same expression repeatedly, it makes sense to define it
as a separate function, and then call it from multiple places. This has the advan-
tage of being written (and maintained) only once. If you want to change the
algorithm later—for example, to accept the empty sequence or to fix a bug—you
can do it only in one place.

Clarity
Functions make it clearer to the query reader what is going on. Having a func-
tion clearly named, with a set of named, typed parameters, serves as a form of
documentation. It also physically separates it from the rest of the query, which
makes it easier to decipher complex queries with many nested expressions.

Recursion
It is virtually impossible to implement some algorithms without recursion. For
example, if you want to generate a table of contents based on section headers,
you can write a recursive function that processes section elements, their chil-
dren, their grandchildren, and so on.

Managing change
By encapsulating functionality such as “get all the orders for a product” into a
user-defined function, applications become easier to adapt to subsequent schema
changes.

Automatic type conversions
The function conversion rules automatically perform some type promotions,
casting, and atomization. These type conversions can be performed explicitly in
the query, but sometimes it is cleaner simply to call a function.

Function Declarations
Functions are defined using function declarations, which can appear either in the
query prolog or in an external library. Example 8-1 shows a function declaration in a
query prolog. The function, called local:discountPrice, accepts three arguments: a
price, a discount, and a maximum discount percent. It applies the lesser of the dis-
count and the maximum discount to the price. The last line in the example is the
query body, which consists of a call to the discountPrice function.

Example 8-1. A function declaration

declare function local:discountPrice(
 $price as xs:decimal?,
 $discount as xs:decimal?,
 $maxDiscountPct as xs:integer?) as xs:decimal?

User-Defined Functions | 105

As you can see, a function declaration consists of several parts:

• The keywords declare function followed by the qualified function name

• A list of parameters enclosed in parentheses and separated by commas

• The return type of the function

• A function body enclosed in curly braces and followed by a semicolon

A previous draft of the XQuery recommendation used the keywords
define function instead of declare function. Some popular XQuery
implementations still use the previous syntax.

The syntax of a function declaration is shown in Figure 8-2. The parameter list is
optional, although the parentheses around the parameter list are required. The
return type is also optional, but it is strongly encouraged.

The Function Body
The function body is an expression enclosed in curly braces, which may contain any
valid XQuery expressions, including FLWORs, path expressions, or any other XQuery
expression. It does not have to contain a return clause; the return value is simply the
value of the expression. You could have a function declaration as minimal as:

declare function local:get-pi() {3.141592653589};

Within a function body, a function can call other functions that are declared any-
where in the module, or in an imported module, regardless of the order of their
declarations.

{
 let $maxDiscount := ($price * $maxDiscountPct) div 100
 let $actualDiscount := min(($maxDiscount, $discount))
 return ($price - $actualDiscount)
};

local:discountPrice($prod/price, $prod/discount, 15)

Figure 8-2. Syntax of a function declarationa

a The syntax of <param-list> is shown in Figure 8-3.

Example 8-1. A function declaration (continued)

)declare function <function-name> (

<param-list>

;{ <function-body> }

as <sequence-type> external

106 | Chapter 8: Functions

Once the function body has been evaluated, its value is converted to the return type
using the function conversion rules described in “Function Conversion Rules” in
Chapter 11. If the return type is not specified, it is assumed to be item*, that is, a
possibly empty sequence of atomic values and nodes.

The Function Name
Each function is uniquely identified by its qualified name and its number of parame-
ters. There can be more than one function declaration that has the same qualified
name, as long as the number of parameters is different. The function name must be a
valid XML name, meaning that it can start with a letter or underscore and contain
letters, digits, underscores, dashes, and periods. Like other XML names, function
names are case-sensitive.

All user-defined function names must be in a namespace. In the main query module,
you can use any prefix that is declared in the prolog. You can also use the predefined
prefix local, which puts the function in the namespace http://www.w3.org/2005/
xquery-local-functions. It can then be called from within that main module using
the prefix local. On the other hand, if a function is declared in a library module, its
name must be in the target namespace of the module. Library modules are discussed
in “Assembling Queries from Multiple Modules” in Chapter 12.

In addition, certain function names are reserved; these are listed in Table 8-1. It is
not illegal to declare functions with these names, but when called they must be pre-
fixed. As long as you have not overridden the default function namespace, this is not
an issue. However, for clarity, it is best to avoid these function names.

The Parameter List
The syntax of a parameter list is shown in Figure 8-3. Each parameter has a unique
name, and optionally a type. The name is expressed as a variable name, preceded by
a dollar sign ($). When a function is called, the variable specified is bound to the
value that is passed to it. For example, the function declaration:

declare function local:getProdNum ($prod as element()) as element()
 { $prod/number };

binds the $prod variable to the value of the argument passed to it. The $prod variable
can be referenced anywhere in the function body.

Table 8-1. Reserved function names

attribute
comment
document-node
element
empty-sequence

if
item
node
processing-instruction

schema-attribute
schema-element
text
typeswitch

User-Defined Functions | 107

The type is expressed as a sequence type, described earlier in this chapter. If no type
is specified for a particular parameter, it allows any argument. However, it is best to
specify a type, for the purposes of error checking and clarity. Some of the built-in
functions use the keyword numeric to indicate that the argument may be of any
numeric type. This keyword cannot be used in user-defined functions.

When the function is called, each argument value is converted to the appropriate
type according to the function conversion rules.

Accepting arguments that are nodes versus atomic values

You may be faced with the decision of whether to accept a node that contains an
atomic value, or to accept the atomic value itself. For example, in the declaration of
local:discountPrice, you could have accepted the price and discountPct element
instead of accepting their xs:decimal and xs:integer values. There are some cases
where it is advantageous to pass the entire element as an argument, such as if:

• You want to access its attributes—for example, to access the currency attribute
of price

• You need to access its parent or siblings

However, if you are interested in only a single data value, there are a number of rea-
sons why it is generally better to accept the atomic value:

• It is more flexible, in that you can pass a node to a function that expects an
atomic value, but you cannot pass an atomic value to a function that expects a
node.

• You can be more specific about the desired type of the value, to ensure, for
example, that it is an xs:integer.

• You don’t have to cast untyped values to the desired type; this will happen auto-
matically as part of the conversion.

Accepting arguments that are the empty sequence

You may have noticed that many of the XQuery built-in functions accept the empty
sequence as arguments, as evidenced by the occurrence indicators * and ?. For exam-
ple, the substring function accepts the empty sequence for its first argument and
returns the empty sequence if the empty sequence is passed to it. This is a flexible

Figure 8-3. Syntax of a parameter list

$ <param-name>

,

as <sequence-type>

108 | Chapter 8: Functions

way of handling optional elements. If you want to take a substring of an optional
number child, if it exists, you can simply specify:

substring ($product/number, 1, 5)

If the substring function were less flexible, and did not accept the empty sequence,
you would be required to write:

if ($product/number)
then substring ($product/number, 1, 5)
else ()

This can become quite cumbersome if you are nesting many function calls. Gener-
ally, your functions should be designed to be easily nested in this way as well.

It is also important to decide how you want the function to handle arguments that
are the empty sequence, if they are allowed. In some cases, it is not appropriate sim-
ply to return the empty sequence. Using the local:discountPrice function from
Example 8-1, suppose $discount is bound to the empty sequence, because $prod has
no discount child. The function returns the empty sequence because all arithmetic
operations on the empty sequence return the empty sequence.

It is more likely that you want the function to return the original price if no discount
amount is provided. Example 8-2 shows a revised function declaration where special
checking is done for the case where either $discount or $maxDiscountPct is the empty
sequence.

Functions and Context
Inside a function body, there is no context item, even if there is one in the part of the
query that contained the function call. For example, the function shown in
Example 8-3 is designed to return all the products with numbers whose second digit
is greater than 5. You might think that because the function is called in an expres-
sion where the context is the product element, the function can use the simple
expression number to access the number child of that product. However, since the

Example 8-2. Handling the empty sequence

declare function local:discountPrice(
 $price as xs:decimal?,
 $discount as xs:decimal?,
 $maxDiscountPct as xs:integer?) as xs:double?
{
 let $newDiscount := if ($discount) then $discount else 0
 let $maxDiscount := if ($maxDiscountPct)
 then ($price * $maxDiscountPct) div 100
 else 0
 let $actualDiscount := min(($maxDiscount, $discount))
 return ($price - $actualDiscount)
};
local:discountPrice($prod/price, $prod/discount, 15)

User-Defined Functions | 109

function does not inherit the context item from the main body of the query, the pro-
cessor does not have a context in which to evaluate number.

Instead, the relevant node must be passed to the function as an argument.
Example 8-4 shows a revised function that correctly accepts the desired product ele-
ment as an argument and uses a path expression ($prod/number) to find the number
child. The product element is passed to the function using a period (.), shorthand for
the context item.

Recursive Functions
Functions can recursively call themselves. For example, suppose you want to count
the number of descendant elements of an element (not just the immediate children,
but all the descendants). You could accomplish this using the function shown in
Example 8-5.

The functx:num-descendant-elements function recursively calls itself to determine how
many element children the element has, how many children its children has, and so on.
The only caveat is that there must be a level at which the function stops calling itself. In
this case, it will eventually reach an element that has no children, so the return clause
will not be evaluated. On the other hand, declaring a function such as:

declare function local:addItUp () { 1 + local:addItUp() };

results in an infinite loop, which will possibly end with an “out of memory” or “stack
full” error.

You can also declare mutually recursive functions that call each other. Chapter 9
explores the use of recursive functions for making modifications to element structures.

Example 8-3. Invalid use of context in a function body

declare function local:prod2ndDigit() as xs:string? {
 substring(number, 2, 1)
};
doc("catalog.xml")//product[local:prod2ndDigit() > '5']

Example 8-4. Passing the context item to the function

declare function local:prod2ndDigit($prod as element()?) as xs:string? {
 substring($prod/number, 2, 1)
};
doc("catalog.xml")//product[local:prod2ndDigit(.) > '5']

Example 8-5. A recursive function

declare namespace functx = "http://www.functx.com";
declare function functx:num-descendant-elements
 ($el as element()) as xs:integer {
 sum(for $child in $el/*
 return functx:num-descendant-elements($child) + 1)
};

110

Chapter 9CHAPTER 9

Advanced Queries 9

Now that you are an expert on the syntax of XQuery expressions, let’s look at some
more-advanced queries. This chapter describes syntax and techniques for some com-
monly requested query capabilities. You may have these same requirements for your
queries, but even if you don’t, this chapter will show you some creative ways to
apply XQuery syntax.

Copying Input Elements with Modifications
Often you will want to include elements from an input document, but with minor
modifications. For example, you may wish to eliminate or add attributes, or change
their names. However, the XQuery language does not have specific update capabil-
ity, nor does it have any special functions or operators that perform these minor
modifications. For example, there is no direct syntax that means “select all the
product elements, but leave out their dept attributes.”

The good news is that you can accomplish these modifications by “reconstructing”
the elements. For example, you can write a query to construct a new product ele-
ment and include all the children and attributes (except dept) of the original product
element in the input document. Even better, you can write a user-defined function
that uses computed constructors to handle these modifications in the general case.
This section describes some common modifications and provides useful functions to
handle these cases.

Note that these functions are intended to change the way elements and attributes
appear in the results of a query, not to update them in an XML database. To update
your XML database, you should use the implementation-specific update functions of
your processor, since there is no standard XQuery update syntax yet.

Copying Input Elements with Modifications | 111

Adding Attributes to an Element
To add an attribute to an element, you could use a function like the one shown in
Example 9-1. It takes as arguments an element, along with an attribute name and
value, and returns a newly constructed element with that attribute added.

The function makes use of computed constructors to create dynamically a new ele-
ment with the same name as the original element passed to the function. It also uses
a computed constructor to create the attribute, specifying its name and value as
expressions.

It then copies the attribute and child nodes from the original element. The expres-
sion node() is used rather than * because node() will return text, processing instruc-
tion, and comment nodes in addition to child elements. However, node() does not
return attributes, so a separate expression @* is used to copy those.

The expression:

doc("catalog.xml")//product/functx:add-attribute(., "xml:lang", "en")

uses this function to return all of the product elements from the catalog, with an
additional xml:lang="en" attribute.

Removing Attributes from an Element
Removing attributes also requires the original element to be reconstructed.
Example 9-2 shows a function that “removes” attributes from a single element. It
does this by reconstructing the element, copying the content and all of the attributes
except those whose names are specified in the second argument.

Example 9-1. Useful function: add-attribute

declare namespace functx = "http://www.functx.com";
declare function functx:add-attribute
 ($element as element(), $name as xs:string,
 $value as xs:anyAtomicType?) as element() {
 element { node-name($element)}
 { attribute {$name} {$value},
 $element/@*,
 $element/node() }
};

Example 9-2. Useful function: remove-attribute

declare namespace functx = "http://www.functx.com";
declare function functx:remove-attributes
 ($element as element(), $names as xs:string*) as element() {

112 | Chapter 9: Advanced Queries

The function will accept a sequence of strings that represent attribute names to
remove. For example, the expression:

doc("order.xml")//item/functx:remove-attributes(., ("quantity", "color"))

returns all of the item elements from the order document, minus the quantity and
color attributes. The extra parentheses are necessary around the "quantity" and
"color" strings to combine them into a single argument that is a sequence of two
items. Otherwise, they would be considered two separate arguments.

Notice that the predicate [not(name() = $names)] does not need to explicitly iterate
through each of the strings in the $names sequence. This is because the = operator,
unlike the eq operator, can be used on lists of values. The comparison will return
true for every attribute name that is equal to any one of the strings in $names. Using
the not function means that the predicate will allow through only the attributes
whose names do not match any of the strings in $names.

It may seem simpler to use the != operator rather than the not function, but that does
not have the same meaning. If the predicate were [name() != $names], it would return
all the attributes whose names don’t match either quantity or color. This means that
it will return all the attributes, since no single attribute name will match both strings.

Removing Attributes from All Descendants
You could go further and remove attributes from an element as well as remove all
of its descendants. The recursive function functx:remove-attributes-deep, shown
in Example 9-3, accomplishes this.

This function uses an algorithm similar to the previous example, but it differs in the way
it processes the children. Instead of simply copying all the child nodes, the function uses

 element { node-name($element)}
 { $element/@*[not(name() = $names)],
 $element/node() }
};

Example 9-3. Useful function: remove-attribute-deep

declare namespace functx = "http://www.functx.com";
declare function functx:remove-attributes-deep
 ($element as element(), $names as xs:string*) as element() {
 element { node-name($element)}
 { $element/@*[not(name() = $names)],
 for $child in $element/node()
 return if ($child instance of element())
 then functx:remove-attributes-deep($child, $names)
 else $child }
};

Example 9-2. Useful function: remove-attribute (continued)

Copying Input Elements with Modifications | 113

a FLWOR to iterate through them. If a child is an element, it recursively calls itself to
process that child. If the child is not an element (for example, if it is a text or processing-
instruction node), the function returns it as is. Iterating through all of the child nodes
in a single FLWOR preserves their original order in the results.

Removing Child Elements
The three previous functions relate to adding and removing attributes, and they
could apply equally to child elements. For example, the function in Example 9-4
could be used to eliminate certain elements from a document by name. It is very sim-
ilar to remove-attribute-deep, in Example 9-3, except that it removes child elements
instead of the attributes.

Another common use case is to remove certain elements but keep their contents. For
example, if you want to remove any inline formatting from the desc element in the
product catalog, you will want to remove any i or b tags, but keep the content of
those elements. You can use the function shown in Example 9-5 for that.

Example 9-4. Useful function: remove-elements-deep

declare namespace functx = "http://www.functx.com";
declare function functx:remove-elements-deep
 ($element as element(), $names as xs:string*) as element() {
 element {node-name($element)}
 {$element/@*,
 for $child in $element/node()
 return if ($child instance of element())
 then if ($child[name() = $names])
 then ()
 else functx:remove-elements-deep($child, $names)
 else $child }
};

Example 9-5. Useful function: remove-elements-not-contents

declare namespace functx = "http://www.functx.com";
declare function functx:remove-elements-not-contents
 ($element as element(), $names as xs:string*) as element() {
 element {node-name($element)}
 {$element/@*,
 for $child in $element/node()
 return if ($child instance of element())
 then if ($child[name() = $names])
 then $child/node()
 else functx:remove-elements-not-contents($child, $names)
 else $child }
};

114 | Chapter 9: Advanced Queries

Changing Names
Another minor modification is to change the names of certain elements. This could be
useful for implementing changes to an XML vocabulary or for language translation.

For example, suppose you want to preserve the structure of the order document but
want to change the name order to purchaseOrder, and the name item to
purchasedItem. Since the document is very simple, this could be done in a hardcoded
way using direct constructors. However, there may be situations where the docu-
ment is more complex and you do not know exactly where these elements appear, or
they appear in a variety of places in different document types.

You can modify names more flexibly using the function shown in Example 9-6.

Like the remove-attribute-deep function, change-elem-names calls itself recursively to
traverse the entire XML document. Every time it finds an element, it figures out what
its new name should be and assigns it to the variable $newName. If it finds its original
name in the $old-names sequence, it selects the name in $new-names that is in the
same position. Otherwise, it uses the original name. It then reconstructs the element
using the new name, copies all of its attributes, and recursively calls itself to process
all of its children.

Example 9-7 calls the change-elem-names function with sequences of old and new
names. It returns the same data and basic structure as the order.xml document,
except with the two names changed.

Example 9-6. Useful function: change-elem-names

declare function local:change-elem-names
 ($nodes as node()*, $old-names as xs:string+,
 $new-names as xs:string+) as node()* {

 if (count($old-names) != count($new-names))
 then error(xs:QName("Different_Number_Of_Names"))
 else for $node in $nodes
 return if ($node instance of element())
 then let $newName :=
 if (local-name($node) = $old-names)
 then $new-names[index-of($old-names, local-name($node))]
 else local-name($node)
 return element {$newName}
 {$node/@*,
 local:change-elem-names($node/node(),
 $old-names, $new-names)}
 else $node
};

Example 9-7. Using the change-elem-names function

Query
let $order := doc("order.xml")/order

Working with Positions and Sequence Numbers | 115

Another common function is to change the namespace of an element or attribute. An
example of this is shown in “Constructing Qualified Names” in Chapter 20.

Working with Positions and Sequence Numbers
Determining positions and generating sequence numbers are sometimes challenging
to query authors who are accustomed to procedural programming languages.
Because XQuery is a declarative rather than a procedural language, it is not possible
to use familiar techniques like counters. In addition, the sorting and filtering of
results can interfere with sequence numbers. This section describes some techniques
for working with positions and sequence numbers.

Adding Sequence Numbers to Results
Suppose you want to return a list of product names preceded by a sequence number.
Your first approach might be to use a variable as a counter, as shown in
Example 9-8. However, the results are not what you might expect. This is because
the return clause for each iteration is evaluated in parallel rather than sequentially.
This means that you cannot make changes to the value of a variable in one iteration,
and expect it to affect the next iteration of the for clause. At the beginning of every
iteration, the $count variable is equal to 0.

let $oldNames := ("order", "item")
let $newNames := ("purchaseOrder", "purchasedItem")
return local:change-elem-names($order, $oldNames, $newNames)
Results
<purchaseOrder num="00299432" date="2006-09-15" cust="0221A">
 <purchasedItem dept="WMN" num="557" quantity="1" color="navy"/>
 <purchasedItem dept="ACC" num="563" quantity="1"/>
 <purchasedItem dept="ACC" num="443" quantity="2"/>
 <purchasedItem dept="MEN" num="784" quantity="1" color="white"/>
 <purchasedItem dept="MEN" num="784" quantity="1" color="gray"/>
 <purchasedItem dept="WMN" num="557" quantity="1" color="black"/>
</purchaseOrder>

Example 9-8. Attempting to use a counter variable

Query
let $count := 0
for $prod in doc("catalog.xml")//product[@dept = ("ACC", "WMN")]
let $count := $count + 1
return <p>{$count}. {data($prod/name)}</p>
Results
<p>1. Fleece Pullover</p>
<p>1. Floppy Sun Hat</p>
<p>1. Deluxe Travel Bag</p>

Example 9-7. Using the change-elem-names function (continued)

116 | Chapter 9: Advanced Queries

Another temptation might be to use the position function, as shown in Example 9-9.
However, this will return the same results as the previous example. In XQuery,
unlike in XSLT, the position function only has meaning inside a predicate in a path
expression. In this case, the value assigned to $prod is no longer in the context of
three product items; therefore, it has no relative sequence number within that
sequence.

Luckily, FLWORs have a special syntax that enables you to define a positional vari-
able in the for clause. This variable, which is followed by the keyword at, is bound
to an integer representing the iteration number, as shown in Example 9-10.

However, the positional variable in the at clause does not always work. For exam-
ple, suppose you wanted to use both where and order by clauses in your FLWOR.
This interferes with the sequencing, as shown in Example 9-11. First, the numbers
are not in ascending order. This is because the results are ordered after the posi-
tional number is evaluated. Another problem is that the sequence numbers are 2, 3,
and 4 instead of 1, 2, and 3. This is because there are four product elements returned
in the for clause, and the first one was eliminated by the where clause.

One way to resolve this is by embedding a second FLWOR in the let clause, as
shown in Example 9-12. This embedded FLWOR returns all the products sorted and
filtered appropriately. Then, the for clause contained in the main FLWOR uses the
positional variable on the sorted sequence.

Example 9-9. Attempting to use the position function

for $prod in doc("catalog.xml")//product[@dept = ("ACC", "WMN")]
return <p>{$prod/position()}. {data($prod/name)}</p>

Example 9-10. Using a positional variable in a for clause

Query
for $prod at $count in doc("catalog.xml")//product[@dept = ("ACC", "WMN")]
return <p>{$count}. {data($prod/name)}</p>
Results
<p>1. Fleece Pullover</p>
<p>2. Floppy Sun Hat</p>
<p>3. Deluxe Travel Bag</p>

Example 9-11. Attempting to use a positional variable with a where clause

Query
for $prod at $count in doc("catalog.xml")//product
where $prod/@dept = ("ACC", "MEN")
order by $prod/name
return <p>{$count}. {data($prod/name)}</p>
Results
<p>4. Cotton Dress Shirt</p>
<p>3. Deluxe Travel Bag</p>
<p>2. Floppy Sun Hat</p>

Working with Positions and Sequence Numbers | 117

Testing for the Last Item
Sometimes it is also useful to test whether an item is last in a sequence. Earlier in this
chapter, we saw that the position function is not useful unless it is in a predicate.
The same is true of the last function, which limits its usefulness when testing for the
last item, for example, in a FLWOR.

Suppose you want to concatenate the names of the products together, separated by
commas. At the end of the last product name, you want to specify a period instead of
a comma.* The best approach is to assign the number of items to a variable in a let
clause, as shown in Example 9-13.

The $numProds variable is bound to the number of products. A positional variable,
$count, is used to keep track of the iteration number. When the $count variable
equals the $numProds variable, you have arrived at the last item in the sequence.

Another approach is to use the is operator to determine whether the current $prod
element is the last one in the sequence. This query is shown in Example 9-14. In this
case, it is not necessary to count the number of items or to use a positional variable.
The results are the same as in Example 9-13.

Example 9-12. Embedding the where clause

Query
let $sortedProds := for $prod in doc("catalog.xml")//product
 where $prod/@dept = "ACC" or $prod/@dept = "MEN"
 order by $prod/name
 return $prod
for $sortedProd at $count in $sortedProds
return <p>{$count}. {data($sortedProd/name)}</p>
Results
<p>1. Cotton Dress Shirt</p>
<p>2. Deluxe Travel Bag</p>
<p>3. Floppy Sun Hat</p>

* Actually, this particular example would be best accomplished using the string-join function. However, the
example is useful for illustrative purposes.

Example 9-13. Testing for the last item

Query
<p>{ let $prods := doc("catalog.xml")//product
 let $numProds := count($prods)
 for $prod at $count in $prods
 return if ($count = $numProds)
 then concat($prod/name,".")
 else concat($prod/name,",")
}</p>
Results
<p>Fleece Pullover, Floppy Sun Hat, Deluxe Travel Bag, Cotton Dress Shirt.</p>

118 | Chapter 9: Advanced Queries

Combining Results
Your query results may consist of several FLWORs or other expressions that each
return a result sequence. In addition, the sequences you use in your for and let
clauses may be composed from more than one sequence.

There are four ways to combine two or more sequences to form a third sequence.
They differ in which items are selected, whether their order is affected, whether
duplicates are eliminated, and whether atomic values are allowed in the sequences.

Sequence Constructors
The first way to merge two sequences is simply to create a third sequence that is the
concatenation of the first two. This is known as a sequence constructor, and it uses
parentheses and commas to concatenate two sequences together. For example:

let $prods := doc("catalog.xml")//product
let $items := doc("order.xml")//item
return ($prods, $items)

returns a sequence that is the concatenation of two other sequences, $prods and
$items. The items in $prods are first in the sequence, then the items in $items, in the
order they appear in that sequence. No attempt is made to eliminate duplicates or
sort the items in any way.

Note that concatenation is the only way to combine sequences that contain atomic
values; union, intersect, and except work on sequences that contain nodes only.

The union Expression
Another approach to combining sequences of nodes is via a union expression, which
is indicated by the keyword union or the vertical bar character (|). The two operators
have the exact same meaning. The resulting nodes are rearranged into document
order. Path expressions such as:

doc("catalog.xml")//product/(number | name)

use the vertical bar operator to select the union of the number children and the name
children of product. An equivalent alternative is to use the vertical bar operator to
separate two entire multistep path expressions, as in:

doc("catalog.xml")//product/number | doc("catalog.xml")//product/name

Example 9-14. Testing for the last item using the is operator

<p>{ let $prods := doc("catalog.xml")//product
 for $prod in $prods
 return if ($prod is $prods[last()])
 then concat($prod/name,".")
 else concat($prod/name,", ")
}</p>

Using Intermediate XML Documents | 119

Unlike simple concatenation, using a union expression eliminates duplicate nodes.
Duplicates are determined based on node identity, not typed value or string value.
That means an expression like:

doc("catalog.xml")//product/@dept | doc("order.xml")//item/@dept

results in all 10 dept attributes (four from catalog.xml and six from order.xml),
because it does not eliminate the duplicate department values.

A union eliminates duplicate nodes not just between the sequences, but also within
either of the original sequences.

The intersect Expression
An intersect expression results in a sequence that contains only those nodes that are
in both of the original sequences. As with union expressions, duplicate nodes (based
on node identity) are eliminated, and the resulting nodes are rearranged into docu-
ment order. For example, the expression:

let $prods := doc("catalog.xml")//product
return $prods[@dept = "ACC"] intersect $prods[number = 443]

returns the third product element in the catalog.

The except Expression
An except expression results in a sequence that contains only nodes that are in the
first sequence, but not in the second. As with union expressions, duplicate values
(based on node identity) are eliminated, and the resulting nodes are rearranged into
document order. For example, the expression:

doc("catalog.xml")//product/(* except number)

returns all the element children of product except for number elements. The parenthe-
ses are required because the slash (/) operator has precedence over the except opera-
tor. Without the parentheses, it would be interpreted as two separate path
expressions: doc("catalog.xml")//product/* and number. This is equally true for the
other operators in this section.

Using Intermediate XML Documents
When we think of XML structures, we tend to think of the input documents and the
results. However, XQuery also allows you to create intermediate XML structures in
your queries that are not included in the results. This can be useful for many rea-
sons, among them creating lookup tables and narrowing down input documents to
reduce complexity or improve performance.

120 | Chapter 9: Advanced Queries

Creating Lookup Tables
Suppose you want to create a summary of the product catalog that lists the depart-
ments. However, you would like to convert the department codes to more descrip-
tive names. You could use the query shown in Example 9-15 to accomplish this.

This gives the desired results, namely a descriptive name for the department, with
the department code in parentheses. However, the query is somewhat cluttered, and
anyone maintaining the query would have to be careful to insert any new depart-
ment codes in the right place, using the right XQuery syntax. A more elegant solu-
tion is shown in Example 9-16, which uses an intermediate XML structure as a
lookup table. It has the same results as the previous example.

Just as you can use path expressions on the input documents, you can use them to
traverse the intermediate XML structure. So, the expression $deptNames/dept[@code =
$dept]/@name traverses the deptNames structure looking for the department name
where the code matches the department code in question.

This solution is easier to maintain and it makes the mappings more obvious. Of
course, if this is a general-purpose and unchanging lookup table that might be used
in many queries, it can alternatively be stored as a separate XML document that is
referenced using the doc function.

Example 9-15. Converting values without a lookup table

Query
let $cat := doc("catalog.xml")/catalog
for $dept in distinct-values($cat/product/@dept)
return Department: {if ($dept = "ACC")
 then "Accessories"
 else if ($dept = "MEN")
 then "Menswear"
 else if ($dept = "WMN")
 then "Womens"
 else ()
 } ({$dept})
Results
Department: Womens (WMN)
Department: Accessories (ACC)
Department: Menswear (MEN)

Example 9-16. Converting values with a lookup table

let $deptNames := <deptNames>
 <dept code="ACC" name="Accessories"/>
 <dept code="MEN" name="Menswear"/>
 <dept code="WMN" name="Womens"/>
 </deptNames>
let $cat := doc("catalog.xml")/catalog
for $dept in distinct-values($cat/product/@dept)
return Department: {data($deptNames/dept[@code = $dept]/@name)
 } ({$dept})

Using Intermediate XML Documents | 121

Reducing Complexity
In the previous example, the intermediate XML was hardcoded into the query. You
can also build a temporary XML structure in the query, based on values from the
input data. This can be handy to reduce the complexity of an input document before
performing further querying or transformation on it.

Suppose you want to perform a join on the product catalog and the order. With the
results of the join, you want to create an HTML table that formats the information.
While this can probably be done in one FLWOR, it may be easier to write (and
read!) a query that does it in two steps.

Such a query is shown in Example 9-17. It constructs a series of item elements that
have attributes representing all the data items from the join. It binds the variable
$tempResults to the six resulting item elements using a let clause. Within the return
clause, it uses an embedded FLWOR to iterate through the item elements and turn
them into table rows (tr elements).

Example 9-17. Reducing complexity

Query
let $tempResults:= for $item in doc("order.xml")//item,
 $product in doc("catalog.xml")//product
 where $item/@num = $product/number
 return <item num="{$item/@num}" name="{$product/name}"
 color="{$item/@color}"
 quant="{$item/@quantity}"/>
return <table>
 <tr>
 <th>#</th><th>Name</th><th>Color</th><th>Quan</th>
 </tr>
 {for $lineItem in $tempResults
 return <tr>
 <td>{data($lineItem/@num)}</td>
 <td>{data($lineItem/@name)}</td>
 <td>{data($lineItem/@color)}</td>
 <td>{data($lineItem/@quant)}</td>
 </tr>
 }
 </table>
Value of $tempResults
<item num="557" color="navy" name="Fleece Pullover" quant="1"/>
<item num="563" color="" name="Floppy Sun Hat" quant="1"/>
<item num="443" color="" name="Deluxe Travel Bag" quant="2"/>
<item num="784" color="white" name="Cotton Dress Shirt" quant="1"/>
<item num="784" color="gray" name="Cotton Dress Shirt" quant="1"/>
<item num="557" color="black" name="Fleece Pullover" quant="1"/>
Partial Results
<table>
 <tr>
 <th>#</th><th>Name</th><th>Color</th><th>Quan</th>
 </tr>

122 | Chapter 9: Advanced Queries

In this case, the example input documents are fairly simple, so this approach may be
overkill. However, as documents and the joins between them become more com-
plex, intermediate XML results can be very useful in simplifying queries.

This technique is sometimes called pipelining. Rather than putting the whole pipe-
line in one query, you could also consider chaining together a sequence of separate
queries. This makes it easier to reuse each of the queries in different pipelines. A
good use case for pipelining is to handle variants of the input vocabulary—for exam-
ple, different flavors of RSS. Rather than have one query that handles all the varia-
tions, you can build a pipeline in which you first convert a particular variant to your
chosen “canonical form,” and then operate on that. It’s also possible to combine
XQuery with other technologies (such as XSLT) using pipelines, where different
technologies are used to implement different steps in the pipeline.

 <tr>
 <td>557</td>
 <td>Fleece Pullover</td>
 <td>navy</td>
 <td>1</td>
 </tr>
 <!-- ... -->
</table>

Example 9-17. Reducing complexity (continued)

123

Chapter 10 CHAPTER 10

Namespaces and XQuery10

Namespaces are an important part of XML, and it is essential to understand the con-
cepts behind namespaces in order to query XML documents that use them. This
chapter first provides a refresher on namespaces in XML input documents in gen-
eral. It then covers the use of namespaces in queries: how to declare and refer to
them, and how to control their appearance in your results.

XML Namespaces
Namespaces are used to identify the vocabulary to which XML elements and
attributes belong, and to disambiguate names from different vocabularies. For exam-
ple, both of the XHTML and XSL-FO vocabularies have a table element, but it has a
different structure in each vocabulary. Some XML documents combine elements
from multiple vocabularies, and namespaces make it possible to distinguish between
them.

Namespaces are defined by a W3C recommendation called Namespaces in XML.
Two versions are available: 1.0 and 1.1. XQuery implementations may support either
version; you should check with your product’s documentation to determine which
version is supported.

Namespace URIs
A namespace is identified by a URI (Uniform Resource Identifier) reference.* A
namespace URI is most commonly an HTTP URL, such as http://datypic.com/
prod. It could also be a Uniform Resource Name (URN), which might take the form
urn:prod-datypic-com.

* Or IRI (International Resource Identifier) reference if your processor supports Namespaces 1.1. IRIs allow a
wider, more international set of characters. The term URI is used in this book (and in the XQuery specifica-
tion) to mean “URI or IRI.”

124 | Chapter 10: Namespaces and XQuery

The use of a URI helps to ensure the uniqueness of the name. If a person owns the
domain name datypic.com, he is likely to have some control over that domain and
not use duplicate or conflicting namespace URIs within that domain. By contrast, if
namespaces could be defined as any string, the likelihood of collisions would be
much higher. For this reason, using relative URI references (such as prod or ../prod)
is discouraged in Namespaces 1.0 and deprecated in Namespaces 1.1.

However, the use of URIs for namespaces has created some confusion. Most people,
seeing a namespace http://datypic.com/prod, assume that they can access that URL
in a browser and expect to get something back: a description of the namespace, or
perhaps a schema. This is not necessarily the case; there is no requirement for a
namespace URI to be dereferencable. No parser, schema validator, or query tool
would dereference that URL expecting to retrieve any useful information. Instead,
the URI serves simply as a name.

For two namespace URIs to be considered the same, they must have the exact same
characters. Although http://datypic.com/prod and http://datypic.com/prod/ (with a
trailing slash) would be considered “equivalent” by most people, they are considered
to be different namespace URIs. Likewise, namespace URIs are case-sensitive, so
http://datypic.com/prod is different from http://DATYPIC.COM/prod.

Declaring Namespaces
Namespaces are declared in XML documents using namespace declarations. A
namespace declaration, which looks similar to an attribute, maps a short prefix to a
namespace name. That prefix is then used before element and attribute names to
indicate that they are in a particular namespace. Example 10-1 shows a document
that contains two namespace declarations.

The first namespace declaration maps the prefix cat to the namespace http://
datypic.com/cat, while the second maps the prefix prod to the namespace http://
datypic.com/prod. The cat and prod prefixes precede the names of elements and
attributes in the document to indicate their namespace. There are two different
number elements, in different namespaces. The one attribute in the document,
language, is also prefixed, indicating that it is in the http://datypic.com/prod
namespace.

Example 10-1. Namespace declarations

<cat:catalog xmlns:cat="http://datypic.com/cat"
 xmlns:prod="http://datypic.com/prod">
 <cat:number>1446</cat:number>
 <prod:product>
 <prod:number>563</prod:number>
 <prod:name prod:language="en">Floppy Sun Hat</prod:name>
 </prod:product>
</cat:catalog>

XML Namespaces | 125

It is important to understand that the prefixes are arbitrary and have no technical sig-
nificance. Although some XML languages have conventional prefixes, such as xsl for
XSLT, you can actually choose any prefix you want for your XML documents. The
document shown in Example 10-2 is considered the equivalent of Example 10-1.

Prefixes must follow the same rules as XML names, in that they must start with a let-
ter or underscore, and can only contain certain letters. They also may not start with
the letters xml in upper- or lowercase. Generally, prefixes are kept short for clarity,
usually two to four characters.

Default Namespace Declarations
You can also designate a particular namespace as the default, meaning that any
unprefixed elements are in that namespace. To declare a default namespace, you
simply leave the colon and prefix off the xmlns in the namespace declaration. In this
example:

<product xmlns="http://datypic.com/prod">
 <number>563</number>
 <name language="en">Floppy Sun Hat</name>
</product>

the product, number, and name elements are in the http://datypic.com/prod namespace,
because they are unprefixed and that is the default namespace. Default namespace
declarations and regular namespace declarations can be used together in documents.

However, default namespace declarations do not apply to unprefixed attribute
names. Therefore, the language attribute is not in any namespace, even though you
might expect it to be in the default namespace.

Namespaces and Attributes
An attribute name can also be in a namespace. This is less common than an element
in a namespace, because often attributes are considered to be indirectly associated
with the namespace of the element they are on, and therefore don’t need to be put in
a namespace themselves. For example, general-purpose attributes in the XSLT and
XML Schema vocabularies are never prefixed.

Example 10-2. Alternate prefixes

<foo:catalog xmlns:foo="http://datypic.com/cat"
 xmlns:bar="http://datypic.com/prod">
 <foo:number>1446</foo:number>
 <bar:product>
 <bar:number>563</bar:number>
 <bar:name bar:language="en">Floppy Sun Hat</bar:name>
 </bar:product>
</foo:catalog>

126 | Chapter 10: Namespaces and XQuery

However, certain attributes, sometimes referred to informally as global attributes, can
appear in many different vocabularies and are therefore in namespaces. Examples
include the xml:lang attribute, which can be used in any XML document to indicate
natural language, and the xsi:schemaLocation attribute, which identifies the location
of the schema for a document. It makes sense that these attributes should be in
namespaces because they appear on elements that are in different namespaces.

If an attribute name is prefixed, it is associated with the namespace that is mapped to
that prefix. A significant difference between elements and attributes, however, is that
default namespace declarations do not apply to attribute names. Therefore, an
unprefixed attribute name is always in no namespace, not the default namespace. It
may seem that an attribute should automatically be in the namespace of the element
that carries it, but it is considered to be in no namespace for the purposes of query-
ing and even schema validation.

The product element shown in Example 10-3 has two attributes: app:id and dept.
The app:id attribute is, as you would expect, in the http://datypic.com/app
namespace. The dept attribute, because it is not prefixed, is in no namespace. This is
true regardless of the fact that there is a default namespace declaration that applies to
the product element itself.

Namespace Declarations and Scope
Namespace declarations are not required to appear in the outermost element of an
XML document; they can appear on any element. The scope of a namespace declara-
tion is the element on which it appears and any attributes or descendants of that ele-
ment. In Example 10-4, there are two namespace declarations: one on catalog and
one on product. The scope of the second namespace declaration is indicated in bold
font; the prod prefix cannot be used outside this scope.

Example 10-3. Namespaces and attributes

<product xmlns="http://datypic.com/prod"
 xmlns:app="http://datypic.com/app"

 app:id="P123" dept="ACC">
...
</product>

Example 10-4. Namespace declarations and scope (cat_ns.xml)

<catalog xmlns="http://datypic.com/cat">
 <number>1446</number>
 <prod:product xmlns:prod="http://datypic.com/prod">
 <prod:number>563</prod:number>
 <prod:name language="en">Floppy Sun Hat</prod:name>
 </prod:product>
</catalog>

Namespaces and XQuery | 127

If a namespace declaration appears in the scope of another namespace declaration with
the same prefix, it overrides it. This is not recommended for namespace declarations
with prefixes because it is confusing. However, it is also possible to override the default
namespace, which can be useful when a document consists of several subtrees in differ-
ent namespaces. Example 10-5 shows an example of this, where the product element
and its descendants are in a separate namespace but do not need to be prefixed.

When using Namespaces 1.1, the namespace specified can be a zero-length string, as
in xmlns:prod="". This has the effect of undeclaring the namespace mapped to prod;
that prefix will no longer be available for use in that scope. Undeclaring prefixes is
not permitted in Namespaces 1.0.

As with regular namespace declarations, you can specify a zero-length string as the
default namespace, as in xmlns="". This undeclares the default namespace.

Namespaces and XQuery
Now that you have seen how namespaces are used in XML documents, let’s look at
how they are used in queries. Namespace-qualified names are used in queries in a
number of ways:

• The input documents may contain elements and attributes that are in one or
more namespaces.

• The query may construct new elements and attributes that are in one or more
namespaces.

• The functions that are declared and/or called in a query have qualified names.
This includes user-defined functions and XQuery built-in functions.

• The types used in a query have qualified names that are used, for example, in
function signatures and in the constructors that create new values of that type.

— Built-in types are in the XML Schema Namespace, and are conventionally
prefixed with xs:.

— User-defined types are in the target namespace of the schema document in
which they are defined.

• The variables used in a query have qualified names. Many variables will have no
namespace and no prefix, but the names are still considered qualified names.

Example 10-5. Overriding the default namespace

<catalog xmlns="http://datypic.com/cat">
 <number>1446</number>
 <product xmlns="http://datypic.com/prod"
 <number>563</number>
 <name language="en">Floppy Sun Hat</name>
 </product>
</catalog>

128 | Chapter 10: Namespaces and XQuery

Namespace Declarations in Queries
There are three ways that namespaces are mapped to prefixes in XQuery queries:

• Some namespaces are predeclared; no explicit namespace declaration is neces-
sary to associate a prefix with the namespace.

• Namespace declarations can appear in the query prolog.

• Namespace declarations can appear in direct XML constructors.

The examples in this section use the input document cat_ns.xml shown in
Example 10-4.

Predeclared Namespaces
For convenience, five commonly used namespace declarations are built into the
XQuery recommendation. They are listed in Table 10-1. The five prefixes can be
used anywhere in a query even if they are not explicitly declared by a namespace dec-
laration. These prefixes are also used throughout this book to represent the appropri-
ate namespaces.

In addition, your XQuery implementation may predeclare other namespaces for use
within your queries or allow users to predeclare other namespaces by means of an
API. Consult the documentation for your implementation to determine what, if any,
other namespaces are predeclared.

Prolog Namespace Declarations
Namespaces can be declared in the query prolog. The syntax of a namespace declara-
tion in the query prolog, shown in Figure 10-1, is different from a typical XML
namespace declaration. For example:

declare namespace cat = "http://datypic.com/cat";

maps the prefix cat to the namespace http://datypic.com/cat.

Table 10-1. Predeclared namespaces

Prefix Namespace Uses

xml http://www.w3.org/XML/1998/namespace XML attributes such as xml:lang and xml:
space

xs http://www.w3.org/2001/XMLSchema XML Schema built-in types and their constructors

xsi http://www.w3.org/2001/XMLSchema-instance XML Schema instance attributes such as xsi:
type and xsi:nil

fn http://www.w3.org/2005/xpath-functions XPath Functions Namespace: the default
namespace of all built-in functions

local http://www.w3.org/2005/xquery-local-
functions

Functions declared in a main module that are not
in a specific namespace

Namespace Declarations in Queries | 129

This mapping applies to all names in the entire query, including element names,
attribute names, function names, variable names, and type names.

Example 10-6 makes use of two prolog namespace declarations:

• The rep prefix is mapped to a namespace that is to be used for a newly con-
structed element, report. The report constructor uses a prefix to indicate that it
is that namespace.

• The prod prefix is mapped to a namespace used in the input document. This dec-
laration is necessary so that the path expression step prod:product can associate
the name product with the correct namespace.

Note that the http://datypic.com/cat namespace does not need to be declared in the
query (even though it is used in the input document), because it is not used in any
names in the query itself. It does appear in the results, even though it is not associ-
ated with any names in the results. This is explained further in “Controlling
Namespace Declarations in Your Results,” later in this chapter.

The namespace name in a namespace declaration must be a literal value (in quotes),
not a variable reference or other evaluated expression. The value should be a syntac-
tically valid absolute URI.

Default namespace declarations in the prolog

You can also declare default namespaces in the prolog, using the syntax shown in
Figure 10-2. There are two different default namespace declarations, one for ele-
ments and types, and the other for functions.

Figure 10-1. Syntax of a prolog namespace declaration

Example 10-6. Prolog namespace declarations

Query
declare namespace rep = "http://datypic.com/report";
declare namespace prod = "http://datypic.com/prod";
<rep:report> {
 doc("cat_ns.xml")//prod:product
} </rep:report>
Results
<rep:report xmlns:rep="http://datypic.com/report">
 <prod:product xmlns="http://datypic.com/cat"
 xmlns:prod="http://datypic.com/prod">
 <prod:number>563</prod:number>
 <prod:name language="en">Floppy Sun Hat</prod:name>
 </prod:product>
</rep:report>

declare namespace <prefix> = "<namespace-name>" ;

130 | Chapter 10: Namespaces and XQuery

For example:

declare default element namespace "http://datypic.com/cat";

would make http://datypic.com/cat the default namespace for elements and types.
This means that anywhere an unprefixed element or type name is used in the query
(for example, in element constructors and path expressions), it is assumed to be in
that namespace.

This is shown in Example 10-7, which is the same as Example 10-6 except with an
added default namespace declaration and a new step catalog in the path expression.
The results are the same as those returned by Example 10-6. In this case, because
catalog is unprefixed, the processor will look for a catalog element in the default ele-
ment namespace, http://datypic.com/cat.

In Example 10-7, it just so happens that the namespace declarations in the query
match the namespace declarations in the input document. The namespace http://
datypic.com/prod is mapped to the prod prefix, and http://datypic.com/cat is the
default, in both places.

However, it is not necessary for the prefixes to match. Example 10-8 shows an equiv-
alent query where a different prefix is used for the namespace http://datypic.com/
prod, and http://datypic.com/cat now has a prefix associated with it too. Note that
the prefixes declared in the query (prod2 and cat) are used in the path expression,
not those from the input document. In fact, it would be illegal to use the prod prefix
in this query, because it is not declared in the query itself.

Figure 10-2. Syntax of a prolog default namespace declaration

Example 10-7. Prolog default namespace declaration

declare default element namespace "http://datypic.com/cat";
declare namespace rep = "http://datypic.com/report";
declare namespace prod = "http://datypic.com/prod";
<rep:report> {
 doc("cat_ns.xml")/catalog/prod:product
} </rep:report>

Example 10-8. Namespace declarations in query different from input document

declare namespace rep = "http://datypic.com/report";
declare namespace cat = "http://datypic.com/cat";
declare namespace prod2 = "http://datypic.com/prod";
<rep:report> {
 doc("cat_ns.xml")/cat:catalog/prod2:product
} </rep:report>

declare default

function

namespace "<namespace-name>" ;element

Namespace Declarations in Queries | 131

Example 10-8 yields the same results as Example 10-7. It is worth noting that the
prod prefix (from the input document) is used in the results rather than prod2 (from
the query).

As with a regular XML default namespace declaration, a prolog default element
namespace declaration does not apply to attribute names, nor does it apply to vari-
able names or function names.

Only one default element namespace declaration may appear in the query prolog. If
the string literal is a zero-length string, unprefixed element and type names are con-
sidered to be in no namespace.

The default function namespace declaration

You can also declare a default namespace for functions, using the same syntax, but
with the keyword function. For example:

declare default function namespace "http://datypic.com/funclib";

This means that all unprefixed functions that are called or declared within that query
(including type constructors) are assumed to be in that namespace. If you specify a
zero-length string, the default will be “no namespace.” Only one default function
namespace declaration may appear in the query prolog.

If no default function namespace is declared, the default is the XPath Functions
Namespace, http://www.w3.org/2005/xpath-functions. In general, it is best not to
override this, because if you do, you are required to prefix all calls to the built-in
functions such as substring and max.

Other prolog namespace declarations

For convenience, other prolog declarations can bind namespaces to prefixes, namely
schema imports, module declarations, and module imports. For example:

import module namespace strings = "http://datypic.com/strings"
 at "http://datypic.com/strings/lib.xq";

will bind the http://datypic.com/strings namespace to the strings prefix. These
types of declarations are covered in Chapters 12 and 13.

Namespace Declarations in Element Constructors
Namespaces can also be declared in direct element constructors, using the regular
XML attributes whose names start with xmlns. These are known as namespace decla-
ration attributes in XQuery, and are shown in Example 10-9.

Example 10-9. Using namespace declaration attributes

Query
<rep:report xmlns="http://datypic.com/cat"

132 | Chapter 10: Namespaces and XQuery

The location of the namespace declarations in the results of Example 10-9 are differ-
ent from those of Example 10-7, although the two results are technically equivalent.
This subtle difference is explained in “Controlling Namespace Declarations in Your
Results,” later in this chapter.

As with prolog namespace declarations, the namespace name used in a namespace
declaration attribute must be a literal value, not an enclosed expression, and it
should be a syntactically valid absolute URI. Namespace declaration attributes with
prefixes whose values are zero-length strings, such as xmlns:cat="", are only allowed
if the implementation supports Namespaces 1.1.

The Impact and Scope of Namespace Declarations
As in XML documents, namespace declarations in queries have a scope and a set of
names to which they are applicable. This section describes the scope and impact of
namespace declarations in XQuery, whether they are in the prolog or in direct ele-
ment constructors.

Scope of namespace declarations

The scope of a namespace declaration in an element constructor is the constructor
itself (including any other attributes, whether they appear before or after the
namespace declaration). Much like regular XML documents, namespace declara-
tions in child element constructors can override the namespace declarations of the
outer constructors. However, this is not recommended.

The scope of a prolog namespace declaration is the entire query module. However,
prolog namespace declarations can also be overridden, by namespace declarations in
an element constructor. For example, if in Example 10-7 you placed a default
namespace declaration in the report start tag, it would be in scope until the report
end tag (including any attributes of report), overriding the default namespace decla-
ration in the prolog.

 xmlns:prod="http://datypic.com/prod"
 xmlns:rep="http://datypic.com/report"> {
 doc("cat_ns.xml")/catalog/prod:product
} </rep:report>
Results
<rep:report xmlns:rep="http://datypic.com/report"
 xmlns:prod="http://datypic.com/prod"
 xmlns="http://datypic.com/cat">
 <prod:product>
 <prod:number>563</prod:number>
 <prod:name language="en">Floppy Sun Hat</prod:name>
 </prod:product>
</rep:report>

Example 10-9. Using namespace declaration attributes (continued)

Namespace Declarations in Queries | 133

Names affected by namespace declarations

Whether namespace declarations appear in the prolog or in a direct element con-
structor, they have similar rules regarding the names on which they have an effect.
Namespace declarations that specify a prefix (i.e., ones that are not default
namespace declarations) allow that prefix to be used with any qualified name,
namely:

• The element and attribute names that are constructed in the query, like rep:report

• The element and attribute names from the input document that are used in path
expressions, such as cat:catalog and prod:product

• Type names that are used in function signatures and in type-related expressions
such as constructors or instance of expressions

• The names of functions, in both function calls and function declarations

• The names of variables, both when they are bound and when they are referenced

Default element namespace declarations affect only element and type names. They
do not affect attribute, variable, or function names. Attribute and variable names,
when they appear unprefixed, are considered to be in no namespace, not the default
element namespace. Unprefixed function names are in the default function
namespace.

The fact that element names in XQuery paths are affected by default
namespace declarations is different from XSLT. In XSLT, a default
namespace declaration does not affect element names in path expres-
sions. For example, in XQuery:

<abc xmlns="xyz">{$root/d/e}</abc>

the processor will look for the d and e elements in the xyz namespace.
In XSLT:

<abc xmlns="xyz">
 <xsl:copy-of select="$root/d/e"/>
</abc>

the processor will look for the d and e elements in no namespace.

These rules governing the impact of namespace declarations on names are summa-
rized in Table 10-2.

Table 10-2. Impact of namespace declarations on names

Variety of namespace declaration Element Attribute Type
Function/type
constructor Variable

Predeclared namespaces y y y y y

Prolog namespace declaration (with prefix) y y y y y

Prolog default element namespace y y

134 | Chapter 10: Namespaces and XQuery

Namespace declarations and input elements

It is important to understand that namespace declarations in a query affect only
names that are explicitly specified in that query, not those of any child elements that
might be included from the input document. Example 10-10 shows a query that cop-
ies some elements from an input document into a newly constructed element. It uses
the input document prod_ns.xml shown in Example 10-11. The input document ele-
ments (names and name) are in the http://datypic.com/prod namespace, while the
constructed report element is in the http://datypic.com/report namespace.

In the results, report and firstChild are in the default namespace specified in the
query. However, the product, number, and name elements are still in their original
namespace from the input document. They do not become part of the default http://
datypic.com/prodreport namespace. This would be true even if they were in no
namespace in the input document. Copying an element never changes its namespace.

Prolog default function namespace y

Namespace declaration attribute (with prefix) y y y y y

Namespace declaration attribute (default) y y

Example 10-10. Namespace declaration impact on input elements

Query
<report xmlns="http://datypic.com/report">
 <firstChild/>
 {doc("prod_ns.xml")/*}
</report>
Results
<report xmlns="http://datypic.com/report">
 <firstChild/>
 <prod:product xmlns:prod="http://datypic.com/prod">
 <prod:number>563</prod:number>
 <prod:name language="en">Floppy Sun Hat</prod:name>
 </prod:product>
</report>

Example 10-11. Simple product example in namespace (prod_ns.xml)

<prod:product xmlns:prod="http://datypic.com/prod">
 <prod:number>563</prod:number>
 <prod:name language="en">Floppy Sun Hat</prod:name>
</prod:product>

Table 10-2. Impact of namespace declarations on names (continued)

Variety of namespace declaration Element Attribute Type
Function/type
constructor Variable

Controlling Namespace Declarations in Your Results | 135

Controlling Namespace Declarations in Your Results
If you take the results of your query and serialize them as an XML document, you
may be surprised by the way the namespace declarations appear. The number and
location of namespace declarations in your results is not always intuitive. However,
it can be controlled somewhat by how you declare namespaces in your query and by
the use of settings in the prolog.

This section describes how you can control the appearance of namespace declara-
tions in your results. None of these techniques affects the real meaning of the results;
they are simply cosmetic. If you are unconcerned with the appearance of namespace
declarations, you can skip this section.

In-Scope Versus Statically Known Namespaces
This chapter describes how you can declare namespaces in the prolog or in direct ele-
ment constructors. Which one you choose will not affect the actual namespaces of
the elements and attributes in the results. However, it can affect the way the results will
be serialized, in particular the number and location of the namespace declarations.

The difference has to do with statically known namespaces and in-scope namespaces.

Statically known namespaces are all the namespaces that are known at any given
point in a query. This includes the predeclared namespaces, those that were declared
in the prolog, and those that were declared using a namespace declaration attribute
in an element constructor that is in scope.

In-scope namespaces, on the other hand, are namespaces that are currently in scope
for a particular element. For an element from the input document, the in-scope
namespaces are all the namespaces that are declared on that element or on any of its
ancestors. Likewise, for an element being constructed in a query, they include the
namespaces that are declared using a namespace declaration attribute on that ele-
ment constructor or one of its ancestors. For a newly constructed element, the in-
scope namespaces are a subset of the statically known namespaces. The in-scope
namespaces may include predeclared namespaces, or ones that are declared in the
prolog, but only if those namespaces are used in the name of that element, one of its
ancestors, or one of its attributes.

Only in-scope namespaces, not all of the statically known namespaces become part
of the results. Therefore, whether you declare a namespace in the prolog or in an ele-
ment constructor can affect whether (and where) its declaration appears in your
results. It can also affect which prefix is used, since although the prefix is not techni-
cally significant, the XQuery processor will keep track of prefixes used in input docu-
ments and queries and use them in the result documents.

136 | Chapter 10: Namespaces and XQuery

Examples 10-12 and 10-13 illustrate this subtle difference. These examples use the
input document shown in Example 10-11.

Example 10-12 shows a query where three different namespace declaration attributes
appear in the report element constructor. Namespaces that are declared in construc-
tors are always part of the in-scope namespaces, so the report element has three in-
scope namespaces. As a result, all three namespace declarations appear in the report
element in the results. The namespace that is mapped to the cat prefix is not used
anywhere in the results, but its declaration nevertheless appears because it is one of
the in-scope namespaces.

Example 10-13, on the other hand, declares the three namespaces in the prolog. Pro-
log namespace declarations are not included in the in-scope namespaces unless they
are specifically used by the element in question. Therefore, in this case, the report
element has only one in-scope namespace, the one that is used as part of its name,
namely the default element namespace http://datypic.com/report. Consequently, in
the results, you only see one namespace declaration on the report element.

The prod:number and prod:name elements are in the prod namespace, so the prod dec-
laration is added to the in-scope namespaces of each of these elements. The prod
namespace is declared on both the prod:number and prod:name elements, rather than
on the report element, because it is not one of the in-scope namespaces for the
report element.

The prod:number and prod:name elements also have the http://datypic.com/report
namespace in scope, since it is used by an ancestor. However, the declaration for
http://datypic.com/report does not need to be repeated on the prod:number and
prod:name elements, since the declaration already appears on the report element.

Example 10-12. Using XML namespace declarations

Query
<report xmlns="http://datypic.com/report"
 xmlns:cat="http://datypic.com/cat"
 xmlns:prod="http://datypic.com/prod"> {
 for $product in doc("prod_ns.xml")/prod:product
 return <lineItem>
 {$product/prod:number}
 {$product/prod:name}
 </lineItem>
} </report>
Results
<report xmlns:prod="http://datypic.com/prod"
 xmlns:cat="http://datypic.com/cat"
 xmlns="http://datypic.com/report">
 <lineItem>
 <prod:number>563</prod:number>
 <prod:name language="en">Floppy Sun Hat</prod:name>
 </lineItem>
</report>

Controlling Namespace Declarations in Your Results | 137

As you can see, your choice of how to declare the namespaces can affect their loca-
tion in the result document. Example 10-14 shows a balance between the two
approaches. The cat namespace is declared in the prolog because it is not intended
to appear in the results. (Perhaps it does need to be declared—for example, if it is
used in a function or variable name.) The prod namespace declaration is included in
the report constructor so that it only appears once in the results rather than being
repeated for each of the prod:number and prod:name elements.

Example 10-13. Prolog namespace declarations

Query
declare default element namespace "http://datypic.com/report";
declare namespace cat = "http://datypic.com/cat";
declare namespace prod = "http://datypic.com/prod";
<report> {
 for $product in doc("prod_ns.xml")/prod:product
 return <lineItem>
 {$product/prod:number}
 {$product/prod:name}
 </lineItem>
} </report>
Results
<report xmlns="http://datypic.com/report">
 <lineItem>
 <prod:number xmlns:prod="http://datypic.com/prod">
 563</prod:number>
 <prod:name xmlns:prod="http://datypic.com/prod"
 language="en">Floppy Sun Hat</prod:name>
 </lineItem>
</report>

Example 10-14. A balanced approach

Query
declare namespace cat = "http://datypic.com/cat";
<report xmlns="http://datypic.com/report"
 xmlns:prod="http://datypic.com/prod"> {
 for $product in doc("prod_ns.xml")/prod:product
 return <lineItem>
 {$product/prod:number}
 {$product/prod:name}
 </lineItem>
} </report>
Results
<report xmlns:prod="http://datypic.com/prod"
 xmlns="http://datypic.com/report">
 <lineItem>
 <prod:number>563</prod:number>
 <prod:name language="en">Floppy Sun Hat</prod:name>
 </lineItem>
</report>

138 | Chapter 10: Namespaces and XQuery

Controlling the Copying of Namespace Declarations
In addition to the considerations discussed in the previous section, there is another
way to control the placement of namespace declarations in your results. A word of
caution: the facilities described here interact in subtle ways, and not all products
implement them correctly.

The copy-namespaces declaration, which appears in the query prolog, controls the
appearance of namespace declarations. Specifically, it applies to the case where you
construct a new element, and include elements from the input document as children
of your new element. It controls whether namespace declarations are inherited from
parent constructors, and/or preserved from input documents. Its syntax is shown in
Figure 10-3.

It consists of two settings (both required), separated by a comma. For example:

declare copy-namespaces no-preserve, inherit;

If no copy-namespaces declaration is provided, the default values are determined by
your implementation. They may have been specified by the user outside the scope of
the query or set automatically by the processor.

The first setting, either preserve or no-preserve, controls whether unused namespace
declarations are included from the input document. Unused here means “not used in
the name of the element or its attributes.” Namespace declarations that are being
used are always included from the input document, regardless of the setting of
preserve or no-preserve. Generally, no-preserve is preferred, since there is not much
point in copying unused namespace declarations.

One reason to choose preserve is if your element content (or attribute
values) contains namespace-sensitive values, such as qualified names.
Namespaces used in content (as opposed to in element/attribute
names) are not considered to be “used.” If you choose no-preserve,
and the prefixes in the content are dependent on those nonpreserved
declarations, an error may be raised when you try to validate or use
the output document, because there may be an undeclared prefix.

The second setting, either inherit or no-inherit, controls whether the in-scope
namespace declarations are copied from an outer constructor in the query to ele-
ments that are being copied (usually from the input document). Choosing inherit
usually results in a less cluttered result document. If this value is set to no-inherit,
unused namespaces declared on ancestor elements are explicitly undeclared on the

Figure 10-3. Syntax of a copy-namespaces declaration

declare copy-namespaces

no-preserve

,preserve

no-inherit

inherit ;

Controlling Namespace Declarations in Your Results | 139

copied element. The main reason for this is to stop namespaces from a content enve-
lope (for example, a SOAP header) from bleeding into the content: if the namespaces
are undeclared in the content, the recipient can extract the content without the enve-
lope namespaces having polluted the message body.

Undeclaring prefixes is only allowed in Namespaces 1.1, so no-inherit is essentially
ignored if your implementation does not support Namespaces 1.1.

Note that these settings affect in-scope namespaces only, not statically known
namespaces. They apply to both default namespace declarations and those that use
prefixes.

Examples 10-16 and 10-17 exhibit the differences in these settings. They use the
input document shown in Example 10-15, which has three different namespaces
declared.

Example 10-16 shows a query that uses the settings no-preserve and inherit. This
combination of settings usually results in the fewest surprises. The query returns a
report element that contains a product element copied from the input document.
The report element has three namespace declaration attributes, and therefore has
three in-scope namespaces.

Example 10-15. Multinamespace input document (cat_ns2.xml)

<cat:catalog xmlns:cat="http://datypic.com/cat"
 xmlns:prod="http://datypic.com/prod"
 xmlns:ord="http://datypic.com/ord">
 <prod:product>
 <prod:number>563</prod:number>
 <prod:name language="en">Floppy Sun Hat</prod:name>
 </prod:product>
</cat:catalog>

Example 10-16. Query with no-preserve, inherit

Query
declare copy-namespaces no-preserve, inherit;
<report xmlns="http://datypic.com/report"
 xmlns:cat="http://datypic.com/cat"
 xmlns:prodnew="http://datypic.com/prod"> {
 doc("cat_ns2.xml")//prodnew:product
} </report>
Results
<report xmlns="http://datypic.com/report"
 xmlns:cat="http://datypic.com/cat"
 xmlns:prodnew="http://datypic.com/prod">
 <prod:product xmlns:prod="http://datypic.com/prod">
 <prod:number>563</prod:number>
 <prod:name language="en">Floppy Sun Hat</prod:name>
 </prod:product>
</report>

140 | Chapter 10: Namespaces and XQuery

In the results, the only namespace declaration preserved from the input document is
the one that the product element is actually using (because it is part of its name).
This is because the no-preserve setting meant that unused namespace declarations
were not copied from the input document.

Because inherit is chosen, the product element has declarations for the default
(report) and cat namespaces in scope, even though it doesn’t use them.

Note that even though the http://datypic.com/prod namespace is declared (with the
prefix prodnew) in the report start tag, it is redeclared in the product start tag with a
different prefix, and it is the prod prefix that is used. This is because nodes that are
included from the input document will always use the prefixes that come from the
input document. No combination of copy-namespaces settings will allow the prodnew
prefix to be used for the product element instead of the prod prefix. To change any
aspect of the element name, whether prefix, URI, or local name, you need to con-
struct a new element rather than copying the original.

Example 10-17 shows the exact same query but with the opposite settings: preserve
and no-inherit. In this case, all three namespace declarations from the input docu-
ment are preserved (prod, ord, and cat), even though the cat and ord namespaces are
not used. The cat namespace declaration is not written out in the product start tag
because it has the same prefix and namespace as the one in the report start tag. The
serialization process takes care of eliminating duplicate namespace declarations that
are in the same scope.

Because no-inherit is chosen, the product element should not inherit the default
(report) and prodnew namespace declarations from the report element. Therefore,
they are undeclared.

Example 10-17. Query with preserve, no-inherit

Query
declare copy-namespaces preserve, no-inherit;
<report xmlns="http://datypic.com/report"
 xmlns:cat="http://datypic.com/cat"
 xmlns:prodnew="http://datypic.com/prod"> {
 doc("cat_ns2.xml")//prodnew:product
} </report>
Results
<report xmlns="http://datypic.com/report"
 xmlns:cat="http://datypic.com/cat"
 xmlns:prodnew"http://datypic.com/prod">
 <prod:product xmlns:prod="http://datypic.com/prod"
 xmlns:ord="http://datypic.com/ord"
 xmlns=""
 xmlns:prodnew="">
 <prod:number>563</prod:number>
 <prod:name language="en">Floppy Sun Hat</prod:name>
 </prod:product>
</report>

141

Chapter 11 CHAPTER 11

A Closer Look at Types11

Chapter 2 briefly introduced the use of types in XQuery. This chapter delves deeper
into the XQuery type system and its set of built-in types. It explains the automatic
type conversions performed by the processors and describes the expressions that are
relevant to types, namely type constructors, cast and castable expressions, and
instance of expressions.

The XQuery Type System
XQuery is a strongly typed language, meaning that each function and operator is
expecting its arguments or operands to be of a particular type. This means, for exam-
ple, that you cannot perform arithmetic operations on strings, without explicitly tell-
ing the processor to treat your strings like numbers. This is similar to some common
object-oriented programming languages, like Java and C#. It is in contrast to most
scripting languages, like JavaScript, which will automatically coerce values to the
appropriate type.

Advantages of a Strong Type System
There are several advantages to a strong type system. One of them is the early and
reliable identification of errors in a query. Potential errors in the query can be deter-
mined before the query is even executed. For example, if you are trying to double a
value that is a string (e.g., a product name), there is probably an error in the query.
In addition, a type system allows for the identification of errors in the values of input
data. This identification of errors can make queries easier to debug, and results in
more reliable queries that are able to handle a variety of input data. This is especially
true if schemas are used, because schema types can help identify possible errors. A
schema allows the processor to tell you that the product name is a string and that
you should not be trying to double it. Based on a schema, the processor can also tell
you when you’ve specified a path that will never return any elements—for example,
because of a misspelling or an invalid chain of steps.

142 | Chapter 11: A Closer Look at Types

Another advantage of a strong type system is optimization. Implementations can
optimize performance if they know more about the types of data. This too is espe-
cially true if schemas are used, because schema types can help a processor find spe-
cific elements. If your schema says that all number elements appear as children of
product elements, your processor only has to look in one place for the number ele-
ments you have requested in your query. If it knows that there is always only one
number per product, it can further optimize certain comparison operations.

A strong type system has its disadvantages, too. One is that it can complicate query
authoring, because more attention is being paid to types. For example, if you know
you want to treat a numeric value like a string, you have to explicitly cast it to xs:
string in order to perform string-related operations. Also, supporting an extensive
type system can put a burden on implementers of the standard. This is why the more
complex features—schema awareness and static typing—are optional features of the
standard that will not be available in all implementations.

Do You Need to Care About Types?
If you do not use schemas, your input data will be untyped. Usually, this means that
you, as a query author, do not need to be especially concerned about types. Because
of the type conversions described in “Automatic Type Conversions,” later in this
chapter, the processor will usually “do the right thing” with your data.

For example, you may pass an untyped price element to the round function, or multi-
ply it by two. In these cases, the processor will automatically assume that the con-
tent of the price element is numeric, and convert it to a numeric type. Likewise,
calling the substring function with a name element will assume that name contains a
string.

There is the occasional “gotcha,” though. One example is comparing two untyped
values using general comparison operators (e.g., < or =). If the values are untyped,
they are compared as strings. Therefore, if you compare the untyped price element
<price>123.99</price> with the untyped price element <price>99.99</price>, the
second will be considered greater because the string value starts with a greater digit.
Similarly, order by clauses in FLWORs assume that untyped values are strings rather
than numbers. In both of these cases, the prices need to be explicitly converted to
numbers in order to be sorted or compared as numbers. Casting is described in
“Constructors and Casting,” later in this chapter.

With untyped text values, you need to be concerned when using the max and min
functions. These two functions treat untyped data as if it is numeric. Therefore, the
expression:

max(doc("catalog.xml")//name)

The Built-in Types | 143

will raise an error. Instead, you need to cast the names to xs:string. One way to do
this is to use the string function, as in:

max(doc("catalog.xml")//name/string())

If you do use schemas, you will be able to get more of the benefits of strong typing,
but you will need to pay more attention to types when writing your query. Unlike
some weakly typed languages, XQuery will not automatically convert values of one
type to an unrelated type (for example, a string to a number). So, if your schema for
some reason declares the price element to be of type xs:string, you will not be able
to perform arithmetic operations, or call functions like round, on your price without
explicitly casting it to a numeric type.

The Built-in Types
A wide array of atomic types is built into XQuery. These simple types, shown in
Figure 11-1, represent common datatypes such as strings, numbers, dates, and times.
The built-in types are identified by qualified names that are prefixed with xs, because
they are defined in the XML Schema Namespace. You can use all of these built-in types
in your queries whether or not the implementation is actually schema-aware, and
whether or not you are using schemas to validate your source or result documents.

Nineteen of the built-in types are primitive, meaning that they are the top level of the
type hierarchy. Each primitive type has a value space, which describes all its valid
values, and a set of lexical representations for each value in the value space. There is
one lexical representation, the canonical representation, that maps one-to-one with
each value in the value space. The canonical representation is important because it is
the format used when a value is serialized or cast as a string.*

For example, the primitive type xs:integer has a value that is equal to 12 in its value
space. This value has multiple lexical representations that map to the same value,
such as 12, +12, and 012. The canonical representation is 12. Some primitive types,
such as xs:date, only have one lexical representation, which becomes, by default, the
canonical representation.

The rest of the built-in types are derived (directly or indirectly) from one of the prim-
itive types. The derived built-in types (and indeed, user-defined types) inherit the
qualities of the primitive type from which they are derived, including their value
space (possibly restricted), lexical representations, and canonical representations.
Their values can also be substituted for each other. For example, the insert-before
function expects a value of type xs:integer for its second argument. Nevertheless, it
accepts a value of any type derived from xs:integer, such as xs:positiveInteger or
xs:long.

* There are three exceptions: xs:decimal, xs:float, and xs:double values, when cast to xs:string, may differ
slightly from the canonical representation defined in XML Schema. See Appendix B for details.

144 | Chapter 11: A Closer Look at Types

At the top of the built-in atomic type hierarchy is xs:anyAtomicType. This type
encompasses all of the other atomic types. No values ever actually have the type xs:
anyAtomicType; they always have a more specific type. However, this type name can
be used as a placeholder for all other atomic types. For example, the distinct-values
function signature specifies that its argument is xs:anyAtomicType. This means that
atomic values of any type can be passed to this function.

All of the built-in types are covered in detail in Appendix B, with a description, lexi-
cal representations, and examples. In practice, you are likely to need only a handful
of these built-in types.

Figure 11-1. The atomic type hierarchy

xs:anyAtomicType

xs:untypedAtomic

xs:dateTime

xs:date

xs:time

xs:duration

xs:float

xs:double

xs:decimal

xs:gYearMonth

xs:gYear

xs:gMonthDay

xs:gDay

xs:gMonth

xs:boolean

xs:base64Binary

xs:hexBinary

xs:anyURI

xs:QName

xs:NOTATION

xs:yearMonthDuration

xs:dayTmeDuration

xs:unsignedLong

xs:unsignedInt

xs:unsignedShort

xs:unsignedByte

xs:positiveInteger

xs:nonNegativeInteger

xs:negativeInteger

xs:long

xs:int

xs:short

xs:byte

xs:nonPositiveInteger

xs:Integer

xs:ID

xs:IDREF

xs:ENTITY

xs:NCName

xs:Name

xs:language

xs:NMTOKEN

xs:token

xs:normalizedString

xs:string

Types, Nodes, and Atomic Values | 145

Types, Nodes, and Atomic Values
Element and attribute nodes, as well as atomic values, all have types associated with
them. Sequences don’t technically have types, although they can be matched to
sequence types, as described later in this chapter.

Nodes and Types
All element and attribute nodes have type annotations, which indicate the type of
their content. An element or attribute can come to be annotated with a specific type
when it is validated against a schema. This might occur when the document is first
opened, or as the result of a validate expression. Schema validation is discussed fur-
ther in Chapter 13.

If an element or attribute has not been validated and does not have a specific type,
it is automatically assigned a generic type, namely xs:untyped (for elements) or
xs:untypedAtomic (for attributes). Sometimes these nodes are referred to as untyped,
despite the fact that they do have a type, albeit a generic one.

Attributes, and most elements, also have a typed value.* This typed value is an atomic
value extracted from the node, taking into account the node’s type annotation. For
example, if the number element has been validated and given the type xs:integer, its
typed value is 784 (type xs:integer). If the number element is untyped, its typed value
is 784 (type xs:untypedAtomic). The data function allows you to retrieve the typed
value of a node.

Atomic Values and Types
Every atomic value has a type. An atomic value might have a specific type because:

• It is extracted from an element or attribute that has a type annotation. This can
be done explicitly using the data function, or automatically using many func-
tions and operators.

• It is the result of a constructor function or a cast expression.

• It is the value of a literal expression. Literals surrounded by single or double
quotes are considered to have the type xs:string, whereas nonquoted numeric
values have the type xs:integer, xs:decimal, or xs:double, depending on their
format.

• It is the result of an expression or function that returns a value of a particular
type—for example, a comparison expression returns an xs:boolean value, and
the count function returns an xs:integer.

* Technically, other kinds of nodes have typed values, too, but they are less useful.

146 | Chapter 11: A Closer Look at Types

A value might not have a specific type if it was extracted from an untyped element or
attribute. In this case, it is automatically assigned the generic type xs:untypedAtomic.
Untyped atomic values can be used wherever a typed value can be used, and they are
usually cast to the required type automatically. This is because every function and
expression has rules for casting untyped values to an appropriate type.

Type Checking in XQuery
Because XQuery is a strongly typed language, an XQuery processor verifies that all
items are of the appropriate type and raises type errors when they are not. There are
two phases to processing a query: the static analysis phase and the dynamic evalua-
tion phase, both of which have type-checking components.

The Static Analysis Phase
During the static analysis phase, the processor checks the query itself, along with any
related schemas, for static errors, without regard to the input documents. It is
roughly equivalent to compiling the query; that is, checking for syntax errors and
other errors that will occur regardless of the input document. The processor raises
static errors during the static analysis phase. Examples of static errors include:

• Syntax errors, such as invalid keywords or mismatched brackets

• Referring to a variable or calling a function that has not been declared

• Using namespace prefixes that are not declared

Some implementations support an optional static typing feature, which means that
they evaluate the types of expressions in a query during the static analysis phase.
This allows errors in the query to be caught early and more reliably, and can help
optimize queries. A number of expressions, functions and syntactic constructs are
available solely to support static typing. These are discussed in Chapter 14.

Implementations that don’t claim to support the static typing feature might also do
static analysis in order to reduce the amount of runtime type checking needs. It’s
always a good idea to declare the types of your variables, function parameters, and
function return types to give the processor as much information as possible.

The Dynamic Evaluation Phase
During the dynamic evaluation phase, the processor checks the query again, this
time with the data from the input document. Some expressions that did not result in
errors during the analysis phase will in fact result in errors during the evaluation
phase. For example, the expression sum(doc("catalog.xml")//number) might pass the
static analysis phase if number is untyped; the processor has no way of knowing
whether all the contents of the number elements will be numeric values. However, it
will raise a dynamic error in the evaluation phase if any of the number elements con-
tains a value that cannot be cast to a numeric type, such as the string abc.

Automatic Type Conversions | 147

Automatic Type Conversions
In XQuery, each function and operator expects its arguments to be of a particular
type. However, this is not as rigid as it may sound since there are a number of type
conversions that happen automatically. They are discussed in this section.

Subtype Substitution
Functions and operators that expect a value of a particular type also accept a value of
one of its derived types. This is known as subtype substitution. For example, the
upper-case function expects an xs:string as an argument, but you can pass a value
whose type is derived by restriction from xs:string, such as xs:NMTOKEN. This also
works for complex types. A function expecting an element of type ProductType also
accepts an element of type UmbrellaType, if UmbrellaType is derived by restriction
from ProductType. Note that the value retains its original type; it is not actually cast
to another type.

Type Promotion
When two values of different numeric types are compared or used in the same oper-
ation, one is promoted to the type of the other. An xs:decimal value can be pro-
moted to the xs:float or xs:double type, and an xs:float value can be promoted to
the xs:double type. For example, the expression 1.0 + 1.2E0 adds an xs:decimal value
(1.0) to an xs:double value. The xs:decimal value is promoted to xs:double before
the expression is evaluated. Numeric type promotion happens automatically in arith-
metic expressions, comparison expressions, and function calls.

In addition, values of type xs:anyURI are automatically promoted to xs:string in
comparison expressions and function calls. Unlike subtype substitution, type promo-
tion results in the type of a value changing.

Casting of Untyped Values
In some cases, an untyped value is automatically cast to a specific type. This occurs
in function calls, as well as in comparison and arithmetic expressions. For example,
if you call the upper-case function with an untyped value, it is automatically cast to
xs:string. If you add an untyped value to a number, as in <a>3 + 2, the untyped
value 3 is cast to xs:integer, and the expression returns 5.

Note that typed values are not automatically cast. For example, "3" + 2 will not auto-
matically cast the string 3 to the number 3, even though this is theoretically possible.
One exception is the concat function, which automatically casts its arguments to
strings. But that’s special behavior of this particular function, not something that
happens implicitly on the function call.

148 | Chapter 11: A Closer Look at Types

Atomization
Atomization occurs when a function or operator expects an atomic value and
receives a node instead. Specifically, it is used in:

• Arithmetic operations

• Comparisons

• Function calls and returns

• Cast expressions and constructors

• Name expressions in computed constructors

Atomization involves extracting the typed value of one or more elements or
attributes to return one or more atomic values. For example:

<el>3</el> + 5

returns the value 8 because the value 3 is extracted from the el element during atomi-
zation. Also:

substring(<e2>query</e2>, 2, 3)

returns uer because the string query is extracted from the e2 element. These two
examples work if e1 and e2 are untyped, because their so-called typed values would
be instances of xs:untypedAtomic, and would be cast to the type required by the oper-
ation. They would work equally well if e1 had the type xs:integer, and e2 had the
type xs:string, in which case no casting would need to take place.

Effective Boolean Value
It is often useful to treat a sequence as a Boolean value. For example, if you want to
determine whether your catalog element contains any products whose price is less
than $20, you might use the expression:

if (doc("prices.xml")//prod[price < 20])
then <bargain-bin>{local:getBargains()}</bargain-bin>
else ()

In this case, the result of the path expression doc("prices.xml")//prod[price < 20] is
a sequence of elements that match the criteria. However, the if expression simply
needs a yes/no answer regarding whether there are any elements that match the crite-
ria. In this case, the sequence is automatically converted to its effective Boolean
value, which essentially indicates whether it is empty.

Sequences are automatically interpreted as Boolean values in:

• Conditional (if-then-else) expressions

• Logical (and/or) expressions

• where clauses of FLWORs

Automatic Type Conversions | 149

• Quantified (some/every) expressions

• The argument to the not function

• The predicates of path expressions

In addition, the boolean function can be used to explicitly convert a sequence to its
effective Boolean value. The effective Boolean value of a sequence is false if it is:

• The empty sequence

• A single, atomic value of type xs:boolean that is equal to false

• A single, atomic value of type xs:string that is a zero-length string ("")

• A single, atomic value with a numeric type that is equal to 0 or NaN

The effective Boolean value is undefined on a sequence of more than one item whose
first item is an atomic value, and on individual atomic values whose type is not
numeric, untyped, or xs:string. If the processor attempts to evaluate the effective
Boolean value, and it is undefined, a type error is raised.

In all other cases, the effective Boolean value is true. This includes a sequence of one
or more items whose first item is a node or a single atomic value other than those
described in the preceding list. Table 11-1 shows some examples.

Note that a node that contains a false atomic value is not the same thing as a false
atomic value by itself. In the <a>false example in Table 11-1, the effective Bool-
ean value is true because a is an element node, not an atomic value of type xs:
boolean. This is true even if the a element is declared to be of type xs:boolean.

Table 11-1. Examples of effective Boolean value

Example Effective Boolean value

() false

false() false

true() true

"" false

"false" true

"x" true

0 false

xs:float("NaN") false

(false() or false()) false

doc("prices.xml")/* true

<a>false true

(false(), false(), false()) Error

1, 2, 3 Error

xs:date("2007-01-15") Error

150 | Chapter 11: A Closer Look at Types

Function Conversion Rules
When you call a function, sometimes the type of an argument differs from the type
specified in the function signature. For example, you can pass an xs:integer to a
function that expects an xs:decimal. Alternatively, you can pass an element that con-
tains a string to a function that expects just a string. XQuery defines rules, known as
function conversion rules, for converting arguments to the expected type. These
function conversion rules apply only if the function expects an atomic value (or
sequence of atomic values).

In fact, these function conversion rules use the various methods of type conversion
and matching that are described in the preceding sections. They are put together
here to show the sequential process that takes place for each argument when a func-
tion is called.

1. Atomization is performed on the argument sequence, resulting in a sequence of
atomic values.

2. Casting of untyped values is performed. For example, the untyped value 12 can
be cast to xs:integer. As noted above, typed values are not cast to other types.

3. If the expected type is numeric or xs:string, type promotion may be performed.
This means that a value of type xs:decimal can be promoted to xs:float, and xs:
float can be promoted to xs:double. A value of type xs:anyURI can be promoted
to xs:string.

Note that these rules do not cover converting a value to the base type from which its
type is derived. For example, if an xs:unsignedInt value is passed to a function that
expects an xs:integer, the value is not converted to xs:integer. However, subtype
substitution does occur, and the function accepts this value.

The reverse is not true; you cannot pass an xs:integer value to a function that
expects an xs:unsignedInt, even if the integer you pass meets all the tests for an
xs:unsignedInt. The value must be explicitly cast to xs:unsignedInt.

