

Programming iOS 4

Programming iOS 4

Matt Neuburg

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Programming iOS 4
by Matt Neuburg

Copyright © 2011 Matt Neuburg. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Brian Jepson
Production Editor: Teresa Elsey
Proofreader: Nancy Kotary

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
May 2011: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Programming iOS 4, the image of a kingbird, and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-38843-0

[LSI]

1305160942

Table of Contents

Preface . xvii

Part I. Language

1. Just Enough C . 3
Compilation, Statements, and Comments 4
Variable Declaration, Initialization, and Data Types 6
Structs 8
Pointers 10
Arrays 11
Operators 13
Flow Control and Conditions 15
Functions 19
Pointer Parameters and the Address Operator 22
Files 24
The Standard Library 27
More Preprocessor Directives 27
Data Type Qualifiers 28

2. Object-Based Programming . 31
Objects 31
Messages and Methods 32
Classes and Instances 33
Class Methods 36
Instance Variables 37
The Object-Based Philosophy 39

3. Objective-C Objects and Messages . 43
An Instance Reference Is a Pointer 43

Instance References, Initialization, and nil 44

v

Instance References and Assignment 47
Instance References and Memory Management 48

Messages and Methods 49
Sending a Message 50
Declaring a Method 51
Nesting Method Calls 52
No Overloading 52
Parameter Lists 53
Unrecognized Selectors 53

Typecasting and the id Type 55
Messages as Data Type 58
C Functions and Struct Pointers 59
Blocks 61

4. Objective-C Classes . 65
Class and Superclass 65
Interface and Implementation 66
Header File and Implementation File 68
Class Methods 71
The Secret Life of Classes 71

5. Objective-C Instances . 73
How Instances Are Created 73

Ready-Made Instances 73
Instantiation from Scratch 74
Nib-Based Instantiation 77

Polymorphism 78
The Keyword self 79
The Keyword super 82
Instance Variables and Accessors 84
Key–Value Coding 86
Properties 87
How to Write an Initializer 89

Part II. IDE

6. Anatomy of an Xcode Project . 95
New Project 96
The Project Window 97

The Navigator Pane 99
The Utilities Pane 103
The Editor 104

vi | Table of Contents

The Project File and Its Dependents 106
The Target 109

Build Phases 109
Build Settings 110
Configurations 111
Schemes and Destinations 112

From Project to App 115
Build Settings 117
Property List Settings 117
Nib Files 118
Other Resources 118
Code 120
Frameworks and SDKs 121

7. Nib Management . 125
A Tour of the Nib-Editing Interface 125

The Dock 127
Canvas 128
Inspectors and Libraries 130

Nib Loading and File’s Owner 132
Default Instances in the Main Nib File 133
Making and Loading a Nib 134
Outlet Connections 135

More Ways to Create Outlets 139
More About Outlets 141

Action Connections 142
Additional Initialization of Nib-Based Instances 146

8. Documentation . 149
The Documentation Window 150
Class Documentation Pages 152
Sample Code 155
Other Resources 156

Quick Help 156
Symbols 157
Header Files 157
Internet Resources 158

9. Life Cycle of a Project . 159
Choosing a Device Architecture 159
Localization 162
Editing Your Code 163

Autocompletion 164

Table of Contents | vii

Snippets 165
Live Syntax Checking 166

Navigating Your Code 166
Debugging 169

Caveman Debugging 169
The Xcode Debugger 171

Static Analyzer 176
Clean 177
Running in the Simulator 177
Running on a Device 178
Device Management 181
Version Control 181
Instruments 184
Distribution 184
Ad Hoc Distribution 186
Final App Preparations 187

Icons in the App 188
Other Icons 189
Launch Images 189
Screenshots 190
Property List Settings 191

Submission to the App Store 192

Part III. Cocoa

10. Cocoa Classes . 197
Subclassing 197
Categories 200

Splitting a Class 201
Private Method Declarations 201

Protocols 202
Optional Methods 206
Some Foundation Classes 208

Useful Structs and Constants 208
NSString and Friends 208
NSDate and Friends 210
NSNumber 211
NSValue 211
NSData 212
Equality and Comparison 212
NSIndexSet 213
NSArray and NSMutableArray 213

viii | Table of Contents

NSSet and Friends 215
NSDictionary and NSMutableDictionary 215
NSNull 217
Immutable and Mutable 217
Property Lists 218

The Secret Life of NSObject 218

11. Cocoa Events . 223
Reasons for Events 224
Subclassing 224
Notifications 226

Receiving a Built-In Notification 226
Unregistering 228
NSTimer 228

Delegation 229
Data Sources 232
Actions 233
The Responder Chain 237

Deferring Responsibility 238
Nil-Targeted Actions 238

Application Lifetime Events 239
Swamped by Events 243

12. Accessors and Memory Management . 249
Accessors 249
Key–Value Coding 251
Memory Management 254

The Golden Rules of Memory Management 255
How Cocoa Objects Manage Memory 257
Memory Management of Instance Variables 260
Instance Variable Memory Management Policies 263
Autorelease 264
Nib Loading and Memory Management 266
Memory Management Comments on Earlier Examples 267
Memory Management of Pointer-to-Void Context Info 269
Memory Management of C Struct Pointers 270

Properties 271

13. Data Communication . 277
Model–View–Controller 277
Instance Visibility 279

Visibility by Instantiation 280
Visibility by Relationship 281

Table of Contents | ix

Global Visibility 281
Notifications 282
Key–Value Observing 284

Part IV. Views

14. Views . 293
The Window 293
Subview and Superview 295
Frame 298
Bounds and Center 299
Layout 302
Transform 305
Visibility and Opacity 308

15. Drawing . 311
UIImage and UIImageView 311
UIImage and Graphics Contexts 313
CGImage 315
Drawing a UIView 318
Graphics Context State 320
Paths 321
Clipping 325
Gradients 326
Colors and Patterns 328
Graphics Context Transforms 330
Shadows 332
Points and Pixels 332
Content Mode 333

16. Layers . 335
View and Layer 336
Layers and Sublayers 337

Manipulating the Layer Hierarchy 339
Positioning a Sublayer 339
CAScrollLayer 340
Layout of Sublayers 341

Drawing in a Layer 341
Contents Image 341
Contents on Demand 342
Contents Resizing and Positioning 343
Layers that Draw Themselves 345

x | Table of Contents

Transforms 346
Depth 350
Transforms and Key–Value Coding 352

Shadows, Borders, and More 353
Layers and Key–Value Coding 354

17. Animation . 357
Drawing, Animation, and Threading 358
UIImageView Animation 361
View Animation 362

Animation Blocks 362
Modifying an Animation Block 363
Transition Animations 366
Block-Based View Animation 368

Implicit Layer Animation 371
Animation Transactions 372
Media Timing Functions 373

Core Animation 374
CABasicAnimation and Its Inheritance 375
Using a CABasicAnimation 376
Keyframe Animation 379
Making a Property Animatable 380
Grouped Animations 381
Transitions 385
The Animations List 386

Actions 389
What an Action Is 389
The Action Search 390
Hooking Into the Action Search 391
Nonproperty Actions 394

18. Touches . 397
Touch Events and Views 398
Receiving Touches 400
Restricting Touches 401
Interpreting Touches 402
Gesture Recognizers 408

Distinguishing Gestures Manually 408
Gesture Recognizer Classes 412
Multiple Gesture Recognizers 416
Subclassing Gesture Recognizers 418
Gesture Recognizer Delegate 419

Touch Delivery 422

Table of Contents | xi

Hit-Testing 423
Initial Touch Event Delivery 427
Gesture Recognizer and View 427
Touch Exclusion Logic 429
Recognition 430
Touches and the Responder Chain 431

Part V. Interface

19. View Controllers . 435
Creating a View Controller 437

Manual View Controller, Manual View 438
Manual View Controller, Nib View 441
Nib-Instantiated View Controller 443
No View 445
Up-Shifted Root View 446

Rotation 447
Initial Orientation 448
Rotation Events 452

Modal Views 453
Modal View Configuration 454
Modal View Presentation 456
Modal View Dismissal 457
Modal Views and Rotation 459

Tab Bar Controllers 461
Tab Bar Item Images 462
Configuring a Tab Bar Controller 463

Navigation Controllers 464
Bar Button Items 466
Configuring a Navigation Interface 468
Navigation Interface Rotation 474

View Controller Lifetime Events 476
View Controller Memory Management 477

20. Scroll Views . 481
Creating a Scroll View 482
Scrolling 484

Paging 487
Tiling 488

Zooming 491
Zooming Programmatically 493
Zooming with Detail 493

xii | Table of Contents

Scroll View Delegate 499
Scroll View Touches 500
Scroll View Performance 503

21. Table Views . 505
Table View Cells 507

Built-In Cell Styles 508
Custom Cells 512

Table View Data 517
The Three Big Questions 518
Table View Sections 521
Refreshing Table View Data 524
Variable Row Heights 526

Table View Selection 528
Table View Scrolling and Layout 533
Table View Searching 533
Table View Editing 539

Deleting Table Items 541
Editable Content in Table Items 543
Inserting Table Items 544
Rearranging Table Items 546

22. Popovers and Split Views . 549
Presenting a Popover 550
Managing a Popover 553
Dismissing a Popover 554
Automatic Popovers 557
Split Views 558

23. Text . 563
UILabel 564
UITextField 565

Editing and the Keyboard 568
Configuring the Keyboard 572
Text Field Delegate and Control Event Messages 572
The Text Field Menu 574

UITextView 576
Core Text 579

24. Web Views . 587
Loading Content 588
Communicating with a Web View 593

Table of Contents | xiii

25. Controls and Other Views . 597
UIActivityIndicatorView 597
UIProgressView 598
UIPickerView 600
UISearchBar 602
UIControl 604

UISwitch 605
UIPageControl 605
UIDatePicker 606
UISlider 609
UISegmentedControl 612
UIButton 614
Custom Controls 617

Bars 620
UINavigationBar 621
UIToolbar 623
UITabBar 623

26. Modal Dialogs . 629
Alert View 630
Action Sheet 631
Dialog Alternatives 635
Local Notifications 636

Part VI. Some Frameworks

27. Audio . 643
System Sounds 643
Audio Session 644
Audio Player 648
Remote Control of Your Sound 650
Playing Sound in the Background 651
Further Topics in Sound 653

28. Video . 655
MPMoviePlayerController 656
MPMoviePlayerViewController 660
UIVideoEditorController 661
Further Topics in Video 662

29. Music Library . 667
Exploring the Music Library 667

xiv | Table of Contents

The Music Player 671
The Music Picker 675

30. Photo Library . 679
UIImagePickerController 679

Choosing from the Photo Library 680
Using the Camera 681

The Assets Library Framework 684

31. Address Book . 687
Address Book Database 687
Address Book Interface 690

ABPeoplePickerNavigationController 690
ABPersonViewController 692
ABNewPersonViewController 692
ABUnknownPersonViewController 693

32. Calendar . 695
Calendar Database 695
Calendar Interface 700

33. Mail . 703
Mail Message 703
SMS Message 704

34. Maps . 705
Presenting a Map 705
Annotations 706
Overlays 712

35. Sensors . 717
Location 717
Heading and Course 719
Acceleration 720

Shake Events 721
UIAccelerometer 722
Core Motion 725

Table of Contents | xv

Part VII. Final Topics

36. Persistent Storage . 729
The Sandbox 729
Basic File Operations 730
Saving and Reading Files 731
User Defaults 733
File Sharing 735
Document Types 735
Handing Off a Document 737
XML 740
SQLite 746
Image File Formats 747

37. Basic Networking . 751
HTTP Requests 751
Bonjour 757
Push Notifications 759
Beyond Basic Networking 760

38. Threads . 761
The Main Thread 761
Why Threading Is Hard 764
Three Ways of Threading 765

Manual Threads 766
NSOperation 768
Grand Central Dispatch 772

Threads and App Backgrounding 775

39. Undo . 779
The Undo Manager 779
The Undo Interface 782
The Undo Architecture 785

40. Epilogue . 787

Index . 789

xvi | Table of Contents

Preface

Aut lego vel scribo; doceo scrutorve sophian.

—Sedulius Scottus

With the advent of version 2 of the iPhone system, Apple proved they could do a re-
markable thing — adapt their existing Cocoa computer application programming
framework to make applications for a touch-based device with limited memory and
speed and a dauntingly tiny display. The resulting Cocoa Touch framework, in fact,
turned out to be in many ways better than the original Cocoa.

A programming framework has a kind of personality, an overall flavor that provides an
insight into the goals and mindset of those who created it. When I first encountered
Cocoa Touch, my assessment of its personality was: “Wow, the people who wrote this
are really clever!” On the one hand, the number of built-in interface widgets was se-
verely and deliberately limited; on the other hand, the power and flexibility of some of
those widgets, especially such things as UITableView, was greatly enhanced over their
Mac OS X counterparts. Even more important, Apple created a particularly brilliant
way (UIViewController) to help the programmer make entire blocks of interface come
and go and supplant one another in a controlled, hierarchical manner, thus allowing
that tiny iPhone display to unfold virtually into multiple interface worlds within a single
app without the user becoming lost or confused.

Even more impressive, Apple took the opportunity to recreate and rationalize Cocoa
from the ground up as Cocoa Touch. Cocoa itself is very old, having begun life as
NeXTStep before Mac OS X even existed. It has grown by accretion and with a certain
conservatism in order to maintain something like backward compatibility. With Cocoa
Touch, on the other hand, Apple had the opportunity to throw out the baby with the
bath water, and they seized this opportunity with both hands.

So, although Cocoa Touch is conceptually based on Mac OS X Cocoa, it is very clearly
not Mac OS X Cocoa, nor is it limited or defined by Mac OS X Cocoa. It’s an inde-
pendent creature, a leaner, meaner, smarter Cocoa. I could praise Cocoa Touch’s de-
liberate use of systematization (and its healthy respect for Occam’s Razor) through
numerous examples. Where Mac OS X’s animation layers are glommed onto views as
a kind of afterthought, a Cocoa Touch view always has an animation layer counterpart.

xvii

Memory management policies, such as how top-level objects are managed when a nib
loads, are simplified and clarified. And so on.

At the same time, Cocoa Touch is still a form of Cocoa. It still requires a knowledge of
Objective-C. It is not a scripting language; it is certainly not aimed at nonprogrammers,
like HyperCard’s HyperTalk or Apple’s AppleScript. It is still huge and complicated.
In fact, it’s rather difficult.

Meanwhile, Cocoa Touch itself evolves and changes. The iPhone System 2 matured
into the iPhone System 3. Then there was a sudden sally in a new direction when the
iPad introduced a larger screen and iPhone System 3.2. The iPhone 4 and its double-
resolution Retina display also ran on a major system increment, now dubbed iOS 4.
Every one of these changes has brought new complexities for the programmer to deal
with. To give just one simple example, users rightly complained that switching between
apps on the iPhone meant quitting one app and launching another. So Apple gave the
iPhone 4 the power of multitasking; the user can switch away from an app and then
return to it later to find it still running and in the state it was left previously. All well
and good, but now programmers must scurry to make their apps compatible with mul-
titasking, which is not at all trivial.

The popularity of the iPhone, with its largely free or very inexpensive apps, and the
subsequent popularity of the iPad, have brought and will continue to bring into the
fold many new programmers who see programming for these devices as worthwhile
and doable, even though they may not have felt the same way about Mac OS X. Apple’s
own annual WWDC developer conventions have reflected this trend, with their em-
phasis shifted from Mac OS X to iOS instruction.

The widespread eagerness to program iOS, however, though delightful on the one
hand, has also fostered a certain tendency to try to run without first learning to walk.
iOS gives the programmer mighty powers that can seem as limitless as imagination
itself, but it also has fundamentals. I often see questions online from programmers who
are evidently deep into the creation of some interesting app, but who are stymied in a
way that reveals quite clearly that they are unfamiliar with the basics of the very world
in which they are so happily cavorting.

It is this state of affairs that has motivated me to write this book, which is intended to
ground the reader in the fundamentals of iOS. I love Cocoa and have long wished to
write about it, but it is iOS and its popularity that has given me a proximate excuse to
do so. Indeed, my working title was “Fundamentals of Cocoa Touch Programming.”
Here I have attempted to marshal and expound, in what I hope is a pedagogically helpful
and instructive yet ruthlessly Euclidean and logical order, the principles on which
sound iOS programming rests, including a good basic knowledge of Objective-C (start-
ing with C itself) and the nature of object-oriented programming, advice on the use of
the tools, the full story on how Cocoa objects are instantiated, referred to, put in com-
munication with one another, and managed over their lifetimes, and a survey of the
primary interface widgets and other common tasks. My hope, as with my previous

xviii | Preface

books, is that you will both read this book cover to cover (learning something new often
enough to keep you turning the pages) and keep it by you as a handy reference.

This book is not intended to disparage Apple’s own documentation and example
projects. They are wonderful resources and have become more wonderful as time goes
on. I have depended heavily on them in the preparation of this book. But I also find
that they don’t fulfill the same function as a reasoned, ordered presentation of the facts.
The online documentation must make assumptions as to how much you already know;
it can’t guarantee that you’ll approach it in a given order. And online documentation
is more suitable to reference than to instruction. A fully written example, no matter
how well commented, is difficult to follow; it demonstrates, but it does not teach.

A book, on the other hand, has numbered chapters and sequential pages; I can assume
you know C before you know Objective-C for the simple reason that Chapter 1 precedes
Chapter 2. And along with facts, I also bring to the table a degree of experience, which
I try to communicate to you. Throughout this book you’ll see me referring to “common
beginner mistakes”; in most cases, these are mistakes that I have made myself, in ad-
dition to seeing others make them. I try to tell you what the pitfalls are because I assume
that, in the course of things, you will otherwise fall into them just as naturally as I did
as I was learning. You’ll also see me construct many examples piece by piece or extract
and explain just one tiny portion of a larger app. It is not a massive finished program
that teaches programming, but an exposition of the thought process that developed
that program. It is this thought process, more than anything else, that I hope you will
gain from reading this book.

iOS is huge, massive, immense. It’s far too big to be encompassed in a book even of
this size. And in any case, that would be inappropriate and unnecessary. There are
entire areas of Cocoa Touch that I have ruthlessly avoided discussing. Some of them
would require an entire book of their own. Others you can pick up well enough, when
the time comes, from the documentation. This book is only a beginning — the funda-
mentals. But I hope that it will be the firm foundation that will make it easier for you
to tackle whatever lies beyond, in your own fun and rewarding iOS programming fu-
ture.

In closing, some version numbers, so that you know what assumptions I am making.
At the time I started writing this book, system versions 3.1.3 (on the iPhone) and 3.2
(on the iPad) were most recent. As I was working on the book, iOS 4 and the iPhone 4
came into being, but it didn’t yet run on the iPad. Subsequently iOS 4.2 emerged: the
first system able to run on both the iPhone and the iPad. At the same time, Xcode was
improved up to 3.2.5.

Then, just in time for my final revisions, Xcode 3.2.6 and iOS 4.3 were released, along
with the first public version of the long-awaited Xcode 4. Xcode 4 is a thorough overhaul
of the IDE: menus, windows, and preferences are quite different from Xcode 3.2.x. At
the same time, both Xcode 4 and Xcode 3.2.x can coexist on the same machine and
can be used to work on the same project; moreover, Xcode 3.2.x has some specialized

Preface | xix

capabilities that Xcode 4 lacks, so some long-standing developers may well continue
to use it. This situation presents a dilemma for an author describing the development
process. However, for iOS programming, I recommend adoption of Xcode 4, and this
book assumes that you have adopted it.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

xx | Preface

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Programming iOS 4 by Matt Neuburg
(O’Reilly). Copyright 2011 Matt Neuburg, 978-1-449-38843-0.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/0636920010258/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Preface | xxi

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
It’s a poor craftsman who blames his tools. No blame attaches to the really great tools
by which I have been assisted in the writing of this book. I am particularly grateful to
the Unicomp Model M keyboard (http://pckeyboard.com), without which I could not
have produced so large a book so painlessly. I was also aided by wonderful software,
including TextMate (http://macromates.com) and AsciiDoc (http://www.methods.co.nz/
asciidoc). BBEdit (http://www.barebones.com) helped with its diff display. Screenshots
were created with Snapz Pro X (http://www.ambrosiasw.com) and GraphicConverter
(http://www.lemkesoft.com); diagrams were drawn with OmniGraffle (http://www.om
nigroup.com).

The splendid O’Reilly production process converted my AsciiDoc text files into PDF
while I worked, allowing me to proofread in simulated book format. Were it not for
this, and the Early Release program that permitted me to provide my readers with
periodic updates of the book as it grew, I would never have agreed to undertake this
project in the first place. I would like particularly to thank Tools maven Abby Fox for
her constant assistance.

I have taken advice from two tech reviewers, Dave Smith and David Rowland, and have
been assisted materially and spiritually by many readers who submitted errata and
encouragement. I was particularly fortunate in having Brian Jepson as editor; he pro-
vided enthusiasm for the O’Reilly tools and the electronic book formats, a watchful
eye, and a trusting attitude; he also endured the role of communications pipeline when
I needed to prod various parts of the O’Reilly machine. I have never written an O’Reilly
book without the help of Nancy Kotary, and I didn’t intend to start now; her sharp eye
has smoothed the bristles of my punctuation-laden style. For errors that remain, I take
responsibility, of course.

xxii | Preface

PART I

Language

Apple has provided a vast toolbox for programming iOS to make an app come to life
and behave the way you want it to. That toolbox is the API (application programming
interface). To use the API, you must speak the API’s language. That language, for the
most part, is Objective-C, which itself is built on top of C; some pieces of the API use
C itself. This part of the book instructs you in the basics of these languages:

• Chapter 1 explains C. In general, you will probably not need to know all the ins
and outs of C, so this chapter restricts itself to those aspects of C that you need to
know in order to use both Objective-C and the C-based areas of the API.

• Objective-C adds object-based programming features to C. Chapter 2 discusses
object-based programming in general architectural terms. It also explains some
extremely important terms that will be used throughout the book, along with the
concepts that lie behind them.

• Chapter 3 introduces the basic syntax of Objective-C.

• Chapter 4 continues the explanation of Objective-C, discussing the nature of
Objective-C classes, with emphasis on how to create a class in code.

• Chapter 5 completes the introduction to Objective-C, discussing how instances
are created and initialized, along with an explanation of such related topics as
polymorphism, instance variables, accessors, self and super, key–value coding,
and properties.

Even at this point, our discussion of Objective-C is not yet complete; we’ll return in
Part III to a description of further aspects of the language: those that are particularly
bound up with the Cocoa frameworks.

CHAPTER 1

Just Enough C

Do you believe in C? Do you believe in anything that has
to do with me?

—Leonard Bernstein and Stephen Schwartz, Mass

To program for iOS, you need some knowledge of the C programming language, for
two reasons:

• Most of your iOS programming will be in the Objective-C language, and Objective-
C is a superset of C. This means that Objective-C presupposes C; everything that
is true of C trickles up to Objective-C. A common mistake is to forget that
“Objective-C is C” and to neglect a basic understanding of C.

• Some of the iOS API involves C rather than Objective-C. Even in Objective-C code,
you often need to use C data structures and C function calls. For example, a rec-
tangle is represented as a CGRect, which is a C struct, and to create a CGRect from
four numbers you call CGRectMake, which is a C function. The iOS API docu-
mentation will very often show you C expressions and expect you to understand
them.

The best way to learn C is to read The C Programming Language (PTR Prentice Hall,
1988) by Brian W. Kernighan and Dennis M. Ritchie, commonly called K&R (Ritchie
was the creator of C). It is one of the best computer books ever written: brief, dense,
and stunningly precise and clear. K&R is so important for effective iOS (and Mac OS
X) programming that I keep a physical copy beside me at all times while coding, and I
recommend that you do the same. Another useful manual is The C Book, by Mike
Banahan, Declan Brady and Mark Doran, available online at http://publications.gbdirect
.co.uk/c_book/.

You don’t have to know all about C in order to use Objective-C effectively, though;
and that’s a good thing. C is not a large or difficult language, but it has some tricky
corners and can be extremely subtle, powerful, and low-level. Also, it would be im-
possible, and unnecessary, for me to describe all of C in a single chapter. C is described
far more fully and correctly in K&R, The C Book, and elsewhere than I could possibly

3

do it. Sooner or later, you’re probably going to have technical questions about C that
this chapter doesn’t (and shouldn’t) make any attempt to answer. So I emphasize that
you really, really ought to have K&R or something similar at hand and resort to it as
needed.

What I can do, and what this chapter will attempt to do, is tell you what aspects of C
are important to understand at the outset, before you even start using Objective-C for
iOS programming. That’s why this chapter is “Just Enough C”: it’s just enough to get
you going, comfortably and safely.

If you know no C at all, I suggest that, as an accompaniment to this chapter, you also
read parts of K&R (think of this as “C: The Good Parts Version”). Here’s my proposed
K&R syllabus:

• Quickly skim K&R Chapter 1, the tutorial.

• Carefully read K&R Chapters 2 through 4.

• Read the first three sections of K&R Chapter 5 on pointers and arrays. You don’t
need to read the rest of Chapter 5 because you won’t typically be doing any pointer
arithmetic, but you do need to understand clearly what a pointer is, as Objective-
C is all about objects and every reference to an object is a pointer; you’ll be seeing
and using that * character constantly.

• Read also the first section of K&R Chapter 6, on structures (structs); as a beginner,
you probably won’t define any structs, but you will use them quite a lot, so you’ll
need to know the notation (for example, as I’ve already said, a CGRect is a struct).

• Glance over K&R Appendix B, which covers the standard library, because you may
find yourself making certain standard library calls, such as the mathematical func-
tions; forgetting that the library exists is a typical beginner mistake.

Just to make things a little more confusing, the C defined in K&R is not precisely the
C that forms the basis of Objective-C. Developments subsequent to K&R have resulted
in further C standards (ANSI C, C89, C99), and the Xcode compiler extends the C
language in its own ways. By default, Xcode projects are treated as C99 (though you
could specify another C standard if you really wanted to). Fortunately, the most im-
portant differences between K&R’s C and Xcode’s C are small, convenient improve-
ments that are easily remembered, so K&R remains the best and most reliable C ref-
erence.

Compilation, Statements, and Comments
C is a compiled language. You write your program as text; to run the program, things
proceed in two stages. First your text is compiled into machine instructions; then those
machine instructions are executed. Thus, as with any compiled language, you can make
two kinds of mistake:

4 | Chapter 1: Just Enough C

• Any purely syntactic errors (meaning that you spoke the C language incorrectly)
will be caught by the compiler, and the program won’t even begin to run.

• If your program gets past the compiler, then it will run, but there is no guarantee
that you haven’t made some other sort of mistake, which can be detected only by
noticing that the program doesn’t behave as intended.

The C compiler is fussy, but you should accept its interference with good grace. The
compiler is your friend: learn to love it. It may emit what looks like an irrelevant or
incomprehensible error message, but when it does, the fact is that you’ve done some-
thing wrong and the compiler has helpfully caught it for you. Also, the compiler can
warn you if something seems like a possible mistake, even though it isn’t strictly illegal;
these warnings, which differ from outright errors, are also helpful and should not be
ignored.

I have said that running a program requires a preceding stage: compilation. But in fact
there is a third stage that precedes compilation: preprocessing. (It doesn’t really matter
whether you think of preprocessing as a stage preceding compilation or as the first stage
of compilation.) Preprocessing modifies your text, so when your text is handed to the
compiler, it is not identical to the text you wrote. Preprocessing might sound tricky and
intrusive, but in fact it proceeds only according to your instructions and is helpful for
making your code clearer and more compact.

C is a statement-based language; every statement ends in a semicolon. (Forgetting the
semicolon is a common beginner’s mistake and is liable to get you a completely irrel-
evant and incomprehensible error message from the compiler.) For readability, pro-
grams are mostly written with one statement per line, but this is by no means a hard
and fast rule: long statements (which, unfortunately, arise very commonly because of
Objective-C’s verbosity) are commonly split over multiple lines, and extremely short
statements are sometimes written two or three to a line. You cannot split a line just
anywhere, however; for example, a literal string can’t contain a return character. In-
dentation is linguistically meaningless and is purely a matter of convention (and C
programmers argue over those conventions with near-religious fervor); Xcode helps
“intelligently” by indenting automatically, and you can use its automatic indentation
both to keep your code readable and to confirm that you’re not making any basic
syntactic mistakes.

Comments are delimited in K&R C by /* ... */; the material between the delimiters
can consist of multiple lines (K&R 1.2). In modern versions of C, a comment also can
be denoted by two slashes (//); the rule is that if two slashes appear, they and everything
after them on the same line are ignored:

int lower = 0; // lower limit of temperature table

These are sometimes called C++-style comments and are much more convenient for
brief comments than the K&R comment syntax.

Compilation, Statements, and Comments | 5

Throughout the C language (and therefore, throughout Objective-C as well), capitali-
zation matters. All names are case-sensitive. There is no such data type as Int; it’s
lowercase “int.” If you declare an int called lower and then try to speak of the same
variable as Lower, the compiler will complain. By convention, variable names tend to
start with a lowercase letter.

Variable Declaration, Initialization, and Data Types
C is a strongly typed language. Every variable must be declared, indicating its data type,
before it can be used. Declaration can also involve explicit initialization; a variable that
is declared but not explicitly initialized is of uncertain value (and should be regarded
as dangerous until it is initialized). In K&R C, declarations must precede all other
statements, but in modern versions of C, this rule is relaxed so that you don’t have to
declare a variable until just before you start using it. The usual convention is thus to
declare a variable and assign it a value as it makes its first appearance on the scene:

int height = 2;
int width = height * 2;
height = height + 1;
int area = height * width;

The basic built-in C data types are all numeric: char (one byte), int (four bytes), float
and double (floating-point numbers), and varieties such as short (short integer), long
(long integer), unsigned short, and so on. iOS makes use of some further numeric types
derived from the C numeric types (by way of the typedef statement, K&R 6.7); the most
important of these are NSInteger (along with NSUInteger) and CGFloat. You don’t

Choosing a Compiler
The compiler situation in Xcode is rather complicated. Originally, Xcode’s compiler
was the free open source GCC (http://gcc.gnu.org). More recently, Xcode has been
phasing in use of another free open source compiler, LLVM (http://llvm.org). Changing
compilers is scary, so Apple has proceeded in stages, as follows:

• GCC is still supported.

• A hybrid compiler, LLVM-GCC, provides the advantages of LLVM compilation,
but the code is parsed with GCC for maximum backward compatibility.

• A pure LLVM compiler (also referred to as Clang) does its own parsing and pro-
vides more intelligent and helpful error messages and warnings.

As Xcode 3.2.x evolved, LLVM-GCC was eventually considered the best choice, but
Apple was hesitant to make it the default compiler, so GCC remained the default. In
Xcode 4, LLVM-GCC is the default compiler; both GCC and the pure LLVM compiler
are also available. (The choice of compiler is a project-level build setting; see Chapter 6.)

6 | Chapter 1: Just Enough C

need to use these explicitly unless an API tells you to, and even when you do, just think
of NSInteger as int and CGFloat as float, and you’ll be fine.

To cast (or typecast) a variable’s value explicitly to another type, precede the variable’s
name with the other type’s name in parentheses:

int height = 2;
float fheight = (float)height;

In that particular example, the explicit cast is unnecessary because the integer value
will be cast to a float implicitly as it is assigned to a float variable, but it illustrates the
notation. You’ll find yourself typecasting quite a bit in Objective-C, mostly in order to
subdue the worries of the compiler (examples appear in Chapter 3).

Another form of numeric initialization is the enum (K&R 2.3). It’s a way of assigning
names to a sequence of numeric values and is useful when a value represents one of
several possible options. The Cocoa API uses this device a lot. For example, the three
possible types of status bar animation are defined like this:

typedef enum {
 UIStatusBarAnimationNone,
 UIStatusBarAnimationFade,
 UIStatusBarAnimationSlide,
} UIStatusBarAnimation;

That definition assigns the value 0 to the name UIStatusBarAnimationNone, the value 1
to the name UIStatusBarAnimationFade, and the value 2 to the name UIStatusBar-
AnimationSlide. The upshot is, however, that you can use the suggestively meaningful
names without caring about, or even knowing, the arbitrary numeric values they rep-
resent. It’s a useful idiom, and you may well have reason to define enums in your own
code.

There appears to be a native text type (a string) in C, but this is something of an illusion;
behind the scenes, it is actually a null-terminated array of char. For example, in C you
can write a string literal like this:

"string"

But in fact this is stored as 7 bytes, the numeric (ASCII) equivalents of each letter
followed by a byte consisting of 0 to signal the end of the string. This data structure,
called a C string, is rather tricky, and if you’re lucky you’ll rarely or never encounter
one while programming iOS. In general, when working with strings, you’ll use an
Objective-C object type called NSString. An NSString is totally different from a C string;
it happens, however, that Objective-C lets you write a literal NSString in a way that
looks very like a C string:

@"string"

Notice the at-sign! This expression is actually a directive to the Objective-C compiler
to form an NSString object. A common mistake is forgetting the at-sign, thus causing
your expression to be interpreted as a C string, which is a completely different animal.

Variable Declaration, Initialization, and Data Types | 7

Because the notation for literal NSStrings is modeled on the notation for C strings, it
is worth knowing something about C strings, even though you won’t generally en-
counter them. For example, K&R lists a number of escaped characters (K&R 2.3),
which you can also use in a literal NSString, including the following:

\n
A Unix newline character

\t
A tab character

\"
A quotation mark (escaped to show that this is not the end of the string literal)

\\
A backslash

NSStrings are natively Unicode-based, but because Objective-C is C,
including non-ASCII characters in a literal NSString was, until quite
recently, remarkably tricky, and you needed to know about such things
as the \x and \u escape sequences. Now, however, it is perfectly legal to
type a bullet or any other non-ASCII character directly into an NSString
literal, and you should ignore old Internet postings (and even an occa-
sional sentence in Apple’s own documentation) warning that it is not.

K&R also mention a notation for concatenating string literals, in which multiple string
literals separated only by white space are automatically concatenated and treated as a
single string literal. This notation is useful for splitting a long string into multiple lines
for legibility, and Objective-C copies this convention for literal NSStrings as well, ex-
cept that you have to remember the at-sign:

@"This is a big long literal string "
@"which I have broken over two lines of code.";

Structs
C offers few simple native data types, so how are more complex data types made? There
are three ways: structures, pointers, and arrays. Both structures and pointers are going
to be crucial when you’re programming iOS. You’re less likely to need a C array, because
Objective-C has its own NSArray object type, but it will arise in a couple of examples
later in this book.

A C structure, usually called a struct (K&R 6.1), is a compound data type: it combines
multiple data types into a single type, which can be passed around as a single entity.
Moreover, the elements constituting the compound entity have names and can be ac-
cessed by those names through the compound entity, using dot-notation. For example,
the iOS documentation tells you that a CGPoint is defined as follows:

8 | Chapter 1: Just Enough C

struct CGPoint {
 CGFloat x;
 CGFloat y;
};
typedef struct CGPoint CGPoint;

Recall that a CGFloat is basically a float, so this is a compound data type made up of
two simple native data types; in effect, a CGPoint has two CGFloat parts, and their
names are x and y. (The rather odd-looking last line merely asserts that one can use the
term CGPoint instead of the more verbose struct CGPoint.) So we can write:

CGPoint myPoint;
myPoint.x = 4.3;
myPoint.y = 7.1;

Just as we can assign to myPoint.x in order to set this part of the struct, we can say my-
Point.x to get this part of the struct. It’s as if myPoint.x were the name of a variable.
Moreover, an element of a struct can itself be a struct, and the dot-notation can be
chained. To illustrate, first note the existence of another iOS struct, CGSize:

struct CGSize {
 CGFloat width;
 CGFloat height;
};
typedef struct CGSize CGSize;

Put a CGPoint and a CGSize together and you’ve got a CGRect:

struct CGRect {
 CGPoint origin;
 CGSize size;
};
typedef struct CGRect CGRect;

So suppose we’ve got a CGRect variable called myRect, already initialized. Then my-
Rect.origin is a CGPoint, and myRect.origin.x is a CGFloat. Similarly, myRect.size is
a CGSize, and myRect.size.width is a CGFloat. You could change just the width part
of our CGRect directly, like this:

myRect.size.width = 8.6;

Instead of initializing a struct by assigning to each of its elements, you can initialize it
at declaration time by assigning values for all its elements at once, in curly braces,
separated by commas, like this:

CGPoint myPoint = { 4.3, 7.1 };

The iOS API has many commonly used structs, typically accompanied by convenience
functions for working with them.

Structs | 9

Pointers
The other big way that C extends its range of data types is by means of pointers (K&R
5.1). A pointer is an integer (of some size or other) with a meaning: it designates the
location in memory where the real data is to be found. Knowing the structure of that
data and how to work with it, as well as allocating a block of memory of the required
size beforehand and disposing of that block of memory when it’s no longer needed, is
a very complicated business. Luckily, this is exactly the sort of complicated business
that Objective-C is going to take care of for us. So all you really have to know in order
to use pointers is what they are and what notation is used to refer to them.

Let’s start with a simple declaration. If we wanted to declare an integer in C, we could
say:

int i;

That line says, “i is an integer.” Now let’s instead declare a pointer to an integer:

int* intPtr;

That line says, “intPtr is a pointer to an integer.” Never mind how we know there really
is going to be an integer at the address designated by this point; here, I’m concerned
only with the notation. It is permitted to place the asterisk in the declaration before the
name rather than after the type:

int *intPtr;

I don’t generally use that second form when declaring a pointer, but it does come in
handy when declaring several variables of the same type in a single statement. Here’s
what I mean. It is legal, though I did not mention this earlier, to declare multiple var-
iables of a single type in one statement, like this:

int i, j, k;

By the same token, it is possible to declare multiple pointers to the same type in one
statement by attaching the asterisk to the variable name (repeatedly):

int *intPtr1, *intPtr2, *intPtr3;

However, the name of the type is still int*. If you are asked what type is intPtr is, the
answer is int* (a pointer to an int); the asterisk is part of the name of the type of this
variable. If you needed to cast a variable p to this type, you’d cast like this: (int*)p.

Pointers are very important in Objective-C, because Objective-C is all about objects
(Chapter 2), and every variable referring to an object is itself a pointer. For example,
I’ve already mentioned that the Objective-C string type is called NSString. So the way
to declare an NSString variable is as a pointer to an NSString:

NSString* s;

An NSString literal is an NSString value, so we can even declare and initialize this
NSString object, thus writing a seriously useful line of Objective-C code:

10 | Chapter 1: Just Enough C

NSString* s = @"Hello, world!";

In pure C, having declared a pointer-to-integer called intPtr, you are liable to speak
later in your code of *intPtr. This notation, outside of a declaration, means “the thing
pointed to by the pointer intPtr.” You speak of *intPtr because you wish to access the
integer at the far end of the pointer.

But in Objective-C, this is generally not the case. In your code, you’ll be treating the
pointer to an object as the object. So, for example, having declared s as a pointer to an
NSString, you will not then proceed to speak of *s; rather, you will speak simply of s,
as if it were the string. All the Objective-C stuff you’ll want to do with an object will
expect the pointer, not the object at the far end of the pointer; behind the scenes,
Objective-C itself will take care of the messy business of following the pointer to its
block of memory and doing whatever needs to be done in that block of memory. This
fact is extremely convenient for you as a programmer, but it does cause Objective-C
users to speak a little loosely; we tend to say that “s is an NSString,” when of course it
is actually a pointer to an NSString.

You must never let this convenience lull you into forgetting the crucial fact that a pointer
is a pointer. The logic of how pointers work is different from the logic of how simple
data types work. The difference is particularly evident with assignment. Assignment to
a simple data type changes the data value. Assignment to a pointer repoints the pointer.
Suppose ptr1 and ptr2 are both pointers, and you say:

ptr1 = ptr2;

Now ptr1 and ptr2 are pointing at the same thing. Any change to the thing pointed to
by ptr1 will also change the thing pointed to by ptr2, because they are the same thing.
Meanwhile, whatever ptr1 was pointing to before the assignment is now not being
pointed to by ptr1; it might, indeed, be pointed to by nothing (which could be bad). A
firm understanding of these facts is crucial when working in Objective-C (Figure 1-1).

The most general type of pointer is pointer-to-void (void*), the generic pointer. It is legal
to use a generic pointer wherever a specific type of pointer is expected. In effect, pointer-
to-void casts away type checking as to what’s at the far end of the pointer. Thus, the
following is legal:

int* p1; // and pretend p1 has a value
void* p2;
p2 = p1;
p1 = p2;

Arrays
A C array (K&R 5.3) consists of multiple elements of the same data type. An array
declaration states the data type of the elements, followed by the name of the array,
along with square brackets containing the number of elements:

int arr[3]; // means: arr is an array consisting of 3 ints

Arrays | 11

To refer to an element of an array, use the array’s name followed by the element number
in square brackets. The first element of an array is numbered 0. So we can initialize an
array by assigning values to each element in turn:

int arr[3];
arr[0] = 123;
arr[1] = 456;
arr[2] = 789;

Figure 1-1. Pointers and assignment

12 | Chapter 1: Just Enough C

Alternatively, you can initialize an array at declaration time by assigning a list of values
in curly braces, just as with a struct. In this case, the size of the array can be omitted
from the declaration, because it is implicit in the initialization (K&R 4.9):

int arr[] = {123, 456, 789};

Curiously, the name of an array is the name of a pointer (to the first element of the
array). Thus, for example, having declared arr as in the preceding examples, you can
use arr wherever a value of type int* (a pointer to an int) is expected. This fact is the
basis of some highly sophisticated C idioms that you almost certainly won’t need to
know about (which is why I don’t recommend that you read any of K&R Chapter 5
beyond section 3).

C arrays rarely arise in practice when programming iOS, because you’ll work mostly
with the NSArray object type instead. But here’s a case where they do. The function
CGContextStrokeLineSegments is declared like this:

void CGContextStrokeLineSegments (
 CGContextRef c,
 const CGPoint points[],
 size_t count
);

The second parameter is an array (meaning a C array) of CGPoints. That’s what the
square brackets tell you. So to call this function, you’d need to know at least how to
make an array of CGPoints. You might do it like this:

CGPoint arr[] = {{4,5}, {6,7}, {8,9}, {10,11}};

Having done that, you can pass arr as the second argument in a call to CGContextStroke-
LineSegments.

Also, a C string, as I’ve already mentioned, is actually an array. For example, the
NSString method stringWithUTF8String: takes (according to the documentation) “a
NULL-terminated C array of bytes in UTF8 encoding;” but the parameter is declared
not as an array, but as a char*. Those are the same thing, and are both ways of saying
that this method takes a C string.

Operators
Arithmetic operators are straightforward (K&R 2.5), but watch out for the rule that
“integer division truncates any fractional part.” This rule is the cause of much novice
error in C. If you have two integers and you want to divide them in such a way as to
get a fractional result, you must represent at least one of them as a float:

int i = 3;
float f = i/2; // beware! not 1.5

To get 1.5, you should have written i/2.0 or (float)i/2.

Operators | 13

The integer increment and decrement operators (K&R 2.8), ++ and --, work differently
depending on whether they precede or follow their variable. The expression ++i replaces
the value of i by 1 more than its current value and then uses the resulting value; the
expression i++ uses the current value of i and then replaces it with 1 more than its
current value. This is one of C’s coolest features.

C also provides bitwise operators (K&R 2.9), such as bitwise-and (&) and bitwise-or
(|); they operate on the individual binary bits that constitute integers. Of these, the one
you are most likely to need is bitwise-or, because the Cocoa API often uses bits as
switches when multiple options are to be specified simultaneously. For example, there
are various ways in which a UIView can be resized automatically as its superview is
resized, and you’re supposed to provide one or more of these when setting a UIView’s
autoresizingMask property. The autoresizing options are listed in the documentation
as follows:

enum {
 UIViewAutoresizingNone = 0,
 UIViewAutoresizingFlexibleLeftMargin = 1 << 0,
 UIViewAutoresizingFlexibleWidth = 1 << 1,
 UIViewAutoresizingFlexibleRightMargin = 1 << 2,
 UIViewAutoresizingFlexibleTopMargin = 1 << 3,
 UIViewAutoresizingFlexibleHeight = 1 << 4,
 UIViewAutoresizingFlexibleBottomMargin = 1 << 5
};
typedef NSUInteger UIViewAutoresizing;

The << symbol is the left shift operator; the right operand says how many bits to shift
the left operand. So pretend that an NSUInteger is 8 bits (it isn’t, but let’s keep things
simple and short). Then this enum means that the following name–value pairs are
defined (using binary notation for the values):

UIViewAutoresizingNone
00000000

UIViewAutoresizingFlexibleLeftMargin
00000001

UIViewAutoresizingFlexibleWidth
00000010

UIViewAutoresizingFlexibleRightMargin
00000100

UIViewAutoresizingFlexibleTopMargin
00001000

and so on. The reason for this bit-based representation is that these values can be
combined into a single value (a bitmask) that you pass to set the autoresizingMask. All
Cocoa has to do in order to understand your intentions is to look to see which bits in
the value that you pass are set to 1. So, for example, 00001010 would mean that UIView-

14 | Chapter 1: Just Enough C

AutoresizingFlexibleTopMargin and UIViewAutoresizingFlexibleWidth are true (and
that the others, by implication, are all false).

The question is how to form the value 00001010 in order to pass it. You could just do
the math, figure out that binary 00001010 is decimal 10, and set the autoresizingMask
property to 10, but that’s not what you’re supposed to do, and it’s not a very good idea,
because it’s error-prone and makes your code incomprehensible. Instead, use the
bitwise-or operator to combine the desired options:

myView.autoresizingMask =
 UIViewAutoresizingFlexibleTopMargin | UIViewAutoresizingFlexibleWidth;

This notation works because the bitwise-or operator combines its operands by setting
in the result any bits that are set in either of the operands, so 00001000 | 00000010 is
00001010, which is just the value we’re trying to convey.

Simple assignment (K&R 2.10) is by the equal sign. But there are also compound as-
signment operators that combine assignment with some other operation. For example:

height *= 2; // same as saying: height = height * 2;

The ternary operator (?:) is a way of specifying one of two values depending on a
condition (K&R 2.11). The scheme is as follows:

(condition) ? exp1 : exp2

If the condition is true (see the next section for what that means), the expression exp1
is evaluated and the result is used; otherwise, the expression exp2 is evaluated and the
result is used. For example, you might use the ternary operator while performing an
assignment, using this schema:

myVariable = (condition) ? exp1 : exp2;

What gets assigned to myVariable depends on the truth value of the condition. There’s
nothing happening here that couldn’t be accomplished more verbosely with flow con-
trol (see the next section), but the ternary operator can greatly improve clarity, and I
use it a lot.

Flow Control and Conditions
Basic flow control is fairly simple and usually involves a condition in parentheses and
a block of conditionally executed code in curly braces. These curly braces constitute a
new scope, into which new variables can be introduced. So, for example:

if (x == 7) {
 int i = 0;
 i += 1;
}

After the closing curly brace in the fourth line, the i introduced in the second line has
ceased to exist, because its scope is the inside of the curly braces. If the contents of the
curly braces consist of a single statement, the curly braces can be omitted, but I would

Flow Control and Conditions | 15

advise beginners against this shorthand, as you can confuse yourself. A common be-
ginner mistake (which will be caught by the compiler) is forgetting the parentheses
around the condition. The full set of flow control statements is given in K&R Chapter
3, and I’ll just summarize them schematically here (Example 1-1).

Example 1-1. The C flow control constructs

if (condition) {
 statements;
}

if (condition) {
 statements;
} else {
 statements;
}

if (condition) {
 statements;
else if (condition) {
 statements;
} else {
 statements;
}

while (condition) {
 statements;
}

do {
 statements;
} while (condition);

for (before-all; condition; after-each) {
 statements;
}

The if...else if...else structure can have as many else if blocks as needed, and
the else block is optional. Instead of an extended if...else if...else if...else
structure, when the conditions would consist of comparing various values against a
single value, you can use the switch statement; however, I never use it, and I don’t
recommend that you do either, as it is rather confusing and can easily go wrong. See
K&R 3.4 if you’re interested.

The C for loop needs some elaboration for beginners (Example 1-1). The before-all
statement is executed once as the for loop is first encountered and is usually used for
initialization of the counter. The condition is then tested, and if true, the block is exe-
cuted; the condition is usually used to test whether the counter has reached its limit.
The after-each statement is then executed, and is usually used to increment or decre-
ment the counter; the condition is then immediately tested again. Thus, to execute a
block using integer values 1, 2, 3, 4, and 5 for i, the notation is:

16 | Chapter 1: Just Enough C

int i;
for (i = 1; i < 6; i++) {
 // ... statements ...
}

The need for a counter intended to exist solely within the for loop is so common that
C99 permits the declaration of the counter as part of the before-all statement; the
declared variable’s scope is then inside the curly braces:

for (int i = 1; i < 6; i++) {
 // ... statements ...
}

The for loop is one of the few areas in which Objective-C extends C’s flow-control
syntax. Certain Objective-C objects represent enumerable collections of other objects;
“enumerable” basically means that you can cycle through the collection, and cycling
through a collection is called enumerating the collection. To make enumerating easy,
Objective-C provides a for...in operator, which works like a for loop:

SomeType* oneItem;
for (oneItem in myCollection) {
 // ... statements
}

On each pass through the loop, the variable oneItem (or whatever you call it) takes on
the next value from within the collection. As with the C99 for loop, oneItem can be
declared in the for statement, limiting its scope to the curly braces:

for (SomeType* oneItem in myCollection) {
 // ... statements
}

To abort a loop from inside the curly braces, use the break statement. To abort the
current iteration from within the curly braces and proceed to the next iteration, use the
continue statement. In the case of while and do, continue means to perform immediately
the conditional test; in the case of a for loop, continue means to perform immediately
the after-each statement and then the conditional test.

C also has a goto statement that allows you to jump to a named (labeled) line in your
code (K&R 3.8); even though goto is notoriously “considered harmful,” there are sit-
uations in which it is pretty much necessary, especially because C’s flow control is
otherwise so primitive.

It is permissible for a C statement to be compounded of multiple state-
ments, separated by commas, to be executed sequentially. The last of
the multiple statements is the value of the compound statement as a
whole. This construct, for instance, lets you perform some secondary
action before each test of a condition or perform more than one
after-each action (an example appears in Chapter 17).

Flow Control and Conditions | 17

We can now turn to the question of what a condition consists of. C has no separate
boolean type; a condition either evaluates to 0, in which case it is considered false, or
it doesn’t, in which case it is true. Comparisons are performed using the equality and
relational operators (K&R 2.6); for example, == compares for equality, and < compares
for whether the first operand is less than the second. Logical expressions can be com-
bined using the logical-and operator (&&) and the logical-or operator (||); using these
along with parentheses and the not operator (!) you can form complex conditions.
Evaluation of logical-and and logical-or expressions is short-circuited, meaning that if
the left condition settles the question, the right condition is never even evaluated.

Don’t confuse the logical-and operator (&&) and the logical-or operator
(||) with the bitwise-and operator (&) and the bitwise-or operator (|)
discussed earlier. Writing & when you mean && (or vice versa) can result
in surprising behavior.

The operator for testing basic equality, ==, is not a simple equal sign; forgetting the
difference is a common novice mistake. The problem is that such code is legal: simple
assignment, which is what the equal sign means, has a value, and any value is legal in
a condition. So consider this piece of (nonsense) code:

int i = 0;
while (i = 1) {
 i = 0;
}

You might think that the while condition tests whether i is 1. You might then think:
i is 0, so the while body will never be performed. Right? Wrong. The while condition
does not test whether i is 1; it assigns 1 to i. The value of that assignment is also 1, so
the condition evaluates to 1, which means true. So the while body is performed. More-
over, even though the while body assigns 0 to i, the condition is then evaluated again
and assigns 1 to i a second time, which means true yet again. And so on, forever; we’ve
written an endless loop, and the program will hang. (And, depending on what compiler
and settings you’re using, you might not even get a warning of trouble ahead.)

C programmers actually revel in the fact that testing for zero and testing for false are
the same thing and use it to create compact conditional expressions, which are con-
sidered elegant and idiomatic. I don’t recommend that you make use of such idioms,
as they can be confusing, but I must admit that even I do occasionally resort to this sort
of thing:

NSString* s = nil;
// ...
if (s) {
 // ...
}

The idea of that code is to test whether the NSString object s, between the time it was
declared and the start of the if-block, has been set to an actual string. Because nil is a

18 | Chapter 1: Just Enough C

form of 0, the condition is asking whether s is non-nil. Some Objective-C programmers
would take me to task for this style of writing code; if I want to test whether s is nil,
they would say, I should test it explicitly:

if (s == nil)

In fact, some would say, it is even better to write the terms of the comparison in the
opposite order:

if (nil == s)

Why? Because if I were to omit accidentally the second equal sign, thus turning the
equality comparison into an assignment, the first expression would compile (and mis-
behave, because I am now assigning nil to s), but the second expression would certainly
be caught by the compiler as an error, because assigning a value to nil is illegal.

Objective-C introduces a BOOL type, which you should use if you need to capture or
maintain a condition’s value as a variable, along with constants YES and NO (actually
representing 1 and 0), which you should use when setting a boolean value. Don’t com-
pare anything against a BOOL, not even YES or NO, because a value like 2 is true in a
condition but is not equal to YES or NO. Just use the BOOL directly as a condition, or
as part of a complex condition, and all will be well. For example:

BOOL snil = (nil == s);
// ...
if (snil) // ... not: if (snil == YES)

Functions
C is a function-based language (K&R 4.1). A function is a block of code defining what
should happen; when other code calls (invokes) that function, the function’s code does
happen. A function returns a value, which is substituted for the call to that function.

Here’s a definition of a function that accepts an integer and returns its square:

int square(int i) {
 return i * i;
}

Now I’ll call that function:

int i = square(3);

Because of the way square is defined, that is exactly like saying:

int i = 9;

That example is extremely simple, but it illustrates many key aspects of functions.

Let’s analyze how a function is defined:

int square (int i) {
 return i * i;
}

Functions | 19

We start with the type of value that the function returns; here, it returns an int.

Then we have the name of the function, which is square.

Then we have parentheses, and here we place the data type and name of any values
that this function expects to receive. Here, square expects to receive one value, an
int, which we are calling i. The name i (along with its expected data type) is a
parameter; when the function is called, its value will be supplied as an argument. If
a function expects to receive more than one value, multiple parameters in its defi-
nition are separated by a comma (and when the function is called, the arguments
supplied are likewise separated by a comma).

Finally, we have curly braces containing the statements that are to be executed when
the function is called.

Those curly braces constitute a scope; variables declared within them are local to the
function. The names used for the parameters in the function definition are also local
to the function; in other words, the i in the first line of the function definition is the
same as the i in the second line of the function definition, but it has nothing to do with
any i used outside the function definition (as when the result of the function call is
assigned to a variable called i). The value of the i parameter in the function definition
is assigned from the corresponding argument when the function is actually called; in
the previous example, it is 3, which is why the function result is 9. Supplying a function
call with arguments is thus a form of assignment. Suppose a function is defined like this:

int myfunction(int i, int j) { // ...

And suppose we call that function:

int result = myfunction(3, 4);

That function call effectively assigns 3 to the function’s i parameter and 4 to the func-
tion’s j parameter.

When a return statement is encountered, the value accompanying it is handed back as
the result of the function call, and the function terminates. It is legal for a function to
return no value; in such a case, the return statement has no accompanying value, and
the definition states the type of value returned by the function as void. It is also legal
to call a function and ignore its return value even if it has one. For example, we could
say:

square(3);

That would be a somewhat silly thing to say, because we have gone to all the trouble
of calling the function and having it generate the square of 3 — namely 9 — but we
have done nothing to capture that 9. It is exactly as if we had said:

9;

20 | Chapter 1: Just Enough C

You’re allowed to say that, but it doesn’t seem to serve much purpose. On the other
hand, the point of a function might be not so much the value it returns as other things
it does as it is executing, so then it might make perfect sense to ignore its result.

The parentheses in a function’s syntax are crucial. Parentheses are how C knows there’s
a function. Parentheses after the function name in the function definition are how C
knows this is a function definition, and they are needed even if this function takes no
parameters. Parentheses after the function name in the function call are how C knows
this is a function call, and they are needed even if this function call supplies no argu-
ments. Using the bare name of a function is possible, because the name is effectively a
kind of variable (and I’ll talk later about why you might want to do that), but it doesn’t
call the function.

Let’s return to the simple C function definition and call that I used as my example
earlier. Suppose we combine that function definition and the call to that function into
a single program:

int square(int i) {
 return i * i;
}
int i = square(3);

That is a legal program, but only because the definition of the square function precedes
the call to that function. If we wanted to place the definition of the square function
elsewhere, such as after the call to it, we would need at least to precede the call with a
declaration of the square function (Example 1-2). The declaration looks just like the
first line of the definition, but it is a statement, ending with a semicolon, rather than a
left curly brace.

Example 1-2. Declaring, calling, and defining a function

int square(int i);
int i = square(3);
int square(int i) {
 return i * i;
}

The parameter names in the declaration do not have to match the parameter names in
the definition, but all the types (and, of course, the name of the function) must match.
The types constitute the signature of this function. In other words, it does not matter
if the first line, the declaration, is rewritten thus:

int square(int j);

What does matter is that, both in the declaration and in the definition, square is a
function taking one int parameter and returning an int.

In Objective-C, when you’re sending a message to an object (Chapter 2), you won’t
use a function call; you’ll use a method call (Chapter 3). But you will most definitely
use plenty of C function calls as well. For example, earlier we initialized a CGPoint by
setting its x element and its y element and by assigning its elements values in curly

Functions | 21

braces. But what you’ll usually do to make a new CGPoint is to call CGPointMake, which
is declared like this:

CGPoint CGPointMake (
 CGFloat x,
 CGFloat y
);

Despite its multiple lines and its indentations, this is indeed a C function declaration,
just like the declaration for our simple square function. It says that CGPointMake is a C
function that takes two CGFloat parameters and returns a CGPoint. So now you know
(I hope) that it would be legal (and typical) to write this sort of thing:

CGPoint myPoint = CGPointMake(4.3, 7.1);

Pointer Parameters and the Address Operator
I’ve mentioned several times that your variables referring to Objective-C objects are
going to be pointers:

NSString* s = @"Hello, world!";

Although it is common to speak loosely of s as an NSString (or just as a string), it is
actually an NSString* — a pointer to an NSString. Therefore, when a C function or an
Objective-C method expects an NSString* parameter, there’s no problem, because
that’s exactly what you’ve got. For example, one way to concatenate two NSStrings is
to call the NSString method stringByAppendingString: (that’s not a misprint; the colon
is part of the name), which the documentation tells you is declared as follows:

- (NSString *)stringByAppendingString:(NSString *)aString

The space between the class name and the asterisk is optional, so this declaration is
telling you (after you allow for the Objective-C syntax) that this method expects one
NSString* parameter and returns an NSString*. That’s splendid because those kinds of
pointers are just what you’ve got and just what you want. So this code would be legal:

NSString* s1 = @"Hello, ";
NSString* s2 = @"World!"
NSString* s3 = [s1 stringByAppendingString: s2];

The idea, then, is that although Objective-C is chock-a-block with pointers and aster-
isks, they don’t make things more complicated, as long as you remember that they
are pointers.

Sometimes, however, a function expects as a parameter a pointer to something, but
what you’ve got is not a pointer but the thing itself. Thus, you need a way to create a
pointer to that thing. The solution is the address operator (K&R 5.1), which is an
ampersand before the name of the thing.

For example, there’s an NSString method for reading from a file into an NSString, which
is declared like this:

22 | Chapter 1: Just Enough C

+ (id)stringWithContentsOfFile:(NSString *)path
 encoding:(NSStringEncoding)enc
 error:(NSError **)error

Now, never mind what an id is, and don’t worry about the Objective-C method dec-
laration syntax. Just consider the types of the parameters. The first one is an
NSString*; that’s no problem, as every reference to an NSString is actually a pointer to
an NSString. An NSStringEncoding turns out to be merely an alias to a primitive data
type, an NSUInteger, so that’s no problem either. But what on earth is an NSError**?

By all logic, it looks like an NSError** should be a pointer to a pointer to an NSError.
And that’s exactly what it is. This method is asking to be passed a pointer to a pointer
to an NSError. Well, it’s easy to declare a pointer to an NSError:

NSError* myError;

But how can we obtain a pointer to that? With the address operator! So our code might
look, schematically, like this:

NSString* myPath = // something or other;
NSStringEncoding myEnc = // something or other;
NSError* myError = nil;
NSString* result = [NSString stringWithContentsOfFile: myPath
 encoding: myEnc
 error: &myError];

The important thing to notice is the ampersand. Because myError is a pointer to an
NSError, &myError is a pointer to a pointer to an NSError, which is just what we’re
expected to provide. Thus, everything goes swimmingly.

This device lets Cocoa effectively return two results from this method call. It returns a
real result, which we have captured by assigning it to the NSString pointer we’re calling
result. But if there’s an error, it also wants to set the value of another object, an NSError
object; the idea is that you can then study that NSError object to find out what went
wrong. (Perhaps the file wasn’t where you said it was, or it wasn’t stored in the encoding
you claimed it was.) By passing a pointer to a pointer to an NSError, you give the method
free rein to do that. Before the call to stringWithContentsOfFile:, myError was unini-
tialized; during the call to stringWithContentsOfFile:, Cocoa can, if it likes, repoint
the pointer, thus giving myError an actual value.

So the idea is that you first check result to see whether it’s nil. If it isn’t, fine; it’s the
string you asked for. If it is, you then study the NSError that myError is now pointing
to, to learn what went wrong. This pattern is frequently used in Cocoa.

You can use the address operator to create a pointer to any named variable. A C function
is technically a kind of named variable, so you can even create a pointer to a function!
This is an example of when you’d use the name of the function without the parentheses:
you aren’t calling the function, you’re talking about it. For example, &square is a pointer
to the square function. In Chapter 9, I describe a situation in which this is a useful thing
to do.

Pointer Parameters and the Address Operator | 23

Another operator used in connection with pointers, or when memory must be allocated
dynamically, is sizeof. It may be followed by a type name in parentheses or by a variable
name; a variable name needn’t be in parentheses, but it can be, so most programmers
ignore the distinction and use parentheses routinely, as if sizeof were a function.

For example, the documentation shows the declaration for AudioSessionSetProperty
like this:

OSStatus AudioSessionSetProperty (
 AudioSessionPropertyID inID,
 UInt32 inDataSize,
 const void *inData
);

Never mind what an AudioSessionPropertyID is; it’s merely a value that you obtain
and pass on. UInt32 is one of those derived numeric types I mentioned earlier. The
discussion has already dealt with pointer-to-void and how to derive a pointer using the
address operator. But look at the name of the second parameter; the function is asking
for the size of the thing pointed to by the third parameter. Here’s an actual call to this
function (from Chapter 27):

UInt32 ambi = kAudioSessionCategory_AmbientSound;
AudioSessionSetProperty(kAudioSessionProperty_AudioCategory, sizeof(ambi), &ambi);

Files
The little dance of declaring a function before calling it (Example 1-2) may seem rather
absurd, but it is of tremendous importance in the C language, because it is what allows
a C program to be arbitrarily large and complex.

As your program grows, you can divide and organize it into multiple files. This kind of
organization can make a large program much more maintainable — easier to read,
easier to understand, easier to change without accidentally breaking things. A large C
program therefore usually consists of two kinds of file: code files, whose filename ex-
tension is .c, and header files, whose filename extension is .h. The build system will
automatically “see” all the files and will know that together they constitute a single
program, but there is also a rule in C that code inside one file cannot “see” another file
unless it is explicitly told to do so. Thus, a file itself constitutes a scope; this is a delib-
erate and valuable feature of C, because it helps you keep things nicely pigeonholed.

The way you tell a C file to “see” another file is with the #include directive. The hash
sign in the term #include is a signal that this line is an instruction to the preproces-
sor. In this case, the word #include is followed by the name of another file, and the
directive means that the preprocessor should simply replace the directive by the entire
contents of the file that’s named.

So the strategy for constructing a large C program is something like this:

24 | Chapter 1: Just Enough C

• In each .c file, put the code that only this file needs to know about; typically, each
file’s code consists of related functionality.

• In each .h file, put the function declarations that multiple .c files might need to
know about.

• Have each .c file include those .h files containing the declarations it needs to know
about.

So, for example, if function1 is defined in file1.c, but file2.c might need to call
function1, the declaration for function1 can go in file1.h. Now file1.c can include
file1.h, so all of its functions, regardless of order, can call function1, and file2.c can also
include file1.h, so all of its functions can call function1 (Figure 1-2). In short, header
files are a way of letting code files share knowledge about one another without actually
sharing code (because, if they did share code, that would violate the entire point of
keeping the code in separate files).

But how does the compiler know where, among all these multiple .c files, to begin
execution? Every real C program contains, somewhere, exactly one function called
main, and this is always the entry point for the program as a whole: the compiler sets
things up so that when the program executes, main is called.

The organization for large C programs that I’ve just described will also be, in effect, the
organization for your iOS programs. (The chief difference will be that instead of .c files,
you’ll use .m files, because .m is the conventional filename extension for telling Xcode
that your files are written in Objective-C, not pure C.) Moreover, if you look at any iOS
Xcode project, you’ll discover that it contains a file called main.m; and if you look at
that file, you’ll find that it contains a function called main. That’s the entry point to
your application’s code when it runs.

Figure 1-2. How a large C program is divided into files

Files | 25

Furthermore, your iOS programs consist not only of your code files and their corre-
sponding .h files, but also of Apple’s code files and their corresponding .h files. The
difference is that Apple’s code files (which are what constitutes Cocoa) have already
been compiled. But your code must still #include Apple’s .h files so as to be able to see
Apple’s declarations. If you look at an iOS Xcode project, you’ll find that any .h files it
contains by default, as well as its main.m file, contain a line of this form:

#import <UIKit/UIKit.h>

That line is essentially a single massive #include that copies into your program the
declarations for the entire basic iOS API. Moreover, each of your .m files #imports its
corresponding .h file, including whatever the .h file #imports. Thus, all your code files
include the basic iOS declarations.

For example, earlier I said that CGPoint was defined like this:

struct CGPoint {
 CGFloat x;
 CGFloat y;
};
typedef struct CGPoint CGPoint;

After the preprocessor operates on all your files, your .m files actually contain that
definition of CGPoint. (In Xcode 3.2.x, you can even choose Build → Preprocess to
confirm that this is true.) And that is why your code is able to use a CGPoint!

The #import preprocessor directive is not mentioned in K&R. It’s an Objective-C ad-
dition to the language. It’s based on #include, but it is used instead of #include because
it (#import) contains some logic for making sure that the same material is not included
more than once. Such repeated inclusion is a danger whenever there are many cross-
dependent header files; use of #import solves the problem neatly.

The #import directive, like the #include directive (K&R 4.11), can specify a file in angle
brackets or in quotation marks:

#import <UIKit/UIKit.h>
#import "MyHeader.h"

The quotation marks form means “look for the named file in the same folder as this
file” (the .m file in which the #import line occurs). The angle brackets form means to
look among the various header search paths supplied in the build settings; these search
paths are set for you automatically, and you normally won’t need to modify them. In
general, the distinction means that you’ll use angle brackets to refer to a header file
owned by the Cocoa API and quotation marks to refer to a header file that you wrote.
If you’re curious as to what an #import directive imports, select it (in Xcode) and choose
File → Open Quickly to display the contents of the designated header file.

26 | Chapter 1: Just Enough C

The Standard Library
You also have at your disposal a large collection of built-in C library files. A library file
is a centrally located collection of C functions, along with a .h file that you can include
in order to make those functions available to your code.

For example, suppose you want to round a float up to the next highest integer. The
way to do this is to call some variety of the ceil function. You can read the ceil man
page in Xcode, or by typing man ceil in the Terminal. The documentation tells you
what #include to use to incorporate the correct header and also shows you the function
declarations and tells you what those functions do. A small pure C program might thus
look like this:

#include <math.h>
float f = 4.5;
int i = ceilf(f); // now i is 5

In your iOS programs, math.h is included for you as part of the massive UIKit
#import, so there’s no need to include it again. But some library functions might require
an explicit #import.

The standard library is discussed in K&R Appendix B. But the modern standard library
has evolved since K&R; it is a superset of K&R’s library. The ceil function, for example,
is listed in K&R appendix B, but the ceilf function is not. Similarly, if you wanted to
generate a random number (which is likely if you’re writing a game program that needs
to incorporate some unpredictable behavior), you probably wouldn’t use the rand
function listed in K&R; you’d use the random function, which supersedes it.

Forgetting that Objective-C is C and that the C library functions are available to your
code is a common beginner mistake.

More Preprocessor Directives
Of the many other available preprocessor directives, the one you’ll use most often is
#define. It is followed by a name and a value; at preprocess time, the value is substituted
for the name down through this code file. As K&R very well explain (K&R 1.4), this is
a good way to prevent “magic numbers” from being hidden and hard-coded into your
program in a way that makes the program difficult to understand and maintain.

For example, in an iOS app that lays out some text fields vertically, I might want them
all to have the same space between them. Let’s say this space is 3.0. I shouldn’t write
3.0 repeatedly throughout my code as I calculate the layout; instead, I write:

#define MIDSPACE 3.0

Now instead of the “magic number” 3.0, my code uses a meaningful name, MIDSPACE;
at preprocessor time, the text MIDSPACE is replaced with the text 3.0. So it amounts to

More Preprocessor Directives | 27

the same thing, but if I decide to change this value and try a different one, all I have to
do change is the #define line, not every occurrence of the number 3.0.

A #define simply performs text substitution, so any expression can be used as the value.
Sometimes you’ll want that expression to be an NSString literal. In Cocoa, NSString
literals can be used as a key to a dictionary or the name of a notification. (Never mind
for now what a dictionary or a notification is.) This situation is an invitation to error.
If you have a dictionary containing a key @"mykey" and you mistype this elsewhere in
your code as @"myKey" or @"mikey", the compiler won’t complain, but your program
will misbehave. The solution is to define a name for this literal string:

#define MYKEY @"mykey"

Now use MYKEY throughout your code instead of @"mykey", and if you mistype MYKEY the
preprocess substitution won’t be performed and the compiler will complain, catching
the mistake for you.

The #define directive can also be used to create a macro (K&R 4.11.2), a more elaborate
form of text substitution. You’ll encounter a few Cocoa macros in the course of this
book, but they will appear indistinguishable from functions; their secret identity as
macros won’t concern you.

There is also a #pragma mark directive that’s useful with Xcode; I talk about it when
discussing the Xcode programming environment (Chapter 9).

Data Type Qualifiers
A variable’s data type can be declared with a qualifier before the name of the type,
modifying something about how that variable is to be used. For example, the declara-
tion can be preceded by the term const, which means (K&R 2.4) that it is illegal to
change the variable’s value; the variable must be initialized in the same line as the
declaration, and that’s the only value it can ever have.

You can use a const variable as an alternative way (instead of #define) to prevent “magic
numbers” and similar expressions. For example:

const NSString* MYKEY = @"Howdy";

The Cocoa API itself makes heavy use of this device. For example, in some circum-
stances Cocoa will pass a dictionary of information to your code. The documentation
tells you what keys this dictionary contains. But instead of telling you a key as a string,
the documentation tells you the key as a const NSString variable name:

UIKIT_EXTERN NSString *const UIApplicationStatusBarOrientationUserInfoKey;

(Never mind what UIKIT_EXTERN means.) This declaration tells you that UIApplication-
StatusBarOrientationUserInfoKey is the name of an NSString, and you are to trust that
its value is set for you. You are to go ahead and use this name whenever you want to
speak of this particular key, secure in the knowledge that the actual key name string

28 | Chapter 1: Just Enough C

will be substituted. You do not have to know what that actual key name string is. In
this way, if you make a mistake in typing the variable name, the compiler will catch the
mistake because you’ll be using the name of an undefined variable.

Another commonly used qualifier is static. This term is unfortunately used in two
rather different ways in C; the way I commonly use it is inside a function. Inside a
function, static indicates that the memory set aside for a variable should not be re-
leased after the function returns; rather, the variable remains and maintains its value
for the next time the function is called. A static variable is useful, for example, when
you want to call a function many times without the overhead of calculating the result
each time (after the first time). First test to see whether the static value has already been
calculated: if it hasn’t, this must be the first time the function is being called, so you
calculate it; if it has, you just return it. Here’s a schematic version:

int myfunction() {
 static int result = 0; // 0 means we haven't done the calculation yet
 if (result == 0) {
 // calculate result and set it
 }
 return result;
}

A very common use of a static variable in Objective-C is to implement a singleton
instance returned by a class factory method. If that sounds complicated, don’t worry;
it isn’t. Here’s an example from my own code, which you can grasp even though we
haven’t discussed Objective-C yet:

+ (CardPainter*) sharedPainter {
 static CardPainter* sp = nil;
 if (nil == sp)
 sp = [[CardPainter alloc] init];
 return sp;
}

That code says: If the CardPainter instance sp has never been created, create it, and in
any case, now return it. Thus, no matter how many times this method is called, the
instance will be created just once and that same instance will be returned every time.

Data Type Qualifiers | 29

CHAPTER 2

Object-Based Programming

My object all sublime.

—W. S. Gilbert, The Mikado

Objective-C, the native language for programming the Cocoa API, is an object-oriented
language; in order to use it, the programmer must have an appreciation of the nature
of objects and object-based programming. There’s little point in learning the syntax of
Objective-C message sending or instantiation without a clear understanding of what a
message or an instance is. That is what this chapter is about.

Objects
An object, in programming, is based on the concept of an object in the real world. It’s
an independent, self-contained thing. These objects, unlike purely inert objects in the
real world, have abilities. So an object in programming is more like a clock than a rock;
it doesn’t just sit there, but actually does something. Perhaps one could compare an
object in programming more to the animate objects of the real world, as opposed to
the inanimate objects, except that — unlike real-world animate things — a program-
ming object is supposed to be predictable: in particular, it does what you tell it. In the
real world, you tell a dog to sit and anything can happen; in the programming world,
you tell a dog to sit and it sits. (This is why so many of us prefer programming to dealing
with the real world.)

In object-based programming, a program is organized into many discrete objects. This
organization can make life much easier for the programmer. Each object has abilities
that are specialized for that object. You can think of this as being a little like how an
automobile assembly line works. Each worker or station along the line does one thing
(screw on the bumpers, or paint the door, or whatever) and does it well. You can see
immediately how this organization helps the programmer. If the car is coming off the
assembly line with the door badly painted, it is very likely that the blame lies with the
door-painting object, so we know where to look for the bug in our code. Or, if we decide

31

to change the color that the door is to be painted, we have but to make a small change
in the door-painting object. Meanwhile, other objects just go on doing what they do.
They neither know nor care what the door-painting object does or how it works.

Objects, then, are an organizational tool, a set of boxes for encapsulating the code that
accomplishes a particular task. They are also a conceptual tool. The programmer, being
forced to think in terms of discrete objects, must divide the goals and behaviors of the
program into discrete tasks, each task being assigned to an appropriate object. Of
course, objects can cooperate with one another, and the ways in which this cooperation
can be arranged are innumerable. The assembly-line analogy illustrates one such ar-
rangement — first, object 1 operates upon the end-product; then it hands it off to object
2, and object 2 operates upon the end-product, and so on — but that arrangement
won’t be appropriate to most tasks. Coming up with an appropriate arrangement —
an architecture — for the cooperative and orderly relationship between objects is one
of the most challenging aspects of object-based programming.

Messages and Methods
Nothing in a computer program happens unless it is instructed to happen. In a C pro-
gram, all code belongs to a function and doesn’t run unless that function is called. In
an object-based program, all code belongs to an object, and doesn’t run unless that
object is told to run that code. All the action in an object-based program happens
because an object was told to act. What does it mean to tell an object something?

An object, in object-based programming, has a well-defined set of abilities — things it
knows how to do. For example, imagine an object that is to represent a dog. We can
design a highly simplified, schematic dog that knows how to do an extremely limited
range of things: eat, come for a walk, bark, sit, lie down, sleep. The purpose of these
abilities is so that the object can be told, as appropriate, to exercise them. So, again,
we can imagine our schematic dog, rather like some child’s toy robot, responding to
simple commands: Eat! Come for a walk! Bark!

In object-based programming, a command directed to an object is called a message. To
make the dog object eat, we send the eat message to the dog object. This mechanism
of message sending is the basis of all activity in the program. The program consists
entirely of objects, so its activity consists entirely of objects sending messages to one
another.

For objects to send messages to one another, objects must know about one another in
some appropriate way at some appropriate time. Ensuring such mutual knowledge is
part of the architectural design process I spoke of earlier. Returning for a moment to
the assembly-line architecture, it’s no use saying that object 1 operates on the end-
product and then object 2 operates on the end-product; that isn’t going to happen all
by itself. It has to be arranged somehow. We can imagine various architectures for
arranging it. Perhaps we will set things up so that object 1 knows about object 2, and

32 | Chapter 2: Object-Based Programming

as the last step in its own operation, sends a message to object 2, handing it the end-
product and telling it to commence its own operation. Or perhaps we will have a
conveyor-belt object, which will hand the end-product to object 1 and tell it to com-
mence its operation, wait until object 1 finishes with it, and then hand the end-product
to object 2 and tell it to commence its operation. Each of these is a perfectly reasonable
architectural pattern, and many others are possible; it is the programmer’s job to im-
plement an architecture that not only makes the program work appropriately, but also
makes the program itself clear and easy for the programmer to work on. But the problem
of making sure that within that architecture, each object knows about — technically,
has a reference to — any other object to which it might need to send a message can be
quite tricky (so much so, indeed, that an entire chapter of this book, Chapter 13, is
devoted to it).

A moment ago, I said that in a C program, all code belongs to a function. The object-
based analogue to a function is called a method. So, for example, a dog object might
have an eat method. When the dog object is sent the eat message, it responds by calling
the eat method.

It may sound as if I’m not drawing any clear distinction between a message and a
method. But there is a difference. A message is what one object says to another. A
method is a bundle of code that gets called. The connection between the two is not
perfectly direct. You might send a message to an object that corresponds to no method
of that object. For example, you might tell the dog to recite the soliloquy from Hamlet.
I’m not sure what will happen if you do that; the details are implementation-dependent.
(The dog might just sit there silently. Or it might get annoyed and bite you. Or, I
suppose, it might nip off, read Hamlet, memorize the soliloquy, and recite it.) But that
implementation-dependence is exactly the point of the distinction between message
and method.

Nevertheless, in general the distinction between sending a message and calling a
method won’t usually be important in real life. Most of the time, when you’re using
Objective-C, your reason for sending a message to an object will be that that object
implements the corresponding method and you are expecting to call that method. So
sending a message to an object and calling a method of an object will appear to be the
same act.

Classes and Instances
We come now to an extremely characteristic and profound feature of object-based
programming. Just like in the real world, every object in the object-based programming
world is of some type. This type, called a class, is the object-based analogy to the data
type in C. Just as a simple variable in C might be an int or a float, an object in the object-
based programming world might be a Dog (or an NSString). In the object-based pro-
gramming world, the idea of this arrangement is to ensure that more than one individual
object can be relied upon to act the same way.

Classes and Instances | 33

There can, for example, be more than one dog. You might have a dog called Fido and
I might have a dog called Rover. But both dogs know how to eat, come for a walk, and
bark. In object-based programming, they know that because they both belong to the
Dog class. The knowledge of how to eat, come for a walk, and bark is part of the Dog
class. Your dog Fido and my dog Rover possess this knowledge solely by virtue of being
Dog objects.

From the programmer’s point of view, what this means is simple: all the code you write
is put into a class. All the methods you write will be part of some class or other. You
don’t program an individual dog object: you program the Dog class.

But I just got through saying that an object-based program works through the sending
of messages to individual objects. So even though the programmer does not write the
code for an individual dog object, there still needs to be an individual dog object in
order for there to be something to send a message to. It is the Dog class that knows
how to bark, but it is an individual dog object that is told to bark, and that actually
does bark. So the question is: if all Dog code lives in a Dog class, where do individual
dogs come from?

The answer is that they have to be created in the course of the program as it runs. When
the program starts out, it contains code for a Dog class, but no individual dog objects.
If any barking by any dogs is to be done, the program must first create an individual
dog object. This object will belong to the Dog class, so it can be sent the bark message.
An individual object belonging to the Dog class (or any class) is an instance of that class.
To manufacture, from a class, an actual individual object that is an instance of that
class, is to instantiate that class.

So every individual object, such as I talked about in the preceding sections — every
individual object, that is, to which a message can be sent — is an instance of some class.
Classes exist from the get-go, as part of the fact that the program exists in the first place;
they are where the code is. Instances are manufactured, deliberately and individually,
as the program runs. Each instance is manufactured from a class, it is an instance of
that class, and it has methods by virtue of the fact that the class has those methods.
The instance can then be sent a message; what it will do in response depends on what
code the class contains in its methods. The instance is the individual thing that can be
sent messages; the class, with its methods, is the locus of the thing’s ability to respond
to messages (Figure 2-1).

This relationship between instance and class begins to sound rather ethereal or meta-
physical. Instances and classes seem to be programming-language analogies to what a
philosopher would call particulars and universals. Indeed, the whole setup reminds
one of nothing so much as Plato’s theory of Forms. For Plato, this world of ours is the
world of individual things, but those things derive their natures by virtue of archetypal
Forms that live off in another world. I’m not the only person ever to make this com-
parison to Platonic Forms — it is, indeed, implicit in the design of object-based lan-
guages and has been evoked explicitly in discussions of such languages ever since

34 | Chapter 2: Object-Based Programming

Smalltalk. But the comparison is still an apt one. As I said many years ago in my book
REALbasic: The Definitive Guide:

Indeed, object-oriented programming seems to fulfill Plato’s philosophical program an-
nounced in the Euthyphro (6e, my translation):

SOCRATES. Now, you recall that I asked you to explain to me, not this or that particular
pious thing, but that Form Itself through which all pious things are pious? You did say,
I believe, that it was through one Form that impious things are impious and pious things
are pious; don’t you remember?

EUTHYPHRO. Yes, I do.

SOCRATES. All right, then; so, explain to me what is this Form Itself, so that by keeping
my eyes upon it and using it as a model, I may declare that whatever you or anyone else
does that is of this sort, is pious, and that whatever is not, is not.

The problems with Plato’s characterization are well known: the Form seems to be a
“thing” separate from the particular things of the world around us, the notion “through”
is crucial but slippery, and Plato seems to equivocate rather glibly between the Form’s
being responsible for a thing’s being such and such and our ability to know that a thing
is such and such; thus, his program is almost certainly doomed to failure as an explan-
ation of how the world works. But he is perfectly accurate about how an object-oriented

Figure 2-1. Class and instance

Classes and Instances | 35

program works! If an instance is of the Pious type, there really is a separate Pious class
that really is responsible for the instance being such as it is.

Because every individual object is an instance of a class, to know what messages you
can officially send to that object, you need to know at least what methods its class has
endowed it with. The public knowledge of this information is that class’s API. (A class
may also have methods that you’re not really supposed to call from outside that object;
these would not be public and other objects couldn’t officially send those messages to
an instance of that class.) That’s why Apple’s own Cocoa documentation consists
largely of pages listing and describing the methods supplied by some class. For example,
to know what messages you can send to an NSString object (instance), you’d start by
studying the NSString class documentation. That page is really just a big list of methods,
so it tells you what an NSString object can do. That isn’t everything in the world there
is to know about an NSString, but it’s a big percentage of it.

Class Methods
Up to now I’ve been keeping something back, and if you’ve been paying close attention,
you may have caught me at it, because it looks as though I’ve contradicted myself. I
said that nothing happens in a program unless a message is sent to an object. But I also
said that there are no instances until they are created as the program runs. The con-
tradiction is that if messages can be sent only to instances, it appears that no instances
can ever be created (because, when the program starts up, there are no instances to
which you can send the message asking for an instance to be created).

The truth that I’ve been keeping back, which complicates things only a little, is that
classes are themselves objects and can be sent messages. This revelation solves the
contradiction completely. No instances exist as the program starts up, but the classes
do. The classes may live off in a world of Platonic Forms, but they can still be sent
messages. And one of the most important things you can ask a class to do by sending
it a message is to instantiate itself.

You cannot, however, ask an instance to instantiate itself. It thus begins to look as if
there must be two kinds of message: messages that you are allowed to send to a class
(such as telling the Dog class to instantiate itself) and messages that you are allowed to
send to an instance (such as telling an individual dog to bark). That is exactly true.
More precisely, all code lives as a method in a class, but methods are of two kinds: class
methods and instance methods. If a method is a class method, you can send that mes-
sage to the class. If a method is an instance method, you can send that message to an
instance of the class.

In Objective-C syntax, class methods and instance methods are distinguished by the
use of a plus sign or a minus sign. For example, Apple’s NSString class documentation
page listing the methods of the NSString class starts out like this:

+ string
– init

36 | Chapter 2: Object-Based Programming

The string method is a class method. The init method is an instance method.

In general, though not exclusively, class methods tend to be factory methods — that
is, methods for generating an instance. This makes sense, because making an instance
of itself is one of the main things you’re likely to want to ask a class to do. You might
think that a class really needs only one class method for generating an instance of itself,
and that is rigorously true, but classes tend to provide multiple factory methods purely
as a convenience to the programmer. For example, here are three NSString class meth-
ods:

+ string
+ stringWithFormat:
+ stringWithContentsOfFile:encoding:error:

They all make instances. The first class method, string, generates an empty NSString
instance (a string with no text). The second class method, stringWithFormat:, generates
an NSString instance based on text that you provide, which can include transforming
other values into text; for example, you might use it to start with an integer 9 and
generate an NSString instance @"9". The third class method reads the contents of a file
and generates an NSString instance from those contents. When you come to write your
own classes, you too might well create multiple class methods that act as instance
factories for your own future programming convenience.

Instance Variables
Now that I’ve revealed that classes are objects and can be sent messages, you might be
wondering why there need to be instances at all. Why doesn’t the mere existence of
classes as objects suffice for object-based programming? Why would you ever bother
to instantiate any of the classes? Why wouldn’t you write all your code as class methods,
have the program send messages from one class object to another, and be done with it?

The answer is that instances have a feature that classes do not: instance variables. An
instance variable is just what the name suggests: it’s a variable belonging to an instance.
Like instance methods, instance variables are defined as part of the class. But the
value of an instance variable is set as the program runs and belongs to one instance
alone. In other words, different instances can have different values for the same instance
variable.

For example, suppose we have a Dog class and we decide that it might be a good idea
for every dog to have a name. Just as you can learn a real-world dog’s name by reading
the tag on its collar, we want to be able to assign every dog instance a name and,
subsequently, to learn what that name is. So, in designing the Dog class, we declare
that this class has an instance variable called name, whose value is a string (probably an
NSString, as we’re using Objective-C). Now when our program runs we can instantiate
Dog and assign the resulting dog instance a name (that is, we can assign its name instance
variable a value). We can also instantiate Dog again and assign that resulting dog in-

Instance Variables | 37

stance a name. Let’s say these are two different names: one is @"Rover" and one is
@"Fido". Then we’ve got two instances of Dog, and they are significantly different; they
differ in the value of their name instance variables (Figure 2-2).

So an instance is a reflection of the instance methods of its class, but that isn’t all it is;
it’s also a collection of instance variables. The class is responsible for what instance
variables the instance has, but not for the values of those variables. The values can
change as the program runs and apply only to a particular instance. An instance is a
cluster of particular instance variable values.

In short, an instance is both code and data. The code it gets from its class and in a sense
is shared with all other instances of that class, but the data belong to it alone. The data
can persist as long as the instance persists. The instance has, at every moment, a state
— the complete collection of its own personal instance variable values. An instance is
a device for maintaining state. It’s a box for storage of data.

Figure 2-2. Instance variables

38 | Chapter 2: Object-Based Programming

The Object-Based Philosophy
In my REALbasic book, I summarized the nature of objects in two phrases: encapsu-
lation of functionality, and maintenance of state:

Encapsulation of functionality
Each object does its own job, and presents to the rest of the world — to other
objects, and indeed in a sense to the programmer — an opaque wall whose only
entrances are the methods to which it promises to respond and the actions it
promises to perform when the corresponding messages are sent to it. The details
of how, behind the scenes, it actually implements those actions are secreted within
itself; no other object needs to know them.

Maintenance of state
Each individual instance is a bundle of data that it maintains. Typically that data
is private, which means that it’s encapsulated as well; no other object knows what
that data is or in what form it is kept. The only way to discover from outside what
data an object is maintaining is if there’s a method that reveals it.

As an example, imagine an object whose job is to implement a stack — it might be an
instance of a Stack class. A stack is a data structure that maintains a set of data in LIFO
order (last in, first out). It responds to just two messages: push and pop. Push means to
add a given piece of data to the set. Pop means to remove from the set the piece of data
that was most recently pushed and hand it out. It’s like a stack of plates: plates are
placed onto the top of the stack or removed from the top of the stack one by one, so
the first plate to go onto the stack can’t be retrieved until all other subsequently added
plates have been removed (Figure 2-3).

The stack object illustrates encapsulation of functionality because the outside world
knows nothing of how the stack is actually implemented. It might be an array, it might
be a linked list, it might be any of a number of other implementations. But a client
object — an object that actually sends a push or pop message to the stack object —
knows nothing of this and cares less, provided the stack object adheres to its contract
of behaving like a stack. This is also good for the programmer, who can, as the program
develops, safely substitute one implementation for another without harming the vast
machinery of the program as a whole. And just the other way round, the stack object
knows nothing and cares less about who is telling it to push or to pop, and why. It just
hums along and does its job in its reliable little way.

The stack object illustrates maintenance of state because it isn’t just the gateway to the
stack data — it is the stack data. Every object that has a reference to the stack object
has the same access to its data, the same ability to push or to pop. (And that’s all it can
do. The stack data is effectively inside the stack object; no one else can see it. All that
another object can do is push or pop.) If a certain object is at the top of our stack object’s
stack right now, then whatever object sends the pop message to this stack object will

The Object-Based Philosophy | 39

receive that object in return. If no object sends the pop message to this stack object,
then the object at the top of the stack will just sit there, waiting.

As a second example of the philosophy and nature of object-based programming at
work, I’ll revert to another imaginary scenario I used in my REALbasic book. Pretend
we’re writing an arcade game where the user is to “shoot” at moving “targets,” and the
score increases every time a target is hit. We immediately have a sense of how we might
organize our code using object-based programming and can see how object-based pro-
gramming will fulfill its nature and purpose:

• There will be a Target class. Every target object will be an instance of this class.
This decision makes sense because we want every target to behave the same way.
A target will need to know how to draw itself; that knowledge will be part of the
Target class, which makes sense because all targets will draw themselves in the
same way. Thus we have the relationship between class and instance.

• Targets may draw themselves the same way, but they may also differ in appearance.
Perhaps some targets are blue, others are red, and so on. This difference between
individual targets can be expressed as an instance variable. Call it color. Every time

Figure 2-3. A stack

40 | Chapter 2: Object-Based Programming

we instantiate a target, we’ll assign it a color. The Target class’s code for drawing
an individual target will look at that target’s color instance variable and use it when
filling in the target’s shape. Clearly, we could extend this individualization as much
as we like: targets could have different sizes, different shapes, and so on, and all of
these parametric distinctions could be made on an individual basis through the use
of instance variables. Thus we have both encapsulation of functionality and main-
tenance of state. A target has a state, the parameters that describe how it should
look, and also has the ability to draw itself, expressing that state visually.

• When a target is hit by the user, it will explode. So perhaps the Target class will
have an explode instance method; thus, every target knows how to explode. One
thing that should happen whenever a target explodes is that the user’s score should
increase. So let’s imagine a score object — an instance of the Score class. Give every
target object a reference to this score object so that it can send a message to it.
When a target explodes, one of things its explode instance method will do is send
an increase message to the score object. Thus we have both encapsulation of func-
tionality and maintenance of state. The score object responds indifferently to any
object that sends it the increase message; it doesn’t need to know why it’s being
sent that message. Nor does the score object even need to know that targets exist,
or indeed that it’s part of a game. It just sits there maintaining the score, and when
it receives the increase message, it increases it.

This chapter has described only the rudiments of object-based philosophy — enough
to communicate the correct mind-set. Using object-based programming effectively to
make a program clear and maintainable is something of an art; your abilities will im-
prove with experience. Eventually, you may want to do some further reading on how
to construct an object-based program most effectively. I recommend in particular two
classic, favorite books. Refactoring, by Martin Fowler (Addison-Wesley, 1999), de-
scribes how you can get a sense that you might need to rearrange what methods belong
to what classes (and how to conquer your fear of doing so). Design Patterns, by Erich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides (also known as “the Gang
of Four”), is the bible on architecting object-based programs, listing all the ways you
can arrange objects with the right powers and the right knowledge of one another
(Addison-Wesley, 1994).

The Object-Based Philosophy | 41

CHAPTER 3

Objective-C Objects and Messages

One of the first object-based programming languages to achieve maturity and wide-
spread dissemination was Smalltalk. It was developed during the 1970s at Xerox PARC
under the leadership of Alan Kay and started becoming widely known in 1980. The
purpose of Objective-C, created by Brad Cox and Tom Love in 1986, was to build
Smalltalk-like syntax and behavior on top of C. Objective-C was licensed by NeXT in
1988 and was the basis for its application framework API, NeXTStep. Eventually, NeXT
and Apple merged, and the NeXT application framework evolved into Cocoa, the
framework for Mac OS X applications, still revolving around Objective-C. That history
explains why Objective-C is the base language for iOS programming. (It also ex-
plains why Cocoa class names often begin with “NS” — it stands for “NeXTStep.”)

Having learned the basics of C (Chapter 1) and the nature of object-based programming
(Chapter 2), you are ready to meet Objective-C. This chapter describes Objective-C
structural fundamentals; the next two chapters provide more detail about how
Objective-C classes and instances work. (A few additional features of the language are
discussed in Chapter 10.) As with the C language, my intention is not to describe the
Objective-C language completely, but to provide a practical linguistic grounding, foun-
ded on my own experience of those aspects of the language that need to be firmly
understood as a basis for iOS programming.

An Instance Reference Is a Pointer
In C, every variable must be declared to be of some type. In an object-based language
such as Objective-C, an instance’s type is its class. The C language includes very few
basic data types. To facilitate the multiplicity of class types required by its object-based
nature, Objective-C takes advantage of C pointers. So, in Objective-C, if a variable is
an instance of the class MyClass, that variable is of type MyClass* — a pointer to a
MyClass. In general, in Objective-C, a reference to an instance is a pointer and the name
of the data type of what’s at the far end of that pointer is the name of the instance’s class.

43

Note the convention for capitalization. Variable names tend to start with
a lowercase letter; class names tend to start with an uppercase letter.

As I mentioned in Chapter 1, the fact that a reference to an instance is a pointer in
Objective-C will generally not cause you any difficulties, because pointers are used
consistently throughout the language. For example, a message to an instance is directed
at the pointer, so there is no need to dereference the pointer. Indeed, having established
that a variable representing an instance is a pointer, you’re likely to forget that this
variable even is a pointer and just work directly with that variable:

NSString* s = @"Hello, world!";
NSString* s2 = [s uppercaseString];

Having established that s is an NSString*, you would never dereference s (that is, you
would never speak of *s) to access the “real” NSString. So it feels as if the pointer is the
real NSString. Thus, in the previous example, once the variable s is declared as a pointer
to an NSString, the uppercaseString message is sent directly to the variable s. (The
uppercaseString message asks an NSString to generate and return an uppercase version
of itself; so, after that code, s2 is @"HELLO, WORLD!")

The tie between a pointer, an instance, and the class of that instance is so close that it
is natural to speak of an expression like MyClass* as meaning “a MyClass instance,”
and of a MyClass* value as “a MyClass.” A Objective-C programmer will say simply
that, in the previous example, s is an NSString, that uppercaseString returns “an
NSString,” and so forth. It is fine to speak like that, and I do it myself (and will do it in
this book) — provided you remember that this is a shorthand. Such an expression
means “an NSString instance,” and because an instance is represented as a C pointer,
it means an NSString*, a pointer to an NSString.

Although the fact that instance references in Objective-C are pointers does not cause
any special difficulty, you must still be conscious of what pointers are and how they
work. As I emphasized in Chapter 1, when you’re working with pointers, you must
keep in mind the special meaning of your actions. So here are some basic facts about
pointers that you should keep in mind when working with instance references in
Objective-C.

Instance References, Initialization, and nil
Merely declaring an instance reference’s type doesn’t bring any instance into exis-
tence. For example:

NSString* s; // only a declaration; no instance is pointed to

After that declaration, s is typed as a pointer to an NSString, but it is not in fact pointing
to an NSString. You have created a pointer, but you haven’t supplied an NSString for

44 | Chapter 3: Objective-C Objects and Messages

it to point to. It’s just sitting there, waiting for you to point it at an NSString, typically
by assignment (as we did with @"Hello, world!" earlier). Such assignment initializes
the variable, giving it an actual meaningful value of the proper type.

You can declare an instance variable in one line of code and initialize it later, like this:

NSString* s;
// ... time passes ...
s = @"Hello, world!";

But this is not common, nor is it wise. It is much more common to declare and initialize
a variable all in one line of code:

NSString* s = @"Hello, world!";

Declaration without initialization, on the other hand, creates a dangerous situation:

NSString* s;

What is s after a mere declaration like that? It could be anything. But it is claiming to
be a pointer to an NSString, and so your code might proceed to treat it as a pointer to
an NSString. But it is pointing at garbage. A pointer pointing at garbage is liable to
cause serious trouble down the road when you accidentally try to use it as an in-
stance. Sending a message to a garbage pointer, or otherwise treating it as a meaningful
instance, can crash your program. Even worse, it might not crash your program: it might
cause your program to behave very, very oddly instead — and figuring out why can be
difficult.

For this reason, if you aren’t going to initialize an instance reference pointer at the
moment you declare it by assigning it a real value, it’s a good idea to assign it nil:

NSString* s = nil;

What is nil? It’s simply a form of zero — the form of zero appropriate to an instance
reference. The nil value simply means: “This instance reference isn’t pointing to any
instance.” Indeed, you can test an instance reference against nil as a way of finding out
whether it is in fact pointing to a real instance. This is an extremely common thing to do:

if (nil == s) // ...

As I mentioned in Chapter 1, the explicit comparison with nil isn’t strictly necessary;
because nil is a form of zero, and because zero means false in a condition, you can
perform the same test like this:

if (!s) // ...

I do in fact write nil tests in that second form all the time, but some programmers would
take me to task for bad style. The first form has the advantage that its real meaning is
made explicit, rather than relying on a cute implicit feature of C. The first form places
nil first in the comparison so that if the programmer accidentally omits an equal sign,
performing an assignment instead of a comparison, the compiler will catch the error
(because assignment to nil is illegal).

An Instance Reference Is a Pointer | 45

Many Cocoa methods use a return value of nil, instead of an expected instance, to
signify that something went wrong. You are supposed to capture this return value and
test it for nil in order to discover whether something did go wrong. For example, the
documentation for the NSString class method stringWithContentsOfFile:encoding:
error: says that it returns “a string created by reading data from the file named by
path using the encoding, enc. If the file can’t be opened or there is an encoding error,
returns nil.” So, as I described in Chapter 1, your next move after calling this method
and capturing the result should be to test that result against nil, just to make sure you’ve
really got an instance now:

NSString* path = // ... whatever;
NSStringEncoding enc = // ... whatever;
NSError* err = nil;
NSString* s = [NSString stringWithContentsOfFile:path encoding:enc error:&err];
if (nil == s) // oops! something went wrong...

You should now be wondering about the implications of a nil-value pointer for sending
a message to a noninstance. For example, you can send a message to an NSString in-
stance like this:

NSString* s2 = [s uppercaseString];

That code sends the uppercaseString message to s. So s is supposedly an NSString
instance. But what if s is nil? With some object-based programming languages, sending
a message to nil constitutes a runtime error and will cause your program to terminate
prematurely (REALbasic and Ruby are examples). But Objective-C doesn’t work like
that. In Objective-C, sending a message to nil is legal and does not interrupt execution.
Moreover, if you capture the result of the method call, it will be a form of zero — which
means that if you assign that result to an instance reference pointer, it too will be nil:

NSString* s = nil; // now s is nil
NSString* s2 = [s uppercaseString]; // now s2 is nil

Whether this behavior of Objective-C is a good thing is a quasi-religious issue and a
subject of vociferous debate among programmers. It is useful, but it also extremely easy
to be tricked by it. The usual scenario is that you accidentally send a message to a nil
reference without realizing it, and then later your program doesn’t behave as expected.
Because the point where the unexpected behavior occurs is later than the moment when
the nil pointer arose in the first place, the genesis of the nil pointer can be difficult to
track down (indeed, it often fails to occur to the programmer that a nil pointer is the
cause of the trouble in the first place).

Short of peppering your code with tests to ascertain that your instance reference point-
ers are not accidentally nil, which is not generally a good idea, there isn’t much you
can do about this. This behavior is strongly built into the language and is not going to
change. It’s just something you need to be aware of.

To sum up the lessons of this section:

46 | Chapter 3: Objective-C Objects and Messages

• Don’t let any time elapse between the moment you declare an instance pointer
variable and the moment you assign it an actual object value. In the modern C
language, you can wait until just before you need a variable and declare it at that
moment. So always declare a variable and initialize it in the same line (or in the
very next line) if at all possible. If you can’t initialize it to a meaningful object value,
initialize it to nil.

• If a method call can return nil, be conscious of that fact. Don’t assume that every-
thing will go well and that it won’t return nil. On the contrary, if something can
go wrong, it probably will. For example, to omit the nil test after calling stringWith-
ContentsOfFile:encoding:error: is just stupid. I don’t care if you know perfectly
well that the file exists and the encoding is what you say it is — test the result for nil!

Instance References and Assignment
As I said in Chapter 1, assigning to a pointer does not mutate the value at the far end
of the pointer; rather, it repoints the pointer. Moreover, assigning one pointer to an-
other repoints the pointer in such a way that both pointers are now pointing to the very
same thing. Failure to keep these simple facts firmly in mind can have results that range
from surprising to disastrous.

For example, instances in general are usually mutable: they typically have instance
variables that can change. If two references are pointing at one and the same instance,
then when the instance is mutated by way of one reference, that mutation also affects
the instance as seen by the other reference. To illustrate, pretend that we’ve imple-
mented the Stack class described in the previous chapter:

Stack* myStack1 = // ... create Stack instance and initialize myStack1 ... ;
Stack* myStack2 = myStack1;
[myStack1 push: @"Hello"];
[myStack1 push: @"World"];
NSString* s = [myStack2 pop];

After we pop myStack2, s is @"World" even though nothing was ever pushed onto my-
Stack2 (and the stack myStack1 contains only @"Hello" even though nothing was ever
popped off of myStack1). That’s because we did push two strings onto myStack1 and
then pop one string off myStack2, and myStack1 is myStack2 — in the sense that they are
both pointers to the very same stack instance. That’s perfectly fine, as long as you
understand and intend this behavior.

In real life, you’re likely to pass an instance off to some other object, or to receive it
from some other object:

Stack* myStack = // ... create Stack instance and initialize myStack ... ;
// ... more code might go here ...
[myObject doSomethingWithThis: myStack]; // pass myStack to myObject

After that code, myObject has a pointer to the very same instance we’re already pointing
to as myStack. So we must be careful and thoughtful. The object myObject might mutate

An Instance Reference Is a Pointer | 47

myStack right under our very noses. Even more, the object myObject might keep its ref-
erence to the stack instance and mutate it later — possibly much later, in a way that
could surprise us. This is possible because instances can have instance variables that
point to other objects, and those pointers can persist as long as the instances themselves
do. This kind of shared referent situation can be intentional, but it is also something
to watch out for and be conscious of (Figure 3-1).

Another possible misunderstanding is to imagine that the assignment myStack2 = my-
Stack1 somehow makes a new, separate instance that duplicates myStack1. That’s not
at all the case. It doesn’t make a new instance; it just points myStack2 at the very same
instance that myStack1 is pointing at. It may be possible to make a new instance that
duplicates a given instance, but the ability to do so is not a given and it is not going to
happen through mere assignment. (For how a separate duplicate instance might be
generated, see the NSCopying protocol and the copy method mentioned in Chapter 10.)

Instance References and Memory Management
The pointer nature of instance references in Objective-C also has implications for man-
agement of memory. The scope, and in particular the lifetime, of variables in pure C is
typically quite straightforward: if you bring a piece of variable storage into existence
by declaring that variable within a certain scope, then when that scope ceases to exist,

Figure 3-1. Two instances end up with pointers to the same third instance

48 | Chapter 3: Objective-C Objects and Messages

the variable storage ceases to exist. That sort of variable is called automatic (K&R 1.10).
So, for example:

void myFunction() {
 int i; // storage for an int is set aside
 i = 7; // 7 is placed in that storage
} // the scope ends, so the int storage and its contents vanish

But in the case of a pointer, there are two pieces of memory to worry about: the pointer
itself, which is an integer signifying an address in memory, and whatever is at the far
end of that pointer. Nothing about the C language causes the destruction of what a
pointer points to when the pointer itself is automatically destroyed as it goes out of
scope:

void myFunction() {
 NSString* s = @"Hello, world!"; // storage for a pointer is set aside
 NSString* s2 = [s uppercaseString]; // storage for another pointer is set aside
} // the two pointers go out of existence...
// ... but what about the two NSStrings they point to?

Some object-based programming languages in which a reference to an instance is a
pointer do manage automatically the memory pointed to by instance references
(REALbasic and Ruby are examples). But Objective-C, at least the way it’s implemented
when you’re programming for iOS, is not one of those languages. Because the C lan-
guage has nothing to say about the automatic destruction of what is pointed to by a
reference to an instance, Objective-C implements an explicit mechanism for the man-
agement of memory. I’ll talk in a later chapter (Chapter 12) about what that mechanism
is and what responsibilities for the programmer it entails.

Messages and Methods
An Objective-C method is defined as part of a class. It has three aspects:

Whether it’s a class method or an instance method
If it’s a class method, you call it by sending a message to the class itself. If it’s an
instance method, you call it by sending a message to an instance of the class.

Its parameters and return value
As with a C function, an Objective-C method takes some number of parameters;
each parameter is of some specified type. And, as with a C function, it may return
a value, which is also of some specified type; if the method returns nothing, its
return type is declared as void.

Its name
An Objective-C method’s name must contain as many colons as it takes parame-
ters. The name is split after each colon in a method call or declaration, so it is usual
for the part of the name preceding each colon to describe the corresponding pa-
rameter.

Messages and Methods | 49

Sending a Message
As you’ve doubtless gathered, the syntax for sending a message to an object involves
square brackets. The first thing in the square brackets is the object to which the message
is to be sent; this object is the message’s receiver. Then follows the message:

NSString* s2 = [s uppercaseString]; // send "uppercaseString" message to s ...
// ... (and assign result to s2)

If the message is a method that takes parameters, each corresponding argument value
comes after a colon:

[myStack1 push: @"Hello"]; // send "push:" message to myStack1 ...
// ...with one argument, the NSString @"Hello"

To send a message to a class (calling a class method), you can represent the class by
the literal name of the class:

NSString* s = [NSString string]; // send "string" message to NSString class

To send a message to an instance (calling an instance method), you’ll need a reference
to an instance, which (as you know) is a pointer:

NSString* s = @"Hello, world!"; // and now s is initialized as an NSString instance
NSString* s2 = [s uppercaseString]; // send "uppercaseString" message to s

You can send a class method to a class, and an instance method to an instance, no
matter how you got hold of and represent the class or the instance. For example,
@"Hello, world!" is itself an NSString instance, so it’s legal to say:

NSString* s2 = [@"Hello, world!" uppercaseString];

If a method takes no parameters, then its name contains no colons, like the NSString
instance method uppercaseString. If a method takes one parameter, then its name
contains one colon, which is the final character of the method name, like the hypo-
thetical Stack instance method push:. If a method takes two or more parameters, its
name contains that number of colons. In the minimal case, its name ends with that
number of colons. For example, a method taking three parameters might be called here-
AreThreeStrings:::. To call it, we split the name after each colon and follow each colon
with an argument, which looks like this:

[someObject hereAreThreeStrings: @"string1" : @"string2" : @"string3"];

That’s a legal way to name a method, but it isn’t very common, mostly because it isn’t
very informative. Usually the name will have more text; in particular, the part before
each colon will describe the parameter that follows that colon.

For example, there’s a UIColor class method for generating an instance of a UIColor
from four CGFloat numbers representing its red, green, blue, and alpha (transparency)
components, and it’s called colorWithRed:green:blue:alpha:. Notice the clever con-
struction of this name. The colorWith part tells something about the method’s purpose:
it generates a color, starting with some set of information. All the rest of the name, Red:
green:blue:alpha:, describes the meaning of each parameter. And you call it like this:

50 | Chapter 3: Objective-C Objects and Messages

UIColor* c = [UIColor colorWithRed: 0.0 green: 0.5 blue: 0.25 alpha: 1.0];

The space after each colon in the method call is optional. (Space before a colon is also
legal, though in practice one rarely sees this.)

The rules for naming an Objective-C method, along with the conventions governing
such names (like trying to make the name informative about the method’s purpose and
the meanings of its parameters), lead to some rather long and unwieldy method names,
such as getBytes:maxLength:usedLength:encoding:options:range:remainingRange:.
Such verbosity of nomenclature is characteristic of Objective-C. Method calls, and even
method declarations, are often split across multiple lines to prevent a single line of code
from becoming so long that it wraps within the editor, as well as for clarity.

Declaring a Method
The declaration for a method has three parts:

• Either + or -, meaning that the method is a class method or an instance method,
respectively.

• The data type of the return value, in parentheses.

• The name of the method, split after each colon. Following each colon is the cor-
responding parameter, expressed as the data type of the parameter, in parentheses,
followed by a placeholder name for the parameter.

So, for example, Apple’s documentation tells us that the declaration for the UIColor
class method colorWithRed:green:blue:alpha: is:

+ (UIColor*) colorWithRed: (CGFloat) red green: (CGFloat) green
 blue: (CGFloat) blue alpha: (CGFloat) alpha

(Note that I’ve split the declaration into two lines, for legibility and to fit onto this page.
The documentation puts it all on a single line.)

Make very sure you can read this declaration! You should be able to look at it and say
to yourself instantly, “The name of this method is colorWithRed:green:blue:alpha:.
It’s a class method that returns a UIColor and takes four CGFloat parameters.”

It is not uncommon, outside of code, to write a method’s name along with the plus sign
or the minus sign, to make it clear whether this is a class method or an instance method.
So you might speak informally of “-uppercaseString,” just as a way of reminding your-
self or a reader that this is an instance method. Again outside of code, it is not uncom-
mon, especially when communicating with other Objective-C programmers, to speak
of a method’s name along with the class in which this method is defined. So you might
say “NSString’s -uppercaseString,” or even something like “-[NSString uppercase-
String].” Notice that that isn’t code, or even pseudo-code, because you are not actually
speaking of a method call, and in any case you could never send the uppercaseString
message to the NSString class; it’s just a compact way of saying, “I’m talking about the
uppercaseString that’s an instance method of NSString.”

Messages and Methods | 51

Nesting Method Calls
Wherever in a method call an object of a certain type is supposed to appear, you can
put another method call that returns that type. Thus you can nest method calls. A
method call can appear as the message’s receiver:

NSString* s = [[NSString string] uppercaseString]; // silly but legal

That’s legal because NSString’s class method string returns an NSString instance (for-
mally, an NSString* value, remember), so we can send an NSString instance method to
that result. Similarly, a method call can appear as an argument in a method call:

[myStack push: [NSString string]]; // ok if push: expects an NSString* parameter

However, I must caution you against overdoing that sort of thing. Code with a lot of
nested square brackets is very difficult to read (and to write). Furthermore, if one of
the nested method calls happens to return nil unexpectedly, you have no way to detect
this fact. It is often better, then, to be even more verbose and declare a temporary
variable for each piece of the method call. Just to take an example from my own code,
instead of writing this:

NSArray* arr = [[MPMediaQuery albumsQuery] collections];

I might write this:

MPMediaQuery* query = [MPMediaQuery albumsQuery];
NSArray* arr = [query collections];

Even though the first version is quite short and legible, and even though the variable
query will never be used again — it exists solely in order to be the receiver of the
collections message in the second line — it is worth creating it as a separate variable.
For one thing, it makes this code far easier to step through in the debugger later on,
when I want to pause after the albumsQuery call and see whether the expected sort of
result is being returned.

No Overloading
The data type returned by a method, together with the data types of each of its param-
eters in order, constitute that method’s signature. It is illegal for two methods of the
same type (class method or instance method) to exist in the same class with the same
name but different signatures.

So, for example, you could not have two MyClass instance methods called myMethod,
one of which returns void and one of which returns an NSString. Similarly, you could
not have two MyClass instance methods called myMethod:, both returning void, one
taking a CGFloat parameter and one taking an NSString parameter. An attempt to
violate this rule will be stopped dead in its tracks by the compiler, which will announce
a “conflicting types” or “duplicate declaration” error. The reason for this rule is that if
two such conflicting methods were allowed to exist, there would be no way to deter-
mine from a method call to one of them which method was being called.

52 | Chapter 3: Objective-C Objects and Messages

You might think that the issue could be decided by looking at the types involved in the
call. If one myMethod: takes a CGFloat parameter and the other myMethod: takes an
NSString parameter, you might think that when myMethod: is called, Objective-C could
look at the actual argument and realize that the former method is meant if the argument
is a CGFloat and the latter if the argument is an NSString. But Objective-C doesn’t
work that way. There are languages that permit this feature, called overloading, but
Objective-C is not one of them.

Parameter Lists
It isn’t uncommon for an Objective-C method to require an unknown number of pa-
rameters. A good example is the NSArray class method arrayWithObjects:, which looks
from the name as if it takes one parameter but in fact takes any number of parameters,
separated by comma. The parameters are the objects of which the NSArray is to consist.
The trick here, however, which you must discover by reading the documentation, is
that the list must end with nil. The nil is not one of the objects to go into the NSArray
(nil isn’t an object, so an NSArray can’t contain nil); it’s to show where the list ends.

So, here’s a correct way to call the arrayWithObjects: method:

NSArray* pep = [NSArray arrayWithObjects:@"Manny", @"Moe", @"Jack", nil];

The declaration for arrayWithObjects: uses three dots to show that a comma-separated
list is legal:

+ (id)arrayWithObjects:(id)firstObj, ... ;

Without the nil terminator, the program will not know where the list ends, and bad
things will happen when the program runs, as it goes hunting off into the weeds of
memory, incorporating all sorts of garbage into the NSArray that you never meant to
have incorporated. Forgetting the nil terminator is a common beginner error, but not
as common as it used to be: by a bit of deep-C voodoo, the Objective-C compiler now
notices if you’ve forgotten the nil, and warns you (“missing sentinel in function call”).

The C language has explicit provision for argument lists of unspecified length, which
Objective-C methods such as arrayWithObjects: are using behind the scenes. I’m not
going to explain the C mechanism, because I don’t expect you’ll ever write a method
or function that requires it; see K&R 7.3 if you need the gory details.

Unrecognized Selectors
Objective-C messaging is dynamic, meaning that the compiler takes no formal respon-
sibility for whether a particular object is a legal recipient of a given message. That’s
because whether an object can deal with a message sent to it isn’t decided until the
program actually runs and the message actually arrives. Objective-C has various devices
for dealing at runtime with a message that doesn’t correspond directly to a method,
and for all the compiler knows, one of them might come into play in this case. For

Messages and Methods | 53

example, at the time the program runs, the recipient of the message might be nil — and
it’s harmless to send any message to nil.

Thus, it is legal to direct a message at an object with no corresponding method. The
only guardian against this possibility is the compiler, but it isn’t a very strong guardian.
For example:

NSString* s = @"Hello, world!";
[s rockTheCasbah]; // compiler warns

An NSString has no method rockTheCasbah. But the compiler will not stop you from
running a program containing this code; it’s legal. The compiler will warn you, but it
won’t stop you. The warning, if you’re using the GCC parser, reads: “Warning:
‘NSString’ may not respond to ‘-rockTheCasbah’ (messages without a matching
method signature will be assumed to return ‘id’ and accept ‘...’ as arguments.)” The
LLVM parser says that same thing more tersely: “Warning: method ‘-rockTheCasbah’
not found (return type defaults to ‘id’).” Without going into the details, what the com-
piler means is: “I know of no instance method rockTheCasbah, so I can’t check its sig-
nature against the return type and arguments you’re actually using, so I’ll just make
some loose assumptions and let it pass.”

This is a good example of what I meant in Chapter 2 when I said that sending a message
and calling a method were not the same thing. The compiler is saying that NSString
has no rockTheCasbah instance method, but that it isn’t going to stop you from sending
an NSString a rockTheCasbah message. At runtime, the object that receives the rockThe-
Casbah message might be able to deal with it, for all the compiler knows.

However, if you do send a message to an object that really can’t deal with it, your
program will crash at that moment. So, for example, our attempt to send an NSString
the rockTheCasbah message will crash our program, with a message (in the console log)
of this form: “-[NSCFString rockTheCasbah]: unrecognized selector sent to instance
0x3048.”

The important thing here is the phrase unrecognized selector. The term “selector” is
roughly equivalent to “message,” so this is a way of saying a certain instance was sent
a message it couldn’t deal with. The console message also tries to tell us what instance
this was. 0x3048 is the value of the instance pointer; it is the address in memory to which
our NSString* variable s was actually pointing. (Never mind why the NSString is de-
scribed as an NSCFString; this has to do with NSString’s implementation behind the
scenes.)

(Strictly speaking, I should not say that a situation like this will “crash our program.”
What it will actually do is to generate an exception, an internal message as the program
runs signifying that something bad has happened. It is possible for Objective-C code
to “catch” an exception, in which case the program will not crash. The reason the
program crashes, technically, is not that a message was sent to an object that couldn’t
handle it, but that the exception generated in response wasn’t caught. That’s why the
crash log also says, “Terminating app due to uncaught exception.”)

54 | Chapter 3: Objective-C Objects and Messages

For this reason, you should generally not ignore a compiler warning that a certain class
“may not respond to” a certain message. You should fix your program so that the
compiler does not warn.

Typecasting and the id Type
One way to silence the compiler when it warns in the way I’ve just described is by
typecasting. A typecast, however, is not a viable way of fixing the problem unless it also
tells the truth. It is perfectly possible to lie to the compiler by typecasting; this is not
nice, and is not likely to yield nice consequences.

For example, suppose we’ve defined a class MyClass that does contain an instance
method rockTheCasbah. As a result, it is fine with the compiler if you send the rockThe-
Casbah message to a MyClass, although it is not fine to send the rockTheCasbah message
to an NSString. So you can silence the compiler by claiming that an NSString instance
is a MyClass instance:

NSString* s = @"Hello, world!";
[(MyClass*)s rockTheCasbah];

The typecast silences the compiler; there is no warning. Notice that the typecast is not
a value conversion; it’s merely a claim about what the type will turn out to be at runtime.
You’re saying that when the program runs, s will magically turn out to be a MyClass
instance. Because MyClass has a rockTheCasbah instance method, that silences the
compiler. Of course, you’ve lied to the compiler, so when the program runs it will crash
anyway, in exactly the same way as before! You’re still sending an NSString a message
it can’t deal with, so the very same exception about sending an unrecognized selector
to an NSCFString instance will result. So don’t do that!

Sometimes, however, typecasting to silence the compiler is exactly what you do want
to do. This situation quite often arises in connection with class inheritance. We haven’t
discussed class inheritance yet, but I’ll give an example anyway. Let’s take the built-in
Cocoa class UINavigationController. Its topViewController method is declared to re-
turn a UIViewController instance. In real life, though, it is likely to return an instance
of some class you’ve created. So in order to call a method of the class you’ve created
on the instance returned by topViewController without upsetting the compiler, you
have to reassure the compiler that this instance really will be an instance of the class
you’ve created. That’s what I’m doing in this line from one of my own apps:

[((RootViewController*)[navigationController topViewController]) setAlbums: arr];

The expression (RootViewController*) is a typecast in which I’m assuring the compiler
that at this moment in the program, the value returned by the topViewController
method call will in fact be an instance of RootViewController, which is my own defined
class. The typecast silences the compiler when I send this instance the setAlbums: mes-
sage, because my RootViewController class has a setAlbums: instance method and the

Typecasting and the id Type | 55

compiler knows this. And the program doesn’t crash, because I’m not lying: this top-
ViewController method call really will return a RootViewController instance.

Objective-C also provides a special type designed to silence the compiler’s worries
about object data types altogether. This is the id type. An id is a pointer, so you don’t
say id*. It is defined to mean “an object pointer,” plain and simple, with no further
specification. Thus, every instance reference is also an id.

Use of the id type causes the compiler to stop worrying about the relationship between
object types and messages. The compiler can’t know anything about what the object
will really be, so it throws up its hands and doesn’t warn about anything. Moreover,
any object value can be assigned or typecast to an id, and vice versa. The notion of
assignment includes parameter passing. So you can pass a value typed as an id as an
argument where a parameter of some particular object type is expected, and you can
pass any object as an argument where a parameter of type id is expected. (I like to think
of an id as analogous to both type AB blood and type O blood: it is both a universal
recipient and a universal donor.) So, for example:

NSString* s = @"Hello, world!";
id unk = s;
[unk rockTheCasbah];

The second line is legal, because any object value can be assigned to an id. The third
line doesn’t generate any compiler warning, because any message can be sent to an
id. (Of course the program will still crash when it actually runs and unk turns out to be
an NSString and incapable of receiving of the rockTheCasbah message.)

If an id’s ability to receive any message reminds you of nil, it should. I have already said
that nil is a form of zero; I can now specify what form of zero it is. It’s zero cast as an
id. Of course, it still makes a difference at runtime whether an id is nil or something
else; sending a message to nil won’t crash the program, but sending an unknown mes-
sage to an actual object will.

Thus, id is a device for turning off the compiler’s type checking altogether. Concerns
about what type an object is are postponed until the program is actually running. Note
that they would have been postponed anyway! As I’ve already said, Objective-C’s mes-
sage sending mechanism is dynamic. The compiler is merely a gatekeeper in this regard;
that’s why it can only issue warnings. All the compiler can do is intelligently analyze
your code to see if you might be making a mistake that could matter at runtime. Using
id turns off this part of the compiler’s intelligence and leaves you to your own devices.

I do not recommend that you make extensive use of id to live in a world of pure dy-
namism. The compiler is your friend; you should let it use what intelligence it has to
catch mistakes in your code. Thus, I almost never declare a variable or parameter as an
id. I want my object types to be specific, so that the compiler can help check my code.

On the other hand, the Cocoa API does make frequent use of id, because it has to. For
example, consider the NSArray class, which is the object-based version of an array. In
pure C, you have to declare what type of thing lives in an array; for example, you could

56 | Chapter 3: Objective-C Objects and Messages

have “an array of int.” In Objective-C, using an NSArray, you can’t do that. Every
NSArray is an array of id, meaning that every element of the array can be of any object
type. You can put a specific type of object into an NSArray because any specific type
of object can be assigned to an id (id is the universal recipient). You can get any specific
type of object back out of an NSArray because an id can be assigned to any specific
type of object (id is the universal donor).

So, for example, NSArray’s lastObject method is defined as returning an id. So, given
an NSArray arr, I can fetch its last element like this:

id unk = [arr lastObject];

However, after that code, unk can now be sent any message at all, and we are dispensing
with the compiler’s type checking. Therefore, if I happen to know what type of object
an array element is, I always assign or cast it to that type. For example, let’s say I happen
to know that arr contains nothing but NSString instances (because I put them there in
the first place). Then I will say:

NSString* s = [arr lastObject];

The compiler doesn’t complain, because an id can be assigned to any specific type of
object (id is the universal donor). Moreover, from here on in, the compiler regards s
as an NSString, and uses its type checking abilities to make sure I don’t send s any non-
NSString messages, which is just what I wanted. And I didn’t lie to the compiler; at
runtime, s really is an NSString, so everything is fine.

The compiler’s type checking is called static typing, as opposed to the dynamic behavior
that takes place when the program actually runs. What I’m saying here, then, is that I
prefer to take advantage of static typing as much as possible.

The Cocoa API will sometimes return an id from a method call where you might not
expect it. It’s good to be conscious of this, because otherwise the compiler can mislead
you into thinking you’re doing something safe when you’re not. For example, consider
this code:

UIColor* c = [NSString string];

This is clearly a mistake — you’re assigning an NSString to a UIColor variable, which
is likely to lead to a crash later on — but the compiler is silent. Why doesn’t the compiler
warn here? It’s because the NSString string class method is declared like this:

+ (id)string

The string method returns an NSString, but its return value is typed as an id. An id
can be assigned where any object type is expected, so the compiler doesn’t complain
when it’s assigned to a UIColor variable. (As for why the string method returns an
id instead of an NSString, that’s a different matter; it has to do with NSString’s under-
lying implementation as something called a class cluster, which we don’t need to go
into here; Chapter 10 has a bit more to say about class clusters.)

Typecasting and the id Type | 57

Earlier, I said that it is illegal for the same class to define methods of the same type
(class method or instance method) with the same name but different signatures. But I
did not say what happens when two different classes declare conflicting signatures for
the same method name. This is another case in which it matters whether you’re using
static or dynamic typing. If you’re using static typing — that is, the type of the object
receiving the message is specified — there’s no problem, because there’s no doubt
which method is being called (it’s the one in that object’s class). But if you’re using
dynamic typing, where the object receiving the message is an id, you might get a warn-
ing from the compiler. In general, having two different classes that declare conflicting
signatures for the same method name is not necessarily problematic, and Cocoa does
it quite a bit internally. But it’s just as well to avoid it, and the need to avoid it is another
reason why method names are so verbose: it’s in order to make each method name
unique.

Accidentally defining your own method with the same name as an ex-
isting Cocoa method can cause mysterious problems. For example, in
a recent online query, a programmer was confused because the compiler
complained that his call to initWithObjects: lacked a nil terminator,
even though his initWithObjects: didn’t need a nil terminator. No, his
initWithObjects: didn’t, but Cocoa’s did, and the compiler couldn’t
distinguish them because this message was being sent to an id. He
should have picked a different name.

Messages as Data Type
Objective-C is so dynamic that it doesn’t have to know until runtime what message to
send to an object or what object to send it to. Certain important methods actually accept
both pieces of information as parameters. For example, consider this method declara-
tion from Cocoa’s NSNotificationCenter class:

- (void)addObserver:(id)notificationObserver selector:(SEL)notificationSelector
 name:(NSString *)notificationName object:(id)notificationSender

We’ll discuss later what this method does (when we talk about notifications in Chap-
ter 11), but the important thing to understand here is that it constitutes an instruction
to send a certain message to a certain object at some later, appropriate time. For ex-
ample, our purpose in calling this method might be to arrange to have the message
tickleMeElmo: sent at some later, appropriate time to the object myObject.

So let’s consider how we might actually make this method call. The object to which
the message will be sent is here called notificationObserver, and is typed as an id
(making it possible to specify any type of object to send the message to). So, for the
notificationObserver parameter, we’re going to pass myObject. The message itself is
the notificationSelector parameter, which has a special data type, SEL (for “selector,”
the technical term for a message name). The question now is how to express the message
name tickleMeElmo:.

58 | Chapter 3: Objective-C Objects and Messages

You can’t just put tickleMeElmo: as a bare term; that doesn’t work syntactically. You
might think you could express it as an NSString, @"tickleMeElmo:", but surprisingly,
that doesn’t work either. It turns out that the correct way to do it is like this:

@selector(tickleMeElmo:)

The term @selector() is a directive to the compiler, telling it that what’s in parentheses
is a message name. Notice that what’s in parentheses is not an NSString; it’s the bare
message name. And because it is the name, it must have no spaces and must include
any colons that are part of the message name.

So the rule is extremely easy: when a SEL is expected, you’ll usually pass a
@selector() expression. Failure to get this syntax right, however, is a common beginner
error. Notice also that this syntax is an invitation to make a typing mistake, especially
because there is no checking by the compiler. If myObject implements a tickleMe-
Elmo: method and I accidentally type @selector(tickleMeElmo), forgetting the colon or
making any other mistake in specifying the message name, there is no compiler error;
the problem won’t be discovered until the program runs and something bad happens.
(In this case, if the tickleMeElmo message without the colon is ever sent to myObject,
the app will probably crash with an unrecognized selector exception.)

C Functions and Struct Pointers
Although your code will certainly call many Objective-C methods, it will also probably
call quite a few C functions. For example, I mentioned in Chapter 1 that the usual way
of initializing a CGPoint based on its x and y values is to call CGPointMake, which is
declared like this:

CGPoint CGPointMake (
 CGFloat x,
 CGFloat y
);

Make certain that you can see at a glance that this is a C function, not an Objective-C
method, and be sure you understand the difference in the calling syntax. To call an
Objective-C method, you send a message to an object, in square brackets, with each
argument following a colon in the method’s name; to call a C function, you use the
function’s name followed by parentheses containing the arguments.

Moreover, many Objective-C objects and methods have lower-level C counterparts.
For example, besides the Objective-C NSString, there is also something called a
CFString; the “CF” stands for “Core Foundation,” which is a lower-level C-based API.
A CFString is an opaque C struct (“opaque” means that the elements constituting this
struct are kept secret, and that you should operate on a CFString only by means of
appropriate functions). As with an NSString or any other object, in your code you’ll
typically refer to a CFString by way of a C pointer; the pointer to a CFString has a type

C Functions and Struct Pointers | 59

name, CFStringRef (a “reference to a CFString,” evidently). You work with a CFString
in pure C, by calling functions.

You might, on occasion, actually have to work with a Core Foundation type even when
a corresponding object type exists. For example, you might find that NSString, for all
its power, fails to implement a needed piece of functionality, which is in fact available
for a CFString. Luckily, an NSString (a value typed as NSString*) and a CFString (a
value typed as CFStringRef) are interchangeable: you can use one where the other is
expected, though you will have to typecast in order to quiet the worries of the compiler.
The documentation describes this interchangeability by saying that NSString and
CFString are “toll-free bridged” to one another.

To illustrate, I’ll use a CFString to convert an NSString representing an integer to that
integer. (This use of CFString is unnecessary, and is just by way of demonstrating the
syntax; NSString has an intValue method.)

NSString* answer = @"42";
int ans = CFStringGetIntValue((CFStringRef)answer);

The typecast prevents the compiler from complaining, and works because NSString is
toll-free bridged to CFString — in effect, behind the scenes, an NSString is a CFString.

Cocoa defines a number of underlying pointer-to-struct C data types,
whose name typically ends in “Ref” (CGColorSpaceRef, CGPathRef,
and so on). It is sometimes necessary to assign one of these to an id
variable or parameter. For example, a CALayer’s setContents: method
expects an id parameter, but the actual value must be a CGImageRef.
This is legal, because a pointer is just a pointer, but the compiler will
complain unless you also typecast to an id or a pointer-to-void (void*).

You might even have reason to write your own C functions as part of a class, instead
of writing a method. A C function has lower overhead than a full-fledged method; so
even though it lacks the object-oriented abilities of a method, it is sometimes useful to
write one, as when some utility calculation must be called rapidly and frequently. Also,
once in a while you might encounter a Cocoa method or function that requires you to
supply a C function as a “callback.”

An example is the NSArray method sortedArrayUsingFunction:context:. The first pa-
rameter is typed like this:

NSInteger (*)(id, id, void *)

That expression denotes, in the rather tricky C syntax used for these things, a pointer
to a function that takes three parameters and returns an NSInteger. The three param-
eters of the function are an id, an id, and a pointer-to-void (which means any C pointer).
The address operator (see Chapter 1) can be used to obtain a pointer to a C function.
So to call sortedArrayUsingFunction:context: you’d need to write a C function that

60 | Chapter 3: Objective-C Objects and Messages

meets this description, and use its name, preceded by an ampersand, as the first argu-
ment.

To illustrate, I’ll write a “callback” function to sort an NSArray of NSStrings on the last
character of each string. (This would be an odd thing to do, but it’s only an example!)
The NSInteger returned by the function has a special meaning: it indicates whether the
first parameter is to be considered less than, equal to, or larger than the second. I’ll
obtain it by calling the NSString compare: method, which returns an NSInteger with
that same meaning. Here’s the function:

NSInteger sortByLastCharacter(id string1, id string2, void* context) {
 NSString* s1 = (NSString*) string1;
 NSString* s2 = (NSString*) string2;
 NSString* string1end = [s1 substringFromIndex:[s1 length] - 1];
 NSString* string2end = [s2 substringFromIndex:[s2 length] - 1];
 return [string1end compare:string2end];
}

And here’s how we’d call sortedArrayUsingFunction:context: with that function as our
callback (assume that arr is an NSArray of strings):

NSArray* arr2 = [arr sortedArrayUsingFunction:&sortByLastCharacter context:NULL];

Blocks
A block is an extension to the C language, introduced in Mac OS X 10.6 and available
if you’re compiling for iOS 4.0 or later. It’s a way of bundling up some code and handing
off that entire bundle as an argument to a C function or Objective-C method. This is
similar to what we did at the end of the preceding section, handing off a pointer to a
function as an argument, but instead we’re handing off the code itself. The latter has
some major advantages over the former, which I’ll discuss in a moment.

As an example, I’ll rewrite the preceding example to use a block instead of a function
pointer. Instead of calling sortedArrayUsingFunction:context:, I’ll call sortedArray-
UsingComparator:, which takes a block as its parameter. The block is typed like this:

NSComparisonResult (^)(id obj1, id obj2)

That’s similar to the syntax for specifying the type of a pointer to a function, but a caret
character is used instead of an asterisk character. So this means a block that takes two
id parameters and returns an NSComparisonResult (which is merely an NSInteger,
with just the same meaning as in the previous example). We can define the block and
hand it off as the argument to sortedArrayUsingComparator: all in a single move, like
this:

Blocks | 61

NSArray* arr2 = [arr sortedArrayUsingComparator: ^(id obj1, id obj2) {
 NSString* s1 = (NSString*) obj1;
 NSString* s2 = (NSString*) obj2;
 NSString* string1end = [s1 substringFromIndex:[s1 length] - 1];
 NSString* string2end = [s2 substringFromIndex:[s2 length] - 1];
 return [string1end compare:string2end];
}];

The syntax of the inline block definition is:

^ (id obj1, id obj2) {

First, the caret character.

Then, parentheses containing the parameters.

Finally, curly braces containing the block’s content.

Thanks to the block, as you can see, we’ve combined the definition of the callback
function with its use. Of course, you might object that this means the callback isn’t
reusable; if we had two calls to sortedArrayUsingComparator: using the same callback,
we’d have to write out the callback in full twice. To avoid such repetition, a block can
be assigned to a variable:

NSComparisonResult (^sortByLastCharacter)(id, id) = ^(id obj1, id obj2) {
 NSString* s1 = (NSString*) obj1;
 NSString* s2 = (NSString*) obj2;
 NSString* string1end = [s1 substringFromIndex:[s1 length] - 1];
 NSString* string2end = [s2 substringFromIndex:[s2 length] - 1];
 return [string1end compare:string2end];
};
NSArray* arr2 = [arr sortedArrayUsingComparator: sortByLastCharacter];
NSArray* arr4 = [arr3 sortedArrayUsingComparator: sortByLastCharacter];

The return type in an inline block definition is usually omitted. If in-
cluded, it follows the caret character, not in parentheses. If omitted, you
may have to use typecasting in the return line to make the returned type
match the expected type. For a complete technical syntax specification
for blocks, see http://clang.llvm.org/docs/BlockLanguageSpec.txt.

The power of blocks really starts to emerge when they are used instead of a selector
name. In an example earlier in this chapter, we talked about how you could pass
@selector(tickleMeElmo:) as the second argument to addObserver:selector:name:
object: as a way of saying, “When the time comes, please call my tickleMeElmo:
method.” We also talked about how error-prone this syntax was: make a typing error,
and your tickleMeElmo: method mysteriously won’t be called. Moreover, such code is
hard to maintain; there’s the tickleMeElmo: method sitting there, completely separate
from the code that calls addObserver:selector:name:object:, yet existing only to specify
what should happen at the later time when our message arrives. (I’ll talk about this
problem again in Chapter 11.) It might well be clearer and more compact to call add-

62 | Chapter 3: Objective-C Objects and Messages

ObserverForName:object:queue:usingBlock: and specify there and then as a block what
should happen at message time, with no separate method callback.

Variables in scope at the point where a block is defined keep their meaning within the
block at that moment, even though the block may be executed at some later moment.
(Technically, we say that a block is a closure.) It is this aspect of blocks that makes them
useful for specifying functionality to be executed at some later time, or even in some
other thread.

Variables in scope whose meaning is captured by the closure are protected from direct
assignment from within the block, unless you deliberately turn off this protection.
Thus, if code inside a block tries to assign directly to a variable whose meaning comes
from outside the block, the compiler will prevent it. To turn off this protection, declare
the variable using the __block qualifier. But of course if such a variable is an object
reference, messages can be sent to it and the object may be mutated (because message
sending is not assignment) even without the __block qualifier.

Examples in this book may or may not use blocks, depending on the system version
for which the example is written. If I quote code from one of my apps that runs on a
pre-4.0 version of the system, that code can’t involve blocks. If I write an example
targeted purely at iOS 4.0 or later, I’ll feel free to use blocks.

Blocks | 63

CHAPTER 4

Objective-C Classes

This chapter describes some linguistic and structural features of Objective-C having to
do with classes; in the next chapter, we’ll do the same for instances.

Class and Superclass
In Objective-C, as in many other object-oriented languages, a mechanism is provided
for specifying a relationship between two classes: they can be subclass and superclass
of one another. For example, we might have a class Quadruped and a class Dog and
make Quadruped the superclass of Dog. A class may have many subclasses, but a class
can have only one immediate superclass. (I say “immediate” because that superclass
might itself have a superclass, and so on in a rising chain, until we get to the ultimate
superclass, called the base class, or root class.)

Because a class can have many subclasses but only one superclass, we can imagine all
classes in a program as being arranged in a tree that splits into branches, such that each
branch splits into smaller branches, each smaller branch splits into even smaller
branches, and so on. Or we can imagine all the classes arranged in a hierarchy, such as
might be displayed in an outline, with a single ultimate superclass, then all of its im-
mediate subclasses in the next level below that, then each of their immediate subclasses
in the next level below that, and so on. Indeed, before you write a line of your own
code, Cocoa already consists of exactly such a vast repertoire of classes arranged in
exactly such a hierarchical relationship. Xcode will actually display this relationship
for you: choose View → Navigators → Symbol and click Hierarchical, with only the
second icon in the filter bar darkened (Figure 4-1). (In Xcode 3.2.x, choose Project →
Class Browser and switch to “Hierarchy, all classes.”)

The reason for the class–subclass relationship is to allow related classes to share func-
tionality. Suppose, for example, we have a Dog class and a Cat class, and we are con-
sidering defining a walk method for both of them. We might reason that both a dog
and a cat walk in pretty much the same way, by virtue of both being quadrupeds. So it
might make sense to define walk as a method of the Quadruped class, and make both

65

Dog and Cat subclasses of Quadruped. The result is that both Dog and Cat can be sent
the walk message, even if neither of them has a walk method, because each of them has
a superclass that does have a walk method. We say that a subclass inherits the methods
of its superclass.

The purpose of subclassing is not merely so that a class can inherit another class’s
methods; it’s so that it can define methods of its own. Typically, a subclass consists of
the methods inherited from its superclass and then some. If Dog has no methods of its
own, it is hard to see why it should exist separately from Quadruped. But if a Dog
knows how to do something that not every Quadruped knows how to do — let’s say,
bark — then it makes sense as a separate class. If we define bark in the Dog class, and
walk in the Quadruped class, and make Dog a subclass of Quadruped, then Dog inherits
the ability to walk from the Quadruped class and also knows how to bark.

It is also permitted for a subclass to redefine a method inherited from its superclass.
For example, perhaps some dogs bark differently from other dogs. We might have a
class NoisyDog, for instance, that is a subclass of Dog. Dog defines bark, but NoisyDog
also defines bark, and defines it differently from how Dog defines it. This is called
overriding. The very natural rule is that if a subclass overrides a method inherited from
its superclass, then when the corresponding message is sent to an instance of that sub-
class, it is the subclass’s version of that method that is called.

Interface and Implementation
As you already know from Chapter 2, all your code is going to go into some class or
other. So the first thing we must do is specify what is meant by putting code “into a
class” in Objective-C. How does Objective-C say, linguistically and structurally, “This
is the code for such-and-such a class”?

To write the code for class, you must actually provide two chunks or sections of code,
called the interface and the implementation. Here’s the complete minimum code re-
quired to define a class called MyClass. This class is so minimal that it doesn’t even
have any methods of its own:

Figure 4-1. Browsing the built-in class hierarchy in Xcode 4

66 | Chapter 4: Objective-C Classes

@interface MyClass
@end
@implementation MyClass
@end

The @interface and @implementation compiler directives show the compiler where the
interface and implementation sections begin for the class that’s being defined, MyClass;
the corresponding @end lines show where each of those sections end.

In real life, the implementation section is where any methods for MyClass would be
defined. So here’s a class that’s actually defined to do something:

@interface MyClass
@end
@implementation MyClass
- (NSString*) sayGoodnightGracie {
 return @"Good night, Gracie!";
}
@end

Observe how a method is defined. The first line is just like the method declaration,
stating the type of method (class or instance), the type of value returned, and the name
of the method along with the types of any parameters and local names for those pa-
rameters (see Chapter 3). Then come curly braces containing the code to be executed
when the method is called, just as with a C function (see Chapter 1).

However, this class is still pretty much useless, because it can’t be instantiated. In
Cocoa, knowledge of how to be instantiated, plus how to do a number of other things
that any class should know how to do, resides in the base class, which is the NSObject
class. Therefore, all Cocoa classes must be based ultimately on the NSObject class, by
declaring as the superclass for your class either NSObject or some other class that
inherits from NSObject (as just about any other Cocoa class does). The syntax for this
declaration is a colon followed by the superclass name in the @interface line, like this:

@interface MyClass : NSObject
@end
@implementation MyClass
- (NSString*) sayGoodnightGracie {
 return @"Good night, Gracie!";
}
@end

NSObject is not the only Cocoa base class. It used to be, but there is
now another, NSProxy. NSProxy is used only in very special circum-
stances and is not discussed in this book. If you have no reason for your
class to inherit from any other class, make it inherit from NSObject.

In its fullest form, the interface section might contain some more material. In particular,
there are two main types of stuff that the interface section might contain:

Interface and Implementation | 67

Instance variables
If our class is to have any instance variables (other than those inherited from its
superclass), they must be declared in the interface section.

Method declarations
If we want to declare our methods, those method declarations go into the interface
section. Method declarations are not required, but without a method declaration,
a method cannot be “seen” by other methods defined before it in the same class.

So here is MyClass defined in what we might term canonical form:

@interface MyClass : NSObject {
 // instance variable declarations go here
}
- (NSString*) sayGoodnightGracie;
@end
@implementation MyClass
- (NSString*) sayGoodnightGracie {
 return @"Good night, Gracie!";
}
@end

There are no instance variable declarations in our class, so I’ve used a comment to show
where they go; notice the curly braces surrounding the place. I’ll go into detail about
instance variables in the next chapter. The method declaration matches the name and
signature for the method definition and ends with a semicolon (required).

Header File and Implementation File
It’s perfectly possible for the interface and implementation of a class to appear in the
same file, or for multiple classes to be defined in a single file, but this is not the usual
convention. The usual convention is one class, two files: one file containing the interface
section, the other file containing the implementation section. For example, let’s sup-
pose you are defining a class MyClass. Then you have two files, MyClass.h and My-
Class.m. (The file naming is not magical or necessary; it’s just part of the convention.
The file extensions are pretty much necessary, though, because the build process and
Xcode itself rely on them.) The interface section goes into MyClass.h, which is called
the header file. The implementation section goes into MyClass.m, which is called the
implementation file. This separation into two files is not inconvenient, because Xcode,
expecting you to follow this convention, makes it easy to jump from editing a .h file to
the corresponding .m file and vice versa (Navigate → Jump to Next Counterpart; in
Xcode 3.2.x, View → Switch to Header/Source File). Finally, the implementation file
imports the header file (see Chapter 1 on the #import directive); this effectively unites
the full class definition, making the definition legal even though it is split between two
files, and allowing the implementation section to “see” any method declarations in the
interface section.

68 | Chapter 4: Objective-C Classes

With this arrangement in place, further imports become easy to configure. The header
file imports the basic header file for the entire Cocoa framework; in the case of an iOS
program, that’s UIKit.h (again, see Chapter 1). There is no need for the implementation
file to import UIKit.h, because the header file imports it, and the implementation file
imports the header file. If a class needs to know about another class that isn’t already
imported in this way, its implementation file imports that class’s header file. Exam-
ple 4-1 summarizes this conventional schema.

Example 4-1. Conventional schema for defining a class

// [MyClass.h]

#import <UIKit/UIKit.h>

@interface MyClass : NSObject {
 // instance variable declarations go here
}
- (NSString*) sayGoodnightGracie;
@end

// [MyClass.m]

#import "MyClass.h"
#import "OtherClass.h"

@implementation MyClass
- (NSString*) sayGoodnightGracie {
 return @"Good night, Gracie!";
}
@end

The result of this arrangement is that everything has the right visibility. No file ever
imports an implementation file; that way, what’s inside a class’s implementation file is
private to that class. If something about a class needs to be public, such as a method
that you want other classes to be able to call, it is declared in the header file, and other
classes import that header file in their implementation files (as I do with Other-
Class.h in Example 4-1); this keeps the chain of imports clear and simple.

A header file is also an appropriate place to define constants. In Chapter 1, for example,
I talked about the problem of mistyping the name of a notification or dictionary key,
which is a literal NSString, and how you could solve this problem by defining a name
for such a string:

#define MYKEY @"mykey"

The question then arises of where to put that definition. If only one class needs to know
about it, the definition can go near the start of its implementation file (it doesn’t need
to be inside the implementation section). But if multiple classes need to know about
this name, then a header file is an appropriate location; every implementation file that
imports this header file will acquire the definition, and you can use the name MYKEY in
that implementation file.

Header File and Implementation File | 69

A slight problem arises when a header file needs to mention one of your other classes.
Suppose, for example, that MyClass has a public method that takes or returns an in-
stance of MyOtherClass, or that MyClass has an instance variable whose type is My-
OtherClass. So MyClass.h needs to speak of MyOtherClass*. But MyClass.h does not
import MyOtherClass.h, so MyClass.h doesn’t know about MyOtherClass, and the
compiler will complain. To silence the compiler without violating the arrangement of
imports (by importing MyOtherClass.h in the header file MyClass.h), use the @class
directive. The word @class is followed by a comma-separated list of class names, ending
with a semicolon. So MyClass.h might start out like this:

#import <UIKit/UIKit.h>
@class MyOtherClass;

Then the interface section would follow, as before. The @class directive simply tells the
compiler, “Don’t worry, MyOtherClass really is the name of a class.” That’s all the
compiler needs to know in order to permit the mention of the type MyOtherClass* in
the header file.

If, on the other hand, MyClass is to be a subclass of some other class, then MyClass’s
header file must import that superclass’s header file (or some other header file that
imports that superclass’s header file). Thus, for example, in Example 4-1, MyClass.h
imports UIKit.h; thus it knows about NSObject, so that MyClass can declare NSObject
as its superclass.

A question that may occur to you at this point is how to declare a method without
making it public. For example, let’s say that many methods in MyClass need to call my-
CoolMethod, which is also a MyClass method. To make myCoolMethod visible to all My-
Class methods, regardless of the order in which they are defined in the implementation
section, you can declare myCoolMethod in the interface section. But this effectively “pub-
lishes” myCoolMethod, because any other class that imports MyClass.h will now know
about it. If that isn’t something you want to do, there’s a trick for creating a second
interface section that only MyClass’s implementation section can see (Chapter 10).

The Global Namespace
When defining classes, choose your class names wisely to prevent name
collisions. Objective-C has no namespaces; there’s a single vast name-
space containing all names. You don’t want your own class name (or,
for that matter, any other top-level constant name) to match a name
defined in Cocoa. Instead of namespaces, there’s a convention: each
Cocoa framework prefixes its names with a particular pair of capital
letters (NSString and NSArray, CGFloat and CGRect, and so on). Apple
suggests that you use a prefix of your own as well. Don’t use any of
Apple’s prefixes. Nothing limits your prefix to two letters, or requires
that both letters be uppercase. In fact, because all of Apple’s own pre-
fixes are two uppercase letters, “My” as a prefix is safe.

70 | Chapter 4: Objective-C Classes

Class Methods
Class methods are useful in general for two main purposes:

Factory methods
A factory method is a method that dispenses an instance of that class. For example,
the UIFont class has a class method fontWithName:Size:. You supply a name and
a size, and the UIFont class hands you back a UIFont instance corresponding to a
font with that name and size.

Global utility methods
Classes are global (visible from all code), so a class is a good place to put a utility
method that anyone might need to call and that doesn’t require the overhead of an
instance. For example, the UIFont class has a class method familyNames. It returns
an array of strings (that is, an NSArray of NSString instances) consisting of the
names of the font families installed on this device. Because this method has to do
with fonts, the UIFont class is as good a place as any to put it.

Most methods that you write will be instance methods, but now and then you might
write a class method. When you do, your purpose will probably be similar to those
examples.

The Secret Life of Classes
A class method may be called by sending a message directly to the name of a class. For
example, the familyNames class method of UIFont that I mentioned a moment ago might
be called like this:

NSArray* fams = [UIFont familyNames];

Clearly, this is possible because a class is an object (Chapter 2), and the name of the
class here represents that object.

Cocoa’s Own Header Files
The Cocoa classes themselves also follow the convention described in Example 4-1:
each class is separated into a header file (containing the interface) and an implemen-
tation file. However, the Cocoa class implementation files are not visible to you. This
is one of the major limitations of Cocoa; unlike many programming frameworks, you
can’t see the source code for Cocoa — it’s secret. To figure out how Cocoa works, you
have to rely purely on the documentation (and experimentation). You can, however,
see the Cocoa header files, and indeed you are expected to look at them, as they can
be a useful form of documentation (see Chapter 8).

The Secret Life of Classes | 71

You don’t have to do anything to create a class object. One class object for every class
your program defines is created for you automatically as the program starts up. (This
includes the classes your program imports, so there’s a MyClass class object because
you defined MyClass, and there’s an NSString class object because you imported UI-
Kit.h and the whole Cocoa framework.) It is to this class object that you’re referring
when you send a message to the name of the class.

Your ability to send a message directly to the bare name of a class is due to a kind of
syntactic shorthand. You can use the bare class name only in two ways (and we already
know about both of them):

To send a message to
In the expression [UIFont familyNames], the bare name UIFont is sent the family-
Names message.

To specify an instance type
In the expression NSString*, the bare name NSString is followed by an asterisk to
signify a pointer to an instance of this class.

Otherwise, to speak of a class object, you need to obtain that object formally. One way
to do this is to send the class message to a class or instance. For example, [My-
Class class] returns the actual class object. Some built-in Cocoa methods expect a
class object parameter (whose type is described as Class). To supply this as an argu-
ment, you’d need to obtain a class object formally. Take, for example, introspection
on an object to inquire what its class is. The isKindOfClass: instance method is declared
like this:

- (BOOL)isKindOfClass:(Class)aClass

So that means you could call it like this:

if ([someObject isKindOfClass: [MyClass class]]) // ...

A class object is not an instance, but it is definitely a full-fledged object. Therefore, a
class object can be used wherever an object can be used. For example, it can be assigned
to a variable of type id:

id classObject = [MyClass class];

You could then call a class method by sending a message to that object, because it is
the class object:

id classObject = [MyClass class];
[classObject someClassMethod];

All class objects are also members of the Class class, so you could say this:

Class classObject = [MyClass class];
[classObject someClassMethod];

72 | Chapter 4: Objective-C Classes

CHAPTER 5

Objective-C Instances

Instances are the heart of the action in an Objective-C program. Most of the methods
you’ll define when creating your own classes will be instance methods; most of the
messages you’ll send in your code will call instance methods. This chapter describes
how instances come into existence and how they work.

How Instances Are Created
Your class objects are created for you automatically as your program starts up, but
instances must be created deliberately as the program runs. The entire question of
where instances come from is thus crucial. Ultimately, every instance comes into exis-
tence in just one way: someone turns to a class and ask that class to instantiate itself.
But there are three different ways in which this can occur: ready-made instances, in-
stantiation from scratch, and nib-based instantiation.

Ready-Made Instances
One way to create an instance is indirectly, by calling code that does the instantiation
for you. You can think of an instance obtained in this indirect manner as a “ready-made
instance.” (That’s my made-up phrase, not an official technical term.) For example,
consider this simple code:

NSString* s2 = [s uppercaseString];

The documentation for the NSString instance method uppercaseString says that it re-
turns an NSString* that is “an uppercased representation of the receiver.” In other
words, you send the uppercaseString message to an NSString, and you get back a
different, newly created NSString. After that line of code, s2 points to an NSString
instance that didn’t exist beforehand.

The NSString produced by the uppercaseString method is a ready-made NSString in-
stance. Your code didn’t say anything about instantiation; it just sent the uppercase-
String message. But clearly someone said something about instantiation, because in-

73

stantiation took place; this is a newly minted NSString instance. That someone is pre-
sumably some code inside the NSString class. But we don’t have to worry about the
details. We are guaranteed of receiving a complete ready-made ready-to-roll NSString,
and that’s all we care about.

Similarly, any class factory method instantiates the class and dispenses the resulting
instance as a ready-made instance. So, for example, the NSString class method string-
WithContentsOfFile:encoding:error: reads a file and produces an NSString represent-
ing its contents. All the work of instantiation has been done for you. You just accept
the resulting string and away you go.

Not every method that returns an instance returns a new instance, of course. For ex-
ample, this is how you ask an array (an NSArray) for its last element:

id last = [myArray lastObject];

The NSArray myArray didn’t create the object that it hands you. That object already
existed; myArray was merely containing it, as it were — it was holding the object, point-
ing to it. Now it’s sharing that object with you, that’s all.

Similarly, many classes dispense one particular object. For example, your app has ex-
actly one instance of the UIApplication class (we call this the singleton UIApplication
instance); to access it, you send the sharedApplication class method to the UIAppli-
cation class:

UIApplication* theApp = [UIApplication sharedApplication];

This singleton instance existed before you asked for it; indeed, it existed before any
code of yours could possibly run. You don’t care how it was brought into being (though
in fact the details are quite interesting, as you’ll see in Chapter 7); all you care is that
you can get hold of it when you want it. I’ll talk more about globally available singleton
objects of this kind in Chapter 13.

Instantiation from Scratch
The alternative to requesting a ready-made instance is to tell a class, yourself, directly,
to instantiate itself. There is basically one way to do this: you send a class the alloc
message. The alloc class method is implemented by the NSObject class, the root class
from which all other classes inherit. It causes memory to be set aside for the instance
so that an instance pointer can point to it. (Management of that memory is a separate
issue, discussed in Chapter 12.)

You must never, never, never call alloc by itself. You must immediately call another
method, an instance method that initializes the newly created instance, placing it into
a known valid state so that it can be sent other messages. Such a method is called an
initializer. Moreover, an initializer returns an instance — usually the same instance,
initialized. Therefore you can, and always should, call alloc and the initializer in the

74 | Chapter 5: Objective-C Instances

same line of code. The minimal initializer is init. So the basic pattern, known informally
as “alloc-init,” looks like Example 5-1.

Example 5-1. The basic pattern for instantiation from scratch

SomeClass* aVariable = [[SomeClass alloc] init];

You cannot instantiate from scratch if you do not also know how to initialize, so we
turn immediately to a discussion of initialization.

Initialization

Every class defines (or inherits) at least one initializer. This is an instance method; the
instance has just been created (by calling alloc on the class), and it is to this newly
minted instance that the initializer message must be sent. An initialization message
must be sent to an instance immediately after that instance is created by means of the
alloc message, and it must not be sent to an instance at any other time.

The basic initialization pattern, as shown in Example 5-1, is to nest the alloc call in
the initialization call, assigning the result of the initialization (not the alloc!) to a var-
iable. One reason for this is that if something goes wrong and the instance can’t be
created or initialized, the initializer will return nil; therefore it’s important to capture
the result of the initializer and treat that, not the result of alloc, as the pointer to the
instance.

To help you identify initializers, all initializers are named in a conventional manner.
The convention is that all initializers, and only initializers, begin with the word init.
The ultimate bare-bones initializer is called simply init, and takes no parameters. Other
initializers do take parameters, and usually begin with the phrase initWith followed by
descriptions of their parameters. For example, the NSArray class documentation lists
these methods:

– initWithArray:
– initWithArray:copyItems:
– initWithContentsOfFile:
– initWithContentsOfURL:
– initWithObjects:
– initWithObjects:count:

Let’s try a real example. A particularly easy and generally useful initializer for NSArray
is initWithObjects:. It takes a list of objects; the list must be terminated by nil. In
Chapter 3, we illustrated this by creating an NSArray from three strings, by means of
a class factory method that returned a ready-made instance:

NSArray* pep = [NSArray arrayWithObjects:@"Manny", @"Moe", @"Jack", nil];

Now we’ll do what amounts to exactly the same thing, except that we’ll create the
instance ourselves, from scratch:

NSArray* pep = [[NSArray alloc] initWithObjects:@"Manny", @"Moe", @"Jack", nil];

How Instances Are Created | 75

In that particular case, there exist both a factory method and an initializer that work
from the same set of data. Ultimately, it makes no difference which you use; given the
same arguments, both approaches result in NSArray* instances that are indistinguish-
able from one another. It will turn out in the discussion of memory management
(Chapter 12) that there might be a reason to choose instantiation from scratch over
ready-made instances.

In looking for an initializer, don’t forget to look upward through the class hierarchy.
For example, the class documentation for UIWebView lists no initializers, but UIWeb-
View inherits from UIView, and in UIView’s class documentation you’ll discover init-
WithFrame:. Moreover, the init method is defined as an instance method of the NSOb-
ject class, so every class inherits it and every newly minted instance can be sent the
init message. Thus it is a given that if a class defines no initializers of its own, you can
initialize an instance of it with init. For example, the UIResponder class documenta-
tion lists no initializers at all (and no factory methods). So to create a UIResponder
instance from scratch, you’d call alloc and init.

The designated initializer

If a class does define initializers, one of them may be described in the documentation
as the designated initializer. (There’s nothing about a method’s name that tells you it’s
the designated initializer; you must peruse the documentation to find out.) For exam-
ple, in the UIView class documentation, the initWithFrame: method is described as the
designated initializer. A class that does not define a designated initializer inherits its
designated initializer; the ultimate designated initializer, inherited by all classes without
any other designated initializer anywhere in their superclass chain, is init.

The designated initializer is the initializer on which any other initializers depend, in
this class or any subclasses: ultimately, they must call it. The designated initializer might
have the most parameters, allowing the most instance variables to be set explicitly, with
the other initializers supplying default values for some instance variables, for conven-
ience. Or it might just be the most basic form of initialization. But in any case, it is a
bottleneck through which all other initializers pass. Here are some examples:

• The NSDate class documentation says that initWithTimeIntervalSinceReference-
Date: is the designated initializer, and that initWithTimeIntervalSinceNow: calls it.

• The UIView class documentation says that initWithFrame: is the designated ini-
tializer. UIView contains no other initializers, but some of its subclasses do. UI-
WebView, a UIView subclass, has no initializer, so initWithFrame: is its inherited
designated initializer. UIImageView, a UIView subclass, has initializers such as
initWithImage:, but none of them is a designated initializer; so initWithFrame: is
its inherited designated initializer as well, and initWithImage: must call initWith-
Frame:.

Moreover, a class that implements a designated initializer will override the designated
initializer inherited from its superclass. The idea is typically that even the inherited

76 | Chapter 5: Objective-C Instances

designated initializer, if called, will call this class’s designated initializer. For example,
UIView overrides the inherited init to call its own designated initializer, initWith-
Frame:, with a value of CGRectMake(0,0,0,0).

Nib-Based Instantiation
The third means of instantiation is through a nib file. A nib file (whose extension may
be .nib or .xib) is where Xcode lets you “draw” parts of the user interface. Most Xcode
projects will include at least one nib file, which will be built into the app bundle, and
will then be loaded as the app runs. A nib file consists, in a sense, of the names of classes
along with instructions for instantiating and initializing them. When the app runs and
a nib file is loaded, those instructions are carried out — those classes are instantiated
and initialized.

For example, suppose you’d like the user to be presented with a window containing a
button whose title is “Howdy.” Xcode lets you arrange this graphically by editing a nib
file: you drag a button from the Object library into the window, place it at a certain
position in the window, and then set its title to “Howdy” (Figure 5-1). In effect, you
create a drawing of what you want the window and its contents to look like.

When the app runs, the nib file loads, and that drawing is turned into reality. To do
this, the drawing is treated as a set of instructions for instantiating objects. The button
that you dragged into the window is treated as a representative of the UIButton class.
The UIButton class is told to instantiate itself, and that instance is then initialized, giving
it the same position you gave it in the drawing (the instance’s frame), the same title you
gave it in the drawing (the instance’s title), and putting it into the window. In effect,
the loading of your nib file is equivalent to this code (assuming that window is a reference
to the window object):

UIButton* b =
 [UIButton buttonWithType:UIButtonTypeRoundedRect]; // factory method, instantiate
[b setTitle:@"Howdy!" forState:UIControlStateNormal]; // set up title

Figure 5-1. Dragging a button into a window

How Instances Are Created | 77

[b setFrame: CGRectMake(100,100,100,35)]; // set up frame
[window addSubview:b]; // place button in window

The fact that nib files are a source of instances, and that those instances are brought
into existence as the nib file is loaded, is a source of confusion to beginners. I’ll discuss
nib files and how they are used to generate instances in much more detail in Chapter 7.

Polymorphism
The compiler, even in the world of static typing, is perfectly happy for you to supply a
subclass instance where a superclass type is declared. To see this, let’s start with the
first line of the previous example:

UIButton* b = [UIButton buttonWithType:UIButtonTypeRoundedRect];

UIButton is a subclass of UIControl, which is a subclass of UIView. So it would be
perfectly legal and acceptable to say this:

UIButton* b = [UIButton buttonWithType:UIButtonTypeRoundedRect];
UIView* v = b;

The variable b is a UIButton instance, but I’m assigning it to a variable declared as a
UIView. That’s legal and acceptable because UIView is an ancestor (up the superclass
chain) of UIButton. Putting it another way, I’m behaving as if a UIButton were a UI-
View, and the compiler accepts this because a UIButton is a UIView.

What’s important when the app runs, however, is not the declared class of a variable,
but the actual class of the object to which that variable points. Even if I assign the
UIButton instance b to a UIView variable v, the object to which the variable v points is
still a UIButton. So I can send it messages appropriate to a UIButton. For example:

UIButton* b = [UIButton buttonWithType:UIButtonTypeRoundedRect];
UIView* v = b;
[v setTitle:@"Howdy!" forState:UIControlStateNormal];

That code will cause the compiler to complain, because UIView doesn’t implement set-
Title:forState:. So I’ll calm the compiler’s fears by typecasting:

UIButton* b = [UIButton buttonWithType:UIButtonTypeRoundedRect];
UIView* v = b;
[(UIButton*)v setTitle:@"Howdy!" forState:UIControlStateNormal];

The typecast calms the compiler’s fears, but the important thing is what happens when
the program runs. What happens is that this code works just fine! It works fine not
because I typecast v to a UIButton (typecasting doesn’t convert magically convert any-
thing to anything else; it’s just a hint to the compiler), but because v really is a UIButton.
So when the message setTitle:forState: arrives at the object pointed to by v, every-
thing is fine. (If v had been a UIView but not a UIButton, on the other hand, the program
would have crashed at that moment.)

78 | Chapter 5: Objective-C Instances

An object, then, responds to a message sent to it on the basis of what it really is, not
on the basis of anything said about what it is — and what it really is cannot be known
until the program actually runs and the message is actually sent to that object.

Now let’s turn the tables. We called a UIButton a UIView and sent it a UIButton mes-
sage. Now we’re going to call a UIButton a UIButton and send it a UIView message.

What an object really is depends not just upon its class but also upon that class’s
inheritance. A message is acceptable even if an object’s own class doesn’t implement a
corresponding method, provided that the method is implemented somewhere up the
superclass chain. For example, returning again to the same code:

UIButton* b = [UIButton buttonWithType:UIButtonTypeRoundedRect];
[b setFrame: CGRectMake(100,100,100,35)];

This code works fine, too. But you won’t find setFrame: in the documentation for the
UIButton class. That’s because you’re looking in the wrong place. A UIButton is a
UIControl, and a UIControl is a UIView. To find out about setFrame:, look in the
UIView class’s documentation. (Okay, it’s more complicated than that; you won’t find
setFrame: there either. But you will find a term frame which is called a “property,” and
this amounts to the same thing, as I’ll explain later in this chapter.) So the setFrame:
message is sent to a UIButton, but it corresponds to a method defined on a UIView.
Yet it works fine, because a UIButton is a UIView.

A common beginner mistake is to consult the documentation without
following the superclass chain. If you want to know what you can say
to a UIButton, don’t just look in the UIButton class documentation: also
look in the UIControl class documentation, the UIView class docu-
mentation, and so on.

To sum up: we treated a UIButton object as a UIView, yet we were still able to send it
a UIButton message. We treated a UIButton as a UIButton, yet we were still able to
send it a UIView message. What matters when a message is sent to an object is not how
the variable pointing to that object is declared but what class the object really is. What
an object really is depends upon its class, along with that class’s inheritance from the
superclass chain; these facts are innate to the object and are independent of how the
variable pointing to the object presents itself to the world. This independent mainte-
nance of object type integrity is the basis of what is called polymorphism.

But it is not quite the whole of polymorphism. To understand the whole of polymor-
phism, we must go further into the dynamics of message sending.

The Keyword self
A common situation is that code in an instance method defined in a class must call
another instance method defined within the same class. We have not yet discussed how

The Keyword self | 79

to do this. A method is called by sending a message to an object; in this situation, what
object would that be? The answer is supplied by a special keyword, self. Here’s a simple
example:

@implementation MyClass

- (NSString*) greeting {
 return @"Goodnight, Gracie!";
}

- (NSString*) sayGoodnightGracie {
 return [self greeting];
}

@end

When the sayGoodnightGracie message is sent to a MyClass instance, the sayGoodnight-
Gracie method runs. It sends the greeting message to self. As a result, the greeting
instance method is called; it returns the string @"Goodnight, Gracie!", and this same
string is then returned from the sayGoodnightGracie method.

The example seems straightforward enough, and it is. In real life, your code when you
define a class will sometimes consist of a few public instance methods along with lots
of other instance methods on which they rely. The instance methods within this class
will be calling each other constantly. They do this by sending messages to self.

Behind this simple example, though, is a subtle and important mechanism having to
do with the real meaning of the keyword self. The keyword self does not actually
mean “in the same class.” It’s an instance, after all, not a class. What instance? It’s this
same instance. The same as what? The same instance to which the message was sent
that resulted in the keyword self being encountered in the first place.

So let’s consider in more detail what happens when we instantiate MyClass and send
the sayGoodnightGracie message to that instance:

MyClass* thing = [[MyClass alloc] init];
NSString* s = [thing sayGoodnightGracie];

We instantiate MyClass and assign the instance to a variable thing. We then send the
sayGoodnightGracie message to thing, the instance we just created. The message arrives,
and it turns out this instance is a MyClass. Sure enough, MyClass implements a say-
GoodnightGracie method, and this method is called. As it runs, the keyword self is
encountered. It means “the instance to which the original message was sent in the first
place.” That, as it happens, is the instance pointed to by the variable thing. So now the
greeting message is sent to that instance (Figure 5-2).

This mechanism may seem rather elaborate, considering that the outcome is just what
you’d intuitively expect. But the mechanism needs to be elaborate in order to get the
right outcome. This is particularly evident when superclasses are involved and a class
overrides a method of its superclass. To illustrate, suppose we have a class Dog with
an instance method bark. And suppose Dog also has an instance method speak, which

80 | Chapter 5: Objective-C Instances

simply calls bark. Now suppose we subclass Dog with a class Basenji, which overrides
bark (because Basenjis can’t bark). What happens when we send the speak message to
a Basenji instance, as in Example 5-2?

Example 5-2. Polymorphism in action

@implementation Dog

- (NSString*) bark {
 return @"Woof!";
}

- (NSString*) speak {
 return [self bark];
}

@end

@implementation Basenji : Dog

- (NSString*) bark {
 return @""; // empty string, Basenjis can't bark
}

@end

// [so, in some other class...]

Basenji* b = [[Basenji alloc] init];
NSString* s = [b speak];

Figure 5-2. The meaning of self

The Keyword self | 81

If the keyword self meant “the same class where this keyword appears,” then when
we send the speak message to a Basenji instance, we would arrive at the implementation
of speak in the Dog class, and the Dog class’s bark method would be called. This would
be terrible, because it would make nonsense of the notion of overriding; we’d return
@"Woof!", which is wrong for a Basenji. But that is not what the keyword self means.
It has to do with the instance, not the class.

So here’s what happens. The speak message is sent to our Basenji instance, b. The
Basenji class doesn’t implement a speak method, so we look upward in the class hier-
archy and discover that speak is implemented in the superclass, Dog. We call Dog’s
instance method speak, the speak method runs, and the keyword self is encountered.
It means “the instance to which the original message was sent in the first place.” That
instance is still our Basenji instance b. So we send the bark message to the Basenji
instance b. The Basenji class implements a bark instance method, so this method is
found and called, and the empty string is returned (Figure 5-3).

Of course, if the Basenji class had not overridden bark, then when the bark message was
sent to the Basenji instance, we would have looked upward in the class hierarchy
again and found the bark method implemented in the Dog class and called that. Thus,
thanks to the way the keyword self works, inheritance works correctly both when there
is overriding and when there is not.

If you understand that example, you understand polymorphism. The mechanism I’ve
just described is crucial to polymorphism and is the basis of object-oriented program-
ming. (Observe that I now speak of object-oriented programming, not just object-based
programming as in Chapter 2. That’s because, in my view, the addition of polymor-
phism is what turns object-based programming into object-oriented programming.)

The Keyword super
Sometimes (quite often, in Cocoa programming) you want to override an inherited
method but still access the overridden functionality. To do so, you’ll use the keyword
super. Like self, the keyword super is something you send a message to. But its meaning
has nothing to do with “this instance” or any other instance. The keyword super is
class-based, and it means: “Start the search for messages I receive in the superclass of
this class” (where “this class” is the class where the keyword super appears).

You can do anything you like with super, but its primary purpose, as I’ve already said,
is to access overridden functionality — typically from within the very functionality that
does the overriding, so as to get both the overridden functionality and some additional
functionality.

For example, suppose we define a class NoisyDog, a subclass of Dog. When told to
bark, it barks twice:

82 | Chapter 5: Objective-C Instances

@implementation NoisyDog : Dog

- (NSString*) bark {
 return [NSString stringWithFormat: @"%@ %@", [super bark], [super bark]];
}

@end

That code calls super’s implementation of bark, twice; it assembles the two resulting
strings into a single string with a space between, and returns that (using the stringWith-
Format: method). Because Dog’s bark method returns @"Woof!", NoisyDog’s bark
method returns @"Woof! Woof!". Notice that there is no circularity or recursion here:
NoisyDog’s bark method will never call itself.

A nice feature of this architecture is that by sending a message to the keyword super,
rather than hard-coding @"Woof!" into NoisyDog’s bark method, we ensure maintain-

Figure 5-3. Class inheritance, overriding, self, and polymorphism

The Keyword super | 83

ability: if Dog’s bark method is changed, the result of NoisyDog’s bark method will
change to match. For example, if we later go back and change Dog’s bark method to
return @"Arf!", NoisyDog’s bark method will return @"Arf! Arf!" with no further
change on our part.

In real Cocoa programming, it will very often be Cocoa’s own methods that you’re
overriding. For example, the UIViewController class, which is built into Cocoa, im-
plements a method viewDidAppear:, defined as follows:

- (void)viewDidAppear:(BOOL)animated

The documentation says that UIViewController is a class for which you are very likely
to define a subclass (so as to get all of UIViewController’s mighty powers — we’ll find
out what they are in Chapter 19 — along with your own custom behavior). The doc-
umentation proceeds to suggest that in your subclass of UIViewController you might
want to override this method, but cautions that if you do, “you must call super at some
point in your implementation.” The phrase “call super” is a kind of shorthand, meaning
“pass on to super the very same call and arguments that were sent to you.” So your own
implementation might look like this:

@implementation MyViewController : UIViewController
// ...
- (void) viewDidAppear: (BOOL) animated {
 [super viewDidAppear: animated];
 // ... do more stuff here ...
}

The result is that when viewDidAppear: is called in a MyViewController instance, we
do both the standard stuff that its superclass UIViewController does in response to
viewDidAppear: and the custom stuff pertaining our own class MyViewController. In
this particular case, we don’t even know exactly what the UIViewController stuff is,
and we don’t care. When the documentation tells you to call super when overriding,
call super when overriding!

Instance Variables and Accessors
In Chapter 3, I explained that one of the main reasons there are instances and not just
classes is that instances can have instance variables. Instance variables, you remember,
are declared when you define the class, and in Chapter 4 I said that these declarations
go into the curly-braces part of the class’s interface section. But the value of an instance
variable differs for each instance.

The term “instance variable” arises so often that it is often abbreviated
to ivar. I’ll use both terms indiscriminately from now on.

84 | Chapter 5: Objective-C Instances

Let’s write a class that uses an instance variable. Suppose we have a Dog class and we
want every Dog instance to have a number, which should be an int. (For example, this
number might correspond to the dog’s license number, or something like that.) So the
interface section for the Dog class might look like this:

@interface Dog : NSObject {
 int number;
}
// public method declarations go here
@end

(You might ask why, for this example, I don’t use instead the concept of giving the dog
a name. The reason is that a name would be an NSString instance, which is an object;
instance variables that are pointers to objects raise issues of memory management I
don’t want to get into now. But instance variables that are simple C data types raise no
such issues. We’ll return to this matter in Chapter 12.)

By default, instance variables are protected, meaning that other classes (except for sub-
classes) can’t see them. So if, somewhere else, I instantiate a Dog, I won’t be able to
access that Dog instance’s number instance variable. This is a deliberate feature of
Objective-C; you can work around it if you like, but in general you should not. Instead,
if you want to provide public access to an instance variable, write an accessor method
and make the method declaration public.

Within a class, on the other hand, that class’s own instance variables are global. Any
Dog method can just use the variable name number and access this instance variable,
just like any other variable. But global variables can be confusing when you’re reading
code; suddenly there’s a variable called number and you don’t understand what it is,
because there’s no declaration for it (the declaration is stashed away in the interface
section, which is in a different file). So I often use a different notation, like this:
self->ivarName. The “arrow” operator, formed by a minus sign and a greater-than sign,
is called the structure pointer operator, because of its original use in C (K&R 6.2).

So let’s write, in Dog’s implementation section, a method that allows setting a value
for the number ivar:

- (void) setNumber: (int) n {
 self->number = n;
}

Of course, we must also declare setNumber: in Dog’s interface section:

@interface Dog : NSObject {
 int number;
}
- (void) setNumber: (int) n;
@end

We can now instantiate a Dog and assign that instance a number:

Dog* fido = [[Dog alloc] init];
[fido setNumber: 42];

Instance Variables and Accessors | 85

We can now set a Dog’s number, but we can’t get it (from outside that Dog instance).
To correct this problem, we’ll write a second accessor method, one that allows for
getting the value of the number ivar:

- (int) number {
 return self->number;
}

Again, we declare the number method in Dog’s interface section. (You’re not going to
be confused, are you, by the fact that Dog has both a number method and a number
instance variable? This doesn’t confuse the compiler, because they are used in com-
pletely different ways in code, so it shouldn’t confuse you either.) Now we can both
set and get a Dog instance’s number:

Dog* fido = [[Dog alloc] init];
[fido setNumber: 42];
int n = [fido number];
// sure enough, n is now 42!

This architecture is very typical. Your class can have as many ivars as you like, but if
you want them to be publicly accessible, you must provide accessor methods. Luckily,
Objective-C 2.0 — which is what you’re using to program for iOS — provides a mech-
anism for generating accessor methods automatically (discussed in Chapter 12), so you
won’t have to go through the tedium of writing them by hand every time you want to
make an ivar publicly accessible. (Though, to be honest, I don’t see why you shouldn’t
have to go through that tedium; before Objective-C 2.0, we all had to, so why shouldn’t
you? We also had to clean the roads with our tongues on the way to school. And we
liked it! You kids today, you don’t know what real programming is.)

Key–Value Coding
Objective-C provides a means for translating from a string to an instance variable ac-
cessor, called key–value coding. Such translation is useful, for example, when the name
of the desired instance variable will not be known until runtime. So, for example, in-
stead of calling [fido number], we might have a string @"number" that tells us what
accessor to call. This string is the “key.” To use key–value coding to get the value of
the number instance variable from the fido instance, we would say:

int n = [fido valueForKey: @"number"];

Similarly, to use key–value coding to set the value of the number instance variable in the
fido instance, we would say:

[fido setValue: 42 forKey: @"number"];

In this case there is no advantage to using key–value coding over just calling the ac-
cessors. But suppose we had received the value @"number" in a variable (as the result of
a method call, perhaps). Suppose that variable is called something. Then we could say:

int n = [fido valueForKey: something];

86 | Chapter 5: Objective-C Instances

Thus we could access a different instance variable under different circumstances. This
powerful flexibility is possible because Objective-C is such a dynamic language that a
message to be sent to an object does not have be formed until the program is already
running.

When you call valueForKey: or setValue:forKey:, the correct accessor method is called
if there is one. Thus, when we use @"number" as the key, a number method and a set-
Number: method are called if they exist. (This is one reason why your accessors should
be properly named.) On the other hand, if there isn’t an accessor method, the instance
variable is accessed directly. Such direct access violates the privacy of instance variables,
so there’s a way to turn off this feature for a particular class if you don’t like it. (I’ll
explain what it is, with more about key–value coding, in Chapter 12.)

Properties
A property is a syntactical feature of Objective-C 2.0 designed to provide an alternative
to the standard syntax for calling an instance variable accessor. In other words, a prop-
erty is merely syntactic sugar for calling an instance variable’s accessors. I’ll use the Dog
class as an example. If the Dog class has an instance variable number and a getter method
called number and a setter method called setNumber:, then the Dog class might also
declare a number property. If it does, then instead of saying things like this:

[fido setNumber: 42];
int n = [fido number];

You can talk like this:

fido.number = 42;
int n = fido.number;

As you can see, this is a very pleasant syntax. You use dot-notation to chain the property
name to the instance, and you can use the resulting expression either on the left side
of an equal sign (to set the instance variable’s value) or elsewhere (to fetch the instance
variable’s value). Remember, though, that you can do this only if the class you’re talking
to has declared a property corresponding to the instance variable in question. Remem-
ber also that your use of property syntax is not compulsory. If Dog has a number prop-
erty, it has getter and setter methods number and setNumber:, and you are free to call
them directly if you like. When you use a property in code, it is translated behind the
scenes into a call to the corresponding getter or setter method, so it’s all the same if
you call the corresponding getter or setter method explicitly.

To use a property within the class that declares that property, you must use self ex-
plicitly. So, for example:

self.number = 42;

Properties | 87

Do not confuse a property with an instance variable. An expression like
self->number = n, or even simply number = n, sets the instance variable
directly (and is possible only within the class, because instance variables
are protected by default). An expression like fido.number or
self.number involves a property and is equivalent to calling a getter or
setter method. That getter or setter method may access an instance var-
iable, and that instance variable may have the same name as the prop-
erty, but that doesn’t make them the same thing.

I have not yet told you how to declare a property corresponding to an instance variable.
Plus, there are many options when declaring a property that affect how it can be used
and what it means. All of that will be taken up in Chapter 12. But I’m telling you about
properties now because they are so widely used in Cocoa and because you’ll see them
so frequently in the documentation. For example, in Chapter 1, I talked about setting
a UIView’s autoresizingMask property:

myView.autoresizingMask =
 UIViewAutoresizingFlexibleTopMargin | UIViewAutoresizingFlexibleWidth;

How did I know I could talk that way? Because the UIView documentation says that
UIView declares an autoresizingMask property. Near the top of the documentation
page, we see this line:

autoresizingMask property

And further down, we get the details:

autoresizingMask

An integer bit mask that determines how the receiver resizes itself when its bounds
change.

