
Computational Semantics

With

Functional Programming

Solutions to the Exercises

— December 4, 2009—

Jan van Eijck and Christina Unger

3

Solutions to Exercises from Chapter 1

1.1 For 10 facts there are 210 = 1024 possibilities. In general, n facts yield 2n pos-
sibilities. Every additional fact doubles the set of possiblities. The expressiveness
of propositional logic is exponential in the number of atomic facts.

1.2 Using (X)∗ for an arbitrary finite number of copies of X , we can characterize
the pattern as: “Sentences can go on (and on)∗.”

1.3 It does follow from the example that there are infinitely many sentences. Still,
each sentence has finite length. Finite sets of infinite things are different from
infinite sets of finite things. The set of sentences of English is an example of an
infinite set of finite things. So ‘Sentences can go on and on’ does not mean that a
single sentence can go on and on, but rather that the process of building longer and
longer sentences can go on and on.

Solutions to Exercises from Chapter 2

2.1 Since ∅ has no members, it holds trivially that every member of ∅ is a member
of A, i.e. that ∅ ⊆ A.

2.2 The empty set ∅ has no members, whereas {∅} has exactly one member, namely
∅.

2.3

A = U −A = U − (U −A)

= {x ∈ U | x /∈ (U −A)} = {x ∈ U | x ∈ A} = A.

2.4

{(Ks,Ks), (Ks,Kr), (Ks,A), (Kr,Ks), (Kr,Kr), (Kr,A), (A,Ks), (A,Kr), (A,A)}.

2.5 {(n, n+ 4) | n ∈ N}.

2.6 Since Ř ⊆ R is given, we only have to show the other half of R = Ř , i.e.
we have to show that R ⊆ Ř . For that, assume (x, y) ∈ R. Then (y, x) ∈ Ř . It

4

follows from this, by Ř ⊆ R, that (y, x) ∈ R. But this means that (x, y) ∈ Ř .
Since we have shown that if an arbitrary pair (x, y) is in R it is also in Ř , we have
shown that R ⊆ Ř .

2.7

(1) not transitive, because the relation contains (1, 2) and (2, 3) but not (1, 3)

(2) not transitive, because the relation contains (1, 3) and (3, 4) but not (1, 4)

(3) transitive

(4) not transitive, because the relation contains (1, 2) and (2, 1) but not (1, 1)

(5) transitive

2.8 This follows from the fact that the condition ‘for all x, y, z it holds that if
(x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R’ is equivalent to: ‘for all x, z it holds
that if there is a y with (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R’.

2.9. An example is the relation ‘less than’ on the natural numbers. It is transitive,
but if we compose it with itself, we get the relation {(n, n+ 2) | n ∈ N} (‘at least
two less than’), and this is not the same as ‘less than’.

2.10 If s is given by n 7→ n+ 1, then s · s is given by n 7→ n+ 2.

2.11. The characteristic function that corresponds with the relation≤ on the natural
numbers is the function f : (N,N)→ {True,False} given by f(n,m) equals True
if and only if n ≤ m.

2.12. Let f : A → B be a function. We have to show that the relation R ⊆ A2

given by (x, y) ∈ R if and only if f(x) = f(y) is an equivalence relation. This
relation is reflexive, for f(x) = f(x) certainly holds for all x ∈ A, and therefore
(x, x) ∈ R for all x ∈ A. Suppose (x, y) ∈ R. This means that f(x) = f(y).
Then also f(y) = f(x), i.e. (y, x) ∈ R. So R is symmetric. Finally, assume
(x, y) ∈ R and (y, z) ∈ R. Then f(x) = f(y) and f(y) = f(z). It follows that
f(x) = f(z), i.e. (x, z) ∈ R, and we have shown that R is transitive.

5

2.13

(λfλx 7→ f (f x)) (λy 7→ 1 + y)
β−→ λx 7→ (λy 7→ 1 + y) ((λy 7→ 1 + y) x)
β−→ λx 7→ (λy 7→ 1 + y) (1 + x)
β−→ λx 7→ 1 + (1 + x)

2.14

(λx 7→ x x) (λx 7→ x x)
β−→ (λx 7→ x x) (λx 7→ x x)
β−→ . . .

(λx 7→ x x x) (λx 7→ x x x)
β−→ (λx 7→ x x x) (λx 7→ x x x) (λx 7→ x x x)
β−→ . . .

2.15 Dorothy likes Toto : t

��
�
��

�
��

HH
H
HH

H
HH

Dorothy : e (λy 7→ y likes Toto) : e→ t

�
��

�
��

H
HH

H
HH

(λxλy 7→ y likes x) : e→ e→ t Toto : e

2.16 It is not possible to find a finite type for (λx 7→ x x) (λx 7→ x x). For it to
have a type τ , it would have to hold that (λx 7→ x x) : δ → τ and (λx 7→ x x) : τ
(according to the typing rule for application). So we could conclude that τ equals
δ → τ , which is not possible because the type system is not recursive. (You can
make the same consideration thinking about the type of x in λx 7→ x x.)