As an example of the function conversion rules, if a function expects an argument of
type xs:decimal?, it accepts any of the following:

• An atomic value of type xs:decimal

• The empty sequence, because the occurrence indicator (?) allows for it

• An atomic value of type dty:myDecimal (derived from xs:decimal) because the
sequence type xs:decimal? matches derived types as well

• An atomic value of type xs:integer (derived from xs:decimal) because the
sequence type xs:decimal? matches derived types as well

• An atomic value of type dty:myInteger (derived from xs:integer) because the
sequence type xs:decimal? matches derived types as well

• An untyped atomic value, whose value is 12.5, because it is cast to xs:decimal
(step 2)

Sequence Types | 151

• An element of type xs:decimal, because its value is extracted (step 1)

• An untyped attribute, whose value is 12, because its value is extracted (step 1)
and cast to xs:decimal (step 2)

• An untyped element whose only content is 12.5, because its value is extracted
(step 1) and cast to xs:decimal (step 2)

A function expecting xs:decimal* accepts a sequence of any combination of the
above items. On the other hand, a function expecting xs:decimal? does not accept:

• An atomic value of type xs:string, even if its value is 12.5. This value must be
explicitly cast to xs:decimal or a type error is raised.

• An atomic value of type xs:float, because type promotion only works in one
direction.

• An untyped element whose only content is abc, because its value cannot be cast
to xs:decimal.

• An untyped element with no content, because its value "" (not the empty
sequence) cannot be cast to xs:decimal.

• A typed element whose type allows element-only content even if it has no chil-
dren, because step 1 raises an error.

• A sequence of multiple xs:decimal values; only one item is allowed.

In XPath 1.0, if a function expects a single item and is passed a
sequence of multiple items, it uses the first item and discards the rest.
In XQuery 1.0/XPath 2.0, this situation raises a type error instead.

Sequence Types
A sequence type is used in a query to specify the expected type of a sequence of
zero, one, or more items. When declaring functions, sequence types are used to
specify the types of the parameters as well as the return value. For example, the
function declaration:

declare function local:getProdNums ($catalog as element()) as xs:integer*
 {$catalog/product/xs:integer(number)};

uses two sequence types:

• element(), to specify that the $catalog parameter must be one (and only one)
element

• xs:integer*, to specify that the return type of the function is zero to many xs:
integer values

Sequence types are also used in many type-related expressions, such as the cast as,
treat as, and instance of expressions. The syntax of a sequence type is shown in
Figure 11-2.

152 | Chapter 11: A Closer Look at Types

Occurrence Indicators
An occurrence indicator can be used at the end of a sequence type to indicate how
many items can be in a sequence. The occurrence indicators are:

? For zero or one items

* For zero, one, or many items

+ For one or many items

If no occurrence indicator is specified, it is assumed that the sequence can have one
and only one item. For example, a sequence type of xs:integer matches one and
only one atomic value of type xs:integer. A sequence type of xs:string* matches a
sequence that is either the empty sequence or contains one or more atomic values of
type xs:string. A sequence type of node()? matches either the empty sequence or a
single node.

Remember that there is no difference between an item and a sequence that contains
only that item. If a function expects xs:string* (a sequence of zero to many strings),
it is perfectly acceptable to pass it a single string without attempting to enclose it in a
sequence in any way.

The empty sequence, which is a sequence containing zero items, only matches sequence
types that use the occurrence indicator ? or *, or empty-sequence().

Generic Sequence Types
Follwing are some generic sequence types:

item()
Matches either a node or an atomic value of any type

node()
Matches a node of any kind

Figure 11-2. Syntax of a sequence typea

a The detailed syntax of <element-attribute-test> is shown in Figure 13-4.

item()

node()

text()

<atomic-type-name>

<element-attribute-test>

comment()

processing-instruction()

document-node()

empty-sequence()

*
+

?

Sequence Types | 153

empty-sequence()
Matches the empty sequence

xs:anyAtomicType
Matches an atomic value

Table 11-2 shows some examples of the generic sequence types.

These generic sequence types are useful because it is not possible to specify, for
example, “one or more xs:string values or nodes.” In this case, you would instead
need to specify a more generic sequence type, namely item()+. They’re also useful
when defining generic functions such as reverse or count.

Atomic Type Names As Sequence Types
The sequence type can also be the qualified name of specific built-in or user-defined
atomic types, such as xs:integer, xs:double, xs:date, xs:string, or prod:SizeType.
This matches atomic values of that type or any type derived (directly or indirectly)
from it. For example, the sequence type xs:integer also matches an atomic value of
type xs:unsignedInt, because xs:unsignedInt is indirectly derived by restriction
from xs:integer in the type hierarchy. The reverse is not true; the sequence type
xs:unsignedInt does not match an xs:integer value; it must be explicitly cast.

These sequence types match atomic values only, not nodes that contain atomic
values of the specified type.* An element that contains an integer would match
element(*,xs:integer) (described in the next section) rather than xs:integer, for
example. Table 11-3 shows some examples.

Table 11-2. Examples of generic sequence types

Example Explanation

node()* A sequence of one or more nodes, or the empty sequence

item()? One item (a node or an atomic value) or the empty sequence

xs:anyAtomicType+ A sequence of one or more atomic values (of any type)

* However, in function calls, nodes can be passed to functions expecting these kinds of atomic sequence types,
because of atomization.

Table 11-3. Examples of sequence types based on type name

Example Explanation

xs:integer One atomic value of type xs:integer (or any type derived by restriction from
xs:integer)

xs:integer? One atomic value of type xs:integer (or any type derived by restriction from
xs:integer), or the empty sequence

prod:NameType* A sequence of one or more atomic values of type prod:NameType, or the empty sequence

154 | Chapter 11: A Closer Look at Types

Atomic types used in sequence type expressions must be in the in-scope schema defi-
nitions. This means that if it is not a built-in type, it must have been imported from a
schema.

Element and Attribute Tests
The sequence types element() and attribute() can be used to match any one ele-
ment or attribute (respectively). An alternate syntax, with the same meaning, uses an
asterisk, as in element(*) and attribute(*).

It is also possible to test for a specific name. For example, the sequence type:

element(prod:product)

matches any element whose name is prod:product.

When schemas are used, it is also possible to test elements and attributes based on
their type annotations in addition to their names. This is described in “Sequence
Types and Schemas” in Chapter 13.

Sequence types can be used to test for other node kinds, using document-node(),
text(), comment(), and processing-instruction(). These sequence types are dis-
cussed in Chapter 21.

Sequence Type Matching
Sequence type matching is the process of determining whether a sequence of one or
more items matches a specified sequence type, according to the rules specified in the
preceding sections. Several kinds of expressions perform sequence type matching,
such as the instance of expression described in this section.

Additional static-typing-related expressions, described in Chapter 14, also use the
rules for sequence type matching. The typeswitch expression uses sequence type
matching to control which expressions are evaluated. Other expressions, namely
FLWOR expressions and quantified expressions, allow a sequence type to be speci-
fied to test whether values bound to variables match a particular sequence type.

The “instance of” Expression
To determine whether a sequence of one or more items matches a particular
sequence type, you can use an instance of expression, whose syntax is shown in
Figure 11-3.

Figure 11-3. Syntax of an “instance of” expression

<expr> instance of <sequence-type>

Constructors and Casting | 155

The instance of expression does not cast a value to the specified sequence type. It
simply returns true or false, indicating whether the value matches that sequence
type. Table 11-4 shows some examples of the instance of expression.

Sequence type matching does not include numeric type promotion. For this reason,
the last example in the table returns false.

Constructors and Casting
There are two mechanisms in XQuery for changing values from one type to another:
constructors and casting.

Constructors
Constructors are functions used to construct atomic values with given types. For
example, the constructor xs:date("2006-05-03") constructs an atomic value whose
type is xs:date. The signature of this xs:date constructor function is:

xs:date($arg as xs:anyAtomicType?) as xs:date?

There is a constructor function for each of the built-in atomic types (both primitive
and derived). The qualified name of the constructor is the same as the qualified name
of the type. For the built-in types, constructor names are prefixed with xs to indicate
that they are in the XML Schema namespace.

All of the constructor functions have a similar signature, in that they accept an
atomic value and return an atomic value of the appropriate type. Because function
arguments are atomized, you can pass a node to a constructor function, and its typed
value is extracted. If you pass an empty sequence to a constructor, the result will be
the empty sequence.

Table 11-4. Examples of “instance of” expressions

Example Explanation

3 instance of xs:integer true

3 instance of xs:decimal true, because xs:integer is derived by restriction from
xs:decimal

<x>{3}</x> instance of xs:integer false, because the element node x is untyped, even
though it happens to contain an integer

<x>{3}</x> instance of element() true

<x>{3}</x> instance of node() true

<x>{3}</x> instance of item() true

(3, 4, 5) instance of xs:integer false

(3, 4, 5) instance of xs:integer* true

xs:float(3) instance of xs:double false

156 | Chapter 11: A Closer Look at Types

Unlike most other functions, constructor functions will accept arguments of any type
and attempt to cast them to the appropriate type.* The argument value must have a
type that can be cast to the new type; otherwise, a type error is raised. Values of
almost all types can be cast to and from xs:string and xs:untypedAtomic. The spe-
cific rules for casting among types are described in “Casting Rules,” later in this
chapter.

In addition, the value must also be valid for the new type. For example, although the
rules allow you to cast an xs:string value to xs:date, the expression xs:date("2006-
13-02") raises an error because the month 13 is invalid.

Constructors also exist for all named user-defined atomic types that are in the in-
scope schema definitions. If, in a schema, you have defined a type prod:SizeType that
is derived from xs:integer by setting minInclusive to 0 and maxInclusive to 24, you
can construct a value of this type using, for example:

prod:SizeType("10")

The qualified names must match, so the prefix prod must be mapped to the target
namespace of the schema containing the SizeType definition. If the type name is in
no namespace (the schema in which it is defined has no target namespace), you can-
not use a constructor (unless you change the default function namespace, which is
not recommended). You must use a cast expression instead.

The Cast Expression
Casting is the process of changing a value from one type to another. The cast expres-
sion can be used to cast a value to another type. It has the same meaning as the con-
structor expression; it is simply a different syntax. The only difference is that it can
be used with a type name that is in no namespace. For example:

$myNum cast as xs:integer

casts the value of $myNum to the type xs:integer. It is equivalent to xs:integer($myNum).
The syntax of a cast expression is shown in Figure 11-4.

The cast expression consists of the expression to be cast, known as the input expres-
sion, followed by the keywords cast as, followed by the qualified name of the target

* This is because constructor functions do not rely on function conversion rules to perform automatic casts;
the signature accepts arguments of any type and it is part of the function’s purpose to cast those values to
the appropriate type.

Figure 11-4. Syntax of a cast expression

<expr> cast as <atomic-type-name>

?

Constructors and Casting | 157

type. Only a named atomic type can be specified, either a built-in type or a user-
defined simple type whose definition is among the in-scope schema definitions.

The name of the atomic type may optionally be followed by a question mark as an
occurrence indicator. In this case, the cast expression evaluates to the empty
sequence if the input expression evaluates to the empty sequence. If no question
mark is used, the input expression cannot evaluate to the empty sequence, or a type
error is raised. This is in contrast to constructors, which always allow the empty
sequence.

You cannot use the other occurrence indicators + and * because you cannot cast a
sequence of more than one item using a cast expression. To cast more than one
value, you could place your cast expression as the last step of a path, as in:

doc("catalog.xml")//number/(. cast as xs:string)

The input expression can evaluate to a node (in which case it is atomized to retrieve
its typed value) or an atomic value. As with constructors, the value must have a type
that allows casting to the target type, and it must also be a valid value of the target
type.

The Castable Expression
The castable expression is used to determine whether a value can be cast to another
specified atomic type. It is sometimes useful to determine this before the cast takes
place to avoid dynamic errors, or to determine how the expression should be pro-
cessed. For example:

if ($myNum castable as xs:integer)
then $myNum cast as xs:integer
else ()

evaluates to $myNum cast to xs:integer if that is valid, otherwise the empty sequence.
If the castable expression had not been used to test this, and $myNum was not castable
as an xs:integer, an error would have been raised. The syntax of a castable expres-
sion is shown in Figure 11-5.

The castable expression consists of an expression, followed by the keywords
castable as, followed by the qualified name of the target type. It evaluates to a Bool-
ean value. As with the cast expression, you can use the question mark as an occur-
rence indicator. The castable expression determines not only whether the one type
can be cast to the other type, but also whether that specific value is valid for that
type.

Figure 11-5. Syntax of a castable expression

<expr> castable as <atomic-type-name>

?

158 | Chapter 11: A Closer Look at Types

Casting Rules
This section describes the rules for casting atomic values between specific types.
These rules are used in cast expressions and constructors. In this section, the source
type refers to the type of the original value that is being cast, and the target type
refers to the type to which the value is being cast.

Casting among the primitive types

Specific rules exist for casting between each combination of two primitive types.
These rules are discussed, along with the types themselves, in Appendix B. The rules
can be summarized as follows:

• Values of any atomic type can be cast to and from xs:string and xs:untypedAtomic
if the value is valid for the target type. See the next two sections for more
information.

• A value of a numeric type can be cast to any other numeric type if the value is in
the value space of the target type.

• A value of a date, time, or duration type can sometimes be cast to another date,
time, or duration type.

• Other types (xs:boolean, xs:QName, xs:NOTATION, xs:anyURI, xs:hexBinary, and
xs:base64Binary) have limited casting ability to and from types other than xs:
string and xs:untypedAtomic. See Appendix B for more information on each
type.

Casting to xs:string or xs:untypedAtomic

A value of type xs:string or xs:untypedAtomic can be cast to any other primitive
type. For example, xs:integer("12") casts the xs:string value 12 to xs:integer. Of
course, the string must represent a valid lexical representation of the target type. For
example, xs:integer("12.1") raises an error because the lexical representation of
xs:integer does not allow fractional parts.

When a value is cast from xs:string to another primitive type, whitespace is col-
lapsed. Specifically, this means that every tab, carriage return, and line feed charac-
ter is replaced by a single space; consecutive spaces are collapsed into one space; and
leading and trailing spaces are removed. Therefore, xs:integer(" 12 ") is valid, even
with the leading and trailing whitespace.

Casting to xs:string or xs:untypedAtomic

An atomic value of any type can be cast to xs:string or to xs:untypedAtomic. Some
types have special rules about how their values are cast to xs:string. For example,
integers have their leading zeros stripped. The rules (if any) for each type are
described in Appendix B. Table 11-5 shows some examples of casting to xs:string
and xs:untypedAtomic.

Constructors and Casting | 159

Casting among derived types

Now that you have seen casting among the primitive types, let’s look at derived
types. There are three different cases.

The first case is that the source type is derived by restriction from the target type. In
this case, the cast always succeeds because the source type is a subset of the target
type. For example, an xs:byte value can always be cast to xs:integer.

The second case is that the source type and the target type are derived by restriction
from the same primitive type. In this case, the cast succeeds as long as the value is in
the value space of the target type. For example, xs:unsignedInt("60") can be cast to
xs:byte, but xs:unsignedInt("6000") cannot, because 6000 is too large for xs:byte.
This case also applies when the target type is derived by restriction from the source
type. For example, xs:integer("25") can be cast to xs:unsignedInt, which is derived
from it.

The third case is that the source type and the target type are derived by restriction from
different primitive types—for example, if you want to cast a value of xs:unsignedInt to
dty:myFloat, which is derived by restriction from xs:float. In this case, the casting
process has three steps:

1. The value is cast to the primitive type from which it is derived, e.g., from xs:
unsignedInt to xs:decimal.

2. The value is cast from that primitive type to the primitive type from which the
target type is derived, e.g., from xs:decimal to xs:float.

3. The value is cast from that primitive type to the target type, e.g., from xs:float
to dty:myFloat.

Table 11-5. Examples of casting to xs:string and xs:untypedAtomic

Expression Value

xs:string("012") "012"

xs:string(012) "12"

xs:string(xs:float(12.3E2)) "1230"

xs:untypedAtomic(xs:float(12)) 12 (of type xs:untypedAtomic)

xs:string(true()) "true"

160

Chapter 12CHAPTER 12

Queries, Prologs, and Modules 12

This chapter covers the structure of queries in more detail. It discusses the query pro-
log and its various declarations. It then describes how to assemble queries from mul-
tiple modules, declare global variables, and define external functions.

Structure of a Query: Prolog and Body
An XQuery query is made up of two parts: a prolog and a body. The query prolog is
an optional section that appears at the beginning of a query. The prolog can contain
various declarations that affect settings used in evaluating the query. This includes
namespace declarations, imports of schemas, variable declarations, function declara-
tions, and other setting values. In a query module of any size, the prolog is actually
likely to be much larger than the body.

Example 12-1 shows a query with a prolog containing several different types of dec-
larations.

The query body is a single expression, but that expression can consist of a sequence
of one or more expressions that are separated by commas. Example 12-2 shows a
query body that contains a sequence of two expressions, a constructed element, and

Example 12-1. A query prolog

xquery version "1.0";
declare default element namespace "http://datypic.com/cat";
declare boundary-space preserve;
declare default collation "http://datypic.com/collation/custom";
declare namespace ord = "http://datypic.com/ord";
import schema namespace prod="http://datypic.com/prod"
 at "http://datypic.com/prod.xsd";
declare function local:getProdNums
 ($catalog as element()) as xs:integer*
 {for $prod in $catalog/product
 return xs:integer($prod/number)};

Structure of a Query: Prolog and Body | 161

a FLWOR. The comma after the title element is used to separate the two expres-
sions in the query body.

Prolog Declarations
The prolog consists of a series of declarations terminated by semicolon (;) charac-
ters. There are three distinct sections of the prolog.

The first declaration to appear in the query prolog is a version declaration, if it exists.

The second prolog section consists of setters, imports, and namespace declarations.
Setters are the declarations listed in Table 12-1, along with a link to where they are
covered fully in the book. Each kind of setter can only appear once. Imports and
namespace declarations, listed in Table 12-2, can appear intermingled with setters in
any order.

The last section of the prolog consists of function, variable, and option declarations,
listed in Table 12-3. They must appear after all the setters, imports, and namespace
declarations.

Example 12-2. A query body

<title>Order Report</title>,
(for $item in doc("order.xml")//item
 order by $item/@num
 return $item)

Table 12-1. Query prolog setters

Declaration Description Chapter

Boundary-space How to process boundary whitespace in element constructors 5

Ordering mode Whether the default order is document order or some implementation-
dependent order

7

Empty order Whether empty sequences should come first or last when ordered 7

Copy-namespaces Whether nodes copied in constructors should copy namespaces from their
parents

10

Construction Whether nodes copied in constructors should be typed 13

Default collation The default collation for string comparison 17

Base URI The base URI of the static context 20

Table 12-2. Query prolog imports and namespace declarations

Declaration Description Chapter

Default namespace declaration Maps unprefixed names to a namespace for the entire scope of the query 10

Namespace declaration Maps a prefix to a namespace for the entire scope of the query 10

Module import Imports a function module from a specified location 12

Schema import Imports a schema definition from a specified location 13

162 | Chapter 12: Queries, Prologs, and Modules

It is important to note that your processor might also be setting these values. For
example, different XQuery implementations can choose to build in different default
collations or different sets of predefined functions. In addition, an implementation
might allow the user to specify these values outside the query—for example, using a
command-line interface. Prolog declarations override or augment the default settings
defined outside the scope of the query.

The Version Declaration
The first of the declarations in Example 12-1 is a version declaration, whose syntax is
shown in Figure 12-1. The version declaration is used to indicate the version of the
XQuery language. 1.0 is the default (and the only allowed value), so it does not actu-
ally need to be explicitly specified, though it’s recommended if you expect your
query to be long-lived. If a version declaration does appear, it must appear first in the
query, even before any comments.

The version declaration also allows you to specify a character encoding for the query
itself using the encoding keyword and a literal string. For example, the following ver-
sion declaration specifies an encoding of UTF-8:

xquery version "1.0" encoding "UTF-8";

Other example values for the encoding include UTF-16, ISO-8859-1, and US-ASCII.
The way encoding is handled is somewhat implementation-dependent, in that pro-
cessors are allowed to ignore the encoding value specified in the query if they have
other knowledge about the encoding.

Because the encoding of a file can easily change unintentionally—for example, when
you save it using a text editor—it’s safest to stick to using ASCII characters in the
query, using numeric character references for any non-ASCII characters.

Table 12-3. Query prolog variable and function declarations

Declaration Description Chapter

Function declaration Declares a user-defined function 8

Variable declaration Declares global variables 12

Option declaration Declares implementation-specific parameters 23

Figure 12-1. Syntax of a version declaration

xquery version "<version>"

encoding "<encoding>"

;

Assembling Queries from Multiple Modules | 163

Assembling Queries from Multiple Modules
So far, all of this book’s example queries were contained in one module, known as
the main module. However, you can declare functions and variables in other mod-
ules and import them into the main module of the query. This is a very useful fea-
ture for:

• Reusing functions among many queries

• Creating standardized libraries that can be distributed to a variety of query users

• Organizing and reducing the size of query modules

The main module contains a query prolog followed by a query body, which is the
main expression to be evaluated. In its prolog, the main module can import other
modules known as library modules.

Not all implementations support the use of library modules; it is an optional feature.

Library Modules
Library modules differ from main modules in that they cannot have a query body,
only a prolog. They also differ in that they must start with a module declaration,
whose syntax is shown in Figure 12-2.

The module declaration identifies the module as a library module. It also declares the
target namespace of the module and maps it to a prefix. For example, the expression:

module namespace strings = "http://datypic.com/strings";

declares the target namespace of the module to be http://datypic.com/strings and
binds that namespace to the prefix strings.

The target namespace must be a literal value in quotes, not an evaluated expression.
It should be a syntactically valid absolute URI, and cannot be a zero-length string.

All of the functions and variables declared in that library module must be qualified
with that same target namespace. This differs from main modules, which do not
have target namespaces and allow you to declare variables and functions in a variety
of namespaces.

Figure 12-2. Syntax of a module declaration

module namespace <prefix> = "<namespace-name>" ;

164 | Chapter 12: Queries, Prologs, and Modules

This is shown in Example 12-3, where the variable and function names are prefixed
with strings.

Importing a Library Module
Both main modules and library modules can import other library modules. Import-
ing a library module allows its variables and functions to be referenced from the
importing module. Only library modules can be imported; a main module can never
be imported by another module.

A module import, which appears in the prolog, specifies the target namespace and
location of the library module to be imported. Multiple module imports can appear
in the query prolog. (The syntax of a module import is shown in Figure 12-3.)

For example, the declaration:

import module "http://datypic.com/strings"
 at "http://datypic.com/strings/lib.xq";

imports the module from http://datypic.com/strings/lib.xq whose target namespace
is http://datypic.com/strings. The target namespace specified in the module import
must match the target namespace of the library module that is being imported. The
module location and namespace must be literal values in quotes (not evaluated
expressions), and they should be syntactically valid absolute URIs.

Imported modules can have the same target namespace as the importing module, or
they can have a different one. For convenience, it is also possible to map a
namespace prefix directly in the module import. For example:

import module namespace strings = "http://datypic.com/strings"
 at "http://datypic.com/strings/lib.xq";

binds the prefix strings to the namespace, in addition to importing the module.

Example 12-3. Module

module namespace strings = "http://datypic.com/strings";
declare variable $strings:maxStringLength := 32;
declare function strings:trim($arg as xs:string?) as xs:string? {
 "function body here"
};

Figure 12-3. Syntax of a module import

import module

namespace <prefix> =

"<namespace-name>"

at "<location>"

;

,

Assembling Queries from Multiple Modules | 165

The at keyword and location are optional. If the processor has some other way to
locate the module based on its target namespace, it can be omitted. In fact, the pro-
cessor is not required to use the location even if it is provided.

Multiple module imports

It is possible to specify multiple module locations for the same target namespace in a
single import, using commas to separate them, as in:

import module "http://datypic.com/strings"
 at "http://datypic.com/strings/lib.xq",
 "http://datypic.com/strings/lib2.xq";

This syntax is the only way to specify multiple imports for the same target
namespace. If two separate module imports specify the same target namespace, an
error is raised.

Function signatures and variable names must be unique across all modules that are
used together (main or imported). Declaring two functions with the same qualified
name and the same number of parameters raises an error, as does declaring two vari-
ables with the same qualified name. These errors are raised even if the two duplicate
declarations are exactly the same.

Library modules can import other library modules, even ones with the same target
namespace. However, circular module imports are not allowed unless all modules
imported in the circle have the same target namespace. This means you need to plan
the assignment of functions to modules with great care. For example, if you have a
module for manipulating postal codes and another for manipulating geographical
coordinates, and if each of these modules needs to reference functions in the other
module, then you will have to either put them in the same namespace or move some
shared components to a third, neutral namespace.

The behavior of a module import

It is important to understand that a module import only imports the function and
variable declarations of the library module. It does not import any schemas or other
modules that are imported in the prolog of the library module.

For example, suppose the strings.xq library module contains an import of a third
module, called characters.xq. If the main module imports strings.xq, that does not
mean that characters.xq is also imported into the main module. If the main module
refers to the functions and variables of characters.xq directly, it needs to have a sep-
arate module import for characters.xq.

Likewise, if strings.xq imports a schema named stringtypes.xsd, the main module
that imports strings.xq must also separately import the schema if it refers to any
types from that schema. This is described further in the section “Schema Imports” in
Chapter 13.

166 | Chapter 12: Queries, Prologs, and Modules

Variable Declarations
Variables can optionally be declared (and bound) in the query prolog. If a variable is
bound within an expression in the query body, it does not have to be declared in the
prolog as well. For example, you can use the expression let $myInt := 2 in the query
body without declaring $myInt in advance. $myInt is bound when the let expression
is evaluated.

However, it is sometimes necessary to declare variables in the prolog, such as when:

• They are referenced in a function that is declared in that module

• They are referenced in other modules that import the module

• Their value is set by the processor outside the scope of the query

Declaring variables in the prolog can also be a useful way to define constants, or val-
ues that can be calculated up front and used throughout the query. It’s important to
remember that global variables (prolog-declared variables) are immutable, just like
other XQuery variables.

Variable Declaration Syntax
The syntax of a variable declaration is shown in Figure 12-4. For example, the decla-
ration:

declare variable $maxItems := 12;

binds the value 12 to the variable $maxItems.

A previous draft of the XQuery recommendation specified the follow-
ing syntax for variable declarations:

 define variable $maxItems {12}

Some popular XQuery implementations still use this old syntax.

The Scope of Variables
The processor evaluates all variable declarations in the order they appear, before it
evaluates the query body. When a variable declaration is evaluated, the variable is
bound to a specific value.

Figure 12-4. Syntax of a variable declarationa

a The optional as clause, useful for static typing, is described in “Type Declarations in Global Variable Decla-
rations” in Chapter 14.

as <sequence-type>

:= <expr>declare variable $ <variable-name>

external

;

Variable Declarations | 167

After a variable is bound, you can reference that variable anywhere in the query. If a
function body references a variable that is declared in the prolog, the function decla-
ration must appear after the variable declaration. Similarly, if one global variable ref-
erences another, the referencing variable must come after the referenced variable.
This differs from functions referencing other functions, where forward references are
allowed.

As with all other XQuery variables, a variable can only be bound once. Therefore,
you cannot declare a variable in the prolog and then set its value later, for example,
in a let expression. If you attempt to do this, it will be considered an entirely new
variable with the same name and a smaller scope (the FLWOR).

Variable Names
Each variable declaration specifies a unique variable name. Variables have qualified
names, meaning that they can be associated with a namespace. In the main module,
variable declarations can have either unprefixed or prefixed names. If they have
unprefixed names, they are not in any namespace, since variable names are not
affected by default namespace declarations. If they are prefixed, they can be associ-
ated with any namespace that was also declared in the prolog.

In library modules, on the other hand, the names of declared variables must be in the
target namespace of the module. Since default namespace declarations do not apply
to variable names, this means that they must be prefixed, with a prefix mapped to
the target namespace. This applies only to the variables that are declared in the pro-
log. If other variables are bound inside a function body, for example in let clauses,
they can be in no namespace (unprefixed) or associated with a namespace other than
the target namespace.

Initializing Expressions
The expression that specifies the value of the variable is known as the initializing
expression. In the previous example, it was 12. It does not have to be a constant; it
can be any valid XQuery expression. For example:

declare variable $firstNum := doc("catalog.xml")//product[1]/number;

binds the value of the first product number in the catalog to the $firstNum variable.

The initializing expression can call any function that is declared anywhere in the
module or in an imported module. However, it can only reference variables that are
declared before it. The following example is invalid because the initializing expres-
sion of $firstNum references a variable that is declared later:

declare variable $firstNum := $firstProd/number;
declare variable $firstProd := doc("catalog.xml")//product[1];

168 | Chapter 12: Queries, Prologs, and Modules

Neither can the declarations be circular. For example, an initializing expression can-
not call a function that itself references the variable being initialized.

External Variables
External variables are variables whose values are bound by the processor outside the
scope of the query. This is useful for parameterizing queries. For example, an exter-
nal variable might allow a query user to specify the maximum number of items she
wants returned from the query.

To declare an external variable, you use the keyword external instead of an initializ-
ing expression, as in:

declare variable $maxItems external;

In this case, the processor must have bound $maxItems to a value before the query is
evaluated. Consult the documentation of your XQuery implementation to determine
exactly how you can specify the values of external variables outside the query. It may
allow them to be specified on a command-line interface or set programmatically.

Note that external variables are not the same thing as variables that are imported
from other XQuery modules. Variables from imported modules do not need to be
redeclared in the importing module.

Declaring External Functions
External functions can be provided by a particular XQuery implementation. They
may be unique to that implementation or be part of a standard set of extensions
defined by a user community. They may be implemented in XQuery or in another
language; they simply need to be able to interface with a query using an XQuery
function signature.

External functions may be declared with signatures in the query prolog. Their syntax
starts out similar to a function declaration, but instead of a function body in curly
braces, they use the keyword external. For example:

declare function ext:trim ($arg as xs:string?) as xs:string? external;

declares an external function named trim. Like other function names, the names of
external functions must be prefixed. This example assumes that the ext prefix has
been declared using a namespace declaration.

Note that external functions are not the same thing as user-defined functions that are
imported from other modules. Functions declared in imported modules do not need
to be redeclared in the importing module.

Declaring External Functions | 169

You should consult the documentation for your XQuery implementation to deter-
mine whether there are libraries of external functions that you can call, or whether
you are able to write external functions of your own. Many processors are likely to
provide the capability to write external functions written in procedural program-
ming languages such as C# and Java. This creates the possibility of calling functions
that have side effects. Even fairly innocent-looking functions, such as reading a
record from a file, can have side effects (in this case, it changes the current position
in the file). Such functions need great care because XQuery does not define the order
of evaluation, and in some cases it may not call a function at all if the results aren’t
needed.

170

Chapter 13CHAPTER 13

Using Schemas with XQuery 13

Using schemas can result in queries that are better optimized and tested. This chap-
ter first provides a brief overview of XML Schema. It then explains how schemas are
used with queries, by importing schema definitions and taking advantage of schema-
defined types.

What Is a Schema?
A schema is used to describe the structure and data content of XML documents.
Example 13-1 shows a schema that might describe our catalog.xml sample docu-
ment. This schema can be used to validate the catalog document, assuring that:

• Only approved elements and attributes are used

• The elements appear in the correct order

• All required elements are present

• All elements and attributes have valid values

In addition, it can provide information to the query processor about the types of the
values in the document—for example, that product numbers are integers.

Example 13-1. Schema for catalog.xml

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="catalog" type="CatalogType"/>
 <xs:complexType name="CatalogType">
 <xs:sequence>
 <xs:element ref="product" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="product" type="ProductType"/>
 <xs:complexType name="ProductType">
 <xs:sequence>
 <xs:element name="number" type="xs:integer"/>
 <xs:element name="name" type="NameType"/>
 <xs:element name="colorChoices" type="ColorListType" minOccurs="0"/>
 <xs:element name="desc" minOccurs="0"/>

Why Use Schemas with Queries? | 171

Why Use Schemas with Queries?
There are a number of advantages of using schemas with queries:

Predictability
If an input document has been validated against a schema, its structure and data
content are predictable. If the schema says that there will always be a number
child of product, and your input document was validated, you can be sure that a
number child will exist for each product. You do not need to check for its exist-
ence before you use it in an expression.

Type information for use in expressions
The schema provides type information to the query processor about the values
in the instance document. For example, it can tell us that the number element
contains an integer value. This is useful, for example, if you write a query that
returns results sorted by number. The query processor will know that the number
values should be sorted as integers and not strings, and will therefore sort 100
after 99. If they were sorted as strings, 100 would come before 99.

Identification of query errors
Schemas can be used in static analysis to determine the expected type of an
expression. Using schemas, you might discover errors in the query that were not
otherwise apparent. Schemas can also help you debug your queries more quickly
and easily by providing more useful error messages. To use a SQL analogy, you
wouldn’t want a SQL statement that had a misspelled column name to come
back with nothing instead of raising an error. Without XML schemas, this is
exactly what your XQuery queries will do if you misspell an element name or
specify an invalid path: return nothing.

 </xs:sequence>
 <xs:attribute name="dept" type="xs:string"/>
 </xs:complexType>
 <xs:simpleType name="ColorListType">
 <xs:list itemType="xs:string"/>
 </xs:simpleType>
 <xs:complexType name="NameType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="language" type="LangType"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:simpleType name="LangType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="en"/>
 <xs:enumeration value="fr"/>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

Example 13-1. Schema for catalog.xml (continued)

172 | Chapter 13: Using Schemas with XQuery

Query optimization
The more a processor knows about the structure of the input documents, the
more it can optimize access to them. For example, if a schema is present, an
expression such as catalog//number is a simple matter of looking at the grand-
children of catalog and returning those named number. If no schema is present,
every node of the document must be traversed to find number elements.

Special processing based on type
Type-related expressions, such as instance of and typeswitch, can be used on
user-defined types in the schema. For example, you could write an expression
that processes the product element differently depending on whether it is of type
ShirtType, HatType, etc.

Validity of query results
A query might be designed to produce results that conform to a particular XML
language, such as XHTML. Performing schema validation in the query ensures
that the results are valid XHTML. If the query isn’t generating valid XHTML,
the query processor may be able to pinpoint the error in your query.

Some query users are not concerned about these benefits, and they feel that using
schemas adds too much complexity. For these users, it is entirely possible to use
XQuery without schemas. If no schema is present, all of the elements and
attributes are untyped. This means that they are assigned generic types (xs:untyped
and xs:untypedAtomic) that allow any content or value.

W3C XML Schema: A Brief Overview
The schema language supported directly by the XQuery recommendation is W3C
XML Schema, which is a W3C Recommendation with two normative parts:*

Part 1 Structures
Defines a language for defining schemas, which express constraints on XML
documents.

Part 2 Datatypes
Defines a rich set of built-in types that can be applied to XML documents
through schemas, as well as through other mechanisms.

The XML Schema built-in types defined in Part 2 are the basis for the atomic types
used in XQuery. Regardless of whether schemas are present, these types can be used
in queries to represent common datatypes such as strings, numbers, dates, and times.
All XQuery implementations support this basic set of types.

* Full coverage of XML Schema is outside the scope of this book. For detailed coverage, please see Definitive
XML Schema by Priscilla Walmsley (Prentice Hall PTR).

W3C XML Schema: A Brief Overview | 173

XQuery also interacts with Part 1 of XML Schema. Schema definitions can be used in
queries to validate input documents, intermediate values, and result elements.

XQuery does not currently provide specific support for other schema languages or
validation mechanisms such as DTDs, RELAX NG, or Schematron. However, a pro-
cessor can be written that validates a document using one of these schema languages
and annotates its elements and attributes with appropriate types.

Element and Attribute Declarations
Elements and attributes are the most basic components of an XML document. The
catalog schema has a declaration for each of the different kinds of elements and
attributes in the catalog, such as product, number, and dept. Elements are declared in the
schema using an xs:element element, while attributes are declared with xs:attribute.

Element and attribute declarations can be declared globally or locally. The catalog
and product element declarations are global, meaning that they appear as a child of
xs:schema in the schema document. The other element declarations, along with the
attribute declaration, are local, and their scope is the type (ProductType or NameType)
in which they are declared. If you’re writing a schema with XQuery in mind, you
should use a global declaration for any elements that you want to validate sepa-
rately. That’s because you can only validate against a global element declaration.

Types
Every element and attribute is associated with a type. Types are used to specify a
class of elements (or attributes), including their allowed values, the structure of their
content, and/or their attributes.

Simple and complex types

Types in XML Schema can be either simple or complex. Simple types are those that
allow text content, but no child elements or attributes. In our catalog.xml docu-
ment, the elements number and colorChoices have simple types because they have
neither children nor attributes. Attributes themselves always have simple types
because they always have simple values.

Complex types, by contrast, allow children and/or attributes. In catalog.xml, the ele-
ments catalog, product, and desc have complex types because they have children.
The name element also has a complex type, even though it does not have children,
because it can have an attribute.

174 | Chapter 13: Using Schemas with XQuery

Complex types are further divided into four different content types. The different
content types vary in whether they allow child elements and text content. Table 13-1
lists the four content types and provides examples for each. The content type is not
affected by the presence of attributes; all complex types allow attributes, regardless
of content type.

User-defined types

XML Schema allows user-defined types to be created based on existing types. A new
simple type can be defined that is a restriction of another type. Example 13-1 shows
a simple type LangType that is derived from the built-in type xs:string. New com-
plex types can also be derived from other complex types, either by restriction (fur-
ther constraining the base type) or extension (adding new attributes or child
elements). For example, based on the schema in Example 13-1 you could define a
new complex type ShirtType that extends ProductType to add child elements that are
relevant only to shirts, such as sleeve length, not to products in general.

As with the built-in types, these type derivations result in a type definition hierarchy that
is in some ways analogous to an object-oriented hierarchy of sub- and superclasses.

List types

A list type is a different variety of atomic type that represents whitespace-separated
lists of values. The type of each item in the list is known as the item type. In our
example schema, the colorChoices element is declared to be of a type that is a list of
xs:string values. Therefore, the element:

<colorChoices>navy black</colorChoices>

has content that is treated like two separate values, navy and black. An XQuery pro-
cessor treats it somewhat differently than if it had an atomic type: it treats it like a
sequence of two atomic values, in this case strings. If you test the value for equality,
as follows:

doc("catalog.xml")//product[colorChoices = 'navy']

it will return that element (the first product in the catalog). If colorChoices were of
type xs:string, or untyped, the product would not be selected because the value
navy black would be treated as one string.

Table 13-1. Content types for complex types

Content type Allows children? Allows text content? Example

Simple No Yes <name lang="en">Shirt</name>

Element-only Yes No <product dept="MEN">
 <number>784</number>
</product>

Mixed Yes Yes <desc>Our <i>best</i> shirt!</desc>

Empty No No <discounted value="true"/>

In-Scope Schema Definitions | 175

Namespaces and XML Schema
When a target namespace is indicated in a schema, all of the globally declared elements
and attributes take on that target namespace as part of their name. Example 13-2 shows
the beginning of the catalog schema, which specifies a target namespace, http://
datypic.com/prod, using the targetNamespace attribute on the xs:schema element.

Using this schema, the catalog element would have to be associated with a namespace
in an instance document (and in any queries on that instance document). In addition,
named type definitions also have names that are qualified by the target namespace. To
refer to CatalogType, you use its qualified name—for example, prod:CatalogType if the
prefix prod is mapped to the namespace http://datypic.com/prod.

In-Scope Schema Definitions
In any module, there is a set of in-scope schema definitions (ISSDs) that can be refer-
enced within the query. This includes type definitions, element declarations and
attribute declarations. They can describe the input documents, the result XML, or
both. You may want to reference schema definitions for a number of reasons, such as:

• To write functions that only accept values of a certain user-defined type. For
example, a function that queries sleeve length might accept only elements of type
ShirtType.

• To validate a node that you constructed in your query. For example, you used
constructors to create a product element and its children, and you want to ensure
that it is valid according to ProductType.

• To determine whether a value is an instance of a particular user-defined type in
order to decide how to process it. For example, if the size value is an instance of
ShirtSizeType, you want to call one function, whereas if it is a value of HatSizeType,
you want to call a different function.

• You want to perform static type analysis and you want the schema definitions to
be taken into account.

If you don’t need to do any of these things, you are not required to include your
schemas in the in-scope schema definitions. This is true even if your input document
was validated against a schema.

Example 13-2. Beginning of the catalog schema with target namespace

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 targetNamespace="http://datypic.com/prod"
 xmlns:prod="http://datypic.com/prod">
 <xs:element name="catalog" type="prod:CatalogType"/>
 <xs:complexType name="CatalogType">
 <!-- ... -->

176 | Chapter 13: Using Schemas with XQuery

Where Do In-Scope Schema Definitions Come from?
Definitions for the built-in types are automatically included in the ISSD. A processor
may include additional schema declarations and definitions in the ISSD according to
implementation-defined rules. For example, it may have a set of built-in schemas
that are always present. Processors that support schema validation may add defini-
tions from the schema with which an input document is validated. Additionally,
some implementations will allow you to specify programmatically or as a parame-
ter—outside the scope of the query—what schemas to import.

Schema Imports
A schema import is used in XQuery to add a schema to the ISSD for a module. When
a schema is imported, all of its global element and attribute declarations and type
definitions are added.

A schema import, which appears in the query prolog, specifies the target namespace
and, optionally, the schema location. For example:

import schema "http://datypic.com/prod"
 at "http://datypic.com/prod.xsd";

imports the schema document at http://datypic.com/prod.xsd whose target namespace
is http://datypic.com/prod.

The syntax of a schema import is shown in Figure 13-1. The schema location and
namespace must be literal values in quotes (not evaluated expressions), and they
should be syntactically valid absolute URIs.

For convenience, it is also possible to include a namespace declaration as part of the
schema import. For example:

import schema namespace prod = "http://datypic.com/prod"
 at "http://datypic.com/prod.xsd";

maps the prod prefix to the namespace, in addition to importing it. Additionally, a
default namespace declaration can be included in a schema import, as in:

import schema default element namespace "http://datypic.com/prod"
 at "http://datypic.com/prod.xsd";

Figure 13-1. Syntax of a schema import

import schema

namespace <prefix> =

default element namespace

"<namespace-name>"

at "<location>"

;

,

In-Scope Schema Definitions | 177

This has the effect of making http://datypic.com/prod the default element
namespace, in addition to importing the schema with that target namespace.

If the at keyword and schema location are left off, it is assumed that the processor
knows where to locate the schema for the specified namespace. It is also legal for the
processor to ignore the location provided if it has another method of locating the
schema.

Schema import is an optional feature that is not supported by all implementations.

Importing a schema with no target namespace

If the imported schema has no target namespace, a zero-length string should be used
for the target namespace, as in:

import schema "" at "http://datypic.com/prod.xsd";

In order to reference any of the element or type names in that schema, you must
make the default namespace the zero-length string (""). You can do this using the
same syntax described in the previous section:

import schema default element namespace ""
 at "http://datypic.com/prod.xsd";

Importing multiple schemas with the same target namespace

Multiple schema imports can appear in the query prolog, but only one per
namespace. To specify multiple schema documents with the same target namespace,
use a single schema import with multiple schema locations separated by commas, as in:

import schema "http://datypic.com/prod"
 at "http://datypic.com/prod.xsd",
 "http://datypic.com/prod2.xsd";

Schema imports and library modules

When importing a library module into your query, it is important to understand that
a module import only imports the function and variable declarations of the library
module. It does not automatically import the schemas that are imported in the pro-
log of the library module.

For example, suppose you have a library module called strings.xq that imports a
schema named stringtypes.xsd. When the main module imports strings.xq, the
stringtypes.xsd definitions are not automatically added to the in-scope schema defi-
nitions of the main module. If the main module needs to refer directly to any of the
types or declarations of stringtypes.xsd, it must import that schema explicitly in its
prolog.

In addition, the main module must import stringtypes.xsd if it uses any variables or
functions from strings.xq that depend on a type definition from the schema. For
example, suppose strings.xq contains the variable declaration:

declare variable $strings:LetterA as strings:smallString := "A";

178 | Chapter 13: Using Schemas with XQuery

where smallString is a user-defined type defined in stringtypes.xsd. The main mod-
ule must import the stringtypes.xsd schema if it uses the LetterA variable. This does
not apply to the built-in types, such as xs:integer or xs:string, whose definitions
are always in scope.

Schema Validation and Type Assignment
Adding a schema to the ISSD does not automatically cause any input documents or
result XML to be validated or annotated with types. There are two occasions during
query evaluation when schema validation may occur:

The first is when an input document is opened, for example using the doc or
collection function. Depending on the implementation, the processor may validate
the input document at this time. However, a processor is not required to automati-
cally validate input documents, even if it supports XML Schema. It can choose the
way it finds and selects schemas for the input document. Additionally, the processor
is not required to stop evaluating the query if an input document is found to be
invalid but still well formed. You should consult the documentation for your XQuery
implementation to determine how it handles these choices.

If you’re relying on an input document being prevalidated in this way, it’s a good
idea to declare this. For example you can write:

declare variable $in as document-node(schema-element(catalog)) := doc("catalog.xml");

This causes the query to fail if the validation hasn’t been done (or if validation
failed). It also tells the query compiler what the expected type of $in is, which is use-
ful information for optimization and error checking.

If an input document is validated, the definitions used must be consistent with any
definitions added to the ISSD. For example, if your input document is a catalog.xml
document that was validated using catalog.xsd, you cannot then import a different
catalog schema that has conflicting definitions.

The second occasion is when a validate expression is used to explicitly validate doc-
uments and elements.

The Validate Expression
A validate expression can be used to validate a document or element node, which
may come from an input document or be constructed in the query. It will validate
the node according to a schema declaration if that declaration is in scope (i.e., if it is
in the ISSD). For example:

validate strict { <product dept="ACC">
 <number>563</number>
 <name language="en">Floppy Sun Hat</name>
</product> }

Schema Validation and Type Assignment | 179

validates the product element using a global product element declaration from the in-
scope schema definitions, if one exists. This includes validating its attributes and
descendants.

The syntax of a validate expression is shown in Figure 13-2.

The expression to be validated must be either a single element node or a single docu-
ment node that has exactly one element child.

The value of a validate expression is a new document or element node (with a new
identity) annotated with the appropriate type indicated in the element declaration.

As with all schema validation, it also fills in default or fixed values and normalizes
whitespace. When a document node is being validated, full schema validation is per-
formed. When an element node is being validated, certain validation constraints are
skipped. These omitted constraints include identity constraint (key) validation,
checking xs:ID values for uniqueness, and ensuring that xs:ENTITY, xs:NOTATION, and
xs:IDREF values have matching entities, notations, and IDs.

Not all implementations support the validate expression; it is an
optional feature.

Validation Mode
The validation mode controls how strictly an element or document is validated.
There are two possible validation modes:

strict
When it is strict, the processor requires that a declaration be present for the
element in the validate expression and that it be valid according to those declara-
tions. If the element is not valid or a declaration cannot be found for it, an error
is raised.

lax
When it is lax, the processor validates the element if it can find a declaration for
it. It may not be able to find declarations if, for example, the schema was not
imported or provided by the processor. If a declaration is found, the element or
attribute must be valid according to it, or an error is raised. If no declaration is
found, the processor will attempt to recursively validate the element’s children
and attributes, and the process repeats. If no declarations are found in the entire
tree or no validation errors are encountered, no error is raised.

Figure 13-2. Syntax of a validate expression

validate

lax

strict

{ <expr> }

180 | Chapter 13: Using Schemas with XQuery

In a validate expression, the validation mode can be specified just after the validate
keyword. For example:

validate lax {<number>563</number>}

results in lax validation on the number element. If it is not specified, the default mode
strict is used.

Assigning Type Annotations to Nodes
It is worth taking a closer look at how the validation process assigns type annota-
tions to elements and attributes. If the node is valid according to the type designated
in its declaration, the node is usually quite straightforward. For example, the product
element in the previous example would be assigned the type ProductType. However,
there are some special cases.

An element or attribute is assigned a generic type (xs:untyped for elements, and
xs:untypedAtomic for attributes) if:

• No schema validation was attempted.

• It was not validated because it was included as part of a wildcard (xs:any or
xs:anyAttribute) that does not require validation.

• It is the result of an element constructor, and construction mode is set to strip.
Construction mode is described in “Types and Newly Constructed Elements and
Attributes,” later in this chapter.

• It is the result of a validate expression, but it was not validated against an in-
scope schema definition. This might happen if the validation mode is lax with
no relevant declaration in scope.

Another generic type, xs:anyType, is used in a few other cases. The difference
between xs:anyType and xs:untyped is that an element of type xs:anyType may con-
tain other elements that have specific types. Elements of type xs:untyped, on the
other hand, always have children that are untyped. An element is assigned the type
xs:anyType if:

• When an input document was accessed, validation was attempted but the ele-
ment was found to be invalid (or partially valid). Some implementations may
allow the query evaluation to continue even if validation fails.

• It is the result of an element constructor, and construction mode is set to
preserve.

A node that is declared to have a union type is assigned the specific member type
for which it was validated (which is the first one to which it conforms). For exam-
ple, if the <a>12 element is validated using a union type whose member types
are xs:integer and xs:string, in that order, it is assigned the type xs:integer, not
the union type itself.

Schema Validation and Type Assignment | 181

An element that uses the XML Schema attribute xsi:type for type substitution is
assigned the type specified by xsi:type if it is valid according to that type definition.

Nodes and Typed Values
In most cases, you can retrieve the typed value of an element or attribute using the
data function. Usually, it is simply the string value of the node, cast to the type of the
element or attribute. For example, if the number element has the type xs:integer, the
string value is 784 (type xs:string), while the typed value is 784 (type xs:integer). If
the number element is untyped, its typed value is 784 (type xs:untypedAtomic).

There are two exceptions to this rule:

• Elements whose types have element-only content (that is, they allow only chil-
dren) do not have typed values, even if that particular element does not have any
children. For example, the product element does not have a typed value if it is
annotated with a type other than xs:untyped.

• The typed value of an element or attribute whose type is a list type is a sequence
of atomic values, one for each item in the list. For example, if the element
<colorChoices>navy black</colorChoices> has a type that is a list of strings, the
typed value is a sequence of two strings, navy and black.

An element’s typed value will be the empty sequence in two cases:

• Its type is a complex type with an empty content model.

• It has been nilled, meaning that it has an attribute xsi:nil="true".

The typed value will not be the empty sequence just because the element has no con-
tent. For example, the typed value of <name></name> is the value "" (type xs:
untypedAtomic) if name is untyped, and a zero-length string (type xs:string) if name
has a complex type with mixed content but happens to be empty.

A summary of the rules for the typed values of elements and attributes appears in
Table 13-2.

Table 13-2. Typed values of elements and attributes

Kind of node Typed value Type of typed value

An untyped element The character data content of the
element and all its descendants

xs:untypedAtomic

An element whose type is a simple type, or a com-
plex type with simple content

The character data content of the
element

The type of the element’s
content

An element whose type has mixed content The character data content of the
element and all its descendants

xs:untypedAtomic

An element whose type has element-only content Error N/A

An element whose type has empty content () N/A

An untyped attribute The attribute value xs:untypedAtomic

182 | Chapter 13: Using Schemas with XQuery

Types and Newly Constructed Elements and Attributes
Newly constructed nodes don’t automatically take on the type of their content. For
example, the expression <abc>{2}</abc> does not create an abc element whose type
annotation is xs:integer just because its content is of type xs:integer. In fact, ele-
ment constructors that have simple content, as in this example, are always anno-
tated with xs:untyped unless they are enclosed in a validate expression.

The type of a newly constructed element with complex content is also generic, but
any children it copies from an input document may or may not retain their original
types from the input document. This is determined by construction mode, which can
have one of two values: strip or preserve. If construction mode is strip, the type of
the newly constructed element, and all of its descendants, is xs:untyped. If the ele-
ment is contained in a validate expression, it may then be annotated with a new
schema type.

If construction mode is preserve, the type of the newly constructed element is xs:
anyType, and all of its copied children retain their original types from the input
document.

For example, suppose you construct a productList element with the following
expression:

<productList>{doc("catalog.xml")//product}</productList>

Suppose also that the catalog.xml document has been validated with a schema, and
the product elements from this document are annotated with the type ProductType.
This query will result in a productList element that contains four product elements.

If construction mode is strip, both productList and all the product elements in the
results will be annotated with xs:untyped. If construction mode is preserve, productList
will be annotated with xs:anyType, and the product elements will be annotated with
ProductType.

Construction mode is set using a construction declaration, which may appear in the
query prolog. Its syntax is shown in Figure 13-3.

A typed attribute The attribute value The type of the attribute

An element or attribute whose type is a list type A sequence containing the values in
the list

The list type’s item type

Figure 13-3. Syntax of a construction declaration

Table 13-2. Typed values of elements and attributes (continued)

Kind of node Typed value Type of typed value

declare construction

preserve

;strip

Sequence Types and Schemas | 183

Sequence Types and Schemas
Chapter 11 showed how sequence types are used to match sequences in various
expressions, including function calls. When schemas have been imported into a
query, additional tests are available for sequence types, including testing for name
and type. Their syntax is shown in Figure 13-4. These tests can be used not just in
sequence types but also as kind tests in path expressions.

Chapter 11 introduced the element() and attribute() tests. For example, you can
use the test element(prod:product) to test for elements whose name is prod:product.

These tests can also be used with user-defined types. For example, the sequence
type:

element(prod:product, prod:ProductType)

matches an element whose name is prod:product and that has the type prod:
ProductType, or any type derived by restriction or extension from prod:ProductType.
Yet another syntax is:

element(*, prod:ProductType)

which matches any element that has the type prod:productType (or a derived type),
regardless of name. Note that the element must already have been validated and
annotated with the type prod:ProductType. It is not enough that it would be a valid
instance of that type if it were validated.

You can also match an element or attribute based on its name using the schema-
element() and schema-attribute() tests. For example, you can use the sequence type
schema-element(prod:product) to match only elements whose qualified name is prod:
product. This differs from the element(prod:product) syntax in that the name must
be among the globally declared element or attribute names in the ISSD. Also, in
order to match, a node must have been validated according to that declaration.

Figure 13-4. Element and attribute tests (for sequence types and kind tests)

element (

<element-name>

* , <type-name>

?

)

attribute (

<attribute-name>

* , <type-name>

?

)

schema-element (<element-name>)

schema-attribute (<attribute-name>)

184 | Chapter 13: Using Schemas with XQuery

Another difference is that schema-element(prod:product) will also match elements that
are in the substitution group of product. Substitution groups are a feature of XML
Schema that allows you to specify that certain elements are equivalent. For example,
you might put elements shirt, hat, and suitcase in the substitution group headed by
the product element. These three elements can then appear in content anywhere a
product element may appear. The sequence type schema-element(prod:product) would
then match shirt, hat, and suitcase elements in addition to product elements.

For attributes, you can specify schema-attribute and attribute and the same rules
apply. However, these constructs are rarely used because attributes don’t have sub-
stitution groups, and global attribute declarations are quite rare. Table 13-3 shows
some examples.

You can use a question mark at the end of the type name in an element sequence
type. This means that if an element is nilled (i.e., it has the attribute xsi:nil set to
true), it can match the sequence type even though it does not have any content. For
example, element(product, ProductType?) matches both a regular product element
and a nilled product element such as <product xsi:nil="true"/>. Note that this is dif-
ferent from a question mark at the very end of the sequence type, which indicates
that the empty sequence should match.

Table 13-3. Examples of sequence types based on name and type

Example Explanation

schema-element (product)+ One or more elements whose qualified name is product, that
have been validated using a global element declaration in the
ISSD

schema-element (prod:product) One element whose qualified name is equal toprod:product,
that has been validated using a global element declaration in
the ISSD

schema-attribute (prod:dept) One attribute whose qualified name is prod:dept, that has
been validated using a global attribute declaration in the ISSD

element(*, prod:ProductType) One element whose type annotation is prod:ProductType
or a type derived from prod:ProductType

element (prod:product, prod:ProductType) One element whose qualified name is equal to prod:
product, whose type annotation isprod:ProductType or
a type derived from prod:ProductType, that is in the ISSD

185

Chapter 14 CHAPTER 14

Static Typing14

Errors in a query can be reported in either the static analysis phase or the dynamic
evaluation phase. These two phases are roughly analogous to compiling and running
program code. Certain XQuery implementations take a more aggressive approach to
finding type-related errors in the static analysis phase. These implementations are
said to support static typing.

What Is Static Typing?
Static typing, as the term is used in XQuery, refers to reporting all possible type
errors at analysis (compile) time rather than evaluation (run) time. This is some-
times referred to as pessimistic static typing, where the philosophy is to report any
errors that could possibly happen, not just those that it knows will happen. The
static typing feature of XQuery is optional; implementations are not required to sup-
port static typing and many do not fully support it.

The fact that a processor doesn’t support this feature doesn’t mean that it is doing no
compile-time analysis. It might use the analysis transparently for optimization pur-
poses, or it might report some errors at compile time; but in this case, it will report
errors optimistically. It will only report errors when it can see that there is definitely
something wrong, like in the expression "x" + 3, and not simply in cases of ambigu-
ity, as in $x + 3, where the value of $x depends on some input data.

Static typing has the advantages of allowing type errors to be caught earlier and more
reliably, and can help some implementations optimize queries. However, as you will
see in this chapter, it can also be an irritation to query authors in that it reports many
“false” errors.

As part of the static typing process, the processor checks all expressions in a query
and assigns them a static type, which is the supplied type of the expression. For
example, the expression "abc" is assigned the static type of xs:string. The expres-
sion count(doc("catalog.xml")//product) is assigned the static type of xs:integer,
which is the return type of the count function.

186 | Chapter 14: Static Typing

A type error is reported when a function or operator expects a value of a certain type
and a parameter or operand of an incompatible type is used.

Obvious Static Type Errors
A number of obvious type errors can be caught in the analysis phase, for example:

• Passing an integer to a function that expects a string, as in upper-case(2)

• Attempting a cast between two types that do not allow casting, as in current-
date() cast as xs:integer

• Attempting to add two strings, as in "abc" + "def"

• Passing a sequence of multiple values to a function or operation that expects a
single atomic value, as in substring(("a","b"),3)

All of these examples will raise a type error no matter what the input document con-
tains. Many implementations that do not support the static typing feature will also
report these errors at analysis time, since they will always result in an error.

Static Typing and Schemas
Static typing also takes into account any in-scope schema definitions. A schema can
make static typing much more useful by providing the processor with extra informa-
tion about the input documents, namely:

Specific types
If the number element is declared to be of type xs:string, it is obviously an error
to try to multiply it by 2.

Cardinalities
If a product can have more than one name child, you don’t want to use the
expression product/name as an argument to the substring function, because the
substring function only accepts a single string (or the empty sequence), not a
sequence of multiple strings.

Allowed names
If you refer to an element produt (misspelled) in your query, it must be an error,
because no produt element is declared in the schema.

Allowed paths
The path catalog/number contains an error because the schema does not allow
number to be a child of catalog, even if both of those elements are declared in the
schema.

None of the above errors could be caught during the static analysis phase if no
schema were present. Sometimes this type of feedback can be extremely useful. For
one thing, it can lead to queries that are more robust. You may not have envisioned a
product with more than one name in your test data, but you would have found this

The Typeswitch Expression | 187

error the hard way later when querying some new input data that happened to have
that characteristic.

Static typing can also make query debugging and testing much easier. If you get an
error message saying that catalog/number will always return the empty sequence (and
therefore is not a valid path), it is much more useful than getting no results from
your entire query and wondering why. Coming up with test data that addresses every
single possible combination of elements and values in an input document can relieve
the burden on you.

Raising “False” Errors
The down side of static typing is that sometimes the errors raised are less useful.
Sometimes you know that an error situation would never arise in your input docu-
ment, even if the schema might allow it. Suppose you want to substring the name of
a single product, based on its product number. You might use the expression:

substring(doc("catalog.xml")//product[number = 557]/name, 1, 10)

However, if static typing is in effect, this expression causes a static error. This is
because, as far as the processor knows, there could be more than one name element
that matches that criterion, but the substring function’s signature requires that only
zero or one item be provided as the first argument. You may know for sure that no
two products will have the same product number (perhaps because you are familiar
with the application that generates the XML documents), but the processor doesn’t
know that.

This particular error can be avoided by calling the zero-or-one function, described in
“The zero-or-one, one-or-more, and exactly-one Functions,” later in this chapter.

Static Typing Expressions and Constructs
It is useful to have expressions and functions that you can use in your query to get
around these false static errors. These constructs include treat and typeswitch
expressions, type declarations, and the zero-or-one, one-or-more, and exactly-one
functions.

The Typeswitch Expression
The typeswitch expression provides a convenient syntax for performing special pro-
cessing based on the type of an expression. An example is shown in Example 14-1.

Example 14-1. Binding variables to typeswitch expressions

typeswitch ($myProduct)
 case element(*,prod:HatType) return xs:string($myProduct/size)
 case element(*,prod:ShirtType)

188 | Chapter 14: Static Typing

The example assumes that $myProduct is bound to a product element. In the schema,
assume that product elements are declared to have type ProductType. However, in the
input document, a product element may carry an xsi:type attribute that indicates
another type that is derived by extension from ProductType, such as HatType,
ShirtType, or UmbrellaType.

ProductType itself does not allow a size child. Depending on which subtype it has, it
may or may not have a size child. The typeswitch expression will return a different
value depending on the type annotation of the product element.

The syntax of a typeswitch expression is shown in Figure 14-1. The typeswitch key-
word is followed by an expression in parentheses (called the operand expression),
which evaluates to the sequence whose type is to be evaluated. This is followed by
one or more case clauses, plus a required default clause that indicates the value if
none of the case clauses applies.

The processor uses sequence type matching (described in Chapter 11) to determine
whether a case clause applies. This means that if the type of the items in the
sequence is the same as, or is derived from, the type identified by the case clause, it
matches. If more than one case clause is applicable, the first one is used. Remember,
with sequence type matching, it is not enough that the items are valid according to
the specified type, they must actually have been validated and have that type (or a
type derived from it) as their type annotation.

Each of the case and default clauses can have an optional variable name before the
return keyword. That variable is bound to the value of the operand expression. This
is useful if the return expression is dependent on the sequence being tested. In
Example 14-2, the $h, $s, and $p variables are bound to the $myProduct value, and the
return expression references the variable. This example uses user-defined schema
types, which are explained in the previous chapter.

 return xs:string(concat($myProduct/size/@system, ": ",
 $myProduct/size))
 case element(*,prod:UmbrellaType) return "none"
 default return "n/a"

Figure 14-1. Syntax of a typeswitch expression

Example 14-1. Binding variables to typeswitch expressions (continued)

typeswitch (<expr>)

case

$ <variable-name> as

<sequence-type> return <expr>

default

$ <variable-name>

return <expr>

The Treat Expression | 189

The typeswitch expression can serve as shorthand for multiple if-then-else expres-
sions that use instance of expressions to determine the type of the variable.
Example 14-3 shows this alternative, which is similar to Example 14-2.

However, there is an important difference between the two: an implementation that
supports static typing will raise a type error with Example 14-3. This is because, as
far as the processor knows, $myProduct is of type ProductType, which does not allow a
size child. Even though the processor is aware that there are subtypes that allow a
size child, the static typing feature does not extend to parsing out the if expressions
to determine that you would never evaluate the expression $myProduct/size on any-
thing that didn’t allow a size child. The typeswitch expression in Example 14-2, on
the other hand, assures the processor that the branch that contains $h/size will only
ever be evaluated for elements of type HatType. Remember that static typing is pessi-
mistic; it will give you an error if anything could go wrong, not only if it knows that
things will go wrong.

The Treat Expression
The treat expression, like the typeswitch expression, is used to assure the processor
that only values of a certain type will participate in a particular function or opera-
tion. The syntax of a treat expression is shown in Figure 14-2.

Building on the ProductType/HatType example from the previous section, suppose you
would like to display the size of a product, if it is a hat. Although ProductType
doesn’t allow a size child, HatType does. You could use the query shown in
Example 14-4.

Example 14-2. Binding variables to typeswitch expressions

typeswitch ($myProduct)
 case $h as element(*,prod:HatType) return xs:string($h/size)
 case $s as element(*,prod:ShirtType)
 return xs:string(concat($s/size/@system, ": ", $s/size))
 case element(*,prod:UmbrellaType) return "none"
 default return "n/a"

Example 14-3. Alternative to a typeswitch expression

if ($myProduct instance of element(*,prod:HatType))
then xs:string($myProduct/size)
else if ($myProduct instance of element(*,prod:ShirtType))
 then xs:string(concat($myProduct/size/@system, ": ", $myProduct/size))
 else if ($myProduct instance of element(*,prod:UmbrellaType))
 then "none"
 else "n/a"

Figure 14-2. Syntax of a treat expression

<expr> treat as <sequence-type>

190 | Chapter 14: Static Typing

It tests to see if the product is a hat, and if it is, constructs a p element that contains
its size. Unfortunately, an implementation that supports static typing will raise a type
error with this query. This is because, as far as the processor knows, $myProduct has
type ProductType, which does not allow a size child. As discussed in the previous
section, it does not matter that you check the type of $myProduct in the enclosing if
expression.

Example 14-5 shows a revised query that uses a treat expression to assure the proces-
sor that $myProduct is indeed an element of type HatType.

Unlike a cast expression or a type constructor, the treat expression does not actually
change the type of $myProduct. It doesn’t need to, because the type of $myProduct
should already be prod:HatType or some matching type. Like other static-typing-
related expressions, it simply postpones any errors to runtime by saying, “I know
that all the values are going to be valid HatType values, so don’t raise an error during
the analysis phase.”

If it turns out later during the evaluation phase that there is a $myProduct value that
does not match HatType, the error is raised at that time. The rules of sequence type
matching are used to determine whether the value matches. In this particular exam-
ple, it will never raise this error because it checks the type of $myProduct before evalu-
ating the /size path.

If you’re familiar with casts in Java or C#, you’ll recognize that most casts in those
languages are assertions (like treat as) rather than actual type conversions. XQuery
uses cast as to mean a type conversion, and treat as to mean a type assertion.

Type Declarations
Some expressions, namely FLWORs, quantified expressions, and global variable dec-
larations, allow the use of a type declaration to force the static type of an expression.
A type declaration uses the keyword as, followed by a sequence type. The sequence
types used in these expressions follow the syntax described in Chapter 11.

Example 14-4. A query without a treat expression

if ($myProduct instance of element(*,prod:HatType))
then <p>The size is: {data($myProduct/size)}</p>
else ()

Example 14-5. A query with a treat expression

if ($myProduct instance of element(*,prod:HatType))
then
 <p>The size is: {data(($myProduct treat as element(*,prod:HatType))/size)}</p>
else ()

Type Declarations | 191

Type Declarations in FLWORs
Sequence types can be used in the for and let clauses of FLWORs to declare the
type of variable being bound. In this case, the type declaration appears immediately
after the variable name, as in Example 14-6.

The sequence type element(*,ProductType) is specified as the type of the variable
$prod. Without the type declaration, this query might raise a type error using a pro-
cessor that implements static typing, if the schema allows the possibility of catalog
having children that don’t themselves have name children. The type declaration serves
as a way of telling the processor, “I know that all the children of catalog will be valid
elements of type ProductType, which all have name children, so don’t raise a static
error. If it turns out I’m wrong, you can raise a dynamic error later.”

With the type declaration, this error checking is postponed to evaluation time. When
the query is evaluated, if the value of $prod does not have the type ProductType, a
type error is raised. Note that the purpose of the sequence type specification is not to
filter out items that do not conform, but to raise type errors when nonconforming
items are encountered.

Unlike type declarations in function signatures, no conversions take place. Untyped
atomic data won’t be converted to the required type, numeric type promotion won’t
happen—in fact, you won’t even get atomization. The only difference allowed
between the actual type of the value and the declared type is subtype substitution: if
the required type is xs:decimal, for example, the supplied value can be xs:integer,
but it can’t be a node containing an xs:integer.

Type Declarations in Quantified Expressions
Quantified expressions also allow sequence types to be specified for variables, using
a similar syntax, as in Example 14-7.

In this case, the $number variable is given the sequence type element(*,xs:integer). If
any of the items returned by the expression doc("catalog.xml")//number do not
match that sequence type, a type error is raised.

Example 14-6. A FLWOR with a type declaration

for $prod as element(*,ProductType) in doc("catalog.xml")/catalog/*
order by $prod/name
return $prod/name

Example 14-7. A quantified expression with a type declaration

every $number as element(*,xs:integer) in
 doc("catalog.xml")//number satisfies ($number > 0)

192 | Chapter 14: Static Typing

Declaring sequence types for variables in quantified expressions, or
for clauses, is not supported in XPath 2.0.

Type Declarations in Global Variable Declarations
An optional type declaration can be specified in a global variable declaration, as in:

declare variable $firstNum as xs:integer
 := data(doc("catalog.xml")//product[1]/number);

which associates $firstNum with the static type xs:integer. As with other type decla-
rations, this type declaration does not change or cast the value in any way. It is sim-
ply used to reassure the processor that the typed value of $firstNum will always be an
integer, so it can be used in arithmetic operations, for example. This is especially use-
ful for external variables, since their static type cannot be determined any other way.

The zero-or-one, one-or-more, and exactly-one
Functions
Three functions relate specifically to static typing: zero-or-one, one-or-more, and
exactly-one. These functions are useful when static typing is in effect, to override
apparent static type errors.

Each of the functions takes a single argument and either returns the argument as is or
raises an error if the argument is a sequence containing the wrong number of items.
For example, when calling the zero-or-one function, if the argument is a sequence of
zero or one items, it is returned. If it is a sequence of more than one item, an error is
raised.

Earlier in this chapter, we saw how the expression:

number(doc("prices.xml")//prod[@num = 557]/price)

will cause a static error when static typing is in effect. This is because, as far as the
processor knows, there could be more than one price element that matches that cri-
terion, while the number function’s signature requires that only zero or one item be
provided. A static error can be avoided by using the expression:

number (zero-or-one(doc("prices.xml")//prod[@num = 557]/price))

In this case, no static error is raised. Rather, a dynamic error is raised if more than
one price element is returned by the path expression. This is useful if you know that
there will only be one product with number 557 in the document, and wish to over-
ride the static error.

193

Chapter 15 CHAPTER 15

Principles of Query Design15

Well-designed, robust queries have the advantages of running faster and with fewer
errors, as well as being easier to debug and maintain. This chapter describes some of
the goals of query design, with particular attention to handling errors and tuning for
performance.

Query Design Goals
Some of the elements of good query design include:

Clarity
Queries that clearly convey their meaning are much easier to understand and
therefore to maintain.

Modularity
Expressions should be reusable in many parts of a query and across multiple
queries.

Robustness
Queries should be able to handle all possible combinations of values of input data.

Error handling
Queries should handle dynamic errors gracefully, with useful messages.

Performance
Queries should be tuned for performance.

The rest of this chapter takes a closer look at these design goals.

Clarity
You can increase the clarity of your queries by improving the layout of the query, mak-
ing appropriate use of names, and using comments liberally. In addition to the recom-
mendations in this chapter, you can go to http://www.xqdoc.org/xquery-style.html for
some more detailed XQuery style conventions.

http://www.xqdoc.org/xquery-style.html

194 | Chapter 15: Principles of Query Design

Improving the Layout
To make the structure of a query more obvious, you should make appropriate use of
whitespace and parentheses. Whitespace (line breaks, spaces, and tabs) is allowed
anywhere between keywords to make it more readable.

It is helpful to split longer FLWOR and conditional expressions into multiple lines
and indent each clause to line up, as shown in Example 15-1. FLWORs embedded
within FLWORs should be further indented. When constructing XML results, you
should indent the element constructors just as you would indent the elements in an
XML document.

Parentheses can be used around most expressions to group them together. If the
beginning and end of an expression are not obvious, parentheses are highly recom-
mended. For example, a complex where clause in a FLWOR, or a complex then
clause in a conditional expression, are much clearer when wrapped in parentheses.

Choosing Names
Choosing meaningful names can also make a query much easier to understand. This
includes the names of variables, functions, and function parameters. Names can also
be used along with repeating let clauses to make an expression more clear. For
example, in the expression:

let $substring := substring($myString,1,32)
let $substringNoQuotes := replace($substring,'"','')
let $substringUpperCase := upper-case($substringNoQuotes)
return $substringUpperCase

the names are bound to the string in various states of processing. This is more obvi-
ous than its equivalent:

upper-case(replace(substring($myString,1,32),'"',''))

Example 15-1. Making use of whitespace

Less clear query
for $product in doc("catalog.xml")//product return
<product><number>{$product/number}</number>
<price>{for $price in doc("prices.xml")//prod
where $product/number = $price/@num
return $price/price}</price>
</product>
More clear query
for $product in doc("catalog.xml")//product
return <product>
 <number>{$product/number}</number>
 <price>{for $price in doc("prices.xml")//prod
 where $product/number = $price/@num
 return $price/price}</price>
 </product>

Clarity | 195

Namespace prefixes should also be chosen carefully. When possible, use popular
prefix conventions such as xs for XML Schema, wsdl for Web Services Description
Language, and html for XHTML. If you are using several namespaces, assign pre-
fixes to all of them rather than making one the default. This makes it more clear
which namespace each name belongs to.

Using Comments for Documentation
An important part of writing understandable queries is documenting them. Com-
ments delimited by (: and :) can appear anywhere that insignificant whitespace is
allowed in a query. For example, they may appear at the end of a line to explain the
expression on that line, as a separate line, or as a block on multiple lines, as in:

 (:::::::::::::::::::::::::::::::::
 : The following expression returns the price of a product
 : It assumes there is one price per product element
 ::::::::::::::::::::::::::::::::::)

A standard method of documenting XQuery modules and functions is by using
xqdoc tags. These tags, listed in Table 15-1, appear in normal XQuery comments. All
of them are optional and most are allowed to repeat.

Once a module is documented using xqdoc tags, human-readable HTML documen-
tation can be generated automatically. The process is very similar to that of Javadoc,
which generates documentation for Java classes. For more information, or to down-
load the scripts to generate the documentation, see http://www.xqdoc.org.

Example 15-2 shows a function that is documented using xqdoc comments. The
documentation, which appears before the function declaration, contains a textual
description of the function, followed by the @param and @return tags to describe the
inputs and output of the function. HTML tags (the b elements) are used in the descrip-
tion to enhance the display of the description in the resulting HTML documentation.

Table 15-1. xqdoc tags

Tag Meaning

@author The author of the component

@version The version number

@since The first version (e.g., of a library) when a component is supported

@see Where to go for additional information; it can be a URL or a textual description

@param A description of a function parameter, in the form @param $name text

@return A description of what a function returns

@deprecated An indication that the component has been deprecated and should therefore no longer be used; text
can follow the keyword for further explanation

@error A description of a type of error the function might return

http://www.xqdoc.org

196 | Chapter 15: Principles of Query Design

Modularity
Expressions that are used more than once or twice should be separated into func-
tions and shared. Functions make it clearer to the query reader what is going on.
Having a function clearly named, with a set of named, typed parameters, serves as a
form of documentation. It also physically separates it from the rest of the query,
which makes it easier to decipher complex queries with many nested expressions.

In addition, function declarations encourage reuse. When reused, an expression
needs to be written (and maintained) only once. If you want to change the algorithm
later, for example to accept the empty sequence or to fix a bug, you can do it in one
place only.

Functions can be made even more reusable by separating them into library modules.
XQuery libraries can also be used to create standardized sets of functions for specific
XML vocabularies. These libraries can serve as an API to an XML vocabulary, shield-
ing query authors from some of the complexity of the vocabulary. They can then be
distributed to a variety of query writers, allowing reuse among an entire community
of users.

Robustness
Queries should be able to handle all possible combinations of values of input data.
This includes handling any potential variations in the data, and considering the
impact of missing or empty values.

Handling Data Variations
It is important to consider variations in the input documents that may cause incor-
rect results or dynamic errors. Some common problems occur when:

Example 15-2. Documenting a function with xqdoc

(:~
: The functx:substring-after-last function returns the part
: of $string that appears after the last occurrence of
: $delim. If $string does not contain
: $delim, the entire string is returned.
:
: @param $string the string to substring
: @param $delim the delimiter
: @return the substring
:)
declare function functx:substring-after-last
($string as xs:string?, $delim as xs:string) as xs:string?
 { ... };

Robustness | 197

Sequences of multiple items appear where only one item was expected
For example, the expressions $prod[name eq "Floppy Sun Hat"] and
substring($prod/name, 1, 30) raise an error if there is more than one name child.
The expression $prod/name != "Floppy Sun Hat" evaluates to true if two name chil-
dren exist and either one is not equal to Floppy Sun Hat.

Zero items appear where one was expected
For example, the expression $prod/price - $prod/discount returns the empty
sequence if there is no discount element.

Values do not conform to the expected type
For example, the expression max($prod/number) raises a type error if the product
number is N/A instead of an integer.

Values are outside the expected range
Especially zero and negative numbers where a positive number was expected.

You should not assume that because an input document is validated by a schema it
must be exactly as you expect. A schema can validate, for example, that a required
element is present, but other assumptions might be made that cannot be validated by
a schema. For example, the constraint “if the discounted attribute is true, a discount
child must appear” cannot be validated by XML Schema.

Handling Missing Values
Individual data values may be missing from an input document. Sometimes these
missing values are in error, and sometimes they are not. In either case, they need to
be handled gracefully.

Suppose you are calculating the sale price of an item by taking the regular price, and
applying a discount. Some product prices have discounts, but others do not. The
absence of a discount could be represented in (at least) four ways:

• A discount element or attribute that is entirely absent from the input document

• An empty element or an attribute whose value is a zero-length string—for exam-
ple, <discount></discount>, <discount/>, or discount=""

• An element that is marked with the attribute xsi:nil—for example, <discount
xsi:nil="true"></discount>

• An element or attribute that has a default “missing” value such as N/A or 0—for
example, <discount>N/A</discount>

Absent values

An expression used to calculate a sequence of prices might be:

for $prod in doc("prices.xml")//prod
return $prod/price - $prod/discount

198 | Chapter 15: Principles of Query Design

In the case where the discount element is absent, the value of the discount expression
is the empty sequence, and therefore the $prod/price - $prod/discount expression also
returns the empty sequence. You probably intended instead for the discount to default
to zero, and for your expression to return the price itself if no discount was available.

Another problem that might occur when the discount value is missing is in calculating
an average. To find the average discount, you might be tempted to use an expression
like avg(doc("prices.xml")//discount). However, that function gives the average of
the discount values that exist, ignoring any prices that do not have discounts.

Empty and nil values

The second possible scenario is that the discount element appears, but it is empty
(and it may or may not have an xsi:nil attribute). It may appear in the input docu-
ment as either <discount></discount> or <discount/>, which are equivalent elements
in XML. This scenario also poses problems for the $prod/price - $prod/discount
expression. Assuming the discount element is untyped, the processor attempts to
cast the empty value to xs:double for use of the arithmetic expression. This results in
a type error because the value is not a valid number.

Default “missing” values

The final scenario is one where the discount element contains a value such as N/A to
indicate that it is absent. A simple conditional expression can handle this scenario, as in:

U S E F U L F U N C T I O N

if-absent
The if-absent function shown below is useful for providing default values in case a
data item is absent:

declare namespace functx = "http://www.functx.com";
declare function functx:if-absent (
 $node as node()?, $value as xs:anyAtomicType) as xs:anyAtomicType*
{
 if ($node)
 then data($node)
 else $value
};

The function checks if the first argument (an optional node) is the empty sequence,
and whether it is, it returns the second argument. Otherwise, it returns the typed value
of the first argument. For example, if you use the expression;

for $prod in doc("prices.xml")//prod
return $prod/price - functx:if-absent($prod/discount, 0)

your missing discount problem is solved.

Error Handling | 199

for $prod in doc("prices.xml")//prod
return if ($prod/discount = "N/A")
 then $prod/price
 else $prod/price - $prod/discount

Alternatively, if N/A is used for a number of different elements, you could alter the
if-absent or if-empty function to check for this value, too.

Error Handling
Evaluating a query has two phases: the analysis phase, which catches static errors,
and the evaluation phase, which catches dynamic errors. This section does not cover
static errors, since they can be caught by the query processor and debugged as part of
the development process. The dynamic errors are the unexpected errors that need to
be considered carefully when writing queries.

Some programming languages have a try/catch feature that allows the processor to
try to perform a series of instructions (specified in the “try” clause), but if there is an
error, gracefully bow out and perform another series of instructions (specified in the
“catch” clause). There is no concept of try/catch in XQuery, so it is up to the query
author to anticipate the kinds of errors the processor will raise and avoid evaluating
those expressions.

U S E F U L F U N C T I O N

if-empty
The if-empty function shown below is similar to if-absent, except that it also checks
for empty content of an element or for zero-length strings as attribute values.

declare namespace functx = "http://www.functx.com";
declare function functx:if-empty (
 $node as node()?, $value as xs:anyAtomicType) as xs:anyAtomicType*
{
 if (string($node) != "")
 then data($node)
 else $value
};

Using the discount example, the expression:

for $prod in doc("prices.xml")//prod
return $prod/price - functx:if-empty($prod/discount, 0)

solves the empty discount problem.

200 | Chapter 15: Principles of Query Design

Avoiding Dynamic Errors
It is important to consider variations in the input documents that may cause dynamic
errors. For example, if you are dividing a total amount by the number of items in an
order, consider the possibility that there are no items in the order, which may result
in a “division by zero” error. You can avoid this by checking the number of items
first, as in:

if ($items) then $orderTotal div count($items) else 0

Dynamic type errors often occur when data cannot be cast to the required type. For
example, to double the price discount, you might use the expression 2 * $discount.
This expression raises a dynamic error if the value of discount is N/A or a zero-length
string, which cannot be cast to a numeric type. You can avoid a dynamic error by
checking whether a value is castable in advance, as in:

if ($discount castable as xs:decimal) then 2 * $discount else 0

If the input data is really in error (and you are not performing schema validation), it
may be helpful to test for the error condition and raise a more meaningful error using
the error function. If the input data is not in error, you should modify the query to
allow for the variations in input documents.

If an input document is schema validated, you can be less concerned about some of
these dynamic errors. For example, if the schema specifies that the number of items
in an order must be more than zero, you may not have to worry about a “division by
zero” error. If the schema validates that the type of a discount element is xs:decimal,
there is no chance that it is N/A.

The error and trace Functions
The error function is used to explicitly raise an error when certain conditions arise.
For example, if an important data item is missing or invalid, you may want to stop
evaluation of the query with a specific error message. To do this, you can incorpo-
rate calls to the error function in your query. For example:

if (not($product/number))
then error(QName("http://datypic.com/err", "ProdNumReq"), "missing product number")
else $product/number

raises a ProdNumReq error (whose description is “missing product number”) if $product
has no number child.

During the query debugging process, the trace function can be used to track the
value of an item. For example:

trace($var1, "The value of $var1 is: ")

might write the string The value of $var1 is: 4 to a logfile.

Performance | 201

Performance
When querying large documents or databases, it is important to tune queries to opti-
mize performance. Implementations vary significantly in their ability to take clues
from the query in order to optimize its evaluation. This section provides some gen-
eral tips for improving query performance. For more specific tuning information for
your XQuery processor, consult the documentation.

Avoid Reevaluating the Same or Similar Expressions
A let clause can be used to evaluate an expression once and bind the value to a vari-
able that can be referenced many times. This can be much more efficient than evalu-
ating the expression many times. For example, suppose you want to add a bargain-
bin element to your results, but only if there are products whose price is less than 30.
You first need to check whether any bargain products exist, and if so, construct a
bargain-bin element and list the products in it. Example 15-3 shows an example of
this.