 @property(nonatomic) UIViewAutoresizing autoresizingMask

That last line is the property declaration. Never mind for now what nonatomic means;
the point is that autoresizingMask is a property. That’s how I knew I could use property
syntax as a way of calling a setter method; alternatively, I could have called the set-
AutoresizingMask: method explicitly.

Similarly, earlier in this chapter I called UIView’s setFrame: method, even though no
such method is mentioned in the UIView documentation. What the UIView docu-
mentation does say is this:

frame

The receiver’s frame rectangle.

 @property(nonatomic) CGRect frame

The documentation is telling me that I can call a UIView setter method either by as-
signing to a frame property using dot-notation or by calling setFrame: explicitly.

88 | Chapter 5: Objective-C Instances

Objective-C uses dot-notation for properties, and C uses dot-notation for structs; these
can be chained. So, for example, UIView’s frame is a property whose value is a struct
(a CGRect); thus, you can say myView.frame.size.height, where frame is a property that
returns a struct, size is a component of that struct, and height is a component of
that struct. But a struct is not a pointer, so you cannot (for example) set a frame’s height
directly through a chain starting with the UIView, like this:

myView.frame.size.height = 36.0; // compile error

Instead, if you want to change a component of a struct property, you must fetch the
property value into a struct variable, change the struct variable’s value, and set the entire
property value from the struct variable:

CGRect f = myView.frame;
f.size.height = 0;
myView.frame = f;

How to Write an Initializer
Now that you know about self and super and instance variables, we can return to a
topic that I blithely skipped over earlier. I described how to initialize a newly minted
instance by calling an initializer, and emphasized that you must always do so, but I said
nothing about how to write an initializer in your own classes. You will wish to do so
only when you want your class to provide a convenient initializer that goes beyond the
functionality of the inherited initializers. Often your purpose will be to accept some
parameters and use them to set the initial values of some instance variables.

For example, in our example of a Dog with a number, let’s say we don’t want any Dog
instances to come into existence without a number; every Dog must have one. So having
a value for its number ivar is a sine qua non of a Dog being instantiated in the first place.
An initializer publicizes this rule and helps to enforce it — especially if it is the class’s
designated initializer. So let’s decide that this initializer will be Dog’s designated ini-
tializer.

Moreover, let’s say that a Dog’s number should not be changed. Once the Dog has
come into existence, along with a number, that number should remain attached to that
Dog instance for as long as that Dog instance persists.

So delete the setNumber: method and its declaration, thus destroying any ability of other
classes to set a Dog instance’s number after it has been initialized. Instead, we’re going
to set a Dog’s number as it is initialized, using a method we’ll declare like this:

- (id) initWithNumber: (int) n

Our return value is typed as id, not as a pointer to a Dog, even though in fact we will
return a Dog object. This is a convention that we should obey. The name is conventional
as well; as you know, the init beginning tells the world this is an initializer.

How to Write an Initializer | 89

Now I’m just going to show you the actual code for the initializer (Example 5-3). Much
of this code is conventional — a dance you are required to do. You should not question
this dance: just do it. I’ll describe the meaning of the code, but I’m not going to try to
justify all the parts of the convention.

Example 5-3. Conventional schema for an initializer

- (id) initWithNumber: (int) n {
 self = [super init];
 if (self) {
 self->number = n;
 }
 return self;
}

The parts of the convention are:

We send some sort of initialization message, calling a designated initializer. If this
is our class’s designated initializer, this message is sent to super and calls the super-
class’s designated initializer. Otherwise, it is sent to self and calls either this class’s
designated initializer or another initializer that calls this class’s designated initializer.
In this case, this is our class’s designated initializer, and the superclass’s designated
initializer is init.

We capture the result of the initialization message to super, and assign that result
to self. It comes as a surprise to many beginners (and not-so-beginners) that one
can assign to self at all or that it would make sense to do so. But one can assign to
self (because of how Objective-C messaging works behind the scenes), and it makes
sense to do so because in certain cases the instance returned from the call to super
might not be same as the self we started with.

If self is not nil, we initialize any instance variables we care to. This part of the code
is typically the only part you’ll customize; the rest will be according to the pattern.
Observe that I don’t use any setter methods; in initializing an instance variable not
inherited from the superclass, you should assign directly to the instance variable
(and if it’s an object, you’ll also have to do some memory management, to be ex-
plained in Chapter 12).

We return self.

All instance variables are set to a form of zero by alloc. Therefore, any
instance variables not initialized explicitly in an initializer remain 0. This
means, among other things, that by default a BOOL instance variable
is NO and an object reference instance variable is nil. It is common
practice to take advantage of these defaults in your program; if the de-
fault values are satisfactory initial values, you won’t bother to set them
in your designated initializer.

90 | Chapter 5: Objective-C Instances

But we are not finished. Recall from earlier in this chapter that a class that defines a
designated initializer should also override the inherited designated initializer (in this
case, init). And you can see why: if we don’t, someone could say
[[Dog alloc] init] and create a dog without a number — the very thing our initializer
is trying to prevent. Just for the sake of the example, I’ll make the overridden init assign
a negative number as a signal that there’s a problem. Notice that we’re still obeying the
rules: this initializer is not the designated initializer, so it calls this class’s designated
initializer.

- (id) init {
 return [self initWithNumber: -9999];
}

Just to complete the story, here’s some code showing how we now would instantiate
a Dog:

Dog* fido = [[Dog alloc] initWithNumber:42];
int n = [fido number];
// n is now 42; our initialization worked!

How to Write an Initializer | 91

PART II

IDE

By now, you’re doubtless anxious to jump in and start writing an app. To do that, you
need a solid grounding in the tools you’ll be using. The heart and soul of those tools
can be summed up in one word: Xcode. In this part of the book we explore Xcode, the
IDE (integrated development environment) in which you’ll be programming iOS.
Xcode is a big program, and writing an app involves coordinating a lot of pieces; this
part of the book will help you become comfortable with Xcode. Along the way, we’ll
generate a simple working app through some hands-on tutorials.

• Chapter 6 tours Xcode and explains the architecture of the project, the collection
of files from which an app is generated.

• Chapter 7 is about nibs. A nib is a file containing a drawing of your interface.
Understanding nibs — knowing how they work and how they relate to your code
— is crucial to your use of Xcode and to proper development of just about any app.

• Chapter 8 pauses to discuss the Xcode documentation and other sources of infor-
mation on the API.

• Chapter 9 explains editing your code, testing and debugging your code, and the
various steps you’ll take on the way to submitting your app to the App Store.

CHAPTER 6

Anatomy of an Xcode Project

Xcode is the application used to develop an iOS app. An Xcode project is the entire
collection of files and settings needed in order to construct an app. The source for an
app is an Xcode project. To develop and maintain an app, you must know how to
manipulate an Xcode project. That means you must know your way around a project,
as displayed by Xcode. By the same token, you must know your way around Xcode
sufficiently to manipulate a project.

The term “Xcode” is actually used in two ways. It’s the name for the
entire suite of developer tools — the Xcode tools — and it’s the name
of one application within that suite, the application in which you edit
and build your app. This ambiguity should generally present little dif-
ficulty.

Xcode is a powerful, complex, and extremely large program. My approach when in-
troducing Xcode to new users is to suggest that they adopt a kind of deliberate tunnel
vision: if you don’t understand something, don’t worry about it, and don’t even look
at it (and don’t touch it, because you might change something important). That’s the
approach I’ll take here. This and subsequent chapters will undertake a simplified survey
of Xcode, charting a somewhat restricted path, focusing on aspects of Xcode that you
most need to understand immediately and resolutely ignoring those that you don’t.

For full information, study Apple’s own documentation (choose Help → Xcode Help);
it may seem overwhelming at first, but what you need to know is probably in there
somewhere. There are also entire books devoted to describing and explaining Xcode.

This chapter describes Xcode 4. Earlier versions, designated generically
as Xcode 3.2.x, are very different.

95

New Project
Even before you’ve written any code, an Xcode project is quite elaborate. To see this,
let’s make a new, essentially “empty” project; you’ll see instantly that it isn’t empty at
all.

1. Start up Xcode and choose File → New → New Project.

2. The “Choose a template” dialog appears. The template is your project’s initial set
of files and settings. When you pick a template, you’re really picking an existing
folder full of files; it will be one of the folders at some depth inside /Developer/
Platforms/iPhoneOS.platform/Developer/Library/Xcode/Project Templates (I use
the folder name /Developer on the assumption that when you installed the Xcode
tools you accepted the default and installed into a top-level /Developer folder). This
folder will essentially be copied, and a few values will be filled in, in order to create
your project.

So, in this case, on the left, under iOS (not Mac OS X!), choose Application. On
the right, select Window-based Application. Click Next.

3. You are now asked to provide a name for your project (Product Name). Let’s call
our new project Empty Window.

In a real project, you should give some thought to the project’s name, as you’re
going to be living in close quarters with it. As Xcode copies the template folder,
it’s going to use the project’s name to “fill in the blank” in several places, including
some filenames and some settings, such as the name of the app. Thus, whatever
you type at this moment is something you’ll be seeing in a lot of places throughout
your project, for as long as you work with this project. So use a name that is either
your app’s final name or at least approximates it.

It’s fine to use spaces in a project name. Wherever it is used as part of the name of
various files and the value of certain settings, the name you type as the Product
Name will have its spaces converted to underscores (where the template uses the
term ___PROJECTNAMEASIDENTIFIER___). But your spaces will remain in the folder
name, the project name, and the app name (where the template uses the term
___PROJECTNAME___).

4. Just below the Product Name field is the Company Identifier field. The first time
you create a project, this field will be blank, and you should fill it in. The goal here
is to create a unique string; your app’s bundle identifier, which is shown in gray
below the company identifier, will consist of the company identifier plus a version
of the project’s name, and because every project should have a unique name, the
bundle identifier will also be unique and will thus uniquely identify this project
along with the app that it produces and everything else connected with it. The
convention is to start the company identifier with com. and to follow it with a string
(possibly with multiple dot-components) that no one else is likely to use. For ex-
ample, I use com.neuburg.matt.

96 | Chapter 6: Anatomy of an Xcode Project

5. Make sure the Device Family pop-up menu is set to iPhone and that both check-
boxes are unchecked. Click Next.

6. You’ve now told Xcode how to construct your project. Basically, it’s going to copy
the folder at Application/Window-based Application/Window-based iPhone Appli-
cation from within the Project Templates folder I mentioned earlier. But you need
to tell it where to copy this folder to. That’s why Xcode is now presenting a Save
As dialog. You are to specify the location of a folder that is about to be created —
a folder that will be the project folder for this project.

The project folder can go just about anywhere, and you can move it after creating
it. So the location doesn’t matter much; I usually create new projects on the Desk-
top.

7. Xcode 4 also offers to create a git repository for your project. In real life, this can
be a great convenience, but for now, uncheck that checkbox. Click Create.

8. The Empty Window project folder is created on disk (on the Desktop, if that’s the
location you just specified), and the project window for the Empty Window project
opens in Xcode.

The project we’ve just created is a working project; it really does build an iOS app called
Empty Window. To see this, make sure that in the Scheme pop-up menu in the project
window’s toolbar there’s a checkmark next to iPhone 4.3 Simulator (though the exact
system version number might be different), and choose Product → Run. After a while,
the iOS Simulator application opens and displays your app running — an empty white
screen.

To build a project is to compile its code and assemble the compiled code,
together with various resources, into the actual app. Typically, if you
want to know whether your code compiles and your project is consis-
tently and correctly constructed, you’ll build the project (Product →
Build). To run a project is to launch the built app, in the Simulator or
on a connected device; if you want to know whether your code works
as expected, you’ll run the project (Product → Run), which automati-
cally builds first if necessary.

The Project Window
An Xcode project must embody a lot of information about what files constitute the
project and how they are to be used when building the app, such as:

• The source files (your code) that are to be compiled

• Any resources, such as icons, images, or sound files, as well as nib files, that are to
be part of the app

• Any frameworks to which the code must be linked as the app is built

The Project Window | 97

• All settings (instructions to the compiler, to the linker, and so on) that are to be
obeyed as the app is built

Xcode presents this information in graphical form, and this is one reason why a project
window is so elaborate, and why learning to navigate and understand it takes time.
Also, this single window must let you access, edit, and navigate your code, as well as
reporting the progress and results of such procedures as building or debugging an app.
In short, the single project window displays a lot of information and embodies a lot of
functionality. You won’t lose your way, however, if you just take a moment to explore
this window and see how it is constructed.

Figure 6-1 shows the project window, configured in rather an extreme manner, in order
to display as many parts of the window as possible. In real life, you’d probably never
show all these parts of the window at the same time, except very briefly, unless you had
a really big monitor.

1. On the left is the Navigator pane. Show and hide it with View → Navigators →
Show/Hide Navigator (Command-0) or with the first button in the View segmented
control in the toolbar.

2. In the middle is the Editor pane (or simply “editor”). A project window always
contains at least one Editor pane. I could have displayed this window with multiple
Editor panes, but I was afraid that might make you run screaming from the room.

3. On the right is the Utilities pane. Show and hide it with View → Utilities → Show/
Hide Utilities (Command-Option-0) or with the third button in the View segmen-
ted control in the toolbar.

Figure 6-1. The project window, on steroids

98 | Chapter 6: Anatomy of an Xcode Project

4. At the bottom is the Debugger pane. Show and hide it with View → Show/Hide
Debug Area (Shift-Command-Y) or with the second button in the View segmented
control in the toolbar.

All Xcode keyboard shortcuts can be customized; see the Key Bindings
pane of the Preferences window. Keyboard shortcuts that I cite are the
defaults.

The Navigator Pane
All navigation of the project window begins ultimately with the Navigator pane, the
column of information at the left of the window. It is possible to toggle the visibility of
the Navigator pane (View → Navigators → Hide/Show Navigator, or Command-0); for
example, once you’ve used the Navigator pane to reach the item you want to see or
work on, you might hide the Navigator pane temporarily to maximize your screen real
estate (especially on a smaller monitor). You can change the Navigator pane’s width
by dragging the vertical line at its right edge.

The Navigator pane itself can display seven different sets of information; thus, there
are actually seven navigators. These are represented by the seven icons across its top;
to switch among them, use these icons or their keyboard shortcuts (Command-1,
Command-2, and so on). You will quickly become adept at switching to the navigator
you want; their keyboard shortcuts will become second nature. If the Navigator pane
is hidden, pressing a navigator’s keyboard shortcut both shows the Navigator pane and
switches to that navigator.

Depending on your settings in the Behaviors pane of Xcode’s preferences, a navigator
might show itself automatically when you perform a certain action. For example, by
default, when you build your project, if warning messages or error messages are gen-
erated, the Issue navigator will appear. This automatic behavior will not prove trou-
blesome, because it is generally precisely the behavior you want, and if it isn’t, you can
change it; plus you can easily switch to a different navigator at any time.

The most important general use pattern for the Navigator pane is: you select something
in the Navigator pane, and that thing is displayed in the main area of the project win-
dow. Let’s begin experimenting immediately with the various navigators:

Project navigator (Command-1)
Click here for basic navigation through the files that constitute your project. For
example, in the Empty Window folder (these folder-like things in the Project nav-
igator are actually called groups) click Empty_WindowAppDelegate.m to view its
code (Figure 6-2).

At the top level of the Project navigator, with a blue Xcode icon, is the Empty
Window project itself; click it to view the settings associated with your project and

The Project Window | 99

its targets. Don’t change anything here without knowing what you’re doing! I’ll
talk later in this chapter about what these settings are for.

Symbol navigator (Command-2)
A symbol is a name, typically the name of a class or method. Depending on which
of the three icons in the filter bar at the bottom of the Symbol navigator you high-
light, you can view Cocoa’s built-in symbols or the symbols defined in your project.
The former can be a useful form of documentation; the latter can be helpful for
navigating your code. For example, highlight the first two icons in the in the filter
bar (the first two are light-colored, the third is dark), and see how quickly you can
reach the definition of the applicationDidBecomeActive: method.

Feel free to highlight the filter bar icons in various ways to see how the contents of
the Symbol navigator change. Note too that you can type in the search field in the
filter bar to limit what appears in the Symbol navigator; for example, try typing
“active” in the search field, and see what happens.

Search navigator (Command-3)
This is a powerful search facility for finding text globally in your project, and even
in the headers of Cocoa frameworks. You can also summon the Search navigator
with Edit → Find → Find in Workspace (Shift-Command-F). To access the full set
of options, click the magnifying glass and choose Show Find Options. For example,
try searching for “delegate” (Figure 6-3). Click a search result to jump to it in your
code.

Figure 6-2. The Project navigator

Figure 6-3. The Search navigator

100 | Chapter 6: Anatomy of an Xcode Project

Issue navigator (Command-4)
You’ll need this navigator primarily when your code has issues. This doesn’t refer
to emotional instability; it’s Xcode’s term for warning and error messages emitted
when you build your project.

To see the Issue navigator in action, you’ll need to give your code an issue. For
example, navigate (as you already know how to do, in at least three different ways)
to the file Empty_WindowAppDelegate.m, and in the blank line after the last com-
ment at the top of the file, above the #import line, type howdy. Save (Command-S)
and build (Command-B). The Issue navigator will display five error messages,
showing that the compiler is totally unable to cope with this illegal word appearing
in an illegal place. Click an issue to see it within its file. (Now that you’ve made
Xcode miserable, select “howdy” and delete it; build again, and your issues will be
gone. If only real life were this easy!)

Debug navigator (Command-5)
By default, this navigator will appear when your code is paused while you’re de-
bugging it. There is not a strong distinction in Xcode between running and de-
bugging; the milieu is the same. (The difference is mostly a matter of whether
breakpoints are obeyed; more about that, and about debugging in general, in
Chapter 9.) However, if your code runs and doesn’t pause, the Debug navigator
by default won’t come into play.

To see the Debug navigator in action, you’ll need to give your code a breakpoint.
Navigate once more to the file Empty_WindowAppDelegate.m, select in the line
that says return YES, and choose Product → Debug → Add Breakpoint at Current
Line to make a blue breakpoint arrow appear on that line. Run the project. (If the
project is already running, the Stop dialog will appear; click Stop to terminate the
current run and begin a new one.) By default, as the breakpoint is encountered,
the Navigator pane switches to the Debug navigator, and the Debug pane appears
at the bottom of the window.

This overall layout (Figure 6-4) will rapidly become familiar as you debug your
projects. The Navigator pane displays the call stack, with the names of the nested
methods in which the pause occurs; as you would expect, you can click on a method
name to navigate to it. You can shorten or lengthen the list with the slider at the
bottom of the pane. The Debug pane, which can be shown or hidden at will (View →
Hide/Show Debug Area, or Shift-Command-Y) consists of two subpanes, either of
which can be hidden using the segmented control at the top right of the pane.

• On the left, the variables list is populated with the variables in scope for the
selected method in the call stack (and you can optionally display processor reg-
isters as well).

• On the right is the console, where the debugger displays text messages; that’s
how you learn of exceptions thrown by your running app. Exceptions are ex-

The Project Window | 101

tremely important to know about, and this is your only way to know about
them, so keep an eye on the console as your app runs.

You can also use the console to communicate via text with the debugger. This
can often be a better way to explore variable values during a pause than the
variables list.

Breakpoint navigator (Command-6)
This navigator lists all your breakpoints. At the moment you’ve only one, but when
you’re actively debugging a large project, you’ll be glad of this navigator. Also, this
is where you create special breakpoints (such as symbolic breakpoints), and in
general it’s your center for managing existing breakpoints. We’ll return to this topic
in Chapter 9.

Log navigator (Command-7)
This navigator lists your recent major actions, such as building or running (de-
bugging) your project. Click on a listing to see the log file generated when you
performed that action. The log file might contain information that isn’t displayed
in any other way, and also it lets you dredge up messages from the recent past
(“What was that exception I got while debugging a moment ago?”).

For example, by clicking on the listing for a successful build, and by choosing to
display All and All Messages using the filter switches at the top of the log, we can
see the steps by which a build takes place (Figure 6-5). To reveal the full text of a
step, click on that step and then click the Expand Transcript button that appears
at the far right (and see also the menu items in the Editor menu).

When navigating by clicking in the Navigator pane, modifications to your click can
determine where navigation takes place. For the settings that govern these click mod-
ifications, see the General pane of Xcode’s preferences. For example, if you haven’t

Figure 6-4. The Debug layout

102 | Chapter 6: Anatomy of an Xcode Project

changed the original settings, Option-click navigates in an assistant pane (discussed
later in this chapter), and double-click navigates by opening a new window.

The Utilities Pane
The Utilities pane, the column at the right of the project window, consists partly of
inspectors that provide information about, and in some cases let you change the spec-
ifications of, the current selection, and partly of libraries that function as a source of
objects you may need while editing your project. Its importance emerges mostly when
you’re working in the nib editor (Chapter 7), and you’ll probably keep it hidden the
rest of the time. But if you have sufficient screen real estate, you might like to keep it
open while editing code, because Quick Help, a form of documentation (Chapter 8),
is displayed here as well; plus, the Utilities pane is the source of code snippets (Chap-
ter 9). To toggle the visibility of the Utilities pane, choose View → Utilities → Hide/Show
Utilities (Command-Option-0). You can change the Utilities pane’s width by dragging
the vertical line at its left edge.

Many individual inspectors and libraries are discussed in subsequent chapters. Here,
I’ll just describe the overall physical characteristics of the Utilities pane.

The Utilities pane consists of a set of palettes. Actually, there are so many of these
palettes that they are clumped into multiple sets, divided into two major groups: the
top half of the pane and the bottom half of the pane. You can change the relative heights
of these two halves by dragging the horizontal line that separates them.

The top half
What appears in the top half of the Utilities pane depends on what’s selected in
the current editor. There are two main cases:

A code file is being edited
The top half of the Utilities pane shows either the File inspector or Quick Help.
Toggle between them with the icons at the top of this half of the Utilities pane,
or with their keyboard shortcuts (Command-Option-1, Command-Option-2).
The File inspector is rarely needed, but Quick Help can be useful as docu-
mentation. The File inspector consists of multiple sections, each of which can
be expanded or collapsed by clicking its header.

Figure 6-5. Viewing a log

The Project Window | 103

A nib file is being edited
The top half of the Utilities pane shows, in addition to the File inspector and
Quick Help, the Identity inspector (Command-Option-3), the Attributes in-
spector (Command-Option-4), the Size inspector (Command-Option-5), and
the Connections inspector (Command-Option-6). Like the File inspector,
these can consist of multiple sections, each of which can be expanded or col-
lapsed by clicking its header.

The bottom half
The bottom half of the Utilities pane shows one of four libraries. Toggle between
them with the icons at the top of this half of the Utilities pane, or with their key-
board shortcuts. They are the File Template library (Command-Option-
Control-1), the Code Snippet library (Command-Option-Control-2), the Object
library (Command-Option-Control-3), and the Media library (Command-Option-
Control-4). The Object library is the most important; you’ll use it heavily when
editing a nib.

To see a help pop-up describing the currently selected item in a library, press
Spacebar.

The Editor
In the middle of the project window is the editor. This is where you get actual work
done, reading and writing your code (Chapter 9), or designing your interface in a nib
file (Chapter 7). The editor is the core of the project window. You can eliminate the
Navigator pane, the Utilities pane, and the Debug pane, but there is no such thing as
a project window without an editor (though you can cover the editor completely with
the Debug pane).

The editor provides its own form of navigation, the jump bar across the top. I’ll talk
more later about the jump bar, but for now, observe that not only does it show you
hierarchically what file is currently being edited, but also it allows you to switch to a
different file. In particular, each path component in the jump bar is also a pop-up menu.
These pop-up menus can be summoned by clicking on a path component, or by using
keyboard shortcuts (shown in the second section of the View → Editor submenu). For
example, Control-4 summons a hierarchical pop-up menu, which can be navigated
entirely with the keyboard, allowing you to choose a different file in your project to
edit. Thus you can navigate your project even if the Project navigator isn’t showing.

It is extremely likely, as you develop a project, that you’ll want to edit more than one
file simultaneously, or obtain multiple views of a single file so that you can edit two
areas of it simultaneously. This can be achieved in three ways: assistants, tabs, and
secondary windows.

104 | Chapter 6: Anatomy of an Xcode Project

Assistants
You can split the editor into multiple editors by summoning an assistant pane. To
do so, click the second button in the Editor segmented control in the toolbar, or
choose View → Editor → Assistant (Command-Option-Return). Also, by default,
adding the Option key to navigation opens an assistant pane; for example, Option-
click in the Navigator pane, or Option-choose in the jump bar, to navigate by
opening an assistant pane (or to navigate in an existing assistant pane if there is
one). To remove the assistant pane, click the first button in the Editor segmented
control in the toolbar, or choose View → Editor → Standard (Command-Return).

Your first task will be to decide how you want multiple editor panes arranged with
respect to one another. To do so, choose from the View → Assistant Layout sub-
menu. I usually prefer All Editors Stacked Vertically, but it’s purely a matter of
personal taste and convenience.

Once you’ve summoned an assistant pane, you can split it further into additional
assistant panes. To do so, click the “+” button at the top right of an assistant pane.
To dismiss a secondary assistant pane, click the “x” button at its top right. Note,
however, that clicking the “x” button at the top right does not work to dismiss the
last remaining assistant pane; you have to switch to Standard view (View → Editor →
Standard or Command-Return).

An assistant pane is not merely split-pane editing; an assistant pane can bear a
special relationship to the primary editor pane. The primary editor pane is the one
whose contents, by default, are determined by what you click on in the Navigator
pane; an assistant pane, meanwhile, can respond to what file is being edited in the
primary editor pane by changing intelligently what file it (the assistant pane) is
editing. This is called tracking.

To see tracking in action, open a single assistant pane and set the first component
in its jump bar to Counterparts (Figure 6-6). Now use the Project navigator to select
Empty_WindowAppDelegate.m; the primary editor pane displays this file, and the
assistant automatically displays Empty_WindowAppDelegate.h. Next, use the
Project navigator to select Empty_WindowAppDelegate.h; the primary editor pane
displays this file, and the assistant automatically displays Empty_WindowAppDe-
legate.m. There’s a lot of convenience and power lurking here, which you’ll explore
as you need it.

Tabs
You can embody the entire project window interface as a tab. To do so, choose
File → New → New Tab (Command -T), revealing the tab bar (just below the tool-
bar) if it wasn’t showing already. Use of a tabbed interface will likely be familiar
from applications such as Safari. You can switch between tabs by clicking on a tab,
or with Command-Shift-}. At first, your new tab will look identical to the original
window from which it was spawned. But now you can make changes in a tab —

The Project Window | 105

change what panes are showing or what file is being edited, for example — without
affecting any other tabs. Thus you can get multiple views of your project.

Secondary windows
A secondary project window is similar to a tab, but it appears as a separate window
instead of a tab in the same window. To create one, choose File → New → New
Window (Command-Shift-T). Alternatively, you can promote a tab to be a window
by dragging it right out of its current window. Yet another way to make a secondary
project window is to choose Navigate → Open In and navigate left in the resulting
dialog until the dialog offers to make a new window.

There isn’t a strong difference between a tab and a secondary window; which you use,
and for what, will be a matter of taste and convenience. I find that the advantage of a
secondary window is that you can see it at the same time as the main window, and that
it can be small. Thus, when I have a file I frequently want to refer to, I often spawn into
a secondary window an editor displaying that file, making it fairly small and without
any additional panes.

The Project File and Its Dependents
The first item in the Project navigator (Command-1) represents the project file on disk
(in our new project, this is called Empty Window). Hierarchically dependent upon it
are items that contribute to the building of the project (Figure 6-7).

Figure 6-6. Telling an assistant pane to display counterparts

Figure 6-7. The Project navigator again

106 | Chapter 6: Anatomy of an Xcode Project

Many of these items, including the project file itself, correspond to items on disk in the
project folder. To survey this correspondence, let’s examine the project folder in the
Finder simultaneously with the Xcode project window. Select the project file listing in
the Project navigator and choose File → Show in Finder.

The Finder displays the contents of your project folder (Figure 6-8). The most important
of these is Empty Window.xcodeproj. This is the project file. All Xcode’s knowledge
about your project — what files it consists of and how to build the project — is stored
in this file.

To open a project from the Finder, double-click the project file. This
will launch Xcode if it isn’t already running.

Never, never, never touch anything in a project folder by way of the
Finder, except for double-clicking the project file to open the project.
Don’t put anything directly into a project folder. Don’t remove anything
from a project folder. Don’t rename anything in a project folder. Don’t
touch anything in a project folder! Do all your interaction with the
project through the project window in Xcode.

The reason for the foregoing warning is that in order to work properly, the project
expects things in the project folder to be a certain way. If you make any alterations to
the project folder directly in the Finder, behind the project’s back, you can upset those
expectations and break the project. When you work in the project window, it is Xcode
itself that makes any necessary changes in the project folder, and all will be well. (When
you’re an Xcode power user, you’ll know when you can disobey this rule. Until then,
just obey it blindly and rigorously.)

Consider now the groups and files shown in the Project navigator as hierarchically
dependent upon the project file, and how they correspond to reality on disk as por-
trayed in the Finder. (Recall that group is the technical term for the folder-like objects
shown in the Project navigator.)

The first thing you’ll notice is that groups in the Project navigator don’t necessarily
correspond to folders on disk in the Finder, and folders on disk in the Finder don’t
necessarily correspond to groups in the Project navigator.

Figure 6-8. The project folder

The Project File and Its Dependents | 107

• The Empty Window group is, to some extent, real; it corresponds directly to the
Empty Window folder on disk. If you were to create additional files (which, in real
life, you would almost certainly do in the course of developing your project), you
would likely put them in the Empty Window group in the Project navigator so that
they’d be in the Empty Window folder on disk. (Doing so, however, is not a re-
quirement; your files can live anywhere and your project will still work fine.)

• The Supporting Files group, on the other hand, corresponds to nothing on disk;
it’s just a way of clumping some items together in the Project navigator, so that
they can be located easily and can be shown or hidden together. The things in-
side this group are real, however; you can see that the four files Empty_Window-
Info.plist, InfoPlist.strings, Empty_Window_Prefix.pch, and main.m do exist on
disk — they’re just not inside anything called Supporting Files. Rather, they’re at
the top level of the Empty Window folder — except that two of them are inside a
folder called en.lproj, which doesn’t appear in the Project navigator! (The folder
en.lproj has to do with localization, which I’ll discuss in Chapter 9.)

You may be tempted to find all this confusing. Don’t! Remember what I said about not
involving yourself with the project folder on disk in the Finder. Keep your attention on
the Project navigator, make your modifications to the project there, and all will be well.

By convention, as you add other files to your project that are not code but need to be
copied into the app as it is built, such as sound and image files, you would usually put
them into yet another group — probably, though not necessarily, a group inside the
Empty Window group. You might call this group Resources. (I usually do.) And as your
project grows further, you should feel free to create even more groups to help organize
your files. To make a new group, choose File → New → New Group. To rename a group,
select it in the Project navigator and press Return to make the name editable.

When I say “feel free,” I mean it. You want navigating your project to be easy and
intuitive. That’s what groups are for. They are just ways of making the Project navigator
work well for you. As we’ve seen, they don’t necessarily affect how the actual files are
stored on disk. Even more important, they don’t affect how the app is built. It is not
the placement of files in groups or in the Finder that causes them to be built into the
app; it’s their inclusion in the appropriate target build phase, as I’ll explain later in this
chapter.

The things in the Frameworks group and the Products group don’t correspond to any-
thing in the project folder, but they do correspond to real things that the project needs
to know about in order to build and run:

Frameworks
This group, by convention, lists frameworks (Cocoa code) that your code calls.
Frameworks exist on disk, but they are not built into your app when it is con-
structed; they don’t have to be, because they are present on the target device (an
iPhone, iPod touch, or iPad). Instead, the frameworks are linked to the app, mean-
ing that the app knows about them and expects to find them on the device when

108 | Chapter 6: Anatomy of an Xcode Project

it runs. Thus, all the framework code is omitted from the app itself, saving con-
siderable space.

Products
This group, by convention, holds an automatically generated reference to the built
app.

The Target
A target is a collection of parts along with rules and settings for how to build a product
from them. It is a major determinant of how an app is built. Whenever you build, what
you’re really building is a target.

Select the Empty Window project in the Project navigator, and you’ll see two things
on the left side of the editor: the project itself, and a list of your targets. In this case,
there is only one target, called Empty Window (just like the project itself). But there
could be more than one target, under certain circumstances. For example, you might
want to write an app that can be built as an iPhone app or as an iPad app — two different
apps that share a lot of the same code. So you might want one project containing two
targets.

If you select the project in the left side of the editor, you edit the project. If you select
the target in the left side of the editor, you edit the target. I’ll use those expressions a
lot in later instructions.

Build Phases
Edit the target and click Build Phases at the top of the editor (Figure 6-9). These are
the stages by which your app is built. By default, there are three of them with content
— Compile Sources, Link Binary With Libraries, and Copy Bundle Resources — and
those are the only stages you’ll usually need, though you can add others. The build
phases are both a report to you on how the target will be built and a set of instructions
to Xcode on how to build the target; if you change the build phases, you change the
build process.

The meanings of the three build phases are pretty straightforward:

Compile Sources
Certain files (your code) are compiled, and the resulting compiled code (a single
file called the binary) is copied into the app.

Link Binary With Libraries
Certain libraries, usually frameworks, are linked to the compiled code, so that it
will expect them to be present on the device when the app runs.

The Target | 109

Copy Bundle Resources
Certain files are copied into the app, so that your code or the system can find them
there when the app runs. For example, if your app had an icon, it would need to
be copied into the app so the device could find and display it.

By opening the build phases in the editor, you can see the files to which each phase
applies. The first phase, Compile Sources, presently compiles two files (main.m and
Empty_WindowAppDelegate.m). The second phase, Link Binary With Libraries, pres-
ently links three libraries (frameworks). The third phase, Copy Bundle Resources,
presently copies two files (InfoPlist.strings, along with MainWindow.xib, the nib file).

You can alter these lists. If something in your project was not in Copy Bundle Resources
and you wanted it copied into the app during the build process, you could drag it from
the Project navigator into the Copy Bundle Resources list, or (easier) click the “+”
button beneath the Copy Bundle Resources list to get a helpful dialog listing everything
in your project. If something in your project was in Copy Bundle Resources and you
didn’t want it copied in the app, you would delete it from the list; this would not delete
it from your project, from the Project navigator, or from the Finder.

Build Settings
Build phases are only one aspect of how a target knows how to build the app. The other
aspect is build settings. To see them, select this project’s single target in the editor, and
click Build Settings at the top of the editor (Figure 6-10). Here you’ll find a long list of
settings, most of which you’ll never touch. But Xcode examines this list in order to
know what to do at various stages of the build process. Build settings are the reason
your project compiles and builds the way it does.

You can determine what build settings are displayed by clicking Basic or All. The set-
tings are combined into categories, and you can close or open each category heading
to save room. If you know something about a setting you want to see, such as its name,
you can use the search field at the top right to filter what settings are shown.

Figure 6-9. Build phases

110 | Chapter 6: Anatomy of an Xcode Project

You can determine how build settings are displayed by clicking Combined or Levels;
in Figure 6-10, I’ve clicked Levels, in order to discuss what levels are. It turns out that
not only does a target contain values for the build settings, but the project also contains
values for the same build settings; furthermore, Xcode has certain built-in default build
setting values. The Levels display shows all of these levels at once, so you can under-
stand the derivation of the actual values used for every build setting.

To understand the chart, read from right to left. For example, the C/C++ Compiler
Version build setting, which determines what compiler is used (see “Choosing a Com-
piler” on page 6), is set to be GCC 4.2 by the built-in Xcode default (the rightmost
column). Then, however, the project comes along with a different value for this build
setting, namely LLVM GCC 4.2 (second column from the right). The target does not
override this value (third column from the right). Therefore the actual value used will
be LLVM GCC 4.2 (fourth column from the right, “Resolved”).

If you wanted to change this value, you could, here and now. You could change the
value at the project level or at the target level. I’m not suggesting that you should do
so; indeed, you will rarely have occasion to manipulate build settings directly, as the
defaults are usually acceptable. Nevertheless, you can change build setting values, and
this is where you would do so. For details on what the various build settings are, consult
Apple’s documentation, especially the Xcode Build Setting Reference. Also, you can
select a build setting and show Quick Help in the Utilities pane to learn more about it.

Configurations
There are actually multiple lists of build setting values — though only one such list
applies when a build is performed. Each such list is called a configuration. Multiple
configurations are needed because you build in different ways at different times for
different purposes, and thus you’ll want certain build settings to take on different values
under different circumstances.

By default, there are two configurations:

Debug
This configuration is used throughout the development process, as you write and
run your app.

Figure 6-10. Target build settings

The Target | 111

Release
This configuration is used for late-stage testing, when you want to check perform-
ance on a device.

Configurations exist at all because the project says so. To see where the project says
so, select the project in the editor and click Info at the top of the editor (Figure 6-11).
Note that these configurations are just names. You can make additional configurations,
and when you do, you’re just adding to a list of names. The importance of configura-
tions emerges only when those names are coupled with build setting values. Configu-
rations can affect build setting values both at the project level and at the target level.

For example, return to the target build settings (Figure 6-10) and type “Strip” into the
search field to filter the list of settings. You’ll immediately spot the Strip Debug Symbols
During Copy build setting. It has two values: one for the Debug configuration, one for
the Release configuration. When you make a debug build, you use the Debug config-
uration, and the value for this setting is No; that way, debugging is possible because
the needed names are included in the built app. When you make a release build, you
use the Release configuration, and the value for this setting is Yes; that way, the app is
smaller, but debugging isn’t possible because the needed names aren’t present.

Here’s another example. Type “Optim” into the search field. Now you can look at the
Optimization Level build setting. The Debug configuration value for Optimization
Level is None: while you’re developing your app, your code is just compiled line by
line in a straightforward way. The Release configuration value for Optimization Level
is Fastest, Smallest; the resulting binary is faster and smaller, which is great when the
app runs on a device, but would be no good while you’re developing the app because
breakpoints and stepping in the debugger wouldn’t work properly. (A not uncommon
beginner error is building with the Release configuration and then wondering why the
debugger isn’t pausing at breakpoints any more.)

Schemes and Destinations
So far, I have said that there are configurations, and I have explained that you may need
to switch between configurations in order to get the build setting values appropriate
for your current purpose. But I have not said how the configuration is determined as
you actually build. It’s determined by a scheme.

A scheme unites a target (or multiple targets) to be built with a build configuration,
with respect to the purpose for which you’re building. A new project, such as Empty

Figure 6-11. Configurations

112 | Chapter 6: Anatomy of an Xcode Project

Window, comes by default with a single scheme, named after the project’s single target.
Thus this project’s single scheme is called, by default, Empty Window. To see it, choose
Product → Edit Scheme. The scheme editor dialog opens. Make sure that Info at the
top of the dialog is selected.

On the left side of the scheme editor are listed various actions you might perform from
the Product menu. Click an action to see its corresponding settings in this scheme. Of
these actions, Build and Run are the most common, and the only ones I’ve discussed
up to now, so we’ll concentrate on them. The Build action is different from the other
actions, because it is common to all of them (the other actions all implicitly involve
building); thus the Build action merely determines what target(s) will be built when
each of the other actions is performed, and for our simple project this is trivial, because
we’ve only one target and we always need it built. So, now consider the Run action.

When you click the Run action at the left, the editor displays the settings that will be
used when you build and run (Figure 6-12). As you can see, the Build Configuration
pop-up menu is set to Debug. That explains where the current build configuration
comes from. At the moment, whenever you build and run, you’re using the Debug build
configuration and the build setting values that correspond to it, because you’re using
this scheme, and that’s what this scheme says to do when you build and run.

Now dismiss the scheme editor, and consider this question: suppose you wanted to
build and run using the Release build configuration. (The Debug build configuration
settings may affect the behavior of the built app, so you want to test the app as an actual
user would experience it.) How would you do this? One way would be to return to the
scheme editor and change the build configuration for this scheme. Xcode makes this
convenient: hold the Option key as you choose Product → Run (or as you click the Run
button in the toolbar). The scheme editor appears, containing a Run button. So now
you can make any changes you like, such as setting the Build Configuration pop-up
menu to Release for the Run action, and proceed directly to build and run the app by
clicking Run.

Figure 6-12. The scheme editor

The Target | 113

(If you’re following along and you did make this change, open the scheme editor again
and set the Build Configuration pop-up for the Run action in our Empty Window
scheme back to Debug.)

On the other hand, if you were to find yourself often wanting to switch between building
and running with the Debug configuration and building and running with the Release
configuration, you might make a distinct scheme that uses the Release debug config-
uration for the Run action. This is easy to do: in the scheme editor, click Duplicate
Scheme. The name of the new scheme is editable; let’s call it Release. Change the Build
Configuration pop-up for the Run action in our new scheme to Release, and dismiss
the scheme editor.

Now you have two schemes, Empty Window (whose build configuration for running
is Debug) and Release (whose build configuration for running is Release). To switch
between them easily, you can use the Scheme pop-up menu in the project window
toolbar (Figure 6-13) before you build and run.

The Scheme pop-up menu lists each scheme, along with each destination on which you
might run your built app. A destination is effectively a machine that can run your app.
For example, you might want to run the app in the Simulator or on a physical device.
There is no configuration of destinations; you are automatically assigned destinations,
depending on what system your project is set to run on and what devices are connected
to your computer. Destinations and schemes have nothing to do with one another; your
app is built the same way regardless of your chosen destination. The presence of des-
tinations in the Scheme pop-up menu is intended as a convenience, allowing you to
use the pop-up menu to choose either a scheme or a destination, or both, in a single
move.

Figure 6-13. The Scheme pop-up menu

114 | Chapter 6: Anatomy of an Xcode Project

The listing of destinations together with schemes in a single pop-up
menu may be intended as a convenience, but the repetition of all desti-
nations for every scheme can make the Scheme pop-up menu long and
unwieldy. Moreover, it’s confusing, because destinations and schemes
have nothing to do with one another (they are orthogonal, independent
settings), and yet here they are together in a single menu. It would have
been better to have two pop-up menus, one for choosing a scheme, and
another for choosing a destination. In fact, in the scheme editor, that’s
exactly what you see! For this reason, you may find it more useful to
switch among schemes or among destinations by using the scheme ed-
itor. Pressing Command-Option-R to pass through the scheme editor
on your way to building and running your app will quickly become
second nature.

From Project to App
An app file is really a special kind of folder called a package (and a special kind of
package called a bundle). The Finder normally disguises a package as a file and does
not dive into it to reveal its contents to the user, but you can bypass this protection and
investigate an app bundle with the Show Package Contents command. By doing so,
you can study the structure of your built app bundle.

We’ll use the Empty Window app that we built earlier as a sample minimal app to
investigate. You’ll have to locate it in the Finder; by default, it should be somewhere
in your user Library/Developer/Xcode/DerivedData folder, as shown in Figure 6-14. (In
theory, you should be able to select the app under Products in the Navigation pane and
choose File → Show in Finder, but there seems to be a bug preventing this.)

In the Finder, Control-click the Empty Window app and choose Show Package Con-
tents from the contextual menu.

Looking inside our minimal app bundle (Figure 6-15), we see that it contains just five
files:

Figure 6-14. The built app, in the Finder

From Project to App | 115

PkgInfo
A tiny text file reading APPL????, signifying the type and creator codes for this app.
The PkgInfo file something of a dinosaur; it isn’t really necessary for the functioning
of an iOS app and is generated automatically. You’ll never need to touch it.

InfoPlist.strings
A text file intended for text appearing in our app that might need to be translated
into different languages. It is copied directly from InfoPlist.strings in the project.
We haven’t edited this file, and our app currently appears only in English, so this
file is of no interest at the moment.

MainWindow.nib
Currently, our app’s only nib file. It contains instructions for generating an instance
of our app’s main window (currently just a white rectangle — an empty window).
It is created (“compiled”) from the MainWindow.xib file in the project; a .xib file
and a .nib file are different forms of the same thing. This particular nib file is the
main nib file, which means that when the app is launched, this nib file is loaded
automatically so that the window it describes is instantiated and can be displayed.

Empty Window
Our app’s compiled code (the binary). When the app is launched, the binary is
linked to the various frameworks, and the code begins to run (starting with the
entry point in the main function).

Info.plist
A configuration file in a strict text format (a property list file). It is derived from the
project file Empty_WindowInfo.plist. It contains instructions to the system about
how to treat and launch the app. For example, if our app had an icon, Info.plist
would tell the system its name, so that the system could dive into the app bundle,
find it, and display it. It also tells the system things like the name of the binary and
the name of the main nib file, so that the system can find them and launch the app
correctly.

In real life, an app bundle will contain more files, but the difference will mostly be one
of degree, not kind. For example, our project might have additional nib files, icon image
files, and image or sound files. All of these would make their way into the app bundle.

You are now in a position to appreciate, in a general sense, how the components of our
project are treated and assembled into an app, and what responsibilities accrue to you,

Figure 6-15. Contents of the app package

116 | Chapter 6: Anatomy of an Xcode Project

the programmer, in order to ensure that the app is built correctly. The rest of this
chapter outlines what goes into the building of an app from a project.

Build Settings
We have already talked about how build settings are determined. Xcode itself, the
project, and the target all contribute to the resolved build setting values, some of which
may differ depending on the build configuration. Before building, you, the program-
mer, will have already specified a scheme; the scheme determines the build configura-
tion, the specific set of build setting values that will apply as the build proceeds.

Property List Settings
Your project contains a property list file that will be used to generate the built app’s
Info.plist file. The target knows what file it is because it is named in the Info.plist File
build setting. For example, in our project, the value of the Info.plist File build setting
has been set automatically to Empty Window/Empty_Window-Info.plist. (Take a look
at the build settings and see!)

Because the name of the file in your project from which the built app’s
Info.plist file is generated will vary, depending on the name of the
project, I’ll refer to it generically as the project’s Info.plist.

The property list file is a collection of key–value pairs. You can edit it, and will probably
need to do so. There are two main ways to edit your project’s Info.plist:

• Select the file in the Project navigator and edit in the editor. By default, the key
names (and some of the values) are displayed descriptively, in terms of their func-
tionality; for example, it says “Bundle name” instead of the actual key, which is
CFBundleName. But you can view the actual keys by choosing Editor → Show Raw
Keys & Values (you might have to click in the editor to enable this menu item).

• Edit the target, and click Info at the top of the editor. This pane shows effectively
the same information as editing the Info.plist in the editor.

I’m not going to enumerate all the key–value pairs you might want to edit in your
project’s property list file, but I’ll just call attention to a few that you will almost cer-
tainly want to edit (and I’ll talk about others in Chapter 9 and elsewhere):

Bundle display name (CFBundleDisplayName)
The name that appears under your app’s icon on the device screen; this name needs
to be short in order to avoid truncation.

From Project to App | 117

Bundle identifier (CFBundleIdentifier)
Your app’s unique identifier, used throughout the development process and when
submitting to the App Store. I talked earlier in this chapter about how this is derived
from your company name when you create a project.

Bundle version (CFBundleVersion)
A version string, which will appear at the App Store. You should increment the
version when you develop and submit an update to an existing app.

For a complete list of the possible keys and their meanings, see Apple’s document
Information Property List Key Reference.

Nib Files
You edit a nib file (technically, this will probably be a .xib file) to describe graphically
some objects that you want instantiated when the nib file loads (Chapter 5). Your app
is likely to have at least one nib file. By breaking your interface into multiple nib files,
you simplify the relationship between each nib file and your code; also, if nibs that
aren’t needed when your app launches aren’t loaded until they are needed, you speed
up your app’s launch time, and you streamline your app’s memory usage (because nib
objects are not instantiated until the nib is loaded, and can then be destroyed when
they are no longer needed).

The target knows about your nib files because they appear in its Copy Bundle Resources
build phase. In the case of a nib file in .xib format, the file is not merely copied into the
app bundle; Xcode also translates (compiles) it into a .nib file (using the ibtool tool).

Nib files located inside your app bundle are loaded when they are needed as the app
runs, usually because code tells them to load. However, one nib file is special: the main
nib file. It must load before any code has a chance to tell it to do so. The main nib file
is designated by the Info.plist key “Main nib file base name” (NSMainNibFile); the system
sees this and loads the main nib file automatically as the app launches.

A universal app — that is, an app that runs both on the iPad and on the
iPhone — typically has two main nib files; the main nib file to be loaded
when the app runs on an iPad is specified by the Info.plist key “Main
nib file base name (iPad)” (NSMainNibFile~ipad). Thus the app can have
different basic interfaces on the two different types of device.

See Chapter 7 for more details about nib files.

Other Resources
Our app doesn’t currently have any additional resources — not even an icon file. But
if it did, the target would know about them because they appear in its Copy Bundle

118 | Chapter 6: Anatomy of an Xcode Project

Resources build phase. In general, such resources would be copied unchanged into the
app bundle.

With the exception of the app’s icon and some images with standardized names, all of
which are found and used by the system, additional resources are present because you
want your running app to be able to fetch them out of its bundle. For example, if your
app needs to display a certain image, you’d add the image to your project and make
sure it appears in the Copy Bundle Resources build phase. When the app runs, your
code (or possibly the code implied by a loaded nib file) reaches into the app bundle,
locates the image, and displays it (Chapter 15).

To add a resource to your project, start in the Project navigator and choose File → Add
Files to Empty Window (or whatever the name of the project is). Alternatively, drag
the resource from the Finder into the Project navigator. Either way, a dialog appears
(Figure 6-16) containing a pane in which you make the following settings:

Copy items into destination group’s folder (if needed)
You should almost certainly check this checkbox. Doing so causes the resource to
be copied into the project folder. If you leave this checkbox unchecked, your project
will be relying on a file that’s outside the project folder and that you might delete
or change unintentionally. Keeping everything your project needs inside the project
folder is far safer.

Folders
This choice matters only if what you’re adding to the project is a folder. In both
cases, whether the folder is copied into the project folder depends on whether you
checked the checkbox discussed in the previous paragraph; the difference is in how
the project references the folder contents:

Create groups for any added folders
The folder is expressed as a group within the Project navigator, but its contents
all appear individually in the Copy Bundle Resources build phase, so they will
all be copied individually into the app bundle.

Create folder references for any added folders
The folder itself is shown in blue in the Project navigator and appears as a
folder in the Copy Bundle Resources build phase; thus, the build process will
copy the entire folder and its contents into the app bundle. This means that
the resources inside the folder won’t be at the top level of the bundle, but in a

Figure 6-16. Options when adding a resource to a project

From Project to App | 119

subfolder of it; your code might have to specify the folder name when loading
such a resource. Such an arrangement can be valuable if you have many re-
sources and you want to separate them into categories (rather than clumping
them all at the top level of the app bundle) or if the folder hierarchy among
resources is meaningful to your app.

Add to Targets
Checking this checkbox causes the resource to be added to the target’s Copy Bun-
dle Resources build phase. Thus you will almost certainly want to check it; why
else would you be adding this resource to the project? But if this checkbox is un-
checked and you realize later that a resource listed in the Project navigator needs
to be added to the Copy Bundle Resources build phase, you can add it manually,
as I described earlier.

An alternative way to copy resources from your project into the app bundle is through
a custom Copy Files build phase that you add to your target. To do so, edit the target,
switch to Build Phases, and click Add Build Phase (at the lower right) and choose Add
Copy Files. A Copy Files build phase appears; open its triangle, and you’ll find you can
specify a custom path within the app bundle. For example, if you leave the Destination
pop-up menu set to Resources and type “Pix” in the Subpath field, then any resources
you add to this build phase will be copied into a folder called Pix in the app bundle.

A custom Copy Files build phase of this sort can be a good way of keeping resources
organized by folder inside your app bundle; I frequently use it for this purpose. Bear in
mind, however, that it is entirely up to you to make sure that the desired resources are
placed inside the appropriate Copy Files build phase (and that they are not placed in
the normal Copy Bundle Resources build phase, because if they are, you’ll end up with
two copies of the resource in your app bundle). Also, your code may have to specify
the path in order to fetch the resource from inside the app bundle.

Code
Code declaring a single class, Empty_WindowAppDelegate, was created for you when
the project was created; the implementation file for this class (Empty_WindowAppDe-
legate.m) appears in the target’s Compile Sources build phase. If you create any further
class files, you’ll specify that they should be added to the target, and they too will then
have their implementation files listed in the Compile Sources build phase. This (the
contents of the Compile Sources build phase) is how your target knows what files to
compile to create the app’s binary.

The binary that results from compilation of these files is your project’s executable, and
is placed into the app bundle, with its name being by default the same as the name of
the target. The app bundle’s Info.plist file has an “Executable file” (CFBundle-
Executable) key whose value is the name of the binary; this is how the system knows
how to locate the executable and launch the app.

120 | Chapter 6: Anatomy of an Xcode Project

Besides the class code files you create (or that Xcode creates for you), your project
contains a main.m file. This too is in the Compile Sources build phase; it had better be,
because this file contains the all-important main function, the entry point to your app’s
code! Here are its contents:

int main(int argc, char *argv[])
{
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
 int retVal = UIApplicationMain(argc, argv, nil, nil);
 [pool release];
 return retVal;
}

The main function is very simple, but it’s crucial. It calls UIApplicationMain, which sets
everything else in motion, creating your first object (the shared UIApplication instance),
loading the main nib file, calling any appropriate delegate code (which is responsible
for presenting the initial interface, as I’ll explain in Chapter 7), and then just sitting
there, watching for the user to do something (the event loop). The call to UIApplication-
Main is wrapped in some memory management functionality (the pool stuff) that I’ll
explain in Chapter 12.

Finally, notice the file Empty_Window_Prefix.pch in the Project navigator. This is your
project’s precompiled header file. It isn’t listed in the Compile Sources build phase be-
cause it is actually compiled before that build phase; the target knows about it because
it is pointed to by the Prefix Header build setting.

The precompiled header is a device for making compilation go faster. It’s a header file;
it is compiled once (or at least, very infrequently) and the results are cached (off
in /var/folders/) and are implicitly imported by all your code files. So the precompiled
header should consist primarily of #import directives for headers that never change
(such as the built-in Cocoa headers); it is also a reasonable place to put #defines that
will never change and that are to be shared by all your code.

The default precompiled header file imports <Foundation/Foundation.h> (the Core
Foundation framework header) and <UIKit/UIKit.h> (the Cocoa framework).

Frameworks and SDKs
A framework is a library of compiled code used by your code. Most of the frameworks
you are likely to use will be Apple’s built-in frameworks; they are built-in in the sense
that they are part of the system on the device where your app will run — they live
in /System/Library/Frameworks, though you can’t tell that on an iPhone or iPad because
there’s no way to view the filesystem directly.

However, your code needs to use these frameworks not only when running on a device
but also when building and when running in the Simulator. To make this possible, part
of the device’s system — in particular, the part containing its frameworks — is dupli-
cated on your computer, in the /Developer folder. This duplicated subset of the device’s

From Project to App | 121

system is called an SDK (for “software development kit”) and is something you can see
directly in the Finder. For example, look at /Developer/Platforms/iPhoneOS.platform/
Developer/SDKs/iPhoneOS4.3.sdk/System/Library/Frameworks; behold, there are the
frameworks included on a device running iOS 4.3.

To use a framework in your code, you must do two things:

Import the framework’s header
A framework has a header file, which provides (usually by importing other header
files within the framework) the interface information about classes in that frame-
work. Your code needs this information in order to compile successfully. You im-
port the header with an appropriate #import directive.

Link to the framework
A framework is a package; you must instruct the build system to associate this
package with your app’s executable binary, so that your binary’s calls to code
within that framework can be routed into the framework’s compiled code. This is
necessary in order for your app to run successfully. Such an association is called
linking the binary with the framework, and you instruct the build system to do this
by including the framework in the target’s Link Binary With Libraries build phase.

You might think that linkage is impossible because the framework to which we
ultimately want to link is off on a target device somewhere. But linkage is path-
based, and the path is determined relative to the current SDK. Thus, the linkage
to the UIKit framework uses the path System/Library/Frameworks/UIKit.frame-
work. This path is relative to the current SDK, so if you’re using the iOS 4.3 SDK,
the path during development will be /Developer/Platforms/iPhoneOS.platform/De-
veloper/SDKs/iPhoneOS4.3.sdk/System/Library/Frameworks/UIKit.framework.
But when the app runs on the device, there is no SDK, and the path becomes
absolute, starting at the top level of the device. Thus, when the app runs in the
Simulator, the framework is found successfully on your computer, and when the
app runs on a device, the framework is found successfully on the device.

By default, three frameworks are linked into your target:

Foundation
Many basic Cocoa classes, such as NSString and NSArray and others whose names
begin with “NS,” are part of the Foundation framework. The Foundation frame-
work is imported in the precompiled header file (and, by default, in the headers of
new classes that you create). In turn, it imports the Core Foundation headers and
loads the Core Foundation framework as a subframework; thus, there is no need
for you to import or link explicitly to the Core Foundation framework (which is
full of functions and pointer types whose names begin with “CF,” such as CFString-
Ref).

122 | Chapter 6: Anatomy of an Xcode Project

UIKit
Cocoa classes that are specialized for iOS, whose names begin with “UI,” are part
of the UIKit framework. The UIKit framework is imported in the precompiled
header file (and by templated class code files such as Empty_WindowAppDele-
gate.h).

Core Graphics
The Core Graphics framework defines many structs and functions connected with
drawing, whose names begin with “CG.” It is imported by many UIKit headers, so
you won’t need to import it explicitly.

You might find that the three default frameworks are sufficient to your needs, or you
might find that you need other frameworks to provide additional functionality. How
will you know that a class or function you want to use resides outside the three default
frameworks? You might get a clue from its name, which won’t begin with “NS,” “UI,”
or “CG”, but more often, if you’re like me, you’ll be alerted by banging up against the
compiler.

For example, let’s say you’ve just found out about animation (Chapter 17) and you’re
raring to try it in your app. So, in your code, you create a CABasicAnimation:

CABasicAnimation* anim = [CABasicAnimation animation];

The next time you try to build your app, the compiler complains that CABasicAnima-
tion is undeclared (and that it therefore can’t make sense of anim either). That’s when
you realize you need to import a framework header. Near the start of the CABasicA-
nimation class documentation is a line announcing that it’s in QuartzCore.frame-
work. You might guess (correctly) that the way to import the main Quartz Core frame-
work header is to put this line near the start of your implementation file:

#import <QuartzCore/QuartzCore.h>

This works to quiet the compiler. Remember, though, that I said that using a framework
requires two things; we’ve done only one of them. So your code still doesn’t build. This
time, you get a build error during the link phase of the build process complaining about
_OBJC_CLASS_$_CABasicAnimation and saying, “Symbol(s) not found.” That mysterious-
sounding error merely means that you’ve forgotten to link your target to the Quartz
Core framework.

To link your target to a framework, edit the target, click Build Phases at the top of the
editor, open the Link Binary with Libraries build phase, and click the “+” button at the
bottom of the build phase. A dialog appears nicely listing the existing frameworks that
are part of the active SDK. Select QuartzCore.framework and click Add. The Quartz
Core framework is added to the target’s Link Binary With Libraries build phase. (It also
appears in the Project navigator; you might like to drag it manually into the Frameworks
group, for the sake of neatness.) Now you can build (and run) your app.

You might wonder why the project isn’t linked by default to all the frameworks, so that
you don’t have to go through this process every time you stray beyond the default three

From Project to App | 123

frameworks. It’s just a matter of time and resources. Importing headers increases the
size of your code; linking to frameworks slows down your app’s launch time. You
should link to only the frameworks needed for your code to run.

Where you import a framework header depends on how you intend to use it. It’s simply
a matter of scope. If a framework’s classes are to be mentioned only within a single
implementation file, then you can import it at the start of that implementation file. If
you want to subclass one of the framework’s classes, you’ll need to import it at the start
of the interface file that declares the subclass; in that case, every implementation file
that imports this interface file imports the framework header, and there’s no need to
import the framework header separately in the implementation file. Of course, for
maximum scope, you can simply import the framework header in the precompiled
header file, making that framework available throughout your code.

124 | Chapter 6: Anatomy of an Xcode Project

CHAPTER 7

Nib Management

A nib file, or simply nib, is a file containing a drawing of a piece of your interface. The
term nib is not really an English word (it has nothing to do with fountain pens, for
example); it is based on the file extension .nib that is used to signify this type of file, an
extension that originated as an acronym (for “NeXTStep Interface Builder”). Nowa-
days, you will usually develop your interface using a file format whose extension
is .xib; when your app is built, your target’s .xib files are translated (“compiled”)
into .nib format (Chapter 6). But a .xib file is still referred to as a nib file. I will speak
of the same nib file as having either a .xib extension (if you’re editing it) or a .nib
extension (if it’s in the built app).

You construct your program in two ways — writing code, and drawing the interface.
But these are really two ways of accomplishing the same ends; drawing the interface
is a way of writing code. When the app runs and your drawing of the interface in a nib
file is loaded, it is translated into instructions for instantiating and initializing the ob-
jects in the nib file. You could equally have instantiated and initialized those same
objects in code. (This point is crucial; see “Nib-Based Instantiation” on page 77.) In-
deed, deciding whether to create an interface object in code or through a nib file is not
always easy; each approach has its advantages. The important thing is to understand
how interface objects drawn in a nib file are instantiated and connected to your code
when the app runs.

This chapter describes Xcode 4. Earlier versions, designated generically
as Xcode 3.2.x, are very different. Up through Xcode 3.2.x, nib editing
was performed in a separate application, Interface Builder. Starting in
Xcode 4, the functionality of Interface Builder is rolled into Xcode itself.

A Tour of the Nib-Editing Interface
Let’s use an actual nib file to explore the Xcode nib-editing interface. In Chapter 6, we
created a simple Xcode project, Empty Window; it contains a nib file, so we’ll use that.

125

In Xcode, open the Empty Window project, locate the MainWindow.xib listing in the
Project navigator, and click it to edit it.

Figure 7-1 shows the project window after selecting MainWindow.xib and making some
additional adjustments. The Navigator pane is hidden; the Utilities pane is showing.
Within the Utilities pane, the Size inspector and the Object library are showing. The
interface may be considered in four pieces:

1. At the left of the editor is the dock, showing the nib’s top-level objects. The dock
can be expanded by dragging its right edge or by clicking the tiny arrow button at
the lower left; then it shows all of the nib’s objects hierarchically.

2. The remainder of the editor is devoted to the canvas, where you physically design
your app’s interface. The canvas portrays views in your app’s interface and things
that can contain views. (A view is an interface object, which draws itself into a
rectangular area. The phrase “things that can contain views” is my way of including
view controllers, which are represented in the canvas even though they are not
drawn in your app’s interface.)

3. The inspectors in the Utilities pane are where you view and edit details of the
currently selected object.

4. The libraries in the Utilities pane, especially the Object library, are your source for
interface objects to be added to the nib.

Figure 7-1. Editing a nib file

126 | Chapter 7: Nib Management

The Dock
The dock, as I’ve already said, shows the nib’s top-level objects. To see what this means,
you need first to envision the nib as containing objects. Some of these objects — those
that represent views — are arranged in a hierarchy of containment. Objects that are
contained by no other object are top-level objects.

A view can contain other views (its subviews) and can be contained by another view
(its superview); for example, a button might be a subview of a window, and that window
would be that button’s superview. One view can contain many subviews, which might
themselves contain subviews. But each view can have only one immediate superview.
Thus there is a hierarchical tree of subviews contained by their superviews with a single
object at the top. The highest superview of any such hierarchy in the nib is a top-level
object and appears in the dock. That’s why the window object (labeled Window in
Figure 7-1) appears in this nib’s dock: it is a view contained by no other view.

A nib file can actually contain two types of top-level object:

Placeholders (proxy objects)
A placeholder, or proxy object, represents an object that already exists in your app’s
code at the time the nib is loaded. Proxy objects appear in a nib file chiefly so that
you can provide communication between objects in your app’s code and objects
instantiated from the nib. You can’t create or delete a proxy object; the dock is
populated automatically with them. Proxy objects are shown above the dividing
line in the dock.

Nib objects
A nib object is an object that is instantiated by the nib — that is, the instance it
represents will be created when your code runs and the nib loads. You can create
new nib objects. Top-level nib objects are shown below the dividing line in the
dock.

The dock can be expanded (by clicking the tiny triangle button at its bottom left); it
then portrays objects by name (label), and shows as an outline the full hierarchy of
objects in this nib (Figure 7-2). At present, expanding the dock may seem silly, because
there is no hierarchy; all objects in this nib are top-level objects. But when a nib contains
many levels of hierarchically arranged objects, you’re going to be very glad of the ability
to survey them all in a nice outline, and to select the one you’re after, thanks to the
expanded dock. You can also rearrange the hierarchy here; for example, if you’ve made
an object a subview of the wrong view, you can drag it onto the view it should be a
subview of within this outline.

You can also select objects using the jump bar at the top of the editor. First, click on
the canvas background so that no object is selected; the entire hierarchy of the objects
in your nib is then shown as a set of hierarchical menus off the rightmost jump bar path
component (Control-6). Again, this may seem like small potatoes now, when your nib

A Tour of the Nib-Editing Interface | 127

contains just four top-level objects and nothing more, but it will be valuable when
you’ve many nib objects in a hierarchy.

The names (labels) by which nib objects are designated are meaningful only while ed-
iting a nib file; they have no relationship to your code. When the dock is expanded,
each object is portrayed by its label, as shown in Figure 7-2. When the dock is collapsed,
you can see a top-level object’s label by hovering the mouse over it, as shown in Fig-
ure 7-1. If you find an object’s label unhelpful, you can change it in the expanded dock;
select the object and press Return to make its label editable. Alternatively, select the
object and edit the Label field of the Identity section of the Identity inspector
(Command-Option-3).

Canvas
The canvas presents a graphical representation of a top-level nib object along with its
subviews, similar to what you’re probably accustomed to in any drawing program. If
a top-level nib object has a graphical representation (not every top-level nib object has
one), you can click on it in the dock to display that representation in the canvas. A little
dot to the left of a top-level object in the collapsed dock indicates that it is currently
being displayed graphically in the canvas.

To remove the canvas representation of a top-level nib object, click the “x” at its upper
left; this merely clears the representation from the canvas — it does not remove the
top-level nib object from the dock (or from the nib), and of course you can always bring
back the graphical representation by clicking that nib object in the dock again. On the
other hand, the canvas is scrollable and automatically accommodates all graphical rep-
resentations within it, so you can keep as many graphical representations open in the
canvas as you like, side by side, and scroll to see each one, regardless of the size of your
monitor; thus you might never need to remove the canvas representation of a top-level
nib object at all.

Our simple Empty Window project’s MainWindow.xib contains just one top-level nib
object that has a graphical representation — the app’s window, called Window. Be-
cause this is our app’s window, any changes you make here will be reflected in the app’s
user interface when you run it. To see this, we’re going to add a subview to it:

1. Ensure that the Window in the dock is being displayed in the canvas.

2. Look at the Object library (Control-Option-Command-3). Click the second button
in the segmented control to put the Object library into list view, if it isn’t in list

Figure 7-2. The dock, expanded

128 | Chapter 7: Nib Management

view already. Locate the Round Rect Button (you can type “button” into the filter
bar at the bottom of the library as a shortcut).

3. Drag the Round Rect Button from the Object library into the Window in the canvas
(Figure 7-3). Don’t accidentally drop the button onto the canvas background, out-
side of the window! This would cause the button to become a top-level object,
which is not what you want. If that happens, select the button in the dock and
press Delete, and try again.

A button now appears in the window in the canvas. The move we’ve just performed
— dragging from the Object library into the canvas — is extremely characteristic; you’ll
do it often as you design your interface. Here are two alternative ways to do the same
thing:

• Double-click an object in the Object library; if a view (such as our window) is
already selected in the canvas, a copy of that object becomes a subview of it.

• Type some part of an object’s name in the filter bar; you can then use arrow keys
to select the correct object, if needed, and finally press Return to copy the object
into the canvas. You can switch to the Object library with Control-Option-Com-
mand-3, and this also puts focus in the filter bar, so the whole operation can be
performed with the keyboard.

Next, play around with the button in the window. Much as in a drawing program, the
nib editor provides features to aid you in designing your interface. Here are some things
to try:

• Select it: resizing handles appear.

• Resize it to make it wider: dimension information appears.

• Drag it near the edge of the window: a guideline appears, showing a standard
margin space between the edge of the button and the edge of the window.

• With the button selected, hold down the Option key and hover the mouse outside
the button: arrows and numbers appear showing the pixel distance between the

Figure 7-3. Dragging a button into a window

A Tour of the Nib-Editing Interface | 129

button and the edges of the window. (If you accidentally clicked and dragged while
you were holding Option, you’ll now have two buttons. That’s because Option-
dragging an object duplicates it. Select the unwanted button and press Delete to
remove it.)

• Shift-Control-click on the button: a menu appears, letting you select the button or
whatever’s behind it (in this case, the window).

Let’s prove that we really are designing our app’s interface. We’ll run the app to see
that its interface has changed.

1. Make sure that the Breakpoints button in the window toolbar is not selected, as
we don’t want to pause at any breakpoints you may have created while reading the
previous chapter.

2. Make sure the destination in the Scheme pop-up menu is the iPhone Simulator.

3. Choose Product → Run (or click the Run button in the toolbar).

After a heart-stopping pause, the iOS Simulator opens, and presto, our empty window
is empty no longer (Figure 7-4); it contains a round rect button! You can tap this button
with the mouse, emulating what the user would do with a finger; the button highlights
as you tap it.

Inspectors and Libraries
There are four inspectors that appear only when you’re editing a nib and apply to
whatever object is selected in the dock or canvas:

Figure 7-4. The Empty Window app’s window is empty no longer

130 | Chapter 7: Nib Management

Identity inspector (Command-Option-3)
Far and away the most important section of this inspector is the first one, the
Custom Class. The selected object’s Class setting tells you the object’s class, and
you can use it to change the object’s class. Some situations in which you’ll need to
change the class of an object in the nib appear later in this chapter.

Attributes inspector (Command-Option-4)
Settings here correspond to properties and methods that you might use to configure
the object in code. For example, the Type pop-up menu in the Attributes inspector
for the button in our window says this UIButton’s Type is Rounded Rect; this
corresponds to calling buttonWithType: with an argument value of UIButtonType-
RoundedRect. Similarly, typing a value in the Title field is like calling the button’s
setTitle:forState: method. The UIButton Attributes inspector has three sections,
corresponding to UIButton’s class inheritance — a UIButton is also a UIControl
(“Control” in the inspector) and a UIView (“View” in the inspector).

The correspondence between Attributes inspector settings and
Objective-C methods is mostly a matter of guesswork. The Attributes
inspector doesn’t always tell you, and there’s no way to see the code
generated when the nib actually loads.

Size inspector (Command-Option-5)
The X, Y, Width, and Height fields determine the object’s frame (its position and
size within its superview), corresponding to its frame property in code; you can
equally do this in the design window by dragging and resizing, but numeric pre-
cision can be desirable. The Autosizing box corresponds to the autoresizingMask
property, determining how the object will be repositioned and resized when its
superview is resized; a delightful animation demonstrates visually the implications
of your settings. The Arrange pop-up menu contains useful commands for posi-
tioning the selected object.

Connections inspector (Command-Option-6)
I’ll discuss this later in this chapter.

There are two libraries that are of particular importance when you’re editing a nib:

Object library (Control-Option-Command-3)
This library, as we’ve already seen, is your source for types of object that you want
to copy into the nib.

Media library (Control-Option-Command-4)
This library lists media in your project, such as images that you might want to drag
into a UIImageView or directly into your interface (in which case a UIImageView
is created for you).

A Tour of the Nib-Editing Interface | 131

Nib Loading and File’s Owner
A nib file is useless until your app runs and the nib file is loaded. One nib, designated
by the Info.plist key “Main nib file base name” (NSMainNibFile, see Chapter 6), is loaded
automatically as the app launches. Other nibs are loaded explicitly as needed while the
app runs.

For example, imagine our app has two complete sets of interface, and the user might
never ask to see the second one. It makes obvious sense not to load a nib containing
the second set of interface until the user does ask to see it. By this strategy, a nib is
loaded when its instances are needed, and those instances are destroyed when they are
no longer needed. Thus memory usage is kept to a minimum, which is important be-
cause memory is at a premium in a mobile device. Also, loading a nib takes time, so
loading fewer nibs at launch time makes launching faster.

When a nib loads, some already existing instance is designated its owner. A nib cannot
load without an owner, and the owner must exist before the nib can load.

In the case of the automatically loaded main nib file, the owner is the single UIAppli-
cation instance created automatically as the app launches (the shared application ob-
ject). In other cases, the nib’s owner must be specified in order to load the nib. It will
often be a UIViewController instance, because a UIViewController already knows how
to load a nib and manage a view that it contains (Chapter 19), but it can be an instance
of any class.

The File’s Owner top-level object in a nib file is a proxy for the instance that will be the
nib’s owner when the nib loads, and its class should be set to that instance’s class. In
the case of our Empty Window project’s MainWindow.xib, the File’s Owner’s class has
been correctly set in advance: its class is UIApplication (do you see how to confirm
this?), corresponding to the fact that a UIApplication instance will be the nib’s owner
when it loads. For nibs that you create, the File’s Owner’s class might not be set cor-
rectly, and you’ll have to set it yourself using the Identity inspector.

When a nib loads, its nib objects are instantiated, meaning its top-level nib objects and
all deeper-level nib objects hierarchically dependent on them. (Proxy objects, by defi-
nition, exist before the nib loads; nib loading does not instantiate them.) For example,
in our nib, the window is instantiated when the nib loads, bringing with it the button
inside it. (Again, see “Nib-Based Instantiation” on page 77; make very sure you un-
derstand this point!) This is what nibs are for — to instantiate objects when they load.
To put it another way, that is what nib loading is — it is the instantiation of the nib
objects described in the nib. At that point, having loaded, the nib’s work is done; the
nib does not, for example, have to be “unloaded.”

132 | Chapter 7: Nib Management

The same nib can be loaded multiple times, generating an entirely new
set of instances each time. A common beginner question is, “I have a
view in a nib; how do I make multiple copies of this view?” The simple
solution is to load that nib multiple times. This is common practice. For
example, consider table view cells. Every “row” of a table view is a table
view cell. Let’s say there’s a certain look and behavior you want each
“row” to have. You design the cell in a nib of its own as a UITable-
ViewCell. If the table has to display ten rows, you load that nib ten times
(Chapter 21).

Default Instances in the Main Nib File
Instances are where the action is in an Objective-C program. An app’s main nib file
(MainWindow.xib, in our case) is crucially responsible for how the app comes to have
any instances at all. To see this, we’ll analyze what happens as the app launches and
the main nib file loads.

As the app launches, UIApplicationMain is called in main.m, which causes the UIAp-
plication class to be instantiated to create our app’s one “shared application” in-
stance. Now our app has its first instance, so we have something that can serve as the
main nib file’s owner. So now the main nib file is loaded with the shared application
instance as its owner. This causes the nib objects in the main nib file to be instantiated.
By default, there are two of them:

The window
An instance of the UIWindow class. This is the container of the entire interface to
be displayed to the user. In an iOS app, there is exactly one main window instance,
and this is it. It is the object whose contents appear on the device’s screen (after it
is sent the makeKeyAndVisible message). All other visible interface is visible purely
by virtue of being a subview of this window.

The app delegate
In our app, an instance of the Empty_WindowAppDelegate class (and labeled, by
default, Empty Window App Delegate). This class was defined for us as part of the
project template (in the code files Empty_WindowAppDelegate.h and Empty_Win-
dowAppDelegate.m). This class is our app’s earliest opportunity to run custom
code: its application:didFinishLaunchingWithOptions: method is called automat-
ically (by a mechanism that I’ll explain in Chapter 11) as soon as the application
is ready to display its interface and receive input from the user. By default, this
method calls makeKeyAndVisible on the UIWindow instance that was just generated
by the loading of the main nib, thus causing the interface to be displayed.

The Xcode app template thus implements for us a bootstrapping strategy that gets our
app rolling:

1. The main function is called, as with any C program.

Default Instances in the Main Nib File | 133

2. The main function calls UIApplicationMain.

3. UIApplicationMain creates the shared application instance, which by default is an
instance of UIApplication.

4. UIApplicationMain consults Info.plist to learn the name of the main nib file, and
loads it with the shared application instance as owner.

5. The app’s single UIWindow object is instantiated from the nib.

6. The app’s single Empty_WindowAppDelegate object is instantiated from the nib.

7. The app finishes its internal setup, and application:didFinishLaunchingWith-
Options: is sent to the Empty_WindowAppDelegate instance.

8. Empty_WindowAppDelegate sends makeKeyAndVisible to the UIWindow in-
stance, causing the interface to appear. The app is now ready to receive user input.

All further initialization as an app starts up is an elaboration on this built-in bootstrap-
ping strategy.

The Empty_WindowAppDelegate instance generated by the loading of
the main nib is intended to be the only instance of this class. Do not
instantiate Empty_WindowAppDelegate again later in the program.
And don’t delete the Empty_WindowAppDelegate instance from the
main nib, or otherwise interfere with the bootstrapping operation I’ve
just described; if you do, your app won’t launch properly.

Making and Loading a Nib
Nib files other than the main nib file must be loaded explicitly as the app runs. This
can happen semiautomatically through the instantiation of an object that incorporates
nib-loading behavior, such as a UIViewController (Chapter 19); or it can happen com-
pletely manually, through explicit nib-loading code that you write.

Let’s illustrate nib-loading code. To do so, we’ll need a second nib file in our project.
We’ll also need an instance to act as the nib’s owner. To illustrate the procedure fully,
we’ll start by creating a class whose sole purpose is to be instantiated so that this in-
stance can act as the owner of the nib file as it loads:

1. In the Empty Window project in Xcode, choose File → New → New File. The
“Choose a template” dialog for files appears.

2. At the left of the dialog, under iOS (not Mac OS X!) select Cocoa Touch, and select
Objective-C Class in the main part of the dialog. Click Next.

3. The dialog now offers you a chance to specify what superclass the new class should
be a subclass of. Make sure this is NSObject. Click Next.

4. Name the file MyClass; make sure you’re saving into the Empty Window project
folder, that the group is Empty Window, and that the target is Empty Window
(and checked). Click Save.

134 | Chapter 7: Nib Management

We’ve now created files MyClass.h and MyClass.m declaring a class called MyClass.
Next, we’ll make the nib:

1. Choose File → New → New File.

2. At the left of the dialog, under iOS, choose User Interface, and select View in the
main part of the dialog. Click Next.

3. For the Device Family, specify iPhone. Click Next.

4. Name the file MyNib; make sure you’re saving into the Empty Window project
folder, that the group is Empty Window, and that the target is Empty Window
(and checked). Click Save.

We’ve now created a nib file, MyNib.xib, containing a single top-level nib object, a
UIView. Look at MyNib.xib in the editor to see that this is true.

Next, we’ll write code that will load our new nib when the app runs. Our little app has
only one place where code is guaranteed to run: the Empty_WindowAppDelegate in-
stance method application:didFinishLaunchingWithOptions: (in the file Empty_Win-
dowAppDelegate.m). So let’s put our code there. Just before or after the call to makeKey-
AndVisible, insert this code to instantiate MyClass and load MyNib.nib with that in-
stance as its owner:

MyClass* mc = [[MyClass alloc] init];
[[NSBundle mainBundle] loadNibNamed:@"MyNib" owner:mc options:nil];

Xcode will complain about this, because you can’t speak of MyClass without importing
its declaration, so after the existing #import at the start of this file, add this line:

#import "MyClass.h"

Now build and run the project. Our new MyNib.nib file loads, and its UIView top-level
nib object is instantiated. Unfortunately, you can’t see that this is true! The next section
explains how to obtain visible proof that our nib is loading and that its top-level nib
objects are being instantiated.

Outlet Connections
You know how to load a nib file, thus instantiating its top-level nib objects. But those
instances are useless to you if you don’t know how to get a reference to any of them in
your code. To refer in code to instances generated from nib objects when the nib loads,
you need an outlet connection from a proxy object in the same nib.

A connection is a named unidirectional linkage from one object in a nib file (the con-
nection’s source) to another object in the same nib file (the connection’s target). An
outlet is a connection whose name corresponds to an instance variable in the source
object. When the nib loads, and the target object is instantiated, the value of the in-
stance variable is set to the target object. Thus the source object winds up with a ref-
erence to the target object as the value of one of its instance variables.

Outlet Connections | 135

Connections can link any two objects in a nib file, but a proxy object as the source of
a connection is special because it represents an object that exists before the nib loads.
Thus an outlet from a proxy object causes an object that exists before the nib loads to
end up with an instance variable whose value is an object that doesn’t exist until
after the nib loads — an object that is in fact instantiated by the loading of the nib.

In the most typical configuration, the proxy object will be the File’s Owner. The in-
stance that owns the nib has an instance variable, and the File’s Owner in the nib has
a corresponding outlet to a nib object; the nib loads, and the owner instance ends up
with an instance variable that refers to the instance generated from the nib object
(Figure 7-5).

To demonstrate, we’ll implement exactly the schema illustrated in Figure 7-5, by mak-
ing an outlet from the File’s Owner to a nib object in MyNib.xib. First, we need a nib
object in MyNib.xib to make an outlet to. For visual impact, we’ll replace the existing
top-level view with a top-level label, which will draw some text:

1. In Xcode, click MyNib.xib to edit it.

Figure 7-5. How an outlet provides a reference to a nib-instantiated object

136 | Chapter 7: Nib Management

2. In the dock, select the View object and delete it.

3. Drag a Label object (UILabel) from the Object library into the dock to become a
new top-level object. Its graphical representation appears in the canvas.

4. Double-click the word “Label” in the label’s graphical representation and type
“Hello, world!” Hit Return to stop editing and to make the label the size of its text.

The object that will own the nib file when it loads is a MyClass instance. But the nib
doesn’t know this; we need to tell it:

1. Select the File’s Owner proxy object and look at the Identity inspector.

2. The Class, under Custom Class, is NSObject. Change this to MyClass. (If you type
“My,” the word “MyClass” should just appear, as it’s the only class Xcode knows
about whose name starts with “My.” Accept this by pressing Return.)

Now comes the really crucial part. We need two things, in two different places:

The instance variable
In its code, MyClass needs an instance variable whose value will be the label.

The outlet
In the nib, the File’s Owner proxy, representing a MyClass instance, needs an outlet
pointing at the label — an outlet with the same name as the instance variable.

When the app runs and MyNib.nib is loaded with a MyClass instance as its owner, as
we arranged in the preceding section, those two pairs of things will be effectively equa-
ted:

• The MyClass instance will be equated with the File’s Owner proxy in the nib,
because it will be the nib’s owner as it loads.

• MyClass’s instance variable will be equated with the File’s Owner outlet pointing
at the label, because they have the same name.

I’m oversimplifying. It isn’t really the identity of the instance variable’s
name with that of the outlet that makes the match. It’s more complica-
ted than that; the match is made using key–value coding. The rigorous
details appear in Chapter 12.

You thus need to work in two places at once: the nib, and MyClass’s code. Before Xcode
4, this required working separately in two different places, Xcode (where the code was
edited) and Interface Builder (where the nib was edited). But in Xcode 4, the same
program edits both the code and the nib, and furthermore you can see the code and
the nib at the same time, all of which will make creating this pair of things, the instance
variable and the outlet, much easier than it once was.

I want you now to arrange to see two things at once: MyClass.h (the MyClass header
file, where we’ll declare the instance variable) and MyNib.xib (where we’ll create the

Outlet Connections | 137

outlet). You could use two project windows if you wanted, but for simplicity, let’s use
an assistant: while editing MyNib.xib, switch to Assistant view (View → Editor → As-
sistant) as in Figure 7-6.

If your experience is like mine, when you chose View → Editor → Assis-
tant, the assistant appeared with MyClass’s header file showing. Xcode
has guessed (correctly) what code you want to see when a UILabel is
selected in the nib. If that isn’t the case, use the jump bar in the assistant
pane to make the assistant pane show MyClass.h.

In MyClass.h (in the assistant pane), in the interface section, between the curly braces,
declare a UILabel instance variable:

IBOutlet UILabel* theLabel;

The term IBOutlet is linguistically meaningless; it is #defined as an empty string, so it
is deleted before the compiler ever sees it. It’s purely a hint to Xcode to make it easy
for you to create the outlet. We have typed the instance variable as a UILabel*, because
we happen to know that this is the type of object that this instance variable will be
pointing to; we could also use id, or any superclass of UILabel. If we do not use one of
these alternatives (id, UILabel, or a superclass of UILabel), we will not be able to form
the connection to a UILabel in the nib.

We have accomplished half our task: we’ve made the instance variable. Now we’re
ready for the other half, namely, to make the outlet connection. There are several ways
to do this, so I’ll just pick one for now and demonstrate the others later:

1. Select File’s Owner in the nib and switch to the Connections inspector. Lo and
behold, the name of our instance variable, theLabel, is listed here! This is the work
of the IBOutlet hint we typed earlier.

Figure 7-6. Editing a nib, with code in the assistant pane

138 | Chapter 7: Nib Management

2. Click in the empty circle to the right of theLabel, drag to the Label object in the
canvas (Figure 7-7), and release the mouse. (A kind of elastic line follows the mouse
as you drag from the circle to show that you’re creating a connection.)

With the File’s Owner object selected, look again at the Connections inspector; it shows
that theLabel is connected to the Label nib object! We have made an outlet connection
from the File’s Owner to the Label object, and this outlet connection has the same name
as the instance variable theLabel in MyClass. So when the nib loads and a MyClass
instance is the nib’s owner, its theLabel instance variable will be set to the UILabel
object that will be instantiated through the loading of the nib.

To prove that this is the case, we’ll do something with that instance variable in our
code. In particular, we’ll stick the UILabel into our main window interface, thus making
it visible. Its visibility will prove that the nib is loading and that the instance variable is
being set by the outlet.

Return to Empty_WindowAppDelegate.m and modify the nib-loading code like this
(you added the first two lines earlier):

MyClass* mc = [[MyClass alloc] init];
[[NSBundle mainBundle] loadNibNamed:@"MyNib" owner:mc options:nil];
UILabel* lab = [mc valueForKey: @"theLabel"];
[self.window addSubview: lab];
lab.center = CGPointMake(100,100);

(We haven’t written an accessor method in MyClass for theLabel, so to save time I used
key–value coding.) Build and run the app. The words “Hello, world!” appear in the
window! This proves that our outlet worked. We loaded a nib and, using an outlet, we
obtained a reference to a nib object.

Making an instance variable and giving it an IBOutlet hint, but forget-
ting to connect the outlet to anything in the nib, is an unbelievably
common beginner (and not-so-beginner) mistake. Had we made this
mistake, our code would have run without error, but “Hello, world!”
would not appear in the window because lab would be nil.

More Ways to Create Outlets
I said a moment ago that there were other ways to create the outlet. Let’s try some of
them. Return to our assistant-paned nib editor, select the File’s Owner, switch to the
Connections inspector, and delete the outlet by clicking the little “x” to its left. We’re
going to make this outlet again, a different way:

Figure 7-7. Connecting an outlet from the Connections inspector

Outlet Connections | 139

1. Select the File’s Owner in the dock.

2. Hold down the Control key and drag from the File’s Owner to the label. An elastic
line follows the mouse.

3. A little window (called a HUD, for “heads-up display”) appears, titled Outlets,
listing theLabel as a possibility (Figure 7-8). Click theLabel.

Once again, look at the Connections inspector with the File’s Owner selected to confirm
that this worked. You can even build and run the project again, to prove it to yourself
if you’re in any doubt. Now delete the outlet again; we’re going to make this outlet in
yet a different way:

1. Select the File’s Owner in the dock.

2. Control-click the File’s Owner in the dock. A HUD appears, looking a lot like the
Connections inspector.

3. Drag from the circle to the right of theLabel to the label (Figure 7-9).

Now delete the outlet again; we’re going to make this outlet in another way. This time,
we’re going to operate from the point of view of the label. The Connections inspector
shows all connections emanating from the selected object; it also shows all connections
linking to the selected object. So, select the label and look at the Connections inspector.
It lists “New Referencing Outlet.” This means an outlet from something else to the
thing we’re inspecting, the label. So:

1. From the circle at the right of “New Referencing Outlet,” drag to the File’s Owner.
An elastic line follows the mouse.

2. A HUD saying theLabel appears. Click it.

Confirm that, once again, we’ve made an outlet from the File’s Owner to the label.
(And we could also have done the same thing by Control-clicking the label to start with,
to show its Connections HUD.) Now delete the outlet again; we’re going to make this
outlet in another way. This time, we’re going to start with the label, but we’re going to
connect directly to the code which is sitting in the assistant pane:

1. Select the label.

Figure 7-8. Connecting an outlet by Control-dragging from the source object

Figure 7-9. Connecting an outlet by dragging from the Connections HUD

140 | Chapter 7: Nib Management

2. Make sure that MyClass.h is showing in the assistant pane and that you can see the
IBOutlet line declaring the instance variable theLabel.

3. Hold down the Control key and drag from the label to that line of code. An elastic
line follows the mouse.

4. When you’ve got the mouse positioned correctly, the words Connect Outlet will
appear. Release the mouse.

Yet again, confirm that we’ve successfully made the desired outlet. Now delete the
outlet one last time, and (get this) delete the line of code declaring the instance variable.
We’re going to create the outlet and the instance variable declaration, all in a single
amazing move:

1. Select the label.

2. Make sure MyClass.h is showing in the assistant pane.

3. Hold down the Control key and drag from the label to the area between the curly
braces. An elastic line follows the mouse.

4. A little HUD appears, asking for the name of the instance variable that’s about to
be created. Call it theLabel (and make sure the type is UILabel), and press Return.
The IBOutlet line declaring the instance variable is created, and the outlet is formed
to match it.

That last way of making an outlet was extremely cool and convenient, but a word of
warning: coolness and convenience do not relieve you of the necessity of understanding
what an outlet is and how it works. No matter what physical gesture you make in Xcode,
the conditions must ultimately be the same: there must be an instance variable in a
class, and an outlet in the nib, with the same name, and to an instance of that class.
Otherwise, the instance variable won’t be properly set when the nib loads.

More About Outlets
At the risk of seeming to repeat myself, let me emphasize an important thing to re-
member about outlets (and nib connections generally) that often confuses beginners:
they apply to specific instances. Outlets appear in a nib, but a nib is just a template for
specific instances. At the moment a nib loads, then and only then, the one specific
instance which is the nib’s owner (represented by the File’s Owner in the nib) and the
specific instances generated from the nib objects are all in existence together and are
hooked together by their outlets.

All our examples so far have involved a proxy object, but an outlet connection can
connect any two objects in the nib. The only requirement is that the source object be
of a class that has an instance variable whose type matches the class of the target object.

Outlet Connections | 141

Nothing in the documentation for a built-in Cocoa class tells you which
of its instance variables are available as outlets. In general, the only way
to learn what outlets a built-in class provides is to examine a represen-
tative of that class in a nib.

The outlet mechanism explains some missing steps in our Empty Window app’s boot-
strapping sequence described earlier in this chapter, with regard to the main nib
(MainWindow.xib, in the case of our Empty Window app):

• After the main nib loads, the app’s single UIApplication instance sends
application:didFinishLaunchingWithOptions: to the Empty_WindowAppDele-
gate object that was instantiated from the nib. But how does it get a reference to
that instance? It’s an outlet.

In the main nib, the File’s Owner, which is a proxy for the UIApplication instance,
has an outlet (called delegate) to the Empty Window App Delegate nib object,
whose class is Empty_WindowAppDelegate. So after the nib loads, the UIAppli-
cation instance’s delegate instance variable is pointing to that Empty_Window-
AppDelegate instance.

• In its implementation of the application:didFinishLaunchingWithOptions:
method, Empty_WindowAppDelegate calls makeKeyAndVisible on the UIWindow
instance loaded from the nib. But how does it get a reference to that instance? It’s
an outlet.

In the main nib, the Empty Window App Delegate nib object has an outlet (called
window) to the Window nib object, whose class is UIWindow. So when the nib
loads and they are both instantiated, the Empty_WindowAppDelegate instance’s
window instance variable (technically named _window, by a means that I’ll explain
in Chapter 12) is pointing to that UIWindow instance.

It is also possible to create an outlet collection. This is an NSArray instance variable
matched by multiple connections to objects of the same type. For example, suppose a
class contains this instance variable declaration:

IBOutletCollection(UILabel) NSArray* labels;

Then it is possible to form multiple labels outlets from an instance of that class in a
nib, each one to a different UILabel in that nib. When the nib loads, those UILabel
instances become the elements of the NSArray labels. The order in which the outlets
are formed is the order of the elements in the array. This is a new feature and I haven’t
written any code that uses it.

Action Connections
An action is a message emitted automatically by a Cocoa UIControl interface object (a
control) when the user does something to it, such as tapping the control. The various

142 | Chapter 7: Nib Management

user behaviors that will cause a control to emit an action message are called events. To
see a list of possible events, look at the UIControl class documentation, under “Control
Events.” For example, in the case of a UIButton, the user tapping the button corre-
sponds to the UIControlEventTouchUpInside event. In the case of a UITextField, the user
typing or deleting or cutting or pasting corresponds to the UIControlEventEditing-
Changed event. A complete list of UIControls and what events they respond to is pro-
vided in Chapter 11.

An action message, then, is a way for your code to respond when the user does some-
thing to a control in the interface, such as tapping a button. But your code will not
receive an action message from a control unless you explicitly make prior arrangements
with that control. You must tell the control what event should trigger an action message,
what instance to send the action message to, and what the action message’s name
should be. There are two ways to make this arrangement: in code, or in a nib.

Either way, we’re going to need a method for the action message to call. There are three
standard signatures for a method that is to be called through an action message; the
most commonly used one takes a single parameter, which will be a reference to the
object that emitted the action message. (For full details, see Chapter 11.) So, for ex-
ample, you could have a method like this (let’s agree to put it in the app delegate,
Empty_WindowAppDelegate.m):

- (void) buttonPressed: (id) sender {
 UIAlertView* av = [[UIAlertView alloc] initWithTitle:@"Howdy!"
 message:@"You tapped me."
 delegate:nil
 cancelButtonTitle:@"Cool"
 otherButtonTitles:nil];
 [av show];
}

Connections Between Nibs
You cannot draw a connection from an object in one nib to an object in another nib.
If you expect to be able to do this, you haven’t understood what a nib is! An object in
a nib is only a potential object, becoming a real object when the nib is loaded and the
object is instantiated. This potentiality can be realized never, once, or many times. Two
objects in the same nib will be instantiated together, so it’s clear what a connection
means. But a connection from an object in one nib to an object in another nib would
be meaningless, because there’s no way to say what actual future instances the con-
nection is supposed to connect. The problem of communicating between an instance
instantiated from one nib and an instance instantiated from another nib is just a special
case of the more general problem of how to communicate between instances in a pro-
gram and is discussed in Chapter 13.

Action Connections | 143

Here’s how you might arrange in code for buttonPressed: to be called when the user
taps a button. The following example (perhaps part of the app delegate’s application:
didFinishLaunchingWithOptions:) creates a button in code, puts it into the app’s win-
dow, and arranges that when the user taps the button, the button should send this
instance the buttonPressed: message:

UIButton* b = [UIButton buttonWithType:UIButtonTypeRoundedRect];
[b setTitle:@"Howdy!" forState:UIControlStateNormal];
[b setFrame: CGRectMake(100,100,100,35)];
[self.window addSubview:b];
[b addTarget:self action:@selector(buttonPressed:)
 forControlEvents:UIControlEventTouchUpInside];

That last line means: “Hey there, button! When the user taps on you (UIControlEvent-
TouchUpInside), send me (self) a buttonPressed: message.” (See Chapter 3 if you’ve
forgotten about the @selector directive.) Of course, such an instruction assumes that
this object (self) really does implement a buttonPressed: method. (If it doesn’t, then
when the user taps the button, the app will crash.)

Feel free to run the app and confirm that this works. But when you’ve done that, delete
the code just above (but leave the buttonPressed: implementation in place, as we’re
still going to need it). Instead of creating a button in code and arranging in code for its
action message to be buttonPressed:, we’re going to use the existing button in Main-
Window.xib and arrange in the nib for its action message to be buttonPressed:. We’re
going to form an action connection in the nib.

As with outlets, there are several ways to do this; I’ll just show you the main ones and
leave you to discover the rest. (They are all directly comparable to the many ways of
creating an outlet connection.)

1. We need a hint, in our code, that a method with the expected signature exists. This
hint involves substituting IBAction for the method’s void return type. (The substi-
tution is legal because IBAction is #defined as void; Xcode can see the hint in your
code, but the preprocessor will turn IBAction back to void before the compiler ever
sees it.) So, in Empty_WindowAppDelegate.m, change the first line of our button-
Pressed: method implementation to look like this, and then save (File → Save):

- (IBAction) buttonPressed: (id) sender {

2. Now edit MainWindow.xib, select the button in the window, and look at the Con-
nections inspector. The event for which we’d like to send the action message is
Touch Up Inside. Drag from its circle to the Empty Window App Delegate nib
object in the dock, which is to receive the message (Figure 7-10).

3. A little window listing possible Empty_WindowAppDelegate action methods ap-
pears; in this case, it lists only buttonPressed:. Click on buttonPressed: to form
the connection.

To see that the action connection has been formed, look at the Connections inspector.
If you select the button, the Connections inspector reports that the button’s Touch Up

144 | Chapter 7: Nib Management

Inside event is connected to the Empty Window App Delegate’s buttonPressed:
method. If you select the Empty Window App Delegate object, the Connections in-
spector reports a Received Action where buttonPressed: is called by the Rounded Rect
Button’s Touch Up Inside event.

At this point, you can also build and run the project to confirm that the action con-
nection is working. In the running app, the button inside the window now actually
does something when the user taps it: it summons an alert.

As with outlets, we could have formed the action connection by Control-dragging from
the button directly to the Empty Window App Delegate object, instead of involving
the Connections inspector. And, as with outlets, there are two ways to do this. If you
just Control-drag, Interface Builder assumes a default event for you (in this case, it
would assume Touch Up Inside). If that isn’t what you want, start by Control-clicking
on the button to summon a temporary version of the Connections inspector, and drag
from the desired event’s circle just as you would do from the real Connections inspector.

As with outlets, you can also form the action connection directly to code. In Fig-
ure 7-11, we’ve Control-clicked the button to summon its Connections HUD, and
dragged from the Touch Up Inside circle to the buttonPressed: implementation.

Figure 7-10. Connecting an action from the Connections inspector

Figure 7-11. Connecting an action to a method implementation

Action Connections | 145

But wait, there’s more! Instead of writing the action method ahead of time, you can ask
Xcode to stub it out for you. To do so, drag to an empty spot in the implementation;
a dialog appears, letting you specify the name of the action method, the number of
arguments it should take, and the control event to be used as a trigger (Figure 7-12).
Xcode inserts the method implementation, but doesn’t put any code between the curly
braces; it’s smart, but not smart enough to guess what you want the method to do!

Additional Initialization of Nib-Based Instances
By the time a nib finishes loading, its instances are fully fledged; they have been ini-
tialized and configured with all the attributes dictated through the Attributes and Size
inspectors, and their outlets have been used to set the values of the corresponding
instance variables. Nevertheless, you might want to append your own code to the ini-
tialization process as an object is instantiated from a loading nib. Most commonly, to
do this, you’ll implement awakeFromNib. The awakeFromNib message is sent to all nib-
instantiated objects just after they are instantiated by the loading of the nib: at the point
where this happens, the object has been initialized and configured and its connections
are operational.

For example, our Empty Window app is loading MyNib.xib, extracting a UILabel from
it, and inserting that label into our interface; the result is that the words “Hello, world!”
appear in our window. Let’s modify the behavior of this UILabel so that it does some
additional self-initialization in code. To do that, we will need a class of our own to
which our UILabel will belong. Clearly, this needs to be a UILabel subclass. So:

1. In Xcode, choose File → New → New File and specify that you want a Cocoa Touch
Objective-C class. Click Next.

2. Make the new class a subclass of UILabel. Click Next.

3. Call it MyLabel. Make sure you’re saving into the project folder; set the Empty
Window group and the Empty Window target. Click Save.

4. In MyLabel.m, somewhere in the implementation section, implement awakeFrom-
Nib:

- (void) awakeFromNib {
 [super awakeFromNib];
 self.text = @"I initialized myself!";
}

Figure 7-12. Connecting an action and creating a method implemention

146 | Chapter 7: Nib Management

5. That code won’t apply to the label in MyNib.xib unless that label is a MyLabel, so
edit MyNib.xib and change the label’s class to MyLabel (in the Identity inspector).

Now build and run the project. Instead of “Hello, world!” we now see “I initialized
myself!” in the window.

Mac OS X Programmer Alert
If you’re an experienced Mac OS X programmer, you may be accus-
tomed to rarely or never calling super from awakeFromNib; doing so used
to raise an exception, in fact. In iOS, you must always call super in awake-
FromNib. Another major difference is that in Mac OS X, a nib owner’s
awakeFromNib is called when the nib loads, so it’s possible for an object
to be sent awakeFromNib multiple times; in iOS, awakeFromNib is sent to
an object only when that object is itself instantiated from a nib, so it can
be sent to an object a maximum of once.

Much more rarely, you might need to interfere with a nib object’s initialization at an
even earlier stage. If this object is a UIView or UIViewController (or a subclass of either),
you can implement initWithCoder:. In your implementation, be sure to call super and
return self as you would do in any initializer. Your purpose here would typically be to
initialize additional instance variables that your subclass has declared, as with any in-
itializer.

Suppose, for example, that MyLabel declares an instance variable that is an int called
num. Then:

- (id) initWithCoder:(NSCoder *)aDecoder {
 self = [super initWithCoder:aDecoder];
 if (self) {
 self->num = 42;
 }
 return self;
}

- (void) awakeFromNib {
 [super awakeFromNib];
 self.text = [NSString stringWithFormat: @"The answer is %i", self->num];
}

That’s trivial and unnecessary, but it illustrates the principle.

Additional Initialization of Nib-Based Instances | 147

CHAPTER 8

Documentation

Knowledge is of two kinds. We know a subject ourselves,
or we know where we can find information upon it.

—Samuel Johnson, Boswell’s Life of Johnson

You don't remember Cocoa; you look it up!

—Anonymous programmer, cited by
Beam and Davidson, Cocoa in a Nutshell

No aspect of Cocoa programming is more important than a fluid and nimble relation-
ship with the documentation. There is a huge number of built-in classes, with many
methods and properties and other details. Apple’s documentation, whatever its flaws,
is the definitive official word on how you can expect Cocoa to behave and on the
contractual rules incumbent upon you in working with this massive framework whose
inner workings you cannot see directly.

The Xcode documentation installed on your machine comes in large chunks called
documentation sets (or doc sets, also called libraries). You do not merely install a doc-
umentation set; you subscribe to it, so that when Apple releases a documentation up-
date (because a new version of iOS has been released, or because there has been an
incremental revision of the documentation), you can obtain the updated version.

When you first install the Xcode tools, assuming that you checked Documentation in
the installer, you should start up Xcode to let it download and install your initial doc-
umentation sets. The process can be monitored, to some extent, in the Documentation
pane of the Preferences window; you can also specify here whether you want updates
installed automatically or whether you want to press Check and Install Now manually
from time to time. This is also where you specify which doc sets you want; I believe
that in Xcode 4 the iOS 4.3 Library and the Xcode 4.0 Developer Library are all you
need for iOS development (you may have to click Get to obtain them), and that any
doc sets you don’t download can still be accessed via the Internet. You may have to
provide your machine’s admin password when a doc set is first installed.

149

This chapter describes Xcode 4. Earlier versions, designated generically
as Xcode 3.2.x, are very different.

The Documentation Window
Your primary access to the documentation is in Xcode, through the Documentation
tab of the Organizer window (Help → Documentation and API Reference). I’ll refer to
this as the documentation window, even though it’s really an aspect of the Organizer
window.

The documentation window behaves basically as a glorified web browser, because the
documentation consists essentially of web pages. Indeed, most of the same pages can
be accessed at Apple’s developer site, http://developer.apple.com. And any page open
in the documentation window can be opened instead in your web browser: Control-
click for the contextual menu and choose Open Page in Browser. Notice too the con-
textual menu for links within a documentation window. When you’re trying to figure
something out, the ability to spawn off a page as a secondary window in a browser
while you go on searching in the Xcode documentation window can be very useful.

Each doc set has a home page, which you access from the Browse navigator (Editor →
Explore Documentation) or from the first component of the jump bar (Control-4). A
typical home page presents a full list of documents, which can be sorted by column and
filtered by keyword. Some home pages, such as the iOS Library home page, also have
a broad categorical list down the left side, which can similarly be used to filter the
document list. In practice I rarely use these home pages, though they can come in handy
when you’re looking for broad topic introductions (click Guides on the left). The
Browse navigator (and the jump bar) can also be used to explore a doc set by category.

When you encounter a documentation page to which you’re likely to want to return,
make it a bookmark (Editor → Add Bookmark). Bookmarks are accessed through the
Bookmarks navigator (Editor → Documentation Bookmarks). Documentation book-
mark management is simple but effective: you can rearrange bookmarks or delete a
bookmark, and that’s all.

My chief way into the documentation — and, I suspect, most users’ chief way — is by
searching (Editor → Search Documentation). Type a term into the search field (Shift-
Option-Command-?). Click the magnifying glass to choose Show Find Options. It’s
important to set these options correctly:

Match Type
Your choices are Contains, Prefix, and Exact. These determine how your search
terms are understood (as middles of words, starts of words, or whole words, re-
spectively), and you’ll probably want to switch among them fairly often, depending
on what you’re searching for. For example, if you are typing the start of the name

150 | Chapter 8: Documentation

of a class you want to search for, do a Prefix search, not a Contains search. Fortu-
nately, as you type into the search bar, a pop-up menu lets you change match type
on the fly using the keyboard.

Doc Sets
Check only those doc sets that interest you; if you’re doing iOS development, for
example, uncheck any Mac OS X libraries to eliminate inapplicable and duplicate
results.

Languages
Check only those languages you’re likely to be interested in (probably Objective-
C and C).

Once you’ve entered settings that you like, you can hide the find options to save space;
the one option you’re likely to change most often, Match Type, can be changed on the
fly, as I’ve already said.

In Xcode 4, the search doesn’t take place until you press Return. Search results are
displayed in categories, in relevance order, in the navigation pane; click a result to see
that page.

Alternatively, if you’re editing code, select a term in the editor and choose Help →
Search Documentation for Selected Text (Control-Option-Command-/). This com-
mand switches to the documentation window, enters the selected term into the search
field, and performs the search using the current find options, in a single move.

Results are presented hierarchically with the hierarchy triangles closed.
You have to click triangles to expand the results, in order to see and
navigate to the actual pages that contain your search term.

Don’t confuse searching the documentation with finding within the current page. To
find within the current documentation page, make sure the focus is within the page
itself, and then use the Edit → Find menu commands. Command-F summons a find
bar, as in Safari.

A major difference between the display of a documentation page in Xcode and its dis-
play in Safari is that the latter often shows a Table of Contents column at the left side.
In Xcode, this Table of Contents column is suppressed, which saves space, but makes
it harder to get a sense for where you are in a document or a set of related documents.
The intention is presumably that you should use the jump bar both to get your bearings
and to navigate. The last component in the jump bar may show headings within the
current document; the next-to-last component may show related documents in the
same collection.

The Documentation Window | 151

Class Documentation Pages
In the vast majority of cases, your target documentation page will be the documentation
for a class. I have frequently spoken already of the importance of class documentation
pages. A common move on your part will be to search on a class name in the docu-
mentation window. If you search on, say, NSString, the search result whose title is
NSString Class Reference is the class documentation for NSString.

Let’s pause to notice the key features of a class documentation page. I’ll use UIButton
as an example (Figure 8-1):

Inherits from
Lists, and links to, the chain of superclasses. One of the biggest beginner mistakes
is failing to read the documentation up the superclass chain. A class inherits from
its superclasses, so the functionality or information you’re looking for may be in a
superclass. You won’t find out about addTarget:action:forControlEvents: from
the UIButton class page; that information is in the UIControl class page. You won’t
find out that a UIButton has a frame property from the UIButton class page; that
information is in the UIView class page.

Conforms to
Lists, and links to, the protocols implemented by this class. Protocols are discussed
in Chapter 10. Fortunately, a class that conforms to a formal protocol usually lists
that protocol’s required methods as links (though the methods themselves are
documented on the protocol’s documentation page).

Figure 8-1. The start of a typical class documentation page

152 | Chapter 8: Documentation

Methods injected into a class by a category (Chapter 10) are often not
listed on that class’s documentation page and can be very difficult to
discover. This is a major weakness in Apple’s organization and display
of the documentation. A third-party documentation display application
such as AppKiDo can be helpful here (http://homepage.mac.com/aglee/
downloads/appkido.html).

Framework
Tells what framework this class is part of. Your code must link to this framework
in order to use this class (see Chapter 6).

Availability
States the earliest version of the operating system where this class is implemen-
ted. For example, EKEventViewController, along with the whole EventKit frame-
work (consisting of classes for querying the user’s calendar; see Chapter 32) wasn’t
invented until iOS 4.0. So if you want to use this feature in your app, you must
make sure either that your app targets only iOS 4.0 or later or that you take pre-
cautions not to call into this framework on earlier versions of the operating system.
The availability information also confirms that you’re looking at the right docu-
mentation page; if you’re doing iOS programming and this class is available only
on Mac OS X, reading this page is pointless. Note that individual methods also
have availability information.

Companion guide
If a class documentation page lists a companion guide, you might want to click
that link and read that guide. Guides are broad surveys of a topic; they provide
important information (including, often, useful code examples), and they can serve
to orient your thinking and make you aware of your options. (See the UIView class
page for an example.)

Related sample code
If a class documentation page links to sample code, you might want to examine
that code. (But see my remarks on sample code in the next section of this chapter.)

Overview
Some class pages provide extremely important introductory information in the
Overview section, including links to related guides and further information. (See
the UIView class page for an example.)

Tasks
This section lists in categorical order, and links to, the properties and methods that
appear later on the page. (Recall from Chapter 5 that a property is a syntactic
shortcut for calling an accessor method; the documentation lists the property
rather than the accessor.) Often, just looking over this list can give you the hint
you’re looking for.

Class Documentation Pages | 153

Properties, Class Methods, Instance Methods
These sections provide the full documentation for this class’s methods. In recent
years, this part of the documentation has become quite splendid, with good hy-
perlinks. Note the following subsections:

The property or method name
This name is suitable for copying and pasting into your code (if, for example,
you need to enter the name of a selector).

The property or method’s purpose
A short summary of what it does.

The formal declaration for the property or method
Read this to learn things like the method’s parameters and return type. (Chap-
ter 12 explains how to read a property declaration.) Suitable for copying and
pasting into your code in order to enter a call to this method, though you are
more likely to use Xcode’s code completion feature where possible (see Chap-
ter 9).

Parameters and return value
Precise information on the meaning and purpose of these.

Discussion
Often contains extremely important further details about how this method
behaves. Always pay attention to this section!

Availability
An old class can acquire new methods as the operating system advances; if a
newer method is crucial to your app, you might want to exclude your app from
running on older operating systems that don’t implement the method.

See also
Lists and links to related methods. Very helpful for giving you a larger per-
spective on how this method fits into the overall behavior of this class.

Related sample code
It can sometimes be worth consulting the sample code to see an example of
how this particular method is used.

Declared in
The relevant header file. It can sometimes be worth looking at the header file,
which may contain helpful comments or other details. Unfortunately, the list-
ing of a header file in the documentation window is not a clickable link. You
can open the header file from your project window, as explained later in this
chapter.

Constants
Many classes define constants that accompany particular methods. For example,
to create a UIButton instance in code, you call the buttonWithType: class method;

154 | Chapter 8: Documentation

the argument value will be a constant, listed under UIButtonType in the Constants
section. (To help you get there, there’s a link from the buttonWithType: method to
the UIButtonType section in Constants.) There’s a formal definition of the con-
stant; you won’t usually care about this (but do see Chapter 1 if you don’t know
how to read it). Then each value is explained, and the value name is suitable for
copying and pasting into your code.

Sample Code
Apple provides plenty of sample code projects. You can view the code directly in the
documentation window; sometimes this will be sufficient, but you can see only one
class implementation or header file at a time, so it’s difficult to get an overview. The
alternative is to open the sample code project in Xcode.

When you look at a sample code page from your browser, there’s a button that reads
Download Sample Code. In fact, the sample code may already be on your computer.
When you look at the same sample code page in the documentation window, the same
button will read Open Project. The sample code on your hard disk is zipped, so even
if the code is already on your computer, you are first asked to specify a “download
folder” in which to save the unzipped project folder. This policy of keeping the sample
code projects zipped on your hard disk is a good one, as it prevents you from acciden-
tally altering the original, and you are free to experiment with the unzipped copy.

If a sample code project was linked against the frameworks of an older
SDK that isn’t installed on your computer, you won’t be able to build
and run the project, and features that depend on indexing won’t work.
This situation is easy to detect and easy to fix. The chief sign is that the
project will be described in the Project navigator with the words “miss-
ing base SDK,” and the Issue navigator will show a Target Integrity
warning. To solve the problem, click that issue in the Issue navigator to
edit the build settings, and change the outdated Base SDK setting to
Latest iOS.

As a form of documentation, sample code is both good and bad. It can be a superb
source of working code that you can often copy and paste and use with very little
alteration in your own projects. It is usually heavily commented, because the Apple
folks are aware, as they write the code, that it is intended for instructional purposes.
Sample code also illustrates concepts that users have difficulty extracting from the
documentation. (Users who have not grasped UITouch handling, for instance, often
find that the lightbulb goes on when they discover the MoveMe example.) But the logic
of a project is often spread over multiple files, and nothing is more difficult to under-
stand than someone else’s code (except, perhaps, your own code). Moreover, what
learners most need is not the fait accompli of a fully written project but the reasoning
process that constructed the project, which no amount of commentary can provide.

Sample Code | 155

My own assessment is that Apple’s sample code is generally very thoughtful and in-
structive and definitely a major component of the documentation, and that it deserves
more appreciation and usage than it seems to get. But it is most useful, I think, after
you’ve reached a certain level of competence and comfort.

Other Resources
Here is a survey of other useful resources that supplement the documentation.

Quick Help
Quick Help is a condensed rendering of the documentation on some single topic, usu-
ally a symbol name (a class or method). It appears with regard to the current selection
or insertion point automatically in the Quick Help inspector (Option-Command-2) if
the inspector is showing. Thus, for example, if you’re editing code and the insertion
point or selection is within the term CGPointMake, documentation for CGPointMake ap-
pears in the Quick Help inspector if it is visible.

A slightly reduced version of the same Quick Help documentation can displayed as a
small floating window, without the Quick Help inspector, by Option-clicking on a term
in code. Alternatively, select a term and choose Help → Quick Help for Selected Item
(Shift-Control-Command-?). In the Quick Help window, click the “book” icon to open
the full documentation in the documentation window; click the “H” icon to open the
appropriate header file.

Both the Quick Help inspector and the Quick Help window may also contain links.
Some of these may be to various other documentation aids, such as sample code. The
most important link will probably be the first one, the name of the symbol being docu-
mented; this links to the appropriate spot in the full documentation in the documen-
tation window.

Xcode 4 provides no direct path from a symbol in code to its documen-
tation in the documentation window. You must pass through Quick
Help to get there. You can select a term and choose Help → Search Doc-
umentation for Selected Text (Control-Option-Command-/), but this is
hardly the same thing, as it doesn’t jump to the actual API linked from
Quick Help.

If you hold down Option and hover the mouse over code, the term that Quick Help
would document if you were to click at that point appears with a dotted underline.

Quick Help is also available during code completion (Chapter 9), concerning the term
currently being proposed as a completion; the question-mark icon at the right side of
the code completion pop-up menu summons the Quick Help window. Plus, Quick

156 | Chapter 8: Documentation

Help is available in the Quick Help inspector for interface objects selected while editing
a nib, for build settings while editing a project or target, and so forth.

Symbols
A symbol is a nonlocally defined term, such as the name of a class, method, or instance
variable. If you can see the name of a symbol in your code in an editor in Xcode, Com-
mand-click it to jump to the definition for that symbol. Alternatively, select text and
choose Navigate → Jump to Definition (Control-Command-D). If there are multiple
definitions for a term, when you Command-click you’ll get a little pop-up window
where you can pick which one to jump to. If you hold down Command and hover the
mouse over code, the symbol whose definition would be shown if you were to click at
that point appears with a solid underline.

If the symbol is defined in a Cocoa framework, you jump to the header file. If the symbol
is defined in your code, you jump to the class or method definition. This can be very
helpful not only for understanding your code but also for navigating it. For example,
suppose you realize that for memory management reasons you need to modify the
dealloc method in one of your classes. If you can see the word dealloc anywhere in the
current editor, you can Command-click it to jump to any other dealloc method in your
project.

The precise meaning of the notion “jump” depends upon the modifier keys you use in
addition to the Command key, and on your settings in the General pane of Xcode’s
preferences. For example, if you haven’t changed these settings from the default, Com-
mand-click jumps in the same editor, Command-Option-click jumps in an assistant
pane, and Command-double-click jumps in a new window. Similarly, Control-Option-
Command-D jumps in an assistant pane to the definition of the selected term.

Another way to see a list of your project’s symbols, and navigate to a symbol definition,
is with the Symbol navigator (Chapter 6).

Header Files
Sometimes a header file can be a useful form of documentation. It compactly summa-
rizes a class’s instance variables and methods and may contain comments and other
helpful information. A single header file can contain declarations for multiple class
interfaces and protocols. So it can be an excellent quick reference.

There are various ways to see a header file from an Xcode editor:

• If the class is your own and you’re in the implementation file, choose Navigation
→ Jump to Next Counterpart (Control-Command-Up).

• Click the Related Files button at the left of the jump bar (Control-1). The menu
lets you jump to any header files imported in the current file (as well as any files

Other Resources | 157

that import the current file) and to the header files of the current class file’s super-
classes and subclasses and so forth. Hold Option to jump in an assistant pane.

• Select text and choose File → Open Quickly (Shift-Command-O). This command
brings up a dialog listing all source and header files containing a given symbol.

• Command-click a symbol, choose Navigate → Jump to Definition, or pass through
Quick Help, as described in the previous sections.

• Use the Symbol navigator (Chapter 6).

Internet Resources
Programming has become a lot easier since the Internet came along and Google started
indexing it. It’s amazing what you can find out with a Google search. Your problem is
very likely a problem someone else has faced, solved, and written about on the Internet.
Often you’ll find sample code that you can paste into your project and adapt.

Apple’s documentation resources are available at http://developer.apple.com. These re-
sources are updated before the changes are rolled into your doc sets for download.
There are also some materials here that aren’t part of the Xcode documentation on your
computer. As a registered iOS developer, you have access to iTunes videos, including
the videos for all WWDC 2010 sessions, and to Apple’s developer forums (https://
devforums.apple.com).

Apple maintains some public mailing lists (http://lists.apple.com/mailman/listinfo). I
have long subscribed to the Xcode-users group (for questions about use of the Xcode
tools) and the Cocoa-dev group (for questions about programming Cocoa). Cocoa-dev
does now permit iOS questions, but it is not heavily used for these. The lists are search-
able, but Apple’s own search doesn’t work very well; you’re better off using Google
with a site:lists.apple.com term, or http://www.cocoabuilder.com, which archives the
lists. Apple has not added a mailing list devoted to iOS programming; that’s what the
developer forums are supposed to be for, though the interface for these is extraordi-
narily clunky in my view, and this — plus the lack of openness (to Google and to the
world in general) — has limited their usefulness.

Other online resources, such as forums, have sprung up spontaneously as iOS pro-
gramming has become more popular, and lots of iOS and Cocoa programmers blog
about their experiences. I am particularly fond of Stack Overflow (http://www.stacko
verflow.com); of course it isn’t devoted exclusively to iOS programming, but lots of iOS
programmers hang out there, questions are answered succinctly and correctly, and the
interface lets you focus on the right answer quickly and easily.

158 | Chapter 8: Documentation

CHAPTER 9

Life Cycle of a Project

This chapter surveys some of the main stages in the life cycle of a project, from inception
to submission at the App Store. This survey will provide an opportunity to discuss some
additional features of the Xcode development environment. You already know how to
create a project, define a class, and link to a framework (Chapter 6), as well as how to
create and edit a nib (Chapter 7) and how to use the documentation (Chapter 8).

This chapter describes Xcode 4. Earlier versions, designated generically
as Xcode 3.2.x, are very different.

Choosing a Device Architecture
As you create a project, after you pick a project template, in the part of the dialog where
you name your project, the Device Family pop-up menu may offer a choice of iPhone
or iPad. Some templates offer no choice, as they are by nature applicable to only one
type of device. The Window-based Application template offers a third choice — Uni-
versal (meaning both iPhone and iPad).

You are not tied forever to your initial decision, but your life will be easier if you decide
correctly from the outset. The iPhone and iPad differ in their physical environments as
well as their programming interfaces. The iPad has a larger window size, along with
some built-in interface features that don’t exist on the iPhone, such as split views and
popovers (Chapter 22); thus an iPad project’s nib files and some other resources will
differ from those of an iPhone project.

Different types of device may also be running different versions of the operating system.
iOS 4.2 and later runs on both iPhone and iPad, but prior to that the two devices ran
different systems: iOS 3.1.3 and before, plus iOS 4.0 and 4.1, were iPhone only, while
iOS 3.2.x was iPad only.

159

Your choice in the Device Family pop-up menu, then, affects what template your new
project will be based on. It also affects your target’s Targeted Device Family build
setting:

iPad
The app will run only on an iPad.

iPhone
The app will run on an iPhone or iPod touch; it can also run on an iPad, but not
as a native iPad app (it runs in a reduced enlargeable window, which I call the
iPhone Emulator; Apple sometimes refers to this as “compatibility mode”).

iPhone/iPad
The app will run natively on both kinds of device, and should be structured as a
universal app. A universal app is a single app built from a single target, but it con-
tains some resources that are loaded only on one type of device or the other.

Two additional build settings work together and in conjunction with the Targeted
Device Family to determine what systems your device will run on:

Base SDK
The latest system your app can run on: in Xcode 4, you have just one choice, iOS
4.3. Actually, there is an alternative, Latest iOS; the advantage of this is that if you
update Xcode to develop for a subsequent system, your existing projects will build
in that updated Xcode without your also having to update their Base SDK setting.
Latest iOS is the default when you create a new project.

iOS Deployment Target
The earliest system your app can run on: this can be any iOS system number from
the current 4.3 all the way back to 3.0. (iOS 3.0 is also the earliest system on which
a universal app will run.) You can change the iOS Deployment Target setting easily
by editing your project; see the iOS Deployment Target pop-up menu in the Info
tab.

Writing an app whose Deployment Target differs from its Base SDK is something of a
challenge. The problem is that Xcode will happily allow you to use any features of the
Base SDK, but an actual device will not. If you use any features that are not supported
on a particular device under a particular system, the app will crash on that device.

To see this, create (in Xcode 4) a new iPhone project using the View-based Application
template and set the iOS Deployment Target to 3.2. You can build an app from this
project and load it into an iPad running iOS 3.2, but the app will crash on launch,
because the template contains this line, which is encountered as the app starts up:

self.window.rootViewController = self.viewController;

The problem is that the window rootViewController property wasn’t invented until
iOS 4.0.

160 | Chapter 9: Life Cycle of a Project

However, you might not own an iPad running iOS 3.2 to test on, and the prospect that
a bug like this might not be discovered until the app has been let loose upon a world
of users is highly unsettling — indeed, you might decide that attempting backward-
compatibility simply isn’t worth the gamble. Fortunately, in this case there is a way to
discover the problem from within Xcode, because the Simulator lets you specify what
device and system version to simulate, as far back as iOS 3.2 (choose iPad 3.2 Simulator
as your destination in the Scheme pop-up menu before you build and run). So you
could test in the Simulator, telling the Simulator to behave as an iPad running iOS 3.2,
and discover the crash.

Writing a universal app compounds the challenge, thanks to the environmental differ-
ences between iPhone and iPad. As you develop, you must juggle two versions of many
files, such as nibs and the app delegate classes. You’ll want to share some code between
the iPhone and the iPad version of the app, but other pieces of code you’ll probably
want to keep separate, because they must behave differently; for example, you can’t
summon a popover on an iPhone.

There are various programming devices to govern dynamically what code is encoun-
tered, based on what system or device type the app is running on; thus you can avoid
executing code that will cause a crash in a particular environment (see also Exam-
ple 29-1):

• The UIDevice class lets you query the current device as [UIDevice current-
Device] to learn its system version (systemVersion) and type (userInterfaceIdiom,
either UIUserInterfaceIdiomPhone or UIUserInterfaceIdiomPad; available in iOS 3.2
and later). This query is also packaged as a convenience function (actually a macro),
UI_USER_INTERFACE_IDIOM.

• You can test for the existence of a method using respondsToSelector: and related
NSObject calls.

• You can test for the existence of a class using the NSClassFromString function,
which yields nil if the class doesn’t exist.

• You can test for the existence of a constant name, including the name of a C func-
tion, by taking the name’s address and testing against zero. For example:

if (&UIApplicationWillEnterForegroundNotification) // ...

If that condition is true, it’s okay to refer to UIApplicationWillEnterForeground-
Notification.

Choosing a Device Architecture | 161

If you write an app for just iPhone and decide later to make it universal
or to create a separate iPad app based initially on the same code, you
can edit the target and (in the Summary tab) change the Devices pop-
up menu. A dialog (“Transition to Universal Target”) offers to copy and
adjust your interface for you, and you should probably accept; in general
I find that this feature is quite clever about such things as giving you
good initial alternative nib files, so that you can build and start devel-
oping for iPad immediately, whereas you’d be very unlikely to perform
this migration successfully on your own.

Localization
A device can be set by the user to prefer a certain language as its primary language. You
might like the text in your app’s interface to respond to this situation by appearing in
that language. This is achieved by localizing the app for that language.

Localization works through localization folders in your project and in the built app
bundle. Every resource in one of these localization folders has a counterpart in the other
localization folders. Then, when your app goes to load such a resource, it automatically
loads the one appropriate to the user’s preferred language. For example, if there’s a
copy of MainWindow.nib in the English localization folder and a copy of Main-
Window.nib in the French localization folder, the latter will be loaded as the app
launches on a device on which French is the preferred language. So the two copies of
MainWindow.nib should be identical except that all the text the user will see in the
interface should be in French in the French version.

This approach solves the problem for resources that are physically loaded, such as nib
files and images and sound files, but it doesn’t deal with strings generated from within
your code, such as the text of an alert message. Surely you don’t want your code to
consist of a bunch of massive if clauses every time there’s text to display. The problem
is solved through the use of a strings file. A strings file is a specially formatted text file
whose file extension is .strings; by default the name of the file is Localizable.strings (that
is, this file will be sought by default, if no filename is specified), but you can use another
name if you like. As with other localized resources, the strings file exists in multiple
copies, one for each language. The strings file consists of key–value pairs; the keys are
the same in all copies, but the values differ, depending on the target language. So instead
of entering a string directly in your code, you tell your code to fetch the correct value
from the appropriate strings file, based on the key:

NSString* myAlertText = NSLocalizedString(@"alertTextKey", nil);

Another specially named .strings file, InfoPlist.strings, stores localized versions of
Info.plist key values. So, for example, the value of the CFBundleDisplayName key, as set
in your project’s Info.plist file, appears under your app’s icon on the user’s device
(Chapter 6); to change this name depending on the user’s primary language setting,
you’d include appropriate key–value pairs in InfoPlist.strings files.

162 | Chapter 9: Life Cycle of a Project

Localization explains the en.lproj folder seen in the Finder in our Empty Window
project folder (Figure 6-8). That’s an English localization folder; its contents, Main-
Window.xib and InfoPlist.strings, are localized for English. In Xcode, however, nothing
seems to indicate this; you wouldn’t know, from looking at the Project navigator, that
there’s anything special about these two files. That’s because there’s only one locali-
zation. As soon as a file has more than one localization, it’s shown in the Project nav-
igator as a kind of folder, inverted from how it’s shown in the Finder: the file name
contains hierarchically the names of the localizations (Figure 9-1). This makes it easy
to find and edit the correct copy of the file.

To get started with localization in your project, select in the Project navigator a file that
you want to localize and examine it in the Localization section of the File inspector
(Command-Option-1). It is obvious how to add and remove localization languages
here.

For full discussion, see Apple’s Internationalization Programming Topics.

Editing Your Code
Many aspects of Xcode’s editing environment can be modified to suit your tastes. Your
first step should be to pick a font face and size you like in the Fonts & Colors preference
pane. Nothing is so important as being able to read and write code comfortably! I like
a largish size (14 or even 16) and a pleasant monospaced font such as Monaco, Menlo,
or Consolas (or the freeware Inconsolata).

Xcode has some formatting, autotyping, and text selection features adapted for
Objective-C. Exactly how these behave depends upon your settings in the Editing and
Indentation tabs of Xcode’s Text Editing preference pane. I’m not going to describe
these settings in detail, but I urge you to take advantage of them. Under Editing, I like
to check just about everything, including Line Numbers; visible line numbers are useful
when debugging. Under Indentation, I like to have just about everything checked too;
I find the way Xcode lays out Objective-C code to be excellent with these settings.

If you like Xcode’s smart syntax-aware indenting, but you find that once in a while a
line of code isn’t indenting itself correctly, try choosing Editor → Structure → Re-indent
(Control-I), which autoindents the current line. (Autoindent problems can also be
caused by incorrect syntax earlier in the file, so hunt for that too.)

Under Editing, notice “Balance brackets in Objective-C method calls.” If this option is
checked, then when you type a closing square bracket after some text, Xcode intelli-

Figure 9-1. How a localized strings file is represented in Xcode

Editing Your Code | 163

gently inserts the opening square bracket before the text. I like this feature, as it allows
me to type nested square brackets without planning ahead. For example, I type this:

UIAlertView* av = [UIAlertView alloc

I now type the right square bracket twice. The first right square bracket closes the open
left square bracket (which highlights to indicate this). The second right square bracket
also inserts a space before itself, plus the missing left square bracket:

UIAlertView* av = [[UIAlertView alloc]]
// insertion point is here: ^

The insertion point is positioned before the second right square bracket, ready for me
to type init.

Autocompletion
As you write code, you’ll take advantage of Xcode’s autocompletion feature. Objective-
C is a verbose language, and whatever reduces your time and effort typing will be a
relief. However, I personally do not check “Suggest completions while typing” under
Editing; when I want autocompletion to happen, I ask for it manually, by pressing Esc.

For example, suppose my code is as displayed in the previous example, with the inser-
tion point before the second right square bracket. I now type init and then press Esc,
and a little menu pops up, listing the four init methods appropriate to a UIAlertView
(Figure 9-2). You can navigate this menu, dismiss it, or accept the selection, using only
the keyboard. So I would navigate to initWithTitle:... (no need, actually, as it is
selected by default) and press Return to accept the selected choice.

Alternatively, I might press Control-Period instead of Esc. Pressing Control-Period re-
peatedly cycles through the alternatives. Again, press Return to accept the selected
choice.

The template for the correct method call is now entered in my code (I’ve broken it
manually into multiple lines to show it here):

[[UIAlertView alloc] initWithTitle:<#(NSString *)#>
 message:<#(NSString *)#>
 delegate:<#(id)#>
 cancelButtonTitle:<#(NSString *)#>
 otherButtonTitles:<#(NSString *), ...#>, nil]

The expressions in <#...#> are placeholders, showing the type of each parameter; you
can select the next placeholder with Tab (if the insertion point is in the neighborhood
of a placeholder) or by choosing Navigate → Jump to Next Placeholder (Control-Slash).

Figure 9-2. The autocompletion menu

164 | Chapter 9: Life Cycle of a Project

Thus I can select a placeholder and type in its place the actual value I wish to pass,
select the next placeholder and type its value, and so forth.

Placeholders are delimited by <#...#> behind the scenes, but they ap-
pear as “text tokens” to prevent them from being edited accidentally.
To convert a placeholder to a normal string without the delimiters, select
it and press Return, or double-click it.

Autocompletion also works for method declarations. You don’t have to know or enter
a method’s return type beforehand. Just type the initial - or + (to indicate an instance
method or a class method) followed by the first few letters of the method’s name. For
example, in my app delegate I might type:

- appli

If I then press Esc, I see a list of methods such as application:didChangeStatusBar-
Frame:; these are methods that might be sent to my app delegate (by virtue of its being
the app delegate, as discussed in Chapter 11). When I choose one, the declaration is
filled in for me, including the return type and the parameter names:

- (void)application:(UIApplication *)application
 didChangeStatusBarFrame:(CGRect)oldStatusBarFrame

At this point I’m ready to type the left curly brace, followed by a Return character; this
causes the matching right curly brace to appear, with the insertion point positioned
between them, ready for me to start typing the body of this method.

Snippets
Code autocompletion is supplemented by code snippets, which are text constructs with
an abbreviation. Code snippets are kept in the Code Snippet library (Control-Option-
Command-2). You type the abbreviation and the macro is included among the possible
completions. For example, to enter an if block, I would type if and press Esc and then
Return; the construct appears in my code, and the condition area (between the paren-
theses) and statements area (between the curly braces) are placeholders.

To learn a snippet’s abbreviation, you must open its editing window (select the snippet
in the Code Snippet library and press Spacebar) and click Edit. You can add your own
snippets, which will be categorized as User snippets; the easiest way is to drag text into
the Code Snippet library. Edit to suit your taste, providing a name, a description, and
an abbreviation; use the <#...#> construct to form any desired placeholders.

If learning a snippet’s abbreviation is too much trouble, simply drag it from the Code
Snippet library into your text.

Editing Your Code | 165

Live Syntax Checking
Xcode 4 introduces live syntax checking as you type. This feature can save you from
mistakes; in addition, the extremely cool “Fix-it” feature can actually make and imple-
ment positive suggestions on how to avert a problem.

For instance, in Figure 9-3 I’ve accidentally omitted the @ before an Objective-C
NSString literal, and the compiler is warning (because what I’ve typed is a C string
literal, a very different thing). By clicking on the warning symbol in the gutter, I’ve
summoned a little dialog that not only describes the mistake but tells me how to fix it.
Not only that: it has tentatively inserted the missing @ into my code. (Note that @ is a
faded gray color. It’s not part of what I typed; Xcode has added it.) Not only that: if I
press Return, or double-click the “Fix-it” button in the dialog, Xcode really inserts the
missing @ into my code — and the warning vanishes, because the problem is solved. If
I’m confident that Xcode will do the right thing, I can choose Editor → Fix All in Scope
(Control-Command-F), and Xcode will implement all nearby Fix-it suggestions with-
out my even having to show the dialog.

Live syntax checking can be toggled on or off using the Enable Live Issues In Editors
checkbox in the General preference pane. I’m of two minds about this feature. On the
one hand I’m tempted to turn it off, as I find it intrusive. My code is almost never valid
while I’m typing, because the terms and parentheses are always half-finished; that’s
what it means to be typing. For example, merely typing a left parenthesis will instantly
cause the syntax checker to complain of a parse error (until I type the corresponding
right parenthesis). On the other hand, turning off live syntax checking turns off Fix-it,
and it’s a pity to lose something so convenient.

Navigating Your Code
Developing an Xcode project involves editing code in many files at once. Xcode provides
numerous ways to navigate your code. Many of these have been mentioned in previous
chapters.

The Project navigator
If you know something about the name of a file, you can find it quickly in the
Project navigator (Command-1) by typing into the search field in the filter bar at
the bottom of the navigator (Edit → Filter → Filter in Navigator, Command-Option-
J). For example, type xib to see just your nib files. Moreover, after using the filter

Figure 9-3. A warning with a Fix-it suggestion

166 | Chapter 9: Life Cycle of a Project

bar, you can press Tab and then the Up or Down arrow key to navigate the Project
navigator. Thus you can reach the desired nib file with the keyboard alone.

The Symbol navigator
As with the Project navigator, the filter bar can quickly get you where you want to
go. For example, to see all dealloc implementations in your code, highlight the
first two icons (the first two are light, the third is dark) and type deall in the search
field.

The jump bar
Every path component of the jump bar is a menu:

The bottom level
At the bottom level (farthest right) in the jump bar is a list of your file’s method
and function declarations and definitions, in the order in which they appear
(hold Command while choosing the menu to see them in alphabetical order);
choose one to navigate to it.

You can add your own entries to this bottom-level menu using the
#pragma mark directive. For example:

#pragma mark Memory Management
- (void)dealloc {
 [window release];
 [super dealloc];
}

The result is that the “dealloc” item in the bottom-level menu falls within a
“Memory Management” section. To make a section divider line in the menu,
type a #pragma mark directive whose value is a hyphen.

Higher levels
Higher-level path components are hierarchical menus; thus you can use any
of them to work your way down the file hierarchy.

History
Each editor pane remembers the names of files you’ve edited in it. The Back
and Forward triangles are both buttons and pop-up menus (or choose Navigate
→ Go Back and Navigate → Go Forward, Control-Command-Left and Control-
Command-Right).

Related items
The leftmost button in the jump bar summons a hierarchical menu of files
related to the current file, such as counterparts, superclasses, and included
files.

The Assistant pane
The Assistant allows you to be in two places at once. Hold Option while navigating
to open something in an Assistant pane instead of the main or current editor pane.

Navigating Your Code | 167

The first path component in an Assistant pane’s jump bar sets its automatic rela-
tionship to the main pane (tracking). If that relationship involves multiple files,
triangle buttons appear at the right end of the jump bar, letting you navigate be-
tween them; or choose from the second path component’s pop-up menu (Con-
trol-5). (For example, show Empty_WindowAppDelegate.m in the main pane and
switch the assistant pane’s related items pop-up menu to Includes.)

You can also be in two places at once by opening a tab or a separate window.

Jump to definition
Navigate → Jump to Definition (Control-Command-D) lets you jump to the defi-
nition or implementation of the symbol already selected in your code.

Open quickly
File → Open Quickly (Shift-Command-O) searches in a dialog for a symbol in your
code and the Cocoa headers. You can type the symbol in the search field, or, if a
symbol is selected when you summon the dialog, it will be entered in the search
field for you (and you can then navigate the dialog entirely with the keyboard).

Breakpoints
The Breakpoint navigator lists all breakpoints in your code. Xcode 4 lacks code
bookmarks, but you can misuse a disabled breakpoint as a bookmark.

Finding
Finding is a form of navigation. Xcode has both a global find (Edit → Find → Find
in Workspace, Shift-Command-F, which is the same as using the Search navigator)
and an editor-level find (Edit → Find → Find, Command-F); don’t confuse them.

Find options are all-important. Both sorts of find have options settings that you
can summon by clicking the magnifying glass. The global find options (Fig-
ure 6-3) allow you to specify the scope of a search (which files will be searched) in
sophisticated ways: choose Custom in the “Find in” pop-up menu to create a scope.
The global find search bar also pops down a menu automatically as you type, letting
you switch among the most important options. You can also find using regular
expressions. There’s a lot of power lurking here.

To replace text, click on the word Find next to the search bar to summon the pop-
up menu, and choose Replace. (It may be necessary to perform a global find first,
before a global replace on the same search term will work.) You can replace all
occurrences, or select particular find results in the Search navigator and replace
only those (click Replace instead of Replace All). Even better, click Preview; it
summons a dialog that shows you the effect of each possible replacement, and lets
you check or uncheck particular replacements in advance of performing the re-
placement.

A sophisticated form of editor-level find is Editor → Edit All In Scope, which finds
simultaneously all occurrences of the currently selected term (usually a variable
name) within the current set of curly braces; you can use this to change the varia-

168 | Chapter 9: Life Cycle of a Project

ble’s name throughout its scope, or just to survey how the name is used. To change
a symbol’s name throughout your code, use Xcode’s Refactoring feature (see
“Making Global Changes to Your Code” in the Xcode 4 User Guide).

Debugging
Debugging is the art of figuring out what’s wrong with the behavior of your app as it
runs. I divide this art into two main techniques: caveman debugging and pausing your
running app.

Caveman Debugging
Caveman debugging consists of altering your code, usually temporarily, typically by
adding code to dump informative messages into the console.

To see the console as a full window, open a second project window or
tab, show the Debug pane (View → Show Debug Area), and slide the
top of the Debug pane all the way up to cover the editor. Eliminate the
Navigator and Organizer panes, and the variables list. Now this window
or tab contains nothing but the console. Switch to this window or tab
when you want to read the console, but don’t run or stop while viewing
it, as doing so may cause the Debug pane to close or change size.

The standard command for sending a message to the console is NSLog. It’s a C function,
and it takes an NSString which operates as a format string, followed by the format
arguments.

A format string is a string (here, an NSString) containing symbols called format speci-
fiers, for which values (the format arguments) will be substituted at runtime. All format
specifiers begin with a percent sign (%), so the only way to enter a literal percent sign
in a format string is as a double percent sign (%%). The character(s) following the percent
sign specify the type of value that will be supplied at runtime. The most common format
specifiers are %@ (an object reference), %i (an integer), %f (a float), and %p (a pointer,
usually an object reference, shown as the address in memory pointed to, useful for
making certain that two references refer to the same instance). For example:

NSLog(@"the window: %@", self.window);

In that example, self.window is the first (and only) format argument, so its value will
be substituted for the first (and only) format specifier, %@, when the format string is
printed in the console. Thus the console output looks something like this:

the window: <UIWindow: 0x391e740; frame = (0 0; 320 480); opaque = NO;
autoresize = RM+BM; layer = <CALayer: 0x391f4c0>>

Debugging | 169

This nice display of information is due to UIWindow’s implementation of the
description method: an object’s description method is called when that object is used
with the %@ format specifier. For this reason, you will probably want to implement
description in your own classes, so that you can investigate an instance with a simple
NSLog call.

For the complete repertory of format specifiers available in a format string, read Apple’s
document String Format Specifiers. The format specifiers are largely based on those of
the C printf standard library function; see K&R B1.2, the sprintf man page, and the
IEEE printf specification linked from the documentation.

If an object reference has been set to nil, NSLog will report it as
(null). But if an object reference is uninitialized, an NSLog call referring
to it will probably fail silently, or even crash the debugger. This is very
frustrating; indeed, the fact that this object reference is uninitialized is
probably just what you were trying to debug. This is another good rea-
son to initialize your variables explicitly as you declare them.

The main ways to go wrong with NSLog (or any format string) are to supply a different
number of format arguments from the number of format specifiers in the string, or to
supply an argument value different from the type declared by the corresponding format
specifier. These mistakes can send your app off into the weeds, or at least give mis-
leading results. I often see beginners claim that logging shows a certain value to be
nonsense, when in fact it is their NSLog call that is nonsense; for example, a format
specifier was %i but the value of the corresponding argument was a float.

C structs are not objects, so to see a struct’s value with NSLog you must somehow
disassemble or translate the struct. Common Cocoa structs usually supply convenience
functions for this purpose. For example:

NSLog(@"%@", NSStringFromCGRect(self.window.frame)); // {{0, 0}, {320, 480}}

Purists may scoff at caveman debugging, but I use it heavily: it’s easy, informative, and
lightweight. And sometimes it’s the only way. Unlike the debugger, NSLog works with
any build configuration (Debug or Release) and wherever your app runs (in the Simu-
lator or on a device). It even works on someone else’s device, such as a tester to whom
you’ve distributed your app. It’s a little tricky for a tester to get a look at the console
so as to be able to report back to you, but it can be done: the tester can connect the
device to a computer and view its log in Xcode’s Organizer window or with Apple’s
iPhone Configuration Utility; there’s also a free utility app called Console that displays
the log right on the device.

Remember to remove or comment out NSLog calls before shipping your app, as you
probably don’t want your finished app to dump lots of messages into the console. A
useful trick (shamelessly stolen from Jens Alfke) is to call MyLog instead of NSLog,
and define MyLog like this in your precompiled header:

#define MyLog if(0); else NSLog

170 | Chapter 9: Life Cycle of a Project

When it’s time to stop logging, change the 0 to 1.

A useful fact when logging is that the variable name _cmd holds the selector for the
current method. Thus a single form of statement can signal where you are:

NSLog(@"Starting %@ in %@", NSStringFromSelector(_cmd), self);

Another sort of call with which you can pepper your code is asserts. Asserts are con-
ditions that you claim (assert) are true at that moment — and you feel so strongly about
this that you want your app to crash if you’re wrong. Asserts are a very good way to
confirm that the situation matches your expectations, not just now as you write your
code, but in the future as the app develops. Some developers even think that asserts
should be allowed to remain in your code when your app is finished.

The simplest form of assert is the C function (actually it’s a macro) assert(), to which
you pass one argument, a condition — something that can be evaluated as false (0) or
true (some other value). If it’s false, your app will crash when this line is encountered,
along with a nice explanation in the log. For example, suppose we assert NO, which is
false and will certainly cause a crash. Then when this line is encountered we crash with
this log message:

Assertion failed: (NO),
function -[testAssertAppDelegate application:didFinishLaunchingWithOptions:],
file /Users/mattleopard/Desktop/testAssert/testAssert/testAssertAppDelegate.m,
line 26.

That’s plenty for us to track down the assertion failure: we know the assertion condi-
tion, the method in which the assertion occurred, the file containing that method, and
the line number.

For higher-level asserts, look at NSAssert (used in Objective-C methods) and NSCAs-
sert (used in C functions) and their relatives; they allow you to form your own log
message, and the relatives allow the log message to be a format string. For example,
NSAssert3 takes a condition along with a format string containing three format speci-
fiers, followed by the values to be substituted for each format specifier.

The Xcode Debugger
When you’re building and running in Xcode, you can pause in the debugger and use
Xcode’s debugging facilities. There isn’t a strong difference between running and de-
bugging in Xcode 4; the main distinction is whether breakpoints are activated (activated
breakpoints are obeyed, whereas deactivated breakpoints are ignored).

The important thing, if you want to use the debugger, is that the app should be built
with the Debug build configuration. The debugger is not very helpful against an app
built with the Release build configuration, not least because compiler optimizations
can destroy the correspondence between steps in the compiled code and lines in your
code. Trying to debug a Release build is a common beginner error (though it’s less likely

Debugging | 171

to occur accidentally in Xcode 4, in which by default a scheme’s Run action uses the
Debug build configuration).

To create a breakpoint (Figure 9-4), select in the editor the line where you want to
pause, and choose Product → Debug → Add Breakpoint at Current Line (Command-
Backslash). This keyboard shortcut toggles between adding and removing a breakpoint
for the current line. The breakpoint is symbolized by an arrow in the gutter. Alterna-
tively, a simple click in the gutter adds a breakpoint; to remove a breakpoint gesturally,
drag it out of the gutter.

A breakpoint can be disabled. This means that even if breakpoints are activated, we
won’t pause at this one. That way, you can leave in place a breakpoint that you might
need later without pausing at it every time it’s encountered. To disable a breakpoint at
the current line, click on the breakpoint in the gutter to toggle its enabled status. Al-
ternatively, Control-click on the breakpoint and choose Disable Breakpoint in the con-
textual menu. A dark breakpoint is enabled; a light breakpoint is disabled (Figure 9-5).

Once you have some breakpoints in your code, you’ll want to survey and manage them.
That’s what the Breakpoint navigator is for. Here you can navigate to a breakpoint,
enable or disable a breakpoint by clicking on its arrow in the navigator, and delete a
breakpoint.

You can also edit a breakpoint’s behavior. Control-click on the breakpoint, in the gutter
or in the Breakpoint navigator, and choose Edit Breakpoint. This is a very powerful
facility: you can have a breakpoint pause only under a certain condition or after it has
been encountered a certain number of times, and you can have a breakpoint perform
a certain action when it is encountered, such as logging or running a script.

A breakpoint can be configured to continue automatically after performing its action
when it is encountered. This can be an excellent alternative to caveman debugging:
Instead of inserting an NSLog call, which must be compiled into your code and later
removed when the app is released, you can set a breakpoint that logs and continues,
which operates only when you’re debugging.

In the Breakpoint navigator, you can create two kinds of breakpoint that you can’t
create in a code editor: exception breakpoints and symbolic breakpoints. Click the “+”
button at the bottom of the navigator and choose from its pop-up menu.

Figure 9-4. A breakpoint

Figure 9-5. A disabled breakpoint

172 | Chapter 9: Life Cycle of a Project

Exception breakpoint
An exception breakpoint causes your app to pause at the time an exception is
thrown or caught, without regard to whether the exception would crash your app
later. I recommend that you create an exception breakpoint to catch all exceptions
when they are thrown, because this gives the best view of the call stack and variable
values at the moment of the exception (rather than later when the crash actually
occurs); you can see where you are in your code, and you can examine variable
values, which may help you understand the cause of the problem. If you do create
such an exception breakpoint, I also suggest that you use the contextual menu to
say Move Breakpoint To → User, which makes this breakpoint permanent and
global to all your projects.

Symbolic breakpoint
A symbolic breakpoint causes your app to pause when a certain method is called,
regardless of what object called it or to what object the message is sent. The method
name is entered in a special way — the instance method or class method symbol
(- or +) followed by square brackets containing the class name and the method
name. For example, to learn where in my app the beginReceivingRemoteControl-
Events message was being sent to my shared application instance, I configured a
symbolic breakpoint like this:

-[UIApplication beginReceivingRemoteControlEvents]

Breakpoints as a whole can be active or inactive: click the Breakpoints button in the
project window toolbar or choose Product → Debug → Activate/Deactivate Breakpoints
(Command-Y). The active status of breakpoints as a whole doesn’t affect the enabled
or disabled status of any breakpoints; if breakpoints are inactive, they are simply ig-
nored en masse, and no pausing at breakpoints takes place. Breakpoint arrows are blue
if breakpoints are active, gray if they are inactive.

When the app runs with breakpoints active and an enabled breakpoint is encountered
(and assuming its conditions are met, and so on), the app pauses. In the active project
window, the editor shows the file containing the point of execution, which will usually
be the file containing the breakpoint. The point of execution is shown as a green arrow;
this is the line that is about to be executed (Figure 9-6). Depending on the settings for
“Run pauses” in the Behaviors preference pane, the Debug navigator and the Debug
pane will also appear.

Here are some things you might like to do while paused at a breakpoint:

Figure 9-6. Paused at a breakpoint

Debugging | 173

See where you are
One common reason for setting a breakpoint is to make sure that the path of ex-
ecution is passing through a certain line. You can see where you are in any of your
methods by clicking on the method name in the call stack, shown in the Debug
navigator.

Methods listed in the call stack with a User icon, with the text in black, are yours;
click one to see where you are paused in that method. Other methods, with the
text in gray, are methods for which you have no source code, so there would be
little point clicking one unless you know something about assembly language. The
slider at the bottom of the navigator hides chunks of the call chain, to save space,
starting with the methods for which you have no source. Highlight (lighten) the
“Σ” icon at the bottom left of the navigator to hide all threads for which you have
no source.

You can also navigate the call stack using the jump bar at the top of the
Debug pane.

Study variable values
This is a very common reason for pausing. In the Debug pane, variable values for
the current scope (corresponding to what’s selected in the call stack) are visible in
the variables list. You can see additional object features, such as collection ele-
ments, instance variables, and even some private information, by opening triangles.
Switch the pop-up menu above the variables list to Auto to see only those variables
that Xcode thinks will interest you (because their value has been recently changed,
for instance); if you’re after completeness, Local will probably be the best setting.
You can use the search field to filter variables by name or value.

In some cases, unchecking Enable Data Formatters in the contextual menu can
cause display of variables to be more reliable. However, in that case some object
variable values may not be displayed in useful form. But you can always send
description to an object variable and view the output in the console by selecting
Print Description from the contextual menu.

Set a watchpoint
A watchpoint is like a breakpoint, but instead of depending on a certain line of
code it depends on a variable’s value: the debugger pauses whenever the variable’s
value changes. You can set a watchpoint only while paused in the debugger.
Control-click on the variable in the variables list and choose Watch Address of
[Variable]. Watchpoints, once created, are listed and managed in the Breakpoint
navigator.

174 | Chapter 9: Life Cycle of a Project

Manage expressions
An expression is code to be added to the variables list and evaluated every time we
pause. Choose Add Expression from the contextual menu in the variables list.

Talk to the debugger
You can communicate verbally with the debugger in the console. The most com-
mon command is po (for “print object”) followed by an object variable’s name or
a method call that returns an object; it calls the object’s description method, just
like NSLog.

Xcode’s debugger is a front end to an open source third-party command-
line debugger tool. Thus, by talking directly to that command-line tool
you can do everything that you can do through the Xcode debugger
interface, and more. Throughout the history of Xcode up through
through Xcode 3.2.x, the debugger tool has been GDB; see Debugging
with GDB. Starting in Xcode 4.0, the debugger LLDB is available as an
alternative (http://lldb.llvm.org), but at the time of this writing it is not
yet enabled for iOS projects, so this book assumes you’re using GDB.

Fiddle with breakpoints
You are free to create, destroy, enable and disable, and otherwise manage break-
points dynamically even though your app is running, which is useful because where
you’d like to pause next might depend on what you learn while you’re paused here.

Step or continue
To proceed with your app, you can either resume running (Product → Debug →
Continue) until the next breakpoint is encountered or take one step and pause
again. Also, if you hover the mouse over the gutter, a green Continue to Here button
lets you resume and then pause at the line you specified, treating the line tempo-
rarily as it if had a breakpoint without actually setting a breakpoint there.

The stepping commands (under Product → Debug) are:

Step Over
Pause at the next line.

Step Into
Pause in your method that the current line calls, if there is one; otherwise,
pause at the next line.

Step Out
Pause when we return from the current method.

You can access these commands through convenient buttons at the top of the
Debug pane. Even if the Debug pane is collapsed, the part containing the buttons
appears while running. You can also float the project window over everything else
on your computer by choosing Product → Window Behavior → Xcode In Front;

Debugging | 175

after you then switch to the Simulator, you can interact with the Xcode window
without giving it focus. If you do want to give it focus, to type in a filter bar for
instance, click Focus in the toolbar. This mode of working could be useful while
you’re interacting with the Simulator, so as not to have keep switching between
the Simulator and Xcode. To end it, choose Normal from the Debugging pop-up
menu in the window toolbar.

Step Over and Step Into have advanced forms where you hold Control
to step by machine-level instruction, and Control-Shift to step while
blocking all other threads.

Start over, or abort
To kill the running app, click Stop in the toolbar (Product → Stop, Command-
Period). To kill the running app and relaunch it without rebuilding it, Control-
click Run in the toolbar (Product → Perform Action → Run Without Building,
Control-Command-R). You can make changes to your code while the app is run-
ning or paused, but they are not magically communicated to the running app; you
must run in the normal way (which includes building) to see your changes in action.

Clicking the Home button in the Simulator or on the device does not
stop the running app in the iOS 4 multitasking world.

Static Analyzer
From time to time, you should use the static analyzer to look for possible sources of
error in your code; choose Product → Analyze (Shift-Command-B). This command
causes your code to be compiled, and the static analyzer studies it and reports its find-
ings in the Issue navigator and in your code.

The static analyzer is static — it’s analyzing your code, not debugging in real time —
but it is remarkably intelligent and may well alert you to potential problems that could
otherwise escape your notice. For example, there are two memory leaks in the Empty
Window project as we’ve developed it in previous chapters; this is deliberate, because
we haven’t yet discussed memory management (we’ll discuss it, and fix these leaks, in
Chapter 12). The static analyzer correctly reports them.

The static analyzer isn’t perfect, and can result in false warnings, but think of it as
notifying you of things to think about rather than as listing definite issues. For more
about the static analyzer, see http://clang-analyzer.llvm.org.

176 | Chapter 9: Life Cycle of a Project

Clean
From time to time, during repeated testing and debugging, and before making a dif-
ferent sort of build (switching from Debug to Release, or running on a device instead
of the Simulator), it is a good idea to clean your target. This means that existing builds
will be removed and caches will be cleared, so that all code will be considered to be in
need of compilation and the next build will build your app from scratch.

The first build of your app after you clean will take longer than usual. But it’s worth it,
because cleaning removes the cruft, quite literally. For example, suppose you have been
including a certain resource in your app, and you decide it is no longer needed. You
can remove it from the Copy Bundle Resources build phase, but that doesn’t remove
it from your built app. Only cleaning will do that, because it removes the built app
completely.

To clean, choose Product → Clean. For more complete cleaning, hold Option to get
Product → Clean Build Folder.

You should also from time to time remove all versions of your built app from the Sim-
ulator cache. Choose iOS Simulator → Reset Content and Settings. Alternatively, you
can clean the cache by hand. To do so, first quit the Simulator if it’s running. Then find
the cache in ~/Library/Application Support/iPhone Simulator, followed by the system
version of the SDK (for example, there might be a folder called 4.3); within this, find
the Applications folder, and move the contents of that folder to the trash.

In addition, Xcode 4 stores builds and project indexes in ~/Library/Developer/Xcode/
DerivedData. From time to time, with Xcode not running, I like to move the contents
of that folder to the trash. A project will take longer to open for the first time afterward,
because its index must be rebuilt, and it will take longer to build, because its build
information has been removed. But the space savings on your hard disk can be signif-
icant.

Running in the Simulator
When you build and run with Simulator as the destination, you run in the iOS Simulator
application. There’s little to say about running in the Simulator, because it’s so intuitive.
The Simulator window represents a device, and you can interact with it in some of the
same basic ways as you would a device. Using the mouse, you can press the Home
button and tap on the device’s screen; hold Option to make the mouse represent two
fingers and Option-Shift to move those fingers in parallel. Menu items let you perform
hardware gestures such as rotating the device, shaking it, and locking its screen; you
can also test your app by simulating certain rare events, such as a low-memory situation.

What hardware and system the Simulator simulates depends upon your choices in
Hardware → Device and Hardware → Version. If your app runs on either iPhone or iPad,
you can choose which device is simulated as you choose your destination. The iPhone

Running in the Simulator | 177

4 device, Hardware → Device → iPhone (Retina), is displayed at double size, so that
each pixel of the Retina display corresponds to a pixel of your computer’s monitor. The
iPad device can be displayed at half or full size (choose from Window → Scale).

Running on a Device
Sooner or later, you’re going to want to switch from running and testing and debugging
in the Simulator to running and testing and debugging on a real device. The Simulator
is nice, but it’s only a simulation; there are many differences between the Simulator
and a real device. The Simulator is really your computer, which is fast and has lots of
memory, so problems with memory management and speed won’t be exposed until
you run on a device. User interaction with the Simulator is limited to what can be done
with a mouse: you can click, you can drag, you can hold Option to simulate use of two
fingers, but more elaborate gestures can be performed only on an actual device. And
many iOS facilities, such as the accelerometer and access to the music library, are not
present on the Simulator at all, so that testing an app that uses them is possible only
on a device.

Don’t even think of developing an app without testing it on a device.
You have no idea how your app really looks and behaves until you run
it on a device. Submitting to the App Store an app that you have not run
on a device is asking for trouble.

Before you can run your app on a device, even just to test, you must join the iOS
Developer Program by paying the annual fee. (Yes, this is infuriating. Now get over it.)
Only in this way can you obtain and provide to Xcode the credentials for running on
a device. Once you have joined the iOS Developer Program, obtaining these credentials
involves use of the iOS Provisioning Portal, which is accessed online, through your web
browser (or, for certain actions, through Xcode itself).

To reach the iOS Provisioning Portal in your browser (once you’re an
iOS Developer Program member), go to http://developer.apple.com/dev
center/ios. Click Log In to log in, and then click iOS Provisioning Portal
at the upper right.

You will need to perform the following steps just once:

1. Join the iOS Developer Program (http://developer.apple.com/programs/ios). This
requires filling out a form and paying the annual fee. Unless you have multiple
developers, all of whom might need to build and run on their own devices, the
Individual program is sufficient. The Company program costs no more, but adds
the ability to privilege additional developers in various roles. (You do not need the

178 | Chapter 9: Life Cycle of a Project

Company program just in order to distribute your built app to other users for
testing.)

2. Obtain a development certificate that identifies and authorizes your computer. This
is the computer to which you’ll be attaching the device so you can run on it. Basi-
cally, this certificate matches the person who uses your computer to the person
interacting with the iOS Provisioning Portal. The certificate will be stored in your
computer’s keychain, where Xcode will be able to see it automatically.

The certificate depends upon a private–public key pair. The private key will live in your
keychain; the public key will be handed over to the iOS Provisioning Portal, to be built
into the certificate. The way you give the Portal your public key is through a request for
the certificate. So, you generate the private–public key pair; your keychain keeps the
private key; the public key goes into the certificate request; you submit the request,
containing the public key, to the Portal; and the Portal sends back the certificate, also
containing the public key, which also goes into your keychain, where it is matched with
the private key, thus ensuring that you are you.

Detailed instructions for generating the private–public key pair and the certificate re-
quest are available once you’ve joined the iOS Developer Program and have logged in
at Apple’s developer site. (A video review of the steps involved is available to anyone
at http://developer.apple.com/ios/videos/popupcerts.action.) Basically, you start up Key-
chain Access and choose Keychain Access → Certificate Assistant → Request a Certifi-
cate from a Certificate Authority. Using your name and email address as identifiers,
you generate and save to disk a 2048-bit RSA certificate request file. Your private key
is stored in your keychain then and there; the certificate request contains your public
key.

You then go to the iOS Provisioning Portal in your browser. At the Portal, upload the
certificate request file using the Development (not Distribution!) tab of the Certificates
section. You may have to approve your own request.

If this is your very, very first time obtaining any certificate from the
Portal, you will need another certificate: the WWDR Intermediate Cer-
tificate. This is the certificate that certifies that certificates issued by
WWDR (the Apple Worldwide Developer Relations Certification Au-
thority) are to be trusted. (You can’t make this stuff up.) You’ll see a
link for this intermediate certificate; click it to download the intermedi-
ate certificate. Double-click the intermediate certificate file; it is impor-
ted by your keychain. You can then throw the file away.

When the development certificate itself is ready, you download it and double-click it;
Keychain Access automatically imports the certificate and stores it in your keychain.
You do not need to keep the certificate request file or the development certificate file;
your keychain contains all the needed credentials. If this has worked, you can see the
certificate in your keychain, read its details, and observe that it is valid and linked to

Running on a Device | 179

your private key (Figure 9-7). After you’ve done this once, your development certificate
is good for all your app development from now on. (However, your development cer-
tificate expires when your year of iOS Developer Program membership expires; if you
renew your membership, you’ll have to revoke your current development certificate at
the Portal, delete it from your keychain, and repeat the process of obtaining a new one.)

With your development certificate in place, you need to register a device for develop-
ment use, meaning that you’ll be able to build and run from Xcode onto that device
rather than the Simulator. This can be done entirely from within Xcode. Open the
Organizer window (Window → Organizer) and switch to the Devices tab. Select Pro-
visioning Profiles at the left, and make sure Automatic Device Provisioning is checked
at the bottom of the window. Attach your device to the computer; the device name
appears at the left under Devices. Select it, and click Use For Development. You’ll be
asked for your Portal username and password. Xcode connects to the Portal via the
Internet and does two things:

• It registers your device at the Portal by its name and unique identifier number. You
could have done this yourself in your browser (at the Portal, under Devices), but
this way it is done for you.

• It creates and downloads from the Portal a universal development provisioning
profile (referred to as a Team Provisioning Profile) for development on this device.
This is something you can’t do at the Portal yourself. A development provisioning
profile created manually at the Portal applies to a single app; in the past, when the
Portal was the only way to obtain a development provisioning profile, you had to
generate a new development provisioning profile for each app you wanted to test
on a device, which was very inconvenient. But the development provisioning pro-
file generated by Xcode applies to all apps, now and in the future (until it expires,
at which time it can be easily regenerated). The universal development provisioning
profile appears in the Organizer, under Provisioning Profiles; you can identify it
because it is called Team Provisioning Profile and has an app identifier consisting
of just a key and an asterisk, like this: B398E68A3D.*.

Figure 9-7. A valid development certificate, as shown in Keychain Access

180 | Chapter 9: Life Cycle of a Project

If you develop an app that uses certain specialized features, such as push
notifications (Chapter 37) or in-app purchases, you must generate a
development provisioning profile the old way, manually at the Portal.
To do so, first enter your app by name and bundle id in the App IDs
section of the Portal. Now go to Provisioning and the Development sec-
tion and generate a new provisioning profile, specifying that app and
your device(s). You can then download the provisioning profile in the
Organizer window, under Provisioning Profiles, by clicking the Refresh
button.

You can install the provisioning profile onto your device manually in the Organizer
window by dragging its listing (under Provisioning Profiles) onto the device’s name
(under Devices). Alternatively, you can just start building and running on the device.
Start with a project window. With the device attached to the computer, pick the des-
tination in the Scheme pop-up menu corresponding to your device; then build and run.
If Xcode complains that your device doesn’t contain a copy of the provisioning profile,
and offers to install it for you, accept that offer.

The app is built, loaded onto your device, and runs. As long as you launch the app from
Xcode, everything is just as it was before: you can run, or you can debug, and the
running app is in communication with Xcode, so that you can stop at breakpoints, read
messages in the console, and so on. The outward difference is that to interact physically
with the app, you use the device, not the Simulator.

Device Management
Your central location for management of identities (certificates), provisioning profiles,
and devices is the Devices tab of the Organizer window (Window → Organizer). Under
Library, select Developer Profile to see your identities and provisioning profiles. Select
Provisioning Profiles for another list of profiles.

When your device is attached to the computer, it is listed with a green dot under De-
vices. Click its name to access information on the device. You can see the device’s
unique identifier. You can see provisioning profiles that have been installed on the
device. You can view the device’s console log in real time, just as if you were running
the Console application to view your computer’s logs. You can see log reports for
crashes that took place on the device. And you can take screenshots that image your
device’s screen; you’ll need to do this for your app when you submit it to the App Store.
Crash reports and screenshots are also available under Library.

Version Control
Various systems of version control exist for taking periodic snapshots (technically called
commits) of your project. The value of such a system to you will depend on what system

Version Control | 181

you use and how you use it; for example, you might use version control because it lets
you store your commits in a repository offsite, so that your code isn’t lost in case of a
local computer glitch or some equivalent “hit by a bus” scenario, or because it allows
multiple developers to access the same code.

To me, personally, the chief value of version control is freedom from fear. Having ver-
sion control actually changes the way I program. A project is a complicated thing,
consisting of numerous files. Often, changes must be made in many files before a new
feature can be tested. Thus it is all too easy to start down some virtual road involving
creating or editing multiple files, only to find yourself at the end of a blind alley and
needing to retrace your steps. Version control means that I can easily retrace my steps;
I have but to say, in the language of some version control system I’ve been using, “Forget
everything I just did and return the whole project to where it was at such-and-such a
commit.” I rarely, if ever, in fact retrace my steps, but the knowledge that I could do so
gives me the courage to try some programming strategy whose outcome may not be
apparent until after many days of effort. Also, I can ask a version control system, “What
the heck are all the changes I’ve made since the last commit?” In short, without version
control I’d be lost, confused, hesitant, rooted to the spot, paralyzed with uncertainty;
with it, I forge boldly ahead and get things done. For this reason, my current personal
favorite version control system is git (http://git-scm.com), whose agile facilities for man-
aging branches give me tremendous license to experiment.

Xcode provides various version control facilities. Starting with Xcode 4, those facilities
concentrate on git and Subversion (http://subversion.apache.org). This doesn’t mean
you can’t use any other version control system with your projects! It means only that
you can’t use any other version control system in an integrated fashion from inside
Xcode. Personally, I don’t find that to be any kind of restriction. For years I’ve used
Subversion, and more recently git, on my Xcode projects from the command line in
Terminal, or using other third-party GUI front ends (such as svnX for Subversion, http:
//www.lachoseinteractive.net/en/products). I’m comfortable and nimble at the com-
mand line, and access to version control from within Xcode itself is not a priority for me.

At the same time, version control integration in Xcode 4 is greatly improved and far
more extensive than previously:

Automatic git repository creation
When you create a new project in Xcode 4, the Save dialog includes a checkbox
that offers to place a git repository into your project folder from the outset.

Automatic repository detection
When you open an existing project in Xcode 4, if that project is already managed
with Subversion or git, Xcode detects this and is ready instantly to display version
control information in its interface.

Version comparison
The Version editor (View → Editor → Version) includes a view similar to that of the
File Merge utility, graphically displaying the differences between versions of a file.

182 | Chapter 9: Life Cycle of a Project

For example, in Figure 9-8, I can see that in the more recent version of this file (on
the left) I’ve shifted a line upward. The Version editor also includes various ways
to survey and navigate versions and commit logs.

Without minimizing these features, I’ve no plans to rely on them exclusively or even
primarily (although I’ll certainly take advantage of them where convenient). I find ver-
sion control management through the command line far easier and clearer for many
purposes, and Xcode doesn’t come close to the command line’s power, especially for
managing branches (and Xcode has nothing like the visual branch representation of
git’s own gitk tool).

Version control in general is a large and complicated topic. Use and configuration of
any version control system can be tricky and scary at first and always requires some
care. So I’m deliberately not going to say anything specific about it; I’m mentioning it
at all only because version control of some sort is in fact likely, sooner or later, to play
a role in the life cycle of your projects. When it does, you’ll want to read up on the use
of your chosen version control system, along with “Managing Versions of Your Project”
in the Xcode 4 User Guide. You’ll find Xcode 4’s integrated version control facilities in
three chief locations:

The File menu
The relevant menu items are all under File → Source Control.

The Version editor
Choose View → Editor → Version, or click the third button in the Editor segmented
control in the project window toolbar.

The Organizer
The Repositories tab of the Organizer window lists known repositories and
branches for each project, along with their commit logs. Also, use the “+” button
at the bottom of the navigator to enter data about a remote repository, so that you
can obtain a copy of its contents.

Xcode also contains its own way of taking and storing a snapshot of your project as a
whole; this is done using File → Create Snapshot (and, according to your settings, some
mass operations such as find-and-replace or refactoring may offer to take a snapshot
first). Snapshots themselves are managed in the Projects tab of the Organizer window.
Although these snapshots are basically just simple copies of your project, and should
not be regarded as any kind of serious version control, they can certainly serve the
purpose of giving confidence in advance of performing some change that might sub-
sequently engender regret.

Figure 9-8. Version comparison

Version Control | 183

Instruments
As your app approaches completion, you may wish to fine-tune it for memory usage,
speed, and other real-time behavior. Xcode provides a sophisticated and powerful util-
ity application, Instruments, that lets you collect profiling data on your app as it runs.
The graphical display and detailed data provided by Instruments may give you the clues
you need to optimize your app.

You can use Instruments on the Simulator or the device. The device is where you’ll do
your ultimate testing, and certain instruments (such as Core Animation) are available
only for the device; on the other hand, certain other instruments (such as Zombies) are
available only in the Simulator.

To get started with Instruments, set the desired destination in the Scheme pop-up menu
in the project window toolbar, and choose Product → Profile. Your app builds using
the Profile action for your scheme; by default, this uses the Release build configuration,
which is probably what you want. Instruments launches; if your scheme’s Instrument
pop-up menu for the Profile action is set to Ask on Launch, Instruments presents a
dialog where you choose a trace template. With Instruments running, you should in-
teract with your app like a user; Instruments will record its statistics. Once Instruments
is running, it can be further customized to profile the kind of data that particularly
interests you, and you can save the structure of the Instruments window as a custom
template.

Use of Instruments is an advanced topic and beyond the scope of this book. Indeed,
an entire book could (and really should) be written about Instruments alone. (But don’t
be put off by that fact, because Instruments is really useful; it is the best way to discover,
for example, that you’re leaking memory, or why your app is taking so long to launch.)
Instruments 4 (which accompanies Xcode 4) is easier to use than earlier versions, and
many interface features will feel similar to Xcode 4 itself. Read Apple’s document,
Instruments User Guide. Also, many WWDC 2010 videos are about Instruments; look
for sessions with “Instruments” or “Performance” in their names.

Distribution
By distribution is meant providing your app to others who are not developers on your
team. There are two kinds of distribution:

Ad Hoc distribution
You are providing a copy of your app to a limited set of known users so that they
can try it on their devices and report bugs, make suggestions, and so forth.

App Store distribution
You are providing the app to the App Store so that anyone can download it (pos-
sibly for a fee) and run it.

184 | Chapter 9: Life Cycle of a Project

The Portal imposes a registration limit of 100 devices per year per de-
veloper (not per app), which limits your number of Ad Hoc testers. Your
own devices used for development are counted against this limit.

In order to perform any kind of distribution, you will need a distribution certificate,
which is different from the development certificate discussed earlier in this chapter.
Like the development certificate, you need only one distribution certificate; it identifies
you as you. Obtaining a distribution certificate is exactly like obtaining a development
certificate, except that, at the iOS Provisioning Portal, under Certificates, you use the
Distribution tab instead of the Development tab. (And, like the development certificate,
it expires when your year of iOS Developer Program membership expires; if you renew,
you’ll have to revoke your distribution certificate at the Portal, delete it from your
keychain, and obtain a new distribution certificate.)

You will also need a distribution profile specifically for this app, which is different from
the development profile you obtained earlier. You can’t obtain a distribution profile
from within Xcode; you must get it at the Portal in your browser. You might need
two distribution profiles, because the profile for an Ad Hoc distribution is different
from the profile for an App Store distribution. Remember, you will need a separate set
of distribution profiles for each app you plan to distribute.

When you build for distribution, you’ll use the Product → Archive command. Indeed,
you can think of archive as meaning “build for distribution.” (Product → Archive isn’t
enabled unless your destination in the Scheme pop-up menu is a device.) If you look
at the Archive action in your default scheme, you’ll discover that it is set to use the
Release distribution configuration. But if you examine the Code Signing Identity build
setting for your project, you’ll see that by default it uses the team development profile.
This won’t do. When you archive, you want to use a distribution profile. The solution
is to create a Distribution build configuration; you can then set the Archive action in
your scheme to use the Distribution build configuration, and set the Code Signing
Identity build setting to use the distribution profile when the Distribution build con-
figuration is in force.

First, here are the steps for obtaining a distribution profile:

1. To obtain an Ad Hoc distribution profile, collect the unique identifiers of all the
devices where this build is to run, and add each of the device identifiers at the Portal
under Devices. (For an App Store profile, omit this step.)

2. In the Portal, in the Distribution (not Development!) tab of the Provisioning sec-
tion, ask for a New Profile. In the New Profile form, ask for an Ad Hoc profile or
an App Store profile, depending on which you’re after.

3. Describe the profile, giving it a name, and specifying your distribution certificate
and this app. For an Ad Hoc profile, also specify all the devices you want the app
to run on. Be careful about the profile’s name; I suggest that this name should

Distribution | 185

contain both the name of the app and the term “adhoc” or “appstore,” so that you
can identify it later easily from within Xcode.

4. Click Submit to generate the profile; you might then have to refresh the browser
window to see the Download button next to your new profile. Download the profile
and drag it onto Xcode’s icon in the Dock. You can now throw the profile away in
the Finder; Xcode has kept a copy (which should appear in the Organizer window).

Now here are the steps to create a separate build configuration for your project:

1. Edit the project. In the Info tab, duplicate the Release configuration. Name the
new configuration Distribution.

2. Edit the project (still). In the Build Settings tab, locate the Code Signing Identity
entry. The Distribution build setting is now listed here. For the subentry Any iOS
Device, set the value of this to a distribution profile for this app. (I believe it won’t
matter which distribution profile you choose; the important thing here is that
you’re specifying a profile that is tied to your distribution certificate.)

3. Edit the scheme, and switch to the Archive action. Change the build configuration
to Distribution, and click OK.

Ad Hoc Distribution
To create and distribute an Ad Hoc distribution build, first switch to the iOS Device
destination in the Scheme pop-up menu in the project window toolbar. Until you do
this, the Product → Archive menu item will be disabled. You do not have to have a
device connected; you are not building to run on a particular device, but to save an
archive.

Apple’s docs say that an Ad Hoc distribution build should include an
icon that will appear in iTunes, but my experience is that this step is
optional. If you want to include this icon, it should be a PNG or JPEG
file, 512×512 pixels in size, and its name should be iTunesArtwork, with
no file extension. Make sure the icon is included in the build, being
present in the Copy Bundle Resources build phase.

Now choose Product → Archive. The build is created and copied into a date folder
within ~/Library/Developer/Xcode/Archives; it also appears in the Organizer window
in the Archives tab. Locate the archive in the Organizer window. You can add a com-
ment here; you can also change the archive’s name (this won’t affect the name of the
app).

Select the archive and press the Share button at the upper right of the window. A dialog
appears. Here, you are to specify a Contents type; choose iOS App Store Package (the
default). You must also choose an Identity; specify the identity associated with the Ad

186 | Chapter 9: Life Cycle of a Project

Hoc distribution profile for this app. (This is the step in which it matters which of the
app’s distribution profiles you specify.) Click Next.

After a while, a Save dialog appears. Give the file a useful name (again, this won’t affect
the name of the app). Save the file to disk. It will have the suffix .ipa (“iPhone app”).

Locate in the Finder the file you just saved. Provide this file to your users with instruc-
tions. A user should launch iTunes and drag the .ipa file onto the iTunes icon in the
Dock. Then the user should connect the device to the computer, make certain the app
is present and checked in the list of apps for this device, and sync the device to cause
the app to be copied to it.

If you listed your own device as one of the devices for which this Ad Hoc distribution
profile was to be enabled, you can obey these instructions yourself to make sure the Ad
Hoc distribution is working as expected. First, remove from your device any previous
copies of this app (such as development copies). Then copy the app onto your device
by syncing with iTunes as just described. The app should run on your device, and you
should see the Ad Hoc distribution profile on your device (in the Settings app, under
General → Profiles). Because you are not privileged over your other Ad Hoc testers,
what works for you should work for them.

Final App Preparations
As the day approaches when you’re thinking of submitting your app to the App Store,
don’t let the prospect of huge fame or big profits hasten you past the all-important final
stages of app preparation. Apple has a lot of requirements for your app, such as icons
and launch images, and failure to meet them can cause your app to be rejected. Take
your time. Make a checklist and go through it carefully. See the iOS Application Pro-
gramming Guide for full details.

Xcode 4 makes it easier than in the past for you to fulfill these requirements, by pro-
viding interface for doing so. Edit the target, and switch to the Summary tab; there are
spaces where for an iPhone app you can drag-and-drop normal and double-resolution
icons, and normal and double-resolution launch images, and for an iPad app you can
drag-and-drop an iPad icon along with portrait and landscape launch images.

At various stages, you can also obtain validation of your app to confirm that you haven’t
omitted certain requirements. For example, by default, a new project’s Release build
configuration has the Validate Build Product build setting set to Yes. Thus, when I do
a build of the Empty Window app we’ve developed in previous chapters, if that build
uses the Release build configuration (or the Distribution build configuration duplicated
from it), Xcode warns that the app has no icon. When you submit your app to the App
Store, it will be subjected to even more rigorous validation.

Final App Preparations | 187

Icons in the App
An icon file must be a PNG file, without any alpha transparency, with an exact pixel
size. It should be a full square, without shading (the “shine” effect that you see in the
upper part of icons on your device); the rounding of the corners and shine will be added
for you. You can prevent the shine effect from being added to the icon for your App
Store build by defining and checking the “Icon already includes gloss and bevel effects”
(UIPrerenderedIcon) key in your Info.plist. Make sure that the icon is copied into the
built app by inclusion in the Copy Bundle Resources build phase. The required size is
as follows:

• For an iPhone app that is to run on iOS 3.1.3 or before, the icon file should be
57×57 pixels in size.

• For an iPad app, the icon file should be 72×72 pixels in size.

• For an iPhone app that is to run on iOS 4, there should be two primary app icons,
one 57×57 pixels, the other 114×114 pixels (for use on the double-resolution Retina
display). A double-resolution variant of an icon should have the same name as the
single-resolution variant, except for the addition of @2x to its name.

As I mentioned earlier, in Xcode 4 you can drag-and-drop the required icons into the
appropriate spaces in the Summary tab when you’re editing the target, and Xcode itself
will incorporate them into the project and the target and configure the Info.plist for
you. For example, if I drop a 57×57 PNG file called myDumbIcon.png onto the first
icon space, it is copied into the project and added to the target, and the first element
in the “Icon files” key in my Info.plist becomes myDumbIcon.png.