2.17 An appropriate type for very is (N→ N)→ (N→ N). Then:

6

• ((very(N→N)→(N→N) friendly(N→N)) wizardN)N

• ((very(N→N)→(N→N) (very(N→N)→(N→N) friendly(N→N))) wizardN)N

Note that the type N→ N also works for the example, with the bracketing:

(very (friendly wizard)).

But this makes the wrong prediction that (veryN→N wizardN) is well-typed too.

Solutions to Exercises from Chapter 3

module SolFPH where

import FPH

3.1 The operator ^ has precedence over * and /, which take precedence over + and
-.

3.2 The interpreter reads it as 2^(3^4), for we get:

Prelude> 2^3^4
2417851639229258349412352
Prelude> 2^(3^4)
2417851639229258349412352
Prelude> (2^3)^4
4096

3.3 The general type of (:) is a -> [a] -> [a]. In this particular example it is
used to put a character in front of a string, so the type is instantiated as

Char -> [Char] -> [Char].

3.4 (>3) denotes the property of being greater than 3, i.e. λx 7→ x > 3, and (3>)
denotes the property of being less than 3, i.e. λx 7→ 3 > x.

7

3.5 putStrLn (story (-1)) loops endlessly, because with every step the control
variable k is decreased by 1 and thus the base case of 0 is never reached.

3.6 A recursive definition requires a base case, and the definition of GNU as
‘GNU’s not Unix’ does not have one. (This kind of recursive definition without
a base case is called co-recursion.)

3.7 You might expect a -> a -> Bool as the type for (\ x y -> x /= y), but
in fact you get (Eq a) => a -> a -> Bool. This is because this general type
for inequality can only be instantiated by types whose instances can be checked for
equality.

3.8 There is no difference. (The equivalence between expressions f and λx 7→ f x

is called η-equivalence, and the reduction step from λx 7→ f x to f is called η-
conversion.)

3.9 The type of the function composition all . (/=) is

(Eq a) => a -> [a] -> Bool.

The function checks whether an item of type a is inequal to all elements of a list of
type [a]. An appropriate name would therefore be notElem, for not element of.

3.10 The type of all . (==) is the same as that of all . (/=):

(Eq a) => a -> [a] -> Bool.

An appropriate name for this function composition would be elem, for element of.

3.11 An algorithm for testing equality of infinite lists could proceed as follows.
Test the first elements of both lists for equality. If they are not equal, return False,
otherwise proceed with the rest of the list, until you find two elements that are
not equal. Note that this way equality of infinite lists is only falsifiable but not
verifiable in a finite number of steps. Here is an implementation (this works for
both finite and infinite lists):

8

listEq :: (Eq a) => [a] -> [a] -> Bool
listEq [] [] = True
listEq [] _ = False
listEq _ [] = False
listEq (x:xs) (y:ys) = x == y && listEq xs ys

If the input lists are guaranteed to be infinite, the first three clauses can be dropped:

inflistEq :: (Eq a) => [a] -> [a] -> Bool
inflistEq (x:xs) (y:ys) = x == y && inflistEq xs ys

A call to inflistEq xs ys, where both xs and ys are infinite, will either yield
False or run forever.

3.12

minList :: Ord a => [a] -> a
minList [x] = x
minList (x:y:zs) = minList ((min x y) : zs)

Note that this function is predefined in the Haskell Prelude as minimum.

3.13

delete :: Ord a => a -> [a] -> [a]
delete x [] = []
delete x (y:ys) | x == y = ys

| otherwise = y : (delete x ys)

In order for it to delete every occurence of x, the function has to be recursive also
in the case of x == y, i.e. has to return delete x ys instead of ys.

3.14

9

srt :: Ord a => [a] -> [a]
srt [] = []
srt xs = x : srt (delete x xs)

where x = minList xs

3.16

averageLength :: String -> Rational
averageLength sonnet = average (map f (words sonnet))

where f = length . filter (‘notElem‘ "’?;:,.")

3.17

sublist :: Ord a => [a] -> [a] -> Bool
sublist [] [] = True
sublist xs [] = False
sublist xs (y:ys) = prefix xs (y:ys) || sublist xs ys

3.18 The type of vh is Char -> Char.

3.19

data DeclClass = One | Two | Three | Four | Five

swedishPlural :: String -> DeclClass -> String
swedishPlural noun d = case d of
One -> init noun ++ "or"
Two -> init noun ++ "ar"
Three -> if (last noun) ‘elem‘ swedishVowels

then noun ++ "r"
else noun ++ "er"

Four -> noun ++ "n"
Five -> noun

10

3.20

appendSuffixY :: [Phoneme] -> [Phoneme] -> [Phoneme]
appendSuffixY stem suffix = stem ++ map (vh (vow stem)) suffix
where
vow = head . filter (‘elem‘ yawelmaniVowels)
hi = fValue High
vh p p’ | hi p == hi p’ = (fMatch Back (fValue Back p)

. fMatch Round (fValue Round p)) p’
| otherwise = p’