In the first query, similar path expressions appear in the if expression and in the
bargain-bin element constructor. In the second query, the expression is evaluated
once and bound to the variable $bargains, then referenced twice in the rest of the
query. This is considerably more efficient, since the expensive expression need only
be evaluated once. Using some XQuery implementations, the difference in perfor-
mance can be dramatic, especially when the doc function is part of the expression.

Avoid Unnecessary Sorting
If you are not concerned about the order in which your results are returned, you can
improve the performance of your query by not sorting. Some expressions, particu-
larly path expressions and the union, intersect, and except expressions, always sort
the results in document order unless they appear in an unordered expression or func-
tion. Example 15-4 shows two queries that select all the number and name elements
from the catalog document.

Example 15-3. Avoid re-evaluating the same expression

Less efficient query
if (doc("prices.xml")/prices/priceList/prod[price < 30])
then <bargain-bin>{
 doc("prices.xml")/*/priceList/prod[price < 30]
 }</bargain-bin>
else ()
More efficient query
let $bargains := doc("prices.xml")/prices/priceList/prod[price < 30]
return if ($bargains)
 then <bargain-bin>{$bargains}</bargain-bin>
 else ()

202 | Chapter 15: Principles of Query Design

The first query has two inefficiencies related to sorting:

• It selects the elements without using an unordered expression, so each of the two
path expressions sorts the elements in document order.

• It performs a union of the two sequences, which causes them to be resorted in
document order.

The more efficient query uses an unordered expression to indicate that the order of
the elements does not matter. Even if you care about the order of the final results,
there may be some steps along the way that can be unordered. More information on
indicating that order is not significant can be found in the section “Indicating that
Order Is Not Significant” in Chapter 7.

Avoid Expensive Path Expressions
The use of the descendant-or-self axis (abbreviated //) in path expressions can be
very expensive, because every descendant node must be checked. If the path to the
desired descendant is known and consistent, it is far more efficient to specify the
exact path. Example 15-5 shows an example of this situation.

The first query uses the // abbreviation to indicate all number descendants of the
input document, while the second specifies the exact path to the number descen-
dants. Use of the parent, ancestor, or ancestor-or-self axis can also be costly when
using some XQuery implementations based on databases.

Use Predicates Instead of where Clauses
Using some XQuery implementations that are based on databases, predicates are
more efficient than where clauses of FLWORs. An example of this is shown in
Example 15-6.

Example 15-4. Avoid unnecessary sorting

Less efficient query
let $doc := doc("catalog.xml")
return $doc//number | $doc//name
More efficient query
unordered {
 let $doc := doc("catalog.xml")
 return $doc//(number|name)
}

Example 15-5. Avoid expensive path expressions

Less efficient query
doc("catalog.xml")//number
More efficient query
doc("catalog.xml")/catalog/product/number

Performance | 203

The first query uses a where clause $prod/@dept = "ACC" to filter out elements, while
the second query uses the predicate [@dept = "ACC"]. The predicate is more efficient
in some implementations because it filters out the elements before they are selected
from the database and stored in memory.

Example 15-6. Use predicates instead of where clauses

Less efficient query
for $prod in doc("catalog.xml")//product
where $prod/@dept = "ACC"
order by $prod/name
return $prod/name
More efficient query
for $prod in doc("catalog.xml")//product[@dept = "ACC"]
order by $prod/name
return $prod/name

204

Chapter 16CHAPTER 16

Working with Numbers 16

A variety of numerical calculations can be performed using XQuery. This chapter
describes the four major numeric types, along with the operators and functions that
act on numeric values. These include comparisons, arithmetic operations, and func-
tions that operate on numeric values such as round and sum.

The Numeric Types
The four main numeric types supported in XQuery are xs:decimal, xs:integer,
xs:float, and xs:double. All of the operations and functions that can be performed
on these types of numeric values can also be performed on values whose types are
restrictions of these types. This includes user-defined types that appear in a schema,
as well as the built-in derived types such as xs:positiveInteger and xs:unsignedByte.
For a complete list and explanation of these built-in derived types, see Appendix B.

The xs:decimal Type
The type xs:decimal represents a signed decimal number of implementation-defined
precision. Numeric literals that contain only digits and a decimal point (no letter E or e)
are considered decimal numbers, with the type xs:decimal. For example, 25.5 and
25.0 are xs:decimal values.

The xs:integer Type
The type xs:integer represents a signed integer. The limit on how large an xs:integer
value can be is implementation-defined. Numeric literals that contain only digits (no
decimal points or the letter E or e) are considered integers, with the type xs:integer.
For example, 25 is an xs:integer value.

In the type hierarchy, xs:integer is derived by restriction from xs:decimal. There-
fore, anywhere XQuery is expecting an xs:decimal value, an xs:integer value may be
used in its place because of subtype substitution.

Constructing Numeric Values | 205

The xs:float and xs:double Types
The type xs:float is patterned after IEEE single-precision 32-bit floating-point num-
bers, and xs:double is patterned after IEEE double-precision 64-bit floating-point
numbers. The representation of both xs:float and xs:double values is a mantissa (a
decimal number) followed by the character E or e, followed by an exponent, which
must be an integer. For example, 3E2 represents 3 × 102, or 300. Numeric literals that
contain an E or e are considered to have the type xs:double.

In addition, the following values are represented: INF (infinity), –INF (negative infin-
ity), and NaN (not a number).

Constructing Numeric Values
How does a value become “numeric”? As with any type, a value may be assigned one
of the numeric types in a number of ways, for example:

• It may be selected from an input document that has a schema declaring it to
have a numeric type.

• It may be a numeric literal value that appears in the query and is not surrounded
by quotes. For example, $price > 25.5 compares $price to the xs:decimal value
25.5.

• It may be the result of a function that returns a number, such as count($products),
which returns an xs:integer.

• It may be the result of one of the standard constructor functions, such as:

— xs:float("25.5E3"), which constructs an xs:float value from a string

— xs:decimal($prod/price), which constructs an xs:decimal value from an
element

• It may be the result of an explicit cast, such as $prod/price cast as xs:decimal.

• It may be cast automatically when it is passed to a function, such as the sum
function.

The number Function
In addition to the standard type constructors, the number function is useful for telling
the processor to treat a node or atomic value as a number, regardless of its declared
type (if any). It returns that argument cast as an xs:double. If no argument is pro-
vided, the number function uses the context node.

One difference between using the number function and the xs:double constructor is
that the number function returns the xs:double value NaN in the case that the value
cannot be cast to a numeric value, whereas the xs:double constructor throws an
error. Table 16-1 shows some examples that use the number function.

206 | Chapter 16: Working with Numbers

Numeric Type Promotion
If an operation, such as a comparison or arithmetic operation, is performed on val-
ues of two different primitive numeric types, one value is promoted to the type of
the other value. Specifically, an xs:decimal value can be promoted to xs:float or
xs:double, and an xs:float value to xs:double. For example, the expression 1.0 + 1.
2E0 adds a decimal number to a floating-point number. The xs:decimal number (1.0)
is promoted to xs:double before the expression is evaluated.

Numeric type promotion happens automatically in arithmetic expressions and com-
parison expressions. It is also used in calls to functions that expect numeric values.
For example, if a function expects an xs:double value, you can pass it an xs:decimal
value, and xs:decimal will be promoted to xs:double.

In addition to these specific promotion rules, any numeric value can be treated as if it
has its type’s base type or any ancestor type. This is known as subtype substitution.
For example, if in your schema you define a type myDecimal that is derived by restric-
tion from xs:decimal, a myDecimal value can be added to an xs:decimal value, return-
ing an xs:decimal value. This rule also applies to built-in types. For example, since
xs:integer is derived from xs:decimal, an xs:integer value can be used anywhere an
xs:decimal value is expected.

Comparing Numeric Values
Two numeric values can be compared using the general comparison operators: =, !=,
<, <=, >, and >=. Values of different numeric types can be compared; one is promoted
to the other’s type. Nodes that contain numeric values can also be compared using
these operators; in that case, they are atomized to extract their typed values.
Table 16-2 shows some examples of comparing numeric values.

Some caution should be used when comparing untyped values using the general
comparison operators. When an untyped value is compared to a numeric value (for
example, a numeric literal), it is cast to the numeric type. However, when two
untyped values are compared, they are treated like strings. This means that, for
example, the untyped value 100 would evaluate to less than the value 99. If you want
to compare two untyped values, you must explicitly cast the value(s) to a numeric
type, as shown in the fourth example in Table 16-2.

Table 16-1. The number function

Example Return value

number(doc("prices.xml")//prod[1]/price) 29.99

number(doc("prices.xml")//prod[1]/price/@currency) NaN

number("29.99") 29.99

number(()) NaN

Arithmetic Operations | 207

Numeric values can also be compared using the value comparison operators: eq, ne,
lt, le, gt, and ge. However, the value comparison operators treat every untyped
operand like a string, even if the other operand is numeric. This means that if you
want a numeric comparison, you have to say so, by using an explicit cast.

The value INF (positive infinity) is greater than all other values, and –INF (negative
infinity) is less than all other values, but each equals itself. The value NaN cannot use-
fully be compared with any other value (including itself) using comparison opera-
tors, because the result of the comparison operation is always false (unless the
operator is !=, in which case it’s always true). To determine whether a value is NaN,
you can compare its string value to the string NaN, as in string($myVal) = "NaN". In
some functions, such as the distinct-values function, NaN is considered to be equal
to itself.

Arithmetic Operations
The following typical arithmetic operations can be performed on numeric values:

• Addition and subtraction using the plus (+) and the minus (–) sign

• Negation of a single value using the minus sign (–)

• Multiplication using the * operator

• Division using the div operator

• Integer division (with results truncated) using the idiv operator

• Modulus (the remainder of a division) using the mod operator

Some of these arithmetic operators can be used on date and time types in addition to
numeric types. Date/time arithmetic is described in Chapter 19.

Table 16-2. Comparing numeric valuesa

a This table assumes that prices.xml is untyped, i.e., has not been validated with a schema.

Example Value

doc("prices.xml")//prod[3]/discount > 10 false

doc("prices.xml")//prod[3]/discount gt 10 Type error

doc("prices.xml")//prod[3]/discount >
doc("prices.xml")//prod[1]/discount

true (it is comparing the string 3.99
to the string 10.00)

doc("prices.xml")//prod[3]/number(discount) >
doc("prices.xml")//prod[1]/number(discount)

false (it is comparing the number 3.99
to the number 10.00)

3 gt 2 true

1 = 1.0 true

xs:float("NaN") = xs:float("NaN") false

xs:string(xs:float("NaN")) = "NaN" true

208 | Chapter 16: Working with Numbers

If the value NaN is involved in an arithmetic operation (and the other operand is not
the empty sequence), the result is always NaN. If the empty sequence is used in an
arithmetic operation, the result is always the empty sequence. It is important to
understand that the empty sequence is different from zero. For example, $product/
price - $product/discount is equal to the empty sequence (not the value of $product/
price) if there is no element that matches the $product/discount path.

Arithmetic Operations on Multiple Values
Arithmetic operators cannot accept a sequence of more than one value as one of their
operands. For example:

doc("prices.xml")//price * 2

will raise a type error because more than one price element is returned by the path
expression. To perform an arithmetic operation on a sequence of values, you can put
parentheses around the arithmetic operation, as in:

doc("prices.xml")//(price * 2)

which will perform the operation on each price element individually and return a
sequence of doubled price values. You could get the same results using a FLWOR, as in:

for $aPrice in doc("prices.xml")//price
return $aPrice * 2

Arithmetic Operations and Types
When an operation is performed on two values that are the same type, the result is
also a value of that type. For example, adding two xs:integer values results in an
xs:integer. However, if an operation is performed on values of two different
numeric types, one value is promoted to the type of the other value. For example,
adding an xs:decimal to an xs:float results in an xs:float. This is true for all arith-
metic operations except division of two xs:integer values, which results in an xs:
decimal, and integer division, which always results in an xs:integer.

If an untyped value is used in an arithmetic operation, it is automatically cast to
xs:double. For example, when adding the xs:integer 2 to the untyped value 3, the
untyped value is cast to xs:double, and the result is the xs:double value 5. All non-
numeric types must be explicitly cast to a numeric type before being used in an arith-
metic operation.

Atomization occurs on the operands of arithmetic expressions. This means that the
operations can be performed on nodes that contain numeric values as well as
numeric atomic values themselves. For example, an arithmetic expression might be
($price * 2) if $price represents the path to a single node that contains a numeric
value. For more information on atomization, see “Atomization” in Chapter 11.

Arithmetic Operations | 209

XQuery 1.0 and XPath 2.0 have three differences from XPath 1.0
regarding the way arithmetic operations are handled:

• In XPath 1.0, the result of an arithmetic operation on the empty
sequence is NaN, not the empty sequence.

• In XPath 1.0, if an arithmetic operation is attempted on a
sequence of more than one value, the first value is used and the
rest are discarded. In XQuery 1.0/XPath 2.0, this raises a type
error.

• In XPath 1.0, operands of all types are automatically converted to
numbers. In XQuery 1.0/XPath 2.0, the operands must be
untyped or numeric.

Precedence of Arithmetic Operators
Multiplication and division take precedence over addition and subtraction, as is cus-
tomary in mathematical expressions. For example, 2 + 3 * 5 is equal to 2 + (3 * 5), or
17, rather than (2 + 3) * 5, or 25. The unary minus operator has precedence over all
others. For example, - 3 + 5 is equal to 2, not – (3 + 5), or –8.

Multiplication and division operators (*, div, idiv, and mod) have equal precedence
and are evaluated from left to right. Likewise, addition and subtraction operators
have equal precedence and are evaluated from left to right. When in doubt, it is a
good practice to use parentheses to delimit expressions for the sake of clarity.

Addition, Subtraction, and Multiplication
Addition, subtraction, and multiplication are straightforward. Table 16-3 shows
some examples.

Table 16-3. Examples of arithmetic expressions

Example Value Value type

5 + 3 8 xs:integer

5 + 3.0 8 xs:decimal

5 + 3.0E0 8 xs:double

5 * 3 15 xs:integer

2 + 3 * 5 17 xs:integer

(2 + 3) * 5 25 xs:integer

- 3 + 5 2 xs:integer

() + 3 () N/A

doc("prices.xml")//prod[1]/price+5 34.99 xs:decimal

doc("prices.xml")//prod[1]/price-5 () N/A

doc("prices.xml")//prod[1]/price - 5 24.99 xs:decimal

210 | Chapter 16: Working with Numbers

Generally, you are not required to put whitespace before or after arithmetic opera-
tors. For example, price+5, with no spaces, is a valid expression meaning “the value
of the price child plus 5.” However, there is a special rule for subtraction. Because
the dash (-) is a valid character in XML names, it is necessary to put whitespace after
any valid XML name that precedes it. For example, price-5 is interpreted as a single
name, so to subtract, you should use price - 5 instead.*

Division
There are two division operators: div and idiv. A slash (/) cannot be used to indicate
division because the / operator is used to delimit steps in a path expression. The div
operator is used to perform division of the first operand (the dividend) by the sec-
ond operand (the divisor). If both numbers being divided are xs:integer-based val-
ues, the result is an xs:decimal. Otherwise, normal type promotion rules apply, and
the type of the result is the same as the type of the operands.

The idiv operator is used to divide two numbers and obtain the integer portion of
the division result. The operands can have any numeric type. If the result of the divi-
sion is not an even integer, the decimal portion of the number is truncated rather
than rounded. For example, (14 div 4) is equal to 3.5, but (14 idiv 4) is equal to 3.

Table 16-4 shows examples of the div and idiv operators.

Attempting to divide by zero will raise an error when using the idiv operator or
when using the div operator with values of type xs:integer or xs:decimal. Using the
div operator on values of type xs:float or xs:double will not raise an error; it will
return NaN (if the dividend is 0), or INF or –INF.

* The space after the dash is technically unnecessary since a name cannot start with a hyphen, but it looks
cleaner.

Table 16-4. Examples of the div and idiv operators

Example Value Value type

14 div 4 3.5 xs:double

14 idiv 4 3 xs:integer

-14 idiv 4 -3 xs:integer

14.0 div 3.5 4.0 xs:decimal

14.0 idiv 3.5 4 xs:integer

() div 3 () N/A

14 div 0 Error (division by zero) N/A

xs:float("14") div 0 INF xs:float

xs:double("INF") div 2 INF xs:double

xs:float("NaN") div 2 NaN xs:float

Functions on Numbers | 211

Modulus (Remainder)
The mod operator is used to obtain the remainder after dividing the first operand (the
dividend) by the second operand (the divisor). For example, (14 mod 4) equals 2. The
sign of the result is the same as the sign of the first operand. Table 16-5 shows exam-
ples of the mod operator.

Special rules, depicted in Table 16-6, apply when one of the operands is INF, –INF, or 0.

Functions on Numbers
XQuery provides a number of functions that operate on numeric values. Some oper-
ate on single numeric values. They are summarized in Table 16-7 and covered in
more detail in Appendix A. Each of these functions returns a numeric value whose
type is the same as its argument, or the empty sequence if the argument is the empty
sequence.

Table 16-5. Examples of the mod operator

Example Value Value type

14 mod 4 2 xs:integer

-14 mod 4 -2 xs:integer

14 mod -4 2 xs:integer

14.9 mod 2.1 0.2 xs:decimal

14.5E1 mod 2E1 5 xs:double

xs:float("14") mod 0 NaN xs:float

xs:double("INF") mod 2 NaN xs:double

14 mod () () N/A

14 mod xs:double("INF") 14 xs:double

Table 16-6. Results for the mod operator

Dividend

Divisor INF or –INF Finite number 0 or –0

INF or –INF NaN The dividend The dividend

Finite number NaN The remainder 0

0 or –0 NaN NaNa

a Or, if the operands are of type xs:decimal or xs:integer, a “division by zero” error is raised.

NaNa

212 | Chapter 16: Working with Numbers

Table 16-8 lists some additional functions that can be used to aggregate or summa-
rize numeric data. These functions accept a sequence of numeric values and return a
single numeric result. All of these functions will automatically cast untyped values to
xs:double, so it is not necessary to perform any explicit casting to have the values
treated like numbers.

Table 16-7. Functions on single numbers

Function name Description

round The argument rounded to the nearest whole number

round-half-to-even The argument rounded to a specified precision, with half values rounded to the nearest
even number

floor The largest whole number that is not greater than the argument

ceiling The smallest whole number that is not smaller than the argument

abs The absolute value of the argument

Table 16-8. Functions on sequences of numbers

Function name Description

avg The average of a sequence of numbers

sum The sum of a sequence of numbers

min The minimum value of a sequence of numbers

max The maximum value of a sequence of numbers

213

Chapter 17 CHAPTER 17

Working with Strings17

Strings are probably the most used type of atomic values in queries. This chapter dis-
cusses constructing and comparing strings and provides an overview of the many
built-in functions that manipulate strings. It also explains string- and text-related fea-
tures such as whitespace handling and internationalization.

The xs:string Type
The basic string type that is intended to represent generic character data is called,
appropriately, xs:string. The xs:string type is not the default type for untyped val-
ues. If a value is selected from an input document with no schema, the value is given
the type xs:untypedAtomic, not xs:string. However, it is easy enough to cast an
untyped value to xs:string. In fact, you can cast a value of any type to xs:string and
cast an xs:string value to any type.

The xs:string type is a primitive type from which a number of other types are
derived. All of the operations and functions that can be performed on xs:string val-
ues can also be performed on values whose types are restrictions of xs:string. This
includes user-defined types that appear in a schema, as well as built-in derived types
such as xs:token, xs:language, and xs:ID. For a complete explanation of the built-in
types, see Appendix B.

Constructing Strings
There are three common ways to construct strings: using string literals, the xs:string
constructor, and the string function.

String Literals
Strings can be included in queries as literals, using double or single quotes. For
example, ($name = "Priscilla") and string-length('query') are valid expressions

214 | Chapter 17: Working with Strings

that contain string literals. If a literal value is enclosed in quotes, it is automatically
assumed to be a string as opposed to a number.

Between quotes, you can escape the surrounding quote character by including it
twice. For example, the literal expression "inner ""quotes""!" evaluates to the string
inner "quotes"!. This is true for both single and double quotes.

In string literals, you can use single character references that use XML syntax. For
example, can be used to include a space. You can also use the predefined
entity references. For example, you can specify the string literal "PB&J" to repre-
sent the string PB&J. In fact, ampersands must be escaped with & in string literals.

The xs:string Constructor and the string Function
There is a standard constructor for strings named xs:string. The xs:string con-
structor, like all constructors, accepts either an atomic value or a single node. If it is
an atomic value, it simply returns that value cast as an xs:string.

Some types have special rules about how their values are formatted when they are
cast to xs:string. For example, integers have their leading zeros stripped, and xs:
hexBinary values have their letters converted to uppercase. In addition, when values
of most nonstring types are cast to xs:string, their whitespace is collapsed. This
means that consecutive whitespace characters are replaced by a single space, and
leading and trailing whitespace is removed. The rules (if any) for each type are
described in Appendix B.

If the xs:string constructor is passed a node, it uses atomization to extract the typed
value of the node, and then casts it to xs:string. For an attribute, this is simply its
value. For an element, it is the character data of the element itself and all its descen-
dants, concatenated together in document order.

In addition, there is a built-in function named string that has almost identical
behavior. One difference is that if you use the string function with no arguments, it
will use the current context item.

Comparing Strings
Several functions, summarized in Table 17-1, are available for comparing and match-
ing strings.

Table 17-1. Functions that compare strings

Name Description

compare Compares two strings, optionally based on a collation

starts-with Determines whether a string starts with another string

ends-with Determines whether a string ends with another string

Comparing Strings | 215

Comparing Entire Strings
Strings can be compared using the comparison operators: =, !=, >, <, >=, and <=. For
example, "abc" < "def" evaluates to true.

The comparison operators use the default collation, as described in “Collations,”
later in this chapter. You can also use the compare function, which fulfills the same
role as the comparison operators but allows you to explicitly specify a collation. The
compare function accepts two string arguments and returns one of the values –1, 0, or
1 depending on which argument is greater.

Determining Whether a String Contains Another String
Three functions test whether a string contains the characters of another string. They
are the contains, starts-with, and ends-with functions. Each of them returns a Bool-
ean value and takes two strings as arguments: the first is the containing string being
tested, and the second is the contained string. Table 17-2 shows some examples of
these functions.

contains Determines whether a string contains another string

matches Determines whether a string matches a regular expression

U S E F U L F U N C T I O N

contains-word
You may be interested to know whether a string contains another string, but only as a
separate word. The contains-word function, shown here, accomplishes this:

declare namespace functx = "http://www.functx.com";
declare function functx:contains-word
($string as xs:string?, $word as xs:string) as xs:boolean
 {
 let $upString := upper-case($string)
 let $upWord := upper-case($word)
 return matches($upString, concat("^(.*\W)?", $upWord, "(\W.*)?$"))
 };

The function takes as arguments the string to search and the word to find. Making use
of the matches function described in the next section, it finds the word if it is contained
in the string, separated by nonword characters or the beginning or end of the string. It
is case-insensitive; it matches a word even if the case is different.

This function is good enough for English and some European languages, but the con-
cept of a word in Asian languages is much more subtle.

Table 17-1. Functions that compare strings (continued)

Name Description

216 | Chapter 17: Working with Strings

Matching a String to a Pattern
The matches function determines whether a string matches a pattern. It accepts two
string arguments: the string being tested and the pattern itself. The pattern is a regu-
lar expression, whose syntax is covered in Chapter 18. There is also an optional third
argument, which can be used to set additional options in the interpretation of the
regular expression, such as multi-line processing and case sensitivity. These options
are described in detail in the section “Using Flags” in Chapter 18.

Table 17-3 shows examples of the matches function.

Substrings
Three functions are available to return part of a string. The substring function
returns a substring based on a starting position (starting at 1 not 0) and optionally a
length. For example:

substring("query", 2, 3)

returns the string uer. If no length is specified, the function returns the rest of the
string. For example:

substring("query", 2)

returns uery.

Table 17-2. Examples of contains, starts-with, and ends-with

Example Return value

contains("query", "ery") true

contains("query", "query") true

contains("query", "x") false

starts-with("query", "que") true

starts-with("query", "u") false

ends-with("query", "y") true

ends-with("query ", "y") false

Table 17-3. Examples of the matches function

Example Return value

matches("query", "q") true

matches("query", "qu") true

matches("query", "xyz") false

matches("query", "q.*") true

matches("query", "[a-z]{5}") true

Finding the Length of a String | 217

The substring-before function returns all the characters of a string that occur before
the first occurrence of another specified string. The substring-after function returns
all the characters of a string that occur after the first occurrence of another specified
string. Table 17-4 shows examples of the substring functions.

Finding the Length of a String
The length of a string can be determined using the string-length function. It accepts a
single string and returns its length as an integer. Whitespace is significant, so leading
and trailing whitespace characters are counted. Table 17-5 shows some examples.

U S E F U L F U N C T I O N

substring-after-last
If you want the substring that appears after the last occurrence of the specified string,
you can use the substring-after-last function, shown here:

declare namespace functx = "http://www.functx.com";
declare function functx:substring-after-last
($string as xs:string?, $delim as xs:string) as xs:string?
 {
 if (contains ($string, $delim))
 then functx:substring-after-last(substring-after($string, $delim), $delim)
 else $string
 };

For example, calling this function with:

functx:substring-after-last("2006-05-03", "-")

will return 03. This function uses recursion to call the substring-after function repeat-
edly until the string no longer contains the search characters.

Table 17-4. Examples of the substring functions

Example Return value

substring("query", 2, 3) uer

substring("query", 2) uery

substring-before("query", "er") qu

substring-before("queryquery", "er") qu

substring-after("query", "er") y

substring-after("queryquery", "er") yquery

218 | Chapter 17: Working with Strings

Concatenating and Splitting Strings
Five functions, summarized in Table 17-6, concatenate and split apart strings.

U S E F U L F U N C T I O N

set-string-to-length
The set-string-to-length function, shown here, pads a string to a desired length:

declare namespace functx = "http://www.functx.com";
declare function functx:set-string-to-length
($stringToPad as xs:string?, $padChar as xs:string,
 $length as xs:integer) as xs:string
 {
 substring(
 string-join (($stringToPad, for $i in (1 to $length) return $padChar),"")
 ,1,$length)
 };

The function accepts as arguments a string, a character to pad the string with, and the
desired length of the string. For example, you might call this function with:

functx:set-string-to-length("abc", "*", 7)

which returns abc****. This function truncates $stringToPad if it is longer than
$length.

Table 17-5. Examples of the string-length function

Example Return value

string-length("query") 5

string-length(" query ") 9

string-length(normalize-space(" query ")) 5

string-length("") 0

string-length(" ") 1

Table 17-6. Functions that concatenate and split apart strings

Name Description

concat Concatenates two or more strings

string-join Concatenates a sequence of strings, optionally using a separator

tokenize Breaks a single string into a sequence of strings, using a specified separator

codepoints-to-string Converts a sequence of Unicode code-point values to a string

string-to-codepoints Converts a string to a sequence of Unicode code-point values

Concatenating and Splitting Strings | 219

Concatenating Strings
Strings can be concatenated together using one of two functions: concat or string-
join. XQuery does not allow use of concat operators such as +, &, or || to concate-
nate strings. The concat function accepts individual string arguments and concate-
nates them together. This function is unique in that it accepts a variable number of
arguments. For example:

concat("a", "b", "c")

returns the string abc. The string-join function, on the other hand, accepts a
sequence of strings. For example:

string-join(("a", "b", "c"), "")

also returns the string abc. In addition, string-join allows a separator to be passed
as the second argument. For example:

string-join(("a", "b", "c"), "/")

returns the string a/b/c.

Splitting Strings Apart
Strings can be split apart, or tokenized, using the tokenize function. This function
breaks a string into a sequence of strings, using a regular expression to designate the
separator character(s). For example:

tokenize("a/b/c", "/")

returns a sequence of three strings: a, b, and c. Regular expressions such as \s, which
represents a whitespace character (space, line feed, carriage return, or tab), and \W,
which represents a nonword character (anything other than a letter or digit) are often
used with this function. A list of useful regular expressions for tokenization can be
found in Appendix A in the discussion of the tokenize function. Table 17-7 shows
some examples of the tokenize function.

Table 17-7. Examples of the tokenize function

Example Return value

tokenize("a b c", "\s") ("a", "b", "c")

tokenize("a b c", "\s+") ("a", "b", "c")

tokenize("a-b--c", "-") ("a", "b", "", "c")

tokenize("-a-b-", "-") ("", "a", "b", "")

tokenize("a/ b/ c", "[/\s]+") ("a", "b", "c")

tokenize("2006-12-25T12:15:00", "[\-T:]") ("2006","12","25","12","15","00")

tokenize("Hello, there.", "\W+") ("Hello", "there")

220 | Chapter 17: Working with Strings

Converting Between Code Points and Strings
Strings can be constructed from a sequence of Unicode code-point values (expressed
as integers) using the codepoints-to-string function. For example:

codepoints-to-string((97, 98, 99))

returns the string abc. The string-to-codepoints function performs the opposite; it
converts a string to a sequence of code points. For example:

string-to-codepoints("abc")

returns a sequence of three integers 97, 98, and 99.

Manipulating Strings
Four functions can be used to manipulate the characters of a string. They are listed in
Table 17-8.

Converting Between Uppercase and Lowercase
The upper-case and lower-case functions are used to convert a string to all upper-
case or lowercase. For example, upper-case("Query") returns QUERY. The mappings
between lowercase and uppercase characters are determined by Unicode case map-
pings. If a character does not have a corresponding uppercase or lowercase charac-
ter, it is included in the result string unchanged. Table 17-9 shows some examples.

Replacing Individual Characters in Strings
The translate function is used to replace individual characters in a string with other
individual characters. It takes three arguments:

Table 17-8. Functions that manipulate strings

Name Description

upper-case Translates a string into uppercase equivalents

lower-case Translates a string into lowercase equivalents

translate Replaces individual characters with other individual characters

replace Replaces characters that match a regular expression with a specified string

Table 17-9. Examples of the uppercase and lowercase functions

Example Return value

upper-case("query") QUERY

upper-case("Query") QUERY

lower-case("QUERY-123") query-123

lower-case("Query") query

Manipulating Strings | 221

• The string to be translated

• The list of characters to be replaced (as a string)

• The list of replacement characters (as a string)

Each character in the second argument is replaced by the character in the same posi-
tion in the third argument. For example:

translate("**test**321", "*123", "-abc")

returns the string --test--cba. If the second argument is longer than the third argu-
ment, the extra characters in the second argument are simply omitted from the
result. For example:

translate("**test**321", "*123", "-")

returns the string --test--.

Replacing Substrings That Match a Pattern
The replace function is used to replace nonoverlapping substrings that match a regu-
lar expression with a specified replacement string. It takes three arguments:

• The string to be manipulated

• The pattern, which uses the regular expression syntax described in Chapter 18

• The replacement string

While it is nice to have the power of regular expressions, you don’t have to be famil-
iar with regular expressions to replace a particular sequence of characters; you can
simply specify the string you want replaced for the $pattern argument, as long as it
doesn’t contain any special characters.

An optional fourth argument allows for additional options in the interpretation of
the regular expression, such as multi-line processing and case sensitivity. Table 17-10
shows some examples.

XQuery also supports variables in the replacement text, which allow parenthesized
subexpressions to be referenced by number. You can use the variables $1 through $9

Table 17-10. Examples of the replace function

Example Return value

replace("query", "r", "as") queasy

replace("query", "qu", "quack") quackery

replace("query", "[ry]", "l") quell

replace("query", "[ry]+", "l") quel

replace("query", "z", "a") query

replace("query", "query", "") A zero-length string

222 | Chapter 17: Working with Strings

to represent the first nine parenthesized expressions in the pattern. This is very use-
ful when replacing strings, on the condition that they come directly before or after
another string. For example, if you want to change instances of the word Chap to the
word Sec, but only those that are followed by a space and a digit, you can use the
function call:

replace("Chap 2...Chap 3...Chap 4...", "Chap (\d)", "Sec $1.0")

which returns Sec 2.0...Sec 3.0...Sec 4.0.... Subexpressions are discussed in more
detail in “Using Sub-Expressions with Replacement Variables” in Chapter 18.

Whitespace and Strings
Whitespace handling varies by implementation and depends on whether the imple-
mentation uses schema validation, and how it chooses to handle whitespace in ele-
ment content. Every XML parser normalizes the whitespace in attribute values,
replacing carriage returns, line feeds, and tabs with spaces. XML Schema processors
may further normalize whitespace of an attribute or element value based on its type.
During XML Schema validation, whitespace is preserved in values of type xs:string
(and some of its descendants), but collapsed in all others.

Within string literals in queries, whitespace is always significant. For example, the
expression string-length(" x ") evaluates to 3, not 1.

U S E F U L F U N C T I O N

replace-first
If you want to replace the first instance that matches a pattern, you can use the
replace-first function, shown here:

declare namespace functx = "http://www.functx.com";
declare function functx:replace-first
($string as xs:string?, $pattern as xs:string,
 $replacement as xs:string) as xs:string
 {
 replace($string, concat("(^.*?)", $pattern), concat("$1",$replacement))
 };

This function uses an anchor (^) to tie the pattern to the beginning of the string only.
It then uses a subexpression variable ($1) to include the beginning of the string
(before the first matched occurrence) in the results. For example, calling it with
functx:replace-first("this is a string", "is", "xx") will return thxx is a string
(where the second is is not replaced).

Internationalization Considerations | 223

Normalizing Whitespace
The normalize-space function collapses whitespace in a string. Specifically, it per-
forms the following steps:

1. Replaces each carriage return (#xD), line feed (#xA), and tab (#x9) character with a
single space (#x20)

2. Collapses all consecutive spaces into a single space

3. Removes all leading and trailing spaces

Table 17-11 shows some examples.

Internationalization Considerations
XML, through its support for Unicode, is designed to allow for many natural lan-
guages. XQuery provides several functions and mechanisms that support multiple
natural languages: collations, the normalize-unicode function, and the lang function.

Collations
Collations are used to specify the order in which characters should be compared and
sorted. Characters can be sorted simply based on their code points, but this has a
number of limitations. Different languages and locales alphabetize the same set of
characters differently. In addition, an uppercase letter and its lowercase equivalent
may need to be sorted together. For example, if you sort on code points alone, an
uppercase A comes after a lowercase z.

Collations are not just for sorting. They can be used to equate two strings that con-
tain equivalent values. Some languages and locales may consider two different char-
acters or sequences of characters to be equivalent. For example, a collation may
equate the German character β with the two letters ss. This type of comparison
comes into play when using, for example, the contains function, which determines
whether one string contains the characters of another string.

Table 17-11. Examples of the normalize-space function

Example Return value

normalize-space("query") query

normalize-space(" query ") query

normalize-space("xml query") xml query

normalize-space("xml query") xml query

normalize-space(" ") A zero-length string

224 | Chapter 17: Working with Strings

Collations in XQuery are identified by a URI. The URI serves only as a name and
does not necessarily point to a resource on the Web, although it might. All XQuery
implementations support at least one collation, whose name is http://www.w3.org/
2005/xpath-functions/collation/codepoint. This is a simple collation that compares
strings based only on Unicode code points. Although it is based on Unicode code
points, it should not be confused with the Unicode collation algorithm, which is a far
more sophisticated collation algorithm.

There are several ways to specify a collation. Some XQuery functions, such as
compare and distinct-values, accept a $collation argument that allows you to spec-
ify the collation URI. In addition, you can specify a collation in the order by clause of
a FLWOR. These expressions accept either an absolute or a relative URI. If a relative
URI is provided, it is relative to the base URI of the static context, which is described
in Chapter 20.

You can also specify a default collation in the query prolog. This default is used by
some functions as well as order by clauses when no $collation is specified. The
default collation is also used in operations that do not allow you to specify collation,
such as those using the comparison operators =, !=, <, <=, >, and >=. The syntax of a
default collation declaration is shown in Figure 17-1.

An example is:

declare default collation "http://datypic.com/collation/custom";

The collation URI must be a literal value in quotes (not an evaluated expression),
and it should be a syntactically valid absolute URI.

Alternatively, the implementation may have a built-in default collation, or allow a
user to specify one, through means other than the query prolog.

As a last resort, if no $collation argument is provided, no default collation is specified,
and the implementation does not provide a default collation, the simple code-point col-
lation named http://www.w3.org/2005/xpath-functions/collation/codepoint is used.

The default collation can be obtained using the default-collation function, which
takes no arguments.

You should consult the documentation of your XQuery implementation to deter-
mine which collations are supported. Some collations may expect the strings to be
Unicode-normalized already. For these collations, consider using the normalize-
unicode function on strings before comparing them. Other collations perform
implicit normalization on the strings.

Figure 17-1. Syntax of a default collation declaration

declare default collation "<collation-name>" ;

Internationalization Considerations | 225

Although it is possible in XML to use an xml:lang attribute to indicate the natural
language of character data, use of this attribute has no effect on the collation algo-
rithm used in XQuery. Unlike SQL, the choice of collation depends entirely on the
user writing the query, and not on any properties of the data.

Unicode Normalization
Unicode normalization allows text to be compared without regard to subtle varia-
tions in character representation. It replaces certain characters with equivalent repre-
sentations. Two normalized values can then be compared to determine whether they
are the same. Unicode normalization is also useful for allowing character strings to
be sorted appropriately.

The normalize-unicode function performs Unicode normalization on a string. It takes
two arguments: the string to be normalized and the normalization form to use. The
normalization form controls which characters are replaced. Some characters may be
replaced by equivalent characters, while others may be decomposed to an equivalent
representation that has two or more code points.

Determining the Language of an Element
It is possible to test the language of an element based on the existence of an xml:lang
attribute among its ancestors. This is accomplished using the lang function.

The lang function accepts as arguments the language to test and, optionally, the
node to be tested. The function returns true if the relevant xml:lang attribute of the
node (or the context node if no second argument is specified) has a value that
matches the argument. The function returns false if the relevant xml:lang attribute
does not match the argument, or if there is no relevant xml:lang attribute.

226

Chapter 18CHAPTER 18

Regular Expressions 18

Regular expressions are patterns that describe strings. They can be used as argu-
ments to three XQuery built-in functions to determine whether a string value
matches a particular pattern (matches), to replace parts of string that match a pattern
(replace), and to tokenize strings based on a delimiter pattern (tokenize). This chap-
ter explains the regular expression syntax used by XQuery.

The Structure of a Regular Expression
The regular expression syntax of XQuery is based on that of XML Schema, with
some additions. Regular expressions, also known as regexes, can be composed of a
number of different parts: atoms, quantifiers, and branches.

Atoms
An atom is the most basic unit of a regular expression. It might describe a single
character, such as d, or an escape sequence that represents one or more characters,
like \s or \p{Lu}. It could also be a character class expression that represents a range
or choice of several characters, such as [a-z]. These kinds of atoms are described
later in this chapter.

Quantifiers
Atoms may indicate required, optional, or repeating strings. The number of times a
matching string may appear is indicated by a quantifier, which appears directly after
an atom. For example, to indicate that the letter d must appear one or more times,
you can use the expression d+, where the + means “one or more.” The different quan-
tifiers are listed in Table 18-1.

The Structure of a Regular Expression | 227

Examples of the use of these quantifiers are shown in Table 18-2. Note that in these
cases, the quantifier applies only to the letter o, not to the preceding f.

Parenthesized Sub-Expressions and Branches
A parenthesized sub-expression can be used as an atom in a larger regular expres-
sion. Parentheses are useful for repeating certain sequences of characters. For exam-
ple, suppose you want to indicate a repetition of the string fo. The expression fo*
matches fooo, but not fofo, because the quantifier applies to the final atom, not the
entire string. To allow fofo, you can parenthesize fo, resulting in the regular expres-
sion (fo)*.

Parenthesized sub-expressions are also useful for specifying a choice between several
different patterns. For example, to allow either the string fo or the string xy to come
before z, you can use the expression (fo|xy)z. The two expressions on either side of
the vertical bar character (|), in this case fo and xy, are known as branches.

The | character does not act on the atom immediately preceding it, but on the entire
expression that precedes it (back to the previous | or corresponding opening paren-
thesis). For example, the regular expression (yes|no) indicates a choice between yes
and no, not “ye, followed by s or n, followed by o.” Branches at the top level can also
be used without parentheses, as in yes|no.

Table 18-1. Kinds of quantifiers

Quantifier Number of occurrences

none 1

? 0 or 1

* 0, 1, or many

+ 1 or many

{n} n

{n,} n to many

{n,m} n to m

Table 18-2. Quantifier examples

Regular expression Strings that match Strings that do not match

fo fo f, foo

fo? f, fo foo

fo* f, fo, foo, fooo, ... fx

fo+ fo, foo, fooo, ... f

fo{2} foo fo, fooo

fo{2,} foo, fooo, foooo, ... f, fo

fo{2,3} foo, fooo f, fo, foooo

228 | Chapter 18: Regular Expressions

Placing parentheses around a sub-expression also allows it to be referenced, which is
useful for two purposes: back-references, and variable references when using the
replace function. These features are covered in “Back-References” and “Using Sub-
Expressions with Replacement Variables,” respectively.

Table 18-3 shows some examples that exhibit the interaction between branches,
atoms, and parentheses.

Representing Individual Characters
A single character can be used to represent itself in a regular expression. In this case,
it is known as a normal character. For example, the regular expression d matches the
letter d, and def matches the string def, as you might expect. Each of the three single
characters (d, e, and f) is its own atom, and it can have a quantifier associated with
it. For example, the regular expression d+ef matches the strings def, ddef, dddef, etc.

Certain characters, in order to be taken literally, must be escaped because they have
another meaning in a regular expression. For example, the asterisk (*) will be treated
like a quantifier unless it is escaped. These characters, called metacharacters, must be
escaped (except when they are within square brackets): ., \, ?, *, +, |, ^, $, {, }, (,), [,
and].

These characters are escaped by preceding them with a backslash. This is referred to
as a single-character escape because there is only one matching character. For conve-
nience, there are three additional single-character escapes for the whitespace charac-
ters tab, line feed, and carriage return. Table 18-4 lists the single-character escapes.

Table 18-3. Examples of parentheses in regular expressions

Regular expression Strings that match Strings that do not match

(fo)+z foz, fofoz z, fz, fooz, ffooz

(fo|xy)z foz, xyz z

(fo|xy)+z fofoz, foxyz, xyfoz z

(f+o)+z foz, ffoz, foffoz z, fz, fooz

yes|no yes, no

Table 18-4. Single-character escapes

Escape sequence Character

\\ \

\| |

\. .

\- -

\^ ^

\$a $

\? ?

Representing Any Character | 229

You can also use the standard XML syntax for character references and predefined
entity references in regular expressions, as long as they are in quoted strings. For
example, a space can be represented as , and a less-than symbol (<) can be
represented as <. This can be useful for special characters. It is described further
in “XML Entity and Character References” in Chapter 21.

Table 18-5 shows some examples of representing individual characters in regular
expressions.

Representing Any Character
The period (.) has special significance in regular expressions; it matches any character
except the line feed character (#xA). The period character represents only one matching
character, but a quantifier (such as *) can be applied to it to represent multiple charac-
ters. Table 18-6 shows some examples of the wildcard escape character in use.

* *

\+ +

\{ {

\} }

\((

\))

\[[

\]]

\n Line feed (#xA)

\r Carriage return (#xD)

\t Tab (#x9)

a This single-character escape can be used in XQuery,
but not in XML Schema regular expressions.

Table 18-5. Representing individual characters

Regular expression Strings that match Strings that do not match

d d g

d+efg+ defg, ddefgg defgefg, deffgg

defg defg d, efg

d|e|f d, e, f g

f*o fo, ffo, fffo f*o

f*o f*o fo, ffo, fffo

déf déf def, df

Table 18-4. Single-character escapes (continued)

Escape sequence Character

230 | Chapter 18: Regular Expressions

It is important to note that the period loses its wildcard power when placed in a
character class expression (within square brackets).

Some XQuery functions (namely matches, replace, and tokenize) allow you to indi-
cate that the processor should operate in dot-all mode. This is specified using the let-
ter s in the $flags argument. In dot-all mode, the period matches any character
whatsoever, including the line feed character (#xA). See “Using Flags,” later in this
chapter, for more information.

Representing Groups of Characters
Sometimes characters fall into convenient groups, such as decimal digits or punctua-
tion characters. Three different kinds of escapes can be used to represent a group of
characters: multi-character escapes, category escapes, and block escapes. Like single-
character escapes, they all start with a backslash.

Multi-Character Escapes
Multi-character escapes, listed in Table 18-7, represent groups of related characters.
They are called multi-character escapes because they allow a choice of multiple char-
acters. However, each escape represents only one character in a matching string. To
allow several replacement characters, you should use a quantifier such as +.

Table 18-6. The wildcard escape character

Regular expression Strings that match Strings that do not match

f.o fao, fbo, f2o fo, fbbo

f..o faao, fbco, f12o fo, fao

f.*o fo, fao, fbcde23o f
oa

a Assume a line feed character between f and o. This string does not match unless you are in dot-all mode.

f\.o f.o fao

Table 18-7. Multi-character escapes

Escape Meaning

\s A whitespace character, as defined by XML (space, tab, carriage return, or line feed)

\S A character that is not a whitespace character

\d A decimal digit (0 to 9), or a digit in another style, for example, an Indic Arabic digit

\D A character that is not a decimal digit

\w A “word” character, that is, any character not in one of the Unicode categories Punctuation, Separators, and Other

\W A nonword character, that is, any character in one of the Unicode categories Punctuation, Separators, and Other

\i A character that is allowed as the first character of an XML name, i.e., a letter, an underscore (_), or a colon (:);
the “i” stands for “initial”

Representing Groups of Characters | 231

Category Escapes
The Unicode standard defines categories of characters based on their purpose. For
example, there are categories for punctuation, uppercase letters, and currency sym-
bols. These categories, listed in Table 18-8, can be referenced in regular expressions
using category escapes.

\I A character that cannot be the first character of an XML name

\c A character that can be part of an XML name, i.e., a letter, a digit, an underscore (_), a hyphen (-), a colon (:), or a
period (.)

\C A character that cannot be part of an XML name

Table 18-8. Unicode categories

Category Property Meaning

Letters L All letters

Lu Uppercase

Ll Lowercase

Lt Titlecase

Lm Modifier

Lo Other

Marks M All marks

Mn Nonspacing

Mc Spacing combining

Me Enclosing

Numbers N All numbers

Nd Decimal digit

Nl Letter

No Other

Punctuation P All punctuation

Pc Connector

Pd Dash

Ps Open

Pe Close

Pi Initial quote

Pf Final quote

Po Other

Table 18-7. Multi-character escapes (continued)

Escape Meaning

232 | Chapter 18: Regular Expressions

Category escapes take the form \p{XX}, with XX representing the property listed in
Table 18-8. For example, \p{Lu} matches any uppercase letter. Category escapes that
use an uppercase P, as in \P{XX}, match all characters that are not in the category. For
example, \P{Lu} matches any character that is not an uppercase letter.

Note that the category escapes include all alphabets. If you intend for an expression
to match only the capital letters A through Z, it is better to use [A-Z] than \p{Lu},
because \p{Lu} allows uppercase letters of all character sets. Likewise, if your inten-
tion is to allow only the decimal digits 0 through 9, use [0-9] rather than \p{Nd} or \d,
because there are decimal digits other than 0 through 9 in other character sets.

Block Escapes
Unicode defines a numeric code point for each character. Each range of characters is
represented by a block name, also defined by Unicode. For example, characters 0000
through 007F are known as basic latin. Table 18-9 lists the first five block escape
ranges as an example. For a complete, updated list, see the blocks file of the Uni-
code standard at http://www.unicode.org/Public/UNIDATA/Blocks.txt.

Separators Z All separators

Zs Space

Zl Line

Zp Paragraph

Symbols S All symbols

Sm Math

Sc Currency

Sk Modifier

So Other

Other C All others

Cc Control

Cf Format

Co Private use

Cn Not assigned

Table 18-9. Partial list of Unicode block names

Start code End code Block name (with spaces removed)

#x0000 #x007F BasicLatin

#x0080 #x00FF Latin-1Supplement

#x0100 #x017F LatinExtended-A

Table 18-8. Unicode categories (continued)

Category Property Meaning

http://www.unicode.org/Public/UNIDATA/Blocks.txt

Character Class Expressions | 233

Block escapes can be used to refer to these character ranges in regular expressions.
They take the form \p{IsXX}, with XX representing the Unicode block name with all
spaces removed. For example, \p{IsLatin-1Supplement} matches any one character
in the range #x0080 to #x00FF. As with category escapes, you can use an uppercase P
to match characters not in the block. For example, \P{IsLatin-1Supplement} matches
any character outside of that range.

Table 18-10 provides examples of representing groups of characters in regular
expressions.

Character Class Expressions
Character class expressions, which are enclosed in square brackets, indicate a choice
among several characters. These characters can be listed singly, expressed as a range
of characters, or expressed as a combination of the two.

Single Characters and Ranges
To specify a choice of several characters, you can simply list them inside square
brackets. For example, [def] matches d or e or f. To match multiple occurrences of
these letters, you can use a quantifier with a character class expression, as in [def]*,
which will match not only defdef, but eddfefd as well. The characters listed can also
be any of the escapes described earlier in this chapter. The expression [\p{Ll}\d]
matches either a lowercase letter or a digit.

#x0180 #x024F LatinExtended-B

#x0250 #x02AF IPAExtensions

...

Table 18-10. Representing groups of characters

Regular expression Strings that match Strings that do not match Comment

f\d f0, f1 f, f01 multi-character escape

f\d* f, f0, f012 ff multi-character escape

f\s*o fo, f o foo multi-character escape

\p{Ll} a, b A, B, 1, 2 category escape

\P{Ll} A, B, 1, 2 a, b category escape

\p{L} a, b, A, B 1, 2 category escape

\P{L} 1, 2 a, b, A, B category escape

\p{IsBasicLatin} a, b â, ß block escape

\P{IsBasicLatin} â, ß a, b block escape

Table 18-9. Partial list of Unicode block names (continued)

Start code End code Block name (with spaces removed)

234 | Chapter 18: Regular Expressions

It is also possible to specify a range of characters, by separating the starting and end-
ing characters with a hyphen. For example, [a-z] matches any letter from a to z. The
endpoints of the range must be single characters or single character escapes (not a
multi-character escapes such as \d).

You can specify more than one range in the same character class expression, which
means that it matches a character in any of the ranges. The expression [a-zA-Z0-9]
matches one character that is either between a and z, or between A and Z, or a digit
from 0 to 9. Unicode code points are used to determine whether a character is in the
range.

Ranges and single characters can be combined in any order. For example, [abc0-9]
matches either a letter a, b, or c or a digit from 0 to 9. This regular expression could
also be expressed as [0-9abc] or [a0-9bc].

Subtraction from a Range
Subtraction allows you to express that you want to match a range of characters but
leave a few out. For example, [a-z-[jkl]] matches any character from a to z except
j, k, or l. A hyphen (-) precedes the character group to be subtracted, which is itself
enclosed in square brackets. Like any character class expression, the subtracted group
can be a list of single characters or ranges, or both. The expression [a-z-[j-l]] has
the same meaning as the previous example. You can also subtract from a multi-
character escape, for example [\p{Lu}-[ABC]].

Negative Character Class Expressions
It is also possible to specify a negative character class expression, meaning that a
string should not match any of the characters specified. This is accomplished using
the ^ character after the left square bracket. For example, [^a-z] matches any charac-
ter that is not a letter from a to z. Any character class expression can be negated,
including those that specify single characters, ranges, or a combination of the two.
The negation applies to the entire character class expression, so [^a-z0-9] will match
anything that is not a letter from a to z and also not a digit from 0 to 9.

Some examples of character class expressions are shown in Table 18-11.

Table 18-11. Character class expression examples

Regular expression Strings that match Strings that do not match Comment

[def] d, e, f def Single characters

[def]* d, eee, dfed a, b Single characters, repeating

[\p{Ll}\d] a, b, 1 A, B Single characters with escapes

[d-f] d, e, f a, D Range of characters

[0-9d-fD-F] 3, d, F a, 3dF Multiple ranges

Reluctant Quantifiers | 235

Escaping Rules for Character Class Expressions
Special escaping rules apply to character class expressions. They are:

• The characters [,], \, and - must be escaped when included as single characters.*

• The character \ must be escaped if it is the lower bound of the range.

• The characters [and \ must be escaped if one of them is the upper bound of the
range.

• The character ^ must be escaped only if it appears first in the character class
expression, directly after the opening bracket ([).

The other metacharacters do not need to be escaped when used in a character class
expression, because they have no special meaning in that context. This includes the
period character, which does not serve as a wildcard escape character when it
appears inside a character class expression. However, it is never an error to escape
any of the metacharacters, and getting into the habit of always escaping them elimi-
nates the need to remember these rules.

Reluctant Quantifiers
XQuery supports reluctant quantifiers, which allow part of a regular expression to
match the shortest possible string. Reluctant quantifiers are indicated by adding a
question mark (?) to the end of any of the kinds of quantifiers identified in
Table 18-1.

For example, given the string reluctant and the regular expression r.*t, the regular
expression could match reluct or reluctant. Since a standard quantifier (*) is used,

[0-9stu] 4, 9, t a, 4t Range plus single characters

[s-u\d] 4, 9, t a, t4 Range plus single-character escape

[a-x-[f]] a, d, x f, 2 Subtracting from a range

[a-x-[fg]] a, d, x f, g, 2 Subtracting from a range

[a-x-[e-g]] a, d, x e, g, 2 Subtracting from a range with a range

[^def] a, g, 2 d, e, f Negating single characters

[^\[] a, b, c [Negating a single-character escape

[^\d] d, E 1, 2, 3 Negating a multi-character escape

[^a-cj-l] d, 4 b, j, l Negating a range

* There has been a lot of confusion about the rules for escaping “-” in successive corrections to the XML
Schema recommendation, so there are variations between products, but it’s always safe to escape it.

Table 18-11. Character class expression examples (continued)

Regular expression Strings that match Strings that do not match Comment

236 | Chapter 18: Regular Expressions

the match is on the longest possible string, reluctant. If the regular expression were
r.*?t instead, which uses a reluctant quantifier, it would match reluct, the shorter
of the two strings.

Reluctant quantifiers come into play when replacing matching values in a string.
Table 18-12 shows some examples of calls to the replace function that use reluctant
and nonreluctant quantifiers.

Reluctant quantifiers have no effect on simply determining whether a string matches
a regular expression, which explains why they are not supported in XML Schema. It
may seem that the regular expression r.*?tly would not match the string
reluctantly because r.*?t would match the shorter string reluct, leaving an extra
antly which does not match the pattern ly. However, this is not the way it works.
Reluctant quantifiers do not indicate that only the shorter string matches, just that
the processor uses the shorter of the two matches if called on to perform a replace-
ment or some other operation. Any of the quantifiers in the examples in Table 18-2
could be replaced by reluctant quantifiers, and the list of matching and nonmatch-
ing strings would be the same.

Anchors
XQuery adds the concept of anchors to XML Schema regular expressions. In XML
Schema validation, the regular expression is expected to match the entire string, not
a part of it. For example, the regular expression str matches only the string str and
not other strings that contain str, like 5str5. In XQuery, however, the expression str
matches all strings that contain str, including 5str5.

Because of this looser interpretation, it is sometimes useful to explicitly say that the
expression should match the beginning or end of the string (or both). Anchors can be
used for this purpose. The ^ character is used to match the beginning of the string,
and the $ character is used to match the end of the string. For example, the regular
expression ^str specifies that a matching string must start with str. Table 18-13
shows some examples that use anchors.

Table 18-12. Reluctant versus nonreluctant quantifiers

Example Return value

replace("reluctant", "r.*t", "X") X

replace("reluctant", "r.*?t", "X") Xant

replace("aaah", "a{2,3}", "X") Xh

replace("aaah", "a{2,3}?", "X") Xah

replace("aaaah", "a{2,3}", "X") Xah

replace("aaaah", "a{2,3}?", "X") XXh

Back-References | 237

Anchors and Multi-Line Mode
Some XQuery functions (namely matches, replace, and tokenize) allow you to indi-
cate that the processor should operate in multi-line mode. This is specified using the
letter m in the $flags argument. In multi-line mode, anchors match not just the
beginning and end of the entire string, but also the beginning and end of any line
within the string, as indicated by a line feed character (#xA). Table 18-14 shows some
examples of using anchors in multi-line mode.

Back-References
XQuery supports the use of back-references.* Back-references allow you to ensure
that certain characters in a string match each other. For example, suppose you want
to ensure that a string is a product number delimited by either single or double
quotes. The product number must be three digits, followed by a dash, followed by
two uppercase letters. You could write the expression:

('|")\d{3}-[A-Z]{2}('|")

Table 18-13. Anchors

Regular expression Strings that match Strings that do not match

str str, str5, 5str, 5str5 st, sttr

^str$ str 5str5, str5, 5str

^str str, str5 5str5, 5str

str$ str, 5str 5str5, str5

Table 18-14. Anchors in multi-line modea

a Some of the examples span several lines; individual examples are separated by commas.

Regular expression Strings that match Strings that do not match

str str st

^str$ str,
555
str
555

555str
555

^str str555,
555
str555

555str
555

str$ 555str,
555str
555

555
str555

* Back-references are not supported in XML Schema regular expressions.

238 | Chapter 18: Regular Expressions

However, this would allow a string that starts with a single quote and ends with a dou-
ble quote. You want to be sure the quotes match. You could write the expression:

'\d{3}-[A-Z]{2}'|"\d{3}-[A-Z]{2}"

but this requires repeating the entire pattern for the product number. Instead, you
can parenthesize the expression representing the quotes and refer back to it using an
escaped digit. For example, the expression:

('|")\d{3}-[A-Z]{2}\1

is equivalent to the prior example, but it is shorter and simpler. The atom \1 indi-
cates that you want to repeat the first parenthesized expression, namely ('|"). The
characters that match the first parenthesized expression must be the same characters
that match the back-reference. This means that the regular expression does not
match a string that starts with a single quote and ends with a double quote.

The parenthesized sub-expressions are numbered in order from left to right based on
the position of the opening parenthesis, starting with 1 (not 0). You can reference
any of them by number. You can use as many digits as you want, provided that the
number does not exceed the number of sub-expressions preceding it.

Using Flags
Three XQuery functions use regular expressions: matches, replace, and tokenize.
Each of these functions accepts a $flags argument that allows for additional options
in the interpretation of the regular expression, such as multi-line processing and case
insensitivity. Options are indicated by single letters; the $flags argument is a string
that can include any of the valid letters in any order, and duplicates are allowed.

The $flags argument allows four options:

s The letter s indicates dot-all mode, which affects the period wildcard (.). (This is
known as single-line mode in Perl.) This means that the period wildcard
matches any character whatsoever, including the line feed (#xA) character. If the
letter s is not specified, the period wildcard matches any character except the
line feed (#xA) character.

m The letter m indicates multi-line mode, which affects anchors. In multi-line
mode, the ^ and $ characters match the beginning and end of a line, as well as
the beginning and end of the whole string.

i The letter i indicates case-insensitive mode. This means that matching does not
distinguish between normal characters that are case variants of each other, as
defined by Unicode. For example, in case-insensitive mode, [a-z] matches the
lowercase letters a through z, uppercase letters A through Z, and a few other
characters such as a Kelvin sign. The meaning of category escapes such as \p{Lu}
is not affected.

Using Sub-Expressions with Replacement Variables | 239

x The letter x indicates that whitespace characters within regular expressions
should be ignored. This is useful for making long regexes readable by splitting
over many lines. If x is not specified, whitespace characters are considered to be
significant and to match those in the string. If you want to represent significant
whitespace when using the x flag, you can use the multi-character escape \s.

If no flag options are desired, you should either pass a zero-length string, or omit the
$flags argument entirely. Table 18-15 shows some examples that use the $flags
argument, which is the third argument of the matches function. They assume that the
variable $address is bound to the following string (the line break is significant):

123 Main Street
Traverse City, MI 49684

Using Sub-Expressions with Replacement Variables
The replace function allows parenthesized sub-expressions (also known as groups)
to be referenced by number in the replacement string. In the $replacement string, you
can use the variables $1, $2, $3, etc. to represent (in order) the parenthesized expres-
sions in $pattern. This is very useful when replacing strings on the condition that
they come directly before or after another string—for example, if you want to change
instances of the word Chap to the word Sec, but only those that are followed by a
space and a digit. This technique can also be used to reformat data for presentation.
Table 18-16 shows some examples.

Table 18-15. Examples of the $flags argument

Example Return value

matches($address, "Street.*City") false

matches($address, "Street.*City", "s") true

matches($address, "Street$") false

matches($address, "Street$", "m") true

matches($address, "street") false

matches($address, "street", "i") true

matches($address, "Main Street") true

matches($address, "Main Street", "x") false

matches($address, "Main \s Street", "x") true

matches($address, "street$", "im") true

240 | Chapter 18: Regular Expressions

U S E F U L F U N C T I O N

get-matches-and-non-matches
The regular expression capabilities of XQuery allow you to determine whether a string
matches a regular expression and to replace matches in a string. However, one feature
it does not directly provide is the ability to retrieve the parts of a string that do match
a pattern. In XSLT 2.0, this can be achieved using the xsl:analyze-string instruction
that has no equivalent in XQuery. However, this can be accomplished using the get-
matches-and-non-matches function below, which returns a sequence of alternating
match and non-match elements containing the strings that do and do not match a pat-
tern. It starts with the entire string, constructs an element depending on whether it
begins with a match or nonmatch, and recursively calls itself with the rest of the string.

This function depends on two other functions, also listed here:

index-of-match-first
This function determines where the first match (if any) occurs in the string. It does
this by tokenizing the string and determining the length of the first token.

replace-first
This function replaces the first match in the string by concatenating an anchor and
reluctant wildcard to the beginning of the pattern. It is used by the get-matches-
and-non-matches to help determine the length of any particular match.

declare namespace functx = "http://www.functx.com";
declare function functx:get-matches-and-non-matches
 ($string as xs:string?, $regex as xs:string) as element()* {

 let $iomf := functx:index-of-match-first($string, $regex)
 return
 if (empty($iomf))
 then <non-match>{$string}</non-match>
 else if ($iomf > 1)
 then (<non-match>{substring($string,1,$iomf - 1)}</non-match>,
 functx:get-matches-and-non-matches(
 substring($string,$iomf),$regex))
 else
 let $length :=
 string-length($string) -
 string-length(functx:replace-first($string, $regex,''))
 return (<match>{substring($string,1,$length)}</match>,
 if (string-length($string) > $length)
 then functx:get-matches-and-non-matches(
 substring($string,$length + 1),$regex)
 else ())
 } ;

declare function functx:index-of-match-first
 ($arg as xs:string?, $pattern as xs:string) as xs:integer? {

—continued—

Using Sub-Expressions with Replacement Variables | 241

The variables are bound in order from left to right based on the position of the open-
ing parenthesis. The variable $0 can be used to represent the string matched by the
entire regular expression. If the variable number exceeds the number of parenthe-
sized sub-expressions in the regular expression, it is replaced with a zero-length
string.

If you wish to include the character $ in your replacement string, you must escape it
with a backslash (i.e., \$), as shown in the fifth example. Backslashes must also be
escaped in the $replacement string, as in \\.

 if (matches($arg,$pattern))
 then string-length(tokenize($arg, $pattern)[1]) + 1
 else ()
 } ;

declare function functx:replace-first
 ($arg as xs:string?, $pattern as xs:string,
 $replacement as xs:string) as xs:string {

 replace($arg, concat('(^.*?)', $pattern),
 concat('$1',$replacement))
 } ;

For example, calling this function with:

functx:get-matches-and-non-matches('abc123def', '\d+')

returns a sequence of three elements:

<non-match>abc</non-match>
<match>123</match>
<non-match>def</non-match>

Table 18-16. Examples of using replacement variables

Example Return value

replace("Chap 2...Chap 3...Chap 4...",
 "Chap (\d)", "Sec $1.0")

Sec 2.0...Sec 3.0...Sec 4.0...

replace("abc123", "([a-z])", "$1x") axbxcx123

replace("2315551212", "(\d{3})(\d{3})(\d{4})",
"($1) $2-$3")

(231) 555-1212

replace("2006-10-18", "\d{2}(\d{2})-(\d{2})-(\
d{2})", "$2/$3/$1")

10/18/06

replace("25", "(\d+)", "\$$1.00") $25.00

242

Chapter 19CHAPTER 19

Working with Dates, Times,
and Durations 19

XQuery provides advanced capabilities for querying, creating, and manipulating
date-related values. There are eleven date-related types built into XQuery. They fall
into three categories:

• The date and time types, which represent a point in time—for example, a spe-
cific date or time

• The duration types, which represent periods of time, such as a number of years
or minutes

• The date component types, which represent parts of dates, such as the year
2006, the month of May, or the 10th day of each month

This chapter explains the date-related types used in XQuery and the functions and
operators that act on them.

The Date and Time Types
Three types represent specific dates and/or times: xs:date, xs:time, and xs:dateTime.
These XML Schema built-in types are based on the ISO 8601 standard. They are
summarized in Table 19-1.

The xs:date type has year, month, and day components, while xs:time has hour,
minute, and seconds components. The xs:dateTime type is a concatenation of the
xs:date and xs:time types, with the letter T in between them. Times (in both the
xs:time and xs:dateTime types) are based on a 24-hour time period, so hours are

Table 19-1. Summary of date and time types

Type name Description Format Examples

xs:date Date YYYY-MM-DD 2006-05-03

xs:dateTime Date and time YYYY-MM-DDThh:mm:ss.sss 2006-05-03T10:32:15
2006-05-03T10:32:15.55

xs:time Time hh:mm:ss.sss 10:32:15

The Date and Time Types | 243

represented as 00 through 23 (midnight can also be represented as 24:00:00). Addi-
tional digits can be used to increase the precision of fractional seconds if desired.

Constructing and Casting Dates and Times
There are several ways to construct date and time values:

• You can obtain the current date and/or time using one of the functions current-
dateTime, current-date, or current-time. For example, the function call current-
dateTime() might return the xs:dateTime value 2006-08-15T12:15:00-05:00.

• You can create them from strings using type constructors, whose names are
identical to the type name. For example, xs:dateTime("2006-04-30T12:30:00")
creates an xs:dateTime value.

• The built-in function dateTime (not to be confused with the xs:dateTime con-
structor) can be used to construct an xs:dateTime value from an xs:date and an
xs:time. For example, dateTime(xs:date("2006-04-30"),xs:time("12:30:00"))
also creates an xs:dateTime value.

• You can also cast values among the xs:date, xs:time, and xs:dateTime types.

Time Zones
The date and time types allow an optional time zone to be specified. The time zone
indicator appears at the end of the date or time value. Coordinated Universal Time
(UTC) can be represented using the letter Z. For example, the time 11:03:05Z is in the
UTC time zone.

Other time zones are specified by their offset from UTC in the format +hh:mm or –hh:mm.
These values can range from –14:00 to +14:00. For example, US Pacific Time is indi-
cated as –08:00 because it is eight hours behind UTC. The time value 11:03:05-08:00
is in that time zone.

For the purposes of some XQuery functions, time zone values are treated as dura-
tions of hours and minutes. For example, the time zone –05:00 is considered a nega-
tive xs:dayTimeDuration value –PT5H for the purposes of the functions that adjust time
zones. Duration types are discussed in detail in the section “The Duration Types,”
later in this chapter.

Explicit versus implicit time zones

Because the time zone component of a date or time is optional, some values have
time zones and others do not. A value that does have a time zone specified is said to
have an explicit time zone. A value that does not have any particular time zone asso-
ciated with it is assumed to have an implicit time zone that is defined by the imple-
mentation. For example, if the implicit time zone is –05:00, any value that does not have

244 | Chapter 19: Working with Dates, Times, and Durations

an explicit time zone is treated as if it is in the – –05:00 time zone. If the implementa-
tion does not define an implicit time zone, it is assumed to be UTC. Without implicit
time zones, it would be impossible to compare values that have time zones with val-
ues that don’t.

The implicit-timezone function can be used to determine the implicit time zone. It
takes no arguments and returns the implicit time zone as an xs:dayTimeDuration
value. For example, implicit-timezone() returns the value –PT5H if the time zone is
UTC minus 5 hours (also represented as –05:00). If no implicit time zone is defined,
the function returns the empty sequence (not UTC).

Adjusting time zones

Three functions are available to adjust the time zone of a date or time value. The idea
is to return the equivalent time in a different time zone—for example, 14:00 in New
York is equivalent to 19:00 in London. The function names take the form adjust-
xxx-to-timezone, where xxx is one of date, dateTime, or time, depending on the type
of the first argument.

U S E F U L F U N C T I O N

MMDDYYYY-to-date
Sometimes, dates are included in XML in some other format than that required by the
xs:date type. For example, they may use different separators, or put the components
in a different order. However, you may still want to create xs:date values from them
because you want to use date-related functions.

It is easy enough to write a function that reformats a date and casts it to xs:date. The
function shown below converts a date that is in MMDDYYYY format (with any sepa-
rators between the MM, DD and YYYY) to an xs:date value. It assumes that months
and days are always two digits, and years are always four digits.

declare namespace functx = "http://www.functx.com";
declare function functx:MMDDYYYY-to-date
 ($dateString as xs:string?) as xs:date
 {
 xs:date(
 let $dateWithoutSeps := replace($dateString,"[^\d]", "")
 return concat(substring($dateWithoutSeps, 5,4), "-",
 substring($dateWithoutSeps, 1,2), "-",
 substring($dateWithoutSeps, 3,2))
)
 };

For example, calling this function with:

functx:MMDDYYYY-to-date("09/15/2006")

returns the xs:date value 2006-09-15.

The Date and Time Types | 245

Each of these functions takes as arguments the value to be adjusted, followed by the
desired time zone, expressed as an xs:dayTimeDuration between –PT14H and PT14H. If
the date or time value to be adjusted does not already have a time zone associated
with it, the time zone is applied to it. For example:

adjust-time-to-timezone(xs:time("17:00:00"), xs:dayTimeDuration("-PT5H"))

returns the xs:time value 17:00:00-05:00. If the date or time value already has a time
zone associated with it, its value is changed to the new time zone. Note that the time
zone argument is treated as the new time zone rather than an adjustment to the exist-
ing time zone. For example:

adjust-time-to-timezone(xs:time("17:00:00-03:00"), xs:dayTimeDuration("-PT5H"))

returns the value 15:00:00-05:00 (not 15:00:00-08:00). If the second argument is the
empty sequence, the time zone is removed from the value. For example:

adjust-time-to-timezone(xs:time("17:00:00-03:00"), ())

returns the value 17:00:00 (with no time zone).

You can omit the second argument (the time zone) with each of these functions.
(Remember, ommitting an argument is different from passing the empty sequence.)
In this case, the function uses the implicit time zone defined by the implementation.
For example, if the implicit time zone is –08:00, the function call:

adjust-time-to-timezone(xs:time("17:00:00-03:00"))

returns the value 12:00:00-08:00.

Finding the time zone of a value

You can determine the time zone of an xs:date, xs:time, or xs:dateTime value using
one of the functions named timezone-from-xxx, where xxx is date, time, or dateTime.
The result is expressed as an xs:dayTimeDuration value that represents the deviation
of the time zone from UTC. For example:

timezone-from-time(xs:time("09:54:00-05:00"))

returns the value –PT5H. If there is no time zone in the argument, the empty sequence
is returned. These functions do not take into account the implicit time zone. For
example:

timezone-from-time(xs:time("09:54:00"))

returns the empty sequence, regardless of the implicit time zone.

Comparing Dates and Times
A value of type xs:date, xs:dateTime, or xs:time can be compared with another value
of the same type using any of the comparison operators. You cannot compare values
of different date/time types without explicitly casting one of the values to the other’s

246 | Chapter 19: Working with Dates, Times, and Durations

type. For example, if you want to determine whether the xs:date value 2006-05-06 is
greater than the xs:dateTime value 2006-05-03T13:20:00, you have to cast the xs:
dateTime value to the xs:date type first, as in:

xs:date("2006-05-06") >
 xs:dateTime("2006-05-03T13:20:00") cast as xs:date

Time zones are taken into consideration when comparing dates and times. If a time
zone is not present on any of the values, the implicit time zone is assumed for those
values. The values are then compared based on their relationship to UTC. For exam-
ple, 2006-05-03T14:25:00-08:00 (2:25 P.M. Pacific Time) is greater than 2006-05-
03T16:25:00-05:00 (4:25 P.M. U.S. Eastern Standard Time) because the former is
actually equivalent to 5:25 P.M. U.S. Eastern Standard Time.

Table 19-2 shows some examples of comparing dates and times.

The Duration Types
XQuery uses three types to represent durations of time: xs:duration, xs:
yearMonthDuration, and xs:dayTimeDuration.

The xs:duration type represents a duration of time expressed as a number of years,
months, days, hours, minutes, and seconds. Its format is PnYnMnDTnHnMnS, where P is a
literal value that starts the expression, nY is the number of years followed by a literal
Y, and so on where M refers to months, D refers to days, H refers to hours, the second M
refers to minutes, and S refers to seconds. T is a literal value that separates the date
and time. The numbers are all integers, except the number of seconds, which may be
a decimal number. It is also possible to have a negative duration by preceding the P
with a minus sign (–).

The xs:duration type is not totally ordered, meaning that values of this type cannot
always be compared. For example, if you try to determine whether the xs:duration
value P1M is greater than or less than the xs:duration value P30D, it is ambiguous.
Months may have 28, 29, 30, or 31 days. So, is 30 days less than a month, or not?

Table 19-2. Examples of comparing dates and timesa

a The third example assumes that the implicit time zone (implementation-defined) is –05:00.

Example Value

xs:time("17:15:20-00:00") = xs:time("12:15:20-05:00") true

xs:time("12:15:20-05:00") > xs:time("12:15:20-04:00") true

xs:time("12:15:20-05:00") = xs:time("12:15:20") true

xs:dateTime("2006-05-03T05:00:00") =
xs:dateTime("2006-05-03T07:00:00")

false

xs:date("2006-12-25") < xs:date("2005-01-06") false

xs:time("12:15:20") > xs:time("12:15:30") false

xs:date("2006-05-06") > xs:dateTime("2006-05-03T13:20:00") Type error

The Duration Types | 247

The yearMonthDuration and dayTimeDuration Types
Because xs:duration is not ordered, XQuery defines two types that are derived from
duration: xs:yearMonthDuration and xs:dayTimeDuration. By ensuring that month
and day components never appear in the same duration, the ambiguity is eliminated.

Values of type xs:yearMonthDuration can only specify years and months, and they are
represented as PnYnM. Values of type xs:dayTimeDuration can only specify days, hours,
minutes, and seconds, and are represented as PnDTnHnMnS.

In previous versions of XQuery (including the Candidate Recommenda-
tion), the names of the types yearMonthDuration and dayTimeDuration
were prefixed with xdt: instead of xs: because they were in the now
defunct XPath Datatypes Namespace rather than the XML Schema
Namespace. Some processors still support the old names for these
types instead.

Table 19-3 summarizes the three duration types and provides some examples.

Comparing Durations
Two values of xs:duration can be tested for equality (or inequality), but you cannot
compare them using the operators <, <=, >, or >= because attempting to do so results in a
type error. However, values of one of the two derived types, xs:yearMonthDuration and
xs:dayTimeDuration can be compared because they are totally ordered. They are com-
pared based on the number of months and the number of seconds, respectively.

For example, the xs:yearMonthDuration value P1Y is equal to the xs:yearMonthDuration
value P12M. Even though they have different components, they represent an equal
number of months. However, xs:yearMonthDuration values cannot be compared with
xs:dayTimeDuration values, or with xs:duration values.

Table 19-4 shows some examples of comparing duration values.

Table 19-3. Summary of duration types

Type name Description Format Examples

xs:duration Duration of time PnYnMnDTnHnMnS.SS P5Y4M5DT3H5M15.5S,
P5Y, PT3H

xs:yearMonthDuration Duration in years and
months

PnYnM P5Y4M, P15M

xs:dayTimeDuration Duration in days, hours,
minutes, and seconds

PnDTnHnMnS.SS P5DT3H5M15.5S, PT125S

Table 19-4. Examples of comparing durations

Example Value

xs:yearMonthDuration("P1Y") = xs:yearMonthDuration("P1Y") true

xs:yearMonthDuration("P1Y") = xs:yearMonthDuration("P12M") true

248 | Chapter 19: Working with Dates, Times, and Durations

Extracting Components of Dates, Times, and Durations
A number of functions allow you to extract specific parts of dates, times, and dura-
tions. For example, to retrieve the year part of a date, you can use the year-from-date
function. Table 19-5 lists all the component extraction functions for date, time, and
duration values.

When working with duration values, these functions calculate the result based on
the canonical representation of the values. For example, the function years-from-
duration does not necessarily return the integer that appears before the Y in the origi-
nal value. Rather, it returns the number of whole years in the duration, taking into
account that the number of months might be more than 12. If the xs:duration value
is P1Y15M, the function returns 2, not 1. This is because the canonical representation
of P1Y15M (1 year and 15 months) is actually P2Y3M (2 years and 3 months). To extract
the number of years as a decimal number, you could instead divide the value by the
duration P1Y, which would return 2.25. This is described in “Dividing Durations by
Durations,” later in this chapter.

Table 19-6 shows some examples of calls to the component extraction functions.

xs:yearMonthDuration("P1Y2M") > xs:yearMonthDuration("P1Y3M") false

xs:dayTimeDuration("P1DT12H") = xs:dayTimeDuration("PT36H") true

xs:dayTimeDuration("P1DT12H") < xs:dayTimeDuration("PT37H") true

xs:yearMonthDuration("P1Y") < xs:dayTimeDuration("P366D") Type error

xs:duration("P11M") < xs:duration("P12M") Type error

Table 19-5. Component extraction functions

year-from-dateTime
year-from-date
years-from-duration
month-from-dateTime
month-from-date
months-from-duration

day-from-dateTime
day-from-date
days-from-duration
hours-from-dateTime
hours-from-time
hours-from-duration

minutes-from-dateTime
minutes-from-time
minutes-from-duration
seconds-from-dateTime
seconds-from-time
seconds-from-duration

Table 19-6. Examples of the component extraction functions

Example Return value

month-from-date(xs:date("1999-05-31")) 5

hours-from-time(xs:time("09:54:00")) 9

seconds-from-duration (xs:duration("P5DT1H13.6S")) 13.6

seconds-from-duration(xs:duration("-P5DT1H13.6S")) -13.6

years-from-duration (xs:duration("P5Y3M")) 5

years-from-duration (xs:duration("P1Y15M")) 2

Table 19-4. Examples of comparing durations (continued)

Example Value

Using Arithmetic Operators on Dates, Times, and Durations | 249

If you want to extract the entire date or time from an xs:dateTime value, you can
cast that value to the desired type (either xs:date or xs:time).

Using Arithmetic Operators on Dates, Times,
and Durations
The arithmetic operations performed on date and time types fall into five categories,
described in the following sections:

1. Subtracting a date or time from another date or time to determine, for example,
the elapsed time between 1:32 P.M. and 4:53 P.M.

2. Adding or subtracting durations from dates to determine, for example, what
date is 30 days prior to April 15.

3. Adding or subtracting two durations to obtain a third duration, which might be
used to extend a time period by 30 days.

4. Multiplying or dividing a duration by decimal numbers to obtain a third dura-
tion, which might be used to double a time period or to convert a numeric value
to a duration.

5. Dividing a duration by another duration, which might be used to calculate the
ratio of two durations or to convert a duration value to a number.

In addition to these operations, it is also possible to use the aggregation functions
(max, min, avg, and sum) on sequences of duration values. You can also use the max and
min functions on dates, times, and date/time values.

Subtracting Dates and Times
A value of type xs:date, xs:time, or xs:dateTime can be subtracted from another
value of the same type. This is useful for determining the elapsed duration between
two points in time. For example, if you want to calculate the response time on a cus-
tomer order, you can subtract the order date from the delivery date.

The result is negative if the second date or time occurs later in time than the first date
or time.

The resulting value, in all cases, is an xs:dayTimeDuration value. There is no way to
determine the difference between two dates measured in months, because it’s not
clear that everyone would agree what the answer is if the dates are, for example,
2004-02-29 and 2005-02-28.

Time zones are taken into consideration during subtraction. If either of the values
does not have a time zone, it is assumed to have the implicit time zone.

Table 19-7 shows some examples. The last example assumes that the implicit time
zone is –05:00.

250 | Chapter 19: Working with Dates, Times, and Durations

Adding and Subtracting Durations from Dates and Times
You can add or subtract durations from dates and times. This is useful for determin-
ing, for example, what date occurs 30 days after a specified date, or what time it will
be when some process of fixed duration is completed.

Note that you can’t add or subtract an xs:yearMonthDuration from an xs:time; attempt-
ing to do so raises a type error. This makes sense, since an xs:yearMonthDuration would
not affect an xs:time anyway. Another restriction is that, when subtracting, the date/
time operand must appear first (before the operator), and the duration operand second.

If the original xs:date, xs:time, or xs:dateTime has a time zone, the result has that
same time zone. If it does not, the result does not. Table 19-8 shows some examples
of adding and subtracting durations from dates and times.

Table 19-7. Examples of subtracting dates and times

Example Value

xs:dateTime("2006-04-11T09:23:30.5") -
xs:dateTime("2006-04-04T02:15:10.2")

P7DT7H8M20.3S

xs:dateTime("2006-05-03T12:15:30.5") -
xs:dateTime("2006-05-03T12:15:10.2")

PT20.3S

xs:date("2006-05-06") - xs:date("2006-05-03") P3D

xs:date("2006-04-02") - xs:date("2005-03-11") P387D

xs:date("2006-05-03") - xs:date("2006-05-03") PT0S

xs:date("2006-05-03") - xs:date("2006-05-06") -P3D

xs:time("13:12:02.001") - xs:time("13:12:00") PT2.001S

xs:time("13:12:00-03:00") - xs:time("13:12:00-05:00") -PT2H

xs:time("08:00:00-05:00") - xs:time("09:00:00-02:00") PT2H

xs:time("13:12:00-03:00") - xs:time("13:12:00") -PT2H

Table 19-8. Examples of adding durations to dates and times

Example Value

xs:dateTime("2006-05-03T09:12:35") +
xs:yearMonthDuration("P1Y2M")

2007-07-03T09:12:35

xs:dateTime("2006-04-29T09:12:35") +
xs:dayTimeDuration("P5DT2H12M")

2006-05-04T11:24:35

xs:dateTime("2006-04-29T09:12:35") +
xs:dayTimeDuration("P5DT17H12M")

2006-05-05T02:24:35

xs:dateTime("2006-04-29T09:12:35") -
xs:yearMonthDuration("P1Y")

2005-04-29T09:12:35

xs:yearMonthDuration("P1Y5M") + xs:date("2006-10-02") 2008-03-02

xs:date("2006-10-02") - xs:dayTimeDuration("PT48H") 2006-09-30

xs:date("2006-03-31") - xs:yearMonthDuration("P1M") 2006-02-28

Using Arithmetic Operators on Dates, Times, and Durations | 251

If adding a number of months to a date would result in a day value being out of
range—for example, if you attempt to add P1M to 2006-05-31, the result has the last
possible day of that month, e.g., 2006-06-30. This can cause surprises: if you add six
months to a date and then subtract six months, you might not get the date you
started with.