Alternatively, you can specify the icon file(s) manually using the Info.plist. In this case,
you will have to add the relevant key–value pairs manually. The keys work as follows:

• If the app is to run on iOS 3.1.3 or before, set the “Icon file” (CFBundleIconFile)
key’s value in your Info.plist to the name of the icon (including the file extension).

• If the app is to run on iOS 3.2 or later, set the “Icon files” key’s value (CFBundle-
IconFiles, and notice the plural!); this value is an array, so you can list multiple
icons.

• If the app is to run both on iOS 3.1.3 or before and on iOS 3.2 or later, use both keys.

You may also optionally include smaller versions of your icon to appear when the user
does a search on the device (and in the Settings app, if you include a settings bundle,
Chapter 36). The smaller icon sizes are 29×29 pixels (for an iPhone app), 50×50 pixels
(for an iPad app), and 58×58 pixels (for an iPhone 4 app, on the double-resolution
display). List the icons in the “Icon files” key. If the app is to run on iOS 3.1.3 or before,
the 29×29 icon must be named Icon-Small.png.

The system determines which icon listed under the “Icon files” key to use under what
circumstances by examining their sizes. That’s one reason why the sizes must be exactly
correct.

188 | Chapter 9: Life Cycle of a Project

For more information, see Apple’s tech note QA1686, “App Icons on iPad and iPhone.”

Other Icons
When you submit the app to the App Store, you will be asked to supply a 512×512
PNG, JPEG, or TIFF icon to be displayed at the App Store. Have this icon ready before
submission. Apple’s guidelines say that it should not merely be a scaled-up version of
your app’s icon, but it must not differ perceptibly from your app’s icon, either, or your
app will be rejected (I know this from experience).

The App Store icon does not need to be built into your app; indeed, it should not be,
as it will merely swell the built app’s size unnecessarily (remember that space is at a
premium on a device, and that your app must be downloaded from the App Store, so
users appreciate your keeping your app as small as possible). On the other hand, you
will probably want to keep it in your project (and in your project folder) so that you
can find and maintain it easily. So create it and import it into your project, but do not
add it to any target.

If you created a 512×512 icon file for Ad Hoc distribution, you may wish
to delete it from the Copy Bundle Resources build phase now so that it
doesn’t swell the final app’s size unnecessarily.

Launch Images
There may be a delay between the moment when the user taps your app’s icon to launch
it and the moment when your app is up and running and displaying its initial win-
dow. To cover this delay and give the user the sense that something is happening, you
should provide a launch image to be displayed during that interval.

The launch image might be just a blank depiction of the main elements or regions of
the app’s interface, so that when the actual window appears, those elements or regions
will seem to be filled in. The best way to create such a launch image is to start with a
screenshot of your app’s actual initial interface. That way, all you have to do is blank
out the details. You don’t need to blank out the status bar area; it will be covered by
the real status bar. Taking screenshots is covered in the next section.

For an iPhone app, the launch image should be a PNG image, 320×480 pixels in size.
It should be named Default.png. Create the launch image, import it into the project,
and make sure it is built into the app, being present in the Copy Bundle Resources build
phase. For iOS 4 and the double-resolution Retina display, provide a second version
of the launch image, 640×960 pixels, called Default@2x.png.

For an iPad app, you will probably provide at least two launch images. Here’s why. On
the iPhone, you get to dictate the orientation in which the app should launch (landscape
or portrait), so you can be certain that the default image matches this. But on the iPad,

Final App Preparations | 189

you’re not supposed to do that; your app should be prepared to launch in whatever
orientation the device happens to be. Thus, you need a launch image for landscape
orientation and a launch image for portrait orientation. The landscape image should
be called Default-Landscape.png; it should be 748 pixels high and 1024 pixels wide.
The portrait image should be called Default-Portrait.png; it should be 1004 pixels high
and 768 pixels wide. Observe that these sizes omit the status bar area, unlike the iPhone
launch image.

You can use the orientation suffixes in the names of launch images on iOS 4 as well.
To distinguish between a launch image to be used on the iPhone and a launch image
with the same orientation suffix to be used on the iPad, use additional suffixes ~ipad
and ~iphone. Thus you can end up with file names like Default-Por-
trait@2x~ipad.png. To make things even more confusing, you can replace Default with
some other base name by creating the “Launch image” key in your Info.plist file and
setting its value appropriately — but only on iOS 3.2 and later.

As I mentioned earlier, in Xcode 4 you can drag-and-drop the required icons into the
appropriate spaces in the Summary tab when you’re editing the target. For example, if
I drop a 320×480 PNG file called myLaunchImage.png onto the first launch image space,
it is copied into the project and added to the target, and the copy is renamed De-
fault.png.

Screenshots
When you submit the app to the App Store, you will be asked for one or more screen-
shots of your app in action to be displayed at the App Store. You should take these
screenshots beforehand and be prepared to provide them during the app submission
process.

The best way to obtain these screenshots is through the Organizer window in Xcode.
Connect your device to your computer and run the app. Get it into a state suitable for
display at the App Store. In the Organizer window, locate your device under Devices
and click Screenshots. Click New Screenshot, at the lower right of the window, to
capture an image. Repeat until you have gathered the desired screenshots.

To make screenshots available for upload, select each one in the left side of the window
and click Export to save it with a nice filename into the Finder. Apple asks that if the
status bar is visible in a screenshot, you remove it. And you may need to rotate a
screenshot to get it into the correct orientation.

To make a screenshot a launch image (see the previous section), select it in the list and
click Save as Launch Image. A dialog will ask you what name to assign to it and what
open project to add it to.

190 | Chapter 9: Life Cycle of a Project

Property List Settings
A number of settings in Info.plist are crucial to the proper behavior of your app. You
should peruse Apple’s Information Property List Key Reference for full information.
Most of the required keys are created as part of the template, and are given reasonable
default values, but you should check them anyway. In addition to those already men-
tioned in Chapter 6, the following are particularly worthy of attention:

Bundle version (CFBundleVersion)
A version string, such as “1.0”. This version number will appear at the App Store,
and you should increment it when you develop and submit an update to an existing
app. Failure to increment the version string when submitting an update will cause
the update to be rejected.

Status bar style (UIStatusBarStyle)
On the iPhone and iPod touch, the look of the status bar. (On the iPad, the status
bar is always black opaque.) Your choices are “Gray style” (UIStatusBarStyle-
Default), “Opaque black style” (UIStatusBarStyleBlackOpaque), and “Transparent
black style” (UIStatusBarStyleBlackTranslucent). This setting will be used in con-
junction with your launch image, even before the app is actually running. If the
status bar is to be hidden initially, set “Status bar is initially hidden” (UIStatusBar-
Hidden) instead.

Supported interface orientations (UISupportedInterfaceOrientations)
The initial orientation(s) in which the app is permitted to launch. (The app may
support additional orientations later as it runs.) In Xcode 4, you can perform this
setting graphically in the Summary tab when editing your target.

Required device capabilities (UIRequiredDeviceCapabilities)
You should set this key if the app requires capabilities that are not present on all
devices. Be sure to look over the list of possible values. Don’t use this key unless it
makes no sense for your app to run at all on a device lacking the specified capa-
bilities.

Property list settings can adopt different values depending on what device type you’re
running on. To specify that a property list setting applies only on a particular type of
device, you add to its key the suffix ~iphone, ~ipod, or ~ipad. This feature is typically
useful in a universal app, in which the distinction will be between iPhone and iPod, on
the one hand, and iPad on the other. The general setting is used unless there is an
applicable specific case, so in a universal app you might have one setting with no suffix
and a second setting with the ~ipad suffix. Thus, for example, you could have a different
set of supported initial interface orientations on the iPad by adding settings for “Sup-
ported interface orientations (iPad)” (UISupportedInterfaceOrientations~ipad).

Final App Preparations | 191

Submission to the App Store
When you’re satisfied that your app works well, and you’ve installed or collected all
the necessary resources, you’re ready to submit your app to the App Store for distri-
bution. The primary way to submit your app is through a website called iTunes Con-
nect. You can find a link to it on the iOS developer pages when you’ve logged in at
Apple’s site. You can go directly to http://itunesconnect.apple.com, but you’ll still need
to log in with your iOS Developer username and password.

The first thing you should do at iTunes Connect is download the iTunes Connect De-
veloper Guide. It’s a PDF that gives you a good idea what to expect when you submit
your app, as well as later when you return for financial and other reports, and when
you update your app.

You should also go to the Contracts section at iTunes Connect and complete submis-
sion of your contract if you haven’t already done so. You can’t offer any apps for sale
until you do, and even free apps require completion of a contractual form.

When you submit an app to iTunes Connect, you will have to supply a description of
fewer than 4,000 characters; Apple recommends fewer than 580 characters, and the
first paragraph is the most important, because this may be all that users see when they
visit the App Store. It must be pure text, without HTML and without character styling.

You will also be asked for a list of keywords: a comma-separated list shorter than 100
characters. These keywords will be used, in addition to your app’s name, to help users
discover your app through the Search feature of the App Store.

iTunes Connect will also expect you to provide a website where users can find more
information about your app; it’s good to have that ready in advance.

Now build the app. The procedure is exactly as for an Ad Hoc build. Set the destination
to iOS Device in the Scheme pop-up menu in the project window toolbar, and choose
Product → Archive.

The archived build that appears in the Organizer window can be used to generate either
an Ad Hoc build or an App Store build. You can’t test an App Store build. So if you
want to test one last time, use this archived build to generate an Ad Hoc build and test
with that. When you generate the App Store build, you use the exact same binary, so
you are guaranteed that its behavior will be exactly the same as the build you tested.
(That is one of the purposes of archiving.)

Enter your app’s information at the iTunes Connect website. I’m not going to recite all
the steps you have to go through, as these are described thoroughly in the iTunes Con-
nect Developer Guide. But I’ll just mention a few possible pitfalls:

Your app’s name
This is the name that will appear at the App Store; it need not be identical to the
short name that will appear under the app’s icon on the device, dictated by the

192 | Chapter 9: Life Cycle of a Project

Bundle Display Name setting in your Info.plist file. This name can be up to 70
characters long, though Apple recommends that you limit it to 35 characters. You
can get a rude shock when you submit your app’s information to iTunes Connect
and discover that the name you wanted is already taken. There is no reliable way
to learn this in advance, and such a discovery can require a certain amount of
scrambling on your part: you might have to Build and Archive your app yet again
with a new name and possibly other last-minute changes.

Copyright
Do not include a copyright symbol in this string; it will be added for you at the
App Store.

SKU number
This is unimportant, so don’t get nervous about it. It’s just a unique identifier,
unique within the world of your own apps. It’s convenient if it has something to
do with your app’s name. It needn’t be a number; it can actually be any string.

Price
You don’t get to make up a price. You have to choose from a list of pricing “tiers.”

Availability Date
This setting has caused much consternation and confusion among developers. Ap-
ple suggests that you set the availability date to the date you submit the app; that
way, when it is approved, it will be available immediately. The problem is that
developers have complained that this limits the app’s discoverability, because when
the app is approved it doesn’t appear in the App Store’s list of new apps (because
the availability date is too far in the distant past). The current consensus seems to
be that this is not the issue it once was, and that you should just take Apple’s advice
and make it available now.

When you’ve submitted the information for your app, you can do a final validation
check: return to the Organizer window, select the archived build, and click Validate.
(This feature has not worked well for me in the past, however.)

Finally, when you’re ready to upload the app for which you’ve already submitted the
information at iTunes Connect, and when the iTunes Connect status for your app is
“Waiting for Upload,” you can perform the upload using Xcode. Select the archived
build in the Organizer and click Submit, specifying the App Store distribution profile.

Alternatively, you can use Application Loader, an application located in /Developer/
Applications/Utilities/, to upload the app. Application Loader first checks with iTunes
Connect to see what apps are awaiting upload; pick the right one. In the Organizer,
click Share and specify the App Store distribution profile. Find the exported app in the
Finder and compress it; hand the resulting .zip file to Application Loader.

You will subsequently receive emails from Apple informing you of your app’s status as
it passes through various stages: “Waiting For Review,” “In Review,” and finally, if all

Submission to the App Store | 193

has gone well, “Ready For Sale” (even if it’s a free app). Your app will then appear at
the App Store.

194 | Chapter 9: Life Cycle of a Project

PART III

Cocoa

When you program for iOS, you take advantage of a suite of frameworks provided by
Apple. These frameworks, taken together, constitute Cocoa; the brand of Cocoa that
provides the API for programming iOS is Cocoa Touch. Cocoa thus plays an important
and fundamental role in iOS programming; your code will ultimately be almost entirely
about communicating with Cocoa — interacting with the frameworks provided by
Apple, in order to make an app that does what you want it to do.

The Cocoa Touch frameworks are a huge boon to you, the programmer, because they
provide the underlying functionality that any iOS app needs to have. Your app can put
up a window, show the interface containing a button, respond to that button being
tapped by the user, and so forth, because Cocoa knows how to do those things. But
with the great advantages of working with a framework come great responsibilities.
You have to think the way the framework thinks, put your code where the framework
expects it, and fulfill many obligations imposed on you by the framework.

• Chapter 10 picks up where Chapter 5 left off, describing some Objective-C lin-
guistic features used by Cocoa, such as categories and protocols; it also surveys
some important fundamental classes.

• An event is a message sent by Cocoa to your code. Cocoa is event-based; if Cocoa
doesn’t send your code an event, your code doesn’t run. Getting your code to run
at the appropriate moment is all about knowing what events you can expect Cocoa
to send you and when. Chapter 11 describes Cocoa’s event-driven model, along
with its major design patterns.

• Chapter 12 describes your responsibilities for making your instances nicely en-
capsulated and good memory-management citizens in the world of Cocoa objects.

• Chapter 13 surveys some answers to the question of how your objects are going to
see and communicate with one another within the Cocoa-based world.

CHAPTER 10

Cocoa Classes

Using the Cocoa frameworks requires an understanding of how those frameworks or-
ganize their classes. Cocoa class organization depends upon certain Objective-C lan-
guage features that are introduced in this chapter. The chapter also surveys some com-
monly used Cocoa utility classes, along with a discussion of the Cocoa root class.

Subclassing
Cocoa effectively hands you a large repertory of objects that already know how to
behave in certain desirable ways. A UIButton, for example, knows how to draw itself
and how to respond when the user taps it; a UITextField knows how to summon the
keyboard when the user taps in it, how to accept keyboard input, and how to respond
when the user finishes inputting text.

Often, the default behavior or appearance of an object supplied by Cocoa won’t be
quite what you’re after, and you’ll want to customize it. Cocoa classes are heavily en-
dowed with methods and properties for precisely this purpose, and these will be your
first resort. Always study the documentation for a Cocoa class to see whether instances
can already be made to do what you want. For example, the class documentation for
UILabel (Chapter 27) shows that you can set the font, size, color, line-breaking behav-
ior, and horizontal alignment of its text, among other things.

Nevertheless, sometimes setting properties and calling methods won’t suffice to cus-
tomize an instance the way you want to. In such cases, Cocoa may provide methods
that are called internally as an instance does its thing, and whose behavior you can
customize by subclassing and overriding. You don’t have the code to any of Cocoa’s
built-in classes, but you can still subclass them, creating a new class that acts just like
a built-in class except for the modifications you provide.

Oddly enough, however (and you might be particularly surprised by this if you’ve used
another object-oriented application framework), subclassing is probably one of the less
important ways in which your code will relate to Cocoa. Knowing or deciding when to

197

subclass can be somewhat tricky, but the general rule is that you probably shouldn’t
subclass unless you’re invited to.

A common case involves custom drawing into a UIView. You don’t actually draw
into a UIView; rather, when a UIView needs drawing, its drawRect: method is called so
that the view can draw itself. So the way to make a UIView that is drawn in some
completely custom manner is to subclass UIView and implement drawRect: in the sub-
class. As the documentation says, “Subclasses override this method if they actually draw
their views.” That’s a pretty strong hint that you need to subclass UIView in order to
do custom drawing into a UIView.

For example, suppose we want our window to contain a horizontal line. There is no
horizontal line interface widget, so we’ll just have to roll our own — a UIView that
draws itself as a horizontal line. Let’s try it. First we’ll code the class:

1. In our Empty Window example project, choose File → New → New File and specify
a Cocoa Touch Objective-C class, and in particular a subclass of UIView. Call it
MyHorizLine. Xcode creates MyHorizLine.m and MyHorizLine.h.

2. In MyHorizLine.m, remove the comment delimiters from around the drawRect:
implementation, and make it look like this (without further explanation; you’ll
know all about this after you read Chapter 15):

- (void)drawRect:(CGRect)rect {
 CGContextRef c = UIGraphicsGetCurrentContext();
 CGContextMoveToPoint(c, 0, 0);
 CGContextAddLineToPoint(c, self.bounds.size.width, 0);
 CGContextStrokePath(c);
}

3. Edit MainWindow.xib. Show the Window top-level object in the canvas. Find UI-
View in the Object library, and drag it into the Window object in the canvas.

4. Select the UIView in the window and use the Identity inspector to change its class
to MyHorizLine.

Build and run the app in the Simulator. You’ll see a horizontal line corresponding to
the location of the top of the MyHorizLine instance in the window.

In that example, we started with a bare UIView that had no drawing functionality of
its own. (That’s why there was no need to call super; the default implementation of
UIView’s drawRect: does nothing.) But you might also be able to subclass a built-in
UIView subclass to modify the way it already draws itself. Again using UILabel as an
example, the documentation shows that two methods are present for exactly this pur-
pose. Both drawTextInRect: and textRectForBounds:limitedToNumberOfLines: explic-
itly tell us: “You should not call this method directly. This method should only be
overridden by subclasses.” The implication is that these are methods that will be called
for us, automatically, by Cocoa, as a label draws itself; thus, we can subclass UILabel
and implement them in our subclass to modify how a particular type of label draws
itself.

198 | Chapter 10: Cocoa Classes

Here’s an example from one of my own apps, in which I subclass UILabel to make a
label that draws its own rectangular border and has its content inset somewhat from
that border, by overriding drawTextInRect:. As the documentation tells us: “In your
overridden method, you can configure the current [graphics] context further and then
invoke super to do the actual drawing [of the text].” Let’s try it:

1. In the Empty Window project, make a new class file, a UILabel subclass this time;
call it MyBoundedLabel.

2. In MyBoundedLabel.m, insert this code into the implementation section:

- (void)drawTextInRect:(CGRect)rect {
 CGContextRef context = UIGraphicsGetCurrentContext();
 CGContextStrokeRect(context, CGRectInset(self.bounds, 1.0, 1.0));
 [super drawTextInRect:CGRectInset(rect, 5.0, 5.0)];
}

3. In MyNib.xib, select the UILabel and change its class to MyBoundedLabel.

Build and run the app, and you’ll see how the rectangle is drawn and the label’s text is
inset within it.

Similarly, in a table view (a UITableView) you might very well be able to avoid sub-
classing the table view cell (UITableViewCell), because it provides so many properties
through which you can customize its appearance. If you want text to appear in the cell
using a certain font, the built-in cell styles and the ability to access and modify the cell’s
labels might be quite sufficient. You can directly replace a cell’s background or put a
checkmark at the right end of the cell. All of that is simply a matter of setting the cell’s
built-in properties. But if you want a table view cell that doesn’t look or behave like
any of the built-in cell styles, then you’ll have to subclass UITableViewCell. (We’ll go
deeply into this in Chapter 21.)

You wouldn’t subclass UIApplication (the class of the singleton shared application
instance) just in order to respond when the application has finished launching, because
the delegate mechanism (Chapter 11) provides a way to do that (application:didFinish-
LaunchingWithOptions:). On the other hand, if you need to perform certain tricky cus-
tomizations of your app’s fundamental event messaging behavior, you’d have to sub-
class UIApplication in order to override sendEvent:. The documentation does tell you
this, and it also tells you, rightly, that needing to do this would be fairly rare (though I
have had occasion to do it).

If you do subclass UIApplication, you’ll need to change the third argu-
ment in the call to UIApplicationMain in main.m from nil to the NSString
name of your subclass. Otherwise your UIApplication subclass won’t
be instantiated as the shared application instance.

Another set of classes that’s commonly subclassed is UIViewController and its built-
in subclasses (Chapter 19). And, naturally, any class you write will need to be a subclass

Subclassing | 199

of NSObject, if nothing else. You definitely want your class to inherit all of NSObject’s
yummy goodness, including alloc and init, which make it possible to instantiate your
class in the first place. For more information, see “The Secret Life of NSObject,” later
in this chapter.

Categories
A category is an Objective-C language feature that allows you to reach right into an
existing class and define additional methods. You can do this even if you don’t have
the code for the class, as with Cocoa’s classes. Your instance methods can refer to
self, and this will mean the instance to which the message was originally sent, as usual.
A category, unlike a subclass, cannot define additional instance variables; it can over-
ride methods, but you should probably not take advantage of this ability.

Defining a category is just like defining the class on which the category is being defined:
you need an interface section and an implementation section, and you’ll typically dis-
tribute them into the standard .h and .m class file pair. At the start of both the interface
section and the implementation section, where you give the class’s name, you add a
category name in parentheses. The .h file will probably need to import the header for
the original class (or the header of the framework that defines it), and the .m file will,
as usual, import the corresponding header file.

For example, in one of my apps I found myself performing a bunch of string transfor-
mations in order to derive the path to various resource files inside the app bundle based
on the resource’s name and purpose. I ended up with half a dozen utility methods.
Given that these methods all operated on an NSString, it was appropriate to implement
them as a category of NSString, thus allowing any NSString, anywhere in my code, to
respond to them.

The code was structured like this (I’ll show just one of the methods):

// [StringCategories.h]
#import <Foundation/Foundation.h>

@interface NSString (MyStringCategories)
- (NSString*) basePictureName;
@end

// [StringCategories.m]
#import "StringCategories.h"

@implementation NSString (MyStringCategories)
- (NSString*) basePictureName {
 return [self stringByAppendingString:@"IO"];
}
@end

If we had written a utility method within some other class, we’d have to pass an
NSString to the method that operates on it. But a category is neater and more compact.

200 | Chapter 10: Cocoa Classes

We’ve extended NSString itself to have basePictureName as an instance method, so we
can send the basePictureName message directly to the NSString we want to transform:

NSString* aName = [someString basePictureName];

A category is particularly appropriate in the case of a class like NSString, because the
documentation warns us that subclassing NSString is a bad idea. That’s because
NSString is part of a complex of classes called a class cluster, which means that an
NSString object’s real class might actually be some other class. A category is a much
better way to modify a class within a class cluster than subclassing.

Splitting a Class
A category can be used to split a class over multiple .h/.m file pairs. If a class becomes
long and unwieldy, yet it clearly needs to be a single class, you can define the basic part
of it (including instance variables) in one file pair, and then add another file pair defining
a category on your own class to provide further methods.

Cocoa itself takes does this. A good example is NSString. NSString is defined as part
of the Foundation framework, and its basic methods are declared in NSString.h. Here
we find that NSString itself, with no category, has just two methods, length and
characterAtIndex:, because these are regarded as the minimum that a string needs to
do in order to be a string. Additional methods — those that create a string — deal with
a string’s encoding, split a string, search in a string, and so on, are clumped into a
category. A string also may serve as a file pathname, so we also find a category on
NSString in NSPathUtilities.h, where methods are declared for splitting a pathname
string into its constituents and the like. Then, in NSURL.h, there’s another NSString
category, declaring a couple of methods for dealing with percent-escaping in a URL
string. Finally, off in a completely different framework (UIKit), UIStringDrawing.h adds
yet another NSString category, with methods for drawing a string in a graphical context.

This organization won’t matter to you as a programmer, because an NSString is an
NSString, no matter how it acquires its methods, but it can matter when you consult
the documentation. The NSString methods declared in NSString.h, NSPathUtilities.h,
and NSURL.h are documented in the NSString class documentation page, but the
NSString methods declared in UIStringDrawing.h are not, presumably because they
originate in a different framework. Instead, they appear in a separate document,
NSString UIKit Additions Reference. As a result, the string drawing methods can be
difficult to discover, especially as the NSString class documentation doesn’t link to the
other document (although it does mention it). I regard this as a flaw in the structure of
the Cocoa documentation. A third-party utility such as AppKiDo can be helpful here.

Private Method Declarations
A problem (already mentioned in Chapter 4) arises when you’d like to declare a method
in such a way that all other methods in the same class can see the declaration (and can

Categories | 201

thus call the method) without putting that declaration in the class’s interface section
where every other class that imports the header file will also be able to see and call it.
The solution is to put an interface section for a category on your own class in the
implementation file, which no one imports (Example 10-1).

Example 10-1. Declaring a method privately

// [in MyClass.m]
#import "MyClass.h"

@interface MyClass (Tricky)
- (void) myMethod;
@end

@implementation MyClass
// all methods here can call myMethod
@end

This trick cannot completely prevent some other class from calling this class’s
myMethod — Objective-C is too dynamic for that — but at least a normal call to my-
Method from some other class will get its hand slapped by the compiler.

In Example 10-1, the compiler will not warn if the methods declared in the category
interface section (such as myMethod) are not defined in the implementation section. If
this worries you, there are two solutions. One is to provide a named category imple-
mentation section, corresponding to the named category interface section; if you fail
to implement the category-declared methods in this category implementation section,
the compiler will warn:

@implementation MyClass (Tricky)
// must implement myMethod here, or compiler will warn
@end

The other approach is just the opposite, namely to remove the category name altogether
from the category implementation section; if you then fail to implement the category-
declared methods in the normal implementation section, the compiler will warn:

@interface MyClass ()
- (void) myMethod;
@end

This nameless type of category is called a class extension, and I’ll discuss a further use
of it in Chapter 12, when we talk about Objective-C properties and the @synthesize
directive.

Protocols
Every reasonably sophisticated object-oriented language must face the fact that the
hierarchy of subclasses and superclasses is insufficient to express the desired relation-
ships between classes. For example, a Bee object and a Bird object might need to have

202 | Chapter 10: Cocoa Classes

certain features in common by virtue of the fact that both a bee and a bird can fly. But
Bee might inherit from Insect, and not every insect can fly, so how can Bee acquire the
aspects of a Flier in a way that isn’t completely independent of how Bird acquires them?

Some object-oriented languages solve this problem through mixin classes. For example,
in Ruby you could define a Flier module, complete with method definitions, and in-
corporate it into both Bee and Bird. Objective-C uses a simpler, lighter-weight approach
— the protocol. Cocoa makes heavy use of protocols.

A protocol is just a named list of method declarations, with no implementation. A class
may formally declare that it conforms to (or adopts) a protocol; such conformance is
inherited by subclasses. This declaration satisfies the compiler when you try to send a
corresponding message. If a protocol declares an instance method myCoolMethod, and
if MyClass declares conformance to that protocol, then you can send the myCool-
Method message to a MyClass instance and the compiler won’t complain.

Actually implementing the methods declared in a protocol is up to the class that con-
forms to it. A protocol method may be required or optional. If a protocol method is
required, then if a class conforms to that protocol, the compiler will complain if that
class fails to implement that method. Implementing optional methods, on the other
hand, is optional. (Of course, that’s just the compiler’s point of view; at runtime, if a
message is sent to an object with no implementation for the corresponding method, a
crash can result.)

Here’s an example of how Cocoa uses a protocol. Some objects can be copied; some
can’t. This has nothing to do with an object’s class heritage. Yet we would like a uniform
method to which any object that can be copied will respond. So Cocoa defines a pro-
tocol named NSCopying, which declares just one method, copyWithZone: (required).
A class that explicitly conforms to NSCopying is promising that it implements copyWith-
Zone:.

Here’s how the NSCopying protocol is defined (in NSObject.h, where your code can
see it):

@protocol NSCopying
- (id)copyWithZone:(NSZone *)zone;
@end

That’s all there is to defining a protocol. The definition uses the @protocol compiler
directive; it states the name of the protocol; it consists entirely of method declarations;
and it is terminated by the @end compiler directive. A protocol definition will typically
appear in a header file, so that classes that need to know about it (in order to call its
methods) can import it. A @protocol section of a header file is not inside any other
section (such as an @interface section).

The NSCopying protocol definition in NSObject.h is just a definition; it is not a state-
ment that NSObject conforms to NSCopying. Indeed, NSObject does not conform to
NSCopying. To see this, try sending the copyWithZone: method to your own subclass
of NSObject:

Protocols | 203

MyClass* mc = [[MyClass alloc] init];
MyClass* mc2 = [mc copyWithZone: [mc zone]];

The compiler warns that a MyClass instance may not respond to copyWithZone:. If you
ignore this warning and run the app, it crashes with an exception when the copyWith-
Zone: message is sent to an object that can’t deal with it.

To conform formally to a protocol, a class’s @interface section appends the name of
the protocol, in angle brackets, after the name of the superclass (or, if this is a category
declaration, after the parentheses naming the category). To state that a class conforms
to multiple protocols, put multiple protocol names in the angle brackets, separated by
comma.

Let’s see what happens if you conform formally to the NSCopying protocol. Modify
the first line of the @interface section of your class as follows:

@interface MyClass : NSObject <NSCopying>

Now the compiler issues a different warning, namely that MyClass fails to implement
copyWithZone: and thus does not fully implement the NSCopying protocol (because
copyWithZone: is a required method of the NSCopying protocol).

The name of a protocol may also be used when specifying an object type. Most often,
the object will be typed as an id, but with the accompanying proviso that it conforms
to a protocol, whose name appears in angle brackets.

To illustrate, let’s look at another typical example of how Cocoa uses protocols, namely
in connection with a table (UITableView). A UITableView has a dataSource property,
declared like this:

@property (nonatomic, assign) id<UITableViewDataSource> dataSource

This property represents an instance variable whose type is id <UITableViewData-
Source>. This means “I don’t care what class my data source belongs to, but whatever
it is, it should conform to the UITableViewDataSource protocol.” Such conformance
constitutes a promise that the data source will implement at least the required instance
methods tableView:numberOfRowsInSection: and tableView:cellForRowAtIndexPath:,
which the table view will call when it needs to know what data to display.

If you attempt to set a table view’s dataSource property to an object that does not
conform to UITableViewDataSource, you’ll get a warning from the compiler:

MyClass* mc = [[MyClass alloc] init];
UITableView* tv = [[UITableView alloc] init];
tv.dataSource = mc; // compiler warns

To quiet the compiler, MyClass’s declaration should state that it conforms to UITa-
bleViewDataSource. Now MyClass is an id <UITableViewDataSource>, and the third
line no longer generates a warning. Of course, you must also supply implementations
of tableView:numberOfRowsInSection: and tableView:cellForRowAtIndexPath: in My-
Class to avoid the other warning, namely that you’re not fully implementing a protocol
you’ve claimed to conform to.

204 | Chapter 10: Cocoa Classes

A prevalent use of protocols in Cocoa is in connection with delegate objects. We’ll talk
in detail about delegates in Chapter 11, but you can readily see that many classes have
a delegate property and that the class of this property is often id <SomeProtocol>. For
example, in our Empty Window project, the Empty_WindowAppDelegate class pro-
vided by the project template is declared like this:

@interface Empty_WindowAppDelegate : NSObject <UIApplicationDelegate>

The reason is that Empty_WindowAppDelegate’s purpose on earth is to serve as the
shared application’s delegate. The shared application object is a UIApplication, and a
UIApplication’s delegate property is typed as an id <UIApplicationDelegate>. So
Empty_WindowAppDelegate announces its role by explicitly conforming to UIAppli-
cationDelegate.

As a programmer, Cocoa’s use of protocols will matter to you in two ways. First, when
an object value that you wish to supply is typed as id <SomeProtocol>, you will need to
make sure that that object’s class does indeed conform to SomeProtocol (and imple-
ments any methods required by that protocol).

Second, you must understand about protocols in order to use the documentation. A
protocol has its own documentation page. When the UIApplication class documenta-
tion tells you that a UIApplication’s delegate property is typed as an id <UIApplication-
Delegate>, it’s implicitly telling you that if you want to know what messages a UIAp-
plication’s delegate might receive, you need to look in the UIApplicationDelegate pro-
tocol documentation.

Similarly, when a class’s documentation mentions that the class conforms to a protocol,
don’t forget to examine that protocol’s documentation, because the latter might con-
tain important information about how the class behaves. To learn what messages can
be sent to an object, you need to look upward through the inheritance chain (the su-
perclass); you also need to look at any protocols that this object’s class conforms to.

Might you ever have cause to define a protocol yourself? Unless you’re writing a frame-
work, this probably wouldn’t be necessary, but protocols can make your code neater
and cleaner, because they effectively allow one class to declare a method that another
class is to implement, which is sometimes appropriate architecturally.

For example, in one of my apps I present a modal view, whose code is in a class called
ColorPickerController, where the user can move three sliders to choose a color. When
the user taps Done or Cancel, the view should be dismissed. It makes sense that the
code that presented the view should also be code that dismisses it, so I need to send a
message from the ColorPickerController instance to the instance that presented the
view. Here is the declaration for that message:

- (void) colorPicker:(ColorPickerController*)picker
 didSetColorNamed:(NSString*)theName
 toColor:(UIColor*)theColor;

Protocols | 205

The question is: where should this declaration go? Now, it happens that in my app I
know the class of the instance that will present the ColorPickerController’s view: it is
a SettingsController. So I could simply declare this method in the interface section of
SettingsController’s heading file (which ColorPickerController would then have to im-
port, in order to send the message). But this feels wrong, for two reasons. First, it should
not be up to SettingsController to declare a method that it is defining only in deference
to ColorPickerController. Second, it is merely a contingent fact that the instance being
sent this message is a SettingsController; it could be any class that presents and dis-
misses the modal view.

So even though we happen to know that ColorPickerController will be sending this
message to a SettingsController instance, we should act as though we didn’t know it.
We want ColorPickerController to declare our method, and we want it to send the
message blindly to some receiver, without regard to the class of that receiver. This is
precisely what a protocol is for. The solution, therefore, is for ColorPickerController
to define a protocol in its header file, with this method as part of that protocol.

Optional Methods
The careful reader may have noticed that earlier sections of this chapter have listed two
ways in which a method can be publicly declared without necessarily being implemen-
ted, and without the compiler complaining if it isn’t:

• By defining a named category interface section with no corresponding named cat-
egory implementation section.

• By defining a protocol in which some methods are explicitly designated as optional.

The question thus arises: How, in practice, is such an optional method feasible? We
know that if a message is sent to an object and the object can’t handle that message,

Informal Protocols
You may occasionally see, online or in the documentation, a reference to an informal
protocol. An informal protocol isn’t really a protocol at all; it’s just a way of providing
the compiler with a method signature so that it will allow a message to be sent without
complaining. There are two complementary ways to implement an informal protocol.
One is to define a category on NSObject; this makes any object eligible to receive the
messages listed in the category. The other is to define a protocol without formally
conforming to it; instead, send any message listed in the protocol only to objects typed
as id. These techniques were widespread before protocols could declare methods as
optional; now they are largely unnecessary (though they are still used). They are also
mildly dangerous, because you might accidentally define a method with the same name
as an existing method but a different signature, with unpredictable results.

206 | Chapter 10: Cocoa Classes

an exception is raised (and your app will likely crash). But a method declaration is a
contract suggesting that the object can handle that message. If we subvert that contract
by declaring a method that might or might not be implemented, aren’t we inviting
crashes?

The answer is that Objective-C is not only dynamic but also introspective. You can ask
an object whether it can deal with a message without actually sending it that message.
This makes optional methods quite safe, provided you know that a method is optional.

The key method here is NSObject’s respondsToSelector:, which takes a selector pa-
rameter and returns a BOOL. With it, you can send a message to an object only if it
would be safe to do so:

MyClass* mc = [[MyClass alloc] init];
if ([mc respondsToSelector:@selector(woohoo)]) {
 [mc woohoo];
}

You wouldn’t want to do this before sending just any old message, because it isn’t
necessary except for optional methods, and it slows things down a little. But Cocoa
does in fact call respondsToSelector: on your objects as a matter of course. To see that
this is true, implement respondsToSelector: on Empty_WindowAppDelegate in our
Empty Window project in such a way as to instrument it with logging:

- (BOOL) respondsToSelector: (SEL) sel {
 NSLog(@"%@", NSStringFromSelector(sel));
 return [super respondsToSelector:(sel)];
}

Here’s the output on my machine, as the Empty Window app launches:

application:handleOpenURL:
application:openURL:sourceApplication:annotation:
applicationDidReceiveMemoryWarning:
applicationWillTerminate:
applicationSignificantTimeChange:
application:willChangeStatusBarOrientation:duration:
application:didChangeStatusBarOrientation:
application:willChangeStatusBarFrame:
application:didChangeStatusBarFrame:
application:deviceAccelerated:
application:deviceChangedOrientation:
applicationDidBecomeActive:
applicationWillResignActive:
applicationDidEnterBackground:
applicationWillEnterForeground:
applicationWillSuspend:
application:didResumeWithOptions:
application:didFinishLaunchingWithOptions:

That’s Cocoa, checking to see which of the optional UIApplicationDelegate protocol
methods (including a couple of undocumented methods) are actually implemented by
our Empty_WindowAppDelegate instance — which, because it is the UIApplication

Optional Methods | 207

object’s delegate and formally conforms to the UIApplicationDelegate protocol, has
explicitly agreed that it might be willing to respond to any of those messages. The entire
delegate pattern (Chapter 11) depends upon this technique. Observe the policy fol-
lowed here by Cocoa: it checks all the optional protocol methods once, when it first
meets the object in question, and presumably stores the results; thus, the app is slowed
a tiny bit by this bombardment of respondsToSelector: calls, but now Cocoa knows
all the answers and won’t have to perform any of these same checks on the same object
later on.

Some Foundation Classes
The Foundation classes of Cocoa provide basic data types and utilities that will form
the basis of much that you do in Cocoa. Obviously I can’t list all of them, let alone
describe them fully, but I can survey a few that I use frequently and that you’ll probably
want to look into before writing even the simplest Cocoa program. For more informa-
tion, start with Apple’s list of the Foundation classes in the Foundation Framework
Reference.

Useful Structs and Constants
NSRange is a struct of importance in dealing with some of the classes I’m about to
discuss. Its components are integers (NSUInteger), location and length. So a range
whose location is 1 starts at the second element of something (because element count-
ing is always zero-based), and if its length is 2 it designates this element and the next.
Cocoa also supplies various convenience methods for dealing with a range; you’ll use
NSMakeRange frequently. (Note that the name, NSMakeRange, is backward compared
to names like CGPointMake and CGRectMake.)

NSNotFound is a constant integer indicating that some requested element was not
found. For example, if you ask for the index of a certain object in an NSArray and the
object isn’t present in the array, the result is NSNotFound. The result could not be 0
to indicate the absence of the object, because 0 would indicate the first element of the
array. Nor could it be nil, because nil is 0 (and in any case is not appropriate when an
integer is expected). The true numeric value of NSNotFound is of no concern to you;
always compare against NSNotFound itself, to learn whether a result is a meaningful
index.

If a search returns a range and the thing sought is not present, the location component
of the resulting NSRange will be NSNotFound.

NSString and Friends
NSString, which has already been used rather liberally in examples earlier in this book,
is the Cocoa object version of a string. You can create an NSString through a number

208 | Chapter 10: Cocoa Classes

of class methods and initializers, or by using the NSString literal notation @"...", which
is really a compiler directive. Particularly important is stringWithFormat:, which lets
you convert numbers to strings and combine strings; see Chapter 9, where I discussed
format strings in connection with NSLog.

int x = 5;
NSString* s = @"widgets";
NSString* s2 = [NSString stringWithFormat:@"You have %i %@.", x, s];

NSString has a modern, Unicode-based idea of what a string can consist of. A string’s
“elements” are its characters, whose count is its length. These are not bytes, because
the numeric representation of a Unicode character could be multiple bytes, depending
on the encoding. Nor are they glyphs, because a composed character sequence that
prints as a single “letter” can consist of multiple characters. Thus the length of an
NSRange indicating a single “character” might be greater than 1.

An NSString can be searched using various rangeOf... methods, which return an
NSRange. In addition, NSScanner lets you walk through a string looking for pieces that
fit certain criteria; for example, with NSScanner (and NSCharacterSet) you can skip
past everything in a string that precedes a number and then extract the number. Starting
with iOS 3.2, the rangeOfString: family of search methods can specify an option
NSRegularExpressionSearch, which lets you search using a regular expression; in iOS 4,
regular expressions are fully supported as a separate class, NSRegularExpression
(which uses NSTextCheckingResult to describe match results).

In this example from one of my apps, the user has tapped a button whose title is some-
thing like “5 by 4” or “4 by 3”. I want to know both numbers; one tells me how many
rows the layout is to have, the other how many columns. I use an NSScanner to locate
the two numbers:

NSString* s = [as buttonTitleAtIndex:ix];
NSScanner* sc = [NSScanner scannerWithString:s];
int rows, cols;
[sc scanInt:&rows];
[sc scanUpToCharactersFromSet:[NSCharacterSet decimalDigitCharacterSet]
 intoString:nil];
[sc scanInt:&cols];

If I were writing this same code to run only on iOS 4, I might do the same thing using
a regular expression:

NSString* s = [as buttonTitleAtIndex:ix];
int rowcol[2]; int* prowcol = rowcol;
NSError* err = nil;
NSRegularExpression* r = [NSRegularExpression regularExpressionWithPattern:@"\\d"
 options:0
 error:&err];
// error-checking omitted
for (NSTextCheckingResult* match in [r matchesInString:s
 options:0
 range:NSMakeRange(0, [s length])])
 *prowcol++ = [[s substringWithRange: [match range]] intValue];

Some Foundation Classes | 209

The syntax seems oddly tortured, though, because we must convert each match from
an NSTextCheckingResult to a range, then to a substring of our original string, and
finally to an integer.

An NSString object’s string is immutable. You can use a string to generate another
string in various ways, such as by appending another string or by extracting a substring,
but you can’t alter the string itself. For that, you need NSString’s subclass, NSMuta-
bleString.

An NSString carries no font and size information. In iOS programming, interface ob-
jects that display strings (such as UILabel) have a font property that is a UIFont, which
is used to determine the single font and size in which the string will display. String
drawing in a graphical context can be performed simply with methods provided
through the UIStringDrawing category on NSString (see the String UIKit Additions
Reference). Complex string layout in a graphical context, including use of styled text,
requires Core Text and is a separate topic (Chapter 23).

NSString has convenience utilities for working with a file path string, and is often used
in conjunction with NSURL, which is another Foundation class worth looking into.
NSString and some other classes discussed in this section provide methods for writing
out as a file or reading in a file; when they do, the file can be specified either as an
NSString file path or as an NSURL.

NSDate and Friends
An NSDate is a date and time, represented internally as a number of seconds
(NSTimeInterval) since some reference date. Calling [NSDate date] gives you a date
object for the current date and time; other date operations may involve NSDateCom-
ponents and NSCalendar and can be a bit tricky because calendars are complicated (see
the Date and Time Programming Guide).

You will also likely be concerned with dates represented as strings. Creation and parsing
of date strings involves NSDateFormatter, which uses a format string similar to
NSString’s stringWithFormat. A complication is added by the fact that the exact string
representation of a date component or format can depend upon the user’s locale, con-
sisting of language, region format, and calendar settings. (Actually, locale considera-
tions can also play a role in NSString format strings.)

In this example from one of my apps, I prepare the content of a UILabel reporting the
date and time when our data was last updated. The app is not localized — the word
“at” appearing in the string is always going to be in English — so I want complete
control of the presentation of the date and time components as well. To get it, I have
to insist upon a particular locale:

NSDateFormatter *df = [[NSDateFormatter alloc] init];
if ([[NSLocale availableLocaleIdentifiers] indexOfObject:@"en_US"] != NSNotFound) {
 NSLocale* loc =
 [[NSLocale alloc] initWithLocaleIdentifier:@"en_US"];

210 | Chapter 10: Cocoa Classes

 [df setLocale:loc]; // force English month name and time zone name if possible
}
[df setDateFormat:@"d MMMM yyyy 'at' h:mm a z"];
NSString* lastUpdated = [df stringFromDate: [NSDate date]];

NSNumber
An NSNumber is an object that wraps a numeric value (including BOOL). Thus, you
can use it to store and pass a number where an object is expected. An NSNumber is
formed from an actual number with a method that specifies the numeric type; for ex-
ample, you can call numberWithInt: to form a number from an int:

[[NSUserDefaults standardUserDefaults] registerDefaults:
 [NSDictionary dictionaryWithObjectsAndKeys:
 [NSNumber numberWithInt: 4],
 @"cardMatrixRows",
 [NSNumber numberWithInt: 3],
 @"cardMatrixColumns",
 nil]];

An NSNumber is not itself a number, so you can’t use it in calculations or where an
actual number is expected. Instead, you must extract the number from its NSNumber
wrapper using the inverse of the method that wrapped the number to begin with. So,
for example, if an NSNumber wraps an int, you can call intValue to extract the int:

NSUserDefaults* ud = [NSUserDefaults standardUserDefaults];
int therows = [[ud objectForKey:@"cardMatrixRows"] intValue];
int thecols = [[ud objectForKey:@"cardMatrixColumns"] intValue];

Actually, this is such a common transformation when communicating with NSUser-
Defaults that it provides convenience methods. So I could have written the same thing
this way:

NSUserDefaults* ud = [NSUserDefaults standardUserDefaults];
int therows = [ud integerForKey:@"cardMatrixRows"];
int thecols = [ud integerForKey:@"cardMatrixColumns"];

NSValue
NSValue is NSNumber’s superclass. Use it for wrapping nonnumeric C values such as
structs. Convenience methods provided by through the NSValueUIGeometryExten-
sions category on NSValue (see the NSValue UIKit Additions Reference) allow easy
wrapping and unwrapping of CGPoint, CGSize, CGRect, CGAffineTransform, and
UIEdgeInsets; additional categories allow easy wrapping and unwrapping of CATrans-
form3D, CMTime, CMTimeMapping, and CMTimeRange.

You are unlikely to need to store any other kind of C value in an NSValue, but you can
if you need to.

Some Foundation Classes | 211

NSData
NSData is a general sequence of bytes. It is immutable; the mutable version is its sub-
class NSMutableData.

In practice, NSData tends to arise in two main ways:

• When downloading data from the Internet. For example, the NSURLConnection
class supplies whatever it retrieves from the Internet as NSData. Transforming it
from there into (let’s say) a string, specifying the correct encoding, would then be
up to you.

• When storing an object as a file or in user preferences. For example, you can’t store
a UIColor value directly into user preferences. So if the user has made a color choice
and you need to save it, you transform the UIColor into an NSData (using
NSKeyedArchiver) and save that:

[[NSUserDefaults standardUserDefaults] registerDefaults:
 [NSDictionary dictionaryWithObjectsAndKeys:
 [NSKeyedArchiver archivedDataWithRootObject:[UIColor blueColor]],
 @"myColor",
 nil]];

The use of NSKeyedArchiver, and its reversal with NSKeyedUnarchiver, is a separate
topic (Chapter 36).

Equality and Comparison
The foregoing types will quickly come to seem to you like basic data types, but of course
they are actually object types. Therefore you cannot compare them with the C operators
for testing equality as you would with actual numbers. That’s because, in the case of
object types, the C operators compare the pointers, not the object content of the in-
stances. For example:

NSString* s1 = [NSString stringWithFormat:@"%@, %@", @"Hello", @"world"];
NSString* s2 = [NSString stringWithFormat:@"%@, %@", @"Hello", @"world"];
if (s1 == s2) // false
 // ...

The two strings are equivalent (@"Hello, world") but are not the same object. (The
example is deliberately elaborate because Cocoa’s efficient management of string lit-
erals sees to it that two strings initialized directly as @"Hello, world" are the same object,
which wouldn’t illustrate the point I’m making.) It is up to individual classes to im-
plement a test for equality. The general test, isEqual:, is inherited from NSObject and
overridden, but some classes also define more specific and efficient tests. Thus, the
correct way to perform the above test is like this:

if ([s1 isEqualToString: s2])

Similarly, it is up to individual classes to supply ordered comparison methods. The
standard method is called compare:, and returns one of three constants:

212 | Chapter 10: Cocoa Classes

NSOrderedAscending (the receiver is less than the parameter), NSOrderedSame (the
receiver is equal to the parameter), or NSOrderedDescending (the receiver is greater
than the parameter).

NSIndexSet
NSIndexSet expresses a collection of ordered integers (so, despite the name, it isn’t
really a set, because a set is unordered). For example, you might want to speak of
elements 1, 2, 3, 4, 8, 9, and 10 of an NSArray. NSIndexSet expresses this notion in
some compact implementation that can be readily queried. The actual implementation
is opaque, but you can imagine that in this case the set might consist of two NSRange
structs, (1,4) and (8,3). NSIndexSet is thus very commonly used with NSArray. For
example, to retrieve multiple objects simultaneously from an array, you specify the
desired indexes as an NSIndexSet. It is also used with other things that are array-like;
for example, you pass an NSIndexSet to a UITableView to indicate what sections to
insert or delete.

An NSIndexSet is immutable; its mutable subclass is NSMutableIndexSet. You can
form a simple NSIndexSet consisting of just one contiguous range directly, by passing
an NSRange to indexSetWithIndexesInRange:; but to form a more complex index set
you’ll need to use NSMutableIndexSet so that you can append additional ranges.

Walking through (enumerating) the index values specified by an NSIndexSet is easy in
iOS 4.0, which provides enumerateIndexesUsingBlock:. But if your code is to run on
earlier systems, you can’t use blocks, and no enumerator is provided, so you must resort
to a rather clumsy construct (Example 10-2).

Example 10-2. Enumerating an NSIndexSet

NSIndexSet* ixen = //...;
NSUInteger ix = [ixen firstIndex];
do {
 // ... do something with ix ...
} while ((ix = [ixen indexGreaterThanIndex:ix]) != NSNotFound);

NSArray and NSMutableArray
An NSArray is an ordered collection of objects. Its length is its count, and a particular
object can be obtained by index number using objectAtIndex:. The index of the first
object is zero, so the index of the last object is count minus one. You can form an
NSArray in various ways, but typically you’ll start by supplying a list of the objects it
is to contain (see Chapter 3).

An NSArray is immutable. This doesn’t mean you can’t mutate any of the objects it
contains; it means that once the NSArray is formed you can’t remove an object from
it, insert an object into it, or replace an object at a given index. To do those things, you

Some Foundation Classes | 213

can derive a new array consisting of the original array plus or minus some objects, or
use NSArray’s subclass, NSMutableArray.

You can walk through (enumerate) every object in an array with the for...in construct
described in Chapter 1. (You’ll get an exception if you try to mutate an array while
enumerating it.)

You can seek an object within an array with indexOfObject: or indexOfObjectIdentical-
To:; the former’s idea of equality is to call isEqual:, whereas the latter uses pointer
equality.

Those familiar with other languages may miss such utility array functions as map, which
builds a new array of the results of calling a method on each object in the array. (make-
ObjectsPerformSelector: requires a selector that returns no value, and enumerate-
ObjectsUsingBlock: requires a block function that returns no value.) The usual work-
around is to make an empty mutable array and then enumerate the original array, calling
a method and appending each result to the mutable array (Example 10-3). It is also
sometimes possible to use key–value coding as a map substitute (see Chapter 12).

Example 10-3. Building an array by enumerating another array

NSMutableArray* marr = [NSMutableArray array];
for (id obj in myArray) {
 id result = [obj doSomething];
 [marr addObject: result];
}

You can filter an array to produce a new array consisting of just those objects meeting
a test that can be described as an NSPredicate:

NSArray* pep = [NSArray arrayWithObjects: @"Manny", @"Moe", @"Jack", nil];
NSPredicate* p = [NSPredicate predicateWithFormat:@"self BEGINSWITH[cd] 'm'"];
NSArray* ems = [pep filteredArrayUsingPredicate:p];

To filter an array on a more customized test, you can walk through the array applying
the test and adding those that meet it to an NSMutableArray (similar to Exam-
ple 10-3). Alternatively, in iOS 4.0 there is now the ability to filter an array using a block:

NSArray* pep = [NSArray arrayWithObjects: @"Manny", @"Moe", @"Jack", nil];
NSArray* ems =
 [pep objectsAtIndexes: [pep indexesOfObjectsPassingTest:
 ^BOOL(id obj, NSUInteger idx, BOOL *stop) {
 return ([(NSString*)obj rangeOfString:@"m"
 options:NSCaseInsensitiveSearch].location == 0);
 }]];

You can derive a sorted version of the array, supplying the sorting rules in various ways,
or if it’s a mutable array, you can sort it directly.

214 | Chapter 10: Cocoa Classes

NSSet and Friends
An NSSet is an unordered collection of distinct objects. This means that no two objects
in a set can return YES when they are compared using isEqual:. Learning whether an
object is present in a set is much more efficient than seeking it in an array, and you can
ask whether one set is a subset of, or intersects, another set. You can walk through
(enumerate) a set with the for...in construct, though the order is of course unde-
fined. You can filter a set, as you can an array. Indeed, much of what you can do with
a set is parallel to what you can do with an array, except that of course you can’t do
anything with a set that involves the notion of ordering.

An NSSet is immutable. You can derive one NSSet from another by adding or removing
elements, or you can use its subclass, NSMutableSet.

NSCountedSet, a subclass of NSMutableSet, is a mutable unordered collection of ob-
jects that are not necessarily distinct (this concept is usually referred to as a bag). It is
implemented as a set plus a count of how many times each element has been added.

Personally, I don’t find myself storing data in sets very much; but many important
Cocoa methods use them (such as those involving touch event handling), so you do
have to know about them.

NSDictionary and NSMutableDictionary
An NSDictionary is an unordered collection of key–value pairs. The key is usually an
NSString, though it doesn’t have to be. The value can be any object. An NSDictionary
is immutable; its mutable subclass is NSMutableDictionary.

The keys of a dictionary are distinct (using isEqual: for comparison). If you add a key–
value pair to an NSMutableDictionary, then if that key is not already present, the key–
value pair is simply added, but if the key is already present, then the corresponding
value is replaced.

The fundamental use of an NSDictionary is to request an entry’s value by key (using
objectForKey:); if no such key exists, the result is nil, so this is also the way to find out
whether a key is present. A dictionary is thus an easy, flexible data storage device, an
object-based analogue to a struct. Cocoa often uses a dictionary to provide you with
an extra packet of named values, as in the userInfo of an NSNotification, the options
parameter of application:didFinishLaunchingWithOptions:, and so on.

Data structures such as an array of dictionaries, a dictionary of dictionaries, and so
forth, are extremely common, and will often lie at the heart of an app’s functionality.
Here’s an example from one of my own apps. The app bundle contains a text file laid
out like this:

chapterNumber [tab] pictureName [return]
chapterNumber [tab] pictureName [return]

Some Foundation Classes | 215

As the app launches, I load this text file and parse it into a dictionary, each entry of
which has the following structure:

key: (chapterNumber, as an NSNumber)
value: [Mutable Array]
 (pictureName)
 (pictureName)
 ...

Thus, as we walk the text file, we end up with all pictures for a chapter collected under
the number of that chapter. This makes it easy for me later to present all the pictures
for a given chapter. For each line of the text file, if the dictionary entry for that chapter
number doesn’t exist, we create it, with an empty mutable array as its value. Whether
that dictionary entry existed or not, it does now, and its value is a mutable array, so we
append the picture name to that mutable array. Observe how this single typical example
(Example 10-4) brings together many of the Foundation classes discussed in this sec-
tion.

Example 10-4. Parsing a file with Foundation classes

NSString* f = [[NSBundle mainBundle] pathForResource:@"index" ofType:@"txt"];
NSError* err = nil;
NSString* s = [NSString stringWithContentsOfFile:f
 encoding:NSUTF8StringEncoding
 error:&err];
// error-checking omitted
NSMutableDictionary* d = [NSMutableDictionary dictionary];
for (NSString* line in [s componentsSeparatedByString:@"\n"]) {
 NSArray* items = [line componentsSeparatedByString:@"\t"];
 NSInteger chnum = [[items objectAtIndex: 0] integerValue];
 NSNumber* key = [NSNumber numberWithInteger:chnum];
 NSMutableArray* marr = [d objectForKey: key];
 if (!marr) { // no such key, create key–value pair
 marr = [NSMutableArray array];
 [d setObject: marr forKey: key];
 }
 // marr is now a mutable array, empty or otherwise
 NSString* picname = [items objectAtIndex: 1];
 [marr addObject: picname];
}

You can get from an NSDictionary a list of keys, a sorted list of keys, or a list of values.
You can walk through (enumerate) a dictionary by its keys with the for...in construct,
though the order is of course undefined. A dictionary also supplies an object-
Enumerator, which you can use with the for...in construct to walk through just the
values. Starting in iOS 4.0, you can also walk through the key–value pairs together
using a block, and you can even filter an NSDictionary by some test against its values.

216 | Chapter 10: Cocoa Classes

NSNull
NSNull does nothing but supply a pointer to a singleton object, [NSNull null]. Use
this singleton object to stand for nil in situations where an actual object is required and
nil is not permitted. For example, you can’t use nil as the value of an element of a
collection (such as NSArray, NSSet, or NSDictionary), so you’d use [NSNull null]
instead.

Despite what I said earlier about equality, you can test an object against
[NSNull null] using the C equality operator, because this is a singleton instance and
therefore pointer comparison works.

Immutable and Mutable
Beginners sometimes have difficulty with the Foundation’s immutable/mutable class
pairs, so here are some hints.

The documentation may not make it completely obvious that the mutable classes obey
and, if appropriate, override the methods of the immutable classes. Thus, for example,
[NSArray array] generates an immutable array, but [NSMutableArray array] generates
a mutable array. (You will look in vain for the expected [NSMutableArray mutable-
Array].) The same is true of all the initializers and convenience class methods for in-
stantiation: they may all have “array” in their name, but when sent to NSMutableArray,
they yield a mutable array.

That fact also answers the question of how to make an immutable array mutable, and
vice versa. If arrayWithArray:, sent to the NSArray class, yields a new immutable array
containing the same objects in the same order as the original array, then the same
method, arrayWithArray:, sent to the NSMutableArray class, yields a mutable array
containing the same objects in the same order as the original. Thus this single method
can transform an array between immutable and mutable in either direction. You can
also use copy (produces an immutable copy) and mutableCopy (produces a mutable
copy).

All of the above applies equally, of course, to the other immutable/mutable class pairs.
You will often want to work internally and temporarily with a mutable instance but
then store (and possibly vend, as an instance variable) an immutable instance, thus
protecting the value from being changed accidentally or behind your own back. What
matters is not a variable’s declared class but what class the instance really is (polymor-
phism; see Chapter 5), so it’s good that you can easily switch between an immutable
and a mutable version of the same data.

To test whether an instance is mutable or immutable, do not ask for its class. These
immutable/mutable class pairs are all implemented as class clusters, which means that
Cocoa uses a secret class, different from the documented class you work with. This
secret class is subject to change without notice, because it’s none of your business and

Some Foundation Classes | 217

you should never have looked at it in the first place. Thus, code of this form is subject
to breakage:

if ([NSStringFromClass([n class]) isEqualToString: @"NSCFArray"]) // wrong!

Instead, to learn whether an object is mutable, ask it whether it responds to a mutability
method:

if ([n respondsToSelector:@selector(addObject:)]) // right

Bear in mind also that just because a collection class is immutable doesn’t mean that
the objects it collects are immutable. They are still objects and do not lose any of their
normal behavior merely because they are pointed to by an immutable collection.

Property Lists
A property list is a string (XML) representation of data. The Foundation classes
NSString, NSData, NSArray, and NSDictionary are the only classes that can be con-
verted into a property list. Moreover, an NSArray or NSDictionary can be converted
into a property list only if the only classes it collects are these classes, along with NSDate
and NSNumber. (This is why, as mentioned earlier, you must convert a UIColor into
an NSData in order to store it in user defaults; the user defaults is a property list.)

The primary use of a property list is to store data as a file. NSArray and NSDictionary
provide convenience methods writeToFile:atomically: and writeToURL:atomically:
that generate property list files given a pathname or file URL, respectively; they also
provide inverse convenience methods that initialize an NSArray object or an
NSDictionary object based on the property list contents of a given file. For this very
reason, you are likely to start with one of these classes when you want to create a
property list. (NSString’s writeToFile:atomically:encoding:error: and NSData’s
writeToURL:atomically: just write the data out as a file directly, not as a property list.)

When you initialize an NSArray or NSDictionary from a property list file in this way,
the objects in the collection are all immutable. If you want them to be mutable, or if
you want to convert an instance of one of the other property list classes to a property
list, you’ll use the NSPropertyListSerialization class (see the Property List Programming
Guide).

The Secret Life of NSObject
Because every class inherits from NSObject, it’s worth taking some time to investigate
and understand NSObject. NSObject is constructed in a rather elaborate way:

• It defines some native class methods and instance methods having mostly to do
with the basics of instantiation and of method sending and resolution. (See the
NSObject Class Reference.)

218 | Chapter 10: Cocoa Classes

• It adopts the NSObject protocol. This protocol declares instance methods having
mostly to do with memory management, the relationship between an instance and
its class, and introspection. Because all the NSObject protocol methods are re-
quired, the NSObject class implements them all. (See the NSObject Protocol Ref-
erence.) This architecture is what permits NSProxy to be a root class; it, too, adopts
the NSObject protocol.

• It implements convenience methods related to the NSCopying, NSMutableCopy-
ing, and NSCoding protocols, without formally adopting those protocols. NSOb-
ject intentionally doesn’t adopt these protocols because this would cause all other
classes to adopt them, which would be wrong. But thanks to this architecture, if a
class does adopt one of these protocols, you can call the corresponding convenience
method. For example, NSObject implements the copy instance method, so you can
call copy on any instance, but you’ll crash unless the instance’s class adopts the
NSCopying protocol and implements copyWithZone:.

• A large number of methods are injected into NSObject by more than two dozen
informal protocols, which are actually categories on NSObject. For example, awake-
FromNib (see Chapter 7) comes from the UINibLoadingAdditions category on
NSObject, declared in UINibLoading.h.

• A class object, as explained in Chapter 4, is an object. Therefore all classes, which
are objects of type Class, inherit from NSObject. Therefore, any method defined as
an instance method by NSObject can be called on a class object as a class method!
For example, respondsToSelector: is defined as an instance method by NSObject,
but it can be treated as a class method and sent to a class object.

The problem for the programmer is that Apple’s documentation is rather rigid about
classification. When you’re trying to work out what you can say to an object, you don’t
care where that object’s methods come from; you just care what you can say. But Apple
differentiates methods by where they come from. Even though NSObject is the root
class, the most important class, from which all other classes inherit, no single page of
the documentation provides a conspectus of all its methods. Instead, you have to look
at both the NSObject Class Reference and the NSObject Protocol Reference simultane-
ously, plus the pages documenting the NSCopying, NSMutableCopying, and NSCod-
ing protocols (in order to understand how they interact with methods defined by
NSObject), plus you have to supply mentally a class method version of every NSObject
instance method!

Of the methods injected into NSObject as informal protocols, many are delegate meth-
ods (see Chapter 11) and do not need centralized documentation; for example,
animationDidStart: is documented under the CAAnimation class, quite rightly. Others
are documented on the NSObject class documentation page; for example, cancel-
PreviousPerformRequestsWithTarget: comes from a category declared in NSRun-
Loop.h, but it is documented under NSObject, quite rightly. However, every object
responds to awakeFromNib; it’s likely to be crucial to every app you write, yet you must
learn about it outside of the NSObject documentation. The same goes, it might be

The Secret Life of NSObject | 219

argued, for all the key–value coding methods (Chapter 12) and key–value observing
methods (Chapter 13).

Once you’ve collected all the NSObject methods, you can see that they fall into certain
categories, much as outlined in Apple’s documentation (see also “The Root Class” in
the “Cocoa Objects” section of the Cocoa Fundamentals Guide):

Creation, destruction, and memory management
Methods for creating an instance, such as alloc and copy, along with methods that
you might override in order to learn when something is happening in the lifetime
of an object, such as initialize (see Chapter 11) and dealloc (see Chapter 12),
plus methods that manage memory (see Chapter 12).

Class relationships
Methods for learning an object’s class and inheritance, such as class, superclass,
isKindOfClass:, and isMemberOfClass:.

To check the class of an instance (or class), use methods such as isKindOfClass:.
Direct comparison of two class objects, as in [someObject class] == [other-
Object class], is rarely advisable, especially because a Cocoa instance’s class might
be a private, undocumented subclass of the class you expect. I mentioned this
already in connection with class clusters, and it can happen in other cases.

Object introspection and comparison
Methods for asking what would happen if an object were sent a certain message,
such as respondsToSelector:; for representing an object as a string (description,
used in debugging; see Chapter 9); and for comparing objects (isEqual:).

Message response
Methods for meddling with what does happen when an object is sent a certain
message, such as doesNotRecognizeSelector:. If you’re curious, see the Objective-
C Runtime Programming Guide. An example appears in Chapter 25.

Message sending
Methods for sending a message indirectly. For example, performSelector: takes a
selector as parameter, and sending it to an object tells that object to perform that
selector. This might seem identical to just sending that message to that object, but
what if you don’t know what message to send until runtime? Moreover, variants
on performSelector: allow you send a message on a specified thread, or send a
message after a certain amount of time has passed (performSelector:withObject:
afterDelay: and similar); this is called delayed performance.

Delayed performance is a valuable technique. You often need to let Cocoa finish
doing something, such as laying out interface, before proceeding to a further step;
delayed performance with a very short delay (even as short as zero seconds) is
enough to postpone a method call until after Cocoa has finished whatever it’s in
the middle of doing. Technically, it allows the current run loop to finish, complet-
ing and unwinding the entire current method call stack, before sending the speci-

220 | Chapter 10: Cocoa Classes

fied selector. It can also be used for simple timing, such as when you want to do
something different depending whether the user taps twice in quick succession or
only once; basically, when the user first taps, you respond using delayed perform-
ance, to give the user time to tap again if two taps are intended. Examples of both
uses appear in later chapters.

The Secret Life of NSObject | 221

CHAPTER 11

Cocoa Events

None of your code runs until Cocoa calls it. The art of Cocoa programming consists
largely of knowing when and why Cocoa will call your code. If you know this, you can
put your code in the correct place, with the correct method name, so that your code
runs at the correct moment, and your app behaves the way you intend.

In Chapter 7, for example, we wrote a method to be called when the user taps a certain
button in our interface, and we also arranged things so that that method would be called
when the user taps that button:

- (void) buttonPressed: (id) sender {
 // ... react to the button being pressed
}

This architecture typifies the underpinnings of a Cocoa program. Your code itself is
like a panel of buttons, waiting for Cocoa to press one. If something happens that Cocoa
feels your code needs to know about and respond to, it presses the right button — if
the right button is there. You organize your code with Cocoa’s behavior in mind. Cocoa
makes certain promises about how and when it will dispatch messages to your code.
These are Cocoa’s events. You know what these events are, and you arrange your code
to be ready when Cocoa delivers them.

Thus, to program for Cocoa, you must, in a sense, surrender control. Your code never
gets to run just whenever it feels like it. It can run only in response to some kind of
event. Something happens, such as the user making a gesture on the screen, or some
specific stage arriving in the lifetime of your app, and Cocoa dispatches an event to
your code — if your code is prepared to receive it. So you don’t write just any old code
you want to and put it in any old place. You use the framework, by letting the framework
use you. You submit to Cocoa’s rules and promises and expectations, so that your code
will be called at the right time and in the right way.

The specific events that you can receive are listed in the documentation. The overall
architecture of how and when events are dispatched and the ways in which your code
arranges to receive them is the subject of this chapter.

223

Reasons for Events
Broadly speaking, the reasons you might receive an event may be divided informally
into four categories. These categories are not official; I made them up. Often it isn’t
completely clear which of these categories an event fits into; an event may well appear
to fit two categories. But they are still generally useful for visualizing how and why
Cocoa interacts with your code.

User events
The user does something interactive, and an event is triggered directly. Obvious
examples are events that you get when the user taps or swipes the screen, or types
a key on the keyboard.

Lifetime events
These are events notifying you of the arrival of a stage in the life of the app, such
as the fact that the app is starting up or is about to go into the background, or of
a component of the app, such as the fact that a UIViewController’s view has just
loaded or is about to be removed from the screen.

Functional events
Cocoa is about to do something, and turns to you in case you want to supply
(additional) functionality. I would put into this category things like UIView’s draw-
Rect: (your chance to have a view draw itself) and UILabel’s drawTextInRect: (your
chance to modify the look of a label), with which we experimented in Chapter 10.

Query events
Cocoa turns to you to ask a question; its behavior will depend upon your answer.
For example, the way data appears in a table (a UITableView) is that whenever
Cocoa needs a cell for a row of the table, it turns to you and asks for the cell.

Subclassing
A built-in Cocoa class may define methods that Cocoa itself will call and that you are
invited (or required) to override in a subclass. Sometimes you know when the method
will be called; at other times you don’t know or care exactly when the method is called,
but you know that you must override it so that whenever it is called, your behavior,
and not (merely) the default behavior, will take place.

An example I gave in Chapter 10 was UIView’s drawRect:. The built-in UIView imple-
mentation does nothing, so overriding drawRect: in a subclass is your only chance to
dictate the full procedure by which a view draws itself. You don’t know exactly when
this method will be called, and you don’t care; when it is, you draw, and this guarantees
that the view will always appear the way you want it to. (You never call drawRect:
yourself; if some underlying condition has changed and you want the view to be re-
drawn, you call setNeedsDisplay and let Cocoa call drawRect: in response.)

224 | Chapter 11: Cocoa Events

In addition to UIView, particular built-in UIView subclasses may have methods you’ll
want to customize through subclassing. Typically this will be in order to change the
way the view is drawn. In Chapter 10 I gave an example involving UILabel and its draw-
TextInRect:. Another example is UISlider, which lets you customize the position and
size of the slider’s “thumb” by overriding thumbRectForBounds:trackRect:value:
(Chapter 25).

UIViewController (Chapter 19) is a good example of a class meant for subclassing. Of
the methods listed in the UIViewController class documentation, just about all are
methods you might have reason to override. If you create a UIViewController subclass
in Xcode, you’ll see that the template already includes about half a dozen methods for
you to uncomment and override if desired.

For example, you must override loadView if your UIViewController creates its view in
code, and you must create and assign it to this instance’s view property at this moment.
(I’d probably call that a functional event, because your code has a specific job to do,
namely, supply the view.) You may override viewDidLoad to perform additional initi-
alizations as your view is first loaded, whether it comes from a nib or you created it in
loadView. Methods like viewWillAppear: and viewDidDisappear: are called as your UI-
ViewController’s view takes over the screen or is replaced on the screen by some other
view; thus, viewWillAppear: is a moment to make sure that whatever happened while
your view was offscreen is reflected in how it looks as it comes back onscreen. (Those
are obviously lifetime events.)

A method like shouldAutorotateToInterfaceOrientation: is what I call a query event.
It is passed an orientation parameter and returns a BOOL telling Cocoa whether your
view can appear in that orientation. The default, if you don’t implement it, is that your
view can appear only in portrait orientation. If you want this UIViewController’s view
to appear in some other orientation, you’ll return YES for that orientation. If you return
YES for more than one orientation and the user rotates the device, you might then
receive messages like willRotateToInterfaceOrientation:duration: and willAnimate-
RotationToInterfaceOrientation:duration:, where you can customize what happens
to the view as the orientation changes.

When looking for events that you can receive through subclassing, be sure to look
upward though the inheritance hierarchy. For example, if you’re wondering how to be
notified when the user has tapped on your custom UIView subclass, you won’t find the
answer in the UIView class documentation; a UIView receives tap events by virtue of
being a UIResponder. In the UIResponder class documentation, you’ll learn that you
can override touchesBegan:withEvent: to be notified of a tap (Chapter 18).

Even further up the inheritance hierarchy, you’ll find things like NSObject’s
initialize class method. Every class that is actually sent a class method message (in-
cluding instantiation) is first sent the initialize message, once. Thus, initialize can
be overridden in order to run code extremely early in a class’s lifetime (before it even
has an instance). Your project’s application delegate class (such as Empty_Window-

Subclassing | 225

AppDelegate in our Empty Window project) is instantiated very early in the app’s life-
time, as the main nib loads, so its initialize can be a good place to perform very early
app initializations, such as setting default values for any user preferences. For typical
code, look at Apple’s Metronome example, in MetronomeAppDelegate.m. Observe that
we test, as a matter of course, whether self really is the class in question; otherwise
there is a chance that initialize will be called again (and our code will run again) if a
subclass of this class is used.

Notifications
Cocoa provides your app with a single instance of NSNotificationCenter, informally
called the notification center. This instance is the basis of a mechanism for sending
messages called notifications. A notification includes an instance of NSNotification (a
notification object). The idea is that any object can be registered with the notification
center to receive certain notifications. Another object can hand the notification center
a notification object to send out (this is called posting the notification). The notification
center will then send that notification object, in a notification, to all objects that are
registered to receive it.

The notification mechanism is often described as a dispatching or broadcasting mech-
anism, and with good reason. It lets an object send a message without knowing or caring
what object or how many objects receive it. This relieves your app’s architecture from
the formal responsibility of somehow hooking up instances just so a message can pass
from one to the other. When objects are conceptually “distant” from one another,
notifications can be a fairly lightweight way of permitting one to message the other.

An NSNotification object has three pieces of information associated with it, which can
be retrieved by instance methods: its name, an NSString which identifies it; an object
associated with the notification (typically the object that posted it); and its userInfo.
Not every notification has a userInfo; it is an NSDictionary, and can contain additional
information associated with the notification. What information this NSDictionary will
contain, and under what keys, depends on the particular notification; you have to con-
sult the documentation. For example, the documentation tells us that UIApplication’s
UIApplicationDidChangeStatusBarFrameNotification includes a userInfo dictionary
with a key UIApplicationStatusBarFrameUserInfoKey whose value is the status bar’s
frame. When you post a notification yourself, you can put anything you like into the
userInfo for the notification’s recipient(s) to retrieve.

Receiving a Built-In Notification
Cocoa itself posts notifications through the notification center, and your code can reg-
ister to receive them. You’ll find a separate Notifications section in the documentation
for a class that provides them.

226 | Chapter 11: Cocoa Events

To register for a notification, you use the addObserver:... instance method. The in-
stance to which it is sent will typically be the app’s single default notification center,
[NSNotificationCenter defaultCenter]. The parameters are as follows:

addObserver:
The instance to which the notification is to be sent. This will typically be self; it
isn’t usual for one instance to register a different instance as the receiver of a no-
tification.

selector:
The message to be sent to the observer instance when the notification occurs. The
designated method should return void and should take one parameter, which will
be the NSNotification object (so the parameter should be typed as
NSNotification* or id).

name:
The NSString name of the notification you’d like to receive. If this parameter is nil,
you’re asking to receive all notifications sent by the object designated in the
object parameter. A built-in Cocoa notification’s name is usually a constant. As I
explained in Chapter 1, this is helpful, because if you flub the name of a constant,
the compiler will complain, whereas if you enter the name of the notification di-
rectly as an NSString literal and you get it wrong, the compiler won’t complain but
you will mysteriously fail to get any notifications (because no notification has the
name you actually entered) — a very difficult sort of mistake to track down.

object:
The object of the notification you’re interested in, which will usually be the object
that posted it. If this is nil, you’re asking to receive all notifications with the name
designated in the name parameter. If both the name and object parameters are nil,
you’re asking to receive all notifications.

For example, in one of my apps I need to respond, by changing my interface, if the user
starts or stops playing a song from the device’s music library. The API for the device’s
built-in music player is the MPMusicPlayerController class; it provides a notification
to tell me when the built-in music player changes its playing state, listed under Noti-
fications in the MPMusicPlayerController’s class documentation as MPMusicPlayer-
ControllerPlaybackStateDidChangeNotification.

It turns out, looking at the documentation, that this notification won’t be posted at all
unless I call MPMusicPlayerController’s beginGeneratingPlaybackNotifications in-
stance method. This architecture is not uncommon; Cocoa saves itself some time and
effort by not sending out certain notifications unless they are switched on, as it were.
So my first job is to get an instance of MPMusicPlayerController and call this method:

MPMusicPlayerController* mp = [MPMusicPlayerController iPodMusicPlayer];
[mp beginGeneratingPlaybackNotifications];

Now I register myself to receive the desired playback notification:

Notifications | 227

[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(playChanged:)
 name:MPMusicPlayerControllerPlaybackStateDidChangeNotification
 object:nil];

So now, whenever an MPMusicPlayerControllerPlaybackStateDidChangeNotification is
posted, my playChanged: method will be called:

- (void)playChanged:(id) n {
 // ... do something in response ...
}

Unregistering
It is up to you, for every object that you register as a recipient of notifications, to un-
register that object before it goes out of existence. If you fail to do this, and if the object
does go out of existence, and if a notification for which that object is registered is posted,
the notification center will attempt to send the appropriate message to that object,
which is now missing in action. The result will be a crash at best, and chaos at worst.

To unregister an object as a recipient of notifications, send the notification center the
removeObserver: message, whose parameter is the object that is no longer to receive
notifications. (Alternatively, you can unregister an object for just a specific set of noti-
fications with removeObserver:name:object:.) The trick is finding the right moment to
do this. In most cases, the easiest solution is the registered instance’s dealloc method,
this being the last event an instance is sent before it goes out of existence (Chapter 12).

Keep it simple, because complicated logic for registering and unregistering for notifi-
cations can be difficult to debug, especially as NSNotificationCenter provides no kind
of introspection: you cannot ask an NSNotificationCenter what objects are registered
with it as notification recipients. I once had a devil of a time understanding why one
of my instances was not receiving a notification for which it was registered. Caveman
debugging didn’t help. Eventually I realized that some code I’d forgotten about was
unregistering my instance.

I am skipping over some other aspects of notifications that you probably
won’t need to know about. Read Apple’s Notification Programming
Topics for Cocoa if you want the gory details.

NSTimer
An timer (NSTimer) is not, strictly speaking, a notification; but it behaves very simi-
larly. It is an object that gives off a signal (fires) after the lapse of a certain time interval.
The signal is a message to one of your instances. Thus you can arrange to be notified
when a certain time has elapsed. The timing is not perfectly accurate, but it’s pretty
good.

228 | Chapter 11: Cocoa Events

Timer management is not exactly tricky, but it is a little unusual. A timer that is actively
watching the clock is said to be scheduled. A timer may fire once, or it may be a repeat-
ing timer. To make a timer go out of existence, it must be invalidated. A timer that is
set to fire once is invalidated automatically after it fires; a repeating timer repeats until
you invalidate it (by sending it the invalidate message). An invalidated timer should
be regarded as off-limits: you cannot revive it or use it for anything further, and you
should probably not send any messages to it.

The straightforward way to create a timer is with the NSTimer class method scheduled-
TimerWithTimeInterval:target:selector:userInfo:repeats:. This creates the timer
and schedules it, so that it begins watching the clock immediately. The target and
selector determine what message will be sent to what object when the timer fires; the
method in question should take one parameter, which will be a reference to the timer.
The userInfo is just like the userInfo of a notification. (You can see why I categorize
timers as being similar to notifications.)

For example, one of my apps is a game with a score; I want to penalize the user, by
diminishing the score, for not making a move within ten seconds of the previous move.
So each time the user makes a move, I create a repeating timer whose time interval is
ten seconds (and I also invalidate any existing timer); in the method that the timer calls,
I diminish the score.

Delegation
Delegation is an object-oriented design pattern, a relationship between two objects, in
which the first object’s behavior is customized or assisted by the second. The second
object is the first object’s delegate. No subclassing is involved, and indeed the first object
is agnostic about the second object’s class.

As implemented by Cocoa, here’s how delegation works. A built-in Cocoa class has an
instance variable, usually called delegate (it will certainly have delegate in its name).
For some instance of that Cocoa class, you set the value of this instance variable to an
instance of one of your classes. At certain moments in its activity, the Cocoa class
promises to turn to its delegate for instructions by sending it a certain message: if the
Cocoa instance finds that its delegate is not nil, and that its delegate is prepared to
receive that message (see Chapter 10 on respondsToSelector:), the Cocoa instance
sends the message to the delegate.

In the old days, delegate methods were listed in the Cocoa class’s documentation, and
their method signatures were made known to the compiler through an informal pro-
tocol (a category on NSObject). Now, though, a class’s delegate methods are usually
listed in a genuine protocol with its own documentation. There are over 70 Cocoa
delegate protocols, showing how heavily Cocoa relies on delegation. Most delegate
methods are optional, but in a few cases you’ll discover some that are required.

Delegation | 229

To customize a Cocoa instance’s behavior through delegation, you start with one of
your classes, which, if necessary, declares conformance to the relevant delegate proto-
col. When the app runs, you set the Cocoa instance’s delegate ivar (or whatever its
name is) to an instance of your class. Usually you’ll do this by setting a property. Your
class will probably do other things besides serving as this instance’s delegate. Indeed,
one of the nice things about delegation is that it leaves you free to slot delegate code
into your class architecture however you like. For example, if a view has a controller (a
UIViewController), it will often make sense for the controller to serve also as the view’s
delegate.

Here’s a simple example, involving UIAlertView. If a UIAlertView has no delegate, then
when its Cancel button is tapped, the alert view is dismissed. But if you want to do
something in response to the alert view being dismissed, you need to give it a delegate
so that you can receive an event telling you that the alert view was dismissed. It’s so
common to give a UIAlertView a delegate that its designated initializer allows you to
supply one; typically, the delegate will be the instance that summoned the alert view
in the first place. Moreover, an alert view with a delegate is so common that the delegate
is typed as a pure id; you don’t even have to bother conforming formally to the
UIAlertViewDelegate protocol:

- (void) gameWon {
 UIAlertView* av =
 [[UIAlertView alloc] initWithTitle:@"Congratulations!"
 message:@"You won the game. Another game?"
 delegate:self
 cancelButtonTitle:@"No, thanks."
 otherButtonTitles:@"Sure!", nil];
 [av show];
}

- (void) alertView:(UIAlertView*) av didDismissWithButtonIndex: (NSInteger) ix {
 if (ix == 1) { // user said "Sure!"
 [self newGame];
 }
}

The delegation mechanism is the last piece of the puzzle needed to explain the built-in
bootstrapping procedure of a minimal app like our Empty Window project (see “De-
fault Instances in the Main Nib File” on page 133). “The app finishes its internal setup,
and application:didFinishLaunchingWithOptions: is sent to the Empty_WindowApp-
Delegate instance.” Why? Because a UIApplication instance sends application:did-
FinishLaunchingWithOptions: to its delegate when the app has finished launching. And
(as we also saw in Chapter 7), thanks to an outlet in MainWindow.xib, the Empty_Win-
dowAppDelegate instance is the UIApplication instance’s delegate (the app delegate —
hence the name, Empty_WindowAppDelegate).

That’s why, in many earlier examples using the Empty Window project, we’ve put our
test code in Empty_WindowAppDelegate’s application:didFinishLaunchingWith-
Options:. This is an event message our project template has already arranged for us to

230 | Chapter 11: Cocoa Events

receive; we know the message will be sent, and we know it will be sent early in our
app’s lifetime, so we know that this method will run and when it will run.

The UIApplication delegate methods are also provided as notifica-
tions. This lets an instance other than the app delegate hear conveniently
about application lifetime events, by registering for them. A few other
classes provide duplicate events similarly; for example, UITableView’s
delegate method tableView:didSelectRowAtIndexPath: is matched by a
notification UITableViewSelectionDidChangeNotification.

By convention, many Cocoa delegate method names contain the modal verbs should,
will, or did. A will message is sent to the delegate just before something happens; a
did message is sent to the delegate just after something happens. A should method is
special: it returns a BOOL, and you are expected to respond with YES to permit some-
thing or NO to prevent it. The documentation tells you what the default response is;
you don’t have to implement a should method if the default is acceptable. In many
cases, a property will control the overall behavior; the delegate message lets you pick
and choose the behavior based on circumstances at runtime.

For example, by default the user can tap the status bar to make a scroll view scroll
quickly to the top. Even if the scroll view’s scrollsToTop property is YES, you can
prevent this behavior for a particular tap by returning NO from the delegate’s scroll-
ViewShouldScrollToTop:.

When you’re searching the documentation for how you can be notified of a certain
event, be sure to consult the corresponding delegate protocol, if there is one. (And don’t
forget to consult the class’s superclasses to see if one of them has a corresponding
delegate protocol.) You’d like to know when the user taps in a UITextField to start
editing it? You won’t find anything relevant in the UITextField documentation; what
you’re after is textFieldDidBeginEditing: in the UITextFieldDelegate protocol. You
want to respond when the user rearranges items on your tab bar? Look in UITabBar-
ControllerDelegate. You want to know how to make a UITextView zoomable (through
the user making a pinch gesture)? A UITextView is a UIScrollView; a scroll view is not
zoomable unless its delegate returns a view from viewForZoomingInScrollView:, docu-
mented under UIScrollViewDelegate.

You can implement the delegation pattern yourself if you like. That’s what I do in the
ColorPickerController example mentioned in Chapter 10. My ColorPickerController
class’s header file has a delegate instance variable and a ColorPickerDelegate protocol:

@protocol ColorPickerDelegate;
@interface ColorPickerController : UIViewController {
 id <ColorPickerDelegate> delegate;
}
@end

@protocol ColorPickerDelegate

Delegation | 231

// color == nil on cancel
- (void) colorPicker:(ColorPickerController *)picker
 didSetColorNamed:(NSString *)theName
 toColor:(UIColor*)theColor;
@end

Notice the use of the @protocol compiler directive in the first line; like the @class di-
rective, this directive merely quiets the compiler by asserting that ColorPickerDelegate
is a protocol, defined elsewhere (here, in fact, it is defined later in the same file). In the
implementation for ColorPickerController, I send the protocol message to the delegate:

- (void) dismissColorPicker: (id) sender { // user has tapped our Done button
 [self.delegate colorPicker:self
 didSetColorNamed:self.colorName
 toColor:self.color];
}

In this particular case I don’t bother to check whether the delegate is nil, because I
happen to know it isn’t, and besides, if it is there’s no harm done, because sending a
message to nil does nothing. And I don’t bother to check whether the delegate imple-
ments this method, because I happen to know that it does. Still, you could argue that
I’m just being lazy and that I should do both those things.

Data Sources
A data source is like a delegate, except that its methods supply the data for another
object to display. The only Cocoa classes with data sources are UITableView and UI-
PickerView. A table view displays data in rows; a picker view displays selectable choices
using a rotating drum metaphor. In each case, the data source must formally conform
to a protocol with required methods (UITableViewDataSource and UIPickerViewDa-
taSource, respectively).

It comes as a surprise to some beginners that a data source is necessary at all. Why isn’t
a table’s data just part of the table? Or why isn’t there at least some fixed data structure
that contains the data? The reason is that such policies would violate generality. Use
of a data source separates the object that displays the data from the object that manages
the data, and leaves the latter free to store and obtain that data however it likes (see on
model–view–controller in Chapter 12). The only requirement is that the data source
must be able to supply information quickly, because it will be asked for it in real time
when the data needs displaying.

Another surprise is that the data source is different from the delegate. But this again is
only for generality; it’s an option, not a requirement. There is no reason why the data
source and the delegate should not be the same object, and most of the time they
probably will be.

In this simple example, we implement a UIPickerView that allows the user to select by
name a day of the week (the Gregorian week, using English day names). The first two

232 | Chapter 11: Cocoa Events

methods are UIPickerView data source methods; the third method is a UIPickerView
delegate method:

- (NSInteger) numberOfComponentsInPickerView: (UIPickerView*) pickerView {
 return 1;
}

- (NSInteger) pickerView: (UIPickerView*) pickerView
 numberOfRowsInComponent: (NSInteger) component {
 return 7;
}

- (NSString*) pickerView:(UIPickerView*)pickerView
 titleForRow:(NSInteger)row
 forComponent:(NSInteger)component {
 NSArray* arr = [NSArray arrayWithObjects:
 @"Sunday",
 @"Monday",
 @"Tuesday",
 @"Wednesday",
 @"Thursday",
 @"Friday",
 @"Saturday",
 nil];
 return [arr objectAtIndex: row];
}

Actions
An action is a message emitted by an instance of a UIControl subclass (a control) to
notify you of a significant user event taking place in that control. The UIControl sub-
classes are all simple things that the user can interact with directly, like a button (UI-
Button), a switch (UISwitch), a segmented control (UISegmentedControl), a slider
(UISlider), or a text field (UITextField).

The significant user events (control events) are listed under UIControlEvents in the
Constants section of the UIControl class documentation; they also have informal names
that are visible in the Connections inspector when you’re editing a nib. I’ll mostly use
the informal names in what follows. Control events fall roughly into three groups: the
user has touched the screen (Touch Down, Touch Drag Inside, Touch Up Inside, etc.),
edited text (Editing Did Begin, Editing Changed, etc.), or changed the control’s value
(Value Changed).

Apple’s documentation is rather coy about which controls normally emit actions for
which control events, so here’s a list obtained through experimentation. Keep in mind
that Apple’s silence on this matter may mean that the details are subject to change:

UIButton
All “Touch” events.

Actions | 233

UIDatePicker
Value Changed.

UIPageControl
All “Touch” events, Value Changed.

UISegmentedControl
Value Changed.

UISlider
All “Touch” events, Value Changed.

UISwitch
All “Touch” events, Value Changed.

UITextField
All “Touch” events except the “Up” events, and all “Editing” events. The text field
is either in touch mode or in edit mode; as it switches from the former to the latter
(and the keyboard appears, and Editing Did Begin is triggered), a Touch Cancel
event is triggered. If the user stops editing by tapping Return in the keyboard, Did
End on Exit is triggered along with Editing Did End.

The way you hear about a control event is through an action message. A control main-
tains an internal dispatch table: for each control event, there is some number of target–
action pairs, of which the action is a selector (the name of a method) and the target is
the object to which that message is to be sent. When a control event occurs, the control
consults its dispatch table, finds all the target–action pairs associated with that control
event, and sends each action message to the corresponding target. This architecture is
reminiscent of a notification (Figure 11-1).

The action messaging mechanism is actually more complex than I’ve
stated. The UIControl does not really send the action message directly;
rather, it tells the shared application to send it. This means that the entire
mechanism can itself be customized. But you’ll rarely need to do this,
and in any case this is a separate topic (I’ll return to this matter in
Chapter 25).

There are two ways to manipulate a control’s action dispatch table: you can configure
an action connection in a nib (as explained in Chapter 7), or you can use code. To use
code, you send the control the message addTarget:action:forControlEvents:, where
the target is an object, the action is a selector, and the control events are designated by
a bitmask (see Chapter 1 if you’ve forgotten how to construct a bitmask). Unlike a
notification center, a control has methods for introspecting the dispatch table. Recall
the example from Chapter 7 (where b is a reference to a UIButton):

[b addTarget:self action:@selector(buttonPressed:)
 forControlEvents:UIControlEventTouchDown];

234 | Chapter 11: Cocoa Events

After that, whenever the user taps in the button, our buttonPressed: method will be
called. It might look like this:

- (void) buttonPressed: (id) sender {
 UIAlertView* av = [[UIAlertView alloc] initWithTitle:@"Howdy!"
 message:@"You tapped me."
 delegate:nil
 cancelButtonTitle:@"Cool"
 otherButtonTitles:nil];
 [av show];
}

The signature for the action selector can be in any of three forms. The fullest form takes
two parameters:

• The control, usually typed as id.

• The UIEvent that generated the control event.

A shorter form (the most commonly used form) omits the second parameter; a still
shorter form omits both parameters. If you’re perfectly certain what control is sending

Figure 11-1. The target–action architecture

Actions | 235

you the message, and you don’t need a reference to it, you might not bother with either
of the action message’s parameters.

Mac OS X Programmer Alert
If you’re an experienced Mac OS X Cocoa developer, you’ll note that
there are some major differences between the Mac OS X implementation
of actions and the iOS implementation. In Mac OS X, a control has just
one action; in iOS, a control may respond to various control events. In
Mac OS X, an action has just one target; in iOS, a single event can trigger
multiple action messages to multiple targets. In Mac OS X, an action
message selector comes in just one form; in iOS, there are three possible
forms.

What is the UIEvent, and what is it for? Well, a touch event is generated whenever the
user does something with a finger (sets it down on the screen, moves it, raises it from
the screen). UIEvents are the lowest-level objects charged with communication of touch
events to your app. A UIEvent is basically a timestamp (a double) along with a collection
(NSSet) of touch events (UITouch). The action mechanism deliberately shields you
from the complexities of touch events, but by electing to receive the UIEvent, you can
still deal with those complexities if you want to. (See Chapter 18 for full details.)

Touch Inside and Touch Outside
There is no explicit “Touch Down Inside” event, because any sequence of “Touch”
events begins with “Touch Down,” which must be inside the control. (If it weren’t, this
sequence of touches would not “belong” to the control, and there would be no control
events at all.)

When the user taps within a control and starts dragging, the “Inside” events are trig-
gered even after the drag moves outside the control’s bounds. But after a certain distance
from the control is exceeded, an invisible boundary is crossed, Touch Drag Exit is
triggered, and now “Outside” events are reported until the drag crosses back within
the invisible boundary, at which point Touch Drag Enter is triggered and the “Inside”
events are reported again. In the case of a UIButton, the crossing of this invisible boun-
dary is exactly when the button automatically unhighlights (as the drag exits). Thus,
to catch a legitimate button press, you probably want to consider only Touch Up Inside.

For other controls, there may be some slight complications. For example, a UISwitch
will unhighlight when a drag reaches a certain distance from it, but the touch is still
considered legitimate and can still change the UISwitch’s value; therefore, when the
user’s finger leaves the screen, the UISwitch reports a Touch Up Inside event, even
while reporting Touch Drag Outside events.

236 | Chapter 11: Cocoa Events

In this example, I take advantage of the UIEvent’s timestamp to do one thing if the user
releases a UIButton after holding down a finger for a short time, but a different thing
if the user releases the UIButton after holding it down for a longer time. Assume that
the UIButton’s dispatch table is configured so that its Touch Down control event calls
my buttonDown:event: method, and its Touch Up Inside control event calls my button-
Up:event: method:

- (void) buttonDown: (id) sender event: (UIEvent*) e {
 self.downtime = [e timestamp]; // downtime is a property and ivar
}

- (void) buttonUp: (id) sender event: (UIEvent*) e {
 if ([e timestamp] - self.downtime < 0.3) {
 // respond to short tap
 } else {
 // respond to longer hold and release
 }
}

The Responder Chain
A responder is an object that knows how to receive UIEvents directly (see the previous
section). It knows this because it is an instance of UIResponder or a UIResponder
subclass. If you examine the Cocoa class hierarchy, you’ll find that just about any class
that has anything to do with display on the screen is a responder. A UIView is a res-
ponder. A UIWindow is a responder. A UIViewController is a responder. Even a
UIApplication is a responder.

If you look in the documentation for the UIResponder class, you’ll find that it imple-
ments four low-level methods for receiving touch-related UIEvents: touchesBegan:with-
Event:, touchesMoved:withEvent:, touchesEnded:withEvent: and touchesCancelled:
withEvent:. These are called to notify a responder of a touch event. No matter how
your code ultimately hears about a user-related touch event — indeed, even if your
code never hears about a touch event (because Cocoa reacted in some automatic way
to the touch, without your code’s intervention) — the touch was initially communi-
cated to a responder through one of these methods.

The mechanism for this communication starts by deciding which responder the user
touched. The UIView methods hitTest:withEvent: and pointInside:withEvent: are
called until the correct view (the hit-test view) is located. Then UIApplication’s send-
Event: method is called, which calls UIWindow’s sendEvent:, which calls the correct
method of the hit-test view (a responder). I’ll cover all this again in full detail in Chap-
ter 18.

The responders in your app participate in a responder chain, which essentially links
them up through the view hierarchy. A UIView can sit inside another UIView, its
superview, and so on until we reach the app’s UIWindow (a UIView that has no su-
perview). The responder chain, from bottom to top, looks like this:

The Responder Chain | 237

1. The UIView that we start with (here, the hit-test view).

2. The UIViewController that controls that UIView, if there is one.

3. The UIView’s superview, and then its UIViewController if there is one. Repeat this
step, moving up the superview hierarchy one superview at a time, until we reach…

4. The UIWindow.

5. The UIApplication.

Deferring Responsibility
The responder chain can be used to let a responder defer responsibility for handling a
touch event. If a responder receives a touch event and can’t handle it, the event can be
passed up the responder chain to look for a responder that can handle it. This can
happen in two main ways: (1) the responder doesn’t implement the relevant method;
(2) the responder implements the relevant method to call super.

For example, a plain vanilla UIView has no native implementation of the touch event
methods. Thus, by default, even if a UIView is the hit-test view, the touch event effec-
tively falls through the UIView and travels up the responder chain, looking for someone
to respond to it. If this UIView is an instance of your own subclass, you might imple-
ment the touch event methods in that subclass to catch touch events in the UIView
itself; but if the UIView is controlled by a UIViewController, you have already sub-
classed UIViewController, and that subclass is probably where the interface behavior
logic for this UIView is already situated, so you might well prefer to implement the
touch event methods there instead. You are thus taking advantage of the responder
chain to defer responsibility for handling touch events from the UIView to its UIView-
Controller, in a natural and completely automatic way.

Nil-Targeted Actions
A nil-targeted action is a target–action pair in which the target is nil. There is no des-
ignated target object, so the following rule is used: starting with the hit-test view (the
view with which the user is interacting), Cocoa looks up the responder chain for an
object that can respond to the action message.

Suppose, for example, we have a UIButton inside a UIView. And suppose we run this
code early in the button’s lifetime, where b is the button:

[b addTarget:nil action:@selector(doButton:)
 forControlEvents:UIControlEventTouchUpInside];

That’s a nil-targeted action. So what happens when the user taps the button? First,
Cocoa looks in the UIButton itself to see whether it responds to doButton:. If not, then
it looks in the UIView that is its superview. And so on, up the responder chain. If a
responder is found that handles doButton:, the action message is sent to that object;
otherwise, the message goes unhandled.

238 | Chapter 11: Cocoa Events

Thus, suppose the UIView containing the UIButton is an instance of your own UIView
subclass. Let’s call it MyView. If MyView implements doButton:, then when the user
taps the button, it is MyView’s doButton: that will be called.

To create a nil-targeted action in a nib, you form a connection to the First Responder
proxy object (in the dock). This is what the First Responder proxy object is for! The
First Responder isn’t a real object with a known class, so before you can connect an
action to it, you have to define the action message within the First Responder proxy
object, like this:

1. Select the First Responder proxy, and switch to the Attributes inspector.

2. Click the Plus button and give the new action a signature; it must take a single
parameter (so that its name will end with a colon).

3. Now you can Control-drag from a control, such as a UIButton, to the First Res-
ponder proxy to specify a nil-targeted action with the signature you specified.

Application Lifetime Events
As I’ve already mentioned, events mark certain important stages in the overall lifetime
of your application. These events can arrive either as messages to the app delegate (if
you implement the appropriate methods) or as notifications to any object (if that object
registers for those notifications).

In the old days, before iOS 4, this suite of events was pretty simple:

applicationDidFinishLaunching:
The app has started up. This, as we have already seen many times, is the earliest
opportunity for your code to configure the interface by showing the app’s window.

The Term “First Responder”
Apple uses the term first responder in a confusing way. An arbitrary responder object
can be assigned formal first responder status (by sending it becomeFirstResponder, pro-
vided that this responder returns YES from canBecomeFirstResponder). But this does
not make the object first responder for purposes of handling nil-targeted actions! Co-
coa’s hunt for a responder that can handle a nil-targeted action still starts with the
control that the user is interacting with (the hit-test view) and goes up the responder
chain from there.

Typical legitimate uses of becomeFirstResponder are:

• To put a UITextField into editing mode, as if the user had tapped in it (Chapter 23).

• To specify the object that should initially be sent remote events (Chapter 27).

• To designate an object that is to present a menu (Chapter 39).

Application Lifetime Events | 239

(For reasons that we haven’t yet discussed, it is now better for your app delegate
to implement application:didFinishLaunchingWithOptions: instead.)

applicationDidBecomeActive:
The app has started up; received after applicationDidFinishLaunching:. Also re-
ceived after the end of the situation that caused the app delegate to receive
applicationWillResignActive:.

applicationWillResignActive:
Something has blocked the app’s interface. The most common cause is that the
screen has been locked. An alert from outside your app could also cause this event.

applicationWillTerminate:
The app is about to quit. This is your last signal to preserve state (typically, by
storing information with NSUserDefaults) and perform other final cleanup tasks.

Starting with iOS 4, however, apps operate in a multitasking environment. The Home
button doesn’t terminate your app; it suspends it. This means that your app is essen-
tially freeze-dried in the background; its process still exists, but it isn’t getting any events
(though notifications can be stored by the system for later delivery if your app comes
to the front once again). You’ll probably never get applicationWillTerminate:, because
when your app is terminated by the system, it will already have been suspended.

Thus, you have to worry about what will happen when the app is suspended and when
it returns from being suspended (applicationDidEnterBackground: and application-
WillEnterForeground:, and their corresponding notifications), and the notion of the
application becoming inactive or active also takes on increased importance
(applicationWillResignActive: and applicationDidBecomeActive:, and their notifica-
tions). Here are some typical scenarios:

The app launches freshly
Your app delegate receives these messages (just as in the premultitasking world):

• application:didFinishLaunchingWithOptions:

• applicationDidBecomeActive:

The user clicks the Home button
If your app is frontmost, it is suspended, and your app delegate receives these
messages:

• applicationWillResignActive:

• applicationDidEnterBackground:

The user summons your suspended app to the front
Your app delegate receives these messages:

• applicationWillEnterForeground:

• applicationDidBecomeActive:

240 | Chapter 11: Cocoa Events

The user double-clicks the Home button
The user can now work in the app switcher. If your app is frontmost, your app
delegate receives this message:

• applicationWillResignActive:

The user, in the app switcher, taps on your app’s window
Your app delegate receives this message:

• applicationDidBecomeActive:

The user, in the app switcher, chooses another app
If your app is frontmost, your app delegate receives this message:

• applicationDidEnterBackground:

The screen is locked
If your app is frontmost, your app delegate receives this message:

• applicationWillResignActive:

The screen is unlocked
If your app is frontmost, your app delegate receives this message:

• applicationDidBecomeActive:

The user holds the screen-lock button down
The device offers to shut itself down. If your app is frontmost, your app delegate
receives this message:

• applicationWillResignActive:

The user, as the device offers to shut itself down, cancels
If your app is frontmost, your app delegate receives this message:

• applicationDidBecomeActive:

The user, as the device offers to shut itself down, accepts
If your app is frontmost, your app delegate receives these messages:

• applicationDidEnterBackground:

• applicationWillTerminate: (probably the only way a normal app will receive
this message in a multitasking world)

Juggling these events and meeting your responsibilities under all circumstances can be
quite tricky. You have, as it were, a lot of bases to cover if you want to make certain
that your app is in a known state as it passes through each of its possible lifetime
stages. For example, what’s a good moment to make certain you’ve preserved state in
case your app is terminated? You’re probably not going to be notified by application-
WillTerminate:, so what should you use instead? Looking over the list of scenarios, you
can see that applicationWillResignActive: is the broadest signal that something might
now happen such that your app will subsequently be terminated without further notice,
but it is also possible that your app will next become active again. On the other hand,
it is very unlikely that your app will be terminated without your receiving application-

Application Lifetime Events | 241

DidEnterBackground: first, so this is the default signal that you should save state. (You
are given a little time to do this before your app is actually suspended; Chapter 38
discusses what to do if you think a little time might not enough.)

Using the existing repertoire of events to work out what’s happening isn’t always easy.
For example, let’s say there are things my app wants to do when the user resumes it
from a suspended state (applicationWillEnterForeground:), and there are things my
app wants to do when the user unlocks the screen (applicationDidBecomeActive:).
Some of these things are the same in both circumstances, but others are not. But the
former event is always followed by the latter. So I have to be careful how I respond:

applicationWillEnterForeground:
Do things appropriate to resuming from suspension. But do not do things that are
also appropriate to the user unlocking the screen, because applicationDidBecome-
Active: is about to be called, so if I do those things here, I’ll end up doing them
twice.

applicationDidBecomeActive:
Do things appropriate both when resuming from suspension and when the user
unlocks the screen.

Fine, but what about things that are appropriate when the user unlocks the screen but
not when we resume from suspension? I can’t simply put those in applicationDidBecome-
Active:, which is called when the user unlocks the screen, because it is also called when
we resume from suspension. Here, Cocoa’s notifications are not sufficiently fine-
grained. We might have to do a little dance with a flag (a BOOL instance variable) to
detect when we become active without having been suspended:

- (void)activeButNotForeground {
 // do things for when the screen unlocks
}

- (void)applicationWillEnterForeground:(UIApplication *)application {
 // do things for when we resume from suspension
 self->didForeground = YES;
}

- (void)applicationDidBecomeActive:(UIApplication *)application {
 // do things for when we resume from suspension or the screen unlocks
 if (!self->didForeground)
 [self activeButNotForeground];
 self->didForeground = NO;
}

These considerations are of course the same regardless of whether you’re the app del-
egate receiving delegate messages or some other class receiving notifications. Note also
that your app will usually be dominated by a UIViewController, whose lifetime events
are also of prime importance; some examples appear in the next section, but we won’t
be discussing UIViewController properly until Chapter 19.

242 | Chapter 11: Cocoa Events

In this section, I’ve talked as if your app’s being backgrounded is iden-
tical to its being suspended. However, under highly specialized circum-
stances (discussed, for instance, in Chapter 27 and Chapter 35), your
app can be backgrounded without being suspended. Also, I’ve talked
as if your app has no choice but to participate in the multitasking world,
but in fact you can opt out by setting the “Application does not run in
background” key (UIApplicationExitsOnSuspend) in your Info.plist, thus
causing your app to behave in this regard as if it were linked against iOS
3 — when the user clicks the Home button, your app is terminated. For
some apps, such as certain games, this might be a reasonable thing to do.

Swamped by Events
Code that contains multiple entry points — methods that are called through events —
can be hard to read, to understand, to maintain, and to debug, even when your classes
are relatively small and simple. As you develop a class that’s intended to receive more
than one or two events, I recommend that you comment your code clearly, so that you
know what methods you think Cocoa will be calling and why and when.

To illustrate the problem, I’ll list some of the methods in a typical class of mine. This
is a small class in a small, simple app. It is a UIViewController subclass; in point of fact,
it is a UITableViewController subclass, so it serves not only to load and configure the
table view, but also as the table view’s delegate and data source. This is an iOS 4 app
and therefore participates in multitasking. The app works with the built-in music li-
brary and music player, so there are also some notifications from the MPMusicPlayer-
Controller class. I omit the class’s designated initializer and dealloc, as well as various
utility methods called by the methods I list.

Here are the methods:

loadView
An overridden UIViewController method. Called by Cocoa just after the class is
instantiated. Here we create the table view and perform various other view initi-
alizations. We also add ourself as observer for four notifications:

[[NSNotificationCenter defaultCenter]
 addObserver:self selector:@selector(prepareToForeground:)
 name:UIApplicationWillEnterForegroundNotification
 object:nil];
[[NSNotificationCenter defaultCenter]
 addObserver:self selector:@selector(prepareToSuspend:)
 name:UIApplicationDidEnterBackgroundNotification
 object:nil];
[[NSNotificationCenter defaultCenter]
 addObserver:self selector:@selector(scrollToNow:)
 name:UIApplicationDidBecomeActiveNotification
 object:nil];
[[NSNotificationCenter defaultCenter]
 addObserver:self selector:@selector(reloadData:)

Swamped by Events | 243

 name:MPMusicPlayerControllerNowPlayingItemDidChangeNotification
 object:nil];

scrollToNow:
Called by Cocoa through a notification when the app becomes active
(UIApplicationDidBecomeActiveNotification), as arranged in loadView. This means
the app is either starting up, or returning to the foreground after being suspended,
or appearing as the user unlocks the screen.

reloadData:
Called by Cocoa through a notification when the currently playing song changes
(MPMusicPlayerControllerNowPlayingItemDidChangeNotification), as arranged in
loadView.

prepareToForeground:
Called by Cocoa through a notification when the app returns to the foreground
after being suspended (UIApplicationWillEnterForegroundNotification), as ar-
ranged in loadView.

prepareToSuspend:
Called by Cocoa through a notification when the app is suspended (UIApplication-
DidEnterBackgroundNotification), as arranged in loadView.

viewDidLoad
An overridden UIViewController method; called by Cocoa after loadView. The view
now exists and we can perform further initializations.

viewWillAppear:
An overridden UIViewController method; called by Cocoa when the view is about
to appear, presumably because the user has explicitly summoned this view. I use
this moment to create a repeating timer (NSTimer), which checks every two sec-
onds to see what fraction of the currently playing song has been played.

checkFraction:
This is the method called every two seconds by the timer created in viewWill-
Appear:. It updates a UIProgressView to indicate what fraction of the song has
played so far. It also changes a button, making it a Play button if the song is paused
and a Pause button if the song is playing:

UIBarButtonItem* bb =
 [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:whichButton
 target:self
 action:@selector(doPlayPause:)];

tableView:heightForRowAtIndexPath:
A table view delegate method; called by Cocoa at unpredictable moments to help
configure the table view, because we are the table view’s delegate.

244 | Chapter 11: Cocoa Events

numberOfSectionsInTableView:
A table view data source method; called by Cocoa at unpredictable moments to
help configure the table view, because we are the table view’s data source.

tableView:numberOfRowsInSection:
A table view data source method; called by Cocoa at unpredictable moments to
help configure the table view, because we are the table view’s data source.

tableView:cellForRowAtIndexPath:
A table view data source method; called by Cocoa at unpredictable moments to
help configure the table view, because we are the table view’s data source.

tableView:didSelectRowAtIndexPath:
A table view delegate method; called by Cocoa when the user taps a table row to
select it, because we are the table view’s delegate. I respond by starting to play the
song represented by this row. I also register to receive a notification if the user stops
playing the song:

[[NSNotificationCenter defaultCenter]
 addObserver:self selector:@selector(playChanged:)
 name:MPMusicPlayerControllerPlaybackStateDidChangeNotification
 object:nil];

playChanged:
Called by Cocoa through a notification when the currently playing song stops, as
arranged in tableView:didSelectRowAtIndexPath:.

tableView:titleForHeaderInSection:
A table view data source method; called by Cocoa at unpredictable moments to
help configure the table view, because we are the table view’s data source.

doPlayPause:
Called by Cocoa when the user taps the Play or Pause button, as arranged in check-
Fraction:.

One’s eyes can easily glaze over at the sight of all these methods called automatically
by Cocoa under various circumstances. As a beginner, you might find all of these
method names unfamiliar, so my code would be pretty much illegible. Still, experience
will teach you about the UIViewController overridden methods, which form a standard
sequence of moments in the lifetime of the view controller, and about the table view
delegate and data source methods, which — although they are called at unpredictable
moments — work together in a reliable and fairly simple way to describe the table and
govern its behavior. On the other hand, no amount of experience will tell you that a
certain method is called as a button’s action or through a notification. You don’t know
what prepareToSuspend: does unless you see the code that arranges for it to be called
through a notification, and that code is far away, much earlier in this same class (and
could even be in a different class). Thus, comments really help.

Swamped by Events | 245

Even so, Cocoa is doing the calling and the actual moment when things are called can
be unpredictable. Your own code can trigger unintended events. The documentation
might not make it clear just when a notification will be sent. There could even be a bug
in Cocoa such that events are called in a way that seems to contradict the documenta-
tion. Therefore I recommend also that as you develop your app, you instrument your
code heavily with caveman debugging (NSLog; see Chapter 9). As you test your code,
keep an eye on the console output and check whether the messages make sense.

One problem that can be detected only by logging is that Cocoa might mysteriously
call an event too often. This actually happens in my app, where reloadData: is some-
times called twice in quick succession through a notification even though there was
just one change in what song is playing. This might be a bug in Cocoa, but the cause
isn’t important; what matters is how to guard against it. The first question to ask your-
self is whether it’s worth guarding against. If what I do in reloadData: isn’t expensive
or sequential in nature, it might not matter if I do it twice in quick succession. But it
happens that what I do in reloadData: is expensive. So I do a little dance with delayed
performance (see Chapter 10, on NSObject) such that if reloadData: is called twice
within two-tenths of a second, the first call is effectively thrown away:

- (void) reloadData: (NSNotification*) n {
 [UIApplication cancelPreviousPerformRequestsWithTarget:self
 selector:
 @selector(reallyReloadData)
 object:nil];
 [self performSelector:@selector(reallyReloadData)
 withObject:nil
 afterDelay:0.2];
}

- (void) reallyReloadData {
 // do expensive thing here
}

Another issue that can arise is that your own code can trigger events unexpectedly. This
happened to me in developing a different app, where I suddenly found that in a UI-
ViewController subclass, viewDidLoad was being called twice as the app started up,
which should be impossible. Not only that, but — as I discovered after adding some
more NSLog messages — it was called while I was still in the middle of executing awake-
FromNib, which should really be impossible. The reason was that I was making the
mistake of mentioning my class’s view property during awakeFromNib; this actually cau-
ses viewDidLoad to be called. The problem went away when I corrected my mistake.
The point is that I wouldn’t even have noticed this mistake without NSLog.

The conclusion to which I’m leading is that there’s a certain indeterminacy and uncer-
tainty in the nature of events. They bombard your code; they control it. Their rela-
tionship can be tricky, and in most cases you shouldn’t rely on things happening in a
definite order (although you can if the documentation says so, as with applicationWill-
EnterForeground: being followed by applicationDidBecomeActive:). Your posture will

246 | Chapter 11: Cocoa Events

therefore be, to some extent, one of uncertainty and defensiveness. You’re like a tennis
student being pelted by a ball-serving machine. Without logging, the tennis student is
also blindfolded.

Swamped by Events | 247

CHAPTER 12

Accessors and Memory Management

Even when you’ve understood how to slot in your code so as to get the messages that
you want from Cocoa, your obligations to Cocoa and your interactions with the frame-
work are not over. You have additional responsibilities that emerge as you write the
code for any class that will be instantiated. There are guidelines for how a well-behaved
instance should be structured and how it should act — in fact, I seriously thought of
calling this chapter “The Well-Behaved Instance.” If you don’t follow those guidelines,
things can go wrong: outlets aren’t set, the wrong methods are called, memory gets
used up, your app crashes. This chapter is about those guidelines.

Accessors
An accessor is a method for getting or setting the value of an instance variable. An
accessor that gets the instance variable’s value is called a getter; an accessor that sets
the instance variable’s value is called a setter.

There are naming conventions for accessors, and you should obey them. The conven-
tions are simple:

• A setter’s name should start with set and be followed by a capitalized version of
the instance variable’s name. If the instance variable is named myVar, the setter
should be named setMyVar:. The setter should take one parameter: the new value
to be assigned to the instance variable.

• A getter should have the same name as the instance variable. If the instance variable
is named myVar, the getter should be named myVar. (This will not cause you or the
compiler any confusion, because variable names and method names are used in
completely different contexts.)

You can optionally start the getter’s name with get, though in fact I never do this.
If the instance variable’s value is a BOOL, you may optionally start the getter’s
name with is (for example, an ivar showing can have a getter isShowing), though
in fact I never do this.

249

Accessors are important in part because instance variables are protected, whereas de-
clared methods are public; without accessor methods, a protected instance variable
can’t be accessed by any other object.

But even apart from this, there is good reason to consider supplying accessors for an
instance variable. If an instance variable’s value is an object, there are going to be
memory management tasks to worry about every time you get and (especially) set that
value; the best way to ensure that you’re carrying out those tasks reliably and consis-
tently is to pass through an accessor, even in code within the same class (as explained
later in this chapter).

Moreover, Cocoa often uses the string name of an instance variable to derive the name
of the accessor and call it if it exists. (This conversion is called key–value coding, and
is the subject of the next section.) If you don’t name your accessors properly, Cocoa
can’t find them.

A particularly good example is what happens when a nib loads where you’ve created
an outlet in the nib. Suppose you have a class with an instance variable called myVar
and you’ve drawn a myVar outlet from that class’s representative in the nib to a Thing
nib object. When the nib loads, the outlet name myVar is translated to the method name
setMyVar:, and your instance’s setMyVar: method, if it exists, is called with the Thing
instance as its parameter, thus setting the value of your instance variable to the Thing
(Figure 7-5).

It is important, therefore, to use the accessor names correctly and consistently. You
should use accessor names for accessor methods. Just as important, you should not use
accessor names for methods that aren’t accessors! For example, you probably would
not want to have a method called setMyVar: if it is not the accessor for the myVar instance
variable. If you did have such a method, it would be called when the nib loads, the
Thing instance would be passed to it, and the Thing instance would not be assigned to
the myVar instance variable! As a result, references in your code to myVar would be
references to nil.

This example is not at all far-fetched; I very often see beginners complain that they are
telling some part of their interface to do something and it isn’t doing it. This is frequently
because they are accessing the object through an instance variable that is still nil, be-
cause it was never set properly through an outlet when the nib loaded, because they
misused the name of the setter for some other purpose. (Of course it could also be
because they forgot to draw the outlet in the nib in the first place.)

Although I keep saying that the names of the accessor methods use the name of the
instance variable, there is no law requiring that they use the name of a real instance
variable. Quite the contrary: you might deliberately have methods myVar and setMy-
Var: when in fact there is no myVar instance variable. Perhaps the accessors are masking
the real name of the instance variable, which is slartibartfast, or perhaps there is no
instance variable at all, and these accessors are really doing something quite different
behind the scenes. That, indeed, is one of the main reasons for using accessors; they

250 | Chapter 12: Accessors and Memory Management

effectively present a façade, as if there were a certain instance variable, shielding the
caller from any knowledge of the underlying details.

Key–Value Coding
The way Cocoa derives the name of an accessor from the name of an instance variable
is through a mechanism called key–value coding, or simply KVC. (See also Chapter 5,
where I introduced key–value coding.) A key is a string (an NSString) that names the
value to be accessed. The basis for key–value coding is the NSKeyValueCoding proto-
col, an informal protocol (it is actually a category) to which NSObject (and therefore
every object) conforms.

The fundamental key–value coding methods are valueForKey: and setValue:forKey:.
When one of these methods is called on an object, the object is introspected. In sim-
plified terms, first the appropriate accessor is sought; if it doesn’t exist, the instance
variable is accessed directly. So, for example, suppose the call is this:

[myObject setValue:@"Hello" forKey:@"greeting"];

First, a method setGreeting: is sought in myObject; if it exists, it is called, passing
@"Hello" as its argument. If that fails, but if myObject has an instance variable called
greeting, the value @"Hello" is assigned directly to myObject’s greeting ivar.

The key–value coding mechanism can bypass completely the privacy of
an instance variable! Cocoa knows that you might not want to allow
that, so a class method accessInstanceVariablesDirectly is supplied,
which you can override to return NO (the default is YES).

Both valueForKey: and setValue:forKey: require an object as the value. Your accessor’s
signature (or, if there is no accessor, the instance variable itself) might not use an object
as the value, so the key–value coding mechanism converts for you. Numeric types
(including BOOL) are expressed as an NSNumber; other types (such as CGRect and
CGPoint) are expressed as an NSValue.

As we have seen, Cocoa can access your instances via key–value coding (as it does when
a nib containing an outlet is loaded). In addition, you can take advantage of key–value
coding in your own code. KVC allows you to decide dynamically, at runtime, what
instance variable to access; you obtain the instance variable’s name as an NSString and
pass that to valueForKey: or setValue:forKey:.

Also, a number of built-in Cocoa classes permit you to use key–value coding in a special
way. If you send valueForKey: to an NSArray, it sends valueForKey: to each of its ele-
ments and returns a new array consisting of the results, an elegant shorthand (and a
kind of poor man’s map). NSSet behaves similarly. NSDictionary implements valueFor-
Key: as an alternative to objectForKey: (useful particularly if you have an array of dic-
tionaries); so does NSUserDefaults. CALayer (Chapter 16) and CAAnimation (Chap-

Key–Value Coding | 251

ter 17) permit you to use key–value coding to define and retrieve the values for arbitrary
keys, as if they were a kind of dictionary; this is useful for attaching identifying and
configuration information to one of these instances.

Key–value coding requires caution, because by using an NSString instead of an instance
variable or method name, you’re throwing away compile-time checking. An attempt
to access a nonexistent key through key–value coding will result, by default, in a crash
at runtime, with an error message of this form: “This class is not key value coding-
compliant for the key myKey.” The lack of quotation marks around the word after “the
key” has misled many a beginner, so remember: the last word in that error message is
the name of the key that gave Cocoa trouble. A common way to encounter this error
message is to change the name of an instance variable so that the name of an outlet in
a nib no longer matches it; at runtime, when the nib loads, Cocoa will attempt to use
key–value coding to set a value in your object based on the name of the outlet, will fail
(because there is no longer an instance variable or accessor by that name), and will
generate this error.

A class is key–value coding compliant on a given key if it implements the
methods, or possesses the instance variable, required for access via that
key.

There is also something called a key path that allows you to chain keys in a single
expression. If an object is key–value coding compliant for a certain key, and if the value
of that key is itself an object that is key–value coding compliant for another key, you
can chain those keys by calling valueForKeyPath: and setValue:forKeyPath:. A key path
string looks like a succession of key names joined with a dot (.). For example, value-
ForKeyPath:@"key1.key2" effectively calls valueForKey: on the message receiver, with
@"key1" as the key, and then takes the object returned from that call and calls valueFor-
Key: on that object, with @"key2" as the key.

To illustrate this shorthand, imagine that our object myObject has an instance variable
theData which is an array of dictionaries such that each dictionary has a name key and
a description key. I’ll show you the actual value of theData as displayed by NSLog:

(
 {
 description = "The one with glasses.";
 name = Manny;
 },
 {
 description = "Looks a little like Governor Dewey.";
 name = Moe;
 },
 {
 description = "The one without a mustache.";
 name = Jack;

252 | Chapter 12: Accessors and Memory Management

 }
)

Then [myObject valueForKeyPath: @"theData.name"] returns an array consisting of the
strings @"Manny", @"Moe", and @"Jack". If you don’t understand why, review what I said
a few paragraphs ago about how NSArray and NSDictionary implement valueForKey:.

Another feature of key–value coding is that it allows an object to implement a key as if
its value were an array (or a set), even if it isn’t. This is similar to what I said earlier
about how accessors function as a façade, putting an instance variable name in front
of hidden complexities. To illustrate, I’ll add these methods to the class of our object
myObject:

- (NSUInteger) countOfPepBoys {
 return [self.theData count];
}

- (id) objectInPepBoysAtIndex: (NSUInteger) ix {
 return [self.theData objectAtIndex: ix];
}

By implementing countOf... and objectIn...AtIndex:, I’m telling the key–value coding
system to act as if the given key (@"pepBoys" in this case) existed and were an array. An
attempt to fetch the value of the key @"pepBoys" by way of key–value coding will suc-
ceed, and will return an object that can be treated as an array, though in fact it is a
proxy object (an NSKeyValueArray). Thus we can now say [myObject valueFor-
Key: @"pepBoys"] to obtain this array proxy, and we can say [myObject valueForKey-
Path: @"pepBoys.name"] to get the same array of strings as before. This particular ex-
ample may seem a little silly because the underlying implementation is already an array
instance variable, but you can imagine an implementation whereby the result of object-
InPepBoysAtIndex: is obtained through some completely different sort of operation.

The proxy object returned through this sort of façade behaves like an NSArray, not like
an NSMutableArray. If you want the caller to be able to manipulate the proxy object
provided by a KVC façade as if it were a mutable array, you must implement two more
methods, and you must obtain a different proxy object by calling mutableArrayValue-
ForKey:. So, for example:

- (void) insertObject: (id) val inPepBoysAtIndex: (NSUInteger) ix {
 [self.theData insertObject:val atIndex:ix];
}

- (void) removeObjectFromPepBoysAtIndex: (NSUInteger) ix {
 [self.theData removeObjectAtIndex: ix];
}

Now you can call [myObject mutableArrayValueForKey: @"pepBoys"] to obtain some-
thing that acts like a mutable array. (The true usefulness of mutableArrayValueFor-
Key:, however, will be clearer when we talk about key–value observing, later on.)

Key–Value Coding | 253

A complication for the programmer is that none of these method names can be looked
up directly in the documentation, because they involve key names that are specific to
your object. You can’t find out from the documentation what removeObjectFromPepBoys-
AtIndex: is for; you have to know, in some other way, that it is part of the implemen-
tation of key–value coding compliance for a key @"pepBoys" that can be obtained as a
mutable array. Be sure to comment your code so that you’ll be able to understand it
later. Another complication, of course, is that getting a method name wrong can cause
your object not to be key–value coding compliant. Figuring out why things aren’t
working as expected in a case like that can be tricky.

There is much more to key–value coding; see the Key-Value Coding Programming
Guide for full information.

Memory Management
It comes as a surprise to many beginning Cocoa coders that the programmer has an
important role to play in the explicit management of memory. What’s more, managing
memory incorrectly is probably the most frequent cause of crashes — or, inversely, of
memory leakage, whereby your app’s use of memory increases relentlessly until, in the
worst-case scenario, there’s no memory left.

The reason why memory must be managed at all is that object references are pointers.
As I explained in Chapter 1, the pointers themselves are simple C values (basically they
are just integers) and are managed automatically, whereas what an object pointer points
to is a hunk of memory that must explicitly be set aside when the object is brought into
existence and that must explicitly be freed up when the object goes out of existence.
We already know how the memory is set aside — that is what alloc does. But how is
this memory to be freed up, and when should it happen?

At the very least, an object should certainly go out of existence when no other objects
exist that have a pointer to it. An object without a pointer to it is useless; it is occupying
memory, but no other object has, or can ever get, a reference to it. This is a memory
leak. Many computer languages solve this problem through a policy called garbage
collection. Simply put, the language prevents memory leaks by periodically sweeping
through a central list of all objects and destroying those to which no pointer exists. In
recent years, Objective-C and Cocoa have developed a form of garbage collection, but
this is not available in iOS. Thus, memory must be managed more or less manually.

But manual memory management is no piece of cake, because an object must go out
existence neither too late nor too soon. Suppose we endow the language with the ability
for one object to command that another object go out of existence now, this instant.
But multiple objects can have a pointer (a reference) to the very same object. If both
the object Manny and the object Moe have a pointer to the object Jack, and if Manny
tells Jack to go out of existence now, poor old Moe is left with a pointer to nothing (or
worse, to garbage). A pointer whose object has been destroyed behind the pointer’s

254 | Chapter 12: Accessors and Memory Management

back is a dangling pointer. If Moe subsequently uses that dangling pointer to send a
message to the object that it thinks is there, the app will crash.

To prevent both dangling pointers and memory leakage, Objective-C and Cocoa im-
plement a policy of manual memory management based on a number, maintained by
every object, called its retain count. Other objects can increment or decrement an ob-
ject’s retain count. As long as an object’s retain count is positive, the object will persist.
No object has the direct power to tell another object to be destroyed; rather, as soon
as an object’s retain count drops to zero, it is destroyed automatically.

By this policy, every object that needs Jack to persist should increment Jack’s retain
count, and should decrement it once again when it no longer needs Jack to persist. As
long as all objects are well-behaved in accordance with this policy, the problem of
memory management is effectively solved:

• There cannot be any dangling pointers, because any object that has a pointer to
Jack has incremented Jack’s retain count, thus ensuring that Jack persists.

• There cannot be any memory leaks, because any object that no longer needs Jack
decrements Jack’s retain count, thus ensuring that eventually Jack will go out of
existence (when the retain count reaches zero, because no object needs Jack any
longer).

Obviously, all of this depends upon all objects cooperating in obedience to this memory
management policy. Cocoa’s objects (objects that are instances of built-in Cocoa
classes) are well-behaved in this regard, but you must make sure your objects are well-
behaved.

The Golden Rules of Memory Management
Your objects will be well-behaved with respect to memory management as long as you
understand the basic concepts of memory management and adhere to certain very sim-
ple rules.

Before I tell you the rules, it may help if I remind you (because this is confusing to
beginners) that a variable name (including an instance variable) is just a pointer. When
you send a message to that pointer, you are really sending a message through that
pointer, to the object to which it points. The rules for memory management are rules
about objects, not names (references, pointers). You cannot increment or decrement
the retain count of a pointer; there is no such thing. The memory occupied by the
pointer is managed automatically (and is tiny). What you are concerned with, in man-
aging memory, is the object to which the pointer points.

(That is why I’ve referred to my example objects by proper names — Manny, Moe, and
Jack — and not by variable names. The question of who has retained Jack has nothing
to do with what any particular object calls Jack.)

Memory Management | 255

The two things are easily confused, especially because — as I’ve often pointed out in
earlier chapters — the variable name pointing to an object is so often treated as the
object that there is a tendency to think that it is the object, and to speak as if it were
the object. It’s clumsy, in fact, to separate talking about the name from talking about
the object it points to. But in talking about memory management, I’ll try to make that
separation, for clarity and correctness, and to prevent confusion.

Here, then, are the golden rules of Cocoa memory management:

• To increment the retain count of any object, send it the retain message. This is
called retaining the object. You should not use retain too freely, but you should
not hesitate to use it in order to prevent a dangling pointer that would arise if the
object should go out of existence while you still need it.

• When you (meaning a certain object) say alloc to a class, the resulting instance
comes into the world with its retain count already incremented. You do not need
to retain an object you’ve just instantiated by saying alloc (and you should not).
Similarly, when you say copy to an instance, the resulting new object (the copy)
comes into the world with its retain count already incremented. You do not need
to retain an object you’ve just instantiated by saying copy (and you should not).

• To decrement the retain count of any object, send it the release message. This is
called releasing the object. If you (meaning a certain object) obtained an object by
saying alloc or copy, or if you said retain to an object, you (meaning the same

Debugging Memory Management Mistakes
Memory management mistakes are among the most common pitfalls for beginners and
even for experienced Cocoa programmers. What experience really teaches is to use
every tool at your disposal to ferret them out. Here are some:

• The static analyzer (Product → Analyze) knows a lot about memory management
and can help call potential memory management mistakes to your attention.

• Instruments has excellent tools for noticing leaks and tracking memory manage-
ment of individual objects (Product → Profile).

• Dangling pointers are particularly difficult to track down, but they can often be
located by “turning on zombies.” This is easy in Instruments with the Zombies
template, but unfortunately it doesn’t work on a device. For a device, edit the Run
action in your scheme, switch to the Arguments tab, and under “Environment
Variables” make a new variable whose name is NSZombieEnabled and whose value
is YES. The result is that no object ever goes out of existence; instead, it is replaced
by a “zombie” that will report to the console if a message is sent to it (“message
sent to deallocated instance”). Be sure to turn zombies back off when you’ve fin-
ished tracking down your dangling pointers.

256 | Chapter 12: Accessors and Memory Management

object) must balance this eventually by saying release to that object, once. You
should assume that thereafter the object may no longer exist.

A general way of understanding memory management policy is to think in terms of
ownership. If Manny has said alloc, retain, or copy with regard to Jack, Manny has
asserted ownership of Jack. More than one object can own Jack at once. It is the re-
sponsibility of an owner of Jack eventually to release Jack, and a nonowner of Jack
must never release Jack.

The moment an object is released, there is a chance it will be destroyed. You should
therefore take care not to send any messages subsequently through the pointer that was
used to release the object. In effect, you’ve just turned your own pointer into a possible
dangling pointer! If there is any danger that you might accidentally attempt to use this
dangling pointer, a wise policy is to nilify the pointer — that is, to set the pointer itself
to nil. A message to nil has no effect, so if you do send a message through that pointer,
it won’t do any good, but at least it won’t do any harm.

How Cocoa Objects Manage Memory
Built-in Cocoa objects will take ownership of objects you hand them, by retaining them,
if it makes sense for them to do so. (Indeed, this is so generally true that if a Cocoa
object is not going to retain an object you hand it, there will be a note to that effect in
the documentation.) Thus, you don’t need to worry about managing memory for an
object if the only thing you’re going to do with it is hand it over to a Cocoa object.

A good example is an NSArray. Consider the following minimal example:

The Golden Rule in a Nutshell
You must never release an object that you have not either retained or obtained via
alloc or copy. You must always eventually release an object that you have either retained
or obtained via alloc or copy.

An easy mnemonic is ARC, an acronym for alloc, retain, and copy. These, and only
these, are the calls that must be balanced by release.

I have deliberately avoided mentioning new, an NSObject class
method equivalent to the entire “alloc-init” pattern. It is outmoded
and rarely used; I never use it, and I don’t think you should either.
Nevertheless, you might encounter it in someone else’s code (Apple’s
own sample code occasionally uses it). Because new implicitly in-
volves alloc, it is covered by the A of ARC. Or perhaps the mnemonic
should be rewritten NARC.

Memory Management | 257

NSString* s = [[NSDate date] description];
NSArray* arr = [NSArray arrayWithObject: s];

When you hand the string to the array, the array retains the string. As long as the array
exists and the string is in the array, the string will exist. When the array goes out of
existence, it will also release the string; if no other object is retaining the string, the
string will then go out of existence in good order, without leaking, and all will be well.
All of this is right and proper; the array could hardly “contain” the string without taking
ownership of it.

An NSMutableArray works the same way, with additions. When you add an object to
an NSMutableArray, the array retains it. When you remove an object from an NSMu-
tableArray, the array releases it. Again, the array is always doing the right thing.

This is a good example of how you should stay out of, and not worry yourself about,
memory management for objects you don’t own; the right thing will happen all by itself.

For instance, look back at Example 10-4. Here it is again:

NSString* f = [[NSBundle mainBundle] pathForResource:@"index" ofType:@"txt"];
NSError* err = nil;
NSString* s = [NSString stringWithContentsOfFile:f
 encoding:NSUTF8StringEncoding
 error:&err];
// error-checking omitted
NSMutableDictionary* d = [NSMutableDictionary dictionary];
for (NSString* line in [s componentsSeparatedByString:@"\n"]) {
 NSArray* items = [line componentsSeparatedByString:@"\t"];
 NSInteger chnum = [[items objectAtIndex: 0] integerValue];
 NSNumber* key = [NSNumber numberWithInteger:chnum];
 NSMutableArray* marr = [d objectForKey: key];
 if (!marr) { // no such key, create key–value pair
 marr = [NSMutableArray array];
 [d setObject: marr forKey: key];
 }
 // marr is now a mutable array, empty or otherwise
 NSString* picname = [items objectAtIndex: 1];
 [marr addObject: picname];
}

Absolutely no explicit memory management is happening here, because no explicit
memory management needs to happen. We’re generating a lot of objects, but never do
we say alloc (or copy), so we have no ownership, and memory management is therefore
not our concern. Moreover, no bad thing is going to happen between one line and the
next while this code is running. The mutable dictionary d, for example, generated by
calling [NSMutableDictionary dictionary], is not going to vanish mysteriously before
we can finish adding objects to it. (I’ll say a bit more, later in this chapter, about why
I’m so confident of this.)

On the other hand, you still need to think a little, as you interact with them, about how
Cocoa objects manage memory. Consider the following:

258 | Chapter 12: Accessors and Memory Management

NSString* s = [myMutableArray objectAtIndex: 0];
[myMutableArray removeObjectAtIndex: 0]; // Bad idea!

Here we remove a string from an array, keeping a reference to it ourselves as s. But, as
I just said, when you remove an object from an NSMutableArray, the array releases it.
So the commented line of code in the previous example involves an implicit release of
the string in question, and if this reduces the string’s retain count to zero, it will be
destroyed. In effect, we’ve just done the thing I warned you about at the end of the
previous section: we’ve turned our own pointer s into a possible dangling pointer, and
a crash may be in our future when we try to use it as if it were a string.

The way to ensure against such possible destruction is to retain the object before doing
anything that might destroy it:

NSString* s = [myMutableArray objectAtIndex: 0];
[s retain];
[myMutableArray removeObjectAtIndex: 0];

Of course, now you have made management of this object your business; you have
asserted ownership of it, and must make sure that this retain is eventually balanced by
a subsequent release, or the string object may leak.

In general, Cocoa does not retain things like delegates and data sources, action targets,
and objects registered to receive a notification. This makes sense from an ownership
perspective, but it means that you must take care not to let an object go on thinking
that its delegate, data source, action target, or notification recipient exists when it does
not, lest it attempt to send a message through a garbage pointer.

Thus, suppose you (a certain object) make yourself some other object’s delegate in
code, like this:

[otherObject setDelegate: self];

If you now are about to go out of existence, and if otherObject still exists, you should
stop being its delegate. The safe and proper way to do this is to nilify otherObject’s
delegate pointer:

[otherObject setDelegate: nil];

Similarly, suppose you (a certain object) have registered yourself to receive a notifica-
tion, as in Chapter 11:

[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(toggleEnglish:)
 name:@"toggleEnglish" object:nil];

Then if you are now about to go out of existence, and if you are still registered for this
notification, you should unregister for it:

[[NSNotificationCenter defaultCenter] removeObserver: self];

These are tasks that you will handle in your dealloc method, if not before; I’ll be dis-
cussing dealloc in the next section.

Memory Management | 259

Be on the lookout for Cocoa objects with unusual memory management
behavior. Such behavior will be called out clearly in the documentation.
For example, the UIWebView documentation warns: “Before releasing
an instance of UIWebView for which you have set a delegate, you must
first set its delegate property to nil.” And a CAAnimation object retains
its delegate; this is exceptional and can cause trouble if you’re not con-
scious of it.

Memory Management of Instance Variables
As soon as your own instance variables enter the picture, that is a sign to you that you
should prick up your memory-management antennae. Return once more, for example,
to Example 10-4. As I emphasized in the previous section, there was no need to worry
about memory management during this code. We have a mutable dictionary d, which
we acquired as a ready-made instance by calling [NSMutableDictionary dictionary],
and it isn’t going to vanish while we’re working with it. Now, however, suppose that
in the next line we propose to assign d to an instance variable of ours:

self->theData = d; // No no no no!

That code is a serious potential mistake. If our code now comes to a stop, we’re left
with a persistent pointer to an object over which we have never asserted ownership; it
might vanish, leaving us with a dangling pointer. The solution, obviously, is to retain
this object as we assign it to our instance variable. You could do it like this:

[d retain];
self->theData = d;

Or you could do it like this:

self->theData = d;
[self->theData retain];

Or, because retain returns self, you could actually do it like this:

self->theData = [d retain];

(Make sure you understand why those are all equivalent. It’s because d and self->the-
Data are just names; they are pointers. What you’re retaining is the object pointed to.
How you refer to that object, under what name, is neither here nor there.)

So which should you use? Probably none of them. Consider what a lot of trouble it will
be if you ever want to assign a different value to self->theData. You’re going to have
to remember to release the object already pointed to (to balance the retain you’ve used
here), and you’re going to have to remember to retain the next value as well. It would
be much better to encapsulate memory management for this instance variable in an
accessor (a setter). That way, as long as you always pass through the accessor, memory
will be managed correctly. A standard template for such an accessor might look like
Example 12-1.

260 | Chapter 12: Accessors and Memory Management

Example 12-1. A simple retaining setter

- (void) setTheData: (NSMutableArray*) value {
 if (self->theData != value) {
 [self->theData release];
 self->theData = [value retain];
 }
}

In Example 12-1, we release the object currently pointed to by our instance variable
(and if that object is nil, no harm done) and retain the incoming value before assigning
it to our instance variable. The test for whether the incoming value is the object already
pointed to by our instance variable is not just to save a step; it’s because if we were to
release that object, it could vanish then and there, turning not only self->theData but
also value (which points to the same thing) into a dangling pointer.

The setter accessor now manages memory correctly for us; provided we always use it
to set our instance variable, all will be well. This is one of the main reasons why accessors
are so important! So the assignment to the instance variable in our original code should
now look like this:

[self setTheData: d];

Observe that we can also use this setter subsequently to release the value of the instance
variable and nilify the instance variable itself, thus preventing a dangling pointer, all in
a single easy step:

[self setTheData: nil];

So there’s yet another benefit of using an accessor to manage memory.

Our memory management for this instance variable is still incomplete, however. We
(meaning the object whose instance variable this is) must also remember to release the
object pointed to by this instance variable at the last minute before we ourselves go out
of existence. Otherwise, if this instance variable points to a retained object, there will
be a memory leak. For this very reason, NSObject has an instance method that you will
almost always override: dealloc. This method is called as an object goes out of exis-
tence. Thus, it is “the last minute.”

In dealloc, there is no need to use accessors to refer to an instance variable, and in fact
it’s not a good idea to do so, because you never know what other side effects an accessor
might have. And you must always call super last of all. So here’s our implementation
of this object’s dealloc:

- (void) dealloc {
 [self->theData release];
 [super dealloc];
}

That completes the memory management for one instance variable. In general, you will
need to make sure that every object of yours has a dealloc that releases every instance
variable whose value has been retained.

Memory Management | 261

As mentioned earlier, dealloc is also your last chance to clean up non-
retained references to yourself that you have created, such as when
you’ve set yourself to be some other object’s delegate, or you’ve regis-
tered with the notification center to receive notifications. Make certain
to fulfill these obligations to prevent a message from being sent later to
a dangling pointer after you go out of existence.

Never, never call dealloc in your code, except to call super last of all in
your override of dealloc.

Just as it’s not a good idea to use your own accessors to refer to your own instance
variable in dealloc, so you should not use your own accessors to refer to your own
instance variables in an initializer (see Chapter 5). The reason is in part that the object
is not yet fully formed, and in part that an accessor can have other side effects. Instead,
you must set your instance variables directly, but you must also remember to manage
memory.

To illustrate, I’ll rewrite the example initializer from Chapter 5 (Example 5-3). This
time I’ll allow our object (a Dog) to be initialized with a name. The reason I didn’t
discuss this possibility in Chapter 5 is that a string is an object whose memory must be
managed! So, imagine now that we have an instance variable name whose value is an
NSString, and we want an initializer that allows the caller to pass in a value for this
instance variable. It might look like Example 12-2.

Example 12-2. A simple initializer that retains an ivar

- (id) initWithName: (NSString*) s {
 self = [super init];
 if (self) {
 self->name = [s retain];
 }
 return self;
}

Actually, it is more likely in the case of an NSString that you would copy it rather than
merely retain it. The reason is that NSString has a mutable subclass, so some other
object might call initWithName: and hand you a mutable string to which it still holds a
reference — and then mutate it, thus changing this Dog’s name behind your back. So
the initializer would look like Example 12-3.

Example 12-3. A simple initializer that copies an ivar

- (id) initWithName: (NSString*) s {
 self = [super init];
 if (self) {
 self->name = [s copy];
 }

262 | Chapter 12: Accessors and Memory Management

 return self;
}

In Example 12-3, we don’t bother to release the existing value of name; it is certainly
not pointing to any previous value (because there is no previous value), so there’s no
point.

Thus, memory management for an instance variable may take place in as many as three
places: the initializer, the setter, and dealloc. This is a common architecture. It is a lot
of work, and a common source of error, having to look in multiple places to check that
you are managing memory consistently and correctly, but that’s what you must do.
Luckily, as I’ll point out later in this chapter, Objective-C has the ability to write your
accessors for you. But it won’t write initializers or dealloc for you, and in any case you
should still understand memory management in accessors.

Earlier, I mentioned that KVC will set an instance variable directly if it
can’t find a setter corresponding to the key. When it does this, it retains
the incoming value. This fact is little-known and poorly documented —
and scary. The last thing you want is implicit memory management.
This is one more reason to provide accessors.

Instance Variable Memory Management Policies
In the preceding section, we saw that an instance variable might be set by retaining or
copying the incoming value. There are in fact three possible memory-management
policies for an instance variable:

retain
The incoming value is retained (and the existing value is released).

copy
The incoming value is copied (and the existing value is released). This policy is
typical where the class of the instance variable is an immutable class with a mutable
subclass (such as NSString, NSArray, or NSDictionary), in case we are handed a
mutable instance that might be subsequently mutated by some other object.

assign
The incoming value is directly assigned to the instance variable; it is not retained,
nor is the existing value released. This policy is followed when it would be wrong
for us to assert ownership of the incoming object. For example, an object would
not normally retain its delegate.

The “assign” policy must also be used to prevent a retain cycle, a situation in which
two objects retain each other. This must never be allowed to happen, because both
objects will leak (neither can have its retain count reach zero by normal means). For
example, in a system of orders and items, an order needs to know what its items are

Memory Management | 263

and an item might need to know what orders it is a part of, but it must not be the case
both that an order retains its items and that an item retains its orders.

Note that you must not release, in dealloc, an instance variable whose policy is “assign.”
You would be releasing something you never retained or generated by copying, which
is a no-no (and a likely crasher).

Autorelease
Consider the following situation. Your object has a method that creates and vends an
object. It creates the object in a way that calls for release:

- (NSArray*) vendArray {
 NSArray* arr = [[NSArray alloc] initWithObjects: @"Hello, world!", nil];
 return arr; // hmmm, not so fast...
}

We’ve got a memory management problem. On the one hand, we generated arr’s value
by saying alloc. This means we must release the object pointed to by arr. On the other
hand, when are we going to do this? If we do it just before returning arr, arr will be
pointing to garbage and we will be vending garbage. We cannot do it just after returning
arr, because our method exits when we say return. This is a puzzle. We need a way to
vend this object, yet ensure that its retain count will be decremented, without decre-
menting it now.

That’s what autorelease is for:

- (NSArray*) vendArray {
 NSArray* arr = [[NSArray alloc] initWithObjects: @"Hello, world!", nil];
 [arr autorelease];
 return arr;
}

Or, because autorelease returns self, we can condense that:

- (NSArray*) vendArray {
 NSArray* arr = [[NSArray alloc] initWithObjects: @"Hello, world!", nil];
 return [arr autorelease];
}

Here’s how autorelease works. Your code runs in the presence of something called an
autorelease pool. (If you look in main.m, you can actually see such one such pool being
created.) When you send autorelease to an object, that object is placed in the autore-
lease pool, and a number is incremented saying how many times this object has been
placed in this autorelease pool. From time to time, when nothing else is going on, the
autorelease pool is automatically destroyed and replaced by another. At the moment
when an autorelease pool is destroyed, it sends release to each of its objects, the same
number of times as that object was placed in this autorelease pool. This is called drain-
ing the pool. If that causes an object’s retain count to be zero, fine; the object is de-
stroyed in the usual way. So autorelease is just like release — effectively, it is a form
of release — but with a proviso, “later, not right this second.”

264 | Chapter 12: Accessors and Memory Management

You don’t need to know exactly when the current autorelease pool will be drained;
indeed, you can’t know (unless you force it, as we shall see). The important thing is
that in a case like our method vendArray, there will be plenty of time for whoever called
vendArray to retain the vended object if desired.

The vended object in a case like our method vendArray is called an autoreleased ob-
ject. The object is not going to vanish right this second, because your code is running.
As you vend the object, your code is still running. The recipient of the object (whoever
called vendArray) needs to bear in mind that this object may be autoreleased. It won’t
vanish while that code is running either, but if the receiving object wants to be sure that
the object will persist later on, it should retain it.

In general, the same considerations apply to objects vended by Cocoa. An object you
receive by means other than those listed in the ARC rule isn’t under your ownership,
so if you want it to persist and you’re afraid it might not, you should take ownership
of it. But that doesn’t mean you need to retain immediately every such object Cocoa
hands you, because in general the object will either be owned and retained by some
other persistent object, in which case it won’t vanish while the other object persists, or
it will be independent but autoreleased, in which case it will at least persist while your
code continues to run. That’s why there’s no explicit memory management in Exam-
ple 10-4 (cited earlier in this chapter): we don’t madly retain every object we obtain,
because they will all persist long enough for our code to finish.

Sometimes you may wish to drain the autorelease pool immediately. Consider the fol-
lowing:

for (NSString* aWord in myArray) {
 NSString* lowerAndShorter = [[aWord lowercaseString] substringFromIndex:1];
 [myMutableArray addObject: lowerAndShorter];
}

Every time through that loop, two objects are added to the autorelease pool: the low-
ercase version of the string we start with, and the shortened version of that. The first
object, the lowercase version of the string, is purely an intermediate object: as the current
iteration of the loop ends, no one except the autorelease pool has a pointer to it. If this
loop had very many repetitions, or if these intermediate objects were themselves very
large in size, this could add up to a lot of memory. These intermediate objects will all
be released when the autorelease pool drains, so they are not leaking; nevertheless, they
are accumulating in memory, and in certain cases there could be a danger that we will
run out of memory before the autorelease pool drains. The problem can be even more
acute than you know, because you might repeatedly call a built-in Cocoa method that
itself accumulates a lot of intermediate objects.

The solution is to intervene in the autorelease pool mechanism by supplying your own
autorelease pool. This works because the autorelease pool used to store an autoreleased
object is the most recently created pool. So you can just create an autorelease pool at
the top of the loop and release it at the bottom of the loop, each time through the loop.

Memory Management | 265

When you release an autorelease pool, it is drained, so the objects it contains are sent
release then and there:

for (NSString* aWord in myArray) {
 NSAutoreleasePool* pool = [[NSAutoreleasePool alloc] init];
 NSString* lowerAndShorter = [[aWord lowercaseString] substringFromIndex:1];
 [myMutableArray addObject: lowerAndShorter];
 [pool release];
}

Many classes provide the programmer with two equivalent ways to obtain an object:
either an autoreleased object or an object that you create yourself with alloc and some
form of init. So, for example, NSArray supplies both the class method arrayWith-
Objects: and the instance method initWithObjects:. Which should you use? On the
whole, Apple would prefer you to lean toward initWithObjects:. In general, where you
can generate an object with alloc and some form of init, they’d like you to do so. That
way, you are in charge of releasing the object. This policy will prevent your objects from
hanging around in the autorelease pool and will keep your use of memory as low as
possible.

Nib Loading and Memory Management
On iOS, when a nib loads, the top-level nib objects that it instantiates are autoreleased.
So if someone doesn’t retain them, they’ll eventually vanish in a puff of smoke. There
are two primary strategies for preventing that from happening:

Outlet graph with retain
A memory management graph is formed: every top-level object is retained by an-
other top-level object (without retain cycles, of course), with the File’s Owner as
the start of the graph. So, the File’s Owner proxy has an outlet to a top-level object,
and this outlet is backed by an accessor whose setter uses a retain policy. Thus,
when the nib loads, the nib owner retains this top-level object (and must, of course,
remember to release it before it itself goes out of existence). And so on, for every
top-level object (Figure 12-1). This is the strategy you’ll typically use when loading
a nib.

Mass retain
The call to loadNibNamed:owner:options: (Chapter 7) returns an NSArray of the
nib-instantiated objects; retain this NSArray. This is the strategy used by
UIApplicationMain when it loads the app’s main nib.

Objects in the nib that are not top-level objects are already part of a memory manage-
ment object graph, so there’s no need for you to retain them directly. For example, if
you have a top-level UIView in the nib, and it contains a UIButton, the UIButton is the
UIView’s subview — and a view retains its subviews and takes ownership of them.
Thus, it is sufficient to manage the UIView’s memory and to let the UIView manage
the UIButton.

266 | Chapter 12: Accessors and Memory Management

However, if you have an outlet to this UIButton, you must be extremely careful! Recall
that this outlet will be linked to its source instance at nib-loading time using KVC. This
means that if you declare an ivar as an IBOutlet, with no corresponding setter, KVC
will add an extra retain to the target instance as it sets the ivar directly, which can cause
a memory leak. The best practice, therefore, is always to supply an accessor. An accessor
with an assign policy will defend against the entire problem (and this, I’ll show later in
this chapter, is easy to arrange through a property and a synthesized accessor).

Mac OS X Programmer Alert
Memory management for nib-loaded instances is different on iOS than
on Mac OS X. On Mac OS X, nib-loaded instances are not autoreleased,
so they don’t have to be retained, and memory management is usually
automatic in any case because the file’s owner is usually an NSWin-
dowController, which takes care of these things for you. On iOS, mem-
ory management of top-level nib objects is up to you. On Mac OS X, an
outlet to a non-top-level object does not cause an extra retain if there is
no accessor for the corresponding ivar; on iOS, it does.

Memory Management Comments on Earlier Examples
Examples from earlier chapters in this book have omitted memory management, be-
cause we hadn’t yet discussed it, and are thus incomplete. I don’t want you copying
incorrect models, so here are some comments on earlier examples.

The singleton vendor from Chapter 1 may appear to leak, because it contains an un-
balanced alloc:

+ (CardPainter*) sharedPainter {
 static CardPainter* sp = nil;
 if (nil == sp)
 sp = [[CardPainter alloc] init];
 return sp;
}

Figure 12-1. An outlet graph with retain

Memory Management | 267

In reality, that doesn’t count as a leak because it’s not an instance method. It’s a class
method. The instance assigned to sp will persist as long as the class does, which is what
we want. It would also persist after the class no longer exists, but there is no such time;
if the class no longer exists, it must be because the app has terminated. So there is no
leak.

In Example 5-2 and any other example in Chapter 5 where we generated an instance
by saying alloc, we should of course be releasing that instance eventually. Similarly, in
Chapter 7, we instantiate MyClass only to use it as a nib owner and extract a nib object;
when that’s done, we should release the instance:

MyClass* mc = [[MyClass alloc] init];
[[NSBundle mainBundle] loadNibNamed:@"MyNib" owner:mc options:nil];
UILabel* lab = [mc valueForKey: @"theLabel"];
[self.window addSubview: lab];
lab.center = CGPointMake(100,100);
[mc release];

This example from Chapter 7 is more complicated:

- (void) buttonPressed: (id) sender {
 UIAlertView* av = [[UIAlertView alloc] initWithTitle:@"Howdy!"
 message:@"You tapped me."
 delegate:nil
 cancelButtonTitle:@"Cool"
 otherButtonTitles:nil];
 [av show];
}

How do you manage the memory for a UIAlertView? Can you release it in the same
method where it’s created? If you do, will the UIAlertView vanish in a puff of smoke
while we’re still displaying it? Remarkably, it’s perfectly safe to say this:

- (void) buttonPressed: (id) sender {
 UIAlertView* av = [[UIAlertView alloc] initWithTitle:@"Howdy!"
 message:@"You tapped me."
 delegate:nil
 cancelButtonTitle:@"Cool"
 otherButtonTitles:nil];
 [av show];
 [av release];
}

The show method retains the UIAlertView, which is then autoreleased; the autorelease
pool is not drained until after the alert is dismissed and its delegate methods have been
called. The same applies to the UIAlertView examples in Chapter 11.

In the NSLocale example in Chapter 10, memory management was omitted; here it is
again, in its full form:

NSDateFormatter *df = [[NSDateFormatter alloc] init];
if ([[NSLocale availableLocaleIdentifiers] indexOfObject:@"en_US"] != NSNotFound) {
 NSLocale* loc =
 [[NSLocale alloc] initWithLocaleIdentifier:@"en_US"];

268 | Chapter 12: Accessors and Memory Management

 [df setLocale:loc]; // force English month name and time zone name if possible
 [loc release];
}
[df setDateFormat:@"d MMMM yyyy 'at' h:mm a z"];
NSString* lastUpdated = [df stringFromDate: [NSDate date]];
[df release];

Memory Management of Pointer-to-Void Context Info
A number of Cocoa methods take an optional parameter typed as void*, and often
called context. You might think that void*, the universal pointer type, would be the
same as id, the universal object type, because a reference to an object is a pointer. But
an id is a universal object type; void* is just a C pointer. This means that Cocoa won’t
treat this value as an object. So the use of the void* type is a clue to you that Cocoa
won’t do any memory management on this value. Thus, making sure that it persists
long enough to be useful is up to you.

As an example, I’ll use beginAnimations:context:. You call this on a UIView before
changing one or more of its property values, such as its size, position, or opacity, to
make those changes appear animated. Whatever you pass as the context parameter
comes back to you later in two delegate messages as the animation proceeds, indicating
that the animation is about to start and that the animation has ended; basically, the
context is a kind of envelope in which information can be carried from stage to stage
during the animation, for any purpose you desire. The context is a void*. So how should
you manage its memory?

Let’s assume that the void* is in fact an object. A simple solution is to retain it as you
hand it to beginAnimations:context: and release it later, when you’re done with it. But
when exactly is “later,” and when are you actually “done with it?” A good answer would
appear to be, “When the animation is over,” which is when the animationDidStop:
finished:context: delegate message arrives. So you could release the context object
when you receive it in animationDidStop:finished:context:.

This solution works, but it isn’t very maintainable. You’re balancing memory-man-
agement calls in two very different places, so you can’t easily keep an eye on them both.
As your code evolves, what if you decide you no longer need to receive animationDid-
Stop:finished:context:, and you delete your implementation of it? If you implement
the delegate method for the animation starting, now you have to move the release to
that method. If not, you have to eliminate the retain. It’s all getting very messy and
confusing.

A better approach is to make these context objects persistent, as instance variables or
globals, and manage their memory as you would any persistent pointer. A context
object will thus persist even after it is no longer needed, but it won’t actually leak,
provided you release it before you yourself (the managing object) go out of existence.
Here’s a complete example:

Memory Management | 269

static id g_animcontext = nil;

- (void) animate {
 // set up context info pointer with memory management
 [g_animcontext release];
 g_animcontext = [NSDictionary dictionaryWithObject: @"object" forKey: @"key"];
 [g_animcontext retain];
 // prepare animation
 [UIView beginAnimations:@"shrinkImage" context:g_animcontext];
 [UIView setAnimationDelegate:self];
 [UIView setAnimationDidStopSelector:
 @selector(animationDidStop:finished:context:)];
 [imv setAlpha: 0];
 // request animation to start
 [UIView commitAnimations];
}

- (void) animationDidStop:(NSString*)anim
 finished:(NSNumber *)f context:(void *)c {
 NSDictionary* d = c; // cast back to dictionary, use as desired
 // no memory management for context info here
 // ...
}

- (void)dealloc {
 [g_animcontext release];
 // ... other releases and so forth ...
 [super dealloc];
}

Considerations of this sort do not apply to parameters that are typed as objects. For
instance, when you call postNotificationName:object:userInfo:, the userInfo is typed
as an NSDictionary and is retained for you (and released after the notification is posted);
its memory management is not your concern.

Memory Management of C Struct Pointers
A value obtained through a C function that is a pointer to a struct (its type name will
usually end in “Ref”) is a kind of object, even though it isn’t a full-fledged Cocoa
Objective-C object, and it must be managed in much the same way as a Cocoa ob-
ject. The rule here is that if you obtained such an object through a function whose name
contains the word Create or Copy, you are responsible for releasing it. In the case of a
Core Foundation object (its type name begins with CF), you’ll release it with the
CFRelease function; other object creation functions are paired with their own object
release functions.

An Objective-C object can be sent messages even if it is nil. But
CFRelease cannot take a NULL argument. Be sure that a pointer-to-
struct variable is not NULL before releasing it.

270 | Chapter 12: Accessors and Memory Management

The matter is not a complicated one; it’s much simpler than memory management of
Cocoa objects, and the documentation will usually give you a hint about your memory
management responsibilities. As an example, here (without further explanation) is
some actual code from one of my apps, strongly modeled on Apple’s own example
code, in which I set up a base pattern color space (for drawing with a pattern):

- (void) addPattern: (CGContextRef) context color: (CGColorRef) incolor {
 CGColorSpaceRef baseSpace;
 CGColorSpaceRef patternSpace;
 baseSpace = CGColorSpaceCreateDeviceRGB ();
 patternSpace = CGColorSpaceCreatePattern (baseSpace);
 CGContextSetFillColorSpace (context, patternSpace);
 CGColorSpaceRelease (patternSpace);
 CGColorSpaceRelease (baseSpace);
 // ...
}

Never mind exactly what that code does; the important thing here is that the values for
baseSpace and patternSpace are a “Ref” type (CGColorSpaceRef) obtained through
functions with Create in their name, so after we’re done using them, we release them
with the corresponding release function (here, CGColorSpaceRelease).

Similarly, you can retain a Core Foundation object, if you are afraid that it might go
out of existence while you still need it, with the CFRetain function, and you are then,
once again, responsible for releasing it with the CFRelease function.

When a Core Foundation object type is toll-free bridged with a Cocoa object type, it
makes no difference whether you use Core Foundation memory management or Cocoa
memory management. For example, if you obtain a CFStringRef and assign it to an
NSString variable, sending release to it through the NSString variable is just as good
as calling CFRelease on it.

Properties
A property (see Chapter 5) is syntactic sugar for calling an accessor by using dot-nota-
tion. An object does not have a property unless its class (or that class’s superclass, of
course) declares it. For instance, in a earlier example we had an object with an NSMu-
tableArray instance variable and a setter, which we called like this:

[self setTheData: d];

If this object’s class code declares a property theData, we could instead say:

self.theData = d;

The effect would be exactly the same, because setting a property is just a shorthand for
calling the setter. Similarly, suppose we were to say this:

NSMutableArray* arr = self.theData;

That is exactly the same as calling the getter.

Properties | 271

Properties offer certain advantages that accessors, of themselves, do not:

• It is simpler to declare one property than to declare two accessor methods.

• A property declaration includes a statement of the setter’s memory management
policy. Thus it easy to know, just by glancing at a property declaration, how the
incoming value will be treated. You could find this out otherwise only by looking
at the setter’s code — which, if this is a built-in Cocoa type, you cannot do (and
even in the case of your own code, it’s a pain having to locate and consult the setter
directly).

• With a property declaration, you can ask Cocoa to construct the accessors for you,
automatically. Such an automatically constructed accessor is called a synthesized
accessor. Writing accessors is boring and error-prone; with a property, you write
two lines of code (the property declaration, and the request that Cocoa construct
its accessors) and that’s all: the accessors now exist, without you bothering to write
them. The setter produced in this automatic way takes care of managing memory
for you, correctly, according to the policy you state in the property declaration.

Thus you will almost certainly want to declare properties for your object-value instance
variables. With properties, instance variables become much easier to deal with: you
don’t have to write accessors for them, you don’t have to worry that your accessors
might not be handling memory management correctly, and you know at a glance how
those accessors do manage memory.

A property is declared in the same part of a class’s interface section where you would
declare methods. Its syntax schema is as follows:

@property (attribute, attribute, ...) type name;

Here’s a real example, for the NSMutableArray instance variable we were talking about
a moment ago:

@property (nonatomic, retain) NSMutableArray* theData;

The type and name will usually match the type and name of an instance variable, but
what you’re really indicating here are the name of the property (as used in dot-notation)
and the type of value to be passed to the setter and obtained from the getter.

If this property will be represented by an outlet in a nib, you can say IBOutlet before
the type. This is a hint to the nib editor and has no formal meaning. The type doesn’t
have to be an object type; it can be a simple type such as BOOL, CGFloat, or CGSize,
but of course in that case no memory management is performed (as none is needed).

The possible attributes are:

nonatomic
If omitted, the synthesized accessors will use locking to ensure correct operation
if your app is multithreaded. This will rarely be a concern, and locking slows down
the operation of the accessors, so you’ll probably specify nonatomic most of the
time. It’s a pity that nonatomic isn’t the default, but such is life.

272 | Chapter 12: Accessors and Memory Management

retain, copy, or assign
These are your choices of memory management policy for the setter (see the dis-
cussion of setter memory management policies, earlier in this chapter). If omitted,
the default is assign.

readwrite or readonly
If omitted, the default is readwrite. If you say readonly, any attempt to use the
property as a setter will cause a compiler error (a useful feature), and if the accessors
are to be synthesized, no setter is synthesized.

getter=gname, setter=sname:
By default, the property name is used to derive the names of the getter and setter
methods that will be called when the property is used. If the property is named my-
Prop, the default getter method name is myProp and the default setter name is set-
MyProp:. You can use either or both of these attributes to change that. If you say
getter=getALife, you’re saying that the getter method corresponding to this prop-
erty is called getALife (and if the accessors are synthesized, the getter will be given
this name).

To request that the accessors be synthesized for you, use the @synthesize directive. It
appears anywhere inside the class’s implementation section, any number of times, and
takes a comma-separated list of property names. The behavior and names of the syn-
thesized accessors will accord with the property declaration attributes I’ve just talked
about. You can state that the synthesized accessors should access an instance variable
whose name differs from the property name by using the syntax propertyName=ivar-
Name in the property name list.

Thus, using our NSMutableArray instance variable theData as an example, the full code
would look like this:

// [In the header file]
@interface MyClass : NSObject {
 NSMutableArray* theData;
 // other ivars go here
}
@property (nonatomic, retain) NSMutableArray* theData;
// other properties, method declarations go here
@end

// [In the implementation file]
@implementation MyClass
@synthesize theData
// other code goes here; don't forget to release theData in dealloc
@end

If you provide a @property declaration along with a corresponding @synthesize state-
ment, but no corresponding instance variable declaration, the instance variable decla-
ration is implicitly generated for you. This is a synthesized instance variable. Thus:

Properties | 273

@interface MyClass : NSObject {
 // NSMutableArray* theData;
 // omitted, because the implementation says @synthesize theData
}
@property (nonatomic, retain) NSMutableArray* theData;
@end

This is a convenient shorthand, and I’ll often use it in this book.

A synthesized instance variable is strictly private, meaning that it is not
inherited by subclasses. This fact will rarely prove troublesome, but if
it does, simply declare the instance variable explicitly.

You are now in a position to understand the property declaration in the Xcode 4 Win-
dow-based Application project template, used by our Empty Window example (the
Empty_WindowAppDelegate class). In Empty_WindowAppDelegate.h, the interface
section declares a property (and an outlet) window, but no instance variable:

@property (nonatomic, retain) IBOutlet UIWindow *window;

In Empty_WindowAppDelegate.m, the implementation synthesizes the accessors, im-
plicitly synthesizing the instance variable declaration, using an alternate name
_window for the instance variable:

@synthesize window=_window;

The result is that we can refer in our code to the property explicitly as self.window, but
if we were accidentally to refer to the instance variable directly as window, we’d get a
compilation error, because there is no instance variable window (it’s called _window).
Thus the template adopts a policy designed both to prevent accidental direct access to
the instance variable without passing through the accessors and to distinguish clearly
in code which names are instance variables — they’re the ones starting with an under-
score. This can be a useful convention (though this book does not adopt it).

To make a property declaration private, when its accessors are to be synthesized, put
it in an anonymous category (a class extension). In this way, this class can access the
instance variable through its accessors but other classes cannot (Example 12-4).

Example 12-4. A private property

// [In the implementation file]
@interface MyClass ()
@property (nonatomic, retain) NSMutableArray* theData;
@end

@implementation MyClass
@synthesize theData
// other code goes here; don't forget to release theData in dealloc
@end

274 | Chapter 12: Accessors and Memory Management

Another use of the same structure is to redeclare the property. For example, we might
want our property to be readonly as far as the rest of the world knows, but readwrite
for code within our class. To implement this, declare the property readonly in the in-
terface section in the header file, and then redeclare it as readwrite in the anonymous
category interface section in the implementation file. All other attributes must match
between both declarations.

If you do not ask explicitly that a declared property’s accessors be synthesized, then
you must supply them explicitly or the compiler will complain. This is somewhat an-
noying; one wishes that synthesis of accessors were the default, to save a step when
writing and maintaining code. You can turn off this complaint by using @dynamic instead
of @synthesize, but this is a promise to generate the accessors in some other way, at
runtime, and is rarely used except in connection with Core Animation and Core Data.
(An example of @dynamic with Core Animation appears in Chapter 17.)

A useful trick is to take advantage of the @synthesize syntax propertyName=ivarName to
override the synthesized accessor without losing any of its functionality. What I mean
is this. Suppose you want the setter for myIvar to do more than just set myIvar. One
possibility is to write your own setter; a synthesized setter does the job correctly, how-
ever, while writing a setter from scratch is tedious and error-prone. The solution is to
declare a property myIvar along with a corresponding private property (Exam-
ple 12-4) — let’s call it myIvarAlias — and synthesize the private property myIvar-
Alias to access the myIvar instance variable. You must then write the accessors for my-
Ivar by hand, but all they need to do, at a minimum, is use the myIvarAlias properties
to set and get the value of myIvar respectively. The key point is that you can also do
other stuff in those accessors (Example 12-5); whoever gets or sets the property my-
Ivar will be doing that other stuff.

Example 12-5. Overriding synthesized accessors

// [In the header file]

@interface MyClass : NSObject {
}
@property (nonatomic, retain) NSNumber* myIvar;
@end

// [In the implementation file]

@interface MyClass ()
@property (nonatomic, retain) NSNumber* myIvarAlias;
@end

@implementation MyClass
@synthesize myIvarAlias=myIvar;

- (void) setMyIvar: (NSNumber*) num {
 // do other stuff here
 self.myIvarAlias = num;
}

Properties | 275

- (NSNumber*) myIvar {
 // do other stuff here
 return self.myIvarAlias;
}
@end

A property declaration can also appear in a protocol or category declaration. This makes
sense because, with a property declaration, you’re really just declaring accessor meth-
ods, and these are places where method declarations can go.

Properties make life much easier when dealing with instance variables and their mem-
ory management, and you’ll doubtless use them all the time. Consider, for example,
how trivial it becomes to manage memory for top-level nib objects. Let’s say the File’s
Owner has an outlet to a certain top-level nib object; let’s call the outlet myObject. Then
the nib owner’s interface section contains this line:

@property (nonatomic, retain) IBOutlet id myObject;

In the implementation section, you say @synthesize myObject, and presto! When the
nib loads, the nib’s owner retains this nib object.

Do not forget, however, that you must still manage memory when an object goes out
of existence. It is up to you to put a release in your dealloc method for any instance
variables whose setter uses a retain or copy policy — even if the setter was synthesized
and the policy was declared through a property.

In Xcode 4, when you create an outlet by dragging from a nib object to
code in such a way as to generate an instance variable declaration, Xcode
creates the instance variable declaration and the corresponding
release call; when you create an outlet by dragging from a nib object to
code in such a way as to generate a property declaration, Xcode creates
the property declaration and the instance variable declaration and the
@synthesize directive and the corresponding release call. This is cool,
but it does make one wonder why Xcode 4 can’t do this for any property
or instance variable you create.

If, at compile time, you get a mysterious error in connection with a property name
propertyname, “request for member ‘propertyname’ in something not a structure or
union,” this merely means that the object reference to which you have attached this
property name by dot-notation has no such property. Probably you mistyped the name
of the property. The compiler is talking about “a structure or union” because those are
the main things signified by dot-notation. (This error message comes from GCC; if you
are using the LLVM parser, you’ll get a much more intelligent error message, along
with a suggested correction, like this: “Property ‘ceter’ not found on object of type
‘UILabel *’; did you mean ‘center’?”)

276 | Chapter 12: Accessors and Memory Management

CHAPTER 13

Data Communication

As soon as an app grows to more than a few objects, things can become confusing.
Beginners are sometimes puzzled about how to communicate data between one piece
of code (one object, really) and another. The problem is essentially one of architecture.
Constructing your code so that all the pieces fit together and key information can be
shared is something of an art. But it isn’t difficult. This chapter presents some general
considerations that may provide the needed clue.

Model–View–Controller
In Apple’s documentation and online, you will find references to the term model–view–
controller, or MVC. This refers to an architectural goal of maintaining a distinction
between three functional aspects of a program that displays information to the user
and permits the user to alter that information. The whole notion goes back to the days
of Smalltalk, and much has been written about it since then, but informally, here’s what
the terms mean:

Model
The data and its management (often referred to as the program’s “business logic,”
the hard-core stuff that the program is really all about).

View
What the user sees and interacts with.

Controller
The mediation between the model and the view.

Consider, for example, a game where the current score is displayed to the user:

• A UILabel that shows the user the current score for the game in progress is view;
it is effectively nothing but a pixel-maker, and its business is to know how to draw
itself. The knowledge of what it should draw — the score, and the fact that this
is a score — lies elsewhere. A rookie programmer might try to use the score dis-
played by the UILabel as the actual score: to increment the score, read the UILabel’s

277

string, turn that string into a number, increment the number, turn the number back
into a string, and present that string in place of the previous string. That is a gross
violation of the MVC philosophy. The view presented to the user should reflect the
score; it should not store the score.

• The score is data being maintained internally; it is model. It could be as simple as
an instance variable along with a public increment method or as complicated as a
Score object with a raft of methods. The score is numeric, whereas a UILabel dis-
plays a string; this alone is enough to show that the view and the model are naturally
different.

• Telling the score when to change, and seeing that this fact is reflected in the user
interface, is the work of the controller. This will be particularly clear if we imagine
that the model’s numeric score needs to be transformed in some way for presen-
tation to the user. For example, suppose the UILabel that presents the score reads:
“Your current score is 20”. The model is presumably storing and providing the
number 20, so what’s the source of the phrase “Your current score is…”? Whoever
is deciding that this phrase should precede the score in the presentation of the score
to the user, and making it so, is a controller.

Even this simplistic example (Figure 13-1) illustrates very well the advantages of MVC.
By separating powers in this way, we allow the aspects of the program to evolve with
a great degree of independence. Do you want a different font and size in the presentation
of the score? Change the view; the model and controller need know nothing about it,
but will just go on working exactly as they did before. Do you want to change the phrase
that precedes the score? Change the controller; the model and view are unchanged.

Adherence to MVC is particularly appropriate in a Cocoa app, because Cocoa itself
adheres to it. The very names of Cocoa classes reveal the MVC philosophy that un-
derlies them. A UIView is a view. A UIViewController is a controller; its purpose is to
embody the logic that tells the view how to display itself. In Chapter 11 we saw that a
UIPickerView does not hold the data it displays; it gets that data from a data source.
So the UIPickerView is a view; the data source is model.

Figure 13-1. Model–view–controller

278 | Chapter 13: Data Communication

Apple’s documentation also points out this telling distinction: true model material and
true view material should be quite reusable, in the sense that they can be transferred
wholesale into some other app; controller material is generally not reusable, because it
is concerned with how this app mediates between the model and the view.

In one of my own apps, for example, we download an XML (RSS) news feed and present
the article titles to the user as a table. The storage and parsing of the XML are pure
model material, and are so reusable that I didn’t even write this part of the code (I used
some code called FeedParser, by Kevin Ballard). The table is a UITableView, which is
obviously reusable, seeing as I obtained it directly from Cocoa. But when the UITable
turns to me and asks what I’d like to display in this cell, and I turn to the XML and ask
for the title of the article corresponding to this row of the table, that’s controller logic.

By keeping the MVC architectural philosophy in mind as you develop your app, you’ll
implicitly solve one data communication problem. The data will live in the model, the
view will be purely presentational in nature, and the communication between them
will be handled by your own deliberately written controller code. You’ll be communi-
cating between the view and the model because controller code is about communicating
between the view and model.

Instance Visibility
The problem of communication often comes down to one object being able to see
another: Object Manny needs to be able to find Object Jack repeatedly and reliably
over the long term so as to be able to send Jack messages. (This is the same problem I
spoke of in Chapter 2 as getting a reference to an object.)

An obvious solution is an instance variable of Manny whose value is Jack. This is ap-
propriate particularly when Manny and Jack share certain responsibilities or supple-
ment one another’s functionality, and when they will both persist, especially when they
will both persist together. A controller whose job is to configure and direct a certain
view will need to exist just as long as the view does; they go together. The application
object and its delegate, a table view and its data source, a UIViewController and its
UIView — these are cases where the former must have an instance variable pointing at
the latter.

With instance variables comes the question of memory management policy. Should
Manny, which has an instance variable pointing to Jack, also retain Jack? Basically, it
depends on how closely allied the objects are. An object does not typically retain its
delegate or its data source; it can exist without a delegate or a data source, and the
delegate and data source have lives of their own — it is none of this object’s business
to say whether the delegate or data source should be allowed to go out of existence.
This object is therefore always prepared for the possibility that its delegate or data
source may be nil. Similarly, an object that implements the target–action pattern, such
as a UIControl, does not retain its target. On the other hand, a UIViewController is

Instance Visibility | 279

useless without a UIView to control; its very job is to be coterminous with its view, and
to release its view when it itself goes out of existence. Similarly, an object that owns a
nib as it loads rules the lifetimes of that nib’s top-level objects.

Even when two objects go together closely, it will not necessarily be the case that each
holds an instance variable pointing at the other. When each does point to the other,
you must of course be careful not to let each retain the other; that’s a retain cycle, and
will cause both objects to leak. But if one object is the constant instigator of commu-
nication between the two, the first object can simply pass along a reference to itself as
a method argument, if it thinks the second object might need this.

This behavior is conventional in a delegate message, for example. The parameter of the
delegate message textFieldShouldBeginEditing: is a reference to the UITextField that
sent the message. The same policy is followed by target–action messages in their fuller
forms; the first parameter is a reference to the sender. You can follow a similar policy.

Visibility by Instantiation
The real question is how one object is to be introduced to the other in the first place.
Much of the art of Cocoa programming (and of object-oriented programming generally)
lies in getting a reference to a desired object. Every case is different and must be solved
separately, but a major clue comes from the fact that every instance comes from some-
where. This means that some object commanded this instance to come into existence
in the first place. That object therefore has a reference to the instance at that moment.
That is always the starting point.

When Manny instantiates Jack, if it knows that Jack is going to need a reference to itself
(Manny) or to some piece of data, it can hand it that reference early in Jack’s lifetime.
Indeed, you might write Jack with an initializer that will take this reference as a pa-
rameter, so that Jack will possess it from the moment it comes into existence. (Compare
the approach taken, for example, by UIActionSheet and UIAlertView, where the dele-
gate is one of the initializer’s parameters, or by UIBarButtonItem, where the target is
one of the initializer’s parameters.)

This example, from one of my apps, is from a table view controller. The user has tapped
a row of the table. We create a secondary table view controller, handing it the data it
will need, and display the secondary table view. I deliberately devised TrackViewCon-
troller to have a designated initializer initWithMediaItemCollection: to make it almost
obligatory for a TrackViewController to have access to the data it needs:

- (void)showItemsForRow: (NSIndexPath*) indexPath {
 // create subtable of tracks and go there
 TracksViewController *t =
 [[TracksViewController alloc] initWithMediaItemCollection:
 [self.albums objectAtIndex: [indexPath row]]];
 [self.navigationController pushViewController:t animated:YES];
 [t release];
}

280 | Chapter 13: Data Communication

But what if two objects are conceptually distant from each other? A common case in
point is when objects are going to be instantiated from different nibs. How can an
instance from one nib get a reference to an instance from another nib? True, you can’t
draw a connection between an object in nib A and an object in nib B. But someone
(Manny) is going to be the file’s owner when nib A loads, and someone (Jack) is going
to be the file’s owner when nib B loads. Those two file’s owners might be able to see
each other; if so, the problem is solved. Perhaps they are the same object. Perhaps
Manny instantiated Jack in the first place. Perhaps they are both instantiated by some
third object, which provides a communication path for them.

Visibility by Relationship
Objects may acquire the ability to see one another automatically by virtue of their
position in a built-in structure. Before worrying about how to supply one object with
a reference to another, consider whether there may already be a chain of references
leading from one to another.

For example, a subview can see its superview. A superview can see all its subviews and
can pick out a specific subview through that subview’s tag property. A subview in a
window can see its window. A responder can see the next responder in the responder
chain (which also means, because of the structure of the responder chain, that a UIView
can see the UIViewController that manages it).

Similarly, if a UIViewController is currently presenting a modal view through a con-
troller, that is its modalViewController, and the UIViewController is that controller’s
parentViewController. If it is controlled by a UINavigationController, that is its
navigationController. A UINavigationController’s visible view is controlled by its
visibleViewController. And from any of these, you can reach the view controller’s
view, and so forth.

All of these relationships are public. So if you can get a reference to an object within
any of these structures or a similar structure, you can effectively navigate the whole
structure through a chain of references and lay your hands on any other object within
the structure.

Global Visibility
Some objects are globally visible (that is, visible to all other objects). In general, these
are singletons vended by a class method. Some of these objects have properties pointing
to other objects, making those other objects likewise globally visible.

For example, any object can see the singleton UIApplication instance by calling
[UIApplication sharedApplication]. So any object can also see the app’s primary win-
dow, because that is its keyWindow property, and any object can see the app delegate,
because that is its delegate property. Thus, for example, in our Empty Window project,
every object can see the Empty_WindowAppDelegate instance created by the loading

Instance Visibility | 281

of the main nib. This means that any additional object can be made globally visible by
designing a globally visible object, such as the app delegate, to hold a reference to it.