Solutions to Exercises from Chapter 4

module SolFSynF where

import Data.List
import FSynF

4.1

column −→ A | B | C | D | E | F | G | H | I | J
row −→ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10

attack −→ column row
ship −→ battleship | frigate | submarine | destroyer

reaction −→ missed | hit ship | sunk ship
turn −→ attack reaction

surrender −→ attack defeated

game −→ surrender | turn game

11

4.2

colour −→ red | yellow | blue | green | orange

answer −→ black | white

guess −→ colour colour colour colour
reaction −→ {answer}

turn −→ guess reaction
game −→ turn | turn turn | turn turn turn |

turn turn turn turn

4.3 Grammar for chess:

figure −→ King | Queen | Knight | Rook | Bishop | Pawn

row −→ a | b | c | d | e | f | g | h
column −→ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8

whitemove −→ figure row column
blackmove −→ figure row column

game −→ whitemove blackmove game

The grammar for bingo is left to the reader.

4.4 The sure sign of an infinite context-free language is a production of the form
A → WAV , where W and V are not both empty. An example is the production
rule game −→ turn game. This is called recursive use of a nonterminal. The
recursion can also be indirect, via one or more other nonterminals: A → WB V ,
B → Y AZ is an example of recursive use of A,B. Check the grammars for this
kind of recursion and you have spotted the ones that generate infinite languages.

4.5 Introduce a rewrite symbol eps for the empty string:

character −→ A | · · · | Z | a | · · · | z | | , | . | ? | ! | ; | :
string −→ eps | character string

eps −→

12

4.6 We add a rule for adjectives (ADJ) and extend the rule for CNs with the possi-
bility of having an adjective in front of a common noun (note that this is recursive
and allows for NPs like the happy evil dwarf).

ADJ −→ happy | evil

CN −→ . . . | ADJ CN

4.7 First we add two rules for building PPs from a preposition and an NP. Then we
extend the rule for NPs, in order to generate NPs like a giant with a sword. Note
that we don’t simply add a recursive production NP −→ NP PP. If we did this, we
would not only allow arbitrary many PPs as NP modifiers but also generate NPs
like Little Mook with a sword (which we want to exclude). Finally, we also extend
the VP rule for building VPs with preposition phrases.

P −→ with

PP −→ P NP
NP −→ . . . | DET CN PP
VP −→ . . . | TV NP PP

4.8

We extend the fragment with the following productions:

COORD −→ and

RCN −→ . . . | CN that VP COORD VP
| CN that NP TV COORD NP TV

These rules take into account that only ‘parallel’ RCNs may be coordinated (cf.
[Ros67]): while the dwarf that helped Goldilocks and admired Snow White is fine,
an NP like the dwarf that Goldilocks helped and admired Snow White is ungram-
matical.

However, they have the disadvantage that they are not recursive, so we cannot
generate the dwarf that helped Goldilocks and admired the princess that shuddered

13

and laughed, unless we add more productions. We can do this, of course, but we
seem to miss a generalisation.

4.12 Assume p expresses the wizard polishes his wand, q expresses the wizard
learns a new spell, r expresses the wizard is lazy, s expresses the peasant will deal
with the devil, t expresses the peasant has a plan to outwit the devil, u expresses
unicorns exist, v expresses dragons exist, and w expresses goblins exist. Then we
can translate the sentences as follows.

The wizard polishes his wand and learns a new spell, or he is lazy. (4.1)

; (p ∧ q) ∨ r
The peasant will deal with the devil only if he has a plan

to outwit him. (4.2)

; ¬(s ∧ ¬t)
If neither unicorns nor dragons exist, then neither do goblins. (4.3)

; ¬(¬u ∧ ¬v ∧ w)

The problem was to find reasonable translations for only if and for if . . . then.

4.13 Define F1 ⊕ F2 as (F1 ∧ ¬F2) ∨ (¬F1 ∧ F2).

4.14 Formulas of propositional logic in Polish notation are uniquely readable. The
atoms are surely uniquely readable. Assume that P is uniquely readable. Then ¬P
is as well. Assume that P1 and P2 are uniquely readable. Then ∧P1P2 and ∨P1P2

are uniquely readable as well.

4.15

opsNr :: Form -> Int
opsNr (P _) = 0
opsNr (Ng f) = 1 + opsNr f
opsNr (Cnj fs) = 1 + sum (map opsNr fs)
opsNr (Dsj fs) = 1 + sum (map opsNr fs)

4.16

14

depth :: Form -> Int
depth (P _) = 0
depth (Ng f) = 1 + depth f
depth (Cnj []) = 1
depth (Cnj fs) = 1 + maximum (map depth fs)
depth (Dsj []) = 1
depth (Dsj fs) = 1 + maximum (map depth fs)

4.17

propNames :: Form -> [String]
propNames (P name) = [name]
propNames (Ng f) = propNames f
propNames (Cnj fs) = (sort.nub.concat) (map propNames fs)
propNames (Dsj fs) = (sort.nub.concat) (map propNames fs)

4.18

Solutions to Exercises from Chapter 5

module SolFSemF where

import FSynF
import FSemF
import InfEngine
import System.Random

Note: System.Random is used for random number generation in the Mastermind
implementation.