Adding and Subtracting Two Durations
You can add and subtract values of type xs:yearMonthDuration or xs:dayTimeDuration
(but not xs:duration). This is useful for extending time periods or adding up the
durations of various fixed-length processes.

The result of the operation has the same type as both the operands. The result will be
negative if a larger duration is subtracted from a smaller duration. Table 19-9 shows
some examples of adding and subtracting durations. The two operands must have the
same type. If you attempt to add an xs:yearMonthDuration to an xs:dayTimeDuration, a
type error is raised.

Multiplying and Dividing Durations by Numbers
Multiplying and dividing durations by decimal numbers is useful, for example, to
double a time period or reduce it by half. Another common use case is to convert a
value from a number to a duration. For example, if the $numMonths variable has the
integer value 10 that represents a number of months, and you want to convert it to a
duration, you can use the expression:

$numMonths * xs:yearMonthDuration("P1M")

This would result in a duration value of 10 months (P10M).

xs:time("09:12:35") + xs:dayTimeDuration("P5DT2H12M") 11:24:35

xs:time("09:12:35") + xs:yearMonthDuration("P1Y2M") Type error

Table 19-9. Examples of adding and subtracting durations

Example Value

xs:yearMonthDuration("P3Y10M") + xs:yearMonthDuration("P5Y5M") P9Y3M

xs:dayTimeDuration("P2DT14H55.3S") -
xs:dayTimeDuration("P1DT12H51.2S")

P1DT2H4.1S

xs:dayTimeDuration("P1DT12H51.2S") -
xs:dayTimeDuration("P2DT14H55.3S")

-P1DT2H4.1S

xs:yearMonthDuration("P3Y10M") + xs:dayTimeDuration("P1DT12H") Type error

Table 19-8. Examples of adding durations to dates and times (continued)

Example Value

252 | Chapter 19: Working with Dates, Times, and Durations

Table 19-10 shows some examples of multiplying and dividing durations by numbers.

When working with an xs:yearMonthDuration value, the result is rounded to the
nearest month.

Dividing Durations by Durations
Dividing a duration by another duration will calculate the ratio of two durations.
This is useful if you need to convert a value from a duration to a number. For exam-
ple, if the $showLength variable has the xs:dayTimeDuration value PT2H, and you want
the equivalent number of minutes as a decimal number, you can use the expression:

$showLength div xs:dayTimeDuration("PT1M")

This would result in the number 120, representing 120 minutes.

As with addition and subtraction, the two operands must have the same type. The
result of the operation has the type xs:decimal. Table 19-11 shows some examples of
dividing durations by other durations.

The Date Component Types
In addition to the date and time types already discussed, there are several other date-
related types that represent components of dates. Specifically, they are: xs:gYear,
xs:gYearMonth, xs:gMonth, xs:gMonthDay, and xs:gDay. The letter g at the beginning of
these type names signifies “Gregorian,” the name of the calendar used in most of the
world. They are summarized in Table 19-12 and covered in detail in Appendix B.

Table 19-10. Examples of multiplying and dividing durations

Example Value Value type

xs:yearMonthDuration("P1Y6M") * 3.5 P5Y3M xs:yearMonthDuration

3 * xs:dayTimeDuration("PT50M") PT2H30M xs:dayTimeDuration

xs:yearMonthDuration("P2Y6M") div 2 P1Y3M xs:yearMonthDuration

10 * xs:yearMonthDuration("P1M") P10M xs:yearMonthDuration

Table 19-11. Examples of multiplying and dividing durations

Example Value

xs:yearMonthDuration("P1Y") div xs:yearMonthDuration("P6M") 2

xs:dayTimeDuration("PT25M") div xs:dayTimeDuration("PT50M") 0.5

xs:dayTimeDuration("PT2H") div xs:dayTimeDuration("PT1M") 120

The Date Component Types | 253

Values of these types can be tested for equality (or inequality) with other values of
the same type. However, you cannot compare them using the operators <, <=, >, or >=.
For example, attempting to check if one xs:gMonth value is less than another xs:gMonth
value raises a type error.

Table 19-12. The date component types

Type name Description Format Example

xs:gYear Year YYYY 2006

xs:gYearMonth Year and month YYYY-MM 2006-05

xs:gMonth Recurring month --MM --05

xs:gMonthDay Recurring month and day --MM-DD --05-30

xs:gDay Recurring day ---DD ---30

254

Chapter 20CHAPTER 20

Working with Qualified Names,
 URIs, and IDs 20

This chapter describes the functions and constructors that act on namespace-qualified
names, Uniform Resource Identifiers (URIs), and IDs. Each of these types has unique
properties and complexities that sets it apart from simple strings.

Working with Qualified Names
The type xs:QName is used to represent qualified names in XQuery. An xs:QName value
has three parts: a namespace, a local part, and an associated prefix. The namespace
and the prefix are optional. If a QName does not have a namespace associated with
it, it is considered to be in “no namespace.”

A prefix may be used to represent a namespace in a qualified name, for example in
an XML document. The prefix is mapped to a namespace using a namespace declara-
tion. The prefix itself has no meaning; it is just a placeholder. Two QNames that
have the same local part and namespace are equivalent, regardless of prefix. How-
ever, the XQuery processor does keep track of a QName’s prefix. This simplifies cer-
tain processes like serializing QNames and casting them to strings.

Most query writers who are working with qualified names are working with the
names of elements and attributes. (It is also possible for a qualified name to appear
as element content or as an attribute value, but this is less common.) You may want
to retrieve all or part of a name if, for example, you want to test to see if it is a partic-
ular value, or you want to include the name in the query results. You may want to
construct a qualified name for a node if you are dynamically creating the name of a
node using a computed element constructor. These two use cases are discussed in
this section.

Retrieving Node Names
Four functions retrieve node names or parts of node names: node-name, name, local-
name, and namespace-uri from element and attribute nodes. They are summarized in
Table 20-1.

Working with Qualified Names | 255

Each of these functions takes as an argument a single (optional) node. Table 20-2
shows examples of all four functions. They use the input document names.xml shown
in Example 20-1.

Note that the original prefixes from the input document (or lack thereof) are taken
into account when retrieving the names. For example, calling the name function with
the unprefixed element results in the unprefixed string unprefixed. This does not
mean that the unprefixed element is not in a namespace; it is in the http://datypic.
com/unpre namespace. It simply indicates that the unprefixed element was not pre-
fixed in the input document, because its namespace was the default, and therefore
had no prefix as part of its QName. Therefore, if you are testing the name or manip-
ulating it in some way, it is best to use node-name rather than name, because node-name
provides a result that includes the namespace.

Table 20-1. Functions that return node names

Function Return value

node-name The qualified name of the node as an xs:QName

name The qualified name of the node as an xs:string that may be prefixed

local-name The local part of the node name as an xs:string

namespace-uri The namespace part of a node name (a full namespace name, not a prefix) as an xs:anyURI

Example 20-1. Namespaces in XML (names.xml)

<noNamespace>
 <pre:prefixed xmlns="http://datypic.com/unpre"
 xmlns:pre="http://datypic.com/pre">
 <unprefixed pre:prefAttr="a" noNSAttr="b">123</unprefixed>
 </pre:prefixed>
</noNamespace>

Table 20-2. Examples of the name functions

Node
node-name returns an
xs:QName with: name returns local-name returns namespace-uri returns

noNamespace Namespace: empty

Prefix: empty

Local part:noNamespace

noNamespace noNamespace A zero-length string

pre:prefixed Namespace: http://
datypic.com/pre

Prefix: pre

Local part: prefixed

pre:prefixed prefixed http://datypic.
com/pre

unprefixed Namespace: http://
datypic.com/unpre

Prefix: empty

Local part: unprefixed

unprefixed unprefixed http://datypic.
com/unpre

256 | Chapter 20: Working with Qualified Names, URIs, and IDs

Suppose you want to create a report on the product catalog. You want to list all the
properties of each product element in an XHTML list. You could accomplish this
using the query shown in Example 20-2. It uses the local-name function to return the
names like name, colorChoices, and desc, allowing them to appear as part of the
report.

@pre:prefAttr Namespace: http://
datypic.com/pre

Prefix: pre

Local part: prefAttr

pre:prefAttr prefAttr http://datypic.
com/pre

@noNSAttr Namespace: empty

Prefix: empty

Local part: noNSAttr

noNSAttr noNSAttr A zero-length string

Example 20-2. Using names as result data

Query
<html>{
 for $prod in doc("catalog.xml")//product
 return (<p>Product # {string($prod/number)}</p>,
 {
 for $child in $prod/(* except number)
 return {local-name($child)}: {string($child)}
 })
}</html>
Results
<html>
 <p>Product # 557</p>

 name: Fleece Pullover
 colorChoices: navy black

 <p>Product # 563</p>

 name: Floppy Sun Hat

 <p>Product # 443</p>

 name: Deluxe Travel Bag

 <p>Product # 784</p>

 name: Cotton Dress Shirt
 colorChoices: white gray
 desc: Our favorite shirt!

</html>

Table 20-2. Examples of the name functions (continued)

Node
node-name returns an
xs:QName with: name returns local-name returns namespace-uri returns

Working with Qualified Names | 257

Constructing Qualified Names
There are several ways to construct qualified names. Qualified names are constructed
automatically when using direct element and attribute constructors. They can also be
constructed directly from strings in certain expressions such as computed element con-
structors. In addition, three functions are available to construct QNames: the xs:QName
constructor, the QName function, and the resolve-QName function.

The xs:QName type has a constructor just like all other atomic types. The argument
may be prefixed (e.g., prod:number) or unprefixed (e.g., number). However, it has a
special constraint that it can only accept a literal xs:string value (not an evaluated
expression). This limits its usefulness, since names cannot be dynamically generated.

A function called QName can also be used to construct QNames. Unlike the xs:QName
constructor, it can be used to generate names dynamically. It accepts a namespace
URI and name (optionally prefixed), and returns a QName. For example:

QName("http://datypic.com/p", "pre:child")

returns a QName with the namespace http://datypic.com/p, the local part child, and
the prefix pre. As with any function call, the arguments are not required to be literal
strings. You could just as easily use an expression such as concat("pre:",$myElName) to
express the local part of the name.

A third option is the resolve-QName function, which accepts two arguments: a string
and an element. The string represents the name, which may have a prefix. The ele-
ment is used to determine the appropriate namespace URI for that prefix. Typically,
this function is used to resolve a QName appearing in the content of a document
against the namespace context of the element where the QName appears. For exam-
ple, to retrieve all products that carry the attribute xsi:type="prod:ProductType", you
can use a path such as:

declare namespace prod = "http://datypic.com/prod";

doc("catalog.xml"//product[resolve-QName(@xsi:type, .) = xs:QName("prod:ProductType")]

This test allows the value of xsi:type in the input document to use any prefix (not
just prod) as long as it is bound to the http://datypic.com/prod namespace.

Other Name-Related Functions
Three functions exist to extract parts of an xs:QName:

local-name-from-QName
Returns the local part of the name as a string

prefix-from-QName
Returns the prefix as a string

namespace-uri-from-QName
Returns the namespace URI

258 | Chapter 20: Working with Qualified Names, URIs, and IDs

U S E F U L F U N C T I O N

change-element-ns and change-element-ns-deep
Suppose you wish to copy an element from the input document, but you wish to put
the result element in a different namespace. This function accomplishes this:

declare namespace functx = "http://www.functx.com";
declare function functx:change-element-ns
($element as element(), $newns as xs:string) as element()
 {
 let $newName := QName($newns, local-name($element))
 return (element {$newName} {$element/@*, $element/node()})
 };

It accepts as arguments an element, and the new namespace as a string. It calculates
the new name of the element using the QName function and binds it to the variable
$newName. It then uses a computed element constructor to create an element with the
new name, and copies all of its attributes and children. Note that no prefix is associated
with the new name.

The function above only changes the namespace of the node that is passed to it, not its
children. To modify the namespaces of the element descendants as well, you need to
use a recursive function such as this one:

declare namespace functx = "http://www.functx.com";
declare function functx:change-element-ns-deep
($element as element(), $newns as xs:string) as element() {
 let $newName := QName ($newns, local-name($element))
 return (element {$newName}
 {$element/@*,
 for $child in $element/node()
 return if ($child instance of element())
 then functx:change-element-ns-deep($child, $newns)
 else $child
 }
)
};

For example, calling this function with:

<test xmlns:pre="pre">{
 functx:change-element-ns-deep(
 <pre:x><pre:y>123</pre:y></pre:x>, "http://new")
}</test>

returns:

<test xmlns:pre="pre">
 <x xmlns="http://new">
 <y>123</y>
 </x>
</test>

Working with URIs | 259

The local-name-from-QName and namespace-uri-from-QName functions are similar to
the local-name and namespace-uri functions, respectively, except that they take an
atomic xs:QName rather than a node as an argument. If you are working with element
or attribute names, it is easier to use the functions for retrieving node names, such as
local-name and name.

XQuery also has two other prefix-related functions: in-scope-prefixes and
namespace-uri-for-prefix. The in-scope-prefixes function returns a list of all the
prefixes that are in scope for a given element, as a sequence of strings. The
namespace-uri-for-prefix function retrieves the namespace URI associated with a
particular prefix, in the scope of a specified element. Because most processing is
based on namespaces rather than prefixes (which are technically irrelevant), these
functions are not especially useful to the average query writer.

Working with URIs
Uniform Resource Identifiers (URIs) are used to uniquely identify resources, and
they may be absolute or relative. Absolute URIs provide the entire context for
identifying the resources, such as http://datypic.com/prod.html. Relative URI ref-
erences are specified as the difference from a base URI, such as ../prod.html. A
URI reference may also contain a fragment identifier following the # character,
such as ../prod.html#shirt.

The three previous examples happen to be HTTP Uniform Resource Locators
(URLs), but URIs also encompass URLs of other schemes (e.g., FTP, gopher, telnet),
as well as Uniform Resource Names (URNs). URIs are not required to be derefer-
enceable; that is, it is not necessary for there to be a web page or other resource at
http://datypic.com/prod.html in order for this to be a valid URI. Sometimes URIs
just serve as names. For example, in XQuery, URIs are used as the names of
namespaces and collations.

The built-in type xs:anyURI represents a URI reference. Most XQuery functions
that accept URIs as arguments call for xs:string values instead, but an xs:anyURI
value is acceptable also. This is because of a special type-promotion rule that
allows xs:anyURI values to be automatically promoted to xs:string when a string is
expected. Most of the URI-related functions return xs:anyURI values, following the
philosophy of being liberal in what they accept and specific in what they produce.

Base and Relative URIs
Relative URIs are interpreted relative to an absolute URI, known as a base URI. For
example, the relative URI prod.html is useless unless interpreted in the context of an
absolute URI. In HTML documents, the base URI is often the URI of the document

260 | Chapter 20: Working with Qualified Names, URIs, and IDs

itself. If an HTML document is located at http://datypic.com/order.html, and it con-
tains a link to prod.html, that prod.html relative URI is resolved in the context of the
http://datypic.com/order.html, and the link points to http://datypic.com/prod.html.

Using the xml:base attribute

In XML documents, you can also explicitly specify a base URI using the xml:base
attribute. The scope of each xml:base attribute is the element on which it appears
and all its content.

Example 20-3 shows an XML document that uses the xml:base attribute on the
catalog elements, with relative URI references (the href attributes) for each product.
The href="prod443.html" attribute of the first product element, for example, is
resolved relative to the xml:base attribute of the first catalog element, namely http://
example.org/ACC/.

Finding the base URI of a node

The base-uri function can be used to retrieve the base URI of a node. For document
nodes, the base URI is the URI from which the document was retrieved. For example:

base-uri(doc("http://datypic.com/cats.xml"))

returns http://datypic.com/cats.xml.

For element nodes, the base URI is the value of its xml:base attribute, if any, or the
xml:base attribute of its nearest ancestor. For example, if $prod is bound to the first
product element in cats.xml, the function call:

base-uri($prod)

returns http://example.org/ACC/, because that is the xml:base value of its nearest
ancestor.

If no xml:base attributes appear among its ancestors, it defaults to the base URI of
the document node, if one exists.

Example 20-3. Document using xml:base (http://datypic.com/cats.xml)

<catalogs>
 <catalog name="ACC" xml:base="http://example.org/ACC/">
 <product number="443" href="prod443.html"/>
 <product number="563" href="prod563.html"/>
 </catalog>
 <catalog name="WMN" xml:base="http://example.org/WMN/">
 <product number="557" href="prod557.html"/>
 </catalog>
</catalogs>

Working with URIs | 261

Resolving URIs

The resolve-uri function takes a relative URI and a base URI as arguments, and con-
structs an absolute URI. For example, the function call:

resolve-uri("prod.html", "http://datypic.com/order.html")

returns http://datypic.com/prod.html.

The base URI of the static context

The base URI of an individual node is set by the xml:base attribute or by the docu-
ment URI. There is also a separate base URI, known as the base URI of the static
context. The base URI of the static context is used in several cases:

• When an element is constructed in a query, its base URI is set to the base URI of
the static context, if one is defined. Otherwise, its base URI is the empty
sequence.

• When relative URI references are used as arguments to the doc and collection
functions, or to functions that accept collations as arguments, they are resolved
relative to the base URI of the static context.

• When a base URI argument is not provided to the resolve-uri function, it
resolves the URI relative to the base URI of the static context.

The base URI of the static context can be set in the query prolog, using a base URI
declaration. Its syntax is shown in Figure 20-1.

Here’s an example of a base URI declaration:

declare base-uri "http://datypic.com";

The base URI must be a literal value in quotes (not an evaluated expression), and it
should be a syntactically valid absolute URI.

It is also possible for the processor to set the base URI of the static context outside
the scope of the query. Although it is implementation-defined, it’s reasonable to
expect that if the query itself is read from a file, the base URI of the static context will
default to the location of that file. The value of the base URI of the static context can
be retrieved using the static-base-uri function.

Figure 20-1. Syntax of a base URI declaration

declare base-uri "<base-uri>" ;

262 | Chapter 20: Working with Qualified Names, URIs, and IDs

Documents and URIs
When accessing an input document using the doc function, a URI is used to specify
the document of interest. Processors interpret the URI passed to the doc function in
different ways. Some, like Saxon, will dereference the URI, that is, go out to the URL
and retrieve the resource at that location. Other implementations, such as those
embedded in XML databases, consider the URIs to be just names. The processor
might take the name and look it up in an internal catalog to find the document asso-
ciated with that name.

Finding the URI of a document

You can find the absolute URI from which a document node was retrieved using the
document-uri function. This function is basically the inverse of the doc function.
Where the doc function accepts a URI and returns a document node, the document-
uri function accepts a document node and returns a URI.

For example, if the variable $orderDoc is bound to the result of doc("http://
datypic.com/order.xml"), then document-uri($orderDoc) returns "http://datypic.com/
order.xml".

In most cases, this has the same effect as calling the base-uri function on the docu-
ment node.

Opening a document from a dynamic value

Most of the examples of the doc function in this book use a hardcoded URI, as in
doc("order.xml"). However, suppose you wanted to open the documents referenced
in Example 20-3. For example, you want to open the product information page for
product number 443. Its relative URI is prod443.html, and its base URI is http://
example.org/ACC/. To do this, you could use:

let $prod := doc("cats.xml")/catalogs/catalog[1]/product[1]/@href
let $absoluteURI := resolve-uri($prod, base-uri($prod))
return doc($absoluteURI)

which would open the document at http://example.org/ACC/prod443.html.

Escaping URIs
URIs require that some characters be escaped with their hexadecimal Unicode code
point preceded by the % character. This includes non-ASCII characters and some
ASCII characters, namely control characters, spaces, and several others. In addition,
certain characters in URIs are separators that are intended to delimit parts of URIs,
namely the characters ; , / ? : @ & = + $ [] and %. If these delimiter characters must
be used in a URI, having a meaning other than as a delimiter, they too must be
escaped.

Working with URIs | 263

Three functions are available for escaping URI values: iri-to-uri, escape-html-uri,
and encode-for-uri. All three replace each special character with an escape sequence
in the form %xx (possibly repeating), where xx is two hexadecimal digits (in upper-
case) that represent the character in UTF-8. For example, ../édition.html is
changed to ../%C3%A9dition.html, with the é escaped as %C3%A9.

They vary in which characters they escape:

iri-to-uri
Escapes only those characters that are not allowed in URIs, but not the delimit-
ers ; , / ? : @ & = + $ [] or %. It is appropriate for escaping entire URIs.

escape-html-uri
Escapes characters as required by HTML agents. Specifically, it escapes every-
thing except ASCII characters 32 to 126. It is appropriate for URIs that are to be
handled by browsers.

encode-for-uri
Is the most aggressive of the three. It escapes all the characters that are required to
be escaped in URIs, plus all the delimiter characters. It is appropriate for escaping
pieces of URIs, such as filenames, that cannot contain delimiter characters.

Note that none of these functions check whether the argument provided is a valid
URI; they simply act on the argument as if it were any string.

U S E F U L F U N C T I O N

open-ref-document
It may be useful to use a general-purpose function to resolve URIs and dereference
them, returning a document node. This function accomplishes this:

declare namespace functx = "http://www.functx.com";
declare function functx:open-ref-document
 ($refNode as node()) as document-node()
 {
 let $absoluteURI := resolve-uri($refNode, base-uri($refNode))
 return doc($absoluteURI)
 };

open-ref-document accepts a node (either attribute or element) whose value is a relative
URI reference. For example, this function call opens the document named in the href
attribute:

let $ref := doc("cats.xml")/catalogs/catalog[1]/product[1]/@href
return functx:open-ref-document($ref)

264 | Chapter 20: Working with Qualified Names, URIs, and IDs

Working with IDs
IDs and IDREFs are used in XML to uniquely identify elements within a document
and to create references to those elements. This is useful, for example, to create foot-
notes and references to them, or to create hyperlinks to specific sections of XHTML
documents.

Typically, an attribute is used as an ID to uniquely represent the element that carries
it.* The value of that ID attribute must be a valid NCName (an XML name with no
colon).

Attributes named xml:id (in the http://www.w3.org/XML/1998/namespace namespace)
are always considered to be IDs. Attributes with other names can also be considered
IDs if they are declared to have the built-in type xs:ID in a schema or DTD.

Example 20-4 shows an XML document that contains some ID attributes, namely
the id attribute of the section element, and the fnid attribute of the fn element. Each
section and fn element is uniquely identified by an ID value, such as fn1, preface, or
context.

The example assumes that this document was validated with a schema that declares
these attributes to be of type xs:ID. The id attributes are not automatically consid-
ered to be IDs because they are not in the appropriate namespace. In fact, the name
is irrelevant if it is not xml:id; an attribute named foo can have the type xs:ID, and an
attribute named id can have the type xs:integer.

The type xs:IDREF is used for an attribute that references an xs:ID. All attributes of
type xs:IDREF must reference an ID in the same XML document. A common use case
for xs:IDREF is to create a cross-reference to a particular section of a document. The

* It is technically possible to use a child element as an ID, but it is discouraged for reasons of compatibility
with XML 1.0 DTDs.

Example 20-4. XML document with IDs and IDREFs (book.xml)

<book>
 <section id="preface">This book introduces XQuery...
 The examples are downloadable<fnref ref="fn1"/>...
 </section>
 <section id="context">...</section>
 <section id="language">...Expressions, introduced
 in <secRef refs="context"/>, are...
 </section>
 <section id="types">...As described in
 <secRef refs="context language"/>, you can...
 </section>
 <fn fnid="fn1">See http://datypic.com.</fn>
</book>

Working with IDs | 265

ref attribute of the fnref element in Example 20-4 contains an xs:IDREF value (again,
assuming it is validated with a schema or DTD). Its value, fn1, matches the value of
the fnid attribute of the fn element.

The type xs:IDREFS represents a whitespace-separated list of one or more xs:IDREF
values. In Example 20-4, the refs attribute of secRef is assumed to be of type xs:
IDREFS. The first refs attribute contains only one xs:IDREF (context), while the sec-
ond contains two xs:IDREF values (context and language).

Joining IDs and IDREFs
Two functions allow you to reference elements based on the ID/IDREF relationship:
id and idref.

The id function returns elements that have specified IDs, for example, all elements
whose ID is either preface or context (in this case, the first two section elements).
Given a sequence of IDs, the id function returns the elements whose xs:ID attributes
match them. For example, the function call:

doc("book.xml")/id(("preface", "context"))

returns the first two section elements, because their ID attributes have the values
preface and context, respectively.

The idref function returns elements that refer to specified IDs, using either an xs:
IDREF or xs:IDREFS attribute. For example, the function call:

doc("book.xml")/idref(("context", "language"))

returns the refs attributes of the two secRef elements, because each of these attributes
is of type xs:IDREFS and contains either context or language or both.

The previous examples used literal strings for the second argument. These two func-
tions become even more useful when they are used to link referring elements to
referred elements. For example, the expression:

for $child in (doc("book.xml")//section[1]/node())
return if (name($child) = "fnref")
 then concat ("[", string(doc("book.xml")/id($child/@ref)), "]")
 else string($child)

uses the id function to resolve the footnote reference in the first section. It returns:

This book introduces XQuery...
The examples are downloadable [See http://datypic.com.]...

The text that was contained in the fn element now appears where it was referenced
using fnref.

266 | Chapter 20: Working with Qualified Names, URIs, and IDs

Constructing IDs
You can create result elements with IDs by using the xml:id attribute in your ele-
ment constructors. For example, the constructor:

<prod xml:id="{concat('P', $prodNum)}"/>

will create a prod element with an ID attribute that is equal to the letter P concate-
nated with the value of the $prodNum variable. The value assigned to an attribute
named xml:id must be a valid XML name. Any whitespace in its value will be nor-
malized automatically.

U S E F U L F U N C T I O N

get-ID
No built-in function exists to retrieve the ID of an element, but it is simple enough to
define a function for this purpose. It might look like this:

declare namespace functx = "http://www.functx.com";
declare function functx:get-ID($element as element()?) as xs:ID?
{ data($element/@*[id(.)is ..])};

This function takes an element and returns all the attributes (of which there can only
be one) whose parent element has that value as its ID. If no such attribute exists, or if
the argument is the empty sequence, the function returns the empty sequence. The
attribute must have been declared to be of type xs:ID in a schema or DTD, and vali-
dated by that schema or DTD, for this function to work. For example, the function call:

functx:get-ID(doc("book.xml")//section[1])

returns the xs:ID value preface.

267

Chapter 21 CHAPTER 21

Working with Other XML Components21

So far, this book has focused on elements and attributes. This chapter discusses the
other kinds of nodes, namely comments, processing instructions, documents, and
text nodes. CDATA sections and XML character and entity references are also cov-
ered in this chapter.

XML Comments
XML comments, delimited by <!-- and -->, can be both queried and constructed in
XQuery. Some implementations will discard comments when parsing input docu-
ments or loading them into a database, so you should consult the documentation for
your implementation to see what is supported.

XML Comments and the Data Model
Comments may appear at the beginning or end of an input document, or within ele-
ment content. Example 21-1 shows a small XML document with two comments, on
the second and fifth lines.

Comment nodes do not have any children, and their parent is either a document
node or an element node. In this example, the comment on the second line is a child
of the document node, and the comment on the fifth line is a child of the b:header
element.

Example 21-1. XML document with comments (comment.xml)

<?xml version="1.0" encoding="UTF-8"?>
<!-- This is a business document -->
<b:businessDocument xmlns:b="http://datypic.com/b">
 <b:header>
 <!-- date created --><b:date>2006-10-15</b:date>
 </b:header>
</b:businessDocument>

268 | Chapter 21: Working with Other XML Components

Comment nodes do not have names, so calling any of the name-related functions
with a comment node will result in the empty sequence or a zero-length string,
depending on the function. The string value (and typed value) of a comment node is
its content, as an instance of xs:string.

Querying Comments
Comments can be queried using path expressions. The comment() kind test can be
used to specifically ask for comments. For example:

doc("comment.xml")//comment()

will return both comments in the document, while:

doc("comment.xml")/b:businessDocument/b:header/comment()

will return only the second comment.

The node() kind test will return comments as well as all other node kinds. For example:

doc("comment.xml")/b:businessDocument/b:header/node()

will return a sequence consisting of the second comment, followed by the b:date ele-
ment. This is in contrast to *, which selects child element nodes only.

You can take the string value of a comment node (e.g., using the string function)
and use that string in various operations.

Comments and Sequence Types
The comment() keyword can also be used in sequence types to match comment
nodes. For example, if you wanted to write a function that places the content of a
comment in a constructed comment element, you could use the function shown in
Example 21-2. The use of the comment() sequence type in the function signature
ensures that only comment nodes are passed to this function.

A comment node will also match the node() and item() sequence types.

Constructing Comments
XML comment constructors can be used in queries to specify XML comments.
Unlike XQuery comments, which are delimited by (: and :), XML comments are
intended to appear in the results of the query.

Example 21-2. Function that processes comments

declare function local:createCommentElement
 ($commentToAdd as comment()) as element() {
 <comment>{string($commentToAdd)}</comment>
};

Processing Instructions | 269

XML comments can be constructed using either direct or computed constructors. A
direct XML comment constructor is delimited as it would be in an XML document,
by <!-- and -->. It is included character by character in the results of the query; no
expressions that appear in direct comment constructors are evaluated.

Computed comment constructors are useful when you want to calculate the value of
a comment. A computed comment constructor consists of an expression surrounded
by comment{ and }, as shown in Figure 21-1. The expression within the constructor is
evaluated and cast to xs:string.

As in XML syntax, neither direct nor computed comment constructors can result in a
comment that contains two consecutive hyphens (--) or ends in a hyphen.

Example 21-3 shows examples of XML comment constructors. As you can see, the
enclosed expression in the direct constructor is not evaluated, while the expression
in the computed constructor is evaluated. In either case, a comment constructor
results in a standard XML comment appearing in the query results.

Note that the XQuery comment (: unordered list :) is not included in the results.
XQuery comments, described in Chapter 3, are used to comment on the query itself.

Processing Instructions
Processing instructions are generally used in XML documents to tell the XML appli-
cation to perform some particular action. For example, a processing instruction simi-
lar to:

<?xml-stylesheet type="text/xsl" href="formatter.xsl"?>

Figure 21-1. Syntax of a computed comment constructor

Example 21-3. XML comment constructors

Query
let $count := count(doc("catalog.xml")//product)
(: unordered list :)
return
 <!-- {concat(" List of ", $count, " products ")} -->
 {comment{concat(" List of ", $count, " products ")}}

Results

 <!-- {concat(" List of ", $count, " products ")} -->
 <!-- List of 4 products -->

comment { <expr> }

270 | Chapter 21: Working with Other XML Components

appears in some XML documents to associate them with an XSLT stylesheet. When
opened in some browsers, the XML document will be displayed using that stylesheet.
This processing instruction has a target, which consists of the characters after the <?,
up to the first space, namely xml-stylesheet. The rest of the characters are referred
to as its content, namely type="text/xsl" href="formatter.xsl". Although the con-
tent of this particular processing instruction looks like a pair of attributes, it is sim-
ply considered a string.

Processing instructions can be both queried and constructed using XQuery.

Processing Instructions and the Data Model
Although processing instructions often appear at the beginning of an XML docu-
ment, they can actually appear within element content or at the end of the docu-
ment as well. Example 21-4 shows a small XML document with two processing
instructions. The xml-stylesheet processing instruction appears on the second line,
whereas doc-processor appears within the content of the b:header element. The first
line is the XML declaration, which, although it looks like a processing instruction, is
not considered to be one.

Processing instruction nodes do not have any children, and their parent is either a
document node or an element node. In this example, the xml-stylesheet process-
ing instruction is a child of the document node, and doc-processor is a child of the
b:header element.

The node name of a processing instruction node is its target. It is never in a namespace,
so the namespace portion of the name will be a zero-length string. The string value
(and typed value) is its content, minus any leading spaces, as an instance of xs:string.
For example, the node name of the first processing instruction in the example is xml-
stylesheet, and its string value is type="text/xsl" href="formatter.xsl".

Querying Processing Instructions
Processing instructions can be queried in path expressions using the processing-
instruction() kind test. For example:

doc("pi.xml")//processing-instruction()

Example 21-4. XML document with processing instructions (pi.xml)

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="formatter.xsl"?>
<b:businessDocument xmlns:b="http://datypic.com/b">
 <b:header>
 <?doc-processor appl="BDS" version="4.3"?>
 <b:date>2006-10-15</b:date>
 </b:header>
</b:businessDocument>

Processing Instructions | 271

will return the both processing instructions in the document, whereas:

doc("pi.xml")/b:businessDocument/b:header/processing-instruction()

will return only the doc-processor processing instruction. You can also specify a tar-
get between the parentheses. For example, specifying processing-instruction(doc-
processor) returns only processing instructions whose target is doc-processor.
Quotes can optionally be used around the target for compatibility with XPath 1.0.

The node() kind test will return processing instructions as well as all other node
kinds. For example, the expression:

doc("pi.xml")/b:businessDocument/b:header/node()

will return a sequence consisting of the doc-processor processing instruction node,
followed by the b:date element. This is in contrast to *, which selects child element
nodes only.

Processing Instructions and Sequence Types
The processing-instruction() keyword can also be used in sequence types to match
processing-instruction nodes. For example, to display the target and content of a
processing instruction as a string, you could use the function shown in
Example 21-5. The use of the processing-instruction() sequence type in the function
signature ensures that only processing-instruction nodes are passed to this function.

As with node kind tests, a specific target may be specified in the sequence type. If the
sequence type for the argument had been processing-instruction("xml-stylesheet"),
the function would only accept only processing-instruction nodes with that target, or
a type error would be raised.

A processing-instruction node will also match the node() and item() sequence types.

Constructing Processing Instructions
Processing instructions can be constructed in queries, using either direct or com-
puted constructors. A direct processing-instruction constructor uses the XML syn-
tax, namely target, followed by the optional content, enclosed in <? and ?>.

Example 21-5. Function that displays processing instructions

declare function local:displayPIValue
 ($pi as processing-instruction())as xs:string {

 concat("Target is ", name($pi),
 " and content is ", string($pi))
};

272 | Chapter 21: Working with Other XML Components

A computed processing-instruction constructor allows you to use an expression for
its target and/or content. Its syntax, shown in Figure 21-2, has three parts:

1. The keyword processing-instruction

2. The target, which can be either a literal name or an enclosed expression (in
braces) that evaluates to a name

3. The content as an enclosed expression (in braces), that is evaluated and cast to
xs:string

Example 21-6 shows three different processing-instruction constructors. The first is a
direct constructor, the second is a computed constructor with a literal name, and the
third is a computed constructor with a calculated name.

Whether it’s a direct or computed constructor, the target specified must be a valid
NCName, which means that it must follow the rules for XML names and not con-
tain a colon.

Documents
Document nodes represent entire XML documents in the XQuery data model. When
an input document is opened using the doc function, a document node is returned.
The document node should not be confused with the outermost element node,
which is its child.

Not all XML data selected or constructed by queries has a document node at its root.
Some implementations will allow you to query XML fragments, such as an element
or a sequence of elements that are not part of a document. When XML is stored in a

Figure 21-2. Syntax of a computed processing-instruction constructor

Example 21-6. Processing-instruction constructors

Query
{
 <?doc-processor version="4.3"?>,
 processing-instruction doc-processor2 {'version="4.3"'},
 processing-instruction {concat("doc-processor", "3")}
 {concat('version="', '4.3', '"')}
}
Results

 <?doc-processor version="4.3"?>
 <?doc-processor2 version="4.3"?>
 <?doc-processor3 version="4.3"?>

{ <name-expr> }

{ <expr> }processing-instruction <name>

Documents | 273

relational database, it often holds elements without any containing document. It is
also possible, using element constructors, to create result elements that are not part
of a document.

The root function can be used to determine whether a node is part of a document.
It will return the root of the hierarchy, whether it is a document node or simply a
standalone element.

Document Nodes and the Data Model
A document node is the root of a node hierarchy, and therefore has no parent. The
children of a document node are the comments and processing instructions that
appear outside of any element, and the outermost element node. For example, the
document shown in Example 21-4 would be represented by a single document node
that has two children: the xml-stylesheet processing-instruction node and the
businessDocument element node.

The string value of a document node is the string value of all its text node descen-
dants, concatenated together. In Example 21-4, that would simply be 2006-10-15. Its
typed value is the same as its string value, but with the type xs:untypedAtomic.

Document nodes do not have names. In particular, the base URI of a document node
is not its name. Therefore, calling any of the name-related functions with a docu-
ment node will result in the empty sequence or a zero-length string, depending on
the function.

Document Nodes and Sequence Types
The document-node() keyword can be used in sequence types to match document
nodes. Used with nothing in between the parentheses, it will match any document
node. It is also possible to include an element test in between the parentheses. For
example:

document-node(element(product))

tests for a document whose only element child (the outermost element) is named
product. The document-node() keyword can also be used with a schema element test,
as in:

document-node(schema-element(product))

Schema element tests are described in “Sequence Types and Schemas” in Chapter 13.

Constructing Document Nodes
Documents can be explicitly constructed using XQuery. This is generally not neces-
sary, because the results of a query do not have to be an XML document node; they
can be a single element, or a sequence of multiple elements, or even any combina-
tion of nodes and atomic values. If the results of a query are serialized, they become

274 | Chapter 21: Working with Other XML Components

an XML “document” automatically, regardless of whether a document node was
constructed in the query.

However, being able to construct a document node is useful if the application that
processes the results of the query expects a complete XML document, with a docu-
ment node. It’s also useful when you are doing schema validation. Validation of a
document node gives a more thorough check than validation of the outermost ele-
ment, because it checks schema-defined identity constraints and ID/IDREF integrity.

A computed document constructor is used to construct a complete XML document. Its
syntax, shown in Figure 21-3, consists of an expression enclosed in document{ and }.
An example of a computed document constructor is shown in Example 21-7.

The enclosed expression must evaluate to a sequence of nodes. If it contains
(directly) any attribute nodes, a type error is raised.

No validation is performed on the document node, unless it is enclosed in a validate
expression. XQuery does not require that a document node only contains one single
element node, although XML syntax does require a document to have only one outer-
most element. If you want a result document that is well-formed XML, you should
ensure that the enclosed expression evaluates to only one element node.

Text Nodes
Text nodes represent the character data content within elements. Every adjacent
string of characters within element content makes up a single text node. Text nodes
can be both queried and constructed in XQuery, although these expressions have
limited usefulness.

Figure 21-3. Syntax of a computed document constructor

Example 21-7. Computed document constructor

Query
document {
 element product {
 attribute dept { "ACC" },
 element number { 563 },
 element name { attribute language {"en"}, "Floppy Sun Hat"}
 }
}
Results
<product dept="ACC">
 <number>563</number>
 <name language="en">Floppy Sun Hat</name>
</product>

 document { <expr> }

Text Nodes | 275

Text Nodes and the Data Model
A text node does not have any children, and its parent is an element. In Example 21-8,
the desc element has three children:

• A text node whose content is Our (ending with a space)

• A child element i

• A text node whose content is shirt! (starting with a space)

The i element itself has one child: a text node whose content is favorite.

The string value of a text node is its content, as an instance of xs:string. Its typed
value is the same as the string value, except that it is of type xs:untypedAtomic rather
than xs:string.

Text nodes do not have names, so calling any of the name-related functions with a
text node will result in the empty sequence or a zero-length string, depending on the
function.

If your document has no DTD or schema, any whitespace appearing between the
tags in your source XML will be translated into text nodes. This is true even if it is
just there to indent the document. For example, the following b:header element
node:

<b:header>
 <b:date>2006-10-15</b:date>
</b:header>

has three children. The first and third children are text nodes that contain only
whitespace, and the second child is, of course, the b:date element node. If a DTD or
schema is used, and the element’s type allows only child elements (no character data
content), then the whitespace will be discarded and b:header will not have text node
children.

In the data model, there are never two adjacent text nodes with the same parent; all
adjacent text is merged into a single text node. This means that if you construct a
new element using:

<example>{1}{2}{3}</example>

the resulting example element will have only one text node child, whose value is 123.
There is also no such thing as an empty text node, so the element constructor:

<example>{""}</example>

will result in an element with no children at all.

Example 21-8. Text nodes in XML (desc.xml)

<desc>Our <i>favorite</i> shirt!</desc>

276 | Chapter 21: Working with Other XML Components

Querying Text Nodes
Text nodes can be queried using path expressions. The text() kind test can be used
to specifically ask for text nodes. For example:

doc("desc.xml")//text()

will return all of the three text nodes in the document, while:

doc("desc.xml")/desc/text()

will return only the two text nodes that are children of desc.

The node() kind test will return text nodes as well as all other node kinds. For example:

doc("desc.xml")/desc/node()

will return a sequence consisting of the first text node, the i element node, and the
second text node. This is in contrast to *, which selects child element nodes only.

Text Nodes and Sequence Types
The text() keyword can also be used in sequence types to match text nodes. For
example, to display the content of a text node as a string, you could use the function
shown in Example 21-9. The use of the text() sequence type in the function signa-
ture ensures that only text nodes are passed to this function.

A text node will also match the node() and item() sequence types.

Why Work with Text Nodes?
Because text nodes contain all the data content of elements, it may seem that the
text() kind test would be used frequently and would be covered earlier in this book.
However, because of atomization and casting, it is often unnecessary to ask explic-
itly for the text nodes. For example, the expression:

doc("catalog.xml")//product[name/text()="Floppy Sun Hat"]

has basically the same effect as:

doc("catalog.xml")//product[name="Floppy Sun Hat"]

because the name element is atomized before being compared to the string Floppy Sun
Hat. Likewise, the expression:

distinct-values(doc("catalog.xml")//product/number/text())

Example 21-9. Function that displays text nodes

declare function local:displayTextNodeContent
 ($textNode as text()) as xs:string {
 concat("Content of the text node is ", $textNode)
};

Text Nodes | 277

is very similar to:

distinct-values(doc("catalog.xml")//product/number)

because the function conversion rules call for atomization of the number elements.

One difference is that text nodes, when atomized, result in untyped values, while ele-
ment nodes will take on the type specified in the schema. Therefore, if your number
element is of type xs:integer, the second distinct-values expression above will
compare the numbers as integers. The first expression will compare them as untyped
values, which, according to the rules of the distinct-values function, means that
they are treated like strings.

Not only is it almost always unnecessary to use the node test text(), it
sometimes yields surprising results. For example, the expression:

doc("catalog.xml")//product[4]/desc/text()

has a string value of Our shirt! instead of Our favorite shirt! because
only the text nodes that are direct children of the desc element are
included. If /text() is left out of the expression, its string value is Our
favorite shirt!.

There are some cases where the text() sequence type does come in handy, though.
One case is when you are working with mixed content and want to work with each
text node specifically. For example, suppose you wanted to modify the product cata-
log to change all the i elements to em elements (without knowing in advance where i
elements appear). You could use the recursive function shown in Example 21-10.

The function checks all the children of an element node. If it encounters a text node,
it copies it as is. If it encounters an element child, it recursively calls itself to process
that child element’s children. When it encounters an i element, it constructs an em
and includes the original children of i.

Example 21-10. Testing for text nodes

declare function local:change-i-to-em
 ($node as element()) as node() {
 element {node-name($node)} {
 $node/@*,
 for $child in $node/node()
 return if ($child instance of text())
 then $child
 else if ($child instance of element(i))
 then {$child/@*,$child/node()}
 else if ($child instance of element())
 then local:change-i-to-em($child)
 else ()
 }
};

278 | Chapter 21: Working with Other XML Components

It is important in this case to test for text nodes because the desc element has mixed
content; it contains both text nodes and child element nodes. If you throw away the
text nodes, it changes the content of the document.

Constructing Text Nodes
You can also construct text nodes, using a text node constructor. The syntax of a
text node constructor, shown in Figure 21-4, consists of an expression enclosed by
text{ and }. For example, the expression:

text{concat("Sequence number: ", $seq)}

will construct a text node whose content is Sequence number: 1.

The value of the expression used in the constructor is atomized (if necessary) and
cast to xs:string. Text node constructors have limited usefulness in XQuery because
they are created automatically in element constructors using literal text or expres-
sions that return atomic values. For example, the expression:

<example>{concat("Sequence number: ", $seq)}</example>

will automatically create a text node as a child of the example element node. No
explicit text node constructor is needed.

XML Entity and Character References
Like XML, the XQuery syntax allows for the escaping of individual characters using
two mechanisms: character references and predefined entity references. These
escapes can be used in string literals, as well as in the content of direct element and
attribute constructors.

Character references are useful for representing characters that are not easily typed
on a keyboard. They take two forms:

• &# plus a sequence of decimal digits representing the character’s code point, fol-
lowed by a semicolon (;).

• &#x plus a sequence of hexadecimal digits representing the character’s code
point, followed by a semicolon (;).

For example, a space can be represented as or . The number always
refers to the Unicode code point; it doesn’t depend on the query encoding.
Table 21-1 lists a few common XML character references.

Figure 21-4. Syntax of a text node constructor

text { <expr> }

XML Entity and Character References | 279

Predefined entity references are useful for escaping characters that have special
meaning in XML syntax. They are listed in Table 21-2.

Certain of these characters must be escaped, namely:

• In literal strings, ampersands, as well as single or double quotes (depending on
which was used to surround the literal)

• In the content of direct element constructors (but not inside curly braces), both
ampersands and less-than characters

• In attribute values of direct element constructors (but not inside curly braces),
single or double quotes (depending on which was used to surround the attribute
value)

The set of predefined entities does not include certain entities that are predefined for
HTML, such as and é. If these characters are needed as literals in que-
ries, they should be represented using character references. For example, if your
query is generating HTML output and you want to generate a nonbreaking space
character, which is often written as in HTML, you can represent it in your
query as . If you want to be less cryptic, you can use a variable, as in:

declare variable $nbsp := " ";
<h1>aaa{$nbsp}bbb</h1>

Example 21-11 shows a query that uses character and entity references in both a lit-
eral string and in the content of an element constructor. The first line of the query
uses A in place of the letter A in a quoted string. The second line uses various
predefined entity references, as well as the character reference #x20;, which repre-
sents the space character inside a direct element constructor.

Table 21-1. XML character reference examples

Character reference Meaning

 Space

 Line feed

 Carriage return

	 Tab

Table 21-2. Predefined entity references

Entity reference Meaning

& Ampersand (&)

< Less than (<)

> Greater than (>)

' Apostrophe/single quote (')

" Double quote (")

280 | Chapter 21: Working with Other XML Components

In element constructors, references must appear directly in the literal content, out-
side of any enclosed expression. For example, the constructor:

<quoted>'{"abc"}'</quoted>

returns the result <quoted>'abc'</quoted>, while the constructor:

 <quoted>{'"abc"'}</quoted>

raises a syntax error, because ' is within the curly braces of the enclosed
expression.

Including an entity or character reference in a query does not necessarily result in a
reference in the query results. As you can see from Example 21-11, the results of the
query (when serialized) contain a space character rather than a character reference.

CDATA Sections
A CDATA section is a convenience used in XML documents that allows you to
include literal text in element content without having to use < and & entity
references to escape less-than and ampersand symbols, respectively. CDATA sec-
tions are not a separate kind of node; they are not represented in the XQuery data
model at all.

CDATA sections are delimited by <![CDATA[and]]>. Example 21-12 shows two h1
elements. The first element has a CDATA section that contains some literal text,
including an unescaped ampersand character. It also contains a reference to a
<catalog> element that is intended to be taken as a string, not as an XML element in
the document. If this text were not enclosed in a CDATA section, the XML element
would not be well formed. The second h1 element shown in the example is equiva-
lent, using predefined entities to escape the ampersand and less-than characters.

When your query accesses an XML document that contains a CDATA section, the
CDATA section is not retained. If the h1 element in Example 21-12 is queried, its
content is Product Catalog & Price List from <catalog>. There is no way for the query
processor to know that a CDATA section was used in the input document.

Example 21-11. Query with XML entities

Query
if (doc("catalog.xml")//product[@dept='ACC'])
then <h1>Accessories & Misc List from <catalog></h1>
else ()
Results
<h1>Accessories & Misc List from <catalog></h1>

Example 21-12. Two equivalent h1 elements, one with a CDATA section

<h1><![CDATA[Catalog & Price List from <catalog>]]></h1>
<h1>Catalog & Price List from <catalog></h1>

CDATA Sections | 281

For convenience, CDATA sections can also be specified in a query, in the character
data content of an element constructor. Example 21-13 shows a query that uses a
CDATA section. All of the text in a CDATA section is taken literally; it is not possi-
ble to include enclosed expressions in a CDATA section.

Just as in an XML document, a CDATA section in a query serves as a convenient
way to avoid having to escape characters. Including a CDATA section in a query
does not result in a CDATA section in the query results. As you can see from
Example 21-13, the results of the query (when serialized) contain an escaped amper-
sand and less-than sign in the element content.

Example 21-13. Query with CDATA section

Query
if (doc("catalog.xml")//product)
then <h1><![CDATA[Catalog & Price List from <catalog>]]></h1>
else <h1>No catalog items to display</h1>
Results
<h1>Catalog & Price List from <catalog></h1>

282

Chapter 22CHAPTER 22

Additional XQuery-Related Standards 22

This book describes the core features of the XQuery 1.0 language and its associated
built-in functions and data model. There are several peripheral standards that com-
plement, but are not central to, the XQuery 1.0 language. These standards, which are
in varying stages of completion, include Serialization, XQueryX, XQuery Updates,
Full-Text search, and XQJ.

Serialization
Serialization is the process of writing the results of a query out to XML syntax.
(Implementations are not required to support serialization at all, but most do.) In
your query, you construct (or select) a number of XML elements and attributes to
include in the results. These results conform to the data model described in
Chapter 2. However, the data model does not define the details of the XML syntax
and format to be used. Certain syntactic differences may appear when working with
different implementations, such as the encoding used, whether an XML declaration
is included at the beginning of a document, or whether the results are indented.

Some of these syntactic differences can be controlled using serialization parameters,
which are listed in Table 22-1. Some implementations will allow you to specify val-
ues for some of the serialization parameters; this is covered further in the section
entitled “Specifying Serialization Parameters” in Chapter 23.

For more information on serialization, including a detailed description of the effect
of each serialization parameter, see XSLT 2.0 and XQuery 1.0 Serialization at http://
www.w3.org/TR/xslt-xquery-serialization.

Table 22-1. Serialization parameters

Parameter name Description

method The type of output, namely xml, xhtml, html, or text.

byte-order-mark yes/no; default is implementation-defined. Use yes if you would like a byte order mark to
precede the serialized results.

http://www.w3.org/TR/xslt-xquery-serialization/
http://www.w3.org/TR/xslt-xquery-serialization/

Serialization | 283

Errors occasionally occur during serialization. They may be the result of conflicting
serialization parameters or a query that returns results that cannot be serialized. For
example:

doc("catalog.xml")//@dept

is a perfectly valid query, but it will return a sequence of attribute nodes. This can-
not be serialized and will raise an error. Serialization errors all start with the letters
SE and are listed in Appendix C.

cdata-section-
elements

An optional list of qualified element names; the default is a zero-item list. Add an element
name to the list if you would like its contents to be enclosed in a CDATA section in the output.

doctype-public A public identifier to be included in a document type declaration.

doctype-system A system identifier to be included in a document type declaration.

encoding The encoding to be used for the results. The default is either UTF-8 or UTF-16 (whichever
one is implementation-defined). Implementations are required to support at least these
two values.

escape-uri-attributes yes/no; default is implementation-defined. Applies only to html and xhtml output
types. Use yes if you want to perform URI escaping on attributes that are defined in
(X)HTML to be URIs, such as href and src.

include-content-type yes/no; default is implementation-defined. Applies only to html and xhtml output
types. Use yes if you want to include a meta element that specifies the content type, as in:

<meta http-equiv="Content-Type" content="text/html;
charset=EUC-JP" />.

indent yes/no; default is no. Use yes if you want to pretty-print the results, i.e., put line breaks
and indenting spaces between elements.

media-type The media type (MIME type); default is implementation-defined.

normalization-form One of NFC, NFD, NFKC, NFKD, fully-normalized, or an implementation-defined
value. Default is implementation-defined. Unicode normalization is discussed in Chapter 17.

omit-xml-declaration yes/no; default is implementation-defined. Use yes if you do not want an XML declaration
in your results.

standalone yes, no or omit; default is implementation-defined. The value of the standalone parame-
ter of the XML declaration. Use omit to not include the standalone parameter.

undeclare-prefixes yes/no; default is no. When using XML 1.1, use yes to instruct the processor to insert
namespace “undeclarations,” e.g., xmlns:dty="", to indicate that a namespace declara-
tion is no longer in scope. This is rarely, if ever, necessary.

use-character-maps Default is an empty list. A list of character maps that can be used to perform character sub-
stitution on the results.

version Default is implementation-defined, generally 1.0 or 1.1 for XML—the version of XML (or
HTML if the output method is html).

Table 22-1. Serialization parameters (continued)

Parameter name Description

284 | Chapter 22: Additional XQuery-Related Standards

XQueryX
XQueryX is an alternate, XML syntax to represent XQuery queries. It is not covered
in detail in this book because it is unlikely that most query authors will want to write
XQueryX by hand. However, it may be useful as a syntax used by processors for stor-
ing and/or transferring queries because XML is easier to parse and/or transform than
a non-XML syntax. It can also be useful for embedding queries in XML documents.

A simple FLWOR is shown in Example 22-1.

The equivalent XQueryX is shown in Example 22-2. As you can see, the XQueryX
syntax is far more verbose, and breaks the query down to a very granular level, with
at least one element for every expression.

Example 22-1. Simple FLWOR

for $product in doc("catalog.xml")//product
order by $product/name
return $product/number

Example 22-2. Partial XQueryX equivalent of Example 22-1

<?xml version="1.0"?>
<xqx:module xmlns:xqx="http://www.w3.org/2005/XQueryX"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2005/XQueryX
 http://www.w3.org/2005/XQueryX/xqueryx.xsd">
 <xqx:mainModule>
 <xqx:queryBody>
 <xqx:flworExpr>
 <xqx:forClause>
 <xqx:forClauseItem>
 <xqx:typedVariableBinding>
 <xqx:varName>product</xqx:varName>
 </xqx:typedVariableBinding>
 <xqx:forExpr>
 <xqx:pathExpr>
 <xqx:argExpr>
 <xqx:functionCallExpr>
 <xqx:functionName>doc</xqx:functionName>
 <xqx:arguments>
 <xqx:stringConstantExpr>
 <xqx:value>catalog.xml</xqx:value>
 </xqx:stringConstantExpr>
 </xqx:arguments>
 </xqx:functionCallExpr>
 </xqx:argExpr>
 <xqx:stepExpr>
 <xqx:xpathAxis>descendant-or-self</xqx:xpathAxis>
 <xqx:anyKindTest/>
 </xqx:stepExpr>
 <xqx:stepExpr>

Full-Text Search | 285

For more information on XQueryX, see the recommendation at http://www.w3.org/TR/
xqueryx. If you do use XQueryX, the W3C provides a handy converter to convert
XQuery to XQueryX, found at http://www.w3.org/2005/qt-applets/xqueryApplet.html.

XQuery Update Facility
The XQuery 1.0 language provides expressions for querying input documents and
adding to the results. However, it does not have any specific expressions for insert-
ing, updating, or deleting XML data. As we saw in Chapter 9, it is possible to mod-
ify input elements and attributes using user-defined functions, but this is somewhat
cumbersome. In addition, this only transforms input documents to be returned as
the query results; it offers no ability to specify that XML data should be permanently
changed in a database.

To address this need, the W3C XQuery Working Group is working on an XQuery
Update Facility that will provide specialized operators and/or built-in functions for
updates. At the time of this writing, only a draft requirements document has been
publicly released. It specifies that the XQuery Update Facility will have functionality
that allows for:

• Deleting nodes

• Inserting nodes in specified positions

• Replacing nodes

• Moving nodes

• Changing the typed value of nodes

• Modifying properties of a node, such as name, type, content, base URI, etc.

For more information on the XQuery Update Facility requirements, see http://www.
w3.org/TR/xquery-update-requirements.

Full-Text Search
Search facilities have become an increasingly important (and complex) tool to locate
relevant information in the vast amount of data that is now structured as XML,
whether it is in large text databases or on the Web itself. Searching is a natural use

 <xqx:xpathAxis>child</xqx:xpathAxis>
 <xqx:nameTest>product</xqx:nameTest>
 </xqx:stepExpr>
 </xqx:pathExpr>
 </xqx:forExpr>
 </xqx:forClauseItem>
 </xqx:forClause> <!-- ... --->

Example 22-2. Partial XQueryX equivalent of Example 22-1 (continued)

http://www.w3.org/TR/xqueryx/
http://www.w3.org/TR/xqueryx/
http://www.w3.org/2005/qt-applets/xqueryApplet.html
http://www.w3.org/TR/xquery-update-requirements/
http://www.w3.org/TR/xquery-update-requirements/

286 | Chapter 22: Additional XQuery-Related Standards

case for XQuery because of its built-in knowledge of XML structures and its syntax,
which can be written by reasonably nontechnical users.

XQuery 1.0 contains some limited functionality for searching text. For example, you
can use the contains or matches function to search for specific strings inside element
content. However, the current features are quite limited, especially for textual XML
documents.

The W3C XQuery Working Group is working on a separate recommendation enti-
tled XQuery 1.0 and XPath 2.0 Full-Text that provides specialized operators for full-
text searching. These operators will be additions to the XQuery 1.0 syntax, and they
will not be supported by all XQuery implementations.

The Full-Text recommendation, currently a working draft, supports the following
search functionality:

Boolean operators
Combining search terms using && (and), || (or), ! (not), and not in (mild not)

Stemming
Finding words with the same linguistic stem, for example, finding both “mouse”
and “mice” when the search term is “mouse”

Weighting
Specifying weights (priorities) for different search terms

Proximity and order
Specifying how far apart the search terms may be, and in what order

Scope
Searching for multiple terms within the same sentence or paragraph

Score and relevance
Determining how relevant the results are to the terms searched

Occurrences
Restricting results to search terms that appear a specific number of times

Thesaurus
Specifying synonyms for search terms

Case-(in)sensitivity
Considering uppercase versus lowercase letters either relevant or irrelevant

Diacritics-(in)sensitivity
Considering, for example, accents on characters either relevant or irrelevant

Wildcards
Specifying wildcards in search terms, such as run.* to match all words that start
with “run”

Stopwords
Specifying common words to exclude from searches, such as “a” and “the”

XQuery API for Java (XQJ) | 287

An example of a full-text query, taken from the Full-Text recommendation, is shown
in Example 22-3.

This example uses a familiar FLWOR syntax, but with some additional operators
and clauses:

• The score $s in the for clause is used to specify that the variable $s should con-
tain the relevance score of the results. This variable is then used to constrain the
results to those where the score is greater than 0.5, and also to sort the results,
with the most relevant appearing first.

• The ftcontains operator is used to find text containing the specific search terms
“web site” and “usability.”

• The && operator is used to find a union of the two search terms, returning only
documents that contain both terms.

• The weight keyword is used to weight the individual search terms.

Some XQuery implementations, such as Mark Logic and eXist, provide special built-
in functions and operators to address some of these full-text requirements. These
implementations generally do not follow the W3C recommendation because they
were implemented before it was a publicly available document.

For more information on the XQuery Full-Text recommendation, see http://www.w3.
org/TR/xquery-full-text.

XQuery API for Java (XQJ)
XQJ is a standard for calling XQuery from Java. XQJ is to XML data sources what
JDBC is to relational data sources. It provides a standard set of classes for connect-
ing to a data source, executing a query, and traversing through the result set. It is
being developed using the Java Community Process as JSR 225 and is currently in
the Early Draft Review 2 stage.

Example 22-4 shows an example of Java code that connects to an XML data source
and iterates through the results.

Example 22-3. Full-text query example

for $b score $s in /books/book[content ftcontains ("web site" weight 0.2)
 && ("usability" weight 0.8)]
where $s > 0.5
order by $s descending
return <result>
 <title> {$b//title} </title>
 <score> {$s} </score>
 </result>

http://www.w3.org/TR/xquery-full-text/
http://www.w3.org/TR/xquery-full-text/

288 | Chapter 22: Additional XQuery-Related Standards

For more information on XQJ, see the specification at http://jcp.org/en/jsr/
detail?id=225.

Example 22-4. XQJ example

// connect to the data source
XQConnection conn = xqds.getConnection();

// create a new expression object
XQExpression expr = conn.createExpression();

// execute the query
XQResultSequence result = expr.executeQuery(
 "for $prod in doc('catalog.xml')//product" +
 "order by $prod/number" +
 "return $prod/name");

// iterate through the result sequence
while (result.next()) {

 // retrieve the atomic value of the current item
 String prodName = result.getAtomicValue();
 System.out.println("Product name: " + prodName);
}

http://jcp.org/en/jsr/detail?id=225
http://jcp.org/en/jsr/detail?id=225

289

Chapter 23 CHAPTER 23

Implementation-Specific Features23

XQuery can be used for a wide variety of XML processing needs. As such, different
XQuery implementations provide customized functions and settings for specific use
cases. This chapter looks at some of the implementation-specific aspects of XQuery.

Conformance
The XQuery specification consists of a core set of features that all implementations
are required to support. Supporting these features is known as minimal conform-
ance. In addition, there are a handful of optional features that are clearly defined and
scoped. These optional features are listed in Table 23-1.

In addition to these six features, some aspects of the core language are either imple-
mentation-dependent or implementation-defined. Implementation-defined features
are those where the implementer is required to document the choices she has made.
For example, the list of supported collations or additional built-in functions is imple-
mentation-defined. Implementation-dependent behavior may vary by implementa-
tion but does not have to be explicitly stated in the documentation and cannot
necessarily be predicted. For example, when an unordered expression is used, the
order of the results is implementation-dependent.

Table 23-1. Features

Feature Description Chapter

Full Axis Support for the axes ancestor, ancestor-or-self, following,
following-sibling, preceding, preceding-sibling

4

Module Support for library modules and module imports 12

Schema Import Support for schema imports in the prolog 13

Schema Validation Support for validate expressions 13

Static Typing Detection of all static type errors in the analysis phase 14

Serialization Ability to serialize query results to an XML document 22

290 | Chapter 23: Implementation-Specific Features

XML Version Support
An XQuery 1.0 implementation may choose to support either XML 1.0 and
Namespaces 1.0, or XML 1.1 and Namespaces 1.1. This is an implementation-
defined choice that should be clearly documented. XML 1.1 allows a much wider set
of characters in XML names, and adds two line-end characters to the set of charac-
ters that are considered to be whitespace. The main changes in Namespaces 1.1 are
the ability to undeclare prefixes, and support for Internationalized Resources Identi-
fiers (IRIs) rather than just URIs.

In addition, an XQuery implementation can choose what version of Unicode to sup-
port for the functions that rely on Unicode definitions, such as normalization and
case mapping.

Setting the Query Context
Every query is analyzed and evaluated within a context that is defined by the imple-
mentation. This context includes settings like implicit time zone, context node, and
default collation. In some cases, the settings of the context can be overridden by pro-
log declarations in the query, but sometimes they cannot. It is useful to know what
defaults and choices your implementation supports for these settings.

Your implementation may do any of the following to augment the built-in functions
and features of the XQuery language:

• Add built-in functions

• Add predeclared namespaces (including a default element and function namespace)

• Add built-in schemas, whose type names can be used in queries and whose ele-
ment and attribute declarations can be used in validation

• Add built-in global variables and their values

• Specify a list of supported collations

In addition, your implementation may set default values for any of the prolog “set-
ters,” namely:

• Boundary-space policy

• Ordering mode

• Empty-order specification

• Copy-namespaces mode

• Construction mode

• Default collation

• Base-URI of the static context

Option Declarations and Extension Expressions | 291

The implementation may or may not allow you the option of overriding these settings
outside the scope of the query. For example, you may be allowed to enter them into a
dialog box in a user interface, specify them at a command-line prompt, or set them
programmatically. However, any settings specified in the query prolog take priority.

Option Declarations and Extension Expressions
Two methods are available for specifying the values of implementation-specific set-
tings in the query itself: option declarations and extension expressions. This section
describes how these settings are defined and used. The documentation for your
XQuery implementation should provide information on what specific options and
extensions it supports.

The Option Declaration
An option declaration can be used to specify an implementation-defined setting in
the query prolog. This is useful for settings that affect the entire query, or other set-
tings in the prolog. The syntax of an option declaration is shown in Figure 23-1.

The Saxon implementation allows for several different types of options. Example 23-1
shows two of them.

The first option declaration, for saxon:default, is used to specify a default value for
the global variable whose declaration follows it. If no value is supplied for
$maxRowsToReturn outside the scope of the query, the value 25 is used. The second
option declaration, for saxon:output, is used to specify values for serialization param-
eters, in this case, the output method when serializing the results. Serialization
parameters are discussed in Chapter 22.

An option declaration may apply to the whole query, or just the subsequent prolog
declaration, or any other scope defined by the implementation.

Figure 23-1. Syntax of an option declaration

Example 23-1. Option declarations

declare namespace saxon="http://saxon.sf.net/";

declare option saxon:default "25";
declare variable $maxRowsToReturn external;

declare option saxon:output "method=xhtml";

declare option <option-name> "<option-contents>" ;

292 | Chapter 23: Implementation-Specific Features

Options have namespace-qualified names, which means that the prefixes used must
be declared, and processors recognize them by their namespace. If an option belongs
to a namespace that is not supported by the implementation, it is ignored. If a pro-
cessor recognizes the option but determines that the content is invalid, the behavior
is implementation-dependent. It may raise an error, or it may ignore it.

Extension Expressions
Queries can also contain implementation-specific extension expressions that may be
used to specify additional parameters to a query. Extensions are similar to options,
except that they can appear anywhere that an expression is allowed in the query (not
just the prolog) and they apply to an individual expression.

For example, the extension:

(# datypic:timeOut 200 #)
 { count($doc//author) }

might be used to tell the processor to time out after 200 seconds. The syntax of an
extension is shown in Figure 23-2.

Extension expressions consist of one or more pragmas, each delimited by (# and #),
followed by the affected expression in curly braces. A pragma has two parts: a quali-
fied name, and optional content, which can be any string of characters (except for #)).

Extensions can be used in a number of ways. Examples include:

• Providing hints to the processor regarding how best to evaluate the expression,
such as what index to use or how long to wait before timing out.

• Allowing nonstandard interpretation of XQuery syntax, for example, allowing
the comparison of xs:gDay values using the < operator, which is normally not
permitted. However, the expression in curly braces still must use valid XQuery
syntax.

• Specifying an alternate proprietary syntax in the pragma content that may be
more efficient or otherwise preferable to the expression in curly braces.

Use of options and pragmas that affect the result of the expression
make for queries that are not interoperable across implementations.
Use such extensions only when absolutely necessary.

Figure 23-2. Syntax of an extension

(# <pragma-name> <pragma-contents> #)

<expr>

{ }

Specifying Serialization Parameters | 293

Like options, pragmas are recognized by their namespace, and a processor will
ignore any pragmas in namespaces it doesn’t recognize. If all the pragmas associated
with an expression are ignored, the expression is evaluated normally, as if no prag-
mas were specified.

If a processor recognizes the namespace used in a pragma, but not the local name, it
may either raise an error or ignore it.

Specifying Serialization Parameters
Serialization, described in Chapter 22, is the process of writing your query results out
to an XML document. Certain syntactic differences may appear when working with
different implementations, such as the encoding used, whether an XML declaration
is included at the beginning of a document, or whether the results are indented.

The default values for many serialization parameters are implementation-defined.
Some implementations will let you specify values for the serialization parameters in a
user interface, programmatically, or even as custom option declarations in the query.
However, they are not required to provide this capability. As such, there is no
XQuery syntax to specify these parameters. Example 23-1 shows how Saxon allows
for an implementation-specific option, named output, which allows a query author
to set values for serialization parameters in the query itself.

294

Chapter 24CHAPTER 24

XQuery for SQL Users 24

This chapter is designed to provide some background material for readers who are
already using SQL and relational databases. It compares SQL and XQuery at both
the data model and syntax levels. It also provides pointers for using SQL and XQuery
together, and describes the role of SQL/XML.

Relational Versus XML Data Models
As you know, relational databases represent data in terms of tables, rows, and col-
umns. Some XML documents, such as our product catalog document, map fairly
cleanly onto a relational model. Example 24-1 shows catalog2.xml, a slightly simpli-
fied version of the product catalog document used throughout this book.

Example 24-1. Product catalog document (catalog2.xml)

<catalog>
 <product dept="WMN">
 <number>557</number>
 <name>Fleece Pullover</name>
 </product>
 <product dept="ACC">
 <number>563</number>
 <name>Floppy Sun Hat</name>
 </product>
 <product dept="ACC">
 <number>443</number>
 <name>Deluxe Travel Bag</name>
 </product>
 <product dept="MEN">
 <number>784</number>
 <name>Cotton Dress Shirt</name>
 <desc>Our favorite shirt!</desc>
 </product>
</catalog>

Relational Versus XML Data Models | 295

Because the product catalog document is relatively uniform and does not contain any
repeating relationships between objects, the product catalog can be represented as a
single relational table, shown in Table 24-1. Each product is a row, and each possi-
ble property of the product is a column.

Some of the products do not have descriptions, which means that nulls (or zero-
length strings) are stored in the desc column for these rows. XML does not have a
direct equivalent of null values in the relational model. In XML, a “missing” value
could be represented as an element or attribute that is simply omitted, as in our
example, where the desc element does not appear when it does not apply. It could
also be represented as an empty element (<desc></desc> or <desc/>). Yet another rep-
resentation uses the XML Schema concept of “nilled” elements, as in <desc xsi:
nil="true"/>.

Some XML documents encompass multiple “entities” with repeating relationships
between them. The order document (order.xml) is such a document, since it
describes a hierarchical relationship between an order and the items it contains.
There are properties of the order itself, as well as properties of each item, so each
needs to be represented by a table (see Tables 24-2 and 24-3).

Table 24-1. The catalog table

number dept name desc

557 WMN Fleece Pullover

563 ACC Floppy Sun Hat

443 ACC Deluxe Travel Bag

784 MEN Cotton Dress Shirt Our favorite shirt!

Table 24-2. The orders table

num date cust

00299432 2006-09-15 0221A

Table 24-3. The order_item table

ordnum dept num quantity color

00299432 WMN 557 1 navy

00299432 ACC 563 1

00299432 ACC 443 2

00299432 MEN 784 1 white

00299432 MEN 784 1 gray

00299432 WMN 557 1 black

296 | Chapter 24: XQuery for SQL Users

Comparing SQL Syntax with XQuery Syntax
This section compares SQL syntax with XQuery syntax in order to give readers
already familiar with SQL a jumpstart on learning XQuery. If you notice similarities
between SQL and XQuery, it is not a coincidence; some of the key developers of the
SQL standard also worked on the XQuery standard. Not all SQL syntax is covered in
this chapter, only the most commonly used constructs.

A Simple Query
To compare SQL and XQuery queries, will we first start with our simple product cat-
alog document. A basic SQL query might select all the values from the table that
meet some specific criteria, for example those in the ACC department. The SQL
statement that accomplishes this is:

select * from catalog
where dept='ACC'

In XQuery, we can use a straight path expression for such a simple query, as in:

doc("catalog2.xml")//product[@dept='ACC']

If you don’t want to sort your results or construct new elements, it is often simpler
(and possibly faster) to just use a path expression. However, we could also use a full
FLWOR expression that uses a where clause similar to SQL, as in:

for $prod in doc("catalog2.xml")//product
where $prod/@dept='ACC'
return $prod

In the where clause, we need to start the reference to the dept attribute with $prod/ in
order to give it some context. This is different from SQL, where if there is only one
dept column in the table(s) in the query, it is assumed to be that one column. In
XQuery, you must be explicit about where the dept attribute appears, because it
could appear on any level of the document.

Now, suppose we want to sort the values by the product number. In SQL, we would
simply add an order by clause, as in:

select * from catalog
where dept='ACC'
order by number

We would also add an order by clause to the FLWOR, again giving it the context, as in:

for $prod in doc("catalog2.xml")//product
where $prod/@dept='ACC'
order by $prod/number
return $prod

Comparing SQL Syntax with XQuery Syntax | 297

Conditions and Operators
Conditions and operators are used to filter query results. Many of the conditions and
operators available in SQL can also be used in XQuery, although sometimes with a
slightly modified syntax.

Comparisons

The example in the previous section used the equals sign (=) to compare the value of
the department to ACC. XQuery has the same comparison operators as SQL, namely
=, !=, <, <=, >, and >=. The BETWEEN condition in SQL is not directly supported,
but you can always use two comparisons, as in:

for $prod in doc("catalog2.xml")//product
where $prod/number > 500 and $prod/number < 700
return $prod

Like SQL, quotes are used to surround string values, whereas they are not used to
surround numeric values.

Strings in SQL can also be matched to wildcards using a LIKE condition. For exam-
ple, the query:

select * from catalog
where name LIKE 'F%'

will return products whose names start with the letter F. XQuery provides a starts-
with function that would be useful in this particular case. For example:

for $prod in doc("catalog2.xml")//product
where starts-with($prod/name,'F')
return $prod

For the more general case, the matches function allows you to match a string against
any regular expression. In regular expressions, a single period (.) represents any one
character, much like the underscore character (_) in LIKE conditions. Adding an
asterisk after the period (.*) allows any number of any characters, similar to the %
character in LIKE conditions. Anchors (^ and $) can be used indicate the start and
end of a string. Another way of expressing the previous query is:

for $prod in doc("catalog2.xml")//product
where matches($prod/name,'^F.*')
return $prod

Regular expressions are much more powerful than LIKE conditions, though (see
Table 24-4). They are discussed in detail in Chapter 18.

Table 24-4. LIKE condition values versus regular expressions

Like clause Equivalent regular expression Examples of matching values

xyz ^xyz$ xyz

xyz_ ^xyz.$ xyza

298 | Chapter 24: XQuery for SQL Users

The IN condition in SQL is useful for comparing a value with a list of specified val-
ues. For example, to find all the products that are in either the ACC or WMN
departments, you could use the query:

select * from catalog
where dept in ('ACC', 'WMN')

In XQuery, no special “in” operator is needed because the equals operator (=) allows
multiple values on either side of the comparison, as in:

for $prod in doc("catalog2.xml")//product
where $prod/@dept = ('ACC', 'WMN')
return $prod

The meaning of the = operator in this case is that the product department must be
equal to at least one of the values ACC or WMN.

Arithmetic and string operators

For arithmetic operations, XQuery uses +, –, and * for addition, subtraction, and
multiplication, just like SQL. For division, XQuery does not support the / operator
(because that’s needed in path expressions), but instead uses div and idiv operators.
These are covered in detail in “Arithmetic Operations” in Chapter 16.

Boolean operators

In SQL, multiple conditions are often combined with and and or operators, and
sometimes parentheses are used to group conditions together. For example, the fol-
lowing query selects the products that are in the ACC department whose names start
with either F or G:

select * from catalog
where dept='ACC' and

(name like 'F%' or name like 'G%')

Parentheses are used around the name-related conditions to prevent the and operator
from taking precedence. If the parentheses were not there, the first two conditions
would be “and-ed” together, with different results.

xyz% ^xyz.*$ xyz, xyza, xyzaaa

_xyz ^.xyz$ axyz

xyz% ^xyz xyz, xyza, xyzaa

%xyz xyz$ xyz, axyz, aaxyz

x_yz ^x.yz$ xayz

x%yz ^x.*yz$ xyz, xayz, xaayz

Table 24-4. LIKE condition values versus regular expressions (continued)

Like clause Equivalent regular expression Examples of matching values

Comparing SQL Syntax with XQuery Syntax | 299

The and and or operators, and the parentheses, work identically in XQuery. An
equivalent XQuery query is:

for $prod in doc("catalog2.xml")//product
where $prod/@dept='ACC' and

(matches($prod/name,'F.*') or matches($prod/name,'G.*'))
return $prod

To negate a condition in SQL, you can use a not operator, which is sometimes
applied to a parenthesized group, and is sometimes part of the comparison syntax, as
in name not like 'F%'. In XQuery, you use a not function, so it is always followed by
an expression in parentheses. For example, the SQL query:

select * from catalog
where not(dept='ACC') and
 (name not like 'F%')

is equivalent to the following XQuery query:

for $prod in doc("catalog2.xml")//product
where not($prod/@dept='ACC') and

not(matches($prod/name,'F.*'))
return $prod

Functions
SQL has a number of built-in functions, many of which have equivalent XQuery
functions, often with the same name. Some of the commonly used SQL functions
and their XQuery equivalents are listed in Table 24-5. The syntax to call functions is
the same in both languages: the arguments are enclosed in parentheses and sepa-
rated by commas.

Table 24-5. Equivalent functions

SQL function XQuery function

Numeric functions

sum sum

avg avg

count count

max max

min min

round round

ceil ceiling

floor floor

String functions

substr substring

concat concat

300 | Chapter 24: XQuery for SQL Users

Selecting Distinct Values
SQL has a DISTINCT keyword that allows only distinct values to be selected. For
example, to get a list of the unique departments in the catalog, you would use the
query:

select distinct dept from catalog

In XQuery, you would make a call to the distinct-values function, as in:

distinct-values(doc("catalog2.xml")//product/@dept)

or, if you prefer a FLWOR:

for $value in distinct-values(doc("catalog2.xml")//product/@dept)
return $value

Often you are interested in a combination of distinct values. In SQL, this is quite
straightforward; you simply add more columns to the query. To get the distinct com-
binations of department and product number, you could use:

select distinct dept, number from catalog

However, the XQuery distinct-values function only accepts one set of values. This
means that you must use a FLWOR expression with multiple for clauses to achieve
the same result. This is shown in Example 24-2 and described further in “Selecting
Distinct Values” in Chapter 6.

upper upper-case

lower lower-case

trim normalize-space

replace replace

length string-length

Date-related functions

current_date current-date

current_timestamp current-dateTime

Example 24-2. Distinctness on a combination of values

Query
for $d in distinct-values(doc("catalog2.xml")//product/@dept),
 $n in distinct-values(doc("catalog2.xml")//product[@dept = $d]/number)
return <result dept="{$d}" number="{$n}"/>
Results
<result dept="WMN" number="557"/>
<result dept="ACC" number="563"/>
<result dept="ACC" number="443"/>
<result dept="MEN" number="784"/>

Table 24-5. Equivalent functions (continued)

SQL function XQuery function

Comparing SQL Syntax with XQuery Syntax | 301

Working with Multiple Tables and Subqueries
Many SQL queries join multiple tables together. For example, suppose you want to
join the order and product tables to retrieve results that contain values from both
tables. In SQL, you might write a query such as:

select order_item.num, catalog.name, order_item.quantity
from order_item, catalog
where order_item.num = catalog.number

In XQuery, joins are not needed so frequently because the data will often be stored in
a single hierarchy rather than being split across multiple tables. However, joins still
arise and the mechanism is similar. In XQuery, the join in the where clause might
look like Example 24-3.

The XQuery example constructs an item element to hold each set of three values.
This is because XQuery by default does not return the result of each evaluation of the
return clause in a “row” or any other container. If you simply returned the three val-
ues for each product, as in:

return ($item/@num, $product/name,$item/@quantity)

the result would be 18 sequential values (557, Fleece Pullover, 1, 563, Floppy Sun Hat,
etc.), with no relationship among them. The item element serves as a container to
group the related three values together—the same purpose a row would serve in an
SQL result.

As an alternative to a where clause, you can use one or more predicates in your for
clause, as in:

for $item in doc("order.xml")//item,
 $product in doc("catalog2.xml")//product[number = $item/@num]
return <item num="{$item/@num}"
 name="{$product/name}"
 quan="{$item/@quantity}"/>

Example 24-3. Two-way join in XQuery

Query
for $item in doc("order.xml")//item,
 $product in doc("catalog2.xml")//product
where $item/@num = $product/number
return <item num="{$item/@num}"
 name="{$product/name}"
 quan="{$item/@quantity}"/>
Results
<item num="557" name="Fleece Pullover" quan="1"/>
<item num="563" name="Floppy Sun Hat" quan="1"/>
<item num="443" name="Deluxe Travel Bag" quan="2"/>
<item num="784" name="Cotton Dress Shirt" quan="1"/>
<item num="784" name="Cotton Dress Shirt" quan="1"/>
<item num="557" name="Fleece Pullover" quan="1"/>

302 | Chapter 24: XQuery for SQL Users

More information on joins in XQuery can be found in“Joins” in Chapter 6, includ-
ing examples of three-way joins and outer joins.

Subselects

Another way to use multiple tables in SQL (or, indeed, multiple queries on the same
table) is using subselects. Suppose we wanted to return all products from the catalog
that are included in a particular order. We might use the following query:

select *
from catalog
where number in (select num from order_item
 where ordnum = '00299432')

Like SQL select statements, XQuery FLWOR expressions can also be contained
within each other. The following query uses a FLWOR embedded in the where
clause.

for $product in doc("catalog2.xml")//product
where $product/number =
 (for $item in doc("order.xml")/order[@num='00299432']/item
 return $item/@num)
return $product

In fact, XQuery allows expressions to be nested more freely than SQL does. For
example, you can use a nested FLWOR expression in the in clause, or in the return
clause.

Combining queries using set operators

SQL supports the use of set operators such as UNION to combine the rows from
multiple select statements. These set operators have equivalents in XQuery, as
shown in Table 24-6.

Grouping
In SQL, it is straightforward to group data by certain values. For example, if you
want to count the number of products in each department, you can use the query:

select dept, count(*)
from catalog
group by dept

Table 24-6. Set operators

SQL Syntax XQuery Syntax

query1 UNION query2 query1 union query2 or
query1 | query2

query1 UNION ALL query2 (query1, query2)

query1 INTERSECT query2 query1 intersect query2

query1 MINUS query2 query1 except query2

Combining SQL and XQuery | 303

XQuery does not have an explicit grouping syntax, but grouping can be achieved
using FLWOR expressions and the distinct-values function. Example 24-4 is com-
parable to the SQL example.

As you can see, in order to construct a “table” of return values, we construct result
elements with two attributes representing the “columns.” Grouping is covered in
more detail in Chapter 7.

Combining SQL and XQuery
Most major relational database vendors now allow you to store XML in your data-
bases. The examples in this section use Microsoft SQL Server 2005 syntax, but there
is similar functionality available in Oracle and IBM DB2.

Combining Structured and Semistructured Data
One use case is to combine narrative text with more highly structured data. An
example is when each of the products has a textual description that can span multi-
ple paragraphs and can be marked up with HTML-like tags to indicate sections of
text that need to be in bold or italic. This is shown in Table 24-7.

When you create the table, you declare the desc column to be of type XML, as in:

CREATE TABLE prod_desc (
 number INTEGER NOT NULL,
 desc XML
);

Example 24-4. Grouping in XQuery

Query
for $d in distinct-values(doc("catalog2.xml")//product/@dept)
return
 <result dept="{$d}"
 count="{count(doc("catalog2.xml")//product[@dept = $d])}"/>
Results
<result code="ACC" count="2"/>
<result code="MEN" count="1"/>
<result code="WMN" count="1"/>

Table 24-7. The prod_desc table

number desc

557 <p>This pullover is made from recycled polyester.</p>

563 <p>Enjoy the sun in this <i>gorgeous</i> hat!</p>

443 <p>You'll never be disorganized with this bag.</p>

784 <p>Our <i>favorite</i> shirt!</p>
<p>Can be monogrammed upon request.</p>

304 | Chapter 24: XQuery for SQL Users

If desired, you can specify the location of a schema for the desc column, which will
ensure that any values inserted into desc conform to that schema. It will also provide
all the other benefits of using a schema, such as query debugging.