Another globally visible object is the shared defaults object obtained by calling [NSUser-
Defaults standardUserDefaults]. This object is the gateway to storage and retrieval of
user defaults, which is similar to a dictionary (a collection of values named by keys).
The user defaults are automatically saved when your application quits and are auto-
matically available when your application is launched again later, so they are one of
the main ways in which your app maintains state between launches. But, being globally
visible, they are also a conduit for communicating values within your app.

For example, in one of my apps there’s a setting I call @"hazyStripy". This determines
whether a certain visible interface object is drawn with a hazy fill or a stripy fill. This
is a setting that the user can change, so there is a preferences interface allowing the user
to make this change. When the user displays this preferences interface, I examine the
@"hazyStripy" setting in the user defaults to configure the interface to reflect it; if the
user interacts with the preferences interface to change the @"hazyStripy" setting, I re-
spond by changing the actual @"hazyStripy" setting in the user defaults.

But the preferences interface is not the only object that uses the @"hazyStripy" setting
in the user defaults; the drawing code that actually draws the hazy-or-stripy-filled object
also uses it, so as to know which way to draw itself. Thus there no need for the object
that draws the hazy-or-stripy-filled object and the object that manages the preferences
interface to be able to see one another! They can both see this common object, the
@"hazyStripy" user default (Figure 13-2). Indeed, it is not uncommon to “misuse” the
user defaults storage to hold information that is not used to maintain state between
runs of the app, but is placed there merely because this is a location globally visible to
all objects.

Notifications
Notifications (Chapter 11) can be a way to communicate between objects that are
conceptually distant from one another without bothering to provide any way for one
to see the other. Using a notification in this way may seem lazy, an evasion of your
responsibility to architect your objects sensibly. But sometimes one object doesn’t need
to know, and indeed shouldn’t know, what object it is sending a message to.

I’ll give a specific example. One of my apps consists of a bunch of flashcards. Only one
card is showing at any one time, but the cards are actually embedded in a scroll view,
so the user can move from one card to the next by swiping the screen. I’ve supplied
classes to manage this interface: each card is managed by a CardController, and the
scroll view as a whole is managed by a single ScrollViewController.

The flashcards all have the same layout: a foreign term, along with an English transla-
tion. To facilitate learning, the ScrollViewController displays a toolbar with a button

282 | Chapter 13: Data Communication

that the user can tap to toggle visibility of the English translation on all cards. Thus,
the user could hide the English translation and move from card to card, showing the
English translation only occasionally to discover a forgotten translation or to confirm
a remembered one.

What should happen, exactly, when the user taps the toolbar button? This seems a
perfect use of a notification. I could cycle through all the existing CardController in-
stances and tell each one to show or hide the English translation label, but this seems
bulky and error-prone. How much simpler to have every CardController, as it comes
into existence, register for the @"toggleEnglish" notification. Now the ScrollViewCon-
troller can post a single notification and all the CardController instances will just hear
about it, automatically.

So a CardController has this line of code, early in its lifetime:

[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(toggleEnglish:)
 name:TOGGLE_ENGLISH object:nil];

(TOGGLE_ENGLISH is #defined as @"toggleEnglish" in a header.) When the user taps the
button to toggle the visibility of the English translation, the button’s action causes the
ScrollViewController’s toggleEnglish: method to be called. That method contains this
line:

[[NSNotificationCenter defaultCenter] postNotificationName:TOGGLE_ENGLISH
 object:self];

So when ScrollViewController’s toggleEnglish: method is called, every CardControl-
ler’s toggleEnglish: method is also called — exactly the desired effect.

Figure 13-2. The global visibility of user defaults

Notifications | 283

This example also involves global storage in user defaults, discussed in the previous
section. Just before posting the notification, ScrollViewController stores the desired
state of the English translation’s visibility in a user preference. Thus, to know what to
do in response to the notification, each CardController just consults that preference
and obeys it (Figure 13-3). Alternatively, ScrollViewController could have called post-
NotificationName:object:userInfo: and put this information into the userInfo.

Key–Value Observing
Key–value observing, or KVO, is a mechanism somewhat similar to the target–action
mechanism, except that it is not limited to controls. (The KVO mechanism is provided
through an informal protocol, NSKeyValueObserving, which is actually a set of cate-
gories on NSObject and other classes.) The similarity is that objects register with a
particular object to be notified when something happens. The “something” is that a
certain value in that object is changed.

KVO can be broken down into three stages:

Figure 13-3. Posting a notification

284 | Chapter 13: Data Communication

Registration
To hear about a change in a value belonging to object A, object B must be registered
with object A.

Change
The change takes place in the value belonging to object A, and it must take place
in a special way — a KVO compliant way.

Notification
Object B is notified that the value in object A has changed and can respond as
desired.

Here’s a simple complete example — a rather silly example, but sufficient to demon-
strate the KVO mechanism in action. We have a class MyClass1; this will be the class
of object A. We also have a class MyClass2; this will be the class of object B. Finally,
we have code that creates a MyClass1 instance called objectA and a MyClass2 instance
called objectB; this code registers objectB to hear about changes in an instance variable
of objectA called value, and then changes value, and sure enough, objectB is notified
of the change:

// [In MyClass1.h]

@interface MyClass1 : NSObject {
 NSString* value;
}
@property (nonatomic, copy) NSString* value;
@end

// [In MyClass1.m]

@implementation MyClass1
@synthesize value;
@end

// [In MyClass2.m (in its implementation section)]

- (void) observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object
 change:(NSDictionary *)change
 context:(void *)context {
 NSLog(@"I heard about the change!");
}

// [somewhere else entirely]

MyClass1* objectA = [[MyClass1 alloc] init];
MyClass2* objectB = [[MyClass2 alloc] init];
// register for KVO
[objectA addObserver:objectB forKeyPath:@"value" options:0 context:nil];
// change the value in a KVO compliant way
objectA.value = @"Hello, world!";
// result: objectB's observeValueForKeyPath:... is called

Key–Value Observing | 285

We call addObserver:forKeyPath:options:context: to register objectB to hear about
changes in objectA’s value. We didn’t use any options or context; I’ll talk about the
options in a moment. (The context is for handing in a value that will be provided as
part of the notification.)

We change objectA’s value, and we do it in a KVO compliant way, namely, by pass-
ing through the setter (because setting a property is equivalent to passing through
the setter). This is another reason why accessors (and properties) are a good thing:
they help you guarantee KVO compliance when changing a value.

When we change objectA’s value, the third stage takes place automatically: a call is
made to objectB’s observeValueForKeyPath:.... We have implemented this method in
MyClass2 in order to receive the notification. In this simple example, we expect to
receive only one notification, so we just log to indicate that we did indeed receive it. In
real life, where a single object might be registered to receive more than one KVO noti-
fication, you’d use the incoming parameters to distinguish between different notifica-
tions and decide what to do.

At the very least, you’ll probably want to know, when observeValueForKeyPath:... is
called, what the new value is. We can find that out easily, because we are handed a
reference to the object that changed, along with the key path for the value within that
object. Thus we can use KVC to query the changed object in the most general way:

- (void) observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object
 change:(NSDictionary *)change
 context:(void *)context {
 id newValue = [object valueForKeyPath:keyPath];
 NSLog(@"The key path %@ changed to %@", keyPath, newValue);
}

But it is also possible to request that the new value be included as part of the notification.
This depends upon the options passed with the original registration. Here, we’ll request
that both the old and new values be included with the notification:

objectA.value = @"Hello";
[objectA addObserver:objectB forKeyPath:@"value"
 options: NSKeyValueObservingOptionNew | NSKeyValueObservingOptionOld
 context:nil];
objectA.value = @"Goodbye"; // notification is triggered

When we receive the notification, we fetch the old and new values out of the change
dictionary:

- (void) observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object
 change:(NSDictionary *)change
 context:(void *)context {
 id newValue = [change objectForKey: NSKeyValueChangeNewKey];
 id oldValue = [change objectForKey: NSKeyValueChangeOldKey];
 NSLog(@"The key path %@ changed from %@ to %@", keyPath, oldValue, newValue);
}

286 | Chapter 13: Data Communication

No memory management happens as part of the registration process, so it is incumbent
upon you to unregister object B before it is destroyed. Otherwise, object A may later
attempt to send a notification to a dangling pointer. This is done by sending object A
the removeObserver:forKeyPath: message.

Beginners are often confused about how to use KVO to observe changes to a mutable
array, to be notified when an object is added to, removed from, or replaced within the
array. You can’t add an observer to an array itself; you have to observe through an
object that has a key path to the array (through accessors, for example). The simple-
minded solution is then to access the array using mutableArrayValueForKey:, which
provides an observable proxy object.

For example, recall how in Chapter 12 we posited an object with an instance variable
theData which is an array of dictionaries:

(
 {
 description = "The one with glasses.";
 name = Manny;
 },
 {
 description = "Looks a little like Governor Dewey.";
 name = Moe;
 },
 {
 description = "The one without a mustache.";
 name = Jack;
 }
)

Suppose this is an NSMutableArray. Then we can register with our object to observe
the key path @"theData":

[objectA addObserver:objectB forKeyPath:@"theData" options:0 context:nil];

Now object B will be notified of changes to this mutable array, but only if those changes
are performed through the mutableArrayValueForKey: proxy object:

[[objectA mutableArrayValueForKeyPath:@"theData"] removeObjectAtIndex:0];
// notification is triggered

But it seems onerous to require clients to know that they must call mutableArrayValue-
ForKey:. The simple solution is for our object itself to provide a getter that calls mutable-
ArrayValueForKey:. Here’s a possible implementation:

// [In MyClass1, in the header file]

@interface MyClass1 : NSObject {
 NSMutableArray* theData;
}
@property (nonatomic, retain, getter=theDataGetter) NSMutableArray* theData;
@end

// [In MyClass1, in the implementation section]

Key–Value Observing | 287

@synthesize theData;

- (NSMutableArray*) theDataGetter {
 return [self mutableArrayValueForKey:@"theData"];
}

The result is that, as far as any client knows, this object has a key @"theData" and a
property theData, and we can register to observe with the key and then access the
mutable array through the property:

[objectA addObserver:objectB forKeyPath:@"theData"
 options: NSKeyValueObservingOptionNew | NSKeyValueObservingOptionOld
 context:nil];
[objectA.theData removeObjectAtIndex:0]; // notification is triggered

If you’re going to take this approach, you should really also implement (in MyClass1)
the four KVC compliance methods for a mutable array façade (see Chapter 12). Al-
though things will appear to work just fine without them, and although they appear
trivial (they are merely delegating to self->theData the equivalent calls), they will be
called by the vended proxy object, which increases its efficiency (and, some would
argue, its safety). Without these methods, the proxy object resorts to setting the in-
stance variable directly, replacing the entire mutable array, every time a client changes
the mutable array:

- (NSUInteger) countOfTheData {
 return [self->theData count];
}

- (id) objectInTheDataAtIndex: (NSUInteger) ix {
 return [self->theData objectAtIndex: ix];
}

- (void) insertObject: (id) val inTheDataAtIndex: (NSUInteger) ix {
 [self->theData insertObject:val atIndex:ix];
}

- (void) removeObjectFromTheDataAtIndex: (NSUInteger) ix {
 [self->theData removeObjectAtIndex: ix];
}

If what you want to observe are mutations within an individual element of an array,
things are more complicated. Suppose our array of dictionaries is an array of mutable
dictionaries. To observe changes to the value of the @"description" key of any diction-
ary in the array, you’d need to register for that key with each dictionary in the array,
separately. You can do that efficiently with NSArray’s instance method addObserver:
toObjectsAtIndexes:forKeyPath:options:context:, but if the array itself is mutable
then you’re also going to have to register for that key with any new dictionaries that are
subsequently added to the array (and unregister when a dictionary is removed from the
array). This is doable but daunting, and I’m not going to go into the details here.

288 | Chapter 13: Data Communication

The properties of Apple’s built-in classes are typically KVO compliant.
Indeed, so are many classes that don’t use properties per se; for example,
NSUserDefaults is KVO compliant. Unfortunately, Apple warns that
undocumented KVO compliance can’t be counted on.

Key–value observing is a deep mechanism; consult Apple’s Key-Value Observing
Guide for full information. It does have some unfortunate shortcomings — for one
thing, it’s a pity that all notifications arrive by calling the same method, observeValue-
ForKeyPath:... — but in general KVO is useful for keeping values coordinated in dif-
ferent objects.

Mac OS X Programmer Alert
Mac OS X bindings don’t exist on iOS, but you can sometimes use KVO
to achieve similar aims.

Key–Value Observing | 289

PART IV

Views

This part of the book is about the things that appear in an app’s interface. All such
things are, ultimately, views. A view is a unit of your app that knows how to draw itself.
A view also knows how to sense that the user has touched it. Views are what your user
sees on the screen, and what your user interacts with by touching the screen. Thus,
views are the primary constituent of an app’s visible, touchable manifestation. They
are your app’s interface. So it’s going to be crucial to know how views work.

• Chapter 14 discusses views in their most general aspect — their hierarchy, position,
and visibility.

• A view knows how to draw itself. Chapter 15 is about drawing; it explains how to
tell a view what you want it to draw, from simply displaying an already existing
image to constructing a drawing line by line.

• The drawing power of a view comes ultimately from its layer. To put it another
way, a layer is effectively the aspect of a view that knows how to draw — with even
more power. Chapter 16 explains about layers.

• A iOS app’s interface isn’t generally static; it’s lively. Much of that liveliness comes
from animation. iOS gives you great power to animate your interface with remark-
able ease; that power resides ultimately in layers. Now that you know about layers,
Chapter 17 tells about animation.

• A view knows how to draw itself; it also knows how to sense that the user is touch-
ing it. Chapter 18 is about touches. It explains the iOS view-based mechanisms for
sensing and responding to touches, with details on how touches are routed to the
appropriate view and how you can customize that routing.

CHAPTER 14

Views

A view (an object whose class is a subclass of UIView) knows how to draw itself into a
rectangular area of the interface. Your app has a visible interface thanks to views. Cre-
ating and configuring a view can be extremely simple: “Set it and forget it.” You’ve
already seen that you can drag an interface widget, such as a UIButton, into your win-
dow in the nib; when the app runs, the button appears, and works properly. But you
can also manipulate views in powerful ways, in real time. Your code can do some or
all of the view’s drawing of itself; it can make the view appear and disappear, move,
resize itself, and display many other physical changes, possibly with animation.

A view is also a responder (UIView is a subclass of UIResponder). This means that a
view is subject to user interactions, such as taps and swipes. Thus, views are the basis
not only of the interface that the user sees, but also of the interface that the user touches.
Organizing your views so that the correct view reacts to a given touch allows you to
allocate your code neatly and efficiently.

The view hierarchy is the chief mode of view organization. A view can have subviews;
a subview has exactly one immediate superview. Thus there is a tree of views. This
hierarchy allows views to come and go together. If a view is removed from the interface,
its subviews are removed; if a view is hidden (made invisible), its subviews are hidden;
if a view is moved, its subviews move with it; and other changes in a view are likewise
shared with its subviews. The view hierarchy is also the basis of, though it is not iden-
tical to, the responder chain (Chapter 11).

A view may come from a nib, or you can create it in code. On balance, neither approach
is to be preferred over the other; it depends on your needs and inclinations and on the
overall architecture of your app.

The Window
The top of the view hierarchy is the app’s window. It is an instance of UIWindow (or
your own subclass thereof), which is a UIView subclass. Your app should have exactly
one main window. It occupies the entire screen and forms the background to, and the

293

ultimate superview of, all your other visible views. Other views are visible by virtue of
being subviews, at some depth, of your app’s window. (If your app can display views
on an external screen, you’ll create an additional UIWindow to contain those views;
but in this chapter I’ll behave as if there were just one screen, the device’s own screen,
and just one window.)

The project templates all generate your app’s window for you automatically. The win-
dow is a top-level nib object in the project’s main nib file. This nib file is loaded auto-
matically as the app launches, and the window is instantiated. Another top-level nib
object in the main nib file, representing the app delegate, has a window outlet pointing
to the window. The app delegate instance, which is also generated as the app launches,
thus points to the window through its window property. (It also retains the window, but
it need not do so, as the window is also being retained by the UIApplication instance,
the nib’s owner.) The app delegate instance is sent the application:didFinishLaunching-
WithOptions: delegate message by the application instance, and in turn it sends the
window instance the makeKeyAndVisible message. This causes the window to appear
and gives your app a visible manifestation.

In theory, you could modify this process and generate your app’s UIWindow in some
other way. For example, you could generate the UIWindow instance in code. Apple
says to do this by saying:

UIWindow* aWindow =
 [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];

(The window’s designated initializer is initWithFrame:; I’ll explain in a moment what
“frame” and “bounds” are.) You would still need to send the window instance the make-
KeyAndVisible message in order to make your app’s interface appear. In practice, I have
never had cause to modify the way the templates generate the window instance.

By virtue of the project templates, the app delegate points to the window as the value
of its window property; so any code in the app delegate class can refer to the window as
self.window. Code elsewhere can also get a reference to the app’s window; here, I do
it by way of the synthesized accessor:

UIWindow* theWindow = [[[UIApplication sharedApplication] delegate] window];

That code is unusual, though, and may require typecasting to quiet the compiler (be-
cause the class of the application’s delegate property is otherwise unknown). You’d be
more likely to use the application’s keyWindow property:

UIWindow* theWindow = [[UIApplication sharedApplication] keyWindow];

An even more likely way to get a reference to your app’s window would be through a
subview of the window, at any depth of the hierarchy. You are very likely to have a
reference to at least one such subview, and its window property points to the window
that contains it, which is the app’s window. You can also use a UIView’s window property
as a way of asking whether it is ultimately embedded in a window; if it isn’t, its

294 | Chapter 14: Views

window property is nil. A UIView whose window property is nil cannot be visible to the
user.

Although your app will have exactly one primary window, it may generate other win-
dows of which you are not conscious. For example, if you put up an alert view
(UIAlertView), it is displayed in a secondary window that lies on top of your app’s
window; at that moment, this secondary window is the application’s keyWindow. You
would not be conscious of this fact, however, unless you needed a reference to your
app’s window while an alert was showing, which is unlikely.

The window’s backgroundColor property, which it inherits from UIView, affects the
appearance of the app if the window is visible behind its subviews. In many cases,
though, you are likely to give your window a primary subview that occupies the entire
window and blocks it from sight; the window’s backgroundColor would then make no
visible difference. The window would function solely as a container for the app’s visible
views.

Subview and Superview
Once upon a time, and not so very long ago, a view owned precisely its rectangular
area. No part of any view that was not a subview of this view could appear inside it,
because when this view redrew its rectangle, it would erase the overlapping portion of
the other view. No part of any subview of this view could appear outside it, because
the view took responsibility for its own rectangle and no more.

Those rules, however, were gradually relaxed, and starting in Mac OS X 10.5 Apple
introduced an entirely new architecture for view drawing that lifted those restrictions
completely. iOS view drawing is based on this revised architecture. So now some or all
of a subview can appear outside its superview, and a view can overlap another view
and be drawn partially or totally in front of it without being its subview.

So, for example, Figure 14-1 shows three overlapping views. All three views have a
background color, so each is completely represented by a colored rectangle. You have
no way of knowing, from this visual representation, how the views are related within
the view hierarchy. In actual fact, the view in the middle (horizontally) is a sibling view
of the view on the left (they are both direct subviews of the window), and the view on
the right is a subview of the middle view.

When views are created in the nib, you can examine the view hierarchy in the expanded
dock to learn their actual relationship (Figure 14-2). When views are created in code,
you know their hierarchical relationship because you created that hierarchy. But the
visible interface doesn’t tell you, because view overlapping is so flexible.

Nevertheless, a view’s position in the view hierarchy does affect how it is drawn. Most
important, a view’s position in the view hierarchy dictates the order in which it is drawn.
Sibling subviews of the same superview have a layering order: one is “further back”

Subview and Superview | 295

than the other. This will make no visible difference if there is no overlap, but the subview
that is “further back” is drawn first, so if there is overlap, it will appear to be behind its
sibling. Similarly, a superview is “further back” than its subviews; the superview is
drawn first, so it will appear to be behind its subviews.

You can see this illustrated in Figure 14-1. The view on the right is a subview of the
view in the middle and is drawn on top of it. The view on the left is a sibling of the view
in the middle, but it is a later sibling, so it is drawn on top of the view in the middle
and on top of the view on the right. The view on the left cannot appear behind the view
on the right but in front of the view in the middle, because those views are subview and
superview and are drawn together — both are drawn either before or after the view on
the left, depending on the “further back” ordering of the siblings.

This layering order can be governed in the nib either by choosing from the Editor →
Arrangement menu (Send to Front, Send to Back, Send Forward, Send Backward) or
by arranging the views in the expanded dock. In code, there are methods for arranging
the sibling order of views (which we’ll come to in a moment).

Here are some other effects of the view hierarchy:

• If a view is removed from or moved within its superview, its subviews go with it.

• If a view’s size is changed, its subviews can be resized automatically.

• A view’s degree of transparency is inherited by its subviews.

• A view can optionally limit the drawing of its subviews so that any parts of them
outside the view are not shown. This is called clipping and is set with the view’s
clipsToBounds property.

• A superview owns its subviews, in the memory-management sense, much as an
NSArray owns its elements; it retains them and is responsible for releasing a sub-

Figure 14-1. Overlapping views

Figure 14-2. A view hierarchy as displayed in the nib

296 | Chapter 14: Views

view when that subview ceases to be its subview (it is removed from the collection
of this view’s subviews) or when it itself goes out of existence.

A UIView has a superview property (a UIView) and a subviews property (an NSArray
of UIViews, in back-to-front order), allowing you to trace the view hierarchy in code.
There is also a method isDescendantOfView: letting you check whether one view is a
subview of another at any depth. If you need a reference to a particular view, you will
probably arrange this beforehand as an instance variable, perhaps through an outlet.
Alternatively, a view can have a tag (its tag property, an integer), and can then be
referred to by sending any view further up the view hierarchy the viewWithTag: message.
Seeing that all tags of interest are unique within their section of the hierarchy is up to
you.

Manipulating the view hierarchy in code is easy. This is part of what gives iOS apps
their dynamic quality, and it compensates for the fact that there is basically just a single
window. It is perfectly reasonable for your code to rip an entire hierarchy of views out
of the superview and substitute another. Such behavior can be implemented elegantly
by using a UIViewController, a subject to which we’ll return later. But you can do it
directly, too. The method addSubview: makes one view a subview of another; remove-
FromSuperview takes a subview out of its superview’s view hierarchy. In both cases, if
the superview is part of the visible interface, the subview will appear or disappear; and
of course this view may itself have subviews that accompany it. Just remember that
removing a subview from its superview releases it; if you intend to reuse that subview
later on, you will wish to retain it first. This is often taken care of through a property
with a retain policy.

Events inform a view of these dynamic changes. To respond to these events requires
subclassing. Then you’ll be able to override any of didAddSubview: and willRemove-
Subview:, didMoveToSuperview and willMoveToSuperview:, didMoveToWindow and will-
MoveToWindow:.

When addSubview: is called, the view is placed last among its superview’s subviews;
thus it is drawn last, meaning that it appears frontmost. A view’s subviews are indexed,
starting at 0, which is rearmost. There are additional methods for inserting a subview
at a given index (insertSubview:atIndex:), or below (behind) or above (in front of) a
specific view (insertSubview:belowSubview:, insertSubview:aboveSubview:); for swap-
ping two sibling views by index (exchangeSubviewAtIndex:withSubviewAtIndex:); and
for moving a subview all the way to the front or back among its siblings (bringSubview-
ToFront:, sendSubviewToBack:).

Oddly, there is no command for removing all of a view’s subviews at once. However,
a view’s subviews array is an immutable copy of the internal list of subviews, so it is
legal to cycle through it and remove each subview one at a time:

for (UIView* v in view.subviews)
 [v removeFromSuperview];

Subview and Superview | 297

Frame
A view’s frame property, a CGRect, is the position of its rectangle within its superview,
in the superview’s coordinate system. By default, the superview’s coordinate system will
have the origin at the top left, with the x-coordinate growing positively rightward and
the y-coordinate growing positively downward.

Setting a view’s frame to a different CGRect value repositions the view, or resizes it, or
both. If the view is visible, this change will be visibly reflected in the interface. On the
other hand, you can also set a view’s frame when the view is not visible — for example,
when you create the view in code. In that case, the frame describes where the frame
will be positioned within its superview when it is assigned a superview. UIView’s des-
ignated initializer is initWithFrame:, and you’ll often assign a frame this way, especially
because the default frame might otherwise be (0,0,0,0), which is rarely what you want.

Forgetting to assign a view a frame when creating it in code, and then
wondering why it isn’t appearing when added to a superview, is a com-
mon beginner mistake. A view with a zero-size frame is effectively in-
visible. If a view has a standard size that you want it to adopt, especially
in relation to its contents (like a UIButton in relation to its title), an
alternative is to send it the sizeToFit message.

Knowing this, we can generate programmatically the interface displayed in Fig-
ure 14-1. Start with a vanilla iOS app project based on the Window-Based Application
template, and make its application:didFinishLaunchingWithOptions: method read as
follows:

UIView* v1 = [[UIView alloc] initWithFrame:CGRectMake(113, 111, 132, 194)];
v1.backgroundColor = [UIColor colorWithRed:1 green:.4 blue:1 alpha:1];
UIView* v2 = [[UIView alloc] initWithFrame:CGRectMake(41, 56, 132, 194)];
v2.backgroundColor = [UIColor colorWithRed:.5 green:1 blue:0 alpha:1];
UIView* v3 = [[UIView alloc] initWithFrame:CGRectMake(43, 197, 160, 230)];
v3.backgroundColor = [UIColor colorWithRed:1 green:0 blue:0 alpha:1];
[self.window addSubview: v1];
[v1 addSubview: v2];
[self.window addSubview: v3];
[v1 release]; [v2 release]; [v3 release];
[self.window makeKeyAndVisible];

In that code, we determined the layering order of v1 and v3 (the middle and left views,
which are sibling subviews of the window) by the order in which we inserted them into
the view hierarchy with addSubview:.

Part of the app’s window may be covered by the status bar, which is actually another
window, supplied by the system. This may affect where you want to draw in the win-
dow. A view centered within the window will be centered on the screen, but it may not
look centered because it isn’t centered in the visible part of the window (exclusive of
the status bar). Similarly, material drawn in the window at the point (0,0) (in the

298 | Chapter 14: Views

window’s coordinates) may not be visible, because that point may be covered by the
status bar. You can determine the rectangle currently not covered by the status bar as
follows:

CGRect f = [[UIScreen mainScreen] applicationFrame];

Complications are introduced by the possibility of the user rotating the device. This
does not change anything about the window’s coordinate system, so the window’s
(0,0) point might be in any corner. This is another reason why you will probably want
to cover the window with a single view managed by a UIViewController, which deals
seamlessly with rotation. I’ll discuss that in Chapter 19; for now, I’ll assume that the
device is not rotated.

Bounds and Center
Suppose we wish to give a view a subview inset by 10 pixels, as in Figure 14-3. The
utility function CGRectInset makes it easy to derive one rectangle as an inset from an-
other, but what rectangle should we use as a basis? Not the superview’s frame; the frame
represents a view’s position within its superview, and in that superview’s coordinates.
What we’re after is a CGRect describing our superview’s rectangle in its own coordi-
nates, because those are the coordinates in which the subview’s frame is to be expressed.
That CGRect is the view’s bounds property.

So, the code to generate Figure 14-3 looks like this:

UIView* v1 = [[UIView alloc] initWithFrame:CGRectMake(113, 111, 132, 194)];
v1.backgroundColor = [UIColor colorWithRed:1 green:.4 blue:1 alpha:1];
UIView* v2 = [[UIView alloc] initWithFrame:CGRectInset(v1.bounds, 10, 10)];
v2.backgroundColor = [UIColor colorWithRed:.5 green:1 blue:0 alpha:1];
[self.window addSubview: v1];
[v1 addSubview: v2];
[v1 release]; [v2 release];

You’ll very often use a view’s bounds in this way. When you need coordinates for draw-
ing inside a view, whether drawing manually or placing a subview, you’ll often refer to
the view’s bounds.

Figure 14-3. A subview inset from its superview

Bounds and Center | 299

The screen also has bounds, and functions in that sense as the window’s
superview, even though a UIScreen isn’t a view. Moreover, the window’s
frame is always set to the screen’s bounds (see the example earlier in
this chapter of creating a window in code). Thus, window coordinates
are screen coordinates. For example, when asking the screen for the
applicationFrame, the answer comes back in screen coordinates, which
are also window coordinates, and can thus be used for positioning
something within the window.

Interesting things happen when you set a view’s bounds. If you change a view’s bounds
size, you change its frame. The change in the view’s frame takes place around its cen-
ter, which remains unchanged. So, for example:

UIView* v1 = [[UIView alloc] initWithFrame:CGRectMake(113, 111, 132, 194)];
v1.backgroundColor = [UIColor colorWithRed:1 green:.4 blue:1 alpha:1];
UIView* v2 = [[UIView alloc] initWithFrame:CGRectInset(v1.bounds, 10, 10)];
v2.backgroundColor = [UIColor colorWithRed:.5 green:1 blue:0 alpha:1];
[self.window addSubview: v1];
[v1 addSubview: v2];
CGRect f = v2.bounds;
f.size.height += 20;
f.size.width += 20;
v2.bounds = f;
[v1 release]; [v2 release];

What appears is a single rectangle; the subview completely and exactly covers its su-
perview, its frame being the same as the superview’s bounds. The call to CGRectInset
started with the superview’s bounds and shaved 10 points off the left, right, top, and
bottom to set the subview’s frame (Figure 14-3). But then we added 20 points to the
subview’s bounds height and width, and thus added 20 points to the subview’s frame
height and width as well (Figure 14-4). The center didn’t move, so we effectively put
the 10 points back onto the left, right, top, and bottom of the subview’s frame.

When you create a UIView, its bounds coordinate system’s (0,0) point is at its top left.
If you change a view’s bounds origin, you move the origin of its internal coordinate
system. Because a subview is positioned in its superview with respect its superview’s
coordinate system, such a change will change the apparent position of a subview relative
to its superview. To illustrate, we start with our subview inset evenly within its super-
view, and then change the bounds origin of the superview:

UIView* v1 = [[UIView alloc] initWithFrame:CGRectMake(113, 111, 132, 194)];
v1.backgroundColor = [UIColor colorWithRed:1 green:.4 blue:1 alpha:1];

Figure 14-4. A subview exactly covering its superview

300 | Chapter 14: Views

UIView* v2 = [[UIView alloc] initWithFrame:CGRectInset(v1.bounds, 10, 10)];
v2.backgroundColor = [UIColor colorWithRed:.5 green:1 blue:0 alpha:1];
[self.window addSubview: v1];
[v1 addSubview: v2];
CGRect f = v1.bounds;
f.origin.x += 10;
f.origin.y += 10;
v1.bounds = f;
[v1 release]; [v2 release];

Nothing happens to the superview’s size or position. But the subview has moved up
and to the left so that it is flush with its superview’s top left corner (Figure 14-5).
Basically, what we’ve done is to say to the superview, “Instead of calling the point at
your upper left (0,0), call that point (10,10).” Because the subview’s frame origin is
itself at (10,10), the subview now touches the superview’s top left corner. The effect
of changing a view’s bounds origin may seem directionally backward — we increased
the superview’s origin in the positive direction, but the subview moved in the negative
direction — but think of it this way: a view’s bounds origin point coincides with its
frame’s top left.

We have seen that changing a view’s bounds size affects its frame size. The converse is
also true: changing a view’s frame size affects its bounds size. What is not affected by
changing a view’s bounds size is the view’s center. This property, like the frame prop-
erty, represents the view’s position within its superview, in the superview’s coordinates,
but it is the position of the bounds center, the point derived from the bounds like this:

CGPoint c = CGPointMake(CGRectGetMidX(theView.bounds),
 CGRectGetMidY(theView.bounds));

A view’s center is thus a single point establishing the positional relationship between
a view’s bounds and its superview’s bounds. Changing a view’s bounds does not change
its center (we already saw that when we increased a view’s bounds size, its frame ex-
panded around a stationary center); changing a view’s center does not change its
bounds.

Thus, a view’s bounds and center are orthogonal (independent), and describe (among
other things) both the view’s size and its position within its superview. The view’s frame
is therefore superfluous! In fact, the frame property is merely a convenient expression
of the center and bounds values. In most cases, this won’t matter to you; you’ll use the
frame property anyway. When you first create a view from scratch, the designated in-
itializer is initWithFrame:. You can change the frame, and the bounds size and center
will change to match. You can change the bounds size or the center, and the frame will

Figure 14-5. The superview’s bounds origin has been shifted

Bounds and Center | 301

change to match. Nevertheless, the proper and most reliable way to position and size
a view within its superview is to use its bounds and center, not its frame; there are some
situations in which the frame is meaningless, but the bounds and center will always
work.

We have seen that every view has its own coordinate system, expressed by its bounds,
and that a view’s coordinate system has a clear relationship to its superview’s coordinate
system, expressed by its center. This is true of every view in a window, so it is possible
to convert between the coordinates of any two views in the same window. Convenience
methods are supplied to perform this conversion both for a CGPoint and for a CGRect:
convertPoint:fromView:, convertPoint:toView:, convertRect:fromView:, and convert-
Rect:toView:. If the second parameter is nil, it is taken to be the window.

For example, if v2 is a subview of v1, then to center v2 within v1 you could say:

v2.center = [v1 convertPoint:v1.center fromView:v1.superview];

Layout
We have seen that a subview moves when its superview’s bounds origin is changed.
But what happens to a subview when its superview’s bounds size is changed? (And
remember, this includes changing the superview’s frame size.)

Of its own accord, nothing happens. The subview’s bounds and center haven’t
changed, and the superview’s bounds origin hasn’t moved, so the subview stays in the
same position relative to the top left of its superview. In real life, however, that often
won’t be what you want. You’ll want subviews to be resized and repositioned when
their superview’s bounds size is changed. This is called layout.

The need for layout is obvious in a context such as Mac OS X, where the user can freely
resize a window, potentially disturbing your interface. For example, you’d want an OK
button near the lower right corner to stay in the lower right corner as the window grows,
while a text field at the top of the window should stay at the top of the window, but
perhaps should widen as the window widens.

There are no user-resizable windows on an iOS device, but still, a superview might be
resized dynamically. For example, you might respond to the user rotating the device
90 degrees by swapping the width and height values of a view; now its subviews should
shift to compensate. Or you might want to provide a reusable complex view, such as
a table cell containing several subviews, without knowing its precise final dimensions
in advance.

Layout is performed in two primary ways, which can be combined:

Automatic layout
Automatic resizing of subviews depends on the superview’s autoresizesSubviews
property. To turn off a view’s automatic resizing altogether, set this property to
NO. If it is YES, then a subview will respond automatically to its superview’s being

302 | Chapter 14: Views

resized, in accordance with the rules prescribed by the subview’s autoresizing-
Mask property value.

Manual layout
The superview is sent the layoutSubviews message whenever it is resized; so, to lay
out subviews manually, provide your own subclass and override layoutSubviews.
If you’re going to use both approaches, automatic resizing is performed before
layoutSubviews is called.

You should never call layoutSubviews yourself. Instead, if you wish to trigger layout,
send setNeedsLayout to the view. This will cause the layout procedures to be followed
at the next appropriate moment. Alternatively, if you really need layout to occur right
this moment, send the view the layoutIfNeeded message; this may cause the layout of
the entire view tree, not only below but also above this view, and is probably not a very
common thing to do.

Automatic resizing is a matter of conceptually assigning a subview “springs and struts.”
A spring can stretch; a strut can’t. Springs and struts can be assigned internally or
externally. Thus you can specify, using internal springs and struts, whether and how
the view can be resized, and, using external springs and struts, whether and how the
view can be repositioned. For example:

• Imagine a subview that is centered in its superview and is to stay centered, but is
to resize itself as the superview is resized. It would have struts externally and springs
internally.

• Imagine a subview that is centered in its superview and is to stay centered, and is
not to resize itself as the superview is resized. It would have springs externally and
struts internally.

• Imagine an OK button that is to stay in the lower right of its superview. It would
have struts internally, struts externally to its right and bottom, and springs exter-
nally to its top and left.

• Imagine a text field that is to stay at the top of its superview. It is to widen as the
superview widens. It would have struts externally; internally it would have a ver-
tical strut and a horizontal spring.

When editing a nib file, you can experiment with assigning a view springs and struts
in the Size inspector (Autosizing). A solid line externally represents a strut; a solid line
internally represents a spring. A helpful animation shows you the effect on your view’s
position as its superview is resized.

In code, a combination of springs and struts is set through a view’s autoresizingMask
property. It’s a bitmask, so you use logical-or to combine options. The options, with
names that start with “UIViewAutoresizingFlexible”, represent springs; whatever isn’t
specified is a strut. The default is UIViewAutoresizingNone, meaning all struts.

Layout | 303

To demonstrate autoresizing, I’ll start with a view and two subviews, one stretched
across the top, the other confined to the lower right (Figure 14-6):

UIView* v1 = [[UIView alloc] initWithFrame:CGRectMake(100, 111, 132, 194)];
v1.backgroundColor = [UIColor colorWithRed:1 green:.4 blue:1 alpha:1];
UIView* v2 = [[UIView alloc] initWithFrame:CGRectMake(0, 0, 132, 10)];
v2.backgroundColor = [UIColor colorWithRed:.5 green:1 blue:0 alpha:1];
UIView* v3 =
 [[UIView alloc] initWithFrame:CGRectMake(v1.bounds.size.width-20,
 v1.bounds.size.height-20,
 20, 20)];
v3.backgroundColor = [UIColor colorWithRed:1 green:0 blue:0 alpha:1];
[self.window addSubview: v1];
[v1 addSubview: v2];
[v1 addSubview: v3];
// ... insert autoresizing settings here ...
[v1 release]; [v2 release]; [v3 release];

Into that example, I’ll insert code applying strings and struts to the two subviews to
make them behave like the text field and the OK button I was hypothesizing earlier:

v2.autoresizingMask = UIViewAutoresizingFlexibleWidth;
v3.autoresizingMask =
 UIViewAutoresizingFlexibleTopMargin | UIViewAutoresizingFlexibleLeftMargin;

Now I’ll resize the superview, thus bringing autoresizing into play; as you can see
(Figure 14-7), the subviews remain pinned in their correct relative positions:

CGRect f = v1.bounds;
f.size.width += 40;
f.size.height -= 50;
v1.bounds = f;

Figure 14-6. Before autoresizing

Figure 14-7. After autoresizing

304 | Chapter 14: Views

Transform
A view’s transform property alters how the view is drawn — it may, for example, change
the view’s perceived size and orientation — without affecting its bounds and center. A
transformed view continues to behave correctly: a rotated button, for example, is still
a button, and can be tapped in its apparent location and orientation.

A transform value is a CGAffineTransform, which is a struct representing six of the
nine values of a 3×3 transformation matrix (the other three values are constants, so
there’s no point representing them in the struct). You may have forgotten your high-
school linear algebra, so you may not recall what a transformation matrix is. For the
details, which are quite simple really, see the “Transforms” chapter of Apple’s Quartz
2D Programming Guide, especially the section called “The Math Behind the Matrices.”
But you don’t really need to know those details, because convenience functions, whose
names start with “CGAffineTransformMake,” are provided for creating three of the
basic types of transform: rotation, scaling, and translation (i.e., changing the view’s
apparent position). A fourth basic transform type, skewing or shearing, has no con-
venience function.

By default, a view’s transformation matrix is CGAffineTransformIdentity, the identity
transform. It has no visible effect, so you’re unaware of it. Any transform that you do
apply takes place around the view’s center, which is held constant.

Here’s some code to illustrate use of a transform:

UIView* v1 = [[UIView alloc] initWithFrame:CGRectMake(113, 111, 132, 194)];
v1.backgroundColor = [UIColor colorWithRed:1 green:.4 blue:1 alpha:1];
UIView* v2 = [[UIView alloc] initWithFrame:CGRectInset(v1.bounds, 10, 10)];
v2.backgroundColor = [UIColor colorWithRed:.5 green:1 blue:0 alpha:1];
[self.window addSubview: v1];
[v1 addSubview: v2];
v1.transform = CGAffineTransformMakeRotation(45 * M_PI/180.0);
[v1 release]; [v2 release];

The transform property of the view v1 is set to a rotation transform. The result (Fig-
ure 14-8) is that the view appears to be rocked 45 degrees clockwise. (I think in degrees,
but Core Graphics thinks in radians, so my code has to convert.) Observe that the view’s
center property is unaffected, so that the rotation seems to have occurred around the
view’s center. Moreover, the view’s bounds property is unaffected; the internal coordi-
nate system is unchanged, so the subview is drawn in the same place relative to its
superview. The view’s frame, however, is now meaningless, as no mere rectangle can
describe the region of the superview apparently occupied by the view. The rule is that
if a view’s transform is not the identity transform, you should neither get nor set its
frame. Also, automatic resizing of a subview requires that the superview’s transform be
the identity transform.

Suppose, instead of CGAffineTransformMakeRotation, we call CGAffineTransformMake-
Scale, like this:

Transform | 305

v1.transform = CGAffineTransformMakeScale(1.8, 1);

The bounds property of the view v1 is still unaffected, so the subview is still drawn in
the same place relative to its superview; this means that the two views seem to have
stretched horizontally together (Figure 14-9). No bounds or centers were harmed by
the application of this transform!

Transformation matrices can be chained. There are convenience functions for applying
one transform to another. Their names do not contain “Make.” These functions are
not commutative; that is, order matters. If you start with a transform that translates a
view to the right and then apply a rotation of 45 degrees, the rotated view appears to
the right of its original position; on the other hand, if you start with a transform that
rotates a view 45 degrees and then apply a translation to the right, the meaning of
“right” has changed, so the rotated view appears 45 degrees down from its original
position. To demonstrate the difference, I’ll start with a subview that exactly overlaps
its superview:

UIView* v1 = [[UIView alloc] initWithFrame:CGRectMake(20, 111, 132, 194)];
v1.backgroundColor = [UIColor colorWithRed:1 green:.4 blue:1 alpha:1];
UIView* v2 = [[UIView alloc] initWithFrame:v1.bounds];
v2.backgroundColor = [UIColor colorWithRed:.5 green:1 blue:0 alpha:1];

Then I’ll apply two successive transforms to the subview, leaving the superview to show
where the subview was originally. In this example, I translate and then rotate (Fig-
ure 14-10):

v2.transform = CGAffineTransformMakeTranslation(100, 0);
v2.transform = CGAffineTransformRotate(v2.transform, 45 * M_PI/180.0);

In this example, I rotate and then translate (Figure 14-11):

v2.transform = CGAffineTransformMakeRotation(45 * M_PI/180.0);
v2.transform = CGAffineTransformTranslate(v2.transform, 100, 0);

Figure 14-8. A rotation transform

Figure 14-9. A scale transform

306 | Chapter 14: Views

The function CGAffineTransformConcat concatenates two transform matrices using ma-
trix multiplication. Again, this operation is not commutative. The order is the oppo-
site of the order when using convenience functions for applying one transform to an-
other. For example, this gives the same result as Figure 14-11:

CGAffineTransform r = CGAffineTransformMakeRotation(45 * M_PI/180.0);
CGAffineTransform t = CGAffineTransformMakeTranslation(100, 0);
v2.transform = CGAffineTransformConcat(t,r); // not r,t

To remove a transform from a combination of transforms, apply its inverse. A conven-
ience function lets you obtain the inverse of a given affine transform. Again, order
matters. In this example, I rotate the subview and shift it to its “right,” and then remove
the rotation (Figure 14-12):

CGAffineTransform r = CGAffineTransformMakeRotation(45 * M_PI/180.0);
CGAffineTransform t = CGAffineTransformMakeTranslation(100, 0);
v2.transform = CGAffineTransformConcat(t,r);
v2.transform = CGAffineTransformConcat(CGAffineTransformInvert(r), v2.transform);

Figure 14-10. Translation, then rotation

Figure 14-11. Rotation, then translation

Figure 14-12. Rotation, then translation, then inversion of the rotation

Transform | 307

Finally, as there are no convenience methods for creating a skew (shear) transform, I’ll
illustrate by creating one manually, without further explanation (Figure 14-13):

v1.transform = CGAffineTransformMake(1, 0, -0.2, 1, 0, 0);

Transforms are useful particularly as temporary visual indicators. For example, you
might call attention to a view by applying a transform that scales it up slightly, and then
applying the identity transform to restore it to its original size, and animating those
changes.

Visibility and Opacity
A view can be made invisible by setting its hidden property to YES, and visible again by
setting it to NO. This takes it (and its subviews, of course) out of the visible interface
without the overhead of actually removing it from the view hierarchy. A hidden view
does not (normally) receive touch events, so to the user it really is as if the view weren’t
there. But it is there, so it can still participate in layout and can be manipulated in other
ways.

A view can be assigned a background color through its backgroundColor property, as
we’ve been doing in the examples so far in this chapter — indeed, having a background
color is the only thing that made our example views visible and distinguishable. A color
is a UIColor; this is not a difficult class to use, and I’m not going to go into details. A
view whose background color is nil has a transparent background. It is perfectly rea-
sonable for a view to have a transparent background and to do no additional drawing
of its own, just so that it can act as a convenient superview to other views, making them
behave together.

A view can be made partially or completely transparent through its alpha property:
1.0 means opaque, 0.0 means transparent, and a value may be anywhere between them,
inclusive. This affects subviews, as I’ve already mentioned; if a superview has an alpha of
0.5, none of its subviews can have an apparent opacity of more than 0.5, because
whatever alpha value they have will be drawn relative to 0.5. (Just to make matters
more complicated, colors have an alpha value as well. So, for example, a view can have
an alpha of 1.0 but still have a transparent background because its backgroundColor has
an alpha less than 1.0.) A view that is completely transparent (or very close to it) is like
a view whose hidden is YES: it is invisible, along with its subviews, and cannot (nor-
mally) be touched.

Figure 14-13. Skew (shear)

308 | Chapter 14: Views

A view’s opaque property, on the other hand, is a horse of a different color; changing it
has no effect on the view’s appearance. Rather, this property is a hint to the drawing
system. If a view completely fills its bounds with ultimately opaque material and its
alpha is 1.0, so that the view has no effective transparency, then it can be drawn more
efficiently (with less drag on performance) if you inform the drawing system of this fact
by setting its opaque to YES. Otherwise, you should set its opaque to NO. The opaque
value is not changed for you when you set a view’s backgroundColor or alpha! Setting it
correctly is entirely up to you; the default, perhaps surprisingly, is YES.

Visibility and Opacity | 309

CHAPTER 15

Drawing

Many UIView subclasses, such as a UIButton or a UITextField, know how to draw
themselves; sooner or later, though, you’re going to want to do some drawing of your
own. A class like UIImageView will display a static image; you can generate that image
dynamically by drawing it in code. And a pure UIView does little or no drawing of its
own; you can draw its appearance.

Drawing is not difficult, but it is a very large topic. There are some UIKit convenience
methods, but the full API is provided by Core Graphics, often referred to as Quartz, or
Quartz 2D. Core Graphics is the drawing system that underlies all iOS drawing —
UIKit drawing is built on top of it — so it is low-level and consists of C functions, but
it isn’t entirely alien. This chapter will familiarize you with the fundamentals. For com-
plete information, you’ll want to study Apple’s Quartz 2D Programming Guide.

UIImageView draws an image for you and takes care of all the details. If you want to
do any drawing for yourself, however, you must do so in a graphics context. A graphics
context is basically a place you can draw. In certain situations, a graphics context is
provided for you; otherwise, you must obtain or create one for yourself. Either way,
this graphics context may also become the current context. Core Graphics drawing
functions require that you specify a context to draw into; UIKit’s Objective-C drawing
methods typically draw into the current context. If you have a context that you want
to draw into and it isn’t the current context, you can make it the current context tem-
porarily by calling UIGraphicsPushContext (and be sure to restore things with UIGraphics-
PopContext later).

UIImage and UIImageView
If an image does not need to be created dynamically, but has already been created before
your app runs, then drawing may be as simple as providing an image file as a resource
in your app’s bundle. The system knows how to work with many standard image file
types, such as TIFF, JPEG, GIF, and PNG.

311

In the very simplest case, an image in your app’s bundle can be obtained through the
UIImage class method imageNamed:. This method looks for an image file with the sup-
plied name at the top level of your app’s bundle and reads it as a UIImage instance. A
nice thing about this approach is that memory management is handled for you: the
image data may be cached in memory, and if you ask for the same image by calling
imageNamed: again later, the cached data may be supplied immediately. You can also
read an image file from anywhere in your app’s bundle using the class method image-
WithContentsOfFile: or the instance method initWithContentsOfFile:. (You can get a
reference to your app’s bundle with [NSBundle mainBundle], and NSBundle then pro-
vides instance methods for getting the pathname of a file within the bundle.) There are
various other ways of obtaining a UIImage, but these are the most common.

Once you have a UIImage, displaying it may be as simple as handing it to a UIImageView
or some other built-in class that expects a UIImage. If a UIImageView instance begins
life in a nib and is to display a UIImage from a file in your app’s bundle, you won’t even
need any code; the UIImageView can be set to that file directly in the nib. (This mech-
anism works most easily if the file will be at the top level of the app’s bundle.)

A UIImageView can actually have two images, one assigned to its image property and
the other assigned to its highlightedImage property; which is displayed depends on the
value of the UIImageView’s highlighted property. This notion of highlighting is purely
optional, and you can use it however you like; a UIImageView does not automatically
highlight itself.

A UIImageView without an image and without a background color is invisible, so you
could start with an empty UIImageView in the place where you will later need an image
and assign the image in code as needed. An image may have areas that are transparent,
and a UIImageView will respect this; thus an image of any shape can appear, without
the user being aware that it resides in a rectangular host.

How a UIImageView draws its image depends upon the setting of its contentMode prop-
erty. (The contentMode property is inherited from UIView; I’ll discuss its more general
purpose later in this chapter.) For example, UIViewContentModeScaleToFill means the
image’s width and height are set to the width and height of the view, thus filling the
view completely even if this changes the image’s aspect ratio; UIViewContentMode-
Center means the image is drawn centered in the view without altering its size. The best
way to get a feel for the meanings of the various contentMode settings is to assign a
UIImageView a small image in a nib and then, in the Attributes inspector, change the
Mode pop-up menu, and see where and how the image draws itself.

When creating a UIImageView in code, you can take advantage of a convenience ini-
tializer, initWithImage: (or initWithImage:highlightedImage:). The default content-
Mode is UIViewContentModeScaleToFill, but the image is not initially scaled because the
view itself is sized to match to the image. You will still probably need to change the
UIImageView’s frame, or at least set its center, in order to place it correctly in its su-

312 | Chapter 15: Drawing

perview. In this example, I’ll put a picture of the planet Mars in the center of the win-
dow:

UIImageView* iv =
 [[UIImageView alloc] initWithImage:[UIImage imageNamed:@"Mars.png"]];
[self.window addSubview: iv];
iv.center = self.window.center;
[iv release];

On a device with a double-resolution screen (such as the iPhone 4 with Retina display),
all these methods of obtaining an image from a file will automatically use, if there is
one, a file with the same name extended by @2x, marking it as double-resolution by
assigning it a scale property value of 2.0. (So, in this case, we would have a second
image file called Mars@2x.png.) In this way, your app can contain both a single-reso-
lution and a double-resolution version of an image file; on the double-resolution display
device, the double-resolution version of the image is used, and is drawn at the same
size as the single-resolution image. Thus your code continues to work without change,
but your images look sharper.

The documentation warns that if a UIImageView is to be assigned multiple images
(such as an image and a highlightedImage), they must have the same scale property
value. This is because the UIImageView gets its own internal scaling information from
an image’s scale at the time it is assigned to it; it does not change its internal scale merely
because you switch the value of its highlighted property.

Starting in iOS 4, when an image is obtained by name from the bundle,
a file with the same name extended by ~ipad will automatically be used
if the app is running on an iPad. You can use this in a universal app to
supply different images automatically depending on whether the app
runs on an iPhone or iPod touch, on the one hand, or on an iPad, on
the other. This is true not just for images but for any resource obtained
by name from the bundle. See Apple’s Resource Programming Guide.

UIImage and Graphics Contexts
The function UIGraphicsBeginImageContext creates a graphics context suitable for use
as an image and makes it the current context. You then draw into this context to gen-
erate the image. When you’ve done that, you call UIGraphicsGetImageFromCurrentImage-
Context to turn the context into a UIImage, and then UIGraphicsEndImageContext to
dismiss the context. Now you have a UIImage that you can display in a UIImageView
or draw into some other graphics context.

UIImage provides methods for drawing itself into the current context. We now know
how to obtain an image context and make it the current context, so we can experiment
with these methods. Here, I’ll draw two pictures of Mars side by side:

UIImage* mars = [UIImage imageNamed:@"Mars.png"];
CGSize sz = [mars size];

UIImage and Graphics Contexts | 313

UIGraphicsBeginImageContext(CGSizeMake(sz.width*2, sz.height));
[mars drawAtPoint:CGPointMake(0,0)];
[mars drawAtPoint:CGPointMake(sz.width,0)];
UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();

If I now hand this image im over to a visible UIImageView, the image appears onscreen
(Figure 15-1). I could do this, for example, by creating the UIImageView in code, as
before:

UIImageView* iv = [[UIImageView alloc] initWithImage:im];
[self.window addSubview: iv];
iv.center = self.window.center;
[iv release];

Additional UIImage methods let you scale an image into a desired rectangle as you
draw, and specify the compositing (blend) mode whereby the image should combine
with whatever is already present. To illustrate, I’ll create an image of Mars centered in
another image of Mars that’s twice as large, using a blend mode (Figure 15-2):

UIImage* mars = [UIImage imageNamed:@"Mars.png"];
CGSize sz = [mars size];
UIGraphicsBeginImageContext(CGSizeMake(sz.width*2, sz.height*2));
[mars drawInRect:CGRectMake(0,0,sz.width*2,sz.height*2)];
[mars drawInRect:CGRectMake(sz.width/2.0, sz.height/2.0, sz.width, sz.height)
 blendMode:kCGBlendModeMultiply alpha:1.0];
UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();

There is no UIImage method for specifying the source rectangle — that is, for specifying
that you want to extract a smaller region of the original image. You can work around
this by specifying a smaller graphics context and positioning the image drawing so that
the desired region falls into it. For example, to obtain an image of the right half of Mars,
you’d make your graphics context half the width of the mars image, and then draw
mars shifted left, so that only its right half intersects the graphics context. There is no

Figure 15-1. Two images of Mars combined side by side

Figure 15-2. Two images of Mars in different sizes, composited

314 | Chapter 15: Drawing

harm in doing this, and it’s a perfectly standard device; the left half of mars simply isn’t
drawn (Figure 15-3):

UIImage* mars = [UIImage imageNamed:@"Mars.png"];
CGSize sz = [mars size];
UIGraphicsBeginImageContext(CGSizeMake(sz.width/2.0, sz.height));
[mars drawAtPoint:CGPointMake(-sz.width/2.0, 0)];
UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();

On a double-resolution device, the use of UIGraphicsBeginImageContext leads to an
undesirable result. The code works, and the image mars will of course be the double-
resolution version if there is one but the image ultimately being generated, im, is single-
resolution (its scale is 1.0). To generate a double-resolution image as our final output,
we must call UIGraphicsBeginImageContextWithOptions instead of UIGraphicsBegin-
ImageContext. The third parameter is the scale; if it is 0.0, the correct scale for the current
device will be assigned for us. This function was introduced in iOS 4.0, so to run without
crashing on an earlier system you’d need to test for its existence:

if (&UIGraphicsBeginImageContextWithOptions)
 UIGraphicsBeginImageContextWithOptions(sz, NO, 0.0);
else
 UIGraphicsBeginImageContext(sz);

CGImage
The Core Graphics version of UIImage is CGImage (actually a CGImageRef). They are
easily converted to one another: a UIImage has a CGImage property that accesses its
Quartz image data, and you can make a UIImage from a CGImage using imageWith-
CGImage: or initWithCGImage:.

A CGImage lets you create a new image directly from a rectangular region of the image.
(It also lets you apply an image mask, which you can’t do with UIImage.) I’ll demon-
strate by splitting the image of Mars in half and drawing the two halves separately
(Figure 15-4):

UIImage* mars = [UIImage imageNamed:@"Mars.png"];
// extract each half as a CGImage
CGSize sz = [mars size];
CGImageRef marsLeft = CGImageCreateWithImageInRect([mars CGImage],
 CGRectMake(0,0,sz.width/2.0,sz.height));
CGImageRef marsRight = CGImageCreateWithImageInRect([mars CGImage],
 CGRectMake(sz.width/2.0,0,sz.width/2.0,sz.height));
// draw each CGImage into an image context
UIGraphicsBeginImageContext(CGSizeMake(sz.width*1.5, sz.height));

Figure 15-3. Half the original image of Mars

CGImage | 315

CGContextRef con = UIGraphicsGetCurrentContext();
CGContextDrawImage(con, CGRectMake(0,0,sz.width/2.0,sz.height), marsLeft);
CGContextDrawImage(con, CGRectMake(sz.width,0,sz.width/2.0,sz.height), marsRight);
UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
CGImageRelease(marsLeft); CGImageRelease(marsRight);

As already mentioned, Core Graphics functions that operate in a graphics context re-
quire us to specify this context; our call to UIGraphicsBeginImageContext did not supply
us with a reference to the resulting context, but it did make the resulting context the
current context, which we can always obtain through UIGraphicsGetCurrentContext.
Observe also that we must follow the appropriate memory management rules for C
functions: wherever we generate something through a function with “Create” in its
name, we later call the corresponding “Release” function.

But there’s a problem with the previous example: the drawing is upside-down. It isn’t
rotated; it’s mirrored top to bottom, or, to use the technical term, flipped. This phe-
nomenon can arise when you create a CGImage and then draw it with CGContext-
DrawImage and is due to a mismatch in the native coordinate systems of the source
and target contexts.

There are various ways of compensating for this mismatch between the coordinate
systems. One is to draw the CGImage into an intermediate UIImage and extract an-
other CGImage from that. Example 15-1 presents a utility function for doing this.

Example 15-1. Utility for flipping an image drawing

CGImageRef flip (CGImageRef im) {
 CGSize sz = CGSizeMake(CGImageGetWidth(im), CGImageGetHeight(im));
 UIGraphicsBeginImageContext(sz);
 CGContextDrawImage(
 UIGraphicsGetCurrentContext(), CGRectMake(0, 0, sz.width, sz.height), im);
 CGImageRef result = [UIGraphicsGetImageFromCurrentImageContext() CGImage];
 UIGraphicsEndImageContext();
 return result;
}

Armed with the utility function from Example 15-1, we can now draw the halves of
Mars the right way up in the previous example:

CGContextDrawImage(
 con, CGRectMake(0,0,sz.width/2.0,sz.height), flip(marsLeft));
CGContextDrawImage(
 con, CGRectMake(sz.width,0,sz.width/2.0,sz.height), flip(marsRight));

Figure 15-4. Image of Mars split in half

316 | Chapter 15: Drawing

Another solution is to wrap the CGImage in a UIImage and draw using the UIImage
drawing methods discussed in the previous section. Those same two lines might then
be replaced with this:

[[UIImage imageWithCGImage:marsLeft] drawAtPoint:CGPointMake(0,0)];
[[UIImage imageWithCGImage:marsRight] drawAtPoint:CGPointMake(sz.width,0)];

Yet another solution is to apply a transform to the graphics context before drawing the
CGImage, effectively flipping the context’s internal coordinate system. This is elegant,
but can be confusing if there are other transforms in play. I’ll talk more about graphics
context transforms later in this chapter.

A further problem is that our code draws incorrectly on a high-resolution device if there
is a high-resolution version of our image file. The reason is that a UIImage has a
scale property, but a CGImage doesn’t. When you call a UIImage’s CGImage method,
therefore, you can’t assume that the resulting CGImage is the same size as the original
UIImage; a UIImage’s size property is the same for a single-resolution image and its
double-resolution counterpart, but the CGImage of a double-resolution image is twice
as large in both dimensions as the CGImage of the corresponding single-resolution
image.

So, in extracting a desired piece of the CGImage, we must either multiply all appropriate
values by the scale or express ourselves in terms of the CGImage’s dimensions. In this
case, as we are extracting the left and right halves of the image, the latter is obviously
the simpler course. So here’s a version of our original code that draws correctly on either
a single-resolution or a double-resolution device:

UIImage* mars = [UIImage imageNamed:@"Mars.png"];
CGSize sz = [mars size];
// Derive CGImage and use its dimensions to extract its halves
CGImageRef marsCG = [mars CGImage];
CGSize szCG = CGSizeMake(CGImageGetWidth(marsCG), CGImageGetHeight(marsCG));
CGImageRef marsLeft = CGImageCreateWithImageInRect(marsCG,
 CGRectMake(0,0,szCG.width/2.0,szCG.height));
CGImageRef marsRight = CGImageCreateWithImageInRect(marsCG,
 CGRectMake(szCG.width/2.0,0,szCG.width/2.0,szCG.height));
// Use double-resolution graphics context if possible

Why Flipping Happens
The ultimate source of accidental flipping is that Core Graphics comes from the Mac
OS X world, where the coordinate system’s origin is located by default at the bottom
left and the positive y-direction is upward, whereas on iOS the origin is located by
default at the top left and the positive y-direction is downward. In most drawing sit-
uations, no problem arises, because the coordinate system of the graphics context is
adjusted to compensate. Thus, the default coordinate system for drawing in a Core
Graphics context on iOS has the origin at the top left, just as you expect. But creating
and drawing a CGImage exposes the issue.

CGImage | 317

UIGraphicsBeginImageContextWithOptions(
 CGSizeMake(sz.width*1.5, sz.height), NO, 0.0);
// The rest is as before, calling flip() to compensate for flipping
CGContextRef con = UIGraphicsGetCurrentContext();
CGContextDrawImage(
 con, CGRectMake(0,0,sz.width/2.0,sz.height), flip(marsLeft));
CGContextDrawImage(
 con, CGRectMake(sz.width,0,sz.width/2.0,sz.height), flip(marsRight));
UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
CGImageRelease(marsLeft); CGImageRelease(marsRight);

Our flip compensation utility (Example 15-1) works here, but our other solution does
not. If you’re doing to derive a UIImage from a CGImage where scale matters, you have
to provide the scale by calling imageWithCGImage:scale:orientation (only on iOS 4.0
or later) instead of imageWithCGImage:. So our second solution now looks like this:

[[UIImage imageWithCGImage:marsLeft
 scale:[mars scale]
 orientation:UIImageOrientationUp]
 drawAtPoint:CGPointMake(0,0)];
[[UIImage imageWithCGImage:marsRight
 scale:[mars scale]
 orientation:UIImageOrientationUp]
 drawAtPoint:CGPointMake(sz.width,0)];

Drawing a UIView
The most flexible way to draw a UIView is to draw it yourself. Actually, you don’t draw
a UIView; you subclass UIView and endow the subclass with the ability to draw itself.
When a UIView needs drawing, its drawRect: method is called. Overriding that method
is your chance to draw. At the time that drawRect: is called, the current graphics context
has already been set to the view. You can use Core Graphics functions or UIKit con-
venience methods to draw into that context.

You should never call drawRect: yourself. If a view needs updating and you want its
drawRect: called, send the view the setNeedsDisplay message. This will cause draw-
Rect: to be called at the next proper moment.

If you subclass a built-in UIView subclass, don’t override drawRect: un-
less you are assured that this is legal. For example, it is not legal to
override drawRect: in a subclass of UIImageView; you cannot combine
your drawing with that of the UIImageView.

So let’s begin again. We’ll have a UIView subclass called MyView, in which we’ll do
all our drawing. How this class gets instantiated, and how the instance gets into our
view hierarchy, isn’t important. Here, I’ll do it in code as the app launches:

MyView* mv = [[MyView alloc] initWithFrame:
 CGRectMake(0, 0, self.window.bounds.size.width - 50, 150)];

318 | Chapter 15: Drawing

mv.center = self.window.center;
[self.window addSubview: mv];
mv.opaque = NO;
[mv release];

The only really new thing here is that we set our UIView instance’s opaque property to
NO. If we don’t do this, the view will be drawn with a black background, which isn’t
what we want. Of course, if the view fills its rectangle with opaque drawing or has an
opaque background color, we can leave opaque set to YES and gain some drawing ef-
ficiency (see Chapter 14).

The drawing action all takes place in MyView’s drawRect: method. At the time draw-
Rect: is called, we are guaranteed that the current Core Graphics context is MyView
itself, so we can obtain this if we need to with UIGraphicsGetCurrentContext, and then
we can do here whatever we did in our earlier examples of drawing in a context. For
example, we can draw two halves of Mars, one at each end of the view:

- (void)drawRect:(CGRect)rect {
 CGRect b = self.bounds;
 UIImage* mars = [UIImage imageNamed:@"Mars.png"];
 CGSize sz = [mars size];
 CGImageRef marsCG = [mars CGImage];
 CGSize szCG = CGSizeMake(CGImageGetWidth(marsCG), CGImageGetHeight(marsCG));
 CGImageRef marsLeft = CGImageCreateWithImageInRect(marsCG,
 CGRectMake(0,0,szCG.width/2.0,szCG.height));
 CGImageRef marsRight = CGImageCreateWithImageInRect(marsCG,
 CGRectMake(szCG.width/2.0,0,szCG.width/2.0,szCG.height));
 CGContextRef con = UIGraphicsGetCurrentContext();
 CGContextDrawImage(con,
 CGRectMake(0,0,sz.width/2.0,sz.height),
 flip(marsLeft));
 CGContextDrawImage(con,
 CGRectMake(b.size.width-sz.width/2.0, 0, sz.width/2.0, sz.height),
 flip(marsRight));
 CGImageRelease(marsLeft); CGImageRelease(marsRight);
}

There is no need to call super, because the superclass here is UIView, whose draw-
Rect: does nothing.

The need to draw in real time, on demand, surprises some beginners, who worry that
drawing may be a time-consuming operation. Equally surprising is the need to draw
repeatedly; even if the drawing has not changed, you may be called upon to perform
the same drawing again. Where drawing is extensive and can be compartmentalized
into sections, you may be able to gain some efficiency by paying attention to the rect
parameter passed into drawRect:. It designates the region of the view’s bounds that
needs refreshing. The system knows this either because this is the area that has just
been exposed by the removal of some covering view or because you called setNeeds-
DisplayInRect:, specifying it. Thus, you could call setNeedsDisplayInRect: to tell your
drawRect: to redraw a subregion of the view; the rest of the view will be left alone.

Drawing a UIView | 319

In general, however, you should not optimize prematurely. What looks like a lengthy
drawing operation may be extremely fast. And the iOS drawing system is efficient; it
doesn’t call drawRect: unless it has to (or is told to, through a call to setNeeds-
Display), and once a view has drawn itself, the result is cached so that the cached
drawing can be reused instead of repeating the drawing operation from scratch.

Graphics Context State
When you draw in a graphics context, the drawing obeys the context’s current settings.
Thus, the way you draw using Core Graphics functions is to configure the context’s
settings first, and then draw. For example, to draw a red line followed by a blue line,
you would first set the context’s line color to red, and then draw the first line; then
you’d set the context’s line color to blue, and then draw the second line. To the eye, it
appears that the redness and blueness are properties of the individual lines, but in fact,
at the time you draw each of them, they are properties of the entire graphics context.

A graphics context thus has, at every moment, a state, which is the sum total of all its
settings; the way a piece of drawing looks is the result of what the graphics context’s
state was at the moment that piece of drawing was performed. To help you manipulate
entire states, the graphics context provides a stack for holding states. Every time you
call CGContextSaveGState, the context pushes the entire current state onto the stack;
every time you call CGContextRestoreGState, the context retrieves the state from the top
of the stack (the state that was most recently pushed) and sets itself to that state.

Many of the settings that constitute a graphics context’s state, and that determine the
behavior and appearance of drawing performed at that moment, are similar to those of
any drawing application. They include (along with some of the commands that deter-
mine them):

Line thickness and dash style
CGContextSetLineWidth, CGContextSetLineDash

Making a View’s Background Transparent
If a view’s backgroundColor is nil (the default when creating a UIView in code) and its
opaque is YES (ditto), it will be drawn with a black background; therefore, to make such
a view’s background transparent, you must set its opaque to NO. This problem doesn’t
arise with a view instantiated from a nib, because you can’t assign a view a nil background-
Color in the nib; it always has some background color, even if it is what the nib calls
Clear Color ([UIColor clearColor], or transparent black). Thus, assigning
[UIColor clearColor] as a code-created view’s backgroundColor has the same apparent
effect, and you may encounter code that does this. But Apple warns that you should
still set a transparent view’s opaque to NO, or incorrect drawing may occur.

320 | Chapter 15: Drawing

Line end-cap style and join style
CGContextSetLineCap, CGContextSetLineJoin, CGContextSetMiterLimit

Line color or pattern
CGContextSetRGBStrokeColor, CGContextSetGrayStrokeColor, CGContextSetStroke-
ColorWithColor, CGContextSetStrokePattern

Fill color or pattern
CGContextSetRGBFillColor, CGContextSetGrayFillColor, CGContextSetFillColor-
WithColor, CGContextSetFillPattern

Shadow
CGContextSetShadow, CGContextSetShadowWithColor

Blend mode
CGContextSetBlendMode (this determines how drawing that you do now will be
composited with drawing already present)

Overall transparency
CGContextSetAlpha (individual colors also have an alpha component)

Text features
CGContextSelectFont, CGContextSetFont, CGContextSetFontSize, CGContextSetText-
DrawingMode, CGContextSetCharacterSpacing

Whether anti-aliasing and font smoothing are in effect
CGContextSetShouldAntialias, CGContextSetShouldSmoothFonts

Additional settings include:

Clipping area
Drawing outside the clipping area is not physically drawn.

Transform (or “CTM,” for “current transform matrix”)
Changes how points that you specify in subsequent drawing commands are map-
ped onto the physical space of the canvas.

Many (but not all) of these settings will be illustrated by examples later in this chapter.

Paths
By issuing a series of instructions for moving an imaginary pen, you trace out a path.
Such a path does not constitute drawing! First you provide a path; then you draw.
Drawing can mean stroking the path or filling the path, or both. Again, this should be
a familiar notion from certain drawing applications.

A path is constructed by tracing it out from point to point. Think of the drawing system
as holding a pen. Then you must first tell that pen where to position itself, setting the
current point; after that, you issue a series of commands telling it how to trace out each

Paths | 321

subsequent piece of the path. Each additional piece of the path starts at the current
point; its end becomes the new current point.

Here are some path-drawing commands you’re likely to give:

Position the current point
CGContextMoveToPoint

Trace a line
CGContextAddLineToPoint, CGContextAddLines

Trace a rectangle
CGContextAddRect, CGContextAddRects

Trace an ellipse or circle
CGContextAddEllipseInRect

Trace an arc
CGContextAddArcToPoint, CGContextAddArc

Trace a Bezier curve with one or two control points
CGContextAddQuadCurveToPoint, CGContextAddCurveToPoint

Close the current path
CGContextClosePath. This appends a line from the last point of the path to the first
point. There’s no need to do this if you’re about to fill the path, since it’s done for
you.

Stroke or fill the current path
CGContextStrokePath, CGContextFillPath, CGContextEOFillPath, CGContextDraw-
Path. Stroking or filling the current path clears the path. Use CGContextDrawPath if
you want both to fill and to stroke the path in a single command, because if you
merely stroke it first with CGContextStrokePath, the path is cleared and you can no
longer fill it.

Erase a rectangle
CGContextClearRect. This erases all existing drawing in a rectangle. When called
on the current context in a view’s drawRect:, it erases the view’s background color
if there is one. If the background color is nil or a color with some transparency, the
result will be a transparent rectangle; if the background color is opaque, the result
will be a black rectangle.

There are also a lot of convenience functions that create a path and stroke or fill it all
in a single move: CGContextStrokeLineSegments, CGContextStrokeRect, CGContextStroke-
RectWithWidth, CGContextFillRect, CGContextFillRects, CGContextStrokeEllipseIn-
Rect, CGContextFillEllipseInRect.

If you’re worried that there might be an existing path, you can call CGContextBegin-
Path as you start constructing a new path; many of Apple’s examples do this, but in
practice I usually do not find it necessary.

322 | Chapter 15: Drawing

A path can be compound, meaning that it consists of multiple independent pieces. For
example, a single path might consist of two separate closed shapes: a rectangle and a
circle. When you call CGContextMoveToPoint in the middle of constructing a path (that
is, after tracing out a path and without clearing it by filling, stroking, or calling CGContext-
BeginPath), you pick up the imaginary pen and move it to a new location without tracing
a segment, thus preparing to start an independent piece of the same path.

To illustrate the typical use of path-drawing commands, I’ll generate the up-pointing
arrow shown in Figure 15-5. This might not be the best way to create the arrow, and
I’m deliberately avoiding use of the convenience functions, but it’s clear and shows a
nice basic variety of typical commands:

// obtain the current graphics context
CGContextRef con = UIGraphicsGetCurrentContext();

// draw a black (by default) vertical line, the shaft of the arrow
CGContextMoveToPoint(con, 100, 100);
CGContextAddLineToPoint(con, 100, 19);
CGContextSetLineWidth(con, 20);
CGContextStrokePath(con);

// draw a red triangle, the point of the arrow
CGContextSetFillColorWithColor(con, [[UIColor redColor] CGColor]);
CGContextMoveToPoint(con, 80, 25);
CGContextAddLineToPoint(con, 100, 0);
CGContextAddLineToPoint(con, 120, 25);
CGContextFillPath(con);

// snip a triangle out of the shaft by drawing in Clear blend mode
CGContextMoveToPoint(con, 90, 101);
CGContextAddLineToPoint(con, 100, 90);
CGContextAddLineToPoint(con, 110, 101);
CGContextSetBlendMode(con, kCGBlendModeClear);
CGContextFillPath(con);

Properly speaking, we should probably surround our drawing code with calls to
CGContextSaveGState and CGContextRestoreGState, just in case. It probably wouldn’t
make any difference in this particular example, as the context does not persist between
calls to drawRect:, but it can’t hurt.

If a path needs to be reused, you can save it as a CGPath, which is actually a CGPathRef.
You can either copy the graphics context’s current path using CGContextCopyPath, or

Figure 15-5. A simple path drawing

Paths | 323

you can create a new CGMutablePathRef and construct the path using various CGPath
functions that parallel the graphics path-construction functions.

Another nice use of a CGMutablePathRef is to pass it to a method that modifies the
path; this can result in an elegant encapsulation of functionality. For example, in one
of my apps I draw some cards. Each card consists of one, two, or three repetitions of
the same shape. There are three different shapes, and a card draws a shape in a particular
color. So I have a class called Shape, and three Shape subclasses. Shape declares a
method drawShape:inRect:, like this:

- (void) drawShape: (CGMutablePathRef) p inRect: (CGRect) r;

Each Shape subclass overrides and implements drawShape: in its own way, depending
on what the shape is. For instance, the Ellipse shape implements it like this:

- (void) drawShape: (CGMutablePathRef) p inRect: (CGRect) r {
 CGPathAddEllipseInRect(p, NULL, r);
}

A card has an instance variable itsShape, which is an instance of one of the three Shape
subclasses. So, as part of the process of drawing the card, I simply hand to that card’s
itsShape a CGMutablePathRef and a CGRect and tell it to draw the shape for me:

CGMutablePathRef p = CGPathCreateMutable();
[[theCard itsShape] drawShape: p inRect: theRect];
CGContextAddPath(context, p);
CGPathRelease(p);
// more stuff here...

This routine then proceeds to set the graphics context’s color and other features, and
tells the path to stroke and fill — without knowing anything about what shapes it’s
drawing! That knowledge resides entirely in the Shape subclasses.

There is also, starting in iOS 3.2, a UIKit class, UIBezierPath, that wraps CGPath. It
provides methods for drawing certain path shapes, as well as for stroking, filling, and
for accessing certain settings of the current graphics context state. Similarly, UIColor
provides methods for setting the current graphics context’s stroke and fill colors. Thus
we could rewrite our arrow-drawing routine like this:

UIBezierPath* p = [UIBezierPath bezierPath];
[p moveToPoint:CGPointMake(100,100)];
[p addLineToPoint:CGPointMake(100, 19)];
[p setLineWidth:20];
[p stroke];

[[UIColor redColor] set];
[p removeAllPoints];
[p moveToPoint:CGPointMake(80,25)];
[p addLineToPoint:CGPointMake(100, 0)];
[p addLineToPoint:CGPointMake(120, 25)];
[p fill];

[p removeAllPoints];
[p moveToPoint:CGPointMake(90,101)];

324 | Chapter 15: Drawing

[p addLineToPoint:CGPointMake(100, 90)];
[p addLineToPoint:CGPointMake(110, 101)];
[p fillWithBlendMode:kCGBlendModeClear alpha:1.0];

There’s no savings of code in this particular case, but UIBezierPath still might be useful
if you need object features, and it does offer one convenience method, bezierPathWith-
RoundedRect:cornerRadius:, that is particularly attractive (drawing a rectangle with
rounded corners using only Core Graphics function calls is rather tedious).

Clipping
Another use of a path is to mask out areas, protecting them from future drawing. This
is called clipping. By default, a graphics context’s clipping region is the entire graphics
context: you can draw anywhere within the context.

The clipping area is a feature of the context as a whole, and any new clipping area is
applied by intersecting it with the existing clipping area; so if you apply your own
clipping region, the way to remove it from the graphics context is to wrap things with
calls to CGContextSaveGState and CGContextRestoreGState.

To illustrate, I’ll rewrite the code that generated our original arrow (Figure 15-5) to use
clipping instead of a blend mode to “punch out” the triangular notch in the tail of the
arrow. This is a little tricky, because what we want to clip to is not the region inside
the triangle but the region outside it. To express this, we’ll use a compound path con-
sisting of more than one closed area — the triangle, and the drawing area as a whole
(which we can obtain with CGContextGetClipBoundingBox).

Both when filling a compound path and when using it to express a clipping region, the
system follows one of two rules:

Winding rule
The fill or clipping area is denoted by an alternation in the direction (clockwise or
counterclockwise) of the path demarcating each region.

Even-odd rule (EO)
The fill or clipping area is denoted by a simple count of the paths demarcating each
region.

Our situation is extremely simple, so it’s easier to use the even-odd rule. So we set up
the clipping area using CGContextEOClip and then draw the arrow:

// obtain the current graphics context
CGContextRef con = UIGraphicsGetCurrentContext();

// punch triangular hole in context clipping region
CGContextMoveToPoint(con, 90, 100);
CGContextAddLineToPoint(con, 100, 90);
CGContextAddLineToPoint(con, 110, 100);
CGContextClosePath(con);
CGContextAddRect(con, CGContextGetClipBoundingBox(con));

Clipping | 325

CGContextEOClip(con);

// draw the vertical line
CGContextMoveToPoint(con, 100, 100);
CGContextAddLineToPoint(con, 100, 19);
CGContextSetLineWidth(con, 20);
CGContextStrokePath(con);

// draw the red triangle, the point of the arrow
CGContextSetFillColorWithColor(con, [[UIColor redColor] CGColor]);
CGContextMoveToPoint(con, 80, 25);
CGContextAddLineToPoint(con, 100, 0);
CGContextAddLineToPoint(con, 120, 25);
CGContextFillPath(con);

Gradients
Gradients can range from the simple to the complex. A simple gradient (which is all I’ll
describe here) is determined by a color at one endpoint along with a color at the other
endpoint, plus (optionally) colors at intermediate points; the gradient is then painted
either linearly between two points in the context or radially between two circles in the
context.

You can’t use a gradient as a path’s fill color, but you can restrict a gradient to a path’s
shape by clipping, which amounts to the same thing.

To illustrate, I’ll redraw our arrow, using a linear gradient as the “shaft” of the arrow
(Figure 15-6):

// obtain the current graphics context
CGContextRef con = UIGraphicsGetCurrentContext();
CGContextSaveGState(con);

// punch triangular hole in context clipping region
CGContextMoveToPoint(con, 90, 100);
CGContextAddLineToPoint(con, 100, 90);
CGContextAddLineToPoint(con, 110, 100);
CGContextClosePath(con);
CGContextAddRect(con, CGContextGetClipBoundingBox(con));

How Big Is My Context?
At first blush, it appears that there’s no way to learn a graphics context’s size. Typically,
this doesn’t matter, because either you created the graphics context or it’s the graphics
context of some object whose size you know, such as a UIView. But in fact, because
the default clipping region of a graphics context is the entire context, you can use
CGContextGetClipBoundingBox to learn the context’s “bounds” (before changing the
clipping region, of course).

326 | Chapter 15: Drawing

CGContextEOClip(con);

// draw the vertical line, add its shape to the clipping region
CGContextMoveToPoint(con, 100, 100);
CGContextAddLineToPoint(con, 100, 19);
CGContextSetLineWidth(con, 20);
CGContextReplacePathWithStrokedPath(con);
CGContextClip(con);

// draw the gradient
CGFloat locs[3] = { 0.0, 0.5, 1.0 };
CGFloat colors[12] = {
 0.3,0.3,0.3,0.8, // starting color, transparent gray
 0.0,0.0,0.0,1.0, // intermediate color, black
 0.3,0.3,0.3,0.8 // ending color, transparent gray
};
CGColorSpaceRef sp = CGColorSpaceCreateDeviceGray();
CGGradientRef grad = CGGradientCreateWithColorComponents (sp, colors, locs, 3);
CGContextDrawLinearGradient (con, grad, CGPointMake(89,0), CGPointMake(111,0), 0);
CGColorSpaceRelease(sp);
CGGradientRelease(grad);

CGContextRestoreGState(con); // done clipping

// draw the red triangle, the point of the arrow
CGContextSetFillColorWithColor(con, [[UIColor redColor] CGColor]);
CGContextMoveToPoint(con, 80, 25);
CGContextAddLineToPoint(con, 100, 0);
CGContextAddLineToPoint(con, 120, 25);
CGContextFillPath(con);

The call to CGContextReplacePathWithStrokedPath pretends to stroke the current path,
using the current line width and other line-related context state settings, but then cre-
ates a new path representing the outside of that stroked path. Thus, instead of a thick
line we have a rectangular region that we can use as the clip region.

We then create the gradient and paint it. The procedure is verbose but simple; every-
thing is boilerplate. We describe the gradient as a set of locations on the continuum
between one endpoint (0.0) and the other endpoint (1.0), along with the color to go in
each location; in this case, I want the gradient to be lighter at the edges and darker in
the middle, so I use three locations, with the dark one at 0.5. We must also supply a
color space in order to create the gradient. Finally, we create the gradient, paint it into
place, and release the color space and the gradient.

Figure 15-6. Drawing with a gradient

Gradients | 327

Colors and Patterns
A color is a CGColor (actually a CGColorRef). CGColor is not difficult to work with,
and is bridged to UIColor through UIColor’s colorWithCGColor: and CGColor methods.

A pattern, on the other hand, is a CGPattern (actually a CGPatternRef). You can create
a pattern and stroke or fill with it. The process is rather elaborate. As an extremely
simple example, I’ll replace the red triangular arrowhead with a red-and-blue striped
triangle (Figure 15-7). To do so, remove this line:

CGContextSetFillColorWithColor(con, [[UIColor redColor] CGColor]);

In its place, put the following:

CGColorSpaceRef sp2 = CGColorSpaceCreatePattern(NULL);
CGContextSetFillColorSpace (con, sp2);
CGColorSpaceRelease (sp2);
CGPatternCallbacks callback = {
 0, &drawStripes, NULL
};
CGAffineTransform tr = CGAffineTransformIdentity;
CGPatternRef patt = CGPatternCreate(NULL,
 CGRectMake(0,0,4,4),
 tr,
 4, 4,
 kCGPatternTilingConstantSpacingMinimalDistortion,
 true,
 &callback);
CGFloat alph = 1.0;
CGContextSetFillPattern(con, patt, &alph);
CGPatternRelease(patt);

That code is verbose, but it is almost entirely boilerplate. To understand it, it almost
helps to read it backward. What we’re leading up to is the call to CGContextSetFill-
Pattern; instead of setting a fill color, we’re setting a fill pattern, to be used the next
time we fill a path (in this case, the triangular arrowhead). The third parameter to
CGContextSetFillPattern is a pointer to a CGFloat, so we have to set up the CGFloat
itself beforehand. The second parameter to CGContextSetFillPattern is a CGPattern-
Ref, so we have to create that CGPatternRef beforehand (and release it afterward).

So now let’s talk about the call to CGPatternCreate. A pattern is a drawing in a rectan-
gular “cell”; we have to state both the size of the cell (the second argument) and the
spacing between origin points of cells (the fourth and fifth arguments). In this case, the
cell is 4×4, and every cell exactly touches its neighbors both horizontally and vertically.

Figure 15-7. A patterned fill

328 | Chapter 15: Drawing

We have to supply a transform to be applied to the cell (the third argument); in this
case, we’re not doing anything with this transform, so we supply the identity transform.
We supply a tiling rule (the sixth argument). We have to state whether this is a color
pattern or a stencil pattern; it’s a color pattern, so the seventh argument is true. And
we have to supply a pointer to a callback function that actually draws the pattern into
its cell (the eighth argument).

Except that that’s not what we have to supply as the eighth argument. To make matters
more complicated, what we actually have to supply here is a pointer to a CGPattern-
Callbacks struct. This struct consists of the number 0 and pointers to two functions,
one called to draw the pattern into its cell, the other called when the pattern is released.
We’re not specifying the second function, however; it is for memory management, and
we don’t need it in this simple example.

We have almost worked our way backward to the start of the code. It turns out that
before you can call CGContextSetFillPattern with a colored pattern, you have to set the
context’s fill color space to a pattern color space. If you neglect to do this, you’ll get an
error when you call CGContextSetFillPattern. So we create the color space, set it as the
context’s fill color space, and release it.

But we are still not finished, because I haven’t shown you the function that actually
draws the pattern cell! This is the function whose address is taken as &drawStripes in
our code. Here it is:

void drawStripes (void *info, CGContextRef con) {
 // assume 4 x 4 cell
 CGContextSetFillColorWithColor(con, [[UIColor redColor] CGColor]);
 CGContextFillRect(con, CGRectMake(0,0,4,4));
 CGContextSetFillColorWithColor(con, [[UIColor blueColor] CGColor]);
 CGContextFillRect(con, CGRectMake(0,0,4,2));
}

As you can see, the actual pattern-drawing code is very simple. The only tricky issue is
that the call to CGPatternCreate must be in agreement with the pattern-drawing func-
tion as to the size of a cell, or the pattern won’t come out the way you expect. We know
in this case that the cell is 4×4. So we fill it with red, and then fill its lower half with
blue. When these cells are tiled touching each other horizontally and vertically, we get
the stripes that you see in Figure 15-7.

Note, finally, that the code as presented has left the graphics context in an undesirable
state, with its fill color space set to a pattern color space. This would cause trouble if
we were later to try to set the fill color to a normal color. The solution, as usual, is to
wrap the code in calls to CGContextSaveGState and CGContextRestoreGState.

You may have observed in Figure 15-7 that the stripes do not fit neatly inside the triangle
of the arrow-head: the bottommost stripe is something like half a blue stripe. This is
because a pattern is positioned not with respect to the shape you are filling (or stroking),
but with respect to the graphics context as a whole. We could shift the pattern position
by calling CGContextSetPatternPhase before drawing.

Colors and Patterns | 329

Graphics Context Transforms
Just as a UIView can have a transform, so can a graphics context. However, applying
a transform to a graphics context has no effect on the drawing that’s already in it; it
affects only the drawing that takes place after it is applied, altering the way the coor-
dinates you provide are mapped onto the graphics context’s area. A graphics context’s
transform is called its CTM, for “current transformation matrix.”

It is quite usual to take full advantage of a graphics context’s CTM to save yourself
from performing even simple calculations. You can multiply the current transform by
any CGAffineTransform using CGContextConcatCTM; there are also convenience func-
tions for applying a translate, scale, or rotate transform to the current transform.

The base transform for a graphics context is already set for you when you obtain the
context; this is how the system is able to map context drawing coordinates onto screen
coordinates. Whatever transforms you apply are applied to the current transform, so
the base transform remains in effect and drawing continues to work. You can always
return to the base transform after applying your own transforms by wrapping your code
in calls to CGContextSaveGState and CGContextRestoreGState.

For example, we have hitherto been drawing our upward-pointing arrow with code
that knows how to place that arrow at only one location: the top left of its rectangle is
hard-coded at (80,0). This is silly. It makes the code hard to understand, as well as
inflexible and difficult to reuse. Surely the sensible thing would be to draw the arrow
at (0,0), by subtracting 80 from all the x-values in our existing code. Now it is easy to
draw the arrow at any position, simply by applying a translation transform beforehand,
mapping (0,0) to the desired top left corner of the arrow. So, to draw it at (80,0), we
would say:

CGContextTranslateCTM(con, 80, 0);
// now draw the arrow at (0,0)

A rotate transform is particularly useful, allowing you to draw in a rotated orientation
without any nasty trigonometry. However, it’s a bit tricky because the point around
which the rotation takes place is the origin. This is rarely what you want, so you have
apply a translate transform first, to map the origin to the point around which you really
want to rotate. But then, after rotating, in order to figure out where to draw you will
probably have to reverse your translate transform.

To illustrate, here’s code to draw our arrow repeatedly at several angles, pivoting
around the end of its tail (Figure 15-8). First, we’ll encapsulate the drawing of the arrow
as a UIImage. Then we simply draw that UIImage repeatedly:

UIGraphicsBeginImageContextWithOptions(CGSizeMake(40,100), NO, 0.0);
CGContextRef con = UIGraphicsGetCurrentContext();

// draw the arrow into the image context
// draw it at (0,0)! adjust all x-values by subtracting 80
// ... actual code omitted ...

330 | Chapter 15: Drawing

UIImage* im = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();

con = UIGraphicsGetCurrentContext();

[im drawAtPoint:CGPointMake(0,0)];
for (int i=0; i<3; i++) {
 CGContextTranslateCTM(con, 20, 100);
 CGContextRotateCTM(con, 30 * M_PI/180.0);
 CGContextTranslateCTM(con, -20, -100);
 [im drawAtPoint:CGPointMake(0,0)];
}

A transform is also one more solution for the “flip” problem we encountered earlier
with CGContextDrawImage. Instead of reversing the drawing, we can reverse the context
into which we draw it. Essentially, we apply a “flip” transform to the context’s coor-
dinate system. You move the context’s top downward, and then reverse the direction
of the y-coordinate by applying a scale transform whose y-multiplier is -1:

CGContextTranslateCTM(con, 0, theHeight);
CGContextScaleCTM(con, 1.0, -1.0);

How far down you move the context’s top depends on how you intend to draw the
image. So, for example, earlier we used a flip utility function to draw the two halves
of Mars the right way up:

CGContextDrawImage(con,
 CGRectMake(0,0,sz.width/2.0,sz.height),
 flip(marsLeft));
CGContextDrawImage(con,
 CGRectMake(b.size.width-sz.width/2.0, 0, sz.width/2.0, sz.height),
 flip(marsRight));

For those two lines, we could substitute this:

CGContextTranslateCTM(con, 0, sz.height);
CGContextScaleCTM(con, 1.0, -1.0);
CGContextDrawImage(con,
 CGRectMake(0,0,sz.width/2.0,sz.height),
 marsLeft);
CGContextDrawImage(con,
 CGRectMake(b.size.width-sz.width/2.0, 0, sz.width/2.0, sz.height),
 marsRight);

Figure 15-8. Drawing rotated with a CTM

Graphics Context Transforms | 331

Shadows
To add a shadow to a drawing, give the context a shadow value before drawing. The
shadow position is expressed as a CGSize, where the positive direction for both values
indicates down and to the right. The blur value is an open-ended positive number;
Apple doesn’t explain how the scale works, but experimentation shows that 12 is nice
and blurry, 99 is so blurry as to be shapeless, and higher values become problematic.

Figure 15-9 shows the result of the same code that generated Figure 15-8, except that
before we start drawing the arrow into the real context, we give the real context a
shadow with this line:

CGContextSetShadow(con, CGSizeMake(7, 7), 12);

Points and Pixels
A point is a dimensionless location described by an x-coordinate and a y-coordinate.
When you draw in a graphics context, you specify the points at which to draw, and
this works regardless of the device’s resolution, because Core Graphics maps your
drawing nicely onto the physical output (using the base CTM, along with any anti-
aliasing and smoothing). Therefore, throughout this chapter I’ve concerned myself with
graphics context points, disregarding their relationship to screen pixels.

However, pixels do exist. A pixel is a physical, integral, dimensioned unit of display in
the real world. Whole-numbered points effectively lie between pixels, and this can
matter if you’re fussy, especially on a single-resolution device. For example, if a vertical
path with whole-number coordinates is stroked with a line width of 1, half the line falls
on each side of the path, and the drawn line on the screen of a single-resolution device
will seem to be 2 pixels wide (because the device can’t illuminate half a pixel).

You will sometimes encounter advice suggesting that if this effect is objectionable, you
should try shifting the line’s position by 0.5, to center it in its pixels. This advice may
appear to work, but it makes some simple-minded assumptions. A more sophisticated
approach is to obtain the UIView’s contentScaleFactor property (on iOS 4.0 and later).
This value will be either 1.0 or 2.0, so you can divide by it to convert from pixels to
points. Consider also that the most accurate way to draw a vertical or horizontal line

Figure 15-9. Drawing with a shadow

332 | Chapter 15: Drawing

is not to stroke a path but to fill a rectangle. So this code will draw a perfect 1-pixel-
wide vertical line on any device:

CGContextFillRect(con, CGRectMake(100,0,1.0/self.contentScaleFactor,100));

Content Mode
A view that draws something within itself, as opposed to merely having a background
color and subviews (as in the previous chapter), has content. This means that its content-
Mode property becomes important whenever the view is resized. As I mentioned earlier,
the drawing system will avoid asking a view to redraw itself from scratch if possible;
instead, it will use the cached result of the previous drawing operation. So, if the view
is resized, the system may simply stretch or shrink or reposition the cached drawing,
if your contentMode setting instructs it to do so.

It’s a little tricky to illustrate this point, because I have to arrange for the view to be
resized without also causing it to be redrawn (that is, without triggering a call to draw-
Rect:). Here’s how I’ll do that. As the app starts up, I’ll create the MyView instance in
code and put it in the window, much as before. Then I’ll use delayed performance to
resize the MyView instance after the window has shown and the interface has been
initially displayed:

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {
 MyView* mv = [[MyView alloc]
 initWithFrame: CGRectMake(0, 0, self.window.bounds.size.width - 50, 150)];
 mv.center = self.window.center;
 [self.window addSubview: mv];
 mv.opaque = NO;
 mv.tag = 111; // so I can get a reference to this view later
 [mv release];
 [self.window makeKeyAndVisible];
 [self performSelector:@selector(resize:) withObject:nil afterDelay:0.1];
 return YES;
}

- (void) resize: (id) dummy {
 UIView* mv = [self.window viewWithTag:111];
 CGRect f = mv.bounds;
 f.size.height *= 2;
 mv.bounds = f;
}

We double the height of the view without causing drawRect: to be called. The result is
that the view’s drawing appears at double its correct height. For example, if our view’s
drawRect: code is the same as the code that generated Figure 15-6, we get Figure 15-10.

This, however, is almost certainly not what we want. Sooner or later drawRect: will be
called, and the drawing will be refreshed in accordance with our code. Our code doesn’t
say to draw the arrow at a height that is relative to the height of the view’s bounds; it

Content Mode | 333

draws the arrow at a fixed height. Thus, not only has the arrow stretched, but at some
future time, it will snap back to its original size.

The moral is that our view’s contentMode property needs to be in agreement with how
the view draws itself. For example, our drawRect: code dictates the size and position of
the arrow relative to the view’s bounds origin, its top left. So we could set its content-
Mode to UIViewContentModeTopLeft. Alternatively, and more likely, we could set it to
UIViewContentModeRedraw; this will cause automatic scaling and repositioning of the
cached content to be turned off, and instead the view’s setNeedsDisplay method will
be called, ultimately triggering drawRect: to redraw the content.

On the other hand, if a view might be resized only momentarily — say, as part of an
animation — then stretching behavior might be exactly what you want. Suppose we’re
going to animate the view by making it get a little larger for a moment and then returning
it to its original size, perhaps as a way of attracting the user’s attention. Then presum-
ably we do want the view’s content to stretch and shrink as the view stretches and
shrinks; that’s the whole point of the animation. This is precisely what the default
contentMode value, UIViewContentModeScaleToFill, does for us. And remember, it does
it efficiently; what’s being stretched and shrunk is just a cached image of our view’s
content.

Figure 15-10. Automatic stretching of content

334 | Chapter 15: Drawing

CHAPTER 16

Layers

A UIView has a partner called its layer, a CALayer. A UIView does not actually draw
itself onto the screen; it draws itself into its layer, and it is the layer that appears on the
screen. As already mentioned in the previous two chapters, a view is not redrawn fre-
quently; instead, its drawing is cached, and the cached version of the drawing is used
where possible. The cached version is, in fact, the layer.

This might seem like a mere implementation detail, but layers are important and in-
teresting. To understand layers is to understand views more deeply; layers extend the
power of views. In particular:

Layers have properties that affect drawing.
Layers have drawing-related properties beyond those of a UIView. Because a layer
is the recipient and presenter of a view’s drawing, you can modify how a view is
drawn on the screen by accessing the layer’s properties. In other words, by reaching
down to the level of its layer, you can make a view do things you can’t do through
UIView methods alone.

Layers can be combined within a single view.
A UIView’s partner layer can contain additional layers. Since the purpose of layers
is to draw, portraying visible material on the screen, this allows a UIView’s drawing
to be composited of multiple distinct pieces. This can make drawing easier, with
the constituents of a drawing being treated as objects.

Layers are the basis of animation.
Animation allows you to add clarity, emphasis, and just plain coolness to your
interface. Layers are made to be animated (the “CA” in “CALayer” stands for “Core
Animation”).

For example, suppose we want to add a compass indicator to our app’s interface.
Figure 16-1 portrays a simple version of such a compass. It takes advantage of the arrow
that we figured out how to draw in Chapter 15; the arrow is drawn into a layer of its
own. The other parts of the compass are layers too: the circle is a layer, and each of the
cardinal point letters is a layer. The drawing is thus easy to composite in code; even

335

more intriguing, the pieces can be repositioned and animated separately, so it’s easy to
rotate the arrow without moving the circle.

The documentation discusses layers chiefly in connection with animation (in particular,
in the Core Animation Programming Guide). This categorization gives the impression
that layers are of interest only if you intend to animate. That’s misleading. Layers are
the basis of animation, but they are also the basis of view drawing, and are useful and
important even if you don’t use them for animation.

CALayer is not part of UIKit. It’s part of the Quartz Core framework, which is not
linked by default into the project template. Therefore, code that refers to CALayer or
related classes must import <QuartzCore/QuartzCore.h>, and you must link Quartz-
Core.framework into the project.

In this chapter, I’ll discuss the place of layers in the visual architecture of an iOS app.
In the next chapter, I’ll talk about animation.

View and Layer
A UIView instance has an accompanying CALayer instance, accessible as the view’s
layer property. This layer has a special status: it is partnered with this view to embody
all of the view’s drawing. The layer has no corresponding view property, but the view
is the layer’s delegate. The documentation sometimes speaks of this layer as the view’s
“underlying layer.”

By default, when a UIView is instantiated, its layer is an instance of CALayer. But if
you subclass UIView and you want your subclass’s underlying layer to be an instance
of a CALayer subclass (built-in or your own), implement the UIView subclass’s layer-
Class class method.

That, for example, is how the compass in Figure 16-1 is created. We have a UIView
subclass, CompassView, and a CALayer subclass, CompassLayer. CompassView con-
tains these lines:

+ (Class) layerClass {
 return [CompassLayer class];
}

Thus, when CompassView is instantiated, its underlying layer is a CompassLayer.
There is no drawing in CompassView; its job is to give CompassLayer a place in the

Figure 16-1. A compass, composed of layers

336 | Chapter 16: Layers

visible interface (because a layer cannot appear without a view). There is no drawing
directly into the CompassLayer, either; its job is to assemble, configure, and contain
the other layers, which constitute the visible compass interface.

Because every view has an underlying layer, there is a tight integration between the two.
The layer is on the screen and portrays all the drawing. The view is the layer’s delegate,
and if it draws, it does so by contributing to the layer’s drawing. And the view’s prop-
erties are often merely a convenience for accessing the layer’s properties. For example,
when you set the view’s backgroundColor, you are really setting the layer’s background-
Color, and if you set the layer’s backgroundColor directly, the view’s backgroundColor is
set to match. Similarly, the view’s frame is really the layer’s frame and vice versa.

A CALayer’s delegate property is settable, but you must never set the
delegate property of a view’s underlying layer. To do so would be to
break this integration between them, thereby causing drawing to stop
working correctly.

The view draws into its layer, and the layer caches that drawing; the layer can then be
manipulated, changing the view’s appearance, without necessarily asking the view to
redraw itself. This is a source of great efficiency in the drawing system. It also explains
such phenomena as the content stretching that we encountered in the last section of
Chapter 15: when the view’s bounds size changes, the drawing system simply stretches
or repositions the cached layer image, until such time as the view is told to generate a
new drawing of itself (drawRect:) to replace the layer’s contents.

Mac OS X Programmer Alert
On Mac OS X, NSView existed long before CALayer was introduced,
so today a view might have no layer, or, if it does have a layer, it might
relate to it in various ways. You may be accustomed to terms like layer-
backed view or layer-hosting view. On iOS, layers were incorporated
from the outset: every UIView has an underlying layer and relates to it
in the same way.

Layers and Sublayers
A layer can have sublayers, and a layer has at most one superlayer. Thus there is a tree
of layers. This is similar and parallel to the tree of views (Chapter 14). In fact, so tight
is the integration between a view and its underlying layer, that these hierarchies are
effectively the same hierarchy. Given a view and its underlying layer, that layer’s su-
perlayer is the view’s superview’s underlying layer, and that layer has as sublayers all
the underlying layers of all the view’s subviews. Indeed, because the layers are how the
views actually get drawn, one might say that the view hierarchy really is a layer hierarchy
(Figure 16-2).

Layers and Sublayers | 337

At the same time, the layer hierarchy can go beyond the view hierarchy. A view has
exactly one underlying layer, but a layer can have sublayers that are not the underlying
layers of any view. So the hierarchy of layers that underlie views exactly matches the
hierarchy of views (Figure 16-2), but the total layer tree may be a superset of that hi-
erarchy.

From a visual standpoint, there may be nothing to distinguish a hierarchy of views from
a hierarchy of layers. For example, in Chapter 14 we drew three overlapping rectangles
using a hierarchy of views (Figure 14-1). This code gives exactly the same visible display
by manipulating layers:

CALayer* lay1 = [[CALayer alloc] init];
lay1.frame = CGRectMake(113, 111, 132, 194);
lay1.backgroundColor = [[UIColor colorWithRed:1 green:.4 blue:1 alpha:1] CGColor];
[self.window.layer addSublayer:lay1];
CALayer* lay2 = [[CALayer alloc] init];
lay2.backgroundColor = [[UIColor colorWithRed:.5 green:1 blue:0 alpha:1] CGColor];
lay2.frame = CGRectMake(41, 56, 132, 194);
[lay1 addSublayer:lay2];
CALayer* lay3 = [[CALayer alloc] init];
lay3.backgroundColor = [[UIColor colorWithRed:1 green:0 blue:0 alpha:1] CGColor];
lay3.frame = CGRectMake(43, 197, 160, 230);
[self.window.layer addSublayer:lay3];
[lay1 release]; [lay2 release]; [lay3 release];
[self.window makeKeyAndVisible];

There are, indeed, situations in which it is not clear whether a piece of interface should
be constructed as a view hierarchy or a layer hierarchy. Several of my apps have an
interface that is a rectangular grid of objects of the same type; in some cases, I implement
these as layers, in some cases I implement them as views, and sometimes it isn’t clear
to me that my choice is much more than arbitrary. A layer on its own is more lightweight
than a view; on the other hand, a view is a UIResponder, so it can respond to touches,
and layers lack automatic layout (as implemented through a UIView’s autoresizing-
Mask).

Figure 16-2. A hierarchy of views and the hierarchy of layers underlying it

338 | Chapter 16: Layers

Manipulating the Layer Hierarchy
Layers come with a full set of methods for reading and manipulating the layer hierarchy,
parallel to the methods for reading and manipulating the view hierarchy. A layer has a
superlayer property and a sublayers property; there are methods addSublayer:, insert-
Sublayer:atIndex:, insertSublayer:below:, insertSublayer:above:, replaceSublayer:
with:, and removeFromSuperlayer.

Unlike a view’s subviews property, a layer’s sublayers property is writable; thus, you
can give a layer multiple sublayers in a single move, by assigning to its sublayers prop-
erty. To remove all of a layer’s sublayers, set its sublayers property to nil.

Although a layer’s sublayers have an order, reflected in the sublayers order and regu-
lated with the methods I’ve just mentioned, this is not necessarily the same as their
back-to-front drawing order. By default, it is, but a layer also has a zPosition property,
a CGFloat, and this also determines drawing order. The rule is that all sublayers with
the same zPosition are drawn in the order they are listed among their sublayers siblings,
but lower zPosition siblings are drawn before higher zPosition siblings. (The default
zPosition is 0.)

Sometimes, the zPosition property is a more convenient way of dictating drawing order
than sibling order is. For example, if layers represent playing cards laid out in a solitaire
game, it will likely be a lot easier and more flexible to determine how the cards overlap
by setting their zPosition than by rearranging their sibling order.

Methods are also provided for converting between the coordinate systems of layers
within the same layer hierarchy: convertPoint:fromLayer:, convertPoint:toLayer:,
convertRect:fromLayer:, and convertRect:toLayer:.

Positioning a Sublayer
Layer coordinate systems and positioning are similar to those of views. A layer’s own
internal coordinate system is expressed by its bounds, just like a view; its size is its
bounds size, and its bounds origin is the internal coordinate at its top left.

However, a sublayer’s position within its superlayer is not described by its center, like
a view; a layer does not have a center. Instead, a sublayer’s position within its superlayer
is defined by a combination of two properties, its position and its anchorPoint. Think
of the sublayer as pinned to its superlayer; then you have to say both where the pin
passes through the sublayer and where it passes through the superlayer. (I didn’t make
up that analogy, but it’s pretty apt.)

position
A point expressed in the superlayer’s coordinate system.

anchorPoint
Where the position point is with respect to the layer’s own bounds. It is a pair of
floating-point numbers (a CGPoint) describing a fraction (or multiple) of the layer’s

Layers and Sublayers | 339

own bounds width and bounds height. Thus, for example, (0,0) is the layer’s top
left, and (1,1) is its bottom right.

If the anchorPoint is (0.5,0.5) (the default), the position property works like a view’s
center property. A view’s center is thus a special case of a layer’s position. This is quite
typical of the relationship between view properties and layer properties; the view prop-
erties are often a simpler, more convenient, and less powerful version of the layer prop-
erties.

A layer’s position and anchorPoint are orthogonal (independent); changing one does
not change the other. Therefore, changing either of them without changing the other
changes where the layer is drawn within its superlayer.

For example, in Figure 16-1, the most important point in the circle is its center; all the
other objects need to be positioned with respect to it. Therefore they all have the same
position: the center of the circle. But they differ in their anchorPoint. For example, the
arrow’s anchorPoint is (0.5,0.8), the middle of the shaft, near the end. On the other
hand, the anchorPoint of a cardinal point letter is more like (0.5,3.8), well outside the
letter’s bounds, so as to place the letter near the edge of the circle.

A layer’s frame is a purely derived property. When you get the frame, it is calculated
from the bounds size along with the position and anchorPoint. When you set the
frame, you set the bounds size and position. In general, you should regard the frame as
a convenient façade and no more. Nevertheless, it is convenient! For example, to po-
sition a sublayer so that it exactly overlaps its superlayer, you can just set the sublayer’s
frame to the superlayer’s bounds.

A layer created in code (as opposed to a view’s underlying layer) has a
frame and bounds of (0,0,0,0) and will not be visible on the screen even
when you add it to a superlayer that is on the screen. Be sure to give
your layer a nonzero width and height if you want to be able to see it.

CAScrollLayer
If you’re going to be moving a layer’s bounds origin as a way of repositioning its sub-
layers en masse, you might like to make the layer a CAScrollLayer, a CALayer subclass
that provides convenience methods for this sort of thing. (Despite the name, a
CAScrollLayer provides no scrolling interface; the user can’t scroll it by dragging, for
example.) By default, a CAScrollLayer’s masksToBounds property is YES; thus, the
CAScrollLayer acts like a window through which you see can only what is within its
bounds. (You can set its masksToBounds to NO, but this would be an odd thing to do,
as it somewhat defeats the purpose.)

To move the CAScrollLayer’s bounds, you can talk either to it or to a sublayer (at any
depth):

340 | Chapter 16: Layers

Talking to the superlayer (the CAScrollLayer)
scrollToPoint: changes the CAScrollLayer’s bounds origin to that point. scrollTo-
Rect: changes the CAScrollLayer’s bounds origin minimally so that the given por-
tion of the bounds rect is visible.

Talking to a sublayer
scrollPoint: changes the CAScrollLayer’s bounds origin so that the given point
of the sublayer is at the top left of the CAScrollLayer. scrollRectToVisible: changes
the CAScrollLayer’s bounds origin so that the given rect of the sublayer’s bounds is
within the CAScrollLayer’s bounds area. You can also ask the sublayer for its
visibleRect, the part of this sublayer now within the CAScrollLayer’s bounds.

Layout of Sublayers
The only option for layout of sublayers on iOS is manual layout. When a layer needs
layout, either because its bounds have changed or because you called setNeedsLayout,
its layoutSublayers method is called; it’s up to you to override this in your CALayer
subclass. Alternatively, implement layoutSublayersOfLayer: in the layer’s delegate; a
typical situation is that the layer is a view’s underlying layer, and you implement layout-
SublayersOfLayer: in your UIView subclass.

To do effective manual layout of sublayers, you’ll probably need a way to identify or
refer to the sublayers. There is no layer equivalent of viewWithTag:, so such identifica-
tion and reference is entirely up to you; you’ll probably have instance variables for this
purpose (or keys: layers implement key–value coding in a special way, discussed at the
end of this chapter).

Mac OS X Programmer Alert
On Mac OS X, layers have extensive layout support, including both
“springs and struts” (constraints) and custom layout managers. But iOS
lacks all of this.

Drawing in a Layer
There are various ways to make a layer display something (apart from its background-
Color and having a partnered view draw into it).

Contents Image
A layer has a contents property. This is parallel to the image in a UIImageView (Chap-
ter 15); indeed, it is expected to be a CGImageRef (or nil, signifying no contents). A
CGImageRef is not an object type, but the contents property is typed as an id; in order
to quiet the compiler, you’ll have to typecast your CGImageRef to an id (or a void*) as
you assign it, like this:

Drawing in a Layer | 341

arrow.contents = (id)[im CGImage];

Setting a layer’s contents to a UIImage, rather than a CGImage, will fail
silently — the contents don’t appear, but there is no error either. This
is absolutely maddening, and I wish I had a nickel for every time I’ve
done it and then wasted hours figuring out why my layer isn’t appearing.

Contents on Demand
There are four methods that can be implemented to provide or draw a layer’s contents
on demand, similar to a UIView’s drawRect:. A layer is very conservative about calling
these methods (and you must not call any of them directly). If the layer’s needsDisplay-
OnBoundsChange property is NO (the default), then the only way to cause these methods
to be called is by calling setNeedsDisplay (or setNeedsDisplayInRect:). Even this might
not cause these methods to be called right away; if that’s crucial, then you will also call
displayIfNeeded. If the layer’s needsDisplayOnBoundsChange property is YES, then these
methods are also called when the layer’s bounds change (rather like a UIView’s UIView-
ContentModeRedraw).

Here are the four methods; pick one (don’t try to combine them, you’ll just confuse
things):

display in a subclass
Your CALayer subclass can override display. There’s no graphics context at this
point, so display is pretty much limited to setting the contents.

drawInContext: in a subclass
Your CALayer subclass can override drawInContext:. The parameter is a graphics
context into which you can draw directly; the discussion of drawing from Chap-
ter 15 thus pertains.

displayLayer: or drawLayer:inContext: in the delegate
You can set the CALayer’s delegate property, and implement displayLayer: or
drawLayer:inContext:. They are parallel to display and drawInContext:, the former
providing no graphics context so that it’s fit mostly for setting the contents, and
the latter providing a graphics context into which you can draw directly.

Remember, you must not set the delegate property of a view’s underlying layer! This
restriction is not as onerous as it seems; there’s always an easy architectural way to
draw into a layer by way of a delegate if that’s what you want to do.

For example, in one of my apps there’s an overlay view, sitting on top of everything
else on the screen; the user is unaware of this, because the view is transparent and
usually does no drawing, and the view ignores touches, which fall through to the visible
views, as if the overlay were not there at all. But every once in a while I want the overlay
view to display something (this is its purpose). I don’t want the overhead of making an
image, and my app has a main controller, which already knows what needs drawing,

342 | Chapter 16: Layers

so I want to draw using this controller as a layer delegate. But it can’t be the delegate
of the overlay view’s underlying layer, so I give that layer a sublayer and make my
controller that sublayer’s delegate. Thus we have a view and its underlying layer that
do nothing, except to serve as a host for this sublayer (Figure 16-3) — and there’s
nothing wrong with that.

If a layer redisplays itself (because you call setNeedsDisplay, or because the bounds are
resized when needsDisplayOnBoundsChange is YES) and none of the display methods
provides content (perhaps because you didn’t override any of them), the layer’s
contents will now be nil. This can be confusing. The moral is: don’t make a layer
redisplay itself unless you mean it.

If a layer redisplays itself (because you call setNeedsDisplay, or because the bounds are
resized when needsDisplayOnBoundsChange is YES) and if its opaque property is YES, its
context has no alpha channel and will be drawn with a black background — and, if the
layer’s opacity is 1, the layer’s backgroundColor will be ignored. This feature is intended
as a way of letting you gain some drawing efficiency in case you are supplying content
that will occupy the entirety of the layer without transparency; you should not misuse
it by claiming that the layer is opaque when it isn’t.

Setting a view’s backgroundColor to an opaque color (alpha component
of 1) sets its layer’s opaque, though not the view’s opaque, to YES. This
explains the behavior of CGContextClearRect described in Chapter 15.

Contents Resizing and Positioning
Once a layer has contents — regardless of whether these contents came from an image
(setting the contents property) or from direct drawing into its context (drawIn-
Context:, drawLayer:inContext:) — various properties dictate how those contents
should be drawn in relation to the layer’s bounds. It is as if the cached contents are
treated as an image, which can then be resized, repositioned, cropped, and so on. These
properties are:

Figure 16-3. A view and a layer delegate that draws into it

Drawing in a Layer | 343

contentsGravity
This property is parallel to a UIView’s contentMode property, and describes how
the contents should be positioned or stretched in relation to the bounds. For ex-
ample, kCAGravityCenter means the contents image is centered in the bounds
without resizing; kCAGravityResize means the contents image is sized to fit the
bounds, even if this means distorting its aspect; and so forth.

For historical reasons, the terms “bottom” and “top” in the names of
the contentsGravity settings have the opposite of their expected mean-
ings.

contentsRect
A CGRect expressing the proportion of the contents image that is to be drawn.
The default is (0,0,1,1), meaning the entire contents image. The specified part of
the image is sized and positioned in relation to the bounds in accordance with the
contentsGravity. Thus, for example, you can conveniently and efficiently move
part of a larger image into view within a layer without redrawing or changing the
contents.

You can also use the contentsRect to scale down the contents image, by specifying
a contentsRect larger than the contents; but any pixels that touch the edge of the
contentsRect will then be extended outwards to the edge of the layer (to prevent
this, give the contents image a clear pixel border at its edges).

contentsCenter
A CGRect expressing the central region of nine rectangular regions of the contents-
Rect that are variously allowed to stretch if the contentsGravity calls for stretching.
The central region (the actual value of the contentsCenter) stretches in both di-
rections. Of the other eight regions (inferred from the value you provide), the four
corner regions don’t stretch, and the four side regions stretch in one direction.
(UIView has a somewhat similar property, contentStretch, which I didn’t discuss.)

Automatically Redisplaying a View’s Underlying Layer
A layer is not told automatically to redisplay itself (unless its bounds are resized when
needsDisplayOnBoundsChange is YES), but a view is. For example, a view is told to redraw
itself when it first appears; basically, it is sent setNeedsDisplay, much as if you had sent
it explicitly. When a view is sent setNeedsDisplay, the view’s underlying layer is also
sent setNeedsDisplay — unless the view has no drawRect: implementation (because in
that case, it is assumed that the view never needs redrawing). So, if you’re drawing a
view entirely by drawing its underlying layer directly, and if you want the layer to be
redrawn automatically when the view is told to redraw itself, you should implement
drawRect:, even if it does nothing.

344 | Chapter 16: Layers

If you’re drawing directly into the layer’s context (e.g., with drawLayer:inContext:),
and the contentsRect is the entire contents, then if the layer’s contents are redrawn
(because you call setNeedsDisplay, or because the bounds are resized when needs-
DisplayOnBoundsChange is YES), the contentsGravity won’t matter, because the context
fills the layer. But if the layer’s bounds are resized when needsDisplayOnBoundsChange
is NO, then its cached contents from the last time you drew are treated as an image.
By a judicious combination of settings, you can attain some fairly sophisticated auto-
matic behavior, with no need to redraw the contents yourself. For example, Fig-
ure 16-4 shows the result of the following settings:

arrow.needsDisplayOnBoundsChange = NO;
arrow.contentsCenter = CGRectMake(0.0, 0.4, 1.0, 0.6);
arrow.contentsGravity = kCAGravityResizeAspect;

The arrow layer’s bounds are then resized by adding 40 to both dimensions. Because
needsDisplayOnBoundsChange is NO, the contents are not redrawn; instead, the cached
contents are used. The contentsGravity setting tells us to resize proportionally; there-
fore, the arrow is both longer and wider than in Figure 16-1, but not in such a way as
to distort its proportions. However, notice that although the triangular arrowhead is
wider, it is not longer; the increase in length is due entirely to the stretching of the shaft.
That’s because the contentsCenter region is restricted to the shaft of the arrow.

If the contents are larger than the bounds of the layer, and if the contentsGravity and
contentsRect do not resize the contents to fit the bounds, then by default the contents
will be drawn larger than the layer; the layer does not automatically clip its contents to
its bounds (just as it does not automatically clip its sublayers to its bounds). To get
such clipping, for both contents and sublayers, set the layer’s masksToBounds property
to YES.

The value of the bounds origin does not affect where the contents are
drawn.

Layers that Draw Themselves
A few built-in CALayer subclasses provide some basic but extremely helpful
self-drawing ability:

Figure 16-4. One way of resizing the compass arrow

Drawing in a Layer | 345

CATextLayer
A CATextLayer has a string property, which can be an NSString or NSAttribu-
tedString, along with other text formatting properties; it draws its string. The
default text color, the foregroundColor property, is white, which is unlikely to be
what you want. The text is different from the contents and is mutually exclusive
with it: either the contents or the text will be drawn, but not both, so in general
you should not give a CATextLayer any contents. In Figure 16-1, the cardinal point
letters are CATextLayer instances.

The fact that a CATextLayer’s string can be an NSAttributedString gives it a power
that UILabel lacks, namely, to display text in multiple font, sizes, and styles. For
example, using a CATextLayer, you could underline one word of the text; you can’t
do that with a UILabel. An example appears in Chapter 23 (because it requires use
of Core Text).

CAShapeLayer
A CAShapeLayer has a path property, which is a CGPath. It fills or strokes this
path, or both, depending on its fillColor and strokeColor values, and displays the
result; the default is a fillColor of black and no strokeColor. A CAShapeLayer
may also have contents; the shape is displayed on top of the contents, but there is
no property permitting you to specify a compositing mode. In Figure 16-1, the
background circle is a CAShapeLayer instance, stroked with gray and filled with a
lighter, slightly transparent gray.

CAGradientLayer
A CAGradientLayer covers its background with a simple linear gradient; thus, it’s
an easy way to composite a gradient into your interface (and if you need something
more elaborate you can always draw with Core Graphics instead). The gradient is
defined much as in the Core Graphics gradient example in Chapter 15, an array of
locations and an array of corresponding colors (except that these are NSArrays, of
course, not C arrays), along with a start and end point. To clip the gradient, you
can add a mask to the CAGradientLayer (masks are discussed later in this chapter).
A CAGradientLayer’s contents are not displayed.

The colors array requires CGColors, not UIColors. But a CGColorRef is not an
object type, whereas NSArray expects objects, so to quiet the compiler you’ll prob-
ably need to typecast at least the first item of the array (to id or void*).

Figure 16-5 shows our compass drawn with an extra CAGradientLayer behind it.

Transforms
The way a layer is drawn on the screen can be modified though a transform. This is not
surprising, because a view can have a transform (see Chapter 14), and a view is drawn
on the screen by its layer. As with the bounds and other properties, a view and its

346 | Chapter 16: Layers

underlying layer are tightly linked; when you change the transform of one, you are
changing the transform of the other. But, as so often happens, the layer’s transform is
more powerful than the view’s transform. Thus, you can use the transform of the un-
derlying layer to accomplish things with a view that you can’t accomplish with the
view’s transform alone.

In the simplest cases, when a transform is two-dimensional, you can use the setAffine-
Transform: and affineTransform methods. The value is a CGAffineTransform, familiar
from Chapter 14 and Chapter 15. The transform is applied around the anchorPoint.
Thus, the anchorPoint has a second purpose that I didn’t tell you about when discussing
it earlier.

You now know everything you need to know in order to understand the code that
generated Figure 16-5, so here is that code. Notice how the four cardinal point letters
are drawn by a CATextLayer and placed using a transform. They are drawn at the same
coordinates, but they have different rotation transforms. Moreover, even though the
CATextLayers are small (just 40 by 30) and appear near the perimeter of the circle, they
are anchored, and so their rotation is centered, at the center of the circle. In this code,
self is the CompassLayer; it does no drawing of its own, but merely assembles and
configures its sublayers. To generate the arrow, we make ourselves the arrow layer’s
delegate and call setNeedsDisplay; this causes drawLayer:inContext: to be called in
CompassLayer (that code is just the same code we developed for drawing the arrow
into a context in Chapter 15):

// the gradient
CAGradientLayer* g = [[CAGradientLayer alloc] init];
g.frame = self.bounds;
g.colors = [NSArray arrayWithObjects:
 (id)[[UIColor blackColor] CGColor],
 [[UIColor redColor] CGColor],
 nil];
g.locations = [NSArray arrayWithObjects:
 [NSNumber numberWithFloat: 0.0],
 [NSNumber numberWithFloat: 1.0],
 nil];
[self addSublayer:g];
[g release];

// the circle
CAShapeLayer* circle = [[CAShapeLayer alloc] init];
circle.lineWidth = 2.0;

Figure 16-5. A gradient drawn behind the compass

Transforms | 347

circle.fillColor =
 [[UIColor colorWithRed:0.9 green:0.95 blue:0.93 alpha:0.9] CGColor];
circle.strokeColor = [[UIColor grayColor] CGColor];
CGMutablePathRef p = CGPathCreateMutable();
CGPathAddEllipseInRect(p, NULL, CGRectInset(self.bounds, 3, 3));
circle.path = p;
[self addSublayer:circle];
circle.bounds = self.bounds;
circle.position = CGPointMake(CGRectGetMidX(self.bounds),
 CGRectGetMidY(self.bounds));

// the four cardinal points
NSArray* pts = [NSArray arrayWithObjects: @"N", @"E", @"S", @"W", nil];
for (int i = 0; i < 4; i++) {
 CATextLayer* t = [[CATextLayer alloc] init];
 t.string = [pts objectAtIndex: i];
 t.bounds = CGRectMake(0,0,40,30);
 t.position = CGPointMake(CGRectGetMidX(circle.bounds),
 CGRectGetMidY(circle.bounds));
 CGFloat vert = (CGRectGetMidY(circle.bounds) - 5) / CGRectGetHeight(t.bounds);
 t.anchorPoint = CGPointMake(0.5, vert);
 t.alignmentMode = kCAAlignmentCenter;
 t.foregroundColor = [[UIColor blackColor] CGColor];
 [t setAffineTransform:CGAffineTransformMakeRotation(i*M_PI/2.0)];
 [circle addSublayer:t];
 [t release];
}

// the arrow
CALayer* arrow = [[CALayer alloc] init];
arrow.bounds = CGRectMake(0, 0, 40, 100);
arrow.position = CGPointMake(CGRectGetMidX(self.bounds),
 CGRectGetMidY(self.bounds));
arrow.anchorPoint = CGPointMake(0.5, 0.8);
arrow.delegate = self;
[arrow setAffineTransform:CGAffineTransformMakeRotation(M_PI/5.0)];
[self addSublayer:arrow];
[arrow setNeedsDisplay];
[arrow release];

[circle release];

A full-fledged layer transform, the value of the transform property, takes place in three-
dimensional space; its description includes a z-axis, perpendicular to both the x-axis
and y-axis. (By default, the positive z-axis points out of the screen, toward the viewer’s
face.) Layers do not magically give you realistic three-dimensional rendering — for that
you would use OpenGL, which is beyond the scope of this discussion. Layers are two-
dimensional objects, and they are designed for speed and simplicity. Nevertheless, they
do operate in three dimensions, quite sufficiently to give a cartoonish but effective sense
of reality, especially when performing an animation. We’ve all seen the screen image
flip like turning over a piece of paper to reveal what’s on the back; that’s a rotation in
three dimensions.

348 | Chapter 16: Layers

A three-dimensional transform takes place around a three-dimensional extension of
the anchorPoint, whose z-component is supplied by the anchorPointZ property. Thus,
in the reduced default case where anchorPointZ is 0, the anchorPoint is sufficient, as
we’ve already seen in using CGAffineTransform.

The transform itself is described mathematically by a struct called a CATransform3D.
The Core Animation Function Reference lists the functions for working with these
transforms. They are a lot like the CGAffineTransform functions, except they’ve got a
third dimension. For example, here’s the declaration of the function for making a 2D
scale transform:

CGAffineTransform CGAffineTransformMakeScale (
 CGFloat sx,
 CGFloat sy
);

And here’s the declaration of the function for making a 3D scale transform:

CATransform3D CATransform3DMakeScale (
 CGFloat sx,
 CGFloat sy,
 CGFloat sz
);

The rotation 3D transform is a little more complicated. In addition to the angle, you
also have to supply three coordinates describing the vector around which the rotation
takes place. Perhaps you’ve forgotten from your high-school math what a vector is, or
perhaps trying to visualize three dimensions boggles your mind, so think of it this way.

Pretend for purposes of discussion that the anchor point is the origin, (0,0,0). Now
imagine an arrow emanating from the anchor point; its other end, the pointy end, is
described by the three coordinates you provide. Now imagine a plane that intersects
the anchor point, perpendicular to the arrow. That is the plane in which the rotation
will take place; a positive angle is a clockwise rotation, as seen from the side of the plane
with the arrow (Figure 16-6). In effect, the three points you supply describe, relative to
the anchor point, where your eye would have to be to see this rotation as an old-fash-
ioned two-dimensional rotation.

The three values you give specify a direction, not a point. Thus it makes no difference
on what scale you give them: (1,1,1) means the same thing as (10,10,10). If the three
values are (0,0,1), with all other things being equal, the case is collapsed to a simple
CGAffineTransform, because the rotational plane is the screen. On the other hand, if
the three values are (0,0,-1), it’s a backward CGAffineTransform, so that a positive
angle looks counterclockwise (because we are looking at the “back side” of the rota-
tional plane).

A layer can itself be rotated in such a way that its “back” is showing. For example, the
following rotation flips a layer around its y-axis:

someLayer.transform = CATransform3DMakeRotation(M_PI, 0, 1, 0);

Transforms | 349

By default, the layer is considered double-sided, so when it is flipped to show its “back,”
what’s drawn is an appropriately reversed version of the contents of the layer (along
with its sublayers). But if the layer’s doubleSided property is NO, then when it is flipped
to show its “back,” the layer disappears (along with its sublayers); its “back” is trans-
parent and empty.

Depth
There are two ways to place layers at different nominal depths with respect to their
siblings. One is through the z-component of their position, which is the zPosition
property. Thus the zPosition, too, has a second purpose that I didn’t tell you about
earlier. The other is to apply a transform that translates the layer’s position in the z-
direction. These two values (the z-component of a layer’s position and the z-component
of its translation transform) are related; in some sense, the zPosition is a shorthand for
a translation transform in the z-direction. (If you provide both a zPosition and a z-
direction translation, you can rapidly confuse yourself.)

In the real world, changing an object’s zPosition would make it appear larger or smaller,
as it is positioned closer or further away; but this is not the case in the world of layer
drawing. There is no attempt to portray perspective; the layer planes are drawn at their
actual size and flattened onto one another, with no illusion of distance. (This is called
orthographic projection, and is the way blueprints are often drawn to display an object
from one side.)

However, there’s a widely used trick for introducing a quality of perspective into the
way layers are drawn: make them sublayers of a layer whose sublayerTransform prop-
erty maps all points onto a “distant” plane. (This is probably just about the only thing
the sublayerTransform property is ever used for.) Combined with orthographic projec-
tion, the effect is to apply one-point perspective to the drawing, so that things do get
perceptibly smaller in the negative z-direction.

For example, let’s try applying a sort of “page-turn” rotation to our compass: we’ll
anchor it at its right side and then rotate it around the y-axis (for purposes of the
example, all the other layers have been made sublayers of the gradient layer, g):

g.anchorPoint = CGPointMake(1,0.5);
g.position = CGPointMake(CGRectGetMaxX(self.bounds), CGRectGetMidY(self.bounds));
g.transform = CATransform3DMakeRotation(M_PI/4.0, 0, 1, 0);

Figure 16-6. An anchor point plus a vector defines a rotation plane

350 | Chapter 16: Layers

The results are disappointing (Figure 16-7); the compass looks more squashed than
rotated. Now, however, we’ll apply the distance-mapping transform (recall that g is a
sublayer of self):

g.anchorPoint = CGPointMake(1,0.5);
g.position = CGPointMake(CGRectGetMaxX(self.bounds), CGRectGetMidY(self.bounds));
g.transform = CATransform3DMakeRotation(M_PI/4.0, 0, 1, 0);
CATransform3D transform = CATransform3DIdentity;
transform.m34 = -1.0/1000.0;
self.sublayerTransform = transform;

The results (shown in Figure 16-8) are better, and you can experiment with values to
replace 1000.0; for example, 500.0 gives an even more exaggerated effect. Also, the z-
Position of g will now affect how large it is.

Another way to draw layers with depth is to use CATransformLayer. This CALayer
subclass doesn’t do any drawing of its own; it is intended solely as a host for other
layers. It has the remarkable feature that you can apply a transform to it and it will
maintain the depth relationships among its sublayers.

Figure 16-9 shows our page-turn rotation yet again, still with the sublayerTransform
applied to self, but this time the only sublayer of self is a CATransformLayer. The
CATransformLayer, to which the page-turn transform is applied, holds the gradient
layer, the circle layer, and the arrow layer. Those three layers are at different depths
(using different zPosition settings), and you can see that the circle layer floats in front
of the gradient layer. (This is clear from its apparent offset, but I wish you could see
this page-turn as an animation, which makes the circle jump right out from the gradient
as the rotation proceeds.) I’ve also tried to emphasize the arrow’s separation from the
circle by adding a shadow.

Figure 16-7. A disappointing page-turn rotation

Figure 16-8. A dramatic page-turn rotation

Transforms | 351

Even more remarkable, note the little white peg sticking through the arrow and running
into the circle. It is a CAShapeLayer, rotated to be perpendicular to the CATransform-
Layer. Normally, it runs straight out of the circle toward the viewer, so it is seen end-
on, and because a layer has no thickness, it is invisible. But as the CATransformLayer
pivots forward in our page-turn rotation, the peg maintains its orientation relative to
the circle, and comes into view.

There is, I think, a slight additional gain in realism if the same sublayerTransform is
applied also to the CATransformLayer, but I have not done so here.

Transforms and Key–Value Coding
Instead of using the CATransform3D and CGAffineTransform functions, you can take
advantage of key–value coding to alter or access a particular component of a layer’s
transform. For example, instead of writing this:

g.transform = CATransform3DMakeRotation(M_PI/4.0, 0, 1, 0);

we could have written this:

[g setValue:[NSNumber numberWithFloat:M_PI/4.0] forKeyPath:@"transform.rotation.y"];

The second form may not seem to be any savings, especially as we have to wrap our
CGFloat in an NSNumber (because the value in setValue:forKeyPath: must be an ob-
ject). But the expression @"transform.rotation.y" brilliantly clarifies our intent. And
of course there is always the possibility that we may take advantage of this feature to
assemble a key path at runtime.

This notation is possible because both CALayer and CATransform3D are key–value
coding compliant for a repertoire of keys and key paths. Don’t get confused, though:
these are not properties (though, where possible, they have the same names as prop-
erties). A CATransform3D doesn’t have a rotation property; it doesn’t have any prop-
erties, because it isn’t even an object. You cannot say:

g.transform.rotation.y = //... No, sorry

The transform key paths you’ll use most often are rotation.x, rotation.y, rotation.z,
rotation (same as rotation.z), scale.x, scale.y, scale.z, translation.x,
translation.y, translation.z, and translation (two-dimensional, a CGSize). The

Figure 16-9. Page-turn rotation applied to a CATransformLayer

352 | Chapter 16: Layers

Quartz Core framework also injects KVC compliance into CGPoint, CGSize, and
CGRect, allowing you to use keys and key paths matching their struct component
names. For a complete list of KVC compliant classes related to CALayer, along with
the keys and key paths they implement, plus rules for how to wrap nonobject values
as objects, see “Core Animation Extensions to Key-Value Coding” in the Core Anima-
tion Programming Guide.

Shadows, Borders, and More
A CALayer has many additional properties that affect details of how it is drawn. Once
again, all of these drawing details can, of course, be applied equally to a UIView;
changing these properties of the UIView’s underlying layer changes how the view is
drawn. Thus, these are effectively view features as well.

A layer can have a shadow, defined by its shadowColor, shadowOpacity, shadowRadius,
and shadowOffset properties. To make the layer draw a shadow, set the shadow-
Opacity to a nonzero value. The shadow is normally based on the shape of the layer’s
nontransparent region, but deriving this shape can be calculation-intensive (so much
so that in early versions of iOS, layer shadows weren’t implemented). You can vastly
improve performance by defining the shape yourself and assigning this shape as a
CGPath to the shadowPath property.

A layer can have a border (borderWidth, borderColor); the borderWidth is drawn inward
from the bounds, potentially covering some of the content unless you compensate.

A layer can be bounded by a rounded rectangle, by giving it a cornerRadius greater than
zero. If the layer has a backgroundColor, that background is clipped to the shape of the
rounded rectangle. If the layer has a border, the border has rounded corners too.

Like a UIView, a CALayer has a master opacity property, and it has a hidden property
that can be set to take it out of the visible interface without actually removing it from
its superlayer.

Like a UIView, a CALayer can clip the drawing of its contents and sublayers to its
bounds (masksToBounds, already mentioned earlier in this chapter); if the corners are
rounded, the clipping is rounded to fit.

A CALayer can have a backgroundColor, as you already know.

A CALayer can have a mask. This is itself a layer, whose contents must be provided
somehow. The transparency of the mask’s contents in a particular spot becomes (all
other things being equal) the transparency of the layer at that spot. For example, Fig-
ure 16-10 shows our arrow layer, with the gray circle layer behind it, and a mask applied
to the arrow layer. The mask is silly, but it illustrates very well how masks work: it’s
an ellipse, with an opaque fill and a thick, semitransparent stroke. Here’s the code that
generates and applies the mask:

Shadows, Borders, and More | 353

CAShapeLayer* mask = [[CAShapeLayer alloc] init];
mask.frame = arrow.bounds;
CGMutablePathRef p2 = CGPathCreateMutable();
CGPathAddEllipseInRect(p2, NULL, CGRectInset(mask.bounds, 10, 10));
mask.strokeColor = [[UIColor colorWithWhite:0.0 alpha:0.5] CGColor];
mask.lineWidth = 20;
mask.path = p2;
arrow.mask = mask;
CGPathRelease(p2); [mask release];

To position the mask, pretend it’s a sublayer. The hues in the mask’s colors are irrel-
evant; only transparency matters.

If a layer is complex (perhaps with shadow, sublayers, and so forth) and if this seems
to be a performance drain (especially when scrolling or animating the layer), you may
be able to gain some efficiency by “freezing” the entirety of the layer’s drawing as a
bitmap. In effect, you’re drawing everything in the layer to a secondary cache and using
the cache to draw to the screen. To do this, set the layer’s shouldRasterize to YES and
its rasterizationScale to some sensible value (probably [UIScreen main-
Screen].scale). You can always turn rasterization off again by setting should-
Rasterize to NO, so it’s easy to rasterize just before some massive or sluggish rear-
rangement of the screen and then unrasterize afterward. (In addition, you can get some
cool “out of focus” effects by setting the rasterizationScale to around 0.3.)

Layers and Key–Value Coding
Earlier, I showed that aspects of a layer’s transform were accessible through key–value
coding. This feature stems from the fact that CALayer is KVC compliant for the
@"transform" key. The same is true of all of a layer’s properties; they are all accessible
through KVC by way of keys with the same name as the property. Thus, to apply the
mask in the previous example, we could have said:

[arrow setValue: mask forKey: @"mask"];

But a layer goes further than this. You can treat a CALayer as a kind of NSDictionary,
and get and set the value for any key. This is tremendously useful, because it means
you can attach arbitrary information to an individual layer instance and retrieve it later.
For example, earlier I mentioned that to apply manual layout to a layer’s sublayers, you
will need a way of identifying those sublayers. This feature could provide a way of doing
that. It will also come in handy in connection with animation.

Figure 16-10. A layer with a mask

354 | Chapter 16: Layers

Also, CALayer has a defaultValueForKey: class method; to implement it, you’ll need
to subclass and override. In the case of keys whose value you want to provide a default
for, return that value; otherwise, return the value that comes from calling super. Thus,
even if a value for a particular key has never been explicitly provided, it can have a non-
nil value.

The truth is that this feature, though delightful (and I often wish that all classes behaved
like this), is not put there for your convenience and enjoyment. It’s there to serve as the
basis for animation, which is the subject of the next chapter.

Layers and Key–Value Coding | 355

CHAPTER 17

Animation

Animation is the visible change of an attribute over time. The changing attribute might
be positional, but not necessarily. For example, a view’s background color might
change from red to green, not instantly, but perceptibly fading from one to the other.
Or a view’s opacity might change from opaque to transparent, not instantly, but per-
ceptibly fading away.

Without help, most of us would find animation beyond our reach. There are just too
many complications — complications of calculation, of timing, of screen refresh, of
threading, and many more. Fortunately, help is provided. You don’t perform an ani-
mation yourself; you describe it, you order it, and it is performed for you. You get
animation on demand.

Asking for an animation can be as simple as setting a property value; under some cir-
cumstances, a single line of code will result in animation:

myLayer.backgroundColor = [[UIColor redColor] CGColor]; // animate change to red

And this is no coincidence. Apple wants to facilitate your use of animation. Animation
is crucial to the character of the iOS interface. It isn’t just cool and fun; it clarifies that
something is changing or responding. For example, one of my first apps was based on
a Mac OS X game in which the user clicks cards to select them. In the Mac OS X version,
a card was highlighted to show it was selected, and the computer would beep to indicate
a click on an ineligible card. On iOS, these indications were insufficient: the highlight-
ing felt weak, and you can’t use a sound warning in an environment where the user
might have the volume turned off or be listening to music. So in the iOS version, ani-
mation is the indicator for card selection (a selected card waggles eagerly) and for tap-
ping on an ineligible card (the whole interface shudders, as if to shrug off the tap).

Recall from Chapter 16 that CALayer requires the Quartz Core frame-
work; so do the other “CA” classes discussed here, such as CAAnima-
tion.

357

Drawing, Animation, and Threading
When you change a visible view property without animation, that change does not
visibly take place there and then. Rather, the system records that this is a change you
would like to make, and marks the view as needing to be redrawn. You can change
many visible view properties, but these changes are all just accumulated for later. Later,
when all your code has run to completion and the system has, as it were, a free moment,
then it redraws all views that need redrawing, applying their new visible property fea-
tures. I call this the redraw moment. (The documentation calls it “when the [current]
thread’s run-loop next iterates.”)

You can see that this is true simply by changing some visible aspect of a view and
changing it back again, in the same code: on the screen, nothing happens. For example,
suppose a view’s background color is green. Suppose your code changes it to red, and
then later changes it back to green:

// view starts out green
view.backgroundColor = [UIColor redColor];
// ... time-consuming code goes here ...
view.backgroundColor = [UIColor greenColor];
// code ends, redraw moment arrives

The system accumulates all the desired changes until the redraw moment happens, and
the redraw moment doesn’t happen until after your code has finished, so when the
redraw moment does happen, the last accumulated change in the view’s color is to
green — which is its color already. Thus, no matter how much time-consuming code
lies between the change from green to red and the change from red to green, the user
won’t see any color change at all.

(That’s why you don’t order a view to be redrawn; rather, you tell it that it needs re-
drawing — setNeedsDisplay — at the next redraw moment. It’s also why I used delayed
performance in the contentMode example in Chapter 15: by calling performSelector:
withObject:afterDelay:, I give the redraw moment a chance to happen, thus giving the
view some content, before resizing the view. This use of delayed performance to let a
redraw moment happen is quite common.)

Similarly, when you ask for an animation to be performed, the animation doesn’t start
happening on the screen until the next redraw moment. (You can force an animation
to be performed immediately, but this is unusual.)

While the animation lasts, it is effectively in charge of the screen. Imagine that the
animation is a kind of movie, a cartoon, interposed between the user and the “real”
screen. When the animation is finished, this movie is removed, revealing the state of
the “real” screen behind it. The user is unaware of this, because at the time that it starts,
the movie’s first frame looks just like the state of the “real” screen at that moment, and
at the time that it ends, the movie’s last frame looks just like the state of the “real”
screen at that moment.

358 | Chapter 17: Animation

So, when you reposition a view from position 1 to position 2 with animation, you can
envision a typical sequence of events like this:

1. The view is set to position 2, but there has been no redraw moment, so it is still
portrayed at position 1.

2. The rest of your code runs to completion.

3. The redraw moment arrives. If there were no animation, the view would now be
portrayed at position 2. But there is an animation, and it (the “animation movie”)
starts with the view portrayed at position 1, so that is still what the user sees.

4. The animation proceeds, portraying the view at intermediate positions between
position 1 and position 2. The documentation describes the animation as now in-
flight.

5. The animation ends, portraying the view ending up at position 2.

6. The “animation movie” is removed, revealing the view indeed at position 2.

Animation takes place on an independent thread. Multithreading is generally rather
tricky and complicated, but the system makes it easy in this case. Nevertheless, you
can’t completely ignore the threaded nature of animation. Awareness of threading is-
sues, and having a mental picture of how animation is performed, will help you to ask
yourself the right questions and thus to avoid confusion and surprises. For example:

1. The time when an animation starts is somewhat indefinite (because you don’t know
exactly when the next redraw moment will be). The time when an animation ends is
also somewhat indefinite (because the animation happens on another thread, so your
code cannot just wait for it to end). So what if your code needs to do something in
response to an animation beginning or ending?

An animation can have a delegate; there is a delegate message that is sent when an
animation starts, and another when it ends. Thus, you can arrange to receive an
event at these crucial moments. On iOS 4 and later, you can also supply a block
to be run after an animation ends.

2. Since animation happens on its own thread, something might cause code of yours to
start running while an animation is still in-flight. What happens if your code now
changes a property that is currently being animated? What happens if your code asks
for another animation?

If you change a property while it is being animated, it won’t tie the system in knots,
but the end result may look odd, if the value you set differs from the final value in
the animation. If a property is being animated from value 1 to value 2 and mean-
while you set it to value 3, then the property may appear very suddenly to take on
value 3 (because, in effect, the animation movie is removed, and its final frame
shown doesn’t agree with the state of things revealed behind it). If that isn’t what
you intend, don’t do that; on the other hand, this can be a useful feature, as it
provides a coherent way of effectively canceling an in-flight animation.

Drawing, Animation, and Threading | 359

If you ask for an animation when an animation is already scheduled for the next
redraw moment or already in-flight, there might be no problem; both animations
can take place simultaneously. But that’s impossible if both animations attempt to
animate the same property. In that case, the first animation may be forced to end
instantly; that is, the change it represents ceases to be animated and is portrayed
as happening suddenly instead. This is typically not what’s intended. But there are
many alternative approaches. If you want to chain animations, you can wait until
one animation ends (using the delegate message to learn when that is) before or-
dering the next one. Or you can create a single animation combining multiple
changes; these changes needn’t start at the same moment or be the same length.
And a simple call (such as setAnimationBeginsFromCurrentState:) will “blend” the
second animation with the first.

3. While an animation is in-flight, if your code is not running, the interface is responsive
to the user. What happens if the user tries to tap a view whose position is currently
being animated?

The problem is a very real one: the view might not really be where it appears to be
on the screen, so the user might try to tap it and miss, or might tap elsewhere and
accidentally tap it (because that’s where it really is). The usual way of coping is to
turn off responsiveness in your app’s interface.

To prevent the interface as a whole from responding while an animation is in-flight,
you can call the UIApplication instance method beginIgnoringInteractionEvents
when the animation starts and call endIgnoringInteractionEvents when the ani-
mation is over (possibly using the delegate messages to learn when those things
happen). If that’s too broad, you can block responsiveness to touches at the level
of individual views; for example, you can turn off a view’s userInteraction-
Enabled until the animation is over. But all of this is up to you; the system has,
generally speaking, no policy of automatically disabling touch responsiveness. (But
there’s an exception: on iOS 4, if you use block-based view animation, the system
does turn off user interaction during the animation by default.)

4. On a multitasking system such as iOS 4, the user can suspend my app without quitting
it. What happens if an animation is in-flight at that moment?

If your app is suspended during animation, the animation is removed. This simply
means that the “animation movie” is cancelled. Any animation, whether in-flight
or scheduled, is simply a slowed-down visualization of a property change; that
property is still changed, and indeed was probably changed before the animation
even started. If your app is resumed, therefore, no animations will be running, and
properties that were changed remain changed, and are shown as changed.

360 | Chapter 17: Animation

UIImageView Animation
UIImageView provides a form of animation that is so simple and crude as to be scarcely
deserving of the name. Nevertheless, sometimes this form of animation is all you need
— a trivial solution to what might otherwise be a tricky problem. Supply the UIIma-
geView with an array of UIImages, as the value of its animationImages or highlighted-
AnimationImages property; this causes the image or highlightedImage to be hidden. This
array represents the “frames” of a simple cartoon; when you send the startAnimating
message, the images are displayed in turn, at a frame rate determined by the animation-
Duration property, repeating as many times as specified by the animationRepeatCount
property (the default is 0, meaning to repeat forever, or until the stopAnimating message
is received).

For example, suppose we want an image of Mars to appear out of nowhere and flash
three times on the screen. This might seem to require some sort of NSTimer-based
solution (see Chapter 11), but it’s far simpler to use an animating UIImageView:

UIImage* mars = [UIImage imageNamed: @"mars.png"];
UIGraphicsBeginImageContext(mars.size);
UIImage* empty = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
NSArray* arr = [NSArray arrayWithObjects: mars, empty, mars, empty, mars, nil];
iv.animationImages = arr;
iv.animationDuration = 2;
iv.animationRepeatCount = 1;
[iv startAnimating];

You can combine UIImageView animation with other kinds of animation. For example,
you could flash the image of Mars while at the same time sliding the UIImageView
rightward, using view animation as described in the next section.

Presentation Layer
There isn’t really an “animation movie” in front of the screen — though the effect is
much the same. In reality, it is not a layer that draws itself on the screen; it’s a derived
layer called the presentation layer. Thus, when you animate the change of a view’s
position or a layer’s position from position 1 to position 2, its nominal position changes
immediately; meanwhile, the presentation layer’s position remains unchanged until the
redraw moment, and then changes over time, and because that’s what’s actually drawn
on the screen, that’s what the user sees.

A layer’s presentation layer can be accessed through its presentationLayer property
(and the layer itself is the presentation layer’s modelLayer). It is typed as an id, so in
order to work with it as a layer, you will probably want to typecast it to a CALayer*.
Accessing the presentationLayer is not a common thing to do, but it might come in
handy if your code needs to learn the current state of an in-flight animation.

UIImageView Animation | 361

View Animation
Animation is ultimately layer animation. However, for a limited range of attributes,
you can animate a UIView directly: these are its alpha, backgroundColor, bounds, center,
frame, and transform. You can also animate a UIView’s change of contents. Despite the
brevity of the list, UIView animation is an excellent way to become acquainted with
animation and to experiment with the various parameters you can use to determine
how an animation behaves; in many cases it will prove quite sufficient.

There are actually two ways to ask for UIView animation: the old way (before iOS 4.0,
and still available), and the new way (iOS 4.0 and later only, because it uses Objective-
C blocks; see Chapter 3). I’ll describe the old way first.

Animation Blocks
To animate a change to an animatable UIView property the old way, wrap the change
in calls to the UIView class methods beginAnimations:context: and commit-
Animations. Just to make life more confusing, the region between these calls is referred
to as an animation block, even though it is not a block in the syntactical Objective-C
sense.

So, animating a change to a view’s background color could be as simple as this:

[UIView beginAnimations:nil context:NULL];
v.backgroundColor = [UIColor yellowColor];
[UIView commitAnimations];

Any animatable change made within an animation block will be animated, so we can
animate a change both to the view’s color and its position simultaneously:

[UIView beginAnimations:nil context:NULL];
v.backgroundColor = [UIColor yellowColor];
CGPoint p = v.center;
p.y -= 100;
v.center = p;
[UIView commitAnimations];

We can also animate changes to multiple views. For example, suppose we want to make
one view dissolve into another. We start with the second view present in the view
hierarchy, but with an alpha of 0, so that it is invisible. Then we animate the change of
the first view’s alpha to 0 and the second view’s alpha to 1, simultaneously. This might
be a way, for example, to make the text of a label or the title of a button appear to
dissolve while changing.

The two parameters to beginAnimations:context: are an NSString and a pointer-to-
void that are completely up to you; the idea is that an animation can have a delegate
(so that you can be notified when the animation starts and ends), and you can supply
values here that will be passed along in the delegate messages, helping you identify the
animation and so forth.

362 | Chapter 17: Animation

Modifying an Animation Block
An animation has various characteristics that you can modify, and an animation block
provides a way to make such modifications: within the animation block, you call a
UIView class method whose name begins with “setAnimation.”

Some of the “setAnimation” method calls are oddly picky as to whether
they precede or follow the actual property value changes within the ani-
mation block. If a call seems to be having no effect, try moving it to the
beginning or end of the animation block. I find that in general these calls
work best if they precede the value changes.

Animation blocks can be nested. The result is a single animation, whose description is
not complete until the outermost animation block is terminated with commit-
Animations. Therefore, by using “setAnimation” method calls in the different nested
animation blocks, you can give the parts of the animation different characteristics.
Within each animation block, the animation for any property changes will have the
default characteristics unless you change them.

Nested animation blocks are different from successive top-level anima-
tion blocks; successive top-level animation blocks are different anima-
tions, which, as I mentioned earlier, can have undesirable effects, pos-
sibly causing the earlier animation to be cancelled abruptly.

Here are the “setAnimation” UIView class methods:

setAnimationDuration:
Sets the “speed” of the animation, by dictating (in seconds) how long it takes to
run from start to finish. Obviously, if two views are told to move different distances
in the same time, the one that must move further must move faster.

setAnimationRepeatAutoreverses:
If YES, the animation will run from start to finish (in the given duration time), and
will then run from finish to start (also in the given duration time).

setAnimationRepeatCount:
Sets how many times the animation should be repeated. Unless the animation also
autoreverses, the animation will “jump” from its end to its start to begin the next
repetition. The value is a float, so it is possible to end the repetition at some mid-
point of the animation.

setAnimationCurve:
Describes how the animation changes speed during its course. Your options are:

• UIViewAnimationCurveEaseInOut (the default)

• UIViewAnimationCurveEaseIn

View Animation | 363

• UIViewAnimationCurveEaseOut

• UIViewAnimationCurveLinear
The term “ease” means that there is a gradual acceleration or deceleration between
the animation’s central speed and the zero speed at its start or end.

setAnimationStartDate:, setAnimationDelay:
These are both ways postponing the start of the animation; in my experience, the
former is broken, so you should use setAnimationDelay: exclusively.

setAnimationDelegate:
Arranges for your code to be notified as the animation starts or ends; the methods
to be called on the delegate are specified as follows:

setAnimationWillStartSelector:
The “start” method must take two parameters; these are the values passed into
beginAnimations:context:, namely an identifying NSString and a pointer-to-
void. This method is not called unless something within the animation block
triggers an actual animation.

setAnimationDidStopSelector:
The “stop” method must take three parameters: the second parameter is a
BOOL wrapped as an NSNumber, indicating whether the animation comple-
ted successfully (and the other two are like the “start” method parameters).
This method is called, with the second parameter representing YES, even if
nothing within the animation block triggers any animations.

setAnimationsEnabled:
Set to NO to perform subsequent animatable property changes within the anima-
tion block without making them part of the animation.

setAnimationBeginsFromCurrentState:
If YES, and if this animation animates a property already being animated by an
animation that is previously ordered or in-flight, then instead of canceling the pre-
vious animation (completing the requested change instantly), this animation will
use the presentation layer to decide where to start, and will “blend” its animation
with the previous animation if possible.

If an animation autoreverses, and if, when the animation ends, the view’s actual prop-
erty is still at the finish value, the view will appear to “jump” from start to finish as the
“animation movie” is removed. So, for example, suppose we want a view to animate
its position to the right and then back to its original position. This code causes the view
to animate right, animate left, and then (unfortunately) jump right:

[UIView beginAnimations:nil context:NULL];
[UIView setAnimationRepeatAutoreverses:YES];
CGPoint p = v.center;
p.x += 100;
v.center = p;
[UIView commitAnimations];

364 | Chapter 17: Animation

How can we prevent this? We want the view to stay at the start value after the animation
reverses and ends. If we try to eliminate the jump at the end by setting the view’s position
back to its starting point after the animation block, there is no animation at all (because
when the redraw moment arrives, there is no property change):

[UIView beginAnimations:nil context:NULL];
[UIView setAnimationRepeatAutoreverses:YES];
CGPoint p = v.center;
p.x += 100;
v.center = p;
[UIView commitAnimations];
p = v.center;
p.x -= 100;
v.center = p;

The coherent solution is to use the “stop” delegate method to set the view’s position
back to its starting point when the animation ends:

- (void) someMethod {
 [UIView beginAnimations:nil context:NULL];
 [UIView setAnimationRepeatAutoreverses:YES];
 [UIView setAnimationDelegate:self];
 [UIView setAnimationDidStopSelector:@selector(stopped:fin:context:)];
 CGPoint p = v.center;
 p.x += 100;
 v.center = p;
 [UIView commitAnimations];
}

- (void) stopped:(NSString *)anim fin:(NSNumber*)fin context:(void *)context {
 CGPoint p = v.center;
 p.x -= 100;
 v.center = p;
}

In that example, we happened to know how the animation had changed the view’s
position, so we could hard-code the instructions for reversing the change. To be more
general, we could take advantage of our ability to pass information into the animation
block and retrieve this same information in the delegate method. Or, we could store
the view’s original position in its layer (recall that a CALayer is a dictionary-like con-
tainer):

- (void) someMethod {
 [UIView beginAnimations:nil context:NULL];
 [UIView setAnimationRepeatAutoreverses:YES];
 [UIView setAnimationDelegate:self];
 [UIView setAnimationDidStopSelector:@selector(stopped:fin:context:)];
 CGPoint p = v.center;
 [v.layer setValue:[NSValue valueWithCGPoint:p] forKey:@"origCenter"];
 p.x += 100;
 v.center = p;
 [UIView commitAnimations];
}

View Animation | 365

- (void) stopped:(NSString *)anim fin:(NSNumber*)fin context:(void *)context {
 v.center = [[v.layer valueForKey:@"origCenter"] CGPointValue];
}

To illustrate setAnimationBeginsFromCurrentState:, consider the following:

[UIView beginAnimations:nil context:NULL];
[UIView setAnimationDuration:1];
CGPoint p = v.center;
p.x += 100;
v.center = p;
[UIView commitAnimations];

[UIView beginAnimations:nil context:NULL];
// uncomment the next line to fix the problem
//[UIView setAnimationBeginsFromCurrentState:YES];
[UIView setAnimationDuration:1];
CGPoint p2 = v.center;
p2.x = 0;
v.center = p2;
[UIView commitAnimations];

The result is that the view jumps 100 points rightward, and then animates leftward.
That’s because the second animation caused the first animation to be thrown away;
the move 100 points rightward was performed instantly, instead of being animated.
But if we uncomment the call to setAnimationBeginsFromCurrentState:, the result is
that the view animates leftward from its current position, with no jump.

Even more interesting is what happens when we change x to y in the second animation.
If we uncomment the call to setAnimationBeginsFromCurrentState:, both the
x-component and the y-component of the view’s position are animated together, as if
we had ordered one animation instead of two.

Transition Animations
A transition is a sort of animated redrawing of a view. The usual reason for a transition
animation is that you are making some change in the view’s appearance, and you want
to emphasize this by animating the view. To order a transition animation using an
animation block, call setAnimationTransition:forView:cache:.

• The first parameter describes how the animation should behave; your choices are:

— UIViewAnimationTransitionFlipFromLeft

— UIViewAnimationTransitionFlipFromRight

— UIViewAnimationTransitionCurlUp

— UIViewAnimationTransitionCurlDown

• The second parameter is the view.

• The third parameter is whether to cache the view’s contents right now, effectively
taking a “snapshot” of those contents at the moment and as they will be after the

366 | Chapter 17: Animation

contents change, and using these snapshots throughout the transition. The alter-
native is to redraw the contents repeatedly throughout the transition. You’ll want
to say YES wherever possible.

Here’s a simple example that flips a UIImageView while changing its image. The result
is that the UIImageView appears to flip over, like a piece of paper being rotated to show
its reverse side — a piece of paper with Mars on its front and Saturn on its back:

[UIView beginAnimations:nil context:NULL];
[UIView setAnimationTransition:UIViewAnimationTransitionFlipFromLeft
 forView:iv cache:YES];
// iv is a UIImageView whose image is Mars.png
iv.image = [UIImage imageNamed:@"Saturn.gif"];
[UIView commitAnimations];

The example is a little misleading, because the change in the image does not necessarily
have to be inside the animation block. The animation described by setAnimation-
Transition:... will be performed in any case. The change of image will be performed
in any case as well. They will both happen at the redraw moment, so they are performed
together. Thus, we could have written the same example this way:

iv.image = [UIImage imageNamed:@"Saturn.gif"];
[UIView beginAnimations:nil context:NULL];
[UIView setAnimationTransition:UIViewAnimationTransitionFlipFromLeft
 forView:iv cache:YES];
[UIView commitAnimations];

Nevertheless, it is customary to order the changes in the view from inside the animation
block, and I’ll continue to do so in subsequent examples.

You can do the same sort of thing with any built-in view subclass. Here’s a button that
seems to be labeled “Start” on one side and “Stop” on the other:

[UIView beginAnimations:nil context:NULL];
// "b" is a UIButton; "stopped" is presumably a BOOL variable or ivar
[UIView setAnimationTransition:UIViewAnimationTransitionFlipFromLeft
 forView:b cache:YES];
[b setTitle:(stopped ? @"Start" : @"Stop") forState:UIControlStateNormal];
[UIView commitAnimations];

To do the same thing with a custom UIView subclass that knows how to draw itself in
its drawRect:, call setNeedsDisplay to cause a redraw. For example, imagine a UIView
subclass with a reverse BOOL property, which draws an ellipse if reverse is YES and
a square if reverse is NO. Then we can animate the square flipping over and becoming
an ellipse (or vice versa):

v.reverse = !v.reverse;
[UIView beginAnimations:nil context:NULL];
[UIView setAnimationTransition:UIViewAnimationTransitionFlipFromLeft
 forView:v cache:YES];
[v setNeedsDisplay];
[UIView commitAnimations];

View Animation | 367

Of course you can also animate a view while doing such things to it as removing or
adding a subview.

Block-Based View Animation
Starting in iOS 4.0, a UIView can be animated using a syntax involving Objective-C
blocks. This is intended to replace the old animation block syntax described earlier
(though it does not succeed completely). In the new syntax:

• The behavior to be animated is a block.

• The code to be run when the animation ends is also a block. Thus, there is no need
for the two-part structure involving an animation block and a separate delegate
method.

• Options describing the animation are part of the original animation method call,
not separate calls as with an animation block.

• User touch interactions are disabled during the animation, by default. This is not
the case with an animation block. The option UIViewAnimationOptionAllowUser-
Interaction lets you reverse this setting.

• Transition animations have more options than with animation blocks.

The basis of the new syntax is the UIView class method animateWithDuration:delay:
options:animations:completion:. There are also two reduced calls, the first letting you
omit the delay and options parameters and the second letting you also omit the
completion parameter. The parameters of the full form are:

duration
The duration of the animation.

delay
The delay before the animation starts. The default, in the reduced forms, is no
delay.

options
A bitmask stating additional options. The default, in the reduced forms, is UIView-
AnimationOptionCurveEaseInOut (which is also the default animation curve for ani-
mation blocks). For an ordinary animation (not a transition), the chief options are:

Animation curve
Your choices are:

• UIViewAnimationOptionCurveEaseInOut

• UIViewAnimationOptionCurveEaseIn

• UIViewAnimationOptionCurveEaseOut

• UIViewAnimationOptionCurveLinear

368 | Chapter 17: Animation

Repetition and autoreverse
Your options are:

• UIViewAnimationOptionRepeat

• UIViewAnimationOptionAutoreverse
There is no way to specify a certain number of repetitions; you either repeat
forever or not at all. This feels like an oversight.

animations
The block containing view property changes to be animated.

completion
The block to run when the animation ends. It takes one BOOL parameter indicat-
ing whether the animation ran to completion. (There is no way to specify a noti-
fication when the animation starts, but this should not be needed, as the animation
code is itself a block.) It’s fine for this block to order a further animation. This
block is called, with a parameter indicating YES, even if nothing in the
animations block triggers any animations.

Here’s an example, recasting an earlier example to use Objective-C blocks instead of
animation blocks. We move a view rightward and reverse it back into place. With
animation blocks, we used a delegate so that we could set the view back to its original
position, and we stored that position in the layer so as to be able to retrieve it in the
delegate method. With blocks, however, the original position can live in a variable that
remains in scope, so things are much simpler:

CGPoint p = v.center;
CGPoint pOrig = p;
p.x += 100;
void (^anim) (void) = ^{
 v.center = p;
};
void (^after) (BOOL) = ^(BOOL f) {
 v.center = pOrig;
};
NSUInteger opts = UIViewAnimationOptionAutoreverse;
[UIView animateWithDuration:1 delay:0 options:opts
 animations:anim completion:after];

As you can see, I like to express the blocks as named variables; I think this increases
readability.

In addition to the options I’ve already listed, there are some options saying what should
happen if an animation is already ordered or in-flight.

UIViewAnimationOptionBeginFromCurrentState
Similar to setAnimationBeginsFromCurrentState:.

UIViewAnimationOptionOverrideInheritedDuration
Prevents inheriting duration from an already ordered or in-flight animation (the
default is to inherit it).

View Animation | 369

UIViewAnimationOptionOverrideInheritedCurve
Prevents inheriting the animation curve from an already ordered or in-flight ani-
mation (the default is to inherit it).

Transitions are ordered using one of two methods. The one that’s parallel to set-
AnimationTransition..., described earlier in connection with animation blocks, is
transitionWithView:duration:options:animations:completion:. The transition ani-
mation types are parallel as well, but they are expressed as part of the options bitmask:

• UIViewAnimationOptionTransitionFlipFromLeft

• UIViewAnimationOptionTransitionFlipFromRight

• UIViewAnimationOptionTransitionCurlUp

• UIViewAnimationOptionTransitionCurlDown

Here’s a recasting, to use transitionWithView..., of the earlier example where we flip
a rectangle into an ellipse by means of a custom UIView subclass whose drawRect:
behavior depends on its reverse property:

v.reverse = !v.reverse;
void (^anim) (void) = ^{
 [v setNeedsDisplay];
};
NSUInteger opts = UIViewAnimationOptionTransitionFlipFromLeft;
[UIView transitionWithView:v duration:1 options:opts
 animations:anim completion:nil];

The second transition method is transitionFromView:toView:duration:options:
completion:. It names two views; the first is replaced by the second, while their super-
view undergoes the transition animation. This has no parallel in the older animation
block syntax. There are actually two possible configurations, depending on the options
you provide:

Remove one subview, add the other
If UIViewAnimationOptionShowHideTransitionViews is not one of the options, then
the second subview is not in the view hierarchy when we start; the first subview is
removed from its superview and the second subview is added to that same super-
view.

Hide one subview, show the other
If UIViewAnimationOptionShowHideTransitionViews is one of the options, then both
subviews are in the view hierarchy when we start; the hidden of the first is NO, the
hidden of the second is YES, and these values are reversed.

So, for example, this code causes the superview of v1 to rotate like a piece of paper
being turned over, while at the same v1 is removed from it and v2 is added to it:

NSUInteger opts = UIViewAnimationOptionTransitionFlipFromLeft;
[UIView transitionFromView:v1 toView:v2 duration:1 options:opts completion:nil];

370 | Chapter 17: Animation

It’s up to you to make sure beforehand that v2 has the desired position, so that it will
appear in the right place in its superview.

Implicit Layer Animation
If a layer is not a view’s underlying layer, animating it can be as simple as setting a
property. A change in what the documentation calls an animatable property is auto-
matically interpreted as a request to animate that change. In other words, animation
of layer property changes is the default! Multiple property changes are considered part
of the same animation. This mechanism is called implicit animation.

You cannot use implicit animation on the underlying layer of a UIView.
You can animate a UIView’s underlying layer directly, but you must use
explicit animation (discussed in the upcoming section on Core Anima-
tion).

For example, in Chapter 16 we constructed a compass out of layers. The compass itself
is a CompassView that does no drawing of its own; its underlying layer is a
CompassLayer that also does no drawing, serving only as a superlayer for the layers
that constitute the drawing. None of the layers that constitute the actual drawing is the
underlying layer of a view, so a property change to any of them is animated automati-
cally.

So, presume that we have a reference to the arrow layer, a property theArrow of the
CompassLayer, and also a reference to the CompassView, a property compass of the
app delegate, which is self. If we rotate the arrow by changing its transform property,
that rotation is animated:

CompassLayer* c = (CompassLayer*)self.compass.layer;
// the next line is an implicit animation
c.theArrow.transform = CATransform3DRotate(c.theArrow.transform, M_PI/4.0, 0, 0, 1);

CALayer properties listed in the documentation as animatable in this way are anchor-
Point and anchorPointZ, backgroundColor, borderColor, borderWidth, bounds, contents,
contentsCenter, contentsRect, cornerRadius, doubleSided, hidden, masksToBounds,
opacity, position and zPosition, rasterizationScale and shouldRasterize, shadow-
Color, shadowOffset, shadowOpacity, shadowRadius, and sublayerTransform and
transform.

In addition, a CAShapeLayer’s path, fillColor, strokeColor, lineWidth, lineDash-
Phase, and miterLimit are animatable; so are a CATextLayer’s fontSize and foreground-
Color.

Basically, a property is animatable because there’s some sensible way to interpolate the
intermediate values between one value and another. The nature of the animation at-
tached to each property is therefore just what you would intuitively expect. When you

Implicit Layer Animation | 371

change a layer’s hidden property, it fades out of view (or into view). When you change
a layer’s contents, the old contents are dissolved into the new contents. And so forth.

Animation Transactions
Implicit animation operates with respect to a transaction (a CATransaction), which
groups animation requests into a single animation. Every animation request takes place
in the context of a transaction. You can make this explicit by wrapping your animation
requests in calls to the CATransaction class methods begin and commit; the result is a
transaction block. But additionally there is already an implicit transaction surrounding
all your code.

To modify the characteristics of an implicit animation, you modify its transaction.
Typically, you’ll use these class methods:

setAnimationDuration:
The duration of the animation.

setAnimationTimingFunction:
A CAMediaTimingFunction; timing functions are discussed in the next section.

setCompletionBlock:
A block (only on iOS 4 and later, obviously) to be called when the animation ends.
The block takes no parameters. The block is called even if no animation is triggered
during this transaction.

By nesting transaction blocks, you can apply different animation characteristics to dif-
ferent elements of an animation. But you can also use transaction commands outside
of any transaction block to modify the implicit transaction.

So, in our previous example, we could slow down the animation of the arrow like this:

CompassLayer* c = (CompassLayer*)self.compass.layer;
[CATransaction setAnimationDuration:0.8];
c.theArrow.transform = CATransform3DRotate(c.theArrow.transform, M_PI/4.0, 0, 0, 1);

Another useful feature of animation transactions is to turn implicit animation off. It’s
important to be able to do this, because implicit animation is the default, and can be
unwanted (and a performance drag). To do so, call the CATransaction class method
setDisableActions: with value YES. There are other ways to turn off implicit animation
(discussed later in this chapter), but this is the simplest.

CATransaction implements KVC to allow you set and retrieve a value for an arbitrary
key, similar to CALayer. An example appears later in this chapter.

372 | Chapter 17: Animation

A transaction block that orders an animation to a layer, if the block is
not preceded by any changes to the layer, can cause animation to begin
immediately when the CATransaction class method commit is called,
without waiting for the redraw moment, while your code continues
running. In my experience, this can cause confusion (for example, ani-
mation delegate messages cannot arrive, and the presentation layer can’t
be queried properly) and should be avoided.

Media Timing Functions
The CATransaction class method setAnimationTimingFunction: takes as its parameter
a media timing function (CAMediaTimingFunction). This class is the general expres-
sion of the animation curves we have already met (ease-in-out, ease-in, ease-out, and
linear); in fact, you are most likely to use it with those very same predefined curves, by
calling the CAMediaTimingFunction class method functionWithName: with one of these
parameters:

• kCAMediaTimingFunctionLinear

• kCAMediaTimingFunctionEaseIn

• kCAMediaTimingFunctionEaseOut

• kCAMediaTimingFunctionEaseInEaseOut

• kCAMediaTimingFunctionDefault

In reality, a media timing function is a Bézier curve defined by two points. The curve
graphs the fraction of the animation’s time that has elapsed (the x-axis) against the
fraction of the animation’s change that has occurred (the y-axis); its endpoints are
therefore at (0,0) and (1,1), because at the beginning of the animation there has been
no elapsed time and no change, and at the end of the animation all the time has elapsed
and all the change has occurred.

Because the curve’s defining points are its endpoints, each needs only one Bézier control
point to define the tangent to the curve. And because the curve’s endpoints are known,
defining the two control points is sufficient to describe the entire curve. And because
a point is a pair of floating point values, a media timing function can be expressed as
four floating-point values. That is, in fact, how it is expressed.

So, for example, the ease-in-out timing function is expressed as the four values 0.42,
0.0, 0.58, 1.0. That defines a Bézier curve with one endpoint at (0,0), whose control
point is (0.42,0), and the other endpoint at (1,1), whose control point is (0.58,1)
(Figure 17-1).

If you want to define your own media timing function, you can supply the coordinates
of the two control points by calling functionWithControlPoints:::: or initWithControl-
Points:::: (this is one of those rare cases of the parameters of an Objective-C method
having no name; see Chapter 3). For example, here’s a media timing function that starts
out quite slowly and then whips quickly into place after about two-thirds of the time

Implicit Layer Animation | 373

has elapsed. I call this the “clunk” timing function, and it looks great with the compass
arrow:

CAMediaTimingFunction* clunk =
 [CAMediaTimingFunction functionWithControlPoints:.9 :.1 :.7 :.9];
[CATransaction setAnimationTimingFunction: clunk];
c.theArrow.transform = CATransform3DRotate(c.theArrow.transform, M_PI/4.0, 0, 0, 1);

If you’re going to define your own media timing function, it helps to
design the curve in a standard drawing program first so that you can
visualize how the placement of the control points shapes the curve.

Core Animation
Core Animation is the fundamental underlying iOS animation technology. View ani-
mation and implicit layer animation are merely convenient façades for Core Animation.
Core Animation is explicit layer animation, and revolves primarily around the CAAni-
mation class and its subclasses, which allow you to create far more elaborate specifi-
cations of an animation than anything we’ve encountered so far.

You may never program at the level of Core Animation, but you should read this section
anyway, if only to learn how animation really works and to get a sense of the mighty
powers you would acquire if you did elect to use Core Animation directly. In particular,
Core Animation:

• Works even on a view’s underlying layer. Thus, Core Animation is the only way to
apply full-on layer property animation to a view.

• Provides fine control over the intermediate values and timing of an animation.

• Allows animations to be grouped into complex combinations.

• Adds transition animation effects that aren’t available otherwise, such as new con-
tent “pushing” the previous content out of a layer.

Figure 17-1. An ease-in-out Bézier curve

374 | Chapter 17: Animation

CABasicAnimation and Its Inheritance
The simplest way to animate a property with Core Animation is with a CABasicAni-
mation object. CABasicAnimation derives much of its power through its inheritance,
so I’m going to describe that inheritance as well as CABasicAnimation itself. You will
readily see that all the property animation features we have met so far are embodied in
a CABasicAnimation instance.

CAAnimation
CAAnimation is an abstract class, meaning that you’ll only ever use a subclass of
it. Some of CAAnimation’s powers come from its implementation of the CAMe-
diaTiming protocol.

animation
A class method, a convenient way of creating an animation object.

delegate
The delegate messages are animationDidStart: and animationDidStop:
finished:, which should sound familiar from the analogous UIView animation
delegate messages. A CAAnimation instance retains its delegate; this is a very
unusual thing and can cause trouble if you’re not conscious of it. In iOS 4 and
later, you can use the CATransaction class method setCompletionBlock: in-
stead of a delegate message to run code after the animation ends.

duration, timingFunction
The length of the animation, and its timing function (a CAMediaTimingFunc-
tion). A duration of 0 (the default) means .25 seconds unless overridden by the
transaction.

autoreverses, repeatCount, repeatDuration, cumulative
The first two are familiar from UIView animation. The repeatDuration prop-
erty is a different way to govern repetition, specifying how long the repetition
should continue rather than how many repetitions should occur; don’t specify
both a repeatCount and a repeatDuration. If cumulative is YES, a repeating
animation starts each repetition where the previous repetition ended (rather
than jumping back to the start value).

beginTime
The delay before the animation starts. To delay an animation with respect to
now, call CACurrentMediaTime and add the desired delay in seconds. The delay
does not eat into the animation’s duration.

timeOffset
A shift in the animation’s overall timing; looked at another way, specifies the
starting frame of the “animation movie,” which is treated as a loop. For ex-
ample, an animation with a duration of 8 and a time offset of 4 plays its second
half followed by its first half.

Core Animation | 375

CAPropertyAnimation
CAPropertyAnimation is a subclass of CAAnimation. It too is abstract, and adds
the following:

keyPath
The all-important string specifying the CALayer key that is to be animated.
Recall from Chapter 16 that CALayer properties are accessible through KVC
keys; now we are using those keys! A CAPropertyAnimation convenience class
method animationWithKeyPath: creates the instance and assigns it a keyPath.

additive
If YES, the values supplied by the animation are added to the current
presentation-layer value.

valueFunction
Converts a simple scalar value that you supply into a transform.

CABasicAnimation
CABasicAnimation is a subclass (not abstract!) of CAPropertyAnimation. It adds
the following:

fromValue, toValue
The starting and ending values for the animation. These values must be objects,
so numbers and structs will have to be wrapped accordingly. If neither from-
Value nor toValue is provided, the former and current values of the property
are used. If just one of fromValue or toValue is provided, the other uses the
current value of the property.

byValue
Expresses one of the endpoint values as a difference from the other rather than
in absolute terms. So you would supply a byValue instead of a fromValue or
instead of a toValue, and the actual fromValue or toValue would be calculated
for you by subtraction or addition with respect to the other value. If you supply
only a byValue, the fromValue is the property’s current value.

Using a CABasicAnimation
Having constructed and configured a CABasicAnimation, the way you order it to be
performed is to add it to a layer. This is done with the CALayer instance method add-
Animation:forKey:. (I’ll discuss the purpose of the Key parameter later; it’s fine to ignore
it and use nil, as I do in the examples that follow.)

However, there’s a slight twist. A CAAnimation is merely an animation; all it does is
describe the hoops that the presentation layer is to jump through, the “animation
movie” that is to be presented. It has no effect on the layer itself. Thus, if you naively
create a CABasicAnimation and add it to a layer with addAnimation:forKey:, the ani-
mation happens and then the “animation movie” is whipped away to reveal the layer

376 | Chapter 17: Animation

sitting there in exactly the same state as before. It is up to you to change the layer to
match what the animation will ultimately portray.

This requirement may seem odd, but keep in mind that we are now in a much more
fundamental, flexible world than the automatic, convenient worlds of view animation
and implicit layer animation. Using explicit animation is more work, but you get more
power. The converse, as we shall see, is that you don’t have to change the layer if it
doesn’t change during the animation.

To assure good results, we’ll start by taking a formulaic approach to the use of CABa-
sicAnimation, like this:

1. Capture the start and end values for the layer property you’re going to change,
because you’re likely to need these values in what follows.

2. Change the layer property to its end value, first calling setDisableActions: to pre-
vent implicit animation.

3. Construct the explicit animation, using the start and end values you captured ear-
lier, and with its keyPath corresponding to the layer property you just changed.

4. Add the explicit animation to the layer.

Here’s how you’d use this approach to animate our compass arrow rotation:

CompassLayer* c = (CompassLayer*)self.compass.layer;
// capture the start and end values
CATransform3D startValue = c.theArrow.transform;
CATransform3D endValue = CATransform3DRotate(startValue, M_PI/4.0, 0, 0, 1);
// change the layer, without implicit animation
[CATransaction setDisableActions:YES];
c.theArrow.transform = endValue;
// construct the explicit animation
CABasicAnimation* anim = [CABasicAnimation animationWithKeyPath:@"transform"];
anim.duration = 0.8;
CAMediaTimingFunction* clunk =
 [CAMediaTimingFunction functionWithControlPoints:.9 :.1 :.7 :.9];
anim.timingFunction = clunk;
anim.fromValue = [NSValue valueWithCATransform3D:startValue];
anim.toValue = [NSValue valueWithCATransform3D:endValue];
// ask for the explicit animation
[c.theArrow addAnimation:anim forKey:nil];

Once you know the full form, you will find that in many cases it can be condensed. For
example, when fromValue and toValue are not set, the former and current values of the
property are used automatically. (This magic is possible because the presentation layer
still has the former value of the property, while the layer itself has the new value.) Thus,
in this case there was no need to set them, and so there was no need to capture the start
and end values beforehand either. Here’s the condensed version:

CompassLayer* c = (CompassLayer*)self.compass.layer;
[CATransaction setDisableActions:YES];
c.theArrow.transform = CATransform3DRotate(c.theArrow.transform, M_PI/4.0, 0, 0, 1);
CABasicAnimation* anim = [CABasicAnimation animationWithKeyPath:@"transform"];

Core Animation | 377

anim.duration = 0.8;
CAMediaTimingFunction* clunk =
 [CAMediaTimingFunction functionWithControlPoints:.9 :.1 :.7 :.9];
anim.timingFunction = clunk;
[c.theArrow addAnimation:anim forKey:nil];

As I mentioned earlier, you will omit changing the layer if it doesn’t change during the
animation. For example, let’s make the compass arrow appear to vibrate rapidly, with-
out ultimately changing its current orientation. To do this, we’ll waggle it back and
forth, using a repeated animation, between slightly clockwise from its current position
and slightly counterclockwise from its current position. The “animation movie” neither
starts nor stops at the current position of the arrow, but for this animation it doesn’t
matter, because it all happens so quickly as to appear perfectly natural:

CompassLayer* c = (CompassLayer*)self.compass.layer;
// capture the start and end values
CATransform3D nowValue = c.theArrow.transform;
CATransform3D startValue = CATransform3DRotate(nowValue, M_PI/40.0, 0, 0, 1);
CATransform3D endValue = CATransform3DRotate(nowValue, -M_PI/40.0, 0, 0, 1);
// construct the explicit animation
CABasicAnimation* anim = [CABasicAnimation animationWithKeyPath:@"transform"];
anim.duration = 0.05;
anim.timingFunction =
 [CAMediaTimingFunction functionWithName:kCAMediaTimingFunctionLinear];
anim.repeatCount = 3;
anim.autoreverses = YES;
anim.fromValue = [NSValue valueWithCATransform3D:startValue];
anim.toValue = [NSValue valueWithCATransform3D:endValue];
// ask for the explicit animation
[c.theArrow addAnimation:anim forKey:nil];

That code, too, can be shortened considerably from its full form. We can eliminate the
need to calculate the new rotation values based on the arrow’s current transform by
setting our animation’s additive property to YES; this means that the animation’s
property values are added to the existing property value for us, so that they are relative,
not absolute. For a transform, “added” means “matrix-multiplied,” so we can describe
the waggle without any dependence on the arrow’s current rotation. Moreover, because
our rotation is so simple (around a cardinal axis), we can take advantage of CAPro-
pertyAnimation’s valueFunction; the animation’s property values can then be simple
scalars (in this case, angles), because the valueFunction tells the animation to interpret
these as rotations around the z-axis:

CompassLayer* c = (CompassLayer*)self.compass.layer;
CABasicAnimation* anim = [CABasicAnimation animationWithKeyPath:@"transform"];
anim.duration = 0.05;
anim.timingFunction =
 [CAMediaTimingFunction functionWithName:kCAMediaTimingFunctionLinear];
anim.repeatCount = 3;
anim.autoreverses = YES;
anim.additive = YES;
anim.valueFunction = [CAValueFunction functionWithName:kCAValueFunctionRotateZ];
anim.fromValue = [NSNumber numberWithFloat:M_PI/40];

378 | Chapter 17: Animation

anim.toValue = [NSNumber numberWithFloat:-M_PI/40];
[c.theArrow addAnimation:anim forKey:nil];

Instead of using a valueFunction, we could have achieved the same effect
by setting the animation’s key path to @"transform.rotation.z". How-
ever, Apple advises against this, as it can result in mathematical trouble
when there is more than one rotation.