5.1

As the picture on page ?? suggests, a battleship takes up five squares, a frigate four,

15

a destroyer three, and a submarine two. To check whether a vessel is sunk by an
attack, find out whether find out if the ship occu

sunk :: Attack -> Ship -> State -> Bool
sunk (row,column) (positions,earlierHits) Battleship
sunk (row,column) Frigate
sunk (row,column) Submarine
sunk (row,column) Destroyer

5.2

There are lots of other things to be said. E.g., you should not shout ‘hit’ as a re-
sponse to an attack when this is not true (Quality). You should not keep quiet as
a response to an attack (Quantity). You should not mumble something incompre-
hensible as a response to an attack (Mode of Expression). When voicing an attack,
you should speak up loud and clear (Mode of Expression). In short, the Gricean
maxims tell you to play the game according to the rules, and they also tell you a
thing or two about how to interpret the rules.

5.3

(1) V +(¬p ∨ p) = 1,
(2) V +(p ∧ ¬p) = 0,
(3) V +(¬¬(p ∨ ¬r)) = 0
(4) V +(¬(p ∧ ¬r)) = 1,
(5) V +(p ∨ (q ∧ r)) = 1.

5.4 A tautology is a formula that is true for any valuation. If you negate a tautology
you get a formula that is false for any valuation. By definition, this is a contradic-
tion. Vice versa the same holds, so any negated contradiction is a tautology.

5.5

(1) p ∧ ¬q is satisfied by p 7→ 1, q 7→ 0.
(2) p ∧ ¬p is not satisfiable.
(3) p→ ¬p is satisfied by p 7→ 0.

5.6

16

(1) ¬¬p ≡ p is true.

(2) p→ q ≡ ¬p ∨ q is true.

(3) ¬(p↔ q) ≡ ¬p ∧ q is false.

5.7

(1) p |= p ∨ q is true.

(2) p→ q |= ¬p→ ¬q is false.

(3) ¬q |= p→ q is false.

(4) ¬p, q → p |= ¬q is true.

5.8 Assume F1 |= F2. This means that every valuation that makes F1 true makes
F2 true. This in turn means that every valuation that makes F2 false makes F1

false. But this means that every valuation that makes ¬F2 true makes ¬F2 true. In
other words, ¬F2 |= ¬F1.

5.10

impliesL :: [Form] -> Form -> Bool
impliesL = implies . Cnj

5.11

propEquiv :: Form -> Form -> Bool
propEquiv f1 f2 = implies f1 f2 && implies f2 f1

5.12

17

altEval :: [String] -> Form -> Bool
altEval [] (P c) = False
altEval (i:xs) (P c)

| c == i = True
| otherwise = altEval xs (P c)

altEval xs (Ng f) = not (altEval xs f)
altEval xs (Cnj fs) = all (altEval xs) fs
altEval xs (Dsj fs) = any (altEval xs) fs

5.13 If colour repetition is allowed there are 54 possible settings: five colour
choices for the first position times five colour choices for the second position times
five colour choices for the third position times five colour choices for the fourth
position. If colour repetition is forbidden there are 5× 4× 3× 2 settings left. Five
choices for the first position, one choice less for the second position because the
colour of the first position is ruled out for the second position, and so on.

5.14 The formula for the first position:

r1 ↔ ¬(y1 ∨ b1 ∨ g1 ∨ o1)

∧ y1 ↔ ¬(r1 ∨ b1 ∨ g1 ∨ o1)

∧ b1 ↔ ¬(r1 ∨ y1 ∨ g1 ∨ o1)

∧ g1 ↔ ¬(r1 ∨ y1 ∨ b1 ∨ o1)

∧ o1 ↔ ¬(r1 ∨ y1 ∨ b1 ∨ g1).

The formula we are after is the conjunction of the formulas for the four positions.

5.15

First include the function that was given:

getColours :: IO [Colour]
getColours = do

i <- getStdRandom (randomR (0,4))
j <- getStdRandom (randomR (0,4))
k <- getStdRandom (randomR (0,4))
l <- getStdRandom (randomR (0,4))
return [toEnum i,toEnum j, toEnum k, toEnum l]

18

Next, define a game for a given secret:

playgame :: [Colour] -> IO()
playgame secret =

do
putStrLn "Give a sequence of four colours from RGBYO"
str <- getLine
let guess = string2pattern str
in if guess /= secret

then let answer = reaction secret guess
in do

putStrLn (show answer)
putStrLn "Please make another guess"
playgame secret

else putStrLn "correct"

Finally, the function that generates a secret and plays the game for that secret.

mm :: IO ()
mm = do

secret <- getColours
playgame secret

5.16

Stupid guesses are the guesses that are already ruled out by previous feedback. To
check this, we have to keep track of the information state. The stupid function
checks the guess against the current state, as follows.

stupid :: [Pattern] -> Pattern -> Bool
stupid state guess = notElem guess state

The initial information state is given by:

19

startState :: [Pattern]
startState = let colours = [minBound..maxBound] in

[[c1,c2,c3,c4] | c1 <- colours, c2 <- colours,
c3 <- colours, c4 <- colours]

New version of the Mastermind game that uses this:

play :: IO()
play = play0 startState

play0 :: [Pattern] -> IO()
play0 state =
do
putStrLn "Give a sequence of four colours from RGBYO"
str <- getLine
let guess = string2pattern str
in do

if stupid state guess
then putStrLn "Not very clever"
else putStrLn "Hmm, clever guess.."
if guess /= secret
then let answer = reaction secret guess

in do
putStrLn (show answer)
putStrLn "Please make another guess"
play0 (updateMM state guess answer)

else putStrLn "correct"

5.17

(1) To see that ∀x(Ax ∧Bx) means something stronger than All A are B, con-
sider a model with A = {a}, B = {a, b}. In this model, All A are B is
true, but ∀x(Ax ∧ Bx) is false, for b is a counterexample: an element of
the domain of discourse that is B but not A.

(2) To see that ∃x(Ax → Bx) means something weaker than Some A are B,

20

consider a model with A = ∅ and B = {b}. Then b has the property
λx.Ax→ Bx, so ∃x(Ax→ Bx) is true. But Some A are B is false in this
model.

5.18

Someone walks and someone talks. (5.4)

∃x(Person x ∧Walk x ∧ Talk x)

No wizard cast a spell or mixed a potion. (5.5)

¬∃x(Wizard x ∧ ∃y∃z((Spell y ∧ Cast x y) ∨ (Potion z ∧Mix x z)))

Every balad that is sung by a princess is beautiful. (5.6)

∀x∀y((Ballad x ∧ Princess y ∧ Sing y x)→ Beautiful x)

If a knight finds a dragon, he fights it. (5.7)

∀x∀y((Knight x ∧ Dragon y ∧ Find x y)→ Fight x y)

5.19

(1) M |= ∃x(Px ∧Rxx) is true.

(2) M |= ∀x(Px→ ∃yRxy) is true.

(3) M |= ∀x(∃yRyx→ Rxx) is false.

5.20

(1) |= ∀xPx ∨ ∃x¬Px is true.

(2) |= ∃x∃yRxy → ∃x∃yRyx is false.

(3) |= ∀xRxx→ ∀x∃yRxy is true.

(4) |= ∃xRxx→ ∀x∃yRxy is false.

21

5.21 Define F va as follows.

(P (t))va := P (tva)

(R(t1, t2))va := R(t1va, t2
v
a)

(S(t1, t2, t3))va := S(t1va, t2
v
a, t3

v
a)

(¬F)va := ¬F va
(F1 ∧ F2)va := F1

v
a ∧ F2

v
a

(F1 ∨ F2)va := F1
v
a ∨ F2

v
a

(∀vF)va := ∀vF
(∀uF)va := ∀uF va for u different from v

(∃vF)va := ∃vF
(∃uF)va := ∃uF va for u different from v

5.22 Assume that model M has a domain D with a name d̂ for each d ∈ D. Use
F v
d̂

in the new version of the truth definition, where truth is defined for all closed
formulas of the language. Note that no variable assignments are needed. Note also
that a, a1, . . . are used for constants of the language; this includes the new names
of the form d̂:

M |= P (a) iff I(a) ∈ I(P)

M |= R(a1, a2) iff (I(a1), I(a2)) ∈ I(R)

M |= S(a1, a2, a3) iff (I(a1), I(a2), I(a3)) ∈ I(S)

M |= a1 = a2 iff I(a1) = I(a2)

M |= ¬F iff it is not the case that M |= F

M |= (F1 ∧ F2) iff M |= F1 and M |= F2

M |= (F1 ∨ F2) iff M |= F1 or M |= F2

M |= ∀vF iff for all d ∈ D it holds that M |= F v
d̂

M |= ∃vF iff for at least one d ∈ D it holds that M |= F v
d̂

5.23

5.24

(1) ∀xPx |= ∃xPx does not hold. On the model with an empty domain, ∀xPx

22

is true, but ∃xPx is false. If we demand that all models have a non-empty
domain of discourse, then the statement holds.

(2) ∃x∃yRxy |= ∃xRxx does not hold. Consider a model with domain {a, b},
where R is interpreted as {(a, b)}. Then ∃x∃yRxy is true, but ∃xRxx is
false.

(3) ∃y∀xRxy |= ∀x∃yRxy does hold. If there is something that every woman
desires, then for every women there is something she desires.

5.25

(1) ∀x∀y(Rxy → Ryx), Rab |= Rba

This holds. The first premisse states that R is symmetric. So if Rab is true,
Rba has to be true as well.

(2) ∀x∀y(Rxy → Ryx), Rab |= Raa

This does not hold. The first premisse states that R is symmetric. But
symmetry does not imply reflexivity. Consider a model with domain {a, b}
and with R interpreted as {(a, b), (b, a)}. Then both premisses are true in
this model, but the conclusion is false.