Flexible Data Structures
Another use case for storing XML in a relational table is to take advantage of the flex-
ibility of XML. Suppose each product has a set of custom properties that needs to
change flexibly over time. It is possible to create columns on the catalog table for
each property, but that is inflexible because a new column needs to be added when a
new property is added, also necessitating changes in the application that reads and
writes to the table.

Another approach might be to create generic columns named property1, property2,
etc., but this is problematic because you don’t know how many columns to create,
and you need some sort of mapping scheme to figure out what each column means
for each product. A more flexible approach might be to store the properties as XML,
as shown in Table 24-8. This allows them to be queried and even indexed, but does
not force a rigid database structure.

To constrain the query based on the contents of the desc column, you can use an
XQuery expression embedded in your SQL statement. In the case of SQL Server, one
way to do this is through the use of an exist function. For example:

select number, properties
from prod_properties
where properties.exist('/properties/sleeveLength[. > 20]') = 1

The SQL Server exist function returns true (which equals 1) if there are any nodes
that match the criteria. The expression in parentheses passed to the exist function is
in XQuery syntax, and it is evaluated relative to the root of the document in the
properties column, for each row. The results are shown in Table 24-9.

Table 24-8. The prod_properties table

number properties

557 <properties>
 <sleeveLength>24</sleeveLength>
</properties>

563 <properties/>

443 <properties>
 <capacity>80</capacity>
</properties>

784 <properties>
 <sleeveLength>25</sleeveLength>
 <extraButtons>2</extraButtons>
</properties>

Combining SQL and XQuery | 305

To return only the sleeveLength element, I could use another SQL Server function
called query in my select clause, as in:

select number,
 properties.query('//sleeveLength') slength
from prod_properties
where properties.exist('/properties/sleeveLength[. > 20]') = 1

Like the exist function, the query function accepts an XQuery query as a parameter.
The string slength is used to provide a name for the column in the results. This will
return a sleeveLength element for each row, as shown in Table 24-10.

If I want to further reduce my result set to the contents of the sleeveLength element, I
can call the XQuery data function in my query, as in:

select number,
 properties.query('data(//sleeveLength)') slength
from prod_properties
where properties.exist('/properties/sleeveLength[. > 20]') = 1

The results are shown in Table 24-11.

Alternatively, I can use the SQL Server value function, which requires me to specify a
type for the value, as in:

select properties.value('(/properties/sleeveLength)[1]','integer') slength
from prod_properties
where properties.exist('/properties/sleeveLength[. > 20]') = 1

Table 24-9. Results containing the properties element

number properties

557 <properties>
 <sleeveLength>24</sleeveLength>
</properties>

784 <properties>
 <sleeveLength>25</sleeveLength>
 <extraButtons>2</extraButtons>
</properties>

Table 24-10. Results containing the sleeveLength element

number slength

557 <sleeveLength>24</sleeveLength>

784 <sleeveLength>25</sleeveLength>

Table 24-11. Results containing the sleeveLength value

number slength

557 24

784 25

306 | Chapter 24: XQuery for SQL Users

The value function forces the use of the [1] predicate to ensure that only a single
node is returned. If a schema were in use, and it specified that there could only ever
be one sleeveLength child of properties, this would not be necessary.

SQL/XML
We’ve seen how you can query XML data stored in a table, but how do you select
relational data and return it as XML? This is where SQL/XML comes in. SQL/XML
is an extension to SQL that is part of the ISO SQL 2003 standard. It adds an XML
datatype, and allows XML elements to be constructed within the SQL query.
Example 24-5 shows an SQL/XML query that might be used on our catalog table
(Table 24-1).

Table 24-12 shows the results, which consist of two columns. The product_as_xml col-
umn, whose type is XML, contains a newly constructed product element for each row.

SQL/XML is not used to query XML documents, only relational data. As you can
see, it can turn relational data into XML elements. For more information on SQL/
XML, please see http://www.sqlx.org.

Example 24-5. SQL/XML query

SELECT c.number,
 XMLELEMENT (NAME "product",
 XMLATTRIBUTES (
 c.dept AS "dept",
 c.name AS "prodname",
) AS "product_as_xml"
FROM catalog c;

Table 24-12. Results of SQL/XML query

number product_as_xml

557 <product dept="WMN" prodname="Fleece Pullover"/>

563 <product dept="ACC" prodname="Floppy Sun Hat"/>

443 <product dept="ACC" prodname="Deluxe Travel Bag"/>

784 <product dept="MEN" prodname="Cotton Dress Shirt"/>

http://www.sqlx.org/

307

Chapter 25 CHAPTER 25

XQuery for XSLT Users25

XQuery 1.0 and XSLT 2.0 have a lot in common: a data model, a set of built-in func-
tions and operators, and the use of path expressions. This chapter delves further into
the details of the similarities and differences between XQuery and XSLT. It also
alerts XSLT 1.0/XPath 1.0 users to differences and potential compatibility issues
when moving to XQuery/XPath 2.0.

XQuery and XPath
XPath started out as a language for selecting elements and attributes from an XML doc-
ument while traversing its hierarchy and filtering out unwanted content. XPath 1.0 is a
fairly simple yet useful recommendation that specifies path expressions and a lim-
ited set of functions. XPath 2.0 has become much more than that, encompassing a
wide variety of expressions and functions, not just path expressions.

XQuery 1.0 and XPath 2.0 overlap to a very large degree. They have the same data
model and the same set of built-in functions and operators. XPath 2.0 is essentially a
subset of XQuery 1.0. XQuery has a number of features that are not included in
XPath, such as FLWORs and XML constructors. This is because these features are
not relevant to selecting, but instead have to do with structuring or sorting, query
results. The two languages are consistent in that any expression that is valid in both
languages evaluates to the same value using both languages.

Figure 25-1 depicts the relationship among XQuery, XPath, and XSLT.

XQuery Versus XSLT
XQuery and XSLT are both languages designed to query and manipulate XML docu-
ments. There is an enormous amount of overlap among the features and capabilities
of these two languages. In fact, the line between querying and transformation is
somewhat blurred. For example, suppose someone wants a list of all the product
names from the catalog, but wants to call them product_name in the results. On the

308 | Chapter 25: XQuery for XSLT Users

one hand, this could be considered a query: “Retrieve all the name elements from the
catalog, but give them the alias product_name.” On the other hand, it could be con-
sidered a transformation: “Transform all the name elements to product_name ele-
ments, and ignore everything else in the document.”

Shared Components
The good news is that if you’ve learned one of these two languages, you’re well on
your way toward learning the other. XQuery 1.0 and XSLT 2.0 were developed
together, with compatibility between them in mind. Among the components they
share are:

The data model
Both languages use the data model described in Chapter 2. They have the same
concepts of sequences, atomic values, nodes, and items. Namespaces are han-
dled identically. In addition, they share the same type system and relationship to
XML Schema.

XPath 2.0
XQuery 1.0 is essentially a superset of XPath 2.0. XSLT 2.0 makes use of XPath
2.0 expressions in many areas, from the expressions used to match templates to
the instructions that copy nodes from input documents.

Built-in functions and operators
All of the built-in functions described in Appendix A can be used in both
XQuery and XSLT 2.0, with the same results. All of the operators, such as com-
parison and arithmetic operators, yield identical values in both languages.

Figure 25-1. XQuery, XPath, and XSLT

XQuery 1.0 XSLT 2.0

XPath
2.0

XPath
1.0

FLWOR expressions
Query prolog
XML constructors
User-defined functions

Conditional expressions
Arithmetic expressions
Quantified expressions
Built-in functions & operators
Data model

Path expressions
Comparison expressions
Some built-in functions

Stylesheets
Templates
Literal result elements
User-defined functions
Etc.

XQuery Versus XSLT | 309

Equivalent Components
In addition to the components they directly share, XQuery 1.0 and XSLT 2.0 also
have some features that are highly analogous in the two languages; they just use a
different syntax. XSLT instructions relating to flow control (e.g., xsl:if and xsl:for-
each) have direct equivalents in XQuery (conditional and FLWOR expressions). Lit-
eral result elements in XSLT are analogous to direct XML constructors in XQuery,
while the use of xsl:element and xsl:attribute in XSLT is like using computed con-
structors in XQuery. Some of these commonly used features are listed in Table 25-1.

Differences
The most obvious difference between XQuery and XSLT is the syntax. A simple
XQuery query might take the form:

<ul type="square">{
 for $product in doc("catalog.xml")/catalog/product[@dept = 'ACC']
 order by $product/name
 return {data($product/name)}
}

Table 25-1. Comparison of XSLT and XQuery features

XSLT feature Present in 1.0? XQuery equivalent Chapter

xsl:for-each yes for clause in a FLWOR expression 6

XPath for expression no for clause in a FLWOR expression 6

xsl:variable yes let clause in a FLWOR expression or global
variable declaration

6, 12

xsl:sort yes order by clause in a FLWOR expression 7

xsl:if, xsl:choose yes Conditional expressions (if-then-else) 3

Literal result elements yes Direct constructors 5

xsl:element yes Computed constructors 5

xsl:attribute yes Computed constructors

xsl:function no User-defined functions 8

Named templates yes User-defined functions 8

xsl:value-of yes An enclosed expression in curly braces inside
an element constructor

4

xsl:copy-of yes The path or other expression that would
appear in the select attribute

4

xsl:sequence no The path or other expression that would
appear in the select attribute

4

xsl:include yes Module import 12

xsl:template yes No direct equivalent; can be simulated with
user-defined functions

25

310 | Chapter 25: XQuery for XSLT Users

The XSLT equivalent of this query is:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <ul type="square">
 <xsl:for-each select="catalog/product[@dept = 'ACC']">
 <xsl:sort select="name"/>
 <xsl:value-of select="name"/>
 </xsl:for-each>

 </xsl:template>
</xsl:stylesheet>

XQuery is somewhat less verbose, and many people find it less cumbersome than
using the XML syntax of XSLT. Users who know SQL find XQuery familiar and intu-
itive. Its terseness also makes it more convenient to embed in program code than
XSLT.

On the other hand, XSLT stylesheets use XML syntax, which means that they can be
easily parsed and/or created by standard XML tools. This is convenient for the
dynamic generation of stylesheets.

Paradigm differences: push versus pull

The most significant difference between XQuery and XSLT lies in their ability to
react to unpredictable content. To understand this difference, we must digress
briefly into the two different paradigms for developing XSLT stylesheets, which are
sometimes called pull and push. Pull stylesheets, also known as program-driven
stylesheets, tend to be used for highly structured, predictable documents. They use
xsl:for-each and xsl:value-of elements to specifically request the information that
is desired. An example of a pull stylesheet is shown in Example 25-1.

The stylesheet is counting on the fact that the product elements appear as children of
catalog and that each product element has a single name and a single number child.
The template states exactly what to do with the descendants of the catalog element,
and where they can be found.

By contrast, push stylesheets use multiple templates that specify what to do for each ele-
ment type, and then pass processing off to other templates using xsl:apply-templates.

Example 25-1. A pull stylesheet

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="catalog">

 <xsl:for-each select="product">
 Product #: <xsl:value-of select="number"/>
 Product name: <xsl:value-of select="name"/>
 </xsl:for-each>

 </xsl:template>
</xsl:stylesheet>

XQuery Versus XSLT | 311

Which templates are used depends on the type of children of the current node. This
is sometimes called a content-driven approach, because the stylesheet is simply react-
ing to child elements found in the input content by matching them to templates.
Example 25-2 shows a push stylesheet that is equivalent to Example 25-1.

This may not seem like a particularly useful approach for a predictable document
like the product catalog. However, consider a narrative document structure, such as
an HTML paragraph. The p (paragraph) element has mixed content and may con-
tain various inline elements such as b (bold) and i (italic) to style the text in the para-
graph, as in:

<p>It was a dark and <i>stormy</i> night.</p>

This input is less predictable because there is no predefined number or order of the b
or i children in any given paragraph. A push stylesheet on this paragraph is shown in
Example 25-3.

Example 25-2. A push stylesheet

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="catalog">

 <xsl:apply-templates/>

 </xsl:template>
 <xsl:template match="product">
 <xsl:apply-templates/>
 </xsl:template>
 <xsl:template match="number">
 Product #: <xsl:value-of select="."/>
 </xsl:template>
 <xsl:template match="name">
 Product name: <xsl:value-of select="."/>
 </xsl:template>
 <xsl:template match="node()"/>
</xsl:stylesheet>

Example 25-3. A push stylesheet on narrative content

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="p">
 <para>
 <xsl:apply-templates/>
 </para>
 </xsl:template>
 <xsl:template match="b">
 <xsl:apply-templates/>
 </xsl:template>
 <xsl:template match="i">
 <Italics><xsl:apply-templates/></Italics>
 </xsl:template>
</xsl:stylesheet>

312 | Chapter 25: XQuery for XSLT Users

It would be difficult to write a good pull stylesheet on the narrative paragraph.
Example 25-4 shows an attempt.

However, this stylesheet is not very robust, because it does not handle the case where
a b element is embedded within an i element. It is cumbersome to maintain because
the code would have to be repeated if b and i can also appear in some other parent
element besides p. If a change is made, or a new type of inline element is added, it
has to be changed in multiple places.

The distinction between push and pull XSLT stylesheets is relevant to the compari-
son with XQuery. XQuery can easily handle the scenarios supported by pull
stylesheets. The equivalent of Example 25-1 in XQuery is:

for $catalog in doc("catalog.xml")/catalog
return {for $prod in $catalog/product
 return (Product #: {data($prod/number)},
 Product name: {data($prod/name)})
 }

XQuery has a much harder time emulating the push stylesheet model, due to its lack
of templates. In order to write a query that modifies the HTML paragraph, you could
use a brittle pull model analogous to the one shown in Example 25-4. Alternatively,
you could emulate templates using user-defined functions, as shown in Example 25-5.
This is somewhat better in that it supports b elements within i elements and vice
versa, and it specifies in one place what to do with each element type. However, it is
still more cumbersome than its XSLT equivalent and does not support features of
XSLT like modes, priorities, or imports that override templates.

Example 25-4. An attempt at a pull stylesheet on narrative content

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="p">
 <para>
 <xsl:for-each select="node()">
 <xsl:choose>
 <xsl:when test="self::text()">
 <xsl:value-of select="."/>
 </xsl:when>
 <xsl:when test="self::b">
 <xsl:value-of select="."/>
 </xsl:when>
 <xsl:when test="self::i">
 <Italics><xsl:value-of select="."/></Italics>
 </xsl:when>
 </xsl:choose>
 </xsl:for-each>
 </para>
 </xsl:template>
</xsl:stylesheet>

XQuery Versus XSLT | 313

It is very important to note that this does not mean that XQuery is not good for query-
ing narrative content. On the contrary, XQuery is an easy and fast method of search-
ing within large bodies of narrative content. However, it is not ideal for taking that
retrieved narrative content and significantly transforming or restructuring it. If this is
your objective, you may want to consider pipelining two processes together: an
XQuery query to retrieve the appropriate content from the database, and an XSLT
stylesheet to transform it for presentation or other uses.

Optimization for particular use cases

Implementations of XSLT and XQuery tend to be optimized for particular use cases.
XSLT implementations are generally built for transforming one whole document.
They load the entire input document into memory and take one or more complete
passes through the document. This is appropriate behavior when an entire docu-
ment is being transformed, since the entire document needs to be accessed anyway.
Additional input documents can be accessed using the doc or document functions, in
which case they too are loaded into memory.

XQuery implementations, on the other hand, are generally optimized for selecting
fragments of data—possibly across many documents—for example, from a data-
base. When content is loaded into the database, it is broken into chunks that are
usually smaller than the entire documents. Those chunks are indexed so that they
can be retrieved quickly. XQuery queries can access these chunks without being
forced to load the entire documents that contain them. This makes selecting a sub-
set of information from a large body of XML documents much faster using the aver-
age XQuery implementation.

Example 25-5. Emulating templates with user-defined functions

declare function local:apply-templates($nodes as node()*) as node()* {
 for $node in $nodes
 return typeswitch ($node)
 case element(p) return local:p-template($node)
 case element(b) return local:b-template($node)
 case element(i) return local:i-template($node)
 case element() return local:apply-templates($node/(@*|node()))
 default return $node
};
declare function local:p-template($node as node()) as node()* {
 <para>{local:apply-templates($node/(@*|node()))}</para>
};
declare function local:b-template($node as node()) as node()* {
 {local:apply-templates($node/(@*|node()))}
};
declare function local:i-template($node as node()) as node()* {
 <Italics>{local:apply-templates($node/(@*|node()))}</Italics>
};
local:apply-templates(doc("p.xml")/p)

314 | Chapter 25: XQuery for XSLT Users

Convenient features of XSLT

XSLT 2.0 has several convenient features that are absent from XQuery. They include:

xsl:analyze-string
This instruction breaks a string into parts that match and do not match a regu-
lar expression and allows manipulation of them.

xsl:result-document
This instruction allows the creation of multiple output files directly in a stylesheet.

xsl:for-each-group
This instruction allows grouping by position in addition to grouping by value.

xsl:import
This instruction allows you to override templates and functions in an imported
stylesheet.

The xsl:import instruction of XSLT gives you some of the capabilities of inheritance
and polymorphism from object languages, which is particularly useful when writing
large application suites designed to handle a variety of related and overlapping tasks.
This is quite hard to organize in XQuery, which has neither the polymorphism of
object-oriented languages nor the function pointers of a language like C. The mod-
ules of XQuery also have significant limitations when writing large applications, such
as the rule banning cyclic imports.

Differences Between XQuery 1.0/XPath 2.0 and XPath 1.0
XPath 1.0 is a subset of XPath 2.0, which is essentially a subset of XQuery 1.0. If you
already know XPath 1.0 from using it in XSLT 1.0, you will probably find parts of
XQuery very familiar.

Backward- and cross-compatibility are mostly maintained among the three lan-
guages, so that an expression in any of the three languages will usually yield the same
results. However, there are a few important differences, which are described in this
section. All of these differences between XPath 1.0 and XPath 2.0 are also relevant if
you plan to use XSLT 2.0.

The few areas of backward incompatibility between XPath 1.0 and XPath 2.0 are dis-
cussed in greater detail in Appendix I of the XPath 2.0 specification, which is at http://
www.w3.org/TR/xpath20. In XSLT, you can choose to process 2.0 stylesheets while
setting an XPath 1.0 Compatibility Mode to treat XPath expressions just like XPath
1.0 expressions. This helps to avoid unexpected changes in the behavior of
stylesheets when they are upgraded from 1.0 to 2.0. The mode is not available in
XQuery 1.0, since there is no previous version of XQuery.

http://www.w3.org/TR/xpath20/.
http://www.w3.org/TR/xpath20/.

Differences Between XQuery 1.0/XPath 2.0 and XPath 1.0 | 315

Data Model
The XPath 1.0 data model has the concept of a node-set, which is a set of nodes that
are always in document order. In XQuery 1.0/XPath 2.0, there is the similar concept
of a sequence. However, sequences differ in that they are ordered (not necessarily in
document order), and they can contain duplicates. Another difference is that
sequences can contain atomic values as well as nodes.

Root nodes in XPath 1.0 have been renamed document nodes in XQuery 1.0/XPath 2.0.
Namespaces nodes are now deprecated in XPath 2.0, and not at all accessible in
XQuery 1.0. They have been replaced by two functions that provide information
about the namespaces in scope: in-scope-prefixes and namespace-uri-for-prefix.

New Expressions
XPath 2.0 encompasses a lot more than just paths. Some of the new kinds of expres-
sions include:

• Conditional expressions (if-then-else)

• for expressions, which are a subset of XQuery FLWORs that have only two
clauses: one for and one return

• Quantified expressions (some/every-satisfies)

• Ordered sequence constructors (($x, $y))

• Additional operators to combine sequences (intersect, except)

• Node comparison operators (is, <<, >>)

These new expressions are all part of XPath 2.0 itself, not just XQuery.

Path Expressions
If you already use XPath 1.0, the path expressions in XQuery should be familiar. The
basic syntax and meaning of node tests and predicates is the same. The set of axes is
almost the same, except that the namespace:: axis is not available.

There are some additional enhancements to path expressions. One is the ability to
have the last step in a path return atomic values rather than nodes. So, for example,

doc("catalog.xml")//product/name/substring(.,1,5)

will return the first five characters of each product name, resulting in a sequence of
four string atomic values. This makes it really easy to do things that were tough in
XPath 1.0; for example, summing over the product of price and quantity becomes:

 sum(//item/(@price * @qty))

316 | Chapter 25: XQuery for XSLT Users

Another improvement is that it is now possible to have any expression as a step. You
can take advantage of all the newly added kinds of expressions described in the pre-
vious section. It also allows you to create navigational functions that are very useful
as steps, for example:

customer/orders-for-customer(.)/product-code

Function Conversion Rules
In XPath 1.0, if you call a function that is expecting a single value, and pass it a
sequence of multiple values, it simply takes the first value and discards the others.
For example:

substring(doc("catalog.xml")//product/name,1,5)

In this case, there are four product nodes. XPath 1.0 just takes the name of the first
one and returns Fleec. In XQuery 1.0/XPath 2.0, a type error is raised.

XQuery 1.0/XPath 2.0 is strongly typed, while XPath 1.0 is not. In XPath 1.0, if you
pass a value to a function that is of a different type—for example, a number to a
function expecting a string, or vice versa—the value is cast automatically. In XQuery
1.0/XPath 2.0, a type error is raised. For example:

substring(12345678,1,4)

attempts to take the substring of a number. It will return 1234 in XPath 1.0, and raise
an error in XQuery 1.0/XPath 2.0. Instead, you would need to explicitly convert the
value into a string, as in:

substring(string(12345678),1,4)

Arithmetic and Comparison Expressions
In XPath 1.0, performing an arithmetic operation on a “missing” value results in the
value NaN. In XQuery 1.0/XPath 2.0, it returns the empty sequence—for example, the
expression:

catalog/foo * 2

Similar to the function conversion rules, in XPath 1.0 an arithmetic expression will
take the first value of a sequence and discard the rest. In XQuery 1.0/XPath 2.0, it
raises a type error.

It is possible in XQuery 1.0/XPath 2.0 to compare non-numeric values such as
strings using the operators <, <=, >, and >=. In XPath 1.0, this was not supported. By
default, XQuery 1.0/XPath 2.0 treats untyped operands of a comparison like strings,
whereas they were treated as numbers in XPath 1.0. This is a significant compatibil-
ity risk, because the results of the comparison will be different if, for example, you

Differences Between XQuery 1.0/XPath 2.0 and XPath 1.0 | 317

are comparing <price>29.99</price> to <price>100.00</price>. XPath 1.0 would say
that the first price is less than the second, while XQuery 1.0/XPath 2.0 (in the
absence of a schema that says they are numeric) would say that the second price is
less, because its string value is lower.

Built-in Functions
There are approximately 80 new built-in functions in XPath 2.0. All of the built-in
functions from XPath 1.0 are also supported in XQuery 1.0/XPath 2.0, with a couple
of minor differences:

• Some XQuery 1.0/XPath 2.0 function calls return the empty sequence where in
XPath 1.0 they would have returned a zero-length string. This is the case if the
empty sequence is passed as the first argument to substring, substring-before,
or substring-after.

• Some XQuery 1.0/XPath 2.0 function calls return the empty sequence where in
XPath 1.0 they would have returned the value NaN. This is the case if the empty
sequence is passed to round, floor, or ceiling.

319

Appendix A APPENDIX A

Built-in Function Reference1

This appendix describes the functions that are built into XQuery. Table A-1 lists all
of the built-in functions by subject for easy reference. They are all in the XPath Func-
tions Namespace, http://www.w3.org/2005/xpath-functions.

In addition to a brief sentence explaining the purpose of the function, each function
is described by the following characteristics:

• “Signature” lists the parameters and their types, and the return type of the function.

• “Usage Notes” covers the function in more detail.

• “Special Cases” lists error conditions and other unusual situations.

• “Example(s)” provides one or more example function calls with their return values.

• “Related Functions” lists names of related functions.

XSLT 2.0 has some additional built-in functions, namely current,
current-group, current-grouping-key, document, element-available,
format-date, format-dateTime, format-number, format-time, function-
available, generate-id, key, regex-group, system-property, type-
available, unparsed-entity-uri, unparsed-entity-public-id, unparsed-
text, unparsed-text-available. These functions are part of XSLT 2.0
only, not XQuery 1.0 and XPath 2.0, and are therefore not covered in
this appendix.

Many of the built-in functions have more than one signature. For example, adjust-
date-to-timezone has a signature with just $arg, and another with two arguments—
$arg and $timezone:

adjust-date-to-timezone($arg as xs:date?) as xs:date?
adjust-date-to-timezone($arg as xs:date?,
 $timezone as xs:dayTimeDuration?) as xs:date?

For simplicity, in this appendix, only one signature is shown, with the “required”
arguments in constant width bold, and the “optional” ones in constant width italic.
For example:

adjust-date-to-timezone($arg as xs:date?,
$timezone as xs:dayTimeDuration?) as xs:date?

320 | Appendix A: Built-in Function Reference

This convention indicates that the function can be called with or without the
$timezone argument. Don’t forget that passing the empty sequence or a zero-length
string for an argument is not the same as omitting an argument.

It is possible to use this convention because the built-in functions (shown in
Table A-1) have been designed so that in cases where there are several versions of a
function with different numbers of arguments, the common arguments have the
same type and meaning in each case. User-defined functions don’t have to follow this
design pattern, but it’s good practice.

Table A-1. Function finder

Numeric functions

abs, avg, ceiling, floor, max, min, number, round, round-half-to-even, sum

String functions

codepoint-equal, codepoints-to-string, compare, concat, contains, default-collation,
ends-with, lang, lower-case, matches, normalize-space, normalize-unicode, replace,
starts-with, string-join, string-length, string-to-codepoints, substring, substring-
after, substring-before, tokenize, translate, upper-case

Date functions

adjust-date-to-timezone, adjust-dateTime-to-timezone, adjust-time-to-timezone, current-
date, current-dateTime, current-time, implicit-timezone, dateTime

Date functions (component extraction)

day-from-date, day-from-dateTime, days-from-duration, hours-from-dateTime, hours-from-
duration, hours-from-time, minutes-from-dateTime, minutes-from-duration, minutes-from-
time, month-from-date, month-from-dateTime, months-from-duration, seconds-from-dateTime,
seconds-from-duration, seconds-from-time, timezone-from-date, timezone-from-dateTime,
timezone-from-time, year-from-date, year-from-dateTime, years-from-duration

Boolean functions

boolean, false, true, not

Document and URI functions

base-uri, collection, doc, doc-available, document-uri, encode-for-uri, escape-html-
uri, iri-to-uri, resolve-uri, root, static-base-uri

Name and namespace functions

QName, in-scope-prefixes, local-name, local-name-from-QName, name, namespace-uri,
namespace-uri-for-prefix, namespace-uri-from-QName, node-name, prefix-from-QName,
resolve-QName

Node-related functions

data, deep-equal, empty, exists, id, idref, nilled, string

Sequence-related functions

count, distinct-values, index-of, insert-before, last, position, remove, reverse,
subsequence, unordered

Error handling and trapping functions

error, exactly-one, one-or-more, trace, zero-or-one

adjust-date-to-timezone

Appendix A: Built-in Function Reference | 321

abs Finds the absolute value of a number

Signature
abs($arg as numeric?) as numeric?

Usage Notes

This function accepts any numeric value and returns its absolute value. It returns a numeric
value of type xs:float, xs:double, xs:decimal, or xs:integer, depending on which type the
argument is derived from. If $arg is untyped, it is cast to xs:double.

Special Cases

• If $arg is the empty sequence, the function returns the empty sequence.

• If $arg is INF or –INF, the function returns INF.

• If $arg is NaN, the function returns NaN.

Examples

adjust-date-to-timezone Adjusts the time zone of a date

Signature
adjust-date-to-timezone($arg as xs:date?,

$timezone as xs:dayTimeDuration?) as xs:date?

Usage Notes

The behavior of this function depends on whether the $arg date value already has a time
zone and on the value of the time zone provided. Table A-2 shows the possible
combinations.

The $timezone argument is expressed as an xs:dayTimeDuration, for example, –PT5H for U.S.
Eastern Standard Time. If $timezone is the empty sequence, it is assumed that the desired
result is a date value that is in no time zone. If $timezone is omitted from the function call,*

it is assumed to be the implicit time zone.

The $arg date is assumed for the sake of time zone calculation to be just like an xs:
dateTime value whose time is midnight (00:00:00). If $arg does not already have a time
zone, its date part stays the same, but it is now associated with the specified time zone.

Example Return value

abs(3.5) 3.5

abs(-4) 4

abs(xs:float("-INF")) INF

* Remember, omitting an argument is different from passing the empty sequence for that argument.

adjust-date-to-timezone

322 | Appendix A: Built-in Function Reference

If $arg already has a time zone, its value is adjusted to that time zone. This may change the
actual date in some cases. For example, if $arg is 2006-02-15-05:00, and $timezone is –PT8H,
the resulting date is 2006-02-14-08:00, which is the day before. This is because $arg is
considered to be 2006-02-15T00:00:00-05:00, which is equivalent to 2006-02-14T21:00:00-
08:00. In other words, midnight in the U.S. Eastern time zone is equal to 9 P.M. the day
before in the U.S. Pacific time zone.

For more information on time zones in XQuery, see “Time Zones” in Chapter 19.

Special Cases

• If $arg is the empty sequence, the function returns the empty sequence.

• If the value of $timezone is not between –PT14H and PT14H, inclusive, or if it does not
have an integral number of minutes (i.e., the number of seconds is not 0), the error
“Invalid timezone value” (FODT0003) is raised.

Examples

These six examples represent the six scenarios described in Table A-2.

Table A-2. Behavior of the adjust-*-to-timezone functions

Does $arg have
a time zone?

Value of $timezone
argument Explanation of result

No An xs:dayTimeDuration $arg, now associated with the time zone $timezone (but has the
same date)

Yes An xs:dayTimeDuration $arg, adjusted to the time zone $timezone

No The empty sequence $arg, unchanged

Yes The empty sequence $arg with no associated time zone (but has the same date)

No Not provided $arg, now associated with the implicit time zone (but has the same
date)

Yes Not provided $arg, adjusted to the implicit time zone

Examplea

a This table assumes an implicit time zone of –05:00.

Return value

adjust-date-to-timezone(xs:date("2006-02-15"),
 xs:dayTimeDuration("-PT8H"))

2006-02-15-08:00

adjust-date-to-timezone(xs:date("2006-02-15-03:00"),
 xs:dayTimeDuration("-PT8H"))

2006-02-14-08:00

adjust-date-to-timezone(xs:date("2006-02-15"), ()) 2006-02-15

adjust-date-to-timezone(xs:date("2006-02-15-03:00"), ()) 2006-02-15

adjust-date-to-timezone(xs:date("2006-02-15")) 2006-02-15-05:00

adjust-date-to-timezone(xs:date("2006-02-15-03:00")) 2006-02-14-05:00

adjust-time-to-timezone

Appendix A: Built-in Function Reference | 323

adjust-dateTime-to-timezone Adjusts the time zone of a date/time

Signature
adjust-dateTime-to-timezone($arg as xs:dateTime?,

$timezone as xs:dayTimeDuration?) as xs:dateTime?

Usage Notes

The behavior of this function is identical to that of adjust-date-to-timezone, described in
Table A-2, except that the actual time, not midnight, is used.

Special Cases

• If $arg is the empty sequence, the function returns the empty sequence.

• If the value of $timezone is not between –PT14H and PT14H, inclusive, or if it does not
have an integral number of minutes (i.e., the number of seconds is not 0), the error
“Invalid timezone value” (FODT0003) is raised.

Examples

These examples represent the scenarios described in Table A-2.

adjust-time-to-timezone Adjusts the time zone of a time

Signature
adjust-time-to-timezone($arg as xs:time?,

$timezone as xs:dayTimeDuration?) as xs:time?

Examplea

a This table assumes an implicit time zone of –05:00.

Return value

adjust-dateTime-to-timezone
(xs:dateTime("2006-02-15T17:00:00"),
 xs:dayTimeDuration("-PT7H"))

2006-02-15T17:00:00-07:00

adjust-dateTime-to-timezone
(xs:dateTime("2006-02-15T17:00:00-03:00"),
 xs:dayTimeDuration("-PT7H"))

2006-02-15T13:00:00-07:00

adjust-dateTime-to-timezone
(xs:dateTime("2006-02-15T17:00:00"), ())

2006-02-15T17:00:00

adjust-dateTime-to-timezone
(xs:dateTime("2006-02-15T17:00:00-03:00"), ())

2006-02-15T17:00:00

adjust-dateTime-to-timezone
(xs:dateTime("2006-02-15T17:00:00"))

2006-02-15T17:00:00-05:00

adjust-dateTime-to-timezone
(xs:dateTime("2006-02-15T17:00:00-03:00"))

2006-02-15T15:00:00-05:00

adjust-dateTime-to-timezone
(xs:dateTime("2006-02-15T01:00:00-03:00"),
 xs:dayTimeDuration("-PT7H"))

2006-02-14T21:00:00-07:00

avg

324 | Appendix A: Built-in Function Reference

Usage Notes

The behavior of this function is identical to that of adjust-date-to-timezone, described in
Table A-2, except that the actual time, not midnight, is used.

Special Cases

• If $arg is the empty sequence, the function returns the empty sequence.

• If the value of $timezone is not between – –PT14H and PT14H, inclusive, or if it does not
have an integral number of minutes (i.e., the number of seconds is not 0), the error
“Invalid timezone value” (FODT0003) is raised.

Examples

Some examples are shown here. See Table A-2 for a description of the scenarios these
examples represent.

avg Finds the average value of the items in a sequence

Signature
avg($arg as xs:anyAtomicType*) as xs:anyAtomicType?

Usage Notes

The $arg sequence can contain a mixture of numeric and untyped values. Numeric values
are promoted as necessary to make them all the same type. Untyped values are cast as
numeric xs:double values.

The function can also be used on duration values, so the $arg sequence can contain all
xs:yearMonthDuration values or all xs:dayTimeDuration values (but not a mixture of the
two). The $arg sequence cannot contain a mixture of duration and numeric values.

Special care should be taken with any “missing” values when using the avg function. This is
described further in “Counting “Missing” Values” in Chapter 7.

Examplea

a This table assumes an implicit time zone of –05:00.

Return value

adjust-time-to-timezone(xs:time("17:00:00"),
 xs:dayTimeDuration("-PT7H"))

17:00:00-07:00

adjust-time-to-timezone(xs:time("17:00:00-03:00"),
 xs:dayTimeDuration("-PT7H"))

13:00:00-07:00

adjust-time-to-timezone(xs:time("17:00:00"), ()) 17:00:00

adjust-time-to-timezone(xs:time("17:00:00-03:00"), ()) 17:00:00

adjust-time-to-timezone(xs:time("17:00:00")) 17:00:00-05:00

adjust-time-to-timezone(xs:time("17:00:00-03:00")) 15:00:00-05:00

adjust-time-to-timezone(xs:time("22:00:00-08:00")) 01:00:00-05:00

adjust-time-to-timezone(xs:time("01:00:00-02:00")) 22:00:00-05:00

adjust-time-to-timezone(xs:time("17:00:00"),
xs:dayTimeDuration("-PT20H"))

Error FODT0003

base-uri

Appendix A: Built-in Function Reference | 325

Special Cases

• If $arg is the empty sequence, the function returns the empty sequence.

• If $arg contains untyped values that cannot be cast to numbers, the error “Invalid
value for cast/constructor” (FORG0001) is raised.

• If $arg contains typed values that are not numeric or duration values, or values that
have a variety of types, the error “Invalid argument type” (FORG0006) is raised.

• If $arg contains values that are NaN, the function returns NaN.

Examples

Related Functions

sum, count

base-uri Gets the base URI of a node

Signature
base-uri($arg as node()?) as xs:anyURI?

Usage Notes

The essential purpose of a base URI is to establish a baseline for resolving any relative URIs
in the content.

The $arg argument may be any kind of node. If $arg is a document node, this function
usually returns the URI from which the document was retrieved,* if it is known. This can
also be achieved by using the document-uri function. An example where the base URI might
not be known is where the document is created by parsing an anonymous input stream.
Check your processor’s documentation for details of how to supply a base URI in such
cases.

If $arg is an element, the function returns the value of its xml:base attribute, if any, or the
xml:base attribute of its nearest ancestor. If no xml:base attributes appear among its ances-
tors, it defaults to the base URI of the document node. If the original document consisted
of multiple external entities (files), the base URI would be the URI of the containing entity.

Example Return value

avg((1, 2, 3, 4, 5)) 3

avg((1, 2, 3, (), 4, 5)) 3

avg((xs:yearMonthDuration("P4M"),
 xs:yearMonthDuration("P6M")))

P5M

avg(doc("order.xml")//item/@quantity) 1.166667 (with implementation-defined precision)

avg(()) ()

avg(doc("order.xml")//item/@dept) Error FORG0001

* Some documents, such as those contained in a multipart MIME message, may have a base URI that is differ-
ent from the URI that can be used to retrieve it.

base-uri

326 | Appendix A: Built-in Function Reference

If $arg is any other kind of node, the function returns the same value as if the argument
were its parent element or document.

For more information on URIs, see “Working with URIs” in Chapter 20.

Special Cases

• If $arg is the empty sequence, the function returns the empty sequence.

• If $arg is not provided, the function returns the base URI of the current context node.
Note that this is not the same as the base URI from the static context, which is
retrieved using the static-base-uri function.

• If $arg is not provided, and the context item is not a node, the error XPTY0004 is raised.

• If $arg is not provided, and the context item is undefined, the error XPDY0002 is raised.

• If no base URI can be found, for example because the element node has no base URI
and does not have a document node as its root, the function returns the empty
sequence.

Examples

These examples assume that the variable $cats is bound to the input document http://
datypic.com/cats.xml shown in Example A-1.

Related Functions

static-base-uri, resolve-uri, document-uri

Example Return value

base-uri($cats//catalog[1]) http://example.org/ACC/

base-uri($cats//catalog[2]/product) http://example.org/WMN/

base-uri ($cats//catalog[2]/product/@href) http://example.org/WMN/

base-uri($cats) http://datypic.com/cats.xml

base-uri($cats/catalogs) http://datypic.com/cats.xml

Example A-1. Using xml:base (http://datypic.com/cats.xml)

<catalogs>
 <catalog name="ACC" xml:base="http://example.org/ACC/">
 <product number="443" href="prod443.html"/>
 <product number="563" href="prod563.html"/>
 </catalog>
 <catalog name="WMN" xml:base="http://example.org/WMN/">
 <product number="557" href="prod557.html"/>
 </catalog>
</catalogs>

boolean

Appendix A: Built-in Function Reference | 327

boolean Finds the effective Boolean value

Signature
boolean($arg as item()*) as xs:boolean

Usage Notes

This function calculates the effective Boolean value of a sequence (that is, any value). For
more information, see “Effective Boolean Value” in Chapter 11.

In most cases, it is unnecessary to call this function because the effective Boolean value is
calculated automatically in many expressions, including conditional and logical expres-
sions, where clauses, and predicates.

This boolean function, which can also be written as fn:boolean, should not be confused
with the xs:boolean constructor, which casts a value to xs:boolean. In some cases, they
return different results, namely when the argument is:

• A single node that contains the value false (xs:boolean returns false because it atom-
izes the node, while fn:boolean returns true)

• The string value false (xs:boolean returns false, fn:boolean returns true)

• A zero-length string, or any string other than true, false, 0, or 1 (xs:boolean raises an
error, fn:boolean returns false if it’s a zero-length string; otherwise, true)

• A sequence of more than one node (xs:boolean raises an error, fn:boolean returns
true)

Special Cases

• If the effective Boolean value of $arg is undefined, for example because $arg is a
sequence of multiple atomic values, the error “Invalid argument type” (FORG0006) is
raised.

Examples

Example Return value

boolean(()) false

boolean("") false

boolean(0) false

boolean("0") true

boolean(false()) false

boolean("false") true

boolean(xs:float("NaN")) false

boolean((false(), false(), false())) ErrorFORG0006

boolean(doc("order.xml")/order[1]) true

boolean(doc("order.xml")/noSuchChild) false

boolean(<a>false) true

ceiling

328 | Appendix A: Built-in Function Reference

ceiling Rounds a number up to the next integer

Signature
ceiling($arg as numeric?) as numeric?

Usage Notes

This function returns the smallest integer that is not less than $arg. It returns a numeric
value of type xs:float, xs:double, xs:decimal, or xs:integer, depending on which type the
argument is derived from. If $arg is untyped, it is cast to xs:double.

Special Cases

• If $arg is the empty sequence, the function returns the empty sequence.

• If $arg is between –0.5 and –0 (inclusive), the function may return 0 or –0 (it is
implementation-dependent).

• If $arg is one of the values 0, –0, NaN, INF, or –INF, the function returns this same value.

Examples

Related Functions

floor, round, round-half-to-even

codepoint-equal Determines whether two strings contain the same code points

Signature
codepoint-equal($comparand1 as xs:string?,

$comparand2 as xs:string?) as xs:boolean?

Usage Notes

The function determines whether the two string arguments have the same Unicode code
points, in the same order. This is similar to calling the compare function with the simple
collation http://www.w3.org/2005/xpath-functions/collation/codepoint, except that the
result is a Boolean value.

Example Return value

ceiling(5) 5

ceiling(5.1) 6

ceiling(5.5) 6

ceiling(-5.5) -5

ceiling(-5.51) -5

ceiling(()) ()

collection

Appendix A: Built-in Function Reference | 329

Special Cases

• If either argument is the empty sequence, the function returns the empty sequence.

Examples

codepoints-to-string Constructs a string from Unicode code-point values

Signature
codepoints-to-string($arg as xs:integer*) as xs:string

Usage Notes

The $arg argument is a sequence of integers representing Unicode code-point values.

Special Cases

• If one or more of the $arg integers does not refer to a valid XML character, the error
“Code point not valid” (FOCH0001) is raised.

• If $arg is the empty sequence, the function returns a zero-length string.

Examples

collection Gets the nodes that make up a collection

Signature
collection($arg as xs:string?) as node()*

Usage Notes

A collection may be any sequence of nodes, identified by a URI. Often, they are sequences
of documents that are organized into collections so that they can be queried or managed
together.

Exactly how the collection URI ($arg) is associated with the nodes is defined by the imple-
mentation. Most XML database implementations allow you to define collections (and
add documents to them) using the product’s user interface or implementation-specific

Example Return value

codepoint-equal("abc", "abc") true

codepoint-equal("abc", "ab c") false

codepoint-equal("abc", ()) ()

Example Return value

codepoints-to-string((97, 32, 98, 32, 99)) a b c

codepoints-to-string(97) a

codepoints-to-string(()) A zero-length string

compare

330 | Appendix A: Built-in Function Reference

functions. Saxon, on the other hand, dereferences the URI to retrieve an XML collection
document that lists all of the documents in the collection.

If $arg is a relative URI, it is resolved based on the base URI of the static context. The base
URI of the static context may be set by the processor outside the scope of the query, or it
may be declared in the query prolog.

The collection function is stable. This means that if you call the collection function more
than once with the exact same argument, within the same query, the result is the same,
even if somehow the resources associated with the URI have changed.

Special Cases

• If $arg is not lexically a valid URI or it cannot be resolved, the error “Error retrieving
resource” (FODC0004) is raised.

• If $arg is not the URI of a collection supported by the implementation, the error
“Invalid argument to fn:collection()” (FODC0004) is raised.

• If no argument is provided, or if $arg is the empty sequence, the function returns the
default collection as defined by the implementation. If no default collection is defined,
the error “Error retrieving resource” (FODC0002) is raised.

Example

The expression collection("myXMLdocs") will return all the document nodes of the XML
documents associated with the collection myXMLdocs.

Related Functions

doc

compare Compares strings, optionally with an explicit collation

Signature
compare($comparand1 as xs:string?, $comparand2 as xs:string?,

$collation as xs:string) as xs:integer?

Usage Notes

This function returns one of the values:

• –1 if $comparand1 is less than $comparand2

• 0 if $comparand1 is equal to $comparand2

• 1 if $comparand1 is greater than $comparand2

A comparand is greater than the other comparand if it starts with the other comparand and
has additional characters. For example, abc is greater than ab.

Comparison operators (=, !=, <, <=, >, >=) can also be used to compare strings, and you may
find the syntax more convenient. However, compare is also useful if you want to take
different action in each of the three result cases. Also, if you need to use a specific collation
other than the default, you must use the compare function. More information can be found
in “Collations” in Chapter 17.

concat

Appendix A: Built-in Function Reference | 331

Special Cases

• If either comparand is the empty sequence, the function returns the empty sequence.

• If $collation is provided, the comparison uses that collation; otherwise, it uses the
default collation.

Examples

The fifth example in the table shows that when using the simple code-point collation, a
lowercase a comes after an uppercase B. If you do not want case to be taken into account
when comparing strings, convert the strings to uppercase first, as shown in the sixth
example. Alternatively, you could use a case-insensitive collation.

concat Concatenates two or more strings together

Signature
concat($arg1 as xs:anyAtomicType?,

$arg2 as xs:anyAtomicType?, ...) as xs:string

Usage Notes

The concat function requires at least two arguments (which can be the empty sequence)
and accepts an unlimited number of additional arguments. This is the only XQuery func-
tion that has a flexible number of arguments, for compatibility with XPath 1.0. The
function is also unusual in that arguments that are not of type xs:string will be cast to
xs:string.

The function does not accept a sequence of multiple values, just individual atomic values
(or nodes) passed as separate arguments. To concatenate a sequence of multiple values, use
the string-join function instead.

Special Cases

• If an argument is the empty sequence, it is treated as a zero-length string.

Examplea

a The examples in this table assume that no default collation is specified.

Return value

compare("a", "b") -1

compare("a", "a") 0

compare("b", "a") 1

compare("ab", "abc") -1

compare("a", "B") 1

compare(upper-case("a"), upper-case("B")) -1

compare("a", ()) ()

compare('Strasse', 'Straße', 'http://
datypic.com/german')

0 if the collation equates the ß character with two s’s.

compare("a", "b", "FOO") Error FOCH0002

contains

332 | Appendix A: Built-in Function Reference

Examples

Related Functions

string-join

contains Determines whether one string contains another

Signature
contains($arg1 as xs:string?, $arg2 as xs:string?,

$collation as xs:string) as xs:boolean

Usage Notes

This function returns true if $arg1 contains the characters of $arg2 anywhere in its
contents, including at the beginning or end. Note that contains does not test whether a
sequence of multiple strings contains a given value. For that, use the = operator.

Special Cases

• If $arg2 is a zero-length string or the empty sequence, the function returns true.

• If $arg1 is a zero-length string or the empty sequence, but $arg2 is not, the function
returns false.

• If $collation is provided, the comparison uses that collation; otherwise, it uses the
default collation. Collations are described in Chapter 17.

Examples

Example Return value

concat("a") Error XPST0017

concat("a", "b") ab

concat("a", "b", "c") abc

concat("a", (), "b", "", "c") abc

concat(("a", "b", "c")) Error XPST0017 (use string-join instead)

concat(doc("catalog.xml")//name) Error XPST0017 (use string-join instead)

concat("a", <x>b</x>, <x>c</x>) abc

Example Return value

contains("query", "e") true

contains("query", "ery") true

contains("query", "query") true

contains("query", "x") false

contains("query", "") true

contains("query", ()) true

current-date

Appendix A: Built-in Function Reference | 333

Related Functions

starts-with, ends-with, matches

count Counts the number of items in a sequence

Signature
count($arg as item()*) as xs:integer

Usage Notes

This function returns the number of items in a sequence as an xs:integer.

To test whether or not the number of items in a sequence is zero, use the exists or empty
function instead. Depending on your processor’s optimizer, exists($x) may be more effi-
cient than count($x) = 0.

Special Cases

• If $arg is the empty sequence, the function returns 0.

Examples

As shown in the third example, the count function can be combined with the distinct-
values function to count only distinct values.

current-date Gets the current date

Signature
current-date() as xs:date

contains((), "q") false

contains("","") true

contains("", "query") false

Example Return value

count((1, 2, 3)) 3

count(doc("order.xml")//item) 6

count(distinct-values(doc("order.xml")//item/@num)) 4

count((1, 2, 3, ())) 3

count(()) 0

Example Return value

current-dateTime

334 | Appendix A: Built-in Function Reference

Usage Notes

This function takes no parameters and returns the current date with time zone. The time
zone is implementation-dependent. To eliminate the time zone from the value, you can call
adjust-date-to-timezone with the empty sequence as the second argument, as in:

adjust-date-to-timezone(current-date(), ())

Example

current-date() might return the xs:date value 2006-04-10-05:00, which is April 10, 2006
in the –05:00 time zone.

Related Functions

current-dateTime, current-time

current-dateTime Gets the current date and time

Signature
current-dateTime() as xs:dateTime

Usage Notes

This function takes no parameters and returns the current date and time with time zone. If
the function is called multiple times within the same query, it returns the same value every
time. The time zone and the precision of the seconds part are implementation-dependent.
To eliminate the time zone from the value, you can call adjust-dateTime-to-timezone with
the empty sequence as the second argument, as in:

adjust-dateTime-to-timezone(current-dateTime(), ())

Example

current-dateTime() might return the xs:dateTime value 2006-04-10T13:40:23.83-05:00.

Related Functions

current-date, current-time

current-time Gets the current time

Signature
current-time() as xs:time

Usage Notes

This function takes no parameters and returns the current time with time zone. If the func-
tion is called multiple times within the same query, it returns the same value every time.
The time zone and the precision of the seconds part are implementation-dependent. To

data

Appendix A: Built-in Function Reference | 335

eliminate the time zone from the value, you can call adjust-time-to-timezone with the
empty sequence as the second argument, as in:

adjust-time-to-timezone(current-time(), ())

Example

current-time() might return the xs:time value 13:40:23.83-05:00.

Related Functions

current-dateTime, current-date

data Extracts the typed value of one or more items

Signature
data($arg as item()*) as xs:anyAtomicType*

Usage Notes

This function accepts a sequence of items and returns their typed values. For atomic values,
this simply means returning the value itself, unchanged. For nodes, this means extracting
the typed value of the node.

Calling this function is usually unnecessary because the typed value of a node is extracted
automatically (in a process known as atomization) for many XQuery expressions, including
comparisons, arithmetic operations, function calls, and sorting in FLWORs. The most
common use case for the data function is in element constructors. For example, the
expression:

for $prod in doc("catalog.xml")//product
return <newEl>{data($prod/name)}</newEl>

uses the data function to extract the typed value of the name element, in order to put it in
the content of newEl. If it had not used the data function, the resulting newEl elements
would each have a name child instead of just character data content.

In most cases, the typed value of an element or attribute is simply its string value, cast
to the type of the element or attribute. For example, if the number element has the type
xs:integer, the string value of the element is 784 (type xs:string), while the typed value is
784 (type xs:integer). If the number element is untyped, its typed value is 784 (type xs:
untypedAtomic).

The typed value of an element will not be the empty sequence just because the element has no
content. For example, the typed value of <name></name> is the value "" (type xs:untypedAtomic)
if name is untyped, not the empty sequence.

There are some additional subtleties for schema-validated elements that are described in
“Nodes and Typed Values” in Chapter 13.

Other kinds of nodes have typed values as well, but they are less useful; they are described
in the appropriate sections of Chapter 21.

dateTime

336 | Appendix A: Built-in Function Reference

Special Cases

• If $arg is the empty sequence, the function returns the empty sequence.

• If $arg is an element whose type has element-only content, the error “Argument node
does not have a typed value” (FOTY0012) is raised.

Examples

Table A-3 shows some examples of the data function applied to untyped nodes. They
assume that the variable $cat is bound to the document node of catalog.xml, which has not
been validated with a schema.

Now suppose you have the schema shown in Example 13-1 in Chapter 13, and catalog.xml
was validated using this schema. The typed values of the nodes would then change, as
shown in Table A-4.

Related Functions

string

dateTime Constructs a date/time value from separate date and time values

Signature
dateTime($arg1 as xs:date?, $arg2 as xs:time?) as xs:dateTime?

Table A-3. Examples of the data function on untyped nodes

Example Return value Return type

data($cat//product[1]/number) 557 xs:untypedAtomic

data($cat//number) (557, 563, 443, 784) xs:untypedAtomic*

data($cat//product[1]/@dept) WMN xs:untypedAtomic

data($cat//product[1]/
colorChoices)

navy black xs:untypedAtomic

data($cat//product[1]) 557 Fleece Pullover navy black xs:untypedAtomic

data($cat//product[4]/desc) Our favorite shirt! xs:untypedAtomic

Table A-4. Examples of the data function on typed nodes

Example Return value Return type

data($cat//product[1]/number) 557 xs:integer

data($cat//number) (557, 563, 443, 784) xs:integer*

data($cat//product[1]/@dept) WMN xs:string

data($cat//product[1]/
colorChoices)

(navy, black) xs:string*

data($cat//product[1]) Error FOTY0012 N/A

data($cat//product[4]/desc) Our favorite shirt! xs:untypedAtomic

day-from-dateTime

Appendix A: Built-in Function Reference | 337

Usage Notes

This function constructs an xs:dateTime value from an xs:date value and an xs:time value.
It should not be confused with the xs:dateTime constructor, which accepts a single argu-
ment that includes the date and time.

Time zone is taken into account when constructing the date/time. If neither the date nor
the time has a time zone, the result has no time zone. If only one of the arguments has a
time zone, or they both have the same time zone, the result has that time zone.

Special Cases

• If the two arguments have different time zones, the error “Both arguments to fn:
dateTime have a specified timezone” (FORG0008) is raised.

• If either of the two arguments is the empty sequence, the function returns the empty
sequence.

Example

dateTime(xs:date("2006-08-15"),xs:time("12:30:45-05:00")) returns the xs:dateTime value
2006-08-15T12:30:45-05:00.

day-from-date Gets the day portion of a date

Signature
day-from-date($arg as xs:date?) as xs:integer?

Usage Notes

This function returns the day portion from an xs:date value as an integer between 1 and 31
inclusive.

Special Cases

• If $arg is the empty sequence, the function returns the empty sequence.

Example

day-from-date(xs:date("2006-08-15")) returns 15.

Related Functions

day-from-dateTime

day-from-dateTime Gets the day portion of a date/time

Signature
day-from-dateTime($arg as xs:dateTime?) as xs:integer?

days-from-duration

338 | Appendix A: Built-in Function Reference

Usage Notes

This function returns the day portion from an xs:dateTime value as an integer between 1
and 31 inclusive.

Special Cases

• If $arg is the empty sequence, the function returns the empty sequence.

Example

day-from-dateTime(xs:dateTime("2006-08-15T10:30:23")) returns 15.

Related Functions

day-from-date

days-from-duration Gets the normalized number of days in a duration

Signature
days-from-duration($arg as xs:duration?) as xs:integer?

Usage Notes

This function calculates the total number of whole days in an xs:duration value. This is not
necessarily the same as the integer that appears before the D in the value. For example, if
the duration is P1DT36H, the function returns 2 rather than 1. This is because 36 hours is
equal to 1.5 days, and the normalized value is therefore P2DT12H.

The days-from-duration function does not round the number of days; if the duration is 2
days and 23 hours, it returns the integer 2.

Special Cases

• If $arg is a negative duration, the function returns a negative value.

• If $arg is the empty sequence, the function returns the empty sequence.

Examples

Example Return value

days-from-duration(xs:duration("P5D")) 5

days-from-duration(xs:duration("-PT24H")) -1

days-from-duration(xs:duration("PT23H")) 0

days-from-duration(xs:duration("P1DT36H")) 2

days-from-duration(xs:duration("PT1440M")) 1

days-from-duration(xs:duration("P1Y")) 0

deep-equal

Appendix A: Built-in Function Reference | 339

deep-equal Determines whether the values of two sequences of items are equal (contain the same data)

Signature
deep-equal($parameter1 as item()*, $parameter2 as item()*,

$collation as xs:string) as xs:boolean

Usage Notes

This function returns true if the $parameter1 and $parameter2 sequences contain the same
values, in the same order.

Atomic values are compared based on their typed values, using the eq operator. If two
atomic values cannot be compared (e.g., because one is a number and the other is a string),
the function returns false rather than raising an error.

The comparison of nodes takes into account the descendants and attributes. In order to be
considered deep-equal, two nodes must:

• Have the same qualified name.

• Have the same node kind.

• If they are elements, have the exact same attributes with the same qualified names and
the same values (possibly in a different order).

• If they are attributes or elements with simple content (no children), their typed values
must be equal. For example, 2 is considered the same as 02 if they are both typed as
integers, but not if they are both strings.

• If they are elements with children, have element children and text nodes in the same
order, that are themselves deep-equal.

• If they are document nodes, have element and text children in the same order, that are
themselves deep-equal.

• If they are processing-instruction nodes, have the same name (target) and the exact
same string value.

• If they are text or comment nodes, have the exact same string value.

The two nodes do not have to have the same type, parent, or base URI. Namespace declara-
tions are considered only to the extent that they affect element and attribute names or
values typed as QNames; “unused” namespaces are ignored.

When comparing two element or document nodes, child comments and processing instruc-
tions are ignored. However, the presence of a comment that splits a text node in two will
cause the text nodes to be unequal. Whitespace-only text nodes are considered significant.

Special Cases

• If both $parameter1 and $parameter2 are the empty sequence, the function returns true.

• If only one of $parameter1 or $parameter2 is the empty sequence, the function returns
false.

• If $collation is provided, values of type xs:string are compared using that collation;
otherwise, the default collation is used.

• In the context of this function, NaN is considered equal to itself. This is to ensure that a
node is always deep-equal to itself, even if some descendant has a typed value of NaN.

default-collation

340 | Appendix A: Built-in Function Reference

Examples

The following two product elements are considered deep-equal:

<product dept="MEN" id="P123">
 <number>784</number>
</product>
<product id="P123" dept="MEN"><!--comment-->
 <number>784</number>
</product>

The examples below assume that the variables $prod1 and $prod2 are bound to the two
product elements above.

default-collation Gets the default collation

Signature
default-collation() as xs:string

Usage Notes

This function returns the default collation that is used in most operations where a collation is
not explicitly specified. If no default collation is specified in the query prolog, the function
returns the system default collation. If no system default collation is defined, the function
returns a value representing the Unicode code-point collation, http://www.w3.org/2005/
xpath-functions/collation/codepoint. See “Collations” in Chapter 17 for more information.

Example

default-collation() might return http://datypic.com/collations/custom if that is the
name of the default collation declared in the query prolog.

distinct-values Selects distinct atomic values from a sequence

Signature
distinct-values($arg as xs:anyAtomicType*,

$collation as xs:string) as xs:anyAtomicType*

Example Return value

deep-equal(1, 1) true

deep-equal((1, 1), (1, 1)) true

deep-equal((1, 2), (1.0, 2.0)) true

deep-equal((1, 2), (2, 1)) false

deep-equal($prod1, $prod2) true

deep-equal($prod1/number, $prod2/number) true

deep-equal($prod1/node(), $prod2/node()) false because of the extra comment node

distinct-values

Appendix A: Built-in Function Reference | 341

Usage Notes

This function returns a sequence of unique atomic values from $arg. Values are compared
based on their typed value. Values of different numeric types may be equal—for example,
the xs:integer value 1 is equal to the xs:decimal value 1.0, so the function only returns one
of these values. If two values have incomparable types, e.g., xs:string and xs:integer, they
are considered distinct, and no error is raised. Untyped values are treated like strings.

The $arg sequence can contain atomic values or nodes, or a combination of the two. The
nodes in the sequence have their typed values extracted using the usual function conver-
sion rules. This means that only the contents of the nodes are compared, not any other
properties of the nodes (for example, their names or identities). To eliminate nodes by
identity instead, you can simply use the expression $seq/., which resorts the nodes and
removes duplicates.

Because XQuery does not specify which of the duplicates to exclude, there may be some
variation among implementations in the order and type of items in the result sequence.

Special Cases

• If $arg is the empty sequence, the function returns the empty sequence.

• If $arg contains more than one NaN value, only one of them is returned (even though
one NaN value is technically not equal to other NaN values).

• Dates and times with no time zone component are assumed to be in the implicit time
zone.

• If $collation is provided, values of type string are compared using that collation; oth-
erwise, it uses the default collation.

• If $arg contains an element whose schema type has element-only content, the type
error XPTY0004 is raised, because such nodes do not have typed values.

Examples

Example Return value

distinct-values(("a", "b", "a")) ("a", "b")

distinct-values((1, 2, 3)) (1, 2, 3)

distinct-values(("a", 2, 3)) ("a", 2, 3)

distinct-values((xs:integer("1"), xs:decimal("1.0"),
xs:float("1.0E0")))

(1)

distinct-values((<a>3, 5)) (3, 5)

distinct-values((<a>3, 3)) (3)

distinct-values(()) ()

doc

342 | Appendix A: Built-in Function Reference

doc Opens one input document based on its URI

Signature
doc($uri as xs:string?) as document-node()?

Usage Notes

This function returns the document node of the resource associated with the specified URI.
For example:

doc("http://datypic.com/order.xml")

returns the document node of the document whose URI is http://datypic.com/order.xml.
Relative URI references are also allowed, as in:

doc("order.xml")

If $uri is a relative URI, it is resolved based on the base URI of the static context. The base
URI of the static context may be set by the processor outside the scope of the query, typi-
cally to the URI of the file from which the query was read. Alternatively, it may be declared
in the query prolog.

If you are accessing documents on a filesystem, your implementation may require you to
precede the filename with file:///, use forward slashes to separate directory names, and/
or escape each space in the filename with %20. For example,

doc("file:///C:/Documents%20and%20Settings/my%20order.xml")

The doc function is often combined with a path expression to retrieve specific children, as in:

doc("catalog.xml")/catalog/product

Note that the doc function returns the document node, not the outermost element node.
Therefore, you need to include the outermost element node in your path (catalog in the
previous example).

Processors interpret the URI passed to the doc function in different ways. Some, like Saxon,
will dereference the URI, that is, go out to the URL and retrieve the resource at that loca-
tion. Other implementations, such as those embedded in XML databases, consider the
URIs to be just names. The processor might take the name and look it up in an internal
catalog to find the document associated with that name. Many processors provide user
hooks or configuration options allowing the behavior to be controlled by the application,
and the result may also depend on the configuration of the underlying environment (for
example, HTTP proxy settings).

Implementations also have some leeway in how they handle errors when retrieving docu-
ments, how they handle different MIME types, and whether they validate the documents
against a schema or DTD.

The doc function is stable, meaning that it returns the same results each time it is called
within a query. If you call the doc function more than once with the exact same argument,
within the same query, the result is the same, even if somehow the resource at $uri has
changed. Furthermore, the document nodes retrieved from each of these calls are identical
to each other.

doc-available

Appendix A: Built-in Function Reference | 343

The doc function should not be confused with the XSLT document
function, which is not available in XQuery. The document function has
different behavior, in that it will accept multiple URIs, allows the spec-
ification of a base URI, and has specific processing defined for handling
fragment identifiers. These effects can be achieved in XQuery by com-
bining use of doc with other functions such as resolve-uri and base-
uri or by using it in a FLWOR expression.

Special Cases

• If $uri is the empty sequence, the function returns the empty sequence.

• If $uri is not a lexically valid URI, the error “Invalid argument to fn:doc” (FODC0005) is
raised.

• If $uri refers to a resource that is not supported by the implementation, the error
“Invalid argument to fn:doc” (FODC0005) is raised.

• If the resource cannot be retrieved or parsed, for example, because it does not reference a
resource, or the resource is not well-formed XML, the behavior is implementation-
defined. It may result in the error “Error retrieving resource” (FODC0002) being raised,
or in some other error handling behavior (such as a default document being opened).

Example

doc("http://datypic.com/order.xml") returns the document node of the document associ-
ated with the URI http://datypic.com/order.xml.

Related Functions

collection, doc-available

doc-available Determines whether a document is available

Signature
doc-available($uri as xs:string?) as xs:boolean

Usage Notes

The doc-available function is a way to avoid the errors returned by the doc function if a
document is not available. This function will return true if calling the doc function on the
same URI will result in a document node. It will return false if the doc function will not
return a document node.

Special Cases

• If $uri is not a valid lexical value of xs:anyURI, the error “Invalid argument to fn:doc”
(FODC0005) is raised.

• If $arg is the empty sequence, the function returns false.

document-uri

344 | Appendix A: Built-in Function Reference

Example

This query will check if an XML document named http://datypic.com/new_order.xml is
available:

if (doc-available("http://datypic.com/new_order.xml"))
then doc("http://datypic.com/new_order.xml")
else ()

If a document is available, it will return its document node. Otherwise, it will return the
empty sequence. If the doc function had been called without verifying the existence of the
document first, an error might have been raised.

Related Functions

doc

document-uri Gets the URI of a document node

Signature
document-uri($arg as node()?) as xs:anyURI?

Usage Notes

This function is basically the inverse of the doc function. Where the doc function accepts a
URI and returns a document node, the document-uri function accepts a document node
and returns the absolute URI associated with it. The URI may represent the location from
which it was retrieved, or simply the URI that serves as its name in an XML database.

In most cases, calling this function has the same result as calling the base-uri function with
the document node.

Special Cases

• If $arg is not a document node, the function returns the empty sequence.

• If $arg does not have a document URI (for example, because it is constructed), the
function returns the empty sequence.

• If the $arg node’s document URI is a relative URI that cannot be resolved, the func-
tion returns the empty sequence.

• If $arg is the empty sequence, the function returns the empty sequence.

Example

If the variable $orderDoc is bound to the result of doc("http://datypic.com/order.xml"),
then document-uri($orderDoc) returns "http://datypic.com/order.xml".

Related Functions

doc, base-uri

encode-for-uri

Appendix A: Built-in Function Reference | 345

empty Determines whether a sequence is empty

Signature
empty($arg as item()*) as xs:boolean

Usage Notes

A sequence is empty if it contains zero items. A sequence is not considered empty just
because it only contains a zero-length string, the value 0, or an element with empty content.
To test whether an element has empty content, use the expression:

string($node1) = ""

It is often unnecessary to call the empty function because sequences are automatically
converted to their effective Boolean value where a Boolean value is expected. For example,
if you want to test whether there are any item children of items, you can use the if clause:

if not($input//catalog/product) then

In this case, the sequence of selected item elements is converted to the Boolean value true if
the sequence is not empty, and false if the sequence is empty. There is no need to call the
empty function to determine this. But beware: this only works for node sequences, not for
atomic values.

Examples

Related Functions

exists, boolean

encode-for-uri Applies URI escaping rules to a string that is to be used as a path segment of a URI

Signature
encode-for-uri($uri-part as xs:string?) as xs:string

Usage Notes

URIs require that some characters be escaped with their hexadecimal Unicode code point
preceded by the % character. This includes non-ASCII characters and some ASCII charac-
ters, namely control characters, spaces, and several others.

Example Return value

empty(("a", "b", "c")) false

empty(()) true

empty(0) false

empty(<desc/>) false

empty(<desc></desc>) false

empty(doc("order.xml")/order) false

empty(doc("order.xml")/foo) true

ends-with

346 | Appendix A: Built-in Function Reference

In addition, certain characters in URIs are separators that are intended to delimit parts of
URIs, namely the characters ; , / ? : @ & = + $ [] %. If the intended use of a string is as a
segment of a URI path, where such separators have special meaning, the encode-for-uri
function allows you to escape these separator characters, while also escaping the other
necessary special characters.

Like the escape-html-uri and iri-to-uri functions, the encode-for-uri function replaces
each special character with an escape sequence in the form %xx (possible repeating), where
xx is two hexadecimal digits (in uppercase) that represent the character in UTF-8. For
example, édition.html is changed to %C3%A9dition.html, with the é escaped as %C3%A9.

The encode-for-URI function is the most aggressive of the three encoding functions. All
characters except the following are escaped:

• Letters a through z and A through Z

• Digits 0 through 9

• Hyphen (-), underscore (_), period (.), and tilde (~)

Because the function escapes delimiter characters, it’s unsuitable for escaping a complete
URI. Instead, it’s useful for escaping strings before they are assembled into a URI—for
example, the values of query parameters.

Special Cases

• If $uri-part is the empty sequence, the function returns a zero-length string.

Examples

The first example below shows a typical use case, where a filename contains the separator
% character and some spaces that need to be escaped. The second example shows the
escaping of an entire URL using this function, which can have undesired results. The
escape-html-uri function would have been a better choice.

Related Functions

escape-html-uri, iri-to-uri

ends-with Determines whether one string ends with another

Signature
ends-with($arg1 as xs:string?, $arg2 as xs:string?,

$collation as xs:string) as xs:boolean

Example Return value

encode-for-uri("Sales % Numbers.pdf") Sales%20%25%20Numbers.pdf

encode-for-uri("http://datypic.com/a%20URI#frag") http%3A%2F%2Fdatypic.
com%2Fa%2520URI%23frag

error

Appendix A: Built-in Function Reference | 347

Usage Notes

This function returns an xs:boolean value indicating whether one string ($arg1) ends with
the characters of a second string ($arg2). Trailing whitespace is significant, so you may
want to use the normalize-space function to trim the strings before using this function.

Special Cases

• If $arg2 is a zero-length string or the empty sequence, the function returns true.

• If $arg1 is a zero-length string or the empty sequence, but $arg2 is not, the function
returns false.

• If $collation is provided, the comparison uses that collation; otherwise, it uses the
default collation.

Examples

Related Functions

starts-with, contains, matches

error Explicitly raise an error

Signature
error($error as xs:QName?, $description as xs:string,

$error-object as item()*) as none

Usage Notes

This function allows you to stop execution of the query, with a specific error message. This
is useful if an unexpected or invalid condition exists, such as a missing or invalid data item.
You can incorporate calls to the error function in your query to signal such problems to
the query user. For example:

if (not ($product/number))
then error(QName("http://datypic.com/err", "ProdNumReq"),
 "Missing product number.")
else $product/number

results in a ProdNumReq error if $product has no number child.

How a processor will use the optional $description and $error-object arguments is imple-
mentation-dependent. Most processors will report the $description as part of the error
message to the user.

Example Return value

ends-with("query", "y") true

ends-with("query", "query") true

ends-with("query", "") true

ends-with("query ", "y") false

ends-with("", "y") false

escape-html-uri

348 | Appendix A: Built-in Function Reference

Some processors may report the error name as a URI, where the local part is a fragment
identifier, as in http://datypic.com/err#ProdNumReq.

The error function is the same function that the processor calls implicitly whenever there is
an error during query evaluation. The return type of none is only used for the error func-
tion and is not available to query authors. It simply means that the error function never
returns any value; evaluation of the query stops once the error function is called.

Remember that order of execution in XQuery is undefined. You can’t always rely on the
fact that your error test will be evaluated before some other expression that it is designed to
guard. In fact, you can’t always rely on the error expression being evaluated at all if, for
example, it appears as part of a larger expression (perhaps a variable assignment) whose
result is never used. However, simple cases such as if ($condition) then $value else error()
should be safe.

Special Cases

• If no $error argument is provided, the error name defaults to FOER0000 (“Unidentified
error”), in the http://www.w3.org/2005/xqt-errors namespace.

Examples

Related Functions

trace

escape-html-uri Escapes all non-ASCII characters in a string

Signature
escape-html-uri($uri as xs:string?) as xs:string

Usage Notes

HTML agents require that some URI characters be escaped with their hexadecimal
Unicode code point preceded by the % character. This includes non-ASCII characters and
some ASCII characters, namely control characters, spaces, and several others.

The escape-html-uri function replaces each of these special characters with an escape
sequence in the form %xx (possible repeating), where xx is two hexadecimal digits (in upper-
case) that represent the character in UTF-8. For example, édition.html is changed to
%C3%A9dition.html, with the é escaped as %C3%A9. Specifically, it escapes everything except

Example

error()

error (xs:QName("dty:ProdNumReq"))a

a Assumes the dty prefix has been declared

error(QName("http://datypic.com/err", "ProdNumReq"), "Missing number.")

error(QName("http://datypic.com/err", "ProdNumReq"), "Missing number.", $prod)

exactly-one

Appendix A: Built-in Function Reference | 349

those ASCII characters whose decimal code point is between 32 and 126 inclusive. This
allows these URIs to be appropriately handled by HTML agents such as web browsers, for
example in HTML href attributes.

The way this function is specified is a pragmatic compromise. HTTP requires special char-
acters such as spaces to be escaped. However, HTML documents often contain URIs
designed for local use within the browser—for example, JavaScript function calls—and
these local URIs (which are never sent over HTTP) will often fail if spaces and other ASCII
characters are escaped. This function therefore only escapes non-ASCII characters.

Special Cases

• If $uri is the empty sequence, the function returns a zero-length string.

Examples

Related Functions

encode-for-uri, iri-to-uri

exactly-one Verifies that a sequence contains exactly one item

Signature
exactly-one($arg as item()*) as item()

Usage Notes

If $arg contains one item, $arg is returned. Otherwise, the error “fn:exactly-one called
with a sequence containing zero or more than one item” (FORG0005) is raised.

This function is useful when static typing is in effect, to avoid apparent static type errors.
For example, to use a computed element constructor, you might be tempted to write the
expression:

element {node-name($prod)} { 563 }

However, if static typing is used, this expression causes a static error. This is because the
node-name function returns 0 or 1 xs:QName values, while the computed element constructor
requires that one and only one xs:QName value be provided. A static error can be avoided by
using the expression:

element {exactly-one(node-name($prod))} { 563 }

In this case, no static error is raised. Rather, a dynamic error is raised if node-name returns
the empty sequence. For more information on static typing, see Chapter 14.

Example Return value

escape-html-uri ("http://datypic.com/") http://datypic.com/

escape-html-uri("édition.html") %C3%A9dition.html

escape-html-uri ("/datypic.com/a URI#frag") /datypic.com/a URI#frag

exists

350 | Appendix A: Built-in Function Reference

If static typing is NOT in effect, calling exactly-one is not usually necessary, but it does no
harm. The effect is usually to make explicit a runtime type check that would otherwise
have been done automatically.

Examples

Related Functions

one-or-more, zero-or-one

exists Determines whether a sequence is not empty

Signature
exists($arg as item()*) as xs:boolean

Usage Notes

This function returns true if the sequence contains one or more items; it is the opposite of
the empty function. It is often unnecessary to call the exists function because sequences are
automatically converted to the effective Boolean value where a Boolean value is expected.
For example, if you want to test whether there are any product elements in catalog.xml,
you can use the if clause:

if (doc("catalog.xml")//product) then

In this case, the sequence of selected product elements is converted to the Boolean value
true if the sequence is not empty, and false if the sequence is empty. There is no need to
call the exists function to determine this. But beware: this only works for node sequences,
not for atomic values.

Examples

Related Functions

empty, one-or-more

Example Return value

exactly-one(()) Error FORG0005

exactly-one("a") a

exactly-one(("a", "b")) Error FORG0005

Example Return value

exists(("a", "b", "c")) true

exists("") true

exists(()) false

exists(false()) true

floor

Appendix A: Built-in Function Reference | 351

false Constructs a Boolean false value

Signature
false() as xs:boolean

Usage Notes

This function, which takes no arguments, is useful for constructing the Boolean value
false. XQuery uses the false() and true() functions instead of keywords false and true.
This is most commonly used to supply a value in a function call where a Boolean value is
required.

Example

The expression false() returns the xs:boolean value false.

Related Functions

true

floor Rounds a number down to the next lowest integer

Signature
floor($arg as numeric?) as numeric?

Usage Notes

This function returns the largest integer that is not greater than $arg. It returns a numeric
value of type xs:float, xs:double, xs:decimal, or xs:integer, depending on which type the
argument is derived from. If $arg is untyped, it is cast to xs:double.

Special Cases

• If $arg is the empty sequence, the function returns the empty sequence.

• If $arg is one of the values 0, –0, NaN, INF, or –INF, the function returns this same value.

Examples

Example Return value

floor(5) 5

floor(5.1) 5

floor(5.7) 5

floor(-5.1) -6

floor(-5.7) -6

floor(()) ()

hours-from-dateTime

352 | Appendix A: Built-in Function Reference

Related Functions

ceiling, round, round-half-to-even

hours-from-dateTime Gets the hour portion of a date/time

Signature
hours-from-dateTime($arg as xs:dateTime?) as xs:integer?

Usage Notes

This function returns the hour portion of an xs:dateTime value, as an integer between 0 and
23 inclusive.

Special Cases

• If $arg is the empty sequence, the function returns the empty sequence.

• If the time portion of $arg is 24:00:00, the function will return 0.

Examples

Related Functions

hours-from-time

hours-from-duration Gets the normalized number of hours in a duration

Signature
hours-from-duration($arg as xs:duration?) as xs:integer?

Usage Notes

This function calculates the hours component of a normalized xs:duration value, as an
integer between –23 and 23 (inclusive). This is not necessarily the same as the integer that
appears before the H in the value. For example, if the duration is PT1H90M, the function
returns 2 rather than 1. This is because 90 minutes is equal to 1.5 hours, and the normal-
ized value is therefore PT2H30M. Likewise, if the duration is PT36H, the result is 12, because
the normalized value is P1DT12H.

Special Cases

• If $arg is a negative duration, the function returns a negative value.

• If $arg is the empty sequence, the function returns the empty sequence.

Example Return value

hours-from-dateTime(xs:dateTime("2006-08-15T10:30:23")) 10

hours-from-dateTime(xs:dateTime("2006-08-15T10:30:23-05:00")) 10

id

Appendix A: Built-in Function Reference | 353

Examples

hours-from-time Gets the hour portion of a time

Signature
hours-from-time($arg as xs:time?) as xs:integer?

Usage Notes

This function returns the hour portion of an xs:time value, as an integer between 0 and 23
inclusive.

Special Cases

• If $arg is the empty sequence, the function returns the empty sequence.

• If $arg is 24:00:00, the function returns 0.

Examples

Related Functions

hours-from-dateTime

id Returns elements by their IDs

Signature
id($arg as xs:string*, $node as node()) as element()*

Usage Notes

Given a sequence of IDs, this function returns the elements with those IDs. If $node is not
provided, the function looks for elements in the same document as the current context
item. If $node is provided, the function looks for elements in the same document as $node.

Example Return value

hours-from-duration(xs:duration("P1DT5H")) 5

hours-from-duration(xs:duration("-PT36H")) -12

hours-from-duration(xs:duration("PT1H90M")) 2

hours-from-duration(xs:duration("PT2H59M")) 2

hours-from-duration(xs:duration("PT3600S")) 1

hours-from-duration(xs:duration("P1Y")) 0

Example Return value

hours-from-time(xs:time("10:30:23")) 10

hours-from-time(xs:time("10:30:23-05:00")) 10

id

354 | Appendix A: Built-in Function Reference

The strings in the $arg sequence can either be individual ID values or space-separated lists
of ID values. Although $arg is a sequence of xs:string values, you can also pass values of
type xs:IDREF or xs:IDREFS, since these types are derived from xs:string.

An element is considered to have a particular ID if either:

• It has an attribute, that is marked as an ID, that has that ID value.

• The type of the element itself is marked as an ID and its content is that particular ID
value.

An element or attribute node can become “marked as an ID” by being validated by a schema
where it is declared as having type xs:ID, or (for an attribute) being described in a DTD as
being of type ID. Also, if it’s name is xml:id, it is automatically considered to be an ID.

The default collation is not used to match ID values; a simple comparison of Unicode code
points is used.

The function returns the nodes in document order, not the order designated by the
sequence of $arg values. The result sequence contains no duplicate elements, even if an ID
value was included twice in $arg.

Working with IDs and IDREFs is discussed in further detail in “Working with IDs” in
Chapter 20.

Special Cases

• Any values in $arg that are not lexically valid IDs (i.e., XML NCNames) are ignored,
even if there is an element with that invalid ID.

• If there is no element with the specified ID, an error is not raised, but no element is
returned for that ID value.

• In the case of an invalid (but well-formed) document where more than one element
has the same ID, the function returns the first element with that ID.

• If $arg is the empty sequence, the function returns the empty sequence.

• If no matching elements were found, the function returns the empty sequence.

• The error “No context document” (FODC0001) is raised if:

— $node is not part of a document (its root is not a document node).

— $node is not provided and the context node is not part of a document.

• If $node is not provided and no context item is defined, the error XPDY0002 is raised.

• If $node is not provided and the context item is an atomic value rather than a node, the
error XPTY0004 is raised.

Examples

These examples use the input document book.xml shown in Example A-2. It is assumed
that the input document has been validated and that the type of the id attribute is xs:ID.

Example Return value

doc("book.xml")/id("preface") The first section element

doc("book.xml")/id(("context", "preface")) The first two section elements, in document order

doc("book.xml")/id("context preface") The first two section elements, in document order

idref

Appendix A: Built-in Function Reference | 355

Related Functions

idref

idref Finds references to a specified set of IDs

Signature
idref($arg as xs:string*, $node as node()) as node()*

Usage Notes

This function returns the nodes (elements or attributes) that reference one of a specified
sequence of IDs. If $node is not provided, the function looks for elements and attributes in
the same document as the current context item. If $node is provided, the function looks for
elements and attributes in the same document as $node.

In order to be considered to reference an ID, the node must be marked as an IDREF or
IDREFS type, and it must contain that ID value. Generally, this means that it was declared
to be of type xs:IDREF or xs:IDREFS in an in-scope schema definition (or the equivalent in a
DTD). If it is an IDREFS value, only one of the values in the list need match the ID. The
default collation is not used to match ID values; a simple comparison of Unicode code
points is used.

The function returns the nodes in document order, not the order designated by the
sequence of $arg values. The result sequence contains no duplicate elements, even if an ID
value was included twice in $arg. However, there may be several elements or attributes in
the results that reference the same ID.

doc("book.xml")//section[3]/secRef/id(@refs) The second section element

doc("book.xml")//section[4]/secRef/id(@refs) The second and third section elements

doc("book.xml")//secRef/id(@refs) The second and third section elements

doc("book.xml")/
id(("preface", "noMatch", "in!valid"))

The first section element

Example A-2. XML document with IDs and IDREFs (book.xml)

<book>
 <section id="preface">This book introduces XQuery...
 The examples are downloadable<fnref ref="fn1"/>...
 </section>
 <section id="context">...</section>
 <section id="language">...Expressions, introduced
 in <secRef refs="context"/>, are...
 </section>
 <section id="types">...As described in
 <secRef refs="context language"/>, you can...
 </section>
 <fn fnid="fn1">See http://datypic.com.</fn>
</book>

Example Return value

implicit-timezone

356 | Appendix A: Built-in Function Reference

Note that if the IDREF value is contained in an attribute, the function returns the attribute
node, not the containing element. This is designed to handle cases where an element has
more than one IDREF attribute and you need to know which one matched.

Special Cases

• Any values in $arg that are not lexically valid IDs (i.e., XML NCNames) are ignored,
even if there is an element with a matching invalid IDREF.