Keyframe Animation
Keyframe animation (CAKeyframeAnimation) is an alternative to basic animation
(CABasicAnimation); they are both subclasses of CAPropertyAnimation and they are
used in identical ways. The difference is that a keyframe animation, in addition to
specifying a starting and ending value, also specifies multiple values through which the
animation should pass on the way, the stages (frames) of the animation. This can be as
simple as setting the animation’s values property (an NSArray).

Here’s a nicer version of our animation for waggling the compass arrow: the animation
includes both the start and end states, and the degree of waggle gets progressively
smaller:

CompassLayer* c = (CompassLayer*)self.compass.layer;
NSMutableArray* values = [NSMutableArray array];
[values addObject: [NSNumber numberWithFloat:0]];
int direction = 1;
for (int i = 20; i < 60; i += 5, direction *= -1) { // reverse direction each time
 [values addObject: [NSNumber numberWithFloat: direction*M_PI/(float)i]];
}
[values addObject: [NSNumber numberWithFloat:0]];
CAKeyframeAnimation* anim = [CAKeyframeAnimation animationWithKeyPath:@"transform"];
anim.values = values;
anim.additive = YES;
anim.valueFunction = [CAValueFunction functionWithName: kCAValueFunctionRotateZ];
[c.theArrow addAnimation:anim forKey:nil];

Here are some CAKeyframeAnimation properties:

values
The array of values the animation is to adopt, including the starting and ending
value.

timingFunctions
An array of timing functions, one for each stage of the animation (so that this array
will be one element shorter than the values array).

keyTimes
An array of times to accompany the array of values, defining when each value
should be reached. The times start at 0 and are expressed as increasing fractions of
1, ending at 1.

Core Animation | 379

calculationMode
Describes how the values are treated to create all the values through which the
animation must pass.

• The default is kCAAnimationLinear, a simple straight-line interpolation from
value to value.

• kCAAnimationCubic (on iOS 4 and later) constructs a single smooth curve passing
through all the values (and additional advanced properties, tensionValues,
continuityValues, and biasValues, allow you to refine the curve).

• kCAAnimationDiscrete means no interpolation: we jump directly to each value
at the corresponding key time.

• kCAAnimationPaced and kCAAnimationCubicPaced means the timing functions and
key times are ignored, and the velocity is made constant through the whole
animation.

path
When you’re animating a property whose values are pairs of floats (CGPoints), this
is an alternative way of describing the values; instead of a values array, which must
be interpolated to arrive at the intermediate values along the way, you supply the
entire interpolation as a single CGPathRef. The points used to draw the path are
the keyframe values, so you can still apply timing functions and key times. If you’re
animating a position, the rotationMode property lets you ask the animated object
to rotate so as to remain perpendicular to the path. (I’ll give an example later in
this chapter.)

Making a Property Animatable
So far, we’ve been animating built-in animatable properties. If you define your own
property on a CALayer subclass, you can make that property animatable through a
CAPropertyAnimation (a CABasicAnimation or a CAKeyframeAnimation). You do this
by declaring the property @dynamic (so that Core Animation can create its accessors)
and returning YES from the class method needsDisplayForKey:, where the key is the
string name of the property.

For example, here’s the code for a layer class MyLayer with an animatable thickness
property:

// the interface section
@interface MyLayer : CALayer {
}
@property (nonatomic, assign) CGFloat thickness;
@end

// the implementation section
@implementation MyLayer
@dynamic thickness;

+ (BOOL) needsDisplayForKey:(NSString *)key {

380 | Chapter 17: Animation

 if ([key isEqualToString: @"thickness"])
 return YES;
 return [super needsDisplayForKey:key];
}

@end

Returning YES from needsDisplayForKey: causes this layer to be redisplayed repeatedly
as the thickness property changes. So if we want to see the animation, this layer also
needs to draw itself in some way that depends on the thickness property. Here, I’ll use
the layer’s drawInContext: to make thickness the thickness of a rectangle:

- (void) drawInContext:(CGContextRef)ctx {
 CGRect r = CGRectInset(self.bounds, 20, 20);
 CGContextFillRect(ctx, r);
 CGContextSetLineWidth(ctx, self.thickness);
 CGContextStrokeRect(ctx, r);
}

Now we can animate the rectangle’s thickness using explicit animation (lay is a My-
Layer instance):

 CABasicAnimation* ba = [CABasicAnimation animationWithKeyPath:@"thickness"];
 ba.toValue = [NSNumber numberWithFloat: 10.0];
 ba.autoreverses = YES;
 [lay addAnimation:ba forKey:nil];

At every step of the animation, drawLayer:inContext: is called, and because the
thickness value differs at each step, it is animated.

Grouped Animations
A grouped animation (CAAnimationGroup) combines multiple animations into one,
by means of its animations property (an NSArray of animations). By delaying and timing
the various component animations, complex effects can be created.

A CAAnimationGroup is itself an animation; it is a CAAnimation subclass, so it has a
duration and other animation features. Think of the CAAnimationGroup as the parent
and its animations as listing its children. Then the children inherit default values from
their parent. Thus, for example, if you don’t set a child’s duration explicitly, it will
inherit the parent’s duration. Also, make sure the parent’s duration is sufficient to
include all parts of the child animations that you want displayed.

For example, here’s how we can combine the compass arrow rotation and the compass
arrow waggle into a sequence. Very little change is required. We express the first ani-
mation in its full form, with explicit fromValue and toValue. We postpone the second
animation using its beginTime property; notice that we express this in relative terms, as
a number of seconds into the parent’s duration, not with respect to CACurrentMedia-
Time. Finally, we set the overall parent duration to the sum of the child durations, so
that it can embrace both of them:

Core Animation | 381

CompassLayer* c = (CompassLayer*)self.compass.layer;
// capture current value, set final value
CGFloat rot = M_PI/4.0;
[CATransaction setDisableActions:YES];
CGFloat current = [[c.theArrow valueForKeyPath:@"transform.rotation.z"] floatValue];
[c.theArrow setValue: [NSNumber numberWithFloat: current + rot]
 forKeyPath:@"transform.rotation.z"];
// first animation (rotate and clunk) ===============
CABasicAnimation* anim1 = [CABasicAnimation animationWithKeyPath:@"transform"];
anim1.duration = 0.8;
CAMediaTimingFunction* clunk =
 [CAMediaTimingFunction functionWithControlPoints:.9 :.1 :.7 :.9];
anim1.timingFunction = clunk;
anim1.fromValue = [NSNumber numberWithFloat: current];
anim1.toValue = [NSNumber numberWithFloat: current + rot];
anim1.valueFunction = [CAValueFunction functionWithName:kCAValueFunctionRotateZ];
// second animation (waggle) ========================
NSMutableArray* values = [NSMutableArray array];
[values addObject: [NSNumber numberWithFloat:0]];
int direction = 1;
for (int i = 20; i < 60; i += 5, direction *= -1) { // reverse direction each time
 [values addObject: [NSNumber numberWithFloat: direction*M_PI/(float)i]];
}
[values addObject: [NSNumber numberWithFloat:0]];
CAKeyframeAnimation* anim2 =
 [CAKeyframeAnimation animationWithKeyPath:@"transform"];
anim2.values = values;
anim2.duration = 0.25;
anim2.beginTime = anim1.duration;
anim2.additive = YES;
anim2.valueFunction = [CAValueFunction functionWithName:kCAValueFunctionRotateZ];
// group ==
CAAnimationGroup* group = [CAAnimationGroup animation];
group.animations = [NSArray arrayWithObjects: anim1, anim2, nil];
group.duration = anim1.duration + anim2.duration;
[c.theArrow addAnimation:group forKey:nil];

In that example, I grouped two animations that animated the same property sequen-
tially. Now let’s go to the other extreme and group some animations that animate
different properties simultaneously. I have a small view (about 56×38), located near the
top right corner of the screen, whose layer contents are a picture of a sailboat facing to
the left. I’ll “sail” the boat in a curving path, both down the screen and left and right
across the screen, like an extended letter “S” (Figure 17-2). Each time the boat comes
to a vertex of the curve, changing direction across the screen, I’ll turn the boat picture
so that it faces the way it’s about to move. At the same time, I’ll constantly rock the
boat, so that it always appears to be pitching a little on the waves.

Here’s the first animation, the movement of the boat along its curving path. It illustrates
the use of a CAKeyframeAnimation with a CGPath; the calculationMode of
kCAAnimationPaced ensures an even speed over the whole path. We don’t set an explicit
duration because we want to adopt the duration of the group:

382 | Chapter 17: Animation

CGFloat h = 200;
CGFloat v = 75;
CGMutablePathRef path = CGPathCreateMutable();
int leftright = 1;
CGPoint next = self.view.layer.position;
CGPoint pos;
CGPathMoveToPoint(path, NULL, next.x, next.y);
for (int i = 0; i < 4; i++) {
 pos = next;
 leftright *= -1;
 next = CGPointMake(pos.x+h*leftright, pos.y+v);
 CGPathAddCurveToPoint(path, NULL, pos.x, pos.y+30, next.x, next.y-30,
 next.x, next.y);
}
CAKeyframeAnimation* anim1 = [CAKeyframeAnimation animationWithKeyPath:@"position"];
anim1.path = path;
anim1.calculationMode = kCAAnimationPaced;

Here’s the second animation, the reversal of the direction the boat is facing. This is
simply a rotation around the y-axis. We make no attempt at visually animating this
reversal, so we set the calculationMode to kCAAnimationDiscrete (the boat image rever-
sal is a sudden change). There is one fewer value than the number of points in our first
animation’s path, and the first animation has an even speed, so the reversals take place
at each curve apex with no further effort on our part. (If the pacing were more com-
plicated, we could give both the first and the second animation identical keyTimes ar-
rays, to coordinate them.) Once again, we don’t set an explicit duration:

NSArray* revs = [NSArray arrayWithObjects:
 [NSNumber numberWithFloat:0],
 [NSNumber numberWithFloat:M_PI],
 [NSNumber numberWithFloat:0],
 [NSNumber numberWithFloat:M_PI],
 nil];
CAKeyframeAnimation* anim2 =
 [CAKeyframeAnimation animationWithKeyPath:@"transform"];
anim2.values = revs;
anim2.valueFunction = [CAValueFunction functionWithName:kCAValueFunctionRotateY];
anim2.calculationMode = kCAAnimationDiscrete;

Here’s the third animation, the rocking of the boat. It has a short duration, and repeats
indefinitely (by giving its repeatCount an immense value):

Figure 17-2. A boat and the course she’ll sail

Core Animation | 383

NSArray* pitches = [NSArray arrayWithObjects:
 [NSNumber numberWithFloat:0],
 [NSNumber numberWithFloat:M_PI/60.0],
 [NSNumber numberWithFloat:0],
 [NSNumber numberWithFloat:-M_PI/60.0],
 [NSNumber numberWithFloat:0],
 nil];
CAKeyframeAnimation* anim3 =
 [CAKeyframeAnimation animationWithKeyPath:@"transform"];
anim3.values = pitches;
anim3.repeatCount = HUGE_VALF;
anim3.duration = 0.5;
anim3.additive = YES;
anim3.valueFunction = [CAValueFunction functionWithName:kCAValueFunctionRotateZ];

Finally, we combine the three animations, assigning the group an explicit duration that
will be adopted by the first two animations. As we hand the animation over to the layer
displaying the boat, we also change the layer’s position to match the final position from
the first animation, so that the boat won’t jump back to its original position afterward:

CAAnimationGroup* group = [CAAnimationGroup animation];
group.animations = [NSArray arrayWithObjects: anim1, anim2, anim3, nil];
group.duration = 8;
[view.layer addAnimation:group forKey:nil];
[CATransaction setDisableActions:YES];
view.layer.position = next;

Here are some further CAAnimation properties (from the CAMediaTiming protocol)
that come into play especially when animations are grouped:

speed
The ratio between a child’s timescale and the parent’s timescale. For example, if a
parent and child have the same duration, but the child’s speed is 1.5, its animation
runs one-and-a-half times as fast as the parent.

fillMode
Suppose the child animation begins after the parent animation, or ends before the
parent animation, or both. What should happen to the appearance of the property
being animated, outside the child animation’s boundaries? The answer depends
on the child’s fillMode:

• kCAFillModeRemoved means the child animation is removed, revealing the layer
property at its actual current value whenever the child is not running.

• kCAFillModeForwards means the final presentation layer value of the child ani-
mation remains afterward.

• kCAFillModeBackwards means the initial presentation layer value of the child
animation appears right from the start.

• kCAFillModeBoth combines the previous two.

384 | Chapter 17: Animation

CALayer adopts the CAMediaTiming protocol, in the sense that a layer
can have a speed. This will affect any animation attached to it. A
CALayer with a speed of 2 will play a 10-second animation in 5 seconds.

Transitions
A layer transition is an animation involving two “copies” of a single layer, in which the
second “copy” appears to replace the first. It is described by an instance of CATransition
(a CAAnimation subclass), which has these chief properties describing the animation:

type
Your choices are:

• kCATransitionFade

• kCATransitionMoveIn

• kCATransitionPush

• kCATransitionReveal

subtype
If the type is not kCATransitionFade, your choices are:

• kCATransitionFromRight

• kCATransitionFromLeft

• kCATransitionFromTop

• kCATransitionFromBottom

For historical reasons, the terms “bottom” and “top” in the names of
the subtype settings have the opposite of their expected meanings.

To understand the nature of a transition animation, the best approach is to try one,
without doing anything else. For example:

CATransition* t = [CATransition animation];
t.type = kCATransitionPush;
t.subtype = kCATransitionFromBottom;
[view.layer addAnimation: t forKey: nil];

It will help if the layer’s frame is visible (give it a borderWidth, perhaps). What you’ll
see, then, is that the entire layer exits moving down from its original place, and another
“copy” of the same layer enters moving down from above. In Figure 17-3, the green
layer (the wider rectangle) is the superlayer of the red layer (the narrower rectangle,
which appears twice). The red layer is normally centered in the green layer, but I’ve
managed to freeze the red layer in the middle of a transition.

Core Animation | 385

You can use a layer’s superlayer to help restrict the visible part of the layer’s transition.
If the superlayer’s masksToBounds is NO, the user can see the entire transition; its move-
ments will have the whole screen as their visible boundaries. But if the superlayer’s
masksToBounds is YES, then the visible part of the transition movement is restricted to
the superlayer’s bounds: it’s as if you’re seeing the movements through a window that
is the superlayer. In Figure 17-3, for example, if the green layer’s masksToBounds were
YES, we wouldn’t see any of the part of the transition animation outside its boundaries.
A common device is to have the layer that is to be transitioned live inside a superlayer
that is exactly the same size and whose masksToBounds is YES. This confines the visible
transition to the bounds of the layer itself.

Our example appears silly, because there was no motivation for this animation; the two
“copies” of the layer are identical. A typical motivation would be that you’re changing
the contents of a layer and you want to dramatize this. Here, we change the example
so that an image of Saturn replaces an image of Mars by pushing it away from above
(Figure 17-4). We get a slide effect, as if one layer were being replaced by another; but
in fact there is just one layer that holds first one picture, then the other:

CATransition* t = [CATransition animation];
t.type = kCATransitionPush;
t.subtype = kCATransitionFromBottom;
[CATransaction setDisableActions:YES];
layer.contents = (id)[[UIImage imageNamed: @"Saturn.gif"] CGImage];
[layer addAnimation: t forKey: nil];

The Animations List
The method that asks for an explicit animation to happen is CALayer’s addAnimation:
forKey. To understand how this method actually works (and what the “key” is), you
need to know about a layer’s animations list.

An animation is an object (a CAAnimation) that modifies how a layer is drawn. It does
this merely by being attached to the layer; the layer’s drawing mechanism does the rest.
A layer maintains a list of animations that are currently in force. To add an animation

Figure 17-3. A push transition

386 | Chapter 17: Animation

to this list, you call addAnimation:forKey:. When the time comes to draw itself, the layer
looks through its animations list and draws itself in accordance with any animations it
finds there. (The list of things the layer must do in order to draw itself is sometimes
referred to by the documentation as the render tree.)

The animations list is maintained in a curious way. The list is not exactly a dictionary,
but it behaves somewhat like a dictionary. An animation has a key — the second pa-
rameter to addAnimation:forKey:. If an animation with a certain key is added to the list,
and an animation with that key is already in the list, the one that is already in the list
is removed. Thus a rule is maintained that only one animation with a given key can be
in the list at a time (the exclusivity rule). This explains why sometimes ordering an
animation can cancel an animation already ordered or in-flight: the two animations
had the same key, so the first one was removed. It is also possible to add an animation
with no key (the key is nil); it is then not subject to the exclusivity rule (that is, there
can be more than one animation in the list with no key). The order in which animations
were added to the list is the order in which they are applied.

The Key parameter in addAnimation:forKey: is thus not a property name. It could be a
property name, but it can be any arbitrary value. Its purpose is to enforce the exclusivity
rule. It does not have any meaning with regard to what property a CAPropertyAnima-
tion animates; that is the job of the animation’s keyPath. This is a most unfortunate
and confusing use of the term “key”; I wish they had called this addAnimation:with-
Identifier: or something like that.

Figure 17-4. Another push transition

Core Animation | 387

Actually, there is a relationship between the “key” in addAnimation:for-
Key: and a CAPropertyAnimation’s keyPath: if a CAPropertyAnima-
tion’s keyPath is nil at the time that it is added to a layer with add-
Animation:forKey:, that keyPath is set to the call’s Key parameter value.
Thus, you can misuse the Key parameter in addAnimation:forKey: as a
way of specifying what keyPath an animation animates. (This fact is not
documented, so far as I know, but it’s easily verified experimentally, and
it should remain reliably true, as implicit animation crucially depends
on it.) I have seen many misleading examples that do so, apparently in
the mistaken belief that the “key” in addAnimation:forKey: is the way
you are supposed to specify what property to animate. This is wrong. Set
the CAPropertyAnimation’s keyPath explicitly (as do all my examples);
that’s what it’s for.

You can use the exclusivity rule to your own advantage, to keep your code from stepping
on its own feet. Some code of yours might add an animation to the list using a certain
key; then later, some other code might come along and correct this, removing that
animation and replacing it with another. By using the same key, the second code is
easily able to override the first: “You may have been given some other animation with
this key, but throw it away; play this one instead.”

In some cases, the key you supply is ignored and a different key is substituted. In par-
ticular, the key with which a CATransition is added to the list is always
kCATransition (which happens to be @"transition"); thus there can be only one tran-
sition animation in the list.

You can’t access the entire animations list directly. You can access the key names of
the animations in the list, with animationKeys; and you can obtain or remove an ani-
mation with a certain key, with animationForKey: and removeAnimationForKey:; but
animations with a nil key are inaccessible. You can, however, remove all animations,
including animations with a nil key, using removeAllAnimations.

On a multitasking system, when the app is suspended, removeAll-
Animations is called on all layers for you.

You can think of an animation in a layer’s animations list as being the “animation
movie” I spoke of at the start of this chapter. As long as an animation is in the list, the
movie is present, either waiting to be played or actually playing. An animation that has
finished playing is, in general, pointless; the animation should now be removed from
the list. Therefore, an animation has a removedOnCompletion property, which defaults
to YES: when the “movie” is over, the animation removes itself from the list.

You can, if desired, set removedOnCompletion to NO. However, even the presence in the
list of an animation that has already played might make no difference to the layer’s

388 | Chapter 17: Animation

appearance, because an animation’s fillMode is kCAFillModeRemoved, which removes
the animation from the layer’s drawing when the movie is over. Thus, it can usually do
no harm to leave an animation in the list after it has played, but it’s not a great idea
either, because this is just one more thing for the drawing system to worry about.
Typically, you’ll leave removedOnCompletion set at YES.

On the other hand, there are circumstances where it makes sense to set removedOn-
Completion to NO and set the animation’s fillMode to kCAFillModeForwards or kCAFill-
ModeBoth. This causes the layer to keep the appearance of the last frame of the “anima-
tion movie” even after the animation is over. For instance, Apple’s Metronome example
does this for the animation that makes the arm of the metronome appear to rock from
one side to the other. The reason is that another animation with the same key is about
to come along and replace this one, and make the arm of the metronome appear to
rock to the other side. In other words, as long as the metronome is ticking, animation
of the arm is all the user sees; there is no need to reveal the arm’s actual position.

This technique — setting an animation’s fillMode to kCAFillModeForwards and its
removedOnCompletion to NO — is sometimes treated by beginners as a way of keeping
a property from apparently jumping back to its initial value when the animation ends.
This is incorrect. The correct approach, as I have stated, is to change the property value
to match the final frame of the animation. (Even in Apple’s Metronome example, the
real value of the arm’s rotation is also changed, so that when all animations are removed,
the position of the arm is correctly shown.)

Actions
For the sake of completeness, I will now explain how implicit animation works — that
is, how implicit animation is turned into explicit animation behind the scenes. The
basis of implicit animation is the action mechanism.

What an Action Is
An action is an object that adopts the CAAction protocol. This simply means that it
implements runActionForKey:object:arguments:.

The action object could do anything in response to this message. The notion of an action
is completely general. However, in real life, the only class that adopts the CAAction
protocol is CAAnimation. So, an animation is a special case of an action, but in fact it
is also the only case of an action.

What an animation does when it receives runActionForKey:object:arguments: is to as-
sume that the second parameter, the object, is a layer, and to add itself to that layer’s
animations list. Thus, for an animation, receiving the runActionForKey:object:
arguments: message is like being told: “Play yourself!”

Actions | 389

You would never send runActionForKey:object:arguments: to an animation directly.
Rather, this message is sent to an animation for you, as the basis of implicit animation.

The Action Search
When you set a property of a layer and trigger an implicit animation, you are actually
triggering the action search. This basically means that the layer searches for an action
object to which it can send the runActionForKey:object:arguments: message; because
that action object will be an animation, and because it will respond to this message by
adding itself to the layer’s animations list, this is the same as saying that the layer
searches for an animation to play itself with respect to the layer. The procedure by
which the layer searches for this animation is quite elaborate.

The search for an action object begins because you do something that causes the layer
to be sent the actionForKey: message. Let us presume that what you do is to change
the value of an animatable property. (Other things can cause the actionForKey: message
to be sent, as I’ll show later.) The action mechanism then treats the name of the property
as a key, and the layer receives actionForKey: with that key — and the action search
begins.

At each stage of the action search, the following rules are obeyed regarding what is
returned from that stage of the search:

An action object
If an action object (an animation) is produced, that is the end of the search. The
action mechanism sends that animation the runActionForKey:object:arguments:
message; the animation responds by adding itself to the layer’s animations list.

nil
If nil is produced, the search continues to the next stage.

[NSNull null]
If [NSNull null] is produced, this means, “Do nothing and stop searching.” The
search comes to an end; there will be no implicit animation.

The action search proceeds as follows:

1. The layer might terminate the search before it even starts. For example, the layer
will do this if it is the underlying layer of a view, or if a property is set to the same
value it already has. In such a case, there should be no implicit animation, so the
whole mechanism is nipped in the bud.

2. If the layer has a delegate that implements actionForLayer:forKey:, that message
is sent to the delegate, with this layer as the layer and the property name as the key.
If an animation or [NSNull null] is returned, the search ends.

3. The layer has a property called actions, which is a dictionary. If there is an entry
in this dictionary with the given key, that value is used, and the search ends.

390 | Chapter 17: Animation

4. The layer has a property called style which is a dictionary. If there is an entry in
this dictionary with the key actions, it is assumed to be a dictionary; if this
actions dictionary has an entry with the given key, that value is used, and the search
ends. Otherwise, if there is an entry in the style dictionary called style, the same
search is performed within it, and so on recursively until either an actions entry
with the given key is found (the search ends) or there are no more style entries
(the search continues).

If the style dictionary sounds profoundly weird, that’s because it
is profoundly weird. It is actually a special case of a larger, separate
mechanism, which is also profoundly weird, having to do not with
actions, but with a CALayer’s implementation of KVC. When you
call valueForKey: on a layer, if the key is undefined by the layer
itself, the style dictionary is consulted. I have never written or seen
code that uses this mechanism for anything, and I’ll say no more
about it.

5. The layer’s class is sent defaultActionForKey:, with the property name as the key.
If an animation or [NSNull null] is returned, the search ends.

6. If the search reaches this point, a default animation is supplied, as appropriate. For
a property animation, this is a plain vanilla CABasicAnimation.

Both the delegate’s actionForLayer:forKey: and the subclass’s defaultActionForKey:
are declared as returning an id<CAAction>. To return [NSNull null], therefore, you’ll
need to typecast it to id<CAAction> to quiet the compiler; you’re lying (NSNull does
not adopt the CAAction protocol), but it doesn’t matter.

Hooking Into the Action Search
You can affect the action search at various stages to modify what happens when the
search is triggered. For example, you could cause some stage of the search to produce
an animation; that animation will then be used. Assuming that the search is triggered
by setting an animatable layer property, you would then be affecting how implicit ani-
mation behaves.

You will probably want your animation to be fairly minimal. You may have no way of
knowing the former and current values of the property that is being changed, so it would
then be pointless (and very strange) to set a CABasicAnimation’s fromValue or to-
Value. Moreover, although animation properties that you don’t set can be set through
CATransaction, in the usual manner for implicit property animation, animation prop-
erties that you do set can not be overridden through CATransaction. For example, if
you set the animation’s duration, a call to CATransaction’s setAnimationDuration:
class method cannot change it.

Actions | 391

Let’s say we want a certain layer’s duration for an implicit position animation to be 5
seconds. We can achieve this with a minimally configured animation, like this:

CABasicAnimation* ba = [CABasicAnimation animation];
ba.duration = 5;

The idea now is to situate this animation, ba, where it will be produced by the action
search when implicit animation is triggered on the position property of our layer. We
could, for instance, put it into the layer’s actions dictionary:

layer.actions = [NSDictionary dictionaryWithObject: ba forKey: @"position"];

The result is that when we set that layer’s position, if an implicit animation results, its
duration is 5 seconds, even if we try to change it through CATransaction:

[CATransaction setAnimationDuration:1];
layer.position = CGPointMake(100,200); // animation takes 5 seconds

Let’s use that example to tease apart how the action mechanism makes implicit ani-
mation work:

1. You set the value of the layer’s position property.

2. If your setting does not represent a change in the position value, or if this layer is
a view’s underlying layer, that’s the end of the story; there is no implicit property
animation.

3. Otherwise, the action search begins. There is no delegate in this case, so the search
proceeds to the actions dictionary.

4. There is an entry under the key @"position" in the actions dictionary (because we
put it there), and it is an animation. That animation is the action, and that is the
end of the search.

5. The animation is sent runActionForKey:object:arguments:.

6. The animation responds by calling [object addAnimation:self forKey:
@"position"]. The animation’s keyPath was nil, so this call also sets the keyPath to
the same key! Thus, there is now an animation in the layer’s animations list that
animates its position, because its keyPath is @"position". Moreover, we didn’t set
the fromValue or toValue, so the property’s previous and new values are used. The
animation therefore shows the layer moving from its current position to (100,200).

Using the layer’s actions dictionary to set default animations is a somewhat inflexible
way to hook into the action search, however. It’s a good way to disable implicit ani-
mation for specific properties; just set the value for that key to [NSNull null]. But it
has the disadvantage in general that you must write your animation beforehand.

By contrast, if you set the layer’s delegate to a instance that responds to actionForLayer:
forKey:, your code runs at the time the animation is needed, and you have access to
the layer that is to be animated. So you can create the animation on the fly, possibly
modifying it in response to current circumstances.

392 | Chapter 17: Animation

Recall also that CATransaction implements KVC to allow you to set and retrieve the
value of arbitrary keys. We can take advantage of this fact to pass an additional message
from the code that sets the property value, and triggers the action search, to the code
that supplies the action. This works because they both take place within the same
transaction.

In this example, we use the layer delegate to change the default position animation so
that instead of being a straight line, the path has a slight waggle. To do this, the delegate
constructs a keyframe animation. The animation depends on the old position value
and the new position value; the delegate can get the former direct from the layer, but
the latter must be handed to the delegate somehow. Here, a CATransaction key
@"newP" is used to communicate this information. When we set the layer’s position,
we must remember to put its future value where the delegate can retrieve it, like this:

CGPoint newP = CGPointMake(200,300);
[CATransaction setValue: [NSValue valueWithCGPoint: newP] forKey: @"newP"];
layer.position = newP; // the delegate will waggle the layer into place

The delegate is called by the action search and constructs the animation:

- (id < CAAction >)actionForLayer:(CALayer *)lay forKey:(NSString *)key {
 if ([key isEqualToString: @"position"]) {
 CGPoint oldP = layer.position;
 CGPoint newP = [[CATransaction valueForKey: @"newP"] CGPointValue];
 CGFloat d = sqrt(pow(oldP.x - newP.x, 2) + pow(oldP.y - newP.y, 2));
 CGFloat r = d/3.0;
 CGFloat theta = atan2(newP.y - oldP.y, newP.x - oldP.x);
 CGFloat wag = 10*M_PI/180.0;
 CGPoint p1 = CGPointMake(oldP.x + r*cos(theta+wag),
 oldP.y + r*sin(theta+wag));
 CGPoint p2 = CGPointMake(oldP.x + r*2*cos(theta-wag),
 oldP.y + r*2*sin(theta-wag));
 CAKeyframeAnimation* anim = [CAKeyframeAnimation animation];
 anim.values = [NSArray arrayWithObjects:
 [NSValue valueWithCGPoint:oldP],
 [NSValue valueWithCGPoint:p1],
 [NSValue valueWithCGPoint:p2],
 [NSValue valueWithCGPoint:newP],
 nil];
 anim.calculationMode = kCAAnimationCubic;
 return anim;
 }
 return nil;
}

Finally, for the sake of completeness, I’ll demonstrate overriding defaultActionFor-
Key:. This code would go into a CALayer subclass where setting its contents is to trigger
a push transition from the left:

Actions | 393

+ (id < CAAction >)defaultActionForKey:(NSString *)aKey {
 if ([aKey isEqualToString:@"contents"]) {
 CATransition* tr = [CATransition animation];
 tr.type = kCATransitionPush;
 tr.subtype = kCATransitionFromLeft;
 return tr;
 }
 return [super defaultActionForKey: aKey];
}

Nonproperty Actions
Changing a property is not the only way to trigger a search for an action; an action
search is also triggered when a layer is added to a superlayer (key kCAOnOrderIn) and
when a layer’s sublayers are changed by adding or removing a sublayer (key
@"sublayers"). We can watch for these keys in the delegate and return an animation.

Unfortunately, these triggers and their keys are incorrectly described in
Apple’s documentation, and there are additional triggers and keys that
are not mentioned there.

In this example, when our layer is added to a superlayer, we make it “pop” into view
by fading quickly in from an opacity of 0 and at the same time scaling its transform to
make it momentarily appear a little larger:

- (id < CAAction >)actionForLayer:(CALayer *)lay forKey:(NSString *)key {
 if ([key isEqualToString:kCAOnOrderIn]) {
 CABasicAnimation* anim1 =
 [CABasicAnimation animationWithKeyPath:@"opacity"];
 anim1.fromValue = [NSNumber numberWithFloat: 0.0];
 anim1.toValue = [NSNumber numberWithFloat: lay.opacity];
 CABasicAnimation* anim2 =
 [CABasicAnimation animationWithKeyPath:@"transform"];
 anim2.toValue = [NSValue valueWithCATransform3D:
 CATransform3DScale(lay.transform, 1.1, 1.1, 1.0)];
 anim2.autoreverses = YES;
 anim2.duration = 0.1;
 CAAnimationGroup* group = [CAAnimationGroup animation];
 group.animations = [NSArray arrayWithObjects: anim1, anim2, nil];
 group.duration = 0.2;
 return group;
 }
}

The documentation says that when a layer is removed from a superlayer, an action is
sought under the key kCAOnOrderOut. This is true but useless, because by the time the
action is sought, the layer has already been removed from the superlayer, so returning
an animation has no visible effect. Similarly, an animation returned as an action when
a layer’s hidden is set to YES is never played. Apple has admitted that this is a bug. A

394 | Chapter 17: Animation

possible workaround is to trigger the animation via the opacity property, perhaps in
conjunction with a CATransaction key, and remove the layer afterward:

[CATransaction setCompletionBlock: ^{
 [layer removeFromSuperlayer];
}];
[CATransaction setValue:@"" forKey:@"byebye"];
layer.opacity = 0;

Now actionForLayer:forKey: can test for the incoming key @"opacity" and the CA-
Transaction key @"byebye", and return the animation appropriate to removal from the
superlayer.

Actions | 395

CHAPTER 18

Touches

[Winifred the Woebegone illustrates hit-testing:] Hey
nonny nonny, is it you? — Hey nonny nonny nonny no!

— Hey nonny nonny, is it you? — Hey nonny nonny
nonny no!

—Marshall Barer, Once Upon a Mattress

A touch is an instance of the user putting a finger on the screen. The system and the
hardware, working together, know when a finger contacts the screen and where it is.
(Fingers are fat, but the system and the hardware cleverly reduce the finger’s location
to a single appropriate point.)

A UIView, by virtue of being a UIResponder, is the visible locus of touches. There are
other UIResponder subclasses, but none of them is visible on the screen. What the user
sees are views; what the user is touching are views. (The user may also see layers, but
a layer is not a UIResponder and is not involved with touches. I’ll talk later about how
to make it seem as if the user can touch a layer.)

It would make sense, therefore, if every touch were reported directly to the view in
which it occurred. However, what the system “sees” is not particular views but an app
as a whole. So a touch is represented as an object (a UITouch instance) which is bundled
up in an envelope (a UIEvent) which the system delivers to your app. It is then up to
your app to deliver the envelope to an appropriate UIView. In the vast majority of cases,
this will happen automatically the way you expect, and you will respond to a touch by
way of the view in which the touch occurred.

In fact, usually you won’t concern yourself with UIEvents and UITouches at all. Most
built-in interface views deal with these low-level touch reports themselves, and notify
your code at a higher level. When a UIButton emits an action message to report a control
event such as Touch Up Inside (Chapter 11), it has already performed a reduction of a
complex sequence of touches (“the user put a finger down inside me and then, possibly
with some dragging hither and yon, raised it when it was still reasonably close to me”).
A UITextField reports touches on the keyboard as changes in its own text. A UITable-

397

View reports that the user selected a cell. A UIScrollView, when dragged, reports that
it scrolled; when pinched outward, it reports that it zoomed. Some interface views
respond to touches internally without reporting to your code at all; for example, a
UIWebView, when dragged, just scrolls.

Nevertheless, it is useful to know how to respond to touches directly, so that you can
implement your own touchable views, and so that you understand what Cocoa’s built-
in views are actually doing. This chapter discusses touch detection and response by
views (and other UIResponders) at their lowest level, along with a slightly higher-level
mechanism, gesture recognizers, that categorizes touches into gesture types for you;
then it deconstructs the touch-delivery architecture by which touches are reported to
your views in the first place.

Touch Events and Views
Imagine a screen that the user is not touching at all: the screen is “finger-free.” Now
the user touches the screen with one or more fingers. From that moment to the time
the screen is once again finger-free, all touches and finger movements together consti-
tute what Apple calls a single multitouch sequence.

The system reports to your app, during a given multitouch sequence, every change in
finger configuration, so that your app can figure out what the user is doing. Every such
report is a UIEvent. In fact, every report having to do with the same multitouch se-
quence is the same UIEvent instance, arriving repeatedly, each time there’s a change in
finger configuration.

Every UIEvent reporting a change in the user’s finger configuration contains one or
more UITouch objects. Each UITouch object corresponds to a single finger; conversely,
every finger touching the screen is represented in the UIEvent by a UITouch object.
Once a certain UITouch instance has been created to represent a finger that has touched
the screen, the same UITouch instance is used to represent that finger throughout this
multitouch sequence until the finger leaves the screen.

Now, it might sound as if the system has to bombard the app with huge numbers of
reports constantly during a multitouch sequence. But that’s not really true. The system
needs to report only changes in the finger configuration. For a given UITouch object
(representing, remember, a specific finger), only four things can happen. These are
called touch phases, and are described by a UITouch instance’s phase property:

UITouchPhaseBegan
The finger touched the screen for the first time; this UITouch instance has just been
created. This is always the first phase, and arrives only once.

UITouchPhaseMoved
The finger moved upon the screen.

398 | Chapter 18: Touches

UITouchPhaseStationary
The finger remained on the screen without moving. Why is it necessary to report
this? Well, remember, once a UITouch instance has been created, it must be present
every time the UIEvent arrives. So if the UIEvent arrives because something else
happened (e.g., a new finger touched the screen), we must report what this finger
has been doing, even if it has been doing nothing.

UITouchPhaseEnded
The finger left the screen. Like UITouchPhaseBegan, this phase arrives only once.
The UITouch instance will now be destroyed and will no longer appear in UIEvents
for this multitouch sequence.

Those four phases are sufficient to describe everything that a finger can do. Actually,
there is one more possible phase:

UITouchPhaseCancelled
The system has aborted this multitouch sequence because something interrupted
it.

What might interrupt a multitouch sequence? There are many possibilities. Perhaps
the user clicked the Home button or the screen lock button in the middle of the se-
quence. A local notification alert may have appeared (Chapter 26); on an actual iPhone,
a call might have come in. (As we shall see, a gesture recognizer recognizing its gesture
may also trigger touch cancellation.) The point is, if you’re dealing with touches your-
self, you cannot afford to ignore touch cancellation; they are your opportunity to get
things into a coherent state when the sequence is interrupted.

When a UITouch first appears (UITouchPhaseBegan), your app works out which UIView
it is associated with. (I’ll give full details, later in this chapter, as to how it does that.)
This view is then set as the touch’s view property; from then on, this UITouch is
always associated with this view. In other words, a touch’s view is that touch’s view
forever (until that finger leaves the screen).

A UIEvent is distributed to all the views of all the UITouches it contains. (The same
UIEvent containing the same UITouches can be sent to multiple views; these are pro-
grammatic objects, not real-world envelopes containing actual fingers.) Conversely, if
a view is sent a UIEvent, it’s because that UIEvent contains at least one UITouch whose
view is this view.

If every UITouch in a UIEvent associated with a certain UIView has the phase UITouch-
PhaseStationary, that UIEvent is not sent to that UIView. There’s no point, because as
far as that view is concerned, nothing happened.

Touch Events and Views | 399

Receiving Touches
A UIView, being a UIResponder, inherits four methods corresponding to the four UI-
Touch phases that require UIEvent delivery. A UIEvent is delivered to a view by calling
one or more of these four methods (the touches... methods):

touchesBegan:withEvent:
A finger touched the screen, creating a UITouch.

touchesMoved:withEvent:
A finger previously reported to this view with touchesBegan:withEvent: has moved.

touchesEnded:withEvent:
A finger previously reported to this view with touchesBegan:withEvent: has left the
screen.

touchesCancelled:withEvent:
We are bailing out on a finger previously reported to this view with touchesBegan:
withEvent:.

The parameters of these methods are:

The relevant touches
These are the event’s touches whose phase corresponds to the name of the method
and (normally) whose view is this view. They arrive as an NSSet (Chapter 10). If
you know for a fact that there is only one touch in the set, or that any touch in the
set will do, you can retrieve it with anyObject (an NSSet doesn’t implement last-
Object because a set is unordered).

The event
This is the UIEvent instance. It contains its touches as an NSSet, which you can
retrieve with the allTouches message. This means all the event’s touches, including
but not necessarily limited to those in the first parameter; there might be touches
in a different phase or intended for some other view. You can call touchesFor-
View: or touchesForWindow: to ask for the set of touches associated with a particular
view or window.

A UITouch has some useful methods and properties:

locationInView:, previousLocationInView:
The current and previous location of this touch with respect to the coordinate
system of a given view. The view you’ll be interested in will often be self or
self.superview; supply nil to get the location with respect to the window. The
previous location will be of interest only if the phase is UITouchPhaseMoved.

timestamp
When the touch last changed. A touch is timestamped when it is created (UITouch-
PhaseBegan) and each time it moves (UITouchPhaseMoved).

400 | Chapter 18: Touches

tapCount
If two touches are in roughly the same place in quick succession, and the first one
is brief, the second one may be characterized as a repeat of the first. They are
different touch objects, but the second will be assigned a tapCount one larger than
the previous one. The default is 1, so if (for example) a touch’s tapCount is 3 then
this is the third tap in quick succession in roughly the same spot.

view
The view with which this touch is associated.

Here are some additional UIEvent properties:

type
This will be UIEventTypeTouches. There are other event types, but you’re not going
to receive any of them this way.

timestamp
When the event occurred.

So, when we say that a certain view is receiving a touch, that is a shorthand expression
meaning that it is being sent a UIEvent containing this UITouch, over and over, by
calling one of its touches... methods, corresponding to the phase this touch is in, from
the time the touch is created until the time it is destroyed.

Restricting Touches
Touch events can be turned off entirely at the application level with UIApplication’s
beginIgnoringInteractionEvents. It is quite common to do this during animations and
other lengthy operations during which responding to a touch could cause undesirable
results. This call should be balanced by endIgnoringInteractionEvents. Pairs can be
nested, in which case interactivity won’t be restored until the outermost endIgnoring-
InteractionEvents has been reached.

A number of high-level UIView properties also restrict the delivery of touches to par-
ticular views:

userInteractionEnabled
If set to NO, this view (along with its subviews) is excluded from receiving touches.

hidden
If set to YES, this view (along with its subviews) is excluded from receiving touches.

opacity
If set to 0.0 (or extremely close to it), this view (along with its subviews) is excluded
from receiving touches.

Restricting Touches | 401

multipleTouchEnabled
If set to NO, this view never receives more than one touch simultaneously; once it
receives a touch, it doesn’t receive any other touches until that first touch has
ended.

exclusiveTouch
This is the only one of these properties that can’t be set in the nib. An exclusive-
Touch view receives a touch only if no other views in the same window have touches
associated with them; once an exclusiveTouch view has received a touch, then while
that touch exists no other view in the same window receives any touches.

A UIWindow ignores multipleTouchEnabled; it always receives multiple
touches. Moreover, a UIWindow’s behavior with respect to exclusive-
Touch is unreliable, presumably because it is not itself a view in the win-
dow.

Interpreting Touches
To figure out what’s going on as touches are received by a view, your code must es-
sentially function as a kind of state machine. You’ll receive various touches... method
calls, and your response will partly depend upon what happened previously, so you’ll
have to record somehow, such as in instance variables, the information that you’ll need
in order to decide what to do when the next touches... method is called. Such an
architecture can make writing and maintaining touch-analysis code quite tricky. More-
over, although you can distinguish a particular UITouch or UIEvent object over time
by keeping a reference to it, you mustn’t retain that reference; it doesn’t belong to you.

Thanks to the existence, starting in iOS 3.2, of gesture recognizers (the subject of the
next section), in most cases you won’t have to interpret touches at all; you’ll let a gesture
recognizer do most of that work. Even so, it is beneficial to be conversant with the
nature of touch interpretation; this will help you interact with a gesture recognizer,
write your own gesture recognizer, or subclass an existing one. Furthermore, not every
touch sequence can be codified through a gesture recognizer; sometimes, directly in-
terpreting touches is the best approach. Therefore, even though you might not write
the sort of code discussed in this section, you should read the section anyway.

To illustrate the business of interpreting touches, we’ll start with a view that can be
dragged with the user’s finger. For simplicity, I’ll assume that this view receives only a
single touch at a time. (This assumption is easy to enforce by setting the view’s multiple-
TouchEnabled to NO, which is the default.)

The trick to making a view follow the user’s finger is to realize that a view is positioned
by its center, which is in superview coordinates, but the user’s finger might not be at
the center of the view. So at every stage of the drag we must use instance variables to
record both the view’s center (in superview coordinates) and the position of the user’s

402 | Chapter 18: Touches

finger (also in superview coordinates); then, however much the user’s finger has moved,
that’s how much we must move the center. So we maintain two state variables, p and
origC:

- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 self->p = [[touches anyObject] locationInView: self.superview];
 self->origC = self.center;
}

- (void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
 CGPoint loc = [[touches anyObject] locationInView: self.superview];
 CGFloat deltaX = loc.x - self->p.x;
 CGFloat deltaY = loc.y - self->p.y;
 CGPoint c = self.center;
 c.x = self->origC.x + deltaX;
 c.y = self->origC.y + deltaY;
 self.center = c;
 self->p = [[touches anyObject] locationInView: self.superview];
 self->origC = self.center;
}

Next, let’s add a restriction that the view can be dragged only vertically or horizontally.
All we have to do is hold one coordinate steady; but which coordinate? Everything
seems to depend on what the user does initially. So we’ll do a one-time test the first
time we receive touchesMoved:withEvent:. Now we’re maintaining two more state var-
iables, decided and horiz:

- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 self->p = [[touches anyObject] locationInView: self.superview];
 self->origC = self.center;
 self->decided = NO;
}

- (void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
 if (!self->decided) {
 self->decided = YES;
 CGPoint then = [[touches anyObject] previousLocationInView: self];
 CGPoint now = [[touches anyObject] locationInView: self];
 CGFloat deltaX = fabs(then.x - now.x);
 CGFloat deltaY = fabs(then.y - now.y);
 self->horiz = (deltaX >= deltaY);
 }
 CGPoint loc = [[touches anyObject] locationInView: self.superview];
 CGFloat deltaX = loc.x - self->p.x;
 CGFloat deltaY = loc.y - self->p.y;
 CGPoint c = self.center;
 if (self->horiz)
 c.x = self->origC.x + deltaX;
 else
 c.y = self->origC.y + deltaY;
 self.center = c;
 self->p = [[touches anyObject] locationInView: self.superview];
 self->origC = self.center;
}

Interpreting Touches | 403

Finally, we’ll make things a little more realistic by allowing the user to “fling” the view
horizontally or vertically. This is a bit tricky because we must know how fast the user’s
finger was moving when it “let go” of the view. Speed is a function of change in position
and change in time. We already know how to get the position; the time we can retrieve
from the event’s timestamp. It will suffice to use the last two position and timestamp
pairs; that’s a decent measure of the finger’s final speed. But we do not know which
two will be the last, so we must calculate the speed using every pair, as long as this
touch exists.

So now we’re recording two more state variables, time and speed. The speed we’ll ac-
tually use is the last one recorded in touchesMoved:withEvent:. Then in touchesEnded:
withEvent: we’ll animate the continued movement. This isn’t a classy physics simula-
tion, but it feels natural enough, and anyhow, it’s only an example:

- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 self->p = [[touches anyObject] locationInView: self.superview];
 self->origC = self.center;
 self->decided = NO;
 self->time = event.timestamp;
}

- (void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
 if (!self->decided) {
 self->decided = YES;
 CGPoint then = [[touches anyObject] previousLocationInView: self];
 CGPoint now = [[touches anyObject] locationInView: self];
 CGFloat deltaX = fabs(then.x - now.x);
 CGFloat deltaY = fabs(then.y - now.y);
 self->horiz = (deltaX >= deltaY);
 }
 CGPoint loc = [[touches anyObject] locationInView: self.superview];
 CGFloat deltaX = loc.x - self->p.x;
 CGFloat deltaY = loc.y - self->p.y;
 CGPoint c = self.center;
 if (self->horiz)
 c.x = self->origC.x + deltaX;
 else
 c.y = self->origC.y + deltaY;
 self.center = c;
 //
 CGFloat elapsed = event.timestamp - self->time;
 loc = [[touches anyObject] locationInView: self.superview];
 deltaX = loc.x - self->p.x;
 deltaY = loc.y - self->p.y;
 CGFloat delta = self->horiz ? deltaX : deltaY;
 self->speed = delta/elapsed;
 //
 self->p = [[touches anyObject] locationInView: self.superview];
 self->origC = self.center;
 self->time = event.timestamp;
}

- (void) touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {

404 | Chapter 18: Touches

 CGFloat sp = self->speed;
 NSString* property = self->horiz ? @"position.x" : @"position.y";
 CGFloat start = self->horiz ? self.layer.position.x : self.layer.position.y;
 CGFloat dur = 0.1
 CGFloat end = start + sp * dur;
 CABasicAnimation* anim1 = [CABasicAnimation animationWithKeyPath: property];
 anim1.duration = dur;
 anim1.fromValue = [NSNumber numberWithFloat: start];
 anim1.toValue = [NSNumber numberWithFloat: end];
 anim1.timingFunction =
 [CAMediaTimingFunction functionWithName:kCAMediaTimingFunctionEaseOut];
 [CATransaction setDisableActions:YES];
 [self.layer setValue: [NSNumber numberWithFloat: end] forKeyPath: property];
 [self.layer addAnimation: anim1 forKey: nil];
}

That example shows how the interplay between the various touches... calls works,
and how it requires that we maintain state between calls. But we have not been dealing,
so far, with multiple simultaneous touches. So let’s start over. Once again, we’ll have
a view that the user can drag freely around the screen. But this time, to reduce the
number of state variables, instead of recording two values between calls, our center and
the touch’s position in the same coordinates, we’ll record just one, the difference be-
tween them (expressed as a point, though in fact it is really an x-difference and a y-
difference):

- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 // record delta between initial touch point and center, in a CGFloat ivar
 CGPoint initialTouch = [[touches anyObject] locationInView: self.superview];
 self->p = CGPointMake(initialTouch.x - self.center.x,
 initialTouch.y - self.center.y);
}

- (void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
 CGPoint where = [[touches anyObject] locationInView: self.superview];
 where.x -= self->p.x;
 where.y -= self->p.y;
 self.center = where;
}

Now imagine that our view’s multipleTouchEnabled is YES. Then the user might start
by dragging us with one finger, perhaps, but then put down a second finger, lift the
initial finger, and continue dragging us with that second finger — whose delta from
the center is different. So we’re going to have to maintain the deltas, from the center,
of every finger that touches down, so that no matter which finger is reported as moving,
we have a delta for it.

So we need to maintain a dictionary in which we can look up each delta by way of the
touch to which it belongs. But we cannot use a UITouch object as a key in an NSDic-
tionary, because an NSDictionary copies its keys, and what we want is an identifier that
matches the UITouch object itself. Apple’s documentation suggests using a CFDic-
tionary (the Core Foundation version of an NSDictionary), but here’s another way:

Interpreting Touches | 405

from a UITouch object we’ll derive a unique identifier, namely the string representing
its location in memory, which we can obtain using stringWithFormat:.

So we’ll start by putting a category on UITouch, to derive this unique identifier:

@interface UITouch (additions)
- (NSString*) uid;
@end

@implementation UITouch (additions)
- (NSString*) uid {
 return [NSString stringWithFormat: @"%p", self];
}
@end

Now we must maintain our dictionary throughout the period while we have touches,
creating it on our first touch and destroying it when our last touch is gone:

- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 // create and retain dictionary if it doesn't exist
 if (!self->d)
 self->d = [[NSMutableDictionary alloc] init];
 // store delta for *every* new touch in dictionary
 for (UITouch* t in touches) {
 CGPoint initialTouch = [t locationInView: self.superview];
 CGPoint delta = CGPointMake(initialTouch.x - self.center.x,
 initialTouch.y - self.center.y);
 [d setObject: [NSValue valueWithCGPoint:delta] forKey:[t uid]];
 }
}

- (void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
 // *any* touch that has moved will do to reposition ourselves
 UITouch* t = [touches anyObject];
 CGPoint where = [t locationInView: self.superview];
 CGPoint delta = [[self->d objectForKey: [t uid]] CGPointValue];
 where.x -= delta.x;
 where.y -= delta.y;
 self.center = where;
}

- (void) touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
 // remove *every* touch that has ended from our dictionary
 for (UITouch* t in touches)
 [self->d removeObjectForKey:[t uid]];
 // if *all* touches are gone, release dictionary, nilify pointer
 if (![self->d count]) {
 [self->d release];
 self->d = nil;
 }
}

- (void) touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event {
 // bailing out: release dictionary, nilify pointer
 [self->d release];

406 | Chapter 18: Touches

 self->d = nil;
}

The result is structurally sound enough (that is, our dictionary is working perfectly),
but the behavior of this interface is faulty; we are not taking care of every possibility
coherently. When the view moves, if multiple fingers are down, they may have travelled
different amounts, which will make our stored delta wrong for at least one of them.
That’s a bug. So we should recalculate our deltas every time touchesMoved:with-
Event: is called.

Moreover, if the user puts down two fingers and moves one, the view moves. Whether
this is right or wrong is up to us. Let’s decide that it’s wrong, and that the stationary
finger should take precedence, holding the view in place. Here’s a new version of
touchesMoved:withEvent::

- (void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
 BOOL move = YES;
 // if any touches are stationary, don't move
 for (UITouch* t in [event touchesForView:self])
 if (t.phase == UITouchPhaseStationary)
 move = NO;
 if (move) {
 // *any* touch that has moved will do to reposition ourselves
 UITouch* t = [touches anyObject];
 CGPoint where = [t locationInView: self.superview];
 CGPoint delta = [[self->d objectForKey: [t uid]] CGPointValue];
 where.x -= delta.x;
 where.y -= delta.y;
 self.center = where;
 }
 // recalculate deltas for all touches in dictionary
 for (UITouch* t in [event touchesForView:self]) {
 CGPoint tpos = [t locationInView: self.superview];
 CGPoint delta = CGPointMake(tpos.x - self.center.x,
 tpos.y - self.center.y);
 if ([d objectForKey:[t uid]])
 [d setObject: [NSValue valueWithCGPoint:delta] forKey:[t uid]];
 }
}

Another modification might be to choose more wisely which touch to follow if multiple
touches move. Instead of selecting any old touch, we might decide to use the one that
moves furthest. Still another improvement might be to “damp down” any movement
smaller than 5 pixels from our previous position; this makes the view less sensitive to
finger tremors, and, ironically, because there are fewer commands to change position,
the view keeps up with a moving finger more successfully. Indeed, we could probably
go on tweaking our code forever, making it more and more complicated. And yet our
original desire (“be draggable”) was so simple!

In the previous code, where we were maintaining a dictionary of touches associated
with this view, it was easy to know when all our touches were gone: it was when the
dictionary became empty. If you’re not maintaining a dictionary, the technique (help-

Interpreting Touches | 407

fully provided in Apple’s documentation) is to compare the number of touches in the
first parameter of touchesEnded:withEvent: with the number of touches for this view
in the event itself:

if ([touches count] == [[event touchesForView:self] count])

If those numbers are equal, then all the touches associated with this view have reached
UITouchPhaseEnded and henceforth this view has no touches.

Gesture Recognizers
Writing and maintaining a state machine that interprets touches across a combination
of three or four touches... methods is hard enough when a view confines itself to
expecting only one kind of gesture, such as dragging. It becomes even more involved
when a view wants to accept and respond differently to different kinds of gesture. This
was a serious problem for developers up through version 3.1.3 of the system, and it
was compounded by the fact that users were becoming accustomed to a vocabulary of
basic gestures that every developer had to implement independently.

In iOS 3.2, Apple took a major step toward alleviating these difficulties by introducing
gesture recognizers, which standardize common gestures and allow the code for dif-
ferent gestures to be separated and encapsulated into different objects.

Distinguishing Gestures Manually
To see the value of gesture recognizers, it will help to try first to write code that differ-
entiates gestures without them.

Imagine first a view that distinguishes between a finger tapping briefly and a finger
remaining down for a longer time. We can’t know how long a tap is until it’s over, so
one approach might be to wait until then before deciding:

- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 self->time = [[touches anyObject] timestamp];
}

- (void) touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
 NSTimeInterval diff = event.timestamp - self->time;
 if (diff < 0.4)
 NSLog(@"short");
 else
 NSLog(@"long");
}

On the other hand, one might argue that if a tap hasn’t ended after some set time (here,
0.4 seconds), we know that it is long, and so we could begin responding to it without
waiting for it to end. The problem is that we don’t automatically get an event after 0.4
seconds. So we’ll create one, using delayed performance:

408 | Chapter 18: Touches

- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 self->time = [[touches anyObject] timestamp];
 [self performSelector:@selector(touchWasLong) withObject:nil afterDelay:0.4];
}

- (void) touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
 NSTimeInterval diff = event.timestamp - self->time;
 if (diff < 0.4)
 NSLog(@"short");
}

- (void) touchWasLong {
 NSLog(@"long");
}

But there’s a bug. If the tap is short, we report that it was short, but we also report that
it was long. That’s because the delayed call to touchWasLong arrives anyway. We could
use some sort of boolean flag to tell us when to ignore that call, but there’s a better
way: NSObject has a class method that lets us cancel any pending delayed performance
calls. So:

- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 self->time = [[touches anyObject] timestamp];
 [self performSelector:@selector(touchWasLong) withObject:nil afterDelay:0.4];
}

- (void) touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
 NSTimeInterval diff = event.timestamp - self->time;
 if (diff < 0.4) {
 NSLog(@"short");
 [NSObject cancelPreviousPerformRequestsWithTarget:self
 selector:@selector(touchWasLong)
 object:nil];
 }
}

- (void) touchWasLong {
 NSLog(@"long");
}

Here’s another use of the same technique. We’ll distinguish between a single tap and
a double tap. The UITouch tapCount property already makes this distinction, but that,
by itself, is not enough to help us react differently to the two. What we must do, having
received a tap whose tapCount is 1, is to delay responding to it long enough to give a
second tap a chance to arrive. This is unfortunate, because it means that if the user
intends a single tap, some time will elapse before anything happens in response to it;
however, there’s nothing we can easily do about that.

Distributing our various tasks correctly is a bit tricky. We know when we have a double
tap as early as touchesBegan:withEvent:, so that’s when we cancel our delayed response
to a single tap, but we respond to the double tap in touchesEnded:withEvent:. We don’t
start our delayed response to a single tap until touchesEnded:withEvent:, because what

Gesture Recognizers | 409

matters is the time between the taps as a whole, not between the starts of the taps. This
code is adapted from Apple’s own example:

- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 int ct = [[touches anyObject] tapCount];
 if (ct == 2) {
 [NSObject cancelPreviousPerformRequestsWithTarget:self
 selector:@selector(singleTap)
 object:nil];
 }
}

- (void) touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
 int ct = [[touches anyObject] tapCount];
 if (ct == 1)
 [self performSelector:@selector(singleTap) withObject:nil afterDelay:0.3];
 if (ct == 2)
 NSLog(@"double tap");
}

- (void) singleTap {
 NSLog(@"single tap");
}

Now let’s consider combining our detection for a single or double tap with our earlier
code for dragging a view horizontally or vertically. This is to be a view that can detect
three kinds of gesture: a single tap, a double tap, and a drag. We must include the code
all possibilities and make sure they don’t interfere with each other. The result is a forced
join between two sets of code, along with an additional pair of state variables to track
the decision between the tap gestures on the one hand and the drag gesture on the other:

- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 // be undecided
 self->decidedTapOrDrag = NO;
 // prepare for a tap
 int ct = [[touches anyObject] tapCount];
 if (ct == 2) {
 [NSObject cancelPreviousPerformRequestsWithTarget:self
 selector:@selector(singleTap)
 object:nil];
 self->decidedTapOrDrag = YES;
 self->drag = NO;
 return;
 }
 // prepare for a drag
 self->p = [[touches anyObject] locationInView: self.superview];
 self->origC = self.center;
 self->decidedDirection = NO;
 self->time = event.timestamp;
}

- (void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
 if (self->decidedTapOrDrag && !self->drag)
 return;

410 | Chapter 18: Touches

 self->decidedTapOrDrag = YES;
 self->drag = YES;
 if (!self->decidedDirection) {
 self->decidedDirection = YES;
 CGPoint then = [[touches anyObject] previousLocationInView: self];
 CGPoint now = [[touches anyObject] locationInView: self];
 CGFloat deltaX = fabs(then.x - now.x);
 CGFloat deltaY = fabs(then.y - now.y);
 self->horiz = (deltaX >= deltaY);
 }
 CGPoint loc = [[touches anyObject] locationInView: self.superview];
 CGFloat deltaX = loc.x - self->p.x;
 CGFloat deltaY = loc.y - self->p.y;
 CGPoint c = self.center;
 if (self->horiz)
 c.x = self->origC.x + deltaX;
 else
 c.y = self->origC.y + deltaY;
 self.center = c;
 //
 CGFloat elapsed = event.timestamp - self->time;
 loc = [[touches anyObject] locationInView: self.superview];
 deltaX = loc.x - self->p.x;
 deltaY = loc.y - self->p.y;
 CGFloat delta = self->horiz ? deltaX : deltaY;
 self->speed = delta/elapsed;
 //
 self->p = [[touches anyObject] locationInView: self.superview];
 self->origC = self.center;
 self->time = event.timestamp;
}

- (void) touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event {
 if (!self->decidedTapOrDrag || !self->drag) {
 // end for a tap
 int ct = [[touches anyObject] tapCount];
 if (ct == 1)
 [self performSelector:@selector(singleTap) withObject:nil
 afterDelay:0.3];
 if (ct == 2)
 NSLog(@"double tap");
 return;
 }
 // end for a drag
 CGFloat sp = self->speed;
 NSString* property = self->horiz ? @"position.x" : @"position.y";
 CGFloat start = self->horiz ? self.layer.position.x : self.layer.position.y;
 CGFloat dur = 0.1;
 CGFloat end = start + sp * dur;
 CABasicAnimation* anim1 = [CABasicAnimation animationWithKeyPath: property];
 anim1.duration = dur;
 anim1.fromValue = [NSNumber numberWithFloat: start];
 anim1.toValue = [NSNumber numberWithFloat: end];
 anim1.timingFunction =
 [CAMediaTimingFunction functionWithName:kCAMediaTimingFunctionEaseOut];

Gesture Recognizers | 411

 [CATransaction setDisableActions:YES];
 [self.layer setValue: [NSNumber numberWithFloat: end] forKeyPath: property];
 [self.layer addAnimation: anim1 forKey: nil];
}

- (void) singleTap {
 NSLog(@"single tap");
}

That code seems to work, but it’s hard to say whether it covers all possibilities coher-
ently; it’s barely legible and the logic borders on the mysterious. This is the kind of
situation for which gesture recognizers were devised.

Gesture Recognizer Classes
A gesture recognizer (a subclass of UIGestureRecognizer) is an object attached to a
UIView, which has for this purpose methods addGestureRecognizer: and removeGesture-
Recognizer:, and a gestureRecognizers property. A UIGestureRecognizer implements
the four touches... handlers, but it is not a responder (a UIResponder), so it does not
participate in the responder chain.

If a new touch is going to be delivered to a view, it is also associated with and delivered
to that view’s gesture recognizers if it has any, and to that view’s superview’s gesture
recognizers if it has any, and so on up the view hierarchy. Thus, the place of a gesture
recognizer in the view hierarchy matters, even though it isn’t part of the responder
chain.

UITouch and UIEvent provide complementary ways of learning how touches and ges-
ture recognizers are associated. UITouch’s gestureRecognizers lists the gesture recog-
nizers that are currently handling this touch. UIEvent’s touchesForGesture-
Recognizer: lists the touches that are currently being handled by a particular gesture
recognizer.

Each gesture recognizer maintains its own state as touch events arrive, building up
evidence as to what kind of gesture this is. When one of them decides that it has rec-
ognized its own type of gesture, it emits either a single message (to indicate, for example,
that the user tapped this view) or a series of messages (to indicate, for example, that
the user is dragging this view); the distinction here is between a discrete and a contin-
uous gesture. What message a gesture recognizer emits, and to what object it sends it,
is set through a target–action dispatch table attached to the gesture recognizer; a gesture
recognizer is rather like a UIControl (Chapter 11) in this regard. (Indeed, one might
say that a gesture recognizer simplifies the touch handling of any view to be like that
of a control. The difference is that one control may report several different control
events, whereas each gesture recognizer reports only one gesture type, with different
gestures being reported by different gesture recognizers.)

This architecture implies that it is unnecessary to subclass UIView merely in order to
implement touch analysis.

412 | Chapter 18: Touches

UIGestureRecognizer itself is abstract, providing methods and properties to its sub-
classes. Among these are:

initWithTarget:action:
The designated initializer. Each message emitted by a UIGestureRecognizer is sim-
ply a matter of sending the action message to the target. Further target–action pairs
may be added with addTarget:action:, and removed with removeTarget:action:.

Two forms of selector are possible: either there is no parameter, or there is a single
parameter which will be the gesture recognizer. Most commonly, you’ll use the
second form, so that the target can identify and query the gesture recognizer;
moreover, using the second form also gives the target a reference to the view, be-
cause the gesture recognizer provides a reference to its view as the view property.

locationOfTouch:inView:
The touch is specified by an index number. The numberOfTouches property provides
a count of current touches; the touches themselves are inaccessible from outside
the gesture recognizer.

enabled
A convenient way to turn a gesture recognizer off without having to remove it from
its view.

state, view
I’ll discuss state later on. The view is the view to which this gesture recognizer is
attached.

Built-in UIGestureRecognizer subclasses are provided for six common gesture types:
tap, pinch, pan (drag), swipe, rotate, and long press. These embody properties and
methods likely to be needed for each type of gesture, either in order to configure the
gesture recognizer beforehand or in order to query it as to the state of an ongoing
gesture:

UITapGestureRecognizer (discrete)
Configuration: numberOfTapsRequired, numberOfTouchesRequired (“touches” means
simultaneous fingers).

UIPinchGestureRecognizer (continuous)
State: scale, velocity.

UIRotationGestureRecognizer (continuous)
State: rotation, velocity.

UISwipeGestureRecognizer (discrete)
Configuration: direction (meaning permitted directions, a bitmask), numberOf-
TouchesRequired.

UIPanGestureRecognizer (continuous)
Configuration: minimumNumberOfTouches, maximumNumberOfTouches.

Gesture Recognizers | 413

State: translationInView:, setTranslation:inView:, and velocityInView:; the co-
ordinate system of the specified view is used, so to follow a finger you’ll use the
superview of the view being dragged, just as we did in the examples earlier.

UILongPressGestureRecognizer (continuous)
Configuration: numberOfTapsRequired, numberOfTouchesRequired, minimumPress-
Duration, allowableMovement. The numberOfTapsRequired is the count of taps be-
fore the tap that stays down; so it can be 0 (which is the default, not 1 as the
documentation states). The allowableMovement setting lets you compensate for the
fact that the user’s finger is unlikely to remain steady during an extended press;
thus we need to provide some limit before deciding that this gesture is, say, a drag,
and not a long press after all. On the other hand, once the long press is recognized,
the finger is permitted to drag.

UIGestureRecognizer also provides a locationInView: method. This is a single point,
even if there are multiple touches. The subclasses implement this variously. For exam-
ple, for UIPanGestureRecognizer, the location is where the touch is if there’s a single
touch, but it’s a sort of midpoint (“centroid”) if there are multiple touches.

We already know enough to implement, using a gesture recognizer, a view that re-
sponds to a single tap, or a view that responds to a double tap. We don’t yet know quite
enough to implement a view that lets itself be dragged around, or a view that can
respond to more than one gesture; we’ll come to that. Meanwhile, here’s code that
implements a view that responds to a single tap:

UITapGestureRecognizer* t = [[UITapGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(singleTap)];
[view addGestureRecognizer:t];
[t release];
// ...
- (void) singleTap {
 NSLog(@"single");
}

And here’s code that implements a view that responds to a double tap:

UITapGestureRecognizer* t = [[UITapGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(doubleTap)];
t.numberOfTapsRequired = 2;
[view addGestureRecognizer:t];
[t release];
// ...
- (void) doubleTap {
 NSLog(@"double");
}

For a continuous gesture like dragging, we need to know both when the gesture is in
progress and when the gesture ends. This brings us to the subject of a gesture recog-
nizer’s state.

414 | Chapter 18: Touches

A gesture recognizer implements a notion of states (the state property); it passes
through these states in a definite progression. The gesture recognizer remains in the
Possible state until it can make a decision one way or the other as to whether this is in
fact the correct gesture. The documentation neatly lays out the possible progressions:

Wrong gesture
Possible → Failed. No action message is sent.

Discrete gesture (like a tap), recognized
Possible → Ended. One action message is sent, when the state changes to Ended.

Continuous gesture (like a drag), recognized
Possible → Began → Changed (repeatedly) → Ended. Action messages are sent once
for Began, as many times as necessary for Changed, and once for Ended.

Continuous gesture, recognized but later cancelled
Possible → Began → Changed (repeatedly) → Cancelled. Action messages are sent
once for Began, as many times as necessary for Changed, and once for Cancelled.

The actual phase names are UIGestureRecognizerStatePossible and so forth. The name
UIGestureRecognizerStateRecognized is actually a synonym for the Ended state; I find
this unnecessary and confusing and I’ll ignore it in my discussion.

We now know enough to implement, using a gesture recognizer, a view that lets itself
be dragged around in any direction by a single finger. Our maintenance of state is greatly
simplified, because a UIPanGestureRecognizer maintains a delta (translation) for us.
This delta, available using translationInView:, is reckoned from the touch’s initial
position. So we need to store our center only once:

UIPanGestureRecognizer* p = [[UIPanGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(dragging:)];
[view addGestureRecognizer:p];
[p release];
// ...
- (void) dragging: (UIPanGestureRecognizer*) p {
 UIView* v = p.view;
 if (p.state == UIGestureRecognizerStateBegan)
 self->origC = v.center;
 CGPoint delta = [p translationInView: v.superview];
 CGPoint c = self->origC;
 c.x += delta.x; c.y += delta.y;
 v.center = c;
}

Actually, it’s possible to write that code without maintaining any state at all, because
we are allowed to reset the UIPanGestureRecognizer’s delta, using setTranslation:in-
View:. So:

- (void) dragging: (UIPanGestureRecognizer*) p {
 UIView* v = p.view;
 if (p.state == UIGestureRecognizerStateBegan ||

Gesture Recognizers | 415

 p.state == UIGestureRecognizerStateChanged) {
 CGPoint delta = [p translationInView: v.superview];
 CGPoint c = v.center;
 c.x += delta.x; c.y += delta.y;
 v.center = c;
 [p setTranslation: CGPointZero inView: v.superview];
 }
}

A gesture recognizer also works, as I’ve already mentioned, if it is attached to the su-
perview (or further up the hierarchy) of the view in which the user gestures. For ex-
ample, if a tap gesture recognizer is attached to the window, the user can tap on any
view within that window, and the tap will be recognized; the view’s presence does not
“block” the window from recognizing the gesture, even if it is a UIControl that responds
autonomously to touches.

This behavior comes as a surprise to beginners, but it makes sense, because if it were
not the case, certain gestures would be impossible. Imagine, for example, a pair of views
on each of which the user can tap individually, but which the user can also touch
simultaneously (one finger on each view) and rotate together around their mutual
centroid. Neither view can detect the rotation qua rotation, because neither view re-
ceives both touches; only the superview can detect it, so the fact that the views them-
selves respond to touches must not prevent the superview’s gesture recognizer from
operating.

So, suppose your UIWindow has a UITapGestureRecognizer attached to it (perhaps
because you want to be able to recognize taps on the window background), but there
is also a UIButton in the window. How is the window to ignore a tap on the button?
In this case it’s easy, because a tap is a discrete gesture: the action handler just looks at
the gesture’s view and doesn’t respond if that view isn’t the window. And if the gesture
recognizer attached to the window is some other gesture, then the problem never arises,
because a tap on the button won’t trigger its action handler in the first place. Never-
theless, the view hierarchy does complicate the use of gesture recognizers; fortunately,
as I shall explain, gesture recognizers usually take care of these complications them-
selves, and when they don’t, they provide ways for you to resolve them.

Multiple Gesture Recognizers
The question naturally arises of what happens when multiple gesture recognizers are
in play. This isn’t a matter merely of multiple recognizers attached to a single view,
because, as I have just said, if a view is touched, not only its own gesture recognizers
but any gesture recognizers attached to views further up the view hierarchy are also in
play, simultaneously. I like to think of a view as surrounded by a swarm of gesture
recognizers: its own and those of its superview (and so on). In reality, it is a touch that
has a swarm of gesture recognizers; that’s why a UITouch has a gestureRecognizers
property, in the plural.

416 | Chapter 18: Touches

In general, once a gesture recognizer succeeds in recognizing its gesture, any other ges-
ture recognizers associated with its touches are forced into the Failed state, and whatever
touches were associated with those gesture recognizers are no longer sent to them; in
effect, the first gesture recognizer in a swarm that recognizes its gesture owns the ges-
ture, and those touches, from then on.

In many cases, this behavior alone will correctly eliminate conflicts. For example, we
can add both our UITapGestureRecognizer for a single tap and our UIPanGestureRe-
cognizer to a view and everything will just work.

What happens if we also add the UITapGestureRecognizer for a double tap? Dragging
works, and single tap works; double tap works too, but without preventing the single
tap from working. So, on a double tap, both the single tap action handler and the double
tap action handler are called.

If that isn’t what we want, we don’t have to use delayed performance, as we did earlier.
Instead, we can create a dependency between one gesture recognizer and another, telling
the first to suspend judgement until the second has decided whether this is its ges-
ture, by sending the first the requireGestureRecognizerToFail: message. This message
doesn’t mean “force this recognizer to fail”; it means, “you can’t succeed until this
recognizer fails.”

So our view is now configured as follows:

UITapGestureRecognizer* t2 = [[UITapGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(doubleTap)];
t2.numberOfTapsRequired = 2;
[view addGestureRecognizer:t2];

UITapGestureRecognizer* t1 = [[UITapGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(singleTap)];
[t1 requireGestureRecognizerToFail:t2];
[view addGestureRecognizer:t1];
[t1 release];
[t2 release];

UIPanGestureRecognizer* p = [[UIPanGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(dragging:)];
[view addGestureRecognizer:p];
[p release];

Apple would prefer, if you’re going to have a view respond both to single
tap and double tap, that you not make the former wait upon the latter
(because this delays your response after the user single taps). Rather,
they would like you to arrange things so that it doesn’t matter that you
respond to a single tap that is the first tap of a double tap. This isn’t
always feasible, of course; Apple’s own Safari is a clear counterexample.

Gesture Recognizers | 417

Subclassing Gesture Recognizers
To subclass a built-in gesture recognizer subclass, you must do the following things:

• At the start of the implementation file, import <UIKit/UIGestureRecognizer-
Subclass.h>. This file contains a category on UIGestureRecognizer that allows you
to set the gesture recognizer’s state (which is otherwise read-only), along with dec-
larations for the methods you may need to override.

• Override any touches... methods you need to (as if the gesture recognizer were a
UIResponder); you will almost certainly call super so as to take advantage of the
built-in behavior. In overriding a touches... method, you need to think like a ges-
ture recognizer. As these methods are called, a gesture recognizer is setting its state;
you must interact with that process.

To illustrate, we will subclass UIPanGestureRecognizer so as to implement a view that
can be moved only horizontally or vertically. Our strategy will be to make two UIPan-
GestureRecognizer subclasses — one that allows only horizontal movement, and an-
other that allows only vertical movement. They will make their recognition decisions
in a mutually exclusive manner, so we can attach an instance of each to our view. This
separates the decision-making logic in a gorgeously encapsulated object-oriented man-
ner — a far cry from the spaghetti code we wrote earlier to do this same task.

I will show only the code for the horizontal drag gesture recognizer, because the vertical
recognizer is symmetrically identical. We maintain just one instance variable, which
we will use once to determine whether the user’s initial movement is horizontal. We
override touchesBegan:withEvent: to set our instance variable with the first touch’s
location:

- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {
 self->origLoc = [[touches anyObject] locationInView:self.view.superview];
 [super touchesBegan: touches withEvent: event];
}

We then override touchesMoved:withEvent:; all the recognition logic is here. This
method will be called for the first time with the state still at Possible. At that moment,
we look to see if the user’s movement is more horizontal than vertical. If it isn’t, we set
the state to Failed. But if it is, we just step back and let the superclass do its thing:

- (void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event {
 if (self.state == UIGestureRecognizerStatePossible) {
 CGPoint loc = [[touches anyObject] locationInView:self.view.superview];
 CGFloat deltaX = fabs(loc.x - origLoc.x);
 CGFloat deltaY = fabs(loc.y - origLoc.y);
 if (deltaY >= deltaX)
 self.state = UIGestureRecognizerStateFailed;
 }
 [super touchesMoved: touches withEvent:event];
}

418 | Chapter 18: Touches

We now have a view that moves only if the user’s initial gesture is horizontal. But that
isn’t the entirety of what we want; we want a view that, itself, moves horizontally only.
To implement this, we’ll simply lie to our client about where the user’s finger is, by
overriding translationInView::

- (CGPoint)translationInView:(UIView *)v {
 CGPoint proposedTranslation = [super translationInView:v];
 proposedTranslation.y = 0;
 return proposedTranslation;
}

That example was simple, because we subclassed a fully functional built-in
UIGestureRecognizer subclass. If you were to write your own UIGestureRecognizer
subclass entirely from scratch, there would be more work to do:

• You should definitely implement all four touches... handlers. Their job, at a min-
imum, is to advance the gesture recognizer through the canonical progression of
its states. When the first touch arrives at a gesture recognizer, its state will be
Possible; you never explicitly set the recognizer’s state to Possible yourself. As soon
as you know this can’t be our gesture, you set the state to Failed (Apple says that
a gesture recognizer should “fail early, fail often”). If the gesture gets past all the
failure tests, you set the state instead either to Ended (for a discrete gesture) or to
Began (for a continuous gesture); if Began, then you might set it to Changed, and
ultimately you must set it to Ended. Action messages will be sent automatically at
the appropriate moments.

• You should probably implement reset. This is called after you reach the end of the
progression of states to notify you that the gesture recognizer’s state is about to be
set back to Possible; it is your chance to return your state machine to its starting
configuration (resetting instance variables, for example).

Keep in mind that your gesture recognizer might stop receiving touches without notice.
Just because it gets a touchesBegan:withEvent: call for a particular touch doesn’t mean
it will ever get touchesEnded:withEvent: for that touch. If your gesture recognizer fails
to recognize its gesture, either because it declares failure or because it is still in the
Possible state when another gesture recognizer recognizes, it won’t get any more
touches... calls for any of the touches that were being sent to it. This is why reset is
so important; it’s the one reliable signal that it’s time to clean up and get ready to receive
the beginning of another possible gesture.

Gesture Recognizer Delegate
A gesture recognizer can have a delegate, which can perform two types of task:

Block a gesture recognizer’s operation
gestureRecognizerShouldBegin: is sent to the delegate before the gesture recognizer
passes out of the Possible state; return NO to force the gesture recognizer to pro-
ceed to the Failed state.

Gesture Recognizers | 419

gestureRecognizer:shouldReceiveTouch: is sent to the delegate before a touch is
sent to the gesture recognizer’s touchesBegan:... method; return NO to prevent
that touch from ever being sent to the gesture recognizer.

Mediate simultaneous gesture recognition
When a gesture recognizer is about to declare that it recognizes its gesture, gesture-
Recognizer:shouldRecognizeSimultaneouslyWithGestureRecognizer: is sent to the
delegate of that gesture recognizer, if this declaration would force the failure of
another gesture recognizer, and to the delegate of a gesture recognizer whose failure
would be forced. Return YES to prevent that failure, thus allowing both gesture
recognizers to operate simultaneously. For example, a view could respond to both
a two-fingered pinch and a two-fingered pan, the one applying a scale transform,
the other changing the view’s center.

As an example, we will use delegate messages to combine a UILongPressGestureRe-
cognizer and a UIPanGestureRecognizer, as follows: the user must perform a tap-and-
a-half (tap and hold) to “get the view’s attention,” which we will indicate by a pulsing
animation on the view; then (and only then) the user can drag the view.

As we create our gesture recognizers, we’ll keep a reference to the UILongPressGes-
tureRecognizer, and we’ll make ourself the UIPanGestureRecognizer’s delegate:

UIPanGestureRecognizer* p = [[UIPanGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(panning:)];
UILongPressGestureRecognizer* lp = [[UILongPressGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(longPress:)];
lp.numberOfTapsRequired = 1;
[view addGestureRecognizer:p];
[view addGestureRecognizer:lp];
self.longPresser = lp;
p.delegate = self;
[lp release]; [p release];

In keeping with encapsulation, the UILongPressGestureRecognizer’s handler will take
care of starting and stopping the animation, and the UIPanGestureRecognizer’s handler
will take care of the drag in the familiar manner:

- (void) longPress: (UILongPressGestureRecognizer*) lp {
 if (lp.state == UIGestureRecognizerStateBegan) {
 CABasicAnimation* anim =
 [CABasicAnimation animationWithKeyPath: @"transform"];
 anim.toValue =
 [NSValue valueWithCATransform3D:CATransform3DMakeScale(1.1, 1.1, 1)];
 anim.fromValue =
 [NSValue valueWithCATransform3D:CATransform3DIdentity];
 anim.repeatCount = HUGE_VALF;
 anim.autoreverses = YES;
 [lp.view.layer addAnimation:anim forKey:nil];
 }
 if (lp.state == UIGestureRecognizerStateEnded) {

420 | Chapter 18: Touches

 [lp.view.layer removeAllAnimations];
 }
}

- (void) panning: (UIPanGestureRecognizer*) p {
 UIView* v = p.view;
 if (p.state == UIGestureRecognizerStateBegan)
 self->origC = v.center;
 CGPoint delta = [p translationInView: v.superview];
 CGPoint c = self->origC;
 c.x += delta.x; c.y += delta.y;
 v.center = c;
}

Now for the delegate methods. We are the UIPanGestureRecognizer’s delegate. If the
UIPanGestureRecognizer tries to declare success while the UILongPressGestureRe-
cognizer’s state is Failed or still at Possible, we prevent it. If the
UILongPressGestureRecognizer succeeds, we permit the UIPanGestureRecognizer to
operate as well:

- (BOOL) gestureRecognizerShouldBegin: (UIGestureRecognizer*) g {
 if (self.longPresser.state == UIGestureRecognizerStatePossible ||
 self.longPresser.state == UIGestureRecognizerStateFailed)
 return NO;
 return YES;
}

- (BOOL)gestureRecognizer: (UIGestureRecognizer*) g1
 shouldRecognizeSimultaneouslyWithGestureRecognizer: (UIGestureRecognizer*) g2 {
 return YES;
}

The result is that the view can be dragged only if it is pulsing, and if it is dragged, we
are using a UIPanGestureRecognizer, with its convenient translationInView: method,
to move the view, rather than the less able UILongPanGestureRecognizer (which per-
mits movement of the touch, but has no translationInView: method). In effect, what
we’ve done is to compensate, using delegate methods, for the fact that UIGestureRe-
cognizer has no requireGestureRecognizerToSucceed: method.

If you are subclassing a gesture recognizer class, you can incorporate delegate-like be-
havior into the subclass. By overriding canPreventGestureRecognizer: and canBe-
PreventedByGestureRecognizer:, you can mediate simultaneous gesture recognition at
the class level. The built-in gesture recognizer subclasses already do this; for example,
this is why a UITapGestureRecognizer whose numberOfTapsRequired is 1 does not, by
recognizing its gesture, cause the failure of a UITapGestureRecognizer whose numberOf-
TapsRequired is 2.

You can also, in a gesture recognizer subclass, send ignoreTouch:forEvent: directly to
a gesture recognizer (typically, to self). This has the same effect as the delegate method
gestureRecognizer:shouldReceiveTouch: returning NO, blocking delivery of that touch

Gesture Recognizers | 421

to the gesture recognizer for as long as it exists. For example, if you’re in the middle of
an already recognized gesture and a new touch arrives, you might well elect to ignore it.

Touch Delivery
Let’s now return to the very beginning of the touch reporting process, when the system
sends the app a UIEvent containing touches, and tease apart in full detail the entire
procedure by which a touch is delivered to views and gesture recognizers.

When the user puts a finger to the screen and a touch event arrives at the app, the app
follows a standard procedure for delivering touches:

1. The application calls the UIView instance method hitTest:withEvent: on the win-
dow, which returns the view (called, appropriately, the hit-test view) that will be
associated with this touch. This method uses the UIView instance method point-
Inside:withEvent: along with hitTest:withEvent: recursively down the view hi-
erarchy to find the deepest view containing the touch’s location and capable of
receiving a touch.

2. Having determined the hit-test view of every touch in an event, the application calls
its own sendEvent:, which in turn calls the window’s sendEvent:. The window
delivers the touches by calling the appropriate touches... method(s), as follows:

a. As a touch first appears, it is delivered to the hit-test view’s swarm of gesture
recognizers. It is then also delivered to that view.

b. The logic of withholding touches is implemented for views (but not for gesture
recognizers). For example, additional touches won’t be delivered to a view if
that view currently has a touch and has multipleTouchEnabled set to NO (but
they will be delivered to that view’s swarm of gesture recognizers).

c. If a gesture is recognized by a gesture recognizer, then for any touch associated
with this gesture recognizer:

i. touchesCancelled:forEvent: is sent to the touch’s view, and the touch is
no longer delivered to its view.

ii. If that touch was associated with any other gesture recognizer, that gesture
recognizer is forced to fail.

d. If a gesture recognizer fails, either because it declares failure or because it is
forced to fail, its touches are no longer delivered to it, but (except as already
specified) they continue to be delivered to their view.

e. If a touch would be delivered to a view, but that view does not respond to the
appropriate touches... method, a responder further up the responder chain
(Chapter 11) is sought that does respond to it, and the touch is delivered there.

The rest of this chapter elaborates on each stage of this standard procedure, nearly every
bit of which can be customized to some extent.

422 | Chapter 18: Touches

Hit-Testing
Hit-testing is the determination of what view the user touched. View hit-testing uses
the UIView instance method hitTest:withEvent:, which returns either a view (the hit-
test view) or nil. The idea is to find the frontmost view containing the touch point. This
method uses an elegant recursive algorithm, as follows:

1. A view’s hitTest:withEvent: first calls the same method on its own subviews, if it
has any, because a subview is considered to be in front of its superview. The sub-
views are queried in reverse order, because that’s front-to-back order (Chap-
ter 14): thus, if two sibling views overlap, the one in front reports the hit first.

2. If, as a view hit-tests its subviews, any of those subviews responds by returning a
view, it stops querying its subviews and immediately returns the view that was
returned to it. Thus, the very first view to declare itself the hit-test view immediately
percolates all the way to the top of call chain and is the hit-test view.

3. If, on the other hand, a view has no subviews, or if all of its subviews return nil
(indicating that neither they nor their subviews was hit), then the view calls point-
Inside:withEvent: on itself. If this call reveals that the touch was inside this view,
the view returns itself, declaring itself the hit-test view; otherwise it returns nil.

It is also up to hitTest:withEvent: to implement the logic of touch restrictions exclusive
to a view. If a view’s userInteractionEnabled is NO, or its hidden is YES, or its
opacity is close to 0.0, it returns nil without hit-testing any of its subviews and without
calling pointInside:withEvent:. Thus these restrictions do not, of themselves, exclude
a view from being hit-tested; on the contrary, they operate precisely by modifying a
view’s hit-test result.

However, hit-testing knows nothing about multipleTouchEnabled (because its behavior
involves multiple touches) or exclusiveTouch (because its behavior involves multiple
views). The logic of obedience to these properties is implemented at a later stage of the
story.

You can use hit-testing yourself, and you can override hitTest:withEvent: to alter its
results during touch delivery, thus customizing the touch delivery mechanism.

In calling hitTest:withEvent:, supply a point in the coordinates of the view to which the
message is sent. The second parameter can be nil if you have no event.

For example, suppose we have a UIView with two UIImageView subviews. We want
to detect a tap in either UIImageView, but we want to handle this at the level of the
UIView. We can attach a UITapGestureRecognizer to the UIView, but how will we
know which subview, if any, the tap was in?

Our first step must be to set userInteractionEnabled to YES for both UIImageViews.
(This step is crucial; UIImageView is one of the few built-in view classes where this is
NO by default, and a view whose userInteractionEnabled is NO won’t be the result of

Touch Delivery | 423

a call to hitTest:withEvent:.) Now, when our gesture recognizer’s action handler is
called, the view can use hit-testing to determine where the tap was:

CGPoint p = [g locationOfTouch:0 inView:self]; // g is the gesture recognizer
UIView* v = [self hitTest:p withEvent:nil];

Hit-test munging can be used selectively as a way of turning user interaction on or off
in an area of the interface. In this way, some unusual effects can be produced. Here are
some examples:

• If a superview contains a UIButton but doesn’t return that UIButton from hitTest:
withEvent:, that button can’t be tapped.

• You might override hitTest:withEvent: to return the result from super most of the
time, but to return self under certain conditions, effectively making all subviews
untouchable without making the superview itself untouchable (as setting its user-
InteractionEnabled to NO would do).

• A view whose userInteractionEnabled is NO can break the normal rules and return
itself from hit-testing and can thus end up as the hit-test view.

No problem arises if a view has a transform, because pointInside:withEvent: takes the
transform into account. That’s why a rotated button continues to work correctly.

Hit-testing for layers

There is also hit-testing for layers. It doesn’t happen automatically, as part of send-
Event: or anything else; it’s up to you. It’s just a convenient way of finding out which
layer would receive a touch at a point, if layers received touches. To hit-test layers, call
hitTest: on a layer, with a point in superlayer coordinates.

Keep in mind, though, that layers do not receive touches. A touch is reported to a view,
not a layer. A layer, except insofar as it is a view’s underlying layer and gets touch
reporting because of its view, is completely untouchable; from the point of view of
touches and touch reporting, it’s as if the layer weren’t on the screen at all. No matter
where a layer may appear to be, a touch falls right through the layer to whatever view
is behind it.

In the case of the layer that is a view’s underlying layer, you don’t need hit-testing. It
is the view’s drawing; where it appears is where the view is. So a touch in that layer is
equivalent to a touch in its view. Indeed, one might say that this is what views are
actually for: to provide layers with touchability.

The only layers on which you’d need special hit-testing, then, would presumably be
layers that are not themselves any view’s underlying layer, because those are the only
ones you don’t find out about by normal view hit-testing. However, all layers, including
a layer that is its view’s underlying layer, are part of the layer hierarchy, and can par-
ticipate in layer hit-testing. So the most comprehensive way to hit-test layers is to start
with the topmost layer, the window’s layer. In this example, we subclass UIWindow

424 | Chapter 18: Touches

and override its hitTest:withEvent: so as to get layer hit-testing every time there is view
hit-testing:

- (UIView*) hitTest:(CGPoint)point withEvent:(UIEvent *)event {
 CALayer* lay = [self.layer hitTest:point];
 // ... possibly do something with that information ...
 return [super hitTest:point withEvent:event];
}

Because this is the window, the view hit-test point works as the layer hit-test point;
window bounds are screen bounds. But usually you’ll have to convert to superlayer
coordinates. In this example, we return to the CompassView developed in Chap-
ter 16, in which all the parts of the compass are layers; we want to know whether the
user tapped on the arrow layer. For simplicity, we’ve given the CompassView a UI-
TapGestureRecognizer, and this is its action handler, in the CompassView itself. We
convert to our superview’s coordinates, because these are also our layer’s superlayer
coordinates:

// self is the CompassView
CGPoint p = [t locationOfTouch: 0 inView: self.superview];
CALayer* hit = [self.layer hitTest:p];
if (hit == ((CompassLayer*)self.layer).theArrow) // ...

Layer hit-testing knows nothing of the restrictions on touch delivery; it just reports on
every sublayer, even those whose view has userInteractionEnabled set to NO.

The documentation warns that hitTest: must not be called on a CA-
TransformLayer.

Layer hit-testing works by calling containsPoint:. However, containsPoint: takes a
point in the layer’s coordinates, so to hand it a point that arrives through hitTest: you
must first convert from superlayer coordinates:

BOOL hit = [lay containsPoint: [lay convertPoint:point fromLayer:lay.superlayer]];

Hit-testing for drawings

The preceding example worked, but we might complain that it is reporting a hit on the
arrow even if the hit misses the drawing of the arrow. That’s true for view hit-testing
as well. A hit is reported if we are within the view or layer as a whole; hit-testing knows
nothing of drawing, transparent areas, and so forth.

If you know how the region is drawn and can reproduce the edge of that drawing as a
CGPath, you can test whether a point is inside it with CGPathContainsPoint. So, for a
layer, you could override hitTest along these lines:

- (CALayer*) hitTest:(CGPoint)p {
 CGPoint pt = [self convertPoint:p fromLayer:self.superlayer];
 CGMutablePathRef path = CGPathCreateMutable();
 // ... draw path here ...

Touch Delivery | 425

 CALayer* result = CGPathContainsPoint(path, NULL, pt, true) ? self : nil;
 CGPathRelease(path);
 return result;
}

Alternatively, it might be the case that if a pixel of the drawing is transparent, it’s outside
the drawn region. Unfortunately there’s no way to ask a drawing (or a view, or a layer)
for the color of a pixel; you have to make a bitmap and copy the drawing into it, and
then ask the bitmap for the color of a pixel. If you can reproduce the content as an
image, and all you care about is transparency, you can make a one-pixel alpha-only
bitmap, draw the image in such a way that the pixel we want to test is the pixel drawn
into the bitmap, and examine the transparency of the resulting pixel:

// assume im is a UIImage, point is the CGPoint to test
CGImageRef cgim = im.CGImage;
unsigned char pixel[1] = {0};
CGContextRef context = CGBitmapContextCreate(pixel,
 1, 1, 8, 1, NULL,
 kCGImageAlphaOnly);
CGContextDrawImage(context, CGRectMake(-point.x,
 -point.y,
 CGImageGetWidth(cgim),
 CGImageGetHeight(cgim)),
 cgim);
CGContextRelease(context);
CGFloat alpha = pixel[0]/255.0;
BOOL transparent = alpha < 0.01;

However, there are can be complications; for example, there may not be a one-to-one
relationship between the pixels of the underlying drawing and the points of the drawing
as portrayed on the screen (because the drawing is stretched, for example). This can be
a difficult problem to solve, and further discussion would take us too far afield.

Hit-testing during animation

If the position of a view or layer is being animated and you want the user to be able to
tap on it, you’ll need to hit-test the presentation layer (see Chapter 17). In this simple
example, we have a superview containing a subview. To allow the user to tap on the
subview even when it is being animated, we interfere with hit-testing in the superview:

- (UIView*) hitTest:(CGPoint)point withEvent:(UIEvent *)event {
 // v is the animated subview
 CALayer* lay = [v.layer presentationLayer];
 CALayer* hitLayer = [lay hitTest: point];
 if (hitLayer == lay)
 return v;
 UIView* hitView = [super hitTest:point withEvent:event];
 if (hitView == v)
 return self;
 return hitView;
}

426 | Chapter 18: Touches

If the user taps outside the presentation layer, we cannot simply call super, because the
user might tap at the spot to which the subview has in reality already moved (behind
the “animation movie”), in which case super will report that it hit the subview. So if
super does report this, we return self (assuming that we are what’s behind the animated
subview at its new location).

Initial Touch Event Delivery
Once an event’s touches have been hit-tested and their view has been set, the event is
handed to the UIApplication instance by calling its sendEvent:, and the UIApplication
in turn hands it to the relevant UIWindow by calling its sendEvent:. The UIWindow
then performs the complicated logic of examining the hit-test view and its superviews
and their gesture recognizers and deciding which of them should be sent a
touches... message, and does so.

These are delicate and crucial maneuvers, and you wouldn’t want to lame your appli-
cation by interfering with them. Nevertheless, you can override sendEvent: in a sub-
class, and there are situations where you might wish to do so. This is just about the
only case in which you might subclass UIApplication; if you do, remember to change
the third argument in the call to UIApplicationMain in your main.m file to the string
name of your UIApplication subclass so that your subclass is used to generate the app’s
singleton UIApplication instance. If you subclass UIWindow, remember to change the
window’s class in your MainWindow.xib, so that your subclass is used to generate the
app’s main window instance.

Now that gesture recognizers exist, it is unlikely that you will need to resort to such
measures. A typical case, in the past, was that you needed to detect touches directed
to an object of some built-in interface class in a way that subclassing it wouldn’t permit.
For example, you want to know when the user swipes a UIWebView; you’re not allowed
to subclass UIWebView, and in any case it eats the touch. The solution used to be to
subclass UIWindow and override sendEvent:; you would then work out whether this
was a swipe on the UIWebView and respond accordingly, or else call super. Now,
however, you can just attach a UISwipeGestureRecognizer to the UIWebView.

Gesture Recognizer and View
When a touch first appears and is delivered to a gesture recognizer, it is also delivered
to its hit-test view, the same touches... method being called on both. This comes as a
surprise to beginners, but it is the most reasonable approach, as it means that touch
interpretation by a view isn’t jettisoned just because gesture recognizers are in the pic-
ture. Later on in the multitouch sequence, if all the gesture recognizers in a view’s swarm
declare failure to recognize their gesture, that view’s internal touch interpretation just
proceeds as if gesture recognizers had never been invented.

Touch Delivery | 427

However, if a gesture recognizer in a view’s swarm recognizes its gesture, that view is
sent touchesCancelled:withEvent: for any touches that went to that gesture recognizer
and were hit-tested to that view, and subsequently the view no longer receives those
touches.

This behavior can be changed by setting a gesture recognizer’s cancelsTouchesInView
property to NO. If this is the case for every gesture recognizer in a view’s swarm, the
view will receive touch events more or less as if no gesture recognizers were in the
picture. Making this change, however, alters delivery logic rather drastically; it seems
unlikely that you’d want to do that.

If a gesture recognizer happens to be ignoring a touch (because it was told to do so by
ignoreTouch:forEvent:), then touchesCancelled:withEvent: won’t be sent to the view
for that touch when the gesture recognizer recognizes its gesture. Thus, a gesture rec-
ognizer’s ignoring a touch is the same as simply letting it fall through to the view, as if
the gesture recognizer weren’t there.

Gesture recognizers can also delay the delivery of touches to a view, and by default they
do. The UIGestureRecognizer property delaysTouchesEnded is YES by default, meaning
that when a touch reaches UITouchPhaseEnded and the gesture recognizer’s touches-
Ended:withEvent: is called, if the gesture recognizer is still allowing touches to be de-
livered to the view because its state is still Possible, it doesn’t deliver this touch until it
has resolved the gesture. When it does, either it will recognize the gesture, in which
case the view will have touchesCancelled:withEvent: called instead (as already ex-
plained), or it will declare failure and now the view will have touchesEnded:with-
Event: called.

The reason for this behavior is most obvious with a gesture where multiple taps are
required. The first tap ends, but this is insufficient for the gesture recognizer to declare
success or failure, so it withholds that touch from the view. In this way, the gesture
recognizer gets the proper priority. In particular, if there is a second tap, the gesture
recognizer should succeed and send touchesCancelled:withEvent: to the view — but
it can’t do that if the view has already been sent touchesEnded:withEvent:.

It is also possible to delay the entire suite of touches... methods from being called on
a view, by setting a gesture recognizer’s delaysTouchesBegan property to YES. Again,
this delay would be until the gesture recognizer can resolve the gesture: either it will
recognize it, in which case the view will have touchesCancelled:withEvent: called, or
it will declare failure, in which case the view will receive touchesBegan:withEvent: plus
any further touches... calls that were withheld — except that it will receive at most
one touchesMoved:withEvent: call, the last one, because if a lot of these were withheld,
to queue them all up and send them all at once now would be simply insane.

It is unlikely that you’ll change a gesture recognizer’s delaysTouchesBegan property to
YES, however. You might do so, for example, if you have an elaborate touch analysis
within a view that simply cannot operate simultaneously with a gesture recognizer, but
this is improbable, and the latency involved may look strange to your user.

428 | Chapter 18: Touches

When touches are delayed and then delivered, what’s delivered is the original touch
with the original event, which still have their original timestamps. Because of the delay,
these timestamps may differ significantly from now. For this reason (and many others),
Apple warns that touch analysis that is concerned with timing should always look at
the timestamp, not the clock.

Touch Exclusion Logic
It is up to the UIWindow’s sendEvent: to implement the logic of multipleTouch-
Enabled and exclusiveTouch.

If a new touch is hit-tested to a view whose multipleTouchEnabled is NO and which
already has an existing touch hit-tested to it, then sendEvent: never delivers the new
touch to that view. However, that touch is delivered to the view’s swarm of gesture
recognizers.

Similarly, if there’s an exclusiveTouch view in the window, then sendEvent: must decide
whether a particular touch should be delivered, as already described. If a touch begins
in an exclusiveTouch view at a time when another view in the window already has a
touch, the touch is not delivered to the exclusiveTouch view, but it is delivered to that
view’s swarm of gesture recognizers. If a touch begins outside an exclusiveTouch view
at a time when the exclusiveTouch view already has a touch, the touch is not delivered
to its view, but it is delivered to its view’s swarm of gesture recognizers.

The idea here is that gesture recognizers should ignore exclusivity, thus allowing for
something like a pair of views on each of which the user can tap, but which the user
can also touch simultaneously and rotate. However, this behavior is buggy; in some
situations, if there is a touch already in the exclusiveTouch view, then a second touch
in a different view is not delivered at all, not even to the gesture recognizer. Until this
bug is fixed, I suggest that you not use exclusiveTouch when gesture recognizers are
involved.

If you want to implement exclusivity between gestures, gesture recognizers themselves
provide the means. For example, here’s a delegate method that prevents a gesture rec-
ognizer from operating if its view’s siblings’ gesture recognizers have any touches:

- (BOOL)gestureRecognizerShouldBegin:(UIGestureRecognizer *)g {
 __block BOOL result = YES;
 [g.view.superview.subviews
 enumerateObjectsUsingBlock:^(id obj, NSUInteger idx, BOOL *stop) {
 [[obj gestureRecognizers]
 enumerateObjectsUsingBlock:^(id g2, NSUInteger idx, BOOL *stop) {
 if (([g2 numberOfTouches] > 0) && (g != g2))
 result = NO;
 }];
 }];
 return result;
}

Touch Delivery | 429

Recognition
When a gesture recognizer recognizes its gesture, everything changes. As we’ve already
seen, the touches for this gesture recognizer are sent to their hit-test views as a touches-
Cancelled:forEvent: message, and then no longer arrive at those views (unless the
gesture recognizer’s cancelsTouchesInView is NO). Moreover, all other gesture recog-
nizers pending with regard to these touches are made to fail, and then are no longer
sent the touches they were receiving either.

If the very same event would cause more than one gesture recognizer to recognize,
there’s an algorithm for picking the one that will succeed and make the others fail: a
gesture recognizer lower down the view hierarchy (closer to the hit-test view) prevails
over one higher up the hierarchy, and a gesture recognizer more recently added to its
view prevails over one less recently added.

There are various means for modifying this “first past the post, winner takes all” be-
havior. One is by telling a gesture recognizer, in effect, that being first isn’t good enough:

• requireGestureRecognizerToFail: institutes a dependency order, possibly causing
the gesture recognizer to which it is sent to be put on hold when it tries to transition
from the Possible state to the Began (continuous) or Ended (discrete) state; only if
a certain other gesture recognizer fails is this one permitted to perform that tran-
sition. (So, “require to fail” means “you cannot succeed without this other’s fail-
ure.”)

Apple says that in a dependency like this, the gesture recognizer that fails first is
not sent reset (and won’t receive any touches) until the second finishes its state
sequence and is sent reset, so that they resume recognizing together.

• The delegate method gestureRecognizerShouldBegin:, by returning NO, turns suc-
cess into failure; at the moment when the gesture recognizer is about to declare
that it recognizes its gesture, the delegate is telling it to fail instead.

Another approach is to permit simultaneous recognition; a gesture recognizer succeeds,
but some other gesture recognizer is not forced to fail. There are two ways to achieve
this:

• A subclass can implement canPreventGestureRecognizer: or canBePreventedBy-
GestureRecognizer: (or both). Here, “prevent” means “by succeeding, you force
failure upon this other,” and “be prevented” means “by succeeding, this other
forces failure upon you.”

These two methods work together as follows. canPreventGestureRecognizer: is
called first; if it returns NO, that’s the end of the story for that gesture recognizer,
and canPreventGestureRecognizer: is called on the other gesture recognizer. But if
canPreventGestureRecognizer: returns YES when it is first called, the other gesture
recognizer is sent canBePreventedByGestureRecognizer:. If it returns YES, that’s the
end of the story; if it returns NO, the process starts over the other way around,

430 | Chapter 18: Touches

sending canPreventGestureRecognizer: to the second gesture recognizer, and so
forth. In this way, conflicting answers are resolved without the device exploding:
prevention is regarded as exceptional (even though it is in fact the norm) and will
happen only if it is acquiesced to by everyone involved.

• The delegate method gestureRecognizer:shouldRecognizeSimultaneouslyWith-
GestureRecognizer: can return YES to permit one gesture recognizer to succeed
without forcing the other to fail.

Touches and the Responder Chain
A UIView is a responder, and participates in the responder chain (Chapter 11). In
particular, if a touch is to be delivered to a UIView (because, for example, it’s the hit-
test view) and that view doesn’t implement the relevant touches... method, a walk up
the responder chain is performed, looking for a responder that does implement it; if
such a responder is found, the touch is delivered to that responder. Moreover, the
default implementation of the touches... methods — the behavior that you get if you
call super — is to perform the same walk up the responder chain, starting with the next
responder in the chain.

The relationship between touch delivery and the responder chain can be useful, but
you must be careful not to allow it to develop into an incoherency. For example, if
touchesBegan:withEvent: is implemented in a superview but not in a subview, then a
touch to the subview will result in the superview’s touchesBegan:withEvent: being
called, with the first parameter (the touches) containing a touch whose view is the
subview. But most UIView implementations of the touches... methods rely upon the
assumption that the first parameter consists of all and only touches whose view is
self; built-in UIView subclasses certainly assume this.

Again, if touchesBegan:withEvent: is implemented in both a superview and a subview,
and you call super in the subview’s implementation, passing along the same arguments
that came in, then the same touch delivered to the subview will trigger both the sub-
view’s touchesBegan:withEvent: and the superview’s touchesBegan:withEvent: (and
once again the first parameter to the superview’s touchesBegan:withEvent: will contain
a touch whose view is the subview).

The solution is to behave rationally, as follows:

• If all the responders in the affected part of the responder chain are instances of your
own subclass of UIView itself or of your own subclass of UIViewController, you
will generally want to follow the simplest possible rule: implement all the
touches... events together in one class, so that touches arrive at an instance either
because it was the hit-test view or because it is up the responder chain from the
hit-test view, and do not call super in any of them. In this way, “the buck stops
here” — the touch handling for this object or for objects below it in the responder
chain is bottlenecked into one well-defined place.

Touch Delivery | 431

• If you subclass a built-in UIView subclass and you override its touch handling, you
don’t have to override every single touches... event, but you do need to call
super so that the built-in touch handling can occur.

• Don’t allow touches to arrive from lower down the responder chain at an instance
of a built-in UIView subclass that implements built-in touch handling, because
such a class is completely unprepared for the first parameter of a touches...
method containing a touch not intended for itself. Judicious use of userInteraction-
Enabled or hit-test munging can be a big help here.

I’m not saying, however, that you have to block all touches from percolating up
the responder chain; it’s normal for unhandled touches to arrive at the UIWindow
or UIApplication, for example, because these classes do not (by default) do any
touch handling — so those touches will remain unhandled and will percolate right
off the end of the responder chain, which is perfectly fine.

• Never call a touches... method directly (except to call super).

Apple’s documentation has some discussion of a technique called event
forwarding where you do call touches... methods directly. But you are
far less likely to need this now that gesture recognizers exist, and it can
be extremely tricky and even downright dangerous to implement, so I
won’t give an example here, and I suggest that you not use it.

432 | Chapter 18: Touches

PART V

Interface

The previous part of the book introduced views. This part of the book is about the
particular kinds of view provided by the Cocoa framework — the built-in “widgets”
with which you’ll construct an app’s interface. These are surprising few, but impres-
sively powerful.

• Chapter 19 is about view controllers. View controllers are a brilliant mechanism
for allowing an entire interface to be replaced by another; this ability is especially
crucial on the iPhone’s small screen. They are also the basis of an app’s ability to
compensate when the user rotates the device. In real life, every app you write will
probably have its interface managed by view controllers.

• Chapter 20 is about scroll views, the iOS mechanism for letting the user scroll and
zoom the interface.

• Chapter 21 explains table views, an extremely important and powerful type of
scroll view that lets the user navigate through any amount of data.

• Chapter 22 is about two forms of interface unique to, and characteristic of, the
iPad — popovers and split views.

• Chapter 23 describes several ways of presenting text in an app’s interface — labels,
text fields, text views, and text drawn manually with Core Text.

• Chapter 24 discusses web views. A web view is a easy-to-use interface widget
backed by the power of a full-fledged web browser. It can also be used to present
a PDF and various other forms of data.

• Chapter 25 describes all the remaining built-in iOS (UIKit) interface widgets.

• Chapter 26 is about the forms of modal dialog that can appear in front of an app’s
interface.

CHAPTER 19

View Controllers

An iOS app’s interface is dynamic in a way that a Mac OS X application is not. In Mac
OS X, an application’s windows can be big, and there can be more than one of them,
so there’s room for lots of interface. With iOS, everything needs to fit on a single display,
which in the case of the iPhone is almost forbiddingly tiny. The iOS solution to this is
to replace interface with interface, as needed. Thus, entire screens of material need to
come and go in a fashion that is not only agile but intuitive: the user must not be
confused. Management of this task resides in a view controller (an instance of a UI-
ViewController subclass).

You are extremely unlikely to write an iOS app that hasn’t at least one view controller.
They are, not to put too fine a point on it, indispensable. In this regard, the Empty
Window example project that we’ve been using in earlier chapters to demonstrate in-
dividual views and controls is artificial and exceptional. Even if your app’s interface as
a whole is never replaced by some other interface, you are still likely to use a view
controller, because a view controller also knows how to rotate the interface in response
to the user rotating the device.

A view controller manages a single view (which can, of course, have subviews); its
view property points to the view it manages. The view has no explicit pointer to the
view controller that manages it, but a view controller is a UIResponder and is in the
responder chain just above its view (Chapter 11), so it is the view’s nextResponder.

The UIViewController class is designed to be subclassed. You might use a built-in
subclass or you might subclass UIViewController directly, but you are fairly unlikely
to use a plain vanilla UIViewController. Still, a UIViewController has some useful de-
fault behavior along with some properties that can be set from outside, so you might
be able get away without subclassing. But you probably shouldn’t. (I have written just
one real-world app that uses a nonsubclassed UIViewController, and in retrospect I
think even this was a poor decision.)

Here are some of the mighty powers you’ll be taking advantage of with your UIView-
Controller subclass:

435

Rotation
The user can rotate the device, and you might like the interface to rotate in re-
sponse, to compensate. A window is effectively pinned to the physical display
(window bounds are screen bounds and do not change), but a view can be given a
transform so that its top moves to the current top of the display. A UIViewCon-
troller responds to device rotation by applying this transform.

Containment
To replace one interface with another, or to specify what interface to present, iOS
uses an architecture of containment. Often, both the container and the contained
are view controllers. Certain built-in UIViewController subclasses (in particular
UITabBarController, UINavigationController, and UISplitViewController) have
as their primary purpose the containment and management of other view control-
lers; moreover, any view controller can temporarily contain and manage another
view controller modally, effectively replacing its own view by another. Other types
of interface object may also involve a view controller to determine what view to
present; for example, a popover’s view, presented by a UIPopoverController, is
managed through a view controller.

Customizability
A view controller has properties and methods that are used to customize the in-
terface and its behavior when its view is showing. For example, when a UINavi-
gationController (a UIViewController subclass) substitutes another view control-
ler’s view into its interface, it looks for that view controller’s navigationItem.title-
View property — and puts it into the navigation bar at the top of the interface.
(Thus, the TidBITS logo in Figure 19-1 appears in the navigation bar because it is
a view controller’s navigationItem.titleView.)

We may distinguish between two uses of a UIViewController:

The root view controller
The view controller that manages the root view of the interface — the sole imme-
diate subview of the window, which occupies the entire window. Just about any

Figure 19-1. The TidBITS logo appears in the navigation bar automatically

436 | Chapter 19: View Controllers

app you write will have a root view controller. The root view might have no other
purpose than to contain the rest of the interface.

Contained view controller
A view controller that is contained and managed by another view controller, or by
some other built-in type of object that requires a view controller.

Indeed, in iOS 4, as we shall see, the root view controller optionally is a contained view
controller: the main window will contain and manage it through its rootView-
Controller property. Thus both uses of a view controller become the same use: you use
a view controller in places where a built-in class asks for it.

You should not use a view controller in any other way. It is not, for example, appropriate
to use a view controller to manage a view that occupies only a part of the window, or
is a subview of anything except the window as a whole, except as a side effect of the
fact that this is a contained view controller. This, I take it, is what Apple’s documen-
tation means when it says:

You should not use multiple custom view controllers to manage different portions of the
same view hierarchy. Similarly, you should not use a single custom view controller object
to manage multiple screens worth of content…. If you want to divide a view hierarchy
into multiple subareas and manage each one separately, use generic controller objects
(custom objects descending from NSObject) instead of view controller objects to manage
each subarea.

Creating a View Controller
I’ll use the root view controller to illustrate the process of how a view controller comes
into existence. You already know that your interface is displayed initially because the
main nib is loaded and makeKeyAndVisible is called on the window. The window is now
to have a root view, a single immediate subview occupying the window completely,
and containing anything else that appears in the window; and this view is to be con-
trolled by a view controller.

There are then four questions to be answered:

1. Where is this view controller to come from?

2. Where is its view to come from?

3. How will its view get into the window?

4. How will the view controller be memory-managed? That is, someone must retain
the view controller so that it persists, in such a way that a reference to it can be
obtained; how will this happen?

There is a range of possibilities from completely manual, using code, to completely
automatic, using nibs:

• Both the view controller and its view may be created entirely in code, manually.

Creating a View Controller | 437

• Either the view controller or its view, or both, may be created in a nib. You can set
this up in such a way that the loading of this nib is itself manual or automatic.

• You can start with an application template that does everything for you: both the
view controller and the view are created in a nib, and the nib loading is automatic.

• If the view controller is created in a nib, its memory-management is likely to be
automatic, and its view’s insertion into the window can be made automatic as well.

Even though I’m going to be talking specifically about the root view controller, the
discussion applies to any view controller. The possible answers to the first two ques-
tions (where the view controller comes from and where its view comes from) are ef-
fectively the same regardless of how the view controller is to be used. And in the case
of a contained view controller, the other two questions answer themselves; both a con-
tained view controller’s memory management and the display of its view are taken care
of by the very fact that it is a contained view controller.

Manual View Controller, Manual View
We’re going to create a view controller and its view in code as the application starts
up. I actually use this approach quite a bit, and am fond of it because it is so clear and
straightforward. Creating and populating a view in code can be verbose, but it gives
me complete control, whereas loading a view from a nib always leaves me scratching
my head a bit, wondering whether I checked all the right checkboxes and whether they
will do the right thing.

We begin, therefore, with a project based on the Window-based Application template:

1. We need a UIViewController subclass, so choose File → New → New File; specify
a Cocoa Touch UIViewController subclass. Click Next.

2. Make sure this is a UIViewController subclass. Uncheck both checkboxes. Click
Next.

3. Name the file RootViewController, and save.

We now have a RootViewController class, and we proceed to edit its code.

A view controller is in charge of obtaining or creating its own view. If our view controller
is to create its view manually, in code, we must override UIViewController’s load-
View method. Looking in RootViewController.m, we find that the UIViewController
subclass template has provided a loadView method, commented out. So uncomment it
and let’s implement it. To convince ourselves that the example is working correctly,
we’ll give the view an identifiable color, and we’ll put some interface inside that view,
in this case a “Hello, World” label:

- (void) loadView {
 UIView* v =
 [[UIView alloc] initWithFrame: [[UIScreen mainScreen] applicationFrame]];
 v.backgroundColor = [UIColor greenColor];
 UILabel* label = [[UILabel alloc] init];

438 | Chapter 19: View Controllers

 label.text = @"Hello, World!";
 [label sizeToFit];
 label.center = CGPointMake(CGRectGetMidX(v.bounds), CGRectGetMidY(v.bounds));
 label.autoresizingMask = (
 UIViewAutoresizingFlexibleTopMargin |
 UIViewAutoresizingFlexibleLeftMargin |
 UIViewAutoresizingFlexibleBottomMargin |
 UIViewAutoresizingFlexibleRightMargin
);
 [v addSubview:label];
 self.view = v;
 [label release];
 [v release];
}

The frame of v is set to a value that captures the notion of filling the screen: the
applicationFrame is the entire visible area, excluding the status bar. If there is no
status bar (“Status bar is initially hidden” is checked in Info.plist), we fill the entire
visible screen. If there is a status bar but you want the view to underlap it, filling the
screen behind it, which you might well want if the status bar is transparent (“Status
bar style” in Info.plist), you would add this line:

self.wantsFullScreenLayout = YES;

We use autoresizing to obtain layout for our view’s subviews — in this case, just
one subview, the label. The view size may be adjusted for us depending on whether
there is a status bar, and, even more important, if we respond to rotation of the
device; we must be prepared for this. (I’ll demonstrate rotation in a moment.) Of
course you can use manual layout with layoutSubviews in a UIView subclass, but
that isn’t necessary for most interfaces.

The most important line comes at the end: we set the value of self.view to the view
which this view controller is to manage. This is why we are here. If you implement
loadView, you must use it to set self.view. Notice also that we do not call super; the
documentation strictly warns against this (I’ll explain why in a moment).

Our view controller is ready for use; now we must arrange to use it. To do so, we turn
to our app delegate class. It’s a little frustrating having to set things up in two different
places before our labors can bear any visible fruit, but such is life.

The first problem is our view controller’s lifetime. The view controller must persist for
as long as the view is needed. In this case, that’s likely to be the lifetime of the app as
a whole. The obvious solution to persistence is an instance variable and retain (Chap-
ter 12). So in the app delegate class’s header file, declare a property with a retain policy:

@class RootViewController;
// ...
@property (nonatomic, retain) RootViewController* rvc;

In the app delegate class’s implementation, import "RootViewController.h", synthesize
rvc to get accessors for it, and don’t forget to release rvc in dealloc.

Creating a View Controller | 439

Forgetting to implement persistence of a view controller through mem-
ory management is a common beginner error, and can be difficult to
track down.

Our instance variable, with accessors and memory management, is ready; so now in
the app delegate’s application:didFinishLaunchingWithOptions: we can create the view
controller:

RootViewController* theRVC = [[RootViewController alloc] init];
self.rvc = theRVC;
[theRVC release];

We must not only create the view controller; we must also put its view into the interface
(this isn’t going to happen magically all by itself):

[self.window addSubview:self.rvc.view];
// and now we can display our initial interface
[self.window makeKeyAndVisible];

Build and run the app. Sure enough, there’s our telltale green background containing
the words “Hello, world!” This proves that the view was created, but it doesn’t really
prove that the view controller is controlling the view. Is the view controller, in fact,
doing anything? To demonstrate that it is, return to the view controller’s code and
implement rotation, by uncommenting and overriding shouldAutorotateToInterface-
Orientation:, like this:

- (BOOL)shouldAutorotateToInterfaceOrientation:
 (UIInterfaceOrientation)interfaceOrientation {
 // Return YES for supported orientations
 return YES;
}

I’ll talk more about rotation later, but this code means simply that we support any
orientation of the device: if the user rotates the device, we want to rotate to compensate.
So build and run the app, and in the Simulator, choose Hardware → Rotate Left re-
peatedly. Each time you do, the entire interface rotates to compensate, and the label
(thanks to our autoresizing) remains centered. The view controller is working.

If your app is going to run only on iOS 4.0 or later, there’s another way to slot the view
controller into the app in such a way that you don’t need to create an instance variable
to retain it, and you don’t need to add its view as a subview to the window. This way
is to take advantage of the UIWindow rootViewController property. This property
already exists, it already has a retain policy, and (most important) when you assign it
a UIViewController instance, it automatically asks for that UIViewController’s view
and makes that the window’s sole subview. So now our code in application:didFinish-
LaunchingWithOptions: would look like this:

RootViewController* theRVC = [[RootViewController alloc] init];
self.window.rootViewController = theRVC;
[theRVC release];
[self.window makeKeyAndVisible];

440 | Chapter 19: View Controllers

This may not appear to be much of a savings, but remember, we can now delete the
rvc property and all its related buttressing, and the resulting architecture is extremely
sensible. The root view controller and its view “belong” to the same single object (the
window); also, the root view controller is globally available through the window:

UIViewController* rvc =
 [[[UIApplication sharedApplication] keyWindow] rootViewController];

Manual View Controller, Nib View
Designing and maintaining a complex interface in a nib might be more pleasant than
creating it in code. We can fetch part or all of the view controller’s view from a nib.

Let’s start by supposing that you would create the view controller’s view in code, as in
the previous example, but that you would manually load a nib in order to populate that
view with subviews. There is actually nothing new here. You have already seen how to
create the view controller’s view in code, and you already know how to load a nib to
obtain a view instance. This is, indeed, almost exactly the example we developed in
Chapter 7, where there’s a secondary nib MyNib.xib containing a “Hello, World” label,
and we load the nib, refer to the label through an instance variable that was set by an
outlet when the nib loaded, and stuff the label into our interface. All we need is an
owner for the nib; the most economical solution is obviously that this should be the
view controller itself.

So I won’t bother telling you how to create and configure MyNib.xib, or how to give
RootViewController the necessary instance variable; all of that is effectively the same
as in Chapter 7. I’ll assume that RootViewController now has a property theLabel with
an assign policy (we don’t need to retain it, because we’re going to insert it into another
view immediately, and that view will retain it). Here’s the code for the revised loadView:

UIView* v =
 [[UIView alloc] initWithFrame: [[UIScreen mainScreen] applicationFrame]];
v.backgroundColor = [UIColor greenColor];
[[NSBundle mainBundle] loadNibNamed:@"MyNib" owner:self options:nil];

When Is the View Loaded?
A UIViewController’s view property is set “lazily”: rather than setting it when the UI-
ViewController itself is instantiated, the view property isn’t set until it’s needed —
namely, when you or Cocoa tries to fetch its value. In our earlier code, that moment is
when we refer to self.rvc.view to add the view to the window; at that moment, load-
View is called. This architecture has several advantages, but it can also trap you: I already
mentioned (in Chapter 11) how I made the mistake of mentioning a UIViewController’s
view in its awakeFromNib and caused the view to be loaded twice. So don’t mention a
view controller’s view until it’s time to load it! The isViewLoaded method reports
whether the view has in fact been loaded.

Creating a View Controller | 441

self.theLabel.center =
 CGPointMake(CGRectGetMidX(v.bounds), CGRectGetMidY(v.bounds));
[v addSubview:self.theLabel];
self.view = v;
[v release];

If, on the other hand, we want to load the view controller’s entire view from a nib,
things change radically. When we instantiate the view controller, we won’t initialize it
with a mere init; instead, we’ll call initWithNibName:bundle: (this is actually the des-
ignated initializer). This will cause the view controller to load the specified nib when
we first ask for its view. We must not override loadView; the view property will be set
from a view outlet in the nib. If we have further initializations to perform in code after
the view property is set, we override viewDidLoad. (When the view is created in code
using loadView, viewDidLoad is also called afterward, and can be used to perform addi-
tional initializations.)

The truth is that loadView is always called when the view controller’s
view is mentioned and has not yet been set. If we override it, we supply
and set the view. If we don’t override it, the default implementation is
to load the view controller’s nib (setting view through an outlet). For
this reason, if we do override loadView, we must not call super — that
would cause us to get both behaviors.

In our example, then, comment out loadView in RootViewController and let’s start
over:

1. Create a nib from which RootViewController will get its view, specifying the View
template. Let’s call it RV.xib for the present (later we’ll change the name, to dem-
onstrate a shortcut).

2. Edit RV.xib. Change the File’s Owner’s class to RootViewController. This produ-
ces a view outlet; hook it up to the view.

3. Still in RV.xib, design the view; in this case, that would mean giving it a background
color and putting a “Hello, World!” label into it, with appropriate autoresizing.

The code for the app delegate’s application:didFinishLaunchingWithOptions: is just
the same as before, except that now the view controller is created like this:

RootViewController* theRVC =
 [[RootViewController alloc] initWithNibName:@"RV" bundle:nil];

Build and run the app to prove to yourself that it works.

A moment ago, I mentioned a shortcut, and here it is: if the nib has the same name as
the view controller’s class, we can pass nil as the nib name (which means, in effect, we
can return to using init to initialize the view controller). To put it conversely, the rule
is that if the nib name passed to initWithNibName:bundle: is nil, a nib will be sought
with the same name as the view controller’s class. So, if you like, you could rename

442 | Chapter 19: View Controllers

RV.xib as RootViewController.xib and return to using init instead of initWithNibName:
bundle:, and our app will keep on working just as before.

Taking advantage of this shortcut means that, because view controllers often have
“Controller” in their name, we end up with nibs that also have “Controller” in their
name, which is ridiculous: a nib is not a controller. But there’s an additional aspect to
the shortcut: the runtime, in looking for a view controller’s corresponding nib, will in
fact try stripping “Controller” off the end of the view controller class’s name. (This
feature is undocumented, but it works reliably and I can’t believe it would ever be
retracted.) Thus, we could name our nib RootView.xib instead of RootViewControl-
ler.xib, and it would still work when we initialize our RootViewController instance
using init instead of initWithNibName:bundle:.

When you create the files for a UIViewController subclass, the Xcode dialog has a
checkbox (which we unchecked earlier) offering to create an eponymous .xib file at the
same time (“With XIB for user interface”). If you accept that option, the nib is created
with the as File’s Owner’s class set to the view controller’s class and with its view outlet
already hooked up to the view. This automatically created .xib file does not have “Con-
troller” stripped off the end of its name; you can rename it manually later (I generally
do) if the default name bothers you.

Not every built-in subclass of UIViewController obeys the convention
that a nil nib name means a nib with the same name as the view con-
troller’s class. In particular, UITableViewController does not. I regard
this as a bug; in any case, it has caught me by surprise several times (and
can be difficult to track down, when the table view mysteriously fails to
appear in the interface).

Nib-Instantiated View Controller
A UIViewController, including a built-in subclass or your subclass, can be instantiated
in a nib. The root view controller, in particular, will be a top-level nib object; in our
app, this nib would be MainWindow.xib.

Let’s begin by repeating the approach we used earlier: we gave our app delegate an
rvc instance variable (with appropriate @synthesize and memory-management but-
tressing). If we wish to take this approach, the instance variable must now be set to a
nib-instantiated object, which means we must use an outlet. So we write the app del-
egate’s rvc property declaration in such a way that it is an outlet:

@property (nonatomic, retain) IBOutlet RootViewController* rvc;

Now, in MainWindow.xib, drag a UIViewController from the Object library into the
dock, to make it a top-level object; then change its class to RootViewController and
hook the app delegate nib object’s rvc outlet to it.

The view controller is now being instantiated and assigned to an instance variable by
the loading of the nib; we don’t need to instantiate it explicitly in code. In the app

Creating a View Controller | 443

delegate class’s code, therefore, our opening dance for showing the interface is now
down to just two lines of code:

[self.window addSubview:self.rvc.view];
[self.window makeKeyAndVisible];

What’s more, if the app is to run on only iOS 4.0 or later, you’ll recall, we can remove
the app delegate’s rvc property and all its buttressing once again, and reduce our open-
ing dance to a single line of code:

[self.window makeKeyAndVisible];

To make that work, the outlet that needs to be hooked up to the UIViewController in
the nib is not the app delegate’s rvc outlet (which no longer exists) but the window’s
rootViewController outlet. When the nib loads and the window’s rootView-
Controller instance variable is set, the UIViewController’s view will be made the win-
dow’s subview automatically.

We come now to the question of how to specify a UIViewController’s view when the
UIViewController is instantiated in a nib. There are actually three different ways:

By specifying another nib
This is the most appropriate way to adapt our existing project, because our view
is already off in another nib — RV.xib, or RootViewController.xib (or Root-
View.xib) if you renamed it. If you did rename it, we are finished; our app now runs
correctly. (Try it and see.) This is because, since the UIViewController has not been
given a view in the same nib as itself, it is sent initWithNibName:bundle: as it is
instantiated through the loading of the nib, and if you don’t configure the UI-
ViewController in the nib any further, the NibName parameter will be nil, and a nib
with the same name as the UIViewController’s class is sought.

If you need to specify the NibName parameter explicitly, select the UIViewController
in the nib and specify the Nib Name in the Attributes inspector. This field is a
combo box whose pop-up menu already knows the names of all your project’s nib
files, so just pick the right one.

Just a reminder: when you take this approach, the File’s Owner’s class in the second
nib must be set correctly (so that the nib knows it’s a UIViewController), and its
view outlet must link to the view.

Through the view outlet
The UIViewController has a view outlet, so you can connect this to a view in the
same nib. Thus, we could eliminate our use of a second nib. This is not a usual
approach (because of its implications for memory management, which I’ll explain
later in this chapter), but it wouldn’t be inappropriate if this view is to be always
present in the interface as the window’s sole subview. So we could in fact put the
view right into the MainWindow.xib dock as a top-level object, and point the view
controller’s view outlet to it.

444 | Chapter 19: View Controllers

By treating the UIViewController in the nib as a view container
If you show a UIViewController nib object in the canvas, it acts as if it were a kind
of view container. You can place (and design) the view here, rather than as a top-
level object. This is in fact the preferred approach if you’re going to put the view
controller and its view in the same nib. There is no need to set the view controller’s
view outlet.

We are now in a position to examine and understand Xcode 4’s View-based Application
template. It takes the first of the three approaches I just listed (“By specifying another
nib”). Make a project based on this template, study it, and see for yourself:

• The root view controller is instantiated in the main nib.

• The root view controller’s view is loaded from a second nib; the name of this nib
(which is the same as that of the view controller class), is specified explicitly in the
root view controller’s configuration in the main nib.

• The app delegate retains the root view controller instance through a view-
Controller property with a retain policy, which is an outlet; thus the app delegate
also gets a reference to the root view controller.

• The app delegate’s application:didFinishLaunchingWithOptions: passes that view
controller instance to the window’s rootViewController property, so that the view
controller’s view will appear in the window:

self.window.rootViewController = self.viewController;
[self.window makeKeyAndVisible];

The root views for other Xcode 4 project templates generally work the same way.

Be very sure you understand how this project template works! You don’t want to be
dependent on the project templates, but you don’t want to be afraid of them, either.
You should be able to use and customize the View-based Application template quickly
and easily; you should also be able to create your own project with a root view controller
starting with the Window-based Application template, just as quickly and easily.

No View
If you ask for a view controller’s view and none of its ways of obtaining a view succeeds
— loadView is not overridden, and we weren’t given a nib name and no nib matches
the name of the view controller’s class, even with “Controller” stripped off — the view
controller itself creates a plain vanilla UIView, sets its frame to the applicationFrame,
and assigns it to its view property.

Thus, if you don’t need the view to be a particular UIView subclass, you could simply
permit this to happen, and perform any further configuration of the view in viewDid-
Load. For example, here is our earlier loadView code, where we populate the view by
loading its subviews from a nib; here, though, we’ve moved the code to viewDidLoad.
We don’t implement loadView, and there is no corresponding nib, so the view property

Creating a View Controller | 445

has been automatically set and properly positioned, and all we need to do is configure
it:

self.view.backgroundColor = [UIColor greenColor];
[[NSBundle mainBundle] loadNibNamed:@"MyNib" owner:self options:nil];
self.theLabel.center =
 CGPointMake(CGRectGetMidX(v.bounds), CGRectGetMidY(v.bounds));
[self.view addSubview:self.theLabel];

Up-Shifted Root View
Sometimes, a view that is supposed to occupy the whole interface will appear shifted
up, leaving a gap at the bottom — a gap that, not coincidentally, is the height of the
status bar.

To see the problem, start with the View-based Application template. In the app dele-
gate, delete this line:

self.window.rootViewController = self.viewController;

In its place, put this:

[self.window addSubview:self.viewController.view];

Now edit MainWindow.xib; select the top-level UIViewController object, and in the
Attributes inspector, uncheck Resize View From XIB. Now build and run (Figure 19-2).

The problem is that in the nib from which it is loaded, the view that will act as root
view has its origin at (0,0). That point, in window coordinates, is at the top of the
window — at the top left of the status bar. So part of the view underlaps the status bar.
At the same time, the view’s height is shorter than the window — shorter by exactly
the height of the status bar. Thus, a gap the size of the status bar appears at the bottom
of the window.

If your app is to run only on iOS 4.0 or later, the solution is simple: don’t place the root
view into the window with addSubview:, but instead do it by assigning the view con-
troller to the window’s rootViewController property. This implicitly sets the view’s

Figure 19-2. An up-shifted root view

446 | Chapter 19: View Controllers

frame to [[UIScreen mainScreen] applicationFrame] (exactly as we did manually in the
first example in this chapter), thus positioning it correctly in relation to the status bar.

On a system before iOS 4.0, the window’s rootViewController property doesn’t exist,
and you’ll have to use a different solution. One approach, if the view is loaded from a
nib with a UIViewController as its owner, and if the UIViewController is instantiated
from a nib, is to check Resize View From XIB in the Attributes inspector. That is why,
by default, that checkbox is checked. If that approach isn’t applicable or doesn’t work,
you’ll have to set the view’s frame to applicationFrame yourself, in code. The usual
place to do this is in the UIViewController’s viewDidLoad.

Rotation
A major part of a view controller’s job is to know how to rotate the view. The user will
experience this as rotation of the app itself: the top of the app shifts so that it is oriented
against a different side of the device’s display. There are two complementary uses for
rotation:

Compensatory rotation
The app rotates to compensate for the orientation of the device, so that the app
appears right way up with respect to how the user is holding the device. The chal-
lenge of compensatory rotation stems, quite simply, from the fact that the screen
is not square. This means that if the app rotates 90 degrees, the interface no longer
fits the screen, and must be changed to compensate.

Forced rotation
The app rotates when a particular view appears in the interface, or when the app
launches, to indicate that the user needs to rotate the device in order to view the
app the right way up. This is typically because the interface has been specifically
designed, in the face of the fact that the screen is not square, to appear in one
particular mode (portrait or landscape).

In the case of the iPhone, no law says that your app has to perform compensatory
rotation. Most of my iPhone apps do not do so; indeed, I have no compunction about
doing just the opposite, forcing the user to rotate the device differently depending on
what view is being displayed. The iPhone is small and easily reoriented with a twist of
the user’s wrist, and it has a natural right way up, especially because it’s a phone. (The
iPod touch isn’t a phone, but the same argument works by analogy.) On the other hand,
Apple would like iPad apps to rotate to at least two opposed orientations (such as
landscape with the button on the right and landscape with the button on the left), and
preferably to all four possible orientations, so that the user isn’t restricted in how the
device is held and positioned.

It’s fairly trivial to let your app rotate to two opposed orientations, because once the
app is set up to work in one of them, it can work with no change in the other. But
allowing an app to rotate between two orientations that are 90 degrees apart is trickier,

Rotation | 447

because its dimensions must change — its height and width are swapped — and this
may require a change of layout and might even call for more substantial alterations to
the interface, such as removal or addition of part of the interface. A good example is
the behavior of Apple’s Mail app on the iPad: in landscape mode, the master pane and
the detail pane appear side by side, but in portrait mode, the detail pane is removed
and must be summoned as a popover using a button. (This style of master–detail in-
terface management on the iPad is effectively built into the functionality of the
UISplitViewController; see Chapter 22.)

The main thing your view controller must do in order to support rotation is to override
shouldAutorotateToInterfaceOrientation:. The incoming parameter is the proposed
orientation, and will be one of the following:

• UIInterfaceOrientationPortrait, with the home button at the bottom.

• UIInterfaceOrientationPortraitUpsideDown, with the home button at the top.

• UIInterfaceOrientationLandscapeLeft, with the home button at the left.

• UIInterfaceOrientationLandscapeRight, with the home button at the right.

You return YES for all permitted orientations and NO otherwise. (The default, if you
don’t override this method, is to return YES for UIInterfaceOrientationPortrait and
NO otherwise; you must return YES for some orientation.)

These four interface orientations are matched by four device orientations with similar
names (UIDeviceOrientationPortrait and so on), except that the two landscape orien-
tations are reversed: UIInterfaceOrientationLandscapeLeft is the same as UIDevice-
OrientationLandscapeRight, because if the user rotates the device 90 degrees left from
an original portrait orientation, the interface must rotate 90 degrees right to compen-
sate. The device actually has several more possible orientations, such as UIDevice-
OrientationFaceUp (the device is lying on its back), but these will not, of themselves,
trigger interface rotation.

In case your implementation of shouldAutorotateToInterfaceOrientation: wants to
return YES to both of two opposed orientations, a pair of macros are provided:
UIInterfaceOrientationIsLandscape(io) returns YES if io is either of the two landscape
orientations, and UIInterfaceOrientationIsPortrait(io) returns YES if io is either of
the two portrait orientations.

Initial Orientation
Your app’s initial orientation, as it is launched, is determined by the “Supported in-
terface orientations” setting (UISupportedInterfaceOrientations) in the app’s
Info.plist. If there is only one orientation listed here, the app will launch into it. If there
is more than one orientation listed, you are giving the system the option to launch the
app into whichever of the supported orientations is closest to the way the device is

448 | Chapter 19: View Controllers

positioned at the time. In Xcode 4, you can specify this setting graphically by editing
the target (in the Summary tab).

Alternatively, if the app supports only one possible initial orientation, you can use the
older “Initial interface orientation” setting (UIInterfaceOrientation).

The orientation(s) specified here must also be among the orientations
to which the root view controller’s shouldAutorotateToInterface-
Orientation: will return YES.

As I’ve already mentioned, on the iPhone, it is common for an app to launch into just
one orientation, as it is no trouble for the user to twist the device to view the app
correctly, but on the iPad, Apple would like you to list at least two opposed orientations
(both portrait orientations or both landscape orientations), and preferably all four.

An app whose initial orientation is portrait mode with the button at the bottom there-
fore has effectively no work to do, because this is the default orientation. An app with
no “Supported interface orientations” or “Initial interface orientation” setting adopts
“Portrait (bottom home button)” by default (UIInterfaceOrientationPortrait), and
the default shouldAutorotateToInterfaceOrientation: behavior is to return YES to
UIInterfaceOrientationPortrait and NO to anything else.

But an app whose initial orientation is landscape mode must be configured to rotate to
this position even if it doesn’t otherwise support rotation, and the initial setup of its
interface can be tricky. Let’s take the case of an iPhone app whose initial orientation is
landscape, with the button on the right:

What Rotates?
We say that your app rotates, and you’ll think of it as rotating, but what really rotates
is the status bar’s position. When the device rotates, a UIDeviceOrientationDidChange-
Notification is emitted by the UIDevice, and your app’s root view controller is con-
sulted with shouldAutorotateToInterfaceOrientation:; if the view controller returns
YES for the proposed orientation, the UIApplication instance is sent the setStatusBar-
Orientation:animated: message. In a 90-degree rotation, the window’s subview then
has its width and height dimensions swapped, and a transform is applied so that it
appears “right way up.” Moreover, this is all accompanied by animation, so it really
looks to the user as if the app is rotating. But the window itself doesn’t budge; it remains
“pinned” to the screen (window bounds are screen bounds), it is taller than it is wide,
and its top is at the top of the device (away from the home button). As for the view, its
bounds are wider than tall in a landscape orientation, but its frame remains taller than
wide (though you really shouldn’t be referring to the view’s frame in this situation,
because it has a transform applied; see Chapter 14).

Rotation | 449

1. In Info.plist, set the “Supported interface orientations” or “Initial interface orien-
tation” to “Landscape (right home button).”

2. In the root view controller’s code, override shouldAutorotateToInterface-
Orientation: along these lines:

- (BOOL) shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)io {
 return (io == UIDeviceOrientationLandscapeRight);
}

3. If the root view interface requires further configuration in code, give the interface
a chance to establish itself and to rotate into position before doing that configura-
tion.

It is the neglect of that third step that causes beginners the most trouble (especially
because the documentation doesn’t tell you about it). The problem is that when the
root view is initially put into the window, its bounds are window bounds; only later,
at the redraw moment (Chapter 14), does the view resize appropriately to the initial
orientation you’ve requested. Thus, if you try to configure the interface too early (say,
in the root view controller’s viewDidLoad), the width and height values of the view’s
bounds will be reversed.

For example, let’s say that we’ve taken the first two steps but we’ve neglected the third,
and that our root view controller’s viewDidLoad code looks like this:

- (void)viewDidLoad {
 [super viewDidLoad];
 UIView* square = [[UIView alloc] initWithFrame:CGRectMake(0,0,10,10)];
 square.backgroundColor = [UIColor blackColor];
 square.center = CGPointMake(CGRectGetMidX(self.view.bounds),5); // top center?
 [self.view addSubview:square];
 [square release];
}

The app launches into a rotated landscape orientation; the user must hold the device
with the home button at the right to see it correctly. But where’s the little black square?
Not at the top center of the screen! The square appears at the top of the screen, but
only about a third of the way across.

The trouble is that we said CGRectGetMidX(self.view.bounds) for the x-coordinate of
the square’s center too soon, at a time when the view’s x-dimension (its width dimen-
sion) was still its shorter dimension. One solution is to use delayed performance, to
give the redraw moment a chance to occur before we perform our final view configu-
ration. Thus, we could write our code like this:

- (void)viewDidLoad {
 [super viewDidLoad];
 [self performSelector:@selector(finishViewDidLoad)
 withObject:nil afterDelay:0.0];
}

- (void) finishViewDidLoad {
 UIView* square = [[UIView alloc] initWithFrame:CGRectMake(0,0,10,10)];

450 | Chapter 19: View Controllers

 square.backgroundColor = [UIColor blackColor];
 square.center = CGPointMake(CGRectGetMidX(self.view.bounds),5);
 [self.view addSubview:square];
 [square release];
}

The delayed performance (even with a delay of 0) postpones the calling of finishView-
DidLoad until after the next redraw moment, which includes the initial rotation of the
view. Now the x-dimension is the longer dimension and the black square appears at
the top center of the screen.

An alternative approach is to override didRotateFromInterfaceOrientation: and com-
plete the configuration of your view there. This method is called at launch time after
the initial rotation has been performed, so the dimensions of the root view are correct.
It has been suggested to me that this approach is more correct than using delayed
performance in viewDidLoad, because it is more certain; didRotateFromInterface-
Orientation: tells us definitely that the rotation has taken place, whereas with delayed
performance in viewDidLoad, we’re just making an assumption. So here’s the same code
restructured to use didRotateFromInterfaceOrientation: (and not viewDidLoad). Ob-
serve that we take precautions to prevent the interface from being configured again in
case didRotateFromInterfaceOrientation: is called again later; this is a good use of a
static variable:

- (void) finishInitializingView {
 // static BOOL flag
 static BOOL done = NO;
 if (done)
 return;
 done = YES;
 // the static BOOL flag makes sure the following is performed exactly once
 UIView* square = [[UIView alloc] initWithFrame:CGRectMake(0,0,10,10)];
 square.backgroundColor = [UIColor blackColor];
 square.center = CGPointMake(CGRectGetMidX(self.view.bounds),5);
 [self.view addSubview:square];
 [square release];
}

- (void)didRotateFromInterfaceOrientation:
 (UIInterfaceOrientation)fromInterfaceOrientation {
 [self finishInitializingView];
}

Yet another alternative is to implement willAnimateRotationToInterfaceOrientation:
duration:. It has certain advantages over didRotateFromInterfaceOrientation: — it
arrives earlier in the rotation process, for example — while at the same time the interface
dimensions have already been swapped for the orientation to which we are rotating,
so you can safely perform initializations that depend on those dimensions.

When designing in the nib, if the interface is to appear in landscape mode, you can
design in landscape mode; select your window or root view, and choose Landscape in
the Orientation pop-up menu in the Simulated Metrics section of the Attributes in-

Rotation | 451

spector. However, this does not really rotate anything; you’re merely swapping the
view’s height and width values. The nib knows nothing of orientations, and the view,
if it is placed into the window automatically as the app launches, will still have a nar-
rower x-dimension initially. In practice this should cause no difficulty; if the results at
runtime are not what you expect, it may help to use autoresizing settings so that the
bits of your interface settle into the correct position and dimensions.

Rotation Events
In a 90-degree rotation, the width and height values of your root controller’s view are
swapped. This, as I’ve just said, should cause no difficulty if your app is merely launch-
ing into a landscape orientation, but if your app is to switch between portrait and
landscape while running, the view’s contents and subviews will surely need to com-
pensate somehow. In simple cases, autoresizing settings may suffice. But in case you
need to perform more elaborate adjustments, your root controller is sent willRotateTo-
InterfaceOrientation:duration: before the bounds are changed, and willAnimate-
RotationToInterfaceOrientation:duration:, and later didRotateFromInterface-
Orientation:, after the bounds are changed. You can override these to make any desired
adjustments. You can use the UIViewController property interfaceOrientation to
learn the current orientation.

In this simple example, our app displays a black rectangle at the left side of the screen
if the device is in landscape orientation, but not if the device is in portrait orientation.
The view controller has an instance variable blackRect with a retain policy:

- (void) prepareInterface {
 if (!self.blackRect) {
 CGRect f = self.view.bounds;
 f.size.width = f.size.width/3.0;
 UIView* br = [[UIView alloc] initWithFrame:f];
 br.backgroundColor = [UIColor blackColor];
 self.blackRect = br;
 [br release];
 }
}

- (void) willRotateToInterfaceOrientation:(UIInterfaceOrientation)io
 duration:(NSTimeInterval)duration {
 if (UIInterfaceOrientationIsPortrait(io))
 [self.blackRect removeFromSuperview];
}

- (void) didRotateFromInterfaceOrientation:(UIInterfaceOrientation)io {
 [self prepareInterface];
 if (UIInterfaceOrientationIsLandscape(self.interfaceOrientation)
 && !self.blackRect.superview)
 [self.view addSubview:self.blackRect];
}

452 | Chapter 19: View Controllers

The example is marked by its defensive posture, quite typical of an event-driven archi-
tecture (Chapter 11) under which it is best to make as few assumptions as possible
about what will really happen and in what order. The utility method prepare-
Interface creates the black rectangle, but only if it hasn’t been created already. The
implementation of didRotateFromInterfaceOrientation: puts the black rectangle into
the interface, but only if we have ended up in a landscape orientation, and only if it
isn’t in the interface already; after all, the user might rotate the device 180 degrees, from
one landscape orientation to the other.

It is possible to divide your response to rotation into two stages by additionally imple-
menting these methods:

• willAnimateFirstHalfOfRotationToInterfaceOrientation:duration:

• didAnimateFirstHalfOfRotationToInterfaceOrientation:

• willAnimateSecondHalfOfRotationFromInterfaceOrientation:duration:

This is not commonly needed and is mostly a holdover from iOS 2.0.

A complete alternative to all this rather daunting dynamism is to maintain two distinct
static views, one for landscape orientation and one for portrait orientation, and to swap
them as necessary. This approach, which can greatly reduce your code and your worry,
requires use of a container view controller; I’ll give an example in the next section.

Modal Views
The simplest form of view controller containment is a modal view. Here, a view con-
troller replaces its entire view with another view controller’s view. This is done by
sending the first view controller the presentModalViewController:animated: message,
handing it the second view controller. The first view controller now contains the sec-
ond. The second view controller becomes the first view controller’s modalView-
Controller; the first view controller is the second view controller’s parentView-
Controller. This state of affairs persists until dismissModalViewControllerAnimated: is
called; it is implemented by the parent view controller (which knows which view con-
troller to dismiss because that is its modalViewController), but may be sent to the modal
view controller (whose default behavior is to pass the message on to its parentView-
Controller).

The second view, the modal view, is often thought of as temporary or secondary, as
somehow covering the parent view which is the real view; it’s as if the second view were
merely waiting to be dismissed, thus revealing the real view once again. This is indeed
frequently the case, but this conception doesn’t quite capture the power of modal views.
In particular:

• A modal view might not be temporary or secondary; it might appear every bit as
primary as the parent view, and it might never be dismissed.

Modal Views | 453

• A modal view’s controller can itself be of any degree of complexity. For example,
it might be a UITabBarController with many tab bar items and contained view
controllers.

• Any view controller can present a modal view — not just a root view controller. In
particular, a modal view’s controller can itself replace its own view with a modal
view, thus creating a chain or stack of modal views.

Thus, although a modal view can be the equivalent of a modal dialog on Mac OS X
(especially on the iPad), a view controller and its modal view controller can also be
thought of as more like equal partners, and the modal view mechanism as a simple,
direct, and extremely flexible form of view replacement.

So, for example, in Apple’s own iPod app on the iPhone (the Music app on the iPod
touch), the “sheet” that slides up to cover the More tab when you tap Edit has a modal,
secondary quality: you’re accomplishing a specific task (editing the contents of the tab
bar), and you can’t do anything else until you tap Done. But the two alternating views
that appear when you view the currently playing song are more like equal partners
(Figure 19-3); there’s no sense that one is secondary to the other. Yet it’s likely that the
second is the modal view alternative of the first.

Modal View Configuration
When a modal view is presented and dismissed, an animation can be performed, ac-
cording to whether the last parameter of the corresponding method is YES. If it is, the
style of animation is determined by the modal view controller’s modalTransition-
Style property. (It is legal, but not common, for the modalTransitionStyle value to
differ at the time of dismissal from its value at the time of presentation.) Your choices
are:

Figure 19-3. Two views that are equal partners

454 | Chapter 19: View Controllers

UIModalTransitionStyleCoverVertical (the default)
The modal view slides up from the bottom to cover its parent on presentation and
down to reveal its parent on dismissal. (“Bottom” is defined differently depending
on the orientation of the device and the orientations the view controllers support.)

UIModalTransitionStyleFlipHorizontal
The view flips on the vertical axis as if the two views were the front and back of a
piece of paper. (The “vertical axis” is the device’s long axis, regardless of the app’s
orientation.)

UIModalTransitionStyleCrossDissolve
The views remain stationary, and one fades into the other.

UIModalTransitionStylePartialCurl
The first view curls up like a page in a notepad to expose most of the second view,
but remains covering the top left region of the second view. Thus there must not
be any important interface in that region, as the user will not be able to see or touch
it. This option was introduced in iOS 3.2 and seems more appropriate on the iPad,
though it is legal on the iPhone.

The modalTransition property is thus a property of view controllers in general, but is
useful only if this view controller is presented modally. This is quite typical of the
UIViewController architecture; the class is overloaded with properties that matter only
in particular circumstances. (To give another example, a UIViewController’s
navigationItem.titleView property, mentioned earlier in this chapter, matters only if
it is contained by a UINavigationController.)

In iOS 3.2, with the advent of the iPad, there was an expansion in the range of ways in
which a modal view could be presented, in accordance with the iPad’s larger screen
and the existence of popovers. This was done through the introduction of the modal-
PresentationStyle property of the modal view controller. Your choices are:

UIModalPresentationFullScreen
The default. On the iPhone, although it is not illegal to set the modalPresentation-
Style to another value, a modal view will always behave as if this were the setting.
This is the only mode in which UIModalTransitionStylePartialCurl is legal.

UIModalPresentationPageSheet
In a portrait orientation, basically indistinguishable from fullscreen mode. But in
a landscape orientation, the modal view has the width of the portrait-oriented
screen, so the parent view remains partially visible behind the modal view. The
parent view is dimmed and the user can’t interact with it. Thus this mode is very
like a modal dialog on Mac OS X.

UIModalPresentationFormSheet
Similar to UIModalPresentationPageSheet, but the modal view is smaller. As the
name implies, this intended to allow the user to fill out a form (Apple describes
this as “gathering structured information from the user”).

Modal Views | 455

UIModalPresentationCurrentContext
The modal view has the same presentation mode as its parent. This is useful with
popovers, for instance (see Chapter 22).

Modal View Presentation
Although this fact appears to be nowhere explicitly stated in the documentation,
presentModalViewController:animated: causes the view controller to which it is sent
(the parent) to retain the modal view controller (the first parameter). Moreover, because
the modal view controller is contained, management of its view in the interface is au-
tomatic. Therefore the usual procedure for showing a modal view is extremely simple:

1. Instantiate the modal view controller and initialize it, in code, leaving the modal
view controller to acquire its view in one of the ways discussed earlier in this chap-
ter.

2. Set the modal view controller’s modalTransitionStyle (and, if appropriate, its modal-
PresentationStyle). This may be done now, by the code that just instantiated the
modal view controller, or the modal view controller itself may do it as part of its
override of initWithNibName:bundle:. This is also the time to hand the modal view
controller any other data to which it may need a pointer.

3. Send presentModalViewController:animated: to the parent view controller. (Obvi-
ously, if this code is in the parent view controller, the receiver will be self.)

4. Release the modal view controller if required by memory management rules, as it
is now being retained elsewhere.

This example code from the Xcode Utility Application template for new projects is
quite typical. The Utility Application template implements what appears to be a view
with a front and a back. To reach the back, the user taps the info button on the front;
to return to the front, the user taps the Done button on the back. This is accomplished
through two view controllers. The “front” is actually the first view controller’s view,
and the first view controller is the app’s root view controller. When the user taps the
info button, this is what happens (in the first view controller):

FlipsideViewController *controller =
 [[FlipsideViewController alloc] initWithNibName:@"FlipsideView" bundle:nil];
controller.delegate = self;
controller.modalTransitionStyle = UIModalTransitionStyleFlipHorizontal;
[self presentModalViewController:controller animated:YES];
[controller release];

The only unexpected line here is that the modal view controller has a delegate, which
is set to self. The explanation has to do with the problem of dismissing the modal view.
I’ll discuss that problem now.

456 | Chapter 19: View Controllers

Modal View Dismissal
The reason why dismissing the modal view is a problem is mainly that the user action
that triggers the dismissal of the view will almost certainly be handled by the modal
view controller, or some view controller that it contains, whereas it is the parent view
controller that must be sent dismissModalViewControllerAnimated:, which will dismiss
the view and release the modal view controller. It is therefore typically necessary to
communicate somehow between the modal view controller and the parent view con-
troller.

If the situation is extraordinarily simple, the modal view controller can just send itself
dismissModalViewControllerAnimated:. This message will be automatically passed up
the chain to the parent that is presenting the modal view controller.

However, for all kinds of reasons, the situation might not be so simple. The parent we
need to contact might be at some distance up the chain of parents — there might be a
cascade of modal views, or the view controller handling the user action might be con-
tained by a navigation controller that is itself presented modally. Even more important,
the parent might have additional work to do before the modal view is actually dis-
missed; for example, it might need to retrieve some data from the modal view controller.

In my own apps, I have used two sorts of solution to this problem:

A notification
The parent, as it creates the modal view controller, registers for a notification that
the modal view controller will emit. When it actually receives that notification, it
unregisters for that notification, retrieves any needed data (possibly from the no-
tification’s userInfo dictionary), and dismisses the modal view. This solution has
the advantage that it is easy to set up, but it has a certain slippery quality.

Delegation
This is the Apple-recommended solution. The modal view controller is given a
delegate property, and defines a protocol to which its delegate must adhere, con-
sisting of a method that it will send to its delegate when it wants to be dismissed,
possibly passing along any data as part of this method call. The parent adopts this
protocol and sets itself as the modal view controller’s delegate when it creates it.
This is considerably more work to set up, but the path of communication is crystal
clear.

Here’s an example from one of my apps that uses a notification. I show here only the
parent view controller’s code, but it’s obvious what’s going on; the modal view con-
troller, an IndexViewController, is to post a @"goPic" notification when it wants to be
dismissed, attaching to it a userInfo dictionary with a @"pic" key whose value is a string
telling us which picture to go to:

- (void) showIndex: (id) sender {
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(goPic:) name:@"goPic" object:nil];

Modal Views | 457

 IndexViewController* ivc =
 [[IndexViewController alloc] initWithIndex: self.ix];
 [self presentModalViewController:ivc animated:YES];
 [ivc release];
}

- (void) goPic: (NSNotification*) n {
 NSString* pic = [[n userInfo] objectForKey: @"pic"];
 [[NSNotificationCenter defaultCenter] removeObserver:self
 name:@"goPic" object:nil];
 [self dismissModalViewControllerAnimated:NO];
 // ... do other stuff with pic here ...
}

You could argue, however, that this use of a notification was just lazy, and that I should
have used delegation instead. I gave an example of the delegation solution, also from
one of my apps, in Chapter 11. The ColorPickerController class’s header file looks like
this:

@protocol ColorPickerDelegate;
@interface ColorPickerController : UIViewController {
}
@property (nonatomic, assign) id <ColorPickerDelegate> delegate;
@end

@protocol ColorPickerDelegate
// color == nil on cancel
- (void) colorPicker:(ColorPickerController *)picker
 didSetColorNamed:(NSString *)theName
 toColor:(UIColor*)theColor;
@end

When the user taps the Done button, this ColorPickerController method is triggered:

- (void) dismissColorPicker: (id) sender { // user has tapped our Done button
 [self.delegate colorPicker:self
 didSetColorNamed:self.colorName
 toColor:self.color];
}

An instance of a different view controller class, SettingsController, which adopts the
ColorPickerDelegate protocol, creates the ColorPickerController instance and sets it-
self as its delegate:

ColorPickerController* cpc = [[ColorPickerController alloc]
 initWithColorName:colorName andColor:c];
[cpc setDelegate: self];
// ...

SettingsController has promised to implement colorPicker:didSetColorNamed:to-
Color:, and it does so:

- (void) colorPicker:(ColorPickerController *)picker
 didSetColorNamed:(NSString *)theName
 toColor:(UIColor*)theColor {
 // ... do stuff with theName and theColor here ...

458 | Chapter 19: View Controllers

 [self dismissModalViewControllerAnimated:YES];
}

What I have not shown you, in that example, is that the ColorPickerController is not
the modal view controller. It is, rather, contained by the modal view controller, which
is a UINavigationController and is set up and presented modally by the same code that
creates the ColorPickerController. So, in this example, the parent is at a distance up
the chain from the view controller that handles the user action that is to trigger dis-
missal, and there is data to be communicated to it; the use of the delegate architecture
solves both problems.

Still, the delegate architecture isn’t always appropriate or even possible. Perhaps there
is a deep chain of modal views, and perhaps different user actions should cause dis-
missal at different levels up the chain; thus, the deepest view could not have a single
delegate. Perhaps there is no point at which the parent who must perform the dismissal
is ever in direct contact with the view controller that handles the user action; in the
previous example, they were in contact because the one created the other, but that
might not be the case. Then, I think, a notification is a perfectly reasonable solution.

Modal Views and Rotation
No law requires that every part of your interface should appear in the same rotation.
On the iPhone especially, where the user can easily rotate the device while working
with an app, it is reasonable and common for one part of the interface to appear in
portrait orientation and another part of the interface to appear in landscape orientation.
One easy way to achieve this is to implement shouldAutorotateToInterface-
Orientation: differently for a modal view controller.

For example, one of my iPhone apps is a flashcard app; the flashcards are viewed only
in landscape orientation. But there is also an option to display a list (a UITableView)
of all flashcards. This list is far better viewed in portrait orientation, so as to accom-
modate the greatest possible number of items on the screen at once; therefore, it is
permitted to assume portrait orientation only. The user must rotate the device with the
hand holding the iPhone, but this is not objectionable; in fact, it quickly becomes au-
tomatic and subconscious.

This is achieved by implementing shouldAutorotateToInterfaceOrientation: this way
in one view controller:

// [view controller A]
- (BOOL) shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)io {
 return (io == UIDeviceOrientationLandscapeRight);
}

Meanwhile, it is implemented this way in another view controller:

// [view controller B]
- (BOOL) shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)io {

Modal Views | 459

 return (io == UIDeviceOrientationPortrait);
}

Then when view controller A’s view appears, it will appear in landscape orientation.
View controller A, on demand, presents view controller B’s view modally; when view
controller B’s view appears, it will appear in portrait orientation.

In that example, we pay no attention to the orientation of the device; instead, we force
the user to rotate the device appropriately. But the same technique can be used con-
versely as a way of rotating the interface in response to rotation of the device. This can
be a way of performing a complex layout on rotation. Instead of rearranging the inter-
face in response to the rotation of our view in a view controller by implementing did-
RotateFromInterfaceOrientation: (“Rotation Events” on page 452), we forbid the ro-
tation of our view (in shouldAutorotateToInterfaceOrientation:), detect the rotation
of the device instead, and replace our view with a modal view suited to the new orien-
tation.

In this example, I assume that the root view controller (where this code is) has its should-
AutorotateToInterfaceOrientation: set to return UIInterfaceOrientationIs-
Portrait(io), while the alternate LandscapeViewController is set to return UIInterface-
OrientationIsLandscape(io).

- (void)viewDidLoad {
 [super viewDidLoad];
 [[UIDevice currentDevice] beginGeneratingDeviceOrientationNotifications];
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(screenRotated:)
 name:UIDeviceOrientationDidChangeNotification
 object:nil];
}

- (void) screenRotated: (id) notif {
 NSUInteger rot = [[UIDevice currentDevice] orientation];
 if (UIDeviceOrientationIsLandscape(rot) && !self.modalViewController) {
 [[UIApplication sharedApplication]
 setStatusBarOrientation:rot animated:YES];
 LandscapeViewController *c =
 [[LandscapeViewController alloc]
 initWithNibName:@"LandscapeView" bundle:nil];
 c.modalTransitionStyle = UIModalTransitionStyleCrossDissolve;
 [self presentModalViewController:c animated:YES];
 [c release];
 } else if (UIDeviceOrientationIsPortrait(rot) && self.modalViewController) {
 [[UIApplication sharedApplication]
 setStatusBarOrientation:rot animated:YES];
 [self dismissModalViewControllerAnimated:YES];
 }
}

The judicious use of setStatusBarOrientation:animated: nets us the nice status bar
animation exactly on those occasions when the system does not hand it to us, so that

460 | Chapter 19: View Controllers

we get it no matter how the user rotates the device. The result is basically indistin-
guishable from “normal” interface rotation.

Tab Bar Controllers
A tab bar (a UITabBar, see also Chapter 25) is a horizontal bar displaying items. Each
item (a UITabBarItem) consists of an image and a name. At all times, exactly one of
these items is selected. When the user taps an item, it becomes the selected item. If
there are too many items to fit on the tab bar, the excess items are automatically sub-
sumed into a final More item. When the user taps the More item, a modal list of the
excess items appears, and the user can select one; the user can also be permitted to edit
the tab bar, determining which items appear in the tab bar itself and which ones spill
over into the More list. All of that functionality, if you want it, is more or less automatic.

A tab bar is an independent interface object, but it is most commonly used in conjunc-
tion with a view controller (UITabBarController, a subclass of UIViewController). The
idea is that the tab bar items should correspond to views; when the user selects a tab
bar item, the corresponding view appears. Thus a UITabBarController is an explicit
way of letting the user switch between views, using a tab bar, which remains visible
and can reveal (through highlighting) which view is currently showing.

A tab bar interface has the advantage that it makes the user’s choices explicit. It has the
disadvantage that some screen real estate is occupied by the tab bar, reducing the
amount of space available for the views that it summons by about 60 pixels at the
bottom, and the tab bar cannot readily be hidden. (Actually, you can hide the tab bar
by setting its visible to YES, but Apple evidently does not condone this, and you would
have to do some additional hacky stuff in order to make the view occupy the whole
screen, so I’m not going to discuss this approach.) On the other hand, a tab bar con-
troller can present a modal view that occupies the whole screen, or can itself be pre-
sented as a modal view controller, so parts of the interface can lack the tab bar if you
want.

Obvious examples of a tab bar interface on the iPhone are Apple’s own Clock app,
which has four tab bar items, and Apple’s iPod app (Music, on the iPod touch), which
has four tab bar items plus a More item that reveals a list of six more.

When using a tab bar interface by way of a UITabBarController, you do not talk directly
to the tab bar itself; you don’t have to create it or configure it. You talk only to the
UITabBarController, and it does the rest; when the UITabBarController’s view is dis-
played, there’s the tab bar along with the view of the selected item.

Apple also warns that you should not subclass UITabBarController. The only reason
why you might be tempted to do so, indeed, is to implement rotation, so that a tab-
based interface can appear in landscape mode. Resist that temptation. Instead, con-
centrate on the rotation of all the view controllers contained by the UITabBarControl-
ler. If the device is rotated to a certain orientation, and all the contained view controllers

Tab Bar Controllers | 461

permit rotation to that orientation, the tab bar interface itself will rotate; similarly, if
all the contained view controllers agree in permitting rotation to a certain orientation,
they can force the tab bar interface to assume that orientation.

Tab Bar Item Images
A tab bar item is a UITabBarItem; this is a subclass of UIBarItem, an abstract class that
provides some of its most important properties, such as title, image, and enabled. For
each view you want contained and displayed by a tab bar controller, you’re going to
need a tab bar item, which will appear in the tab bar. This is likely to be the hardest
part of getting started with a tab bar controller! Tab bar controllers are simple and easy
to configure, but a tab bar item can be a pain to prepare. If you can borrow a tab bar
item from the system, it’s no work at all, but if you create your own, you’re going to
need an image with the following highly specific properties:

• The image should be a 30×30 PNG, though it can be larger, in which case it will
be scaled down automatically as needed.

• The image should be a transparency mask. That is, it should consist of transparent
pixels and opaque pixels (possibly including semiopaque pixels). Color is of no
consequence and will be ignored; all that matters is the degree of transparency of
each pixel. The system will color the image itself, adding a shine effect.

The problem is that a perfectly nice image, if used as is, often becomes a meaningless,
ugly tab bar item (Figure 19-4).

The trouble with the image in Figure 19-4 is that it’s just a solid block of opaque pixels,
so its details, which are based on its colors, don’t appear in the resulting tab bar item.
One solution is to use an image editor to derive a transparency mask based on a gray-
scale version of the original; this gives a much nicer result (Figure 19-5).

There are two ways to make a tab bar item:

Figure 19-4. A nice image makes an ugly tab bar item

Figure 19-5. A tab bar item based on a transparency mask

462 | Chapter 19: View Controllers

From an image that you supply
Initialize it using initWithTitle:image:tag:.

By borrowing it from the system
Initialize it using initWithTabBarSystemItem:tag:. Consult the documentation for
the list of available system items. The trouble with this approach is that you have
to borrow the entire tab bar item, including its title, which is read-only (setting it
is not an error, but it has no effect). The solution should be to form a temporary
tab bar item and steal its image to form your actual tab bar item, but you can’t do
that. The inability to reuse system images easily is quite annoying.

Configuring a Tab Bar Controller
A view controller (meaning any UIViewController) has a tabBarItem property, which
is meaningful only if that view controller is contained by a tab bar controller. Set this
property to an instance of UITabBarItem (obtained as described in the preceding sec-
tion); alternatively, set the tabBarItem.image property to an appropriate image, and set
the view controller’s title property to the associated text. Do this for all the view
controllers you want to be contained by the UITabBarController. Now package those
view controllers into an array and set the UITabBarController’s viewControllers prop-
erty to that array. The result is that the tab bar items for those view controllers, as
ordered in the array, appear in the tab bar.

You should also tell the UITabBarController which tab bar item should be initially
selected. You can do this by reference to a contained view controller (by setting the
selectedViewController property) or by index number (by setting the selectedIndex
property). If you like, you can also set the UITabBarController’s delegate; the delegate
gets messages allowing it to prevent a given tab bar item from being selected, and
notifying it when a tab bar item is selected and when the user is customizing the tab
bar from the More item.

If the tab bar contains few enough items that it doesn’t need a More item, there won’t
be one and the tab bar won’t be user-customizable. If there is a More item, you can
exclude some tab bar items from being customizable by setting the customizableView-
Controllers property to an array that lacks them; setting this property to nil means that
the user can see the More list but can’t rearrange the items at all. Setting the view-
Controllers property sets the customizableViewControllers property to the same value,
so if you’re going to set the customizableViewControllers property, do it after setting
the viewControllers property. (If you do allow the user to rearrange items, you would
presumably want to respond in the delegate to this rearrangement by saving the new
arrangement in the NSUserDefaults and using it the next time the app runs.) The more-
NavigationController property can be compared with the selectedViewController
property to learn whether the user is currently viewing the More list; apart from this,
the More interface is mostly out of your control, but I’ll discuss some ways of custom-
izing it in Chapter 25.

Tab Bar Controllers | 463

Here’s a simple example excerpted from the app delegate’s applicationDidFinish-
Launching: of one of my apps, in which I construct a tab bar interface and display it:

self.tbc = [[[UITabBarController alloc] init] autorelease];
// create tabs
UIViewController* b = [[[GameBoardController alloc] init];
UINavigationController* n = // never mind what "s" is
 [[[UINavigationController alloc] initWithRootViewController:s];
// load up tab view with tabs
[tbc setViewControllers:[NSArray arrayWithObjects: b, n, nil] animated:NO];
[b release]; [n release];
// configure window and show it
[self.window addSubview: tbc.view];
[self.window makeKeyAndVisible];

You’ll notice that I don’t configure the contained view controllers’ tab bar items. That’s
because those view controllers configure themselves. For example:

// [GameBoardController.m]

- (id) init {
 self = [super init];
 if (self) {
 // we will be embedded in a tab view, configure
 self.tabBarItem.image = [UIImage imageNamed:@"game.png"];
 self.title = @"Game";
 }
 return self;
}

You can also configure a UITabBarController in a nib. The nib editor is quite clever
about this. The UITabBarController’s contained view controllers can be set right in the
nib. Moreover, each contained view controller contains a Tab Bar Item; you can select
this and set its title and image right in the nib. The UITabBarController itself has a
delegate outlet. Thus, it is possible to make a fully configured tab bar controller appear
at the root of your interface with essentially no code at all. The Tab Bar Application
template for new projects illustrates some of these features, but not all of them: the tab
bar items have no images in the template, for example.

A view controller contained by a UITabBarController can access the UITabBarCon-
troller as its tabBarController property. This works at any depth: that is, the view
controller need not be directly contained by the UITabBarController. It might, for ex-
ample, be contained by a UINavigationController that is itself contained by the UI-
TabBarController. However, it doesn’t work if the view controller is its parent’s modal-
ViewController.

Navigation Controllers
A navigation controller (UINavigationController, a subclass of UIViewController) is
the most elaborate and powerful of the built-in view controller classes. It is a brilliant

464 | Chapter 19: View Controllers

solution to the problem of presenting multiple interfaces and options on the tiny iPhone
screen. But you might use it also just because its basic interface is useful and familiar
to users.

A navigation controller’s interface has three parts:

The central view
A navigation controller is a container for other view controllers, and is responsible
for displaying the view of one of these at all times. The “navigation” part has to do
with how it decides which view controller’s view to display. The navigation con-
troller contains its view controllers in a stack. When a view controller is pushed
onto the stack, it becomes the top view controller, and its view becomes the central
view (with, by default, an animation from the right). When a view controller is
popped from the stack, the view controller underneath it becomes the top view
controller, and its view becomes the central view (with, by default, an animation
from the left). This behavior is coordinated with the behavior of the navigation bar,
as we shall now see.

The navigation bar
A navigation bar (a UINavigationBar) is a rectangular view displaying a left item,
a center item, and a right item. It can be used independently, but it is most often
used as part of a navigation controller interface, in which case it appears at the top
(and can optionally be hidden). The center item is typically a title, giving the user
a cue as to what the rest of the interface is about; a navigation bar might well be
used solely in order to display this title. But it also has mighty powers connected
with the notion of navigating.

A navigation bar implements an internal stack of navigation items
(UINavigationItem). It starts out with one navigation item (the root or bottom
item); you can then push another navigation item onto the stack, and from there
you can either pop that navigation item to remove it from the stack or push yet
another item onto the stack. At any moment, therefore, some navigation item is
the top item on the stack, the most recently pushed item still present on the stack
(the topItem). Furthermore, unless the top item is also the root item (because it is
the only item in the stack), some navigation item is the back item (the backItem),
the item that would be top item if we were now to pop the top item.

The state of the stack is reflected in the navigation bar’s interface. In particular, the
navigation bar’s center comes automatically from the top item, and its left side
comes from the back item. (See Chapter 25 for a complete description.) Thus,
typically, the center tells the user what item is current, and the left side is a button
telling the user what item we would return to if the user were to tap that button.
Moreover, animations add a subliminal reinforcement to this notion of direction-
ality. When a navigation item is pushed onto the stack, the navigation bar animates
from the right; when items are popped from the stack, the navigation bar animates
from the left. This gives the user a sense of position within a chain.

Navigation Controllers | 465

By itself, a navigation bar doesn’t manipulate any part of the interface except itself.
It is up to the navigation bar’s delegate (adopting the UINavigationBarDelegate
protocol) to listen for changes in the stack. In a navigation controller interface, the
navigation controller is the navigation bar’s delegate. It coordinates the ensemble:
the navigation controller’s stack is coordinated with the navigation bar’s stack, and
the animation of the central view is coordinated with the navigation bar’s anima-
tion.

The toolbar
A toolbar (a UIToolbar) is a rectangular view displaying a row of items, any of
which the user can tap. The tapped item highlights momentarily but is not selected;
it represents the initiation of an action, not a state or a mode, and should be thought
of as (and may in fact look like) a button. A UIToolbar can be used independently
(and often is, typically appearing at the bottom on an iPhone but possibly at the
top on an iPad), but it can also be part of a navigation controller interface, in which
case it appears at the bottom (and can optionally be hidden — indeed, the toolbar
itself should be thought of as optional in a navigation controller interface).

The great flexibility of a navigation controller lies in the following facts:

• A view controller is not pushed onto the stack until it is needed for display. Thus,
you get to decide in real time what the “next” view should be. This makes a navi-
gation controller perfect for a master–detail interface, in which the user sees a list
of possibilities and taps one to navigate to the detailed view of that thing.

• The toolbar is optional, and both it and the navigation bar can be hidden. More-
over, both the navigation bar and the toolbar offer a choice of appearances. Thus,
not all navigation interfaces look the same.

• The toolbar’s contents and the navigation bar’s contents respond automatically to
the advent of a different view, and can also be changed in code.

• A navigation interface can be used in many ways: as the root view of your app, as
a modal view, or as a view contained by a tab bar controller.

A familiar example of a navigation interface is Apple’s Mail app (Figure 19-6), a master–
detail interface with the navigation bar at the top (with a back button pointing to the
list of mailboxes in the figure) and the toolbar displaying additional options and in-
formation at the bottom.

Bar Button Items
All of the items in a UIToolbar, and the right and left items in a UINavigationBar, are
instances of UIBarButtonItem (which, like UITabBarItem, is a subclass of UIBarItem).
It is therefore essential to know how to obtain such an instance.

466 | Chapter 19: View Controllers

A UIBarButtonItem is not a UIButton! It has some button-like qualities,
but it does not inherit from UIButton, from UIControl, or even from
UIView. However, a UIBarButtonItem can be represented by a custom-
View which is a UIView. Thus, it can be used to put any sort of view into
a toolbar or navigation bar (and implementing any button behavior
would then be the responsibility of that view).

A UIBarButtonItem inherits from UIBarItem a title property and an image property
(and an enabled property). The image has the nature of a tab bar item image, as described
earlier in this chapter: it needs to be a transparency mask. It should also be quite small
(20×20 pixels is a good size); there isn’t much height room, especially in a toolbar,
especially if the bar button item has the bordered style. Typically, a UIBarButtonItem
is assigned a title or an image but not both (though it is possible to assign both, in
which case the title appears below the image).

To its inherited properties, a UIBarButtonItem adds target and action properties so
that tapping it as a button can trigger a method elsewhere (Chapter 11). There is also
a style property; the choices are:

UIBarButtonItemStylePlain
The bare title or image (or both) is displayed.

UIBarButtonItemStyleBordered
Looks like a button, with a round rectangular border around the image (or around
the title if there is no image).

UIBarButtonItemStyleDone
Bordered, and with a blue fill. As the name implies, this is suitable for a Done
button in a modal or temporary view.

As with a UITabBarItem, the item can be created from your own title or image, in which
case you must also supply a style, or the item can be borrowed from the system, in
which case the style is built in. Alternatively, as I’ve already said, you can supply an
entire UIView as the bar button item’s customView, but in that case not only is there no

Figure 19-6. A familiar navigation interface

Navigation Controllers | 467

style, but the UITabBarItem has no action and target; the UIView itself must somehow
implement button behavior if that’s what you want. For example, the customView might
be a UISegmentedButton, but then it is the UISegmentedButton’s target and action that
give it button behavior.

Thus there are four initializers:

• initWithTitle:style:target:action:

• initWithImage:style:target:action:

• initWithBarButtonSystemItem:target:action:

• initWithCustomView:

The available system items for a UIBarButtonItem are not the same as for a UITabBar-
Item. Check the documentation to see whether any of them meets your needs.

Bar button items in a toolbar are positioned automatically by the system. You can
provide hints to help with this positioning. If you know that you’ll be changing an
item’s title dynamically, you’ll probably want the width to accommodate the longest
possible title right from the start; to arrange that, set the possibleTitles to a set that
includes the longest title. Alternatively, you can supply an absolute width. Also, you
can incorporate spacer system items into the toolbar; these have no visible appearance,
and cannot be tapped, but serve only to help distribute the other items. The UIBarButton-
SystemItemFlexibleSpace system item is the one most frequently used; place these be-
tween the visible items to space the visible items equally across the width of the toolbar.
There is also a UIBarButtonSystemItemFixedSpace whose width lets you insert a space of
defined size.

Configuring a Navigation Interface
Just as a navigation bar works through a stack of navigation items, a navigation con-
troller works through a stack of view controllers. These are its contained view control-
lers, each of which embodies both a navigation item, for the navigation bar’s stack, and
a view, to be displayed in the center region whenever this view controller’s navigation
item is the navigation bar’s top item. A contained view controller can also provide the
toolbar items for the navigation controller’s toolbar, if there is one; thus the toolbar
items will change depending on what view is being displayed.

The navigation controller contains and retains its view controllers only at the time when
they are actually on the stack; whether and how you maintain them the rest of the time
is up to you, but the usual approach is to create each view controller on the fly as it is
needed to push onto the stack, and to allow it to be released and forgotten when it is
popped from the stack. The navigation controller is created with a root view control-
ler, representing the initial view and the navigation bar’s bottom item; this cannot be
popped, but it can be replaced, as we shall see.