5.26

We have seen already that universal statements are translated using implications.
The formula says that it holds for everything in the domain of discourse that if it is
a boy then there exists a girl that he loves. This correctly expresses the meaning of
Every boy loved a girl, if we disregard tense.

5.27

Every girl that laughed helped a boy. (5.8)

∀x((Girl x ∧ Laugh x)→ ∃y(Boy y ∧ Help x y))

No giant that shuddered killed every dwarf. (5.9)

¬∃x((Giant x ∧ Shudder x) ∧ ∀y(Dwarf y → Kill x y))

Every princess loved every dwarf that killed a giant. (5.10)

∀x∀y((Princess x ∧ Dwarf y ∧ ∃z(Giant z ∧ Kill y z))→ Love x y)

Every boy admired a girl that no wizard helped. (5.11)

∀x(Boy x→ ∃y(Girl y ∧ ¬∃z(Wizard z ∧ Help z y) ∧ Admire x y))

23

Note: there are other solutions, but these are logically equivalent to the formulas
given here. This is because the same content can be expressed in predicate logic
with different formulas.

5.28

5.29

5.30

5.31

5.32 Mention of a class in a fact:

mention :: Class -> (Class, Class, Bool) -> Bool
mention xs (ys, zs, _) =

elem xs [ys,zs] || elem (opp xs) [ys,zs]

Filter the facts from the knowledge base that mention a class A:

filterKB :: Class -> KB -> KB
filterKB xs = filter (mention xs)

Report on a class A by listing what the knowledge base says about A:

report :: KB -> Class -> [Statement]
report kb as = map f2s (filterKB as kb)

24

Solutions to Exercises from Chapter 6

module SolMCWPL where

import Model
import MCWPL

6.2

The expression (passivize admire) G checks whether the pair (Unspec,G)
is in the denotation of admire, and it is not. However, we want to infer that
(Unspec,G) is in the relation if (x,G) with some entity x is in the relation. Up
to now, our implementation does not know how to do this inference, so we need to
tell it. One way to do that is to build the closure of a relation under moving from
some entity x to Unspec:

unspecClose :: [(Entity,Entity)] -> [(Entity,Entity)]
unspecClose r = r ++ [(Unspec,y) | x <- entities,

y <- entities,
(x,y) ‘elem‘ r]

++ [(x,Unspec) | x <- entities,
y <- entities,
(x,y) ‘elem‘ r]

Then we can define a relation like admire as follows:

admire = curry (‘elem‘ (unspecClose [(x,G) | x <- entities, person x]))

6.3

passivize :: ThreePlacePred -> TwoPlacePred
passivize r = \ x y -> r Unspec x y

25

6.5

6.6

6.7

checkSentence :: S -> Bool
checkSentence s = evl entities intPreds ...

intPreds :: String -> [Entity] -> Bool
intPreds "girl" = girl

Solutions to Exercises from Chapter 7

module SolTCOM where

import TCOM

7.1

tree :: Integer -> [(Integer,Integer)]
tree n = [(n-x,x) | x <- [0..n]]

treeOfNumbers :: [(Integer,Integer)]
treeOfNumbers = concat [tree n | n <- [0..]]

7.2

7.3

26

type Quant = (Integer -> Bool) -> [Integer] -> Bool

check :: Quant -> (Integer,Integer) -> Bool
check q (n,m) = q (\ x -> 0 < x && x <= m) [1..n+m]

genTree :: Quant -> [(Integer,Integer)]
genTree q = filter (check q) treeOfNumbers

Here are two example applications, using the predefined quantifiers from Haskell:

SolTCOM> take 10 (genTree all)
[(0,0),(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(0,9)]
SolTCOM> take 10 (genTree any)
[(0,1),(1,1),(0,2),(2,1),(1,2),(0,3),(3,1),(2,2),(1,3),(0,4)]

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

27

7.15

7.16

7.17

7.18

7.19

7.20

7.21

7.22

7.23

7.24

7.25

Solutions to Exercises from Chapter 8

module SolEAI where

import FSynF
import Model
import Model2
import TCOM
import EAI

8.1 A cow would still have four legs. People in the hypothetical situation would
say “five”, but that does not matter to us. We know how to call a tail.

28

8.7

cnINT :: CN -> World -> Entity -> Bool
cnINT Girl = iGirl
cnINT Princess = iPrincess

intensCN :: CN -> IEntity -> IBool
intensCN = iProp . cnINT

8.8

npINT :: NP -> World -> (Entity -> Bool) -> Bool
npINT np = \ i -> intNP np

intensNP :: NP -> (IEntity -> IBool) -> IBool
intensNP = iPropToB . npINT

Solutions to Exercises from Chapter 9

module SolP where

import P

9.1

immdominance :: ParseTree a b -> Rel Pos
immdominance t = [(p,q) | (p,q) <- properdominance t,

not (any (inbetween p q) (pos t))]
where inbetween p q r = (p,r) ‘elem‘ (properdominance t)

&& (r,q) ‘elem‘ (properdominance t)

29

9.2

For (1), assume that p dominates q. Then clearly, no sister of p dominates q. It
follows that p does not c-command q. Thus, (1) follows from p c-commands q by
contraposition.