• If $arg is the empty sequence, the function returns the empty sequence.

• If no matching nodes were found, the function returns the empty sequence.

• If $node is not part of a document (its root is not a document node), or if $node is not
provided and the context node is not part of a document, the error “No context docu-
ment” (FODC0001) is raised.

• If $node is not provided and no context item is defined, the error XPDY0002 is raised.

• If $node is not provided and the context item is an atomic value rather than a node, the
error XPTY0004 is raised.

Working with IDs and IDREFs is discussed in further detail in “Working with IDs” in
Chapter 20.

Examples

These examples use the input document book.xml shown in Example A-2. It is assumed that
the input document has been validated, that the type of the id and fnid attributes is xs:ID,
the type of the ref attribute is xs:IDREF, and the type of the refs attribute is xs:IDREFS.

Related Functions

id

implicit-timezone Gets the implicit time zone used by the processor

Signature
implicit-timezone() as xs:dayTimeDuration

Example Return value

doc("book.xml")/idref("language") The refs attribute of the second secRef element

doc("book.xml")/idref("context") The refs attributes of both secRef elements

doc("book.xml")/idref(("context", "language")) The refs attributes of both secRef elements

doc("book.xml")//fn[1]/idref(@fnid) The ref attribute of the fnRef element

doc("book.xml")/idref(("language", "noMatch",
"in!valid"))

The refs attribute of the second secRef element

in-scope-prefixes

Appendix A: Built-in Function Reference | 357

Usage Notes

This function returns the implicit time zone as an xs:dayTimeDuration value. The implicit
time zone is used in comparisons and calculations involving date and time values that do
not have explicitly defined time zones.

The implicit time zone is implementation-defined. In practice it will often default to the
time zone used by the system clock in the operating system, or perhaps it will depend on
the locale of the individual user.

Example

implicit-timezone() returns –PT5H if the implicit time zone is UTC minus five hours (also
represented as –05:00).

in-scope-prefixes Gets a list of all namespace prefixes that are in the scope of a specified element

Signature
in-scope-prefixes($element as element()) as xs:string*

Usage Notes

This function returns a sequence of prefixes (as strings) that are used in the in-scope
namespaces for the $element element. The results include a zero-length string if there is a
default namespace declaration. It also always includes the xml prefix, which is built into the
XML recommendation.

Note that the function uses in-scope namespaces, as opposed to statically known namespaces.
That is, it returns information about the namespaces declared in the source document, not
the namespaces declared in the query. The difference between in-scope and statically
known namespaces is described further in “In-Scope Versus Statically Known Namespaces”
in Chapter 10. More on working with namespaces and qualified names can be found in
“Working with Qualified Names” in Chapter 20.

Example

The query:

in-scope-prefixes(<prefList xmlns="http://datypic.com/prod"
 xmlns:prod2="http://datypic.com/prod2">xyz</prefList>)

returns the sequence ("", "prod2", "xml") in some arbitrary order.

Related Functions

namespace-uri-for-prefix

index-of

358 | Appendix A: Built-in Function Reference

index-of Determines where (and whether) an atomic value appears in a sequence

Signature
index-of($seqParam as xs:anyAtomicType*, $srchParam as xs:anyAtomicType,

$collation as xs:string) as xs:integer*

Usage Notes

The $seqParam argument is the sequence to be searched, while $srchParam is the value to
search for. This function returns a sequence of integers representing the position(s) of the
value within the sequence, in order, starting with 1 (not 0).

The items in $seqParam are compared to those in $srchParam by their typed value, not their
name or node identity. If either sequence contains nodes, those nodes are atomized to
extract their atomic values. Untyped values are treated like strings.

Special Cases

• If $srchParam cannot be compared with a value in $seqParam, for example because
$srchParam is a string and $seqParam contains an integer, it will not match that value,
but it will not raise an error.

• If the $srchParam value does not appear in $seqParam, the function returns the empty
sequence.

• If $seqParam is the empty sequence, the function returns the empty sequence.

• If $collation is provided, values of type xs:string are compared using that collation;
otherwise, the default collation is used.

Examples

Related Functions

position

insert-before Inserts items into a sequence

Signature
insert-before($target as item()*, $position as xs:integer,

$inserts as item()*) as item()*

Example Return value

index-of(("a", "b", "c"), "a") 1

index-of(("a", "b", "c"), "d") ()

index-of((4, 5, 6, 4), 4) (1, 4)

index-of((4, 5, 6, 4), 04.0) (1, 4)

index-of(("a", 5, 6), "a") 1

index-of((), "a") ()

index-of((<a>1, 1), <c>1</c>) (1, 2)

iri-to-uri

Appendix A: Built-in Function Reference | 359

Usage Notes

This function returns a copy of the $target sequence with the item(s) in $inserts inserted
at the position indicated by $position. Position numbers start at 1, not 0.

Special Cases

• If $inserts is the empty sequence, the function returns the $target sequence.

• If $target is the empty sequence, the function returns the $inserts sequence.

• If $position is greater than the number of items in $target, the $inserts items are
appended to the end.

• If $position is less than 1, the $inserts items are inserted at the beginning.

Examples

Related Functions

remove

iri-to-uri Applies URI escaping rules to a string

Signature
iri-to-uri($uri-part as xs:string?) as xs:string

Usage Notes

URIs require that some characters be escaped with their hexadecimal Unicode code point
preceded by the % character. This includes non-ASCII characters and some ASCII charac-
ters, namely control characters, spaces, and several others.

The iri-to-uri function replaces each special character with an escape sequence in the
form %xx (possible repeating), where xx is two hexadecimal digits (in uppercase) that repre-
sent the character in UTF-8. For example, édition.html is changed to %C3%A9dition.html,
with the é escaped as %C3%A9.

All characters except the following are escaped:

• Letters a through z and A through Z

• Digits 0 through 9

Example Return value

insert-before(("a", "b", "c"), 1, ("x", "y")) ("x", "y", "a", "b", "c")

insert-before(("a", "b", "c"), 2, ("x", "y")) ("a", "x", "y", "b", "c")

insert-before(("a", "b", "c"), 10, ("x", "y")) ("a", "b", "c", "x", "y")

insert-before(("a", "b", "c"), 0, ("x", "y")) ("x", "y", "a", "b", "c")

insert-before(("a", "b", "c"), 2, ()) ("a", "b", "c")

insert-before((), 3, ("a", "b", "c")) ("a", "b", "c")

lang

360 | Appendix A: Built-in Function Reference

• Hyphen (-), underscore (_), period (.), exclamation point (!), tilde (~), asterisk (*),
apostrophe ('), parentheses (“(” and “)”), and hash mark (#)

• Semicolon (;), forward slash (/), question mark (?), colon (:), at sign (@), ampersand
(&), equals sign (=), plus sign (+), dollar sign ($), comma (,), square brackets ([and]),
and percent sign (%)

The last set of characters specified in the preceding list is generally used to delimit parts of
URIs. If you are escaping a single step of a URI path (as opposed to an entire URI), it is
better to use the encode-for-uri function, which does escape these characters.

Special Cases

• If $uri-part is the empty sequence, the function returns a zero-length string.

Examples

Related Functions

encode-for-uri, escape-html-uri

lang Tests whether the language of a node matches a specified language

Signature
lang($testlang as xs:string?, $node as node()) as xs:boolean

Usage Notes

The language of a node is determined by the existence of an xml:lang attribute on the node
itself or among its ancestors. The lang function can be used on any node, not just one
containing string values. It is often used in the predicates of path expressions to filter data
for a particular language.

The $testlang argument specifies the language to test. The function returns true if the rele-
vant xml:lang attribute of the $node has a value that matches the $testlang value. The
function returns false if the relevant xml:lang attribute does not match $testlang, or if
there is no relevant xml:lang attribute.

The relevant xml:lang attribute is the one that appears as an attribute of the context node
itself, or of one of its ancestors. If more than one xml:lang attribute can be found among
the node and its ancestors, the nearest one applies.

Example Return value

iri-to-uri ("http://datypic.com/édition
2.html")

http://datypic.com/%C3%A9dition%202.html

iri-to-uri ("http://datypic.com/Sales
Numbers.pdf")

http://datypic.com/Sales%20Numbers.pdf

iri-to-uri ("http://datypic.com/Sales %
Numbers.pdf")

http://datypic.com/Sales%20%%20Numbers.pdf

last

Appendix A: Built-in Function Reference | 361

The matching process is case-insensitive. If $testlang is en, it matches the xml:lang value
EN, and vice versa. Also, the value of the xml:lang attribute can be a sublanguage of the
$testlang value. For example, en-US, en-UK, and en-US-UK are all sublanguages of en. There-
fore, if $testlang is en, and xml:lang is en-US, the node will be matched. This does not work
in reverse; if $testlang is en-US, and xml:lang is en, it will not match.

More information on the format of languages can be found with the description of the
xs:language type in Appendix B.

Special Cases

• If $testlang is the empty sequence, it is treated like a zero-length string.

• If $node is not provided, the context item is used.

• If no xml:lang attributes exist on the ancestors of a node, the function will return
false.

• If $node is not provided, and the context item is undefined, the error XPDY0002 is raised.

• If $node is not provided, and the context item is not a node, the error XPTY0004 is
raised.

Examples

These examples make use of the input document shown in Example A-3.

last Gets the number of items in the current context

Signature
last() as xs:integer

Example Return value

doc("descs.xml")//desc[lang("en")] The first desc element

doc("descs.xml")//desc[lang("en-US")] The first desc element

doc("descs.xml")//desc[lang("fr")] The second desc element

doc("descs.xml")//desc/line[lang("en")] The first line element

doc("descs.xml")/desclist[lang("en-US")] ()

doc("descs.xml")//desc[lang("FR")] The second desc element

Example A-3. Document with xml:lang attributes specified (descs.xml)

<desclist xml:lang="en">
 <desc xml:lang="en-US">
 <line>The first line of the description.</line>
 </desc>
 <desc xml:lang="fr">
 <line>La première ligne de la déscription.</line>
 </desc>
</desclist>

local-name

362 | Appendix A: Built-in Function Reference

Usage Notes

The last function returns an integer representing the number of items in the current
context. It is most often used in the predicate of path expressions, to retrieve the last item.
For example, catalog/product[last()] returns the last product child of catalog. That is
because the last function returns 4, which serves as a positional predicate to retrieve the
fourth product. The last function is also useful for testing whether an item is the last one in
the sequence.

Special Cases

• If the context item is undefined, the error XPDY0002 is raised.

Examples

doc("catalog.xml")/catalog/product[last()] returns the last product child of catalog.
Example A-4 demonstrates how you might test whether an item is the last one in the
sequence. It shows a query that returns a list of all the product numbers, separated by
commas. However, after the last product number, it includes a period rather than a
comma. It uses the last function and an is expression to compare each product element to
the last one in the catalog.

Related Functions

position

local-name Gets the local part of a node name, as a string

Signature
local-name($arg as node()?) as xs:string

Usage Notes

This function is useful only for element, attribute, and processing instruction nodes. For an
element or attribute, this is simply its name, stripped of any prefix it might have.

To find elements with a particular local name, instead of writing a/*[local-name()='nnn'],
you can write a/*:nnn. However, the predicate test is useful if the name you are looking for
is variable.

Example A-4. Example of the last function

Query
let $catalog := doc("catalog.xml")/catalog
for $prod in $catalog/product
return concat($prod/number,
 (if ($prod is $catalog/product[last()]) then (".") else (", ")))
Results
557, 563, 443, 784.

local-name-from-QName

Appendix A: Built-in Function Reference | 363

Special Cases

• If $arg is not provided, the context node is used.

• The function returns a zero-length string if:

— $arg is the empty sequence.

— $arg is a node that does not have a name (i.e., a comment, document, or text
node).

• If $arg is a processing instruction node, the function returns its target.

• If $arg is not provided, and the context item is undefined, the error XPDY0002 is raised.

• If $arg is not provided, and the context item is not a node, the error XPTY0004 is raised.

Examples

These examples use the input document names.xml shown in Example A-5. They also
assume that the prefixes pre and unpre have been mapped to the namespaces http://
datypic.com/pre and http://datypic.com/unpre, respectively, in the query prolog.

Related Functions

name, node-name, namespace-uri

local-name-from-QName Gets the local part of a QName

Signature
local-name-from-QName($arg as xs:QName?) as xs:NCName?

Usage Notes

This function returns the local part of an xs:QName. If you want to retrieve the local part of
an element or attribute name, you should consider using the local-name function instead; it
requires one less step.

Example Return value

local-name(doc("names.xml")//noNamespace) noNamespace

local-name(doc("names.xml")//pre:prefixed) prefixed

local-name(doc("names.xml")//unpre:unprefixed) unprefixed

local-name(doc("names.xml")//@pre:prefAttr) prefAttr

local-name(doc("names.xml")//@noNSAttr) noNSAttr

Example A-5. Namespaces in XML (names.xml)

<noNamespace>
 <pre:prefixed xmlns="http://datypic.com/unpre"
 xmlns:pre="http://datypic.com/pre">
 <unprefixed pre:prefAttr="a" noNSAttr="b">123</unprefixed>
 </pre:prefixed>
</noNamespace>

lower-case

364 | Appendix A: Built-in Function Reference

Special Cases

• If $arg is the empty sequence, the function returns the empty sequence.

Examples

Related Functions

local-name, namespace-uri-from-QName, resolve-QName, QName

lower-case Converts a string to lowercase

Signature
lower-case($arg as xs:string?) as xs:string

Usage Notes

The mappings between lowercase and uppercase characters are determined by Unicode
case mappings. If a character in $arg does not have a corresponding lowercase character, it
is included in the result string unchanged.

For English, you can do a case-blind comparison by writing lower-case($A)=lower-
case($B) (or use upper-case instead). However this doesn’t always work well for other
languages. It’s better to use a case-insensitive collation.

Special Cases

• If $arg is the empty sequence, the function returns a zero-length string.

Examples

Related Functions

upper-case

Example Return value

local-name-from-QName(QName("http://datypic.com/prod", "number")) number

local-name-from-QName(QName ("", "number")) number

local-name-from-QName(()) ()

Example Return value

lower-case("QUERY") query

lower-case("Query") query

lower-case("QUERY123") query123

matches

Appendix A: Built-in Function Reference | 365

matches Determines whether a string matches a particular pattern

Signature
matches($input as xs:string?, $pattern as xs:string,

$flags as xs:string) as xs:boolean

Usage Notes

The $pattern argument is a regular expression, whose syntax is covered in Chapter 18.
Unlike many of the string-related functions, the matches function does not use collations at
all. Regular expression matching is solely based on Unicode code points. Unless the
anchors ^ or $ are used, the function returns true if any substring of $input matches the
regular expression.

The $flags parameter allows for additional options in the interpretation of the regular
expression. It is discussed in detail in “Using Flags” in Chapter 18.

Special Cases

• If $input is the empty sequence, it is treated like a zero-length string.

• If $pattern is a zero-length string, the function will return true.

• If $pattern is not a valid regular expression, the error “Invalid regular expression”
(FORX0002) is raised.

• If $flags contains unsupported options, the error “Invalid regular expression flags”
(FORX0001) is raised.

Examples

The additional examples shown in the following table use the $flags argument. They
assume that the variable $address is bound to the following string (the line break is
significant):

123 Main Street
Traverse City, MI 49684

Example Return value

matches("query", "q") true

matches("query", "ue") true

matches("query", "^qu") true

matches("query", "qu$") false

matches("query", "[ux]") true

matches("query", "q.*") true

matches("query", "[a-z]{5}") true

matches((), "q") false

matches("query", "[qu") Error FORX0002

max

366 | Appendix A: Built-in Function Reference

Related Functions

contains

max Returns the maximum of the values in a sequence

Signature
max($arg as xs:anyAtomicType*, $collation as xs:string) as xs:anyAtomicType?

Usage Notes

The $arg sequence can only contain values of one type, or of types derived from it. The one
exception is that they can be all numeric (of different numeric types), in which case
numeric promotion rules apply. That type must be ordered; it must be possible to compare
the values using the < and > operators.

This function assumes untyped values are numeric unless they are explicitly cast to xs:string.
To treat untyped data as strings, use the string function as shown in the last example.

The max function returns an atomic value, not the node that contains that value. For
example, the expression:

max(doc("catalog.xml")//number)

will return the number 784, not the number element that contains 784.

Special Cases

• If $arg is the empty sequence, the function returns the empty sequence.

• If $arg contains the value NaN, the function returns NaN.

• If $arg contains untyped values that cannot be cast to xs:double, the error “Invalid
value for cast/constructor” (FORG0001) is raised.

• If $arg contains values of a type that does not support the < and > operators, the error
“Invalid argument type” (FORG0006) is raised.

Example Return value

matches($address, "Street.*City") false

matches($address, "Street.*City", "s") true

matches($address, "Street$") false

matches($address, "Street$", "m") true

matches($address, "street") false

matches($address, "street", "i") true

matches($address, "Main Street") true

matches($address, "Main Street", "x") false

matches($address, "Main \s Street", "x") true

matches($address, "street$", "im") true

matches($address, "Street$", "q") Error FORX0001

min

Appendix A: Built-in Function Reference | 367

• If $arg contains values of various types, the error “Invalid argument type” (FORG0006) is
raised.

• If $arg contains a date or time with no time zone, it is given the implicit time zone.

• If $collation is provided, values of type xs:string are compared using that collation;
otherwise, the default collation is used.

Examples

Related Functions

min

min Returns the minimum of the values in a sequence

Signature
min($arg as xs:anyAtomicType*, $collation as xs:string) as xs:anyAtomicType?

Usage Notes

The $arg sequence can only contain values of one type, or a type derived from it. The one
exception is that they can be all numeric, in which case numeric promotion rules apply.
That type must be ordered; it must be possible to compare the values using the < and >
operators.

This function assumes untyped values are numeric unless they are explicitly cast to xs:
string. To treat untyped data as strings, use the string function as shown in the last
example.

The min function returns an atomic value, not the node that contains that value. For
example, the expression:

min(doc("catalog.xml")//number)

will return the number 443, not the number element that contains 443.

Special Cases

• If $arg is the empty sequence, the function returns the empty sequence.

• If $arg contains untyped values that cannot be cast to xs:double, the error “Invalid
value for cast/constructor” (FORG0001) is raised.

Example Return value

max((2, 1, 5, 4, 3)) 5

max(("a", "b", "c")) c

max((xs:date("1999-04-15"), current-date())) The current date

max(("a", "b", 1)) Error FORG0006

max(2) 2

max(doc("order.xml")//item/@dept) Type error, if dept is untyped

max(doc("order.xml")//item/string(@dept)) WMN

minutes-from-dateTime

368 | Appendix A: Built-in Function Reference

• If $arg contains values of a type that does not support the < and > operators, the error
“Invalid argument type” (FORG0006) is raised.

• If $arg contains values of various types, the error “Invalid argument type” (FORG0006) is
raised.

• If $arg contains a date or time with no time zone, it is assumed to be in the implicit
time zone.

• If $collation is provided, values of type xs:string are compared using that collation;
otherwise, the default collation is used. Collations are described in Chapter 17.

Examples

Note that the last example evaluates to black because the string function is only called for
existing color attributes. The second-to-last example returns a zero-length string because it
finds the string value of every item’s color attribute, whether it has one or not.

Related Functions

max

minutes-from-dateTime Gets the minutes portion of a date/time

Signature
minutes-from-dateTime($arg as xs:dateTime?) as xs:integer?

Usage Notes

This function returns the minutes portion of an xs:dateTime value, as an integer between 0
and 59 inclusive.

Special Cases

• If $arg is the empty sequence, the function returns the empty sequence.

Example

minutes-from-dateTime(xs:dateTime("2006-08-15T10:30:23")) returns 30.

Related Functions

minutes-from-time

Example Return value

min((2.0, 1, 3.5, 4)) 1

min(("a", "b", "c")) a

min(doc("order.xml")//item/@color) Error FORG0006, if color is untyped

min(doc("order.xml")//item//string(@color)) ""

min(doc("order.xml")//item/@color/string(.)) black

minutes-from-time

Appendix A: Built-in Function Reference | 369

minutes-from-duration Gets the normalized number of minutes in a duration

Signature
minutes-from-duration($arg as xs:duration?) as xs:integer?

Usage Notes

This function calculates the minutes component of a normalized xs:duration value, as an
integer between –59 and 59 inclusive. This is not necessarily the same as the integer that
appears before the M in the value. For example, if the duration is PT1M90S, the function
returns 2 rather than 1. This is because 90 seconds is equal to 1.5 minutes, and the normal-
ized value is therefore PT2M30S. Likewise, if the duration is PT90M, the result is 30, because
the normalized value is PT1H30M.

Special Cases

• If $arg is a negative duration, the function returns a negative value.

• If $arg is the empty sequence, the function returns the empty sequence.

Examples

minutes-from-time Gets the minutes portion of a time

Signature
minutes-from-time($arg as xs:time?) as xs:integer?

Usage Notes

This function returns the minutes portion of an xs:time value, as an integer between 0 and
59 inclusive.

Special Cases

• If $arg is the empty sequence, the function returns the empty sequence.

Example

minutes-from-time(xs:time("10:30:23")) returns 30.

Example Return value

minutes-from-duration(xs:duration("PT30M")) 30

minutes-from-duration(xs:duration("-PT90M")) -30

minutes-from-duration(xs:duration("PT1M90S")) 2

minutes-from-duration(xs:duration("PT3H")) 0

minutes-from-duration(xs:duration("PT60M")) 0

month-from-date

370 | Appendix A: Built-in Function Reference

Related Functions

minutes-from-dateTime

month-from-date Gets the month portion of a date

Signature
month-from-date($arg as xs:date?) as xs:integer?

Usage Notes

This function returns the month portion of an xs:date value, as an integer between 1 and
12 inclusive.

Special Cases

• If $arg is the empty sequence, the function returns the empty sequence.

Example

month-from-date(xs:date("2006-08-15")) returns 8.

Related Functions

month-from-dateTime

month-from-dateTime Gets the month portion of a date/time

Signature
month-from-dateTime($arg as xs:dateTime?) as xs:integer?

Usage Notes

This function returns the month portion of an xs:dateTime value, as an integer between 1
and 12 inclusive.

Special Cases

• If $arg is the empty sequence, the function returns the empty sequence.

Example

month-from-dateTime(xs:dateTime("2006-08-15T10:30:23")) returns 8.

Related Functions

month-from-date

name

Appendix A: Built-in Function Reference | 371

months-from-duration Gets the normalized number of months in a duration

Signature
months-from-duration($arg as xs:duration?) as xs:integer?

Usage Notes

This function calculates the months component of a normalized xs:duration value, as an
integer between –11 and 11 inclusive. This is not necessarily the same as the integer that
appears before the M in the value. For example, if the duration is P18M, the function returns
6 rather than 18. This is because 12 of those months are considered to be one year, and the
normalized value is therefore P1Y6M.

Special Cases

• If $arg is a negative duration, the function returns a negative value.

• If $arg is the empty sequence, the function returns the empty sequence.

Examples

name Gets the qualified name of a node as a string

Signature
name($arg as node()?) as xs:string

Usage Notes

This function returns a string that consists of the namespace prefix and colon (:), concate-
nated with the local part of the name. If the $arg node’s name is not in a namespace, the
function returns the local part of the name, with no prefix. If the name is associated with
the default namespace, the resulting name will not be prefixed.

The name function returns a value that depends on the choice of prefixes in the source
document. This makes it well suited for displaying the name, for example in error
messages, but it should never be used to test the name, because choice of prefixes shouldn’t
affect the result. For this purpose, use node-name instead.

Example Return value

months-from-duration(xs:duration("P3M")) 3

months-from-duration(xs:duration("-P18M")) -6

months-from-duration(xs:duration("P1Y")) 0

months-from-duration(xs:duration("P12M")) 0

months-from-duration(xs:duration("P31D")) 0

namespace-uri

372 | Appendix A: Built-in Function Reference

Special Cases

• If $arg is not provided, the context node is used.

• The function returns a zero-length string if:

— $arg is the empty sequence.

— $arg is a node that does not have a name (i.e., a document, comment, or text
node).

• If $arg is a processing instruction node, the function returns its target.

• If $arg is not provided, and the context item is undefined, the error XPDY0002 is raised.

• If $arg is not provided, and the context item is not a node, the error XPTY0004 is raised.

Examples

These examples use the input document names.xml shown in Example A-5, in the section
“local-name.” They also assume that the prefixes pre2 and unpre2 have been mapped to the
namespaces http://datypic.com/pre and http://datypic.com/unpre, respectively, in the
query prolog.

The prefixes pre2 and unpre2 are used rather than pre and unpre to demonstrate that when
selecting nodes from an instance document, the prefix used in the instance document is
returned (not the query).

Related Functions

local-name, node-name, namespace-uri

namespace-uri Gets the namespace part of an element or attribute node name

Signature
namespace-uri($arg as node()?) as xs:anyURI

Usage Notes

This function returns the namespace part of the element or attribute name. This is the
namespace that is mapped to its prefix, or the default namespace if it is unprefixed. If the
element or attribute name is not in a namespace, a zero-length value is returned.

Example Return value

name(doc("names.xml")//noNamespace) noNamespace

name(doc("names.xml")//pre2:prefixed) pre:prefixed

name(doc("names.xml")//unpre2:unprefixed) unprefixed

name(doc("names.xml")//@pre2:prefAttr) pre:prefAttr

name(doc("names.xml")//@noNSAttr) noNSAttr

namespace-uri-for-prefix

Appendix A: Built-in Function Reference | 373

Special Cases

• If $arg is not provided, the context node is used.

• The function returns a zero-length xs:anyURI value if:

— $arg is the empty sequence.

— $arg is a kind of node that does not have a namespace (i.e., a document, com-
ment, processing instruction or text node).

— $arg is an element or attribute whose name is not in a namespace.

• If $arg is not provided, and the context item is undefined, the error XPDY0002 is raised.

• If $arg is not provided, and the context item is not a node, the error XPTY0004 is raised.

Examples

These examples use the input document names.xml shown in Example A-5, in the section
“local-name.” They also assume that the prefixes pre and unpre have been mapped to the
namespaces http://datypic.com/pre and http://datypic.com/unpre, respectively, in the
query prolog.

Related Functions

local-name, name, node-name

namespace-uri-for-prefix Gets the namespace mapped to a particular prefix,

 within the scope of a particular element

Signature
namespace-uri-for-prefix($prefix as xs:string?,

$element as element()) as xs:anyURI?

Usage Notes

This function returns the namespace mapped to $prefix using the in-scope namespaces of
$element. If $prefix is a zero-length string or the empty sequence, the function returns the
default namespace, if any.

The function is most often used in conjunction with the in-scope-prefixes function to
determine all the namespaces that are declared on a particular element, including any
namespaces that appear to be unused.

Example Return value

namespace-uri(doc("names.xml")//noNamespace) A zero-length URI value

namespace-uri(doc("names.xml")//pre:prefixed) http://datypic.com/pre

namespace-uri (doc("names.xml")//unpre:unprefixed) http://datypic.com/unpre

namespace-uri(doc("names.xml")//@pre:prefAttr) http://datypic.com/pre

namespace-uri(doc("names.xml")//@noNSAttr) A zero-length URI value

namespace-uri-from-QName

374 | Appendix A: Built-in Function Reference

Special Cases

• If $prefix is not mapped to a namespace in scope, the function returns the empty
sequence.

• If $prefix is a zero-length string or the empty sequence, and there is no default
namespace, the function returns the empty sequence.

Examples

These examples use the input document names.xml shown in Example A-5, in the section
“local-name.” They also assume that the prefixes pre and unpre have been mapped to the
namespaces http://datypic.com/pre and http://datypic.com/unpre, respectively, in the
query prolog.

Related Functions

in-scope-prefixes, resolve-QName, QName

namespace-uri-from-QName Gets the namespace URI part of a QName

Signature
namespace-uri-from-QName($arg as xs:QName?) as xs:anyURI?

Usage Notes

This function returns the namespace part of an xs:QName. If you want to retrieve the
namespace of an element or attribute name, you should consider using the namespace-uri
function instead; it saves a step.

Special Cases

• If $arg is in no namespace, the function returns a zero-length string.

• If $arg is the empty sequence, the function returns the empty sequence.

Example Return value

namespace-uri-for-prefix("", doc("names.xml")//
noNamespace)

()

namespace-uri-for-prefix("pre",
doc("names.xml")//noNamespace)

()

namespace-uri-for-prefix("pre",
doc("names.xml")//pre:prefixed)

http://datypic.com/pre

namespace-uri-for-prefix("",
doc("names.xml")//unpre:unprefixed)

http://datypic.com/unpre

namespace-uri-for-prefix("pre",
doc("names.xml")//unpre:unprefixed)

http://datypic.com/pre

nilled

Appendix A: Built-in Function Reference | 375

Examples

Related Functions

local-name-from-QName, resolve-QName, QName, namespace-uri, namespace-uri-for-prefix

nilled Determines whether an element is nilled

Signature
nilled($arg as node()?) as xs:boolean?

Usage Notes

In a schema, element declarations can designate elements as nillable. This allows them to
appear in an instance document empty, even if their type would otherwise require them to
have some content (character data or children or both).

An element is not considered to be nilled just because it is empty. For an element to be
nilled, it must have an attribute xsi:nil whose value is true. Nilled elements are always
empty; it is not valid for an element to have content and also have the xsi:nil attribute set
to true.

On the other hand, some elements may be validly empty, but not be nilled. This may occur
if an element has a complex type that specifies all optional children, or a simple type that
allows blank values, such as xs:string. To test for an empty (but not necessarily nilled)
element, you can use the expression string($node) = "".

It is useful to be able to check for a nilled element using the nilled function to avoid unex-
pected results. For example, suppose you want to subtract the value of a discount element
from the value of a price element. If the discount element is nilled, its typed value will be
the empty sequence, and the result of the expression price - discount will be the empty
sequence. You can avoid this using the expression price - (if nilled(discount) then 0 else
discount).

Special Cases

• If $arg is not an element, the function returns the empty sequence.

• If $arg is the empty sequence, the function returns the empty sequence.

Example Return value

namespace-uri-from-QName(QName ("http://datypic.com/pre",
"prefixed"))

http://datypic.com/pre

namespace-uri-from-QName(QName ("", "unprefixed")) A zero-length URI value

namespace-uri-from-QName(()) ()

node-name

376 | Appendix A: Built-in Function Reference

Examples

These examples use the input document nils.xml shown in Example A-6.

Related Functions

empty, exists

node-name Gets the qualified name of a node

Signature
node-name($arg as node()?) as xs:QName?

Usage Notes

This function returns the qualified name of a node as an xs:QName. It is useful only for
element, attribute, and processing instruction nodes. For elements and attributes, it is
simply the names used in XML documents. If the node’s name is not in any namespace, the
namespace portion of the QName is empty, while the local part is the appropriate name.

Special Cases

• If $arg does not have a name (because it is a text, comment, or document node), the
function returns the empty sequence.

• If $arg is a processing instruction node, the function returns its target.

• If $arg is the empty sequence, the function returns the empty sequence.

Examples

These examples use the input document names.xml shown in Example A-5, in the section
“local-name.” They also assume that the prefixes pre2 and unpre2 have been mapped to the
namespaces http://datypic.com/pre and http://datypic.com/unpre, respectively, in the
query prolog.

Example Return value

nilled(doc("nils.xml")//child[1]) false

nilled(doc("nils.xml")//child[2]) true

nilled(doc("nils.xml")//child[3]) false

nilled(doc("nils.xml")//child[4]) false

nilled(doc("nils.xml")//child[5]) false

Example A-6. Nilled elements (nils.xml)

<root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <child>12</child>
 <child xsi:nil="true"></child>
 <child></child>
 <child/>
 <child xsi:nil="false"></child>
</root>

normalize-space

Appendix A: Built-in Function Reference | 377

The prefix pre2 is used rather than pre to demonstrate that when selecting nodes from an
instance document, it is the prefix used in the instance document is returned (not the
query). Although prefixes are technically irrelevant, they are saved in QName values by
XQuery processors.

Related Functions

local-name, name, namespace-uri

normalize-space Normalize the whitespace in a string

Signature
normalize-space($arg as xs:string?) as xs:string

Usage Notes

This function collapses whitespace in a string. Specifically, it performs three steps:

1. Replaces each carriage return (#xD), line feed (#xA), and tab (#x9) character with a sin-
gle space (#x20)

2. Collapses all consecutive spaces into a single space

3. Removes all leading and trailing spaces

Special Cases

• If $arg is the empty sequence, the function returns a zero-length string.

• If $arg is not provided, the function uses the value of the context item.

• If $arg is not provided and the context item is undefined, the error XPDY0002 is raised.

Example Return value (xs:QName)

node-name(doc("names.xml")//noNamespace) Namespace: empty

Prefix: empty

Local part: noNamespace

node-name (doc("names.xml")//pre2:prefixed) Namespace: http://datypic.com/pre

Prefix: pre

Local part: prefixed

node-name (doc("names.xml")//unpre2:
unprefixed)

Namespace: http://datypic.com/unpre

Prefix: empty

Local part: unprefixed

node-name (doc("names.xml")//@pre2:prefAttr) Namespace: http://datypic.com/pre

Prefix: pre

Local part: prefAttr

node-name(doc("names.xml")//@noNSAttr) Namespace: empty

Prefix: empty

Local part: noNSAttr

normalize-unicode

378 | Appendix A: Built-in Function Reference

Examples

normalize-unicode Performs Unicode normalization on a string

Signature
normalize-unicode($arg as xs:string?,

$normalizationForm as xs:string) as xs:string

Usage Notes

Unicode normalization allows text to be compared without regard to subtle variations in
character representation. It replaces certain characters with equivalent representations.
Two normalized values can then be compared to determine whether they are the same.
Unicode normalization is also useful for allowing character strings to be sorted
appropriately.

The $normalizationForm argument controls which normalization form is used, and hence
which characters are replaced. Examples of replacements that might be made include:

• Some characters may be replaced by equivalent characters. The symbol £ (U+FFE1) is
converted to an equivalent symbol, (U+00A3) using the form NFKC.

• Some characters with accents or other marks represented by one code point may be
decomposed to an equivalent representation that has two or more code points. The ç
character (U+00E7) is changed to a representation that uses two code points (U+0063,
which is “c”, and U+0327, which is the cedilla) using form NFKD. Other normaliza-
tion forms may combine the two code points into a single code point.

• Some characters that represent symbols may be replaced by letters or other characters.
The symbol (U+3397) is replaced by the two letters dl (U+0064 + U+006C) using
the form NFKC. This change is not made when using the form NFC.

Valid values for $normalizationForm are listed in Table A-5. The value may be specified
with leading or trailing spaces, in upper-, lower-, or mixed case. All implementations
support the value NFC; some implementations may support the other values listed, as well
as additional normalization forms.

Example Return value

normalize-space("query") query

normalize-space(" query ") query

normalize-space("xml query") xml query

normalize-space("xml query") xml query

normalize-space("xml
query")a

a The line break in this example is significant.

xml query

normalize-space("") A zero-length string

normalize-space(" ") A zero-length string

normalize-space(()) A zero-length string

normalize-space(<element> query </element>) query

not

Appendix A: Built-in Function Reference | 379

Special Cases

• If $normalizationForm is not provided, NFC is used as a default.

• If $normalizationForm is a form that is not supported by the implementation, the error
“Unsupported normalization form” (FOCH0003) is raised.

• If $normalizationForm is a zero-length string, no normalization is performed.

• If $arg is the empty sequence, the function returns a zero-length string.

Examples

For more information on Unicode normalization forms, see http://www.unicode.org/
unicode/reports/tr15. The normalization charts, which identify the replacements for each
character, for each form, can be found at http://www.unicode.org/charts/normalization.

not Negates any Boolean value, turning false to true and true to false

Signature
not($arg as item()*) as xs:boolean

Usage Notes

This function accepts a sequence of items, from which it calculates the effective Boolean
value of the sequence as a whole before negating it. This means that when $arg is either a
single Boolean value false, a zero-length string, the number 0 or NaN, or the empty

Table A-5. Valid values for the $normalizationForm argument

Value Meaning

NFC Unicode Normalization Form C (NFC).

NFD Unicode Normalization Form D (NFD).

NFKC Unicode Normalization Form KC (NFKC).

NFKD Unicode Normalization Form KD (NFKD).

FULLY-NORMALIZED The fully normalized form, according to the W3C definition. This form takes into account XML
constructs such as entity references and CDATA sections in text. a

a Essentially, “fully normalized” is NFC with the additional rule that “combining characters” (such as free-standing accents) may not appear
on their own at the start of a string. The advantage of this form is that concatenating two fully normalized strings will always give a fully
normalized string. For more information, see Character Model for the World Wide Web at http://www.w3.org/TR/charmod.

Zero-length string No normalization is performed.

Example Return value

normalize-unicode("query") query

normalize-unicode("query", "") query

normalize-unicode("£", "NFKC")

normalize-unicode("leçon", "NFKD") lec¸on

normalize-unicode("15 ") 15

normalize-unicode("15 ", "NFKC") 15 dl

number

380 | Appendix A: Built-in Function Reference

sequence, it returns true. Otherwise, it usually returns false. The detailed rules for evalu-
ating the effective Boolean value of a sequence are described in “Effective Boolean Value”
in Chapter 11.

Special Cases

• If the effective Boolean value of $arg is undefined, for example because $arg is a sequence
of multiple atomic values, the error “Invalid argument type” (FORG0006) is raised.

Examples

number Constructs an xs:double value

Signature
number($arg as xs:anyAtomicType?) as xs:double

Usage Notes

This function constructs an xs:double value either from a node that contains a number, or
from an atomic value. This function is useful for telling the processor to treat a node or
value as a number, regardless of its declared type (if any). It returns the argument cast as an
xs:double.

The difference between using the number function and the xs:double constructor is that the
number function returns the value NaN in the case that the argument cannot be cast to a
numeric value, whereas the xs:double constructor will raise an error.

Special Cases

• If $arg is not provided, the number function uses the context item.

• If $arg is not provided, and the context item is undefined, the error XPDY0002 is raised.

• The function returns the value NaN in the case that the argument cannot be cast to a
numeric value, in any of the following situations:

— No argument is passed to it and the context item is undefined, or the context item
is not a node.

— $arg is the empty sequence.

— $arg is a value that cannot be cast to xs:double.

Example Return value

not($price > 20) false if $price is greater than 20

not(doc("catalog.xml")//product) false if there is at least one product element in
catalog.xml

not(true()) false

not(()) true

not("") true

not(0) true

not(<e>false</e>) false

one-or-more

Appendix A: Built-in Function Reference | 381

Examples

one-or-more Verifies that a sequence contains one or more items

Signature
one-or-more($arg as item()*) as item()+

Usage Notes

If $arg contains one or more items, $arg is returned. Otherwise, the error “fn:one-or-more
called with a sequence containing zero items” (FORG0004) is raised.

This function is useful when static typing is in effect, to avoid apparent static type errors.
For example, suppose you wanted to call a user-defined concatNames function that takes as
an argument one or more strings (but not the empty sequence). To use the function, you
might be tempted to write the expression:

local:concatNames (doc("catalog.xml")//name)

However, if static typing is used, this expression causes a static error if the name element is
optional in the schema. This is because the path expression might return the empty
sequence, while the concatNames function requires that at least one string be provided. A
static error can be avoided by using the expression:

local:concatNames (one-or-more(doc("catalog.xml")//name))

In this case, no static error is raised. Rather, a dynamic error is raised if the path expression
returns the empty sequence. For more information on static typing, see Chapter 14.

If static typing is not in effect, calling one-or-more is not usually necessary, but it does no
harm. The effect is usually to make explicit a runtime type check that would otherwise
have been done automatically.

Examples

Example Return value

number(doc("prices.xml")//prod[1]/price) 29.99

number(doc("prices.xml")//prod/price) Error XPTY0004

number(doc("prices.xml")//prod[1]/@currency) NaN

number("29.99") 29.99

number("ABC") NaN

number(()) NaN

doc("prices.xml")//prod/price[number() > 35] The two price elements with values over 35

Example Return value

one-or-more(()) Error FORG0004

one-or-more("a") a

one-or-more(("a", "b")) ("a", "b")

position

382 | Appendix A: Built-in Function Reference

Related Functions

zero-or-one, exactly-one

position Gets the position of the context item within the context sequence

Signature
position() as xs:integer

Usage Notes

This function returns an integer representing the position (starting with 1, not 0) of the
current context item within the context sequence (the current sequence of items being
processed). In XQuery, the position function is almost invariably used in predicates (in
square brackets) to test the relative position of a node.

Special Cases

• If the context item is undefined, the error XPDY0002 is raised.

Examples

The expression:

doc("catalog.xml")/catalog/product[position() < 3]

returns the first two product children of catalog. You could also select the first two chil-
dren of product, with any name, using a wildcard, as in:

doc("catalog.xml")/catalog/product/*[position() < 3]

Note that the expression product[position() = 3] is equal to the expression product[3], so
the position function is not very useful in this case. However, you might use the
expression:

doc("catalog.xml")/catalog/product[position() = (1 to 3)]

to get the first three products.

Related Functions

last

prefix-from-QName Gets the prefix associated with a particular qualified name

Signature
prefix-from-QName($arg as xs:QName?) as xs:NCName?

Usage Notes

This function returns the prefix associated with a particular qualified name. Note that the
prefix associated with a qualified name selected from an input document will be the prefix
that is used in that input document, not a prefix used in the query.

QName

Appendix A: Built-in Function Reference | 383

Special Cases

• If $arg is the empty sequence, the function returns the empty sequence.

• If $arg has no prefix (e.g., because it is associated with the default namespace, or it is
not in a namespace), the function returns the empty sequence.

Examples

These examples use the input document names.xml shown in Example A-5, in the section
“local-name.” They also assume that the prefixes pre2 and unpre have been mapped to the
namespaces http://datypic.com/pre and http://datypic.com/unpre, respectively, in the query
prolog.

The prefix pre2 is used rather than pre to demonstrate that when selecting nodes from an
instance document, it is the prefix used in the instance document (not the query) that
matters. However, when constructing a new element, the prefix used in the query itself is
the one associated with the name, as shown in the last example.

Related Functions

local-name-from-QName, namespace-uri-from-QName, namespace-uri-for-prefix, in-scope-
prefixes

QName Constructs a QName from a URI and a local part

Signature
QName($paramURI as xs:string?, $paramQName as xs:string) as xs:QName

Usage Notes

This function takes a namespace URI and a qualified (optionally prefixed) name as argu-
ments and constructs a QName value from them. If $paramQName is prefixed, that prefix is
retained in the resulting xs:QName value.

Unlike the xs:QName constructor, the QName function does not require a literal argument.
Therefore, the name could be the result of a dynamically evaluated expression. Because this
function supplies all three components of the QName (local name, prefix, and URI) the
effect does not depend on the context. There is no requirement that the prefix and
namespace are bound in an outer expression.

Example Return value

prefix-from-QName(node-name(doc("names.xml")//noNamespace)) ()

prefix-from-QName(node-name(doc("names.xml")//pre2:prefixed)) pre

prefix-from-QName(node-name(doc("names.xml")//unpre:unprefixed)) ()

prefix-from-QName(node-name(doc("names.xml")//@pre2:prefAttr)) pre

prefix-from-QName(node-name(doc("names.xml")//@noNSAttr)) ()

prefix-from-QName(node-name(<pre2:new>xyz</pre2:new>)) pre2

remove

384 | Appendix A: Built-in Function Reference

Special Cases

• If $paramURI is a zero-length string or the empty sequence, and $paramQName has a pre-
fix, the error “Invalid lexical value” (FOCA0002) is raised.

• If $paramURI is a zero-length string or the empty sequence, and $paramQName does not
have a prefix, the resulting name is considered to be in no namespace.

• If $paramQName does not follow the lexical rules for an XML qualified name (e.g.,
because it starts with a number or it contains two colons), the error “Invalid lexical
value” (FOCA0002) is raised.

Examples

Related Functions

resolve-QName, local-name-from-QName, namespace-uri-from-QName, namespace-uri-for-prefix

remove Removes an item from a sequence based on its position

Signature
remove($target as item()*, $position as xs:integer) as item()*

Usage Notes

This function returns a copy of $target with the item at position $position removed. Posi-
tion numbers start at 1, not 0.

A common usage is to get the “tail” of a sequence (all items except the first). This can be
written as remove($seq, 1).

Special Cases

• If $position is less than 1 or greater than the number of items in $target, no items are
removed.

• If $target is the empty sequence, the function returns the empty sequence.

Example Return value (xs:QName)

QName("http://datypic.com/prod", "product") Namespace: http://datypic.com/prod

Prefix: empty

Local part: product

QName("http://datypic.com/prod", "pre:product") Namespace: http://datypic.com/prod

Prefix: pre

Local part: product

QName("", "product") Namespace: empty

Prefix: empty

Local part: product

QName("", "pre:product") Error FOCA0002

replace

Appendix A: Built-in Function Reference | 385

Examples

replace Replaces substrings that match a pattern with a specified replacement string

Signature
replace($input as xs:string?, $pattern as xs:string,

$replacement as xs:string, $flags as xs:string) as xs:string

Usage Notes

The $pattern argument is a regular expression; its syntax is covered in Chapter 18.

While it is nice to have the power of regular expressions, you don’t have to be familiar with
regular expressions to replace a particular sequence of characters; you can just specify the
string you want replaced for $pattern, as long as it doesn’t contain any special characters.

The $replacement argument specifies a string (not a pattern) that is to be used as a replace-
ment. The $flags argument allows for additional options in the interpretation of the
regular expression, such as multi-line processing and case insensitivity. It is discussed in
detail in “Using Flags” in Chapter 18.

Reluctant quantifiers and sub-expressions are two extremely useful features that can be
used in conjunction with the replace function. They are described in Chapter 18 in the
sections entitled “Reluctant Quantifiers” and “Using Sub-Expressions with Replacement
Variables,” respectively.

Special Cases

• If $input is the empty sequence, it is treated like a zero-length string.

• If $pattern is not a valid regular expression, the error “Invalid regular expression”
(FORX0002) is raised.

• If the entire $pattern matches a zero-length string, for example q?, the error “Regular
expression matches zero-length string” (FORX0003) is raised.

• If $replacement contains an unescaped dollar sign ($) that is not followed by a digit,
the error “Invalid replacement string” (FORX0004) is raised. (\$ is used to escape a dol-
lar sign.)

• If $replacement contains an unescaped backslash (\) that is not followed by a dollar
sign ($), the error “Invalid replacement string” (FORX0004) is raised. (\\ is used to
escape a backslash.)

• If $flags contains unsupported options, the error “Invalid regular expression flags”
(FORX0001) is raised.

• If two overlapping strings match $pattern, only the first is replaced.

Example Return value

remove(("a", "b", "c"), 1) ("b", "c")

remove(("a", "b", "c"), 2) ("a", "c")

remove(("a", "b", "c"), 10) ("a", "b", "c")

remove(("a", "b", "c"), 0) ("a", "b", "c")

resolve-QName

386 | Appendix A: Built-in Function Reference

Examples

If more than one sub-expression matches, starting at the same position, the first alternative
is chosen. This is exhibited by the second-to-last example, where Chap is replaced instead of
Chapter.

The last example illustrates the meaning of non-overlapping. There are actually two
substrings in the original string that match the pattern: ele and eme. Only the first of these
is replaced, because the second overlaps the first. Note that this example uses a reluctant
quantifier; otherwise, the whole eleme would be replaced.

Related Functions

translate, tokenize

resolve-QName Constructs a QName from a string using the in-scope namespaces of an element

Signature
resolve-QName($qname as xs:string?, $element as element()) as xs:QName?

Usage Notes

The $qname argument is a string representing a qualified name. It may be prefixed (for
example, prod:number), or unprefixed (for example, number). The $element argument is the
element whose in-scope namespaces are to be used to determine which namespace URI is
mapped to the prefix. If $qname is unprefixed, the default namespace declaration of
$element is used. If there is no default namespace declaration in scope, the constructed
QName has no namespace.

Note that when using the function, the prefix is never resolved using the context of the
query. For example, if you map the prefix pre to the namespace http://datypic.com/pre in
the query prolog, that is irrelevant when you call the resolve-QName function with the first
argument pre:myName. It is only relevant how that prefix is mapped in $element. If you want

Example Return value

replace("query", "r", "as") queasy

replace("query", "qu", "quack") quackery

replace("query", "[ry]", "l") quell

replace("query", "[ry]+", "l") quel

replace("query", "z", "a") query

replace("query", "query", "") A zero-length string

replace((), "r", "as") A zero-length string

replace("query", "r?", "as") Error FORX0003

replace("query", "(r", "as") Error FORX0002

replace("Chapter", "(Chap)|(Chapter)", "x") xter

replace("elementary", "e.*?e", "*") *mentary

resolve-QName

Appendix A: Built-in Function Reference | 387

to use the context of the query, you can simply use the xs:QName constructor, as in xs:
QName("pre:myName").

Typically, this function is used (in the absence of a schema) to resolve a QName
appearing in the content of a document against the namespace context of the element
where the QName appears. For example, to retrieve all products that carry the attribute
xsi:type="prod:ProductType", you can use a path such as:

declare namespace prod = "http://datypic.com/prod";

doc("catalog.xml"//product[resolve-QName(@xsi:type, .) = xs:QName("prod:ProductType")]

This test allows the value of xsi:type in the input document to use any prefix (not just
prod), as long as it is bound to the http://datypic.com/prod namespace.

Special Cases

• If $qname is prefixed, and that prefix is not mapped to a namespace in scope, the error
“No namespace found for prefix” (FONS0004) is raised.

• If $qname is not a lexically correct QName (for example, if it is not a valid XML name,
or if it contains more than one colon), the error “Invalid lexical value” (FOCA0002) is
raised.

• If $qname is the empty sequence, the function returns the empty sequence.

Examples

These examples assume that the variable $root is bound to the root element, and $order is
bound to the order element in the following input document:

<root>
 <order xmlns:ord="http://datypic.com/ord"
 xmlns="http://datypic.com">
 <!-- ... -->
 </order>
</root>

Example Return value (xs:QName)

resolve-QName("myName", $root) Namespace: empty

Prefix: empty

Local part: myName

resolve-QName("myName", $order) Namespace: http://datypic.com

Prefix: empty

Local part: myName

resolve-QName("ord:myName", $root) Error FONS0004

resolve-QName("ord:myName", $order) Namespace: http://datypic.com/ord

Prefix: ord

Local part: myName

declare namespace dty = "dty_ns";
resolve-QName("dty:myName", $order)

Error FONS0004

resolve-uri

388 | Appendix A: Built-in Function Reference

Related Functions

QName, local-name-from-QName, namespace-uri-from-QName, namespace-uri-for-prefix

resolve-uri Resolves a relative URI reference, based on a base URI

Signature
resolve-uri($relative as xs:string?, $base as xs:string) as xs:anyURI?

Usage Notes

This function takes a base URI ($base) and a relative URI ($relative) as arguments and
constructs an absolute URI.

If $base is not provided, the base URI of the static context is used. This may have been set
by the processor outside the scope of the query, or it may have been declared in the query
prolog.

Special Cases

• If $relative is already an absolute URI, the function returns $relative unchanged.

• If $relative cannot be resolved relative to $base (e.g., because $base itself is a relative
URI), the error “Error in resolving a relative URI against a base URI in fn:resolve-uri”
(FORG0009) is raised.

• If $base is not provided and the base URI of the static context is undefined, the error
“Base-uri not defined in the static context” (FONS0005) is raised.

• If $relative or $base is not a syntactically valid URI, the error “Invalid argument to
fn:resolve-uri” (FORG0002) is raised.

• If $relative is the empty sequence, the function returns the empty sequence.

Examples

Related Functions

base-uri, encode-for-uri

Examplea

a This table assumes that the base URI of the static context is http://datypic.com.

Return value

resolve-uri("prod", "http://datypic.com/") http://datypic.com/prod

resolve-uri("prod2", "http://datypic.com/prod1") http://datypic.com/prod2

resolve-uri("http://example.org", "http://datypic.com") http://example.org

resolve-uri("http://datypic.com", "../base") http://datypic.com

resolve-uri("prod") http://datypic.com/prod

resolve-uri("", "http://datypic.com") http://datypic.com

resolve-uri("") http://datypic.com

root

Appendix A: Built-in Function Reference | 389

reverse Reverses the order of the items in a sequence

Signature
reverse($arg as item()*) as item()*

Usage Notes

This function returns the items in $arg in reverse order. These items may be nodes, or
atomic values, or both.

Special Cases

• If $arg is the empty sequence, the function returns the empty sequence.

Examples

root Gets the root of the tree containing a node

Signature
root($arg as node()?) as node()?

Usage Notes

This function returns a document node if the $arg node is part of a document, but it may
also return an element if the $arg node is not part of a document. The root function can be
used in conjunction with path expressions to find siblings and other elements that are in
the same document. For example:

root($myNode)/descendant-or-self::product

retrieves all product elements that are in the same document (or document fragment) as
$myNode.

Calling the root function is similar to starting a path with / or //. It is more flexible in that
it can appear anywhere in a path or other expression. Also, unlike starting a path with /,
the root function does not require the root to be a document node; it could be an element
in the case of a document fragment.

Special Cases

• If $arg is the empty sequence, the function returns the empty sequence.

• If $arg is the root node, the function simply returns $arg.

• If $arg is not provided, the function uses the context item.

• If $arg is not provided, and the context item is undefined, the error XPDY0002 is raised.

• If $arg is not provided, and the context item is not a node, the error XPTY0004 is raised.

Example Return value

reverse ((1, 2, 3, 4, 5)) (5, 4, 3, 2, 1)

reverse ((6, 2, 4)) (4, 2, 6)

reverse (()) ()

round

390 | Appendix A: Built-in Function Reference

Examples

round Rounds a number to the nearest whole number

Signature
round($arg as numeric?) as numeric?

Usage Notes

The round function is used to round a numeric value to the nearest integer. If the decimal
portion of the number is .5 or greater, it is rounded up to the greater whole number (even if
it is negative); otherwise, it is rounded down.

The function returns a numeric value of type xs:float, xs:double, xs:decimal, or xs:integer,
depending on which type the argument is derived from. If $arg is untyped, it is cast to xs:
double.

Special Cases

• If $arg is the empty sequence, the function returns the empty sequence.

• If $arg is between –0.5 and –0 (inclusive), the function may return 0 or –0 (it is imple-
mentation-dependent).

• If $arg is one of the values 0, –0, NaN, INF, or –INF, the function returns this same value.

Examples

Related Functions

round-half-to-even, floor, ceiling

Example Return value

root($myNode)/descendant-or-self::product All product elements that are in the same document (or
document fragment) as $myNode

root() The root of the current context node

root(.) The root of the current context node

root(doc("order.xml")//item[1]) The document node of order.xml

let $a := <a><x></x>
let $x := $a/x
return root($x)

The a element

Example Return value

round(5) 5

round(5.1) 5

round(5.5) 6

round(-5.5) -5

round(-5.51) -6

round-half-to-even

Appendix A: Built-in Function Reference | 391

round-half-to-even Rounds a number using a specified precision

Signature
round-half-to-even($arg as numeric?, $precision as xs:integer) as numeric?

Usage Notes

This type of rounding is used in financial and statistical applications so that the sum of a
column of rounded numbers comes closer to the sum of the same unrounded numbers.

The returned value is rounded to the number of decimal places indicated by $precision.
For example, if the precision specified is 2, the function rounds 594.3271 to 594.33. If the
precision is 0, the number is rounded to an integer. Specifying a negative precision results
in the number being rounded to the left of the decimal point. For example, if $precision is
–2, the function rounds 594.3271 to 600. If $precision is omitted, it defaults to 0.

If the argument is exactly half way between two values, it is rounded to whichever adjacent
value is an even number.

The function returns a numeric value of type xs:float, xs:double, xs:decimal, or xs:integer,
depending on the type from which the argument is derived. If $arg is untyped, it is cast
to xs:double.

The function works best with xs:decimal values. With xs:double and xs:float values, the
rounding may not work exactly as expected. This is because an xs:double value written as
0.005, being only an approximation to a decimal number, is often not precisely midway
between 0.01 and 0.02.

Special Cases

• If $arg is the empty sequence, the function returns the empty sequence.

• If $arg is between –0.5 and –0 (inclusive), the function may return 0 or –0 (it is imple-
mentation-dependent).

• If $arg is one of the values 0, –0, NaN, INF, or –INF, the function returns this same value.

Examples

Related Functions

round, floor, ceiling

Example Return value

round-half-to-even(5.5) 6

round-half-to-even(6.5) 6

round-half-to-even(9372.253, 2) 9372.25

round-half-to-even(9372.253, 0) 9372

round-half-to-even(9372.253, –3) 9000

seconds-from-dateTime

392 | Appendix A: Built-in Function Reference

seconds-from-dateTime Gets the seconds portion of a date/time

Signature
seconds-from-dateTime($arg as xs:dateTime?) as xs:decimal?

Usage Notes

This function returns the seconds portion of an xs:dateTime value, as a decimal number.

Special Cases

• If $arg is the empty sequence, the function returns the empty sequence.

Example

seconds-from-dateTime(xs:dateTime("2006-08-15T10:30:23.5")) returns 23.5.

Related Functions

seconds-from-time

seconds-from-duration Gets the normalized number of seconds in a duration

Signature
seconds-from-duration($arg as xs:duration?) as xs:decimal?

Usage Notes

This function calculates the seconds component of a normalized xs:duration value, as a
decimal number between –60 and 60 exclusive. This is not necessarily the same as the
number that appears before the S in the value. For example, if the duration is PT90S, the
function returns 30 rather than 90. This is because 60 of those seconds are considered to be
1 minute, and the normalized value would therefore be PT1M30S.

Special Cases

• If $arg is a negative duration, the function returns a negative value.

• If $arg is the empty sequence, the function returns the empty sequence.

Examples

Example Return value

seconds-from-duration(xs:duration("PT30.5S")) 30.5

seconds-from-duration(xs:duration("-PT90.5S")) -30.5

seconds-from-duration(xs:duration("PT1M")) 0

seconds-from-duration(xs:duration("PT60S")) 0

starts-with

Appendix A: Built-in Function Reference | 393

seconds-from-time Gets the seconds portion of a time

Signature
seconds-from-time($arg as xs:time?) as xs:decimal?

Usage Notes

This function returns the seconds portion of an xs:time value, as a decimal number.

Special Cases

• If $arg is the empty sequence, the function returns the empty sequence.

Example

seconds-from-time(xs:time("10:30:23.5")) returns 23.5.

Related Functions

seconds-from-dateTime

starts-with Determines whether one string starts with another

Signature
starts-with($arg1 as xs:string?, $arg2 as xs:string?,

$collation as xs:string) as xs:boolean

Usage Notes

This function returns an xs:boolean value indicating whether one string ($arg1) starts with
the characters of another string ($arg2). Leading and trailing whitespace is significant, so
you may want to use the normalize-space function to trim the strings before using this
function.

Special Cases

• If $arg2 is a zero-length string or the empty sequence, the function returns true.

• If $arg1 is a zero-length string or the empty sequence, but $arg2 is not, the function
returns false.

• If $collation is provided, the comparison uses that collation; otherwise, the default
collation is used. Collations are described in Chapter 17.

Examples

Example Return value

starts-with("query", "que") true

starts-with("query", "query") true

starts-with("query", "u") false

static-base-uri

394 | Appendix A: Built-in Function Reference

Related Functions

ends-with, contains, matches

static-base-uri Gets the base URI of the static context

Signature
static-base-uri() as xs:anyURI?

Usage Notes

This function returns the base URI of the static context. This may have been set by the
processor outside the scope of the query, or it may have been declared in the query prolog.

The base URI of the static context is used for constructed elements and for resolving rela-
tive URIs when no other base URI is available. It is not the same as the base URI of any
given element or document node. For more information, see “The base URI of the static
context” in Chapter 20.

Example

static-base-uri() might return http://datypic.com/prod, if that is the base URI of the
static context.

Related Functions

base-uri

string Returns the string value of an item

Signature
string($arg as item()?) as xs:string

Usage Notes

If $arg is a node, this function returns its string value. The method of determining the
string value of a node depends on its kind. Table A-6 describes how the string value is
determined for each node kind.

starts-with("query", "") true

starts-with("", "query") false

starts-with("", "") true

starts-with("query", ()) true

starts-with(" query", "q") false

Example Return value

string

Appendix A: Built-in Function Reference | 395

If $arg is an atomic value, the function returns that value, cast to xs:string. For more infor-
mation on casting a typed value to string, see “Casting to xs:string or xs:untypedAtomic” in
Chapter 11.

When $arg is a typed node, there may be some differences in the formatting such as leading
and trailing whitespace and leading zeros. This is because the implementation can option-
ally provide the canonical representation of the value instead of the actual characters that
appear in an input document. For example, if <myInt> 04 </myInt> appears in an input
document, and it is validated and annotated with the type xs:integer, its string value may
be returned as 4 without leading or trailing spaces instead of 04 .

If you want the resulting value to be some type other than xs:string, you should use the
data function instead. For example, if $myInt is bound to the myInt element from the
previous prargraph, the expression data($myInt) returns the integer value 4.

Special Cases

• If $arg is not provided, the function uses the context item.

• If $arg is not provided, and the context item is undefined, the error XPDY0002 is raised.

• If $arg is the empty sequence, the function returns a zero-length string.

• If $arg is an element with empty content (e.g., <a> or <a/>), the function returns a
zero-length string.

Examples

Given the fourth product element in our catalog:

 <product dept="MEN">
 <number>784</number>
 <name language="en">Cotton Dress Shirt</name>
 <colorChoices>white gray</colorChoices>
 <desc>Our <i>favorite</i> shirt!</desc>
 </product>

the string value of the product element is:

784Cotton Dress Shirtwhite grayOur favorite shirt!

Table A-6. String value based on node kind

Node kind String value

Element The text content of the element and all its descendant elements, concatenated together in docu-
ment order. Attribute values are not included.

Document The string values of all of the descendant elements concatenated together in document order.
That is, the text content of the original XML document, minus all the markup.

Attribute The attribute value

Text The text itself

Processing instruction The content of the processing instruction (everything but its target)

Comment The content of the comment

string-join

396 | Appendix A: Built-in Function Reference

assuming a schema is in place; otherwise, there will be additional whitespace between the
values. The string value of the number element is 784 and the string value of the desc
element is Our favorite shirt!.

Related Functions

data

string-join Concatenates a sequence of strings together, optionally using a separator

Signature
string-join($arg1 as xs:string*, $arg2 as xs:string) as xs:string

Usage Notes

The $arg1 argument specifies the sequence of strings to concatenate, while $arg2 specifies
the separator. If $arg2 is a zero-length string, no separator is used.

Special Cases

• If $arg1 is the empty sequence, the function returns a zero-length string.

Examples

Related Functions

concat

string-length Finds the length of a string

Signature
string-length($arg as xs:string?) as xs:integer

Usage Notes

This function returns an xs:integer value indicating the number of characters in the string.
Whitespace is significant, so leading and trailing whitespace characters are counted.

Example Return value

string-join(("a", "b", "c"), "") abc

string-join(("a", "b", "c"), "-") a-b-c

string-join(("a", "", "c"), "-") a--c

string-join("a", "-") a

string-join((), "-") A zero-length string

string-to-codepoints

Appendix A: Built-in Function Reference | 397

Special Cases

• If $arg is not provided, the function uses the string value of the context item.

• If $arg is not provided, and the context item is undefined, the error XPDY0002 is raised.

• If $arg is the empty sequence, the function returns 0.

• Unlike some programming languages, Unicode characters above 65535 count as one
character, not two.

Examples

string-to-codepoints Converts a string to a sequence of Unicode code-point values

Signature
string-to-codepoints($arg as xs:string?) as xs:integer*

Usage Notes

This function returns a sequence of xs:integer values representing the Unicode code
points.

Special Cases

• If $arg is a zero-length string or the empty sequence, the function returns the empty
sequence.

Examples

Related Functions

codepoints-to-string

Example Return value

string-length("query") 5

string-length(" query ") 9

string-length(normalize-space(" query ")) 5

string-length("xml query") 9

string-length("") 0

string-length(()) 0

Example Return value

string-to-codepoints("abc") (97, 98, 99)

string-to-codepoints("a") 97

string-to-codepoints("") ()

subsequence

398 | Appendix A: Built-in Function Reference

subsequence Extracts a portion of a sequence, based on a starting position and optional length

Signature
subsequence($sourceSeq as item()*, $startingLoc as xs:double,

$length as xs:double) as item()*

Usage Notes

This function returns a sequence of $length items of $sourceSeq, starting at the position
$startingLoc. The first item in the sequence is considered to be at position 1, not 0. If no
$length is passed, or if $length is greater than the number of items that can be returned,
the function includes items to the end of the sequence. An alternative to calling the
subsequence function is using a predicate. For example, subsequence($a,3,4) is equiva-
lent to $a[position() = (3 to 6)].

Special Cases

• If $startingLoc is zero or negative, the subsequence starts at the beginning of the
sequence and still goes to $startingLoc plus $length, so the actual length of the subse-
quence may be less than $length.

• If $startingLoc is greater than the number of items in the sequence, the function
returns the empty sequence.

• If $sourceSeq is the empty sequence, the function returns the empty sequence.

• The function will accept xs:double values for $startingLoc and $length, in which case
they are rounded to the nearest integer. This is because the result type of many calcula-
tions on untyped data is xs:double. Accepting xs:double values allows the $startingLoc
and $length arguments to be calculated and passed directly to the function.

Examples

substring Extracts part of a string, based on a starting position and optional length

Signature
substring($sourceString as xs:string?, $startingLoc as xs:double,

$length as xs:double) as xs:string

Example Return value

subsequence(("a", "b", "c", "d", "e"), 3) ("c", "d", "e")

subsequence(("a", "b", "c", "d", "e"), 3, 2) ("c", "d")

subsequence(("a", "b", "c", "d", "e"), 3, 10) ("c", "d", "e")

subsequence(("a", "b", "c", "d", "e"), 10) ()

subsequence(("a", "b", "c", "d", "e"), –2, 5) ("a", "b")

subsequence((), 3) ()

substring-after

Appendix A: Built-in Function Reference | 399

Usage Notes

The $startingLoc argument indicates the starting location for the substring, where the first
character is at position 1 (not 0). The optional $length argument indicates the number of
characters to include, relative to the starting location. If no $length is provided, the entire
rest of the string is included.

The function returns all characters whose position is greater than or equal to $startingLoc
and less than ($startingLoc + $length). The $startingLoc number can be zero or negative,
in which case the function starts at the beginning of the string, and still only include char-
acters up to (but not including) the position at ($startingLoc + $length). If ($startingLoc +
$length) is greater than the length of the string, the rest of the string is included.

Special Cases

• If $sourceString is the empty sequence, the function returns a zero-length string.

• If $startingLoc is greater than the length of the string, the function returns a zero-
length string.

• The function will accept xs:double values for $startingLoc and $length, in which case
they are rounded to the nearest integer.

Examples

Related Functions

substring-after, substring-before

substring-after Extracts the substring that is after the first occurrence of another specified string

Signature
substring-after($arg1 as xs:string?, $arg2 as xs:string?,

$collation as xs:string) as xs:string

Example Return value

substring("query", 1) query

substring("query", 3) ery

substring("query", 1, 1) q

substring("query", 2, 3) uer

substring("query", 2, 850) uery

substring("query", 6, 2) A zero-length string

substring("query", –2) query

substring("query", –2, 5) qu

substring("query", 1, 0) A zero-length string

substring("", 1) A zero-length string

substring((), 1) A zero-length string

substring-before

400 | Appendix A: Built-in Function Reference

Usage Notes

This function extracts all the characters of a string ($arg1) that appear after the first occur-
rence of another specified string ($arg2).

Special Cases

• If $arg1 does not contain $arg2, the function returns a zero-length string.

• If $arg2 is a zero-length string or the empty sequence, the function returns $arg1 in its
entirety.

• If $arg1 is a zero-length string or the empty sequence, and $arg1 is not, the function
returns a zero-length string.

• If $collation is provided, the comparison uses that collation; otherwise, the default
collation is used.

Examples

Related Functions

substring, substring-before

substring-before Extracts the substring that is before the first occurrence of another specified string

Signature
substring-before($arg1 as xs:string?, $arg2 as xs:string?,

$collation as xs:string) as xs:string

Usage Notes

This function extracts all the characters of a string ($arg1) that appear before the first
occurrence of another specified string ($arg2).

Special Cases

• If $arg1 does not contain $arg2, the function returns a zero-length string.

• If $arg1 is a zero-length string or the empty sequence, the function returns a zero-
length string.

Example Return value

substring-after("query", "u") ery

substring-after("queryquery", "ue") ryquery

substring-after("query", "y") A zero-length string

substring-after("query", "x") A zero-length string

substring-after("query", "") query

substring-after("", "x") A zero-length string

sum

Appendix A: Built-in Function Reference | 401

• If $arg2 is a zero-length string or the empty sequence, the function returns a zero-
length string.

• If $collation is provided, the comparison uses that collation; otherwise, the default
collation is used. Collations are described in Chapter 17.

Examples

Related Functions

substring, substring-after

sum Calculates the total value of the items in a sequence

Signature
sum($arg as xs:anyAtomicType*, $zero as xs:anyAtomicType?) as xs:anyAtomicType?

Usage Notes

The $arg sequence can contain a mixture of numeric and untyped values. Numeric values
are promoted as necessary to make them all the same type. Untyped values are cast as
numeric xs:double values.

The function can also be used on duration values, so the $arg sequence can contain all
xs:yearMonthDuration values or all xs:dayTimeDuration values (but not a mixture of the
two). The $arg sequence cannot contain a mixture of duration and numeric values.

The $zero argument allows you to specify an alternate value for the sum of the empty
sequence. If $arg is the empty sequence, and $zero is provided, the function returns $zero.
The $zero argument could be the empty sequence, the integer 0, the value NaN, a duration
of zero seconds, or any other atomic value. The main use cases of $zero are (a) to supply
numeric zero in the desired datatype, e.g., xs:decimal, and (b) to supply a zero duration if
you are summing durations. Since the processor, in the absence of static typing, cannot tell
the difference between a zero-length sequence of numbers and a zero-length sequence of
durations, this is the only way to tell it which kind of value is being totaled.

Example Return value

substring-before("query", "r") que

substring-before("query", "ery") qu

substring-before("queryquery", "ery") qu

substring-before("query", "query") A zero-length string

substring-before("query", "x") A zero-length string

substring-before("query", "") A zero-length string

substring-before("query", ()) A zero-length string

timezone-from-date

402 | Appendix A: Built-in Function Reference

Special Cases

• If $arg is the empty sequence, and $zero is not provided, the function returns the
xs:integer value 0.

• If $arg contains any NaN values, the function returns NaN.

• If $arg contains untyped values that cannot be cast to xs:double, the error “Invalid
value for cast/constructor” (FORG0001) is raised.

• If $arg contains values of different types, or values that are not numbers or durations,
the error “Invalid argument type” (FORG0006) is raised.

Examples

timezone-from-date Gets the time zone of a date

Signature
timezone-from-date($arg as xs:date?) as xs:dayTimeDuration?

Usage Notes

This function returns the time zone of an xs:date value, offset from UTC, as an xs:
dayTimeDuration value between –PT14H and PT14H. If the time zone is UTC, the value PT0S is
returned.

Special Cases

• If $arg is the empty sequence, the function returns the empty sequence.

• If $arg does not have an explicit time zone, the function returns the empty sequence. It
does not return the implicit time zone.

Examples

• timezone-from-date(xs:date("2006-08-15-05:00")) returns –PT5H.

• timezone-from-date(xs:date("2006-08-15")) returns the empty sequence, regardless of
the implicit time zone.

Example Return value

sum((1, 2, 3)) 6

sum(doc("order.xml")//item/@quantity) 7

sum(doc("order.xml")//item/@dept) Error FORG0001

sum((xs:yearMonthDuration("P1Y2M"),
 xs:yearMonthDuration("P2Y3M")))

P3Y5M

sum((1, 2, 3, ())) 6

sum((1, 2, xs:yearMonthDuration("P1Y"))) Error FORG0006

sum(()) 0

sum((), ()) ()

timezone-from-time

Appendix A: Built-in Function Reference | 403

Related Functions

timezone-from-dateTime, timezone-from-time

timezone-from-dateTime Gets the time zone of a date/time

Signature
timezone-from-dateTime($arg as xs:dateTime?) as xs:dayTimeDuration?

Usage Notes

This function returns the time zone of an xs:dateTime value, offset from UTC, as an xs:
dayTimeDuration value between –PT14H and PT14H. If the time zone is UTC, the value PT0S is
returned.

Special Cases

• If $arg is the empty sequence, the function returns the empty sequence.

• If $arg does not have an explicit time zone, the function returns the empty sequence. It
does not return the implicit time zone.

Examples

• timezone-from-dateTime(xs:dateTime("2006-08-15T10:30:23-05:00")) returns –PT5H.

• timezone-from-dateTime(xs:dateTime("2006-08-15T10:30:23")) returns the empty
sequence, regardless of the implicit time zone.

Related Functions

timezone-from-date, timezone-from-time

timezone-from-time Gets the time zone of a time

Signature
timezone-from-time($arg as xs:time?) as xs:dayTimeDuration?

Usage Notes

This function returns the time zone of an xs:time value, offset from UTC, as an xs:
dayTimeDuration value between –PT14H and PT14H. If the time zone is UTC, the value PT0S is
returned.

Special Cases

• If $arg is the empty sequence, the function returns the empty sequence.

• If $arg does not have an explicit time zone, the function returns the empty sequence. It
does not return the implicit time zone.

tokenize

404 | Appendix A: Built-in Function Reference

Examples

Related Functions

timezone-from-dateTime, timezone-from-date

tokenize Breaks a string into a sequence of strings, using a regular expression to identify the separator

Signature
tokenize($input as xs:string?, $pattern as xs:string,

$flags as xs:string) as xs:string*

Usage Notes

The $pattern argument is a regular expression that represents the separator. The regular
expression syntax is covered in Chapter 18. The simplest patterns can be a single space, or
a string that contains the separator character, such as ,. However, certain characters must
be escaped in regular expressions, namely . \ ? * + | ^ $ { } () [and]. Table A-7 shows
some useful patterns for separators.

The separators are not included in the result strings. If two adjacent separators appear, a
zero-length string is included in the result sequence. If the string starts with the separator, a
zero-length string is the first value returned. Likewise, if the string ends with the separator,
a zero-length string is the last value in the result sequence.

Example Return value

timezone-from-time(xs:time("09:54:00-05:00")) -PT5H

timezone-from-time(xs:time("09:54:00+05:00")) PT5H

timezone-from-time(xs:time("09:54:00Z")) PT0S

timezone-from-time(xs:time("09:54:00")) ()

Table A-7. Useful separator patterns

Pattern Meaning

\s A single whitespace character (space, tab, carriage return, or line feed)

\s+ One or more consecutive whitespace characters

, Comma

,\s* A comma followed by zero or more whitespace characters

[,\s]+ One or more consecutive commas and/or whitespace characters

\t Tab character

[\n\r]+ One or more consecutive carriage return and/or line-feed characters

\W+ One or more nonword characters

trace

Appendix A: Built-in Function Reference | 405

The $flags argument allows for additional options in the interpretation of the regular
expression, such as multi-line processing and case insensitivity. It is discussed in detail in
“Using Flags” in Chapter 18.

If a particular point in the string could match more than one alternative, the first alterna-
tive is chosen. This is exhibited in the last row in the Example table, where the function
considers the comma to be the separator, even though ",x" also applies.

Special Cases

• If $input is the empty sequence, or $input is a zero-length string, the function returns
the empty sequence.

• If $pattern is not a valid regular expression, the error “Invalid regular expression”
(FORX0002) is raised.

• If the entire $pattern matches a zero-length string, for example q?, the error “Regular
expression matches zero-length string” (FORX0003) is raised.

• If $flags contains unsupported options, the error “Invalid regular expression flags”
(FORX0001) is raised.

Examples

trace Traces the value of an item for debugging or logging purposes

Signature
trace($value as item()*, $label as xs:string) as item()*

Example Return value

tokenize("a b c", "\s") ("a", "b", "c")

tokenize("a b c", "\s") ("a", "", "", "b", "c")

tokenize("a b c", "\s+") ("a", "b", "c")

tokenize(" b c", "\s") ("", "b", "c")

tokenize("a,b,c", ",") ("a", "b", "c")

tokenize("a,b,,c", ",") ("a", "b", "", "c")

tokenize("a, b, c", "[,\s]+") ("a", "b", "c")

tokenize("2006-12-25T12:15:00", "[\-T:]") ("2006","12","25","12","15","00")

tokenize("Hello, there.", "\W+") ("Hello", "there", "")

tokenize((), "\s+") ()

tokenize("abc", "\s") abc

tokenize("abcd", "b?") Error FORX0003

tokenize("a,xb,xc", ",|,x") ("a", "xb", "xc")

translate

406 | Appendix A: Built-in Function Reference

Usage Notes

This function accepts an item and a label for that item, and returns the item unchanged.
The exact behavior of the function is implementation-dependent, but generally the
processor puts the label and the value of the item in a logfile or user console.

Example

trace($var1, "The value of $var1 is: ") might write the string The value of $var1 is: 4 to a
logfile.

Related Functions

error

translate Replace individual characters in a string with other individual characters

Signature
translate($arg as xs:string?, $mapString as xs:string,

$transString as xs:string) as xs:string

Usage Notes

The $mapString argument is a list of characters to be changed, and $transString is the list
of replacement characters. Each character in $mapString is replaced by the character in the
same position in $transString. If $mapString is longer than $transString, the characters in
$mapString that have no corresponding character in $transString are not included in the
result. Characters in the original string that do not appear in $mapString are copied to the
result unchanged.

Note that this function is only for replacing individual characters with other individual
characters or removing individual characters. If you want to replace sequences of charac-
ters, you should use the replace function instead. This function is sometimes used for
translating strings between lowercase and uppercase, but the upper-case and lower-case
functions do this more robustly based on Unicode mappings.

Special Cases

• If $arg is the empty sequence, the function returns a zero-length string.

Examples

Example Return value

translate("1999/01/02", "/", "-") 1999-01-02

translate("xml query", "qlmx", "QLMX") XML Query

translate("xml query", "qlmx ", "Q") Query

translate("xml query", "qlmx ", "") uery

translate("xml query", "abcd", "ABCD") xml query

translate("", "qlmx ", "Q") A zero-length string

translate((), "qlmx ", "Q") A zero-length string

unordered

Appendix A: Built-in Function Reference | 407

Related Functions

trace

true Constructs a Boolean true value

Signature
true() as xs:boolean

Usage Notes

This function, which takes no arguments, is useful for constructing the Boolean value true.
XQuery uses the false() and true() functions instead of keywords false and true. This is
most commonly used to supply a value in a function call where a Boolean value is required.

Example

The expression true() returns the xs:boolean value true.

Related Functions

false

unordered Signals to the processor that order is insignificant

Signature
unordered($sourceSeq as item()*) as item()*

Usage Notes

In cases where the order of the results does not matter, the processor may be much more
efficient if it does not have to keep track of order. This is especially true for FLWORs that
perform joins. For example, processing multiple variable bindings in a for clause might be
significantly faster if the processor can decide which variable binding controls the join
without regard to the order of the results. A query author can tell the processor that order
does not matter by enclosing an expression in a call to the unordered function.

Example
unordered(
for $item in doc("order.xml")//item,
 $product in doc("catalog.xml")//product
where $item/@num = $product/number
return
 <item number="{$item/@num}" name="{$product/name}"
 quantity="{$item/@quantity}"/>
)

upper-case

408 | Appendix A: Built-in Function Reference

upper-case Converts a string to uppercase

Signature
upper-case($arg as xs:string?) as xs:string

Usage Notes

The mappings between lowercase and uppercase characters are determined by Unicode
case mappings. If a character in $arg does not have a corresponding uppercase character, it
is included in the result string unchanged.

For English, you can do a case-blind comparison by writing upper-case($A)=upper-
case($B) (or use lower-case instead). However this doesn’t always work well for other
languages. It’s better to use a case-insensitive collation.

Special Cases

• If $arg is the empty sequence, the function returns a zero-length string.

Examples

Related Functions

lower-case

year-from-date Gets the year portion of a date

Signature
year-from-date($arg as xs:date?) as xs:integer?

Usage Notes

This function returns the year portion of an xs:date value as an integer.

Special Cases

• If the year is negative, the function returns a negative number.

• If $arg is the empty sequence, the function returns the empty sequence.

Example Return value

upper-case("query") QUERY

upper-case("QUERY") QUERY

upper-case("Query") QUERY

upper-case("query-123") QUERY-123

upper-case("Schloß") SCHLOSS

years-from-duration

Appendix A: Built-in Function Reference | 409

Example

year-from-date(xs:date("2006-08-15")) returns 2006.

Related Functions

year-from-dateTime

year-from-dateTime Gets the year portion of a date/time

Signature
year-from-dateTime($arg as xs:dateTime?) as xs:integer?

Usage Notes

This function returns the year portion of an xs:dateTime value as an integer.

Special Cases

• If the year is negative, the function returns a negative number.

• If $arg is the empty sequence, the function returns the empty sequence.

Example

year-from-dateTime(xs:dateTime("2006-08-15T10:30:23")) returns 2006.

Related Functions

year-from-date

years-from-duration Gets the normalized number of years in a duration

Signature
years-from-duration($arg as xs:duration?) as xs:integer?

Usage Notes

This function calculates the years component of a normalized xs:duration value. This is
not necessarily the same as the integer that appears before the Y in the value. For example,
if the duration is P1Y18M, the function returns 2 rather than 1. This is because 18 months is
equal to 1.5 years, and the normalized value is therefore P2Y6M.

Special Cases

• If $arg is a negative duration, the function returns a negative value.

• If $arg is the empty sequence, the function returns the empty sequence.

zero-or-one

410 | Appendix A: Built-in Function Reference

Examples

zero-or-one Verifies that a sequence does not contain more than one item

Signature
zero-or-one($arg as item()*) as item()?

Usage Notes

If $arg contains zero or one items, $arg is returned. Otherwise, the error “fn:zero-or-one
called with a sequence containing more than one item” (FORG0003) is raised.

This function is useful when static typing is in effect, to avoid apparent static type errors.
For example, to use the number function on a particular price, you might be tempted to
write the expression:

number (doc("prices.xml")//prod[@num = 557]/price)

However, if static typing is used, this expression causes a static error. This is because there
could be more than one price element that matches that criterion, while the number func-
tion requires that one zero or one item be provided. A static error can be avoided by using
the expression:

number (zero-or-one(doc("prices.xml")//prod[@num = 557]/price))

In this case, no static error is raised. Rather, a dynamic error is raised if more than one
price element is returned by the path expression. For more information on static typing,
see Chapter 14.

If static typing is not in effect, calling exactly-one is not usually necessary, but it does no
harm. The effect is usually to make explicit a runtime type check that would otherwise
have been done automatically.