468 | Chapter 19: View Controllers

The most important part of configuring a navigation interface is thus configuring the
contained view controllers. We already know how to give a view controller a view; the
question now is how to configure a view controller so that it can supply a navigation
item and toolbar items.

View controller’s navigation item

A view controller’s navigation item is configured primarily through its navigation-
Item property. This property is a UINavigationItem; it is itself read-only, but its prop-
erties are not (see also Chapter 25):

title or titleView
Determines what is to appear in the center of the navigation bar. The title is a
string, and you will usually not set it; you’ll set the view controller’s title instead
(and navigationItem.title will be set for you). The titleView can be any kind of
UIView, and if set, it will be used instead of the title. However, you should always
give a view controller a title, because it will be needed for the back button when
a view controller is pushed onto the stack on top of this one.

Figure 19-1 shows the TidBITS News master view, with the navigation bar dis-
playing a titleView which is an image. In the TidBITS News detail view controller,
the titleView is a segmented control providing a Previous and Next button, and
the back button displays the master view controller’s title (Figure 19-7).

prompt
An optional string to appear centered above everything else in the navigation bar.
The navigation bar’s height will be increased to accommodate it.

rightBarButtonItem
A UIBarButtonItem to appear at the right side of the navigation bar. This generally
has nothing to do with navigation; rather, space being at a premium in an iPhone
interface, it is a way of slotting a button into the interface. For example, in Apple’s
Mail app, the Edit button appears here in a message list, and a segmented control
consisting of a Next and Previous button appears here when viewing a single mes-
sage.

backBarButtonItem
By default, when a view controller is pushed on top of this view controller, the
pushed view controller’s navigation bar will display at its left a button pointing to

Figure 19-7. A segmented control in the center of a navigation bar

Navigation Controllers | 469

the left, whose title is this view controller’s title. The vast majority of the time,
this default behavior is the behavior you’ll want. However, you can customize that
button’s title by setting the navigationItem.backBarButtonItem of this view con-
troller (the one that will provide the back item, not the one that will provide the
top item). The best technique is to provide a new UIBarButtonItem whose target
and action are nil (and whose style doesn’t matter); the runtime will use this, when
a view controller is pushed on top of this one, to form a working back button. So,
for example:

UIBarButtonItem* b = [[UIBarButtonItem alloc]
 initWithTitle:@"Go Back" style:0 target:nil action:nil];
self.navigationItem.backBarButtonItem = b;
[b release];

leftBarButtonItem
A UIBarButtonItem to appear at the left side of the navigation bar. If present, it
will be used instead of the normal back button, disabling the normal means of going
back, so you typically will provide a value only for the root view, because no back
button is needed when the root view is displayed.

The question arises of where in your code you should initially configure a view con-
troller’s navigation item. Apple warns (in the UIViewController class reference, under
navigationItem) that configuring a view controller’s navigation item in conjunction
with the creation of its view is not a good idea, because the circumstances under which
the view is needed are not identical to the circumstances under which the navigation
item is needed. However, Apple’s own examples appear to violate this warning; they
often configure a view controller’s navigation item in its viewDidLoad implementation
(and their own templates invite the same thing). I take it, then, that this is a reasonable
place to configure the navigation item, despite the warning. Places where I have con-
figured the navigation item in my own apps include:

The view controller’s viewDidLoad (or loadView)
This choice has never proved problematic, despite Apple’s warning.

The view controller’s awakeFromNib
Obviously, this choice is possible only in cases where the view controller instance
comes from a nib.

The view controller’s designated initializer
This is probably the best choice, if the view controller is to initialize its own navi-
gation item.

When creating the view controller in code
If you’re creating the view controller in code, it may make sense to configure it in
the same code. It’s really an architectural question: should the view controller
configure itself, or be configured by whoever creates it?

470 | Chapter 19: View Controllers

The actual code for configuring a navigation item is extremely straightforward and easy.
Here’s an example, from one of my apps, of configuring the navigation item in awake-
FromNib:

- (void) awakeFromNib {
 [super awakeFromNib];
 self.title = @"Albums";
 UIBarButtonItem* b = [[UIBarButtonItem alloc] initWithTitle:@"Now"
 style:UIBarButtonItemStylePlain
 target:self action:@selector(showNow)];
 self.navigationItem.rightBarButtonItem = b;
 [b release];
 // ...
}

Example 19-1 is an example of configuring the navigation item in viewDidLoad; it’s the
code that generates the navigation bar shown in Figure 19-1.

Example 19-1. Configuring a view controller’s navigation item

- (void)viewDidLoad {
 [super viewDidLoad];
 // image to display in navigation bar
 UIImageView* imv = [[UIImageView alloc] initWithImage:
 [UIImage imageNamed:@"tb_iphone_banner.png"]];
 self.navigationItem.titleView = imv;
 [imv release];
 // reload button for navigation bar
 UIBarButtonItem* b = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemRefresh
 target:self action:@selector(doRefresh:)];
 self.navigationItem.rightBarButtonItem = b;
 [b release];
}

A view controller’s navigation item can have its properties set at any time while being
displayed in the navigation bar. This, and not direct manipulation of the navigation
bar, is the best way to change the navigation bar’s contents dynamically. For example,
in one of my apps, the visible right bar button should either be the system Play button,
the system Pause button, or nothing, depending on whether music from the library is
playing, paused, or stopped (Figure 19-8). So I have a timer that periodically checks
the state of the music player:

int whichButton = -1;
if ([mp playbackState] == MPMusicPlaybackStatePlaying)
 whichButton = UIBarButtonSystemItemPause;
else if ([mp playbackState] == MPMusicPlaybackStatePaused)
 whichButton = UIBarButtonSystemItemPlay;
if (whichButton == -1)
 self.navigationItem.rightBarButtonItem = nil;
else {
 UIBarButtonItem* bb = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:whichButton
 target:self

Navigation Controllers | 471

 action:@selector(doPlayPause:)];
 self.navigationItem.rightBarButtonItem = bb;
 [bb release];
}

In that same app, and in the same navigation item, the titleView is a progress view
(UIProgressView). I treat this like any other progress view, constantly updating it (set-
ting its progress value) and even making it visible or invisible (setting its hidden value)
without regard for the fact that it’s being displayed in a navigation bar (Figure 19-8).

View controller’s toolbar items

Each view controller to be pushed onto the navigation controller’s stack is responsible
for supplying the items to appear in the navigation interface’s toolbar, if there is one.
This is done by setting the view controller’s toolbarItems property to an array of UI-
BarButtonItem instances. You can change the toolbar items even while the view con-
troller’s view and current toolbarItems are showing, optionally with animation, by
sending setToolbarItems:animated: to the view controller.

A view controller also has the power to specify that the navigation interface’s toolbar
should be hidden whenever it (the view controller) is on the stack. To do so, set the
view controller’s hidesBottomBarWhenPushed to YES. The trick is that you must do this
early enough, namely before the view loads. (The view controller’s viewDidLoad is too
late; its designated initializer is a good place.) The bottom bar remains hidden from the
time this view controller is pushed to the time it is popped, even if other view controllers
are pushed and popped on top of it in the meantime, so this is not a very flexible way
to show and hide the toolbar. For more flexibility, implement a lifetime event handler
(discussed later in this chapter) and call setToolbarHidden:animated:.

Configuring the navigation view controller

As I’ve already mentioned, the most important thing you must do as you create a nav-
igation view controller is supply the root view controller. To help with this, there’s an
initializer initWithRootViewController:. This pushes the supplied view controller onto
the empty stack and retains it. The root view controller can never be popped, and will
thus normally be released only if the navigation view controller itself goes out of exis-
tence; however, you can replace the entire stack with setViewControllers:animated:
(see below), thus releasing and replacing the root view controller.

Figure 19-8. A highly dynamic navigation bar

472 | Chapter 19: View Controllers

Subsequent view controllers are pushed onto the stack with the following UINaviga-
tionController method:

pushViewController:animated:
Pushes the given view controller onto the stack (and retains it), thus displaying its
view and so forth. The given view controller becomes the top view.

To pop a view controller, the most frequent approach is to do nothing. There will be
a back button; the user will tap it, and the top view will be popped from the stack
automatically. However, you can also pop view controllers from the stack in code, with
these methods:

popViewControllerAnimated:
Pops the top view controller, autoreleases it, and returns it in case you need it for
something. The back view becomes the top view.

popToRootViewControllerAnimated:
Pops all view controllers except the root view controller, which remains on the
stack and becomes the top view. The popped view controllers are placed in an
NSArray that is returned in case you need any of them for something.

popToViewController:animated:
Pops all view controllers starting with the top of the stack until the given view
controller comes to the top. The popped view controllers are placed in an NSArray
that is returned in case you need any of them for something.

setViewControllers:animated:
Releases all view controllers and replaces the entire stack with the given array of
view controllers. Some or all of the view controllers in the array can be view con-
trollers that were already on the stack; thus this is a good way to rearrange the stack
or to insert a view controller inside the stack.

Those are all methods to be sent to the navigation controller, but in the natural course
of things it will probably be one of the contained view controllers that wants to send
one of them. Thus, a contained view controller needs a reference to the navigation view
controller that contains it. That reference is its navigationController property.

The navigation view controller itself has a viewControllers property that gives access
to the stack as an NSArray. Thus, the root item is the array’s objectAtIndex:0; if this
array’s count is c, the back item is the array’s objectAtIndex:c-2; and the top item is
its lastObject, though you can also retrieve the top item with the topViewController
property. There is also a visibleViewController property; this can differ from the top-
ViewController because the topViewController might itself contain a view controller
and display its view (as a modal view, for example).

The navigation bar can be hidden and shown with setNavigationBarHidden:
animated:, and the toolbar can be hidden and shown with setToolbarHidden:

Navigation Controllers | 473

animated:. In addition, both the navigation bar and the toolbar can be customized
through these properties of the UINavigationController:

navigationBar.tintColor, toolbar.tintColor
A color. Strong colors will cause you to lose the bar’s gradient appearance, but
muted colors will permit it to appear. As far as I can tell, the alpha value of your
chosen color is irrelevant.

navigationBar.barStyle, toolbar.barStyle
Choices are UIBarStyleDefault and UIBarStyleBlack. Ignored if the tintColor is
set; if it is, the style is UIBarStyleDefault.

navigationBar.translucent, toolbar.translucent
If YES, causes the view to underlap the bar. The part of the view under the bar is
visible, but only very faintly.

The animations associated with the methods listed in this section are
very helpful to the user, as giving a sense of what’s happening and how
various views relate to one another. But when you use one of these
methods on a view that is not showing, be sure to request the option
without animation, because in such a case the animation serves no pur-
pose and can be a drag on performance.

In a nib, a navigation view controller has a top bar and a bottom bar (in the Attributes
inspector), and you can configure how they look and whether they are initially visible.
Thus, you can give it a navigation bar and a toolbar or tab bar. The root view controller
can be specified. Moreover, the root view controller (or any view controller in a nib)
has a Navigation Item where you can specify its title, its prompt, and the text of its back
button. You can drag Bar Button Items into the navigation bar to set the left button
and right button of the root view controller’s Navigation Item. Moreover, the Naviga-
tion Item has outlets, one of which permits you to set its titleView. Plus, you can give
the root view controller Bar Button Items that will appear in the toolbar. Thus the
configuration of a navigation view controller, its root view controller, and any other
view controllers that will be pushed onto its stack can be performed more or less com-
pletely in a nib.

Navigation Interface Rotation
Apple warns that you should not subclass UINavigationController. The only reason
why you might be tempted to do so, indeed, is to implement rotation, so that a navi-
gation interface can appear in landscape mode. Resist that temptation. Instead, con-
centrate on the rotation of all the view controllers contained by the UINavigationCon-
troller. I said all this earlier with regard to UITabBarController; but the rules for UI-
NavigationController rotation are a bit more complicated, because a UINavigation-
Controller can’t know what orientations a future view controller will permit — it only

474 | Chapter 19: View Controllers

knows a view controller’s permissible orientations when that view controller has been
pushed onto the stack. So, the rules are as follows:

• Initially, the navigation interface adopts the orientation rule of its root view con-
troller.

• When a view controller is pushed onto the stack, the navigation interface does not
rotate, even if the new view controller does not permit the current orientation.
However, if the device is later rotated to an orientation that the new view controller
permits and that all other view controllers on the stack permit, the navigation
interface will rotate to it.

• When a view controller is popped from the stack, if the back view controller (which
is now the top view controller) permits the orientation that the navigation interface
was in previously, the navigation interface stays in that orientation even if the device
has been rotated. Otherwise, the navigation interface rotates to a permitted orien-
tation.

Thus you can’t use differing orientation rules for different contained view controllers
in an attempt to get the navigation interface to rotate as a new view controller is pushed
onto the stack. If you are in a navigation interface and you want to present a new view
that absolutely must appear in a certain orientation, use a modal view. As we’ve already
seen, when you show a view modally (using presentModalViewController:) and it can
appear in only one orientation, the app rotates to that orientation.

But perhaps you’re not satisfied with that solution; perhaps you want to give the user
the illusion that we are still in the navigation interface. Then simply have the modal
view be a navigation interface configured to look like the main navigation interface!
Thus, when you present the modal view, and the app rotates to the permitted orien-
tation of its contained view, there’s an illusion that the navigation interface itself has
rotated (though there will not be a rotation animation).

The only drawback is that the navigation interface in the modal view has no back button
if we are looking at its root view. This breaks the illusion (and makes it hard for the
user to dismiss the modal view). The solution is a trick: push the new view twice into
the navigation interface before presenting it as a modal view. That way, what is showing
in the navigation interface is the second view on the stack, so there is a back button.
Then, in the navigation controller’s delegate, catch the back button and dismiss the
modal view when the user tries to return to the root level. So:

- (void) doButton: (id) sender {
 SecondViewController* sec = [[SecondViewController alloc] init];
 sec.title = self.title; // to give the correct back button title
 UINavigationController* nav =
 [[UINavigationController alloc] initWithRootViewController:sec];
 SecondViewController* sec2 = [[SecondViewController alloc] init];
 [nav pushViewController:sec2 animated:NO];
 [self presentModalViewController:nav animated:YES];
 nav.delegate = self; // so that we know when the user navigates back
 [sec release]; [sec2 release]; [nav release];

Navigation Controllers | 475

}

// and here's the delegate method
- (void)navigationController:(UINavigationController *)navigationController
 willShowViewController:(UIViewController *)viewController
 animated:(BOOL)animated {
 if (viewController == [navigationController.viewControllers objectAtIndex:0])
 [self dismissModalViewControllerAnimated:YES];
}

View Controller Lifetime Events
As views come and go, driven by view controllers and the actions of the user, events
arrive that give you the opportunity to respond.

First, there are delegate messages:

Tab bar controller
A tab bar controller can have a delegate (adopting the UITabBarControllerDelegate
protocol) that receives messages when the selected view changes — you can even
prevent the user from selecting a view — and when the user customizes the tab bar
through the More item.

Navigation controller
A navigation controller can have a delegate (adopting the UINavigationControl-
lerDelegate protocol) that receives messages when a contained view controller’s
view appears, either because the view controller is pushed onto the stack or because
the stack is popped so as to bring the view controller to the top.

In addition, a view controller receives four events that you can override in a subclass
(the parameter tells you whether the change is being animated):

• viewWillAppear:

• viewDidAppear:

• viewWillDisappear:

• viewDidDisappear:

If you override any of these methods, you must call super.

In these four view controller events, the notions “appear” and “disappear” mean exactly
what you think they do. View controllers are all about views that can come and go —
for example, because a modal view is shown, because a modal view is dismissed, be-
cause a tab bar controller is switched to a new view, or because a navigation controller’s
stack is pushed or popped. In each of these cases, some view is replaced on the screen

476 | Chapter 19: View Controllers

by another view; the first one disappears and the second one appears. For every one of
these transitions, you can get all four events.

My apps tend to make very heavy use of these four view controller events. In a world
where views come and go, these events are the perfect moment to tweak the interface,
to make sure that data is saved off, and so forth. For example, if a certain view in a
navigation controller needs the toolbar, whereas other views do not, the simplest ap-
proach is to show and hide the toolbar as this view appears and disappears. Here are
some of the many uses I make of these events:

• In a master–detail interface on the iPhone, the master view is the root view of a
navigation controller and contains a table; when the user taps a row of the table,
we push the corresponding detail view. I don’t want the tapped row to be still
selected when the user later returns to the master view, so I deselect it in the root
view’s viewDidDisappear:.

• In a master–detail interface on the iPhone (the same one, actually), the data dis-
played by the root view table might change while the user is working in a detail
view. So I reload the root view table’s data in its viewWillAppear:.

• A certain view that can appear in a navigation controller’s stack contains a progress
view that is constantly updated through a timer that checks on the state of the
currently playing track of the music library. This timer needs to be in existence and
running only when this view is actually visible to the user. So I create it in viewWill-
Appear: and destroy it in viewDidDisappear:.

• A certain view that can be shown by switching tab views must reflect the current
state of certain user defaults. So I refresh the view’s interface in its viewWill-
Appear:; thus, whenever it does appear, it is current.

• In a master–detail interface, the detail is a long scrollable text. Whenever the user
returns to a previously read detail view, I want to scroll it to wherever it was pre-
viously scrolled to. So I save the scroll position for this detail view into the user
defaults in its viewWillDisappear:.

In the multitasking world of iOS 4, viewWillDisappear: and viewDid-
Disappear: are not called when the app is suspended. Some of your
functionality performed in viewWillDisappear: and viewDidDisappear:
may have to be duplicated in response to an application lifetime event
(Chapter 11), such as applicationDidEnterBackground:, if you are to
cover every case.

View Controller Memory Management
Memory management works in a special way for view controllers. Memory is at a pre-
mium on a mobile device, and a view is memory-intensive (though a view controller
itself will probably not be). A view controller can persist without its view being visible
to the user — because a modal view is covering it, or because it is in a tab interface but

View Controller Memory Management | 477

is not the currently selected view, or because it is in a navigation interface but is not
the top view of the stack. In such a situation, if memory is getting short, then even
though the view controller itself persists, the runtime may nilify its view, thus releasing
the view and its subviews. The view is effectively unloaded.

If a view controller’s view is unloaded, then the next time that view is needed for display
or mentioned in code, we’ll go through the whole rigmarole of loading the view
again — creating it in code if loadView is overridden, or loading the associated nib. And
that’s the whole point of the way a view controller’s view is loaded lazily in the first
place. Memory may become tight, but a view controller’s view needn’t occupy memory
unless it is actually needed, to appear in the interface.

(This is why it’s generally better not to have the view controller and its view in the same
nib file. In that case, the view can’t be unloaded, because there would be no way to
load it again. So such a view can’t participate in this aspect of iOS app memory man-
agement.)

This comes as a surprise to beginners (and not-so-beginners), who may feel that the
possibility of the runtime coming along behind their backs and nilifying an existing
view introduces a nasty element of indeterminacy into the app’s behavior. However,
look closely at your loadView and viewDidLoad overrides. If you’ve written them sensi-
bly, doing within them only what needs to be done in connection with the view loading,
and performing proper memory management, there shouldn’t be any problem if these
methods are called multiple times. For example, if viewDidLoad sets a certain property,
what does it matter if it is called again later and sets the very same property to the very
same value?

In general, view unloading shouldn’t be a worry, provided you are obeying the dictates
of model–view–controller (Chapter 13). The view controller is controller (hence the
name). The view, on the other hand, should be just view; its temporary loss, and sub-
sequent restoration, should not pose any special challenges to your code, because you
aren’t storing anything persistent in the view. The view must be configured, perhaps
based on the model, when it comes into existence; as long as the view controller does
this, the view should look and behave correctly no matter when and how often it may
come into existence. Just don’t write your code in such a way that you are counting on
the view to come into existence just once or at a specific moment.

You will also get an event when the view is unloaded — viewDidUnload. You can override
this method to learn that the view has been unloaded. If you do, do not nilify the view
or refer to it in any way; it has already been unloaded, and you don’t want to trigger
its loading accidentally. The purpose of viewDidUnload is to allow you to release any
interface objects that are associated with this view and that will be restored when the
view loads again. Typically, if you are retaining such objects, it will be because you have
a property whose setter has a retain policy, and you will simply nilify the property here.

478 | Chapter 19: View Controllers

The documentation on viewDidUnload does not say you have to call
super. Some of Apple’s examples do call super, but this is probably a
(harmless) mistake.

For example, in the TidBITS News app, the root view controller’s navigationItem.title-
View is an image (Figure 19-1). If the view is being unloaded, there is no reason for this
image to occupy any memory, so I release it in my viewDidUnload override. At the same
time, I release the right bar button item (the Refresh button). Finally, I release the entire
UITableView, which I’ve been keeping as a retained reference in the tv instance vari-
able:

- (void)viewDidUnload {
 self.navigationItem.titleView = nil;
 self.navigationItem.rightBarButtonItem = nil;
 self.tv = nil;
}

How can I be so sanguine about disposing of these essential interface items, which must
be present whenever the view is shown? It’s because I know they’ll be restored when
the view is loaded once more. The tv property corresponds to an outlet in the view
controller’s nib; when we need the view again, the nib will load and the tv property
will be set once again. The navigation item properties are set in viewDidLoad (Exam-
ple 19-1).

In addition, you can override didReceiveMemoryWarning. If you do, you must call
super, because the default implementation is to release the view and call viewDid-
Unload, and you need that to happen. Apple’s documentation suggests that you should
divide your releases in low-memory situations into two categories: interface items,
which are released by nilifying properties in viewDidUnload, and data (model) material
that can easily be recreated on demand, which is released in didReceiveMemory-
Warning. The reason is that didReceiveMemoryWarning will be always be called in low-
memory situations, but the view will be released and viewDidUnload will be called only
if the view is not showing.

If you’re going to release data in didReceiveMemoryWarning, you must concern yourself
with how you’re going to get it back. You can’t rely on viewDidLoad for this, because
the data might be released without unloading the view, in which case viewDidLoad won’t
be called. The surest approach is to implement a getter that fetches the data if it is nil.

In this example, in didReceiveMemoryWarning we write myBigData out as a file to disk and
release it from memory. At the same time, we override the synthesized accessors for my-
BigData (using the technique shown in Example 12-5) so that if we try to get myBig-
Data and it’s nil, we then try to fetch it from disk and, if we succeed, we delete it from
disk (to prevent stale data) and set myBigData before returning it. The result is that my-
BigData is released when there’s low memory, reducing our memory overhead until we

View Controller Memory Management | 479

actually need myBigData, at which time asking for its value (through the getter or prop-
erty) restores it:

@synthesize myBigDataAlias=myBigData;

- (void) setMyBigData: (NSData*) data {
 self.myBigDataAlias = data;
}

- (NSData*) myBigData {
 NSFileManager* fm = [[NSFileManager alloc] init];
 NSString* f =
 [NSTemporaryDirectory() stringByAppendingPathComponent:@"myBigData"];
 BOOL fExists = [fm fileExistsAtPath:f];
 if (!self.myBigDataAlias) {
 if (fExists) {
 NSData* data = [NSData dataWithContentsOfFile:f];
 self.myBigDataAlias = data;
 NSError* err = nil;
 [fm removeItemAtPath:f error:&err];
 // error-checking omitted
 }
 }
 [fm release];
 return self.myBigDataAlias;
}

- (void)didReceiveMemoryWarning {
 [super didReceiveMemoryWarning];
 if (self->myBigData) {
 NSString* f =
 [NSTemporaryDirectory() stringByAppendingPathComponent:@"myBigData"];
 [myBigData writeToFile:f atomically:NO];
 self.myBigData = nil;
 }
}

Xcode gives you a way to test low-memory circumstances artificially. Run your app in
the Simulator; in the Simulator, choose Hardware → Simulate Memory Warning. I don’t
believe this has any actual effect on memory, but a memory warning is sent to your
app, so you can see the results of triggering your low-memory response code (did-
ReceiveMemoryWarning and viewDidUnload, as well as the app delegate’s applicationDid-
ReceiveMemoryWarning:). Unfortunately there doesn’t seem to be a parallel way of test-
ing low-memory situations when running on a device.

480 | Chapter 19: View Controllers

CHAPTER 20

Scroll Views

A scroll view (UIScrollView) is a view whose contents are larger than its bounds. To
reveal a desired area, the user can scroll the contents by dragging or flicking, or you can
reposition the contents in code.

Think of the scroll view as consisting of two views:

The scroll view itself
The scroll view itself acts like a window (a window in a house, not a UIWindow).
The scroll view’s bounds size is the size of that window.

The content view
The content view is the scene viewed through the window (the scroll view). The
content view is presumably larger than the scroll view, because otherwise there
would be nothing to scroll. By sliding the content view, a desired portion of it can
be positioned within the scroll view and thus made visible.

Although it is useful to think of the scroll view in this way, the truth is far simpler. The
scroll view isn’t really specially window-like; it’s just a view (whose clipsToBounds is
usually YES). And the content view isn’t really a view; it’s just a set of parameters for
positioning the scroll view’s subviews. When the scroll view scrolls, what’s really
changing is its bounds origin; the subviews are positioned with respect to the bounds
origin, so they move with it. (See Chapter 14.)

However, a scroll view does bring to the table some nontrivial additional abilities:

• It knows how to shift its bounds origin in response to the user’s gestures.

• It provides scroll indicators whose size and position give the user a clue as to the
content view’s size and position.

• It can optionally enforce paging, whereby the user can view only integral portions
of the content.

• It can support zooming, so that the user can resize the apparent content by pinch-
ing.

481

Creating a Scroll View
You do not literally provide a scroll view with a content view (because the content view
isn’t really a view). Rather, you tell the scroll view how large the content view is, by
setting its contentSize, and you populate the scroll view with subviews whose visibility
will be managed as if they constituted the content view. Evidently, you have two choices
about how to provide these subviews: you can supply them directly in code, or you can
design the scroll view in a nib.

Here’s an example of the first approach. Let’s start with the View-based Application
template so that we have a root view controller. In the view controller’s loadView I’ll
create the root view in code (ignoring the view controller nib supplied by the template);
I’ll create the scroll view and make it the root view, and populate it with 30 UILabels
whose text contains a sequential number so that we can see where we are when we
scroll:

UIScrollView* sv = [[UIScrollView alloc] initWithFrame:
 [[UIScreen mainScreen] applicationFrame]];
self.view = sv;
CGFloat y = 10;
for (int i=0; i<30; i++) {
 UILabel* lab = [[UILabel alloc] init];
 lab.text = [NSString stringWithFormat:@"This is label %i", i+1];
 [lab sizeToFit];
 CGRect f = lab.frame;
 f.origin = CGPointMake(10,y);
 lab.frame = f;
 [sv addSubview:lab];
 y += lab.bounds.size.height + 10;
 [lab release];
}
CGSize sz = sv.bounds.size;
sz.height = y;
sv.contentSize = sz; // This is the crucial line
[sv release];

The crucial move, as the comment notes, is that we tell the scroll view how large its
content view is to be. If we omit this step, the scroll view won’t be scrollable; the window
will appear to consist of a static column of labels.

There is no rule about the order in which you perform the two operations of setting
the contentSize and populating the scroll view with subviews. In this example, we set
the contentSize afterward because it is more convenient to track the heights of the
subviews as we add them than to calculate their total height in advance. Similarly, you
can alter a scroll view’s contents (subviews) and contentSize dynamically as the app
runs.

Any direct subviews of the scroll view may need to have their autoresizing set appro-
priately in case the scroll view is resized, as would happen, for instance, if our root view
controller allowed autorotation. To see this, add these lines inside the for loop:

482 | Chapter 20: Scroll Views

lab.backgroundColor = [UIColor redColor]; // make label bounds visible
lab.autoresizingMask = UIViewAutoresizingFlexibleWidth;

Now implement shouldAutorotateToInterfaceOrientation: to return YES for all ori-
entations, run the app, and rotate the device (or the Simulator). The labels are wider
in portrait orientation because the scroll view itself is wider. Note that this has nothing
to do with the contentSize! The content view is not really a view, so resizing the content-
Size has no effect on the size or position of the scroll view’s subviews.

Populating a scroll view in code is a very common approach, especially because the
contents of the scroll view are often not known until runtime. However, sometimes a
scroll view is just a way of presenting a fixed view that’s larger than the available space;
in that case, it is simpler to design the whole scroll view in the nib. The nib editor makes
this easy to do.

For example, in my Zotz! app, the view where the user specifies preference settings is
in a navigation interface inside a tab bar interface, so there isn’t enough vertical space
for the various interface objects (Figure 20-1). The obvious solution is that the view
should be a scroll view. To lay out this scroll view’s subviews in code would be painful
and unmaintainable; a nib-based solution is better.

A view in a nib can be a UIScrollView, and this can be any size; its subviews will be the
scroll view’s subviews when the app runs, which means, as we’ve already seen, that
they will constitute the scroll view’s content view. So you design the scroll view’s con-
tents in the nib exactly as you’d design the contents of any view (Figure 20-2). In this
case, the scroll view itself is a view controller’s view and will be automatically resized
appropriately when it is placed into the interface.

The only problem is that the nib provides no way to set the scroll view’s contentSize.
Thus it is up to your code to set an appropriate contentSize, large enough to embrace
all the scroll view’s subviews. But how will your code know what size that is? In the
Zotz! app, where the scroll view’s content needs to scroll vertically, I solve this problem
by means of an outlet to the bottommost subview in the nib. When the view loads, I

Figure 20-1. The Zotz! settings view

Creating a Scroll View | 483

use the view controller’s viewDidLoad to learn the y-position of this subview; I allow
some additional space at the bottom and set the content view size:

UIScrollView* sc = (UIScrollView*)self.view;
float width = sc.bounds.width;
// use lowest subview, "layout", as reference for content height
float height = self.layout.frame.origin.y + self.layout.frame.size.height + 20.0;
sc.contentSize = CGSizeMake(width, height);

A more elegant approach, perhaps, would have been to put all those views into a single
container view that is itself inside the scroll view. The purpose of the container view is
to show the scroll view what its contentSize should be. We no longer need an outlet
because we know that the container view is the scroll view’s first subview:

UIScrollView* sc = (UIScrollView*)self.view;
sc.contentSize = ((UIView*)[sc.subviews objectAtIndex:0]).bounds.size;

Do not assume that the subviews you add to a UIScrollView are its only
subviews! The scroll indicators managed by the scroll view, discussed
in the next section, are also subviews (they are actually UIImageViews).

Scrolling
For the most part, the purpose of a scroll view will be to let the user scroll. A number
of properties affect the user experience with regard to scrolling:

scrollEnabled
If NO, the user can’t scroll, but you can still scroll in code (as explained later in
this section). You could put a UIScrollView to various creative purposes other than
letting the user scroll; for example, scrolling in code to a different region of the
content view might be a way of replacing one piece of interface by another.

scrollsToTop
If YES (the default), and assuming scrolling is enabled, the user can tap on the
status bar as a way of making the scroll view scroll its content view to the top.

Figure 20-2. The Zotz! settings view, designed in the nib

484 | Chapter 20: Scroll Views

bounces
If YES (the default), then when the user scrolls to a limit of the content, it is possible
to scroll somewhat further (possibly revealing the scroll view’s backgroundColor
behind the content view, if a subview was covering it); the content then snaps back
into place when the user releases it. Otherwise, the user experiences the limit as a
sudden inability to scroll further in that direction.

alwaysBounceVertical, alwaysBounceHorizontal
If YES, and assuming that bounces is YES, then even if the contentSize in the given
dimension isn’t larger than the scroll view (so that no scrolling is actually possible
in that dimension), the user can nevertheless scroll somewhat and the content then
snaps back into place when the user releases it; otherwise, the user experiences a
simple inability to scroll in that dimension.

directionalLockEnabled
If YES, and if scrolling is possible in both dimensions (even if only because the
appropriate alwaysBounce... is YES), then the user, having begun to scroll in one
dimension, can’t scroll in the other dimension without ending the gesture and
starting over. In other words, the user is constrained to scroll vertically or hori-
zontally but not both at once.

decelerationRate
The rate at which scrolling is damped out, and the content comes to a stop, after
a flick gesture. As convenient examples, standard constants UIScrollView-
DecelerationRateNormal (0.998) and UIScrollViewDecelerationRateFast (0.99) are
provided. Lower values mean faster damping; experimentation suggests that values
lower than 0.5 are viable but barely distinguishable from one another.

showsHorizontalScrollIndicator, showsVerticalScrollIndicator
The scroll indicators are bars that appear only while the user is scrolling in a scrol-
lable dimension (where the content view is larger than the scroll view), and serve
to indicate both the size of the content view in that dimension relative to the scroll
view and where the user is within it. The default is YES for both.

Because the user cannot see the scroll indicators except when actively scrolling,
there is normally no indication that the view is scrollable. I regard this as somewhat
unfortunate, because it makes the possibility of scrolling less discoverable; I’d pre-
fer an option to make the scroll indicators constantly visible. Apple suggests that
you call flashScrollIndicators when the scroll view appears, to make the scroll
indicators visible momentarily.

indicatorStyle
The way the scroll indicators are drawn. Your choices are:

• UIScrollViewIndicatorStyleDefault (black with a white border)

• UIScrollViewIndicatorStyleBlack (black)

• UIScrollViewIndicatorStyleWhite (white)

Scrolling | 485

contentInset
A UIEdgeInsets struct (four CGFloats in the order top, left, bottom, right) speci-
fying margins around the content view. A typical use for this would be that your
scroll view underlaps an interface element, such as a translucent status bar, navi-
gation bar, or toolbar, and you want your content to be visible even when scrolled
to its limit.

For example, suppose that our app with the 30 labels has its Info.plist configured
with the “Status bar style” key set to “Transparent black style,” and that our scroll
view’s view controller sets its wantsFullScreenLayout to YES. The scroll view now
underlaps the status bar. This looks cool while scrolling, but at launch time, and
if scrolled all the way to the top, the first label is partly covered by the status bar.
We can fix this by supplying a contentInset whose top matches the height of the
status bar. We may also have to scroll the content view into position at launch time
in code so that it looks right:

CGFloat top = [[UIApplication sharedApplication] statusBarFrame].size.height;
sv.contentInset = UIEdgeInsetsMake(top,0,0,0);
[sv scrollRectToVisible:CGRectMake(0,0,1,1) animated:NO];

scrollIndicatorInsets
A UIEdgeInsets struct specifying a shift in the position of the scroll indicators. A
typical use is to compensate for the contentInset. For example, returning to our
scroll view that underlaps the translucent status bar, the content is no longer hidden
under the status bar when scrolled to the top, but the top of the vertical scroll
indicator is. We can fix this by setting the scrollIndicatorInsets to the same value
as the contentInset.

Here’s a trick I’ve sometimes used: by setting a scrollIndicatorInsets
component to a negative number and setting the scroll view’s clipsTo-
Bounds to NO, you can make the scroll indicators appear outside the
scroll view. But because you’ve turned off clipsToBounds, you might
have to impose some opaque views on top of the interface to mask off
the edges of the scroll view, so that its content isn’t visible outside its
bounds.

You can scroll in code even if the user can’t scroll. The content view simply moves to
the position you specify, with no bouncing and no exposure of the scroll indicators.
You can specify the new position in two ways:

contentOffset
The point (CGPoint) of the content view that is located at the scroll view’s top left.
Of course the content view isn’t really a view, but the numbers will work correctly
if you pretend that it is. You can get this property to learn the current scroll position,
and set it to change the current scroll position. There is an implication here that
you could equally scroll by changing the scroll view’s bounds origin; you are un-

486 | Chapter 20: Scroll Views

likely to do that, but the truth is that the bounds origin and the contentOffset are
effectively the same thing.

To set the contentOffset with animation, call setContentOffset:animated:. The
animation does not cause the scroll indicators to appear; it just slides the content
to the desired position.

scrollRectToVisible:animated:
Adjusts the content view so that the specified CGRect of the view is within the
scroll view’s bounds. This is less precise than setting the contentOffset, because
you’re not saying exactly what the resulting scroll position will be, but sometimes
guaranteeing the visibility of a certain portion of the content is exactly what you’re
after.

If you call a method to scroll with animation and you need to know when the animation
ends, implement scrollViewDidEndScrollingAnimation: in the scroll view’s delegate.

Paging
If its pagingEnabled property is YES, the scroll view doesn’t let the user scroll freely;
instead, the content is considered to consist of sections the size of the scroll view’s
bounds, and the user can scroll only in such a way as to move to an adjacent section.

For instance, one of Apple’s examples consists of a scroll view containing image views.
Each image view is the size of the scroll view. This is an appropriate use of paging-
Enabled: the user can scroll to see the entire next image or the entire previous image.

The scroll indicator, if it appears, gives the user a sense of how many “pages” constitute
the view. Alternatively, you could use delegate messages to coordinate with a UIPage-
Control (Chapter 25). Figure 20-3 shows my modification of Apple’s Scrolling example,
where I’ve added a UIPageControl below the paging scroll view. Here’s the code that
updates the page control (pager) when the user scrolls:

- (void)scrollViewDidEndDecelerating:(UIScrollView *)scrollView {
 CGFloat x = scrollView.contentOffset.x;
 CGFloat w = scrollView.bounds.size.width;
 self.pager.currentPage = x/w;
}

And here’s the code that scrolls the scroll view (sv) when the user taps the page control:

Figure 20-3. A scroll view coordinated with a page control

Scrolling | 487

- (void) userDidPage: (id) sender {
 NSInteger p = self.pager.currentPage;
 CGFloat w = self.sv.bounds.size.width;
 [self.sv setContentOffset:CGPointMake(p*w,0) animated:YES];
}

A useful trick is to have no scroll indicator and no page control, so that the user has
no indication of how many “pages” there are, and then to supply pages dynamically as
the user scrolls. The result is that the user gets a paging environment that just keeps
going and going. In this way, you can display a huge number of pages without having
to put them all into the scroll view at once.

That, in fact, is how my flashcard apps work. There are thousands of flashcards, and I
want the user to be able to page by dragging or flicking from one flashcard to the next
or previous flashcard, so a scroll view is the perfect interface. But it would be a terrible
drain on resources to have a gigantic scroll view whose content consists of all the flash-
cards simultaneously. Instead, I have a scroll view whose content consists of just
three flashcards: the one the user is looking at, plus the previous flashcard (to its left)
and the next flashcard (to its right).

To see how this works, let’s number the three flashcard positions: we’ll say that the
previous flashcard occupies Position 1, the current flashcard occupies Position 2, and
the next flashcard occupies Position 3. Suppose that the user scrolls to bring the next
flashcard into view from the right. The situation is then that Position 3 is showing; this
is bad, because the user now can’t scroll to the next flashcard; the scroll view is already
scrolled to its rightmost limit. However, a delegate message informs me that the user
has just scrolled, so I take this opportunity to fix the content behind the scenes: I shove
the card from Position 3 into Position 2 and the card from Position 2 into Position 1,
and move the content view to show Position 2 — the same card the user has just scrolled
to. And I do it without any animation, so the user doesn’t realize that anything has
happened. Now Position 3 is vacant, and I draw the next flashcard into it — and because
Position 3 isn’t showing, the user doesn’t see that either. Now the user can scroll either
left or right, just as before.

This architecture is possible because the user can scroll only one page at a time. Thus,
each time the user scrolls, we are guaranteed of a moment where we have time to adjust
everything before the user scrolls again. (Consult Apple’s PageControl example if you
want to see a possible implementation.)

Tiling
Suppose we have some finite but really big content we want to display in a scroll view,
such as a very large image that the user can inspect, piecemeal, by scrolling. To hold
the entire image in memory may be onerous or impossible, but on the other hand there’s
no need to do so; all we really need at any given moment is the part of the image the
user is looking at right now.

488 | Chapter 20: Scroll Views

Tiling is one solution to this kind of problem. Mentally, divide the content view into a
matrix of rectangles (tiles); in reality, divide the huge image into corresponding rec-
tangles. Then whenever the user scrolls, we look to see whether part of any empty tile
has become visible, and if so, we supply its content. At the same time, we can release
the content of all tiles that are completely offscreen. Thus, at any given moment, only
the tiles that are showing have content. There some latency associated with this ap-
proach (the user scrolls, then any empty newly visible tiles are filled in), but we will
have to live with that.

There is actually a built-in CALayer subclass for helping us implement tiling —
CATiledLayer. Its tileSize property sets the dimensions of a tile. Its drawLayer:in-
Context: is called only when content for an empty tile is needed; calling CGContextGet-
ClipBoundingBox on the context reveals the location of desired tile, and now we can
supply that tile’s content.

To illustrate, we’ll use some tiles already created for us as part of Apple’s own Photo-
Scroller example. In particular, I’ll use the “Shed_1000” images. These all have names
of the form Shed_1000_x_y.png, where x and y are integers corresponding to the pic-
ture’s position within the matrix. The images are 256×256 pixels (except for the ones
on the extreme right and bottom edges of the matrix, which are shorter in one dimen-
sion). So, starting with the View-based Application template, we’ll make the root view
controller’s view a UIScrollView (in the nib), and initialize it in the root view controller’s
viewDidLoad. Our scroll view’s sole subview will be an instance of a UIView subclass,
TiledView, which exists purely to give our CATiledLayer a place to live:

- (void)viewDidLoad {
 [super viewDidLoad];
 CGRect f = CGRectMake(0,0,9*256,13*256);
 TiledView* content = [[TiledView alloc] initWithFrame:f];
 [(CATiledLayer*)content.layer setTileSize: CGSizeMake(256,256)];
 [self.view addSubview:content];
 [content release];
 [(UIScrollView*)self.view setContentSize: f.size];
}

Here’s the code for TiledView. The CATiledLayer is our underlying layer; therefore we
are its delegate, so if we implement drawLayer:inContext:, it will be called whenever a
tile needs drawing. We fetch the corresponding image, flip it using the flip utility
developed in Example 15-1, and draw it into place. As Apple’s code points out, we
must fetch images with imageWithContentsOfFile: so as to avoid the automatic caching
behavior of imageNamed:, because we’re doing all this exactly to avoid using any more
memory than we have to:

+ (Class) layerClass {
 return [CATiledLayer class];
}

-(void)drawRect:(CGRect)r {
 // implemented, but empty; this is deliberate
}

Scrolling | 489

- (void)drawLayer:(CALayer *)layer inContext:(CGContextRef)ctx {
 CGRect tile = CGContextGetClipBoundingBox(ctx);
 int x = tile.origin.x/256;
 int y = tile.origin.y/256;
 NSString *tileName = [NSString stringWithFormat:@"Shed_1000_%i_%i", x, y];
 NSString *path = [[NSBundle mainBundle] pathForResource:tileName ofType:@"png"];
 UIImage *image = [UIImage imageWithContentsOfFile:path];
 CGContextDrawImage(ctx, tile, flip([image CGImage]));
}

See Chapter 16 for the reason why we implement an empty drawRect: even though our
drawing is actually done in drawLayer:inContext:.

There is no special call for invalidating an offscreen tile. You can call setNeeds-
Display or setNeedsDisplayInRect: on the TiledView, but this doesn’t erase offscreen
tiles. You’re just supposed to trust that the CATiledLayer will eventually clear offscreen
tiles if needed to conserve memory.

There is a tiny bug in the foregoing code. It doesn’t work correctly on the double-
resolution Retina display; the tiles are drawn at half size. The simplest solution is prob-
ably to set the tile size with respect to the CATiledLayer’s native scale:

CGFloat tsz = 256 * content.layer.contentsScale;
[(CATiledLayer*)content.layer setTileSize: CGSizeMake(tsz, tsz)];

On the other hand, a completely different solution would be to draw with UIKit instead
of Core Graphics. In the example so far, our drawing into the graphics context in draw-
Layer:inContext: has been done with Core Graphics, deliberately; Apple has a tech
note (QA1637, “CATiledLayer and UIKit graphics”) warning that a CATiledLayer in-
troduces threading issues that make UIKit drawing methods dangerous. However,
there is some evidence that this warning may be outdated; starting in iOS 4, accessing
the current context and drawing to it with UIKit is said to be safe even in a background
thread. If this is true, we don’t need to worry about the difference between the single-
resolution and double-resolution displays, and we don’t have to flip the image. Once
we have the image, we can draw it directly into the requested tile of the given context
with UIKit:

UIGraphicsPushContext(ctx);
[image drawAtPoint:tile.origin];
UIGraphicsPopContext();

But we can go further. Because accessing the current context is said to be thread-safe
in iOS 4, we can eliminate drawLayer:inContext: and move our code to drawRect:.
There is no need to set the current graphics context, because it has already been set for
us; there is no need to ask for the clip bounding box, because the incoming CGRect
parameter is the clip bounding box; and there is no need to flip the image or compensate
for the double-resolution screen, because we are drawing with UIImage, which takes
care of those things for us:

490 | Chapter 20: Scroll Views

-(void)drawRect:(CGRect)r {
 CGRect tile = r;
 int x = tile.origin.x/256;
 int y = tile.origin.y/256;
 NSString *tileName = [NSString stringWithFormat:@"Shed_1000_%i_%i", x, y];
 NSString *path = [[NSBundle mainBundle] pathForResource:tileName ofType:@"png"];
 UIImage *image = [UIImage imageWithContentsOfFile:path];
 [image drawAtPoint:tile.origin];
}

CATiledLayer has a class method fadeDuration that dictates the duration of the ani-
mation that fades a new tile into view. You can create a CATiledLayer subclass and
override this method to return a value different from the default (0.25), but in general
this is probably not worth doing, as the default value is a good one. Returning a smaller
value won’t make tiles appear faster; it just replaces the nice fade-in with an annoying
flash.

Zooming
In the simplest case, zooming is just a scaling transform that the scroll view applies to
a subview. To implement zooming of a scroll view’s contents, you set the scroll view’s
minimumZoomScale and maximumZoomScale so that at least one of them isn’t 1 (the default);
you also implement viewForZoomingInScrollView: in the scroll view’s delegate to tell
the scroll view which of its subviews is to be the scalable view. Typically, you’ll want
the scroll view’s entire contents to be scalable, so you’ll have one direct subview of the
scroll view that acts as the scalable view, and anything else inside the scroll view will
be a subview of the scalable view, so as to be scaled together with it.

To illustrate, let’s return to the first example in this chapter, where we created a scroll
view containing 30 labels. To make this scroll view zoomable, we’ll need to modify the
way we create it. As it stands, the scroll view’s subviews are just the 30 labels; there is
no single view that we would scale in order to scale all the labels together. So instead
of making the 30 labels subviews of the scroll view, we’ll make them subviews of a
single scalable view and make the scalable view the subview of the scroll view:

UIScrollView* sv = [[UIScrollView alloc] initWithFrame:
 [[UIScreen mainScreen] applicationFrame]];
self.view = sv;
UIView* v = [[UIView alloc] init]; // scalable view
CGFloat y = 10;
for (int i=0; i<30; i++) {
 UILabel* lab = [[UILabel alloc] init];
 lab.text = [NSString stringWithFormat:@"This is label %i", i+1];
 [lab sizeToFit];
 CGRect f = lab.frame;
 f.origin = CGPointMake(10,y);
 lab.frame = f;
 [v addSubview:lab]; // labels are subviews of scalable view
 y += lab.bounds.size.height + 10;
 [lab release];

Zooming | 491

}
CGSize sz = sv.bounds.size;
sz.height = y;
sv.contentSize = sz;
v.frame = CGRectMake(0,0,sz.width,sz.height);
[sv addSubview:v];
[v release];
[sv release];

So far, nothing has changed; the scroll view works just as before, but it isn’t zoomable.
To make it zoomable, replace the last two lines of the foregoing code with this:

v.tag = 999;
[v release];
sv.minimumZoomScale = 1.0;
sv.maximumZoomScale = 2.0;
sv.delegate = self;
[sv release];

We have assigned a tag to the view that is to be scaled, so we can find it later. We have
set the scale limits for the scroll view. And we have made ourselves the scroll view’s
delegate. Now all we have to do is implement viewForZoomingInScrollView: and return
the scalable view:

- (UIView *)viewForZoomingInScrollView:(UIScrollView *)scrollView {
 return [scrollView viewWithTag:999];
}

The scroll view now responds to pinch gestures by scaling appropriately. The user can
actually scale considerably beyond the limits we set in both directions; when the gesture
ends, the scale returns to the limit value. If we wish to confine scaling strictly to our
defined limits, we can set the scroll view’s bouncesZoom to NO; when the user reaches
a limit, scaling will simply stop.

If the minimumZoomScale is less than 1, then when the scalable view becomes smaller
than the scroll view, it is pinned to the scroll view’s top left. If you don’t like this, you
can change it by subclassing UIScrollView and overriding layoutSubviews, or by im-
plementing the scroll view delegate method scrollViewDidZoom:. Here’s a simple ex-
ample demonstrating one approach; it keeps the scalable view centered as it becomes
smaller than the scroll view:

- (void) scrollViewDidZoom:(UIScrollView*)sv {
 CGFloat svw = sv.bounds.size.width;
 CGFloat svh = sv.bounds.size.height;
 UIView* v = [sv viewWithTag: 999]; // the scalable view
 CGFloat vw = v.frame.size.width;
 CGFloat vh = v.frame.size.height;
 CGPoint c = v.center;
 if (vw < svw)
 c.x = svw / 2.0;
 if (vh < svh)
 c.y = svh / 2.0;
 v.center = c;
}

492 | Chapter 20: Scroll Views

Zooming Programmatically
To zoom programmatically, you have two choices:

setZoomScale:animated:
Zooms in terms of scale value. The contentOffset is automatically adjusted to keep
the current center centered and the content view occupying the entire scroll view.

zoomToRect:animated:
Zooms so that the given rectangle of the content view occupies as much as possible
of the scroll view’s bounds. The contentOffset is automatically adjusted to keep
the content view occupying the entire scroll view.

For example, let’s say we want to implement double-tapping as a zoom-and-center
gesture. One implementation might be that double-tapping means both zoom in and
zoom out: if we’re zoomed in less than halfway, it means to zoom all the way in; oth-
erwise it means to zoom all the way out. This is particularly easy thanks to gesture
recognizers (Chapter 18). The gesture recognizer should ideally be attached to the
scalable view. It reports its locationInView in view bounds coordinates, so the point
we want to center on is precisely the point reported by the gesture recognizer, and all
we have to do is provide an appropriately scaled rectangle centered at that point. Here’s
the action handler for a double-tap UITapGestureRecognizer:

- (void) tapped: (UIGestureRecognizer*) tap {
 UIScrollView* sv = (UIScrollView*)tap.view.superview;
 CGPoint loc = [tap locationInView: tap.view];
 CGFloat targetScale =
 (sv.zoomScale <= 1.5) ? sv.maximumZoomScale : sv.minimumZoomScale;
 CGRect f = sv.bounds;
 CGFloat w = f.size.width/targetScale;
 CGFloat h = f.size.height/targetScale;
 CGRect r = CGRectMake(loc.x - w/2.0, loc.y - h/2.0, w, h);
 [sv zoomToRect:r animated:YES];
}

Zooming with Detail
By default, when a scroll view zooms, it merely applies a scale transform to the scaled
view. The scaled view’s drawing is cached beforehand into its layer, and the bits of the
resulting bitmap are drawn larger. This means that a zoomed-in scroll view’s content
is fuzzy (pixellated).

On a double-resolution device, this might not be such an issue. If the
user is allowed to scroll only up to double scale, you can just draw at
double scale right from the start; the results will look good at single
scale, because the screen has double resolution, as well as at double
scale, because that’s the scale you drew at.

Zooming | 493

You might, on the other hand, like to redraw the content with improved resolution or
increased detail after the scroll view is zoomed in. You can learn when a zoom has taken
place, by implementing the delegate’s scrollViewDidEndZooming:withView:atScale:.
But unfortunately it is far from clear how you can redraw at this point. You cannot
merely redraw the scaled view’s content at higher resolution, because the scaled view
is not at a higher resolution, nor has its size increased; it still at its original size and
resolution, with a transform applied. What you’d like to do is draw into the view as if
the view’s size had really increased, and without a transform applied. However, the
scroll view is using the scaled view’s transform as an indication of zoomed state; if you
remove the transform from the scaled view, the scroll view will reset its own zoom-
Scale to 1. This means that if the minimumZoomScale is 1, the user will now be unable to
zoom back out.

My approach, then, is as follows. After a zoom, we remove the scalable view entirely,
to break the scroll view’s special relationship with it, and replace it by a new view whose
real size is the apparent (zoomed) size of the old view. The scroll view now thinks the
zoomScale is 1, so we can no longer trust it; we must keep track of the scale ourselves,
in an instance variable, which must be initialized (to 1.0, presumably) when the scroll
view is created. At the same time, we adjust the minimumZoomScale and maximumZoom-
Scale in conformity with our private notion of the scale, so we need to remember the
nominal minimum and maximum zoom values (if these values don’t change, we can
use constants for this). I find that this technique looks best if there is a slight delay
between the end of zooming and the redrawing of the content view, so I use delayed
performance. In the following code, I assume that, as in earlier examples, our scaling
view is identified by a tag value of 999:

- (void) sharpenToScale: (NSNumber*) sc {
 CGFloat scale = [sc floatValue];
 // remove old view
 UIScrollView* sv = (UIScrollView*)self.view;
 UIView* v = [sv viewWithTag:999];
 [v removeFromSuperview];
 // create new view appropriate to new absolute scale
 CGFloat newscale = scale * self->oldScale; // absolute scale at which to redraw
 self->oldScale = newscale;
 [self addNewScalableViewAtScale:newscale]; // workhorse utility
 sv.minimumZoomScale = MINZOOM / newscale;
 sv.maximumZoomScale = MAXZOOM / newscale;
}

- (void)scrollViewDidEndZooming:(UIScrollView *)scrollView
 withView:(UIView *)view atScale:(float)scale {
 [self performSelector:@selector(sharpenToScale:)
 withObject:[NSNumber numberWithFloat:scale] afterDelay:0.1];
}

As the comment implies, the example posits a workhorse utility, addNewScalableView-
AtScale:, which creates the view, tags it, sizes it, populates or draws it, puts it into the
scroll view, and sets the scroll view’s contentSize to match. This is exactly the same

494 | Chapter 20: Scroll Views

sort of thing we did in the first example in this section; the difference is that we must
now be prepared to do it all at any given scale.

So, earlier, we populated our scalable view with 30 labels, arranged vertically, 10 pixels
apart. How might we adapt this to constitute our implementation of addNewScalable-
ViewAtScale:? Basically, we must multiply every hard-coded number, including im-
plicitly hard-coded numbers such as the font size of the labels, by the scale. For clarity,
I’ll break the utility into two methods, one of which calls the other:

- (CGFloat) addLabelsToView: (UIView*) v scale: (CGFloat) scale {
 CGFloat y = 10*scale;
 for (int i=0; i<30; i++) {
 UILabel* lab = [[UILabel alloc] init];
 NSString* name = lab.font.fontName;
 CGFloat fsz = lab.font.pointSize;
 lab.text = [NSString stringWithFormat:@"This is label %i", i+1];
 [lab sizeToFit];
 CGFloat origHeight = lab.bounds.size.height;
 lab.font = [UIFont fontWithName:name size:fsz*scale];
 [lab sizeToFit];
 CGRect f = lab.frame;
 f.origin = CGPointMake(10*scale,y);
 lab.frame = f;
 [v addSubview:lab]; // labels are subviews of scalable view
 y += (origHeight + 10) * scale;
 [lab release];
 }
 return y;
}

- (void) addNewScalableViewAtScale: (CGFloat) scale {
 UIScrollView* sv = (UIScrollView*) self.view;
 UIView* v = [[UIView alloc] init]; // scalable view
 CGFloat y = [self addLabelsToView: v scale: scale];
 CGSize sz = sv.bounds.size;
 sz.width *= scale;
 sz.height = y;
 sv.contentSize = sz;
 v.frame = CGRectMake(0,0,sz.width,sz.height);
 [sv addSubview:v];
 v.tag = 999;
 [v release];
}

And of course when we originally create our scroll view we populate it by calling add-
NewScalableViewAtScale: with an initial scale of 1:

- (void)loadView {
 UIScrollView* sv = [[UIScrollView alloc] initWithFrame:
 [[UIScreen mainScreen] applicationFrame]];
 self.view = sv;
 [self addNewScalableViewAtScale: 1.0];
 sv.minimumZoomScale = MINZOOM;
 sv.maximumZoomScale = MAXZOOM;
 self->oldScale = 1.0;

Zooming | 495

 sv.delegate = self;
 [sv release];
}

The overall effect is remarkably good. The user zooms with a pinch gesture, and the
labels are momentarily blurry, but then an instant later they sharpen. A even better
effect can be achieved by using an animation as we replace one scalable view by another:
put the second view into the scroll view with an alpha of 0, animate changing this
alpha to 1 and the first view’s alpha to 0, and now remove the first view. This is left as
an exercise for the reader.

A completely different approach to achieving a detailed redraw after a zoom is to use
a CATiledLayer. Earlier, we saw that a CATiledLayer will ask for tiles to be drawn only
as needed. Additionally, it can be made to ask for tiles to be drawn when the layer is
scaled to a new order of magnitude. This approach is extremely easy: your drawing
routine is called and you simply draw, the graphics context itself having already been
scaled appropriately.

Your drawing does not have to involve tiles. Of course it can involve tiles; for a large
tiled image, you would be forearmed with multiple versions of the image broken into
an identical quantity of tiles, each set having double the tile size of the previous set (as
in Apple’s PhotoScroller example). But you can also just draw directly (as shown in the
“Basic Zooming Using the Pinch Gestures” chapter of Apple’s Scroll View Programming
Guide for iOS).

You have to set up two CATiledLayer properties:

levelsOfDetail
The number of different resolutions at which you want to redraw, where each level
has twice the resolution of the previous level. So, for example, with two levels of
detail we can ask to redraw when zooming to double size (2x) and when zooming
back to single size (1x).

levelsOfDetailBias
The number of levels of detail that are larger than single size (1x). For example, if
levelsOfDetail is 2, then if we want to redraw when zooming to 2x and when
zooming back to 1x, the levelsOfDetailBias is 1, because one of those levels is
larger than 1x; if we were to leave levelsOfDetailBias at 0 (the default), we would
be saying we want to redraw when zooming to 0.5x and back to 1x — we have two
levels of detail but neither is larger than 1x, so one must be smaller than 1x.

So, just to hammer home the point, let’s say we want to redraw at .5x, 1x, 2x, and
4x. That’s four levels of detail, so levelsOfDetail is 4; and two of them are larger
than 1x, so levelsOfDetailBias is 2.

The CATiledLayer will ask for a redraw at a higher resolution as soon as the view’s size
becomes larger than the previous resolution. In other words, if there are two levels of
detail with a bias of 1, the layer will be redrawn at 2x as soon as it is zoomed even a

496 | Chapter 20: Scroll Views

little bit larger than 1x. This is an excellent approach, because although a level of detail
would look blurry if scaled up, it looks pretty good scaled down.

To illustrate, I’ll rewrite our example with the 30 labels to use plain Core Graphics text
drawing instead. In the root view controller, we create our content view (a TiledView)
and configure everything. The tiles have no purpose to us, so we may as well set the
tile size to the bounds size:

- (void)viewDidLoad {
 [super viewDidLoad];
 CGRect f = CGRectMake(0,0,self.view.bounds.size.width,940);
 TiledView* content = [[TiledView alloc] initWithFrame:f];
 content.tag = 999;
 CATiledLayer* lay = (CATiledLayer*)content.layer;
 [lay setTileSize: f.size];
 lay.levelsOfDetail = 2;
 lay.levelsOfDetailBias = 1;
 [self.view addSubview:content];
 [content release];
 UIScrollView* sv = (UIScrollView*)self.view;
 [sv setContentSize: f.size];
 sv.minimumZoomScale = 1.0;
 sv.maximumZoomScale = 2.0;
 sv.delegate = self;
}

- (UIView *)viewForZoomingInScrollView:(UIScrollView *)scrollView {
 return [scrollView viewWithTag:999];
}

In the TiledView, we simply draw (with some appropriate futzing to deal with text
flipping). We ignore the context’s clip bounding box, and we care nothing about its
scale; we just draw the same way no matter what, and the rest happens automatically:

+ (Class) layerClass {
 return [CATiledLayer class];
}

-(void)drawRect:(CGRect)r {
 // implemented, but empty; this is deliberate
}

- (void)drawLayer:(CALayer *)layer inContext:(CGContextRef)ctx {
 CGContextSetFillColorWithColor(ctx, [[UIColor whiteColor] CGColor]);
 CGContextFillRect(ctx, self.bounds);
 CGContextSetFillColorWithColor(ctx, [[UIColor blackColor] CGColor]);

 CGContextSaveGState(ctx);
 CGContextTranslateCTM(ctx, 0, self.bounds.size.height);
 CGContextScaleCTM(ctx, 1.0, -1.0);
 CGContextSelectFont(ctx, "Helvetica", 18, kCGEncodingMacRoman);

 // height consists of 31 spacers with 30 texts between them
 CGFloat viewh = self.bounds.size.height;
 CGFloat spacerh = 10;

Zooming | 497

 CGFloat texth = (viewh - (31*spacerh))/30.0;
 CGFloat y = spacerh;
 for (int i = 30; i > 0; i--) {
 NSString* s = [NSString stringWithFormat:@"This is label %i", i];
 const char* ss = [s UTF8String];
 CGContextShowTextAtPoint(ctx, 10, y, ss, strlen(ss));
 y += texth + spacerh;
 }
 CGContextRestoreGState(ctx);
}

That code jumps through a number of hoops in order to draw with Core Graphics only;
in particular, we have to flip the context coordinate system to get our text to come out
right side up, compensating by drawing our strings in reverse order. In iOS4 and later,
those hoops aren’t needed; drawing directly with UIKit and NSString is thread-safe. So
we can eliminate the context flipping, draw the strings in their natural order, and move
the code to drawRect: (and eliminate drawLayer:inContext:):

-(void)drawRect:(CGRect)r {
 [[UIColor whiteColor] set];
 UIRectFill(self.bounds);
 [[UIColor blackColor] set];
 UIFont* f = [UIFont fontWithName:@"Helvetica" size:18];
 // height consists of 31 spacers with 30 texts between them
 CGFloat viewh = self.bounds.size.height;
 CGFloat spacerh = 10;
 CGFloat texth = (viewh - (31*spacerh))/30.0;
 CGFloat y = spacerh;
 for (int i = 0; i < 30; i++) {
 NSString* s = [NSString stringWithFormat:@"This is label %i", i];
 [s drawAtPoint:CGPointMake(10,y) withFont:f];
 y += texth + spacerh;
 }
}

Our initial configuration of the CATiledLayer, in viewDidLoad, must be modified if we
want things to work the same way on a double-resolution Retina display. First, the
CATiledLayer starts life at the 2x level of detail, so instead of asking to be redrawn at
1x and 2x, as now, we must ask to be redrawn at 2x and 4x. We can do this by setting
the levelsOfDetailBias to 2. Second, because we are at double resolution at the 2x level
of detail, we must make our tiles four times bigger if a single tile is to be the size of the
view initially. So we would add this to viewDidLoad:

if ([[UIScreen mainScreen] scale] > 1.0) {
 f.size.width *= 4;
 f.size.height *= 4;
 lay.tileSize = f.size;
 lay.levelsOfDetailBias = 2;
}

498 | Chapter 20: Scroll Views

Scroll View Delegate
The scroll view’s delegate (adopting the UIScrollViewDelegate protocol) receives lots
of messages that can help you track what the scroll view is up to:

scrollViewDidScroll:
If you scroll in code without animation, you will receive this message once. If the
user drags or flicks, or uses the scroll-to-top feature, or if you scroll in code with
animation, you will receive this message repeatedly throughout the scroll, including
during the time the scroll view is decelerating after the user’s finger has lifted; there
are other delegate messages that tell you, in those cases, when the scroll has really
ended.

scrollViewDidEndScrollingAnimation:
If you scroll in code with animation, you will receive this message when the ani-
mation ends.

scrollViewWillBeginDragging:, scrollViewDidEndDragging:willDecelerate:
If the user scrolls by dragging or flicking, you will receive these messages at the
start and end of the user’s finger movement. If the user brings the scroll view to a
stop before lifting the finger, willDecelerate is NO and the scroll is over. If the user
lets go of the scroll view while the finger is moving, or if paging is turned on and
the user has not paged perfectly already, willDecelerate is YES and we proceed to
the delegate messages reporting deceleration.

scrollViewWillBeginDecelerating:, scrollViewDidEndDecelerating:
Sent once each after scrollViewDidEndDragging:willDecelerate: arrives with a
value of YES. When scrollViewDidEndDecelerating: arrives, the scroll is over.

scrollViewShouldScrollToTop:, scrollViewDidScrollToTop:
You won’t get either of these if scrollsToTop is NO, because the scroll-to-top fea-
ture is turned off in that case. The first lets you prevent the user from scrolling to
the top on this occasion even if scrollsToTop is YES. The second tells you that the
user has employed this feature and the scroll is over.

In addition, the scroll view has read-only properties reporting its state:

tracking
The user has touched the scroll view, but the scroll view hasn’t decided whether
this is a scroll or some kind of tap.

dragging
The user is dragging to scroll.

decelerating
The user has scrolled and has lifted the finger, and the scroll is continuing.

So, if you wanted to do something after a scroll ends completely regardless of how the
scroll was performed, you’d need to implement many delegate methods:

Scroll View Delegate | 499

• scrollViewDidEndDragging:willDecelerate: in case the user drags and stops (will-
Decelerate is NO).

• scrollViewDidEndDecelerating: in case the user drags and the scroll continues af-
terward.

• scrollViewDidScrollToTop: in case the user uses the scroll-to-top feature.

• scrollViewDidEndScrollingAnimation: in case you scroll in code with animation.

You don’t need a delegate method to tell you when the scroll is over after you scroll in
code without animation: it’s over immediately, so if you have work to do after the scroll
ends, you can do it in the next line of code.

There are also three delegate messages that report zooming:

scrollViewWillBeginZooming:withView:
If the user zooms or you zoom in code, you will receive this message as the zoom
begins.

scrollViewDidZoom:
If you zoom in code, even with animation, you will receive this message once (and
you might receive scrollViewDidScroll: as well). If the user zooms, you will receive
this message repeatedly as the zoom proceeds. (You will probably also receive
scrollViewDidScroll: repeatedly as the zoom proceeds.)

scrollViewDidEndZooming:withView:atScale:
If the user zooms or you zoom in code, you will receive this message after the last
scrollViewDidZoom:.

In addition, the scroll view has read-only properties reporting its state during a zoom:

zooming
The scroll view is zooming. It is possible for dragging to be true at the same time.

zoomBouncing
The scroll view is returning automatically from having been zoomed outside its
minimum or maximum limit. As far as I can tell, you’ll get only one scrollViewDid-
Zoom: while the scroll view is in this state.

Scroll View Touches
Improvements in the scroll view implementation have eliminated most of the worry
once associated with scroll view touches. A scroll view will interpret a drag or a pinch
as a command to scroll or zoom, and any other gesture will fall through to the subviews;
thus buttons and similar interface objects inside a scroll view work just fine.

You can even put a scroll view inside a scroll view, and this can be quite a useful thing
to do, in contexts where you might not think of it at first. A WWDC 2010 presentation
uses as an example Apple’s Photos app, where a single photo fills the screen: you can

500 | Chapter 20: Scroll Views

page-scroll from one photo to the next, and you can zoom the current photo with a
pinch-out gesture. This, the presentation suggests, can be implemented with a scroll
view inside a scroll view: the outer scroll view is for paging between images, and the
inner scroll view contains the current image and is for zooming.

Gesture recognizers (Chapter 18) have also greatly simplified the task of adding custom
gestures to a scroll view. For instance, some older code in Apple’s documentation,
showing how to implement a double-tap to zoom in and a two-finger tap to zoom out,
uses old-fashioned touch handling, but this is no longer necessary. Simply attach to
your scroll view’s scalable subview any gesture recognizers for these sorts of gesture,
and they will mediate automatically among the possibilities.

In the past, making something inside a scroll view draggable required setting the scroll
view’s canCancelContentTouches property to NO. (The reason for the name is that the
scroll view, when it realizes that a gesture is a drag or pinch gesture, normally sends
touchesCancelled:forEvent: to a subview tracking touches, so that the scroll view and
not the subview will be affected.) However, unless you’re implementing old-fashioned
direct touch handling, you probably won’t have to concern yourself with this. Regard-
less of how canCancelContentTouches is set, a draggable control, such as a UISlider,
remains draggable inside a scroll view.

On the other hand, something like a UISlider might prove more quickly responsive if
you set the scroll view’s delaysContentTouches to NO. Without this, the user may have
to hold a finger on the slider briefly before it becomes draggable. But even this will be
a concern only if the scroll view is scrollable in the same dimension as the slider is
oriented; a horizontal slider in a scroll view that can be scrolled only vertically is in-
stantly draggable.

Here’s an example of a draggable object inside a scroll view implemented through a
gesture recognizer. Suppose we have an image of a map, larger than the screen, and we
want the user to be able to scroll it in the normal way to see any part of the map, but
we also want the user to be able to drag a flag into a new location on the map. We can
arrange this, as we configure the scroll view in our viewDidLoad, with a
UIPanGestureRecognizer using the dragging: action handler developed in Chapter 18:

- (void)viewDidLoad {
 [super viewDidLoad];
 UIScrollView* sv = (UIScrollView*)self.view;
 UIImageView* imv =
 [[UIImageView alloc] initWithImage: [UIImage imageNamed:@"map.jpg"]];
 [sv addSubview:imv];
 sv.contentSize = imv.bounds.size;
 UIImageView* flag =
 [[UIImageView alloc] initWithImage: [UIImage imageNamed:@"redflag.png"]];
 [sv addSubview: flag];
 UIPanGestureRecognizer* pan =
 [[UIPanGestureRecognizer alloc] initWithTarget:self
 action:@selector(dragging:)];
 [flag addGestureRecognizer:pan];

Scroll View Touches | 501

 flag.userInteractionEnabled = YES;
 [pan release]; [flag release]; [imv release];
}

The user can now drag the map or the flag (Figure 20-4). The state of the scroll view’s
canCancelContentTouches is irrelevant, because the flag view isn’t tracking the touches
manually.

An interesting addition to that example would be to implement autoscrolling, meaning
that the scroll view scrolls itself when the user drags the flag close to its edge. This, too,
is greatly simplified by gesture recognizers; in fact, we can add autoscrolling code di-
rectly to the dragging: action handler:

- (void) dragging: (UIPanGestureRecognizer*) p {
 // this part is identical to the code developed earlier
 UIView* v = p.view;
 if (p.state == UIGestureRecognizerStateBegan ||
 p.state == UIGestureRecognizerStateChanged) {
 CGPoint delta = [p translationInView: v.superview];
 CGPoint c = v.center;
 c.x += delta.x; c.y += delta.y;
 v.center = c;
 [p setTranslation: CGPointZero inView: v.superview];
 }
 // this is the addition to implement autoscrolling
 if (p.state == UIGestureRecognizerStateChanged) {
 CGPoint loc = [p locationInView:self.view.superview];
 CGRect f = self.view.frame;
 UIScrollView* sv = (UIScrollView*)self.view;
 CGPoint off = sv.contentOffset;
 CGSize sz = sv.contentSize;
 CGPoint c = v.center;
 // to the right
 if (loc.x > CGRectGetMaxX(f) - 30) {
 CGFloat margin = sz.width - CGRectGetMaxX(sv.bounds);
 if (margin > 6) {
 off.x += 5;
 sv.contentOffset = off;
 c.x += 5;

Figure 20-4. A scrollable map with a draggable flag

502 | Chapter 20: Scroll Views

 v.center = c;
 [self performSelector:@selector(dragging:) withObject:p
 afterDelay:0.2];
 }
 }
 // to the left
 if (loc.x < f.origin.x + 30) {
 CGFloat margin = off.x;
 if (margin > 6) {
 // ... omitted ...
 }
 }
 // to the bottom
 if (loc.y > CGRectGetMaxY(f) - 30) {
 CGFloat margin = sz.height - CGRectGetMaxY(sv.bounds);
 if (margin > 6) {
 // ... omitted ...
 }
 }
 // to the top
 if (loc.y < f.origin.y + 30) {
 CGFloat margin = off.y;
 if (margin > 6) {
 // ... omitted ...
 }
 }
 }
}

The material marked as omitted in the second, third, and fourth cases is obviously
parallel to the first case, and is left as an exercise for the reader.

Scroll View Performance
At several points in earlier chapters I’ve mentioned performance problems and ways to
increase drawing efficiency. Nowhere are you so likely to need these as in connection
with a scroll view. As a scroll view scrolls, views must be drawn very rapidly as they
appear on the screen. If the view-drawing system can’t keep up with the speed of the
scroll, the scrolling will visibly stutter.

Performance testing and optimization is a big subject, so I can’t tell you exactly what
to do if you encounter stuttering while scrolling. But certain general suggestions (mostly
extracted from a really great presentation at the 2010 WWDC) should come in handy:

• Everything that can be opaque should be opaque: don’t force the drawing system
to composite transparency, and remember to tell it that an opaque view or layer
is opaque by setting its opaque property to YES. (The Core Animation module of
Instruments, available when testing on a device, has a Color Blended Layers option
that will show you where transparency is being composited.) If you really must
composite transparency, keep the size of the nonopaque regions to a minimum;

Scroll View Performance | 503

for example, if a large layer is transparent at its edges, break it into five layers —
the large central layer, which is opaque, and the four edges, which are not.

Apple’s documentation also says that setting a view’s clearsContext-
BeforeDrawing to NO may make a difference. I can’t confirm or deny
this; it may be true, but I haven’t encountered a case that positively
proves it.

• Don’t make the drawing system scale images for you; supply the images at the
target size for the correct resolution. (Again, the Core Animation module of In-
struments will help you spot incorrectly sized images with its Color Misaligned
Images option.)

• If you’re drawing shadows, don’t make the drawing system calculate the shadow
shape for a layer: supply a shadowPath, or use Core Graphics to create the shadow
with a drawing. Similarly, avoid making the drawing system composite the shadow
as a transparency against another layer; for example, if the background layer is
white, your opaque drawing can itself include a shadow already drawn on a white
background.

• In a pinch, you can just eliminate massive swatches of the rendering operation by
setting a layer’s shouldRasterize to YES. You could, for example, do this when
scrolling starts and then set it back to NO when scrolling ends.

504 | Chapter 20: Scroll Views

CHAPTER 21

Table Views

I’m gonna ask you the three big questions. — Go ahead.
— Who made you? — You did. — Who owns the biggest

piece of you? — You do. — What would happen if I
dropped you? — I’d go right down the drain.

—Dialogue by Garson Kanin and Ruth Gordon,
Pat and Mike

A table view (UITableView) is a scrolling interface (a vertically scrolling UIScrollView,
Chapter 20) for presenting a single column of rectangular cells (UITableViewCell). It
is a keystone of Apple’s strategy for making the small iPhone screen useful and pow-
erful, and has three main purposes:

Presentation of information
The cells typically contain text, which can provide the user with helpful informa-
tion. The cells are usually quite small, in order to maximize the number of them
that appear on the screen at once, so this information is often condensed, trunca-
ted, or otherwise simplified.

Selection
A cell can be selected by tapping. A table view can thus be used to provide the user
with a column of choices. The user chooses by tapping a cell, and the app responds
appropriately to that choice.

Navigation
The appropriate response to the user’s choosing a cell is often navigation to another
portion of the interface. This might be done, for example, through a modal view
or a navigation interface. An extremely common configuration is a master–detail
interface, in which the master view is (or contains) a table view, often at the root
of a navigation interface; the user taps a listing in the table to navigate to the details
for that choice. This is one reason why truncation of information in a table view is
acceptable: the detail view contains the full information.

505

In addition to its column of cells, a table view can be extended by a number of other
features that make it even more useful and flexible:

• A table can start with a header view (at the top) and end with a footer view (at the
bottom).

• The cells can be clumped into sections. Each section can have a header and footer,
and these remain visible as long as the section itself occupies the screen, giving the
user a clue as to where we are within the table. Moreover, a section index can be
provided, in the form of a secondary column of abbreviated section titles, allowing
the user to jump instantly to the start of a section.

• A table can have a “grouped” format. This is often used for presenting small num-
bers of related cells.

• Tables can be editable: the user can be permitted to insert, delete, and reorder cells.

Figure 21-1 illustrates four variations of the table view:

1. The iPod (Music) app lists song titles and artists for a given album in truncated
form in a table view within a navigation interface which is itself within a tab bar
interface; one table (the list of albums) leads to another (the list of songs within
that album), which in turn allows the user to choose a song and play it.

2. An app of mine lists Latin words and their definitions in alphabetical order, divided
into sections by first letter, with section headers and a section index.

3. The Mail app lists inboxes and accounts in a grouped format, clumped into sections
with headers.

4. The iPod (Music) app allows a custom playlist to be edited, with interface for
deleting and rearranging cells.

Table cells, too, can be extremely flexible. Some basic table cell formats are provided,
such as a text label along with a small image view, but you are free to design your own
table cell, as you would any other view. There are also some standard interface items

Figure 21-1. Four table view variations

506 | Chapter 21: Table Views

that are commonly used in a table cell, such as a checkmark to indicate selection or a
right-pointing chevron to indicate that tapping the cell navigates to a detail view.

It would be difficult to overestimate the importance of table views. An iOS app without
a table view somewhere in its interface would be a rare thing. I’ve written apps con-
sisting almost entirely of table views. Indeed, it is not uncommon to use a table even
in situations where there is nothing particularly table-like about the interface, simply
because it is so convenient. For example, in one of my apps I want the user to be able
to choose between three levels of difficulty, so I use a grouped table so small that it
doesn’t even scroll. This gives me a section header, three tappable cells, and a check-
mark indicating the current choice (Figure 21-2).

Table View Cells
Beginners may be surprised to learn that a table view’s structure and contents are not
configured in advance. Rather, you supply the table view with a data source and a
delegate (which will often be the same object; see Chapter 11), and the table view turns
to these in real time, as the app runs, whenever it needs a piece of information about
its structure and contents. This architecture conserves resources; a long table might
appear to consist of thousands of cells, but if only six cells are showing on the screen
at any one time, the table actually needs to maintain only six cells.

This means that your code must be prepared, on demand, to supply the table with
pieces of requested data. Of these, the most important is the table cell to be slotted into
a given position. A position in the table is specified by means of an index path (NSIn-
dexPath), a class used here to combine a section number with a row number, and is
often referred to simply as a row of the table. Your data source object will be sent the
message tableView:cellForRowAtIndexPath:, and must respond by returning the UI-
TableViewCell to be displayed at that row of the table.

In this section, then, I’ll discuss what you’re going to be supplying — the table view
cell. In the next section, I’ll talk about how you supply it.

Figure 21-2. A grouped table view as an interface for choosing options

Table View Cells | 507

Built-In Cell Styles
To create a cell using one of the built-in cell styles, call initWithStyle:reuse-
Identifier:. The reuseIdentifier is what allows cells previously assigned to rows that
are now longer showing to be reused for cells that are; it will usually be the same for
all cells in a table. Your choices of cell style are:

UITableViewCellStyleDefault
The cell has a UILabel (its textLabel), with an optional UIImageView (its image-
View) at the left. If there is no image, the label occupies the entire width of the cell.

UITableViewCellStyleValue1
The cell has two UILabels (its textLabel and its detailTextLabel), side by side,
with an optional UIImageView (its imageView) at the left. The first label is left-
aligned; the second label is right-aligned. If the first label’s text is too long, the
second label won’t appear.

UITableViewCellStyleValue2
The cell has two UILabels (its textLabel and its detailTextLabel), side by side; the
first label is small. No UIImageView will appear. The label sizes are fixed, and the
text of either will be truncated if it’s too long.

UITableViewCellStyleSubtitle
The cell has two UILabels (its textLabel and its detailTextLabel), one above the
other, with an optional UIImageView (its imageView) at the left.

To experiment with the built-in cell styles, do this (even though we have not yet dis-
cussed what you’re actually doing). Make a new project from the Navigation-based
Application template. The resulting app has a UINavigationController with a UITa-
bleView as its root view, controlled by a UITableViewController (a UIViewController
subclass, to be discussed later in this chapter). Now modify the RootViewController
class (which comes with a lot of templated code), as follows:

// Customize the number of sections in the table view.
- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 return 1;
}

// Customize the number of rows in the table view.
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return 10;
}

// Customize the appearance of table view cells.
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {

508 | Chapter 21: Table Views

 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier] autorelease];
 }

 return cell;
}

The idea is to generate a single cell in a built-in cell style and to examine and experiment
with its appearance by tweaking the code and running the app. The key parts of the
code are:

This code is unchanged from the template; our table will have one section.

Our table will consist of ten rows. We’re going to make our cell without regard to
what row it is slotted into; so all ten rows will be identical. But having multiple rows
will give us a sense of how our cell looks when placed next to other cells.

This point in the code is where you specify the built-in table cell style you want to
experiment with. Change UITableViewCellStyleDefault to a different style as de-
sired.

At this point in the code the cell is pointed to by a variable called cell, and you can
modify its characteristics. For example:

cell.textLabel.text = @"Hello there";
cell.imageView.image = [UIImage imageNamed:@"pic.png"];

The flexibility of the built-in styles is based mostly on the flexibility of UILabels (see
also Chapter 23). Not everything can be customized, because after you return the cell
some further configuration takes place, which may override your settings. For example,
the size and position of the cell’s subviews are not up to you. (I’ll explain how to get
around that in the next section.) But you get a remarkable degree of freedom. Here are
some of the UILabel properties you can try changing:

text
The string shown in the label.

textColor, highlightedTextColor
The color of the text. The highlightedTextColor applies when the cell is selected
(tap on a cell to select it); if you don’t set it, the label may choose its own variant
of the textColor when the cell is highlighted.

textAlignment
How the text is aligned; your choices are UITextAlignmentLeft, UITextAlignment-
Center, and UITextAlignmentRight.

numberOfLines
The maximum number of lines of text to appear in the label. Text that is long but
permitted to wrap, or that contains explicit linefeed characters, can appear com-

Table View Cells | 509

pletely in the label if the label is tall enough and the number of permitted lines is
sufficient. 0 means there’s no maximum.

lineBreakMode
The wrapping rule for text that is too long for the label’s width. The default is
UILineBreakModeTailTruncation, which means that text wraps at word ends and
then, if the last permitted line is still too long for the label, an ellipsis mark is its
last visible character.

font
The label’s font. You could reduce the font size as a way of fitting more text into
the label. A font name includes its style, so you could change a bold font to nonbold,
or vice versa. For example:

cell.textLabel.font = [UIFont fontWithName:@"Helvetica-Bold" size:12.0];

minimumFontSize, adjustsFontSizeToFitWidth
If the numberOfLines is 1, setting these will allow the font size to shrink automati-
cally in an attempt to fit the entire text into the label’s width.

shadowColor, shadowOffset
The text shadow. Adding a little shadow can increase clarity and emphasis for large
text.

The image view’s frame can’t be changed, but you can inset its apparent size by sup-
plying a smaller image and setting the image view’s contentMode to UIViewContentMode-
Center. It’s probably a good idea in any case, for performance reasons, to supply images
at their drawn size and resolution rather than making the drawing system scale them
for you (see the last section of Chapter 20). For example:

UIImage* im = [UIImage imageNamed:@"pic.png"];
UIGraphicsBeginImageContextWithOptions(CGSizeMake(35,35), YES, 0.0);
[im drawInRect:CGRectMake(0,0,35,35)];
UIImage* im2 = UIGraphicsGetImageFromCurrentImageContext();
UIGraphicsEndImageContext();
cell.imageView.image = im2;
cell.imageView.contentMode = UIViewContentModeCenter;

The cell itself also has some properties you can play with:

accessoryType
A built-in type of accessory view, which appears at the cell’s right end. For example:

cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator;

accessoryView
Your own UIView, which appears at the cell’s right end (overriding the accessory-
Type). For example:

UIButton* b = [UIButton buttonWithType:UIButtonTypeRoundedRect];
[b setTitle:@"Tap Me" forState:UIControlStateNormal];
[b sizeToFit];

510 | Chapter 21: Table Views

// ... also assign button a target and action ...
cell.accessoryView = b;

indentationLevel, indentationWidth
These properties give the cell a left margin, useful for suggesting a hierarchy among
cells. You can also set a cell’s indentation level in real time, with respect to the table
row into which it is slotted, by implementing the delegate’s tableView:indentation-
LevelForRowAtIndexPath: method.

selectionStyle
How the background looks when the cell is selected. The default is a blue gradient
(UITableViewCellSelectionStyleBlue), or you can choose UITableViewCell-
SelectionStyleGray (gray gradient) or UITableViewCellSelectionStyleNone.

backgroundColor, backgroundView, selectedBackgroundView
These can be tricky to apply, because tableView:cellForRowAtIndexPath: is too
early to be effective. Instead, implement tableView:willDisplayCell:forRowAt-
IndexPath:.

What’s the difference between cell configuration in tableView:cellFor-
RowAtIndexPath: and in tableView:willDisplayCell:forRowAtIndex-
Path:? The former is a required data source method and supplies the
cell and provides its content. The latter is an optional delegate method
and is intended to allow you to override the cell’s general appearance,
which the table view has already set in relation to the cell’s state (such
as selected or not selected).

Setting a backgroundColor alone is somewhat inflexible; it’s a solid color, and it will be
covered by the selection background if there is one (blue or gray). These limitations
can be overcome by supplying a backgroundView; you might use a UIImageView along
with a desired image, or supply some other view that knows how to draw itself. If a
selectedBackgroundView is supplied, the selectionStyle will automatically be ignored,
so that your view is shown instead. If the backgroundView or selectedBackgroundView
has transparency, the backgroundColor will appear through it.

A problem is that a UILabel when combined with a cell background view may seem to
punch a hole through the view to reveal the cell background color; an added compli-
cation is that the details vary for different versions of the system. The simplest and most
universally reliable solution is to assign the UILabel a background color of UIClear-
Color at the end of tableView:willDisplayCell:forRowAtIndexPath: — that is, after
setting the cell’s background view and background color.

Finally, there are a few properties of the table view itself worth playing with:

rowHeight
The height of a cell. This is another way to deal with text that is too long; besides
decreasing the font size, you can increase the cell size. You can change this value

Table View Cells | 511

in the nib file; the table view’s row height appears in the Size inspector. The cell’s
subviews have their autoresizing set so as to compensate correctly. You can also
set a cell’s height in real time by implementing the delegate’s tableView:heightFor-
RowAtIndexPath: method; this can be used to make a table’s cells different heights
(more about that later in this chapter).

separatorColor, separatorStyle
The latter can be set in the nib (your choices, for a plain table, are UITableViewCell-
SeparatorStyleNone and UITableViewCellSeparatorStyleSingleLine); oddly, the
former can’t. Another oddity is that the separator style names are associated with
UITableViewCell even though the separator style itself is a UITableView property.

You can thus customize the built-in table cell styles quite heavily if you’ve a mind to.
In this example of a UITableViewCellStyleDefault cell, I shrink the image and center it
in the image view, supply a gray gradient as the cell’s background, and put a round-
rect border around the cell (Figure 21-3):

- (void)tableView:(UITableView *)tableView willDisplayCell:(UITableViewCell *)cell
 forRowAtIndexPath:(NSIndexPath *)indexPath {
 UIView* v = [[UIView alloc] initWithFrame:cell.frame];
 CAGradientLayer* lay = [CAGradientLayer layer];
 lay.colors = [NSArray arrayWithObjects:
 (id)[UIColor colorWithWhite:0.6 alpha:1].CGColor,
 [UIColor colorWithWhite:0.4 alpha:1].CGColor, nil];
 lay.frame = v.layer.bounds;
 [v.layer addSublayer:lay];
 lay.borderWidth = 1;
 lay.borderColor = [UIColor blackColor].CGColor;
 lay.cornerRadius = 5;
 cell.backgroundView = v;
 [v release];
 [cell.layer setValue:@"done" forKey:@"done"];
 cell.backgroundColor = [UIColor blackColor];
 cell.textLabel.backgroundColor = [UIColor clearColor];
}

Custom Cells
The built-in cell styles give the beginner a leg up in getting started with table views, but
there is nothing sacred about them, and sooner or later you’ll probably want to go
beyond them and put yourself in charge of how a table’s cells look and what subviews
they contain. There are three possible approaches:

Figure 21-3. A cell with a custom gradient background

512 | Chapter 21: Table Views

• Supply a UITableViewCell subclass and override layoutSubviews to alter the frames
of the built-in subviews.

• In tableView:cellForRowAtIndexPath:, add subviews to each cell’s contentView as
the cell is created. The contentView is the superview for the cell’s subviews, exclu-
sive of things like the accessoryView; so by confining yourself to the contentView,
you allow the cell to continue working correctly. This approach can be combined
with the previous approach, or you can just ignore the built-in subviews and use
your own exclusively. As long as the built-in subviews for a particular built-in cell
style are not referenced, they are never created or inserted into the cell.

• Design the cell in a nib, and load that nib in tableView:cellForRowAtIndexPath:
each time a cell needs to be created.

I’ll illustrate each approach.

Overriding a cell’s subview layout

You can’t directly change the frame of a built-in cell style subview in tableView:cell-
ForRowAtIndexPath: or tableView:willDisplayCell:forRowAtIndexPath:, because after
your changes, layoutSubviews comes along and overrides them. The workaround is to
override layoutSubviews. This is a straightforward solution if your main objection to a
built-in style is the frame of a subview.

So, for example, let’s modify a UITableViewCellStyleDefault cell so that the image is
at the right end instead of the left end. We’ll make a UITableViewCell subclass, MyCell;
Xcode makes this easy by supplying UITableViewCell as one of the default classes in
the “Subclass of” pop-up menu when you make a new Cocoa Touch Objective-C Class
file. Here is MyCell’s layoutSubviews:

- (void) layoutSubviews {
 [super layoutSubviews];
 CGRect cvb = self.contentView.bounds;
 CGRect imf = self.imageView.frame;
 imf.origin.x = cvb.size.width - imf.size.width;
 self.imageView.frame = imf;
 CGRect tf = self.textLabel.frame;
 tf.origin.x = 0;
 self.textLabel.frame = tf;
}

Now, in our table view’s data source, we change the line where new cells are created,
so as to generate an instance of MyCell:

cell = [[[MyCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier] autorelease];

Adding subviews in code

Let’s rewrite the previous example so that we don’t need our own UITableViewCell
subclass. Instead of modifying the existing imageView and textLabel, we’ll add to each

Table View Cells | 513

UITableView’s content view a completely new UIImageView and UILabel, each of
which can be assigned a frame that won’t be changed by the runtime. Here are some
things to keep in mind:

• The new views must be added when we instantiate a new cell, but not when we
reuse a cell (because a reused cell already has them).

• We should assign the new views an appropriate autoresizingMask, because the
cell’s content view might be resized.

• Each new view should be assigned a tag so that it can be referred to elsewhere.

• We must never send addSubview: to the cell itself — only to its contentView (or
some subview thereof).

Our implementation of tableView:cellForRowAtIndexPath: might look like this:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier] autorelease];
 CGFloat side = cell.contentView.bounds.size.height;
 UIImageView* iv = [[UIImageView alloc] init];
 iv.frame =
 CGRectMake(cell.contentView.bounds.size.width - side, 0, side, side);
 iv.tag = 1;
 iv.autoresizingMask = UIViewAutoresizingFlexibleHeight |
 UIViewAutoresizingFlexibleLeftMargin;
 [cell.contentView addSubview:iv];
 [iv release];
 UILabel* lab = [[UILabel alloc] init];
 lab.frame =
 CGRectMake(5, 0, cell.contentView.bounds.size.width - side - 10, side);
 lab.tag = 2;
 lab.autoresizingMask = UIViewAutoresizingFlexibleHeight |
 UIViewAutoresizingFlexibleRightMargin;
 [cell.contentView addSubview:lab];
 [lab release];
 }
 UILabel* lab = (UILabel*)[cell viewWithTag: 2];
 // ... set up lab here ...
 UIImageView* iv = (UIImageView*)[cell viewWithTag: 1];
 // ... set up iv here ...
 return cell;
}

Using our own cell subviews instead of the built-in cell style subviews has some clear
advantages; we no longer have to perform an elaborate dance to escape from the re-
strictions imposed by the runtime. We can set the frame of our subviews, and they stay
where we put them. Similarly, making a UILabel’s background transparent is trivial:

514 | Chapter 21: Table Views

we can assign it clearColor right here in tableView:cellForRowAtIndexPath:, because,
unlike the built-in textLabel, the runtime isn’t going alter our setting afterward.

Still, the verbosity of this code is somewhat overwhelming. We can avoid this by de-
signing the cell in a nib.

Designing a cell in a nib

In designing a cell in a nib, we start by creating a nib file that will consist, in effect,
solely of this one cell. In Xcode, we create a new User Interface file using the View
template. Let’s call it MyCell.xib. In the nib editor, delete the UIView from the dock
and replace it with a Table View Cell from the Object library.

The cell’s design window shows a standard-sized cell with the content view region
clearly demarcated. Using the Attributes inspector, we can add a built-in accessory
view, and the content view shrinks accordingly. Outlets for the accessoryView and
backgroundView allow us to add these features without code. The cell is assumed to be
a UITableViewCellStyleDefault type, and we can set features of its textLabel and image-
View directly; however, let’s ignore these and insert our own subviews instead. For
purposes of discussion, let’s just implement the same subviews we’ve already imple-
mented in the preceding two examples: a UILabel on the left side of the cell, and a
UIImageView on the right side.

Just as when we add subviews in code, we should set each subview’s autoresizing be-
havior and give each subview a tag. The difference is that we now do both those tasks
in the nib, not in code.

To configure the nib so that it can be loaded and the cell actually used, we must do the
following:

1. In our code, decide on a class to function as the owner of the nib, and give it a
UITableViewCell outlet so that when the nib loads, we will be able to access the
cell through an instance variable. The obvious choice here is to use as this nib’s
owner the very same view controller we’ve been putting our code in all along. I’ll
call the outlet tvc (and don’t forget to synthesize its accessors as well):

@property (nonatomic, assign) IBOutlet UITableViewCell* tvc;

2. In the nib, set the File’s Owner to the class to which we just gave the tvc outlet,
and hook its tvc outlet to the cell. (Don’t use its view outlet by mistake! We don’t
want to accidentally repoint this view controller’s view to the cell.)

3. Assign to the cell in the nib, in the Attributes inspector, the same string Identifier
that is used as a cell identifier in our code. We have not altered the template, so
that value is @"Cell", in accordance with this line of code:

static NSString* CellIdentifier = @"Cell";

I can’t stress sufficiently the importance of getting this right. If the cell’s Identifier
in the nib doesn’t match the identifier string in code, cells will not be reused prop-

Table View Cells | 515

erly in the construction of the table. Omitting this step or performing it incorrectly
is a common beginner mistake.

We are now ready to modify our implementation of tableView:cellForRowAtIndex-
Path:. Each time a new cell is needed, we load the nib with ourself as owner. This means
that a new instance of the cell is assigned to the tvc instance variable (Chapter 7), so
we use that as the cell for the rest of this method:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 [[NSBundle mainBundle] loadNibNamed:@"MyCell" owner:self options:nil];
 cell = self.tvc;
 }
 UILabel* lab = (UILabel*)[cell viewWithTag: 2];
 // ... set up lab here ...
 UIImageView* iv = (UIImageView*)[cell viewWithTag: 1];
 // ... set up iv here ...
 return cell;
}

This gives us all the advantages of customized cell contents without any verbosity; the
cell is created in two easy lines of code, and we proceed to configure it. Moreover, our
configuration code (“set up lab here”) can perhaps be greatly reduced, because this
subview can be configured in the nib. For example, as I was evolving this example from
earlier examples, I had this configuration code:

lab.numberOfLines = 2;
lab.textAlignment = UITextAlignmentLeft;
lab.adjustsFontSizeToFitWidth = YES;
lab.lineBreakMode = UILineBreakModeClip;
lab.minimumFontSize = 0.1;
lab.textColor = [UIColor whiteColor];
lab.highlightedTextColor = [UIColor blackColor];
lab.font = [UIFont fontWithName:@"Helvetica-Bold" size:12.0];
lab.text = @"This is a test";

But all of that code can now be deleted! Those are all aspects of the UILabel that can
be configured in the nib instead. For this and many other reasons, I am very much
partial to the nib-loading approach to cell instantiation.

If you dislike the use of viewWithTag: as a way of referring to the cell’s subviews, and
would prefer to use properties, provide a UITableViewCell subclass and set up outlets
there. Here are the steps for modifying the current example to use this technique:

1. Start with a UITableViewCell subclass. Let’s call it MyCell. (If you still have the
MyCell files from the earlier example, you can use them, but be sure to delete the
layoutSubviews override.) Give the class two outlets, and be sure to synthesize the
accessors for them:

516 | Chapter 21: Table Views

@property (nonatomic, assign) IBOutlet UILabel* theLabel;
@property (nonatomic, assign) IBOutlet UIImageView* theImageView;

2. In the table cell nib, change the class of the table cell to MyCell, and link up the
outlets from the cell to the respective subviews.

Now we can modify our implementation of tableView:cellForRowAtIndexPath: once
again, making sure that the cell is typed as a MyCell and referring to its properties, like
this:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 [[NSBundle mainBundle] loadNibNamed:@"MyCell" owner:self options:nil];
 cell = self.tvc;
 }
 MyCell* theCell = (MyCell*)cell; // cast as MyCell, use properties
 UILabel* lab = theCell.theLabel;
 // ... set up lab here ...
 UIImageView* iv = theCell.theImageView;
 // ... set up iv here ...
 return cell;
}

All my examples so far have used loadNibNamed:, but starting in iOS 4 you can use the
UINib class. Instead of this line:

[[NSBundle mainBundle] loadNibNamed:@"MyCell" owner:self options:nil];

You’d say this:

UINib* theCellNib = [UINib nibWithNibName:@"MyCell" bundle:nil];
[theCellNib instantiateWithOwner:self options:nil];

This minor change of expression can mean a major performance boost, because the
UINib class can cache a loaded nib the first time nibWithNibName:bundle: is called with
a particular nib name; thus, subsequent repeated calls to nibWithNibName:bundle: with
the same nib name may have no work to do, as the nib is already in memory.

Table View Data
The structure and content of the actual data as portrayed in a table view comes from
the data source, an object pointed to by the table view’s dataSource property and
adopting the UITableViewDataSource protocol. The data source is thus the heart and
soul of the table. What surprises beginners is that the data source operates not by
setting the table view’s structure and content, but on demand. The data source, qua data
source, consists of a set of methods that the table view will call when it needs infor-
mation. This architecture has important consequences for how you write your code,
which can be summarized by these simple guidelines:

Table View Data | 517

Be ready
Your data source cannot know when or how often any of these methods will be
called, so it must be prepared to answer any question at any time.

Be fast
The table view is asking for data in real time; the user is probably scrolling through
the table right now. So you mustn’t gum up the works; you must be ready to supply
responses just as fast as you possibly can. (If you can’t supply a piece of data fast
enough, you may have to skip it, supply a placeholder, and insert the data into the
table later. This, however, may involve you in threading issues that I don’t want
to get into here. I’ll give an example in Chapter 37.)

Be consistent
There are multiple data source methods, and you cannot know which one will be
called at a given moment. So you must make sure your responses are mutually
consistent at any moment. For example, a common beginner error is forgetting to
take into account, in your data source methods, the possibility that the data might
not be ready yet.

This may sound daunting, but you’ll be fine as long as you maintain an unswerving
adherence to the principles of model–view–controller (Chapter 13). How and when
you accumulate the actual data, and how that data is structured, is a model concern.
Acting as a data source is a controller concern. So you can acquire and arrange your
data whenever and however you like, just so long as when the table view actually turns
to you and asks what to do, you can lay your hands on the relevant data rapidly and
consistently.

Another source of confusion for beginners is that methods are rather oddly distributed
between the data source and the delegate, an object pointed to by the table view’s
delegate property and adopting the UITableViewDelegate protocol; in some cases, one
may seem to be doing the job of the other. This is not usually a cause of any real
difficulty, because the object serving as data source will probably also be the object
serving as delegate. Nevertheless, it is rather inconvenient when you’re consulting the
documentation; you’ll probably want to keep the data source and delegate documen-
tation pages open simultaneously as you work.

The Three Big Questions
Like Katherine Hepburn in Pat and Mike, the basis of your success as a data source is
your ability, at any time, to answer the Three Big Questions. The questions the table
view will ask you are a little different from the questions Mike asks Pat, but the principle
is the same: know the answers, and be able to recite them at any moment. Here they are:

How many sections does this table have?
The table will call numberOfSectionsInTableView:; respond with an integer. In
theory you can omit this method, as the default response is 1, which is often correct.

518 | Chapter 21: Table Views

However, I never omit it; for one thing, returning 0 is a good way to say that the
table has no data, and will prevent the table view from asking any other questions.

How many rows does this section have?
The table will call tableView:numberOfRowsInSection:. The table supplies a section
number — the first section is numbered 0 — and you respond with an integer. In
a table with only one section, of course, there is probably no need to examine the
incoming section number.

What cell goes in this row of this section?
The table will call tableView:cellForRowAtIndexPath:. The index path is expressed
as an NSIndexPath; this is a sophisticated and powerful class, but you don’t ac-
tually have to know anything about it, because UITableView provides a category
on it that adds two read-only properties — section and row. Using these, you ex-
tract the requested section number and row number, and return a UITableView-
Cell. The first row of a section is numbered 0.

The strategy for implementing tableView:cellForRowAtIndexPath: is a little complica-
ted, because you will probably want to keep memory usage at a minimum by reusing
table cells. The idea, as I’ve already mentioned, is that once a table cell is no longer
visible on the screen, it can be slotted into a row that is visible — with its portrayed
data appropriately changed, of course! — so that no more than the number of simul-
taneously visible cells need to exist at any given moment. Luckily, a table view is ready
to implement this strategy for you, and the template shows you how to write table-
View:cellForRowAtIndexPath: accordingly. Let’s examine the template code more
closely (Example 21-1).

Example 21-1. The template code for the third big question

// Customize the appearance of table view cells.
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier] autorelease];

 }

 return cell;
}

The table view is ready to maintain a cache of reusable cells. In fact, it can maintain
more than one such cache; this could be useful if your table view contains more than
one type of cell (where the meaning of the concept “type of cell” is pretty much up
to you). Therefore you must name each cache, by attaching a cell identifier string to

Table View Data | 519

any cell that can be reused. In most cases, there will be just one cache and therefore
just one cell identifier string, and you will want every cell to be reusable, so you will
attach that identifier string to every cell. In the template code, this string is main-
tained as a static NSString literal, ensuring that the memory for it will be set aside
only once and maintained between calls to this method.

To generate the cell being requested by the method call, you start by sending the
table view dequeueReusableCellWithIdentifier:. This asks the table view to pull out
of the named cache a currently unused cell, if there is one. There are two possibilities:
either the table view will return a cell, in which case that’s the cell you’re going to
be returning, or the table view will return nil (because there isn’t an unused cell
already in the cache), in which case you’re going to have to create the cell yourself.

If dequeueReusableCellWithIdentifier: returned nil, you create a new cell, initial-
izing it with initWithStyle:reuseIdentifier:. The style is one of the built-in styles;
we have already seen what this implies, and how you can configure a cell yourself
regardless of its style. The reuse identifier is the cell identifier that makes this cell
reusable. If you were to supply nil here, the cell would not be reusable. A cell created
with alloc must be autoreleased, because you must balance the alloc with a
release but you’re also going to be returning this cell. Instead of the line of code
shown in the template, you may want to instantiate the cell by loading a nib (I’ve
already shown how to do that). A cell instantiated from a nib is already autoreleased,
so no further memory management is required.

If dequeueReusableCellWithIdentifier: returned nil, you have just instantiated a
new cell; you may now want to perform any other tasks appropriate to the initial
configuration of a new cell. For example, earlier we saw that you can add subviews
to the cell’s content view; you would need to do this only when the cell is first created,
so this is the place for it.

You now have a cell (here, called cell), from whatever source derived. No matter
whether you just created it or you are reusing a previously used cell, you now con-
figure the cell appropriately to the section and row into which this cell is now to be
slotted. (This is something we did not do in any of our earlier examples; we were
concentrating on cell configuration itself, so we configured the cell the same way
regardless of its row.)

You do not know or care, when configuring the cell at the final stage, whether the cell
is new or reused. Therefore, always configure everything about the cell that might need
configuring. If you fail to do this, and if the cell is reused, you might be surprised when
some aspect of the cell is left over from its previous use; on the other hand, if you fail
to do this, and if the cell is new, you might be surprised when some aspect of the cell
isn’t configured at all.

For example, in one of my apps that lists article titles in a table, there is a little loud-
speaker icon that should appear in the cell if there is a recording associated with this
article. So I wrote this code:

520 | Chapter 21: Table Views

if (item.enclosures && [item.enclosures count])
 [cell viewWithTag: 5].hidden = NO;

This turned out to be a mistake, because when a cell was reused, it had a visible loud-
speaker icon if, in a previous incarnation, it had ever had a visible loudspeaker icon.
The solution was to rewrite the logic like this:

[cell viewWithTag: 5].hidden = !(item.enclosures && [item.enclosures count]);

To illustrate the efficiency of the cell-caching architecture, I’ll use the nib-instantiated
cell left over from our earlier examples. We have a table of one section and 100 rows:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 [[NSBundle mainBundle] loadNibNamed:@"MyCell" owner:self options:nil];
 cell = self.tvc;
 NSLog(@"creating a new cell");
 }
 MyCell* theCell = (MyCell*)cell;
 UILabel* lab = theCell.theLabel;
 lab.text = [NSString stringWithFormat: @"This is row %i of section %i",
 indexPath.row, indexPath.section];
 return cell;
}

When we run this code and scroll through the table, every cell is numbered correctly,
so there appear to be 100 cells. But the log messages show us that only 11 cells are
actually created.

In real life, of course, you’d probably be setting lab.text by consulting a data store (the
model) for the value appropriate to this row (or, if there is more than one section, this
row of this section). A line from a typical real-life implementation of tableView:cell-
ForRowAtIndexPath: consults an array (titles):

cell.textLabel.text = [titles objectAtIndex: [indexPath row]];

Table View Sections
The number of sections, as we’ve already seen, is determined by your reply to number-
OfSectionsInTableView:. For each section, the table view will consult your data source
and delegate to learn whether this section has a header or a footer, or both, or neither
(the default). You can supply headers and footers in two ways:

Header or footer string
You implement the data source method tableView:titleForHeaderInSection: or
tableView:titleForFooterInSection: (or both). Return nil to indicate that the
given section has no header (or footer). Return a string to use it as the section’s

Table View Data | 521

header (or footer). You cannot change the style of the label or of the header or
footer as a whole.

Header or footer view
You implement the delegate method tableView:viewForHeaderInSection: or table-
View:viewForFooterInSection: (or both). The corresponding data source method,
if implemented, is ignored. The view you supply is used as the entire header or
footer and is automatically resized to the table’s width and the section header or
footer height. If the view you supply has subviews, be sure to set proper autoresizing
behavior so that they’ll be positioned and sized appropriately when the view itself
is resized.

Supplying a header or a footer as a string is simpler, but supplying it as a view is more
powerful, because not only can you style a label, but you can also insert other kinds of
interface (such as a button).

No matter which way you supply the header or footer, its height is determined as fol-
lows. The default height comes from the table itself, which has a sectionHeader-
Height property and a sectionFooterHeight property. But you can override this to sup-
ply header and footer heights on an individual basis by implementing the delegate
method tableView:heightForHeaderInSection: or tableView:heightForFooterIn-
Section:.

Don’t confuse the section headers and footers with the header and footer
of the table as a whole. The latter are view properties of the table view
itself and are set through its properties tableHeaderView and tableFooter-
View.

If the table view has the plain style, you can add an index down the right side of the
table, which the user can tap to jump to the start of a section. This is very helpful for
navigating long tables. To generate the index, implement the data source method
sectionIndexTitlesForTableView:, returning an NSArray of string titles to appear as
entries in the index. This works even if there are no section headers. You will want the
index entries to be short — preferably just one character — because they will be par-
tially obscuring the right edge of the table; the cell’s content view will shrink to match,
so you’re sacrificing some cell width real estate. Unfortunately, there is no official way
to modify the index’s appearance (such as the color of its entries).

Normally, there will be a one-to-one correspondence between the index entries and the
sections; when the user taps an index entry, the table jumps to the start of the corre-
sponding section. However, under certain circumstances you may want to customize
this correspondence. For example, suppose there are 40 sections, but there isn’t room
to display 40 index entries comfortably on the iPhone. The index will automatically
curtail itself, omitting some index entries and inserting bullets to suggest this, but you
might prefer to take charge of the situation by supplying a shorter index. In such a case,

522 | Chapter 21: Table Views

implement the data source method tableView:sectionForSectionIndexTitle:at-
Index:, returning the index of the section to jump to for this section index. Both the
section index title and its index are passed in, so you can use whichever is convenient.

Apple’s documentation elaborates heavily on the details of implementing the model
behind a table with an index and suggests that you rely on a class called UILocalize-
dIndexedCollation. This class is effectively a way of generating an ordered list of letters
of the alphabet, with methods for helping to sort an array of strings and separate it into
sections. This might be useful if you need your app to be localized, because the notion
of the alphabet and its order changes automatically depending on the user’s preferred
language. But this notion is also fixed; you can’t readily use a UILocalizedIndexColla-
tion to implement your own sort order. For example, UILocalizedIndexCollation was
of no use to me in writing my Greek and Latin vocabulary apps, in which the Greek
words must be sorted, sectioned, and indexed according to the Greek alphabet, and
the Latin words use a reduced version of the English alphabet (no initial J, K, or V
through Z).

I’ll demonstrate a technique for implementing a sectioned indexed table by describing
the approach I take in my Latin vocabulary app (this is the second app in Fig-
ure 21-1). Everything depends on preparing the data in advance, storing it in appro-
priate structures. The data, consisting of Latin words and their English definitions, start
out in an array (dataIn) of dictionaries; in particular, each Latin word is stored in its
NSDictionary under the key @"latin". So we begin by sorting the array on that key’s
value:

// sort data alphabetically
NSSortDescriptor* sort =
 [[NSSortDescriptor alloc] initWithKey:@"latin" ascending:YES];
NSArray* data =
 [dataIn sortedArrayUsingDescriptors:[NSArray arrayWithObject: sort]];
[sort release];

We proceed now to make two arrays:

1. A list of section names, consisting of the unique capitalized first letters of the Latin
words. The trick here is the word “unique”; as we cycle through the sorted Latin
words, we add a letter to this list only if it isn’t the same as the last letter we added.

2. An array of arrays of all words starting with each letter.

self.sectionNames = [NSMutableArray array];
self.sectionData = [NSMutableArray array];
NSString* previous = @"";
for (NSDictionary* aCard in data) {
 // get the first letter
 NSString* c = [[aCard valueForKey: @"latin"] substringToIndex:1];
 // only add a letter to sectionNames when it's a different letter
 if (![c isEqualToString: previous]) {
 previous = c;
 [sectionNames addObject: [c uppercaseString]];
 // and in that case, also add a new array to our array of arrays

Table View Data | 523

 NSMutableArray* oneSection = [NSMutableArray array];
 [sectionData addObject: oneSection];
 }
 // in every case, add this dictionary to the last section array
 [[sectionData lastObject] addObject: aCard];
}

Now that we have our two arrays, the business of actually supplying the table view with
data based on them is trivial:

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [[sectionData objectAtIndex: section] count];
}

- (NSString *)tableView:(UITableView *)tableView
 titleForHeaderInSection:(NSInteger)section {
 return [sectionNames objectAtIndex: section];
}

- (NSArray *)sectionIndexTitlesForTableView:(UITableView *)tableView {
 return sectionNames;
}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 // ... skipping the boilerplate ...
 NSDictionary* card =
 [[sectionData objectAtIndex: [indexPath section]]
 objectAtIndex: [indexPath row]];
 cell.textLabel.text = [card valueForKey:@"latin"];
 // ...
 return cell;
}

Refreshing Table View Data
The table view doesn’t know when its underlying data changes; you have to tell it. You
can do this using any of several methods:

reloadData
Causes the table view to ask the data source the Three Big Questions all over again,
including asking for index entries and section headers and footers. This is not
necessarily inefficient; having worked out the layout of the table through the sec-
tion header and footer heights and row heights, the table has to regenerate only
those cells that are actually visible.

reloadRowsAtIndexPaths:withRowAnimation:
Causes the table to ask the data source the Three Big Questions all over again,
including section headers and footers (but not index entries). The table then re-
generates the cells for any of the specified rows that are visible. The first parameter

524 | Chapter 21: Table Views

is an array of index paths; to form an index path, use the NSIndexPath class method
indexPathForRow:inSection:.

reloadSections:withRowAnimation:
Causes the table to ask the data source the Three Big Questions all over again,
including section headers and footers (but not index entries). The table then re-
generates any visible section header(s) and visible cells of the specified sections(s).
The first parameter is an NSIndexSet (see Chapter 10).

The advantage of the second two methods isn’t so much that they are significantly less
expensive than a simple reloadData — they are not, really — but that they provide the
option for animations that cue the user as to what’s changing. The withRow-
Animation: parameter is one of the following:

UITableViewRowAnimationFade
The old fades into the new.

UITableViewRowAnimationRight
UITableViewRowAnimationLeft
UITableViewRowAnimationTop
UITableViewRowAnimationBottom

The old slides out in the stated direction, and is replaced from the opposite direc-
tion.

UITableViewRowAnimationNone
No animation. This was not made available until iOS 3.0; previously, to refresh
the table with no animation, it was necessary to call reloadData (which was no bad
thing, as it involves only slightly more work on the part of the table).

UITableViewRowAnimationMiddle
Introduced in iOS 3.2. Hard to describe; it’s a sort of venetian blind effect on each
cell individually.

According to Apple’s documentation, the method reloadSectionIndex-
Titles should cause the table to reload just the index entries, presum-
ably by calling the data source’s sectionIndexTitlesForTableView:. But
my experience is that this method is broken and does nothing.

It is also possible to access and alter a table’s individual cells directly. This can be a far
more lightweight approach to refreshing the table. The reload... methods all require
the table to calculate its entire layout, including the heights of all section headers and
footers and cells, even if only one row’s data needs refreshing. If the data for a row
changes behind the scenes, and you don’t need the built-in row animation, you might
prefer to change the corresponding cell’s contents directly. And there are other reasons
why you might need direct access to the cells of a table.

Table View Data | 525

It is important, however, to bear in mind that the cells are not the data (view is not
model), and that if cells are reusable, which they usually will be, the table has cells only
for the rows that are actually showing on the screen. So you can change only a cell that
actually exists, and when you do, you should make sure that the model corresponds to
it so that the row will be correct if its data is reloaded later.

Here are some UITableView methods that mediate between cells, rows, and visibility:

visibleCells
An array of the cells actually showing within the table’s bounds. The table may be
maintaining additional cells (if, for example, it is not reusing cells), but there is no
simple way to get a list of those.

indexPathsForVisibleRows
An array of the rows actually showing within the table’s bounds.

cellForRowAtIndexPath:
Returns a UITableViewCell if the table is maintaining a cell for the given row (typ-
ically because this is a visible row); otherwise, returns nil.

indexPathForCell:
Given a cell obtained from the table view, returns the row into which it is slotted.

Variable Row Heights
Most tables have rows that are all the same height, as set by the table view’s row-
Height. However, as I mentioned earlier, the delegate’s tableView:heightForRowAtIndex-
Path: can be used to make different rows different heights. (You can see this in the
TidBITS News app; look at Figure 19-1, where the first cell is one line of text shorter
than the second cell.)

Here are some things to remember when implementing a table whose rows can have
different heights:

Avoid performance limits
Variable row heights work best if the table is short and simple. The table view must
effectively lay out the entire table in order to load the data and in order at any
moment to know the size and offset of the scrolling content view. With a long table,
this can become too much information for the table to manipulate fast enough as
the user scrolls.

Lay out subviews correctly
As a cell is reused, its height may be changed, because the new row into which it
is to be slotted is a different height from the old row. Similarly, if the cell comes
from a nib, its height in the table view may be changed from its height in the nib.
This will expose any weaknesses in your practice for laying out subviews. For ex-
ample, a mistake in the autoresizingMask value of subviews can result in display

526 | Chapter 21: Table Views

errors that would not have appeared if all the rows were the same height. You may
have to resort to manual layout (implementing layoutSubviews).

Plan ahead
You (the delegate) are going to be asked for all the heights of all the rows well before
you (the data source) are called upon to provide the data for any individual rows.
You will want to provide this information quickly and accurately. So you will have
to plan how the data will appear in every row before actually causing the data to
appear in any row.

For example, here’s how I implemented the variable-height rows in the TidBITS News
app. In order to determine the height of a cell, I need to know how much vertical space
each of its labels should occupy. For example, the first label, the article headline, per-
mits two lines of text (numberOfLines), but if the headline is short it might need only
one. The cell, which is designed in a nib, is the correct width in that nib (320, the width
of the iPhone display); hence the labels are at their final width from the outset, and
only their height varies. So I supply a utility method, labelHeightsForItem:, that calls
NSString’s sizeWithFont:constrainedToSize:lineBreakMode: to calculate the heights of
both labels given their text and font. My tableView:heightForRowAtIndexPath: imple-
mentation can then use those heights, along with some #defined spacer values, to work
out the total height of the cell, while restricting it to the maximum height I’m willing
to allow:

- (CGFloat)tableView:(UITableView *)tableView
 heightForRowAtIndexPath:(NSIndexPath *)indexPath {
 id item = [self.parsedData.items objectAtIndex: [indexPath row]];
 NSArray* arr = [self labelHeightsForItem: item]; // call our utility method
 // label heights are now in a two-element array of NSNumbers
 CGFloat proposedHeight =
 [[arr objectAtIndex:0] floatValue] + [[arr objectAtIndex:1] floatValue]
 + _topspace + _midspace + _bottomspace;
 CGFloat result =
 (proposedHeight >= tableView.rowHeight) ?
 tableView.rowHeight : proposedHeight;
 return result;
}

In tableView:willDisplayCell:forRowAtIndexPath:, I call my utility method label-
HeightsForItem: again, using that information and the same #defined spacer values to
set the frames of the two labels within the cell’s content view:

- (void)tableView:(UITableView *)tableView willDisplayCell:(UITableViewCell *)cell
 forRowAtIndexPath:(NSIndexPath *)indexPath {
 FPItem* item = [self.parsedData.items objectAtIndex: [indexPath row]];
 NSArray* arr = [self labelHeightsForItem: item];
 CGRect f1 = [cell viewWithTag: 1].frame;
 f1.size.height = [[arr objectAtIndex: 0] floatValue];
 f1.origin.y = _topspace;
 [cell viewWithTag: 1].frame = f1;
 // ... and similarly for the second label ...
}

Table View Data | 527

Table View Selection
A table view cell has a normal (deselected) state and a selected state, according to its
selected property. It is possible to change a cell’s selected property directly (possibly
with animation, using setSelected:animated:), but you are more likely to manage se-
lection through the table view. Indeed, one of the chief purposes of your table view is
likely to be to let the user select a cell. This will be possible, provided you have not set
the value of the table view’s allowsSelection property to NO. The user taps a normal
cell, and the cell switches to its selected state. As we’ve already seen, this will usually
mean that the cell is redrawn with a blue (or gray) background.

Your code can also learn and manage the selection through these UITableView instance
methods:

indexPathForSelectedRow
Reports the currently selected row, or nil if there is no selection.

selectRowAtIndexPath:animated:scrollPosition:
The animation involves fading in the selection, but the user may not see this unless
the selected row is already visible. The last parameter dictates whether and how
the table view should scroll to reveal the newly selected row:

• UITableViewScrollPositionTop

• UITableViewScrollPositionMiddle

• UITableViewScrollPositionBottom

• UITableViewScrollPositionNone
For the first three, the table view scrolls (with animation, if the second parameter
is YES) so that the selected row is at the specified position among the visible cells.
For UITableViewScrollPositionNone, the table view does not scroll; if the selected
row is not already visible, it does not become visible.

deselectRowAtIndexPath:animated:
Deselects the given row (if it is selected); the optional animation involves fading
out the selection. No automatic scrolling takes place. This method is rarely needed,
though, because to deselect the currently selected row you can call selectRowAt-
IndexPath:animated:scrollPosition: with a nil index path.

When a table view changes a cell’s selected state, it also changes its highlighted state.
This causes the cell to propagate the highlighted state down through its subviews by
setting each subview’s highlighted property if it has one. This is why a UILabel’s
highlightedTextColor applies when the cell is selected. Similarly, a UIImageView (such
as the cell’s imageView) can have a highlightedImage that is shown when the cell is
selected, and a UIControl (such as a UIButton) takes on its highlighted state when the
cell is selected. You can set a cell’s highlighted state directly, with the highlighted
property or setHighlighted:animated:; but you are unlikely to do so, instead leaving
the table view to manage selection and highlighting together.

528 | Chapter 21: Table Views

If you set a cell’s selected or highlighted property directly, you are
acting behind the table view’s back, as it were; it has no knowledge of
what you’re doing, so it won’t track selection properly. This is another
reason why it’s better to let the user tap to select, or call the table view
selection methods.

Response to user selection is through the table view’s delegate. Despite their names,
the “will” methods are actually “should” methods: return nil to prevent the selection
(or deselection) from taking place. Return the index path handed in as parameter to
permit the selection (or deselection), or a different index path to cause a different cell
to be selected (or deselected):

• tableView:willSelectRowAtIndexPath:

• tableView:didSelectRowAtIndexPath:

• tableView:willDeselectRowAtIndexPath:

• tableView:didDeselectRowAtIndexPath:

When tableView:willSelectRowAtIndexPath: is called because the user taps a cell, it is
followed by tableView:willDeselectRowAtIndexPath: for any already selected cells.

The default behavior is that the user can select only one cell at a time; if the user selects
a cell while another cell is already selected, the previously selected cell is deselected.
However, your implementation of these delegate methods can override this default
behavior. If tableView:willDeselectRowAtIndexPath: returns nil at the appropriate mo-
ment, that cell will not be deselected when the user selects another cell. Similarly, the
default behavior is that if the user taps an already selected cell, it remains selected; you
can override this so that tapping a selected cell will deselect the cell instead. As an
example, I’ll override both behaviors; the user can now tap to select multiple rows and
can tap a selected row to deselect it:

- (NSIndexPath*) tableView:(UITableView*)tv
 willSelectRowAtIndexPath:(NSIndexPath*)ip {
 if ([tv cellForRowAtIndexPath:ip].selected) {
 [tv deselectRowAtIndexPath:ip animated:NO];
 return nil;
 }
 return ip;
}

- (NSIndexPath*) tableView:(UITableView*)tv
 willDeselectRowAtIndexPath:(NSIndexPath*)ip {
 return nil;
}

Unfortunately, if you implement multiple row selection, the table view still reports only
one selected row from indexPathForSelectedRow, so if you want to know what rows are
selected, you’ll have to keep track of the selection yourself.

Table View Selection | 529

One common response to user selection is navigation. A typical architecture is that of
master and detail: the table view lists things the user can see in more detail, and a tap
replaces the table view with the detailed view of the selected thing. Very often the table
view will be in a navigation interface, and you will respond to user selection by creating
the detail view and pushing it onto the navigation controller’s stack.

For example, here’s the code from my TidBITS News app that navigates from the list
of articles to the actual article on which the user has tapped:

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 id item = [self.parsedData.items objectAtIndex: [indexPath row]];
 UIViewController* svc = [[StoryViewController alloc] initWithItem: item];
 [self.navigationController pushViewController:svc animated:YES];
 [svc release];
}

Under some circumstances, you might use a modal view instead of a navigation inter-
face; for example, the Latin vocabulary list in Figure 21-1 is in a modal view, and when
the user taps a cell, the modal view is dismissed to reveal the details on the selected
word.

So common, in fact, is the use of a table view as the basis for navigation, that there is
a UIViewController subclass, UITableViewController, dedicated to the presentation
of a table view. The built-in Navigation-based Application project template uses it: the
UINavigationController’s root view controller is a UITableViewController, so the nav-
igation interface at launch time is completely occupied by a table view. It is important
to stress, however, that you never really need to use a UITableViewController — it’s
just a convenience, and doesn’t do anything that you couldn’t do yourself by other
means — and that if your table view does not constitute the entire view to be handled
by a UIViewController, you can’t use a UITableViewController.

A UITableViewController does not obey the UIViewController rule
about what happens if it is sent initWithNibName:bundle: with a nil nib
name. It doesn’t look for a nib with the same name as its own class;
instead, it creates the table view from scratch.

If you do use a UITableViewController, this is what it gives you:

• UITableViewController’s initWithStyle: creates the table view with a plain or
grouped format.

• The view controller is automatically made the table view’s delegate and data
source, unless you specify otherwise.

• The table view is made the controller’s tableView. It is also, of course, the control-
ler’s view, but the tableView property is typed as a UITableView, so you can send
table view messages to it without typecasting.

530 | Chapter 21: Table Views

• Whenever the table view appears, the selection is cleared automatically in viewWill-
Appear: (unless you disable this by setting clearsSelectionOnViewWillAppear to
NO), and the scroll indicators are flashed in viewDidAppear:.

If you disable UITableViewController’s automatic deselection behavior, or if you’re
not using a UITableViewController, you can implement automatic deselection in some
other way. I sometimes prefer to implement deselection in viewDidAppear:; the effect
is that when the user returns to the table, the row is still selected, but instantly deselects
itself:

- (void) viewDidAppear:(BOOL)animated {
 // deselect selected row
 [tableView selectRowAtIndexPath:nil animated:NO
 scrollPosition:UITableViewScrollPositionNone];
 [super viewDidAppear:animated];
}

By convention, if selecting a table cell causes navigation, the cell should be given an
accessoryType of UITableViewCellAccessoryDisclosureIndicator. This is a plain gray
right-pointing chevron at the right end of the cell. The chevron doesn’t of itself respond
to user interaction; it’s just a visual cue that we’ll “move to the right” if the user taps
the cell.

An alternative accessoryType is UITableViewCellAccessoryDetailDisclosureButton. It
is a button and does respond to user interaction through your implementation of the
table view delegate’s tableView:accessoryButtonTappedForRowWithIndexPath:. The
button has a right-pointing chevron, so once again you’d be likely to respond by nav-
igating; in this case, however, you would probably use the button instead of selection
as a way of letting the user navigate. An appropriate interface would be that selecting
the cell as a whole does one thing and tapping the disclosure button does something
else (involving navigation to the right).

A completely different use of table cell selection is to implement a choice among cells,
where a section of a table effectively functions as an iOS alternative to Mac OS X radio
buttons. The table usually has the grouped format. An accessoryType of UITableView-
CellAccessoryCheckmark is typically used to indicate the current choice. Implementing
radio-button behavior is up to you.

For example, here’s how Figure 21-2 is implemented. The table is created in the grouped
style, in code, as part of the view controller’s loadView implementation:

UITableView* tv = [[UITableView alloc] initWithFrame:CGRectMake(0,0,320,310)
 style:UITableViewStyleGrouped];
[v addSubview:tv];
tv.dataSource = self;
tv.delegate = self;
tv.scrollEnabled = NO;
self.tableView = tv;
[tv release];

Table View Selection | 531

As data source, we supply the structure and content of the table. The user defaults are
storing the current choice in each of the two categories, so we use them to decide where
the checkmarks go:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 return 2;
}

- (NSString *)tableView:(UITableView *)tableView
 titleForHeaderInSection:(NSInteger)section {
 if (section == 0)
 return @"Size";
 return @"Style";
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 if (section == 0)
 return 3;
 return 2;
}

- (UITableViewCell *)tableView:(UITableView *)tv
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell = [tv dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier] autorelease];
 }
 NSUInteger section = [indexPath section];
 NSUInteger row = [indexPath row];
 NSUserDefaults* ud = [NSUserDefaults standardUserDefaults];
 if (section == 0) {
 if (row == 0) {
 cell.textLabel.text = @"Easy";
 } else if (row == 1) {
 cell.textLabel.text = @"Normal";
 } else if (row == 2) {
 cell.textLabel.text = @"Hard";
 }
 } else if (section == 1) {
 if (row == 0) {
 cell.textLabel.text = @"Animals";
 } else if (row == 1) {
 cell.textLabel.text = @"Snacks";
 }
 }
 cell.accessoryType = UITableViewCellAccessoryNone;
 if ([[ud valueForKey:@"Style"] isEqualToString:cell.textLabel.text] ||
 [[ud valueForKey:@"Size"] isEqualToString:cell.textLabel.text])
 cell.accessoryType = UITableViewCellAccessoryCheckmark;
 return cell;
}

532 | Chapter 21: Table Views

As delegate, we are called when the user taps a cell. We simply store the user’s selection
into the user defaults and reload the table data. This deselects the current selection and
reassigns the checkmark:

- (void)tableView:(UITableView *)tv
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 NSUserDefaults* ud = [NSUserDefaults standardUserDefaults];
 NSString* setting = [tv cellForRowAtIndexPath:indexPath].textLabel.text;
 [ud setValue:setting forKey:
 [self tableView:tv titleForHeaderInSection:indexPath.section]];
 [self.tableView reloadData];
}

Table View Scrolling and Layout
A UITableView is a UIScrollView, so everything you already know about scroll views
is applicable (Chapter 20). In addition, a table view supplies two convenience scrolling
methods:

• scrollToRowAtIndexPath:atScrollPosition:animated:

• scrollToNearestSelectedRowAtScrollPosition:animated:

The scrollPosition parameter is as for selectRowAtIndexPath:..., discussed earlier in
this chapter.

The following UITableView methods mediate between the table’s bounds coordinates
on the one hand and table structure on the other:

• indexPathForRowAtPoint:

• indexPathsForRowsInRect:

• rectForSection:

• rectForRowAtIndexPath:

• rectForFooterInSection:

• rectForHeaderInSection:

The table’s header and footer are views, so their coordinates are given by their frames.

Table View Searching
A table view is a common way to present the results of a search performed through a
search field (a UISearchBar; see Chapter 25). This is such a standard interface, in fact,
that a class is provided, UISearchDisplayController, to mediate between the search field
where the user enters a search term and the table view listing the results of the search.
The UISearchDisplayController needs the following things:

Table View Searching | 533

A search bar
A UISearchBar in the interface. This will be the UISearchDisplayController’s
searchBar.

A view controller
The controller managing the view in the interface over which the search results are
to appear. This will be the UISearchDisplayController’s searchContents-
Controller. The UISearchDisplayController will harness this view controller’s
view and present its table of results modally on top of it.

A table view
The table view in which the search results will be presented. This will be the UI-
SearchDisplayController’s searchResultsTableView. It can already exist, or the UI-
SearchDisplayController will create it.

A data source and delegate for the table view
The UISearchDisplayController’s searchResultsDataSource and searchResults-
Delegate. They will control the data and structure of the search results table. They
are commonly the same object, as for any table view; moreover, they are commonly
the view controller.

A delegate
An optional object adopting the UISearchDisplayDelegate protocol. It will be no-
tified of events relating to the display of results. It, too, is commonly the view
controller.

Moreover, the UISearchBar itself can also have a delegate; plus, it is often the case that
the thing being searched is itself a table view, so the search field is effectively filtering
the contents of the table view. A single object may thus be playing all of the following
roles:

• The searchable table view’s view controller

• The searchable table view’s data source

• The searchable table view’s delegate

• The view controller for the view over which the search results will appear

• The search results table view’s data source

• The search results table view’s delegate

• The UISearchDisplayController’s delegate

• The UISearchBar’s delegate

To illustrate, we will implement a table view that is searchable through a UISearchBar
and that displays the results of that search in a second table view managed by a UI-
SearchDisplayController. The first question is how to make the search field appear
along with the table view. Apple’s own apps, such as the Contacts app, have popular-
ized an interface in which the search field is the table view’s header view. (Indeed, this

534 | Chapter 21: Table Views

is such a common arrangement that if you drag a UISearchBar onto a UITableView in
a nib, the search field becomes the table’s header view and a UISearchDisplayController
is created for you automatically.) Another feature of Apple’s standard interface is that
the search field isn’t initially showing. To implement this, we scroll to the first actual
row of data when the table view appears.

We’re going to start with a table managed by a UITableViewController. In this con-
troller’s viewDidLoad, we create the search bar and slot it in as the table’s header view;
we then load the data and scroll the header view out of sight. We also create the UI-
SearchDisplayController and tie it to the search bar — and to ourselves as the UI-
SearchDisplayController’s controller, delegate, search table data source, and search
table delegate, as well as making ourselves the UISearchBar delegate:

UISearchBar* b = [[UISearchBar alloc] init];
[b sizeToFit];
b.delegate = self;
[self.tableView setTableHeaderView:b];
[self.tableView reloadData];
[self.tableView
 scrollToRowAtIndexPath:[NSIndexPath indexPathForRow:0 inSection:0]
 atScrollPosition:UITableViewScrollPositionTop animated:NO];
UISearchDisplayController* c =
 [[UISearchDisplayController alloc] initWithSearchBar:b
 contentsController:self];
[b release];
self.sbc = c; // retain policy
c.delegate = self;
c.searchResultsDataSource = self;
c.searchResultsDelegate = self;
[c release];

When the user initially taps in the search field, the UISearchDisplayController auto-
matically becomes “active”: it grabs the search field and the view controller’s view and
constructs a new interface along with a nice animation. This indicates to the user that
the search field is ready to receive input; when the user proceeds to enter characters
into the search field, the UISearchDisplayController is ready to superimpose its own
search results table view onto this interface. The UISearchBar has a Cancel button that
the user can tap to dismiss (deactivate) the interface created by the UISearchDisplay-
Controller.

Now, we are both the data source and delegate for the original table view and the data
source and delegate for the search results table. This means that our search is already
almost working, because the search results table will automatically have the same data
and structure as the original table! Our only task is to modify our existing code to check
whether the table view that’s talking to us is the search results table view (this will be
UISearchDisplayController’s searchResultsTableView) and, if it is, to limit our returned
data with respect to the search bar’s text.

The strategy for doing this should be fairly obvious if we are maintaining our source
data in a sensible model. Let’s say, for the sake of simplicity, that our original table is

Table View Searching | 535

displaying the names of the 50 United States, which it is getting from an array of strings
called states:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 return 1;
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 NSArray* model = self.states;
 return [model count];
}

// Customize the appearance of table view cells.
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier] autorelease];
 }
 NSArray* model = self.states;
 cell.textLabel.text = [model objectAtIndex: indexPath.row];
 return cell;
}

To make this work with a UISearchDisplayController, the only needed change is this:
Each time we speak of the NSArray called model, we must decide whether it should be
self.states, as now, or whether it should be a different array that is filtered with respect
to the current search — let’s call it self.filteredStates. There are two occurrences of
this line:

NSArray* model = self.states;

They are now to be replaced by this:

NSArray* model =
 (tableView == sbc.searchResultsTableView) ? self.filteredStates : self.states;

The only remaining question is when and how this filteredStates array should be
calculated. One approach is to ignore the user typing into the search field and calculate
the filtered array only when the user taps the Search button in the keyboard. We are
the UISearchBar delegate, so we can hear about the user tapping the Search button by
implementing searchBarSearchButtonClicked:. We create the filtered array and reload
the UISearchDisplayController’s search results table view:

- (void)searchBarSearchButtonClicked:(UISearchBar *)searchBar {
 NSPredicate* p = [NSPredicate predicateWithBlock:
 ^BOOL(id obj, NSDictionary *d) {
 NSString* s = obj;
 return ([s rangeOfString:searchBar.text
 options:NSCaseInsensitiveSearch].location != NSNotFound);

536 | Chapter 21: Table Views

 }];
 self.filteredStates = [states filteredArrayUsingPredicate:p];
 [self.sbc.searchResultsTableView reloadData];
}

This works fine. However, as soon as the user starts typing into the search field, the
results table becomes empty, along with a background that reads “No Results” (a
phrase that, unfortunately, cannot be removed or customized). This is because the
results table reloads whenever the user changes the contents of the search field and is
finding that it has no data (because filteredStates is nil).

One solution is to set the filteredStates array to the states array before the search
begins. We can know when this will be through a UISearchDisplayController delegate
method:

- (void)searchDisplayControllerWillBeginSearch:(UISearchDisplayController *)c {
 self.filteredStates = self.states;
}

Alternatively, we can generate a new set of search results every time the user types in
the search field, thus effectively implementing a “live” search. This is perfectly reason-
able for our extremely small data set of 50 states, though of course it mightn’t work
well if the data set were very large or if there were for some other reason a delay in
filtering it (such as data needing to be fetched over the network). To implement live
search, we turn our implementation of searchBarSearchButtonClicked: into an imple-
mentation of searchBar:textDidChange:. Everything else stays the same, except that
now there is no need to reload the search results table’s data, as by default the UI-
SearchDisplayController will do that automatically:

- (void)searchBar:(UISearchBar *)searchBar textDidChange:(NSString *)searchText {
 NSPredicate* p = [NSPredicate predicateWithBlock:
 ^BOOL(id obj, NSDictionary *d) {
 NSString* s = obj;
 return ([s rangeOfString:searchText
 options:NSCaseInsensitiveSearch].location != NSNotFound);
 }];
 self.filteredStates = [states filteredArrayUsingPredicate:p];
}

A UISearchBar can also display scope buttons, letting the user alter the meaning of the
search. If you add these, then of course you must take them into account when filtering
the model data. For example, let’s have two scope buttons, “Starts With” and “Con-
tains”:

UISearchBar* b = [[UISearchBar alloc] init];
[b sizeToFit];
b.scopeButtonTitles = [NSArray arrayWithObjects: @"Starts With", @"Contains", nil];
// ...

Our filtering routine must now take the state of the scope buttons into account. More-
over, the search results table view will reload when the user changes the scope, so if

Table View Searching | 537

we’re doing a live search, we must respond by filtering the data then as well. To prevent
repetition, we’ll abstract the filtering routine into a method of its own:

- (void) filterData {
 NSPredicate* p = [NSPredicate predicateWithBlock:
 ^BOOL(id obj, NSDictionary *d) {
 NSString* s = obj;
 NSStringCompareOptions options = NSCaseInsensitiveSearch;
 if (sbc.searchBar.selectedScopeButtonIndex == 0)
 options |= NSAnchoredSearch;
 return ([s rangeOfString:sbc.searchBar.text
 options:options].location != NSNotFound);
 }];
 self.filteredStates = [states filteredArrayUsingPredicate:p];
}

- (void)searchBar:(UISearchBar *)searchBar textDidChange:(NSString *)searchText {
 [self filterData];
}

- (void)searchBar:(UISearchBar *)searchBar
 selectedScopeButtonIndexDidChange:(NSInteger)selectedScope {
 [self filterData];
}

The UISearchBar has various properties through which it can be configured (see Chap-
ter 25). Both the UISearchBar and UISearchDisplayController send their delegate nu-
merous messages that you can take advantage of to customize behavior. A UISearchBar
in a UIToolbar on the iPad can display its results in a popover (see Chapter 22).

In an indexed list — one with sections and an index running down the right side — a
“magnifying glass” search symbol can be made to appear in the index by including
UITableViewIndexSearch (usually as the first item) in the string array returned from
sectionIndexTitlesForTableView:. For example, suppose that as in our earlier example,
the section names are to be used as index entries and are in an array called sectionNames:

- (NSArray *)sectionIndexTitlesForTableView:(UITableView *)tableView {
 return [[NSArray arrayWithObject: UITableViewIndexSearch]
 arrayByAddingObjectsFromArray:sectionNames];
}

You’ll also need to implement tableView:sectionForSectionIndexTitle:atIndex:, be-
cause now the correspondence between index entries and sections is off by one. If the
user taps the magnifying glass in the index, you scroll to reveal the search field (and
you’ll also have to return a bogus section number, but there is no penalty for that):

- (NSInteger)tableView:(UITableView *)tableView
 sectionForSectionIndexTitle:(NSString *)title
 atIndex:(NSInteger)index {
 if (index == 0)
 [tableView scrollRectToVisible:tableView.tableHeaderView.frame
 animated:NO];
 return index-1;
}

538 | Chapter 21: Table Views

Table View Editing
A table view cell has a normal state and an editing state, according to its editing prop-
erty. The editing state is typically indicated visually by one or more of the following:

Editing controls
At least one editing control will usually appear, such as a minus button (for dele-
tion) at the left side.

Shrinkage
The content of the cell will usually shrink to allow room for an editing control. You
can prevent a cell in a grouped-style table from shifting its left end rightward in
editing mode by setting its shouldIndentWhileEditing to NO, or with the table
delegate’s tableView:shouldIndentWhileEditingRowAtIndexPath:.

Changing accessory view
The cell’s accessory view will change automatically in accordance with its editing-
AccessoryType or editingAccessoryView. If you assign neither, so that they are nil,
the cell’s accessory view will vanish when in editing mode.

As with selection, you can set a cell’s editing property directly (or use setEditing:
animated: to get animation), but you are more likely to let the table view manage ed-
itability. Table view editability is controlled through the table’s editing property, usu-
ally by sending the table the setEditing:animated: message. The table is then respon-
sible for putting its cells into edit mode.

A cell in edit mode can also be selected by the user if the table view’s
allowsSelectionDuringEditing is YES. But this would be unusual.

Putting the table into edit mode is usually left up to the user. One typical device for
allowing this is an Edit button. In a navigation interface, we could have our view con-
troller supply the button as the navigation item’s right button:

UIBarButtonItem* bbi =
 [[UIBarButtonItem alloc] initWithBarButtonSystemItem:UIBarButtonSystemItemEdit
 target:self action:@selector(doEdit:)];
self.navigationItem.rightBarButtonItem = bbi;
[bbi release];

Our action handler will be responsible for putting the table into edit mode, so in its
simplest form it might look like this:

- (void) doEdit: (id) sender {
 [self.tableView setEditing:YES animated:YES];
}

Table View Editing | 539

But that does not solve the problem of getting out of editing mode. The standard sol-
ution is to have the Edit button replace itself by a Done button:

- (void) doEdit: (id) sender {
 int which;
 if (![self.tableView isEditing]) {
 [self.tableView setEditing:YES animated:YES];
 which = UIBarButtonSystemItemDone;
 } else {
 [self.tableView setEditing:NO animated:YES];
 which = UIBarButtonSystemItemEdit;
 }
 UIBarButtonItem* bbi = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:which target:self action:@selector(doEdit:)];
 self.navigationItem.rightBarButtonItem = bbi;
 [bbi release];
}

However, it turns out that all of this is completely unnecessary if we want standard
behavior, as it is already implemented for us! A UIViewController supplies an edit-
ButtonItem that calls the UIViewController’s setEditing:animated: when tapped,
tracks whether we’re in edit mode with the UIViewController’s editing property, and
changes its own title accordingly. Moreover, a UITableViewController’s implementa-
tion of setEditing:animated: is to call the same method on its table view. Thus, if we’re
using a UITableViewController, we get all of that behavior for free just by inserting the
editButtonItem into our interface (and indeed, the line of code to do this may already
be present in our project template, just waiting for us to uncomment it):

self.navigationItem.rightBarButtonItem = self.editButtonItem;

When the table view enters edit mode, it consults its data source and delegate about
the editability of individual rows:

tableView:canEditRowAtIndexPath: to the data source
The default is YES. The data source can return NO to prevent the given row from
entering edit mode.

tableView:editingStyleForRowAtIndexPath: to the delegate
Each standard editing style corresponds to a control that will appear in the cell.
The choices are:

UITableViewCellEditingStyleNone
No editing control appears.

UITableViewCellEditingStyleDelete
The cell shows a minus button at its left end. The user can tap this to summon
a Delete button, which the user can then tap to confirm the deletion. This is
the default.

UITableViewCellEditingStyleInsert
The cell shows a plus button at its left end.

540 | Chapter 21: Table Views

If the user taps an insert button (the plus button) or a delete button (the Delete button
that appears after the user taps the minus button), the data source is sent the table-
View:commitEditingStyle:forRowAtIndexPath: message and is responsible for obeying
it. In your response, you will probably want to alter the structure of the table, and
UITableView methods for doing this are provided:

• insertRowsAtIndexPaths:withRowAnimation:

• deleteRowsAtIndexPaths:withRowAnimation:

• insertSections:withRowAnimation:

• deleteSections:withRowAnimation:

The row animations here are effectively the same ones discussed earlier in connection
with refreshing table data; “left” for an insertion means to slide in from the left, and
for a deletion it means to slide out to the left, and so on.

If you’re issuing more than one of these commands, you can combine them by sur-
rounding them with beginUpdates and endUpdates, forming an updates block. An up-
dates block combines not just the animations but the requested changes themselves.
This relieves you from having to worry about how a command is affected by earlier
commands in the same updates block; indeed, order of commands within an updates
block doesn’t really matter. For example, if you delete row 1 of a certain section and
then (in a separate command) delete row 2 of the same section, you delete two suc-
cessive rows, just as you would expect; the notion “2” does not change its meaning
because you deleted an earlier row first, because you didn’t delete an earlier row first
— the updates block combines the commands for you, interpreting both index paths
with respect to the state of the table before any changes are made. Similarly, if you
perform insertions and deletions together in one animation, the deletions are performed
first, regardless of the order of your commands, and the insertion row and section
numbers refer to the state of the table after the deletions.

An interesting trick is that an empty updates block lays out the table view, fetching the
section header and footer titles or views, their heights, and the row heights, without
reloading any cells. Apple takes advantage of this in the Table View Animations and
Gestures example, in which a pinch gesture is used to change a table’s row height in
real time.

Deleting Table Items
Deletion of table items is the default, so there’s not much for us to do in order to
implement it. If our view controller is a UITableViewController and we’ve displayed
the Edit button as its navigation item’s right button, everything happens automatically:
the user taps the Edit button, the view controller’s setEditing:animated: is called, the
table view’s setEditing:animated: is called, and the table cells all show the minus but-
ton at the left end. The user can then tap a minus button; a Delete button appears at

Table View Editing | 541

the cell’s right end. You can customize the Delete button’s title with the table delegate
method tableView:titleForDeleteConfirmationButtonForRowAtIndexPath:.

What is not automatic is the actual response to the Delete button. For that, we need to
implement tableView:commitEditingStyle:forRowAtIndexPath:. Typically, you’ll re-
move the corresponding entry from the underlying model data, and you’ll call delete-
RowsAtIndexPaths:withRowAnimation: or deleteSections:withRowAnimation: to update
the appearance of the table. This is the tricky part; you have to do whatever makes
sense for the way you’re maintaining the model, and you must delete the row or section
in such a way as to keep the table display coordinated with the model’s structure.
Otherwise, the app will crash (with an extremely helpful error message).

To illustrate, let’s suppose that the underlying model is an array of arrays, maintained
as sectionNames and sectionData, as in our earlier example. These arrays must now be
mutable. Our approach will be in two stages:

1. Deal with the model data. We’ll delete the requested row; if this empties the section
array, we’ll also delete that section array and the corresponding section name.

2. Deal with the table’s appearance. If we deleted the section array, we’ll call delete-
Sections:withRowAnimation:; otherwise, we’ll call deleteRowsAtIndexPaths:with-
RowAnimation::

- (void)tableView:(UITableView *)tableView
 commitEditingStyle:(UITableViewCellEditingStyle)editingStyle
 forRowAtIndexPath:(NSIndexPath *)indexPath {
 [[self.sectionData objectAtIndex: indexPath.section]
 removeObjectAtIndex:indexPath.row];
 if ([[self.sectionData objectAtIndex: indexPath.section] count] == 0) {
 [self.sectionData removeObjectAtIndex: indexPath.section];
 [self.sectionNames removeObjectAtIndex: indexPath.section];
 [tableView deleteSections:[NSIndexSet indexSetWithIndex: indexPath.section]
 withRowAnimation:UITableViewRowAnimationLeft];
 } else {
 [tableView deleteRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]
 withRowAnimation:UITableViewRowAnimationLeft];
 }
}

If a section index appears in the table, and you delete a section, you’re
going to want to reload the section index. Ideally, you could call reload-
SectionIndexTitles, but this method, as we’ve already seen, is broken;
so you’ll have to call reloadData. However, that call interferes with the
deletion animation. A simple solution is to use delayed performance (a
delay of about 0.4 seconds should suffice).

The user can also delete a row by swiping it to summon its Delete button without having
explicitly entered edit mode; no other row is editable, and no other editing controls are
shown. This feature is implemented “for free” by virtue of our having supplied an

542 | Chapter 21: Table Views

implementation of tableView:commitEditingStyle:forRowAtIndexPath:. If you’re like
me, your first response will be: “Thanks for the free functionality, Apple, and now how
do I turn this off?” Because the Edit button is already using the UIViewController’s
editing property to track edit mode, we can take advantage of this and refuse to let any
cells be edited unless the view controller is in edit mode:

- (UITableViewCellEditingStyle)tableView:(UITableView *)aTableView
 editingStyleForRowAtIndexPath:(NSIndexPath *)indexPath {
 return self.editing ?
 UITableViewCellEditingStyleDelete : UITableViewCellEditingStyleNone;
}

Editable Content in Table Items
A table item might have content that the user can edit directly, such as a UITextField
(Chapter 23). Because the user is working in the view, you need a way to reflect the
user’s changes into the model. This will probably involve putting yourself in contact
with the interface objects where the user does the editing.

To illustrate, I’ll implement a table cell with a text field that is editable when the cell is
in editing mode. Imagine an app that maintains a list of names and phone numbers. A
name and phone number are displayed as a grouped-style table, and they become ed-
itable when the user taps the Edit button (Figure 21-4).

A UITextField is editable if its enabled is YES. To tie this to the cell’s editing state, it
is probably simplest to implement a custom UITableViewCell class. I’ll call it MyCell,
and I’ll design it in the nib, giving it a single UITextField that’s pointed to through a
property called textField. In the code for MyCell, we override didTransitionTo-
State:, as follows:

- (void) didTransitionToState:(UITableViewCellStateMask)state {
 [super didTransitionToState:state];
 if (state == UITableViewCellStateEditingMask) {
 self.textField.enabled = YES;
 }
 if (state == UITableViewCellStateDefaultMask) {
 self.textField.enabled = NO;
 }
}

Figure 21-4. A simple phone directory app

Table View Editing | 543

In the table’s data source, we make ourselves the text field’s delegate when we create
and configure the cell. For example, here’s the part where we configure a phone number
cell; the model is an array called numbers:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 // ...
 MyCell* theCell = (MyCell*) cell;
 if (indexPath.section == 1) {
 theCell.textField.text = [self.numbers objectAtIndex: indexPath.row];
 theCell.textField.keyboardType = UIKeyboardTypeNumbersAndPunctuation;
 theCell.textField.delegate = self;
 }
 return cell;
}

We are the UITextField’s delegate, so we are responsible for implementing the Return
button in the keyboard to dismiss the keyboard:

- (BOOL)textFieldShouldReturn:(UITextField *)tf {
 [tf endEditing:YES];
 return YES;
}

Now comes the interesting part. When a text field stops editing, we can hear about it
because we are its delegate, by implementing textFieldDidEndEditing:. We work out
which cell it belongs to, and update the model accordingly:

- (void)textFieldDidEndEditing:(UITextField *)tf {
 // some cell's text field has finished editing; which cell?
 UIView* v = tf;
 do {
 v = v.superview;
 } while (![v isKindOfClass: [UITableViewCell class]]);
 MyCell* cell = (MyCell*)v;
 // update data model to match
 NSIndexPath* ip = [self.tableView indexPathForCell:cell];
 // ...
 if (ip.section == 1)
 [self.numbers replaceObjectAtIndex:ip.row withObject:cell.textField.text];
}

Inserting Table Items
You are unlikely to attach a plus (insert) button to every row. In fact, a common in-
terface is that when a table is edited, every row has a minus button except the last row,
which has a plus button; this shows the user that a new row can be inserted at the end
of the table.

Let’s implement this for phone numbers in our name-and-phone-number app, allowing
the user to give a person any quantity of phone numbers (Figure 21-5):

- (UITableViewCellEditingStyle)tableView:(UITableView *)tableView
 editingStyleForRowAtIndexPath:(NSIndexPath *)indexPath {

544 | Chapter 21: Table Views

 if (indexPath.section == 1) {
 NSInteger ct =
 [self tableView:tableView numberOfRowsInSection:indexPath.section];
 if (ct-1 == indexPath.row)
 return UITableViewCellEditingStyleInsert;
 return UITableViewCellEditingStyleDelete;
 }
 return UITableViewCellEditingStyleNone;
}

The person’s name has no editing control (a person must have exactly one name), so
we prevent it from indenting in edit mode:

- (BOOL)tableView:(UITableView *)tableView
 shouldIndentWhileEditingRowAtIndexPath:(NSIndexPath *)indexPath {
 if (indexPath.section == 1)
 return YES;
 return NO;
}

When the user taps an editing control, we must respond. The model is a mutable array
of strings, numbers. We already know what to do when the tapped control is a delete
button; things are similar when it’s an insert button, but we’ve a little more work to
do. The new row will be empty, and it will be at the end of the table; so we append an
empty string to the numbers model array, and then we insert a corresponding row at the
end of the view. But now two successive rows have a plus button; the way to fix that
is to reload the first of those rows. We also show the keyboard for the new, empty
phone number, so that the user can start editing it immediately; we can’t do that until
the row animation from the insertion is over, so we use delayed performance (this use
of delayed performance has a certain fragility, but no event tells us when the row ani-
mation ends, so we’ve no other choice). I find that the whole thing looks and works
best if the row reloading is also part of the delayed performance:

- (void) tableView:(UITableView *)tableView
 commitEditingStyle:(UITableViewCellEditingStyle)editingStyle
 forRowAtIndexPath:(NSIndexPath *)indexPath {
 if (editingStyle == UITableViewCellEditingStyleInsert) {
 [self.numbers addObject: @""];

Figure 21-5. Phone directory app in editing mode

Table View Editing | 545

 NSInteger ct = [self.numbers count];
 [tableView insertRowsAtIndexPaths:
 [NSArray arrayWithObject: [NSIndexPath indexPathForRow: ct-1 inSection:1]]
 withRowAnimation:UITableViewRowAnimationMiddle];
 [self performSelector:@selector(selectLast) withObject:nil afterDelay:0.4];
 }
 if (editingStyle == UITableViewCellEditingStyleDelete) {
 [self.numbers removeObjectAtIndex:indexPath.row];
 [tableView deleteRowsAtIndexPaths:[NSArray arrayWithObject: indexPath]
 withRowAnimation:UITableViewRowAnimationBottom];
 }
}

- (void) selectLast {
 NSInteger ct = [self.numbers count];
 [self.tableView reloadRowsAtIndexPaths: [NSArray arrayWithObject:
 [NSIndexPath indexPathForRow:ct-2 inSection:1]]
 withRowAnimation:UITableViewRowAnimationNone];
 UITableViewCell* cell = [self.tableView cellForRowAtIndexPath:
 [NSIndexPath indexPathForRow:ct-1 inSection:1]];
 [((MyCell*)cell).textField becomeFirstResponder];
}

Rearranging Table Items
If the data source implements tableView:moveRowAtIndexPath:toIndexPath:, the table
displays a reordering control at the right end of each row in editing mode, and the user
can drag it to rearrange table items. The reordering control can be prevented for indi-
vidual table items by implementing tableView:canMoveRowAtIndexPath:. The user is free
to move rows that display a reordering control, but the delegate can limit where a row
can be moved to by implementing tableView:targetIndexPathForMoveFromRowAtIndex-
Path:toProposedIndexPath:.

To illustrate, we’ll add to our name-and-phone-number app the ability to rearrange
phone numbers. There must be multiple phone numbers to rearrange:

- (BOOL)tableView:(UITableView *)tableView
 canMoveRowAtIndexPath:(NSIndexPath *)indexPath {
 if (indexPath.section == 1 && [self.numbers count] > 1)
 return YES;
 return NO;
}

In our example, a phone number must not be moved out of its section, so we implement
the delegate method to prevent this. We also take this opportunity to dismiss the key-
board if it is showing.

- (NSIndexPath *)tableView:(UITableView *)tableView
 targetIndexPathForMoveFromRowAtIndexPath:(NSIndexPath *)sourceIndexPath
 toProposedIndexPath:(NSIndexPath *)proposedDestinationIndexPath {
 [tableView endEditing:YES];
 if (proposedDestinationIndexPath.section == 0)
 return [NSIndexPath indexPathForRow:0 inSection:1];

546 | Chapter 21: Table Views

 return proposedDestinationIndexPath;
}

After the user moves an item, tableView:moveRowAtIndexPath:toIndexPath: is called,
and we trivially update the model to match. We also reload the table, to fix the editing
controls:

- (void)tableView:(UITableView *)tableView
 moveRowAtIndexPath:(NSIndexPath *)fromIndexPath
 toIndexPath:(NSIndexPath *)toIndexPath {
 NSString* s = [self.numbers objectAtIndex: fromIndexPath.row];
 [s retain];
 [self.numbers removeObjectAtIndex: fromIndexPath.row];
 [self.numbers insertObject:s atIndex: toIndexPath.row];
 [s release];
 [tableView reloadData];
}

Table View Editing | 547

CHAPTER 22

Popovers and Split Views

Popovers and split views are forms of interface that exist only on the iPad.

A popover is like a secondary window or dialog: it presents a view layered on top of the
main interface. It does not dim out the rest of the screen like a modal view (if its pre-
sentation mode is UIModalPresentationPageSheet or UIModalPresentationFormSheet;
see Chapter 19). It can be effectively modal, preventing the user from working in the
rest of the interface, or it can vanish if the user taps outside it; or you can allow the user
to tap some or all of the interface outside it without dismissing the popover.

A split view is a combination of two views, the first of which is the width of an iPhone
screen (when the iPhone is held in portrait orientation). When the iPad is in landscape
orientation, the two views appear side by side; when the iPad is in portrait orientation,
only the second view appears, with an option to summon the first view as a popover.

Popovers may be thought of as a sort of compromise between the iPhone interface and
the iPad interface. For example, in my LinkSame app, both the settings view (which
allows the user to configure and begin a new game) and the help view (which describes
how to play the game) are popovers (Figure 22-1). On the iPhone, both these views
would occupy the entire screen; for each, we’d need a way to navigate to it and to return
to the main interface when the user is finished with it (both would probably be modal
views). But with the larger iPad screen, that would make no sense; neither view is large
enough, or important enough, to occupy the entire screen exclusively. As popovers,
these views are shown as what they are: smaller, secondary views which the user sum-
mons temporarily and then dismisses.

The split view, too, eases the transition from iPhone to iPad. On the iPhone, you might
have a master–detail architecture in a navigation interface, where the master is a table
view (Chapter 21). On the iPad, the screen is large enough to accommodate the master
and the detail simultaneously: there is no need to navigate from one to the other. The
split view provides a straightforward way to present them simultaneously; it is no co-
incidence that its first view is sized to hold the master table that occupied the entire
screen on the iPhone. Apple’s own Mail app is a familiar example.

549

Presenting a Popover
To present a popover, you’ll need a UIPopoverController and a view controller. The
UIPopoverController is not itself a view controller, because a popover doesn’t occupy
the whole interface; rather, it presents the secondary world in which the view control-
ler’s view does occupy the whole interface (rather as if someone were holding an iPhone
in front of the iPad). The view controller is the UIPopoverController’s contentView-
Controller, which is set through its initializer, initWithContentViewController:. (You
can also swap out a popover controller’s view later while the popover is showing, sub-
stituting a different view controller with setContentViewController:animated:.)

For example, here’s how the first popover in Figure 22-1 is initialized. I have a UI-
ViewController subclass, NewGameController. NewGameController’s view contains
a table (Figure 21-2) and a UIPickerView (Chapter 11), and is itself the data source and
delegate for both. I instantiate NewGameController and use this instance as the root
view controller of a UINavigationController, giving its navigationItem a leftBarButton-
Item (Done) and a rightBarButtonItem (Cancel). I don’t really intend to do any navi-
gation; I just want the two buttons, and this is an easy way of getting them. That
UINavigationController then becomes a UIPopoverController’s view controller:

NewGameController* dlg = [[NewGameController alloc] init];
UIBarButtonItem* b = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem: UIBarButtonSystemItemCancel
 target: self
 action: @selector(cancelNewGame:)];
dlg.navigationItem.rightBarButtonItem = b;
[b release];
b = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem: UIBarButtonSystemItemDone

Figure 22-1. Two popovers

550 | Chapter 22: Popovers and Split Views

 target: self
 action: @selector(saveNewGame:)];
dlg.navigationItem.leftBarButtonItem = b;
[b release];
UINavigationController* nav =
 [[UINavigationController alloc] initWithRootViewController:dlg];
[dlg release];
UIPopoverController* pop =
 [[UIPopoverController alloc] initWithContentViewController:nav];
[nav release];

The popover controller should also be told the size of the view it is to display, which
will be the size of the popover. The default popover size is (320,1100); Apple would
like you to stick to the default width of 320 (the width of an iPhone screen), but a
maximum width of 600 is permitted, and the second popover in Figure 22-1 uses it.
The popover’s height might be shorter than requested if there isn’t enough vertical
space, so the view to be displayed needs to be prepared for the possibility that it might
be resized.

You can provide the popover size in one of two ways:

UIPopoverController’s popoverContentSize property
This property can be set before the popover appears; it can also be changed while
the popover is showing, with setPopoverContentSize:animated:.

UIViewController’s contentSizeForViewInPopover property
The UIViewController is the UIPopoverController’s contentViewController (or is
contained by that view controller, as in a tab bar interface or navigation interface).
This approach often makes more sense, because a UIViewController will generally
know its own view’s ideal size. (contentSizeForViewInPopover is yet another of
those UIViewController properties that is used only in one limited situation.)

In the case of the first popover in Figure 22-1, the NewGameController sets its own
contentSizeForViewInPopover. It knows that its view will be used only in a popover, so
its popover size is simply the size of its view:

self.contentSizeForViewInPopover = self.view.bounds.size;

The popover itself, however, will need to be somewhat taller, because the NewGame-
Controller is embedded in a UINavigationController, whose navigation bar occupies
additional vertical space. Delightfully, the UINavigationController takes care of that
automatically; its own contentSizeForViewInPopover adds the necessary height to that
of its root view controller.

In case of a conflict, the rule seems to be that if the UIPopoverController and the UI-
ViewController have different settings for their respective properties at the time the
popover is presented, the UIPopoverController’s setting wins. But if either property is
changed while the popover is visible, the change is obeyed; specifically, my experiments
suggest that if the UIViewController’s contentSizeForViewInPopover is changed (not

Presenting a Popover | 551

merely set to the value it already has), the UIPopoverController adopts that value as its
popoverContentSize and the popover’s size is adjusted accordingly.

If a popover’s contentViewController is a UINavigationController, and a view control-
ler is pushed onto or popped off of its stack, then if the current view controller’s content-
SizeForViewInPopover differs from that of the previously displayed view controller, my
experiments suggest that the popover’s width will change to match the new width, but
the popover’s height will change only if the new height is taller. This feels like a bug. A
workaround is to implement the UINavigationController’s delegate method
navigationController:didShowViewController:animated:, so as to set the navigation
controller’s contentSizeForViewInPopover explicitly:

- (void)navigationController:(UINavigationController *)navigationController
 didShowViewController:(UIViewController *)viewController
 animated:(BOOL)animated {
 navigationController.contentSizeForViewInPopover =
 viewController.contentSizeForViewInPopover;
}

The popover is made to appear on screen by sending the UIPopoverController one of
the following messages:

• presentPopoverFromRect:inView:permittedArrowDirections:animated:

• presentPopoverFromBarButtonItem:permittedArrowDirections:animated:

The UIPopoverController’s popoverVisible then becomes YES.

The popover has a sort of triangular bulge (called its arrow) on one edge, pointing to
some region of the existing interface, from which the popover thus appears to emanate
and to which it seems to be related. The difference between the two methods lies only
in how this region is specified. With the first method, you can provide any CGRect
with respect to any visible UIView’s coordinate system; for example, to make the po-
pover emanate from a UIButton, you would provide the UIButton’s frame with respect
to its superview (or the UIButton’s bounds with respect to itself). But you can’t do that
with a UIBarButtonItem, because a UIBarButtonItem isn’t a UIView and doesn’t have
a frame or bounds, so the second method is provided.

The permitted arrow directions restrict which sides of the popover the arrow can appear
on. It’s a bitmask, and your choices are:

• UIPopoverArrowDirectionUp

• UIPopoverArrowDirectionDown

• UIPopoverArrowDirectionLeft

• UIPopoverArrowDirectionRight

• UIPopoverArrowDirectionAny

552 | Chapter 22: Popovers and Split Views

Usually, you’d specify UIPopoverArrowDirectionAny, allowing the runtime to put the
arrow on whatever side it feels is appropriate. (Even if you specify a particular direction,
you have no precise control over a popover’s location.)

The first popover in Figure 22-1 has a dark navigation bar even though no such thing
was requested when the UINavigationController was created. This is because a popover
whose content view controller is a navigation controller likes to take control of its
navigation bar’s barStyle and set it to a special undocumented style, evidently to make
it harmonize with the popover’s border. This is not easy to prevent and my advice is
not to try.

Managing a Popover
Unlike the controller of a modal view or of a view used in a tab bar interface or a
navigation interface, a UIPopoverController instance is not automatically retained for
you; you must retain it manually. You’ll need a reference to any UIPopoverController
that you present, because without such a reference you can’t do two things you’re likely
to want to do afterward:

Dismiss the popover
There are two ways in which a popover can be dismissed: the user can tap outside
the popover, or you can explicitly dismiss the popover (as I do with the first popover
in Figure 22-1 when the user taps the Done button or the Cancel button). In order
to dismiss the popover explicitly, you send its UIPopoverController the dismiss-
PopoverAnimated: message. But you can’t do that unless you have a reference to
that UIPopoverController.

Release the popover
Because you created the UIPopoverController with alloc, you’re eventually going
to want to send it a release message. But you can’t release a UIPopoverController
while its popover is showing. Thus, you’re going to want to release the
UIPopoverController after its popover has been dismissed. But you can’t do that
unless you have a reference to that UIPopoverController.

Nor do the complications of popover management end there. In keeping with the tran-
sient nature of popovers, I like to dismiss the current popover programmatically when
the application undergoes certain strong transitions, such as going into the background
or being rotated. (See also Apple’s technical note on what to do when the interface
rotates while a popover is showing, QA1694, “Handling Popover Controllers During
Orientation Changes.”) You can listen for the former by registering for UIApplication-
DidEnterBackgroundNotification, and for the latter by implementing willRotateTo-
InterfaceOrientation:duration:. This policy is not merely aesthetic; some view con-
trollers, especially certain built-in specialized view controllers, recover badly from such
transitions when displayed in a popover. But dismissing a popover requires a reference
to any UIPopoverController that’s being presented.

Managing a Popover | 553

The obvious solution is an instance variable in the same object that creates the UIPo-
poverController in the first place. The question then is how many such instance vari-
ables to use if the app is going to be displaying more than one popover. We could have
one instance variable for each popover controller. On the other hand, a well-behaved
app, in accordance with Apple’s interface guidelines, is probably never going to display
more than one popover simultaneously, so a single UIPopoverController instance var-
iable (we might call it currentPopover) should suffice. This one instance variable could
be handed a reference to the current popover controller each time we present a popover;
using that reference, we would be able later to dismiss the current popover and release
its controller.

Dismissing a Popover
An important feature of a popover’s configuration is whether and to what extent the
user can operate outside it without automatically dismissing it. There are two aspects
to this configuration:

UIViewController’s modalInPopover property
If this is YES for the popover controller’s view controller (or for its current view’s
controller, as in a tab bar interface or navigation interface), the popover is abso-
lutely modal; any tap outside it will be ignored — such a tap won’t have any effect
at all, not even to dismiss the popover. The default is NO.

UIPopoverController’s passThroughViews property
This matters only if modalInPopover is NO. It is an array of views in the interface
behind the popover; the user can interact with these views, but a tap anywhere else
outside the popover will dismiss it (with no effect on the thing tapped). If pass-
ThroughViews is nil, a tap anywhere outside the popover will dismiss it.

Setting a UIPopoverController’s passThroughViews might not have any
effect unless the popover is already showing (the UIPopoverController
has been sent presentPopover...).

A popover can present a modal view internally; specify a modalPresentationStyle of
UIModalPresentationCurrentContext (and a transition style of UIModalTransitionStyle-
CoverVertical), because otherwise the modal view will be fullscreen by default. A modal
view’s modalInPopover is effectively YES; while it is showing, the user can’t make any-
thing happen by tapping outside the popover, so you need to provide a way of dis-
missing the modal view.

If modalInPopover is NO, you should pay attention to the passThroughViews, as the de-
fault behavior may be undesirable. For example, if a popover is summoned by the user
tapping a UIBarButton item in a toolbar using presentPopoverFromBarButtonItem:...,
the entire toolbar is a passthrough view; this means that the user can tap any button in
the toolbar, including the button that summoned the popover. The user can thus by

554 | Chapter 22: Popovers and Split Views

default summon the popover again while it is still showing, which is certainly not what
you want. I like to set the passThroughViews to nil; at the very least, while the popover
is showing, you should probably disable the UIBarButtonItem that summoned the po-
pover.

We can thus now specify the two ways in which a popover can be dismissed:

• The popover controller’s view controller’s modalInPopover is NO, and the user taps
outside the popover on a view not listed in the popover controller’s passThrough-
Views. The UIPopoverController’s delegate (adopting the UIPopoverController-
Delegate protocol) is sent popoverControllerShouldDismissPopover:; if it doesn’t
return NO (which might be because it doesn’t implement this method), the po-
pover is dismissed, and the delegate is sent popoverControllerDidDismissPopover:.

• The UIPopoverController is sent dismissPopoverAnimated: by your code. (The del-
egate methods are not sent in that case.) Typically this would be because you’ve
included some interface item inside the popover that the user can tap to dismiss
the popover (like the Done and Cancel buttons in the first popover in Figure 22-1).

Because a popover can be dismissed in two different ways, if you have a cleanup task
to perform as the popover vanishes, you may have to see to it that this task is performed
under two different circumstances.

To illustrate, I’ll describe what happens when the first popover in Figure 22-1 is dis-
missed. Within this popover, the user is interacting with several settings in the user
defaults. But if the user cancels, or if the user taps outside the popover (which I take to
be equivalent to canceling), I want to revert those defaults to the way they were before
the popover was summoned. So, as I initially present the popover, I preserve the relevant
current user defaults as an ivar:

// save defaults so we can restore them later if user cancels
self.oldDefs = [[NSUserDefaults standardUserDefaults] dictionaryWithValuesForKeys:
 [NSArray arrayWithObjects:@"Style", @"Size", @"Stages", nil]];

Now, if the user taps Save, the user’s settings within the popover have already been
saved (in the user defaults), so I explicitly dismiss the popover and proceed to initiate
the new game that the user has asked for. On the other hand, if the user taps Cancel, I
must revert the user defaults as I dismiss the popover:

- (void) cancelNewGame: (id) sender { // cancel button in New Game popover
 [self.currentPopover dismissPopoverAnimated:YES];
 self.currentPopover = nil;
 [[NSUserDefaults standardUserDefaults]
 setValuesForKeysWithDictionary:self.oldDefs];
}

But I must also do the same thing if the user taps outside the popover. Therefore I
implement the delegate method and revert the user defaults there as well:

- (void)popoverControllerDidDismissPopover:(UIPopoverController *)pc {
 [[NSUserDefaults standardUserDefaults]
 setValuesForKeysWithDictionary:self.oldDefs];

Dismissing a Popover | 555

 self.currentPopover = nil;
}

Notice also the use of the currentPopover instance variable that I talked about in the
previous section. If the only way the popover could be dismissed was that the user
tapped outside it, I wouldn’t need this instance variable; the popover has already been
dismissed, and the delegate method provides a reference to the popover controller, so
I can send release to that reference to complete the popover controller’s memory man-
agement. But the UIButtonItem action handler cancelNewGame: gives me no reference
to the popover controller. Therefore, I have to store a reference to it myself, when I
present the popover initially, both so that I can dismiss the popover and so that I can
release the popover controller. Here, the currentPopover instance variable has a retain
policy, and I released the UIPopoverController once after assigning it to the ivar ini-
tially, so nilifying the ivar now releases the UIPopoverController again and completes
its memory management.

There is a problem with the foregoing implementation, however. My app, you may
remember, has another popover (the second popover in Figure 22-1). This popover,
too, can be dismissed by the user tapping outside it; in fact, that’s the only way the user
can dismiss it. This means that popoverControllerDidDismissPopover: will be called.
But now we don’t want to call setValuesForKeysWithDictionary:; it’s the wrong po-
pover, and we have no preserved defaults to revert. This means that I must test for
which popover controller is being passed in as the parameter to popoverControllerDid-
DismissPopover:. But how can I distinguish one popover controller from another?
Luckily, my popover controllers have different types of view controller:

- (void)popoverControllerDidDismissPopover:(UIPopoverController *)pc {
 if ([pc.contentViewController isKindOfClass: [UINavigationController class]])
 [[NSUserDefaults standardUserDefaults]
 setValuesForKeysWithDictionary:self.oldDefs];
 self.popover = nil;
}

If this were not the case — for example, if I had two different popovers each of which
had a UINavigationController as its view controller — I’d need some other way of
distinguishing them. This is rather a knotty problem, and in the past I’ve resorted to
various desperate measures to resolve it, such as writing a UIPopoverController sub-
class with a name property.

In my view, what all of this shows is that the framework’s implementation of popover
controllers is deeply flawed. You don’t get sufficient help with getting a reference to a
UIPopoverController from a view currently being displayed within it, with managing
a popover controller’s memory, or with distinguishing one popover controller from
another. I’ve shown how you can work around these shortcomings, but in a better
world such workarounds wouldn’t be necessary. (For example, because only one po-
pover is supposed to be showing at a time, the framework could just maintain a refer-
ence to its controller for you.)

556 | Chapter 22: Popovers and Split Views

Automatic Popovers
In a few situations, the framework will automatically create and display a popover for
you. I am not personally fond of this behavior; the advantages of the automatic behavior
(such as the fact that you do not have to provide code to create the popover) are coun-
terbalanced, in my view, by the disadvantages — in particular, you can’t get access to
the UIPopoverController, so the behavior and appearance of the popover is completely
out of your hands.

One such situation is what happens when a search bar (a UISearchBar) tied to a search
display controller (UISearchDisplayController) appears in a toolbar (UIToolbar) on the
iPad. I’ll illustrate by rewriting the search bar code from Chapter 21. In this example,
there’s a toolbar at the top of the screen, and in the nib editor we drag a search bar and
search display controller (a single item in the Object library) into that toolbar. This
single move puts a search bar in a bar button item into the toolbar and creates a search
display controller at the nib’s top level, and configures all connections automatically,
as follows:

• The search bar’s delegate is the File’s Owner.

• The File’s Owner’s searchDisplayController is the search display controller. This
is a UIViewController property that I didn’t mention in Chapter 21, because its
worth is not clear when a UISearchDisplayController is created and configured in
code. When a UISearchDisplayController is instantiated from a nib, however, this
property is an outlet that retains the search display controller, as well as providing
access to it in code.

• The search display controller’s search bar is the search bar.

• The search display controller’s delegate, searchContentsController, searchResults-
DataSource, and searchResultsDelegate is the File’s Owner. Of these, only the latter
two appear to be of importance in this example.

When our view controller loads its view, we also load the model (the list of states) into
an NSArray property called states. We also have an NSArray property called filtered-
States. Here is the example’s complete code:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 return 1;
}

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [self.filteredStates count];
}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];

Automatic Popovers | 557

 if (cell == nil)
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier] autorelease];
 cell.textLabel.text = [self.filteredStates objectAtIndex: indexPath.row];
 return cell;
}

- (void) filterData {
 NSString* target = self.searchDisplayController.searchBar.text;
 NSPredicate* p = [NSPredicate predicateWithBlock:
 ^(id obj, NSDictionary *d) {
 NSString* s = obj;
 NSStringCompareOptions options = NSCaseInsensitiveSearch;
 BOOL b = [s rangeOfString:target options:options].location != NSNotFound;
 return b;
 }];
 self.filteredStates = [states filteredArrayUsingPredicate:p];
}

- (void)searchBar:(UISearchBar *)searchBar textDidChange:(NSString *)searchText {
 [self filterData];
}

That’s all. There is no creation of a UITableView and no mention of a UIPopoverCon-
troller. Nevertheless, when the user enters text in the search bar, a popover appears,
containing a table of search results (Figure 22-2). However, as I mentioned before, you
get no official access to this popover’s controller; you can’t change the Results title at
the top, you can’t set its passthrough views, and so on.

Another example of an automatic popover on the iPad is the alert sheet, discussed in
Chapter 26.

Split Views
A split view is implemented through a UISplitViewController (a UIViewController
subclass) along with an array of two UIViewControllers whose views are to be displayed
in the two regions of the split view. This array is the UISplitViewController’s view-
Controllers property; it can be configured in code or in a nib. A UIViewController

Figure 22-2. An automatically created search results popover

558 | Chapter 22: Popovers and Split Views

contained in a UISplitViewController has a reference to the UISplitViewController
through its splitViewController property.

There is very little work for you to do with regard to a split view. A split view controller
has no further properties or methods beyond those inherited from UIViewController.
You can hear about what the split view is doing through its delegate (adopting the
UISplitViewControllerDelegate protocol):

splitViewController:willHideViewController:withBarButtonItem:forPopover-
Controller:

The split view is rotating to portrait orientation, so it’s hiding the first view. The
split view creates a UIBarButtonItem and hands it to you as the third parameter.
Your mission, should you decide to accept it, is to put that UIBarButtonItem into
the interface, typically in a toolbar at the top of the root view. Of course you are
also free to configure the UIBarButtonItem’s title and image as well.

What you do with the other parameters is up to you, but none of them are needed;
the split view has already set things up so that if you do put this UIBarButtonItem
into the interface, then if the user taps it, a popover will be presented through the
given popover controller (fourth parameter) containing the view of the given view
controller (second parameter). It’s common practice to keep a reference to the
popover controller, in case you need it in order to dismiss the popover later (but
don’t set its delegate).

splitViewController:popoverController:willPresentViewController:
The user has tapped the UIBarButtonItem you were handed in the first delegate
method, and the popover is about to appear. You probably won’t need to imple-
ment this method.

splitViewController:willShowViewController:invalidatingBarButtonItem:
This is the opposite of the first delegate method: The split view is rotating to land-
scape orientation, so it’s going to break the connection between the
UIBarButtonItem and the popover controller and is going to put the first view back
into the interface. You should remove the UIBarButtonItem from the interface (the
split view will not do that for you).

As an app with a split view interface launches, the willHide delegate method is called;
if the device is being held in landscape orientation, then if the split view is free to rotate,
it immediately rotates to landscape orientation and the willShow delegate method is
called.

The only even slightly tricky part of all this lies hidden in the words “put that UIBar-
ButtonItem into the interface” and “remove the UIBarButtonItem from the interface.”
A toolbar (a UIToolbar) has no method for adding or removing a single bar button
item; you have to set its entire array of items at once. So, for example, to put a UIBar-
ButtonItem at the left end of a toolbar, you’ll set the toolbar’s items array to an array
composed of the UIBarButtonItem and the items from the existing items array. You

Split Views | 559

will probably set the toolbar’s items array by calling setItems:animated: in order to get
the animation. So:

NSArray* arr = [[NSArray arrayWithObject: barButtonItem]
 arrayByAddingObjectsFromArray:self.toolbar.items];
[self.toolbar setItems:arr animated:YES];

Removing a UIBarButtonItem from a toolbar is similar.

The Split View–based Application project template is an excellent starting place and
demonstrates how little code is required to implement a working split view. The split
view controller is configured in the main nib, so that the entire split view and its two
subviews spring to life automatically as the app launches, when the split view controller
is instantiated from the main nib and its view is embedded in the window. Its first view
controller is a UINavigationController whose root view is a UITableViewController
that creates its own table view. Its second view controller gets its view from a second
nib; that view has a toolbar at the top.

Thus, what the user sees in landscape orientation is: on the left, a master view, which
is a table view, with a navigation bar at the top; on the right, a detail view, with a toolbar
at the top. The navigation bar in the first view and the toolbar in the second view are
effectively indistinguishable — they both have the same default gray gradient color and
the same default height — so they look like two pieces of the same interface item.

In portrait orientation, the master view vanishes. The detail view, with its toolbar, now
occupies the entire screen. A UIBarButtonItem appears at the toolbar’s left end; tapping
it summons the master view in a popover.