For (2), we reason again by contraposition. Suppose q dominates p. Then there is
no sister of p that dominates q. Therefore, p does not c-command q.

Same recipe for (3). Assume the lowest branching node that dominates p does not
dominate q. Then no sister of p dominates q. Therefore, p does not c-command q.

9.3

mutualcCommand :: ParseTree a b -> Rel Pos
mutualcCommand t = [(p,q) | (p,q) <- cCommand t,

(q,p) ‘elem‘ cCommand t]

Here is why mutual c-command and sisterhood coincide:

Assume p and q c-command each other. Since p c-commands q, p has a sister r that
dominates q. Moreover, it has to hold that r and q are the same: if r would properly
dominate q, then q could not have a sister that dominates p, which contradicts the
fact that q does have such a sister because it c-commands p. Therefore r = q, and
since p and r are sisters, p and q are sisters.

The other direction is even more straightforward: if p and q are sisters, then there
trivially exists a position that is sister of p and dominates q (namely q itself), and
a position that is sister of q and dominates p (namely p itself). Thus, p and q

c-command each other.

9.4

A position p immediately precedes a position q in a tree if p precedes q and there
is no position r such that p precedes r and r precedes q.

30

immprecedence :: ParseTree a b -> Rel Pos
immprecedence t = [(p,q) | (p,q) <- precedence t,

not (any (inbetween p q) (pos t))]
where inbetween p q r = (p,r) ‘elem‘ (precedence t)

&& (r,q) ‘elem‘ (precedence t)

9.5

command :: ParseTree a b -> Rel Pos
command t = [(p,q) | p <- pos t,

q <- pos t,
(p,q) ‘notElem‘ (dominance t),
(q,p) ‘notElem‘ (dominance t),
([],p) ‘elem‘ (dominance t),
([],q) ‘elem‘ (dominance t)]

9.6

9.7

9.8

9.9

9.10

9.11

9.12

9.13

9.14

31

9.15

9.16

Solutions to Exercises from Chapter 10

module SolHRAS where

import HRAS

10.1

10.2

10.3

10.4

10.5

Solutions to Exercises from Chapter 11

module SolCPSS where

import CPSS

11.1

Both are of type ((e→ t)→ t)→ t.

J helped DorothyK = λQ 7→ (Q (Help d))

JAlice helped K = λQ 7→ (Q (λx 7→ ((Help x) a)))

32

11.2

The types for adjectives are the following:

value type continuation type computation type

(e→ t)→ (e→ t) ((e→ t)→ (e→ t))→ t (((e→ t)→ (e→ t))→ t)→ t

11.3

In order to compute the meaning of Everyone admired Goldilocks, first compute
the meaning of the VP admired Goldilocks. This is parallel to the meaning compu-
tation of helped Dorothy on page 299, so we just give the result:

Jadmired GoldilocksK = λk 7→ (k (Admire g))

Next, this VP meaning is applied to the meaning of everyone:

(Jadmired GoldilocksK JeveryoneK)

= λk 7→ (JeveryoneK (λn 7→ (Jadmired GoldilocksK (λm 7→ (k (m n))))))

= λk 7→ (JeveryoneK (λn 7→ ((λk′ 7→ (k′ (Admire g))) (λm 7→ (k (m n))))))
β−→λk 7→ (JeveryoneK (λn 7→ (k ((Admire g) n))))

= λk 7→ ((λk′ 7→ ∀x((Person x)→ (k′ x))) (λn 7→ (k ((Admire g) n))))
β−→λk 7→ ∀x((Person x)→ (k ((Admire g) x)))

In order to compute the meaning of Goldilocks admired someone, again start with
computing the VP meaning:

(JadmiredK JsomeoneK)

= λk 7→ (JsomeoneK (λn 7→ (JadmiredK (λm 7→ (k (m n))))))

= λk 7→ (JsomeoneK (λn 7→ ((λk′ 7→ (k′ Admire)) (λm 7→ (k (m n))))))
β−→ λk 7→ (JsomeoneK (λn 7→ (k (Admire n))))

= λk 7→ ((λk′ 7→ ∃x((Person x) ∧ (k′ x))) (λn 7→ (k (Admire n))))
β−→ λk 7→ ∃x((Person x) ∧ (k (Admire x)))

Next, apply this VP meaning to the meaning of Goldilocks (we use (P x) as ab-

33

breviation of (Person x) and (A x) as abbreviation of (Admire x)):

(Jadmired someoneK JGoldilocksK)

= λk 7→ (JGoldilocksK (λn 7→ (Jadmired someoneK (λm 7→ (k (m n))))))

= λk 7→ (JG.K (λn 7→ (λk′ 7→ ∃x((P x) ∧ (k′ (A x))) (λm 7→ (k (m n))))))
β−→ λk 7→ (JG.K (λn 7→ ∃x((P x) ∧ (k ((A x) n)))))

= λk 7→ ((λk′ 7→ (k′ g)) (λn 7→ ∃x((P x) ∧ (k ((A x) n)))))
β−→ λk 7→ ∃x((P x) ∧ (k ((A x) g)))

11.6

Again we use (P x) as abbreviation of (Person x).