Examples

Related Functions

one-or-more, exactly-one

Example Return value

years-from-duration(xs:duration("P3Y")) 3

years-from-duration(xs:duration("P3Y11M")) 3

years-from-duration(xs:duration("-P18M")) -1

years-from-duration(xs:duration("P1Y18M")) 2

years-from-duration(xs:duration("P12M")) 1

Example Return value

zero-or-one(()) ()

zero-or-one("a") a

zero-or-one(("a", "b")) Error FORG0003

411

Appendix B – APPENDIX B

Built-in Types2

This appendix describes all of the types that are built into XQuery via the XML
Schema specification. For each type, it describes the set of valid values, as well as
notes on comparing and casting values of these types. The types, depicted in Figure
B-1, are listed alphabetically in this appendix.

xs:anyAtomicType
The type xs:anyAtomicType is a generic type that encompasses all atomic types, both
primitive and derived, including xs:untypedAtomic. No values ever actually have the
type xs:anyAtomicType; they always have a more specific type. As such, it does not
have a corresponding constructor.

However, this type name can be used as a placeholder for all other atomic types in
function signatures and sequence types. For example, the distinct-values function
signature specifies that its argument is xs:anyAtomicType. This means that any atomic
value of any type can be passed to this function.

This type isn’t actually defined in XML Schema 1.0, although it’s in the XML
Schema namespace for convenience.

xs:anyType
The type xs:anyType is given to some element nodes without a more specific type. The
difference between xs:anyType and xs:untyped is that an element of type xs:anyType
may contain other elements that have specific types. Elements of type xs:untyped, on
the other hand, always have children that are also untyped. An element is assigned
the type xs:anyType if:

412 | Appendix B: Built-in Types

• Validation was attempted but the element was found to be invalid (or partially
valid). Some implementations may allow the query evaluation to continue even if
validation fails.

• The element is the result of an element constructor, and construction mode is set
to preserve.

xs:anyURI
The primitive type xs:anyURI represents a Uniform Resource Identifier (URI) reference.
The value has to be a lexically valid URI reference. Since the bare minimum rules for
valid URI references are fairly generic, most implementations accept most character
strings, including a zero-length string. The only values that are not accepted are those
that make inappropriate use of reserved characters, such as those that contain multiple #
characters or have % characters that are not followed by two hexadecimal digits.

Figure B-1. Built-in types

xs:anyAtomicType

xs:untypedAtomic

xs:dateTime

xs:date

xs:time

xs:duration

xs:float

xs:double

xs:decimal

xs:gYearMonth

xs:gYear

xs:gMonthDay

xs:gDay

xs:gMonth

xs:boolean

xs:base64Binary

xs:hexBinary

xs:anyURI

xs:QName

xs:NOTATION

xs:yearMonthDuration

xs:dayTmeDuration

xs:unsignedLong

xs:unsignedInt

xs:unsignedShort

xs:unsignedByte

xs:positiveInteger

xs:nonNegativeInteger

xs:negativeInteger

xs:long

xs:int

xs:short

xs:byte

xs:nonPositiveInteger

xs:Integer

xs:ID

xs:IDREF

xs:ENTITY

xs:NCName

xs:Name

xs:language

xs:NMTOKEN

xs:token

xs:normalizedString

xs:string

xs:anyURI | 413

Some URI processors require that certain non-ASCII characters be escaped using a per-
cent sign (%) followed by a two-digit Unicode code point. However, the xs:anyURI
type does accept these characters escaped or unescaped. Table B-1 shows some
examples of valid and invalid URI references.

For more information on URIs, see “Working with URIs” in Chapter 20.

Casting and Comparing xs:anyURI Values
Values of type xs:anyURI can be cast to and from xs:string or xs:untypedAtomic. No
escaping or unescaping occurs when values are cast among these types. To escape
reserved characters in URIs, use one of the functions iri-to-uri, escape-html-uri, or
encode-for-uri.

In addition, xs:anyURI values are automatically promoted to xs:string whenever a
string is expected by a function or operator. For example, you could pass an xs:anyURI
value to the substring function, or to the escape-uri function, both of which expect
an xs:string value as their first argument. This also means that xs:anyURI values can
be compared to strings and sorted with them.

Two xs:anyURI values are considered equal if they have identical characters (based
on Unicode code points). This means that if they are capitalized differently, they are
considered different values, even if they may be seemingly equivalent URLs. For
example, http://datypic.com/prod is not equal to http://datypic.com/proD, because
the last letter is capitalized differently.

Values of type xs:anyURI that are relative URIs are also compared based on code
points, and no attempt is made to determine or compare their base URI. For example,

Table B-1. Values of the xs:anyURI type

Values Explanation

Valid

http://datypic.com Absolute URI (in this case, an HTTP URL)

http://datypic.com/prod.html#shirt Absolute URI with fragment identifier

mailto:info@datypic.com Absolute URI using mailto scheme

../%C3%A9dition.html Relative URI with escaped non-ASCII character

../édition.html Relative URI with unescaped non-ASCII character

../prod.html#A557 Relative URI with fragment identifier

urn:datypic:com Absolute URI (in this case, a URN)

Empty values are allowed

Invalid

http://datypic.com#frag1#frag2 Too many fragment identifiers (# characters)

http://datypic.com#f%rag % character followed by something other than two hexadecimal
digits

414 | Appendix B: Built-in Types

../prod is always equal to ../prod, even if the two xs:anyURI values may have come
from different XHTML documents with different base URIs.

xs:base64Binary
The primitive type xs:base64Binary represents binary data in base-64 encoding. The
following rules apply to xs:base64Binary values:

• The following characters are allowed: the letters A through Z (uppercase and
lowercase), digits 0 through 9, the plus sign (+), the slash (/), the equals sign (=),
and XML whitespace characters.

• XML whitespace characters can appear anywhere in the value.

• The number of nonwhitespace characters must be divisible by four.

• Equals signs, which are used as padding, can only appear at the end of the value,
and there can be zero, one, or two of them. If there are two equals signs, they
must be preceded by one of the following characters: A, Q, g, w. If there is only
one equals sign, it must be preceded by one of the following characters: A, E, I,
M, Q, U, Y, c, g, k, o, s, w, 0, 4, 8.

Values of type xs:base64Binary can be cast to and from xs:hexBinary, xs:string, and
xs:untypedAtomic. When cast to xs:string, an xs:base64Binary value is converted to
its canonical representation, which contains no whitespace characters except for a
line feed (#xA) character inserted after every 76 characters and at the end.

Note that these rules for acceptable base-64 values are rather strict, and processors
are expected to enforce the rules strictly. This differs from practice elsewhere, and
some software may generate “base 64” that doesn’t meet these rules.

Table B-2 lists some values of the xs:base64Binary type. For more information on
base-64 encoding, see RFC 2045: Multipurpose Internet Mail Extensions (MIME) Part
One: Format of Internet Message Bodies.

Table B-2. Values of the xs:base64Binary type

Values Explanation

Valid

0DC7

0 DC7 0F+9 Whitespace is allowed anywhere in the value

0F+40A== Equals signs are used for padding

An empty value is valid

Invalid

DC7 Odd number of characters not valid; characters appear in groups of four

==0F Equals signs can only appear at the end

xs:boolean | 415

xs:boolean
The primitive type xs:boolean represents a logical true or false value. The valid lexi-
cal representations for xs:boolean are false, true, 0 (which is equal to false), and 1
(which is equal to true). The values are case-sensitive, so TRUE and FALSE are not valid
lexical representations.

Constructing xs:boolean Values
In addition to the standard xs:boolean constructor, xs:boolean values can be con-
structed using the true and false functions, which take no arguments and return the
appropriate value. For example, true() returns the value true.

Boolean values are more often constructed indirectly, as:

• The result of a function that returns a Boolean value, such as exists($seq1)

• The value of a comparison expression, such as $price > 20

• The result of a path expression that is evaluated using its effective Boolean value,
such as if (doc("catalog.xml")//product) ...

In addition, a function named boolean can be used to explicitly convert a sequence to
its effective Boolean value. A sequence that is an xs:boolean value false, a single num-
ber 0 or NaN, a single zero-length string, or the empty sequence, evaluates to false. Oth-
erwise, it evaluates to true. Note that it doesn’t give the same result as the xs:boolean
constructor—for example, xs:boolean("false") is false, but boolean("false") is true.
More information on the boolean function can be found in Appendix A.

Casting xs:boolean Values
Values of type xs:string or xs:untypedAtomic can be cast to xs:boolean. The string
false (all lowercase), or the string 0 is converted to the value false. The string true
(all lowercase) or 1 is converted to true. Any other string value raises an error; other
strings that may appear to be equal to 0 or 1, such as 0.0 or 01, are not accepted.

Values of any of the numeric types can also be cast to and from xs:boolean. A
numeric value that is equal to 0 or NaN is converted to false; any other numeric value
is converted to true.

Likewise, values of type xs:boolean can be cast to xs:string, xs:untypedAtomic, and
any of the numeric types. When they are cast to xs:string or xs:untypedAtomic, they
are represented as true and false, not their numeric equivalents.

416 | Appendix B: Built-in Types

xs:byte
The type xs:byte represents an integer between –128 and 127 inclusive. It is ultimately
derived from xs:decimal, via xs:integer. Its value can be a sequence of digits, option-
ally preceded by a sign (+ or –). For example, –128, –1, 0, 1, and +127 are valid values.

xs:date
The primitive type xs:date represents a date of the Gregorian calendar. The lexical
representation of xs:date is YYYY-MM-DD where YYYY represents the year, MM the month,
and DD the day. The year value has to be at least four digits, but it can be more than
four digits to represent years later than 9999. However, XQuery implementations are
not required to support more than four digits. A preceding minus sign (–) can be
used to represent years before 0001. A time zone can be added to the end, as
described in “Time Zones” in Chapter 19.

Values of type xs:date can be cast to and from xs:dateTime, as described in the sec-
tion on xs:dateTime. You can obtain the current date using the current-date func-
tion, which returns a value of type xs:date.

Table B-3 lists some values of the xs:date type. For more information on working
with dates, see Chapter 19.

xs:dateTime
The primitive type xs:dateTime represents a combined date and time. The lexical repre-
sentation of xs:dateTime is YYYY-MM-DDThh:mm:ss.sss, which is a concatenation of the
xs:date and xs:time representation, with an uppercase letter T between them. The con-
straints described for the xs:date and xs:time types are also true for xs:dateTime. A
time zone can be added to the end, as described in “Time Zones” in Chapter 19.

Table B-3. Values of the xs:date type

Values Explanation

Valid

2006-05-03 May 3, 2006

2006-05-03-05:00 May 3, 2006, U.S. Eastern Standard Time, which is five hours
behind Coordinated Universal Time (UTC)

2006-05-03Z May 3, 2006, Coordinated Universal Time (UTC)

Invalid

2006/05/03 Slashes are not allowed as separators

05-03-2006 The value must be in YYYY-MM-DD order

2006-09-31 The date must be valid (September has 30 days)

An empty value or zero-length string is not permitted

xs:dayTimeDuration | 417

Table B-4 lists some values of the xs:dateTime type. For more information on work-
ing with dates and times, see Chapter 19.

Values of type xs:dateTime can be constructed using the standard xs:dateTime
constructor. In addition, a function named dateTime can be used to construct an
xs:dateTime value from an xs:date and an xs:time. You can obtain the current date/
time using the current-dateTime function, which returns a value of type xs:dateTime.

It is possible to cast some values to and from xs:dateTime, as shown in the exam-
ples in Table B-5. You can split an xs:dateTime value into its date and time compo-
nents by casting it to xs:date or xs:time. Additionally, xs:date values can be cast
to xs:dateTime, in which case the time components are filled in with zeros. Time
zones are unchanged by the cast.

xs:dayTimeDuration
The xs:dayTimeDuration type is a restriction of the xs:duration type, with only day
(D), hour (H), minute (M), and second (S) components allowed. Its lexical representa-
tion is PnDTnHnMnS, where an uppercase P starts the expression, n indicates the quan-
tity of each component, and an uppercase letter T separates the day and time

Table B-4. Values of the xs:dateTime type

Values Explanation

Valid

2006-05-03T13:20:00 1:20 P.M. on May 3, 2006

2006-05-03T13:20:15.5 1:20 P.M. and 15.5 seconds on May 3, 2006

2006-05-03T13:20:00-05:00 1:20 P.M. on May 3, 2006, U.S. Eastern Standard Time

2006-05-03T13:20:00Z 1:20 P.M. on May 3, 2006, Coordinated Universal Time (UTC)

2006-05-03T24:00:00 Midnight the evening of May 3/morning of May 4

2006-05-04T00:00:00 Midnight the evening of May 3/morning of May 4 (equal to the previous example)

Invalid

2006-05-03T13:00 Seconds must be specified

2006-05-03 The time is required

2006-05-0313:20:00 The letter T is required

An empty value or zero-length string is not permitted

Table B-5. Examples of casting to date and time values

Expression Result

xs:dateTime("2006-05-03T10:32:15") cast as xs:date 2006-05-03

xs:dateTime("2006-05-03T10:32:15") cast as xs:time 10:32:15

xs:date("2006-05-03") cast as xs:dateTime 2006-05-03T00:00:00

418 | Appendix B: Built-in Types

components. For example, the value P3DT5H represents a period of three days and five
hours. You can omit components whose quantity is zero, but at least one compo-
nent is required.

All of the lexical rules for xs:duration also apply to the xs:dayTimeDuration type.
This includes allowing a negative sign at the beginning of the value. Table B-6 lists
some values of the xs:dayTimeDuration type.

In previous versions of XQuery (including the Candidate Recommen-
dation), dayTimeDuration was prefixed with xdt: instead of xs: because
it was in a different namespace. Some processors still support the pre-
vious namespaces for these types instead.

Unlike the xs:duration type, the xs:dayTimeDuration type is totally ordered, mean-
ing that its values can be compared using the operators <, >, <=, and >=. For more on
working with durations, see Chapter 19.

xs:decimal
The primitive type xs:decimal represents a decimal number. The lexical representa-
tion of xs:decimal is a sequence of digits that can be preceded by a sign (+ or –) and
may contain a decimal point (.). Trailing zeros after the decimal point are not consid-
ered significant. That is, the decimal values 5.1 and 5.1000 are considered equal.

Table B-7 lists some values of the xs:decimal type.

Table B-6. Values of the xs:dayTimeDuration type

Values Explanation

Valid

P6DT11H32M20S 6 days, 11 hours, 32 minutes, 20 seconds

P2DT3H 2 day, 3 hours

PT40H 40 hours (the number of hours can be more than 24)

PT0S 0 seconds

-P60D Minus 60 days

Invalid

P2Y Years and months may not be specified

P15.5D Only the seconds number can contain a decimal point

P1D2H The letter T must be used to separate day and time components

PT30S35M Minutes must appear before seconds

An empty value or zero-length string is not permitted

xs:double | 419

Implementations vary in the number of significant digits they allow. They are free to
round or truncate values to the number of digits they support. If overflow occurs
during arithmetic operations on xs:decimal values, an error is raised. When under-
flow occurs, the value 0.0 is returned.

Casting xs:decimal Values
Values of type xs:decimal can be cast to and from any of the other numeric types.
Casting among numeric types is straightforward if the value is in the value space of
both types. For example, casting an xs:decimal value 12.5 to xs:float results in a
value 12.5E0 whose type is xs:float.

However, some xs:float or xs:double values cannot be cast to xs:decimal. An error is
raised if you attempt to cast to xs:decimal one of the special values NaN, INF or –INF, or
a value that is too large or too small to be supported by the implementation.

You can cast xs:decimal values to xs:integer, in which case the value is truncated.

Values of type xs:decimal can also be cast to and from xs:string, xs:untypedAtomic,
and xs:boolean. When cast to xs:string, the value will have no positive sign, no
leading zeros, and no trailing zeros after the decimal point, except that there will
always be at least one digit before the decimal point. If there is no fractional part, the
decimal point is omitted. When cast to xs:boolean, the value 0 becomes false, and
all other values become true.

xs:double
The primitive type xs:double is patterned after an IEEE double-precision 64-bit float-
ing-point number. The lexical representation is a mantissa (a decimal number) fol-
lowed, optionally, by the letter E (in upper or lowercase), followed by an integer

Table B-7. Values of the xs:decimal type

Values Explanation

Valid

5.0

-5.2 A sign is permitted

6 A decimal point is not required

0

0006.000 Leading and trailing zeros are valid

Invalid

5,6 The decimal separator must be a period, not a comma

1e6 Exponential notation is not allowed; use xs:float or xs:double instead

An empty value or zero-length string is not permitted

420 | Appendix B: Built-in Types

exponent. For example, 3E2 represents 3 × 102, or 300. In addition, there are three
special values: INF, (infinity), –INF (negative infinity), and NaN (not a number).

Table B-8 lists some values of the xs:double type.

XQuery makes a distinction between positive and negative zero values for the xs:double
type. 0 and –0 are considered to be equal but separate values.

The implementation has some flexibility regarding how to handle overflow or under-
flow during arithmetic operations on xs:double values. The processor may raise an
error. Alternatively, in an overflow situation, it may return INF, –INF, or the largest or
smallest possible value. For underflow, it may return the closest possible value to
zero.

Casting xs:double Values
Values of type xs:double can be cast to and from any of the other numeric types.
Casting among numeric types is straightforward if the value is in the value space of
both types. For example, casting an xs:double value 12.5E0 to xs:float results in a
value 12.5E0 whose type is xs:float.

However, some xs:double values are either too large or are otherwise not repre-
sented in the value spaces of xs:float, xs:decimal, or xs:integer. See the descrip-
tions of these types for more information.

Values of type xs:double can also be cast to and from xs:string, xs:untypedAtomic,
and xs:boolean. When cast to xs:string, if the value is between 0.000001 (inclusive)

Table B-8. Values of the xs:double type

Values Explanation

Valid

-5E12

44.56E5

+23.2e-2

12

+3.5 Any value valid for xs:decimal is also valid for xs:float and xs:double

-0 Negative zero

INF Positive infinity

NaN Not a number

Invalid

-5E3.5 The exponent must be an integer

 37E An exponent must be specified if E is present

An empty value or zero-length string is not permitted

xs:duration | 421

and 1,000,000 (exclusive), the value is represented as a decimal. It will have no expo-
nent, no positive sign, and no leading or trailing zeros, except that there will always
be at least one digit before the decimal point. If there is no fractional part, the deci-
mal point is omitted. If the value is outside that range, it is represented using an
exponent as shown in the first three examples in Table B-8.

xs:duration
The primitive type xs:duration represents a duration of time. It allows you to spec-
ify a number of years (Y), months (M), days (D), hours (H), minutes (M), and seconds
(S). The lexical representation of xs:duration is PnYnMnDTnHnMnS, where an uppercase
P starts the expression, n indicates the quantity of each component, and an upper-
case letter T separates the day and time components. For example, the value P3YT5H
represents a period of three years and five hours.

The following rules apply to xs:duration values:

• A minus sign may appear at the beginning of the value (before the P) to indicate
a negative duration.

• You can omit components whose quantity is zero, but at least one component is
required.

• If no time components (hours, minutes, seconds) are specified, the T cannot
appear.

• The numbers must be integers, except for the number of seconds, which can
include a decimal point. XQuery implementations are required to support up to
three fractional digits in the number of seconds, but may support more.

• If a decimal point appears in the number of seconds, there must be at least one
digit after the decimal point.

Table B-9 lists some values of the xs:duration type. For more information on work-
ing with durations, see Chapter 19.

Table B-9. Values of the xs:duration type

Values Explanation

Valid

P3Y5M8DT9H25M20S 3 years, 5 months, 8 days, 9 hours, 25 minutes, 20 seconds

P2DT3H 2 day, 3 hours

P25M 25 months (the number of months may be more than 12)

PT25M 25 minutes

P0Y 0 years

-P60Y Minus 60 years

PT1M30.5S 1 minute, 30.5 seconds

422 | Appendix B: Built-in Types

The xs:duration type is not totally ordered, meaning that values of this type cannot
be compared because it is sometimes ambiguous. For example, if you try to deter-
mine whether the xs:duration value P1M is greater than or less than the xs:duration
value P30D, it is ambiguous. Months may have 28, 29, 30, or 31 days, so is 30 days
less than a month or not?

For this reason, XQuery defines two new types that are derived from duration: xs:
yearMonthDuration and xs:dayTimeDuration. By ensuring that month and day compo-
nents never appear in the same duration, the ambiguity is eliminated.

Values of xs:duration can be tested for equality (or inequality) with other values of
the same type. Two xs:duration values will be considered equal if they have the same
(normalized) number of months and seconds. For example, P1YT60S is equal to
P12MT1M because they represent the same duration of time (12 months and 60 sec-
onds).* However, you cannot compare them using the operators <, <=, >, or >=. These
operators can be used on the two ordered subtypes.

xs:ENTITIES
The type xs:ENTITIES represents a whitespace-separated list of xs:ENTITY values.
XQuery does not provide any special functions for this type. However, since xs:ENTITY
is ultimately derived from xs:string, a value of type xs:ENTITIES can be treated like a
sequence of xs:string values.

xs:ENTITY
The type xs:ENTITY represents a value that refers to an unparsed entity, which must be
declared in the document’s DTD. The xs:ENTITY type might be used to include infor-
mation from another file that is not in XML syntax, such as images. XQuery does not
provide any special functions for this type. However, since xs:ENTITY is ultimately
derived from xs:string, xs:ENTITY values can be compared and used like strings.

Invalid

P16.3D All numbers except the seconds must be integers

P3D5H The T must be used to separate days and time components

P-40M The minus sign must appear first

P1YM5D The number of months is missing

An empty value or zero-length string is not permitted

* This is in contrast to the way they are handled in XML Schema validation, where they would be considered
two different values.

Table B-9. Values of the xs:duration type (continued)

Values Explanation

xs:float | 423

xs:float
The primitive type xs:float is patterned after an IEEE single-precision 32-bit float-
ing-point number. The lexical representation is a mantissa (a decimal number) fol-
lowed, optionally, by the letter E (in upper- or lowercase), followed by an integer
exponent. For example, 3E2 represents 3 × 102, or 300. In addition, there are three
special values: INF, (infinity), –INF (negative infinity), and NaN (not a number).

Table B-10 lists some values of the xs:float type.

XQuery makes a distinction between positive and negative zero values for the xs:float
type. 0 and –0 are considered to be equal but separate values.

The implementation has some flexibility regarding how to handle overflow or under-
flow occurs during arithmetic operations on xs:float values. The processor may
raise an error. Alternatively, in an overflow situation, it may return INF, –INF, or the
largest or smallest possible value. For underflow, it may return the closest possible
value to zero.

Casting xs:float Values
Values of type xs:float can be cast to and from any of the other numeric types. Cast-
ing among numeric types is straightforward if the value is in the value space of both
types. For example, casting an xs:float value 12.5E0 to xs:decimal results in a value
12.5 whose type is xs:decimal.

Table B-10. Values of the xs:float type

Values Explanation

Valid

-5E12

44.56E5

+23.2e-2

12

+3.5 Any value valid for xs:decimal is also valid for xs:float and xs:double

-0 Negative zero

INF Positive infinity

NaN Not a number

Invalid

-5E3.5 The exponent must be an integer

 37E An exponent must be specified if E is present

An empty value or zero-length string is not permitted

424 | Appendix B: Built-in Types

However, some xs:float values are either too large or are otherwise not represented
in the value spaces of xs:decimal or xs:integer. See the descriptions of these types
for more information.

Additionally, some special cases apply when casting xs:double values to xs:float.
Values that are too large to be represented by xs:float are cast to INF, values that are
too small are cast to –INF, and values that would cause underflow are cast to 0.

Values of type xs:float can also be cast to and from xs:string, xs:untypedAtomic,
and xs:boolean. When cast to xs:string, if the value is between 0.000001 (inclusive)
and 1000000 (exclusive), the value is represented as a decimal. It will have no expo-
nent, no positive sign, and no leading or trailing zeros, except that there will always
be at least one digit before the decimal point. If there is no fractional part, the deci-
mal point is omitted. If the value is outside that range, it is represented using an
exponent as shown in the first three examples in Table B-10.

xs:gDay
The primitive type xs:gDay represents a recurring day of the month. It can be used to
specify, for example, that bills are sent out on the 15th of each month. It does not rep-
resent a number of days; to represent that, use the xs:dayTimeDuration type instead.

The lexical representation of xs:gDay is ---DD, where DD is a two-digit day number.
An optional time zone may be used, as described in “Time Zones” in Chapter 19.
Table B-11 lists some values of xs:gDay.

Values of xs:gDay can be tested for equality (or inequality) with other values of the
same type, but they cannot be compared using the operators <, <=, >, or >=.

Values of this type can be cast from the xs:date and xs:dateTime types. For example, the
expression xs:date("2006-05-30") cast as xs:gDay returns an xs:gDay value of ---30.
They can also be cast to and from xs:string and xs:untypedAtomic.

Table B-11. Values of the xs:gDay type

Values Explanation

Valid

---04 The fourth of the month

Invalid

---41 It must be a valid day of the month

04 The three leading hyphens are required

---4 It must have two digits

An empty value or zero-length string is not permitted

xs:gMonthDay | 425

xs:gMonth
The primitive type xs:gMonth represents a recurring month. It can be used to specify,
for example, that year-end auditing occurs in October of every year. It does not rep-
resent a number of months; to represent that, use the xs:yearMonthDuration type
instead.

The lexical representation of xs:gMonth is --MM. An optional time zone may be used,
as described in “Time Zones” in Chapter 19. Table B-12 lists some values of this
type.

Values of xs:gMonth can be tested for equality (or inequality) with other values of the
same type, but you cannot compare them using the operators <, <=, >, or >=.

Values of this type can be cast from the xs:date and xs:dateTime types. For example,
the expression xs:date("2006-05-30") cast as xs:gMonth returns an xs:gMonth value
of --05. They can also be cast to and from xs:string and xs:untypedAtomic.

xs:gMonthDay
The primitive type xs:gMonthDay represents a recurring day of the year. It can be used
to specify, for example, that your anniversary is on the 30th of July every year.

The lexical representation of xs:gMonthDay is --MM-DD. An optional time zone can be
used, as described in “Time Zones” in Chapter 19. Table B-13 lists some values of
this type.

Table B-12. Values of the xs:gMonth type

Values Explanation

Valid

--06 June

Invalid

--06-- Because of an error in the first version of XML Schema, you will often see examples that use
this format, but it is technically invalid

--15 The month must be a valid month

2006-06 The year cannot be specified

06 The two leading hyphens are required

--6 It must have two digits

An empty value or zero-length string is not permitted

426 | Appendix B: Built-in Types

Values of xs:gMonthDay can be tested for equality (or inequality) with other values of
the same type, but they cannot be compared using the operators <, <=, >, or >=.

Values of this type can be cast from the xs:date and xs:dateTime types. For example,
the expression xs:date("2006-05-30") cast as xs:gMonthDay returns an xs:gMonthDay
value of --05-30. They can also be cast to and from xs:string and xs:untypedAtomic.

xs:gYear
The primitive type xs:gYear represents a specific year. The lexical representation of
xs:gYear is YYYY. A preceding minus sign (–) can be used to represent years before
0001. An optional time zone may be used, as described in “Time Zones” in
Chapter 19. Table B-14 lists some values of the xs:gYear type.

Table B-13. Values of the xs:gMonthDay type

Values Explanation

Valid

--05-03 May 3

--05-03Z May 3, Coordinated Universal Time (UTC)

Invalid

--05-32 It must be a valid day of the year

05-03 The two leading hyphens are required

--5-3 The month and day must have two digits each

An empty value or zero-length string is not permitted

Table B-14. Values of the xs:gYear type

Values Explanation

Valid

2006 2006

2006-08:00 2006, U.S. Pacific Time

12006 The year 12006

0922 The year 922

-0073 73 B.C.

Invalid

99 It must have at least four digits

922 It must have at least four digits; leading zeros can be added

An empty value or zero-length string is not permitted

xs:hexBinary | 427

Values of xs:gYear can be tested for equality (or inequality) with other values of the
same type, but they cannot be compared using the operators <, <=, >, or >=.

Values of this type can be cast from the xs:date and xs:dateTime types. For example,
the expression xs:date("2006-05-30") cast as xs:gYear returns an xs:gYear value of
2006. They can also be cast to and from xs:string and xs:untypedAtomic.

xs:gYearMonth
The primitive type xs:gYearMonth represents a specific month. The lexical representa-
tion of xs:gYearMonth is YYYY-MM. A preceding minus sign (–) can be used to repre-
sent years before 0001. An optional time zone may be used, as described in “Time
Zones” in Chapter 19. Table B-15 lists some values of the xs:gYearMonth type.

Values of xs:gYearMonth can be tested for equality (or inequality) with other values of
the same type, but they cannot be compared using the operators <, <=, >, or >=.

Values of this type can be cast from the xs:date and xs:dateTime types. For example,
the expression xs:date("2006-05-30") cast as xs:gYearMonth returns an xs:gYearMonth
value of 2006-05. They can also be cast to and from xs:string and xs:untypedAtomic.

xs:hexBinary
The primitive type xs:hexBinary represents binary data as a sequence of binary octets.
The type xs:hexBinary uses hexadecimal encoding, where each binary octet is a two-
character hexadecimal number. Digits 0 through 9 and lowercase and uppercase let-
ters A through F are permitted. For example, 0CD7 and 0cd7 are two equal xs:hexBinary
representations consisting of two octets.

Table B-16 lists some values of the xs:hexBinary type.

Table B-15. Values of the xs:gYearMonth type

Values Explanation

Valid

2006-05 May 2006

2006-05-08:00 May 2006, U.S. Pacific Time

Invalid

2006-5 The month must have two digits

2006-13 The month must be a valid month

An empty value or zero-length string is not permitted

428 | Appendix B: Built-in Types

Casting and Comparing xs:hexBinary Values
Values of type xs:hexBinary can be cast to and from xs:base64Binary, xs:string, and
xs:untypedAtomic. When cast to xs:string, xs:hexBinary values are converted to
their canonical representation, which uses only uppercase letters.

Two xs:hexBinary values can be compared using the value comparison operators =
and !=. Two xs:hexBinary values are considered equal if their canonical representa-
tions are equal. This means that the case of the letters is not taken into account in
the comparison. An xs:hexBinary value is never equal to an xs:base64Binary value,
nor is it equal to an xs:string containing the same characters.

Because the type is not ordered, two xs:hexBinary values cannot be compared using
the <, <=, >, or >= operators.

xs:ID
The type xs:ID represents a unique identifier in an XML document. It is most com-
monly used as the type of an attribute that serves as an identifier for the element that
carries it. Example B-1 shows an XML document that contains some ID attributes,
namely the id attribute of the section element, and the fnid attribute of the fn ele-
ment. Each section and fn element is uniquely identified by an ID value, such as fn1,
preface, or context.

The example assumes that this document was validated with a schema that declares
these attributes to be of type xs:ID. Having the local name id is not enough to make
an attribute an xs:ID; the attribute must be declared in a schema to have the type ID.
In fact, the name is irrelevant; an attribute named foo can have the type xs:ID, and
an attribute named id can be of type xs:integer.

Table B-16. Values of the xs:hexBinary type

Values Explanation

Valid

0CD7

0cd7 The equivalent of 0CD7

An empty value is allowed

Invalid

CD7 An odd number of characters is not allowed; characters appear in pairs

Example B-1. XML document with IDs and IDREFs (book.xml)

<book>
 <section id="preface">This book introduces XQuery...
 The examples are downloadable<fnref ref="fn1"/>...
 </section>

xs:IDREFS | 429

The values of attributes of type xs:ID must be unique within the entire XML docu-
ment. This is true even if two xs:ID values appear in attributes with different names,
or on elements with different names. For example, it would be illegal for an fn ele-
ment’s fnid attribute to have the same value as a section element’s id attribute. Val-
ues of type xs:ID follow the same rules as the xs:NCName type; they must start with a
letter or underscore, and can only contain letters, digits, underscores, hyphens, and
periods.

Because xs:ID is ultimately derived from xs:string, xs:ID values can be compared
and used like strings. For more information on working with IDs, see “Working with
IDs” in Chapter 20.

xs:IDREF
The type xs:IDREF represents a cross-reference to an xs:ID value. Like xs:ID, it is
most commonly used to describe attribute values. Each attribute of type xs:IDREF
must reference an ID in the same XML document. For example, the ref attribute of
the fnref element in Example B-1 contains an xs:IDREF value (again, assuming it is
validated with a schema). Its value, fn1, matches the value of the fnid attribute of the
fn element. You can find all the xs:IDREF values that refer to a specific ID using the
idref function.

Because xs:IDREF is ultimately derived from xs:string, xs:IDREF values can be com-
pared and used like strings. For more information on working with IDREFs, see
“Working with IDs” in Chapter 20.

xs:IDREFS
The type xs:IDREFS represents a whitespace-separated list of one or more xs:IDREF val-
ues. In Example B-1, the refs attribute of secRef is assumed to be of type xs:IDREFS.
The first refs attribute contains only one xs:IDREF (context), while the second con-
tains two xs:IDREF values (context and language).

Because xs:IDREF is derived by restriction from xs:string, a value of type xs:IDREFS
can be treated like a sequence of xs:string values.

 <section id="context">...</section>
 <section id="language">...Expressions, introduced
 in <secRef refs="context"/>, are...
 </section>
 <section id="types">...As described in
 <secRef refs="context language"/>, you can...
 </section>
 <fn fnid="fn1">See http://datypic.com.</fn>
</book>

Example B-1. XML document with IDs and IDREFs (book.xml) (continued)

430 | Appendix B: Built-in Types

xs:int
The type xs:int represents an integer between –2147483648 and 2147483647 inclu-
sive. It is ultimately derived from xs:decimal, via xs:integer. Its value can be a
sequence of digits, optionally preceded by a sign (+ or –). For example, –223, –1, 0, 5,
and +3367 are valid values.

xs:integer
The type xs:integer represents an arbitrarily large integer. It is derived from xs:decimal,
and it is the base type for many other integer types.

The lexical representation of the xs:integer type is a sequence of digits. A sign (+ or –)
may precede the numbers. Decimal points are not permitted in xs:integer values,
even if there are no significant digits after the decimal point. Table B-17 lists some
values of the xs:integer type.

Implementations vary in the number of significant digits they support. If overflow or
underflow occurs during arithmetic operations on xs:integer values, the implemen-
tation may either raise an error or return a result that is the remainder after dividing
by the largest possible integer value.

Casting xs:integer Values
Values of type xs:integer can be cast to and from any of the other numeric types.
Casting among numeric types is straightforward if the value is in the value space of
both types. For example, casting an xs:float value 12 to xs:integer in results in a
value 12 whose type is xs:integer. When casting a number with a fractional part to
xs:integer, the fractional part is truncated (not rounded).

Table B-17. Values of the xs:integer type

Values Explanation

Valid

231

00231 Leading zeros are permitted

0

+4 A sign is permitted

-4

Invalid

4.0 A decimal point is not permitted

An empty value or zero-length string is not permitted

xs:language | 431

However, some xs:float or xs:double values cannot be cast to xs:integer. An error is
raised if you attempt to cast to xs:integer one of the special values NaN, INF or –INF, or
if a value is greater or smaller than those supported by the implementation.

Values of type xs:integer can also be cast to and from xs:string, xs:untypedAtomic,
and xs:boolean. When cast to xs:string, the value will have no positive sign and no
leading zeros. When cast to xs:boolean, the value 0 becomes false, and all other val-
ues become true.

xs:language
The type xs:language represents a natural language. It is often used for attributes that
specify the language of the element. Its values conform to RFC 3066, Tags for the Identi-
fication of Languages. The most common format is a two- or three-character, (usually
lowercase) language code that follows ISO 639, such as en or fr. It can optionally be
followed by a hyphen and a two-character (usually uppercase) country code that fol-
lows ISO 3166, such as en-US. Additional dialects or country codes may be specified
at the end of the value, each preceded by a hyphen.

Processors do not verify that values of the language type conform to the above rules.
They simply validate based on the pattern specified for this type, which says that the
value must consist of parts containing one to eight characters, separated by hyphens.

The xs:language type is most commonly associated with the xml:lang attribute
defined in the XML specification; the value of this attribute may be tested using the
lang function. Table B-18 lists some values of the xs:language type.

Table B-18. Values of the xs:language type

Values Explanation

Valid

en English

en-US U.S. English

en-GB U.K. English

de German

es Spanish

fr French

it Italian

ja Japanese

nl Dutch

zh Chinese

any-value-with-short-parts Although this value is valid, it does not follow RFC 3066 guidelines

432 | Appendix B: Built-in Types

The xs:language type is derived by restriction from xs:string, so any functions and
operations that can be performed on strings, such as substring and comparing using
the < operator, can also be performed on xs:language values.

xs:long
The type xs:long represents an integer between –9223372036854775808 and
9223372036854775807 inclusive. It is ultimately derived from xs:decimal, via xs:
integer. Its value can be a sequence of digits, optionally preceded by a sign (+ or –).
For example, –9223372036854775808, 0, 1, and +214 are valid values. Because imple-
mentations are only required to support integers up to 18 digits, some may not
accept the full value range of xs:long.

xs:Name
The xs:Name type is used to represent a lexically valid name in XML. However, this
type is almost never used in XQuery or XML Schema. The xs:QName type is much
more appropriate to fully represent names, whether they are in a namespace or not.
For unqualified names or local parts of names, xs:NCName or even xs:string are also
appropriate types.

xs:NCName
The letters NC in NCName stand for noncolonized. The type xs:NCName can be used to
represent the local part of names, or even prefixes. An xs:NCName value must start
with a letter and underscore (_), and may contain only letters, digits, underscores,
hyphens, and periods.

Because xs:NCName is ultimately derived from xs:string, xs:NCName values can be
compared and used like strings.

xs:negativeInteger
The type xs:negativeInteger represents an arbitrarily large integer less than 0. It is
ultimately derived from xs:decimal via xs:integer. Its value can be a sequence of dig-
its, preceded by a sign (–). For example, –1 and –1234123412341234 are valid values.

Invalid

longerThan8 Parts may not exceed eight characters in length

An empty value or zero-length string is not permitted

Table B-18. Values of the xs:language type (continued)

Values Explanation

xs:normalizedString | 433

xs:NMTOKEN
The type xs:NMTOKEN represents a string that contains no whitespace. xs:NMTOKEN val-
ues may consist only of characters allowed in XML names, namely letters, digits,
periods, hyphens, underscores, and colons. For example, navy, 123, and SENDER_OR_
RECEIVER are all valid values. Leading and trailing whitespace is allowed but is con-
sidered insignificant.

Because xs:NMTOKEN is ultimately derived from xs:string, xs:NMTOKEN values can be
compared and used like strings.

xs:NMTOKENS
The type xs:NMTOKENS represents a whitespace-separated list of one or more xs:
NMTOKEN values. For example, navy black is a valid value that represents two different
xs:NMTOKEN values. Because xs:NMTOKEN is derived by restriction from xs:string, a
value of type xs:NMTOKENS can be treated like a sequence of xs:string values.

xs:nonNegativeInteger
The type xs:nonNegativeInteger represents an arbitrarily large integer greater than or
equal to 0. It is ultimately derived from xs:decimal via xs:integer. Its value can be a
sequence of digits, optionally preceded by a sign (+). For example, 0, 1, and
+1234123412341234 are valid values.

xs:nonPositiveInteger
The type xs:nonPositiveInteger represents an arbitrarily large integer less than or
equal to 0. It is ultimately derived from xs:decimal, via xs:integer. Its value can be a
sequence of digits, optionally preceded by a sign (– or + if the value is 0). For exam-
ple, 0, –1 and –1234123412341234 are valid values.

xs:normalizedString
The xs:normalizedString type is identical to xs:string, except in the way that
whitespace is normalized in its values. This whitespace normalization takes place dur-
ing validation, and also when values are constructed or cast to xs:normalizedString.
For values of type xs:normalizedString, the processor replaces each carriage return,
line feed, and tab by a single space. This is different from xs:string values, where
whitespace is preserved. There is no collapsing of multiple consecutive spaces into a
single space; this is done with values of type xs:token.

434 | Appendix B: Built-in Types

The whitespace handling of the xs:normalizedString type is different from that of the
normalize-string function, which does collapse multiple adjacent spaces to a single
space.

The xs:normalizedString type is derived by restriction from xs:string, so any func-
tions and operations that can be performed on strings, such as substring and com-
paring using the < operator, can also be performed on xs:normalizedString values.

xs:NOTATION
The primitive type xs:NOTATION represents a reference to an XML notation. Nota-
tions are a way to indicate how to interpret non-XML content that is rarely used in
the domain of XQuery and XML Schema. xs:NOTATION is an abstract type, and as
such, you cannot construct values that have the type xs:NOTATION. It is possible to
create user-defined types that are restrictions of xs:NOTATION, which do have type
constructors associated with them. These type constructors have the constraint that
they will only accept a literal string as an argument, not an evaluated expression.

xs:positiveInteger
The type xs:positiveInteger represents an arbitrarily large integer greater than 0. It
is ultimately derived from xs:decimal via xs:integer. Its value can be a sequence of
digits, optionally preceded by a sign (+). For example, 1 and 1234123412341234 are
valid values.

xs:QName
The primitive type xs:QName represents an XML namespace-qualified name. In
XQuery, xs:QName values have three parts: the full namespace URI, the local part of
the name, and the prefix. The namespace and the prefix are optional. If a QName
does not have a namespace associated with it, it is considered to be in “no
namespace.”

When used in a query or schema, the lexical representation of an xs:QName has just
two parts: an optional prefix and the local part of the name. Based on the prefix, the
context is used to determine the namespace URI. If the prefix is not present, either
the name is in the default namespace or it is in no namespace at all.

Table B-19 lists some values of the xs:QName type.

xs:short | 435

The prefix itself has no meaning; it is just a placeholder. However, the XQuery pro-
cessor does keep track of a QName’s prefix. This simplifies certain processes such as
serializing QNames and casting them to strings.

One of the most common ways of getting an xs:QName is to use the node-name func-
tion, which returns the name of an element or attribute as an xs:QName value.

The xs:QName type has a standard constructor that allows a value to be cast from
xs:untypedAtomic or from xs:string. However, it has a special constraint that it can
only accept a literal xs:string value (not an evaluated expression) as its argument.
The value may be prefixed, e.g., prod:number, or unprefixed, e.g., number. If a prefix is
used, it must be declared.

Two additional functions can be used to construct xs:QName values: QName and
resolve-QName.

Two xs:QName values can be compared using the = and != operators. They are consid-
ered equal if they have the exact same namespace URI (based on Unicode code
points) and the exact same local name (also based on Unicode code points); the pre-
fixes are ignored. Because the xs:QName type is not ordered, two xs:QName values can-
not be compared using the <, <=, >, or >= operators. The xs:QName type is not derived
from xs:string, so you cannot compare them to strings directly.

More information on working with qualified names can be found in “Working with
Qualified Names” in Chapter 20.

xs:short
The type xs:short represents an integer between –32768 and 32767 inclusive. It is
ultimately derived from xs:decimal via xs:integer. Its value can be a sequence of dig-
its, optionally preceded by a sign (+ or –). For example, –32768, –1, 0, 1, and +32767
are valid values.

Table B-19. Values of the xs:QName type

Values Explanation

Valid

prod:number Valid assuming the prefix prod is mapped to a namespace in scope

number Prefix and colon are optional

Invalid

:number An xs:QName must not start with a colon

prod:3rdnumber The local part must not start with a number; it must be a valid NCName

An empty value or zero-length string is not permitted

436 | Appendix B: Built-in Types

xs:string
An xs:string value is a character string that may contain any character allowed by
XML. The xs:string type is a primitive type from which a large number of other
types are derived. It is intended to represent generic character data, and whitespace
in elements of type xs:string is always preserved.

It should be noted that xs:string is not the default type for untyped values. If a value
is selected from an input document with no schema, the value is given the type xs:
untypedAtomic, not xs:string. But it is easy enough to cast an xs:untypedAtomic value
to xs:string. In fact, you can cast a value of any type to xs:string, and you can cast
an xs:string value to any type (with restrictions for xs:QName and xs:NOTATION).

Chapter 17 provides an overview of all the functions and operations on strings. All of
the operations and functions that can be performed on xs:string values can also be
performed on values whose types are restrictions of xs:string. This includes user-
defined types that appear in a schema, as well as the built-in derived types such as
xs:normalizedString, xs:language, and xs:ID.

xs:time
The primitive type xs:time represents a specific time of day. The lexical representa-
tion of xs:time is hh:mm:ss.sss where hh is the hour, mm is the minutes, and ss.sss is
the seconds. XQuery implementations are required to support at least three frac-
tional digits for the number of seconds, but may support more. To represent P.M.
values, the hours 13 through 24 should be used. Either of the values 00:00:00 or
24:00:00 can be used to represent midnight. These values are considered identical,
which means that 24:00:00 is considered less than 23:59:59. A time zone can be
added to the end, as described in “Time Zones” in Chapter 19.

Values of type xs:dateTime can be cast to xs:time, but the reverse is not true. This is
described further in the section on xs:dateTime. You can obtain the current time
using the current-time function, which returns a value of type xs:time.

Table B-20 lists some values of the xs:time type. For more information on working
with times, see Chapter 19.

Table B-20. Values of the xs:time type

Values Explanation

Valid

15:30:00 3:30 P.M.

15:30:34.67 3:30 P.M. and 34.67 seconds.

15:30:00-08:00 3:30 P.M., U.S. Pacific Time

xs:unsignedInt | 437

xs:token
The xs:token type is identical to xs:string, except in the way that whitespace is nor-
malized in its values. This whitespace normalization takes place during validation,
and also when values are constructed or cast to xs:token. In values of type xs:token,
the processor replaces each carriage return, line feed, and tab by a single space. Sub-
sequently, all consecutive whitespace characters are replaced by a single space, and
leading and trailing spaces are removed. This is different from xs:string values,
where whitespace is preserved. It is also different from xs:normalizedString, which
replaces whitespace characters but does not collapse them.

A value of type xs:token can contain whitespace, despite the fact that “token”
implies a single token. The xs:token type is derived by restriction from xs:string, so
any functions and operations that can be performed on strings, such as substring
and comparisons using the < operator, can also be performed on xs:token values.

xs:unsignedByte
The type xs:unsignedByte represents an unsigned integer between 0 and 255 inclu-
sive. It is ultimately derived from xs:decimal via xs:integer. Its value can be a
sequence of digits. For example, 0, 1, and 255 are valid values. A leading plus sign (+)
is not allowed.

xs:unsignedInt
The type xs:unsignedInt represents an unsigned integer between 0 and 4294967295
inclusive. It is ultimately derived from xs:decimal, via xs:integer. Its value can be a
sequence of digits. For example, 0, 1, and 4294967295 are valid values. A leading plus
sign (+) is not allowed.

15:30:00Z 3:30 P.M., Coordinated Universal Time (UTC)

00:00:00 Midnight

24:00:00 Midnight (equal to the previous example)

Invalid

3:40:00 All numbers must be two digits each

15:30 Seconds must be specified

15:70:00 It must be a valid time of day

An empty value or zero-length string is not permitted

Table B-20. Values of the xs:time type (continued)

Values Explanation

438 | Appendix B: Built-in Types

xs:unsignedLong
The type xs:unsignedLong represents an unsigned integer between 0 and
18446744073709551615 inclusive. It is ultimately derived from xs:decimal via xs:
integer. Its value can be a sequence of digits—e.g., 0, 1, and 18446744073709551615
are valid values. A leading plus sign (+) is not allowed.

xs:unsignedShort
The type xs:unsignedShort represents an unsigned integer between 0 and 65535
inclusive. It is ultimately derived from xs:decimal via xs:integer. Its value can be a
sequence of digits. For example, 0, 1, and 65535 are valid values. A leading plus sign
(+) is not allowed.

xs:untyped
The generic xs:untyped type applies to all element nodes that are “untyped”, i.e.,
have no specific type annotation. This includes element nodes that were not vali-
dated against a schema declaration. “Types, Nodes, and Atomic Values” in
Chapter 11 describes how element nodes might come to be untyped.

In previous versions of XQuery (including the Candidate Recommen-
dation), untyped was prefixed with xdt: instead of xs: because it was
in a different namespace. Some processors still support the previous
namespaces for these types instead.

xs:untypedAtomic
The generic xs:untypedAtomic type applies to all attribute nodes and atomic values
that are “untyped,” i.e., have no specific type. An attribute node is untyped if it was
not validated against a schema declaration. “Types, Nodes, and Atomic Values” in
Chapter 11 describes how attribute nodes might come to be untyped.

An atomic value might have the type xs:untypedAtomic if it was extracted from an
untyped element or attribute. Untyped atomic values can often be used wherever a
typed value would. This is because every function and expression has rules for cast-
ing untyped values to an appropriate type.

In previous versions of XQuery (including the Candidate Recommen-
dation), untypedAtomic was prefixed with xdt: instead of xs: because it
was in a different namespace. Some processors still support the previ-
ous namespaces for these types instead.

xs:yearMonthDuration | 439

xs:yearMonthDuration
The xs:yearMonthDuration type represents a restriction of the xs:duration type, with
only year (Y) and month (M) components allowed. Its lexical representation is PnYnM,
where an uppercase P starts the expression, and n indicates the quantity of each com-
ponent. For example, the value P3Y5M represents a period of three years and five
months. You can omit components whose quantity is zero, but at least one compo-
nent is required.

All of the lexical rules for xs:duration also apply to the xs:yearMonthDuration type.
This includes allowing a negative sign at the beginning of the value. Table B-21 lists
some values of the xs:yearMonthDuration type.

In previous versions of XQuery (including the Candidate Recommen-
dation), yearMonthDuration was prefixed with xdt: instead of xs:
because it was in a different namespace. Some processors still support
the previous namespaces for these types instead.

Unlike the xs:duration type, the xs:yearMonthDuration type is totally ordered, mean-
ing that its values can be compared. For more information on working with dura-
tions, see Chapter 19.

Table B-21. Values of the xs:yearMonthDuration type

Values Explanation

Valid

P3Y5M 3 years, 5 months

P3Y 3 years

P30M 30 months (the number of months can be more than 12)

P0M 0 months

Invalid

P2Y6M3D Days cannot be specified

P16.6Y The number of years cannot be expressed as a decimal

P2M1Y The years must appear before the months

An empty value or zero-length string is not permitted

440

Appendix CAPPENDIX C

Error Summary 3

This appendix lists all of the errors that may be raised during evaluation of a query,
in alphabetical order by name. The XQuery spec does not define any programming
API defining how queries are executed from, for example, C# or Java; but there is an
expectation that in any such API, you will be able to test these error codes to find out
what went wrong. In most cases, you can also expect that the error code will be
accompanied with an error message that gives much more detailed information.

Error names, which are in the namespace http://www.w3.org/2005/xqt-errors, are
broken down into three parts:

1. A two-character prefix indicating the specification that defines the error, listed in
Table C-1.

2. A two-character category that groups the error messages into their functional
meaning. In the case of XP and XQ errors, the categories are ST for static errors, DY
for dynamic errors, and TY for type errors.

3. A four-digit number.

FOAR0001
Division by zero, which may be raised by the div or mod operator (if the operands are
xs:integer or xs:decimal values) or by the idiv operator (regardless of the types of
the operands). Using the div operator on values of type xs:float or xs:double will
not raise this error; it will return INF or –INF.

Table C-1. Error prefixes

Error prefix Meaning

FO Functions and Operators

SE Serialization

XP XPath

XQ XQuery

FOCH0001 | 441

FOAR0002
Overflow or underflow occurred during a numeric operation. This occurs when the
result of an arithmetic operation or cast is a value that is either larger or smaller (that
is, closer to zero) than the values supported by the implementation.

FOCA0001
An attempt was made to cast to xs:decimal a value that is too large or too small to be
supported by the implementation.

FOCA0002
A value that is not lexically valid for a particular type has been encountered. This can
be raised in two situations:

• When passing an invalid name to the QName or resolve-QName function; see the
descriptions of these functions in Appendix A for details

• When attempting to cast one of the special values NaN, INF, or –INF to xs:decimal
or xs:integer

FOCA0003
An attempt was made to cast to xs:integer a value that is too large or too small to be
supported by the implementation.

FOCA0005
When multiplying or dividing a duration value by a number, the number supplied
was NaN.

FOCA0006
When casting to xs:decimal, the value supplied has greater precision than is sup-
ported by the implementation.

FOCH0001
A code point passed as an argument to the codepoints-to-string function does not
refer to a valid XML character.

442 | Appendix C: Error Summary

FOCH0002
An unsupported collation was passed as an argument to a function. Functions
that accept collations as arguments are compare, contains, starts-with, ends-with,
substring-before, substring-after, index-of, distinct-values, deep-equal, max,
and min.

FOCH0003
An unsupported normalization form was passed as an argument to the normalize-
unicode function.

FOCH0004
A collation that does not support collation units was passed to a function that
requires collation units. Functions that require collation units are contains, starts-
with, ends-with, substring-before, and substring-after.

FODC0001
A node that is not part of a complete document (i.e., does not have a document node
among its ancestors) was passed to the id or idref function.

FODC0002
When calling the doc or collection function, the processor could not retrieve a
resource from the specified URI. See the descriptions of these functions in
Appendix A for details.

FODC0003
When calling the doc or collection function multiple times with the same argument,
stability of the results returned cannot be guaranteed.

FODC0004
An invalid URI or an unknown collection URI was passed to the collection func-
tion. See the description of the collection function in Appendix A for details.

FONS0005 | 443

FODC0005
An invalid URI or an unknown document URI was passed to the doc function. See
the description of the doc function in Appendix A for details.

FODT0001
Overflow or underflow has occurred during an operation involving a date or time
value. This occurs when the result of an arithmetic operation or cast is a value that is
either larger or smaller than the values supported by the implementation.

FODT0002
Overflow or underflow has occurred during an operation involving a duration value.
This occurs when the result of an arithmetic operation or cast is a value that is either
larger or smaller than the values supported by the implementation.

FODT0003
An invalid time zone value was passed to one of the three adjust-xxx-to-timezone
functions. This may occur if the value of $timezone is not between –PT14H and PT14H
inclusive or if it does not have an even number of minutes (e.g., –PT2H30M30S).

FOER0000
A nonspecific unidentified error has occurred. This may arise if the built-in error
function is called with no arguments.

FONS0004
An undeclared prefix was used in either:

• The argument to the xs:QName type constructor

• The first argument to the resolve-QName function

FONS0005
When calling the resolve-uri function, the $base argument is not provided and the
base URI of the static context is undefined. Either add a $base argument or use a
base-URI declaration in the query prolog.

444 | Appendix C: Error Summary

FORG0001
An invalid value was passed to a type constructor or a cast expression. It might be
invalid because it is too large or too small, or because it does not have the correct lex-
ical form or it does not follow the validity rules for the target datatype. This can hap-
pen in several situations:

• When passing an invalid value to a type constructor, for example xs:
integer("abc")

• When passing an invalid value to a cast expression, for example "2006-13-32"
cast as xs:date

• When passing an untyped value to one of the sum, min, max, or avg functions and
that value cannot be cast to xs:double

FORG0002
When calling the resolve-uri function, either the $relative or $base argument is not
a syntactically valid URI.

FORG0003
A sequence of more than one item was passed to the zero-or-one function; the argu-
ment must be either the empty sequence or a single item.

FORG0004
An empty sequence was passed to the one-or-more function; the argument must be a
sequence of one or more items.

FORG0005
An empty sequence or a sequence of more than one item was passed to the exactly-
one function; the argument must be a single item.

FORG0006
An invalid argument was used in a function or operation. This can happen in three
situations:

• You passed an argument sequence to one of the sum or avg functions that con-
tains values that are not numbers or durations, or that are a mixture of numbers
and durations.

FORX0002 | 445

• You passed an argument sequence to one of the min or max functions that con-
tains values that do not support the < and > operators, or that have a mixture of
different types.

• You attempted to find the effective Boolean value of a multi-item sequence
whose first item is an atomic value. Effective Boolean value is calculated when
calling the boolean and not functions, but also in many different operations that
do not involve functions, such as conditional (if-then-else) expressions, where
clauses of FLWORs, and predicates of path expressions. Effective Boolean value
is discussed in more detail in “Effective Boolean Value” in Chapter 11.

One common cause of this is using an expression like:

doc("catalog.xml")//product[1 to 3]

Although this expression is allowed by some XQuery processors, it is technically not
valid because it attempts to find the effective Boolean value of a sequence of inte-
gers. Instead, you should use:

doc("catalog.xml")//product[position() = 1 to 3]

FORG0008
The two arguments passed to the dateTime function have different time zones. They
should have the same time zone or none at all.

FORG0009
When calling the resolve-uri function, the $relative argument cannot be resolved
relative to the $base argument. This might occur if, for example, $base itself is a rela-
tive URI.

FORX0001
The $flags argument passed to the matches, replace, or tokenize function includes
invalid letters. Valid letters are lowercase s, m, i, and x, and they may appear in any
order.

FORX0002
The $pattern argument passed to the matches, replace, or tokenize function is not a
valid regular expression. This might occur if, for example, there are mismatched
parentheses or unescaped special characters. Note that the regular expression lan-
guage supported omits many constructs that may be familiar, for example, to Perl
programmers.

446 | Appendix C: Error Summary

FORX0003
The $pattern argument passed to the replace or tokenize function matches a zero-
length string—for example, q?.

FORX0004
The $replacement argument passed to the replace function is invalid. This can hap-
pen in two cases:

• It contains a dollar sign ($) that is not followed by a digit and is not preceded by
a backslash (\).

• It contains a backslash that is not followed by a dollar sign and is not preceded
by another backslash.

FOTY0012
An attempt was made to find the typed value of a node that has no typed value. This
occurs, for example, when you pass to the data function an element node whose type
has element-only content. It may also be raised during atomization, which extracts
the typed value of a node.

SENR0001
The results of a query contain attribute nodes that are not associated with any ele-
ments. This result cannot be serialized.

SEPM0004
The result has no single element node and consists of multiple text nodes or ele-
ments nodes. In this case, it is considered to be an XML entity that may be included
in another XML document but cannot stand on its own. Therefore, it is an error to
specify the doctype-system parameter, or to specify the standalone parameter with a
value other than omit.

SEPM0009
If the omit-xml-declaration parameter has the value yes, it is an error if either:

• The standalone attribute has a value other than omit

• The version parameter has a value other than 1.0 and the doctype-system parame-
ter is specified

SERE0012 | 447

SEPM0010
Undeclaring namespaces is not allowed in Namespaces 1.0. Therefore, if the output
method is XML, it is an error if the value of the undeclare-prefixes parameter is yes
and the value of the version parameter is 1.0.

SEPM0016
A serialization parameter has an incorrect value. Generally, a more specific error
message will be provided.

SERE0003
This is a general-purpose error message that indicates that the serializer is unable to
create a well-formed XML document or entity.

SERE0005
The result includes an NCName that contains a character not permitted by the version
specified by the version parameter. The characters allowed in names in XML 1.1 (and
Namespaces 1.1) are different from those allowed in XML 1.0 (and Namespaces 1.0).

SERE0006
The result contains a character not permitted by the version specified by the version
parameter. The characters allowed in XML 1.1 (and Namespaces 1.1) are different
from those allowed in XML 1.0 (and Namespaces 1.0).

SERE0008
The result contains a character that cannot be represented in the encoding being
used by the serializer, and it cannot be replaced by a character reference (because, for
example, it appears in a name, where character references are not allowed by XML
syntax).

SERE0012
The value of the normalization-form parameter is set to fully-normalized, but some
text in the result (for example, names or element content) begins with a combining
character.

448 | Appendix C: Error Summary

SERE0014
The output method is set to HTML, but the result contains one of the control char-
acters #x7F–#x9F. These characters are allowed in XML, but not HTML. The most
likely cause of this error is that the encoding of your input document is incorrectly
declared. Microsoft Windows uses codes in this range to represent special characters
such as an em dash or a euro currency symbol. If your source XML document uses
these Microsoft codes, it must declare this by specifying encoding="cp1252" in the
XML declaration. Otherwise they will be taken to represent the Unicode control
characters at these positions, which are not allowed in HTML.

SERE0015
The output method is set to HTML, but the result contains a processing instruction
that has the character > in its content. This is allowed in XML, but not HTML,
because HTML terminates processing instructions with >.

SESU0007
The value of the encoding parameter is not supported by the serializer. All serializers
support, at a minimum, UTF-8 and UTF-16.

SESU0011
The value of the normalization-form parameter is not supported by the serializer. All
serializers support, at a minimum, NFC and none.

SESU0013
The output method is set to HTML, and the value of the version parameter is a ver-
sion of HTML not supported by the serializer.

XPDY0002
An expression relies on some part of the dynamic context that is undefined. Most
often, this is a path expression or function call that relies on the current context item
but the context item is undefined. This may be because you used a relative path,
when no outer expression set the context for the path. For example, if your entire
query is:

//catalog/product

XPDY0050 | 449

and the context is not set outside the query by the processor, this error will be raised
because the processor will not know what the path is relative to. Instead, start your
path with a function call or variable that sets the context, as in:

 doc("catalog.xml")//catalog/product

This error may occur when you use paths in a FLWOR expression and forget to start
each path with a step that sets the context. For example:

for $prod in doc("catalog.xml")//product
where number > 500
return number

In this case, the processor does not automatically know to evaluate number relative to
the $prod variable; it has to be explicitly specified, as in:

for $prod in doc("catalog.xml")//product
where $prod/number > 500
return $prod/number

This error might also occur if you forget to put the dollar sign in front of the variable
name, causing the processor to interpret it as a path. For example:

for $prod in doc("catalog.xml")//product
return prod

With the dollar sign omitted from the beginning of prod in the return clause, the pro-
cessor will interpret it as a relative path to a child element named prod.

A number of built-in function calls will raise this error as well if they require the cur-
rent context item and none is defined. There are a number of built-in functions that
operate on the current context item by default if no appropriate argument is passed.
These functions are base-uri, id, idref, lang, last, local-name, name, namespace-uri,
normalize-space, number, position, root, string, and string-length. For example,
the function call name() (with no arguments) uses the current context item.

Finally, this error can be raised in another situation: if a global variable is defined as
external, but it was not bound to a value outside the scope of the query, any refer-
ences to that variable will raise this error.

XPDY0050
This error is raised in two separate cases:

• When a path expression starts with / or // and the current context node is not
part of a complete XML document (with a document node at its root)

• When using a treat expression, if the operand of the expression does not match
the sequence type specified

450 | Appendix C: Error Summary

In the first case, you can fix the expression by starting with a call to the root func-
tion, which does not require the root to be a document node. For example, you
could use root(.)/descendant-or-self::product instead of just //product.

XPST0001
This is a general-purpose error that is raised if an expression relies on a component
of the static context that has not been assigned a value. In most cases, a more specific
error code and message are provided.

XPST0003
A syntax or parsing error has occurred. This may happen, for example, if there are
mismatched parentheses or invalid keywords.

XPST0005
If static typing is in effect, this error will be raised if any expression in your query
(other than () and data(())) will always return the empty sequence. Often, this is
the result of a misspelling or an invalid path. For more information, see Chapter 14.

XPST0008
An undefined name was encountered. This could be a variable name, an element
name, an attribute name, or a type name. It may be that you misspelled the name or
referred to it in the wrong namespace.

If it is a variable name, that variable may be referenced outside the scope for which it
is bound. One reason for this error is misplaced or missing parentheses. A common
case is when you attempt to return two items using a FLWOR expression, as in:

for $prod in doc("catalog.xml")//product
return $prod/number, $prod/name

In this case, the second reference to $prod on the last line is out of scope, because only
a single expression is included in the return clause. The rest of the line (, $prod/name)
is considered to be a separate expression that appears after the FLWOR expression.
This example can be remedied by placing parentheses around the return clause, as in:

for $prod in doc("catalog.xml")//product
return ($prod/number, $prod/name)

If an element, attribute, or type name raises the error, it appears in a sequence type
but is not part of the in-scope schema definitions. For example, the sequence type:

schema-element(prod, ProductType)

XPST0051 | 451

will raise an error if the in-scope schema definitions do not include a declaration for
a prod element and a type definition for ProductType.

XPST0010
The processor encountered an unsupported axis in a path expression. Implementa-
tions are not required to support the following axes: following, following-sibling,
ancestor, ancestor-or-self, preceding, and preceding-sibling. Misspelling an axis
name is a possible cause of this error.

XPST0017
You have attempted to call a function that is not declared. This may be because:

• You are using the wrong function name.

• You are using the wrong namespace prefix for the function name.

• You didn’t import the module in which the function is declared.

• You are passing an incorrect number of arguments to a function. When calling a
function, there must be an argument for every parameter specified in the func-
tion signature.

XPST0051
A sequence type refers to a type (other than within the element() or attribute()
constructs) that is not an atomic type in the in-scope schema definitions. Sequence
types most commonly appear in function signatures, as in:

declare function local:xyz ($arg1 as xs:string*, $arg2 as prod:SizeType?) { }

where xs:string* and prod:SizeType? are sequence types that described the types of
the arguments. This error might be raised if you:

• Misspelled or incorrectly capitalized the name of a built-in type, e.g., xs:String
or xs:srting.

• Used a user-defined type name that is not declared in an in-scope schema—for
example, if SizeType is not in an imported schema.

• Used a user-defined type name that is a complex or list type, not an atomic
type—for example, if SizeType allows children. Using the sequence type
element(*,SizeType) would be allowed.

452 | Appendix C: Error Summary

XPST0080
A cast or castable expression refers to an undefined type, meaning one that is not an
atomic type in the in-scope schema definitions. This error is also raised if one of the
types xs:NOTATION or xs:anyAtomicType is used in a cast or castable expression. See
error XPST0051 for more information on undefined atomic type names.

XPST0081
A qualified name (QName) in your query has a prefix that is not declared, or that is
referenced outside the scope in which it is declared. Anything that appears before a
colon in a name is considered to be a prefix, and it must be declared, either in the
prolog or in an element constructor. This error is raised for path expressions, ele-
ment and attribute constructors, element and attribute sequence types, pragma
names, and option names. For example, the path expression:

doc("nscat.xml")//prod:product

raises an error if the prod prefix is not declared either in the query prolog or in an
outer direct element constructor.

XPTY0004
This error is a general type error that is raised when a value has a type that is incom-
patible with the type expected by a function or other expression. This could be
because the type of the value is incorrect for the expression, which is the case when
you try to multiply two strings. It could also arise if the value is a sequence of fewer
or more items than are expected, for example when you pass the substring function
a sequence of multiple strings instead of just a single string.

Common cases that raise this type error are:

• Comparing values with incomparable types, for example, "abc" = 1.

• Attempting to compare sequences of more than one value using the value com-
parison operators, for example, (1, 2) eq (1, 2).

• Attempting arithmetic operations on values that are not numbers or dates, for
example, "abc" + "def".

• Calling a function with arguments that have incorrect types, for example,
substring(1234, 3), whose first argument is an integer instead of a string.

• Calling a function with too few or too many items in an argument, for example,
substring(("a", "b"), 3), which passes a sequence of two items as the first
argument instead of just one.

XPTY0020 | 453

• Passing an invalid operand to a type constructor or cast as expression. This
includes passing a nonliteral value when constructing a value of type xs:QName
(or a type derived from xs:QName or xs:NOTATION). These types have a special con-
straint that they can only accept a literal xs:string value, not an evaluated
expression.

• Using an order by clause that returns more than one item to sort on, for exam-
ple, order by $prod/*.

• Specifying a value with an incompatible type in a type constructor or cast expres-
sion, as in 53 cast as xs:date.

• Supplying an element node that has not been validated to a function that expects
a validated element node.

• Calling a function that relies on the current context node, when the current con-
text item is an atomic value rather than a node. A number of built-in functions
will operate on the current context node by default if no appropriate argument is
passed. These functions are base-uri, id, idref, lang, local-name, name, namespace-
uri, and root.

XPTY0018
The last step in a path expression is returning both nodes and atomic values, which
is not permitted. It must return either all nodes or all atomic values. The reason for
this rule is that “/” causes sorting into document order if the step delivers nodes, but
not if it delivers atomic values. Therefore, it doesn’t make sense to return a mixture.

XPTY0019
A step in a path expression (that is not the last step) is returning atomic values,
which is not permitted. For example, the following expression:

doc("catalog.xml")//name/substring(.,1,3)/replace(.,'A','a')

is not permitted because the second to last step, substring(.,1,.3), is returning
atomic values. It can be rewritten as:

for $shortName in doc("catalog.xml")//name/substring(.,1,3)
return replace($shortName,'A','a')

XPTY0020
You have specified a relative path expression, but the current context item is not a
node. This might occur, for example, if you use a relative path in a predicate where
the current context item is an atomic value, as in:

doc("catalog.xml")//product/substring(name,1,3)[@dept = 'ACC']

454 | Appendix C: Error Summary

The path expression @dept is being evaluated relative to the substring of the name (an
atomic value) rather than the product element. In this case, the predicate can be
moved to the previous step, as in:

doc("catalog.xml")//product[@dept = 'ACC']/substring(name,1,3)

XQDY0025
You have attempted to add two attributes with the same name to a constructed ele-
ment. XML does not allow two attributes with the same name on the same element.

XQDY0026
The content of a processing instruction contains the string ?>, which is not allowed.

XQDY0027
An element was determined to be invalid when a validate expression was applied to it.

XQDY0041
When constructing a processing instruction, its target (name) is a value that cannot
be cast to xs:NCName. Processing instruction targets must be castable to xs:NCName,
whose valid values are described in Appendix B.

XQDY0044
The name specified for an attribute constructor is xmlns, or a name whose prefix is
xmlns, as in:

attribute xmlns:prod { "http://datypic.com/prod" }

This is not allowed; you cannot construct namespace declarations using computed
attribute constructors. Instead, you should declare the namespace in the query pro-
log or in an outer direct element constructor.

XQDY0061
If the expression that appears in curly braces after the validate keyword is a docu-
ment node, that document node must have exactly one child element node. It may
also have as children zero, one, or many comment nodes and processing-instruction
nodes, in any order.

XQST0009 | 455

XQDY0064
When constructing a processing instruction, its target (name) cannot be the letters
XML (in any combination of uppercase or lowercase letters). If you are attempting to
add an XML declaration to your results, this is controlled by setting the omit-xml-
declaration serialization parameter to no rather than being constructed in your
query. Consult the documentation for your XQuery processor to determine how to
set the serialization parameter (it varies by implementation).

XQDY0072
A computed comment constructor results in a comment that contains two consecu-
tive hyphens (--) or ends in a hyphen, which is not allowed.

XQDY0074
The name expression in a computed constructor cannot be cast to xs:QName, for
example because it is an invalid XML name or an undeclared prefix is used.

XQDY0084
When evaluating a validate expression whose validation mode is strict, the processor
could not find a global element declaration in the in-scope schema definitions or
anywhere else. This may be because the schema was not imported or because the ele-
ment was not globally declared.

XQDY0091
You have attempted to construct an attribute named xml:id with an invalid value. ID
values must start with a letter or underscore and can only contain letters, digits,
underscores, hyphens, and periods.

XQDY0092
You have attempted to construct an attribute named xml:space with a value other
than preserve or default. Processors are not required to raise this error.

XQST0009
The processor found a schema import in the prolog, but it does not support the
optional Schema Import feature.

456 | Appendix C: Error Summary

XQST0012
One or more of the imported schemas contain definitions that are incomplete or
invalid, or contain duplicate declarations.

XQST0013
The processor has recognized a pragma but determined that it contains invalid con-
tent as defined by the implementation. Consult the documentation for your imple-
mentation to determine what values are allowed for the pragma.

XQST0016
The processor encountered a module import, but it does not support the optional
Module feature.

XQST0022
The namespace name used in a namespace declaration attribute (in a direct element
constructor) uses an enclosed expression. It must be a literal value; it cannot be
dynamically evaluated.

XQST0031
The processor has encountered a version of XQuery that it does not support in the
version declaration. For XQuery 1.0, the version (if specified) should always be 1.0,
as in:

xquery version "1.0" encoding "UTF-8";

XQST0032
The prolog contains more than one base URI declaration, which is not allowed. Base
URI declarations start with declare base-uri.

XQST0033
The prolog contains more than one declaration for the same namespace prefix,
which is not allowed.

XQST0038 | 457

XQST0034
You may have attempted to declare two functions with the same qualified name and
the same number of parameters. The conflicting function signature may appear in a
separate module that has been imported.

This error is also raised if you declare a function with only one parameter, and it has
the same qualified name as a type that is in scope. For example, if you import a
schema that contains a type named order in the namespace http://datypic.com/
prod, you cannot also declare a function, with one parameter, named order in the
same namespace. This is because each type has a constructor function that shares its
name, and it would be impossible to distinguish between the type constructor and
the user-defined function.

XQST0035
You have attempted to import two schema documents that have duplicate names for
globally declared components such as elements, attributes, and types.

XQST0036
When you import a module, any type names that are used in variable names or func-
tion signatures of the imported module must be in the in-scope schema definitions of
the main module. For example, suppose strings.xq contains the variable declaration:

declare variable $strings:LetterA as strings:smallString := "A";

where smallString is a user-defined type defined in stringtypes.xsd. If a main mod-
ule uses the LetterA variable, it must import the stringtypes.xsd schema in addition
to the strings.xq module. If the main module does not make any references to the
LetterA variable, it can import strings.xq without importing stringtypes.xsd.

XQST0038
This error is raised in two situations:

• The prolog contains more than one default collation declaration. Default colla-
tion declarations start with declare default collation.

• The prolog refers to a default collation that is not supported by the implementation.

458 | Appendix C: Error Summary

XQST0039
A function signature contains more than one parameter with the same name; the
parameter names within a particular function signature must be unique.

XQST0040
A direct element constructor contains two attributes with the same qualified name.
As with normal XML syntax, the attributes of an element must have unique names.

XQST0045
You have attempted to declare your own function in one of the following namespaces:

• http://www.w3.org/XML/1998/namespace (xml)

• http://www.w3.org/2001/XMLSchema (xs)

• http://www.w3.org/2001/XMLSchema-instance (xsi)

• http://www.w3.org/2005/xpath-functions (fn)

This is not permitted. Instead, use the prefix local, or declare a new namespace and
prefix your function name with that namespace.

XQST0046
URI values (including namespace names) used in queries should be syntactically
valid URIs, which can be URLs or URNs. A processor may optionally raise this error
if a URI is not syntactically valid according to the rules, which are described in
RFC3986, Uniform Resource Identifiers (URI): Generic Syntax.

This error may be raised by any of the following URIs used in a query:

• The namespace name in a namespace declaration (either in the prolog or in a
direct element constructor)

• The module location or namespace name in a module import

• The target namespace of a library module

• The schema location or namespace name in a schema import

• The collation URI in a default collation declaration or in an order by clause

• The base URI in a base URI declaration

XQST0054 | 459

XQST0047
Two separate module imports specify the same target namespace, which is not per-
mitted. Instead, specify multiple module locations for the same target namespace in a
single import, using commas to separate them. For example, change this:

import module "http://datypic.com/strings"
 at "http://datypic.com/strings/lib.xq";
import module "http://datypic.com/strings"
 at "http://datypic.com/strings/lib2.xq";

to this:

import module "http://datypic.com/strings"
 at "http://datypic.com/strings/lib.xq",
 "http://datypic.com/strings/lib2.xq";

XQST0048
One of the functions and variables declared in a library module is not in the target
namespace. Every function and prolog variable declared in a library module must be
qualified with the target namespace of that module. Generally, this means that they
use the prefix that is mapped to the target namespace in the module declaration. For
example, the following is not permitted because the variable maxStringLength is not
in the target namespace:

module namespace strings = "http://datypic.com/strings";
declare variable $maxStringLength := 32;
declare function strings:trim($arg as xs:string?) as xs:string? {
 "function body here"
};

Instead, it must be prefixed with strings: to put it in the target namespace http://
datypic.com/strings.

XQST0049
Duplicate prolog variable declarations were found. The qualified names of all vari-
ables declared in prologs must be unique across all modules that are used together.
This includes the main module and any imported library modules.

XQST0054
Function and variable declarations with circular definitions were encountered; these
are not allowed. For example, an initializing expression in a variable declaration can-
not call a function whose body itself references the variable being initialized.

460 | Appendix C: Error Summary

XQST0055
The prolog contains more than one copy-namespaces declaration, which is not per-
mitted. Copy-namespaces declarations start with declare copy-namespaces.

XQST0057
A schema import that specifies a prefix has a zero-length namespace name, which is
not allowed. For example, the following schema import is invalid:

import schema namespace prod = ""
 at "http://datypic.com/prod.xsd";

You can, however, import a schema with no target namespace if you make “no
namespace” the default, as in:

import schema default element namespace ""
 at "http://datypic.com/prod.xsd";

XQST0058
Two separate schema imports specify the same target namespace, which is not per-
mitted. For example:

import schema "http://datypic.com/strings"
 at "http://datypic.com/strings/str.xsd";
import schema "http://datypic.com/strings"
 at "http://datypic.com/strings/str2.xsd";

Instead, you can specify multiple schema locations for the same target namespace in
a single import, using commas to separate them. For example:

import schema "http://datypic.com/strings"
 at "http://datypic.com/strings/str.xsd",
 "http://datypic.com/strings/str2.xsd";

However, the semantics of this are somewhat implementation-defined because
schema locations are just hints. A safer option is to create a schema document that
includes the two other schema documents, and import that.

XQST0059
The processor cannot find a valid library module for the target namespace specified
in a module import or a schema import. This might occur, for example, because it
could not find a module or schema at all, or it found a module or schema with a dif-
ferent target namespace than the one specified in the import. Different processors
have different strategies for locating query modules—for example, some might allow
independent compilation of library modules.

XQST0069 | 461

XQST0060
A function is declared with a name that is not in a namespace. All function names
must be in a namespace. Note that default element namespace declarations do not
apply to function names.

To remedy this, revise your function name to include a namespace prefix. In a main
module, you can use any prefix that is declared in the prolog or the predeclared pre-
fix local. In a library module, you must use the prefix that is mapped to the target
namespace of the module.

XQST0065
The prolog cannot contain more than one ordering mode declaration. Ordering
mode declarations start with declare ordering.

XQST0066
The prolog contains more than one default element namespace declaration or more
than one default function namespace, which is not allowed. Default element
namespace declarations start with declare default element namespace, and default
function namespace declarations start with declare default function namespace.

XQST0067
The prolog contains more than one construction declaration, which is not allowed.
Construction declarations start with declare construction.

XQST0068
The prolog contains more than one boundary-space declaration, which is not
allowed. Boundary-space declarations start with declare boundary-space.

XQST0069
The prolog contains more than one empty order declaration, which is not allowed.
Empty order declarations start with declare default order.

462 | Appendix C: Error Summary

XQST0070
This error is raised if a namespace declaration attempts to:

• Bind a URI to the prefix xmlns. This built-in prefix has special meaning in XML
and cannot be used in a declaration.

• Bind the xml prefix to a namespace other than http://www.w3.org/XML/1998/
namespace.

• Bind the http://www.w3.org/XML/1998/namespace namespace to a prefix other
than xml.

This error could be raised by a standard namespace declaration, or by the namespace
binding that occurs as part of a module declaration, module import, or schema
import.

XQST0071
More than one namespace declaration attribute on a single element constructor uses
the same prefix, which is not allowed. For example, the following is illegal because
the prod prefix is mapped twice on the same element:

<product xmlns:prod="http://datypic.com/prod"
 xmlns:prod="http://datypic.com/prd">...</product>

XQST0073
A module cannot import itself, either directly or indirectly, unless all the modules in
the chain have the same target namespace.

XQST0075
A validate expression was encountered by a processor that does not support validate
expressions. Not all implementations support the validate expression; it is an
optional feature.

XQST0076
The collation specified in an order by clause is not supported by the implementation.

XQST0079
An extension expression has no expression between its curly braces, and the proces-
sor does not recognize the pragma.

XQST0093 | 463

XQST0085
Namespace declaration attributes with prefixes whose values are zero-length strings,
such as xmlns:cat="", are only allowed if the implementation supports Namespaces 1.1.

XQST0087
The version declaration contains an invalid encoding value. Example valid values for
the encoding include UTF-8, UTF-16, ISO-8859-1, and US-ASCII. Encoding names
always start with a letter and may contain letters, digits, periods, underscores, and
hyphens.

XQST0088
The target namespace specified in a module import or a module declaration is a zero-
length string, which is not allowed.

XQST0089
A variable bound in a for clause has the same name as the positional variable used in
that same clause. This is not permitted. For example, change:

for $x at $x in (doc("catalog.xml")//product)

to:

for $x at $y in (doc("catalog.xml")//product)

XQST0090
A character reference (e.g.,) refers to a character that is not a valid character in
the version of XML that is in use.

XQST0093
A set of module imports is circular, in that module A directly depends on one or
more other modules that themselves directly depend on module A. Directly depends
means that a function or variable in module A references a function or variable in the
next module in the import chain.

464 | Appendix C: Error Summary

XQTY0024
In element constructor content, enclosed expressions that evaluate to attributes must
appear first in the element constructor content, before any other kinds of nodes. For
example, the following query is not valid because the second enclosed expression,
{$prod/@dept}, appears after an enclosed expression that returns element nodes.

for $prod in doc("catalog.xml")/catalog/product
return {$prod/number}{$prod/@dept}

XQTY0030
The expression that appears in curly braces after the validate keyword must be a sin-
gle document or element node. If it evaluates to a sequence of multiple items,
another kind of node, or an atomic value, this error is raised.

XQTY0086
If you set the copy-namespaces mode to no-preserve, and the construction mode to
preserve, there may be a conflict if your element content (or attribute values) con-
tains namespace-sensitive values, such as qualified names. Namespaces used in con-
tent (as opposed to in element/attribute names) are not considered to be “used.”

For example, suppose your input document (qnames.xml) looks like this:

<listOfQualifiedNames xmlns:prod="http://datypic.com/prod">
 <qName>prod:xyz</qName>
 <qName>prod:abc</qName>
</listOfQualifiedNames>

Suppose also that this document has been validated with a schema, and the qName
elements are annotated with the type xs:QName. You might query the document with:

<myNewList>{doc("qnames.xml")//qName}</myNewList>

intending to return a new element that contains the two qName elements. If construc-
tion mode is preserve, the qName elements will still have the type xs:QName. But if the
copy-namespaces mode is no-preserve, the http://datypic.com/prod namespace will
not be preserved, because it is used only in content, not in element or attribute
names. Therefore, the qName elements’ content will have undefined prefixes and this
error will be raised.