To implement this, the following code is all that’s needed:

• Both the master view and the detail view permit rotation, returning YES from
shouldAutorotateToInterfaceOrientation:. Otherwise, the split view itself won’t
permit rotation.

• The controller of the detail view is the delegate of the split view controller (this is
configured in the nib), which makes sense, because the detail view holds the toolbar
where the UIBarButtonItem is to go. The detail view’s controller implements the
two delegate methods to add and remove the UIBarButtonItem in the toolbar.

If (as in the template example) the first view is controlled by a UINavigationController,
then, as with a popover controller, the split view controller takes charge of the style of
its navigation bar. Thus the navigation bar appears gray when the view is in the split
view and dark when the view is in the popover. As I said with regard to popovers, this
is difficult to prevent and it probably isn’t worthwhile trying.

The Split View–based Application project template has a flaw: The toolbar is loaded
from the nib. This means that if the second view controller’s view is unloaded and
loaded again (for example, because of a low-memory situation while a modal view is
covering the screen), the toolbar is loaded from the nib again — and because the will-
Hide delegate method is not called at this time, the UIBarButtonItem that accesses the

560 | Chapter 22: Popovers and Split Views

popover won’t appear. It isn’t hard to come up with a workaround, but it’s certainly
surprising the first time it happens to you.

When you convert a target from iPhone-only to iPad (either as a separate target or as
a universal app) as described in Chapter 9, and if your existing project has a root view
controller, a new main nib is created using the Split View–based Application tem-
plate. With, perhaps, some tweaking of this nib, your existing root view controller can
become the controller for the first view of the split view, and thus the iPad version of
your app can start life as a split view whose first view contains the entire interface and
functionality of the iPhone version. Modifying the code and interface to make some-
thing appropriate appear in the split controller’s second view is then up to you. In the
iPhone version of the app, the master view probably navigated to the detail view by
pushing the detail view onto the UINavigationController’s stack, but in the iPad ver-
sion, you don’t want that — you want the detail version to appear in the split control-
ler’s second view. Also, you will very likely have to change the way the detail view gets
a reference to the master view: in the iPhone version of the app, you probably assumed
that the detail view could ask its own navigationController for its root view controller,
but in the iPad version the detail view will have to talk to its splitViewController in-
stead.

Split Views | 561

CHAPTER 23

Text

Text can be displayed in various ways:

UILabel
Displays text, possibly consisting of multiple lines, in a single font and size, with
color (and highlighted color), alignment, and wrapping and truncation. Discussed
in this chapter.

UITextField
Displays a single line of editable text, in a single font and size, with color and
alignment; may have a border, may have a background image, and overlay views
may appear at its right and left end. Discussed in this chapter; a UITextField is a
UIControl subclass, so see also Chapter 25.

UITextView
Displays scrollable text, possibly editable, in a single font and size, with color and
alignment; can use data detectors to display tappable links. Discussed in this chap-
ter.

UIWebView
A scrollable view displaying rendered HTML. Because HTML can express text
attribute spans, this is a good way to show text in multiple fonts, sizes, colors,
alignments, and so on, and to include images and tappable links. Can also display
various additional document types, such as PDF, RTF, and .doc. Discussed in the
next chapter.

Drawing
There are three main ways to draw strings directly:

Core Graphics
Low-level methods for drawing text (not NSStrings). For drawing in general,
see Chapter 15.

563

NSString
At a high level, the UIStringDrawing category on NSString endows strings with
the ability to draw themselves, along with metrics methods (the sizeWith-
Font... methods) for learning the dimensions at which a given string will be
drawn. NSString drawing methods are not complicated, and examples have
already appeared in this book without special comment (for example, in
Chapter 12 and Chapter 20).

Core Text
The only way in iOS (added in iOS 3.2) to draw strings with multiple fonts
and styles. Core Text also provides access to advanced font typographical fea-
tures. Discussed in this chapter.

Starting in iOS 3.2, an app can include fonts within its bundle; these will be loaded at
launch time if the app lists them in its Info.plist under the “Fonts provided by applica-
tion” key (UIAppFonts). In this way, your app can use fonts not present by default on
the device.

UILabel
We met UILabel in Chapter 7 and have used it in examples throughout; we surveyed
most of its properties in Chapter 21. You assign the label a text; you can also set its
font, textColor, and textAlignment, and possibly a shadowColor and shadowOffset. The
label’s text can also have an alternate highlightedTextColor, which will be used when
its highlighted property is YES (as happens when the label is in a selected cell of a table
view).

If a UILabel consists of only one line of text (numberOfLines is 1, the default), then you
can set adjustsFontSizeToFitWidth to YES and provide a minimumFontSize if you want
the label to shrink the font size smaller than its font setting in an attempt to display as
much of the text as possible. (How the text is repositioned when this happens is de-
termined by the label’s baselineAdjustment property.) A UILabel may alternatively
consist of multiple lines of text (numberOfLines is greater than 1), but in that case adjusts-
FontSizeToFitWidth is ignored; the font size set in font is used even if not all of the text
will fit.

If numberOfLines is 1, any line breaks in the text are treated as spaces. Further line
breaking (wrapping) and truncation behavior, which applies to both single-line and
multiline labels, is determined by its lineBreakMode. You can get a feel for this behavior
by experimenting in the nib. Your options are:

UILineBreakModeWordWrap
All lines break at word-end. This is the default.

UILineBreakModeClip
Multiple lines break at word-end. The last line can break in the middle of a word.

564 | Chapter 23: Text

UILineBreakModeCharacterWrap
All lines can break in the middle of a word.

UILineBreakModeHeadTruncation
UILineBreakModeMiddleTruncation
UILineBreakModeTailTruncation

Multiple lines break at word-end. If the text is too long for the label, the last line
displays an ellipsis at the start, middle, or end (respectively).

If numberOfLines is larger than the number of lines actually needed, the drawn text is
vertically centered in the label. This may be undesirable; you might prefer to shrink (or
grow) the label to fit its text (and then perhaps reposition the label). On the face of it,
you can’t use sizeToFit to do this, because the default UILabel response to sizeToFit
is to make the label the right width to contain all its text on a single line. However, you
can modify that response by overriding UILabel’s textRectForBounds:limitedToNumber-
OfLines: in a subclass. Recall the example, in Chapter 21, of using NSString’s sizeWith-
Font:constrainedToSize:lineBreakMode: to work out the actual height needed for a
given text. Here, we create a UILabel subclass such that the label responds to sizeTo-
Fit by making itself the right height to contain all of its text on multiple lines, without
changing its width:

- (CGRect)textRectForBounds:(CGRect)bounds
 limitedToNumberOfLines:(NSInteger)numberOfLines {
 CGSize sz = [self.text sizeWithFont:self.font
 constrainedToSize:CGSizeMake(self.bounds.size.width, 10000)
 lineBreakMode:self.lineBreakMode];
 return (CGRect){bounds.origin, sz};
}

In that example, 10,000 is just an arbitrarily big number, which we assume the label’s
real height would never reach. Of course, the lines of the label won’t all be displayed
unless its numberOfLines is also sufficiently large.

The other UILabel method that you can override in a subclass is drawTextInRect:. This
is the equivalent of drawRect: — that is, it’s your chance to modify the overall drawing
of the label. An example appears in Chapter 10.

UITextField
A text field has many of the same properties as a label, but a text field can’t contain
multiple lines. So it has a text, font, textColor, and textAlignment. It also has adjusts-
FontSizeToFitWidth and minimumFontSize properties, although these don’t work exactly
like a label; a text field won’t allow its font size to shrink automatically as small as a
label will. If the user enters text that is too long for the width of the field, the text moves
(scrolls horizontally) to show the insertion point, but when the field is no longer being
edited, text that is too long is displayed with an ellipsis at the end.

UITextField | 565

A text field also has a placeholder property, which is the text that appears faded within
the text field when it has no text; the idea is that you can use this to suggest to the user
what the text field is for. If its clearsOnBeginEditing property is YES, the text field
automatically deletes its existing text when the user begins editing within it.

A text field’s border drawing is determined by its borderStyle property. Your options
are:

UITextBorderStyleNone
No border.

UITextBorderStyleLine
A plain rectangle.

UITextBorderStyleBezel
A slightly bezeled rectangle: the top and left sides have a very slight, thin shadow.

UITextBorderStyleRoundedRect
A rounded rectangle; the top and left sides have a stronger shadow, so that the text
appears markedly recessed behind the border.

A text field can have a background color (because it is a UIView) or a background image
(background), possibly along with a second image (disabledBackground) to be displayed
when the text field’s enabled property (inherited from UIControl) is NO. The user can’t
interact with a disabled text field, but without a disabledBackground image, the user
may not have any visual clue to this fact.

The text background of a UITextBorderStyleRoundedRect text field is always white; its
background image is ignored. But its background color is visible at its corners, outside
the rounded border, and therefore, to look good, should match what’s behind the text
field or should be clearColor.

A text field may contain as many as two ancillary overlay views (such as a magnifying
glass icon to suggest that the field initiates a search), its leftView and rightView, and a
Clear button (a gray circle with a white “x”). The automatic visibility of each of these
is determined by the leftViewMode, rightViewMode, and clearViewMode, respectively. The
view mode values are:

UITextFieldViewModeNever
The view never appears.

UITextFieldViewModeWhileEditing
A Clear button appears if there is text in the field and the user is editing. A left or
right view appears if there is no text in the field and the user is editing.

UITextFieldViewModeUnlessEditing
A Clear button appears if there is text in the field and the user is not editing. A left
or right view appears if the user is not editing, or if the user is editing but there is
no text in the field.

566 | Chapter 23: Text

UITextFieldViewModeAlways
A left or right view always appears; a Clear button appears if there is text in the field.

Depending on what sort of view you use, your leftView and rightView may have to be
sized manually so as not to overwhelm the text view contents. A right view and a Clear
button can conflict, trying to appear at the same time (for example, if they both have
UITextFieldViewModeAlways and there is text in the field); in this case, the right view
may cover the Clear button unless you reposition it. The positions and sizes of any of
the components of the text field can be set in relation to the text field’s bounds by
overriding the appropriate method in a subclass:

• clearButtonRectForBounds:

• leftViewRectForBounds:

• rightViewRectForBounds:

• borderRectForBounds:

• textRectForBounds:

• placeholderRectForBounds:

• editingRectForBounds:

These methods should all be called with a parameter that is the bounds
of the text field, but some of them are called a second time with a
100×100 bounds. This feels like a bug.

You can also override the following:

drawTextInRect:
Called when the text has changed and the user is not editing or ends editing. You
should either draw the text or call super to draw it; if you do neither, the text will
become blank. Observe that you get no method to customize the drawing of the
text while it is being edited.

drawPlaceholderInRect:
Called when the placeholder text is about to appear. You should either draw the
placeholder text or call super to draw it; if you do neither, the placeholder will
become blank.

Both these methods are called with a parameter whose size is the dimensions of the text
field’s text area, but whose origin is (0,0). In effect what you’ve got is a graphics context
for just the text area; any drawing you do outside the given rectangle will be clipped.

UITextField | 567

Editing and the Keyboard
Recall from Chapter 11 the UIResponder-related notion of the first responder. A text
field’s editing status, as well as the presence or absence of the onscreen simulated key-
board, is intimately tied to this notion:

• When a text field is first responder, it is being edited and the keyboard is present.

• When a text field is no longer first responder, it is no longer being edited, and if
no other text field (or text view) becomes first responder, the keyboard is not
present. If the keyboard is present because one text field is first responder, and
another text field becomes first responder (for example, because the user taps in
it), the keyboard is not dismissed and brought back; it just remains onscreen.

You can programmatically control a text field’s editing status, as well as the presence
or absence of the keyboard, by way of the text field’s first responder status. To make
the insertion point appear within a text field and to cause the keyboard to appear, you
send becomeFirstResponder to that text field; to make a text field stop being edited and
to cause the keyboard to disappear, you send resignFirstResponder to that text field.
Actually, resignFirstResponder returns a BOOL, because a responder might return NO
to indicate that for some reason it refuses to obey this command. Note also the UIView
endEditing: method, which can be sent to the first responder or any superview to make
(optionally, to force) the first responder to resign first responder status.

In a view presented modally in the UIModalPresentationFormSheet style on the iPad
(Chapter 19), sending resignFirstResponder to the first responder does not make the
keyboard disappear. Instead, the keyboard disappears when the modal view is dis-
missed (assuming that some text field in the parent view does not then become first
responder). This is apparently because a form sheet is intended primarily for text input,
so the keyboard is felt as accompanying the form as a whole, not individual text fields.
Starting in iOS 4.3, you get more control over this behavior; your UIViewController
subclass can override disablesAutomaticKeyboardDismissal.

There is no simple way to learn what view is first responder! This is very
odd, because a window surely knows what its first responder is — but
it won’t tell you. There’s a method isFirstResponder, but you’d have to
send it to every view in a window until you find the first responder. One
workaround is to store a reference to the first responder yourself, typi-
cally in your implementation of the text field delegate’s textFieldDid-
BeginEditing:. Do not name this reference firstResponder! This name
is apparently already in use by Cocoa, and a name collision can cause
your app to misbehave.

What you’re probably hoping is that a text field will just work with the keyboard: the
user taps in the text field, the keyboard appears, the user enters text, the user dismisses
the keyboard. Unfortunately, this is not quite the case. There are two main issues to be
resolved before a text field becomes usable with the keyboard:

568 | Chapter 23: Text

• The keyboard may cover the text field, or may cover some other part of the interface
that you’d like the user to be able to see or tap in. (Some scrolling views, such as
a table view, may try to help out here by scrolling automatically.)

• The key within the keyboard that should dismiss the keyboard (such as Return)
does not automatically do so. (On the iPad this may not be a problem, as the
keyboard typically contains a separate button that dismisses the keyboard.)

Let’s start by talking about the problem of the keyboard covering the text field. There
are four keyboard-related notifications for which you can register:

• UIKeyboardWillShowNotification

• UIKeyboardDidShowNotification

• UIKeyboardWillHideNotification

• UIKeyboardDidHideNotification

The userInfo dictionary contains information about the keyboard describing what it
will do or has done, under these keys:

• UIKeyboardFrameBeginUserInfoKey

• UIKeyboardFrameEndUserInfoKey

• UIKeyboardAnimationDurationUserInfoKey

• UIKeyboardAnimationCurveUserInfoKey

Thus you can coordinate your actions with those of the keyboard. In particular, you
can respond to the keyboard appearing by adjusting the interface so that the text field
is visible.

One simple way to achieve this is to start with your interface embedded in a scroll view.
The user need not be aware of the scroll view, and the scroll view need not be scrollable
by the user; its purpose is then merely so that you can scroll the interface. (You might
object that in that case the scroll view is unnecessary, because we can effectively scroll
the interface by setting our containing view’s bounds origin. This is true, but using a
scroll view provides more flexibility, and in any case I’ll need the scroll view as I develop
the example.)

Let’s assume, then, that the whole interface is in a scroll view. As our view controller’s
view loads, we configure the scroll view’s content size, and register for two of the key-
board notifications:

- (void)viewDidLoad {
 [super viewDidLoad];
 CGSize sz = self.scrollView.bounds.size;
 sz.height *= 2;
 self.scrollView.contentSize = sz;
 self.scrollView.scrollEnabled = NO;
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(keyboardShow:)
 name:UIKeyboardWillShowNotification

UITextField | 569

 object:nil];
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(keyboardHide:)
 name:UIKeyboardWillHideNotification
 object:nil];
}

Fortunately, the text field delegate’s textFieldDidBeginEditing: arrives before the
UIKeyboardWillShowNotification; we can use the former to keep track of what view is
first responder, and use the latter to adjust the interface. As the keyboard appears, we
store the old content offset in an instance variable and scroll to keep the text field visible.
Observe that the keyboard’s frame comes to us in window coordinates, so it is necessary
to convert it to our scroll view’s coordinates in order to make sense of it:

- (void)textFieldDidBeginEditing:(UITextField *)tf {
 self.fr = tf; // keep track of first responder
}

- (void) keyboardShow: (NSNotification*) n {
 self->oldOffset = self.scrollView.contentOffset;
 NSDictionary* d = [n userInfo];
 CGRect r = [[d objectForKey:UIKeyboardFrameEndUserInfoKey] CGRectValue];
 r = [self.scrollView convertRect:r fromView:nil];
 CGRect f = self.fr.frame;
 CGFloat y =
 CGRectGetMaxY(f) + r.size.height - self.scrollView.bounds.size.height + 5;
 if (r.origin.y < CGRectGetMaxY(f))
 [self.scrollView setContentOffset:CGPointMake(0, y) animated:YES];
}

The heart of that code is, of course, the determination of the value y, the vertical value
to which we’re going to scroll the scroll view. I’ve elected to scroll just enough to keep
the entire text field above the keyboard, with a space of five pixels between them. The
decision involves both aesthetics and functionality; a completely different decision
could be equally valid. For example, if my interface contains exactly three text fields,
it might make sense to scroll in such a way as to make them all visible, so that the user
can work in any of them without dismissing the keyboard.

We now come to the problem of dismissing the keyboard. One solution is to implement
another text field delegate method, textFieldShouldReturn:. When the user taps the
Return key in the keyboard, we hear about it through this method, and we tell the text
field to resign its first responder status; this dismisses the keyboard as well, and we
respond by scrolling back to our previous position:

- (BOOL)textFieldShouldReturn: (UITextField*) tf {
 [tf resignFirstResponder];
 return YES;
}

- (void) keyboardHide: (NSNotification*) n {
 [self.scrollView setContentOffset:self->oldOffset animated:YES];
}

570 | Chapter 23: Text

Let’s now extend the example to cover the situation where the interface is a scroll view
that the user can normally scroll. In that case, we shouldn’t change the scroll view’s
content size. Instead, we should change the behavior of the scroll view so that it operates
coherently within the reduced space left by the keyboard. This is a job for content-
Inset, whose purpose, you will recall (Chapter 20), is precisely to make it possible for
the user to view all of the scroll view’s content even though part of the scroll view is
being covered by something.

So, in viewDidLoad, we still register for keyboard notifications, but we won’t touch the
scroll view. When the keyboard appears, we store not only the current content offset
but the current content inset and scroll indicator inset as well; then we alter them:

- (void) keyboardShow: (NSNotification*) n {
 self->oldContentInset = self.scrollView.contentInset;
 self->oldIndicatorInset = self.scrollView.scrollIndicatorInsets;
 self->oldOffset = self.scrollView.contentOffset;
 NSDictionary* d = [n userInfo];
 CGRect r = [[d objectForKey:UIKeyboardFrameEndUserInfoKey] CGRectValue];
 r = [self.scrollView convertRect:r fromView:nil];
 CGRect f = self.fr.frame;
 CGFloat y =
 CGRectGetMaxY(f) + r.size.height - self.scrollView.bounds.size.height + 5;
 if (r.origin.y < CGRectGetMaxY(f))
 [self.scrollView setContentOffset:CGPointMake(0, y) animated:YES];
 UIEdgeInsets insets;
 insets = self.scrollView.contentInset;
 insets.bottom = r.size.height;
 self.scrollView.contentInset = insets;
 insets = self.scrollView.scrollIndicatorInsets;
 insets.bottom = r.size.height;
 self.scrollView.scrollIndicatorInsets = insets;
}

When the keyboard disappears, we restore not only the content offset but the insets as
well. I find that, because of the animation, this works best if the insets are restored
using delayed performance:

- (void) keyboardHide: (NSNotification*) n {
 [self.scrollView setContentOffset:self->oldOffset animated:YES];
 [self performSelector:@selector(restoreInsets) withObject:nil afterDelay:0.4];
}

- (void) restoreInsets {
 self.scrollView.scrollIndicatorInsets = self->oldIndicatorInset;
 self.scrollView.contentInset = self->oldContentInset;
}

This second approach works equally well even if the scroll view was not originally user-
scrollable (because its content size is the same as its bounds size); the interface becomes
user-scrollable only when the keyboard is present, allowing the user to see any part of
it. A nice byproduct is that when the keyboard is present, the scroll view scrolls auto-

UITextField | 571

matically if the user enters characters into a text field that has been scrolled out of sight
or taps in a text field that’s partially hidden.

Configuring the Keyboard
A UITextField implements the UITextInputTraits protocol, which defines properties
on the UITextField that you can set to determine how the keyboard will look and how
typing in the text field will behave. (These properties can also be set in the nib.) For
example, you can set the keyboardType to UIKeyboardTypePhonePad to make the keyboard
for this text field consist of digits only. You can set the returnKeyType to determine the
text of the Return key (if the keyboard is of a type that has one). You can turn off
autocapitalization (autocapitalizationType) or autocorrection (autocorrectionType),
make the Return key disable itself if the text field has no content (enablesReturnKey-
Automatically), and make the text field a password field (secureTextEntry).

The user’s choices in the Settings app with regard to certain text input
features, such as autocapitalization or autocorrection, take priority over
your configuration of these same features for a particular text field.

In addition, you can attach an accessory view to the top of the keyboard by setting the
text field’s inputAccessoryView (see Apple’s KeyboardAccessory example), and you can
even supply your own keyboard by setting the text field’s inputView.

The user can control the localization of the keyboard character set in the Settings app,
either through a choice of the system’s base language or by enabling additional “inter-
national keyboards.” In the latter case, the user can switch among keyboard character
sets while the keyboard is showing. But, as far as I can tell, your code can’t make this
choice, so you can’t, for example, have a Russian-teaching app in which a certain text
field automatically shows the Cyrillic keyboard. You can ask the user to switch key-
boards manually, but if you really want a particular keyboard to appear regardless of
the user’s settings and behavior, you’ll have to create it yourself and provide it as the
inputView.

Text Field Delegate and Control Event Messages
As editing begins and proceeds in a text field, a sequence of messages is sent to the text
field’s delegate (some of which are also available to other objects as notifications). Using
these, you can customize the text field’s behavior during editing:

textFieldShouldBeginEditing:
Return NO to prevent the text field from becoming first responder.

textFieldDidBeginEditing: (and UITextFieldTextDidBeginEditingNotification)
The text field has become first responder.

572 | Chapter 23: Text

textFieldShouldClear:
Return NO to prevent the operation of the Clear button or of automatic clearing
on entry (clearsOnBeginEditing).

textFieldShouldReturn:
The user has tapped the Return button in the keyboard. We have already seen that
this can be used as way of dismissing the keyboard.

textField:shouldChangeCharactersInRange:replacementString:
Sent when the user changes the text in the field by typing or pasting, or by back-
spacing or cutting (in which case the replacement string’s length will be 0). Return
NO to prevent the proposed change. It is common practice to implement this del-
egate method as a way of learning that the text has been changed, even if you then
always return YES. The UITextFieldTextDidChangeNotification corresponds
loosely.

textFieldShouldEndEditing:
Return NO to prevent the text field from resigning first responder (even if you just
sent resignFirstResponder to it). You might do this, for example, because the text
is invalid or unacceptable in some way. The user will not know why the text field
is refusing to end editing, so the usual thing is to put up an alert explaining the
problem.

textFieldDidEndEditing: (and UITextFieldTextDidEndEditingNotification)
The text field has resigned first responder. See Chapter 21 for an example of using
textFieldDidEndEditing: to fetch the text field’s current text and store it in the
model.

A text field is also a control. This means you can attach a target–action pair to any of
the events that it reports in order to receive a message when that event occurs (see
Chapter 11):

• The user can touch and drag, triggering Touch Down and the various Touch Drag
events.

• If the user touches in such a way that the text field enters editing mode, Editing
Did Begin and Touch Cancel are triggered; if the user causes the text field to enter
editing mode in some other way (such as by tabbing into it), Editing Did Begin is
triggered without any Touch events.

• As the user edits, Editing Changed is triggered. If the user taps while in editing
mode, Touch Down (and possibly Touch Down Repeat) and Touch Cancel are
triggered.

• Finally, when editing ends, Editing Did End is triggered; if the user stops editing
by tapping Return in the keyboard, Did End on Exit is triggered first.

In general, you’re more likely to treat a text field as a text field (through its delegate
messages) than as a control (through its control events). However, the Did End on Exit

UITextField | 573

event message has an interesting property: it provides an alternative way to dismiss the
keyboard when the user taps a text field keyboard’s Return button. If there is a Did
End on Exit target–action pair for this text field, then if the text field’s delegate does
not return NO from textFieldShouldReturn:, the keyboard will be dismissed automat-
ically when the user taps the Return key. (The action handler for Did End on Exit
doesn’t actually have to do anything.)

This suggests the following trick for getting automatic keyboard dismissal with no code
at all. In the nib, edit the First Responder proxy object in the Attributes inspector,
adding a new First Responder Action; let’s call it dummy:. Now hook the Did End on
Exit event of the text field to the dummy: action of the First Responder proxy object.
That’s it! Because the text field’s Did End on Exit event now has a target–action pair,
the text field automatically dismisses its keyboard when the user taps Return; because
there is no penalty for not finding a handler for a message sent up the responder chain,
the app doesn’t crash even though there is no implementation of dummy: anywhere.

Of course, you can implement that trick in code instead:

[textField addTarget:nil action:@selector(dummy:)
 forControlEvents:UIControlEventEditingDidEndOnExit];

A disabled text field emits no delegate messages or control events.

The Text Field Menu
When the user double-taps or long-presses in a text field, the menu appears. It contains
menu items such as Select, Select All, Paste, Copy, Cut, and Replace; which menu items
appear depends on the circumstances.

The menu can be customized, but you are unlikely to do this with respect to a text field,
because you don’t get any access to information about the text field’s selection, making
it difficult to decide intelligently what menu items should appear or what they should
do when chosen. Thus, for the most part, it is best not to alter a text field’s menu or to
interfere with its behavior.

If you do want to alter the menu, the key facts you need to know are these:

• You can add menu items to the menu through the singleton global UIMenuCon-
troller object. Its menuItems property is an array of custom menu items — that is,
menu items that may appear in addition to those that the system puts there. A menu
item is a UIMenuItem, which is simply a title (which appears in the menu) plus an
action selector. The action will be called, nil-targeted, thus sending it up the res-
ponder chain, when the user taps the menu item (and, by default, the menu will
be dismissed).

• The actions for the standard menu items are nil-targeted, so they percolate up the
responder chain, and you can interfere with their behavior by implementing their
actions. Their selectors are listed in the UIResponderStandardEditActions informal

574 | Chapter 23: Text

protocol (except for Replace, which is implemented through an undocumented
selector promptForReplace:).

• You govern the presence or absence of any menu item by implementing the
UIResponder method canPerformAction:withSender: in the responder chain.

As an example, we’ll devise a text field in which the standard menu is completely re-
placed by our own menu, which contains a single menu item, Expand. I’m imagining
here, for instance, a text field where the user can type a U.S. state two-letter abbreviation
(such as “CA”) and then summon the menu and tap Expand to get the state’s full name
(such as “California”). We’ll implement this by means of a UITextField subclass.

At some point before the user can tap in an instance of our UITextField subclass, we
modify the global menu; we could do this in the app delegate as the app starts up, for
example:

UIMenuItem *mi = [[UIMenuItem alloc] initWithTitle:@"Expand"
 action:@selector(expand:)];
UIMenuController *mc = [UIMenuController sharedMenuController];
mc.menuItems = [NSArray arrayWithObject:mi];
[mi release];

In our UITextField subclass, we implement canPerformAction:withSender: to govern
the contents of the menu. The placement of this implementation is crucial. By putting
it here, we guarantee that this implementation will be called when an instance of this
subclass is first responder, but at no other time. Therefore, every other text field (or
any other object that displays a menu) will behave normally, displaying Cut or Select
All or whatever’s appropriate; only an instance of our subclass will have the special
menu, displaying only Expand.

- (BOOL) canPerformAction:(SEL)action withSender: (id) sender {
 if (action == @selector(expand:))
 return ([self.text length] == 2); // could be more intelligent here
 return NO;
}

When the user chooses the Expand menu item, the expand: message is sent up the
responder chain. We catch it in our UITextField subclass and obey it. Actually matching
up abbreviations with state names is left as an exercise for the reader:

- (void) expand: (id) sender {
 NSString* s = self.text;
 // ... alter s here ...
 self.text = s;
}

By setting the text property at the end of the expand: method, we cause the selection
handles to vanish if there are any.

To demonstrate interference with the standard menu items, we’ll modify the example
to allow the Copy menu item to appear if it wants to:

UITextField | 575

- (BOOL) canPerformAction:(SEL)action withSender:(id)sender {
 if (action == @selector(expand:))
 return ([self.text length] == 2);
 if (action == @selector(copy:))
 return [super canPerformAction:action withSender:sender];
 return NO;
}

Now we’ll implement copy: and modify its behavior. First we call super to get standard
copying behavior; then we modify what’s now on the pasteboard:

- (void) copy: (id) sender {
 [super copy: sender];
 UIPasteboard* pb = [UIPasteboard generalPasteboard];
 NSString* s = pb.string;
 // ... alter s here
 pb.string = s;
}

UITextView
A text view (UITextView) is sort of a scrollable, multiline version of a text field (UI-
TextField, with which it should not be confused). It is a scroll view subclass (UIScroll-
View, Chapter 20), and thus has (by default) no border; it is not a control. It has text,
font, textColor, and textAlignment properties; it can be editable or not, according to
its editable property. (You might use a scrollable noneditable text view instead of a
UILabel, so as not to be limited to a fixed number of lines of text.) An editable text view
governs its keyboard just as a text field does: when it is first responder, it is being edited
and shows the keyboard, and it implements the UITextInput protocol and has input-
View and inputAccessoryView properties. Its menu works the same way as a text field’s.

One big difference, from the programmer’s point of view, between a text view and a
text field is that a text view gives you information about, and control of, its selection:
it has a selectedRange property which you can get and set, and it adds a scrollRangeTo-
Visible: method so that you can scroll in terms of a range of its text. The selected-
Range is useful especially if the text view is first responder, because the selection is then
meaningful and visible, but it does work (invisibly) even if the text view is not first
responder. (You could take advantage of the selectedRange, for example, to customize
a text view’s menu with more intelligence than in our text field example in the previous
section.)

A text view also has a dataDetectorTypes property that, if the text view is not editable,
allows text of certain types (presumably located using NSDataDetector, an NSRegu-
larExpression subclass) to be rendered as tappable links.

A text view’s delegate messages (UITextViewDelegate protocol) and notifications are
quite parallel to those of a text field. The big differences are:

576 | Chapter 23: Text

• There’s a textViewDidChange: delegate message (and an accompanying UITextView-
TextDidChangeNotification), whereas a text field has its Editing Changed control
event (and notification).

• There’s a textViewDidChangeSelection: delegate message, whereas a text field is
uninformative about the selection.

A text view’s contentSize is maintained for you, automatically, as the text changes. You
can track changes to the content size (in textViewDidChange:, for example), but you
probably shouldn’t try to change it. A common use of content size tracking is to im-
plement a self-sizing text view, that is, a text view that adjusts its size automatically to
embrace the amount of text it contains:

- (void) adjust {
 CGSize sz = self->tv.contentSize;
 CGRect f = self->tv.frame;
 f.size = sz;
 self->tv.frame = f;
}

- (void)textViewDidChange:(UITextView *)textView {
 [self adjust];
}

A self-sizing text view works best if the text view is not user-scrollable (scrollEnabled
is NO). If it is user-scrollable, it might scroll itself as the user enters text, and you might
then have to struggle to prevent it from doing so:

- (void)scrollViewDidScroll:(UIScrollView *)scrollView {
 scrollView.contentOffset = CGPointZero;
}

Dismissing the keyboard for a text view works differently than for a text field. Because
a text view is multiline, the Return key is meaningful for character entry; you aren’t
likely to want to misuse it as a way of dismissing the keyboard, and you don’t get a
special delegate message for it. On the iPad, the virtual keyboard may contain a button
that dismisses the keyboard. On the iPhone, the interface might well consist of a text
view and the keyboard, so that instead of dismissing the keyboard, the user dismisses
the entire interface; for example, in the Mail app on the iPhone, when the user is com-
posing a message, the keyboard is present the whole time. On the other hand, in the
Notes app, a note alternates between being read fullscreen and being edited with the
keyboard present; in the latter case, a Done button is provided to dismiss the keyboard.
If there’s no good place to put a Done button in the interface, you could attach an
accessory view to the keyboard itself.

The problem of having part of a text view be covered by the virtual keyboard can’t be
solved by meddling with its contentInset, because for some undocumented reason a
text view doesn’t accept changes to the bottom of its contentInset — the value is always
reset to 32. The solution is therefore to shrink the text view itself.

UITextView | 577

In this example, we imagine a simple interface containing a single text view (tv) and
no text fields; thus, if the keyboard shows, it must be because our text view is being
edited. As our view controller loads its view, we register for keyboard notifications
UIKeyboardWillShowNotification and UIKeyboardWillHideNotification as we did in our
text field example. When the keyboard appears, we store the text view’s frame and
shrink the text view; when the keyboard hides, we restore the text view’s frame:

- (void) keyboardShow: (NSNotification*) n {
 NSDictionary* d = [n userInfo];
 CGRect r = [[d objectForKey:UIKeyboardFrameEndUserInfoKey] CGRectValue];
 r = [self.view convertRect:r fromView:nil];
 CGRect f = self.tv.frame;
 self->oldFrame = f;
 f.size.height = self.view.frame.size.height - f.origin.y - r.size.height;
 self.tv.frame = f;
}

- (void) keyboardHide: (NSNotification*) n {
 self.tv.frame = self->oldFrame;
}

This approach works, but the scroll view’s change of frame lacks animation to match
that of the keyboard. We can easily fix that, because the notification’s userInfo dic-
tionary describes that animation in detail:

- (void) keyboardShow: (NSNotification*) n {
 NSDictionary* d = [n userInfo];
 CGRect r = [[d objectForKey:UIKeyboardFrameEndUserInfoKey] CGRectValue];
 NSNumber* curve = [d objectForKey:UIKeyboardAnimationCurveUserInfoKey];
 NSNumber* duration = [d objectForKey:UIKeyboardAnimationDurationUserInfoKey];
 r = [self.view convertRect:r fromView:nil];
 CGRect f = self.tv.frame;
 self->oldFrame = f;
 f.size.height = self.view.frame.size.height - f.origin.y - r.size.height;
 [UIView beginAnimations:nil context:NULL];
 [UIView setAnimationDuration:[duration floatValue]];
 [UIView setAnimationCurve:[curve intValue]];
 self.tv.frame = f;
 [UIView commitAnimations];
}

- (void) keyboardHide: (NSNotification*) n {
 NSDictionary* d = [n userInfo];
 NSNumber* curve = [d objectForKey:UIKeyboardAnimationCurveUserInfoKey];
 NSNumber* duration = [d objectForKey:UIKeyboardAnimationDurationUserInfoKey];
 [UIView beginAnimations:nil context:NULL];
 [UIView setAnimationDuration:[duration floatValue]];
 [UIView setAnimationCurve:[curve intValue]];
 self.tv.frame = self->oldFrame;
 [UIView commitAnimations];
}

Apple’s own apps display some interesting uses of text views. How, for instance, is the
Notes app interface actually achieved? Its key features are: the text appears to be on

578 | Chapter 23: Text

lined paper; the first line of the text has some space above it, where the date appears;
and the text has a wide left margin.

The text is presumably a text view; it must have a background color of clearColor to
allow the paper to show through. My guess is that the space at the start of the text is
achieved with the text view’s contentInset, whose top value, at least, is obeyed; the
wide left margin, on the other hand, suggests that the left edge of the text view is inset
from the left edge of the “paper.” The paper itself might be an image view; by tracking
the text view’s contentSize (in textViewDidChange:, for example), the app can make
sure that the paper image is always sufficiently tall, and by tracking the scroll position
(in scrollViewDidScroll), the image view’s transform can be adjusted to keep the lines
of text coordinated with the lines of the paper:

- (void)scrollViewDidScroll:(UIScrollView *)scrollView {
 CGFloat yoff = scrollView.contentOffset.y + scrollView.contentInset.top;
 paperMiddle.transform = CGAffineTransformMakeTranslation(0,-yoff);
}

Another interesting interface is the Mail app’s screen for composing a message. At the
top are fields for addresses and subject; then comes the body of the message, which
gets longer as the user types into it. The message body is evidently a text view, but it
lacks scroll indicators and cannot itself be scrolled; what scrolls is the interface as a
whole. So this must be a self-sizing text view; presumably the text view’s contentSize
is tracked, and both the text view’s size and the enclosing scroll view are adjusted
accordingly. (But the Mail app’s screen for replying to a message uses styled text, so it
is presumably drawn with Core Text, discussed in the next section.)

Core Text
Core Text allows strings to be drawn with multiple fonts and styles. It is implemented
by the Core Text framework; to utilize it, your app must link to CoreText.framework,
and your code must import <CoreText/CoreText.h>. It uses C, not Objective-C, and it’s
rather verbose, but getting started with it is not difficult.

A typical simple Core Text drawing operation begins with an attributed string. This is
an NSAttributedString (or CFAttributedString; they are toll-free bridged), which is a
string accompanied by attributes (such as font, size, and style) applied over ranges.
Each attribute is described as a name–value pair. The names of the attributes are listed
in Apple’s Core Text String Attributes Reference, along with their value types. The most
commonly used attribute is probably kCTFontAttributeName, which determines the font
and size of a stretch of text; its value is a CTFontRef, a Core Text type which is not
bridged to UIFont. You’ll typically supply attributes as a dictionary of name–value
pairs.

For example, imagine that we have a UIView subclass called StyledText, which has a
text property that is an attributed string. Its job will be to draw that attributed string
into itself:

Core Text | 579

@interface StyledText : UIView {
}
@property (nonatomic, copy) NSAttributedString* text;
@end

Imagine further that an instance of StyledText appears in the interface and that we have
a reference to it as an instance variable called styler. How, then, might we create an
NSAttributedString and assign it to styler.text? Let’s start with a mutable attributed
string:

NSString* s = @"Yo ho ho and a bottle of rum!";
NSMutableAttributedString* mas =
 [[NSMutableAttributedString alloc] initWithString:s];

Now I’ll apply some attributes. I’ll cycle through the words of the string; to each word
I’ll apply a slightly larger size of the same font. My base font will be Baskerville 18. Note
that the name supplied when creating a CTFont must be a PostScript name; a free app,
Typefaces, is helpful for learning all the fonts on a device along with their PostScript
names:

__block CGFloat f = 18.0;
CTFontRef basefont = CTFontCreateWithName(@"Baskerville", f, NULL);
[s enumerateSubstringsInRange:NSMakeRange(0, [s length])
 options:NSStringEnumerationByWords
 usingBlock:
 ^(NSString *substring, NSRange substringRange, NSRange encRange, BOOL *stop) {
 f += 3.5;
 CTFontRef font2 = CTFontCreateCopyWithAttributes(basefont, f, NULL, NULL);
 NSDictionary* d2 = [[NSDictionary alloc] initWithObjectsAndKeys:
 (id)font2, (NSString*)kCTFontAttributeName, nil];
 [mas addAttributes:d2 range:encRange];
 CFRelease(font2);
 [d2 release];
 }];

Finally, I’ll make the last word bold. The easiest way to obtain the range of the last
word is to cycle through the words backward and stop after the first one. Boldness is
a font trait; we must obtain a bold variant of the original font. The font we started with,
Baskerville, has such a variant, so this will work:

[s enumerateSubstringsInRange:NSMakeRange(0, [s length])
 options: (NSStringEnumerationByWords |
 NSStringEnumerationReverse)
 usingBlock:
 ^(NSString *substring, NSRange substringRange, NSRange encRange, BOOL *stop) {
 CTFontRef font2 = CTFontCreateCopyWithSymbolicTraits (
 basefont, f, NULL, kCTFontBoldTrait, kCTFontBoldTrait);
 NSDictionary* d2 = [[NSDictionary alloc] initWithObjectsAndKeys:
 (id)font2, (NSString*)kCTFontAttributeName, nil];
 [mas addAttributes:d2 range:encRange];
 CFRelease(font2);
 *stop = YES; // do just once, last word
 }];

580 | Chapter 23: Text

You’re probably wondering why I seem to ask for the bold variant (kCTFontBoldTrait)
twice. The first time (the fourth argument in the call to CTFontCreateCopyWithSymbolic-
Traits) I’m providing a bitmask. The second time (the fifth argument) I’m providing a
second bitmask that says which bits of the first bitmask are meaningful. For example,
suppose I’m starting with a font that might or might not be italic, and I want to obtain
its bold variant — meaning that if it is italic, I want a bold italic font. It isn’t enough to
supply a bitmask whose value is kCTFontBoldTrait, because this appears to switch
boldness on and everything else off. Thus, the second bitmask says, “Only this one bit
is important; leave all other attributes alone.” By the same token, to get a nonbold
variant of a font that might be bold, you’d supply 0 as the fourth argument and kCTFont-
BoldTrait as the fifth argument.

Finally, I’ll hand the attributed string over to our self-drawing interface object and
complete our memory management:

self.styler.text = mas;
[self.styler setNeedsDisplay];
[mas release];
CFRelease(basefont);

We have now generated an NSAttributedString and handed it over to our StyledText.
How will the StyledText draw itself? There are two main ways: a CATextLayer and
direct drawing with Core Text itself.

Let’s start by using a CATextLayer (Chapter 16). Because this UIView subclass will be
instantiated from a nib, I’ll give it a CATextLayer in awakeFromNib, retaining a reference
to it as an instance variable, textLayer. I’ll also implement layoutSublayersOfLayer: so
that the CATextLayer always has the bounds of the view as a whole:

- (void) awakeFromNib {
 CATextLayer* lay = [[CATextLayer alloc] init];
 lay.frame = self.layer.bounds;
 [self.layer addSublayer:lay];
 self.textLayer = lay;
 [lay release];
}

- (void) layoutSublayersOfLayer:(CALayer *)layer {
 [[layer.sublayers objectAtIndex:0] setFrame:layer.bounds];
}

Our drawRect: implementation is now trivial; we simply set the CATextLayer’s
string property to our attributed string:

- (void)drawRect:(CGRect)rect {
 if (!self.text)
 return;
 self.textLayer.string = self.text;

Sure enough, our attributed string is drawn (Figure 23-1). I’ve given our UIView a
background color to show how the CATextLayer positions the string by default.

Core Text | 581

CATextLayer has some additional useful properties. If the width of the layer is insuf-
ficient to display the entire string, we can get truncation behavior with the truncation-
Mode property. If the wrapped property is set to YES, the string will wrap. We can also
set the alignment with the alignmentMode property (Figure 23-2).

The second way to display an attributed string is to draw it directly into a graphics
context with Core Text. The text will be drawn upside-down unless we flip the graphics
context’s coordinate system. If the string is a single line we can draw it directly into a
graphics context with a CTLineRef. Positioning the drawing is up to us; the following
code results in a drawing that looks just like Figure 23-1:

- (void)drawRect:(CGRect)rect {
 if (!self.text)
 return;
 CGContextRef ctx = UIGraphicsGetCurrentContext();
 // flip context
 CGContextSaveGState(ctx);
 CGContextTranslateCTM(ctx, 0, self.bounds.size.height);
 CGContextScaleCTM(ctx, 1.0, -1.0);
 CTLineRef line =
 CTLineCreateWithAttributedString((CFAttributedStringRef)self.text);
 CGContextSetTextPosition(ctx, 1, 3);
 CTLineDraw(line, ctx);
 CFRelease(line);
 CGContextRestoreGState(ctx);
}

If we want our string to be drawn wrapped, we must use a CTFramesetter. The frame-
setter requires a frame into which to draw; this is expressed as a CGPath, but don’t get
all excited about the possibility of drawing wrapped into some interesting shape, such
as an ellipse, because on iOS the path must describe a rectangle:

- (void)drawRect:(CGRect)rect {
 if (!self.text)
 return;
 CGContextRef ctx = UIGraphicsGetCurrentContext();
 // flip context
 CGContextSaveGState(ctx);

Figure 23-1. Text whose size increases word by word

Figure 23-2. The same text wrapped and centered

582 | Chapter 23: Text

 CGContextTranslateCTM(ctx, 0, self.bounds.size.height);
 CGContextScaleCTM(ctx, 1.0, -1.0);
 CTFramesetterRef fs =
 CTFramesetterCreateWithAttributedString((CFAttributedStringRef)self.text);
 CGMutablePathRef path = CGPathCreateMutable();
 CGPathAddRect(path, NULL, rect);
 // range (0,0) means "the whole string"
 CTFrameRef f = CTFramesetterCreateFrame(fs, CFRangeMake(0, 0), path, NULL);
 CTFrameDraw(f, ctx);
 CGPathRelease(path);
 CFRelease(f);
 CFRelease(fs);
 CGContextRestoreGState(ctx);
}

With a CTFramesetter, drawing behaviors such as alignment and truncation can be
expressed as part of the original attributed string by applying a CTParagraphStyle.
Paragraph styles can also include first-line indent, tab stops, line height, spacing, and
more. In this example, we return to the code where we configured our mutable attrib-
uted string (mas) and add center alignment (which results in a drawing that looks like
Figure 23-2):

CTTextAlignment centerValue = kCTCenterTextAlignment;
CTParagraphStyleSetting center =
 {kCTParagraphStyleSpecifierAlignment, sizeof(centerValue), ¢erValue};
CTParagraphStyleSetting pss[1] = {center};
CTParagraphStyleRef ps = CTParagraphStyleCreate(pss, 1);
[mas addAttribute:(NSString*)kCTParagraphStyleAttributeName
 value:(id)ps
 range:NSMakeRange(0, [s length])];
CFRelease(ps);

Core Text can also access font typographical features that can’t be accessed in any other
way, such as the ability of Didot and Hoefler Text (present by default on the iPad) to
render themselves in small caps. As an example, we’ll draw the names of the 50 U.S.
states in small caps, centered, in two columns (Figure 23-3).

As we create the NSAttributedString, we use a convenience function, CTFontDescriptor-
CreateCopyWithFeature, to access Didot’s small caps variant. I had to log the result of
CTFontCopyFeatures to learn the “magic numbers” for this variant of this font (there is
also old documentation of font features at http://developer.apple.com/fonts/registry):

NSString* path = [[NSBundle mainBundle] pathForResource:@"states" ofType:@"txt"];
NSString* s = [NSString stringWithContentsOfFile:path];
CTFontRef font = CTFontCreateWithName(@"Didot", 18, NULL);
CTFontDescriptorRef fontdesc1 = CTFontCopyFontDescriptor(font);
CTFontDescriptorRef fontdesc2 =
CTFontDescriptorCreateCopyWithFeature(fontdesc1,
 (CFNumberRef)[NSNumber numberWithInt:3],
 (CFNumberRef)[NSNumber numberWithInt:3]);
CTFontRef basefont = CTFontCreateWithFontDescriptor(fontdesc2, 0, NULL);
NSDictionary* d = [[NSDictionary alloc] initWithObjectsAndKeys:(id)basefont,
 (NSString*)kCTFontAttributeName, nil];
NSMutableAttributedString* mas =

Core Text | 583

 [[NSMutableAttributedString alloc] initWithString:s attributes:d];
[d release];
// ...

Giving the attributed string a centered text alignment and assigning it to our StyledText
object’s text is as before, so I’ve omitted it here.

The two-column arrangement is achieved by drawing into two frames. In our draw-
Rect code, we draw the entire text into the first frame and then use CTFrameGetVisible-
StringRange to learn how much of the text actually fits into it; this tells us where in the
attributed string to start drawing into the second frame:

CGRect r1 = rect;
r1.size.width /= 2.0; // column 1
CGRect r2 = r1;
r2.origin.x += r2.size.width; // column 2
CTFramesetterRef fs =
 CTFramesetterCreateWithAttributedString((CFAttributedStringRef)self.text);
// draw column 1
CGMutablePathRef path = CGPathCreateMutable();
CGPathAddRect(path, NULL, r1);
CTFrameRef f = CTFramesetterCreateFrame(fs, CFRangeMake(0, 0), path, NULL);
CTFrameDraw(f, ctx);
CGPathRelease(path);
CFRange drawnRange = CTFrameGetVisibleStringRange(f);
CFRelease(f);
// draw column 2
path = CGPathCreateMutable();
CGPathAddRect(path, NULL, r2);
f = CTFramesetterCreateFrame(fs,
 CFRangeMake(drawnRange.location + drawnRange.length, 0), path, NULL);
CTFrameDraw(f, ctx);
CGPathRelease(path);
CFRelease(f);
CFRelease(fs);

Figure 23-3. Two-column text in small caps

584 | Chapter 23: Text

A frame is itself composed of CTLines describing how each line of text was laid out.
To demonstrate, let’s turn our two-column list of states into an interactive interface:
when the user taps the name of a state, we’ll fetch that name, and we’ll briefly draw a
rectangle around the name to provide feedback (Figure 23-4).

We have two NSMutableArray properties, theLines and theBounds. We initialize them
to empty arrays at the start of our drawRect:, and each time we call CTFrameDraw we also
call a utility method:

[self appendLinesAndBoundsOfFrame:f context:ctx];

In appendLinesAndBoundsOfFrame:context: we save the CTLines of the frame into the-
Lines; we also calculate the drawn bounds of each line and save it into theBounds:

- (void) appendLinesAndBoundsOfFrame:(CTFrameRef)f context:(CGContextRef)ctx{
 CGAffineTransform t1 =
 CGAffineTransformMakeTranslation(0, self.bounds.size.height);
 CGAffineTransform t2 = CGAffineTransformMakeScale(1, -1);
 CGAffineTransform t = CGAffineTransformConcat(t2, t1);
 CGPathRef p = CTFrameGetPath(f);
 CGRect r = CGPathGetBoundingBox(p); // this is the frame bounds
 NSArray* lines = (NSArray*)CTFrameGetLines(f);
 [self.theLines addObjectsFromArray:lines];
 CGPoint origins[[lines count]];
 CTFrameGetLineOrigins(f, CFRangeMake(0,0), origins);
 for (int i = 0; i < [lines count]; i++) {
 CTLineRef aLine = (CTLineRef)[lines objectAtIndex:i];
 CGRect b = CTLineGetImageBounds((CTLineRef)aLine, ctx);
 // the line origin plus the image bounds size is the bounds we want
 CGRect b2 = { origins[i], b.size };
 // but it is expressed in terms of the frame, so we must compensate
 b2.origin.x += r.origin.x;
 b2.origin.y += r.origin.y;
 // we must also compensate for the flippedness of the graphics context
 b2 = CGRectApplyAffineTransform(b2, t);
 [self.theBounds addObject: [NSValue valueWithCGRect:b2]];
 }
}

We have attached a UITapGestureRecognizer to our view; when the user taps, we cycle
through the saved bounds to see if any of them contains the tap point. If it does, we
fetch the name of the state, and we draw a rectangle around it:

- (void) tapped: (UITapGestureRecognizer*) tap {
 CGPoint loc = [tap locationInView:self];
 for (int i = 0; i < [self.theBounds count]; i++) {
 CGRect rect = [[self.theBounds objectAtIndex: i] CGRectValue];
 if (CGRectContainsPoint(rect, loc)) {

Figure 23-4. The user has tapped on California

Core Text | 585

 // draw rectangle for feedback
 CALayer* lay = [CALayer layer];
 lay.frame = CGRectInset(rect, -5, -5);
 lay.borderWidth = 2;
 [self.layer addSublayer: lay];
 [lay performSelector:@selector(removeFromSuperlayer)
 withObject:nil afterDelay:0.3];
 // fetch the drawn string tapped on
 CTLineRef theLine = (CTLineRef)[self.theLines objectAtIndex:i];
 CFRange range = CTLineGetStringRange(theLine);
 CFStringRef s = CFStringCreateWithSubstring(
 NULL, (CFStringRef)[self.text string], range);
 // ... do something with string here ...
 CFRelease(s);
 break;
 }
 }
}

If we needed to, we could even learn what character the user tapped by going down to
the level of glyph runs (CTRun) and glyphs (CTGlyph). We have barely scratched the
surface of what Core Text can do. Read Apple’s Core Text Programming Guide for
further information.

UITextInput
The UITextInput protocol, along with related protocols, allows you to design your own
interface object that interacts with the text input system to receive keypresses from the
keyboard and draw the corresponding text (with Core Text); see the chapter “Drawing
and Managing Text” in Apple’s Text, Web, and Editing Programming Guide for iOS.
This is an involved subject and beyond the scope of this book, not least because I’ve
no experience with it. Unfortunately, Apple’s sample project referred to in the docu-
mentation as illustrating the UITextInput protocol in action (“SimpleTextInput”) ap-
pears not to exist.

586 | Chapter 23: Text

CHAPTER 24

Web Views

A web view (UIWebView) is a versatile renderer of text in various formats, including:

• HTML

• PDF

• RTF, including .rtfd (which must be supplied in a zipped format, .rtfd.zip)

• Microsoft Word (.doc), Excel (.xls), and PowerPoint (.ppt)

• Pages, Numbers, and Keynote; before iWork 2009, these must be zipped
(e.g. .key.zip), but starting with iWork 2009 they must not be zipped.

In addition to displaying rendered text, a web view is, by default, a web browser. This
means that if the user taps, within the web view, on a link that leads to content that
the web view can render, the web view by default will automatically fetch that content
(possibly over the Internet) and display it. Indeed, a web view is, in effect, a front end
for WebKit, the same rendering engine used by Mobile Safari (and, for that matter, by
Safari on Mac OS X). A web view can display non-HTML file formats such as PDF,
RTF, and so on, precisely because WebKit can display them.

As the user taps links and displays web pages, the web view keeps back-and-forward
lists, just like a web browser. Two properties, canGoBack and canGoForward, and two
methods, goBack and goForward, let you interact with this list. Your interface could thus
contain Back and Forward buttons, like a miniature web browser.

UIWebView is not intended for subclassing. A web view is scrollable, but UIWebView
is not a UIScrollView subclass. A web view is zoomable if its scalesToFit property is
YES; in that case, it initially scales its content to fit, and the user can zoom the content
(this includes use of the gesture, familiar from Mobile Safari, whereby double-tapping
part of a web page zooms to that region of the page). Like a text view, its dataDetector-
Types property lets you set certain types of data to be automatically converted to click-
able links. An obvious difference from a text view is that the target of a web page link
is, as I mentioned a moment ago, displayed by default right there in the web view, rather
than switching to Mobile Safari.

587

It is possible to design an entire app that is effectively nothing but a UIWebView —
especially if you have control of the server with which the user is interacting. Indeed,
before the advent of iOS, an iPhone app was a web application. There are still iPhone
apps that work this way, but such an approach to app design is outside the scope of
this book. (See Apple’s Mobile Safari Web Application Tutorial if you’re curious.)

A web view’s most important task is to render HTML content; like any browser, a web
view understands HTML, CSS, and JavaScript. In order to construct content for a web
view, you must know HTML, CSS, and JavaScript. Discussion of those languages is
beyond the scope of this book; each would require a book (at least) of its own.

Loading Content
To load a web view with content initially, you’re going to need one of three things:

An HTML string
Construct an NSString consisting of valid HTML and call loadHTMLString:base-
URL:.

Data and a MIME type
Obtain an NSData object and call loadData:MIMEType:textEncodingName:base-
URL:. Obviously, this requires that you know the appropriate MIME type, and that
you obtain the content as NSData (or convert it to NSData).

An NSURLRequest
Construct an NSURLRequest and call loadRequest:. An NSURLRequest might
involve a file URL referring to a file on disk (within your app’s bundle, for instance);
the web view will deduce the file’s type from its extension. But it might also involve
the URL of a resource to be fetched across the Internet, in which case you can
configure various additional aspects of the request (for example, you can form a
POST request). This is the only form of loading that works with goBack (because
in the other two forms, there is no URL to return to).

There is often more than one way to load a given piece of content. For instance, one of
Apple’s own examples suggests that you display a PDF file in your app’s bundle by
loading it as data, along these lines:

NSString *thePath = [[NSBundle mainBundle] pathForResource:@"MyPDF" ofType:@"pdf"];
NSData *pdfData = [NSData dataWithContentsOfFile:thePath];
[self.wv loadData:pdfData MIMEType:@"application/pdf"
 textEncodingName:@"utf-8" baseURL:nil];

But the same thing can be done with a file URL and loadRequest:, like this:

NSURL* url = [[NSBundle mainBundle] URLForResource:@"MyPDF" withExtension:@"pdf"];
NSURLRequest* req = [[NSURLRequest alloc] initWithURL:url];
[self.wv loadRequest:req];
[req release];

588 | Chapter 24: Web Views

Similarly, in one of my apps, where the Help screen is a web view (Figure 24-1), the
content is an HTML file along with some referenced image files, and I load it like this:

NSString* path = [[NSBundle mainBundle] pathForResource:@"help" ofType:@"html"];
NSURL* url = [NSURL fileURLWithPath:path];
NSError* err = nil;
NSString* s = [NSString stringWithContentsOfURL:url
 encoding:NSUTF8StringEncoding error:&err];
// error-checking omitted
[view loadHTMLString:s baseURL:url];

At the time I wrote that code, the NSBundle method URLForResource:withExtension:
didn’t yet exist (it was introduced in iOS 4.0, and I needed this code to run on iOS 3.2
as well), so I had to form a pathname reference to the file and convert it to a URL.
Observe that I need both the string contents of the HTML file and the URL reference
to the same file, the latter to act as a base URL so that the relative references to the
images will work properly. In this instance, I could have used loadRequest: and the file
URL:

NSString* path = [[NSBundle mainBundle] pathForResource:@"help" ofType:@"html"];
NSURL* url = [NSURL fileURLWithPath:path];
NSURLRequest* req = [[NSURLRequest alloc] initWithURL:url];
[view loadRequest: req];
[req release];

You can use loadHTMLString:baseURL: to form your own web view content dynamically.
For example, in the TidBITS News app, the content of an article is displayed in a web
view that is loaded using loadHTMLString:baseURL:. The body of the article comes from
an RSS feed, but it is wrapped in programmatically supplied material. For example, in
Figure 24-2, the title of the article and the fact that it is a link, the right-aligned author
byline and publication date, and the Listen button, along with the overall formatting
of the text (including the font size), are imposed as the web view appears.

There are many possible strategies for doing this. In the case of the TidBITS News app,
I start with a template loaded from disk:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<!-- this is an NSString format, so percent-escapes are used -->

Figure 24-1. A Help screen that’s a web view

Loading Content | 589

<html>
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8">
 <meta name="viewport" content="initial-scale=1.0" />
 <!-- scale images down to fit -->
 <style type="text/css">
 p.inflow_image {
 text-align:center;
 }
 img {
 width:100%%;
 max-width:%ipx;
 height:auto
 }
 </style>
 <!-- preload alt image -->
 <script type="text/javascript" language="javascript">
 (new Image()).src='tb_iphone_listen_pressed_02.png';
 </script>
 <title>no title</title>
</head>
<body style="font-size:%ipx; font-family:Georgia; margin:1px %ipx">
 <!-- title, which is a link to original article at our site -->
 <div style="margin-top: 0px; margin-bottom: 15px">
 <h3>%@</h3>
 </div>
 <!-- playbutton or nothing; author and date -->
 <div style="width:100%%">
 %@
 <span style="float:right; margin-bottom: 15px; display:block;
 text-align:right; font-size:80%%;">
 By %@
%@

 </div>
 <!-- body, from feed -->
 <div style="clear:both; margin:30px 0px;">
 %@
 </div>
</body>
</html>

Figure 24-2. A web view with dynamically formed content

590 | Chapter 24: Web Views

As you can see, the template defines the structure of a valid HTML document — the
opening and closing tags, the head area (including some CSS styling and a little Java-
Script), and a body consisting of divs laying out the parts of the page. The template is
designed to be used as the format string in a stringWithFormat: method call; hence the
various format specifiers scattered throughout it (and literal percent signs are escaped
by doubling them). When the web view is to be loaded, the template is read from disk
and handed over to stringWithFormat:, with every format specifier matched by an ar-
gument:

NSError* err = nil;
NSString* template =
 [NSString stringWithContentsOfFile:
 [[NSBundle mainBundle] pathForResource:@"htmltemplate" ofType:@"txt"]
 encoding: NSUTF8StringEncoding error:&err];
// error-checking omitted
NSString* s = [NSString stringWithFormat: template,
 maxImageWidth,
 [fontsize intValue],
 margin,
 anitem.guid,
 anitem.title,
 (canPlay ? playbutton : @""),
 [anitem authorOfItem],
 date,
 anitem.content
];

Some of these arguments (such as anitem.title, date, anitem.content) slot values more
or less directly from the app’s model into the web view. Others are derived from the
current circumstances. For example, maxImageWidth and margin have been set depend-
ing on whether the app is running on the iPhone or on the iPad; fontsize comes from
the user defaults, because the user is allowed to determine how large the text should
be. The result is an HTML string ready for loadHTMLString:baseURL:.

Web view content is loaded asynchronously (gradually, in a thread of its own), and it
might not be loaded at all (because the user might not be connected to the Internet, the
server might not respond properly, and so on). This isn’t likely to matter if you’re
loading a resource directly from disk, where loading is quick and nothing is going to
go wrong; even then, rendering the content can take time, and even a resource loaded
from disk, or content formed directly as an HTML string, might itself refer to material
out on the Internet that takes time to fetch.

Your app’s interface is not blocked or frozen while the content is loading. On the con-
trary, it remains accessible and operative; that’s what “asynchronous” means. The web
view, in fetching a web page and its linked components, is doing something quite com-
plex, involving both threading and network interaction, but it shields you from this
complexity. Your own interaction with the web view stays on the main thread and is
straightforward. You ask the web view to load some content, and then you just sit back
and let it worry about the details.

Loading Content | 591

Indeed, there’s very little you can do once you’ve asked a web view to load content.
Your main concerns will probably be to know when loading really starts, when it has
finished, and whether it succeeded. To help you with this, a UIWebView’s delegate
(adopting the UIWebViewDelegate protocol) gets three messages:

• webViewDidStartLoad:

• webViewDidFinishLoad:

• webView:didFailLoadWithError:

In this example from the TidBITS News app, I mask the delay while the content loads
by displaying an activity indicator (a UIActivityIndicatorView, referred to by a property,
activity) at the center of the web view:

- (void)webViewDidStartLoad:(UIWebView *)wv {
 self.activity.center =
 CGPointMake(CGRectGetMidX(wv.bounds), CGRectGetMidY(wv.bounds));
 [self.activity startAnimating];
}

- (void)webViewDidFinishLoad:(UIWebView *)wv {
 [self.activity stopAnimating];
}

- (void)webView:(UIWebView *)wv didFailLoadWithError:(NSError *)error {
 [self.activity stopAnimating];
}

Before designing the HTML to be displayed in a web view, you might want to read up
on the brand of HTML native to the mobile WebKit engine. Of course a web view
can display any valid HTML you throw at it, but the mobile WebKit has certain limi-
tations. For example, mobile WebKit notoriously doesn’t use plug-ins, such as Flash;
it doesn’t implement scrollable frames within framesets; and it imposes limits on the
size of resources (such as images) that it can display. On the plus side, it has many
special abilities and specifications that you’ll want to take advantage of.

A good place to start is Apple’s Safari Web Content Guide (http://developer.apple.com/
library/safari/documentation/AppleApplications/Reference/SafariWebContent). It con-
tains links to all the other relevant documentation, such as the Safari CSS Visual Effects
Guide (http://developer.apple.com/library/safari/documentation/InternetWeb/Concep
tual/SafariVisualEffectsProgGuide), which describes some things you can do with Web-
Kit’s implementation of CSS3 (like animations), and the Safari HTML5 Audio and Video
Guide (http://developer.apple.com/library/safari/documentation/AudioVideo/Concep
tual/Using_HTML5_Audio_Video), which describes WebKit’s audio and video player
support.

If nothing else, you’ll definitely want to be aware of one important aspect of web page
content — the viewport. You’ll notice that the TidBITS News HTML string in the
previous section contains this line:

<meta name="viewport" content="initial-scale=1.0" />

592 | Chapter 24: Web Views

Without that line, the HTML string is laid out incorrectly when it is rendered. This is
noticeable especially with the iPad version of TidBITS News, where the web view can
be rotated when the device is rotated, causing its width to change: in one orientation
or the other, the text will be too wide for the web view, and the user has to scroll
horizontally in order to read it all. The Safari Web Content Guide explains why: if no
viewport is specified, the viewport can change when the app rotates. Setting the
initial-scale causes the viewport size to adopt correct values in both orientations.

A web view’s loading property tells you whether it is in the process of loading a request.
If, at the time a web view is to be destroyed, its loading is YES, it is up to you to cancel
the request by sending it the stopLoading message first; actually, it does no harm to
send the web view stopLoading in any case. In addition, UIWebView is one of those
weird classes I warned you about (Chapter 12) whose memory management behavior
is odd: Apple’s documentation warns that if you assign a UIWebView a delegate, you
must nilify its delegate property before releasing the web view. Thus, in a controller
class that retains a web view, I do an extra little dance in dealloc:

[wv stopLoading];
wv.delegate = nil;
[wv release];

Communicating with a Web View
Having loaded a web view with content, you don’t so much configure or command the
web view as communicate with it. There are two modes of communication with a web
view and its content:

Load requests
When a web view is asked to load content, in particular because the user has tapped
a link within it, its delegate is sent the message webView:shouldStartLoadWith-
Request:navigationType:. This is your opportunity to interfere with the web view’s
loading behavior. You are handed an NSURLRequest, whose URL property you can
analyze (very easily, because it’s an NSURL). And you are handed a constant de-
scribing the type of navigation involved, whose value will be one of the following:

• UIWebViewNavigationTypeLinkClicked

• UIWebViewNavigationTypeFormSubmitted

• UIWebViewNavigationTypeBackForward

• UIWebViewNavigationTypeReload

• UIWebViewNavigationTypeFormResubmitted

• UIWebViewNavigationTypeOther (includes loading the web view with content in-
itially)

Communicating with a Web View | 593

JavaScript execution
You can speak JavaScript to a web view’s content by sending it the stringBy-
EvaluatingJavaScriptFromString: message. Thus you can enquire as to the nature
and details of that content, and you can alter the content dynamically.

The TidBITS News app uses webView:shouldStartLoadWithRequest:navigationType: to
distinguish between the user tapping an ordinary link and tapping the Listen button
(shown in Figure 24-2). The onclick script for the <a> tag surrounding the Listen button
image executes this JavaScript code:

document.location='play:me'

This causes the web view to attempt to load an NSURLRequest whose URL is play:me,
which is totally bogus; it’s merely an internal signal to ourselves. We intercept the
attempt to load this request, examine the NSURLRequest, observe that its URL has a
scheme called @"play", and prevent the loading from taking place; instead, we head back
to the Internet to start playing the online podcast recording associated with this article.
Any other load request caused by tapping a link is also prevented and redirected instead
to Mobile Safari, because we don’t want our web view used as an all-purpose browser.
But we do let our web view load a request in the general case, because otherwise it
wouldn’t even respond to our attempt to load it with HTML content in the first place:

- (BOOL)webView:(UIWebView *)webView shouldStartLoadWithRequest:(NSURLRequest *)r
 navigationType:(UIWebViewNavigationType)nt {
 if ([r.URL.scheme isEqualToString: @"play"]) {
 [self doPlay:nil];
 return NO;
 }
 if (nt == UIWebViewNavigationTypeLinkClicked) {
 [[UIApplication sharedApplication] openURL:r.URL];
 return NO;
 }
 return YES;
}

The TidBITS News app uses JavaScript in several ways: I’ll describe one. If the user
reads an article, then leaves that screen to examine the list of articles (or terminates the
app), but then returns to the same article, we’d like to display the article vertically
scrolled to the same position where it was before. At first glance one might have the
impression that this is impossible, because a web view is not a UIScrollView, so we
can’t learn or control its scroll position. But this impression is wrong; it ignores the fact
that a web view is a browser. We can learn the scroll position of its content using
JavaScript (wv here is the web view):

NSString* scrolly = [wv stringByEvaluatingJavaScriptFromString: @"scrollY"];

Later, we can restore the scroll position by using the converse:

[wv stringByEvaluatingJavaScriptFromString:
 [NSString stringWithFormat: @"window.scrollTo(0, %@);", scrolly]];

594 | Chapter 24: Web Views

JavaScript and the document object model (DOM) are quite powerful. Here’s some
additional documentation you may find helpful:

• WebKit DOM Programming Topics (http://developer.apple.com/library/safari/
#documentation/AppleApplications/Conceptual/SafariJSProgTopics/WebKitJava
Script.html)

• WebKit DOM Reference (http://developer.apple.com/library/safari/#documenta
tion/AppleApplications/Reference/WebKitDOMRef)

• Safari DOM Additions Reference (http://developer.apple.com/library/safari/#docu
mentation/AppleApplications/Reference/SafariJSRef).

Communicating with a Web View | 595

CHAPTER 25

Controls and Other Views

This chapter discusses all UIView subclasses provided by UIKit that haven’t been dis-
cussed already (except for the two modal dialog classes, which are described in the next
chapter). It’s remarkable how few of them there are; UIKit exhibits a noteworthy econ-
omy of means in this regard.

Additional UIView subclasses are provided by other frameworks. For example, the Map
Kit framework provides the MKMapView (Chapter 34). Also, additional UIViewCon-
troller subclasses are provided by other frameworks as a way of creating interface. For
example, the MessageUI framework provides MFMailComposeViewController, which
acts as a contained view controller to give your app interface for letting the user compose
and send a mail message (Chapter 33). There will be lots of examples in Part VI.

UIActivityIndicatorView
An activity indicator (UIActivityIndicatorView) appears as the spokes of a small
wheel. You set the spokes spinning with startAnimating, giving the user a sense that
some time-consuming process is taking place. You stop the spinning with stop-
Animating. If the activity indicator’s hidesWhenStopped is YES (the default), it is visible
only when spinning.

An activity indicator comes in a style, its activityIndicatorViewStyle; if the indicator
is created in code, you’ll set its style with initWithActivityIndicatorStyle:. Your
choices are:

• UIActivityIndicatorViewStyleWhiteLarge

• UIActivityIndicatorViewStyleWhite

• UIActivityIndicatorViewStyleGray

An activity indicator has a standard size, which depends on its style. You can change
its size in code, though an enlarged activity indicator may look rather fuzzy.

597

Here’s some code from a UITableViewCell subclass in one of my apps. In this app, it
takes some time, after the user taps a cell to select it, for me to construct the next view
and navigate to it, so to cover the delay, I show a spinning activity indicator in the center
of a cell while it’s selected:

- (void)setSelected:(BOOL)selected animated:(BOOL)animated {
 if (selected) {
 UIActivityIndicatorView* v =
 [[UIActivityIndicatorView alloc]
 initWithActivityIndicatorStyle:UIActivityIndicatorViewStyleWhiteLarge];
 v.center =
 CGPointMake(self.bounds.size.width/2.0, self.bounds.size.height/2.0);
 v.tag = 1001;
 [self.contentView addSubview:v];
 [v startAnimating];
 [v release];
 } else {
 [[self.contentView viewWithTag:1001] removeFromSuperview];
 // no harm if nonexistent
 }
 [super setSelected:selected animated:animated];
}

If the activity involves the network, you might want to set UIApplication’s network-
ActivityIndicatorVisible to YES. This displays a small spinning activity indicator in
the status bar. The indicator is not reflecting actual network activity — if it’s visible,
it’s spinning — so be sure to set it back to NO when the activity is over.

An activity indicator is simple and standard, but you can’t change the way it’s drawn.
If you want your own custom activity indicator, though, it’s easy to make one. One
obvious way is to use a UIImageView with a sequence of custom images forming an
animation (animationImages), as described in Chapter 17.

UIProgressView
A progress view (UIProgressView) is a “thermometer,” graphically displaying a per-
centage. It is often used to represent a time-consuming process during which the per-
centage of completion is known (if the percentage of completion is unknown, you’re
more likely to use an activity indicator), but it might also be used to represent a fairly
static percentage. For example, in one of my apps, I use a progress view to show the
current position within the song being played by the built-in music player; in another
app, which is a card game, I use a progress view in reverse, as it were, to show how
many cards are left in the deck.

Figure 25-1. A large white activity indicator

598 | Chapter 25: Controls and Other Views

A progress view comes in a style, its progressViewStyle; if the progress view is created
in code, you’ll set its style with initWithProgressViewStyle:. Your choices are:

• UIProgressViewStyleDefault

• UIProgressViewStyleBar

The latter is intended for use in a UIBarButtonItem, as the title view of a navigation
item, and so on.

The height (the narrow dimension) of a progress view is generally not up to you; it’s
determined by the progress view’s style. Changing a progress view’s height has no
visible effect on how the thermometer is drawn and is not a good idea.

The fullness of the thermometer is the progress view’s progress property. This is a value
between 0 and 1, inclusive; obviously, you’ll need to do some elementary arithmetic in
order to convert from the actual value you’re reflecting to a value within that range.
For example, to reflect the number of cards remaining in a deck of 52 cards:

prog.progress = [[deck cards] count] / 52.0;

A progress view is simple and standard, but you can’t change the way it’s drawn. If you
want your own custom progress view, it’s easy to make one; all you need is a custom
UIView subclass that draws something similar to a thermometer. Figure 25-3 shows a
simple custom thermometer view; it has a value property, and you set this to something
between 0 and 1 and then call setNeedsDisplay to get the view to redraw itself. Here’s
its drawRect: code:

- (void)drawRect:(CGRect)rect {
 CGContextRef c = UIGraphicsGetCurrentContext();
 [[UIColor whiteColor] set];
 CGFloat ins = 2.0;
 CGRect r = CGRectInset(self.bounds, ins, ins);
 CGFloat radius = r.size.height / 2.0;
 CGMutablePathRef path = CGPathCreateMutable();
 CGPathMoveToPoint(path, NULL, CGRectGetMaxX(r) - radius, ins);
 CGPathAddArc(path, NULL,
 radius+ins, radius+ins, radius, -M_PI/2.0, M_PI/2.0, true);
 CGPathAddArc(path, NULL,
 CGRectGetMaxX(r) - radius, radius+ins, radius, M_PI/2.0, -M_PI/2.0, true);
 CGPathCloseSubpath(path);
 CGContextAddPath(c, path);
 CGContextSetLineWidth(c, 2);
 CGContextStrokePath(c);
 CGContextAddPath(c, path);
 CGContextClip(c);
 CGContextFillRect(c, CGRectMake(
 r.origin.x, r.origin.y, r.size.width * self.value, r.size.height));
}

Figure 25-2. A progress view

UIProgressView | 599

UIPickerView
A UIPickerView displays selectable choices using a rotating drum metaphor. It has a
standard legal range of possible heights, which is undocumented and must be discov-
ered by trial and error (attempting to set the height outside this range will fail with a
warning in the console); its width is largely up to you. Each drum, or column, is called
a component.

Your code configures the UIPickerView’s content through its data source (UIPicker-
ViewDataSource) and delegate (UIPickerViewDelegate), which are usually the same
object (see also Chapter 11). Your data source and delegate must answer questions
similar to those posed by a UITableView (Chapter 21):

numberOfComponentsInPickerView: (data source)
How many components (drums) does this picker view have?

pickerView:numberOfRowsInComponent: (data source)
How many rows does this component have? The first component is numbered 0.

pickerView:titleForRow:forComponent:
pickerView:viewForRow:forComponent:reusingView: (delegate)

What should this row of this component display? The first row is numbered 0. You
can supply either a simple title string or an entire view such as a UILabel, giving
you more control over formatting, but you must supply every row of every com-
ponent the same way, because if viewForRow is implemented, titleForRow isn’t
called. The reusingView parameter, if not nil, is a view that you supplied for a row
now no longer visible, giving you a chance to reuse it, much as cells are reused in
a table view.

Here’s the code for a UIPickerView (Figure 25-4) that displays the names of the 50 U.S.
states, obtained from a text file. We implement pickerView:viewForRow:forComponent:
reusingView: just because it’s the more interesting case; as our views, we supply UILabel
instances. The state names, drawn from an NSArray property states, are drawn cen-
tered because the labels are themselves centered within the picker view:

- (NSInteger)numberOfComponentsInPickerView:(UIPickerView *)pickerView {
 return 1;
}

- (NSInteger)pickerView:(UIPickerView *)pickerView
 numberOfRowsInComponent:(NSInteger)component {
 return 50;

Figure 25-3. A custom progress view

600 | Chapter 25: Controls and Other Views

}

- (UIView *)pickerView:(UIPickerView *)pickerView viewForRow:(NSInteger)row
 forComponent:(NSInteger)component reusingView:(UIView *)view {
 UILabel* lab;
 if (view)
 lab = (UILabel*)view;
 else
 lab = [[[UILabel alloc] init] autorelease];
 lab.text = [self.states objectAtIndex:row];
 lab.backgroundColor = [UIColor clearColor];
 [lab sizeToFit];
 return lab;
}

The delegate may further configure the UIPickerView’s physical appearance by means
of these methods:

• pickerView:rowHeightForComponent:

• pickerView:widthForComponent:

The delegate may implement pickerView:didSelectRow:inComponent: to be notified
each time the user spins a drum to a new position. You can also query the picker view
directly by sending it selectedRowInComponent:.

You can set the value to which any drum is turned using selectRow:inComponent:
animated:. Other handy picker view methods allow you to request that the data be
reloaded, and there are properties and methods to query the picker view’s contents
(though of course they do not relieve you of responsibility for knowing the data model
from which the picker view’s contents are supplied):

• reloadComponent:

• reloadAllComponents

• numberOfComponents

• numberOfRowsInComponent:

• viewForRow:forComponent:

Figure 25-4. A picker view

UIPickerView | 601

By implementing pickerView:didSelectRow:inComponent: and using reloadComponent:
you can make a picker view where the values displayed by one drum depend dynami-
cally on what is selected in another. For example, one can imagine expanding our U.S.
states example to include a second drum listing major cities in each state; when the
user switches to a different state in the first drum, a different set of major cities appears
in the second drum.

UISearchBar
A search bar (UISearchBar) is essentially a variety of text field, though it is not in fact
a UITextField subclass. It is displayed as a rounded rectangle containing a magnifying
glass icon, where the user can enter text (Figure 25-5). It does not, of itself, do any
searching or display the results of a search; a common interface involves displaying the
results of a search as a table, and a controller class, UISearchDisplayController, makes
this easy to do (see Chapter 21).

A search bar’s current text is its text property. It can have a placeholder, which appears
when there is no text. A prompt can be displayed above the search bar to explain its
purpose. Delegate methods (UISearchBarDelegate) notify you of editing events:

• searchBarShouldBeginEditing:

• searchBarTextDidBeginEditing:

• searchBar:textDidChange:

• searchBar:shouldChangeTextInRange:replacementText:

• searchBarShouldEndEditing:

• searchBarTextDidEndEditing:

A search bar has a barStyle, for which your choices are the same as for a toolbar or
navigation bar: either UIBarStyleDefault or UIBarStyleBlack, and if the latter, either
translucent or not. Alternatively, the search bar may have a tintColor; as with a tool-
bar, if this is set, the barStyle is ignored. (See Chapter 19 and later in this chapter.)
Because of this, a search bar looks good at the top of the screen, where a navigation bar
or toolbar might go; in effect, it is drawn as if it were a navigation bar or toolbar.

A search bar displays an internal Cancel button automatically (an “x” in a circle) if there
is text in the search bar. Internally, at its right end, a search bar may display a search
results button (showsSearchResultsButton), which may be selected or not (search-
ResultsButtonSelected), or a bookmark button (showsBookmarkButton). These buttons
cover the internal Cancel button, but they vanish if text is entered in the search bar.

Figure 25-5. A search bar with a search results button

602 | Chapter 25: Controls and Other Views

There is also an option to display a Cancel button externally (showsCancelButton). Del-
egate methods notify you when the buttons are tapped:

• searchBarResultsListButtonClicked:

• searchBarBookmarkButtonClicked:

• searchBarCancelButtonClicked:

The best way to get a sense of how these properties affect the look of a search bar is to
experiment with them in the nib editor.

A search bar may also display scope buttons (see the example in Chapter 21). These
are intended to let the user alter the meaning of the search; precisely how you use them
is up to you. To make the scope buttons appear, use the showsScopeBar property; the
button titles are the scopeButtonTitles property, and the currently selected scope but-
ton is the selectedScopeButtonIndex property. The delegate is notified when the user
taps a different scope button:

• searchBar:selectedScopeButtonIndexDidChange:

The problem of allowing the keyboard to appear without hiding the search bar is exactly
as for a text field (Chapter 23). Text input properties of the search bar configure its
keyboard and typing behavior like a text field as well: keyboardType, autocapitalization-
Type, and autocorrectionType. When the user taps the Search key in the keyboard, the
delegate is notified, and it is then up to you to dismiss the keyboard (resignFirst-
Responder) and perform the search:

• searchBarSearchButtonClicked:

A common interface on the iPad is to embed a search bar as a bar button item’s view
in a toolbar at the top of the screen. This approach has its pitfalls; for example, there
is no room for a prompt, and scope buttons or an external Cancel button may not
appear either. One rather slimy workaround is to layer the search bar over the toolbar
rather than having it genuinely live in the toolbar. Another is to have the search bar
itself occupy the position of the toolbar at the top of the screen. On the other hand, a
search bar in a toolbar that is managed by a UISearchDisplayController will automat-
ically display search results in a popover, which can be a considerable savings of time
and effort (though, as usual, the popover controller is unfortunately out of your hands);
see Chapter 22 for an example. An interesting thing about that example, which I didn’t
mention at the time, is that the search bar contains a results list button that summons
the popover when tapped, and in that case the popover’s bar contains a Clear button
that empties the search bar and dismisses the popover; that behavior is apparently
entirely automatic and due to the search display controller.

UISearchBar | 603

UIControl
UIControl is a subclass of UIView whose chief purpose is to be the superclass of several
further built-in classes representing views with which the user can interact (controls),
endowing them with common behavior.

The most important thing that controls have in common is that they automatically
track and analyze touch events (Chapter 18) and report them to the programmer as
significant control events by way of action messages. Each control implements some
subset of the possible control events (see Chapter 11 for a list of which control events
are implemented by which controls); for each control event that you want to hear about
automatically, you attach to the control one or more target–action pairs. You can do
this in the nib (Chapter 7) or in code (Chapter 11).

For any given control, each control event and its target–action pairs form a dispatch
table. The following methods permit you to manipulate and query the dispatch table:

• addTarget:action:forControlEvents:

• removeTarget:action:forControlEvents:

• actionsForTarget:forControlEvent:

• allTargets

• allControlEvents (a bitmask of control events to which a target–action pair is at-
tached)

An action selector may adopt any of three signatures (see Chapter 11). Disappointingly,
none of these signatures provide a way to learn what control event triggered the current
action selector call! Thus, for example, to distinguish a Touch Up Inside event from a
Touch Up Outside event, you must dispatch them to two different action handlers; if
you dispatch them to the same action handler, your code cannot discern which event
occurred.

When a control wants to send an action message reporting control event, it calls its
own sendAction:to:forEvent: method. This in turn calls the shared application in-
stance’s sendAction:to:from:forEvent:, which actually calls the specified method of
the specified target. In theory, you could call or override either of these methods, but
it is extremely unlikely that you would do so.

To force a control to report a particular control event message, call its sendActionsFor-
ControlEvents: method (which is never called automatically by the framework). For
example, suppose you tell a UISwitch programmatically to change its setting from Off
to On. This doesn’t cause the switch to report a control event, as it would if the user
had slid the switch from off to on; if you wanted it to do so, you could use sendActions-
ForControlEvents:, like this:

[switch setOn: YES animated: YES];
[switch sendActionsForControlEvents:UIControlEventValueChanged];

604 | Chapter 25: Controls and Other Views

You might also use sendActionsForControlEvents: in a subclass to customize the cir-
cumstances under which a control reports control events.

A control has enabled, selected, and highlighted properties. A control that is not en-
abled does not respond to user interaction; whether the control also portrays itself
differently, to cue the user to this fact, depends upon the control. For example, a dis-
abled UISwitch is faded. But a round rect text field, unless you explicitly configure it
to display a different background image when disabled (Chapter 23), gives the user no
cue that it is disabled. The visual nature of control selection and highlighting, too,
depends on the control. Neither highlighting nor selection make any difference to the
appearance of a UISwitch, but a highlighted UIButton usually looks quite different from
a nonhighlighted UIButton.

A control has contentHorizontalAlignment and contentVerticalAlignment properties.
Again, these matter only if the control has content that can be aligned. You are most
likely to use these properties in connection with a UIButton to position its title and
internal image.

A text field (UITextField) is a control; see Chapter 23. The remaining controls are
covered here, and then I’ll give a simple example of writing your own custom control.

UISwitch
A UISwitch portrays a BOOL value: it looks like a sliding electrical switch whose po-
sitions are labeled ON and OFF, and its on property is either YES or NO. The user can
slide or tap to toggle the switch’s position. When the user changes the switch’s position,
the switch reports a Value Changed control event. To change the on property’s value
with accompanying animation, call setOn:animated:.

A switch has only one size and color scheme. Any attempt to set its size will be ignored.
(Experimentation suggests that the standard size is 97×27.) You can’t customize the
ON and OFF labels; the only solution is to roll your own switch-like interface widget
(several third-party implementations are available).

Don’t name a UISwitch instance variable or property switch, as this is
a reserved word in C.

UIPageControl
A UIPageControl is a row of dots; each dot is called a page, because it is intended to be
used in conjunction with some other interface that portrays something analogous to

Figure 25-6. A switch

UIControl | 605

pages, such as a UIScrollView with its pagingEnabled set to YES. Coordinating the page
control with this other interface is up to you. (See Chapter 20 for an example and
Figure 20-3 for an illustration.) The number of dots is the page control’s numberOf-
Pages. The current page, its currentPage, is portrayed as a solid dot; the others are
slightly transparent. The user can tap to one side or the other of the current page’s dot
to increment or decrement the current page; the page control then reports a Value
Changed control event.

You can make the page control wider than the dots to increase the target region on
which the user can tap. You can make the page control taller as well, but only the
horizontal component of a tap is taken into account, so this would probably be pointless
as well as confusing to the user. To learn the minimum size required for a given number
of pages, use sizeForNumberOfPages:.

If a page control’s hidesForSinglePage is YES, the page control becomes invisible when
its numberOfPages changes to 1.

If a page control’s defersCurrentPageDisplay is YES, then when the user taps to incre-
ment or decrement the page control’s value, the display of the current page is not
changed. A Value Changed control event is reported, but it is up to your code to handle
this action and call updateCurrentPageDisplay. A case in point might be if the user’s
changing the current page starts an animation, but you don’t want the current page dot
to change until the animation ends.

UIDatePicker
A UIDatePicker looks like a UIPickerView (discussed earlier in this chapter), but it is
not a UIPickerView subclass (it uses a UIPickerView to draw itself, but it provides no
official access to that picker view). Its purpose is to express the notion of a date and
time, taking care of the calendrical and numerical complexities so that you don’t have
to. When the user changes its setting, the date picker reports a Value Changed control
event.

A UIDatePicker has one of four modes (datePickerMode), determining how it is drawn:

UIDatePickerModeTime
The date picker displays a time; for example, it has an hour component and a
minutes component.

UIDatePickerModeDate
The date picker displays a date; for example, it has a month component, a day
component, and a year component.

UIDatePickerModeDateAndTime
The date picker displays a date and time; for example, it has a component showing
day of the week, month, and day, plus an hour component and a minutes compo-
nent.

606 | Chapter 25: Controls and Other Views

UIDatePickerModeCountDownTimer
The date picker displays a number of hours and minutes; for example, it has an
hours component and a minutes component.

Exactly what components a date picker displays, and what values they contain, depends
upon the locale. For example, a U.S. time displays an hour (numbered 1 through 12),
minutes, and AM or PM, but a British time displays an hour (numbered 1 through 24)
and minutes. A date picker has locale, calendar, and timeZone properties, respectively
an NSLocale, NSCalendar, and NSTimeZone. These are nil by default, meaning that
the date picker responds to the user’s system-level settings. For example, if your app
contains a date picker displaying a time, and the user changes the region format from
United States to United Kingdom, the date picker’s display will change immediately,
eliminating the AM/PM component and changing the hour numbers to run from 1 to
24.

According to Apple’s documentation, you should also be able to set a date picker’s
locale and calendar programmatically, but in fact changing the locale may have no
useful effect (it does seem to change the language if the mode is UIDatePickerModeDate-
AndTime, but not the number and values of the components), and it is hard to see the
use of this property. Setting a date picker’s timeZone does work, however; for example,
if you live in California and you set a date picker’s timeZone to GMT, the displayed time
is shifted forward by 8 hours, so that 11 AM is displayed as 7 PM (if it is winter).

Don’t change the timeZone of a UIDatePickerModeCountDownTimer date
picker, or the displayed value will be shifted and you will confuse the
heck out of yourself and your users.

The minutes component, if there is one, defaults to showing every minute, but you can
change this with the minuteInterval property. The maximum value is 30, in which case
the minutes component values are 0 and 30.

The maximum and minimum values enabled in the date picker are determined by its
maximumDate and minimumDate properties. Values outside this range may appear disabled.
There isn’t really any limit on the range that a date picker can display, because the
“drums” representing its components are not physical, and values are added dynami-
cally as the user spins them. In this example, we set the initial minimum and maximum
dates of a date picker (dp) to the beginning and end of 1954. We also set the actual
date, because otherwise the date picker will appear initially set to now, which will be
disabled because it isn’t within the minimum–maximum range:

NSDateComponents* dc = [[NSDateComponents alloc] init];
[dc setYear:1954];
[dc setMonth:1];
[dc setDay:1];
NSCalendar* c = [[NSCalendar alloc] initWithCalendarIdentifier:NSGregorianCalendar];
NSDate* d = [c dateFromComponents:dc];
dp.minimumDate = d;

UIControl | 607

dp.date = d;
[dc setYear:1955];
d = [c dateFromComponents:dc];
dp.maximumDate = d;
[c release]; [dc release];

Don’t set the maximumDate and minimumDate properties values for a UIDate-
PickerModeCountDownTimer date picker, or you might cause a crash with
an out-of-range exception.

The date represented by a date picker (unless its mode is UIDatePickerModeCountDown-
Timer) is its date property, an NSDate. The default date is now, at the time the date
picker is instantiated. For a UIDatePickerModeDate date picker, the time by default is 12
AM (midnight), local time; for a UIDatePickerModeTime date picker, the date by default
is today. The internal value is reckoned in the local time zone, so it may be different
from the displayed value, if you have changed the date picker’s timeZone.

The value represented by a UIDatePickerModeCountDownTimer date picker is its countDown-
Duration. The date picker does not actually do any counting down; changing its count-
DownDuration at appropriate intervals, if desired, is up to you, though you are more
likely to use some other interface to display the countdown, especially because the date
picker doesn’t display seconds. The Timer tab of Apple’s Clock app shows a typical
interface; the user configures the date picker to set the countDownDuration initially, but
once the counting starts, the date picker is hidden and a label displays the remaining
time. The countDownDuration is an NSTimeInterval, which is a double representing a
number of seconds; dividing by 60 to convert to minutes, and again to convert to hours,
is up to you — or you could use the built-in calendrical classes:

NSTimeInterval t = [datePicker countDownDuration];
NSDate* d = [NSDate dateWithTimeIntervalSinceReferenceDate:t];
NSCalendar* c = [[NSCalendar alloc] initWithCalendarIdentifier:NSGregorianCalendar];
[c setTimeZone: [NSTimeZone timeZoneForSecondsFromGMT:0]]; // normalize
NSUInteger units = NSHourCalendarUnit | NSMinuteCalendarUnit;
NSDateComponents* dc = [c components:units fromDate:d];
[c release];
NSLog(@"%i hr, %i min", [dc hour], [dc minute]);

Similarly, to convert between an NSDate and a string, you’ll need an NSDateFormatter
(see Chapter 10, and Apple’s Date and Time Programming Guide):

NSDate* d = [datePicker date];
NSDateFormatter* df = [[NSDateFormatter alloc] init];
[df setTimeStyle:kCFDateFormatterFullStyle];
[df setDateStyle:kCFDateFormatterFullStyle];
NSLog(@"%@", [df stringFromDate:d]);
// "Wednesday, August 10, 2011 3:16:25 AM Pacific Daylight Time"
[df release];

608 | Chapter 25: Controls and Other Views

UISlider
A slider (UISlider) is an expression of a continuously settable value (its value) between
some minimum and maximum (its minimumValue and maximumValue; they are 0 and 1 by
default). It is portrayed as an object, the thumb, positioned along a track. As the user
changes the thumb’s position, the slider reports a Value Changed control event; it may
do this continuously as the user presses and drags the thumb (if the slider’s
continuous is YES, the default) or only when the user releases the thumb (if its
continuous is NO). While the user is pressing on the thumb, the slider is in the
highlighted state. To change the slider’s value with animation, call setValue:animated:.

A commonly expressed desire is to modify a slider’s behavior so that, for example, if
the user taps on its track, the slider moves to the spot where the user tapped. Unfortu-
nately, a slider does not, of itself, respond to taps on its track; such a tap doesn’t even
cause it to report a Touch Up Inside. However, with a gesture recognizer, most things
are possible; here’s the action handler for a UITapGestureRecognizer attached to a
UISlider:

- (void) tapped: (UITapGestureRecognizer*) g {
 UISlider* s = (UISlider*)g.view;
 if (s.highlighted)
 return; // tap on thumb, let slider deal with it
 CGPoint pt = [g locationInView: s];
 CGFloat percentage = pt.x / s.bounds.size.width;
 CGFloat delta = percentage * (s.maximumValue - s.minimumValue);
 CGFloat value = s.minimumValue + delta;
 [s setValue:value animated:YES];
}

A slider’s appearance is extremely customizable: you can provide your own thumb and
your own track, along with images to appear at each end of the track, and you can
override in a subclass the methods that position these.

The images at the ends of the track are the slider’s minimumValueImage and maximumValue-
Image, and they are nil by default. If you set them to actual images (which can also be
done in the nib), the slider will attempt to position them within its own bounds,
shrinking the drawing of the track to compensate. The slider does not clip its subviews
by default, so the images can extend outside the slider’s bounds.

For example, suppose the slider’s dimensions are 250×23 (the standard height), and
suppose the images are 30×30. Then the minimum image is drawn with its origin at
(0,-4) — its left edge matches the slider’s left edge, and its top is raised so that the
center of its height matches the center of the slider’s height — and the maximum image
is drawn with its origin at (220, -4). But the track is drawn with a width of only 164
pixels, instead of the normal 246; that is, instead of being nearly the full width of the
slider, the track is contracted to allow room for the images. (This, by the way, wrecks
the behavior of the tapped: handler in the previous example, which relies on the actual
bounds of the slider, not the apparent width and position of the track. Fixing the ex-
ample is left as an exercise for the reader.)

UIControl | 609

You can change these dimensions by overriding minimumValueImageRectForBounds:,
maximumValueImageRectForBounds:, and trackRectForBounds: in a subclass. The bounds
passed in are the slider’s bounds. In this example, we expand the track width to the
full width of the slider, and draw the images outside the slider’s bounds (Figure 25-7;
I’ve given the slider a gray background color so you can see how the track and images
are related to its bounds):

- (CGRect)maximumValueImageRectForBounds:(CGRect)bounds {
 CGRect result = [super maximumValueImageRectForBounds:bounds];
 result = CGRectOffset(result, 31, 0);
 return result;
}

- (CGRect)minimumValueImageRectForBounds:(CGRect)bounds {
 CGRect result = [super minimumValueImageRectForBounds:bounds];
 result = CGRectOffset(result, -31, 0);
 return result;
}

- (CGRect)trackRectForBounds:(CGRect)bounds {
 CGRect result = [super trackRectForBounds:bounds];
 result.origin.x = 0;
 result.size.width = bounds.size.width;
 return result;
}

The thumb is also an image, and you set it with setThumbImage:forState:. There are
two chiefly relevant states, UIControlStateNormal (not highlighted) and UIControlState-
Highlighted, so if you supply images for both, the thumb will change automatically
while the user is dragging it. If you supply just one image, for normal state only, the
thumb image won’t change while the user is dragging it. You can position the image by
overriding thumbRectForBounds:trackRect:value: in a subclass. By default, the image
will be centered in the track at the point represented by the slider’s current value. In
this example, the image is repositioned upward slightly (Figure 25-8):

- (CGRect)thumbRectForBounds:(CGRect)bounds
 trackRect:(CGRect)rect value:(float)value {
 CGRect result = [super thumbRectForBounds:bounds trackRect:rect value:value];
 result = CGRectOffset(result, 0, -7);
 return result;
}

Enlarging a slider’s thumb can mislead the user as to the area on which it can be tapped
to drag it. The slider is the thumb’s superview, after all, so if the slider’s height is still
only 23 pixels, only the part of the thumb that intersects that 23-pixel height will be
draggable. The user may try to drag the part of the thumb that is drawn outside the

Figure 25-7. Repositioning a slider’s images and track

610 | Chapter 25: Controls and Other Views

slider’s bounds, and will fail (and be confused). The solution is to increase the slider’s
height; you can’t do this in the nib editor, but you can do it in code.

The track is two images, one appearing to the left of the thumb, the other to its right.
They are set with setMinimumTrackImage:forState: and setMaximumTrackImage:for-
State:. If you supply images both for normal state and for highlighted state, the images
will change while the user is dragging the thumb.

The trick to these images is that they must be horizontally stretchable. It looks like the
user is dragging the thumb along a single static track, but that’s a clever illusion. In
reality, there are two images; as the user drags the thumb, one image grows horizontally
and the other shrinks horizontally. The part of each image that grows and shrinks is a
column one pixel wide somewhere in the middle of the image; that single column is
replicated to form the middle section of the stretched image. Thus, the image you
provide consists of a left end cap, a one-pixel middle section to be replicated, and a
right end cap. For the left track image, the right end cap will be partially or entirely
hidden under the thumb; for the right track image, the left end cap will be partially or
entirely hidden under the thumb.

To create an image that behaves in this way, you derive it from an existing image with
stretchableImageWithLeftCapWidth:topCapHeight:. You don’t need the image to be
vertically stretchable, so the top cap height doesn’t matter; only the left cap width
matters. You might think that not enough information is being supplied, but remember,
we know the width of the stretchable region in the middle: it is 1 pixel wide. Therefore,
defining the left cap width defines the right cap width: it is the rest of the image’s width
minus that 1 pixel. Figure 25-9 shows a track derived from a single 15×15 image of a
circular object (a coin):

UIImage* coin = [UIImage imageNamed: @"coin.png"];
UIImage* coinEnd = [coin stretchableImageWithLeftCapWidth:7 topCapHeight:0];
[slider setMinimumTrackImage:coinEnd forState:UIControlStateNormal];
[slider setMaximumTrackImage:coinEnd forState:UIControlStateNormal];

Figure 25-8. Replacing a slider’s thumb

Figure 25-9. Replacing a slider’s track

UIControl | 611

UISegmentedControl
A segmented control (UISegmentedControl) is a row of tappable segments; a segment
is rather like a button. This provides a way for the user to choose among several related
options. By default (momentary is NO), the most recently tapped segment remains se-
lected; alternatively (momentary is YES), the tapped segment is shown as selected mo-
mentarily, but then no segment selection is displayed, though internally the tapped
segment remains the selected segment. The selected segment can be retrieved with the
selectedSegmentIndex property; it can also be set with the selectedSegmentIndex prop-
erty, and remains visibly selected (even for a momentary segmented control). A selected-
SegmentIndex value of UISegmentedControlNoSegment (-1) means no segment is selected.
When the user taps a segment that is not already visibly selected, the segmented control
reports a Value Changed event.

Setting the selectedSegmentIndex in code, in such a way as to change its
value, also reports a Value Changed event. This feels like a bug, because
it is abnormal; usually, changing a control in code doesn’t cause any
control events to be triggered. Setting a UIDatePicker’s date doesn’t
trigger a Value Changed event. Setting a UIPageControl’s currentPage
doesn’t trigger a Value Changed event. Setting a UISlider’s value doesn’t
trigger a Value Changed event. Setting a UISwitch’s on doesn’t trigger a
Value Changed event. Similarly, setting a UITextField’s text doesn’t
trigger an Editing Changed event.

A segment can be separately enabled or disabled with setEnabled:forSegmentAt-
Index:, and its enabled state can be retrieved with isEnabledForSegmentAtIndex:. (The
checkbox that does this in the nib editor used to be broken, but in Xcode 4 it appears
to be working correctly.) A disabled segment is drawn faded, and the user can’t tap it,
but it can still be selected in code.

A segment has either a title or an image; when one is set, the other becomes nil. The
methods for setting and fetching the title and image for existing segments are:

• setTitle:forSegmentAtIndex:

• setImage:forSegmentAtIndex:

• titleForSegmentAtIndex:

• imageForSegmentAtIndex:

After changing an existing segment’s title or image, you might want to call sizeToFit
to resize the segments automatically.

Figure 25-10. A segmented control

612 | Chapter 25: Controls and Other Views

You will also want to set the title or image when creating the segment. You can do this
in code if you’re creating the segmented control from scratch, with initWithItems:,
which takes an array each item of which is either a string or an image.

Methods for managing segments dynamically are:

• insertSegmentWithTitle:atIndex:animated:

• insertSegmentWithImage:atIndex:animated:

• removeSegmentAtIndex:animated:

• removeAllSegments

The number of segments can be retrieved with the read-only numberOfSegments prop-
erty.

A segmented control comes in a choice of styles (its segmentedControlStyle):

UISegmentedControlStylePlain
Large default height (44 pixels) and large titles. Deselected segments are gray; the
selected segment is blue and has a depressed look.

UISegmentedControlStyleBordered
Just like UISegmentedControlStylePlain, but a dark border emphasizes the seg-
mented control’s outline.

UISegmentedControlStyleBar
Small default height (30 pixels) and small titles. All segments are blue, but you can
change this by setting the tintColor; the selected segment is slightly darker.

UISegmentedControlStyleBezeled (introduced in iOS 4.0)
Large default height (40 pixels) and small titles. Similar to UISegmentedControlStyle-
Bar. All segments are blue, but you can change this by setting the tintColor; the
selected segment is brighter.

A segmented control’s height is standard in accordance with its style. You can change
a segmented control’s height in code, but of course if you later call sizeToFit, it will
resume its standard height.

A segment’s width is adjusted automatically when you create it or call sizeToFit, or
you can set it manually with setWidth:forSegmentAtIndex: (and retrieve it with width-
ForSegmentAtIndex:). You can also change the position of the content (title or image)
within a segment. (In my testing before Xcode 4, doing this in the nib was broken.) To
set this position in code, call setContentOffset:forSegmentAtIndex: (and retrieve it with
contentOffsetForSegmentAtIndex:), where the offset is expressed as a CGSize describ-
ing how much to move the content from its default centered position.

UIControl | 613

UIButton
A button (UIButton) is a fundamental tappable control; its appearance is extremely
flexible. It is endowed at creation with a type. The code creation method is a class
method, buttonWithType:. The types are:

UIButtonTypeCustom
Could be completely invisible, if the backgroundColor is clearColor and there’s no
title or other content. If a backgroundColor is supplied, a thin, subtle rectangular
border is also present; you can add more of a border, of course, by modifying the
button’s layer. Alternatively, as we shall see, you can provide a background image,
thus making the button appear to be any shape you like (though naturally this does
not affect its tappable region).

UIButtonTypeDetailDisclosure
UIButtonTypeContactAdd
UIButtonTypeInfoLight
UIButtonTypeInfoDark

Basically, these are all UIButtonTypeCustom buttons whose image is set automati-
cally to standard button images: a right-pointing chevron, a plus sign, a light letter
“i,” and a dark letter “i,” respectively.

UIButtonTypeRoundedRect
A rounded rectangle with a white background and an antialiased gray border.
However, supplying a rectangular opaque background image results in a rectangle
similar to a UIButtonTypeCustom button. (A rounded rect button is actually an in-
stance of a UIButton subclass, UIRoundedRectButton, but you’re probably not
supposed to know that.)

A button has a title, a title color, a title shadow color, an image, and a background
image. The background image, if any, is stretched to fit the button’s bounds. The image,
on the other hand, if is smaller than the button, is not resized, and is thus shown
internally within the button. The button can have both a title and an image, if the image
is small enough; in that case, the image is shown to the left of the title by default.

These five features (title, title color, title shadow color, image, and background image)
can all be made to vary depending on the button’s current state: UIControlState-
Highlighted, UIControlStateSelected, UIControlStateDisabled, and UIControlState-
Normal (that is, none of the preceding). A state change, whether automatic (the button
is highlighted while the user is tapping it) or programmatically imposed, will thus in
and of itself alter a button’s appearance. To make this possible, the methods for setting
these button features all involve specifying a corresponding state (or multiple states,
using a bitmask):

• setTitle:forState:

• setTitleColor:forState: (by default, the title color is white when the button is
highlighted)

614 | Chapter 25: Controls and Other Views

• setTitleShadowColor:forState:

• setImage:forState:

• setBackgroundImage:forState:

Similarly, when getting these button features, you must either use a method to specify
a single state you’re interested in or use a property to ask about the feature as currently
displayed:

• titleForState:

• titleColorForState:

• titleShadowColorForState:

• imageForState:

• backgroundImageForState:

• currentTitle

• currentTitleColor

• currentTitleShadowColor

• currentImage

• currentBackgroundImage

If you don’t specify a feature for a particular state, or if the button adopts more than
one state at once, an internal heuristic is used to determine what to display. I can’t
describe all possible combinations, but here are some general observations:

• If you specify a feature for a particular state (highlighted, selected, or disabled),
and the button is in only that state, that feature will be used.

• If you don’t specify a feature for a particular state (highlighted, selected, or disa-
bled), and the button is in only that state, the normal version of that feature will
be used as fallback. (That’s why many examples earlier in this book have assigned
a title for UIControlStateNormal only; this is sufficient to give the button a title in
every state.)

• Combinations of states often cause the button to fall back on the feature for normal
state. For example, if a button is both highlighted and selected, the button will
display its normal title, even if it has a highlighted title, a selected title, or both.

In addition, a UIButton has some properties determining how it draws itself in various
states, which can save you the trouble of specifying different images for different states:

showsTouchWhenHighlighted
If YES, then the button projects a circular white glow when highlighted. If the
button has an internal image, the glow is centered behind it (Figure 25-11); thus,
this feature is suitable particularly if the button image is small and circular; for
example, it’s the default behavior for a UIButtonTypeInfoLight or UIButtonTypeInfo-

UIControl | 615

Dark button. (If the button has no internal image, the glow is centered at the but-
ton’s center.) The glow is drawn on top of the background image or color, if any.

adjustsImageWhenHighlighted
If YES (the default), then if there is no separate highlighted image (and if shows-
TouchWhenHighlighted is NO), the normal image is darkened when the button is
highlighted. This applies equally to the internal image and the background image.

adjustsImageWhenDisabled
If YES (the default), then if there is no separate disabled image, the normal image
is lightened (faded) when the button is disabled. This applies equally to the internal
image and the background image.

The title is a UILabel (Chapter 23), and the label features of the title can be accessed
through the button’s titleLabel. Thus, for example, you can set the title’s font, line-
BreakMode, and shadowOffset. If the shadowOffset is not (0,0), then the title has a
shadow, and the title shadow color feature comes into play; the button’s reversesTitle-
ShadowWhenHighlighted property also applies: if YES, the shadowOffset values are re-
placed with their additive inverses when the button is highlighted.

An easy way to make a button’s title consist of multiple lines is to set the button’s title-
Label.lineBreakMode to UILineBreakModeWordWrap and put manual line breaks into the
button’s title: @"This is a line\nand this is a line". (To insert a line break in the
nib editor, type Option-Return.)

The internal image is drawn by a UIImageView (Chapter 15) whose features can be
accessed through the button’s imageView. Thus, for example, you can change the in-
ternal image’s alpha to make it more transparent.

The internal position of the image and title as a whole are governed by the button’s
contentVerticalAlignment and contentHorizontalAlignment (recall that these proper-
ties are inherited from UIControl). You can also tweak the position of the image and
title, together or separately, by setting the button’s contentEdgeInsets, titleEdge-
Insets, or imageEdgeInsets. Increasing an inset component increases that margin; thus,
for example, a positive top component makes the distance between that object and the
top of the button larger than normal (where “normal” is where the object would be
according to the alignment settings). The titleEdgeInsets or imageEdgeInsets values
are added to the overall contentEdgeInsets values. So, for example, if you really wanted
to, you could make the internal image appear to the right of the title by decreasing the
left titleEdgeInsets and increasing the left imageEdgeInsets.

Four methods also provide access to the button’s positioning of its elements:

Figure 25-11. A button with highlighted glow

616 | Chapter 25: Controls and Other Views

• titleRectForContentRect:

• imageRectForContentRect:

• contentRectForBounds:

• backgroundRectForBounds:

These methods are called whenever the button is redrawn, including every time it
changes state. The content rect is the area in which the title and image are placed. By
default, contentRectForBounds: and backgroundRectForBounds: yield the same result.

You can override these methods in a subclass to change the way the button’s elements
are positioned. In this example, we shrink the button slightly when highlighted as a
way of providing feedback:

- (CGRect)backgroundRectForBounds:(CGRect)bounds {
 CGRect result = [super backgroundRectForBounds:bounds];
 if (self.highlighted)
 result = CGRectInset(result, 3, 3);
 return result;
}

A button’s background image is stretched if the image is smaller, in both dimensions,
than the button’s backgroundRectForBounds:. You can take advantage of this stretching,
for example, to construct a rounded rectangle background for the button. To do so,
use stretchableImageWithLeftCapWidth:topCapHeight:, as we did with a UISlider’s
track images earlier in this chapter, but this time, both the left and top cap values will
matter. In this example (Figure 25-12), both the internal image and the background
image are generated from the same image (which is in fact the same image used to
generate the track in Figure 25-9):

UIImage* im = [UIImage imageNamed: @"coin.png"];
CGSize sz = [im size];
UIImage* im2 = [im stretchableImageWithLeftCapWidth:sz.width/2.0
 topCapHeight:sz.height/2.0];
[button setBackgroundImage: im2 forState: UIControlStateNormal];
button.backgroundColor = [UIColor clearColor];

Custom Controls
The UIControl class implements several touch-tracking methods that you might over-
ride in order to customize a built-in UIControl type or to create your own UIControl
subclass, along with properties that tell you whether touch tracking is going on:

• beginTrackingWithTouch:withEvent:

Figure 25-12. A button with a stretched background image

UIControl | 617

• continueTrackingWithTouch:withEvent:

• endTrackingWithTouch:withEvent:

• cancelTrackingWithEvent:

• tracking (property)

• touchInside (property)

With the advent of gesture recognizers (Chapter 18), such direct involvement with
touch tracking is probably less needed than it used to be, especially if your purpose is
to modify the behavior of a built-in UIControl subclass. So, to illustrate their use, I’ll
give a simple example of creating a custom control. The main reason for doing this
(rather than using, say, a UIView and gesture recognizers) would probably be to obtain
the convenience of control events. Also, the touch-tracking methods, though of course
nowhere near as high-level as gesture recognizers, are at least a level up from the
UIResponder methods touchesBegan:withEvent: and so forth (Chapter 18): they track
a single touch, and both beginTracking... and continueTracking... return a BOOL,
giving you a chance to stop tracking the current touch.

We’ll build a simplified knob control (Figure 25-13). The control starts life at its min-
imum position, with an internal angle value of 0; it can be rotated clockwise with a
single finger as far as its maximum position, with an internal angle value of 5 (radians).
To keep things simple, the words “Min” and “Max” appearing in the interface are
actually labels; the control just draws the knob, and to rotate it we’ll simply apply a
rotation transform.

Our control is a UIControl subclass, MyKnob. It has a CGFloat property angle, and a
CGFloat instance variable initialAngle that we’ll use internally during rotation. Be-
cause a UIControl is a UIView, it can draw itself, which it does with a UIImage included
in our app bundle:

- (void) drawRect:(CGRect)rect {
 UIImage* knob = [UIImage imageNamed:@"knob.png"];
 [knob drawInRect:rect];
}

We’ll need a utility function for transforming a touch’s Cartesian coordinates into polar
coordinates, giving us the angle to be applied as a rotation to the view:

Figure 25-13. A custom control

618 | Chapter 25: Controls and Other Views

static CGFloat pToA (UITouch* touch, UIView* self) {
 CGPoint loc = [touch locationInView: self];
 CGPoint c = CGPointMake(CGRectGetMidX(self.bounds),
 CGRectGetMidY(self.bounds));
 return atan2(loc.y - c.y, loc.x - c.x);
}

Now we’re ready to override the tracking methods. beginTrackingWithTouch:with-
Event: simply notes down the angle of the initial touch location. continueTrackingWith-
Touch:withEvent: uses the difference between the current touch location’s angle and
the initial touch location’s angle to apply a transform to the view, and updates the
angle property. endTrackingWithTouch:withEvent: triggers the Value Changed control
event. So our first draft looks like this:

- (BOOL) beginTrackingWithTouch:(UITouch *)touch withEvent:(UIEvent *)event {
 self->initialAngle = pToA(touch, self);
 return YES;
}

- (BOOL) continueTrackingWithTouch:(UITouch *)touch withEvent:(UIEvent *)event {
 CGFloat ang = pToA(touch, self);
 ang -= self->initialAngle;
 CGFloat absoluteAngle = self->angle + ang;
 self.transform = CGAffineTransformRotate(self.transform, ang);
 self->angle = absoluteAngle;
 return YES;
}

- (void) endTrackingWithTouch:(UITouch *)touch withEvent:(UIEvent *)event {
 [self sendActionsForControlEvents:UIControlEventValueChanged];
}

This works: we can put a MyKnob into the interface and hook up its Value Changed
control event (this can be done in the nib editor), and sure enough, when we run the
app, we can rotate the knob and, when our finger lifts from the knob, the Value Changed
action handler is called. However, continueTrackingWithTouch:withEvent: needs mod-
ification.

First, we need to peg the minimum and maximum rotation at 0 and 5, respectively. For
simplicity, we’ll just stop tracking, by returning NO, if the rotation goes below 0 or
above 5, fixing the angle at the exceeded limit. However, because we’re no longer
tracking, endTracking... will never be called, so we also need to trigger the Value
Changed control event. (Doubtless you can come up with a more sophisticated way of
pegging the knob at its minimum and maximum, but remember, this is only a simple
example.) Second, it might be nice to give the programmer the option to have the Value
Changed control event reported continuously as continueTracking... is called repeat-
edly. So we’ll add a continuous BOOL property and obey it.

Here, then, is our revised continueTracking... implementation:

- (BOOL) continueTrackingWithTouch:(UITouch *)touch withEvent:(UIEvent *)event {
 CGFloat ang = pToA(touch, self);

UIControl | 619

 ang -= self->initialAngle;
 CGFloat absoluteAngle = self->angle + ang;
 if (absoluteAngle < 0) {
 self.transform = CGAffineTransformIdentity;
 self->angle = 0;
 [self sendActionsForControlEvents:UIControlEventValueChanged];
 return NO;
 }
 if (absoluteAngle > 5) {
 self.transform = CGAffineTransformMakeRotation(5);
 self->angle = 5;
 [self sendActionsForControlEvents:UIControlEventValueChanged];
 return NO;
 }
 self.transform = CGAffineTransformRotate(self.transform, ang);
 self->angle = absoluteAngle;
 if (self->continuous)
 [self sendActionsForControlEvents:UIControlEventValueChanged];
 return YES;
}

Finally, we’ll probably want to be able to set the angle programmatically as a way of
rotating the knob:

- (void) setAngle: (CGFloat) ang {
 if (ang < 0)
 ang = 0;
 if (ang > 5)
 ang = 5;
 self.transform = CGAffineTransformMakeRotation(ang);
 self->angle = ang;
}

This is more work than using a gesture recognizer (which is left as an exercise for the
reader), but not much, and it gives a sense of what’s involved in creating a custom
control.

Bars
As you saw in Chapter 19, the three bar types — UINavigationBar, UIToolbar, and
UITabBar — are often used in in conjunction with a dedicated view controller. A UI-
NavigationBar can be used with a UINavigationController (in which case it always
appears at the top of the view). A UIToolbar can be used with a UINavigationController
(in which case it always appears at the bottom of the view). A UITabBar can be used
with a UITabBarController (in which case it always appears at the bottom of the view).

You can also use these bar types independently. In the case of UINavigationBar and
UITabBar, it isn’t particularly likely that you would do this. The purpose of a
UINavigationBar is usually to let the user navigate between views, and to populate a
UINavigationBar, you need a UINavigationItem; it’s very convenient to let this be the
navigationItem of a UIViewController and let a UINavigationController take care of

620 | Chapter 25: Controls and Other Views

the relationship between the two, including the physical display of the UIViewCon-
troller’s view. Similarly, a UITabBar is a way of letting the user choose between multiple
items; those items often correspond to entire views, in which case the overall manage-
ment is best left to a UITabBarController. Also, these are standard interface items, and
you don’t want to use them in a nonstandard way that might confuse the user. Even
so, you might encounter a situation in which a full-fledged UIViewController is overkill
or somehow doesn’t work properly, and you might then solve the problem by using a
UINavigationBar or UITabBar independently.

An independent UIToolbar is a more frequent interface element, especially on the iPad,
where it frequently appears as a top bar, adopting a role analogous to a menu bar on
Mac OS X. This is such a common interface that certain special automatic behaviors
are associated with it; for example, as we’ve seen, a UISearchBar in a UIToolbar and
managed by a UISearchDisplayController will automatically display its search results
table in a popover, which is different from what happens if the UISearchBar is not in a
UIToolbar.

Another thing to keep in mind is that there is nothing sacred about any of these bar
types; you might be happier devising your own bar-like interface. A UIToolbar, for
example, could easily be replaced by a rectangular view containing buttons. (In all
probability, that’s what appears at the bottom of a note in the iPhone Notes app.)

For the sake of completeness, this section summarizes the facts about the three bar
types. (Please supply your own “Goldilocks and the three bars” joke here.)

UINavigationBar
A UINavigationBar is populated by UINavigationItems. The UINavigationBar main-
tains a stack; UINavigationItems are pushed onto and popped off of this stack. What-
ever UINavigationItem is currently topmost in the stack (the UINavigationBar’s top-
Item), in combination with the UINavigationItem just beneath it in the stack (the UI-
NavigationBar’s backItem), determines what appears in the navigation bar:

• The title (string) or titleView (UIView) of the topItem appears in the center of
the navigation bar.

• The prompt (string) of the topItem appears at the top of the navigation bar.

• The rightBarButtonItem and leftBarButtonItem appear at the right and left ends
of the navigation bar. These are UIBarButtonItems. A UIBarButtonItem can be a
system button, a titled button, an image button, or a container for a UIView. A
UIBarButtonItem is not itself a UIView, however. See “Bar Button
Items” on page 466 for details about UIBarButtonItems.

• The backBarButtonItem of the backItem appears at the left end of the navigation bar.
It typically points to the left, and is automatically configured so that, when tapped,
the topItem is popped off the stack. If the backItem has no backBarButtonItem, then
there is still a back button at the left end of the navigation bar, taking its title from

Bars | 621

the title of the backItem. However, if the topItem has a leftBarButtonItem, or if
the topItem has its hidesBackButton set to YES, the back button is suppressed.

Changes to the navigation bar’s buttons can be animated by sending its topItem any of
these messages:

• setRightBarButtonItem:animated:

• setLeftBarButtonItem:animated:

• setHidesBackButton:animated:

UINavigationItems are pushed and popped with pushNavigationItem:animated: and
popNavigationItemAnimated:, or you can set all items on the stack at once with set-
Items:animated: or by directly setting the items.

A UINavigationBar can be styled using its barStyle, translucent, and tintColor prop-
erties. See “Configuring the navigation view controller” on page 472 for details.

When you use a UINavigationBar implicitly as part of a UINavigationController in-
terface, the controller is the navigation bar’s delegate. If you were to use a UINaviga-
tionBar on its own, you might want to supply your own delegate. The delegate methods
are:

• navigationBar:shouldPushItem:

• navigationBar:didPushItem:

• navigationBar:shouldPopItem:

• navigationBar:didPopItem:

This simple (and silly) example of a stand-alone UINavigationBar (Figure 25-14) im-
plements the legendary baseball combination trio of Tinker to Evers to Chance (see the
relevant Wikipedia article if you don’t know about them):

- (void)viewDidLoad {
 [super viewDidLoad];
 UINavigationItem* ni = [[UINavigationItem alloc] initWithTitle:@"Tinker"];
 UIBarButtonItem* b = [[UIBarButtonItem alloc] initWithTitle:@"Evers"
 style:UIBarButtonItemStyleBordered
 target:self action:@selector(pushNext:)];
 ni.rightBarButtonItem = b;
 [b release];
 nav.items = [NSArray arrayWithObject: ni]; // nav is the UINavigationBar
 [ni release];
}

- (void) pushNext: (id) sender {
 UIBarButtonItem* oldb = sender;
 NSString* s = oldb.title;
 UINavigationItem* ni = [[UINavigationItem alloc] initWithTitle:s];
 if ([s isEqualToString: @"Evers"]) {
 UIBarButtonItem* b = [[UIBarButtonItem alloc] initWithTitle:@"Chance"
 style:UIBarButtonItemStyleBordered
 target:self action:@selector(pushNext:)];

622 | Chapter 25: Controls and Other Views

 ni.rightBarButtonItem = b;
 [b release];
 }
 [nav pushNavigationItem:ni animated:YES];
 [ni release];
}

UIToolbar
A UIToolbar displays a row of UIBarButtonItems, which are its items. The items are
displayed from left to right in the order in which they appear in the items array. You
can use the system bar button items UIBarButtonSystemItemFlexibleSpace and UIBar-
ButtonSystemItemFixedSpace, along with the UIBarButtonItem width property, to po-
sition the items within the toolbar. See the previous section and Chapter 19 for more
about UIBarButtonItems.

A UIToolbar can be styled, like a UINavigationBar.

UITabBar
A UITabBar displays UITabBarItems (its items), each consisting of an image and a
name, and maintains a current selection among those items (its selectedItem, which is
a UITabBarItem, not an index number). To hear about a change of selection, implement
tabBar:didSelectItem: in the delegate (UITabBarDelegate). To change the items in an
animated fashion, call setItems:animated:. See “Tab Bar Item Images” on page 462 on
how to create a UITabBarItem and on the peculiar requirements of its image.

The user can be permitted to customize the contents of the tab bar. To implement this,
provide interface that calls beginCustomizingItems:, passing an array of UITabBarItems
that may or may not appear in the tab bar. (To prevent the user from removing an item
from the tab bar, include it in the tab bar’s items and don’t include it in the argument
passed to beginCustomizingItems:.) A modal view with a Done button appears, behind
the tab bar but in front of everything else, displaying the customizable items. The user
can then drag an item into the tab bar, replacing an item that’s already there. To hear
about the customizing modal view appearing and disappearing, implement delegate
methods:

• tabBar:willBeginCustomizingItems:

• tabBar:didBeginCustomizingItems:

• tabBar:willEndCustomizingItems:changed:

Figure 25-14. A navigation bar

Bars | 623

• tabBar:didEndCustomizingItems:changed:

A UITabBar on its own does not provide any automatic customization access; it’s up
to you. In this (silly) example, we populate a UITabBar with four system tab bar items
and a More item; we also populate an instance variable array with those same four
system tab bar items, plus four more. When the user taps the More item, we show the
customization interface with all eight tab bar items:

- (void)viewDidLoad {
 [super viewDidLoad];
 NSMutableArray* arr = [NSMutableArray array];
 for (int ix = 1; ix < 8; ix++) {
 UITabBarItem* tbi =
 [[UITabBarItem alloc] initWithTabBarSystemItem:ix tag:ix];
 [arr addObject: tbi];
 [tbi release];
 }
 self.items = arr; // copy policy
 [arr removeAllObjects];
 [arr addObjectsFromArray: [self.items subarrayWithRange:NSMakeRange(0,4)]];
 UITabBarItem* tbi = [[UITabBarItem alloc] initWithTabBarSystemItem:0 tag:0];
 [arr addObject: tbi]; // More button
 tb.items = arr; // tb is the UITabBar
 [tbi release];
}

- (void)tabBar:(UITabBar *)tabBar didSelectItem:(UITabBarItem *)item {
 NSLog(@"did select item with tag %i", item.tag);
 if (item.tag == 0) {
 // More button
 tabBar.selectedItem = nil;
 [tabBar beginCustomizingItems:self.items];
 }
}

When used in conjunction with a UITabBarController, the customization interface is
provided automatically, in an elaborate way. If there are a lot of items, a More item is
automatically present, and can be used to access the remaining items in a table view.
Here, the user can select any of the excess items, navigating to the corresponding view.
Or, the user can switch to the customization interface by tapping the Edit button. See
the iPhone iPod/Music app for a familiar example. Figure 25-15 shows an example
generated automatically, with no code; the tab bar is created and configured completely
in the nib.

The way this works is that the automatically provided More item corresponds to a
UINavigationController with a root view controller (UIViewController) whose view is
a UITableView. Thus, it is this UITableView that appears in a navigation interface when
the user taps the More button. When the user selects an item in the table, the corre-
sponding UIViewController is pushed onto the UINavigationController’s stack.

You can access this UINavigationController: it is the UITabBarController’s more-
NavigationController. Through it, you can access the root view controller: it is the first

624 | Chapter 25: Controls and Other Views

item in the UINavigationController’s viewControllers array. And through that, you
can access the table view: it is the root view controller’s view. This means you can
customize what appears when the user taps the More button. For example, let’s make
the navigation bar black, and let’s remove the word More from its title:

UINavigationController* more = self.tabBarController.moreNavigationController;
UIViewController* list = [more.viewControllers objectAtIndex:0];
list.title = @"";
UIBarButtonItem* b = [[UIBarButtonItem alloc] init];
b.title = @"Back";
list.navigationItem.backBarButtonItem = b; // so user can navigate back
[b release];
more.navigationBar.barStyle = UIBarStyleBlack;

We can go even further by supplementing the table view’s data source with a data source
of our own, thus proceeding to customize the table itself. This is tricky because we have
no internal access to the actual data source, and we mustn’t accidentally disable it from
populating the table. Still, it can be done. I’ll start by replacing the table view’s data
source with an instance of my own MyDataSource, storing a reference to the original
data source object in an instance variable of MyDataSource:

UITableView* tv = (UITableView*)list.view;
MyDataSource* mds = [[MyDataSource alloc] init];
self.myDataSource = mds; // retain policy
[mds release];

Figure 25-15. Automatically generated More list

Bars | 625

self.myDataSource.originalDataSource = tv.dataSource;
tv.dataSource = self.myDataSource;

Next, I’ll use Objective-C’s automatic message forwarding mechanism (see the Objec-
tive-C Runtime Programming Guide) so that MyDataSource acts as a front end for
originalDataSource. MyDataSource will magically appear to respond to any message
that originalDataSource responds to, and any message that arrives that MyDataSource
can’t handle will be magically forwarded to originalDataSource. This way, the insertion
of the MyDataSource instance as data source doesn’t break whatever the original data
source does:

- (BOOL)respondsToSelector:(SEL)aSelector {
 if ([super respondsToSelector:aSelector])
 return YES;
 else if ([self.originalDataSource respondsToSelector:aSelector])
 return YES;
 return NO;
}

- (NSMethodSignature*)methodSignatureForSelector:(SEL)selector {
 NSMethodSignature* signature = [super methodSignatureForSelector:selector];
 if (!signature)
 signature = [self.originalDataSource methodSignatureForSelector:selector];
 return signature;
}

- (void)forwardInvocation:(NSInvocation *)anInvocation {
 if ([self.originalDataSource respondsToSelector: [anInvocation selector]])
 [anInvocation invokeWithTarget:self.originalDataSource];
 else
 [super forwardInvocation:anInvocation];
}

Starting in iOS 4 there is a much simpler way to do the above:

- (id)forwardingTargetForSelector:(SEL)aSelector {
 if ([self.originalDataSource respondsToSelector: aSelector])
 return self.originalDataSource;
 return [super forwardingTargetForSelector:aSelector];
}

(If you know your app will run only under iOS 4 or later, you can implement forwarding-
TargetForSelector: alone and not bother with respondsToSelector:, methodSignature-
ForSelector:, and forwardInvocation:; if your app will also run under iOS 3, it does
no harm to implement all four methods, as the first will be called in preference to the
others on iOS 4 and will be ignored on iOS 3.)

Finally, we’ll implement the two Big Questions required by the UITableViewData-
Source protocol, to quiet the compiler. In both cases, we first pass the message along
to originalDataSource (somewhat analogous to calling super); then we add our own
customizations as desired. Here, I’ll remove each cell’s disclosure indicator and change
its text font. The outcome is shown in Figure 25-16:

626 | Chapter 25: Controls and Other Views

- (NSInteger)tableView:(UITableView *)tv numberOfRowsInSection:(NSInteger)sec {
 // this is just to quiet the compiler
 return [self.originalDataSource tableView:tv numberOfRowsInSection:sec];
}

- (UITableViewCell *)tableView:(UITableView *)tv
 cellForRowAtIndexPath:(NSIndexPath *)ip {
 UITableViewCell* cell =
 [self.originalDataSource tableView:tv cellForRowAtIndexPath:ip];
 cell.accessoryType = UITableViewCellAccessoryNone;
 cell.textLabel.font = [UIFont systemFontOfSize:14];
 return cell;
}

Figure 25-16. Customized More list

Bars | 627

CHAPTER 26

Modal Dialogs

A modal dialog demands attention; while it is present, the user can do nothing other
than dismiss the dialog. You might need to put up a simple modal dialog in order to
give the user some information or to ask the user how to proceed. Two UIView sub-
classes are provided that construct and present rudimentary modal dialogs:

UIAlertView
A UIAlertView pops up unexpectedly with an elaborate animation and may be
thought of as an attention-getting interruption. An alert is displayed in the center
of the screen; it contains a title, a message, and an indefinite number of additional
buttons, one of which may be the cancel button, meaning that it does nothing but
dismiss the alert. The cancel button appears last, slightly separated from the other
buttons. Often there is only a cancel button, the primary purpose of the alert being
to show the user the message (“You won the game”); the additional buttons may
be used to give the user a choice of how to proceed (“You won the game; would
you like to play another?” “Yes,” “No,” “Replay”).

UIActionSheet
A UIActionSheet may be considered the iOS equivalent of a Mac OS X menu. An
action sheet is displayed arising from the interface: on the iPhone, it slides up from
the bottom of the screen; on the iPad, it is typically shown in a popover. It consists
of an indefinite number of buttons (there can be a title, optionally, but there usually
isn’t); one may be the cancel button, which appears last (though on the iPad, for
a popover, this may not be needed), and one may be a “destructive” button, which
appears first in red, emphasizing the severity of that option. Where a UIAlertView
is an interruption, a UIActionSheet is a logical branching of what the user is already
doing: it typically divides a single piece of interface into multiple possible courses
of action. For example, in Mobile Safari a single “More” button summons an action
sheet that lets the user add the current page as a bookmark, add it to the home
screen, mail a link to it, or print it (or cancel and so do nothing).

629

Alert View
The basic method for constructing an alert view (UIAlertView) is initWithTitle:
message:delegate:cancelButtonTitle:otherButtonTitles:. The method for making a
constructed alert view appear onscreen is show. Here’s an example (Figure 26-1):

UIAlertView* alert = [[UIAlertView alloc] initWithTitle:@"Not So Fast!"
 message:@"Do you really want to do this tremendously destructive thing?"
 delegate:self cancelButtonTitle:@"Yes" otherButtonTitles:@"No", @"Maybe", nil];
[alert show];
[alert release];

The otherButtonTitles parameter is of indefinite length, so it must either be nil or must
consist of a nil-terminated list of strings. The cancel button needn’t involve canceling
anything; it is drawn darker than the other buttons and comes last in a column of
buttons, as you can see from Figure 26-1, but if there were three otherButtonTitles and
a nil cancelButtonTitle, the alert dialog would look exactly the same.

The alert dialog is modal, but the code that presents it is not: after the alert is shown,
your code continues to run. Thus, in the example, the UIAlertView instance is released
immediately after the alert is shown, while it is still showing. (This is not a problem,
because once the alert is shown, the framework retains it.)

The alert is automatically dismissed as soon as the user taps any button. If an alert
consists of a single button (the cancel button), you might show it and forget about it,
secure in the knowledge that the user must dismiss it sooner or later and that nothing
can happen until then. But if you want to respond at the time the user dismisses the
alert, or if there are several buttons and you want to know which one the user tapped
to dismiss the alert, you’ll need to implement at least one of these delegate methods
(UIAlertViewDelegate):

• alertView:clickedButtonAtIndex:

• alertView:willDismissWithButtonIndex:

• alertView:didDismissWithButtonIndex:

The cancel button index is usually 0, with the remaining button indexes increasing in
the order in which they were defined. If you’re in any doubt, or if you need the button
title for any other reason, you can call buttonTitleAtIndex:. Properties allow you to

Figure 26-1. An alert view (UIAlertView)

630 | Chapter 26: Modal Dialogs

work out the correspondence between indexes and buttons without making any as-
sumptions:

• cancelButtonIndex (-1 if none)

• firstOtherButtonIndex (-1 if none)

• numberOfButtons (including the cancel button)

You can also dismiss an alert view programmatically, with dismissWithClickedButton-
Index:animated:. When an alert view is dismissed programmatically, the delegate
method alertView:clickedButtonAtIndex: is not called, because no button was actually
clicked by the user. But the button index you specify is still passed along to the two
dismiss delegate methods. The button index you specify doesn’t need to correspond
to any existing button; thus, you could use it as a way of telling your delegate method
that your code, and not the user, dismissed the alert.

Two additional delegate methods notify you when the alert is initially shown:

• willPresentAlertView:

• didPresentAlertView:

One further delegate method notifies you if the alert is dismissed by the system:

• alertViewCancel:

Before iOS 4.0, this could happen because the user quit the app with the alert showing;
the system dismissed the alert, and your code had a chance to respond before actually
terminating. But iOS 4.0 introduced multitasking; if the user clicks the Home button,
your app is backgrounded without the system dismissing the alert, and alertView-
Cancel: may be a dead letter. It would thus be up to your code, as the app is back-
grounded, whether to leave the alert there or to dismiss the alert and perhaps take some
default action.

Action Sheet
The basic method for constructing an action sheet (UIActionSheet) is initWithTitle:
delegate:cancelButtonTitle:destructiveButtonTitle:otherButtonTitles:. There are
various methods for summoning the actual sheet, depending on what part of the in-
terface you want the sheet to arise from. The following are appropriate on the iPhone,
where the sheet typically rises from the bottom of the screen:

showInView:
On the iPhone, far and away the most commonly used method. You will usually
specify the root view controller’s view. Don’t specify a view whose view controller
is contained by a view controller that hides the bottom of the interface, such as a
tab bar controller or a navigation controller with a toolbar; if you do, some of the
buttons may not function. (On recent iOS versions, you get a helpful warning in

Action Sheet | 631

the console if you make this mistake: “Presenting action sheet clipped by its su-
perview.”) Instead, specify the tab bar controller’s view itself, or the navigation
controller’s view itself, or use one of the other methods. For example, in my Zotz
app, which has a tab bar interface, the settings view controller summons an action
sheet like this (Figure 26-2):

[sheet showInView: self.tabBarController.view];

showFromTabBar:, showFromToolbar:
On the iPhone, these cause the sheet to rise from the bottom of the screen, just like
showInView:, because the tab bar or toolbar is at the bottom of the screen; however,
they avoid the problem with showInView: described earlier.

On the iPad, you are more likely to use one of the following methods, added in iOS
3.2. These methods resemble the methods for presenting a popover (Chapter 22), and
they do in fact present the action sheet as a popover, with its arrow pointing to the
specified part of the interface (Figure 26-3):

• showFromRect:inView:animated:

• showFromBarButtonItem:animated:

(On the iPhone, those methods should be avoided; they don’t cause an error, and they
do work — the sheet still ends up at the bottom at the screen — but they can do messy
things to the interface.)

Figure 26-2. An action sheet on the iPhone

Figure 26-3. An action sheet presented as a popover

632 | Chapter 26: Modal Dialogs

On the iPad, there is usually no point including a cancel button title: if the alert sheet
is shown as a popover, no cancel button will appear. This is because the popover is
configured to be dismissed when the user taps outside it, which is the same as canceling
it.

However, it is also possible on the iPad to show an alert sheet inside an existing popo-
ver. In this scenario, we are already presenting the popover, and then we summon an
action sheet within the popover’s view. In that case, the action sheet behaves as if the
popover were an iPhone: you summon it with showInView:, it slides up from the bottom
of the popover, and the cancel button appears (Figure 26-4). Moreover, the action sheet
is then modal: the user can’t dismiss the popover, or do anything else, without dis-
missing the action sheet first.

An action sheet also has a style, its actionSheetStyle:

• UIActionSheetStyleAutomatic

• UIActionSheetStyleDefault

• UIActionSheetStyleBlackTranslucent

• UIActionSheetStyleBlackOpaque

These values are closely related to the possible styles (barStyle) of a UIToolbar. How-
ever, an action sheet’s style depends also on the mode of presentation; experimentation
suggests, for example, that setting the actionSheetStyle of an action sheet that appears
as a popover may make no perceptible difference, and that an action sheet that is shown
from a tab bar will always be black opaque.

In other respects an action sheet is managed in a manner completely parallel to an alert
view. When one of its buttons is tapped, the sheet is dismissed automatically, but you’ll
probably want to implement a delegate method (UIActionSheetDelegate) in order to
learn which button it was:

• actionSheet:clickedButtonAtIndex:

• actionSheet:willDismissWithButtonIndex:

• actionSheet:didDismissWithButtonIndex:

Figure 26-4. An action sheet presented inside a popover

Action Sheet | 633

If the action sheet is shown as a popover on the iPad, and if the popover is dismissed
by the user tapping outside it, the button index is -1.

To respond appropriately to the delegate methods without making assumptions about
how the indexes correspond to the buttons, you can use the buttonTitleAtIndex:
method, and these properties:

• cancelButtonIndex

• destructiveButtonIndex

• firstOtherButtonIndex

• numberOfButtons

You can dismiss an action sheet programmatically with dismissWithClickedButton-
Index:animated:, in which case actionSheet:clickedButtonAtIndex: is not called, but
the two dismiss delegate methods are. Two additional delegate methods notify you
when the sheet is initially shown:

• willPresentActionSheet:

• didPresentActionSheet:

A further delegate method, actionSheetCancel:, notifies you if the sheet is dismissed
by the system, though in iOS 4.0 or later this is unlikely to happen; if your app is
backgrounded with an action sheet showing, it’s up to you to decide how to proceed.

Here’s the code that presents the action sheet shown in Figure 26-2, along with the
code that responds to its dismissal:

- (void) chooseLayout: (id) sender {
 UIActionSheet* sheet =
 [[UIActionSheet alloc] initWithTitle:@"Choose New Layout" delegate:self
 cancelButtonTitle:(NSString *)@"Cancel" destructiveButtonTitle:nil
 otherButtonTitles:@"3 by 3", @"4 by 3", @"4 by 4", @"5 by 4", @"5 by 5",
 nil];
 [sheet showInView: self.tabBarController.view];
 [sheet release];
}

- (void)actionSheet:(UIActionSheet *)as clickedButtonAtIndex:(NSInteger)ix {
 if (ix == as.cancelButtonIndex)
 return;
 NSString* s = [as buttonTitleAtIndex:ix];
 // ...
}

On the iPad, if an action sheet is shown as a popover from a bar button item in a toolbar,
the toolbar becomes a passthrough view for the popover. This behavior is troublesome,
for the same reasons I gave in Chapter 22: the user can now tap another bar button
item without causing the action sheet’s popover to be dismissed (and possibly even
summoning another popover — perhaps even another instance of the same action sheet
— simultaneously). Preventing this sort of conflict is entirely up to your code. You can’t

634 | Chapter 26: Modal Dialogs

solve the problem by adjusting the popover controller’s passthroughViews, because you
can’t get access to the popover controller! This situation seems like a massive bug. The
best solution seems to be to implement the delegate methods to toggle user interaction
in the toolbar:

- (IBAction)doButton:(id)sender {
 UIActionSheet* act = [[UIActionSheet alloc]
 initWithTitle:nil delegate:self cancelButtonTitle:nil
 destructiveButtonTitle:nil otherButtonTitles:@"Hey", @"Ho", nil];
 [act showFromBarButtonItem:sender animated:YES];
}

- (void)didPresentActionSheet:(UIActionSheet *)actionSheet {
 [self.toolbar setUserInteractionEnabled:NO];
}

- (void)actionSheet:(UIActionSheet *)actionSheet
 didDismissWithButtonIndex:(NSInteger)buttonIndex {
 [self.toolbar setUserInteractionEnabled:YES];
}

Dialog Alternatives
Alert views and actions sheets are limited, inflexible, and inappropriate to any but the
simplest cases. In more complex situations, it really isn’t that much work to implement
an alternative.

One occasionally sees a misuse of the built-in dialogs to include addi-
tional interface. For example, a UIActionSheet is a UIView, so in theory
you can add a subview to it. I cannot recommend such behavior; it
clearly isn’t intended, and there’s no need for it. If what you need isn’t
what a built-in dialog normally does, don’t use a built-in dialog.

On the iPhone, the main alternative is to navigate to a new screenful of interface. This
might be by way of a navigation interface, or using a modal view. For example, in the
Zotz app, in the Settings view, when the user taps a color, I summon a modal view,
using a UIViewController subclass of my own, ColorPickerController (Figure 26-5).

Figure 26-5. A modal view functioning as a modal dialog

Dialog Alternatives | 635

On Mac OS X, the color picker in Figure 26-5 might be presented as a secondary win-
dow acting as a dialog. On the small iPhone screen, where there are no secondary
windows, the modal view is the equivalent of a dialog. Indeed, one might argue that
the action sheet shown in Figure 26-2 is not a very appropriate use of an action sheet,
that it’s too intrusive and has too many buttons. It might have been better if I’d designed
my own modal view; I probably picked an action sheet because it required just a few
lines of code — basically, I was being lazy.

On the iPad, a popover is virtually a secondary window, and can be truly modal. An
action sheet is usually presented as a popover, but it’s limited, and you don’t get access
to the popover controller; in many cases, you’ll probably be better off designing your
own view to be presented in a popover. The popovers in Figure 22-1, for example, are
effectively modal dialogs. A popover can internally present a secondary modal view or
even an action sheet, as we’ve already seen. Also on the iPad, a modal view can be
presented using the UIModalPresentationFormSheet presentation style, which is effec-
tively a dialog window smaller than the screen.

Local Notifications
A local notification is an alert to the user that can appear even if your app is not running.
In its most commonly used manifestation, it appears as a dialog on top of whatever the
user is doing at that moment, which is why it is treated in this chapter. (If a local
notification from some other app were to appear while your app is frontmost, your app
would become inactive; see Chapter 11 and the applicationWillResignActive: app
delegate message.) Local notifications were introduced in iOS 4.

This use of the term notification has nothing to do with NSNotification
(Chapter 11). The ambiguity is unfortunate.

Your app does not present a local notification alert: indeed, your app can’t present a
local notification alert, because if your app’s local notification alert appears, your app
ex hypothesi isn’t frontmost. Rather, your app hands a local notification to the system
along with instructions about when the local notification should fire. When the speci-
fied time arrives, if your app isn’t frontmost, the system presents the alert on your
behalf.

The alert can optionally contain an action button. (If the alert appears when the device
is locked, this will appear as a slider.) If user taps this, your app will be brought to the
front, launching it if it isn’t already suspended in the background.

To create a local notification, you configure a UILocalNotification object and hand it
to the system with UIApplication’s scheduleLocalNotification:. The UILocalNotifi-

636 | Chapter 26: Modal Dialogs

cation object has properties describing how the dialog should look and behave and
when you want it to appear:

alertBody, alertAction
The message displayed in the alert, and the text of the action button (if any). If you
don’t set alertAction and you do not set hasAction to NO, there will still be an
action button, whose text will be “View.” (The alert’s title will be your app’s name,
and you can’t change this.)

soundName
The name of a sound file at the top level of your app bundle, to be played when
the alert appears. This should be an uncompressed sound (AIFF or WAV). Alter-
natively, you can specify the default sound, UILocalNotificationDefaultSound-
Name. If you don’t set this property, there won’t be a sound.

userInfo
An optional NSDictionary whose contents are up to you. As you would expect,
this is so that your app can identify the local notification object when it fires.

fireDate, timeZone
When you want the local notification to fire. The fireDate is an NSDate (see
Chapter 10 and Chapter 25 for examples of date manipulation). If you don’t in-
clude a timeZone, the date is measured against universal time; if you do include a
timeZone, the date is measured against the user’s local time zone, even if that time
zone changes (because the user travels, for instance).

repeatInterval, repeatCalendar
If set, the local notification will recur.

As I’ve already mentioned, you hand a configured local notification to the system with
UIApplication’s scheduleLocalNotification:. Additional UIApplication methods let
you manipulate the list of local notifications you’ve already scheduled. You can cancel
one or all scheduled local notifications (cancelLocalNotification:, cancelAllLocal-
Notifications:); starting in iOS 4.2, you can also manipulate the list directly by setting
UIApplication’s scheduledLocalNotifications, an NSArray property (previously, this
property was read-only).

Figure 26-6 shows an alert generated by the firing of a local notification. Here’s a simple
example of creating and scheduling the local notification that resulted in that alert:

UILocalNotification* ln = [[UILocalNotification alloc] init];
ln.alertBody = @"Time for another cup of coffee!";
ln.fireDate = [NSDate dateWithTimeIntervalSinceNow:15];

Figure 26-6. An alert posted by the system when a local notification fires

Local Notifications | 637

ln.soundName = UILocalNotificationDefaultSoundName;
[[UIApplication sharedApplication] scheduleLocalNotification:ln];
[ln release];

Now let’s talk about what happens when one of your scheduled local notifications fires.
There are three possibilities, depending on the state of your app at that moment:

Your app is suspended in the background
The alert appears (and the sound plays). If the user taps the action button, your
app is brought to the front. Your app delegate will receive application:didReceive-
LocalNotification:, where the second parameter is the UILocalNotification, and
your application’s applicationState will be UIApplicationStateInactive.

Your app is frontmost
There will be no alert (and no sound). Your app delegate will receive application:
didReceiveLocalNotification:, where the second parameter is the UILocalNotifi-
cation, and your application’s applicationState will be UIApplicationState-
Active. The idea is that if your app wants to let the user know that something
special is happening, that’s your app’s business and it can do it in its own way.

Your app isn’t running
The alert appears (and the sound plays). If the user taps the action button, your
app is launched. Your app delegate will not receive application:didReceiveLocal-
Notification:. Instead, it will receive application:didFinishLaunchingWith-
Options: with an NSDictionary parameter that includes the UIApplicationLaunch-
OptionsLocalNotificationKey, whose value is the UILocalNotification.

Thus, you should implement application:didReceiveLocalNotification: to check the
UIApplication’s applicationState, and you should implement application:didFinish-
LaunchingWithOptions: to check its second parameter to see whether we are launching
in response to a local notification. In this way, you will be able to distinguish the three
different possibilities, and you can respond appropriately.

In the first and third cases (your app is suspended in the background, or your app isn’t
running), you may want to show the user some interface appropriate to the local no-
tification’s situation. For example, you might want to push a particular view controller
onto your navigation interface or show a particular view controller modally. However,
when your app is launched from scratch, the first thing the user sees is its launch image
(Chapter 9), and when your app is activated from a suspended state, the first thing the
user sees is a screenshot image of your app, taken by the system when your app was
suspended — and there may be a mismatch between these images and the interface
that you’re about to show the user in this special situation. The user will thus see an
odd flash as the image is removed to reveal your app’s actual interface. To prevent this
flash, you can include in the original UILocalNotification an alertLaunchImage to be
presented instead of these images. The idea is that this alertLaunchImage should be a
better match for the interface the user will actually see.

638 | Chapter 26: Modal Dialogs

There is actually a fourth possibility for when a local notification fires.
Under some special circumstances (addressed, for example, in Chap-
ter 27 and Chapter 35), your app might be running, not suspended, in
the background. In this case, the situation is similar to what happens
when your app is suspended: the alert does appear, and the user can
summon your app to the front if hasAction is YES. Your running-in-the-
background app can even schedule an alert to appear immediately with
the convenience method presentLocalNotificationNow:.

Local Notifications | 639

PART VI

Some Frameworks

In addition to the basic UIKit and Foundation frameworks, which supply the funda-
mental interface and utility classes for all apps, Cocoa supplies numerous optional
frameworks that you can use if your app has special needs. This part of the book in-
troduces some of these frameworks and their related topics. At the same time, it nec-
essarily exercises some restraint. To explore all of the additional iOS frameworks in
full depth would more than double the size of this book! So this part of the book fully
explains the basics, but then stops and leaves you to go further on your own if you need
to; it teaches you what you need to know to get started, and it trains you to understand
and explore these and related frameworks independently if your app requires a further
level of depth and detail.

• Chapter 27 introduces the various iOS means for playing sound files, including
audio sessions and playing sounds in the background.

• Chapter 28 describes some basic ways of playing video (movies), along with an
introduction to the powerful new AV Foundation framework.

• Chapter 29 is about how an app can access the user’s music library.

• Chapter 30 is about how an app can access the user’s photo library, along with the
ability to take photos and capture movies.

• Chapter 31 discusses how an app can access the user’s address book.

• Chapter 32 talks about how an app can access the user’s calendar data.

• Chapter 33 describes how an app can allow the user to compose and send email
and SMS messages.

• Chapter 34 explains how an app can display a Google map, along with custom
annotations and overlays.

• Chapter 35 is about how an app can learn where the device is located, how it is
moving, and how it is oriented.

CHAPTER 27

Audio

iOS provides various means and technologies for allowing your app to produce sound
(and even to input it). The topic is a large one, so this chapter can only introduce it.
You’ll want to read Apple’s Multimedia Programming Guide and Core Audio Overview.

None of the classes discussed in this chapter provide any user interface
within your application for allowing the user to stop and start playback
of sound (though you can create your own interface and use it with
them). However, a web view (Chapter 24) supports the HTML 5
<audio> tag; this can be a simple, lightweight way to play audio and to
allow the user to control playback. Or treat the sound as a movie and
use the MPMoviePlayerController class discussed in Chapter 28; this
can also be a good way to play a sound file located remotely over the
Internet.

System Sounds
The simplest form of sound is system sound, which is the iOS equivalent of the basic
computer “beep.” This is implemented through System Sound Services; you’ll need to
import <AudioToolbox/AudioToolbox.h> and link to AudioToolbox.framework. You’ll be
calling one of two C functions, which behave very similarly to one another:

AudioServicesPlayAlertSound
Plays a sound and, on an iPhone, may also vibrate the device, depending on the
user’s settings. On the original iPod touch, plays only a built-in alert sound.

AudioServicesPlaySystemSound
Plays a short sound of your choice. On an iPhone, there won’t be an accompanying
vibration, but you can specifically elect to have this “sound” be a device vibration.

The sound needs to be an uncompressed AIFF or WAV file (or an Apple CAF file
wrapping one of these). To hand the sound to these functions, you’ll need a System-

643

SoundID, which you obtain by calling AudioServicesCreateSystemSoundID with a
CFURLRef (or NSURL) that points to a sound file. In this example, the sound file is in
our app bundle:

NSURL* sndurl = [[NSBundle mainBundle] URLForResource:@"test" withExtension:@"aif"];
SystemSoundID snd;
AudioServicesCreateSystemSoundID ((CFURLRef)sndurl, &snd);
AudioServicesPlaySystemSound(snd);

However, there’s a problem with that code: we have failed to exercise proper memory
management. We need to call AudioServicesDisposeSystemSoundID to release our Sys-
temSoundID. But when shall we do this? AudioServicesPlaySystemSound executes asyn-
chronously. So the solution can’t be to call AudioServicesDisposeSystemSoundID in the
next line of the same snippet, because this would release our sound just as it is about
to start playing, resulting in silence. A solution that works is to implement a sound
completion handler, a function that is called when the sound has finished playing. So,
our sound-playing snippet now looks like this:

NSURL* sndurl = [[NSBundle mainBundle] URLForResource:@"test" withExtension:@"aif"];
SystemSoundID snd;
AudioServicesCreateSystemSoundID((CFURLRef)sndurl, &snd);
AudioServicesAddSystemSoundCompletion(snd, NULL, NULL, &SoundFinished, NULL);
AudioServicesPlaySystemSound(snd);

And here is our sound completion handler, the SoundFinished function referred to in
the previous snippet:

void SoundFinished (SystemSoundID snd, void* context) {
 AudioServicesRemoveSystemSoundCompletion(snd);
 AudioServicesDisposeSystemSoundID(snd);
}

Note that because we are about to release the sound, we first release the sound com-
pletion handler information applied to it. The last argument passed to AudioServices-
AddSystemSoundCompletion is a pointer-to-void that comes back as the second parameter
of our sound completion handler function; you can use this parameter in any way you
like, such as to help identify the sound.

Audio Session
If your app is going to use a more sophisticated way of producing sound, such as an
audio player (discussed in the next section), it must specify a policy regarding that
sound. This policy will answer such questions as: Should sound stop when the screen
is locked? Should sound interrupt existing sound (being played, for example, by the
iPod/Music app) or should it be layered on top of it?

Your policy is declared in an audio session, which is a singleton AVAudioSession in-
stance created automatically as your app launches. You can configure this AVAudio-
Session instance once at launch time (or, at any rate, before producing any sound), or
you can change its configuration dynamically while your app runs. You can talk to the

644 | Chapter 27: Audio

AVAudioSession instance in Objective-C (see the AVAudioSession class reference) or
in C (see the Audio Session Services reference), or both.

To use the Objective-C API, you’ll need to link to AVFoundation.framework and import
<AVFoundation/AVFoundation.h>. You’ll refer to your app’s AVAudioSession by way of
the class method sharedInstance.

To use the C API, you’ll need to link to AudioToolbox.framework and import <Audio-
Toolbox/AudioToolbox.h>. The AudioSession... functions don’t require a reference to
an audio session. You must explicitly initialize your audio session with AudioSession-
Initialize before talking to it with the C API, unless you have already talked to it with
the Objective-C API.

The basic policies for audio playback are:

Ambient
Your app’s audio plays even while iPod music or other background audio is playing,
and is silenced by the Silent switch and screen locking.

Solo Ambient
Your app stops iPod music or other background audio from playing, and is silenced
by the Silent switch and screen locking (the default).

Playback
Your app stops iPod music or other background audio from playing, and is not
silenced by the Silent switch or screen locking.

In addition, you can modify these policies, using the AudioSessionSetProperty function
of the C API. For example:

• You can override the Playback policy so as to allow iPod music or other background
audio to play (kAudioSessionProperty_OverrideCategoryMixWithOthers).

• You can override a policy that allows iPod music or other background audio to
play, so as to duck (diminish the volume of) that background audio (kAudioSession-
Property_OtherMixableAudioShouldDuck). Ducking does not depend automatically
on whether your app is actively producing any sound; rather, it starts as soon as
you turn this override on and remains in place until your audio session is deacti-
vated.

Your audio session policy is not in effect unless your audio session is also active. By
default, it isn’t. Thus, asserting your audio session policy is done by a combination of
configuring the audio session and activating the audio session. This is a little tricky
because of multitasking on iOS 4. Your audio session can be deactivated automatically
if your app is no longer active. So if you want your policy to be obeyed under all cir-
cumstances, you must explicitly activate your audio session each time your app be-
comes active. (See Chapter 11 for how an app resigns and resumes active status.)

For example, an audio session configured with a Playback policy that is activated as
the app launches, in the app delegate’s applicationDidFinishLaunching:, will silence

Audio Session | 645

background audio at launch time, but if the user then switches away to the iPod/Music
app and starts playing some music, and then switches back to your app, the iPod music
won’t be silenced, even though it is now in the background, because your audio session
has been deactivated. You might try to work around this by activating your audio ses-
sion in the app delegate’s applicationWillEnterForeground: as well. But then the user
might double-click the Home button while your app is frontmost, and use the app
switcher playback controls (Figure 27-1) to start playing iPod music; when the user
leaves the app switcher interface, that iPod music continues to play, even though it is
now in the background. To prevent that, you must activate your audio session in the
app delegate’s applicationDidBecomeActive:. It turns out that only applicationDid-
BecomeActive: is called in all three situations, so that is the place to activate your audio
session so as to keep it active when running under iOS 4.

Here are the main methods you’ll need:

setCategory:error:
How you configure your audio session policy. You can do the same thing with the
C API and AudioSessionSetProperty.

setActive:error:
How you bring your audio session policy into force. You’ll need to call this any
time your audio session has been deactivated. At a minimum, calling it in
applicationDidBecomeActive: keeps your audio session policy in force in the mul-
titasking world of iOS 4.

If you deactivate your audio session using setActive:withFlags:error:, passing a
flag of AVAudioSessionSetActiveFlags_NotifyOthersOnDeactivation, you tell the
system to allow any audio suspended by the activation of your audio session to
resume. Thus you can activate and deactivate a Playback-policy audio session as
your app runs as a way of pausing and resuming background audio (if the app
providing the background audio responds correctly to this flag). I’ll give an example
later in this chapter.

You can do the same thing with the C API and AudioSessionSetActive or Audio-
SessionSetActiveWithFlags.

Here’s an example from an app where we want background sound such as iPod/Music
songs to continue playing while our app runs. We configure our audio session to use
the Ambient policy in applicationDidFinishLaunching:, as follows:

[[AVAudioSession sharedInstance] setCategory:
 AVAudioSessionCategoryAmbient error: NULL];

Or, using the C API:

AudioSessionInitialize (NULL, NULL, NULL, NULL);
UInt32 ambi = kAudioSessionCategory_AmbientSound;
AudioSessionSetProperty(kAudioSessionProperty_AudioCategory, sizeof(ambi), &ambi);

646 | Chapter 27: Audio

We activate our audio session every time our app becomes active, no matter how, in
applicationDidBecomeActive:, like this:

[[AVAudioSession sharedInstance] setActive: YES error: NULL];

Or, using the C API:

AudioSessionSetActive(true);

That’s all it takes to set and enforce your app’s overall audio session policy. Now let’s
make the example more interesting by introducing ducking. Just before we’re about to
play a sound, we duck any external sound:

UInt32 duck = 1;
AudioSessionSetProperty(kAudioSessionProperty_OtherMixableAudioShouldDuck,
 sizeof(duck), &duck);

When we finish playing a sound, we turn off ducking. This is the tricky part. Not only
must we remove the ducking property from our audio session policy, but we must also
deactivate our audio session to make the change take effect immediately and bring the
external sound back to its original level; there is then no harm in reactivating our audio
session:

UInt32 duck = 0;
AudioSessionSetProperty(kAudioSessionProperty_OtherMixableAudioShouldDuck,
 sizeof(duck), &duck);
AudioSessionSetActive(false);
AudioSessionSetActive(true);

Your audio session can be interrupted. This could mean that some other app deactivates
it: for example, on an iPhone a phone call can arrive. In the multitasking world of iOS
4, it could mean that another app asserts its audio session over yours, or simply that
your app is no longer in the foreground. If you initially set your audio session’s category
using Objective-C and AVAudioSession, you can handle interruptions in the AVAu-
dioSession’s delegate. If you use the C API and AudioSessionInitialize, you can set up
an interruption handler there (for example code, see the “Audio Session Cookbook”
section of Apple’s Audio Session Programming Guide).

Handling an interruption can be as simple as reactivating your audio session when the
interruption ends. So, in applicationDidFinishLaunching:, when we set our audio ses-
sion’s category, we can also set ourselves as its delegate, and implement the delegate
method endInterruption:

- (void)endInterruption {
 AudioSessionSetActive(true);
}

Even this may not be necessary; if you use an audio player (AVAudioPlayer, discussed
in the next section), it provides its own delegate methods for notifying you of inter-
ruptions and activates your audio session for you when an interruption ends.

In the multitasking world of iOS 4, when your app switches to the background, your
audio session is interrupted (unless your app plays audio in the background, as dis-

Audio Session | 647

cussed later in this chapter). But because your app is now suspended in the background,
you won’t find out about this until the user brings your app back to the front. At that
point, you’ll get your audio session’s beginInterruption and endInterruption delegate
messages, plus your app delegate’s applicationDidBecomeActive:. In general this
shouldn’t cause any difficulty, but it’s something to be aware of: make sure your im-
plementations of these methods don’t step on one another in some undesirable way.

You should look over the documentation for both the Objective-C API and the C API.
The C API is more powerful. With the C API, as we’ve already seen, you can implement
ducking, and, for example, you can arrange to be notified when a property of your
audio session changes, you can learn whether background audio is playing, and you
can track and manipulate how audio is routed. Read Apple’s Audio Session Program-
ming Guide for a full overview of how you can use your app’s audio session.

Audio Player
An audio player is an instance of the AVAudioPlayer class. This is the easiest way to
play sounds with any degree of sophistication. A wide range of sound types is accept-
able, including MP3, AAC, and ALAC, as well as AIFF and WAV. You can set a sound’s
volume and stereo pan features, loop a sound, synchronize the playing of multiple
sounds simultaneously, and set playback to begin somewhere in the middle of a sound.

An audio player should always be used in conjunction with an audio session; see the
previous section.

Not every device type can play a compressed sound format in every
degree of compression, and the limits can be difficult or impossible to
learn except by experimentation. I encountered this issue when an app
of mine worked correctly on an iPod touch 32GB but failed to play its
sounds on an iPod touch 8GB (even though the latter was newer). Even
more frustrating, the files played just fine in the iPod/Music app on
both devices. The problem appears to be that the compression bit rate
of my sound files was too low for AVAudioPlayer on the 8GB device,
but not on the 32GB device. But there is no documentation of any such
limit.

An audio player can possess and play only one sound, but you can have multiple audio
players playing simultaneously. Devising a strategy for instantiating, retaining, and
releasing your audio players is up to you. An audio player is initialized with its sound,
using a local file URL or NSData. To play the sound, first tell the audio player to prepare-
ToPlay, causing it to load buffers and initialize hardware; then tell it to play. The audio
player’s delegate is notified when the sound finishes playing. Other useful methods
include pause and stop; the chief difference between them is that pause doesn’t release
the buffers and hardware set up by prepareToPlay, but stop does (so you’d want to call
prepareToPlay again before resuming play).

648 | Chapter 27: Audio

For example, one of my apps uses a class called Player, which implements a play:
method expecting a string path to a sound file in the app bundle. This method creates
a new audio player, stores it as an instance variable, and tells it to play the sound file;
it also sets itself up as that audio player’s delegate, and emits a notification when the
sound finishes playing. In this way, by maintaining a single Player instance, I can play
different sounds in succession:

- (void) play: (NSString*) path {
 NSURL *fileURL = [[NSURL alloc] initFileURLWithPath: path];
 NSError* err = nil;
 AVAudioPlayer *newPlayer =
 [[AVAudioPlayer alloc] initWithContentsOfURL: fileURL error: &err];
 // error-checking omitted
 [fileURL release];
 self.player = newPlayer; // retain policy
 [newPlayer release];
 [self.player prepareToPlay];
 [self.player setDelegate: self];
 [self.player play];
}

- (void)audioPlayerDidFinishPlaying:(AVAudioPlayer *)player // delegate method
 successfully:(BOOL)flag {
 [[NSNotificationCenter defaultCenter]
 postNotificationName:@"soundFinished" object:nil];
}

Here are some useful audio player properties:

pan, volume
Stereo positioning and loudness, respectively.

numberOfLoops
How many times the sound should repeat after it finishes playing; thus, 0 (the
default) means it doesn’t repeat. A negative value causes the sound to repeat in-
definitely (until told to stop).

duration
The length of the sound.

currentTime
The playhead position within the sound.

Starting in iOS 4.0, the playAtTime: method allows playing to be scheduled to start at
a certain time. The time should be described in terms of the audio player’s device-
CurrentTime property.

As I mentioned in the previous section, an audio player handles sound interruptions
automatically. In particular, your audio session is reactivated for you when the inter-
ruption ends. You can implement the delegate methods audioPlayerBegin-
Interruption: and audioPlayerEndInterruption: (or, in iOS 4, audioPlayerEnd-
Interruption:withFlags:) to add functionality; for example, you might respond by

Audio Player | 649

updating your interface, or you might want to resume play when the interruption ends
(by calling play). What you do will depends on what makes sense for your particular
application. An example appears later in this chapter.

Remote Control of Your Sound
Various sorts of signal constitute remote control. There is hardware remote control; the
user might be using earbuds with buttons, for example. There is also software remote
control; for example, in iOS 4, the playback controls that you see when you double-
click the Home button to view the fast app switcher and then swipe to the right
(Figure 27-1) are a form of software remote control. Similarly, the buttons that appear
if you double-click the Home button when the screen is locked and sound is playing
are a form of software remote control (Figure 27-2).

Your app can arrange to be targeted by remote control events reporting that the user
has tapped a remote control. This is particularly appropriate in an app that plays sound.
Your sound-playing app can respond to the remote play/pause button, for example, by
playing or pausing its sound.

Remote control events are a form of UIEvent, and they are sent initially to the first
responder. (See Chapter 11 and Chapter 18 on UIResponders and the responder chain.)
To arrange to be a recipient of remote control events:

• Your app must contain a UIResponder in its responder chain that returns YES from
canBecomeFirstResponder, and that responder must actually be first responder.

• Some UIResponder in the responder chain, at or above the first responder, must
implement remoteControlReceivedWithEvent:.

• Your app must call the UIApplication instance method beginReceivingRemote-
ControlEvents.

Figure 27-1. The software remote controls in the iOS 4 app switcher

Figure 27-2. The software remote controls on the locked screen

650 | Chapter 27: Audio

• Your app must emit some sound. The rule is that whatever running app capable
of receiving remote control events last produced sound is the target of remote
events. The user can tell what app this is because the icon at the right of Fig-
ure 27-1 is the icon of that app. The remote control event target app defaults to
the iPod/Music app if no other app takes precedence by this rule.

A typical place to put all of this is in your view controller, which is, after all, a UIRes-
ponder:

- (BOOL)canBecomeFirstResponder {
 return YES;
}

- (void) viewDidAppear:(BOOL)animated {
 [super viewDidAppear: animated];
 [self becomeFirstResponder];
 [[UIApplication sharedApplication] beginReceivingRemoteControlEvents];
}

- (void)remoteControlReceivedWithEvent:(UIEvent *)event {
 // ...
}

That’s just a sketch, but it does work: when this app is running, the user can employ
remote controls, such as the buttons in Figure 27-1 or a physical button on earbuds,
to cause remoteControlReceivedWithEvent: to be called.

The question then is how to implement remoteControlReceivedWithEvent:. Your im-
plementation will examine the subtype of the incoming UIEvent in order to decide what
to do. There are many possible subtype values, listed under UISubtype in the UIEvent
class documentation; they have names like UIEventSubtypeRemoteControlPlay. A min-
imal implementation will respond to UIEventSubtypeRemoteControlTogglePlayPause.
Here’s an example in an app where sound is produced by an AVAudioPlayer:

- (void)remoteControlReceivedWithEvent:(UIEvent *)event {
 UIEventSubtype rc = event.subtype;
 if (rc == UIEventSubtypeRemoteControlTogglePlayPause) {
 if ([player isPlaying])
 [player pause];
 else
 [player play];
 }
}

Playing Sound in the Background
In the multitasking world of iOS 4, when the user switches away from your app to
another app, by default, your audio session is interrupted and your app is suspended.
But if the business of your app is to play sound, you might like your app to continue
playing sound in the background. In earlier sections of this chapter, I’ve spoken about

Playing Sound in the Background | 651

how your app, in the foreground, relates its sound production to background sound
such as the iPod/Music app. Now we’re talking about how your app can be that back-
ground sound, possibly playing sound while some other app is in the foreground.

To play sound in the background, your app must do two things:

• In your Info.plist, you must include the “Required background modes” key
(UIBackgroundModes) with a value that includes “App plays audio” (audio).

• Your audio session’s policy must be Playback (and must be active, of course).

That’s actually all it takes! If those two things are true, then if your app is producing
sound, that sound will go right on playing when the user clicks the Home button and
dismisses your application or switches to another app.

An extremely cool feature of playing sound in the background is that remote control
events continue to work. Even if your app was not actively playing at the time it was
put into the background, if it is the remote control target, then if the user causes a
remote control event to be sent, your app will be woken up in the background in order
to receive it and can begin playing sound. However, the rules for interruptions still
apply; another app can interrupt your app’s audio session while your app is in the
background, and if that app receives remote control events, then your app is no longer
the remote control target.

If your app is the remote control target in the background, then another app can in-
terrupt your app’s audio, play some audio of its own, and then deactivate its own audio
session with the flag telling your app to resume playing. I’ll give a minimal example of
how this works with an AVAudioPlayer.

Let’s call the two apps BackgroundPlayer and Interrupter. Suppose Interrupter has an
audio session policy of Ambient. This means that when it comes to the front, back-
ground audio doesn’t stop. But now Interrupter wants to play a sound of its own,
temporarily stopping background audio. To pause the background audio, it sets its
own audio session to Playback:

[[AVAudioSession sharedInstance]
 setCategory:AVAudioSessionCategoryPlayback error:NULL];
[[AVAudioSession sharedInstance] setActive:YES error:NULL];
[player setDelegate: self];
[player prepareToPlay];
[player play];

When Interrupter’s sound finishes playing, the AVAudioPlayer’s delegate is notified.
In response, Interrupter deactivates its audio session with the flag; then it’s fine for it
to switch its audio session policy back to Ambient and activate it once again:

[[AVAudioSession sharedInstance] setActive:NO
 withFlags:AVAudioSessionSetActiveFlags_NotifyOthersOnDeactivation error:NULL];
[[AVAudioSession sharedInstance]
 setCategory:AVAudioSessionCategoryAmbient error:NULL];
[[AVAudioSession sharedInstance] setActive:YES error:NULL];

652 | Chapter 27: Audio

So much for Interrupter. Now let’s turn to BackgroundPlayer. Remember, it is config-
ured to play in the background and to receive remote control events. When Interrupter
changes its own policy to Playback, BackgroundPlayer is interrupted. When Interrupter
deactivates its audio session, BackgroundPlayer’s AVAudioPlayer delegate is notified
that the interruption has ended. It tests for the resume flag and, if it is set, starts playing
again:

- (void)audioPlayerEndInterruption:(AVAudioPlayer *)p withFlags:(NSUInteger)flags {
 if (flags & AVAudioSessionInterruptionFlags_ShouldResume) {
 [p prepareToPlay];
 [p play];
 }
}

In Chapter 11, I said that your app delegate will probably never receive
the applicationWillTerminate: message, because by the time the app
terminates, it will already have been suspended and incapable of re-
ceiving any events. However, an app that is playing sound in the back-
ground is not suspended, even though it is in the background. If it is
terminated while playing sound in the background, it will receive
applicationDidEnterBackground:, even though it has already received
this previously when it was moved into the background, and then it
will receive applicationWillTerminate:.

Further Topics in Sound
iOS is a powerful milieu for production and processing of sound; its sound-related
technologies are extensive. Here are some further topics, beyond the scope of this book:

Recording sound
To record sound simply, use AVAudioRecorder. Your audio session policy will
need to adopt a Record policy before recording begins.

Audio queues
Audio queues implement sound playing and recording through a C API with more
granularity than the Objective-C AVAudioPlayer and AVAudioRecorder (though
it is still regarded as a high-level API), giving you access to the buffers used to move
chunks of sound data between stored sound data and sound hardware.

Extended Audio File Services
A C API for reading and writing sound files in chunks. It is useful in connection
with technologies such as audio queues.

Audio Converter Services
A C API for converting sound files between formats.

Further Topics in Sound | 653

Streaming audio
Audio streamed in real time over the network, such as an Internet radio station,
can be played with Audio File Stream Services, in connection with audio queues.

OpenAL
An advanced technology for playing sound with fine control over its stereo stage
and directionality.

Audio units
Plug-ins that filter and modify the nature and quality of a sound as it passes through
them. See the Audio Unit Hosting Guide for iOS.

CoreMIDI
The CoreMIDI framework was introduced into iOS in version 4.2. It allows inter-
action with MIDI devices (but not, unfortunately, direct internal playback of MIDI
files).

See also Chapter 29 on accessing sound files in the user’s music library.

654 | Chapter 27: Audio

CHAPTER 28

Video

Basic video playback is performed in a view owned by a MPMoviePlayerController.
You’ll need to link to MediaPlayer.framework and import <MediaPlayer/Media-
Player.h>. There are two relevant classes supplied by the Media Player framework:

MPMoviePlayerController
Vends and controls a view that plays a movie.

The behavior of this class has changed very greatly since it was introduced in iOS
2.0. It is difficult to use it compatibly with multiple system versions. In this chapter,
I describe only its current behavior (in iOS 4.2 or later), with no attempt to discuss
earlier differences or to advise you on backward compatibility.

MPMoviePlayerViewController
Owns an MPMoviePlayerController, and presents its view as a fullscreen view.
Introduced in iOS 3.2.

A simple interface for trimming video (UIVideoEditorController) is also supplied.
Starting in iOS 4, sophisticated video editing can be performed through AV Foundation,
which this book does not discuss in depth.

A mobile device does not have unlimited power for decoding and presenting video in
real time. A video that plays on your computer might not play at all on an iOS device.
See the “Media Layer” chapter of Apple’s iOS Technology Overview for a list of speci-
fications and limits within which video is eligible for playing.

A web view (Chapter 24) supports the HTML 5 <video> tag. This can
be a simple lightweight way to present video and to allow the user to
control playback. Starting in iOS 4.3, both web view video and MPMo-
viePlayerController support AirPlay (streaming from the device to an
Apple TV), but I have not tested this.

655

MPMoviePlayerController
An MPMoviePlayerController vends and controls a view, its view property, and a movie
described by a URL, its contentURL, which it will present in that view. You are respon-
sible for instantiating and retaining the MPMoviePlayerController, and for placing its
view into your interface. No law says you have to put the MPMoviePlayerController’s
view into your interface, but if you don’t, the user won’t be able to see the movie or the
controls that accompany it by default. The view is a real view; you can set its frame, its
autoresizingMask, and so forth, and you can give it subviews.

The movie URL can be a local file URL, so that the player can show, for example, a
movie stored as a file in the app’s bundle, or obtained from the Camera Roll / Saved
Photos group in the user’s photo library (see Chapter 30); or it can be a resource (pos-
sibly streamed) to be fetched over the Internet, in which case the MPMoviePlayerCon-
troller initiates the download as soon as the MPMoviePlayerController has the content-
URL.

Things happen slowly with a movie. Even when a movie is a local file, a certain amount
of it has to load before the MPMoviePlayer actually has the movie and its specifications
and can start playing it. In the case of a remote resource, this will take even longer. If
shouldAutoplay is YES, play will begin as soon as it is possible.

By default, an MPMoviePlayerController’s shouldAutoplay is YES. This
means that the movie will start loading and playing as soon as the
MPMoviePlayerController has a contentURL — which, if you create it
using initWithContentURL:, will be the moment it comes into existence.
This will happen even if you don’t put the MPMoviePlayerController’s
view into your interface. If the movie has sound, the user will then hear
it without being able to see it, which could be confusing. To prevent
this, put the view into your interface, or set shouldAutoplay to NO (or
both).

A movie file can be in a standard movie format, such as .mov or .mp4, but it can also
be a sound file. An MPMoviePlayerController is thus an easy way to play a sound file,
including a sound file obtained in real time over the Internet, along with standard
controls for pausing the sound and moving the playhead.

In this example, we create an MPMoviePlayerController, give it a reference to a movie
from our app bundle, retain it through a property, and put its view into our interface:

NSURL* m = [[NSBundle mainBundle] URLForResource:@"Movie" withExtension:@"m4v"];
MPMoviePlayerController* mp = [[MPMoviePlayerController alloc] initWithContentURL:m];
self.mpc = mp; // retain policy
[mp release];
self.mpc.shouldAutoplay = NO;
self.mpc.view.frame = CGRectMake(10, 10, 300, 230);
[self.view addSubview:self.mpc.view];

656 | Chapter 28: Video

The controls (controlStyle is MPMovieControlStyleEmbedded) include a play/pause but-
ton, a slider for changing the current frame of the movie, and a fullscreen button; there
may also be an AirPlay route button, if an appropriate device is found on the network
(Figure 28-1).

The user can tap the view to show or hide the controls at the bottom; the controls may
also disappear automatically after play begins (Figure 28-2).

If the user taps the fullscreen button (or pinches outwards) to enter fullscreen mode,
the controls (controlStyle is MPMovieControlStyleFullscreen) at the top include a Done
button, a slider, and an increased fullscreen button, and a second set of controls appears
at the bottom with a play/pause button and rewind and fast-forward buttons, plus
possibly a volume slider and an AirPlay route button. The user can tap to dismiss or
summon the controls, can double-tap to toggle increased fullscreen mode, and can tap
Done to stop play and leave fullscreen mode (Figure 28-3).

You can also set the style of the controls (controlStyle) manually, though this would
be an odd thing to do, because each style of control goes with a display mode (fullscreen

Figure 28-1. A movie player with controls

Figure 28-2. A movie player without controls

Figure 28-3. A movie player in fullscreen mode, with controls

MPMoviePlayerController | 657

or otherwise); you are most likely to use this feature to make it impossible for the user
to summon the controls at all (MPMovieControlStyleNone).

If the movie is actually a sound file, the controls are drawn differently: there is a start/
pause button, a slider, and possibly an AirPlay route button, and that’s all (Figure 28-4).

The movie is scaled to fill the size of the view in accordance with the MPMoviePlayer-
Controller scalingMode; the default is MPMovieScalingModeAspectFit, which scales to fit,
keeping the correct aspect ratio, and fills the unfilled dimension with the color of the
MPMoviePlayerController’s backgroundView.

You might like to learn the actual size and aspect ratio of the movie, perhaps so as to
eliminate the excess unfilled dimension. You can get the MPMoviePlayerController’s
naturalSize, but, as I mentioned earlier, it takes time after the content URL is set for
this to be determined. I’ll show an example in a moment.

The fullscreen rendering can be rotated if the view in which the movie player subview
is embedded can be rotated (because it is, or is in, a view controlled by a view controller
that permits this). You can programmatically toggle between fullscreen and not, with
setFullscreen:animated:. It is possible to toggle the view for a sound file into fullscreen
mode programmatically even though it lacks a fullscreen control that the user can tap
(Figure 28-5).

The movie can be made to repeat automatically (repeatMode) when it reaches its end.
You can get the movie’s duration. You can change its initialPlaybackTime and end-
PlaybackTime (effectively trimming the start and end off the movie). Further program-
matic control over the actual playing of the movie is obtained through the MPMedia-
Playback protocol, which MPMoviePlayerController adopts. This gives you the expec-
ted play, pause, and stop methods, as well as commands for seeking quickly forward
and backward, and you can get and set the currentPlaybackTime to position the play-
head. Note the prepareToPlay method; it’s often a good idea to send this to the MPMo-

Figure 28-4. A movie player when the movie is a sound file

Figure 28-5. A fullscreen movie player when the movie is a sound file

658 | Chapter 28: Video

viePlayerController just after changing its content URL. You can also set the current-
PlaybackRate, making the movie play slower or faster than normal, and even backward
(though in my experience backward play doesn’t always work very well).

An MPMoviePlayerController doesn’t have a delegate. Instead, to learn of events as
they happen, you must register for notifications. These notifications are how you know
when, after assigning a content URL, it is safe for you to query properties of the movie
such its naturalSize and duration. In this example, I’ll use a notification to embed the
movie view into the interface, at the correct aspect ratio, as soon as the naturalSize is
known:

- (void) setUpMPC {
 NSURL* m = [[NSBundle mainBundle] URLForResource:@"Movie" withExtension:@"m4v"];
 // ... the rest as before; do NOT add to view yet
 // [self.view addSubview:self.mpc.view];
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(finishSetup:)
 name:MPMovieNaturalSizeAvailableNotification
 object:self.mpc];
}

- (void) finishSetup: (id) n {
 CGRect f = self.mpc.view.bounds;
 f.size = self.mpc.naturalSize;
 // make width 300, keep ratio
 CGFloat ratio = 300/f.size.width;
 f.size.width *= ratio;
 f.size.height *= ratio;
 self.mpc.view.bounds = f;
 [self.view addSubview:self.mpc.view];
}

Additional notifications tell such things as when fullscreen mode is entered and exited,
and when the movie finishes playing. One of the most important notifications is MPMovie-
PlayerPlaybackStateDidChangeNotification; to learn the actual playback state, query
the MPMoviePlayerController’s playbackState, which will be one of these:

• MPMoviePlaybackStateStopped

• MPMoviePlaybackStatePlaying

• MPMoviePlaybackStatePaused

• MPMoviePlaybackStateInterrupted

• MPMoviePlaybackStateSeekingForward

• MPMoviePlaybackStateSeekingBackward

If the content comes from the Internet, there is of course many a slip possible. Things
take time; the Internet might slow down, or go away completely; the resource to be
fetched might not exist. You’ll want to register for notifications that tell you when things
happen, and especially when things go wrong.