(JhelpedK JsomeoneK)

= λk 7→ (JhelpedK (λm 7→ (JsomeoneK (λn 7→ (k (m n))))))

= λk 7→ (JhelpedK (λm 7→ ((λk′ 7→ ∃x((P x) ∧ (k′ x))) (λn 7→ (k (m n))))))
β−→ λk 7→ (JhelpedK (λm 7→ ∃x((P x) ∧ (k (m x)))))

= λk 7→ ((λk′ 7→ (k′ Help)) (λm 7→ ∃x((P x) ∧ (k (m x)))))
β−→ λk 7→ ∃x((P x) ∧ (k (Help x)))

(Jhelped someoneK JeveryoneK)

= λk 7→ (Jhelped someoneK (λm 7→ (JeveryoneK (λn 7→ (k (m n))))))

= λk 7→ (Jh. s.K (λm 7→ ((λk′ 7→ ∀x((P x)→ (k′ x))) (λn 7→ (k (m n))))))
β−→ λk 7→ (Jh. s.K (λm 7→ ∀x((P x)→ (k (m x)))))

= λk 7→ ((λk′ 7→ ∃y((P y) ∧ (k (Help y)))) (λm 7→ ∀x((P x)→ (k (m x)))))
β−→ λk 7→ ∃y((P y) ∧ ∀x((P x)→ (k ((Help y) x)))))

34

Solutions to Exercises from Chapter 12

module SolDRAC where

import DRAC

12.1

12.2

12.3

12.4

12.5

12.6

12.7

Solutions to Exercises from Chapter 13

module SolCAIA where

import List
import CAIA

13.1 No, it does not. The machine counts the money before you are able to count
it yourself, so the machine does not know whether you know that the amount is
correct.

13.2 The fourth man learns that his cap must have the same colour as that of the
third man, and that the first two guys wear caps of the other colour.

35

13.3

13.4

13.5

13.6

13.7

13.8 The union of two equivalence relations need not itself be an equivalence rela-
tion. Consider the following case:

Ra = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)}, Rb = {(1, 1), (2, 2), (3, 3), (2, 3), (3, 2)}.

Then these two sets are equivalences, but their union is not an equivalence, for
Ra ∪Rb is not transitive:

Ra ∪Rb = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2)}.

13.9

The four wise men are a, b, c, d. Let qi express that the man in i-th position is
wearing a white cap.

q1,q2,q3,q4 :: Form
q1 = Prop (Q 1); q2 = Prop (Q 2)
q3 = Prop (Q 3); q4 = Prop (Q 4)

Let’s picture the initial situation where the caps of the first man and the third man
are white. To capture the information about what each man can see we can use the
computeAcc function. Note that the propositions listed are the propositions that
each agent has no information about:

36

initWise :: EpistM Integer
initWise =
Mo states

[a..d]
valuation
(computeAcc a states [Q 1, Q 2, Q 3, Q 4] valuation
++
computeAcc b states [Q 2, Q 3, Q 4] valuation
++
computeAcc c states [Q 3, Q 4] valuation
++
computeAcc d states [Q 1, Q 2, Q 3, Q 4] valuation)
[10]

where
states = [0..15]
valuation = zip states (powerList [Q 1, Q 2, Q 3, Q 4])

The following caps info formula expresses that exactly two of the four caps are
white.

capsInfo :: Form
capsInfo =
Disj [Conj [f, g, Neg h, Neg j] |

f <- [q1, q2, q3, q4],
g <- [q1, q2, q3, q4] \\ [f],
h <- [q1, q2, q3, q4] \\ [f,g],
j <- [q1, q2, q3, q4] \\ [f,g,h],
f < g, h < j]

This gives:

v[&[q1,q2,-q3,-q4],&[q1,q3,-q2,-q4],
&[q1,q4,-q2,-q3],&[q2,q3,-q1,-q4],
&[q2,q4,-q1,-q3],&[q3,q4,-q1,-q2]]

Update of initial model with caps info:

37

mo1 = convert (upd_pa initWise capsInfo)

The statement that the third man (c) does know his cap colour:

cKnows = Disj [K (Agent c) q3, K (Agent c) (Neg q3)]

Update with the information that the third man (c) does not know his cap colour:

mo2 = convert (upd_pa mo1 (Neg cKnows))

Now we have to check whether b knows the colour of his cap:

bKnows = Disj [K (Agent b) q2, K (Agent b) (Neg q2)]

test = isTrue mo2 bKnows

Here is the answer:

SolCAIA> test
True

13.10

First some conventions for the representation of the basic facts. Use r1 for m, r2
for a, r3 for u.

male = Prop (R 1)
adult = Prop (R 2)
unmarried = Prop (R 3)

Let the two agents be alice and bob. Then the initial situation is like this:

38

13.11

13.12

13.13