465

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
& (ampersand)

&& (and) full text operator, 286
entity reference (&), 279
escaping in element constructor

content, 59
escaping in string literals, 214
separator character in URIs, 262

< > (angle brackets)
< (less than) operator, 30

comparing dates and times, 246
comparing durations, 248
comparing numeric values, 206
comparing strings, 215
entity reference (<), 229, 279
SQL and XQuery, 297

<!-- -->, XML comment delimiters, 29
<![CDATA[and]]> CDATA section

delimiter, 280
<, escaping in element constructor

content, 59
<< and >> operators, comparing nodes by

relative position in document
order, 91

<= (less than or equal to) operator, 30
comparing dates and times, 245
comparing numeric values, 206
comparing strings, 215
SQL and XQuery, 297

<? ?>, in processing instruction
constructors, 271

> (greater than) operator, 30
comparing dates and times, 246
comparing durations, 248
comparing numeric values, 206
comparing strings, 215
entity reference (>), 279
SQL and XQuery, 297

>= (greater than or equal to) operator, 30
comparing dates and times, 245
comparing numeric values, 206
comparing strings, 215
SQL and XQuery, 297

' (apostrophe), entity reference ('), 279
* (asterisk)

*? (reluctant quantifier), 236
escaping in regular expressions, 229
multiplication operator, 207

multiplying durations by
numbers, 252

occurrence indicator, zero, one, or many
items, 103, 107, 151, 152

cast expression and, 157
return type of function, 151

quantifier, zero, one, or many
occurrences, 227

wildcard in path expressions, 6, 39, 43
@ (at sign)

@*, copying attributes from an
element, 111

abbreviation for attribute axis, 45
abbreviation for axes, 45
returning attributes in path expressions, 5
separator character in URIs, 262

\ (backslash)

466 | Index

back references, 238
character escapes in regular

expressions, 228
escaping in character class

expressions, 235
^ (caret)

beginning-of-line matching in regular
expressions, multi-line mode
and, 238

beginning-of-string matching in regular
expressions, 236

escaping in character class
expressions, 235

escaping in regular expressions, 228
negating character class in regular

expressions, 234
: (colon)

separator character in URIs, 262
XML name with no colon

(NCName), 264
, (comma)

concatenating sequences with sequence
constructor, 118

interaction with parentheses and curly
braces in XQuery, 32

separating expressions, 16
separator character in URIs, 262
using between adjacent FLWOR

clauses, 77
{ } (curly braces)

in computed element constructors, 69
in element constructors, 8

enclosed expressions, 61
enclosing function body, 105
escaping in element content, 59
escaping in regular expressions, 229
interaction with parentheses and commas

in XQuery, 32
in text node constructors, 278

$ (dollar sign)
end-of-line matching in regular

expressions, multi-line mode
and, 238

end-of-string matching in regular
expressions, 236

escaping in regular expressions, 228
separator character in URIs, 262
in variable names, 28

function parameters, 106
replacement variables, 241

= (equals sign)
equal to operator, 30, 84, 298

!= operator vs. not function in
expression using =, 38

comparing dates and times, 246
comparing durations, 247
comparing numeric values, 206
comparing strings, 215
SQL and XQuery, 297
used on lists of values, 112

separator character in URIs, 262
! (exclamation mark)

! (not) full text operator, 286
!= (not equal to) operator, 30

comparing dates and times, 245
comparing numeric values, 206
comparing strings, 215
not function vs., 38, 112
SQL and XQuery, 297

- (hyphen), subtraction from character class
range in regular expressions, 234

in XML comments, 269
– (minus sign)

escaping in regular expressions, 228
negation operator, 207
negative durations, 246
subtraction operator, 207

subtracting durations, 251
() (parentheses)

(: :) (XQuery comment delimiters), 29,
268

concatenating sequences with sequence
constructor, 118

empty sequence as argument in function
call, 102

enclosing test expression after if
keyword, 35

escaping in regular expressions, 229
evaluation order and, 30
expressions used as steps, 45
function parameter lists, 105
in functions, 101
interaction with commas and curly braces

in XQuery, 32
sub-expressions and branches in regular

expressions, 227, 238
using for query clarity, 194
(see also empty sequence)

% (percent sign)
separator character in URIs, 262
URI characters escaped for HTML

agents, 348

Index | 467

. (period)
. . (abbreviation for steps), 45
abbreviation for context item, 109
abbreviation for steps, 45
character wildcard in regular

expressions, 229
escaping in regular expressions, 228
representing context node in predicates

and paths, 55
wildcard, dot-all mode, 238

+ (plus sign)
addition operator, 207

adding durations, 251
adding durations to dates and

times, 250
escaping in regular expressions, 229
occurrence indicator, one or many

items, 103, 152
cast expression and, 157

quantifier, one or many occurrences, 227
separator character in URIs, 262

(pound sign), delimiters for extension
expression pragmas, 292

? (question mark)
escaping in regular expressions, 228
occurrence indicator (zero or one

items), 103, 107, 152
in function argument types, 150
using with cast expression, 157

quantifier, zero or one occurrences, 227
reluctant quantifiers in regular

expressions, 235
separator character in URIs, 262

" (quotes, double)
enclosing string literals, 28
entity reference ("), 279
escaping in string literals, 214
string literals included in queries, 213

' (quotes, single)
enclosing string literals, 28
entity reference ('), 279
escaping in string literals, 214
string literals included in queries, 213

; (semicolon)
separator character in URIs, 262
terminating declarations in query

prolog, 161
/ (slash)

abbreviation for axes and steps (//), 45
beginning path expressions, 5, 56

// (double slash), 6, 56
in predicates, changing context node, 55
URI separator character, 262

[] (square brackets)
character classes in regular

expressions, 233
escaping in character class

expressions, 235
escaping in regular expressions, 229
in predicates, 6, 46

changing context node, 55
separator character in URIs, 262

| (vertical bar)
|| (or) operator, 286
between branches in regular

expressions, 227, 238
escaping in regular expressions, 228
union operator, 45, 118

A
abs (absolute value) function, 212, 321
absent values, 197
absolute URIs, 259

(see also base URIs)
addition, 209

+ operator, 207
durations, 251
durations to dates and times, 250
precedence of arithmetic operators, 209
SQL and XQuery operators, 298
sum function, 401

adjust-dateTime-to-timezone function, 323
adjust-date-to-timezone function, 321
adjust-time-to-timezone function, 245, 323
aggregating values, 11, 94–98

constraining and sorting on aggregated
values, 98

counting missing values, 96
ignoring missing values, 95
on multiple values, 96

aggregation functions, 23, 212
analysis (compile) time, 185
ancestor axis, 42, 289

in path expressions, 202
ancestor-or-self axis, 42, 289

in path expressions, 202
ancestors (nodes), 20
anchors (in regular expressions), 236

multi-line mode and, 237, 238
and operator, 37

SQL and XQuery, 298
argument lists (functions), 101

empty sequence or zero-length string, 101
sequences and, 102

468 | Index

arguments (function)
conversion to expected type, 103
empty sequence as argument, 107
nodes vs. atomic values, 107

arithmetic operations, 207–211
addition, subtraction, and

multiplication, 209
on dates, times, and durations, 249–252
division, 210
expressions, 27
modulus (remainder), 211
on multiple numeric values, 208
numeric type promotion in

expressions, 206
precedence of arithmetic operators, 209
SQL and XQuery, 298
types and, 208
XQuery 1.0 and XPath 1.0 and 2.0, 316

ascending or descending order, 87
assertions, type, 190
at keyword, 116

namespace prefix mapping in module
import, 165

atomic types
built into XQuery, 143

hierarchy, 144
as sequence types, 153

atomic values, 22
casting any type to xs:string or

xs:untypedAtomic, 158
casting between specific types, 158–159
comparing, 30
constructing with given types, 155
enclosed expressions in direct element

constructors evaluating to, 61
nodes vs. in function arguments, 107
returned by last step in a path, 46
sequence types for function

parameters, 103
types, 145
untyped, 438

atomization, 148
function conversion rules, 150
on operands of arithmetic

expressions, 208
atoms (regular expressions), 226

parenthesized subexpressions as, 227
attribute axis, 41
attribute nodes, 18

(see also attributes)
attribute() kind test, 154, 183

attributes
adding to an element, 111
adding to query results, 9
atomic values, 22
computed attribute constructors, 70
declarations in XML Schema, 173
enclosed expressions in direct element

constructors evaluating to, 61
finding with path expressions, 5
including with result elements, using

enclosed expressions, 62
from input document, including in query

results, 57
matching based on name, 183
names, 21

affected by namespace declarations in
XQuery, 133

namespaces, 24, 125
declaration attributes, 131
predeclared, 128
prefixes, 124

node hierarchy (family analogy), 19
removing from an element, 111
removing from an element and all

descendants, 112
specifying directly using direct element

constructors, 62
string and type values, 21
types, 173

averages
avg function, 95, 212, 324

ignoring absent nodes, 96
avg-empty-is-zero function, 97
calculating with missing values, 198

axes, 41
abbreviated syntax, 44
forward, 41
Full Axis feature, 289
reverse, 41

positional predicates and, 50
using node() test with, 44

axis steps, 41
node tests, 42–44

B
back-references, 237
base URIs, 259

finding for a node, 260
resolving URIs, 261
specifying with xml:base attribute, 260
of the static context, 261

base-URI declaration, 261

Index | 469

base-uri function, 260, 325
BETWEEN condition (SQL), 297
between function, 34
binary data

xs:base64Binary type, 414
xs:hexBinary type, 427

binding sequence, 74
block escapes in regular expressions, 232

examples, 233
body, functions, 105

invalid use of context, 108
body, queries, 16, 160

main module, 163
variable bindings, 166

boolean function, 149, 327
boolean operators in SQL and XQuery, 298
Boolean values

combining in logical expressions, 37
effective Boolean values, 47

calculated for FLWOR where
expression, 78

conditional expressions and, 36
sequences treated as, 148

literal, using in expressions, 28
negating, 38
quantified expressions evaluated to, 79
xs:boolean type, 415

boundary whitespace (in direct element
constructors), 65

boundary-space declaration, 66
braces (see { } (curly braces))
branches (in regular expressions), 227, 238
built-in functions

numeric keyword, use in signature, 103
reference, 319–410
shared by XQuery and XSLT 2.0, 308
user-defined vs., 99
XQuery 1.0/XPath 2.0 and 1.0, 317

C
\C (character that cannot be part of an XML

name) in regular expressions, 231
\c (character that is part of an XML name) in

regular expressions, 231
canonical representation, primitive

types, 143
carriage return (\r), in regular

expressions, 229
case clauses (typeswitch expressions), 188
case mappings

lower-case function, 364
upper-case function, 408

case-insensitive matching, 238
case-sensitivity, keywords and names, 27
castable as keywords, 157
casting, 24

cast expression, 156, 190
castable expression, 157
date/time types, 245
function conversions and, 103
functions on sequences of numbers, 212
rules, 158–159
types to xs:string, 214
untyped values, 147

in function conversion rules, 150
xs:anyURI values, 413
xs:boolean values, 415
xs:decimal values, 419
xs:double values, 420
xs:float values, 423
xs:hexBinary values, 428
xs:integer values, 430

catalog.xml document (example), 3
category escapes in regular expressions, 231

examples, 233
CDATA sections, 280
ceiling function, 212, 328
change-element-ns function, 258
change-element-ns-deep function, 258
change-elem-names function, 114
character classes, 233

escaping rules, 235
examples of expressions, 234
negative character class expressions, 234
single characters and ranges, 233
subtraction from a range, 234

character encodings, 162
character references, 278

examples, 278
in queries, 280
to whitespace characters in direct element

constructors, 67
XML syntax, using in regular

expressions, 229
characters

characters.xq module, 165
literal, in element constructor content, 59

checking types in XQuery, 146
child axis, 41
child elements, 173

removing, 113
children (nodes), 19
circular module imports, 165

470 | Index

clarity of queries, 193–196
choosing names, 194
improving layout, 194
user-defined functions and, 104
using comments for documentation, 195

codepoint-equal function, 328
codepoints-to-string function, 218, 220, 329
collations, 223

default collation declaration, 224
default-collation function, 340
specifying sort order of strings, 87
URIs, 259
used by comparison operators, 215

collection function, 53, 329
base URI of the static context, 261

comma (,) (see , (comma))
comment nodes, 19
comment() kind test, 154, 268
comments

using for documentation, 195
xqdoc comments for a function, 195

XML, 267
constructing, 268
data model and, 267
included in queries, 29
querying, 268
sequence types and, 268

XQuery, 29
not included in query results, 269

compare function, 215, 330
collations, 224

comparisons, 30–35
comparison expressions, 26
date component types, 253
dates and times, 245
deep-equal function, 82, 339
default collation, using, 224
durations, 247
general comparisons, 30–32

on multi-item sequences, 31
types and, 31

node comparisons, 34
numeric type promotion in comparison

expressions, 206
numeric values, 206
in predicates, 47
relative position in document order, 91
in SQL as compared to XQuery, 297
strings, 214–216
untyped values, using general comparison

operators, 142
value comparisons, 33

XQuery and XPath, versions 1.0 and
2.0, 316

xs:anyURI values, 413
xs:hexBinary values, 428

complex types, 173
components

date component types, 252
extracting from dates, times, and

durations, 248
computed constructors, 10, 57, 68

attribute constructors, 70
comment, 269
document, 274
element constructors, 68–70

content of, 69
processing instruction, 272
transforming content into markup

(example), 71
concat function, 218, 219, 331

automatic casting of argument
values, 147

concatenation, 219
merging sequences, 118
union expressions vs., 119

conditional expressions, 26, 35–37
effective Boolean values and, 36
nesting, 36
sorting order specifications, 88

conditions, SQL and XQuery, 297
conformance, 289
constant values in queries, 28
constraining query results on aggregated

values, 98
construction declaration, 182
constructors, 57, 155

adding elements and attributes to query
results, 7–10

computed, 68
constructor expressions, 26
date and time types, 243
direct, 10
document node, 273
processing instruction, 271
sequence, 22
text node, 278
type, converting literal values, 28
using xml:id attribute in element

constructors, 266
XML comment, 268
xs:QName, 257
xs:string, 214

Index | 471

contains function, 215, 332
collations and, 223

contains-word function, 215
content types for complex types, 174
context, 16, 55–56

functions and, 108
path expressions and, 40
path used within FLWOR where

clause, 78
setting query context in different XQuery

implementations, 290
context item, 16, 55

passing to a function, 109
path expressions and, 40
position within context sequence, 49

context node, 40
accessing the root, 56
changing, 55
setting outside of query, 54
working with, 55

conversions, type, 24, 190
automatic, 147–151

atomization, 148
casting untyped values, 147
effective boolean value, 148
function conversion rules, 103, 150
subtype substitution, 147
type promotion, 147

casting
cast expression, 156
castable expression, 157
rules for casting, 158–159

constructors, using, 155
type constructors, using, 28

Coordinated Universal Time (see UTC)
copy-namespaces declaration, 138–140

inherit or no-inherit settings, 138
preserve or no-preserve settings, 138
query with no-preserve, inherit

settings, 140
query with preserve, no-inherit

settings, 140
count function, 94, 333
cross-references, 264
curly braces (see { }(curly braces))
currency symbols (Unicode), 232
current date and/or time, 243
current-date function, 333
current-dateTime function, 334
current-time function, 334

D
\D (nondecimal digit) character in regular

expressions, 230
\d (digit) character in regular

expressions, 230
data function, 9, 22, 305, 335
data model, 17–23

atomic values, 22
basic components, 17
common to XQuery and XSLT, 308
differences in XQuery 1.0/XPath 1.0 and

2.0, 315
document nodes and, 273
nodes, 18–22
processing instructions and, 270
relational vs. XML, 294
sequences, 22
text nodes and, 275
XML comments and, 267

data types (see types)
databases, 2

native XML databases supporting
XQuery, 3

relational databases supporting XML and
XQuery, 3

dates and times, 143, 242–246
arithmetic operators, using on, 249–252
comparing, 245
date component types, 252
date formats, 244
durations of time, 246

adding and subtracting values, 251
comparing, 247
dividing by another duration, 252
multiplying and dividing by

numbers, 251
yearMonthDuration and

dayTimeDuration types, 247
extracting components, 248
including literal date in an expression, 28
subtracting durations from, 250
types, 242

constructing and casting, 155, 243
time zones, 243–245
xs:date, 416
xs:dateTime, 416
xs:time, 436

dateTime function, 243, 336

472 | Index

days
date component types, 252
day-from-date function, 337
day-from-dateTime function, 337
days-from-duration function, 338
extracting from dates, times, and

durations, 248
xs:gDay type, 424
xs:gMonthDay type, 425

decimal digit character (\d), in regular
expressions, 230

decimal numbers, 204
xs:decimal type, 418

declarations
base URI, 261
default collation, 224
element and attribute, XML Schema, 173
empty order, 88
function, 104

binding variables to values, 29
external functions, 168
function called from within another

function, 105
recursive functions, 109
sequence types, 151

module, 163
namespace, 124

controlling in query results, 135–137
copy-namespaces

declaration, 138–140
default namespace, 125
impact and scope in XQuery, 132
in element constructors, 131
query prolog, 128–131
scope and, 126
XQuery queries, 128–134

option, 291
ordering mode, 93
in query prolog, 16, 160, 161
type, 190
variables, 166

external, 168
version, 162

declare function keywords, 105
deep-equal function, 82, 339
default clause (typeswitch expressions), 188
default collation declaration, 224
default namespace

declaring, 125
in query prologs, 129

functions, 131, 133
overriding, 127

default settings defined outside of query
scope, 162

default-collation function, 224, 340
derived types

built-in, 143
casting among, 159

descendant axis, 41
descendant-or-self axis, 41

avoiding use in path expressions, 202
descendants (nodes), 20
descending or ascending order, 87
digit character (\d), in regular

expressions, 230
direct constructors, 10, 57

processing instruction, 271
XML comment, 269

direct element constructors, 58–67
containing enclosed expressions, 60–62
containing literal characters, 59
containing other element constructors, 59
modifying element from input document

(example), 64
namespace declarations, 63, 131

controlling in query results, 135–137
scope of, 132

references in, 280
specifying attributes directly, 62
using computed attribute

constructors, 70
whitespace, 65–67

boundary whitespace, 65
boundary-space declaration, 66
forcing boundary whitespace

preservation, 67
distinct values, 81

selecting (SQL vs. XQuery), 300
distinct-deep function, 82
distinct-values function, 81, 94, 300, 340

collations, 224
NaN, 207
using in FLWORs for grouping, 303

division, 27
div and idiv operators, 207, 210
durations by durations, 252
durations by numbers, 251
modulus (remainder), 211
SQL and XQuery operators, 298

doc function, 53, 342
base URI of the static context, 261
input document opened with, 272

doc-available function, 343

Index | 473

document element, 20
document nodes, 19, 56
document order, 85, 89

inadvertent resorting in, 90
order comparisons, 91
sorting in, 90

documentation, using comments for, 195
document-node() test, 154
documents (XML), 272–274

constructing document nodes, 273
document nodes and sequence types, 273
document nodes and XQuery data

model, 273
serialization of query results to, 289

document-uri function, 344
dot-all mode, 230, 238
double-precision floating-point

numbers, 205
duplicate nodes, elimination in unions, 119
durations

adding and subtracting from dates and
times, 250

adding and subtracting to/from duration
types, 251

comparing, 247
days-from-duration function, 338
dividing by durations, 252
hours-from-duration function, 352
minutes-from-duration function, 369
months-from-duration function, 371
multiplying and dividing by

numbers, 251
seconds-from-duration function, 392
time zone values in XQuery

functions, 243
types

summary of, 247
xs:dayTimeDuration, 247, 417
xs:duration, 246, 421
xs:yearMonthDuration, 247, 439

years-from-duration function, 409
dynamic errors, 199

caused by variations in input
documents, 200

type errors, 200
dynamic evaluation phase (type

checking), 146
dynamic paths, 52

E
element constructors (see computed

constructors; direct element
constructors)

element nodes, 18
(see also elements)

element() kind test, 151, 154, 183
element-only content, 151, 181
elements

adding to query results, 7
atomic values, 22
computed element constructors, 68–70

recursively processing elements, 71
turning content into markup

(example), 71
copying with modifications

adding attributes, 111
changing names, 114
removing attributes, 111
removing attributes from all

descendants, 112
removing child elements, 113

declarations in XML Schema, 173
direct element constructors, 58–67

containing literal characters, 59
containing other element

constructors, 59
modifying input document

element, 64
extracting contents with data function, 9
finding with path expressions, 5
input document

copying with modifications in
query, 110–115

including in query results, 57
in-scope namespaces, 135
matching based on name, 183
names, 21
names affected by namespace declarations

in XQuery, 133
namespace prefixes, 124
namespaces, 24
node hierarchy (family analogy), 19
roots and documents, 20
string and typed values, 21
types, 173

else if construct, 36
else keyword, 35
empty and nil values, 198

474 | Index

empty content, 181
empty element, 295
empty function, 345
empty greatest or empty least order, 87
empty order declaration, 88
empty sequence, 23

argument lists and, 101
in arithmetic operations, 208
base URI of the static context, 261
else expression evaluated to, 36
in function arguments, 107
in general comparisons, 31
in node comparisons, 34
in value comparisons, 33

empty-sequence() kind test, 153
enclosed expressions, 59

computed attribute constructors used in
direct element constructors, 70

containing element content, 69
elements returned by, 69
evaluating to atomic values, 61
evaluating to attributes, 62
evaluating to whitespace, 67
evaluation in attribute values, 63
with multiple subexpressions, 61
separation by spaces, 65
whitespace in, 66

encode-for-uri function, 263, 345
encoding keyword, 162
ends-with function, 215, 346
entity references, 214, 278

predefined, 279
query using (example), 279
XML syntax, using in regular

expressions, 229
eq operator (see equal to operator)
equal to operator

=, 30, 298
comparing dates and times, 246
comparing durations, 247
comparing numeric values, 206
comparing strings, 215
used on lists of values, 112

eq, 33
comparing numeric values, 207

error function, 200, 347
errors

handling with good query design, 199
avoiding dynamic errors, 200
error and trace functions, 200

reference (in alphabetical order by
name), 440–464

serialization, 283
type, 146

dynamic errors, checking for, 146
static errors, checking for, 146

escape-html-uri function, 263, 348
escapes

character class expressions, 235
character references, 278
entity references, 279
quotes in string literals, 214
representing groups of characters in

regular expressions, 230–233
single characters in regular

expressions, 228
URIs, 262

evaluation (run) time, 185
every (keyword), 27, 80
exactly-one function, 192, 349
except expression, 119
exists function, 350

SQL Server, 304
explicit time zones, 243
expressions, 26–38

categories of, 26
evaluation order and parentheses, 30
in function body, 105
new, in XPath 2.0, 315
in query body, 16
reevaluating, 201
whitespace in queries, 27
(see also FLWORs; listings under

expression category names)
extension expressions, 292
external variables, 168

F
false (Boolean value), 149
false function, 28, 351
family relationships among nodes, 19
flags (in regular expressions), 238
floating-point numbers, 205

xs:double type, 419
xs:float type, 423

floor function, 212, 351
FLWORs, 6, 26, 27, 72–84

binding variables, 29
clauses, listed, 7, 73
distinct-values function, using, 303
element constructor in return clause, 8
embedded in another FLWOR, 302
for clause, 74–76

defining positional variable, 116

Index | 475

grouping results into categories, 93
improving readability using whitespace

and parentheses, 194
joining data from multiple sources, 10,

81–84
joins and types, 84
outer joins, 84
result order not significant, 91
three-way joins, 83
two-way join in a predicate, 81

let clause, 76
order by clause, 85–89

inadvertent resorting in document
order, 90

order of returns, 85
return clause, 78, 105
scope of variables, 79
selecting distinct values, 81, 300
sequence type matching, 154
syntax, 73
type declarations, 191
where clause, 77

using an order comparison, 91
fn namespace, 128
following axis, 42, 289
following-sibling axis, 42, 289
for clause (FLWORs), 7, 73, 74–76

defining positional variable, 116
intermingled with let clauses, 76
multiple for clauses, 75
order of results, 85
range expressions, 74
scope of variables, 79

for, let, where, order by, return (see
FLWORs)

forward steps, 41
axis, 41

fragment identifiers in URI references, 259
ftcontains operator, 287
full-text searches, 285
function conversion rules, 103, 150

automatic type conversions, 104
XQuery 1.0 and XPath 1.0 and 2.0, 316

function namespace, 133
functions, 10, 99–109

body, 105
built-in

reference, 319–410
user-defined vs., 99

calling, 29, 99–103
argument lists, 101
function names, 100

function signatures, 100
sequence types for parameters, 103

context and, 108
declarations, 104
names of, 106

default namespace declaration, 131
impact of namespace declarations, 133
namespaces, 24, 127

parameter list, 106–108
reasons for defining your own, 104
recursive, 109
SQL and XQuery equivalents, 299
web site for source code, 34

FunctX XQuery Library, xiv

G
ge operator (see greater than or equal to

operator)
generic sequence types, 152
generic types

assigned when no schema is present, 172
assignment to elements or attributes, 180

get-ID function, 266
global attributes, 126
global element and attribute

declarations, 173
global variables, 166

declarations, 29
type declarations in, 192

greater than operator
>, 30

comparing dates and times, 246
comparing durations, 248
comparing numeric values, 206
comparing strings, 215
entity reference (>:), 279
SQL and XQuery, 297

gt, 33
comparing numeric values, 207

greater than or equal to operator
>=, 30

comparing dates and times, 245
comparing numeric values, 206
comparing strings, 215
SQL and XQuery, 297

ge, 33
comparing numeric values, 207

Gregorian calendar, 252
grouping, 11, 93

SQL vs. XQuery, 302
(see also aggregating values)

476 | Index

groups of characters, representing in regular
expressions, 230–233

gt operator (see greater than operator)

H
hours

extracting from dates, times, and
durations, 248

hours-from-dateTime function, 352
hours-from-duration function, 352
hours-from-time function, 353

HTML
entities, 279
escape-html-uri function, 348

I
\I (noninitial) character in XML names used

in regular expressions, 231
\i (initial) character allowed as first character

of XML names, 230
i option ($flags argument), indicating

case-insensitive mode, 238
id function, 265, 353
identity (nodes), 21

comparisons with is operator, 34
idiv (integer division) operator, 207, 210
idref function, 265, 355
IDREFs, 264–266

joining with IDs, 265
xs:IDREF type, 429
xs:IDREFS type, 429

IDs (identifiers), 264–266
constructing, 266
get-ID function, 266
joining with IDREFs, 265
xs:ID type, 428

if, then, and else keywords, 35
if-absent function, 198
if-empty function, 199
if-then-else expressions, 35–37

typeswitch expression vs., 189
use of logical (and/or) operators, 37

implementation-defined features, 289, 290
default values for serialization

parameters, 293
option declaration, 291

implementation-dependent features, 289
implementation-specific aspects,

XQuery, 289–293
conformance, 289
extension expressions, 292

option declarations, 291
serialization parameters, specifying, 293
setting query context, 290
XML version support, 290

implicit time zones
in date and time comparisons, 246
explicit vs., 243
implicit-timezone function, 244, 356

imports
declarations in prolog, 161
library modules, 164

behavior of imported module, 165
multiple, 165
support for, 289

schema, 176, 289
adding to ISSD for a module, 176

in (keyword), 27, 74
IN condition (SQL), 298
index in path expression predicate, 6
index-of function, 358

use with sequences, 23
INF and –INF (positive and negative

infinity), 207
results for mod operator, 211

infinite loop, resulting from recursive
function declaration, 109

inherit (in copy-namespace
declarations), 138

example query using, 139
initial character (\i), allowed in XML

names, 230
initializing expressions, 167
input documents, 15, 52–54

accessing a collection, 53
accessing single document, 53
accessing using variables, 54
copying elements with modifications in

query, 110–115
including elements and attributes in query

results, 57
modifying element (example), 64

namespace declaration, 25
input elements and, 134

namespaces, 127
setting context node outside the

query, 54
variations in, designing robust queries

for, 196
in-scope namespaces

controlling copying with
copy-namespaces settings, 138

statically known namespaces
vs., 135–137

Index | 477

in-scope schema definitions (see ISSDs)
in-scope-prefixes function, 259, 357
insert-before function, 358

use with sequences, 23
value type for second argument, 143

instance of expressions, 154
used in if-then-else expressions, 189

integer division (idiv) operator, 207, 210
integers, 204

xs:byte type, 416
xs:int type, 430
xs:integer type, 430
xs:long type, 432
xs:negativeInteger type, 432
xs:nonNegativeInteger type, 433
xs:nonPositiveInteger type, 433
xs:positiveInteger type, 434
xs:short type, 435
xs:unsignedByte type, 437
xs:unsignedInt type, 437
xs:unsignedLong type, 438
xs:unsignedShort type, 438

intermediate XML documents, 119
reducing complexity of input

document, 121–122
International Resource Identifiers (IRIs), 123
internationalization of strings, 223–225

collations, 223
determining language of an element, 225
Unicode normalization, 225

intersect expression, 119
IRIs (International Resource Identifiers), 123
iri-to-uri function, 263, 359
is operator, 34

testing for last item, 117
ISSDs (in-scope schema

definitions), 175–178
origins of, 176
schema imports, 176
static typing and, 186

item (data model), 18
item(), 152

J
Java, XQuery API (XQJ), 287
joins, 10, 81–84

order of results not significant, 91
outer, 84
SQL vs. XQuery, 301
three-way, 83
types and, 84

K
keywords, 27

for categories of expressions, 26
external, 168
for, let, where, order by, and return (see

FLWORs)
whitespace separators, 27

kind tests in path expressions, 44, 183

L
lang function, 225, 360
languages

determining language of an element, 225
xml:lang attribute, 225
xs:language type, 431

last function, 49, 117, 362
last item in sequence, testing for, 117
lax validation mode, 179
le operator (see less than or equal to

operator)
length of a string

finding, 217
string-length function, 396
whitespace and, 222

less than operator
<, 30

comparing dates and times, 246
comparing durations, 248
comparing numeric values, 206
comparing strings, 215
entity reference (<), 229, 279

lt, 33
comparing numeric values, 207

less than or equal to operator
<=, 30

comparing dates and times, 245
comparing numeric values, 206
comparing strings, 215
SQL and XQuery, 297

le, 33
comparing numeric values, 207

let clause (FLWORs), 7, 73, 76
binding entire sequence of items to a

variable, 94
intermingled with for clauses, 76
performing several functions or operations

in order, 77
scope of variables, 79
using range expression, 76

478 | Index

Letters category (Unicode), 231
lexical representation, primitive types, 143
library modules, 163

functions declared in, 106
functions separated into for reuse, 196
importing, 164

behavior of a module import, 165
multiple, 165

schema imports and, 177
support for, 289
variable names, 167

LIKE conditions (SQL), 297
line breaks in queries (see whitespace)
line feed (\n), in regular expressions, 229
list types, 174

and typed values, 181
literals, 28

direct element constructors containing
literal characters, 59

namespace name in namespace
declaration attribute, 132

namespace name in XQuery namespace
declaration, 129

numeric literals, 204
passed in function calls, 101
string literals, 213

local element and attribute declarations, 173
local namespace, 128
local-name function, 21, 254, 362

using names as result data, 256
local-name-from-QName function, 257, 363
logical expressions, 26, 37

evaluation order, 37
lookup tables, 120
lower-case function, 220, 364
lt operator (see less than operator)

M
m option ($flags argument), indicating

multi-line mode, 238
main module, 163
Marks category (Unicode), 231
matches function, 216, 297, 365

dot-all mode, 230
flags, 238
multi-line mode, anchors and, 237

max function, 95, 212, 366
max-string function, 95
min function, 95, 212, 367
min-non-empty-string function, 96

minutes
extracting from dates, times, and

durations, 248
minutes-from-dateTime function, 368
minutes-from-duration function, 369
minutes-from-time function, 369

missing values, 295
handling with robust query design, 197

absent values, 197
default missing values, 198
empty and nil values, 198

in sequence passed to aggregation
function

counting, 96
counting in averages, 97
ignoring, 95

(see also empty sequence)
mixed content

in complex types, 174, 181
in text nodes, 277

MMDDYYYY-to-date function, 244
mod (modulus) operator, 207, 211
modifiers, order, 87
modularity of queries, 196
module declaration, 163
modules, 163–165

library, 163
importing, 164
variable names, 167

main, 163
support for library modules and module

imports, 289
months

date component types, 252
extracting from dates, times, and

durations, 248
month-from-date function, 370
month-from-dateTime function, 370
months-from-duration function, 371
xs:gMonth type, 425
xs:gYearMonth, 427

multi-character escapes in regular
expressions, 230

examples, 233
multi-line mode, 237

m option ($flags argument), 238
multiplication, 209

durations by numbers, 251
SQL and XQuery operators, 298

multiplication operator (see * (asterisk))

Index | 479

N
\n (line feed), in regular expressions, 229
N/A values, indicating default missing

values, 198
name function, 21
names

affected by namespace declarations in
XQuery, 133

choosing for clarity of queries, 194
computed element constructors, 69
conventions in XQuery, 27
element and attribute nodes, 21
elements from input document, changing

in query, 114
function, 100, 106

reserved, 106
local-name function, 21, 254, 256, 362
name function, 21, 52, 254, 371
node name tests, 42–43
node-name function, 21, 254
valid name in XML (xs:Name), 432
variables, 28, 167

namespace declaration attributes, 131, 136
namespaces, 24, 123–140

choosing prefixes for clarity of
queries, 195

copy-namespaces declarations, 138–140
declarations in element constructors, 63,

131
declarations in prolog, 128–131, 161
default namespace declarations in

queries, 133
elements, changing the namespaces

of, 258
error names, 440
functions, 100
impact and scope of declarations, 132
in-scope, 357

statically known namespaces
vs., 135–137

library module imports, 164
multiple module locations for single

namespace, 165
names in XQuery, 27
node name tests and, 43
option names, 292
predeclared, 128
URIs (see URIs)
user-defined function names, 106
variables, 28

XML, 123–127
attributes and, 125
declarations and scope, 126
declaring, 124
default namespace declarations, 125
URIs, 123

XML Schema and, 175
XML versions, 290

Namespaces in XML (W3C
recommendation), 123

namespace-uri function, 254, 372
namespace-uri-for-prefix function, 259, 373
namespace-uri-from-QName function, 257,

374
NaN (not-a-number), 205, 208

comparisons, 207
results for mod operator, 211
sorting order, 87

native XML database, 2
NCName, 264, 432

target for processing instructions, 272
ne operator (see not equal to operator)
negation operator (-), 207
negative durations, 246
negative infinity (-INF), 207

results for mod operator when an operand
is -INF, 211

nesting
conditional expressions, 36
expressions in XQuery, 302
sequences and, 23

nil and empty values, 198
nilled elements, 295
nilled function, 375
node tests, 42–44

node kind, 44
node name, 42–43

using wildcards, 43
node() kind test, 44, 111

generic sequence type, 152
processing instructions, 271
text nodes, 276
XML comments, 268

node-name function, 21, 254, 376
nodes, 18–22

atomic values, 22
comparisons, 30

atomization, 148
comment, 267
comparisons, 34
as context item, 40

480 | Index

nodes (continued)
document, 272–274
document order, 89
duplicate, elimination in unions, 119
family relationships, 19
finding base URI, 260
function arguments as, 107
hierarchy, 19
identity and name, 21
kinds of nodes (listed), 18
newly-constructed, content types

and, 182
processing instruction, 270
retrieving names, 254–256
roots, documents, and elements, 20
string and typed values, 21
text, 274–278
type annotations, assigning, 180
typed values and, 181
types and, 145

no-inherit (in copy-namespace
declarations), 138

example query using, 140
noncolonized name (see NCName)
nondecimal digit character (\D), in regular

expressions, 230
none (return type), 348
nonword character (\W) in regular

expressions, 230
no-preserve (in copy-namespace

declarations), 138
example query using, 139

normalize-space function, 223, 377
normalize-unicode function, 224, 378
not equal to operator

!=, 30
comparing dates and times, 245
comparing numeric values, 206
comparing strings, 215
not function vs., 38
SQL and XQuery, 297

ne, 33
comparing numeric values, 207

not function, 38, 112, 299, 379
using with quantified expressions, 80

not operator
! (full text not), 286
SQL, 299
(see also not function)

notations, XML, 434

null values, 295
(see also empty sequence)

number function, 205, 380
numbers, 143, 204–212

arithmetic operations on numeric
values, 207–211

addition, subtraction, and
multiplication, 209

division, 210
modulus, 211
precedence of arithmetic

operators, 209
comparing numeric values, 206
constructing numeric values, 205

number function, 205
numeric type promotion, 206

functions for, 211
numeric types, 204
in path expression predicates, 6, 47

Numbers category (Unicode), 231
numeric keyword (in built-in function

signatures), 103, 107
numeric literals, 28, 204
numeric-add operator, 99

O
occurrence indicators

*, 152
in function argument types, 151
specifying function return type, 151

+, 152
?, 152

in function argument types, 150
cast expression, using with, 157
empty sequence accepted as function

arguments, 107
indicating number of items in a

sequence, 103
using with sequence types, 152

generic sequence types, 153
one-or-more function, 192, 381
open-ref-document function, 263
operand expression, 188
operators

arithmetic (see arithmetic operations)
comparison, 30
evaluation order and parentheses, 30
Functions and Operators

recommendation, 99
listed, 26

Index | 481

multiple meanings in XQuery, 27
SQL and XQuery, 297

optimization, implementations of XSLT and
XQuery, 313

option declarations, 161, 291
optional features (XQuery), 289
or operator, 37

|| (full text or), 286
SQL and XQuery, 298

order by clause (FLWORs), 7, 85–89
complex order specifications, 88
default collation, using, 224
inadvertent resorting in document

order, 90
multiple ordering specifications, 86
order modifiers, 87
stable ordering, 88
types, 86

order.xml document (example), 4
ordered expressions, 93
ordering mode declaration, 93
Other category (Unicode), 232
outer joins, 84
outermost element, 21
outermost element node, document node

vs., 272

P
parameters

serialization, 282
specifying in different XQuery

implementations, 293
user-defined function parameter

list, 106–108
parent (nodes), 20
parent axis, 42
parent axis in path expressions, 202
parentheses (see () (parentheses))
path expressions, 5, 26, 39–46

abbreviated syntax, 44
avoiding expensive expressions in, 202
axes, 41
combining sequences via unions, 118
context and, 40
context in query, 16
dynamic paths, 52
element names in XQuery, affected by

default namespace declaration, 133
FLWORs vs., 72
general and value comparisons in

predicates, 33

kind tests, 183
node tests, 42–44
other expressions as steps, 45
predicates (see predicates)
querying comments, 268
querying text nodes, 276
results returned in document order, 85
returning nodes, 18
selecting elements from input

documents, 72
steps, 41
using within FLWOR where clause, 78
XQuery and XPath, versions 1.0 and

2.0, 315
pattern-matching (see regular expressions)
performance, optimizing with query

design, 201–203
avoiding expensive path expressions, 202
avoiding reevaluation of same or similar

expressions, 201
avoiding unnecessary sorting, 201
using predicates instead of where

clauses, 202
pessimistic static typing, 185, 189
pipelining, 122
position function, 49, 116, 382
positions, 115–118

testing for last item, 117
using in predicates, 48–50

positive infinity (INF), 207
results for mod operator when an operand

is INF, 211
pragmas, extension expressions, 292
precedence

arithmetic operators, 209
evaluation order of expressions, 30
logical operators, 37

preceding axis, 42, 289
preceding-sibling axis, 42, 289
predicates, 6, 46–52

comparisons in, 47
complex, 51
for clause, joins in, 301
two-way join in FLWOR predicate, 81
using instead of where clauses, 202
using multiple, 50
using positions, 48–50

prefixes, namespace, 124
attributes, 126
functions for, 259
in-scope- prefixes function, 357
mapping directly in module imports, 164

482 | Index

prefixes, namespace (continued)
namespace-uri-for-prefix function, 373
overriding default namespace, 127
predeclared, 128
prefix-from-QName function, 257, 382
schema imports, module declarations, and

module imports, 131
(see also namespaces)

preserve (in copy-namespace
declarations), 138

example query using, 140
prices.xml document (example), 4
primary expressions, 26
primitive types, 143

casting among, 158
xs:string and xs:untypedAtomic, 158

types derived from (see derived types)
processing instruction nodes, 19
processing instructions (XML), 269–272

constructing, 271
data model and, 270
querying, 270
sequence types and, 271

processing model for XQuery, 15–17
context, 16
queries, 15
query processor, 16
query results, 17
XML input documents, 15

processing-instruction() kind test, 154, 270
processors, query, 16
product catalog input document

(catalog.xml), 3
prolog, queries, 16, 160

declarations contained in, 161
main module, 163
namespace declarations, 128–131

controlling in query results, 135–137
default namespaces, 129
scope of, 132

variable declarations and bindings, 166
version declaration, 162

promotion, type, 147
comparing different numeric types, 206
in function conversion rules, 150
numeric, 206

pull stylesheets, 310
equivalent in XQuery, 312
use on narrative content (example), 312

Punctuation category (Unicode), 231
push stylesheets, 310

Q
QName function, 257, 383
qualified names, 254–259

computed element constructors, 69
constructing, 257
local-name-from-QName function, 363
namespace-uri-from-QName

function, 374
options, 292
prefix-from-QName function, 382
resolve-QName function, 386
retrieving node names, 254–256
xs:QName type, 434

quantified expressions, 27, 79
binding multiple variables, 80
sequence type matching, 154
type declarations, 191

quantifiers
regular expression, 226
reluctant, in regular expressions, 235
using with regular expression character

class expressions, 233
queries, 15, 160–169

assembling from multiple
modules, 163–165

comparing SQL to XQuery, 296
context, 16
design goals, 193–203

clarity, 193–196
error handling, 199
modularity, 196
performance, 201–203
robustness, 196–199

examples, 3–11
external variables, 168
namespace declarations, 128–134

controlling in results, 135–140
namespace-qualified names, uses of, 127
namespaces, using, 25
processor, 16
prolog and body, 160
prolog declarations

external functions, 168
summary of declaration types, 161
variable declarations, 166
version declaration, 162

results, 17
schemas, advantages of using, 171
setting context node outside of, 54
SQL/XML query, 306
syntax, XQuery vs. XSLT, 309

Index | 483

variables
names of, 167
scope, 166

whitespace in, 27
query function (SQL Server), 305

R
\r (carriage return), in regular

expressions, 229
range (characters in a character class), 234
range expressions

using with FLWOR for clause, 74
using with FLWOR let clause, 76

recursion, 104, 109
references

back-references, 237
character, 278
IDREFs, 264–266

joining with IDs, 265
parenthesized sub-expressions in regular

expressions, 228
URI

relative URIs, 259
xs:anyURI, 259

regular expressions (and
pattern-matching), 226–241

anchors, 236
multi-line mode and, 237

back-references, 237
character class expressions, 233

escaping rules, 235
examples, 234
negative character class, 234
single characters and ranges, 233
subtraction from a range, 234

flags, using, 238
matching string to a pattern, 216
reluctant quantifiers, 235
replacing substrings matching a

pattern, 221
representing any character in regular

expressions with . (period), 229
representing groups of

characters, 230–233
block escapes, 232
category escapes, 231
examples of multi-character, category

and block escapes, 233
multi-character escapes, 230

representing individual characters, 228
single-character escapes, 228

SQL LIKE conditions vs., 297

structure of regular expressions, 226–228
atoms, 226
parenthesized subexpressions and

branches, 227
quantifiers, 226

sub-expressions with replacement
variables, 239

tokenizing strings, 219
relational databases

native XML databases vs., 2
supporting XML and XQuery, 3
XML data model vs., 294
XQuery support in, 303

relative path expressions, 40
relative URIs, 259

resolving URIs, 261
reluctant quantifiers, 235
remainder after dividing (modulus), 207, 211
remove function, 384
remove-attribute function, 111
remove-attributes-deep function, 112
remove-elements-deep function, 113
replace function, 221, 385

back-references and variable
references, 228

dot-all mode, 230
flags, 238
multi-line mode, anchors and, 237
reluctant and non-reluctant

quantifiers, 236
sub-expressions with replacement

variables, 239
replace-first function, 222
reserved function names, 106
resolve-QName function, 257, 386
resolve-uri function, 261, 388

base URI of the static context, 261
results, query, 17
return clause (FLWORs), 7, 73, 78, 105

element constructor in, 8
multiple expressions within, 78
scope of variables, 79

return type of a function, 105
reverse axes, positional predicates and, 50
reverse function, 91, 389
reverse steps, 41

axis, 41
robustness of queries, 196–199

data variations, handling, 196
missing values, handling, 197

root element, 20
root function, 56, 389

484 | Index

root node, 21
root, accessing for context node, 56
round function, 212, 390
round-half-to-even function, 212, 391

S
\S (nonwhitespace) character in regular

expressions, 230
\s (space) character in regular

expressions, 230
s option ($flags argument), indicating dot-all

mode, 238
satisfies (keyword), 27, 80
Saxon, 3

option declarations, 291
schema-attribute() kind test, 183
schema-element() kind test, 183
schemas, 170–184

changes, managing with user-defined
functions, 104

defined, 170
importing, 165
imports, 176
in-scope schema definitions

(ISSDs), 175–178
node kind tests for elements and

attributes, 44
reasons to use with queries, 171
sequence types and, 154, 183
static typing and, 186
support for schema imports and

validation, 289
validation and type assignment, 178–182

assigning type annotations to
nodes, 180

nodes and typed values, 181
types and newly constructed elements

and attributes, 182
validate expression, 178
validation mode, 179

W3C XML Schema, 14, 172–175
element and attribute

declarations, 173
namespaces and, 175
types, 173

scope
default settings defined outside query

scope, 162
in-scope namespaces, 135, 357
namespace declarations in XQuery, 126,

132
variables, 166

searches, full text, 285
seconds

extracting from dates, times, and
durations, 248

seconds-from-dateTime function, 392
seconds-from-duration function, 392
seconds-from-time function, 393

self axis, 41
separator characters (URI), escaping, 262
Separators category (Unicode), 232
sequence constructors, 118
sequence numbers, 115–118

adding to results, 115
testing for last item, 117

sequence types, 107, 151–155
atomic types as, 153
comments and, 268
document nodes and, 273
element and attribute tests, 154
function parameters as, 103
generic, 152
matching, 154

instance of expression, 154
processing instructions and, 271
schemas and, 183

element and attribute tests, 183
examples based on name and

type, 184
text nodes and, 276
using occurrence indicators, 152

sequence-related expressions, 27
sequences, 22

argument lists and, 102
binding to named variable, 23
combining result sequences, 118
converting to boolean values, 148
empty, 23
expression evaluation to, 26
multi-item, general comparisons on, 31
in node comparisons, 34
singleton, 23
in value comparisons, 33
variables bound to particular value, 28

serialization, 17, 282
errors, 283
query results to XML document, support

for, 289
specifying parameters for

saxon:output, 291
specifying parameters in different XQuery

implementations, 293
set operators (SQL), 302

Index | 485

set-string-to-length function, 218
setters (prolog declarations), 161
siblings (nodes), 20

following siblings, 42, 289
preceding siblings, 42, 289

side effects of functions, 169
signatures (function), 100

numeric keyword used by built-in
functions, 103

simple types, 173
built-in, 143

singleton sequence, 23
some (keyword), 27, 80
sort key, parameterizing, 89
sorting, 85–93

on aggregated values, 98
avoiding unnecessary sorting, 201
document order, 89

inadvertent resorting in, 90
order comparisons, 91

indicating order is not significant, 91
unordered expression, 92
unordered function, 92

indicating whether order is significant, 93
order by clause (FLWORs), 85–89

complex order specifications, 88
multiple ordering specifications, 86
order modifiers, 87
stable ordering, 88
types, 86

reversing the order, 91
SQL vs. XQuery query results, 296
strings, specifying order with

collations, 223
spaces in queries (see whitespace)
splitting strings, 218, 219
SQL users, XQuery for, 14, 294–306

combining SQL and XQuery, 303–306
flexible data structures, 304
structured and semistructured

data, 303
comparison of SQL to XQuery

syntax, 296–303
conditions and operators, 297–299
functions, 299
grouping, 302
multiple tables and subqueries, 301
simple query, 296

relational vs. XML data models, 294
SQL/XML, 306
stable ordering, 88

standards related to XQuery, 282–288
full-text search, 285
serialization, 282

parameters, 282
Update Facility (W3C) for XQuery, 285
XQJ (XQuery API for Java), 287
XQueryX, 284

starts-with function, 215, 393
static analysis phase (type checking), 146
static context, 261
static typing, 185–192

detection of all errors in analysis
phase, 289

expressions and constructs, 187
functions related to, 192
obvious errors, 186
raising false errors, 187
schemas and, 186
treat expression, 189
type declarations, 190
typeswitch expression, 187

statically known namespaces vs. in-scope
namespaces, 135–137

static-base-uri function, 261, 394
steps, 41

abbreviated syntax, 44
using expressions other than axis

steps, 45
strict validation mode, 179
string function, 22, 394

taking string value of comment node, 268
string literals, 28
string value (nodes), 21
string-join function, 218, 219, 396
string-length function, 217, 396
strings, 143, 213–225

comparing, 214–216
entire strings, 215
joins and, 84
matching string to a pattern, 216
string containing another string, 215

concatenating and splitting, 218
concatenating strings, 219
converting between code points and

strings, 220
splitting strings, 219

constructing, 213
string literals, 213

finding length, 217
finding maximum value of many untyped

strings, 95

486 | Index

strings (continued)
finding minimum nonempty string

value, 96
internationalization, 223–225

collations, 223
determining language of an

element, 225
Unicode normalization, 225

manipulating, 220–222
converting between uppercase and

lowercase, 220
replacing individual characters, 220
replacing substrings matching a

pattern, 221
string function, 214
substring function, 398
substring-after function, 399
substring-before function, 400
substrings, 216
whitespace, 222
xs:normalizedString type, 433
xs:string constructor, 214
xs:string type, 213, 436
(see also regular expressions)

string-to-codepoints function, 218, 220, 397
stylesheets, XSLT, 310–313

pull stylesheets, 310
attempt to use on narrative

content, 312
XQuery equivalent, 312

push stylesheets, 310
use on narrative content, 311
XQuery user-defined functions

emulating templates, 312
subexpressions

multiple, in enclosed expressions, 61
using with replacement variables, 239

subselects (SQL), 302
subsequence function, 398
substitution groups, 184
substring function, 22, 216, 398

empty sequence as argument, 108
passing empty sequence or zero-length

string vs. omitting an
argument, 101

signatures, 101
substring-after function, 217, 399
substring-after-last function, 217
substring-before function, 217, 400
subtraction, 207, 209

dates and times, 249
durations, 251

durations from dates and times, 250
precedence of arithmetic operators, 209
SQL and XQuery operators, 298

subtraction operator (-), 207
subtype substitution, 147, 206

in function conversions, 150
sum function, 11, 94, 212, 401
Symbols category (Unicode), 232
syntax diagrams, xi

T
\t (tab character), in regular expressions, 229
tabs in queries (see whitespace)
tabs, escaping in regular expressions, 229
target namespace (schemas), 175

schema imports, 176
target, processing instructions, 270
templates (XSLT), 308

emulating in XQuery with user-defined
functions, 312

use by push stylesheets, 310
XQuery user-defined functions as

equivalent, 309
test expression (after if keyword), 35
text nodes, 19, 274–278

constructing, 278
data model and, 275
querying, 276
reasons for working with, 276
sequence types and, 276

text() kind test, 154, 276
text, full-text searches, 285
then keyword, 35
three-way joins, 83
time zones, 243–245

adjust-dateTime-to-timezone
function, 323

adjust-date-to-timezone function, 321
adjusting, 244
adjust-time-to-timezone function, 323
date and time comparisons, 246
explicit vs. implicit, 243
finding for xs:date, xs:time, or

xs:dateTime values, 245
implicit-timezone function, 356
timezone-from-date function, 402
timezone-from-dateTime function, 403
timezone-from-time function, 245, 403

times (see dates and times)
to (keyword)

in positional predicates, 49
in range expressions, 75

Index | 487

tokenize function, 218, 219, 404
dot-all mode, 230
flags, 238
multi-line mode, anchors and, 237

trace function, 200, 405
translate function, 220, 406
treat expression, 189
true (Boolean value), 149
true function, 28, 407
two-way joins

in FLWOR predicate, 81
type conversions (see conversions, type;

types)
type errors, 146
type promotion

comparing different numeric types, 206
numeric, 206
xs:anyURI values to xs:string, 259

typed values, 21
not automatically typed, 147

type-related expressions, 27
types, 24, 141–159

arithmetic operations and, 208
assigning type annotations to nodes, 180
atomic values and, 22, 145
automatic conversions with function

conversion rules, 104
avoiding use of, 142
built-in, 127, 143, 172, 173

reference, 411–439
checking in XQuery, 146
conversions

automatic, 147–151
castable expression, 157
casting, 156
casting rules, 158–159
constructors, using, 28, 155
function arguments to expected

type, 103
date and time, 242

constructing and casting, 243
date components, 252
duration types, 247
time zones, 243–245

declarations, 190
dynamic type errors, 200
general comparisons and, 31
generic types used when no schema is

present, 172
joins and, 84
list, 174

names affected by namespace declarations
in XQuery, 133

namespaces, 24
predeclared, 128

nodes and, 145
nodes and typed values, 181
numeric, 204
sorting and, 86
strong type system, advantages and

disadvantages, 141
user-defined, 127
(see also sequence types; static typing)

typeswitch expression, 154, 187
typeswitch keyword, 188

U
undeclaring default namespace, 127
Unicode

block names, 232
categories of characters, 231
code point collations, 224
code points in character references, 278
code points, converting between

strings, 220
codepoint-equal function, 328
codepoints-to-string function, 329
normalization, 225
normalize-unicode function, 378
string-to-codepoints function, 397
version support in XQuery

implementations, 290
Uniform Resource Identifiers (see URIs)
Uniform Resource Names (URNs), 123
union keyword, 118
union operator (|), 45, 118
union types, nodes declared as, 180
unordered expression

implementation-dependency of order of
results, 289

unordered expressions, 92
unordered expressions or functions, 201
unordered function, 92, 407
unprefixed element, 255
untyped data, comparisons in predicates, 47
untyped values

atomic values, 22, 146, 438
casting, 147, 150
comparing with general comparison

operators, 142
xs:untyped, 438

488 | Index

Update Facility for XQuery, 285
upper-case function, 220, 408

empty sequence as argument, 102
signature, 100

URIs (Uniform Resource
Identifiers), 259–263

base and relative, 259
base URI of the static context, 261
finding base URI of a node, 260
resolving URIs, 261
specifying base URI with xml:base

attribute, 260
base-uri function, 325
collations in XQuery, 224
documents and, 262
document-uri function, 344
encode-for-uri function, 345
escape-html-uri function, 348
escaping, 262
iri-to-uri function, 359
namespace, 25, 123

extracting from xs:QName, 257
namespace-uri function, 372
namespace-uri-for-prefix

function, 373
prolog declarations, 129

references (xs:anyURI), 259
resolve-uri function, 388
static-base-uri function, 394
xs:anyURI type, 412

URLs (Uniform Resource Locators), 259
URNs (Uniform Resource Names), 123, 259
user-defined functions, 103–109

body, 105
built-in vs., 99
calling, using namespace-qualified

names, 100
declarations, 104
examples, 103
names, 106
parameter list, 106–108
reasons for defining your own, 104
recursive, 109

user-defined types, 143, 174
UTC (Coordinated Universal Time), 243

date and time comparisons, 246
UTF-8 character encoding, 162

V
validate expression, 178, 274

support for, 289
validation modes, 179
value comparisons, 33

comparing numeric values, 207
value function (SQL Server), 305
value space, 143

casting among derived types, 159
casting among primitive types, 158

variables, 28
binding entire sequence of items in

FLWOR let clause, 94
binding external to input documents, 54
binding multiple in quantified

expression, 80
binding multiple in single for clause, 76
binding sequences to named variable, 23
binding to typeswitch expressions, 188
declaring, 166

in query prolog, 161
syntax of declaration, 166

external, 168
function parameter names, 106
imported from modules, 168
initializing expressions, 167
names, 167
names affected by namespace declarations

in XQuery, 133
namespaces, 24
passed in function calls, 101
qualified names in queries, 127
replacement, using with

subexpressions, 239
scope, 79, 166
setting values with let clause in

expressions, 7
version declaration, 162
versions, XML version support in XQuery

implementations, 290

W
\W (nonword) character in regular

expressions, 230
\w (word) character in regular

expressions, 230

Index | 489

W3C
converter for XQuery to XqueryX

conversions, 285
Namespaces in XML, 123
XML Schema (see XML Schema)
XQuery Working Group

Full-Text recommendation, 286
XQuery Update Facility, 285

web sites
backward compatibility between XPath

1.0 and 2.0, 314
official XQuery site, 17
source code for functions, 34
user-defined function examples, 103
web page for this book, xiv

weight keyword, 287
where clause (FLWORs), 7, 73, 77

composed of multiple expressions, 77
scope of variables, 79
three-way join, 83
two-way join, 301
using an order comparison, 91
using instead of predicate, 83
using predicates instead of, 202

whitespace, 27
in direct element constructors, 65–67

boundary whitespace, 65
boundary-space declaration, 66
forcing preservation of boundary

whitespace, 67
nonstring types cast to xs:string, 214
normalize-space function, 377
in regular expressions

escaping, 228, 230
ignoring, 239

separating list of xs:IDREF values, 265
space, character reference for, 278
in strings, 222

considering in string length, 217
between tags in source XML with no DTD

or schema, 275
using for query clarity, 194

wildcards
asterisk (*) in path expressions, 6
schema, types and, 180
using in node name tests, 43

word character (\w) in regular
expressions, 230

X
x option ($flags argument), indicating

ignoring whitespace
characters, 239

XDM (XQuery 1.0 and XPath 2.0 Data
Model), 17

XHTML, wrapping query results in, 8
XML

CDATA sections, 280
comments, 267

constructing, 268
data model and, 267
included in queries, 29
querying, 268
sequence types and, 268

data model, relational vs., 294
documents, 272–274

constructing document nodes, 273
document nodes and data model, 273
document nodes and sequence

types, 273
serialization of query results to, 289

entity and character references, 278–280
character reference examples, 278
entity references, 279

input documents, 15
namespaces, 123–127

attributes and, 125
declarations and scope, 126
declaring, 124
default namespace declarations, 125
names.xml document (example), 255
URIs, 123
using namespace declarations in

XQuery, 136
notations, 434
processing instructions, 269–272

constructing, 271
data model and, 270
querying, 270
sequence types and, 271

SQL/XML query, 306
text nodes, 274–278

constructing, 278
querying, 276
reasons for working with, 276
sequence types and, 276
XQuery data model and, 275

version support in XQuery
implementations, 290

490 | Index

XML constructors (see constructors)
xml namespace, 128
XML Schema, 14, 172–175

element and attribute declarations, 173
namespaces and, 175
nilled elements concept, 295
substitution groups, 184
type system, 24
types, 173

user-defined, 174
XML Schema Namespace, 127
xml:base attribute, 260
xml:id attribute, 264

using in element constructors, 266
xml:lang attribute, 126, 225
xmlns prefix (namespace attribute), 25
XML-qualified names, 27

variables, 28
XPath, 13

backward incompatibility between 1.0
and 2.0, web site information, 314

differences in versions 1.0 and
2.0, 314–317

arithmetic expressions, 316
built-in functions, 317
comparison expressions, 316
data model, 315
function conversion rules, 316
new expressions, 315
path expressions, 315

document element (XPath 1.0), 20
Version 2.0, use by XQuery and

XSLT, 308
XPath 2.0 Data Model, 17
XQuery and, 307

XPath Datatypes Namespace, 247
XPath Functions Namespace, 100, 128, 131
xqdoc tags, 195
XQJ (XQuery API for Java), 287
XQuery

common uses, 2
features set, 1
implementation-specific

features, 289–293
conformance, 289
extension expressions, 292
option declarations, 291
serialization parameters,

specifying, 293
setting query context, 290
XML version support, 290

official web site, 17

processing scenarios, 2
SQL vs., 14, 294–306
version declaration, 162
web site, 12
XML Schema and, 14
XPath and, 13, 307
XSLT vs., 13

XQuery 1.0 and XPath 2.0 Data Model
(XDM), 17

XQuery 1.0 and XPath 2.0 Full-Text
recommendation, 286

XQuery API for Java (XQJ), 287
XQueryX, 284
xs namespace, 128
xs: prefix (types), 24, 127
xs:anyAtomicType, 144, 153, 411
xs:anyType, 180, 411
xs:anyURI, 259, 412
xs:base64Binary, 414
xs:boolean, 415
xs:byte, 416
xs:date, 143, 242, 416

comparisons, 245
component extraction, 248
date formats, 244
finding time zone of a value, 245
subtracting values, 249

xs:dateTime, 242, 416
comparisons, 245
extracting entire date or time from, 249
finding time zone of a value, 245
subtracting values, 249

xs:dayTimeDuration, 247, 417
adding and subtracting values, 251
comparisons, 247
dividing by another duration, 252
implicit time zone as, 244
multiplying by numbers, 252
time zone expressed as, 245

xs:decimal, 204, 418
xs:double, 205, 419

node or atomic value cast as, 205
xs:duration, 246, 421

comparisons, 247
component extraction, 248

xs:ENTITIES, 422
xs:ENTITY, 422
xs:float, 205, 423
xs:gDay, 252, 424
xs:gMonth, 252, 425
xs:gMonthDay, 252, 425
xs:gYear, 252, 426

Index | 491

xs:gYearMonth, 252, 427
xs:hexBinary, 427

casting to strings, 214
xs:ID, 264, 428
xs:IDREF, 264, 429
xs:IDREFS, 265, 429
xs:int, 430
xs:integer, 153, 204, 430
xs:language, 431
xs:long type, 432
xs:Name, 432
xs:NCName, 432
xs:negativeInteger, 432
xs:NMTOKEN, 433
xs:NMTOKENS, 433
xs:nonNegativeInteger, 433
xs:nonPositiveInteger, 433
xs:normalizedString, 433
xs:NOTATION, 434
xs:positiveInteger, 434
xs:QName, 254, 434

constructor, 257
extracting parts of, 257
local-name-from-QName function, 363

xs:short, 435
xs:string, 213, 436

casting atomic value of any type to, 158
casting to any other primitive type, 158
comment content, 268
constructor, 214
URI arguments for functions, 259

xs:time, 242, 436
comparisons, 245
component extraction, 248
finding time zone of a value, 245
subtracting values, 249

xs:token, 437
xs:unsignedByte, 437
xs:unsignedInt, 153, 437
xs:unsignedLong, 438
xs:unsignedShort, 438
xs:untyped, 180, 438

xs:untypedAtomic, 146, 180, 438
casting atomic values of any type to, 158
casting to any other primitive type, 158
string value of text node, 275

xs:yearMonthDuration, 247, 439
adding and subtracting values, 251
comparisons, 247
dividing by another duration, 252
multiplying and dividing by

numbers, 252
xsi namespace, 128
xsi:nil attribute, 198, 295, 375
xsi:schemaLocation attribute, 126
xsi:type, 257
XSLT

XQuery vs., 13, 307–314
convenient features of XSLT 2.0

lacking in XQuery, 314
differences in query syntax, 309
equivalent components, 309
optimization for particular use cases,

differences in, 313
paradigm differences, push and pull

stylesheets, 310–313
shared components, 308

XSLT 2.0 and XQuery 1.0 Serialization, 282

Y
years

date component types, 252
extracting from dates, times, and

durations, 248
xs:gYear type, 426
year-from-date function, 408
year-from-dateTime function, 409
years-from-duration function, 409

Z
zero-or-one function, 192, 410

About the Author
Priscilla Walmsley has been working closely with XQuery and XML Schema for
years. She was a member of the W3C XML Schema Working Group from 1999 to
2004, and wrote the respected book Definitive XML Schema (Prentice Hall).
Currently, Priscilla serves as Managing Director of Datypic (http://www.datypic.com),
where she specializes in XML- and Service Oriented Architecture (SOA)-related
consulting and training.

Colophon
The animal on the cover of XQuery is the satyr tragopan (Tragopan satyra), a
member of the pheasant family and one of five tragopan species. This bird, some-
times called the crimson horned tragopan, inhabits the Himalayas, from Kashmir
east up into Tibet and central China. Its two names are derived from the distinctive
appearance of the male—his protruding fleshy outgrowths above the eyes, which
look like horns, and his bright red plumage. Both plumage and horns are central to
his courtship displays.

Tragopans feed on insects, leaves, sprouts, and seeds and are thought to be monoga-
mous. Although incubation is done entirely by the female, the male may assist in
tending the chicks. Most tragopans are good breeders in captivity, adapting well to
various cold-weather climates and becoming quite tame.

Four of the five species of tragopans are in danger of extinction due to the destruc-
tion of their habitats. Unlike most fowl, tragopans live at very high elevations,
ranging from 925 to 3650 meters. In the winter they are typically found in the
thickest parts of pine trees, but during mating season they travel upward to the
extreme limits of the forest. Finding a high branch, the male tragopan establishes a
territorial perch from which he makes mating calls at five-minute intervals. His call,
which some have described as similar to that of a goose or young lamb, can be heard
for more than a mile.

The cover image is from The Riverside Natural History. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSans Mono Condensed.

	XQuery
	Table of Contents
	Preface
	Contents of This Book
	Reading the Syntax Diagrams
	Conventions Used in This Book
	Using Code Examples
	Useful Functions
	We’d Like to Hear from You
	Acknowledgments

	Introduction to XQuery
	What Is XQuery?
	Capabilities of XQuery
	Uses for XQuery
	Processing Scenarios

	Easing into XQuery
	Path Expressions
	FLWORs
	Adding XML Elements and Attributes
	Adding Elements
	Adding Attributes

	Functions
	Joins
	Aggregating and Grouping Values

	XQuery Foundations
	The Design of the XQuery Language
	XQuery in Context
	XQuery and XPath
	XQuery Versus XSLT
	XQuery Versus SQL
	XQuery and XML Schema

	Processing Queries
	XML Input Documents
	The Query
	The Context
	The Query Processor
	The Results of the Query

	The XQuery Data Model
	Nodes
	Node kinds
	The node hierarchy
	The node family
	Roots, documents, and elements
	Node identity and name
	String and typed values of nodes

	Atomic Values
	Sequences

	Types
	Namespaces

	Expressions: XQuery Building Blocks
	Categories of Expressions
	Keywords and Names
	Whitespace in Queries
	Literals
	Variables
	Function Calls
	Comments
	Evaluation Order and Parentheses
	Comparison Expressions
	General Comparisons
	General comparisons on multi-item sequences
	General comparisons and types

	Value Comparisons
	Node Comparisons

	Conditional (if-then-else) Expressions
	Conditional Expressions and Effective Boolean Values
	Nesting Conditional Expressions

	Logical (and/or) Expressions
	Evaluation Order of Logical Expressions
	Negating a Boolean Value

	Navigating Input Documents Using Paths
	Path Expressions
	Path Expressions and Context
	Steps and changing context

	Steps
	Axes
	Node Tests
	Node name tests
	Node name tests and namespaces
	Node name tests and wildcards
	Node kind tests

	Abbreviated Syntax
	Other Expressions As Steps

	Predicates
	Comparisons in Predicates
	Using Positions in Predicates
	Understanding positional predicates
	The position and last functions
	Positional predicates and reverse axes

	Using Multiple Predicates
	More Complex Predicates

	Dynamic Paths
	Input Documents
	Accessing a Single Document
	Accessing a Collection
	Setting the Context Node Outside the Query
	Using Variables

	A Closer Look at Context
	Working with the Context Node
	Accessing the Root

	Adding Elements and Attributes to Results
	Including Elements and Attributes from the Input Document
	Direct Element Constructors
	Containing Literal Characters
	Containing Other Element Constructors
	Containing Enclosed Expressions
	Enclosed expressions that evaluate to elements
	Enclosed expressions that evaluate to attributes
	Enclosed expressions that evaluate to atomic values
	Enclosed expressions with multiple subexpressions

	Specifying Attributes Directly
	Declaring Namespaces in Direct Constructors
	Use Case: Modifying an Element from the Input Document
	Direct Element Constructors and Whitespace
	Boundary whitespace
	The boundary-space declaration
	Forcing boundary whitespace preservation

	Computed Constructors
	Computed Element Constructors
	Names of computed element constructors
	Content of computed element constructors

	Computed Attribute Constructors
	Use Case: Turning Content to Markup

	Selecting and Joining Using FLWORs
	Selecting with Path Expressions
	FLWOR Expressions
	The for Clause
	Range expressions
	Multiple for clauses

	The let Clause
	The where Clause
	The return Clause
	The Scope of Variables

	Quantified Expressions
	Binding Multiple Variables

	Selecting Distinct Values
	Joins
	Three-Way Joins
	Outer Joins
	Joins and Types

	Sorting and Grouping
	Sorting in XQuery
	The order by Clause
	Using multiple ordering specifications
	Sorting and types
	Order modifiers
	Empty order
	Stable ordering
	More complex order specifications

	Document Order
	Document order defined
	Sorting in document order
	Inadvertent resorting in document order

	Order Comparisons
	Reversing the Order
	Indicating That Order Is Not Significant
	The unordered function
	The unordered expression
	The ordering mode declaration

	Grouping
	Aggregating Values
	Ignoring “Missing” Values
	Counting “Missing” Values
	Aggregating on Multiple Values
	Constraining and Sorting on Aggregated Values

	Functions
	Built-in Versus User-Def�ined Functions
	Calling Functions
	Function Names
	Function Signatures
	Argument Lists
	Argument lists and the empty sequence
	Argument lists and sequences

	Sequence Types

	User-Defined Functions
	Why Define Your Own Functions?
	Function Declarations
	The Function Body
	The Function Name
	The Parameter List
	Accepting arguments that are nodes versus atomic values
	Accepting arguments that are the empty sequence

	Functions and Context
	Recursive Functions

	Advanced Queries
	Copying Input Elements with Modifications
	Adding Attributes to an Element
	Removing Attributes from an Element
	Removing Attributes from All Descendants
	Removing Child Elements
	Changing Names

	Working with Positions and Sequence Numbers
	Adding Sequence Numbers to Results
	Testing for the Last Item

	Combining Results
	Sequence Constructors
	The union Expression
	The intersect Expression
	The except Expression

	Using Intermediate XML Documents
	Creating Lookup Tables
	Reducing Complexity

	Namespaces and XQuery
	XML Namespaces
	Namespace URIs
	Declaring Namespaces
	Default Namespace Declarations
	Namespaces and Attributes
	Namespace Declarations and Scope

	Namespaces and XQuery
	Namespace Declarations in Queries
	Predeclared Namespaces
	Prolog Namespace Declarations
	Default namespace declarations in the prolog
	The default function namespace declaration
	Other prolog namespace declarations

	Namespace Declarations in Element Constructors
	The Impact and Scope of Namespace Declarations
	Scope of namespace declarations
	Names affected by namespace declarations
	Namespace declarations and input elements

	Controlling Namespace Declarations in Your Results
	In-Scope Versus Statically Known Namespaces
	Controlling the Copying of Namespace Declarations

	A Closer Look at Types
	The XQuery Type System
	Advantages of a Strong Type System
	Do You Need to Care About Types?

	The Built-in Types
	Types, Nodes, and Atomic Values
	Nodes and Types
	Atomic Values and Types

	Type Checking in XQuery
	The Static Analysis Phase
	The Dynamic Evaluation Phase

	Automatic Type Conversions
	Subtype Substitution
	Type Promotion
	Casting of Untyped Values
	Atomization
	Effective Boolean Value
	Function Conversion Rules

	Sequence Types
	Occurrence Indicators
	Generic Sequence Types
	Atomic Type Names As Sequence Types
	Element and Attribute Tests
	Sequence Type Matching
	The “instance of” Expression

	Constructors and Casting
	Constructors
	The Cast Expression
	The Castable Expression
	Casting Rules
	Casting among the primitive types
	Casting to xs:string or xs:untypedAtomic
	Casting to xs:string or xs:untypedAtomic
	Casting among derived types

	Queries, Prologs, and Modules
	Structure of a Query: Prolog and Body
	Prolog Declarations
	The Version Declaration

	Assembling Queries from Multiple Modules
	Library Modules
	Importing a Library Module
	Multiple module imports
	The behavior of a module import

	Variable Declarations
	Variable Declaration Syntax
	The Scope of Variables
	Variable Names
	Initializing Expressions
	External Variables

	Declaring External Functions

	Using Schemas with XQuery
	What Is a Schema?
	Why Use Schemas with Queries?
	W3C XML Schema: A Brief Overview
	Element and Attribute Declarations
	Types
	Simple and complex types
	User-defined types
	List types

	Namespaces and XML Schema

	In-Scope Schema Definitions
	Where Do In-Scope Schema Definitions Come from?
	Schema Imports
	Importing a schema with no target namespace
	Importing multiple schemas with the same target namespace
	Schema imports and library modules

	Schema Validation and Type Assignment
	The Validate Expression
	Validation Mode
	Assigning Type Annotations to Nodes
	Nodes and Typed Values
	Types and Newly Constructed Elements and Attributes

	Sequence Types and Schemas

	Static Typing
	What Is Static Typing?
	Obvious Static Type Errors
	Static Typing and Schemas
	Raising “False” Errors
	Static Typing Expressions and Constructs

	The Typeswitch Expression
	The Treat Expression
	Type Declarations
	Type Declarations in FLWORs
	Type Declarations in Quantified Expressions
	Type Declarations in Global Variable Declarations

	The zero-or-one, one-or-more, and exactly-one Functions

	Principles of Query Design
	Query Design Goals
	Clarity
	Improving the Layout
	Choosing Names
	Using Comments for Documentation

	Modularity
	Robustness
	Handling Data Variations
	Handling Missing Values
	Absent values
	Empty and nil values
	Default “missing” values

	Error Handling
	Avoiding Dynamic Errors
	The error and trace Functions

	Performance
	Avoid Reevaluating the Same or Similar Expressions
	Avoid Unnecessary Sorting
	Avoid Expensive Path Expressions
	Use Predicates Instead of where Clauses

	Working with Numbers
	The Numeric Types
	The xs:decimal Type
	The xs:integer Type
	The xs:float and xs:double Types

	Constructing Numeric Values
	The number Function
	Numeric Type Promotion

	Comparing Numeric Values
	Arithmetic Operations
	Arithmetic Operations on Multiple Values
	Arithmetic Operations and Types
	Precedence of Arithmetic Operators
	Addition, Subtraction, and Multiplication
	Division
	Modulus (Remainder)

	Functions on Numbers

	Working with Strings
	The xs:string Type
	Constructing Strings
	String Literals
	The xs:string Constructor and the string Function

	Comparing Strings
	Comparing Entire Strings
	Determining Whether a String Contains Another String
	Matching a String to a Pattern

	Substrings
	Finding the Length of a String
	Concatenating and Splitting Strings
	Concatenating Strings
	Splitting Strings Apart
	Converting Between Code Points and Strings

	Manipulating Strings
	Converting Between Uppercase and Lowercase
	Replacing Individual Characters in Strings
	Replacing Substrings That Match a Pattern

	Whitespace and Strings
	Normalizing Whitespace

	Internationalization Considerations
	Collations
	Unicode Normalization
	Determining the Language of an Element

	Regular Expressions
	The Structure of a Regular Expression
	Atoms
	Quantifiers
	Parenthesized Sub-Expressions and Branches

	Representing Individual Characters
	Representing Any Character
	Representing Groups of Characters
	Multi-Character Escapes
	Category Escapes
	Block Escapes

	Character Class Expressions
	Single Characters and Ranges
	Subtraction from a Range
	Negative Character Class Expressions
	Escaping Rules for Character Class Expressions

	Reluctant Quantifiers
	Anchors
	Anchors and Multi-Line Mode

	Back-References
	Using Flags
	Using Sub-Expressions with Replacement Variables

	Working with Dates, Times, and Durations
	The Date and Time Types
	Constructing and Casting Dates and Times
	Time Zones
	Explicit versus implicit time zones
	Adjusting time zones
	Finding the time zone of a value

	Comparing Dates and Times

	The Duration Types
	The yearMonthDuration and dayTimeDuration Types
	Comparing Durations

	Extracting Components of Dates, Times, and Durations
	Using Arithmetic Operators on Dates, Times, and Durations
	Subtracting Dates and Times
	Adding and Subtracting Durations from Dates and Times
	Adding and Subtracting Two Durations
	Multiplying and Dividing Durations by Numbers
	Dividing Durations by Durations

	The Date Component Types

	Working with Qualified Names, URIs, and IDs
	Working with Qualified Names
	Retrieving Node Names
	Constructing Qualified Names
	Other Name-Related Functions

	Working with URIs
	Base and Relative URIs
	Using the xml:base attribute
	Finding the base URI of a node
	Resolving URIs
	The base URI of the static context

	Documents and URIs
	Finding the URI of a document
	Opening a document from a dynamic value

	Escaping URIs

	Working with IDs
	Joining IDs and IDREFs
	Constructing IDs

	Working with Other XML Components
	XML Comments
	XML Comments and the Data Model
	Querying Comments
	Comments and Sequence Types
	Constructing Comments

	Processing Instructions
	Processing Instructions and the Data Model
	Querying Processing Instructions
	Processing Instructions and Sequence Types
	Constructing Processing Instructions

	Documents
	Document Nodes and the Data Model
	Document Nodes and Sequence Types
	Constructing Document Nodes

	Text Nodes
	Text Nodes and the Data Model
	Querying Text Nodes
	Text Nodes and Sequence Types
	Why Work with Text Nodes?
	Constructing Text Nodes

	XML Entity and Character References
	CDATA Sections

	Additional XQuery-Related Standards
	Serialization
	XQueryX
	XQuery Update Facility
	Full-Text Search
	XQuery API for Java (XQJ)

	Implementation-Specific Features
	Conformance
	XML Version Support
	Setting the Query Context
	Option Declarations and Extension Expressions
	The Option Declaration
	Extension Expressions

	Specifying Serialization Parameters

	XQuery for SQL Users
	Relational Versus XML Data Models
	Comparing SQL Syntax with XQuery Syntax
	A Simple Query
	Conditions and Operators
	Comparisons
	Arithmetic and string operators
	Boolean operators

	Functions
	Selecting Distinct Values
	Working with Multiple Tables and Subqueries
	Subselects
	Combining queries using set operators

	Grouping

	Combining SQL and XQuery
	Combining Structured and Semistructured Data
	Flexible Data Structures

	SQL/XML

	XQuery for XSLT Users
	XQuery and XPath
	XQuery Versus XSLT
	Shared Components
	Equivalent Components
	Differences
	Paradigm differences: push versus pull
	Optimization for particular use cases
	Convenient features of XSLT

	Differences Between XQuery 1.0/XPath 2.0 and XPath 1.0
	Data Model
	New Expressions
	Path Expressions
	Function Conversion Rules
	Arithmetic and Comparison Expressions
	Built-in Functions

	Built-in Function Reference
	abs
	adjust-date-to-timezone
	adjust-dateTime-to-timezone
	adjust-time-to-timezone
	avg
	base-uri
	boolean
	ceiling
	codepoint-equal
	codepoints-to-string
	collection
	compare
	concat
	contains
	count
	current-date
	current-dateTime
	current-time
	data
	dateTime
	day-from-date
	day-from-dateTime
	days-from-duration
	deep-equal
	default-collation
	distinct-values
	doc
	doc-available
	document-uri
	empty
	encode-for-uri
	ends-with
	error
	escape-html-uri
	exactly-one
	exists
	false
	floor
	hours-from-dateTime
	hours-from-duration
	hours-from-time
	id
	idref
	implicit-timezone
	in-scope-prefixes
	index-of
	insert-before
	iri-to-uri
	lang
	last
	local-name
	local-name-from-QName
	lower-case
	matches
	max
	min
	minutes-from-dateTime
	minutes-from-duration
	minutes-from-time
	month-from-date
	month-from-dateTime
	months-from-duration
	name
	namespace-uri
	namespace-uri-for-prefix
	namespace-uri-from-QName
	nilled
	node-name
	normalize-space
	normalize-unicode
	not
	number
	one-or-more
	position
	prefix-from-QName
	QName
	remove
	replace
	resolve-QName
	resolve-uri
	reverse
	root
	round
	round-half-to-even
	seconds-from-dateTime
	seconds-from-duration
	seconds-from-time
	starts-with
	static-base-uri
	string
	string-join
	string-length
	string-to-codepoints
	subsequence
	substring
	substring-after
	substring-before
	sum
	timezone-from-date
	timezone-from-dateTime
	timezone-from-time
	tokenize
	trace
	translate
	true
	unordered
	upper-case
	year-from-date
	year-from-dateTime
	years-from-duration
	zero-or-one

	Built-in Types
	xs:anyAtomicType
	xs:anyType
	xs:anyURI
	Casting and Comparing xs:anyURI Values

	xs:base64Binary
	xs:boolean
	Constructing xs:boolean Values
	Casting xs:boolean Values

	xs:byte
	xs:date
	xs:dateTime
	xs:dayTimeDuration
	xs:decimal
	Casting xs:decimal Values

	xs:double
	Casting xs:double Values

	xs:duration
	xs:ENTITIES
	xs:ENTITY
	xs:float
	Casting xs:float Values

	xs:gDay
	xs:gMonth
	xs:gMonthDay
	xs:gYear
	xs:gYearMonth
	xs:hexBinary
	Casting and Comparing xs:hexBinary Values

	xs:ID
	xs:IDREF
	xs:IDREFS
	xs:int
	xs:integer
	Casting xs:integer Values

	xs:language
	xs:long
	xs:Name
	xs:NCName
	xs:negativeInteger
	xs:NMTOKEN
	xs:NMTOKENS
	xs:nonNegativeInteger
	xs:nonPositiveInteger
	xs:normalizedString
	xs:NOTATION
	xs:positiveInteger
	xs:QName
	xs:short
	xs:string
	xs:time
	xs:token
	xs:unsignedByte
	xs:unsignedInt
	xs:unsignedLong
	xs:unsignedShort
	xs:untyped
	xs:untypedAtomic
	xs:yearMonthDuration

	Error Summary
	FOAR0001
	FOAR0002
	FOCA0001
	FOCA0002
	FOCA0003
	FOCA0005
	FOCA0006
	FOCH0001
	FOCH0002
	FOCH0003
	FOCH0004
	FODC0001
	FODC0002
	FODC0003
	FODC0004
	FODC0005
	FODT0001
	FODT0002
	FODT0003
	FOER0000
	FONS0004
	FONS0005
	FORG0001
	FORG0002
	FORG0003
	FORG0004
	FORG0005
	FORG0006
	FORG0008
	FORG0009
	FORX0001
	FORX0002
	FORX0003
	FORX0004
	FOTY0012
	SENR0001
	SEPM0004
	SEPM0009
	SEPM0010
	SEPM0016
	SERE0003
	SERE0005
	SERE0006
	SERE0008
	SERE0012
	SERE0014
	SERE0015
	SESU0007
	SESU0011
	SESU0013
	XPDY0002
	XPDY0050
	XPST0001
	XPST0003
	XPST0005
	XPST0008
	XPST0010
	XPST0017
	XPST0051
	XPST0080
	XPST0081
	XPTY0004
	XPTY0018
	XPTY0019
	XPTY0020
	XQDY0025
	XQDY0026
	XQDY0027
	XQDY0041
	XQDY0044
	XQDY0061
	XQDY0064
	XQDY0072
	XQDY0074
	XQDY0084
	XQDY0091
	XQDY0092
	XQST0009
	XQST0012
	XQST0013
	XQST0016
	XQST0022
	XQST0031
	XQST0032
	XQST0033
	XQST0034
	XQST0035
	XQST0036
	XQST0038
	XQST0039
	XQST0040
	XQST0045
	XQST0046
	XQST0047
	XQST0048
	XQST0049
	XQST0054
	XQST0055
	XQST0057
	XQST0058
	XQST0059
	XQST0060
	XQST0065
	XQST0066
	XQST0067
	XQST0068
	XQST0069
	XQST0070
	XQST0071
	XQST0073
	XQST0075
	XQST0076
	XQST0079
	XQST0085
	XQST0087
	XQST0088
	XQST0089
	XQST0090
	XQST0093
	XQTY0024
	XQTY0030
	XQTY0086

	Index