MPMoviePlayerController | 659

In this example, we’ve registered for the MPMoviePlayerPlaybackDidFinish-
Notification. There are two ways to detect an error by looking in the notification’s
userInfo dictionary: we can examine its key called MPMoviePlayerPlaybackDidFinish-
ReasonUserInfoKey, which will be MPMovieFinishReasonPlaybackError; or, we can look
to see if it has a key called @"error", which will be an NSError:

- (void) didFinish: (NSNotification*) n {
 // first way
 NSNumber* num =
 [[n userInfo] objectForKey:MPMoviePlayerPlaybackDidFinishReasonUserInfoKey];
 int reason = [num intValue];
 if (reason == MPMovieFinishReasonPlaybackError)
 NSLog(@"there was an error of some sort!");
 // second way
 NSError* err = [[n userInfo] objectForKey: @"error"];
 if (err)
 NSLog(@"%@", [err localizedDescription]);
}

However, the MPMoviePlayerPlaybackDidFinishNotification will not be sent if the
movie starts downloading and playing, but the download is then cut off. To detect this,
we register for MPMoviePlayerLoadStateDidChangeNotification and check for whether
the MPMoviePlayerController’s loadState (a bitmask) has the MPMovieLoadState-
Stalled bit set. If so, we’re in trouble, but play will not automatically stop; the MPMo-
viePlayerController will keep trying to obtain data. If we want to prevent that, we have
to stop it manually:

- (void) loadStateChanged: (id) n {
 int ls = self.mpc.loadState;
 if (ls & MPMovieLoadStateStalled) {
 [self.mpc stop];
 NSLog(@"The download seems to have stalled out.");
 }
}

Only one MPMoviePlayerController can display a movie in your inter-
face. To avoid confusion about why one of your MPMoviePlayerCon-
trollers is not playing its movie successfully, restrict your interface so
that it contains only one MPMoviePlayerController in the first place.

MPMoviePlayerViewController
An MPMoviePlayerViewController is, as its name implies, a view controller (a UI-
ViewController subclass). It manages an MPMoviePlayerController (moviePlayer) and
automatically provides a fullscreen presentation of the MPMoviePlayerController’s
view. Thus, an MPMoviePlayerViewController has some strong advantages of sim-
plicity. You don’t have to put the MPMoviePlayerController’s view into your interface,
and you don’t have to worry about the user toggling between fullscreen and non-
fullscreen modes. The view is either present, occupying the entire screen, or it isn’t.

660 | Chapter 28: Video

You can use an MPMoviePlayerViewController wherever you would use a UIView-
Controller, pushing it onto a navigation stack, for example, or making it part of a tab
bar interface, or presenting it as a modal view. Here’s a simple example:

NSURL* m = [[NSBundle mainBundle] URLForResource:@"Movie" withExtension:@"m4v"];
MPMoviePlayerViewController* mpvc =
 [[MPMoviePlayerViewController alloc] initWithContentURL: m];
[self presentModalViewController:mpvc animated:YES];
[mpvc release];

An alternative method for presenting the view modally is presentMoviePlayerView-
ControllerAnimated:. It uses a style of animation otherwise unavailable, in which the
current view slides out to reveal the movie view.

If the MPMoviePlayerViewController’s view is presented modally, it is dismissed au-
tomatically when the user taps the Done button. If you use the MPMoviePlayerView-
Controller in some other way, the Done button stops play but that’s all. You can detect
the tapping of the Done button by registering for the MPMoviePlayerPlaybackDidFinish-
Notification.

MPMoviePlayerViewController overrides shouldAutorotateToInterfaceOrientation:
to return YES for the primary portrait orientation and both landscape orientations. This
means the view is rotatable without your having to subclass MPMoviePlayerViewCon-
troller and override shouldAutorotateToInterfaceOrientation: yourself.

When an MPMoviePlayerViewController’s view is showing, it becomes
a recipient of remote control events (see Chapter 27). This feature is
convenient, but if it’s not what you want, it is not easily overcome; there
is no property for turning it off. The best way to avoid it is to use an
MPMoviePlayerController instead.

That’s all there is to an MPMoviePlayerViewController; the rest of your interaction
with it is through its MPMoviePlayerController (moviePlayer), including the latter’s
notifications.

UIVideoEditorController
UIVideoEditorController is a view controller that presents an interface for trimming
video. Its view and internal behavior are outside your control. You are expected to
present the view controller’s view, probably modally (or, on the iPad, in a popover,
though in fact I haven’t been able to get this view controller to work properly on the
iPad no matter how I present it), and respond by way of its delegate.

Before summoning a UIVideoEditorController, be sure to call its class method canEdit-
VideoAtPath:. Not every video format is editable, and not every device supports video
editing. If this call returns NO, you can’t use an instance of this class. (This call can

UIVideoEditorController | 661

take some noticeable time to return.) You must also set the UIVideoEditorController
instance’s delegate and videoPath before presenting it modally:

NSString* path = [[NSBundle mainBundle] pathForResource:@"movie" ofType:@"mov"];
BOOL can = [UIVideoEditorController canEditVideoAtPath:path];
if (!can) {
 NSLog(@"can't edit this video");
 return;
}
UIVideoEditorController* vc = [[UIVideoEditorController alloc] init];
vc.delegate = self;
vc.videoPath = path;
[self presentModalViewController:vc animated:YES];
[vc release];

The view’s interface contains Cancel and Save buttons, a trimming box displaying
thumbnails from the movie, a Play/Pause button, and the movie itself. The user slides
the ends of the trimming box to set the beginning and end of the saved movie. The
Cancel and Save buttons do not dismiss the modal view; you must do that in your
implementation of the delegate methods. There are three of them, and you should
implement all three and dismiss the modal view in all of them:

• videoEditorController:didSaveEditedVideoToPath:

• videoEditorControllerDidCancel:

• videoEditorController:didFailWithError:

It’s important to implement the didFail... method, because things can go wrong even
at this stage.

By the time videoEditorController:didSaveEditedVideoToPath: is called, the video has
already been saved to a file in your app’s temporary directory (the same directory re-
turned from a call to NSTemporaryDirectory). Doing something useful with the saved
file is up to you; if you merely leave it in the temporary directory, you can’t rely on it
to persist. In this example, I copy the edited movie into the user’s Camera Roll photo
album (called Saved Photos if the device has no camera):

- (void) videoEditorController: (UIVideoEditorController*) editor
 didSaveEditedVideoToPath: (NSString*) editedVideoPath {
 if (UIVideoAtPathIsCompatibleWithSavedPhotosAlbum(editedVideoPath))
 UISaveVideoAtPathToSavedPhotosAlbum(editedVideoPath, nil, nil, NULL);
 else
 NSLog(@"need to think of something else to do with it");
 [self dismissModalViewControllerAnimated:YES];
}

Further Topics in Video
A large suite of AV Foundation classes was introduced in iOS 4 that provide detailed
access to media components, analogous to QuickTime on Mac OS X. To access these,
you’ll need to link to AVFoundation.framework (and probably CoreMedia.framework

662 | Chapter 28: Video

as well), and import <AVFoundation/AVFoundation.h>. For a list of classes, see the AV
Foundation Framework Reference.

The AV Foundation class that performs actual playing of media is AVPlayer. An AV-
Player has an AVPlayerItem; this is its media. An AVPlayerItem comprises tracks (AV-
PlayerItemTrack), which can be individually enabled or disabled. It gets these from its
underlying AVAsset; this is the basic media unit, as it were, providing you with access
to tracks and metadata.

Starting in iOS 4.1, an AVPlayer can be an AVQueuePlayer, a subclass that allows
multiple AVPlayerItems to be loaded up and then played in sequence. AVQueuePlayer
also has an advanceToNextItem method, and its list of items can be changed dynamically,
so you could use it to give the user access to a set of “chapters.”

To display an AVPlayer’s movie, you need an AVPlayerLayer (a CALayer subclass).
You are unlikely to take this approach unless you need either the extended powers of
AV Foundation or the sequential playing power of AVQueuePlayer or the flexibility of
working directly with a layer and Core Animation. The AVPlayerLayer doesn’t even
come with controls for playing a movie and visualizing its progress; you have to create
these yourself. Nevertheless, simply displaying a movie in this way is quite easy:

NSURL* m = [[NSBundle mainBundle] URLForResource:@"movie" withExtension:@"mov"];
AVPlayer* p = [AVPlayer playerWithURL:m];
self.player = p; // might need a reference later
AVPlayerLayer* lay = [AVPlayerLayer playerLayerWithPlayer:p];
lay.frame = CGRectMake(10,10,300,200);
[self.view.layer addSublayer:lay];

To let the user choose to play the movie, we might provide a Play button. In this ex-
ample, the button toggles the playing status of the movie by changing its rate:

- (IBAction) doButton: (id) sender {
 CGFloat rate = self.player.rate;
 if (rate < 0.01)
 self.player.rate = 1;
 else
 self.player.rate = 0;
}

Another intriguing feature of an AVPlayer is that you can coordinate animation in your
interface (Chapter 17) with the playing of the movie. In other words, you attach an
animation to a layer in more or less the usual way, but the animation takes place in
movie playback time: if the movie is stopped, the animation is stopped, and if the movie
is run at double rate, the animation runs at double rate. This is done by embedding the
layer to be animated in an AVSynchronizedLayer, which is coupled with an AVPlayer-
Item.

To demonstrate, I’ll extend the previous example; after we insert our AVPlayerLayer
into the interface, we also create and insert an AVSynchronizedLayer:

// create synch layer, put it in the interface
AVSynchronizedLayer* syncLayer =

Further Topics in Video | 663

 [AVSynchronizedLayer synchronizedLayerWithPlayerItem:item];
syncLayer.frame = CGRectMake(10,220,300,10);
syncLayer.backgroundColor = [[UIColor whiteColor] CGColor];
[self.view.layer addSublayer:syncLayer];
// give synch layer a sublayer
CALayer* subLayer = [CALayer layer];
subLayer.backgroundColor = [[UIColor blackColor] CGColor];
subLayer.frame = CGRectMake(0,0,10,10);
[syncLayer addSublayer:subLayer];
// animate the sublayer
CABasicAnimation* anim = [CABasicAnimation animationWithKeyPath:@"position"];
anim.fromValue = [NSValue valueWithCGPoint: subLayer.position];
anim.toValue = [NSValue valueWithCGPoint: CGPointMake(295,5)];
anim.removedOnCompletion = NO;
anim.beginTime = AVCoreAnimationBeginTimeAtZero; // important trick
anim.duration = CMTimeGetSeconds(item.asset.duration);
[subLayer addAnimation:anim forKey:nil];

The result is shown in Figure 28-6. The white rectangle is the AVSynchronizedLayer,
tied to our movie. The little black square inside it is its sublayer; if we animate the black
square, that animation will be synchronized to the movie. We do animate the black
square, changing its position from the left end of the white rectangle to the right end,
starting at the beginning of the movie and with the same duration as the movie, but
although we attach this animation to the black square layer in the usual way, the black
square doesn’t move until we tap the button to call doButton: and start the movie play-
ing. Moreover, if we tap the button again to pause the movie, the black square stops.
The black square is thus automatically representing the current play position within
the movie!

Despite the simplicity of those examples, writing real-life AV Foundation code usually
presents certain sophisticated challenges. For instance, as we’ve already seen, it takes
time for media values to become available. Even with MPMoviePlayerController we
couldn’t fetch a movie’s naturalSize immediately; we had to wait for an MPMovieNatural-
SizeAvailableNotification. This is even more true with AV Foundation, where you

Figure 28-6. The black square’s position is synchronized to the movie

664 | Chapter 28: Video

use Objective-C blocks to call back into your code when values are ready or tasks are
finished; moreover, such blocks may run on a background thread. AV Foundation also
prefers key–value observing (Chapter 13) rather than notifications for letting you track
value changes in your media (such as the progress of a movie as it plays).

The mighty powers with which AV Foundation endows you are beyond the scope of
this book. Here’s a quick survey to whet your appetite. With AV Foundation, you can:

• Construct your own media asset (AVComposition, an AVAsset subclass). For ex-
ample, you might combine part of the sound from one asset and part of the video
from another into a single movie.

• Apply audio volume changes, and video opacity and transform changes, to the
playback of individual tracks.

• Extract single images (“thumbnails”) from a movie (AVAssetImageGenerator).

• Export a movie in a different format (AVAssetExportSession).

• Capture audio, video, and stills, on a device that supports it (such as an iPhone, or
another device connected to external hardware), including capturing video frames
as still images (see Technical Q&A QA1702).

It should be evident from even so brief a summary that you could use AV Foundation
to write a movie editor or a sound mixer. To learn more, you’ll want to read the AV
Foundation Programming Guide.

Further Topics in Video | 665

CHAPTER 29

Music Library

An iOS device, in addition to running apps, can also be used for the same purpose as
the original iPod — to hold and play music and podcasts. These items, usually moved
onto the device by way of iTunes on a computer, constitute the device’s music li-
brary; the user can play them with the iPod app (which is called the Music app on some
devices). Since version 3, iOS has provided the programmer with access to the device’s
music library; this access has improved over time, and some aspects are as new as iOS
4.2. You can:

• Explore the music library

• Play an item from the music library

• Learn and control what the iPod/Music app’s music player is doing

• Present a standard interface for allowing the user to select a music library item

These abilities are provided by the Media Player framework. You’ll need to link to
MediaPlayer.framework and import <MediaPlayer/MediaPlayer.h>.

Exploring the Music Library
Everything in the music library, as seen by your code, is an MPMediaEntity. This is an
abstract class that endows its subclasses with the ability to describe themselves through
key–value pairs called properties. (This use of the word “properties” has nothing to do
with Objective-C properties, explained in Chapter 12; these properties are more like
entries in an NSDictionary, except that the keys are not objects.) The repertoire of
properties depends on the sort of entity you’re looking at; many of them will be intui-
tively familiar from your use of iTunes. For example, a media item has a title, an album
title, a track number, an artist, a composer, and so on; a playlist has a title, a flag
indicating whether it is a “smart” playlist, and so on. The property keys have names
like MPMediaItemPropertyTitle.

To fetch a property’s value, call valueForProperty: with its key. Starting in iOS 4, you
can fetch multiple properties with enumerateValuesForProperties:usingBlock:.

667

An individual item in the music library is an MPMediaItem, an MPMediaEntity sub-
class. It has a type, according to the value of its MPMediaItemPropertyMediaType property:
it might be music, a podcast, or an audiobook. Different types of item have slightly
different properties; for example, a podcast has a podcast title (in addition to its normal
title). An item’s artwork image is an instance of the MPMediaItemArtwork class, from
which you can get the image itself scaled to a specified size.

A playlist is an MPMediaPlaylist. As you would expect, it has items and a count of those
items. It inherits those properties from its superclass, MPMediaItemCollection, which
is the other MPMediaEntity subclass. I’ll talk more about MPMediaItemCollection in
a moment.

Obtaining actual information from the music library requires a query, an MPMedia-
Query. First, you form the query. There are two main ways to do this:

With a convenience constructor
MPMediaQuery provides several class methods that form a query ready to ask the
music library for all of its songs, or all of its podcasts, and so on. Here’s the complete
list:

• songsQuery

• podcastsQuery

• audiobooksQuery

• playlistsQuery

• albumsQuery

• artistsQuery

• composersQuery

• genresQuery

• compilationsQuery

With filter predicates
You can attach to the query one or more MPMediaPropertyPredicate instances,
forming a set (NSSet) of predicates. These predicates filter the music library ac-
cording to criteria you specify; to be included in the result, a media item must
successfully pass through all the filters (in other words, the predicates are combined
using logical-and). A predicate is a simple comparison. It has two, or possibly three,
aspects:

A property
The key to the property you want to compare against. Not every property can
be used in a filter predicate; the documentation makes the distinction clear
(and starting in iOS 4.2, so does an MPMediaEntity class method, canFilter-
ByProperty:).

668 | Chapter 29: Music Library

A value
The value that the specified property must have in order to pass through the
filter.

A comparison type (optional)
In order to pass through the filter, a media item’s property value can either
match the value you provide (MPMediaPredicateComparisonEqualTo, the default)
or contain the value you provide (MPMediaPredicateComparisonContains).

These two ways of forming a query are actually the same; a convenience constructor is
just a quick way of supplying a query already endowed with a filter predicate.

A query also groups its results, according to its groupingType. Your choices are:

• MPMediaGroupingTitle

• MPMediaGroupingAlbum

• MPMediaGroupingArtist

• MPMediaGroupingAlbumArtist

• MPMediaGroupingComposer

• MPMediaGroupingGenre

• MPMediaGroupingPlaylist

• MPMediaGroupingPodcastTitle

The query convenience constructors all supply a groupingType in addition to a filter
predicate. Indeed, the grouping is often the salient aspect of the query. For example,
an albumsQuery is in fact a songsQuery with the added feature that its results are grouped
by album.

The groups resulting from a query are collections; that is, each is an MPMediaItem-
Collection. This class, you will recall, is the superclass of MPMediaPlaylist, and is an
MPMediaEntity subclass. So, a collection has properties; it also has items and a count.
It also has a representativeItem property, which gives you just one item from the col-
lection. The reason you need this is that properties of a collection are often embodied
in its items rather than in the collection itself. For example, an album has no title; rather,
its items have album titles that are all the same. So to learn the title of an album, you
ask for the album title of a representative item.

After you form the query, you perform the query. You do this simply by asking for the
query’s results. You can ask either for its collections (if you care about the groups
returned from the query) or for its items. Here, I’ll discover the titles of all the albums:

MPMediaQuery* query = [MPMediaQuery albumsQuery];
NSArray* result = [query collections];
// prove we've performed the query, by logging the album titles
for (MPMediaItemCollection* album in result)
 NSLog(@"%@", [[album representativeItem]
 valueForProperty:MPMediaItemPropertyAlbumTitle]);

Exploring the Music Library | 669

/*
Output starts like this on my device:
Bach Instrumental
Bach Keyboard
Bach Masses, Oratorios, Passions
Bach, CPE, Misc
Bach, CPE, Trio Sonatas
Beethoven Canons
Beethoven Choral / Vocal
...
*/

Now let’s make our query more elaborate; we’ll get the titles of all the albums whose
name contains “Bach”. Observe that what we really do is to ask for all songs whose
album title contains “Bach”, grouped by album:

MPMediaQuery* query = [MPMediaQuery albumsQuery];
MPMediaPropertyPredicate* hasBach =
 [MPMediaPropertyPredicate predicateWithValue:@"Bach"
 forProperty:MPMediaItemPropertyAlbumTitle
 comparisonType:MPMediaPredicateComparisonContains];
[query addFilterPredicate:hasBach];
NSArray* result = [query collections];
for (MPMediaItemCollection* album in result)
 NSLog(@"%@", [[album representativeItem]
 valueForProperty:MPMediaItemPropertyAlbumTitle]);
/*
Complete output on my device:
Bach Instrumental
Bach Keyboard
Bach Masses, Oratorios, Passions
Bach, CPE, Misc
Bach, CPE, Trio Sonatas
*/

Because the results of that query are actually songs (MPMediaItems), we can immedi-
ately access any song in any of those albums. Let’s modify our output from that query
to print the titles of all the songs in the first album returned, which happens to be the
Bach Instrumental album. We don’t have to change our query, so I’ll start at the point
where we perform it:

// ... same as before ...
NSArray* result = [query collections];
MPMediaItemCollection* album = [result objectAtIndex: 0];
for (MPMediaItem* song in album.items)
 NSLog(@"%@", [song valueForProperty:MPMediaItemPropertyTitle]);
/*
Output starts like this:
Lute Suite In G Minor BWV 995 1. Prélude
Lute Suite In G Minor BWV 995 2. Allemande
Lute Suite In G Minor BWV 995 3. Courante
Lute Suite In G Minor BWV 995 4. Sarabande
...
*/

670 | Chapter 29: Music Library

One of the properties of an MPMediaEntity is its persistent ID (MPMediaItemProperty-
PersistentID and MPMediaPlaylistPropertyPersistentID). This is important, as it
uniquely identifies this song or playlist. No other means of identification is guaranteed
unique; two songs or two playlists can have the same title, for example. Using the
persistent ID, you can retrieve again at a later time the same song or playlist you re-
trieved earlier, even across launches of your app. Starting in iOS 4.2, the repertoire of
available persistent IDs is extended to entities in general (MPMediaEntityProperty-
PersistentID), album, artist, composer, and more.

While you are maintaining the results of a search, the contents of the music library may
themselves change. For example, the user might connect the device to a computer and
add or delete music with iTunes. This can put your results out of date. For this reason,
the library’s own modified state is available through the MPMediaLibrary class. Call
the class method defaultMediaLibrary to get the actual library instance; now you can
ask it for its lastModifiedDate. You can also register to receive a notification, MPMedia-
LibraryDidChangeNotification, when the music library is modified; this notification is
not emitted unless you first send the library beginGeneratingLibraryChange-
Notifications. You should eventually balance this with endGeneratingLibraryChange-
Notifications.

The Music Player
The Media Player framework class for playing an MPMediaItem is MPMusicPlayer-
Controller. It comes in two flavors, depending on which class method you use to get
an instance:

applicationMusicPlayer
Plays an MPMediaItem from the music library within your application. The song
being played by the applicationMusicPlayer can be different from the iPod/Music
app’s current song. This player stops when your app is not in the foreground.

iPodMusicPlayer
The global music player — the very same player used by the iPod/Music app. This
might already be playing an item, or be paused with a current item, at any time
while your app runs; you can learn what item this is, and play music with this
player. It continues playing independently of the state of your app. The user can
at any time completely change what this player is doing.

An applicationMusicPlayer is not really inside your app. It is actually
the global music player behaving differently. It has its own audio ses-
sion; if you activate an audio session with a Solo Ambient or Playback
policy (Chapter 27), the player will stop. You cannot play its audio when
your app is in the background. You cannot make it the target of remote
control events. If these limitations prove troublesome, use the iPodMusic-
Player (or AVPlayer, as discussed later in this chapter).

The Music Player | 671

A music player doesn’t merely play an item; it plays from a queue of items. This behavior
is familiar from iTunes and the iPod/Music app, though you might not have considered
it explicitly. For example, in iTunes, when you switch to a playlist and double-click the
first song to start playing, when iTunes comes to the end of that song, it proceeds to
the next song in the playlist. So at that moment, the totality of songs in the playlist is
its queue. The music player behaves the same way; when it reaches the end of a song,
it proceeds to the next song in its queue.

Your methods for controlling playback also reflect this queue-based orientation. In
addition to the expected play, pause, and stop commands, there’s a skipToNextItem and
skipToPreviousItem command. Anyone who has ever used iTunes or the iPod/Music
app (or, for that matter, an old-fashioned iPod) will have an intuitive grasp of this and
everything else a music player does. For example, you can also set a music player’s
repeatMode and shuffleMode, just as in iTunes and so forth.

You provide a music player with its queue in one of two ways:

With a query
You hand the music player an MPMediaQuery. The query’s items are the items of
the queue.

With a collection
You hand the music player an MPMediaItemCollection. This might be obtained
from a query you performed, but you can also assemble your own collection of
MPMediaItems in any way you like, putting them into an array and calling
collectionWithItems: or initWithItems:.

In this example, we collect all songs in the library shorter than 30 seconds into a queue
and set the queue playing in random order using the application-internal music player:

MPMediaQuery* query = [MPMediaQuery songsQuery];
NSMutableArray* marr = [NSMutableArray array];
MPMediaItemCollection* queue = nil;
for (MPMediaItem* song in query.items) {
 CGFloat dur =
 [[song valueForProperty:MPMediaItemPropertyPlaybackDuration] floatValue];
 if (dur < 30)
 [marr addObject: song];
}
if ([marr count] == 0)
 NSLog(@"No songs that short!");
else
 queue = [MPMediaItemCollection collectionWithItems:marr];
if (queue) {
 MPMusicPlayerController* player =
 [MPMusicPlayerController applicationMusicPlayer];
 [player setQueueWithItemCollection:queue];
 player.shuffleMode = MPMusicShuffleModeSongs;
 [player play];
}

672 | Chapter 29: Music Library

If a music player is currently playing, setting its queue will stop it; restarting play ap-
propriately is up to your code, if desired. Unfortunately, you can’t query a music player
as to its queue. You can keep your own copy of the array constituting the queue when
you set the queue, but the user can completely change the queue of an iPodMusic-
Player, so if control over the queue is important to you, you’ll have to use the
applicationMusicPlayer.

A music player has a playbackState that you can query to learn what it’s doing (whether
it is playing, paused, stopped, or seeking). It also emits notifications so you can hear
about changes in its state:

• MPMusicPlayerControllerPlaybackStateDidChangeNotification

• MPMusicPlayerControllerNowPlayingItemDidChangeNotification

• MPMusicPlayerControllerVolumeDidChangeNotification

These notifications are not emitted, however, until you tell the music player to begin-
GeneratingPlaybackNotifications. This is an instance method, so you can arrange to
receive notifications from just one particular music player if you like. If you do receive
notifications from both, you can distinguish them by examining the NSNotification’s
object and comparing it to each player. You should eventually balance this call with
endGeneratingPlaybackNotifications.

To illustrate, I’ll extend the previous example to set a UILabel in our interface every
time a different song starts playing. Before we set the player playing, we insert these
lines to generate the notifications:

[player beginGeneratingPlaybackNotifications];
[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(changed:)
 name:MPMusicPlayerControllerNowPlayingItemDidChangeNotification
 object:nil];

And here’s how we respond to those notifications:

- (void) changed: (NSNotification*) n {
 MPMusicPlayerController* player =
 [MPMusicPlayerController applicationMusicPlayer];
 if ([n object] == player) { // just playing safe
 NSString* title =
 [player.nowPlayingItem valueForProperty:MPMediaItemPropertyTitle];
 [self->label setText: title];
 }
}

There’s no periodic notification as a song plays and the current playhead position ad-
vances. To get this information, you’ll have to resort to polling. This is not objectionable
as long as your polling interval is reasonably sparse; your display may occasionally fall
a little behind reality, but this won’t usually matter. For example, in one of my apps I
use a UIProgressView (p) to show the current percentage of the current song played by
the global player. There’s no notification, so I use an NSTimer and poll the state of the

The Music Player | 673

player every 2 seconds. (I described this architecture in Chapter 11, and showed some
of the code triggered by the firing of this timer in Chapter 19; Figure 19-8 is a screenshot
containing this UIProgressView.) If we are playing or paused in a song, I show the
proportion played; otherwise, I hide the UIProgressView entirely:

MPMusicPlayerController* mp = [MPMusicPlayerController iPodMusicPlayer];
if ([mp playbackState] == MPMusicPlaybackStatePlaying ||
 [mp playbackState] == MPMusicPlaybackStatePaused) {
 p.hidden = NO;
 MPMediaItem* item = mp.nowPlayingItem;
 NSTimeInterval current = mp.currentPlaybackTime;
 NSTimeInterval total =
 [[item valueForProperty:MPMediaItemPropertyPlaybackDuration] doubleValue];
 p.progress = current / total;
} else {
 p.hidden = YES;
}

An MPMusicPlayerController has no user interface; if you want your app to provide
the user with controls for playing and stopping a song, you’ll have to provide those
controls yourself. The iPodMusicPlayer has its own natural interface already, of course
— namely, the iPod/Music app and the remote playback controls (Figure 27-1). The
Media Player framework does offer a slider for setting the system output volume, along
with an AirPlay route button if appropriate; this is an MPVolumeView.

MPMusicPlayerController is convenient and simple, but it’s also simple-minded. As
we’ve seen, its audio session isn’t your audio session; the music player doesn’t really
belong to you. Starting in iOS 4.0, an MPMediaItem has an MPMediaItemPropertyAsset-
URL key, whose value is a URL suitable for forming an AVAsset. Thus, another way to
play an MPMediaItem is through AV Foundation (Chapter 28). This approach gives
you independence from the iPod/Music player; it puts playback of the song into your
app’s audio session and allows you to control it in response to remote control events
and to play it while your app is in the background. (Of course, you can do a lot more
with AV Foundation than merely to play a song from the music library. For example,
you could incorporate a song, or part of a song, as the sound track to a movie.) In this
simple example, we start with an array of MPMediaItems and initiate play of those
items in an AVQueuePlayer:

NSArray* arr = // array of MPMediaItem;
NSMutableArray* assets = [NSMutableArray array];
for (MPMediaItem* item in arr) {
 AVPlayerItem* pi = [[AVPlayerItem alloc] initWithURL:
 [item valueForProperty:MPMediaItemPropertyAssetURL]];
 [assets addObject:pi];
 [pi release];
}
self.qp = [AVQueuePlayer queuePlayerWithItems:assets];
[self.qp play];

674 | Chapter 29: Music Library

The Music Picker
The music picker (MPMediaPickerController) is a view controller (UIViewController)
whose view is an self-contained navigation interface in which the user can select a media
item. This interface looks very much like the iPod/Music app. You have no access to
the actual view; you are expected to present the view controller modally (or, on the
iPad, in a popover).

You can limit the type of media items displayed by creating the controller using init-
WithMediaTypes:. You can make a prompt appear at the top of the navigation bar
(prompt). And you can govern whether the user can choose multiple media items or just
one, with the allowsPickingMultipleItems property. That’s all there is to it.

While the view is showing, you learn what the user is doing through two delegate
methods (MPMediaPickerController):

• mediaPicker:didPickMediaItems:

• mediaPickerDidCancel:

How you use these depends on the value of the controller’s allowsPickingMultiple-
Items:

The controller’s allowsPickingMultipleItems is NO (the default)
Every time the user taps a media item, your mediaPicker:didPickMediaItems: is
called, handing you an MPMediaItemCollection consisting of all items the user has
tapped so far (including the same item multiple times if the user taps the same item
more than once). When the user taps Cancel, your mediaPickerDidCancel: is called.

The controller’s allowsPickingMultipleItems is YES
The interface has Plus buttons at the right end of every media item, similar to the
iPod/Music app interface for creating a playlist. When the user taps Done, media-
Picker:didPickMediaItems: is called, handing you an MPMediaItemCollection
consisting of all items for which the user has tapped the Plus button (including the
same item multiple times if the user taps the same item’s Plus button more than
once). Your mediaPickerDidCancel: is never called.

The view is not automatically dismissed; it is up to you to dismiss the modal view
controller. The standard behavior, in order to manage the interface sensibly, would be
for you to dismiss the modal view controller as soon as you get either delegate message.

In this example, we put up the music picker, allowing the user to choose one media
item; we then play that media item with the application’s music player:

- (void) presentPicker {
 MPMediaPickerController* picker = [[MPMediaPickerController alloc] init];
 picker.delegate = self;
 [self presentModalViewController:picker animated:YES];
 [picker release];
}

The Music Picker | 675

- (void) mediaPicker: (MPMediaPickerController*) mediaPicker
 didPickMediaItems: (MPMediaItemCollection*) mediaItemCollection {
 MPMusicPlayerController* player =
 [MPMusicPlayerController applicationMusicPlayer];
 [player setQueueWithItemCollection:mediaItemCollection];
 [player play];
 [self dismissModalViewControllerAnimated:YES];
}

- (void) mediaPickerDidCancel: (MPMediaPickerController*) mediaPicker {
 [self dismissModalViewControllerAnimated:YES];
}

On the iPad, the music picker should be presented in a popover. (You can present the
music picker modally on the iPad, but my experience is that it then doesn’t work cor-
rectly. I regard as a bug the fact that you can present it modally at all; if that isn’t going
to work, it would be better if the framework threw an exception.) On the iPad, the
popover has no Cancel button, but this is no trouble because the user can tap outside
the popover to dismiss it.

Example 29-1 rewrites the preceding code so that on the iPhone it presents the picker
modally but on the iPad it presents the picker in a popover. The presentPicker method
is now a button’s control event action, so that we can point the popover’s arrow to the
button. How we summon the picker depends on the device (we use
UI_USER_INTERFACE_IDIOM to distinguish the two cases); if it’s an iPad, we create a po-
pover and set an instance variable to retain it (as discussed in Chapter 22). How we
dismiss the picker depends on how it is being presented.

Example 29-1. Presenting a view controller modally or in a popover

- (void) presentPicker: (id) sender {
 MPMediaPickerController* picker =
 [[[MPMediaPickerController alloc] init] autorelease];
 picker.delegate = self;
 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPhone)
 [self presentModalViewController:picker animated:YES];
 else {
 UIPopoverController* pop =
 [[UIPopoverController alloc] initWithContentViewController:picker];
 self.currentPop = pop;
 [pop presentPopoverFromRect:[sender bounds] inView:sender
 permittedArrowDirections:UIPopoverArrowDirectionAny animated:YES];
 [pop release];
 }
}

- (void) dismissPicker: (MPMediaPickerController*) mediaPicker {
 if (self.currentPop && self.currentPop.popoverVisible) {
 [self.currentPop dismissPopoverAnimated:YES];
 } else {
 [self dismissModalViewControllerAnimated:YES];
 }
}

676 | Chapter 29: Music Library

- (void)mediaPicker: (MPMediaPickerController *)mediaPicker
 didPickMediaItems:(MPMediaItemCollection *)mediaItemCollection {
 MPMusicPlayerController* player = [MPMusicPlayerController applicationMusicPlayer];
 [player setQueueWithItemCollection:mediaItemCollection];
 [player play];
 [self dismissPicker: mediaPicker];
}

- (void)mediaPickerDidCancel:(MPMediaPickerController *)mediaPicker {
 [self dismissPicker: mediaPicker];
}

MPMediaPickerController is a good example of a view controller that
behaves badly in a popover if the app is suspended to the background
and then comes back to the foreground with the popover still visible
(see my warning about this in Chapter 22).

The Music Picker | 677

CHAPTER 30

Photo Library

The still photos and movies accessed by the user through the Photos app constitute the
photo library. Your app can provide an interface for exploring this library through the
UIImagePickerController class. The same class can also be used to take photos and
videos on devices with the necessary hardware.

Also, starting in iOS 4, the Assets Library framework lets you access the photo library
and its contents programmatically.

You can write files into the Camera Roll / Saved Photos album. The ability to save an
image file into the Camera Roll / Saved Photos album, by calling UIImageWriteToSaved-
PhotosAlbum, has existed since the early days of iOS 2.0. Some kinds of video file can
also be saved into the Camera Roll / Saved Photos album; in an example in Chap-
ter 28, I checked whether this was true of a certain video file by calling UIVideoAtPath-
IsCompatibleWithSavedPhotosAlbum, and saved the file by calling UISaveVideoAtPathTo-
SavedPhotosAlbum, functions that have existed since iOS 3.1. The Assets Library frame-
work adds further options.

To use constants such as kUTTypeImage, referred to in this chapter, your app must link
to MobileCoreServices.framework and import <MobileCoreServices/MobileCore-
Services.h>.

UIImagePickerController
UIImagePickerController is a view controller (UINavigationController) whose view
provides a navigation interface, similar to the Photos app, in which the user can choose
an item from the photo library. Alternatively, it can provide an interface for taking a
video or still photo if the necessary hardware is present. You will typically present the
view controller modally (or, on the iPad, in a popover; for code that does both, see
Example 29-1).

679

Choosing from the Photo Library
To let the user choose an item from the photo library, instantiate UIImagePickerCon-
troller and assign its sourceType one of these values:

• UIImagePickerControllerSourceTypeSavedPhotosAlbum

• UIImagePickerControllerSourceTypePhotoLibrary

You should call the class method isSourceTypeAvailable: beforehand; if it doesn’t re-
turn YES, don’t present the controller with that source type.

You’ll probably want to specify an array of mediaTypes you’re interested in. This array
will usually contain kUTTypeImage, kUTTypeMovie, or both; or you can specify all available
types by calling the class method availableMediaTypesForSourceType:.

After doing all of that, and having supplied a delegate, present the view controller:

UIImagePickerControllerSourceType type =
 UIImagePickerControllerSourceTypePhotoLibrary;
BOOL ok = [UIImagePickerController isSourceTypeAvailable:type];
if (!ok) {
 NSLog(@"alas");
 return;
}
UIImagePickerController* picker = [[UIImagePickerController alloc] init];
picker.sourceType = type;
picker.mediaTypes =
 [UIImagePickerController availableMediaTypesForSourceType:type];
picker.delegate = self;
[self presentModalViewController:picker animated:YES];
[picker release];

The delegate (UIImagePickerControllerDelegate) will receive one of these messages:

• imagePickerController:didFinishPickingMediaWithInfo:

• imagePickerControllerDidCancel:

If a delegate method is not implemented, the view controller is dismissed automatically,
but rather than relying on this, you should implement both delegate methods and dis-
miss the view controller yourself in both. The didFinish... method is handed a dic-
tionary of information about the chosen item. The keys in this dictionary depend on
the media type.

An image
The keys are:

UIImagePickerControllerMediaType
A UTI; probably @"public.image", which is the same as kUTTypeImage.

UIImagePickerControllerOriginalImage
A UIImage.

680 | Chapter 30: Photo Library

UIImagePickerControllerReferenceURL
An ALAsset URL (discussed later in this chapter).

A movie
The keys are:

UIImagePickerControllerMediaType
A UTI; probably @"public.movie", which is the same as kUTTypeMovie.

UIImagePickerControllerMediaURL
A file URL to a copy of the movie saved into a temporary directory. This would
be suitable, for example, to display the movie with an MPMoviePlayerCon-
troller (Chapter 28).

UIImagePickerControllerReferenceURL
An ALAsset URL (discussed later in this chapter).

Optionally, you can set the view controller’s allowsEditing to YES. In the case of an
image, the interface then allows the user to scale the image up and to move it so as to
be cropped by a preset square; the dictionary will include two additional keys:

UIImagePickerControllerCropRect
An NSValue wrapping a CGRect.

UIImagePickerControllerEditedImage
A UIImage.

In the case of a movie, the user can trim the movie just as with a UIVideoEditorCon-
troller (Chapter 28). The dictionary keys are the same as before, but the file URL points
to the trimmed copy in the temporary directory.

Because of restrictions on how many movies can play at once, if you use
a UIImagePickerController in a popover on the iPad to let the user
choose a movie and you then want to play that movie in an MPMovie-
PlayerController, you must destroy the UIImagePickerController first.
To do so, release the UIPopoverController that presented the UIIma-
gePickerController (probably by nilifying the instance variable that’s
retaining it).

Using the Camera
To prompt the user to take a photo or video, instantiate UIImagePickerController and
set its source type to UIImagePickerControllerSourceTypeCamera. Be sure to check is-
SourceTypeAvailable: beforehand; it will be NO if the user’s device has no camera or
the camera is unavailable. If it is YES, call availableMediaTypesForSourceType: to learn
whether the user can take a still photo (kUTTypeImage), a video (kUTTypeMovie), or both.
The result will guide your mediaTypes setting. Set a delegate, and present the view con-
troller modally.

UIImagePickerController | 681

Starting in iOS 3.1 (when video recording was introduced), you can also specify the
videoQuality and videoMaximumDuration.

Starting in iOS 4.0, additional properties and class methods allow you to determine the
camera capabilities:

isCameraDeviceAvailable:
Checks to see whether the front or rear camera is available, using one of these
parameters:

• UIImagePickerControllerCameraDeviceFront

• UIImagePickerControllerCameraDeviceRear

cameraDevice
Lets you learn and set which camera is being used.

availableCaptureModesForCameraDevice:
Checks whether the given camera can capture still images, video, or both. You
specify the front or rear camera; returns an NSArray of NSNumbers, from which
you can extract the integer value. Possible modes are:

• UIImagePickerControllerCameraCaptureModePhoto

• UIImagePickerControllerCameraCaptureModeVideo

cameraCaptureMode
Lets you learn and set the capture mode (still or video).

isFlashAvailableForCameraDevice:
Checks whether flash is available.

cameraFlashMode
Lets you learn and set the flash mode (or, for a movie, toggles the “video torch”).
Your choices are:

• UIImagePickerControllerCameraFlashModeOff

• UIImagePickerControllerCameraFlashModeAuto

• UIImagePickerControllerCameraFlashModeOn

When the view controller appears, the user will see the interface for taking a picture,
familiar from the Camera app, possibly including flash button, camera selection button,
and digital zoom (if the hardware supports these), still/video switch (if your media-
Types setting allows both), and Cancel and Shutter buttons.

Alternatively, you can hide the standard controls by setting showsCameraControls to
NO, replacing them with your own overlay view, which you supply as the value of the
cameraOverlayView. In this case, you’re probably going to want a button in your overlay
view to make the camera to take a picture! You can do that through these methods:

• takePicture

• startVideoCapture

682 | Chapter 30: Photo Library

• stopVideoCapture

You can supply a cameraOverlayView even if you don’t set showsCameraControls to NO,
but you’ll need to work out a sensible frame if you don’t want your view to obscure
existing controls.

You can also zoom or otherwise transform the preview image by setting the cameraView-
Transform property. This can be tricky, not least because the default transform is not
the identity transform, and also because different versions of iOS apply your transform
differently; in iOS 4 and later, it is applied from the center, but before that it is applied
from the top.

If you set showsCameraControls to NO, you may notice a blank area the size of the toolbar
at the bottom of the screen. You can set the cameraViewTransform property so that this
area is filled in, but knowing just what values to use can be tricky. Experimentation
suggests that in iOS 4 this might be a good approach:

CGAffineTransform translate = CGAffineTransformMakeTranslation(0.0, 27.0);
CGAffineTransform scale = CGAffineTransformMakeScale(1.125, 1.125);
picker.cameraViewTransform = CGAffineTransformConcat(translate, scale);

I’m not very happy with that code, as it relies so heavily on “magic numbers,” but at
least it provides a starting point.

Allowing the user to edit the captured image or movie, and handling the outcome with
the delegate messages, is just as described in the previous section. In this example,
having presented the interface for the user to take a still photo, we stick the resulting
photo into a UIImageView in our interface:

- (void)imagePickerController:(UIImagePickerController *)picker
 didFinishPickingMediaWithInfo:(NSDictionary *)info {
 UIImage* im = [info objectForKey:UIImagePickerControllerOriginalImage];
 [self->iv setImage:im];
 [self dismissModalViewControllerAnimated:YES];
}

There won’t be any UIImagePickerControllerReferenceURL key in the dictionary deliv-
ered to the delegate because the image isn’t in the photo library. Also, starting in iOS
4.1, a still image might report a UIImagePickerControllerMediaMetadata key containing
the metadata for the photo.

Setting camera-related properties such as cameraViewTransform when
there is no camera or when the UIImagePickerController is not set to
camera mode can crash your app.

Instead of using UIImagePickerController, you can control the camera and capture
images using the AV Foundation framework; see the “Media Capture” chapter of the
AV Foundation Programming Guide.

UIImagePickerController | 683

The Assets Library Framework
The Assets Library framework, introduced in iOS 4, does for the photo library roughly
what the Media Player framework does for the music library (Chapter 29), letting your
code explore the library’s contents. You’ll need to link to AssetsLibrary.framework and
import <AssetsLibrary/AssetsLibrary.h>. One obvious use of the Assets Library frame-
work might be to implement your own interface for letting the user choose an image
in a way that transcends the limitations of UIImagePickerController.

You might not be able to explore the photo library in this way; instead,
you might get a “Global denied access” error, because the user must
explicitly grant permission to access the library. If the user has never
done that, the interface for giving such permission (Figure 30-1) requires
that Location Services be turned on. So if the user has never given per-
mission and Location Services is off, or if Location Services is on and
the user refuses permission, you are blocked; your code must always be
prepared for this possibility. (In my tests, even when I tapped OK in the
Figure 30-1 interface, my code seemed to halt; I didn’t get an error no-
tification, but my code didn’t access the photo library either. Things
worked fine the next time my code ran. This feels like a bug.)

A photo or video in the photo library is an ALAsset. Like a media entity (Chapter 29),
an ALAsset can describe itself through key–value pairs called properties. (This use of
the word “properties” has nothing to do with Objective-C properties, as explained in
Chapter 12.) For example, it can report its type (photo or video), its creation date, its
orientation if it is a photo whose metadata reports this, and its duration if it is a video.
You fetch a property value with valueForProperty:. The properties have names like
ALAssetPropertyType.

A complicating factor in the case of photos is that a photo can provide multiple repre-
sentations (roughly, image file formats). A given photo ALAsset lists these representa-
tions as one its properties, ALAssetPropertyRepresentations, an array of strings giving
the UTIs identifying the file format; a typical UTI might be @"public.jpeg". A repre-
sentation is an ALAssetRepresentation. You can get a photo’s defaultRepresentation,
or ask for a particular representation by submitting a file format’s UTI to
representationForUTI:.

Figure 30-1. The user might see this

684 | Chapter 30: Photo Library

Once you have an ALAssetRepresentation, you can interrogate it to get the actual im-
age, either as raw data or as a CGImage (see Chapter 15). The simplest way is to ask
for its fullResolutionImage; you may then want to derive a UIImage from this using
imageWithCGImage:scale:orientation:. The original scale and orientation of the image
are available as the ALAssetRepresentation’s scale and orientation. An ALAssetRe-
presentation also has a url, which is important, because it’s the unique identifier for
the ALAsset (similar to the persistent ID of a song in the music library).

The photo library itself is an ALAssetsLibrary instance. It is divided into groups, which
have types. For example, the user might have multiple albums; each of these is a group
of type ALAssetsGroupAlbum. To fetch assets from the library, you either fetch one spe-
cific asset by providing its URL, or you enumerate its groups of a certain type. If you
take the second approach, you are handed each group as an ALAssetsGroup; you can
then enumerate the group’s assets. Before doing so, you may optionally filter the group
using a simple ALAssetsFilter; this limits any subsequent enumeration to photos only,
videos only, or both. An ALAssetsGroup also has properties, such as a name, which
you can fetch with valueForProperty:.

The Assets Library framework uses Objective-C blocks for fetching and enumerating
assets and groups. These blocks behave rather oddly: at the end of the enumeration,
they are called one extra time with a nil first parameter. Thus, you must code your block
defensively to avoid treating the first parameter as real on that final call.

We now know enough for an example! I’ll fetch the first photo from the album named
“mattBestVertical” in my photo library and stick it into a UIImageView in the interface.
For readability, I’ve set up the blocks in my code separately as variables before they are
used, so it will help to read backward: we enumerate (at the end of the code) using the
getGroups block (previously defined), which itself enumerates using the getPix block
(defined before that). Here we go:

// what I'll do with the assets from the group
ALAssetsGroupEnumerationResultsBlock getPix =
 ^ (ALAsset *result, NSUInteger index, BOOL *stop) {
 if (!result)
 return;
 ALAssetRepresentation* rep = [result defaultRepresentation];
 CGImageRef im = [rep fullResolutionImage];
 UIImage* im2 = [UIImage imageWithCGImage:im];
 [self->iv setImage:im2]; // put image into our UIImageView
 *stop = YES; // got first image, all done
 };
// what I'll do with the groups from the library
ALAssetsLibraryGroupsEnumerationResultsBlock getGroups =
 ^ (ALAssetsGroup *group, BOOL *stop) {
 if (!group)
 return;
 NSString* title = [group valueForProperty: ALAssetsGroupPropertyName];
 if ([title isEqualToString: @"mattBestVertical"]) {
 [group enumerateAssetsUsingBlock:getPix];
 *stop = YES; // got target group, all done

The Assets Library Framework | 685

 }
 };
// might not be able to access library at all
ALAssetsLibraryAccessFailureBlock oops = ^ (NSError *error) {
 NSLog(@"oops! %@", [error localizedDescription]);
 // e.g. "Global denied access"
};
// and here we go with the actual enumeration!
ALAssetsLibrary* library = [[ALAssetsLibrary alloc] init];
[library enumerateGroupsWithTypes: ALAssetsGroupAlbum
 usingBlock: getGroups
 failureBlock: oops];
[library release];

As I mentioned at the start of this chapter, writing an image file into the Camera Roll /
Saved Photos album has been supported since iOS 2.0, with the ability to write a movie
file added in iOS 3.1. In iOS 4.0 and iOS 4.1, these functionalities were extended
through the ALAssetsLibrary class, which offers these five methods:

writeImageToSavedPhotosAlbum:orientation:completionBlock:
Takes a CGImageRef and orientation.

writeImageToSavedPhotosAlbum:metadata:completionBlock:
Takes a CGImageRef and optional metadata dictionary (such as might arrive
through the UIImagePickerControllerMediaMetadata key when the user takes a pic-
ture using UIImagePickerController).

writeImageDataToSavedPhotosAlbum:metadata:completionBlock:
Takes raw image data (NSData) and optional metadata.

videoAtPathIsCompatibleWithSavedPhotosAlbum:
Takes a file path string. Returns a boolean.

writeVideoAtPathToSavedPhotosAlbum:completionBlock:
Takes a file path string.

Saving takes time, so a completion block allows you to be notified when it’s over. The
completion block supplies two parameters: an NSURL and an NSError. If the first
parameter is not nil, the write succeeded, and this is the URL of the resulting ALAsset.
If the first parameter is nil, the write failed, and the second parameter describes the
error.

686 | Chapter 30: Photo Library

CHAPTER 31

Address Book

The user’s address book, which the user sees through the Contacts app, is effectively
a database that can be accessed directly through a C API provided by the Address Book
framework. You’ll link to AddressBook.framework and import <AddressBook/Address-
Book.h>.

A user interface for interacting with the address book is also provided, through Ob-
jective-C classes, by the Address Book UI framework. You’ll link to AddressBoo-
kUI.framework and import <AddressBookUI/AddressBookUI.h>.

Address Book Database
The address book is an ABAddressBookRef obtained by calling ABAddressBookCreate.
This method’s name contains “Create,” so you must CFRelease the ABAddressBookRef
when you’re finished with it. The address book’s data starts out exactly the same as the
user’s Contacts data. If you make any changes to the data, they are not written through
to the user’s real address book until you call ABAddressBookSave.

The primary constituent record of the address book database is the ABPerson. You’ll
typically extract persons from the address book by using these functions:

• ABAddressBookGetPersonCount

• ABAddressBookGetPersonWithRecordID

• ABAddressBookCopyPeopleWithName

• ABAddressBookCopyArrayOfAllPeople

The result of the latter two is a CFArrayRef. Their names contain “Copy,” so you must
CFRelease the array when you’re finished with it. (I’m going to stop reminding you
about memory management from here on.)

An ABPerson doesn’t formally exist as a type; it is actually an ABRecord (ABRecordRef),
and by virtue of this has an ID, a type, and properties with values. To fetch the value
of a property, you’ll call ABRecordCopyValue, supplying a property ID to specify the

687

property that interests you. ABPerson properties, as you might expect, include things
like first name, last name, and email.

Working with a property value is a little tricky because the way you treat it depends on
what type of value it is. (You can find this out dynamically by calling ABPersonGetType-
OfProperty, but usually you’ll know in advance.) Some values are simple, but some are
not. For example, a last name is a string, which is straightforward. But a person can
have more than one email, so an email value is a “multistring.” To work with it, you’ll
treat it as an ABMultiValue (ABMultiValueRef). This is like an array of values in which
each item has, in addition to a value, a label and an identifier. The label categorizes (for
example, a Home email as opposed to a Work email) but is not a unique specifier
(because a person might have, say, two or more Work emails); the identifier is the
unique specifier.

A person’s address is even more involved because not only is it an ABMultiValue (a
person can have more than one address), but also a particular address is itself a dic-
tionary (a CFDictionary). Each dictionary may have a key for street, city, state, country,
and so on.

There is a lot more than this to parsing address book information, but this is enough
to get you started and to illustrate by an example. I’ll fetch my own record out of the
address book database on my device and detect that I’ve got two email addresses:

ABAddressBookRef adbk = ABAddressBookCreate();
ABRecordRef moi = NULL;
CFArrayRef matts = ABAddressBookCopyPeopleWithName(adbk, @"Matt");
// might be multiple matts, but let's find the one with last name Neuburg
for (CFIndex ix = 0; ix < CFArrayGetCount(matts); ix++) {
 ABRecordRef matt = CFArrayGetValueAtIndex(matts, ix);
 CFStringRef last = ABRecordCopyValue(matt, kABPersonLastNameProperty);
 if (last && CFStringCompare(last, (CFStringRef)@"Neuburg", 0) == 0)
 moi = matt;
 if (last)
 CFRelease(last);
}
if (NULL == moi) {
 NSLog(@"Couldn't find myself");
 CFRelease(matts);
 CFRelease(adbk);
 return;
}
// parse my emails
ABMultiValueRef emails = ABRecordCopyValue(moi, kABPersonEmailProperty);
for (CFIndex ix = 0; ix < ABMultiValueGetCount(emails); ix++) {
 CFStringRef label = ABMultiValueCopyLabelAtIndex(emails, ix);
 CFStringRef value = ABMultiValueCopyValueAtIndex(emails, ix);
 NSLog(@"I have a %@ address: %@", (NSString*)label, (NSString*)value);
 CFRelease(label);
 CFRelease(value);
}
CFRelease(emails);
CFRelease(matts);

688 | Chapter 31: Address Book

CFRelease(adbk);
/*
output:
I have a _$!<Home>!$_ address: matt@tidbits.com
I have a _$!<Work>!$_ address: mattworking@tidbits.com
*/

You can also modify an existing record, add a new record (ABAddressBookAddRecord),
and delete a record (ABAddressBookRemoveRecord). In this example, I’ll create a person,
add him to the database, and save the database:

ABAddressBookRef adbk = ABAddressBookCreate();
ABRecordRef snidely = ABPersonCreate();
ABRecordSetValue(snidely, kABPersonFirstNameProperty, @"Snidely", NULL);
ABRecordSetValue(snidely, kABPersonLastNameProperty, @"Whiplash", NULL);
ABMutableMultiValueRef addr = ABMultiValueCreateMutable(kABStringPropertyType);
ABMultiValueAddValueAndLabel(addr, @"snidely@villains.com", kABHomeLabel, NULL);
ABRecordSetValue(snidely, kABPersonEmailProperty, addr, NULL);
ABAddressBookAddRecord(adbk, snidely, NULL);
ABAddressBookSave(adbk, NULL);
CFRelease(addr);
CFRelease(snidely);
CFRelease(adbk);

Sure enough, if we then check the state of the database through the Contacts app, the
new person exists (Figure 31-1).

Figure 31-1. A contact created programmatically

Library Access Inconsistencies
You need special permission even to look in the photo library with the Assets Library
framework (Chapter 30), and you can’t modify the music library (Chapter 29), but you
can freely read the user’s address book, altering a person’s details, adding new people,
and even possibly deleting every record in the database, without the user’s knowledge
or permission. Don’t ask me to justify that inconsistency; it makes no sense to me.
Indeed, as Apple’s documentation points out, your code has more power over the ad-
dress book database than the user does, because you can manipulate groups of persons
(ABGroup, not discussed here), but the user can’t; the user acquires groups only by
syncing with a Mac with groups in its Address Book.

Address Book Database | 689

Address Book Interface
The Address Book UI framework puts a user interface in front of common tasks in-
volving the address book database and its manipulation by means of the functions and
data types discussed in the preceding section. This is a great help, because designing
your own interface to do the same thing would be tedious and involved, especially given
properties with multiple values and the added complexity of addresses. The framework
provides four UIViewController subclasses:

ABPeoplePickerNavigationController
Presents a navigation interface, effectively the same as the Contacts app but without
an Edit button: it lists the people in the database and allows the user to pick one
and view the details.

ABPersonViewController
ABNewPersonViewController
ABUnknownPersonViewController

Presents an interface showing, respectively:

• The properties of a specific person, possibly editable

• The editable properties of a new person

• A proposed person with a partial set of noneditable properties

ABPeoplePickerNavigationController
An ABPeoplePickerNavigationController is a UINavigationController. Presenting it
can be as simple as instantiating it, assigning it a delegate, and showing it modally. (On
the iPad, you’ll probably use a popover; presenting the controller modally does work,
but a popover looks better. For code that does both, see Example 29-1.) The user can
survey groups and the names of all contacts in each:

ABPeoplePickerNavigationController* picker =
 [[ABPeoplePickerNavigationController alloc] init];
picker.peoplePickerDelegate = self; // note: not merely "delegate"
[self presentModalViewController:picker animated:YES];
[picker release];

You should certainly provide a delegate, because without it the modal view will never
be dismissed. This delegate is not the controller’s delegate property! It is the controller’s
peoplePickerDelegate property. You should implement all three delegate methods:

peoplePickerNavigationController:shouldContinueAfterSelectingPerson:
The user has tapped a person in the contacts list, provided to you as an
ABRecordRef. You have two options:

• Return NO. The user has chosen a person and that’s all you wanted done. The
selected person remains selected unless the user chooses another person. You
are likely to dismiss the picker at this point.

690 | Chapter 31: Address Book

• Return YES (and don’t dismiss the picker). The view will navigate to a view of
the person’s properties. You can limit the set of properties the user will see at
this point by setting the ABPeoplePickerNavigationController’s displayed-
Items. This is an array of NSNumbers wrapping the property identifiers such as
kABPersonEmailProperty.

peoplePickerNavigationController:shouldContinueAfterSelectingPerson:property:
identifier:

The user is viewing a person’s properties and has tapped a property. Note that you
are not handed the value of this property! You can fetch that yourself if desired,
because you have the person and the property; plus, if the property has multiple
values, you are handed an identifier so you can pick the correct one out of the array
of values by calling ABMultiValueGetIndexForIdentifier and fetching the value at
that index. You have two options:

• Return NO. The view is now still sitting there, displaying the person’s proper-
ties. You are likely to dismiss the picker at this point.

• Return YES. This means that if the property is one that can be displayed in some
other app, we will switch to that app. For example, if the user taps an address,
it will be displayed in the Maps app; if the user taps an email, we will switch to
the Mail app and compose a message addressed to that email.

peoplePickerNavigationControllerDidCancel:
The user has cancelled; you should dismiss the picker.

In this example, we want the user to pick an email. We have limited the display of
properties to emails only:

picker.displayedProperties =
 [NSArray arrayWithObject: [NSNumber numberWithInt: kABPersonEmailProperty]];

We return YES from the first delegate method. The second delegate method fetches the
value of the tapped email and dismisses the picker:

- (BOOL)peoplePickerNavigationController:
 (ABPeoplePickerNavigationController *)peoplePicker
 shouldContinueAfterSelectingPerson:(ABRecordRef)person
 property:(ABPropertyID)property
 identifier:(ABMultiValueIdentifier)identifier {
 ABMultiValueRef emails = ABRecordCopyValue(person, property);
 CFIndex ix = ABMultiValueGetIndexForIdentifier(emails, identifier);
 CFStringRef email = ABMultiValueCopyValueAtIndex(emails, ix);
 NSLog(@"%@", email); // do something with the email here
 CFRelease(email);
 CFRelease(emails);
 [self dismissModalViewControllerAnimated:YES];
 return NO;
}

Address Book Interface | 691

ABPersonViewController
An ABPersonViewController is a UIViewController. To use it, instantiate it, set its
displayedPerson and personViewDelegate (not delegate), and push it onto an existing
navigation controller’s stack. The user’s only way out of the resulting interface will be
through the Back button. You can limit the properties to be displayed, as with ABPeo-
plePickerNavigationController, by setting the displayedProperties. You can highlight
a property with setHighlightedItemForProperty:withIdentifier:.

The delegate is notified when the user taps a property, similar to ABPeoplePickerNa-
vigationController’s second delegate method illustrated in the code just above. As with
ABPeoplePickerNavigationController’s delegate, return YES to allow some other app,
such as Maps or Mail, to open the tapped value; return NO to prevent this.

If ABPersonViewController’s allowsEditing is YES, the right bar button is an Edit but-
ton. If the user taps this, the interface is transformed into the same sort of editing
interface as ABNewPersonViewController. The user can tap Done or Cancel; if Done, the
edits are automatically saved into the database. Either way, the user returns to the
original display of the person’s properties.

On the iPad, the same interface works, or alternatively you can use a popover. In that
case you’ll probably make the ABPersonViewController the root view of a UINaviga-
tionController created on the fly, especially if you intend to set allowsEditing to YES,
since without the navigation interface the Edit button won’t appear. No Back button
is present or needed, because the user can dismiss the popover by tapping outside it.

ABNewPersonViewController
An ABNewPersonController is a UIViewController. To use it, instantiate it, set its new-
PersonViewDelegate (not delegate), instantiate a UINavigationController with the AB-
NewPersonController as its root view, and show the navigation controller modally:

ABNewPersonViewController* npvc = [[ABNewPersonViewController alloc] init];
npvc.newPersonViewDelegate = self;
UINavigationController* nc =
 [[UINavigationController alloc] initWithRootViewController:npvc];
[self presentModalViewController:nc animated:YES];
[nc release];
[npvc release];

The interface allows the user to fill in all properties of a new contact. You cannot limit
the properties displayed. You can provide properties with default values by creating a
fresh ABRecordRef representing an ABPerson with ABPersonCreate, giving it any prop-
erty values you like, and assigning it to the displayedPerson property.

The delegate has one method, newPersonViewController:didCompleteWithNewPerson:,
which is responsible for dismissing the modal view. If the new person is NULL, the
user tapped Cancel. Otherwise, the user tapped Done; the new person is an
ABRecordRef and has already been saved into the database.

692 | Chapter 31: Address Book

But what if you don’t want the new person saved into the database? What if you were
presenting this interface merely because it’s such a convenient way of letting the user
fill in the property values of an ABPerson? Then simply remove the newly created person
from the database, like this:

- (void)newPersonViewController:(ABNewPersonViewController*)newPersonViewController
 didCompleteWithNewPerson:(ABRecordRef)person {
 if (NULL != person) {
 ABAddressBookRef adbk = ABAddressBookCreate();
 ABAddressBookRemoveRecord(adbk, person, NULL);
 ABAddressBookSave(adbk, NULL);
 CFStringRef name = ABRecordCopyCompositeName(person);
 NSLog(@"I have a person named %@", name); // do something with new person
 CFRelease(name);
 CFRelease(adbk);
 }
 [self dismissModalViewControllerAnimated:YES];
}

The modal display works on the iPad as well. Alternatively, you can display the UINa-
vigationController in a popover; the resulting popover is effectively modal, so it will be
dismissed only through your implementation of newPersonViewController:didComplete-
WithNewPerson:.

ABUnknownPersonViewController
An ABUnknownPersonViewController is a UIViewController. It presents, as it were,
a proposed partial person. You can set the first and last name displayed as the control-
ler’s alternateName property and text below this as the controller’s message property.
You’ll add other property values just as for an ABNewPersonViewController, namely,
by creating a fresh ABRecordRef representing an ABPerson with ABPersonCreate, giving
it some property values, and assigning it to the displayedPerson property.

To use ABUnknownPersonViewController, instantiate it, set the properties listed in
the foregoing paragraph, set its unknownPersonViewDelegate (not delegate), and push it
onto the stack of an existing navigation controller. The user’s only way out of the
resulting interface will be through the Back button.

On the iPad, make the ABUnknownPersonViewController the root view of a UINavi-
gationController and present the navigation controller as a popover. No Back button
is present or needed, because the user can dismiss the popover by tapping outside it.

What the user can do here depends on two other properties:

allowsAddingToAddressBook
If Yes, a Create New Contact button and an Add to Existing Contact button appear:

• If the user taps Create New Contact, the editing interface appears (as in AB-
NewPersonViewController and an editable ABPersonViewController). It is fil-

Address Book Interface | 693

led in with the property values of the displayedPerson. If the user taps Done,
the person is saved into the database.

• If the user taps Add to Existing Contact, a list of all contacts appears (as in the
first screen of ABPersonViewController). The user can Cancel or tap a person.
If the user taps a person, the properties from the displayedPerson are merged
into that person’s record.

allowsActions
If YES, a Share Contact button appears. The user can tap this to edit and send a
mail message containing a .vcf file embodying this contact.

The delegate has two methods, the first of which is required:

unknownPersonViewController:didResolveToPerson:
Called if allowsAddingToAddressBook is YES and the user finishes working in a mo-
dal editing view. The modal editing view has already been dismissed and the user
has either cancelled (the second parameter is NULL) or has tapped Done (the sec-
ond parameter is the ABPerson already saved into the database).

unknownPersonViewController:shouldPerformDefaultActionForPerson:property:
identifier:

Return NO, as with ABPeoplePickerNavigationController, to prevent a tap on a
property value from navigating to another app.

694 | Chapter 31: Address Book

CHAPTER 32

Calendar

The user’s calendar information, which the user sees through the Calendar app, is
effectively a database. Starting in iOS 4.0, this database can be accessed directly through
the Event Kit framework. You’ll link to EventKit.framework and import <Event-
Kit/EventKit.h>.

A user interface for interacting with the calendar is also provided, by the Event Kit UI
framework. This interface basically replicates part of the Calendar app. You’ll link to
EventKitUI.framework and import <EventKitUI/EventKitUI.h>.

Calendar Database
The calendar database is accessed as an instance of the EKEventStore class. Starting
with this instance, you can obtain two kinds of object:

A calendar
A calendar is a collection of events, usually categorized for some purpose, such as
Work or Home. It is an instance of EKCalendar. You can fetch all calendars with
the calendars property, or the default calendar with the defaultCalendarForNew-
Events property. Calendars have various types (type), reflecting the nature of their
origin: a calendar can be created and maintained by the user locally (EKCalendar-
TypeLocal), but it might also live remotely on the network (EKCalendarTypeCal-
DAV, EKCalendarTypeExchange), possibly being updated by subscription (EKCalendar-
TypeSubscription); the Birthday calendar (EKCalendarTypeBirthday) is generated
automatically from information in the address book. You can’t create a calendar.

An event
An event is a memorandum describing when something happens. It is an instance
of EKEvent. An event is associated with a calendar, its calendar, and you must
specify a calendar when creating an event. However, not every calendar permits
modification or creation of events; if in doubt, check the calendar’s allowsContent-
Modifications property. Given a calendar, you can’t fetch any events; rather, you

695

fetch an event from the database as a whole. You do this either by unique identifier
or by a date range.

I’ll give an example of fetching events from the calendar database in a moment, but
first let’s focus on events. An event is an instance of EKEvent, and is where all the real
action is. You fetch events out of the calendar database; you can modify an existing
event, or make a new one; you can save an event into the calendar database with save-
Event:span:error:, and delete it from the database with removeEvent:span:error:.
(You never save the database itself.)

If you’ve ever used the Calendar app, or iCal on the Mac, you have a sense for how an
EKEvent can be configured. It has a title and optional notes. It is associated with a
calendar, as I’ve already said. Most important, it has a startDate and an endDate; these
are NSDates and involve both date and time. If the event’s allDay property is YES, the
time aspect of its dates is ignored; the event is associated with a day or a stretch of days
as a whole. If the event’s allDay property is NO, the time aspect of its dates matters; a
typical event will then usually be bounded by two times on the same day.

An event can be a recurring event, repeating at intervals according to some rule. That
rule is the event’s recurrenceRule, and is an EKRecurrenceRule. A simple EKRecur-
renceRule is described by three properties:

Frequency
By day, by week, by month, or by year.

Interval
Fine-tunes the notion “by” in the frequency. A value of 1 means “every.” A value
of 2 means “every other.” And so on.

End
Optional, because the event might recur forever. It is an EKRecurrenceEnd in-
stance, describing the limit of the event’s recurrence either as an end date or as a
maximum number of occurrences.

The options for describing a more complex EKRecurrenceRule are best summarized
by its initializer:

- (id)initRecurrenceWithFrequency:(EKRecurrenceFrequency)type
 interval:(NSInteger)interval
 daysOfTheWeek:(NSArray *)days
 daysOfTheMonth:(NSArray *)monthDays
 monthsOfTheYear:(NSArray *)months
 weeksOfTheYear:(NSArray *)weeksOfTheYear
 daysOfTheYear:(NSArray *)daysOfTheYear
 setPositions:(NSArray *)setPositions
 end:(EKRecurrenceEnd *)end

The meanings of all these parameters are mostly obvious from their names. The arrays
are mostly of NSNumber, except for daysOfTheWeek, which is an array of EKRecurren-
ceDayOfWeek, a class that allows specification of a week number as well as a day

696 | Chapter 32: Calendar

number so that you can say things like “the fourth Thursday of the month.” The set-
Positions parameter is an array of numbers filtering the occurrences defined by the rest
of the specification against the interval; however, it doesn’t seem to be always obeyed
correctly. You can use any valid combination of parameters; the penalty for an invalid
combination that can’t be resolved is a return value of nil.

Unfortunately, an EKRecurrenceRule has rather severe limitations. In theory, it is in-
tended to reflect the RRULE event component in the iCalendar standard specification
(original published as RFC 2445 and recently superseded by RFC 5545, http://data
tracker.ietf.org/doc/rfc5545). According to the standard, you should be allowed to
specify both month and day in a yearly recurring event. The standard even gives an
explicit example:

RRULE:FREQ=YEARLY;INTERVAL=2;BYMONTH=1;BYDAY=SU

This is means “every Sunday in January, every other year.” But the documentation for
EKRecurrenceRule says that daysOfTheMonth is valid only if the frequency is
EKRecurrenceFrequencyMonthly, so you can’t use EKRecurrenceRule to form this rule.

For example, let’s consider how to express a single recurring event that marks when I
have to pay my quarterly estimated taxes. The deadlines are the 15th of January, April,
June, and September. This is not a regular interval (it isn’t every three months). The
solution would seem to be to describe this as an annual recurring event, listing the
relevant months explicitly as the monthsOfTheYear parameter, and putting the 15th of
the month as the daysOfTheMonth parameter, like this:

EKRecurrenceRule* recur =
 [[EKRecurrenceRule alloc]
 initRecurrenceWithFrequency:EKRecurrenceFrequencyYearly
 interval:1
 daysOfTheWeek:nil
 daysOfTheMonth:[NSArray arrayWithObject:[NSNumber numberWithInt:15]]
 monthsOfTheYear:[NSArray arrayWithObjects:
 [NSNumber numberWithInt: 1],
 [NSNumber numberWithInt: 4],
 [NSNumber numberWithInt: 6],
 [NSNumber numberWithInt: 9],
 nil]
 weeksOfTheYear:nil
 daysOfTheYear:nil
 setPositions: nil
 end:nil];

However, if we inspect the resulting recurrence rule, the daysOfTheMonth component
has been thrown away, presumably because, as I just said, daysOfTheMonth is valid only
if the frequency is EKRecurrenceFrequencyMonthly:

NSLog(@"event %@", recur); // RRULE FREQ=YEARLY;INTERVAL=1;BYMONTH=1,4,6,9

So EKRecurrenceRule falls short of the standard. Nevertheless, it turns out that in this
case, by also assigning the event itself a start and end date of the 15th of the month, we
can obtain the desired event. I’ll create the event and save it into the calendar database:

Calendar Database | 697

EKRecurrenceRule* recur =
 [[EKRecurrenceRule alloc]
 initRecurrenceWithFrequency:EKRecurrenceFrequencyYearly
 interval:1
 daysOfTheWeek:nil
 daysOfTheMonth:nil
 monthsOfTheYear:[NSArray arrayWithObjects:
 [NSNumber numberWithInt: 1],
 [NSNumber numberWithInt: 4],
 [NSNumber numberWithInt: 6],
 [NSNumber numberWithInt: 9],
 nil]
 weeksOfTheYear:nil
 daysOfTheYear:nil
 setPositions: nil
 end:nil];
EKEventStore* database = [[EKEventStore alloc] init];
EKEvent* taxes = [EKEvent eventWithEventStore:database];
taxes.title = @"Estimated tax payment due";
taxes.recurrenceRule = recur;
NSCalendar* greg =
 [[NSCalendar alloc] initWithCalendarIdentifier:NSGregorianCalendar];
NSDateComponents* comp = [[NSDateComponents alloc] init];
[comp setYear:2011];
[comp setMonth:4];
[comp setDay:15];
NSDate* date = [greg dateFromComponents:comp];
taxes.calendar = [database defaultCalendarForNewEvents];
taxes.startDate = date;
taxes.endDate = date;
taxes.allDay = YES;
NSError* err = nil;
BOOL ok = [database saveEvent:taxes span: EKSpanFutureEvents error:&err];
if (ok)
 NSLog(@"ok!");
else
 NSLog(@"error: %@", [err localizedDescription]);
[database release];
[greg release];
[comp release];
[recur release];

In that code, the event we save into the database is a recurring event. When we save or
delete a recurring event, we must specify its span. This is either EKSpanThisEvent or
EKSpanFutureEvents, and corresponds exactly to the two buttons the user sees in the
Calendar interface when saving or deleting a recurring event (Figure 32-1, and there is
a similar choice on the Mac in iCal). The buttons and the span types reflect their mean-
ing exactly: either the change affects this event alone, or this event plus all future (not
past) recurrences. This choice determines not only how this and future recurrences of
the event are affected now, but also how they relate to one another from now on.

698 | Chapter 32: Calendar

An EKEvent can have alarms. An alarm is an EKAlarm and can be set to fire either at
an absolute date or at a relative offset from the event time. On an iOS device, an alarm
fires through a local notification (Chapter 26).

An EKEvent can also be used to embody a meeting, with attendees (EKParticipant) and
an organizer, but that is not a feature of an event that you can set.

Now let’s return to the database as a whole. Once you’ve instantiated EKEventStore,
you should maintain that instance for as long as your app will need access to the cal-
endar database. This is partly because opening access to the database is somewhat
expensive and time-consuming, and partly because an EKEvent belongs only to a single
instance of EKEventStore.

An event in the database can be retrieved across instantiations of EKEventStore by its
unique identifier (eventIdentifier), by calling eventWithIdentifier:; however, even
this unique identifier might not survive changes in a calendar between launches of your
app.

You can also extract events from the database by matching a predicate (NSPredicate).
To form this predicate, you specify a start and end date and call the EKEventStore
method predicateForEventsWithStartDate:endDate:calendars:. Because the date
range is the only way to fetch events, any further filtering of events is up to you. In this
example, I’ll gather all events with “insurance” in their title; because I have to specify
a date range, I ask for events occurring over the next year:

EKEventStore* database = [[EKEventStore alloc] init];
NSDate* d1 = [NSDate date];
NSDate* d2 = [NSDate dateWithTimeInterval:60*60*24*365 sinceDate:d1];
NSPredicate* pred =
 [database predicateForEventsWithStartDate:d1 endDate:d2
 calendars:database.calendars];
NSMutableArray* marr = [NSMutableArray array];
[database enumerateEventsMatchingPredicate:pred usingBlock:
 ^(EKEvent *event, BOOL *stop) {
 NSRange r = [event.title rangeOfString:@"insurance"
 options:NSCaseInsensitiveSearch];
 if (r.location != NSNotFound)
 [marr addObject: event];
 }];

Figure 32-1. The user specifies a span

Calendar Database | 699

After that, marr contains three events, because I pay my motorcycle insurance annually
and my car insurance biannually. Those events are in no particular order; a convenience
method on EKEvent, compareStartDateWithEvent:, is suitable as a sort selector:

[marr sortUsingSelector:@selector(compareStartDateWithEvent:)];

When you extract events from the database, event recurrences are treated as separate
events. Thus, for example, although we created the tax payment event as a single re-
curring event, we might retrieve as many as four EKEvent instances of it over the next
year. These EKEvents will have different start and end dates but the same event-
Identifier. When you fetch an event by calling eventWithIdentifier: you get the
earliest event with that identifier. This makes sense, because if you’re going to make a
change affecting this and future recurrences of the event, you need the option to start
with the earliest possible recurrence (so that “future” means “all”).

The calendar database is an odd sort of database, because calendars can be maintained
in so many ways and places. A calendar can change while your app is running (the user
might sync, for example), which can put your information out of date. You can register
for a single EKEventStore notification, EKEventStoreChangedNotification; if you receive
it, you should assume that any calendar-related instances you’re holding are invalid. If
you are in the middle of editing an event, you can reload its properties by calling
refresh, but in general the database, and all events and calendars you’re working with,
need to be fetched all over again.

Calendar Interface
The graphical interface consists of two views for letting the user work with an event:

EKEventViewController
Shows the description of a single event, possibly editable.

EKEventEditViewController
Allows the user to create or edit an event.

EKEventViewController simply shows the little rounded rectangle containing the
event’s title, date, and time, familiar from the Calendar app, possibly with additional
rounded rectangles describing alarms and notes. The user can’t tap these to do any-
thing. To use EKEventViewController, instantiate it, give it an event, and push it onto
the stack of an existing UINavigationController. The user’s only way out will be the
Back button. So, for example:

EKEventViewController* evc = [[EKEventViewController alloc] init];
evc.event = [marr objectAtIndex:0];
evc.allowsEditing = NO;
[self.navigationController pushViewController:evc animated:YES];
[evc release];

The documentation says that allowsEditing is NO by default, but in my testing the
default was YES; perhaps you’d best play safe and set it regardless. If it is YES, an Edit

700 | Chapter 32: Calendar

button appears as the right bar button item in the navigation bar, and by tapping this,
the user can edit the various aspects of an event in the same navigation interface that
should be familiar from the Calendar app, including the large red Delete button at the
bottom. If the user ultimately deletes the event or edits it and taps Done, the change is
saved into the database.

Starting in iOS 4.2, you can assign the EKEventViewController a delegate in order to
hear about what the user did. The delegate method eventViewController:didComplete-
WithAction: is called only if the user deletes an event or accepts an invitation.

On the iPad, you use the EKEventViewController as the root view of a navigation con-
troller created on the fly and use the navigation controller as a popover’s view controller.
By default, the EKEventViewController’s modalInPopover is YES and a Done button
appears as the right bar button; the delegate method eventViewController:didComplete-
WithAction: is called if the user taps the Done button, and you’ll need to dismiss the
popover there. However, if allowsEditing is YES, you must set modalInPopover to NO,
so to replace the Done button with the Edit button. Here’s code that works both on
the iPhone and on the iPad:

EKEventViewController* evc = [[EKEventViewController alloc] init];
evc.delegate = self;
evc.event = // ... whatever ...;
evc.allowsEditing = NO;
// on iPhone, push onto existing navigation interface
if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPhone)
 [self.navigationController pushViewController:evc animated:YES];
// on iPad, create navigation interface in popover
else {
 UINavigationController* nc =
 [[UINavigationController alloc] initWithRootViewController:evc];
 evc.modalInPopover = NO;
 UIPopoverController* pop =
 [[UIPopoverController alloc] initWithContentViewController:nc];
 self.currentPop = pop;
 [pop presentPopoverFromRect:[sender bounds] inView:sender
 permittedArrowDirections:UIPopoverArrowDirectionAny animated:YES];
 [nc release];
 [pop release];
}
[evc release];

EKEventEditViewController (a UINavigationController) presents the interface for ed-
iting an event. To use it, set its eventStore and editViewDelegate (not delegate), and
optionally its event, and present it modally (or, on the iPad, in a popover). The event
can be nil for a completely empty new event; it can be an event you’ve just created (and
possibly partially configured) and not stored in the database, or it can be an existing
event from the database.

The delegate method eventEditViewControllerDefaultCalendarForNewEvents: may be
implemented to specify what calendar a completely new event should be assigned. If

Calendar Interface | 701

you’re partially constructing a new event, you can assign it a calendar then, and of
course an event from the database already has a calendar.

You must implement the delegate method eventEditViewController:didCompleteWith-
Action: so that you can dismiss the modal view. Possible actions are that the user
cancelled, saved the edited event, or deleted an already existing event from the database.

On the iPad, the modal view works, or you can present the EKEventEditViewController
as a popover. By default, its modalInPopover is YES, which means you’ll use eventEdit-
ViewController:didCompleteWithAction: to dismiss the popover.

Both view controllers automatically listen for changes in the database and, if needed,
will automatically call refresh on the event being edited, updating their display to
match. If the event was in the database and has been deleted while the user is viewing
it, the delegate will get the same notification as if the user had deleted it.

702 | Chapter 32: Calendar

CHAPTER 33

Mail

Your app can present interface allowing the user to edit and send a mail message (and,
starting in iOS 4, an SMS message). Two view controller classes are provided by the
Message UI framework; your app will link to MessageUI.framework and import
<MessageUI/MessageUI.h>. The classes are:

MFMailComposeViewController
Allows composition and sending of a mail message.

MFMessageComposeViewController
Allows composition and sending of an SMS message.

Mail Message
The MFMailComposeViewController class, a UINavigationController, allows the user
to edit a mail message. The user can attempt to send the message there and then or can
cancel but save a draft, or can cancel completely. Before using this class to present a
view, call canSendMail; if the result is NO, go no further. A negative result means that
the device is not configured for sending mail. A positive result does not mean that the
device is connected to the network and can send mail right now, only that sending mail
is generally possible with this device.

To use MFMailComposeViewController, instantiate it, provide a mailCompose-
Delegate (not delegate), and configure the message to any desired extent. The user can
alter your preset configurations. Configuration methods are:

• setSubject:

• setToRecipients:

• setCcRecipients:

• setBccRecipients:

• setMessageBody:isHTML:

• addAttachmentData:mimeType:fileName:

703

The delegate method mailComposeController:didFinishWithResult:error: is called
with the user’s final action, which might be any of these:

• MFMailComposeResultCancelled

• MFMailComposeResultSaved

• MFMailComposeResultSent

• MFMailComposeResultFailed

Typically, you’ll present the MFMailComposeViewController modally. Dismissing the
modal view is up to you, in the delegate method. You don’t have to present it modally,
but it’s a sensible interface and works well even on the iPad (use UIModalPresentation-
FormSheet if a full-screen presentation feels too overwhelming).

SMS Message
The MFMessageComposeViewController class, a UINavigationController, is even
simpler. Instantiate the class, give it a messageComposeDelegate, configure it as desired,
and present it modally. Configuration is through the recipients and body properties.

The delegate method messageComposeViewController:didFinishWithResult: is called
with the same possible results as for a mail message. Dismissing the modal view is up
to you, in the delegate method.

704 | Chapter 33: Mail

CHAPTER 34

Maps

Your app can imitate the Maps app, communicating with Google Maps to present a
map interface and placing annotations and overlays on the map. UIView subclasses for
displaying the map, along with the programming API, are provided by the Map Kit
framework. You’ll link to MapKit.framework and import <MapKit/MapKit.h>. You
might also need the Core Location framework to express locations by latitude and
longitude; you’ll link to CoreLocation.framework and import <CoreLocation/Core-
Location.h>.

Presenting a Map
A map is presented through a UIView subclass, an MKMapView. The map is potentially
a map of the entire world; the map view is usually configured to display a particular
area. An MKMapView instance can be created in code or through the nib editor. A map
has a type, which is one of the following:

• MKMapTypeStandard

• MKMapTypeSatellite

• MKMapTypeHybrid

The area displayed on the map is its region, an MKCoordinateRegion. This is a struct
comprising a location (a CLLocationCoordinate2D), describing the latitude and lon-
gitude of the point at the center of the region, along with a span (an MKCoordinate-
Span), describing the quantity of latitude and longitude embraced by the region. Con-
venience functions help you construct an MKCoordinateRegion.

In this example, I’ll initialize the display of an MKMapView to show a place where I
like to go dirt biking. The MKMapView is placed into the interface through the nib
editor and is initially hidden so that the user doesn’t see the default map of the world.
I provide the region by setting the map view’s region property, and show the view
(Figure 34-1):

705

CLLocationCoordinate2D loc = CLLocationCoordinate2DMake(34.923964,-120.219558);
MKCoordinateRegion reg = MKCoordinateRegionMakeWithDistance(loc, 1000, 1000);
self->map.region = reg;
self->map.hidden = NO;

By default, the user can zoom and scroll the map with the usual gestures; you can turn
this off by setting the map view’s zoomEnabled and scrollEnabled to NO. Usually you
will set them both to YES or both to NO. For example, if your aim is to prevent the
user from changing the center coordinate, setting scrollEnabled to NO is insufficient,
because the user can still zoom, and zooming includes double-tapping, which can
change the center coordinate. (Workarounds to allow the user to zoom while keeping
the center coordinate fixed, perhaps by implementing the delegate method mapView:
regionDidChangeAnimated:, can quickly become ugly and difficult to maintain, involv-
ing raising and lowering of boolean flags and so forth.)

You can change the region displayed, optionally with animation, by calling these meth-
ods:

• setRegion:animated:

• setCenterCoordinate:animated:

• setVisibleMapRect:animated:

• setVisibleMapRect:edgePadding:animated:

MKMapRect (used in setVisibleMapRect:animated:) was introduced in iOS 4. Along
with MKMapPoint and MKMapSize, it can simplify calculations by projecting the
world’s surface onto a flat rectangle. I’ll give an example later in this chapter.

Annotations
An annotation is a marker associated with a location on a map. To make an annotation
appear on a map, two objects are needed:

The object attached to the MKMapView
The annotation itself is attached to the MKMapView. It consists of any instance
whose class adopts the MKAnnotation protocol, which specifies a coordinate, a
title, and a subtitle for the annotation. You might have reason to define your own

Figure 34-1. A map view showing a happy place

706 | Chapter 34: Maps

class to handle this task, or you can use the simple built-in MKPointAnnotation
class. The annotation’s coordinate is its most important property; this says where
on earth the annotation should be drawn. The title and subtitle are optional, to be
displayed in a callout.

The object that draws the annotation
An annotation is drawn by an MKAnnotationView, a UIView subclass. This can
be extremely simple. In fact, even a nil MKAnnotationView might be perfectly
satisfactory: it draws a red pin. If red is not your favorite color, a built-in MKAn-
notationView subclass, MKPinAnnotationView, displays a pin in red, green, or
purple; by convention you are supposed to use these colors for different purposes
(destination points, starting points, and user-specified points, respectively). For
more flexibility, you can provide your own UIImage as the MKAnnotationView’s
image property. And for even more flexibility, you can take over the drawing of an
MKAnnotationView by overriding drawRect: in a subclass.

Not only does an annotation require two separate objects, but in fact those objects do
not initially exist together. An annotation object has no pointer to the annotation view
object that will draw it. Rather, it is up to you to supply the annotation view object in
real time, on demand, in the MKMapView’s delegate. This architecture may sound
confusing, but in fact it’s a very clever way of reducing the amount of resources needed
at any given moment. Think of it this way: an annotation itself is merely a lightweight
object that a map can always possess; the corresponding annotation view is a heavy-
weight object that is needed only so long as that annotation’s coordinates are within
the visible portion of the map.

To illustrate the simplest possible case, let’s return to the code where we initially con-
figured our map. Here’s the same code again, but this time I’ll add an annotation:

CLLocationCoordinate2D loc = CLLocationCoordinate2DMake(34.923964,-120.219558);
MKCoordinateRegion reg = MKCoordinateRegionMakeWithDistance(loc, 1000, 1000);
self->map.region = reg;
MKPointAnnotation* ann = [[MKPointAnnotation alloc] init];
ann.coordinate = loc;
ann.title = @"Park here";
ann.subtitle = @"Fun awaits down the road!";
[self->map addAnnotation:ann];
[ann release];
self->map.hidden = NO;

That code is sufficient to produce Figure 34-2. I didn’t implement any MKMapView
delegate methods, so the MKAnnotationView is nil. But a nil MKAnnotationView, as
I’ve already said, produces a red pin. I’ve also tapped the annotation, to display its
callout, containing the annotation’s title and subtitle.

This location, however, is a starting point, so by convention the pin should be green.
We can create such a pin using MKPinAnnotationView, which has a pinColor property.
We supply the annotation view in the map view’s delegate (MKMapViewDelegate), by
implementing mapView:viewForAnnotation:.

Annotations | 707

The structure of mapView:viewForAnnotation: is rather similar to the structure of table-
View:cellForRowAtIndexPath: (Chapter 21), because they both do the same sort of
thing. Recall that the goal of tableView:cellForRowAtIndexPath: is to allow the table
view to reuse cells, so that at any given moment only as many cells are needed as are
visible in the table view, regardless of how many rows the table as a whole may consist
of. The same thing holds for a map and its annotation views. The map may have a huge
number of annotations, but it needs to display annotation views for only those anno-
tations that are within its current region. Any extra annotation views that have been
scrolled out of view can thus be reused and are held for us by the map view in a cache
for exactly this purpose.

So, in mapView:viewForAnnotation:, we start by calling dequeueReusableAnnotationView-
WithIdentifier: to see whether there’s an already existing annotation view that’s not
currently being displayed and that we might be able to reuse. If there isn’t, we create
one, attaching to it an appropriate reuse identifier.

Here’s our implementation of mapView:viewForAnnotation:. We examine the incoming
annotation to see whether the annotation view that draws it might be of a type sus-
ceptible to reuse. How we categorize views for reuse is up to us. In this case, let’s say
that one category is our stock of green pins. We look to see whether this annotation is
one that takes a green pin; in this case, I use the annotation’s title to determine this. If
so, we either create a green pin or reuse one from the map view’s cache. Observe that
in creating our green pin, we must explicitly set its canShowCallout to YES, as this is not
the default:

- (MKAnnotationView *)mapView:(MKMapView *)mapView
 viewForAnnotation:(id <MKAnnotation>)annotation {
 MKAnnotationView* v = nil;
 if ([annotation.title isEqualToString:@"Park here"]) {
 static NSString* ident = @"greenPin";
 v = [mapView dequeueReusableAnnotationViewWithIdentifier:ident];
 if (v == nil) {
 v = [[[MKPinAnnotationView alloc] initWithAnnotation:annotation
 reuseIdentifier:ident]
 autorelease];
 ((MKPinAnnotationView*)v).pinColor = MKPinAnnotationColorGreen;
 v.canShowCallout = YES;
 } else {

Figure 34-2. A simple annotation

708 | Chapter 34: Maps

 v.annotation = annotation;
 }
 }
 return v;
}

The structure of this implementation of mapView:viewForAnnotation: is typical (even
though much of it seems pointlessly elaborate when we have only one annotation in
our map):

We might have more than one reusable type of annotation view. (A view can perhaps
be reconfigured and thus reused, but cannot be magically converted into a view of
a different type.) Here, some of our annotations might be marked with green pins,
and other annotations might be marked by a different sort of annotation view alto-
gether. So we must first somehow distinguish these cases, based on something about
the incoming annotation.

After that, for each reusable type, we proceed much as with table view cells. We
have an identifier that categorizes this sort of reusable view. We try to dequeue an
unused annotation view of the appropriate type, and if we can’t, we create one and
configure it.

Even if we can dequeue an unused annotation view, and even if we have no other
configuration to perform, we must associate the annotation view with the incoming
annotation by assigning the annotation to this view’s annotation property.

Now let’s go further. Instead of a green pin, let’s substitute our own artwork. Here,
instead of creating an MKPinAnnotationView, I create an MKAnnotationView and give
it a custom image. The image is too large, so I shrink the view’s bounds before returning
it; I also move the view up a bit, so that the bottom of the image is at the coordinates
on the map (Figure 34-3):

v = [[[MKAnnotationView alloc] initWithAnnotation:annotation
 reuseIdentifier:ident] autorelease];
v.image = [UIImage imageNamed:@"clipartdirtbike.gif"];
CGRect f = v.bounds;
f.size.height /= 3.0;
f.size.width /= 3.0;
v.bounds = f;
v.centerOffset = CGPointMake(0,-20);
v.canShowCallout = YES;

For more flexibility, we can create our own MKAnnotationView subclass and endow
it with the ability to draw itself. At a minimum, such a subclass should override the
initializer and assign itself a frame, and should implement drawRect:. Here’s the im-
plementation for a class MyAnnotationView that draws a dirt bike:

- (id)initWithAnnotation:(id <MKAnnotation>)annotation
 reuseIdentifier:(NSString *)reuseIdentifier {
 self = [super initWithAnnotation:annotation reuseIdentifier:reuseIdentifier];
 if (self) {
 UIImage* im = [UIImage imageNamed:@"clipartdirtbike.gif"];

Annotations | 709

 self.frame =
 CGRectMake(0, 0, im.size.width / 3.0 + 5, im.size.height / 3.0 + 5);
 self.centerOffset = CGPointMake(0,-20);
 self.opaque = NO;
 }
 return self;
}

- (void) drawRect: (CGRect) rect {
 UIImage* im = [UIImage imageNamed:@"clipartdirtbike.gif"];
 [im drawInRect:CGRectInset(self.bounds, 5, 5)];
}

The corresponding implementation of mapView:viewForAnnotation: now has much less
work to do:

- (MKAnnotationView *)mapView:(MKMapView *)mapView
 viewForAnnotation:(id <MKAnnotation>)annotation {
 MKAnnotationView* v = nil;
 if ([annotation.title isEqualToString:@"Park here"]) {
 static NSString* ident = @"bike";
 v = [mapView dequeueReusableAnnotationViewWithIdentifier:ident];
 if (v == nil) {
 v = [[[MyAnnotationView alloc] initWithAnnotation:annotation
 reuseIdentifier:ident]
 autorelease];
 v.canShowCallout = YES;
 } else {
 v.annotation = annotation;
 }
 }
 return v;
}

For ultimate flexibility, we should provide our own annotation class as well. A minimal
annotation class will look like this:

@interface MyAnnotation : NSObject <MKAnnotation> {
}
@property (nonatomic, readonly) CLLocationCoordinate2D coordinate;
@property (nonatomic, copy) NSString *title, *subtitle;
- (id)initWithLocation:(CLLocationCoordinate2D)coord;
@end

Figure 34-3. A custom annotation image

710 | Chapter 34: Maps

@implementation MyAnnotation
@synthesize coordinate, title, subtitle;
- (id)initWithLocation: (CLLocationCoordinate2D) coord {
 self = [super init];
 if (self) {
 self->coordinate = coord;
 }
 return self;
}
@end

Now when we create our annotation and add it to our map, our code looks like this:

MyAnnotation* ann = [[MyAnnotation alloc] initWithLocation:loc];
ann.title = @"Park here";
ann.subtitle = @"Fun awaits down the road!";
[self->map addAnnotation:ann];
[ann release];

A major advantage of this change appears in our implementation of mapView:viewFor-
Annotation:, where we test for the annotation type. Formerly, it wasn’t easy to distin-
guish those annotations that needed to be drawn as a dirt bike; we were rather artificially
examining the title:

if ([annotation.title isEqualToString:@"Park here"]) {

Now, however, we can just look at the class:

if ([annotation isKindOfClass:[MyAnnotation class]]) {

A further advantage of supplying our own annotation class is that gives our implemen-
tation room to grow. For example, at the moment, every MyAnnotation is drawn as a
bike, but we could now add another property to MyAnnotation that tells us what
drawing to use. We could also give MyAnnotation further properties saying such things
as which way the bike should face, what angle it should be drawn at, and so on. Our
implementation of mapView:viewForAnnotation: would read these properties and pass
them on to MyAnnotationView, which would then draw itself appropriately.

The callout is visible in Figure 34-2 and Figure 34-3 because before taking the screen-
shot I tapped on the annotation, thus selecting it. MKMapView has methods allowing
annotations to be selected or deselected programmatically, thus causing their callouts
to appear or disappear; the delegate has methods notifying you when the user selects
or deselects an annotation.

A callout can contain left and right accessory views; these are the MKAnnotationView’s
leftCalloutAccessoryView and rightCalloutAccessoryView. These are UIViews, and
should be small (less than 32 pixels in height). You can respond to taps on these views
as you would any view or control.

MKMapView has extensive support for adding and removing annotations. Annotation
views don’t change size as the map is zoomed in and out, so if there are several anno-
tations and they are brought close together by the user zooming out, the display can

Annotations | 711

become crowded. The only way to prevent this is to respond to zooming by removing
and adding annotations dynamically.

Overlays
An overlay differs from an annotation in being drawn entirely with respect to points on
the surface of the earth. Thus, although an annotation’s size is always the same, an
overlay’s size is tied to the zoom of the map view. (Overlays were introduced in iOS 4.)

Overlays are implemented much like annotations. You provide an object that adopts
the MKOverlay protocol (which itself conforms to the MKAnnotation protocol) and
add it to the map view. When the map view delegate method mapView:viewFor-
Overlay: is called, you provide an MKOverlayView that actually draws the overlay. As
with annotations, this architecture means that the overlay itself is a lightweight object,
and the overlay view is needed only if the part of the earth that the overlay covers is
actually being displayed in the map view.

Some built-in MKShape subclasses adopt the MKOverlay protocol: MKCircle, MKPo-
lygon, and MKPolyline. MKOverlayView has subclasses MKCircleView, MKPolygon-
View, and MKPolylineView, ready to draw the corresponding shapes. Thus, as with
annotations, you can base your overlay entirely on the power of existing classes.

In this example, I’ll use MKPolygonView to draw an overlay triangle pointing up the
road from the parking place annotated in our earlier examples (Figure 34-4). We add
the MKPolygon as an overlay to our map view, and derive the MKPolygonView from
it in our implementation of mapView:viewForOverlay:. First, the MKPolygon overlay:

CLLocationCoordinate2D loc = self->map.region.center;
CGFloat lat = loc.latitude;
CLLocationDistance metersPerPoint = MKMetersPerMapPointAtLatitude(lat);
MKMapPoint c = MKMapPointForCoordinate(loc);
c.x += 150/metersPerPoint;
c.y -= 50/metersPerPoint;
MKMapPoint p1 = MKMapPointMake(c.x, c.y);
p1.y -= 100/metersPerPoint;
MKMapPoint p2 = MKMapPointMake(c.x, c.y);
p2.x += 100/metersPerPoint;
MKMapPoint p3 = MKMapPointMake(c.x, c.y);
p3.x += 300/metersPerPoint;
p3.y -= 400/metersPerPoint;
MKMapPoint pts[3] = {
 p1, p2, p3
};
MKPolygon* tri = [MKPolygon polygonWithPoints:pts count:3];
[self->map addOverlay:tri];

Second, the delegate method, where we provide the MKPolygonView:

- (MKOverlayView *)mapView:(MKMapView *)mapView
 viewForOverlay:(id <MKOverlay>)overlay {
 MKPolygonView* v = nil;

712 | Chapter 34: Maps

 if ([overlay isKindOfClass:[MKPolygon class]]) {
 v = [[[MKPolygonView alloc] initWithPolygon:(MKPolygon*)overlay]
 autorelease];
 v.fillColor = [[UIColor redColor] colorWithAlphaComponent:0.1];
 v.strokeColor = [[UIColor redColor] colorWithAlphaComponent:0.8];
 v.lineWidth = 2;
 }
 return v;
}

Now let’s go further. The triangle in Figure 34-4 is rather crude; I could draw a better
arrow shape using a CGPath (Chapter 15). The built-in MKOverlayView subclass that
lets me do that is MKOverlayPathView. To structure my use of MKOverlayView sim-
ilarly to the preceding example, I’ll supply the CGPath when I add the overlay instance
to the map view. No built-in class lets me do that, so I’ll use a custom class that im-
plements the MKOverlay protocol.

A minimal overlay class looks like this:

@interface MyOverlay : NSObject <MKOverlay> {
}
@property (nonatomic, readonly) MKMapRect boundingMapRect;
- (id) initWithRect: (MKMapRect) rect;
@end

@implementation MyOverlay
@synthesize boundingMapRect, coordinate;
- (id) initWithRect: (MKMapRect) rect {
 self = [super init];
 if (self) {
 self->boundingMapRect = rect;
 }
 return self;
}
@end

Our actual MyOverlay class will also have a path property, a UIBezierPath, that holds
our CGPath and supplies it to the MKOverlayView.

Just as the coordinate property of an annotation tells the map view where on earth the
annotation is to be drawn, the boundingMapRect property of an overlay tells the map
view where on earth the overlay is to be drawn. Whenever any part of the boundingMap-

Figure 34-4. An overlay view

Overlays | 713

Rect is displayed within the map view’s bounds, the map view will have to concern
itself with drawing the overlay. With MKPolygon, we supplied the points of the polygon
in earth coordinates and the boundingMapRect was calculated for us. With our custom
overlay class, we must supply or calculate it ourselves.

At first it may appear that there is a typological impedance mismatch: the boundingMap-
Rect is an MKMapRect, whereas a CGPath is defined by CGPoints. However, it turns
out that these units are interchangeable: the CGPoints of our CGPath will be translated
for us directly into MKMapPoints on the same scale — that is, the distance between
any two CGPoints will be the distance between the two corresponding MKMapPoints.
However, the origins are different: the CGPath must be described relative to the top
left corner of the boundingMapRect — that is, the boundingMapRect is described in earth
coordinates, but its top left corner is (0,0) as far as the CGPath is concerned. (You
might think of this difference as analogous to the difference between a UIView’s frame
and its bounds.)

To make life simple, I’ll think in meters; actually, I’ll think in chunks of 75 meters,
because this turned out to be a good unit for positioning and laying out the arrow. In
other words, a line one unit long would in fact be 75 meters long if I were to arrive at
this actual spot on the earth and discover the overlay literally drawn on the ground.
Having derived this chunk (unit), I use it to lay out the boundingMapRect, four units on
a side and positioned slightly east and north of the annotation point (because that’s
where the road is). Then I simply construct the arrow shape within the 4×4-unit square,
rotating it so that it points in roughly the same direction as the road:

// start with our position and derive a nice unit for drawing
CLLocationCoordinate2D loc = self->map.region.center;
CGFloat lat = loc.latitude;
CLLocationDistance metersPerPoint = MKMetersPerMapPointAtLatitude(lat);
MKMapPoint c = MKMapPointForCoordinate(loc);
CGFloat unit = 75.0/metersPerPoint;
// size and position the overlay bounds on the earth
CGSize sz = CGSizeMake(4*unit, 4*unit);
MKMapRect mr = MKMapRectMake(c.x + 2*unit, c.y - 4.5*unit, sz.width, sz.height);
// describe the arrow as a CGPath
CGMutablePathRef p = CGPathCreateMutable();
CGPoint start = CGPointMake(0, unit*1.5);
CGPoint p1 = CGPointMake(start.x+2*unit, start.y);
CGPoint p2 = CGPointMake(p1.x, p1.y-unit);
CGPoint p3 = CGPointMake(p2.x+unit*2, p2.y+unit*1.5);
CGPoint p4 = CGPointMake(p2.x, p2.y+unit*3);
CGPoint p5 = CGPointMake(p4.x, p4.y-unit);
CGPoint p6 = CGPointMake(p5.x-2*unit, p5.y);
CGPoint points[] = {
 start, p1, p2, p3, p4, p5, p6
};
// rotate the arrow around its center
CGAffineTransform t1 = CGAffineTransformMakeTranslation(unit*2, unit*2);
CGAffineTransform t2 = CGAffineTransformRotate(t1, -M_PI/3.5);
CGAffineTransform t3 = CGAffineTransformTranslate(t2, -unit*2, -unit*2);
CGPathAddLines(p, &t3, points, 7);

714 | Chapter 34: Maps

CGPathCloseSubpath(p);
// create the overlay and give it the path
MyOverlay* over = [[[MyOverlay alloc] initWithRect:mr] autorelease];
over.path = [UIBezierPath bezierPathWithCGPath:p];
CGPathRelease(p);
// add the overlay to the map
[self->map addOverlay:over];

The delegate method, where we provide the MKOverlayPathView, is simple. We pull
the CGPath out of the MyOverlay instance and hand it to the MKOverlayPathView,
also telling the MKOverlayPathView how to stroke and fill that path:

- (MKOverlayView*)mapView:(MKMapView*)mapView
 viewForOverlay:(id <MKOverlay>)overlay {
 MKOverlayView* v = nil;
 if ([overlay isKindOfClass: [MyOverlay class]]) {
 v = [[[MKOverlayPathView alloc] initWithOverlay:overlay] autorelease];
 MKOverlayPathView* vv = (MKOverlayPathView*)v; // typecast for simplicity
 vv.path = ((MyOverlay*)overlay).path.CGPath;
 vv.strokeColor = [UIColor blackColor];
 vv.fillColor = [[UIColor redColor] colorWithAlphaComponent:0.2];
 vv.lineWidth = 2;
 }
 return v;
}

The result is a much nicer arrow (Figure 34-5), and of course this technique can be
generalized to draw an overlay from any CGPath we like.

For full generality, you could define your own MKOverlayView subclass; your subclass
must override and implement drawMapRect:zoomScale:inContext:. An example appears
in the “Annotating Maps” chapter of Apple’s Location Awareness Programming Guide.

Overlays are maintained by the map view as an array and are drawn from back to front
starting at the beginning of the array. MKMapView has extensive support for adding
and removing overlays, and for managing their layering order.

Figure 34-5. A nicer overlay view

Overlays | 715

CHAPTER 35

Sensors

A device may contain hardware for sensing the world around itself — where it is located,
how it is oriented, how it is moving.

Information about the device’s current location, orientation, and motion using its Wi-
Fi and cellular networking, GPS, and magnetometer is provided through the Core Lo-
cation framework. You’ll link to CoreLocation.framework and import <Core-
Location/CoreLocation.h>.

Information about the device’s change in speed and orientation using its accelerometer
is provided through the UIEvent and UIAccelerometer classes. In iOS 4, this informa-
tion is supplemented by the device’s gyroscope and is accessed through the Core Mo-
tion framework; you’ll link to CoreMotion.framework and import <CoreMotion/Core-
Motion.h>.

Not all devices have all of this hardware. As of this writing, only an an iPad2, an iPhone
4, or a fourth-generation iPod touch has a gyroscope. An iPod touch has no magneto-
meter. A device with only Wi-Fi (no cellular networking) cannot detect cell towers and
also lacks a built-in GPS. And so forth.

Location
Core Location provides facilities for the device to determine and report its location
(location services). Even a device without GPS or cellular capabilities might be able to
do this, by scanning for nearby Wi-Fi devices and comparing these against an online
database. Core Location will automatically use whatever facilities the device does have;
all you have to do is ask for the device’s location.

Asking a map view (MKMapView, Chapter 34) to display the device’s location can be
as simple as setting its showsUserLocation property to YES. The map automatically puts
an annotation at that location, but displaying the appropriate region of the map is up
to you. You can use the map delegate’s mapView:didUpdateUserLocation: to detect when
it’s time to do this:

717

- (void)mapView:(MKMapView *)mapView
 didUpdateUserLocation:(MKUserLocation *)userLocation {
 CLLocationCoordinate2D coordinate = userLocation.location.coordinate;
 MKCoordinateRegion reg =
 MKCoordinateRegionMakeWithDistance(coordinate, 600, 600);
 mapView.region = reg;
}

This approach, however, is extremely coarse-grained. By setting showsUserLocation to
YES, you are turning on location services and leaving them on, which can represent a
significant power drain. You can turn location services off by setting showsUser-
Location to NO, but then the annotation vanishes.

Instead, let’s turn on location services ourselves, just long enough to see if we can
determine our position. If we can, we’ll turn location services back off, and display the
location in our map with an annotation manually. We begin by ascertaining that loca-
tion services are in fact available. If they are, we instantiate CLLocationManager, set
ourselves as the delegate, and call startUpdatingLocation to turn on location services:

BOOL ok = [CLLocationManager locationServicesEnabled];
if (!ok) {
 NSLog(@"oh well");
 return;
}
CLLocationManager* lm = [[CLLocationManager alloc] init];
self.locman = lm;
[lm release];
self.locman.delegate = self;
[self.locman startUpdatingLocation];

(If we were going to track our location continually, we would also set the CLLocation-
Manager’s desiredAccuracy and distanceFilter, but because we just want a single hit,
we are skipping that step.) The delegate will eventually receive one of two messages.
Something might go wrong (including that the user might refuse permission, as in
Figure 30-1), in which case we’ll just turn location services back off:

- (void)locationManager:(CLLocationManager *)manager
 didFailWithError:(NSError *)error {
 NSLog(@"error: %@", [error localizedDescription]);
 [manager stopUpdatingLocation];
}

If things don’t go wrong, we’ll be handed our location as soon as it is determined. We’ll
turn off location services and display our location on the map, along with a simple
annotation:

- (void)locationManager:(CLLocationManager *)manager
 didUpdateToLocation:(CLLocation *)newLocation
 fromLocation:(CLLocation *)oldLocation {
 [manager stopUpdatingLocation];
 CLLocationCoordinate2D coordinate = newLocation.coordinate;
 MKCoordinateRegion reg =
 MKCoordinateRegionMakeWithDistance(coordinate, 600, 600);
 self->map.region = reg;

718 | Chapter 35: Sensors

 MKPointAnnotation* ann = [[MKPointAnnotation alloc] init];
 ann.coordinate = coordinate;
 ann.title = @"You are here";
 [self->map addAnnotation:ann];
 [ann release];
}

Your app can track the device’s location even when the app is not frontmost. As with
sound (Chapter 27), you can set the UIBackgroundModes key of your app’s Info.plist,
giving it a value of location. This tells the system that if you have turned on location
services and the user clicks the Home button, your app should not be suspended, the
use of location services should still continue, and your app should still be notified if an
event arrives. Background use of location services can cause a power drain, but if you
want your app to function as a positional data logger, for instance, it may be the only
way; you can also help conserve power by making judicious choices, such as setting a
coarse distanceFilter value and not asking for high accuracy.

Starting in iOS 4.0, on a device with cellular capabilities, you can call startMonitoring-
SignificantLocationChanges instead of startUpdatingLocation. This technology (sig-
nificant location monitoring) uses cell tower positioning and thus requires much less
power than leaving the GPS turned on continuously.

Also starting in iOS 4.0, you can supply a circular CLRegion and turn on region mon-
itoring (startMonitoringForRegion:desiredAccuracy:). When the device enters or exits
the specified region, you get a notification. This technology (region monitoring) also
uses cell tower positioning, and thus requires little power.

Both significant location monitoring and region monitoring automatically notify your
app even if it is not frontmost; you do not have to set the UIBackgroundModes key. Pre-
cisely what happens depends on the state of your app when an event arrives:

Your app is suspended in the background
Your app is woken up long enough to receive the notification and do something
with it.

Your app is not running at all
Your app is relaunched (remaining in the background), and your app delegate will
be sent application:didFinishLaunchingWithOptions: with an NSDictionary con-
taining UIApplicationLaunchOptionsLocationKey, thus allowing it to discern the
special nature of the situation.

Heading and Course
For appropriately equipped devices, Core Location also supports use of the magneto-
meter to determine which way the device is facing (its heading) and the GPS to deter-
mine which way it is moving (its course).

Heading and Course | 719

In this example, I’ll take advantage of the magnetometer and use the device as a com-
pass. The headingFilter setting is to prevent us from being bombarded constantly with
readings. For best results, the device should be held level (like a tabletop, or a compass);
I have not changed the headingOrientation property, so the reported heading will then
be the direction that the top of the device (the end away from the Home button) is
pointing:

CLLocationManager* lm = [[CLLocationManager alloc] init];
self.locman = lm;
[lm release];
self.locman.delegate = self;
self.locman.headingFilter = 3;
[self.locman startUpdatingHeading];

Readings arrive as messages to the delegate. I’ll simply log our magnetic heading along
with a rough corresponding cardinal direction. I choose to use the magnetic heading
(magneticHeading) rather than the true heading (trueHeading) because, as the docu-
mentation explains, the latter can be calculated correctly only if we are getting location
updates as well as heading updates:

- (void) locationManager:(CLLocationManager *)manager
 didUpdateHeading:(CLHeading *)newHeading {
 CGFloat h = newHeading.magneticHeading;
 NSString* dir = @"N";
 NSArray* cards = [NSArray arrayWithObjects: @"N", @"NE", @"E", @"SE",
 @"S", @"SW", @"W", @"NW", nil];
 for (int i = 0; i < 8; i++)
 if (h < 45.0/2.0 + 45*i) {
 dir = [cards objectAtIndex: i];
 break;
 }
 NSLog(@"%f %@", h, dir);
}

(Combining the magnetometer with the compass interface we developed in Chap-
ter 16 and Chapter 17, so as to simulate a physical compass, is left as an exercise for
the reader.)

GPS-based course information, if available, is returned automatically as part of a CLLo-
cation object in locationManager:didUpdateToLocation:fromLocation:, through its
speed and course properties.

Acceleration
Acceleration information can arrive in three ways:

As a prepackaged UIEvent
You can receive a UIEvent notifying you of a predefined gesture performed by
accelerating the device. At present, the only such gesture is the user shaking the
device.

720 | Chapter 35: Sensors

From the shared UIAccelerometer
You can set yourself as the shared UIAccelerometer’s delegate to receive accelera-
tion notifications in accelerometer:didAccelerate:.

With the Core Motion framework
You instantiate CMMotionManager and then obtain information of a desired type.
You can ask for accelerometer information, gyroscope information, or device mo-
tion information; device motion is a combination of accelerometer and gyroscope
information that accurately describes the device’s orientation in space, and is what
you’re most likely to want.

Shake Events
A shake event is a UIEvent (Chapter 18). Receiving shake events is rather like receiving
remote events (Chapter 27), involving the notion of the first responder. To receive shake
events, your app must contain a UIResponder which:

• Returns YES from canBecomeFirstResponder

• Is in fact first responder

This responder, or a UIResponder further up the responder chain, should implement
some or all of these methods:

motionBegan:withEvent:
Something has started to happen that might or might not turn out to be a shake.

motionEnded:withEvent:
The motion reported in motionBegan:withEvent: is over and has turned out to be
a shake.

motionCancelled:withEvent:
The motion reported in motionBegan:withEvent: wasn’t a shake after all.

Thus, it might be sufficient to implement motionEnded:withEvent:, because this arrives
if and only if the user performs a shake gesture. The first parameter will be the event
subtype, but at present this is guaranteed to be UIEventSubtypeMotionShake, so testing
it is pointless.

The view controller in charge of the current view is a good candidate to receive shake
events. Thus, a minimal implementation might look like this:

- (BOOL) canBecomeFirstResponder {
 return YES;
}

- (void) viewDidAppear: (BOOL) animated {
 [super viewDidAppear: animated];
 [self becomeFirstResponder];
}

Acceleration | 721

- (void)motionEnded:(UIEventSubtype)motion withEvent:(UIEvent *)event {
 NSLog(@"hey, you shook me!");
}

However, if the first responder is of a type that supports undo (such as an NSTextField),
and if motionBegan:withEvent: arrives at the end of the responder chain, and if you have
not set the shared UIApplication’s applicationSupportsShakeToEdit property to NO, a
shake will be handled through an Undo or Redo alert. Your view controller might not
want to rob any responders in its view of this capability. A simple way to prevent this
is to test whether the view controller is, in fact, first responder; if it isn’t, we call
super to pass the event on up the responder chain:

- (void)motionEnded:(UIEventSubtype)motion withEvent:(UIEvent *)event {
 if ([self isFirstResponder])
 NSLog(@"hey, you shook me!");
 else
 [super motionEnded:motion withEvent:event];
}

UIAccelerometer
To use the shared UIAccelerometer, call the class method sharedAccelerometer to get
the global shared instance, set its updateInterval to prevent being swamped by notifi-
cations, and set its delegate. The delegate will immediately start receiving
accelerometer:didAccelerate: calls; to turn these off, set the shared accelerometer’s
delegate to nil.

The second parameter of accelerometer:didAccelerate: is a UIAcceleration, a simple
class — nothing more than a struct, really — consisting of a timestamp and three
acceleration values (UIAccelerationValue, equivalent to a double), one for each axis of
the device. The positive x-axis points to the right of the device. The positive y-axis
points toward the top of the device, away from the Home button. The positive z-axis
points out of the screen toward the user. Acceleration values are measured in Gs. These
values are only approximate — in fact, they are noisy and possibly quantized — so you
have to allow room for this.

Even if the device is completely motionless, its acceleration values will constitute a
vector of approximately 1 pointing toward the center of the earth, popularly known as
gravity. The accelerometer is thus constantly reporting a combination of gravity and
user-induced acceleration. This is good and bad. It’s good because it means you can
use the accelerometer to detect the device’s orientation in space. It’s bad because gravity
values and user-induced acceleration values are mixed together.

You can attempt to separate these values, at the expense of some latency, with a low-
pass filter to detect gravity only, or with a high-pass filter to eliminate the effect of
gravity and detect user acceleration only, reporting a motionless device as having zero
acceleration; often you’ll do both (and a common technique is to run the output of the
high-pass filter through an additional low-pass filter to reduce noise and small

722 | Chapter 35: Sensors

twitches). Apple provides some very nice sample code for implementing a low-pass or
a high-pass filter (see especially the AccelerometerGraph example, which is also very
helpful for learning how the accelerometer behaves); it’s pointless to try to improve on
this, so I won’t bother to reproduce or discuss it.

In this example, I will simply report whether the device is lying flat on its back. To start
with, I won’t bother to use a filter. The two axes orthogonal to gravity, which in this
position are the x and y axes, are much more accurate and sensitive to small variation
than the axis pointing toward or away from gravity. So our approach is to ask first
whether the x and y values are close to zero; only then do we use the z value to learn
whether the device is on its back or on its face. To keep from updating our interface
constantly, we implement a crude state machine; the state (an instance variable) starts
out at -1, and then switches between 0 (device on its back) and 1 (device not on its
back), and we update the interface only when there is a state change:

- (void)accelerometer:(UIAccelerometer *)accelerometer
 didAccelerate:(UIAcceleration *)acceleration {
 CGFloat x = acceleration.x;
 CGFloat y = acceleration.y;
 CGFloat z = acceleration.z;
 CGFloat accu = 0.08;
 if (fabs(x) < accu && fabs(y) < accu && z < -0.5) {
 if (state == -1 || state == 1) {
 state = 0;
 self->label.text = @"I'm lying on my back... ahhh...";
 }
 } else {
 if (state == -1 || state == 0) {
 state = 1;
 self->label.text = @"Hey, put me back down on the table!";
 }
 }
}

This works, but it’s sensitive to small motions of the device on the table. To damp this
sensitivity, we can run our input through a low-pass filter. The low-pass filter code
comes straight from Apple’s own examples, and involves maintaining the previously
filtered reading as a set of instance variables:

-(void)addAcceleration:(UIAcceleration*)accel {
 double alpha = 0.1;
 self->oldX = accel.x * alpha + self->oldX * (1.0 - alpha);
 self->oldY = accel.y * alpha + self->oldY * (1.0 - alpha);
 self->oldZ = accel.z * alpha + self->oldZ * (1.0 - alpha);
}

- (void)accelerometer:(UIAccelerometer *)accelerometer
 didAccelerate:(UIAcceleration *)acceleration {
 [self addAcceleration: acceleration];
 CGFloat x = self->oldX;
 CGFloat y = self->oldY;
 CGFloat z = self->oldZ;

Acceleration | 723

 CGFloat accu = 0.08;
 if (fabs(x) < accu && fabs(y) < accu && z < -0.5) {
 // ... and the rest is as before ...
 }
}

In this next example, the user is allowed to slap the side of the device against an open
hand as a way of telling it to go the next or previous image or whatever it is we’re
displaying. We pass the acceleration input through a high-pass filter to eliminate gravity
(again, the filter code comes straight from Apple’s examples). What we’re looking for
is a high positive or negative x value. A single slap is likely to consist of several consec-
utive readings above our threshold, but we want to report each slap only once, sο we
maintain the timestamp of our previous high reading as an instance variable and ignore
readings that are too close to one another in time:

-(void)addAcceleration:(UIAcceleration*)accel {
 double alpha = 0.1;
 self->oldX = accel.x - ((accel.x * alpha) + (self->oldX * (1.0 - alpha)));
 self->oldY = accel.y - ((accel.y * alpha) + (self->oldY * (1.0 - alpha)));
 self->oldZ = accel.z - ((accel.z * alpha) + (self->oldZ * (1.0 - alpha)));
}

- (void)accelerometer:(UIAccelerometer *)accelerometer
 didAccelerate:(UIAcceleration *)acceleration {
 [self addAcceleration: acceleration];
 CGFloat x = self->oldX;
 // CGFloat y = self->oldY;
 // CGFloat z = self->oldZ;
 CGFloat thresh = 1.0;
 if (acceleration.timestamp - self->oldTime < 0.5)
 return;
 if (x < -thresh) {
 NSLog(@"left");
 self->oldTime = acceleration.timestamp;
 }
 if (x > thresh) {
 NSLog(@"right");
 self->oldTime = acceleration.timestamp;
 }
}

This works, but there’s a problem. A sudden jerk involves both an acceleration (as the
user starts the device moving) and a deceleration (as the device stops moving). Thus a
left slap might be preceded by a high value in the opposite direction, which we will
interpret wrongly as a right slap. We can compensate crudely, at the expense of some
latency, with delayed performance:

CGFloat thresh = 1.0;
if (x < -thresh) {
 if (acceleration.timestamp - self->oldTime > 0.5 || self->lastSlap == 1) {
 self->oldTime = acceleration.timestamp;
 self->lastSlap = -1;
 [NSObject cancelPreviousPerformRequestsWithTarget:self];

724 | Chapter 35: Sensors

 [self performSelector:@selector(report:) withObject:@"left" afterDelay:0.5];
 }
}
if (x > thresh) {
 if (acceleration.timestamp - self->oldTime > 0.5 || self->lastSlap == -1) {
 self->oldTime = acceleration.timestamp;
 self->lastSlap = 1;
 [NSObject cancelPreviousPerformRequestsWithTarget:self];
 [self performSelector:@selector(report:) withObject:@"right" afterDelay:0.5];
 }
}

A more sophisticated analysis might involve storing a stream of all the most recent
UIAcceleration objects and studying the entire stream to work out the overall trend.

Core Motion
Core Motion, introduced in iOS 4.0, takes advantage of the device’s gyroscope if there
is one. This means that instead of using the accelerometer alone and suffering the dis-
advantages and inaccuracies of filtering, you can have the device do the math, inter-
preting the accelerometer and gyroscope together for you and distinguishing gravity
from user acceleration with negligible latency. To do so, you’ll elect to receive CMDe-
viceMotion instances, consisting of the following properties:

gravity
A vector with value 1 pointing to the center of the earth.

userAcceleration
A vector describing user-induced acceleration, with no gravity component.

rotationRate
A vector describing how the device is rotating around its center. This sort of motion
was often difficult or impossible to detect before the addition of the gyroscope.

attitude
A description of the device’s instantaneous orientation in space. It is described with
respect to an initial frame of reference in which the negative z-axis points at the
center of the earth, but the x-axis and y-axis, though orthogonal to the other axes,
could be pointing anywhere. Thus, it is of interest primarily as a change relative to
an earlier attitude. To convert the current attitude to a description of this change,
you store an earlier attitude, and then send the multiplyByInverseOfAttitude:
message to the current attitude, passing the stored attitude as the argument.

Further detail about Core Motion is beyond the scope of this book. The important
thing to understand is that the presence of the gyroscope, combined with the CMDe-
viceMotion class, compensates for a number of shortcomings of reading the acceler-
ometer alone. (The device may use the gyroscope in other ways as well; for example,
if you ask Core Location for updates with a desiredAccuracy of kCLLocationAccuracy-

Acceleration | 725

BestForNavigation, it uses the gyroscope to supplement the calculation of location
changes.)

726 | Chapter 35: Sensors

PART VII

Final Topics

This part of the book is a miscellany of topics that didn’t fit easily into any of the
preceding chapters.

• Chapter 36 is about files. It explains how your app can store data on disk to be
retrieved the next time the app runs (including both standalone files and user de-
faults). It also discusses sharing files with the user through iTunes and with other
apps and concludes with a survey of how iOS can work with some common file
formats (XML, SQLite, and image files).

• Chapter 37 introduces networking, with an emphasis on HTTP downloading of
data, and giving a nod to other aspects of networks (such as Bonjour and push
notifications) that you can explore independently if your app requires them.

• Chapter 38 is about threads. Making your app multithreaded (beyond the auto-
matic threading support provided by the built-in interface widgets and their sup-
porting frameworks) can introduce great complexity and is not a beginner topic,
but you still might need to understand the basic concepts of multithreading, either
in order to prevent a lengthy task from blocking user interaction with your app, or
because some framework explicitly relies on it. Special attention is paid to the
advantages of NSOperation and (especially) Grand Central Dispatch.

• Chapter 39 describes how iOS supports Undo in your app.

• You are now a proud graduate of this book’s school of iOS programming funda-
mentals. You are fully prepared to proceed independently. Chapter 40 lists addi-
tional frameworks and facilities that were found to be beyond the scope of this
book. Your mission, should you decide to accept it, is to explore these if and when
you need them. iOS is huge; you’ll never stop learning and experimenting. Good
hunting!

CHAPTER 36

Persistent Storage

The device on which your app runs contains flash memory that functions as the equiv-
alent of a hard disk, holding files that survive the device’s being powered down (per-
sistent storage). Apps can store files to, and retrieve them from, this virtual hard disk.
Apps can also define document types in which they specialize and can hand such docu-
ments to one another.

The Sandbox
The hard disk as a whole is not open to your app’s view. A limited portion of the hard
disk is dedicated to your app alone: this is your app’s sandbox. The idea is that every
app, seeing only its own sandbox, is hindered from spying or impinging on the files
belonging to other apps. Your app can also see some higher-level directories owned by
the system as a whole, but cannot write to them.

You can create directories (folders) within the sandbox. In addition, the sandbox con-
tains some standard directories. For example, suppose you want a reference to the
Documents directory. Here’s how to access it:

NSString* docs = [NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES) lastObject];

That code returns a path string for the Documents directory. Starting in iOS 4, the
preferred way to refer to a file or directory is with a URL. You obtain this from an
NSFileManager instance:

NSFileManager* fm = [[NSFileManager alloc] init];
// ...
NSError* err = nil;
NSURL* docsurl = [fm URLForDirectory:NSDocumentDirectory
 inDomain:NSUserDomainMask appropriateForURL:nil create:YES error:&err];
// error-checking omitted
// ...
[fm release];

729

A question that will immediately occur to you is: where should I put secondary files
and folders that I want to save now and read later? Once upon a time, the Documents
directory would have been a good place. But in iOS 3.2, file sharing was introduced,
meaning that your app can be configured so that the user can see and modify your app’s
Documents directory through iTunes. So you might not want to put things there that
the user isn’t supposed to see and change.

Settling upon an alternative location for your app’s files is up to you. Personally, I favor
the Application Support directory. On a Mac, this directory is shared by multiple ap-
plications, but on iOS each app has its own private Application Support directory in
its own sandbox, so you can safely put files directly into it. This directory may not exist
initially, so you can obtain it and create it at the same time:

NSURL* suppurl = [fm URLForDirectory:NSApplicationSupportDirectory
 inDomain:NSUserDomainMask appropriateForURL:nil create:YES error:&err];

After that, if you need a file path reference (an NSString), just ask for [suppurl path].

Basic File Operations
Let’s say we intend to create folder MyFolder inside the Documents directory. Starting
with the path string docs pointing at the Documents directory (as obtained in the pre-
vious section), we can generate a reference to MyFolder, using one of the many NSString
methods specifically aimed at manipulating path strings. (There is no way to create a
folder specified by a URL.) We can then use an NSFileManager instance (fm) to learn
whether our target folder exists, and to create it if it doesn’t:

NSString* myfolder = [docs stringByAppendingPathComponent:@"MyFolder"];
BOOL exists = [fm fileExistsAtPath:myfolder];
if (!exists) {
 NSError* err = nil;
 [fm createDirectoryAtPath:myfolder withIntermediateDirectories:NO
 attributes:nil error:&err];
 // error-checking omitted
}

To learn what files and folders exist within a directory, you can ask for an array of the
directory’s contents:

NSError* err = nil;
NSArray* arr = [fm contentsOfDirectoryAtPath:docs error:&err];
// error-checking omitted
/*
MyFolder
*/

That array is shallow, showing only the directory’s immediate contents. For a deep
array, ask for the directory’s subpaths:

NSError* err = nil;
NSArray* arr = [fm subpathsOfDirectoryAtPath:docs error:&err];
// error-checking omitted

730 | Chapter 36: Persistent Storage

/*
MyFolder
MyFolder/moi.txt
*/

A deep array might be very big. If you’re looking for something in particular, you might
prefer to enumerate the directory, so that you are handed only one file reference at a
time:

NSDirectoryEnumerator* dir = [fm enumeratorAtPath:docs];
for (NSString* file in dir) {
 // do something with each string
}

A directory enumerator also permits you to decline to dive into a particular subdirec-
tory, so you can make your traversal even more efficient.

Note that in all those cases you are handed a relative pathname. To make it usable as
an actual file reference, you can either append it to the original directory pathname or
make the original directory the current directory:

NSDirectoryEnumerator* dir = [fm enumeratorAtPath:docs];
[fm changeCurrentDirectoryPath: docs];
for (NSString* f in dir)
 if ([[f pathExtension] isEqualToString: @"txt"])
 // f is valid for referring to this file

In that example, f is a valid pathname even though it’s a relative (partial) pathname,
because its containing folder is the current directory. Similarly, if you convert f to a
URL (using fileURLWithPath:), the resulting NSURL object has an appropriate base-
URL and so is a valid reference.

Consult the NSFileManager class documentation for more about what you can do with
files, and see also Apple’s Low-Level File Management Programming Topics.

Saving and Reading Files
To save or read a file, you are most likely to use one of the convenience methods for
the class appropriate to the file’s contents. NSString, NSData, NSArray, and NSDic-
tionary provide writeToFile... and initWithContentsOfFile... methods (as well as
writeToURL... and initWithContentsOfURL...). Recall that NSArray and NSDictionary
files are actually property lists (Chapter 10) and work only if all the contents of the
array or dictionary are property list types (NSString, NSData, NSDate, NSNumber,
NSArray, and NSDictionary).

If an object’s class adopts the NSCoding protocol, you can convert it to an NSData and
back again using NSKeyedArchiver and NSKeyedUnarchiver. An NSData can be saved
as a file or in a property list. Thus, NSCoding provides a way to save an object to disk.
An example of doing this with a UIColor object appears in Chapter 10.

Saving and Reading Files | 731

You can make your own class adopt the NSCoding protocol. This can become some-
what complicated because an object can refer (through an instance variable) to another
object, which may also adopt the NSCoding protocol, and thus you can end up saving
an entire graph of interconnected objects if you wish. However, I’ll confine myself to
illustrating a simple case (and you can read the Archives and Serializations Programming
Guide for more information).

Let’s say, then, that we have a simple Person class with a firstName property and a last-
Name property. We’ll declare that it adopts the NSCoding protocol:

@interface Person : NSObject <NSCoding> {

To make this class actually conform to NSCoding, we must implement encodeWith-
Coder: (to archive the object) and initWithCoder: (to unarchive the object). In encode-
WithCoder:, we must first call super if the superclass adopts NSCoding, and then call
the appropriate encode... method for each instance variable we want preserved:

- (void)encodeWithCoder:(NSCoder *)encoder {
 //[super encodeWithCoder: encoder]; // not in this case
 [encoder encodeObject:self->lastName forKey:@"last"];
 [encoder encodeObject:self->firstName forKey:@"first"];
}

In initWithCoder, we must call super, using either initWithCoder: if the superclass
adopts the NSCoding protocol or the designated initializer if not, and then call the
appropriate decode... method for each instance variable stored earlier, finally returning
self; memory management is up to us:

- (id) initWithCoder:(NSCoder *)decoder {
 //self = [super initWithCoder: decoder]; // not in this case
 self = [super init];
 self->lastName = [decoder decodeObjectForKey:@"last"];
 [self->lastName retain];
 self->firstName = [decoder decodeObjectForKey:@"first"];
 [self->firstName retain];
 return self;
}

Now we’ll test this by creating, configuring, and saving a Person instance as a file:

Person* moi = [[Person alloc] init];
moi.firstName = @"Matt";
moi.lastName = @"Neuburg";
NSData* moidata = [NSKeyedArchiver archivedDataWithRootObject:moi];
NSString* moifile = [myfolder stringByAppendingPathComponent:@"moi.txt"];
[moidata writeToFile:moifile atomically:NO];
[moi release];

Now we should be able to retrieve the saved Person at a later time:

NSData* persondata = [[NSData alloc] initWithContentsOfFile:moifile];
Person* person = [NSKeyedUnarchiver unarchiveObjectWithData:persondata];
[persondata release];
NSLog(@"%@ %@", person.firstName, person.lastName); // Matt Neuburg

732 | Chapter 36: Persistent Storage

If the NSData object is itself the entire content of the file, as here, then instead of using
archivedDataWithRootObject: and unarchiveObjectWithData:, you can skip the inter-
mediate NSData object altogether and use archiveRootObject:toFile: and unarchive-
ObjectWithFile:.

Saving a single Person as an archive may seem like overkill; why didn’t we just make a
text file consisting of the first and last names? But imagine that a Person has a lot more
properties, or that we have an array of hundreds of Persons, or an array of hundreds of
dictionaries where one value in each dictionary is a Person; now all of a sudden the
power of an archivable Person becomes clear. Even though Person now adopts the
NSCoding protocol, an NSArray containing a Person object still cannot be written to
disk using NSArray’s writeToFile... or writeToURL..., because Person is still not a
property list type. But the array can be archived and written to disk with
NSKeyedArchiver.

User Defaults
User defaults, which have been referred to often already in this book (see especially
Chapter 10 and Chapter 13), are intended as the persistent storage of the user’s pref-
erences, as well as for maintaining state when your app quits so that you can restore
the situation the next time the app launches. They are little more, really, than a special
case of an NSDictionary property list file. You talk to the NSUserDefaults standardUser-
Defaults object much as if it were a dictionary; it has keys and values. And the only
legal values are property list values (see the preceding section). Thus, to store a Person
in user defaults, you’d have to archive it first to an NSData object. Unlike NSDictionary,
NSUserDefaults provides convenience methods for converting between a simple data
type such as a float or a BOOL and the object that is stored in the defaults (setFloat:
forKey:, floatForKey:, and so forth). But the defaults themselves are still a dictionary.

Meanwhile, somewhere on disk, this dictionary is being saved for you automatically as
a property list file — though you don’t concern yourself with that. You simply set or
retrieve values from the dictionary by way of their keys, secure in the knowledge that
the file is being read into memory or written to disk as needed. Your chief concern is
to make sure that you’ve written everything needful into user defaults before your app
terminates; as we saw in Chapter 11, in a multitasking world this will usually mean
when the app delegate receives applicationDidEnterBackground: at the latest. If you’re
worried that your app might crash, you can tell the standardUserDefaults object to
synchronize, but this is rarely necessary.

To provide the value for a key before the user has had a chance to do so — the default
default, as it were — use registerDefaults:. What you’re supplying here is a dictionary
whose key–value pairs will each be written into the defaults, but only if there is no such
key already. Recall this example from Chapter 10:

[[NSUserDefaults standardUserDefaults] registerDefaults:
 [NSDictionary dictionaryWithObjectsAndKeys:

User Defaults | 733

 [NSNumber numberWithInt: 4],
 @"cardMatrixRows",
 [NSNumber numberWithInt: 3],
 @"cardMatrixColumns",
 nil]];

The idea is that we call registerDefaults: extremely early as the app launches. Either
the app has run at some time previously and the user has set these preferences, in which
case this call has no effect and does no harm, or not, in which case we now have initial
values for these preferences with which to get started. So, in the game app from which
that code comes, we start out with a 4×3 game layout, but the user can change this at
any time.

This leaves only the question of how the user is to interact with the defaults. One way
is that your app provides some kind of interface. For example, the game app from which
the previous code comes has a tabbed interface; the second tab is where the user sets
preferences (Figure 20-1). In the TidBITS News app, there’s a single button for setting
the size of text, and that’s the only preference with which the user ever interacts directly.

(Both apps also store state information in the user defaults, but without the user’s
knowledge or direct participation, and not with keys that the user has any way of ac-
cessing. For example, the game app records the state of the game board and the card
deck into user defaults every time these change, so that if the app is terminated we can
restore the game, the next time the app is launched, as it was when the user left off.)

Alternatively, you can provide a settings bundle, consisting mostly of one or more prop-
erty list files describing an interface and the corresponding user default keys and their
initial values; the Settings app is then responsible for translating your instructions into
an actual interface, and for presenting it to the user.

Using a settings bundle has some obvious disadvantages: the user may not think to
look in the Settings app, for example; the user has to leave your app to access prefer-
ences; and you don’t get the kind of control over the interface that you have within
your own app. Also, in a multitasking world, this means that the user can set preferences
while your app is backgrounded; you’ll need to register for NSUserDefaultsDidChange-
Notification in order to hear about this.

In some situations, though, a settings bundle has some clear advantages. Keeping the
preferences interface out of your app can make your app’s own interface cleaner and
simpler. You don’t have to write any of the “glue” code that coordinates the preferences
interface with the user default values. And it can be nice for the user to be able to set
preferences for your app even when your app isn’t running.

Writing a settings bundle is described in the “Implementing Application Preferences”
chapter of Apple’s iOS Application Programming Guide, along with the Settings Appli-
cation Schema Reference.

734 | Chapter 36: Persistent Storage

File Sharing
If your app supports file sharing, its Documents directory becomes available to the user
through iTunes (Figure 36-1). The user can add files to your app’s Documents directory,
and can save files and folders from your app’s Documents directory to the computer,
as well as renaming and deleting files and folders. This could be appropriate, for ex-
ample, if the purpose of your app is to display some common file type that the user
might obtain elsewhere, such as PDFs or JPEGs.

To support file sharing, set the Info.plist key “Application supports iTunes file sharing”
(UIFileSharingEnabled).

Once your entire Documents directory is exposed to the user this way, you are suddenly
not so likely to use the Documents directory to store private files. As I mentioned earlier,
I like to use the Application Support directory instead.

Document Types
Your app can declare itself willing to open documents of a certain type. In this way, if
another app obtains a document of this type, it can propose to hand the document off
to your app. For example, the user might download the document with Mobile Safari,
or receive it in a mail message with the Mail app; now we need a way to get it from
Safari or Mail to you.

To let the system know that your app is a candidate for opening a certain kind of
document, you will configure the CFBundleDocumentTypes key in your Info.plist. This is
an array, where each entry will be a dictionary specifying a document type by using
keys such as LSItemContentTypes, CFBundleTypeName, CFBundleTypeIconFiles, and
LSHandlerRank.

For example, suppose I want to declare that my app opens PDFs. My Info.plist could
contain this simple entry (as seen in the standard editor):

Document types (1 item)
 Item 0 (1 item)
 Document Content Type UTIs (1 item)
 Item 0 com.adobe.pdf

Figure 36-1. The iTunes file sharing interface

Document Types | 735

In Xcode 4, you can also specify document types by editing the target; switch to the
Info tab. This same Info.plist entry would appear here as an untitled document type
with com.adobe.pdf in the Types field.

Now suppose the user receives a PDF in an email message. The Mail app can display
this PDF, but the user can also tap the Action button to bring up an action sheet con-
taining two Open In buttons. The first button might actually specify my app as the
default, but even if it doesn’t, tapping the second button will bring up a second action
sheet where my app appears as a button. (The interface will look like Figure 36-2, except
that my app will be listed as one of the buttons.)

But now suppose the user actually taps the button that hands the PDF off to my app.
For this to work, my app delegate must implement application:handleOpenURL:. At
this point, my app has been brought to the front, either by launching it from scratch
or by reviving it from background suspension; its job is now to handle the opening of
the document whose URL has arrived as the second parameter. To prevent me from
peeking into another app’s sandbox, the system has already copied the document into
my sandbox, into the Inbox directory, which is created for exactly this purpose.

Unfortunately, the Inbox directory is currently created in your Docu-
ments folder. Thus, if your app implements file sharing, the user can see
the Inbox folder; you may wish to delete the Inbox folder, therefore, as
soon as you’re done retrieving files from it.

In this simple example, my app has just one view controller, which has an outlet to a
UIWebView where we will display any PDFs that arrive in this fashion. So my app
delegate contains this code:

- (BOOL)application:(UIApplication *)application handleOpenURL:(NSURL *)url {
 [viewController displayPDF:url];
 return YES;
}

And my view controller contains this code:

- (void) displayPDF: (NSURL*) url {
 NSURLRequest* req = [NSURLRequest requestWithURL:url];
 [self->wv loadRequest:req];
}

In real life, things might be more complicated. Our implementation of application:
handleOpenURL: might check to see whether this really is a PDF, and return NO if it
isn’t. Also, our app might be in the middle of something else, possibly displaying a
completely different view controller’s view; because application:handleOpenURL: can
arrive at any time, we may have to be prepared to drop whatever we were doing and
showing previously and display the incoming document instead.

If our app is launched from scratch by the arrival of this URL, application:didFinish-
LaunchingWithOptions: will be sent to our app delegate as usual. The options dictionary

736 | Chapter 36: Persistent Storage

(the second parameter) will contain the UIApplicationLaunchOptionsURLKey, and we can
take into account, if we like, the fact that we are being launched specifically to open a
document. The usual thing, however, is to ignore this key and launch in the normal
way; application:handleOpenURL: will then arrive in good order after our interface has
been set up, and we can handle it just as we would if we had already been running.

Starting in iOS 4.2, your app delegate can implement application:openURL:source-
Application:annotation: in order to receive more information about the incoming
URL. If implemented, this will be called in preference to application:handleOpen-
URL:, and it won’t be called at all on a device running an earlier system, so there is no
penalty for implementing both methods.

Handing Off a Document
The converse of the situation discussed in the previous section is this: your app has
somehow acquired a document that it wants to hand off to whatever app can deal with
it. This is done through the UIDocumentInteractionController class. This class oper-
ates asynchronously, so retaining an instance of it is up to you; typically, you’ll store it
in an instance variable with a retain setter policy.

For example, let’s say our app has a PDF sitting in its Documents directory. Assuming
we have an NSURL pointing to this document, presenting the interface for handing the
document off to some other application (Figure 36-2) could be as simple as this
(sender is a button that the user has just tapped):

self.dic = [UIDocumentInteractionController interactionControllerWithURL:url];
BOOL y =
 [dic presentOptionsMenuFromRect:[sender bounds] inView:sender animated:YES];

There are actually two action sheets available. The first action sheet in Figure 36-2, the
Options action sheet, is summoned by presentOptionsMenu...; the second action sheet
in Figure 36-2, the Open In action sheet, is summoned by presentOpenInMenu..., but
it can also be summoned by one of the buttons in the first action sheet. These methods
are cleverly designed to work on both iPhone and iPad interfaces; on the iPad, the
buttons appear in a popover.

Figure 36-2. The document Options action sheet and Open In action sheet

Handing Off a Document | 737

Your app can’t learn which other applications are capable of accepting the document!
Indeed, it can’t even learn in advance whether any other applications are capable of
accepting the document; your only clue is that the returned BOOL value afterward will
be NO if UIDocumentInteractionController couldn’t present the interface you reques-
ted.

UIDocumentInteractionController can, however, be interrogated for some information
about the document type. In this example, we place a button into our interface whose
image is the icon of the document type (the idea, perhaps, is that the user would then
tap this button to do something with the document):

self.dic = [UIDocumentInteractionController interactionControllerWithURL:url];
UIImage* icon = [[self.dic icons] lastObject];
UIButton* b = [UIButton buttonWithType:UIButtonTypeRoundedRect];
[b setImage:icon forState:UIControlStateNormal];
[b sizeToFit]; // ... and probably also set frame origin here ...
[self.view addSubview: b];

A UIDocumentInteractionController can also present a preview of the document, if the
document is of a type for which preview is enabled. You must give the UIDocumen-
tInteractionController a delegate, and the delegate must implement document-
InteractionControllerViewControllerForPreview:, returning an existing view control-
ler that will contain the preview’s view controller. So, here we ask for the preview:

self.dic = [UIDocumentInteractionController interactionControllerWithURL:url];
self.dic.delegate = self;
[self.dic presentPreviewAnimated:YES];

Here we supply the view controller:

- (UIViewController *) documentInteractionControllerViewControllerForPreview:
 (UIDocumentInteractionController *) controller {
 return self;
}

If the view controller returned were a UINavigationController, the preview’s view con-
troller would be pushed onto it. In this case it isn’t, so the preview’s view controller is
presented modally. The preview interface also contains an Action button that lets the
user summon the Options action sheet. In fact, this preview interface is exactly the
same interface already familiar from the Mail app.

Delegate methods allow you to track what’s happening in the interface presented by
the UIDocumentInteractionController. Probably the most important of these are the
ones that inform you that key stages of the interaction are ending:

• documentInteractionControllerDidDismissOptionsMenu:

• documentInteractionControllerDidDismissOpenInMenu:

• documentInteractionControllerDidEndPreview:

• documentInteractionController:didEndSendingToApplication:

738 | Chapter 36: Persistent Storage

Previews are actually provided through the Quick Look framework, and you can skip
the UIDocumentInteractionController altogether and present the preview yourself
through a QLPreviewController (link to QuickLook.framework and import <Quick-
Look/QuickLook.h>). It’s a view controller, so to display the preview you show it modally
or push it onto a navigation controller’s stack (just as UIDocumentInteractionCon-
troller would have done). A nice feature of QLPreviewController is that you can give
it more than one document to preview; the user can move between these, within the
preview, using arrow buttons that appear at the bottom of the interface. Plus, if a
document can be opened in another app, the interface includes the action button that
summons UIDocumentInteractionController’s Options or Open In action sheet.

In this example, I have in my Documents directory several PDF documents. I acquire
a list of their URLs and present a modal preview for them:

// obtain URLs of PDFs as an array
NSString* docsdir = [NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES) lastObject];
NSFileManager* fm = [[NSFileManager alloc] init];
NSDirectoryEnumerator* direnum = [fm enumeratorAtPath:docsdir];
[fm changeCurrentDirectoryPath: docsdir];
NSMutableArray* marr = [NSMutableArray array];
for (NSString* file in direnum) {
 [direnum skipDescendants];
 if ([[file pathExtension] isEqualToString: @"pdf"]) {
 NSURL* url = [NSURL fileURLWithPathComponents:
 [NSArray arrayWithObjects: docsdir, file, nil]];
 [marr addObject: url];
 }
}
self.pdfs = marr; // retain policy
[fm release];
// show preview interface
QLPreviewController* preview = [[QLPreviewController alloc] init];
preview.dataSource = self;
[self presentModalViewController:preview animated:YES];
[preview release];

You’ll notice that I haven’t told the QLPreviewController what documents to preview.
That is the job of QLPreviewController’s data source. I am the data source! I simply
fetch the requested information from the list of URLs:

- (NSInteger) numberOfPreviewItemsInPreviewController:
 (QLPreviewController *) controller {
 return [self.pdfs count];
}

- (id <QLPreviewItem>) previewController: (QLPreviewController *) controller
 previewItemAtIndex: (NSInteger) index {
 return [self.pdfs objectAtIndex:index];
}

Handing Off a Document | 739

The second data source method requires me to return an object that adopts the QLPre-
viewItem protocol. By a wildly improbable coincidence, NSURL does adopt this pro-
tocol, so the example works.

XML
XML is a highly flexible and widely used general-purpose text file format for storage
and retrieval of structured data. You might use it yourself to store data that you’ll need
to retrieve later, or you could encounter it when obtaining information from elsewhere,
such as the Internet.

Mac OS X Cocoa provides a set of classes (NSXMLDocument and so forth) for reading,
parsing, maintaining, searching, and modifying XML data in a completely general way,
but iOS does not include these. I think the reason must be that their tree-based approach
is too memory-intensive. Instead, iOS provides NSXMLParser, a much simpler class
that walks through an XML document, sending delegate messages as it encounters
elements. With this, you can parse an XML document once, but what you do with the
pieces as they arrive is up to you. The general assumption here is that you know in
advance the structure of the particular XML data you intend to read and that you have
provided classes for storage of the same data in object form and for transforming the
XML pieces into that storage.

To illustrate, let’s return to our earlier example of a Person class with a firstName and
a lastName property. Imagine that as our app starts up, we would like to populate it
with Person objects, and that we’ve stored the data describing these objects as an XML
file in our app bundle, like this:

<?xml version="1.0" encoding="utf-8"?>
<people>
 <person>
 <firstName>Matt</firstName>
 <lastName>Neuburg</lastName>
 </person>
 <person>
 <firstName>Snidely</firstName>
 <lastName>Whiplash</lastName>
 </person>
 <person>
 <firstName>Dudley</firstName>
 <lastName>Doright</lastName>
 </person>
</people>

This data could be mapped to an array of Person objects, each with its firstName and
lastName properties appropriately set. (This is a deliberately easy example, of course;
not all XML is so easily or obviously expressed as objects.) Let’s consider how we might
do that.

740 | Chapter 36: Persistent Storage

Using NSXMLParser is not difficult in theory. You create the NSXMLParser, handing
it the URL of a local XML file (or an NSData, perhaps downloaded from the Internet),
set its delegate, and tell it to parse. The delegate starts receiving delegate messages. For
simple XML like ours, there are only three delegate messages of interest:

parser:didStartElement:namespaceURI:qualifiedName:attributes:
The parser has encountered an opening element tag. In our document, this would
be <people>, <person>, <firstName>, or <lastName>.

parser:didEndElement:namespaceURI:qualifiedName:
The parser has encountered the corresponding closing element tag. In our docu-
ment this would be </people>, </person>, </firstName>, or </lastName>.

parser:foundCharacters:
The parser has encountered some text between the starting and closing tags for the
current element. In our document this would be, for example, "Matt" or
"Neuburg" and so on.

In practice, responding to these delegate messages poses challenges of maintaining
state. If there is just one delegate, it will have to bear in mind at every moment what
element it is currently encountering; this could make for a lot of instance variables and
a lot of if-statements in the implementation of the delegate methods. To aggravate the
issue, parser:foundCharacters: can arrive multiple times for a single stretch of text;
that is, the text may arrive in pieces, so we have to accumulate it into an instance
variable, which is yet another case of maintaining state.

An elegant way to meet these challenges is by resetting the NSXMLParser’s delegate to
different objects at different stages of the parsing process. We make each delegate re-
sponsible for parsing one element; when a child of that element is encountered, we
make a new object and make it the delegate. The child element delegate is then re-
sponsible for making us, the parent, the delegate once again when it finishes parsing
its own element. This is slightly counterintuitive because it means parser:didStart-
Element... and parser:didEndElement... for the same element are arriving at two dif-
ferent objects. Imagine, for example, what the job of our <people> parser will be:

• When parser:didStartElement... arrives, the <people> parser looks to see if this
is a <person>. If so, it creates an object that knows how to deal with a <person>,
handing that object a reference to itself (the <people> parser), and makes it the
delegate.

• Delegate messages now arrive at this newly created <person> parser. If any text is
encountered, parser:foundCharacters: will be called, and the text must be accu-
mulated into an instance variable.

• Eventually, parser:didEndElement... arrives. The <person> parser now uses its ref-
erence to make the <people> parser the delegate once again. Thus, the <people>
parser is in charge once again, ready if another <person> element is encountered
(and the old <person> parser might now go quietly out of existence).

XML | 741

With this in mind, we can design a simple all-purpose base class for parsing an element
(simple especially because we are taking no account of namespaces, attributes, and
other complications):

@interface MyXMLParserDelegate : NSObject <NSXMLParserDelegate> {
}
@property (nonatomic, copy) NSString* name;
@property (nonatomic, retain) NSMutableString* text;
@property (nonatomic, assign) MyXMLParserDelegate* parent;
@property (nonatomic, retain) MyXMLParserDelegate* child;
- (void) start: (NSString*) elementName parent: (id) parent;
- (void) makeChild: (Class) class
 elementName: (NSString*) elementName
 parser: (NSXMLParser*) parser;
- (void) finishedChild: (NSString*) s;

@end

Here’s how these properties and methods are intended to work:

name
The name of the element we are parsing now.

text
A place for any characters to accumulate as we parse our element.

parent
The MyXMLParserDelegate who created us and whose child we are.

child
If we encounter a child element, we’ll create a MyXMLParserDelegate and retain
it here, making it the delegate.

start:parent:
When we create a child parser, we’ll call this method on the child so that it knows
who its parent is. The first parameter is the name of the element the child will be
parsing; we know this because we, not the child, received parser:didStart-
Element.... (In a fuller implementation, this method would be more elaborate and
we’d hand the child all the information we got with parser:didStartElement....)

makeChild:elementName:parser:
If we encounter a child element, there’s a standard dance to do: instantiate some
subclass of MyXMLParserDelegate, make it our child, make it the parser’s dele-
gate, and send it start:parent:. This is a utility method that embodies that dance.

finishedChild:
When a child receives parser:didEndElement..., it sends this message to its parent
before making its parent the delegate. The parameter is the text, but the parent
can use this signal to obtain any information it expects from the child before the
child goes out of existence.

Now we can sketch in the default implementation for MyXMLParserDelegate:

742 | Chapter 36: Persistent Storage

- (void) start: (NSString*) el parent: (id) p {
 self.name = el;
 self.parent = p;
 self.text = [NSMutableString string];
}

- (void) makeChild: (Class) class
 elementName: (NSString*) elementName
 parser: (NSXMLParser*) parser {
 MyXMLParserDelegate* del = [[class alloc] init];
 self.child = del;
 parser.delegate = del;
 [del start: elementName parent: self];
 [del release];
}

- (void) finishedChild: (NSString*) s { // subclass implements as desired
}

- (void)parser:(NSXMLParser *)parser foundCharacters:(NSString *)string {
 [self.text appendString:string];
}

- (void)parser:(NSXMLParser *)parser didEndElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI qualifiedName:(NSString *)qName {
 if (parent) {
 [parent finishedChild: [[self.text copy] autorelease]];
 parser.delegate = self.parent;
 }
}

- (void) dealloc {
 [text release];
 [child release];
 [name release];
 [super dealloc];
}

We can now create subclasses of MyXMLParserDelegate: one for each kind of element
we expect to parse. The chief responsibility of such a subclass, if it encounters a child
element in parser:didStartElement..., is to create an instance of the appropriate
MyXMLParserDelegate subclass, send it start:parent:, and make it the delegate; we
have already embodied this in the utility method makeChild:elementName:parser:. The
reverse process is already built into the default implementation of parser:didEnd-
Element...: we call the parent’s finishedChild: and make the parent the delegate.

We can now parse our sample XML into an array of Person objects very easily. We start
by obtaining the URL of the XML file, handing it to an NSXMLParser, creating our first
delegate parser and making it the delegate, and telling the NSXMLParser to start:

NSURL* url = [[NSBundle mainBundle] URLForResource:@"folks" withExtension:@"xml"];
NSXMLParser* parser = [[NSXMLParser alloc] initWithContentsOfURL:url];
MyPeopleParser* people = [[MyPeopleParser alloc] init];
[parser setDelegate: people];

XML | 743

[parser parse];
// ... do something with people.people ...
[people release];
[parser release];

Here is MyPeopleParser. It is the top-level parser so it has some extra work to do: when
it encounters the <people> element, which is the first thing that should happen, it creates
the people array that will hold the Person objects; this array will be the final result of
the entire parsing operation. If it encounters a <person> element, it does the standard
dance I described earlier, creating a <person> parser (MyPersonParser) as its child and
making it the delegate; when the <person> parser calls back to tell us it’s finished, My-
PeopleParser expects the <person> parser to supply a Person through its person prop-
erty:

- (void)parser:(NSXMLParser *)parser didStartElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qualifiedName
 attributes:(NSDictionary *)attributeDict
{
 if ([elementName isEqualToString: @"people"])
 self.people = [NSMutableArray array];
 if ([elementName isEqualToString: @"person"])
 [self makeChild:[MyPersonParser class] elementName:elementName
 parser:parser];
}

- (void) finishedChild: (NSString*) s {
 [people addObject: [self.child person]];
}

MyPersonParser does the same child-making dance when it encounters a <firstName>
or a <lastName> element; it uses a plain vanilla MyXMLParserDelegate to parse these
children, because the built-in ability to accumulate text and hand it back is all that’s
needed. In finishedChild:, it makes sure it has a Person object ready to hand back to
its parent through its person property; key–value coding is elegantly used to match the
name of the element with the name of the Person property to be set:

- (void)parser:(NSXMLParser *)parser didStartElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qualifiedName
 attributes:(NSDictionary *)attributeDict {
 [self makeChild:[MyXMLParserDelegate class] elementName:elementName
 parser:parser];
}

- (void) finishedChild:(NSString *)s {
 if (!self.person) {
 Person* p = [[Person alloc] init];
 self.person = p; // retain policy
 [p release];
 }
 [self.person setValue: s forKey: self.child.name];
}

744 | Chapter 36: Persistent Storage

- (void) dealloc {
 [person release];
 [super dealloc];
}

This may seem like a lot of work to parse such a simple bit of XML, but it is neatly
object-oriented and requires very little new code once we’ve established the MyXML-
ParserDelegate superclass, which is of course reusable in many other situations.

On the other hand, if you really want tree-based XML parsing along with XPath and
so forth, you can have it, because the libxml2 library is present in the SDK (and on the
device). This is a C dylib (short for “dynamic library,” extension .dylib), and Xcode
doesn’t automatically know during the build process where to find its headers (even
though it’s part of the SDK), so the instructions for accessing it in your project are a
tiny bit more involved than linking to an Objective-C framework:

1. In Xcode, add libxml2.dylib to the Link Binary With Libraries build phase for your
target, just as you would do with a framework.

2. Now comes the extra step that differs from using a framework; it is needed because,
although the Xcode build process automatically looks inside iphoneos/usr/in-
clude/ for headers, it doesn’t automatically recurse down into folders, so it won’t
look inside the libxml2 folder unless you tell it to. Edit the target’s build settings
and set the Header Search Paths build setting to $SDKROOT/usr/include/libxml2.
When you close the dialog for adding a search path, this will transform itself into
iphoneos/usr/include/libxml2.

3. In your code, import <libxml/tree.h>.

You now have to talk to libxml2 using C. This is no trivial task. Here’s an example
proving we can do it; we read our XML file, parse it into a tree, and traverse all its
elements:

NSURL* url = [[NSBundle mainBundle] URLForResource:@"folks" withExtension:@"xml"];
NSString* path = [url absoluteString];
const char* filename = [path UTF8String];
xmlDocPtr doc = NULL;
xmlNode *root_element = NULL;
doc = xmlReadFile(filename, NULL, 0);
root_element = xmlDocGetRootElement(doc);
traverse_elements(root_element); // must be previously defined
xmlFreeDoc(doc);
xmlCleanupParser();

Here’s our definition for traverse_elements; it logs each person and the person’s first
and last name, just to prove we are traversing successfully:

void traverse_elements(xmlNode * a_node) {
 xmlNode *cur_node = NULL;
 for (cur_node = a_node; cur_node; cur_node = cur_node->next) {
 if (cur_node->type == XML_ELEMENT_NODE) {
 if (strcmp(cur_node->name, "person") == 0)

XML | 745

 NSLog(@"found a person");
 if (strcmp(cur_node->name, "firstName") == 0)
 NSLog(@"First name: %s", cur_node->children->content);
 if (strcmp(cur_node->name, "lastName") == 0)
 NSLog(@"Last name: %s", cur_node->children->content);
 }
 traverse_elements(cur_node->children);
 }
}

If talking C to libxml2 is too daunting, you can interpose an Objective-C front end by
taking advantage of a third-party library. See, for example, https://github.com/Touch
Code/TouchXML.

Keep in mind, however, that you’re really not supposed to do what I just did. Even if
you use libxml2, you’re supposed to use stream-based parsing, not tree-based parsing.
See Apple’s XMLPerformance example code.

SQLite
SQLite (http://www.sqlite.org/docs.html) is a lightweight, full-featured relational data-
base that you can talk to using SQL, the universal language of databases. This can be
an appropriate storage format when your data comes in rows and columns (records
and fields) and needs to be rapidly searchable.

In the same way as you can link to libxml2.dylib, you can link to libsqlite3.dylib
(and import <sqlite3.h>) to access the power of SQLite. As with libxml2, talking C to
sqlite3 may prove annoying. There are a number of lightweight Objective-C front ends.
In this example, I use fmdb (https://github.com/ccgus/fmdb) to read the names of people
out of a previously created database:

NSString* docsdir = [NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES) lastObject];
NSString* dbpath = [docsdir stringByAppendingPathComponent:@"people.db"];
FMDatabase* db = [FMDatabase databaseWithPath:dbpath];
if (![db open]) {
 NSLog(@"Ooops");
 return;
}
FMResultSet *rs = [db executeQuery:@"select * from people"];
while ([rs next]) {
 NSLog(@"%@ %@",
 [rs stringForColumn:@"firstname"],
 [rs stringForColumn:@"lastname"]);
}
[db close];
/* output:
Matt Neuburg
Snidely Whiplash
Dudley Doright
*/

746 | Chapter 36: Persistent Storage

You can include a previously constructed SQLite file in your app bundle, but you can’t
write to it there; the solution is to copy it from your app bundle into another location,
such as the Documents directory, before you start working with it.

The Core Data framework also uses SQLite as a storage format (or, alternatively, it can
use XML). Core Data is a generalized way of dealing with objects and properties; it is
appropriate particularly when these form a complex relational graph. For example, a
person might have not only multiple addresses but also multiple friends who are also
persons; expressing persons and addresses as explicit object types, working out how
to link them and how to translate between objects in memory and data in storage, and
tracking the effects of changes, such as when a person is deleted from the data, can be
tedious. Core Data can help, but it is not a beginner-level technology, nor should it be
seen as a substitute for a true relational database. Core Data is beyond the scope of this
book; entire books can be written about Core Data alone (and have been). See the Core
Data Programming Guide and the other resources referred to there.

Image File Formats
Starting in iOS 4, the Image I/O framework provides a simple, unified way to open
image files (from disk or downloaded from the network, as described in Chapter 37),
to save image files, to convert between image file formats, and to read metadata from
standard image file formats, including EXIF and GPS information from a digital camera.
You’ll need to link to ImageIO.framework and import <ImageIO/ImageIO.h>.

Obviously, such features were not entirely missing before iOS 4. UIImage can read the
data from most standard image formats, and you can convert formats with functions
such as UIImageJPEGRepresentation and UIImagePNGRepresentation. But you could not,
for example, save an image as TIFF without the Image I/O framework.

The Image I/O framework introduces the notion of an image source
(CGImageSourceRef). This can be created from the URL of a file on disk or from
NSData (actually CFDataRef, to which NSData is toll-free bridged) obtained or gen-
erated in some way. You can use this to obtain a CGImage of the source’s image (or, if
the source format contains multiple images, a particular image). But you can also obtain
metadata from the source without transforming the source into a CGImage, thus con-
serving memory. For example:

NSURL* url = [[NSBundle mainBundle] URLForResource:@"colson" withExtension:@"jpg"];
CGImageSourceRef src = CGImageSourceCreateWithURL((CFURLRef)url, NULL);
NSDictionary* result = (id)CGImageSourceCopyPropertiesAtIndex(src, 0, NULL);

Without having opened the image file as an image, we now have a dictionary full of
information about it, including its pixel dimensions (kCGImagePropertyPixelWidth,
kCGImagePropertyPixelHeight), its resolution, its color model, its color depth, and its
orientation — plus, because this picture originally comes from a digital camera, the

Image File Formats | 747

EXIF data such as the aperture and exposure at which it was taken, plus the make and
model of the camera.

We can obtain the image as a CGImage, with CGImageSourceCreateImageAtIndex. Al-
ternatively, we can request a thumbnail version of the image. I’m afraid that Apple’s
documentation fails to impress sufficiently on the reader the value of the thumbnail. If
your purpose in opening this image is to display it in your interface, you don’t care
about the original image data; a thumbnail is precisely what you want, especially be-
cause you can specify any size for this “thumbnail” all the way up to the original size
of the image! This is tremendously convenient, because to assign a small UIImageView
a large image wastes all the memory reflected by the size difference.

To generate a thumbnail at a given size, you start with a dictionary specifying the size
along with other instructions, and pass that, together with the image source, to CGImage-
SourceCreateThumbnailAtIndex. The only pitfall is that, because we are working with a
CGImage and specifying actual pixels, we must remember to take account of the scale
of our device’s screen. So, for example, let’s say we want to scale our image so that its
largest dimension is no more than 100 points:

NSURL* url = [[NSBundle mainBundle] URLForResource:@"colson" withExtension:@"jpg"];
CGImageSourceRef src = CGImageSourceCreateWithURL((CFURLRef)url, NULL);
CGFloat scale = [UIScreen mainScreen].scale;
NSDictionary* d =
 [NSDictionary dictionaryWithObjectsAndKeys:
 (id)kCFBooleanTrue, kCGImageSourceShouldAllowFloat,
 (id)kCFBooleanTrue, kCGImageSourceCreateThumbnailWithTransform,
 (id)kCFBooleanTrue, kCGImageSourceCreateThumbnailFromImageAlways,
 [NSNumber numberWithInt:100*scale], kCGImageSourceThumbnailMaxPixelSize,
 nil];
CGImageRef imref = CGImageSourceCreateThumbnailAtIndex(src, 0, (CFDictionaryRef)d);
UIImage* im =
 [UIImage imageWithCGImage:imref scale:scale orientation:UIImageOrientationUp];
self->iv.image = im; // assign image to UIImageView
CFRelease(imref); CFRelease(src);

The Image I/O framework also introduces the notion of an image destination, used for
saving an image into a specified file format. As a final example, I’ll show how to save
our image as a TIFF, which, as I mentioned before, was impossible previously. Notice
that in this case we never even need to open the image as an image: we save directly
from the image source to the image destination:

NSURL* url = [[NSBundle mainBundle] URLForResource:@"colson" withExtension:@"jpg"];
CGImageSourceRef src = CGImageSourceCreateWithURL((CFURLRef)url, NULL);
NSFileManager* fm = [[NSFileManager alloc] init];
NSURL* suppurl = [fm URLForDirectory:NSApplicationSupportDirectory
 inDomain:NSUserDomainMask
 appropriateForURL:nil
 create:YES error:NULL];
NSURL* tiff = [suppurl URLByAppendingPathComponent:@"mytiff.tiff"];
CGImageDestinationRef dest =
 CGImageDestinationCreateWithURL((CFURLRef)tiff,
 (CFStringRef)@"public.tiff", 1, NULL);

748 | Chapter 36: Persistent Storage

CGImageDestinationAddImageFromSource(dest, src, 0, NULL);
bool ok = CGImageDestinationFinalize(dest);
// error-checking omitted
[fm release]; CFRelease(src); CFRelease(dest);

Image File Formats | 749

CHAPTER 37

Basic Networking

Networking is difficult and complicated, chiefly because it’s ultimately out of your
control. My favorite phrase with regard to the network is, “There’s many a slip ’twixt
the cup and the lip.” You can ask for a resource from across the network, but at that
point anything can happen: the resource might not be found (the server is down, per-
haps), it might take a while to arrive, it might never arrive, the network itself might
vanish after the resource has partially arrived. iOS, however, makes at least the basics
of networking very easy, so that’s all that this chapter will deal with.

Many earlier chapters have dealt with interface and frameworks that network for you
automatically. Put a UIWebView in your interface (Chapter 24) and poof, you’re net-
working; the UIWebView does all the grunt work, and it does it a lot better than you’d
be likely to do it from scratch. The same is true of MPMovieViewController (Chap-
ter 28), MFMailComposeViewController (Chapter 33), and MKMapView (Chap-
ter 37).

HTTP Requests
A simple HTTP request is made through an NSURLConnection object. You hand it an
NSURLRequest describing what you’d like to do, along with a delegate; the download
begins automatically (unless you specify otherwise). Then you stand back and let del-
egate messages arrive. The actual network operations happen asynchronously (unless
you specifically demand that they happen synchronously, which you’d never do); the
NSURLConnection object does all its work in the background and sends you delegate
messages when something occurs that you need to know about.

Data received from the network in response to your request will arrive as an NSData
object. It will arrive piecemeal, so you have to maintain state; in particular, you’ll have
an NSMutableData object to which you’ll keep appending each new bit of NSData until
you’re told that the entire data has arrived — or that the request has failed. (The whole
process is somewhat reminiscent of what we did with an NSXMLParser in Chapter 36.)

All the real work happens in four delegate methods:

751

connection:didReceiveResponse:
The server is responding. We can now hope that our data will start to arrive, so get
ready. If you like, you can interrogate the NSURLResponse object that is handed
to you, to learn things from the response headers such as the data’s expected size
and MIME type.

connection:didReceiveData:
Some data has arrived. Append it to the NSMutableData object.

connectiondidFinishLoading:
All of the data has arrived; the NSMutableData object presumably contains it.
Clean up as needed.

connection:didFailWithError:
Something went wrong. Clean up as needed.

Here’s an example of initiating a download of a JPEG image file:

self.receivedData = [NSMutableData data];
NSString* s = @"http://www.someserver.com/somefolder/someimage.jpg";
NSURL* url = [NSURL URLWithString:s];
NSURLRequest* req = [NSURLRequest requestWithURL:url];
NSURLConnection* conn = [NSURLConnection connectionWithRequest:req delegate:self];
[conn retain];

Here are the corresponding delegate method implementations:

- (void) connection:(NSURLConnection *)connection
 didReceiveResponse:(NSURLResponse *)response {
 // connection is starting, clear buffer
 [receivedData setLength:0];
}

- (void) connection:(NSURLConnection *)connection didReceiveData:(NSData *)data {
 // data is arriving, add it to the buffer
 [receivedData appendData:data];
}

- (void)connection:(NSURLConnection*)connection didFailWithError:(NSError *)error {
 // something went wrong, release connection
 [connection release];
 // clean up interface as needed
}

- (void)connectionDidFinishLoading:(NSURLConnection *)connection {
 // all done, release connection, we are ready to rock and roll
 [connection release];
 // do something with receivedData
}

You may have noticed that, in creating the NSURLConnection initially, we retain it
without releasing it. The release takes place in our delegate methods. This style of
memory management is copied from the “Using NSURLConnection” chapter of Ap-
ple’s URL Loading System Programming Guide. The NSURLConnection instance is

752 | Chapter 37: Basic Networking

allowed to float in space, as it were, retained (so that it won’t vanish in a puff of smoke)
but with no reference to it, until the final delegate method is called.

An alternative approach would be to keep the NSURLConnection in an instance vari-
able and balance the retain and release normally. In that case we would probably wrap
the entire connection process in a dedicated object to hold this instance variable, be-
cause otherwise keeping track of multiple simultaneous NSURLConnections would be
a nightmare. Here’s the complete implementation for such a wrapper object, My-
Downloader:

- (id) initWithRequest: (NSURLRequest*) req {
 self = [super init];
 if (self) {
 self->request = [req copy];
 self->connection = [[NSURLConnection alloc]
 initWithRequest:req delegate:self startImmediately:NO];
 self->receivedData = [[NSMutableData alloc] init];
 }
 return self;
}

- (void) dealloc {
 [request release];
 [connection release];
 [receivedData release];
 [super dealloc];
}

- (void) connection:(NSURLConnection *)connection
 didReceiveResponse:(NSURLResponse *)response {
 [receivedData setLength:0];
}

- (void) connection:(NSURLConnection *)connection didReceiveData:(NSData *)data {
 [receivedData appendData:data];
}

- (void)connection:(NSURLConnection *)connection didFailWithError:(NSError *)err {
 [[NSNotificationCenter defaultCenter]
 postNotificationName:@"connectionFinished" object:self
 userInfo:[NSDictionary dictionaryWithObject:err forKey:@"error"]];
}

- (void)connectionDidFinishLoading:(NSURLConnection *)connection {
 [[NSNotificationCenter defaultCenter]
 postNotificationName:@"connectionFinished" object:self];
}

In the line that creates the NSURLConnection, we have added the startImmediately:
parameter, with a value of NO. Thus, a MyDownloader object can exist before doing
any actual downloading. To set the download into motion, we tell MyDownloader’s
connection to start. (Sending start to an NSURLConnection that is already down-
loading has no effect.) In the past, there have been complaints that sending start to an

HTTP Requests | 753

NSURLConnection that does not start immediately can cause a crash. I have not seen
this myself, so perhaps it has been fixed in more recent iOS versions, but the solution
is to schedule the connection on a run loop explicitly just before starting it:

[connection scheduleInRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSDefaultRunLoopMode];
[connection start];

How would we use MyDownloader if we have several objects to download? We might,
for example, keep a mutable array of MyDownloader objects. To initiate a download,
we create a MyDownloader object, register for its @"connectionFinished" notification,
stuff it into the array, and set its connection going:

if (!self.connections)
 self.connections = [NSMutableArray array];
NSString* s = @"http://www.someserver.com/somefolder/someimage.jpg";
NSURL* url = [NSURL URLWithString:s];
NSURLRequest* req = [NSURLRequest requestWithURL:url];
MyDownloader* d = [[MyDownloader alloc] initWithRequest:req];
[self.connections addObject:d];
[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(finished:) name:@"connectionFinished" object:d];
[d.connection start];
[d release];

When the notification arrives, either we’ve failed with an error or we’ve finished in
good order. In the latter case, we grab the received data and retain it; either way, we
remove the MyDownloader from the array, thus releasing it, its connection, and its data:

- (void) finished: (NSNotification*) n {
 MyDownloader* d = [n object];
 NSData* data = nil;
 if ([n userInfo]) {
 // ... error of some kind! ...
 } else {
 data = [d receivedData];
 [data retain]; // about to go out of existence otherwise
 // ... and do something with the data right now ...
 }
 [self.connections removeObject:d];
}

In real life, you might also query the MyDownloader’s request, or perhaps some other
instance variable in a MyDownloader subclass, to identify what material this data rep-
resents. Also, you’re not so likely to use a temporary array of downloaders; rather, you’ll
incorporate downloaders directly into your application’s model, letting them fetch the
data on demand.

Suppose, for example, you need to download images to serve as thumbnails in the cells
of a UITableView. Let’s consider how these images can be supplied lazily on de-
mand. The model, as we saw in Chapter 21, might be an array of dictionaries. In this
case, the dictionary might contain some text and a downloader whose job is to supply
the image. So what I’m proposing is a model like this:

754 | Chapter 37: Basic Networking

array
 dictionary
 text: @"Manny"
 pic: Downloader whose job is to supply an image of Manny
 dictionary
 text: @"Moe"
 pic: Downloader whose job is to supply an image of Moe
 dictionary
 text: @"Jack"
 pic: Downloader whose job is to supply an image of Jack

When the table turns to the data source for data, the data source will turn to the dic-
tionary for the requested row and ask the downloader for its image. At that point, either
the downloader has an image, in which case it supplies it, or it hasn’t, in which case it
returns nil (or some placeholder) and begins the download.

Here’s the key point. When a downloader succeeds in downloading its image, it notifies
the data source. If the corresponding row is visible, the data source immediately tells
the table to reload the corresponding row; the table asks the data source for the data,
the data source turns to the dictionary for the requested row, and this time it obtains
the image! Moreover, once an image is downloaded, the downloader continues to hold
on to it and to supply it on request, so as the user scrolls, previously downloaded images
just appear as part of the table.

The downloader we’re imagining here is a MyDownloader subclass, MyImageDown-
loader, with an image property so that the data source can request the image. MyIma-
geDownloader’s implementation is straightforward:

- (UIImage*) image {
 if (image)
 return image;
 [self.connection start];
 return nil; // or a placeholder
}

- (void)connectionDidFinishLoading:(NSURLConnection *)connection {
 UIImage* im = [UIImage imageWithData:self->receivedData];
 if (im) {
 self.image = im;
 [[NSNotificationCenter defaultCenter]
 postNotificationName:@"imageDownloaded" object:self];
 }
}

The data source looks perfectly normal:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @"Cell";
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault

HTTP Requests | 755

 reuseIdentifier:CellIdentifier] autorelease];
 NSDictionary* d = [self.model objectAtIndex: indexPath.row];
 cell.textLabel.text = [d objectForKey:@"text"];
 MyImageDownloader* imd = [d objectForKey:@"pic"];
 cell.imageView.image = imd.image;
 return cell;
}

Now for the key point. The data source is also registered for an @"imageDownloaded"
notification. When such a notification arrives, it works out the table row corresponding
to the MyImageDownloader that posted the notification and reloads that row:

- (void) imageDownloaded: (NSNotification*) n {
 MyImageDownloader* d = [n object];
 NSUInteger row = [self.model indexOfObjectPassingTest:
 ^BOOL(id obj, NSUInteger idx, BOOL *stop) {
 return ([(NSDictionary*)obj objectForKey:@"pic"] == d);
 }];
 if (row == NSNotFound) return; // shouldn't happen
 NSIndexPath* ip = [NSIndexPath indexPathForRow:row inSection:0];
 NSArray* ips = [self.tableView indexPathsForVisibleRows];
 if ([ips indexOfObject:ip] != NSNotFound) {
 [self.tableView reloadRowsAtIndexPaths:[NSArray arrayWithObject: ip]
 withRowAnimation:UITableViewRowAnimationFade];
 }
}

This works, and demonstrates the basic technique for doing one of the most-desired
network-related operations, namely obtaining lazily, on demand, from the network, a
piece of data and updating the interface accordingly. What’s missing from the example
is robustness with regard to failure. The trouble is that once an NSURLConnection has
failed, it’s dead; you can’t use the same NSURLConnection to try again later. We can
rectify that in MyImageDownloader by replacing the NSURLConnection on failure:

- (void)connection:(NSURLConnection *)connection didFailWithError:(NSError *)err {
 self.connection = [[[NSURLConnection alloc] initWithRequest:self.request
 delegate:self startImmediately:NO] autorelease];
}

This partially solves the problem: when the user scrolls a failed cell out of view and
later scrolls it back into view, the table will ask the data source for its data and the
MyImageDownloader will try again to download its image. But that won’t happen for
a failed cell that’s never scrolled out of view. How you deal with this is up to you; it’s
a matter of providing the best user experience without having an undue impact upon
performance, battery, and so forth. In this instance, because these images are fairly
unimportant, I might arrange that when an NSTimer with a fairly large interval fires
(every 60 seconds, say), we reload the visible rows; this will cause any failed
MyImageDownloader whose corresponding row is visible to try again.

In planning your interface, it is useful to draw a distinction as to whether the user will
experience a certain bit of networking explicitly or implicitly. This changes nothing
about how you network; it’s a matter of presentation. The earlier example of down-

756 | Chapter 37: Basic Networking

loading images to be slotted into the cells of an existing table view would be implicit
networking: it happens regardless of whether the user wants it, and it doesn’t seriously
affect overall functionality, even if some or all of the images fail to arrive. In the TidBITS
News app, on the other hand, everything displayed comes from a downloaded RSS
feed: no feed, no data. The app saves the previously downloaded feed (in user defaults,
see Chapter 36), so the user has something to read even in the absence of the network,
but the feed is explicitly refreshed at launch or if the user taps a button (along with the
spinning network activity indicator, Chapter 25), and if the download fails, we put up
an alert.

Bonjour
Bonjour is the ingenious technology, originated at Apple and now becoming a universal
standard, for allowing network devices to advertise services they provide and to dis-
cover dynamically other devices offering such services. Once an appropriate service is
detected, a client device can resolve it to get a network address and can then begin
communicating with the server device. Actually communicating is outside the scope of
this book, but device discovery via Bonjour is easy.

In this example, we’ll look to see whether any device, such as a Mac, is running iTunes
with library sharing turned on. We can search for domains or for a particular service;
here, we’ll pass the empty string as the domain to signify “any domain,” and concentrate
on the service, which is @"_daap._tcp". We maintain two instance variables, the
NSNetServiceBrowser that will look for devices, and a mutable array in which to store
any services it discovers:

self.services = [NSMutableArray array];
NSNetServiceBrowser* browser = [[NSNetServiceBrowser alloc] init];
self.nsb = browser;
[browser release];
self.nsb.delegate = self;
[self.nsb searchForServicesOfType:@"_daap._tcp" inDomain:@""];

The NSNetServiceBrowser is now searching for devices advertising iTunes sharing and
will keep doing so until we destroy it or tell it to stop. It is common to leave the service
browser running, because devices can come and go very readily. As they do, the service
browser’s delegate will be informed. For purposes of this example, I’ll simply maintain
a list of services, and update the app’s interface when the situation changes:

- (void)netServiceBrowser:(NSNetServiceBrowser *)netServiceBrowser
 didFindService:(NSNetService *)netService
 moreComing:(BOOL)moreServicesComing {
 [self.services addObject:netService];
 if (!moreServicesComing)
 [self updateInterface];
}

Bonjour | 757

- (void)netServiceBrowser:(NSNetServiceBrowser *)netServiceBrowser
 didRemoveService:(NSNetService *)netService
 moreComing:(BOOL)moreServicesComing {
 [self.services removeObject:netService];
 if (!moreServicesComing)
 [self updateInterface];
}

The delegate messages very kindly tell me when they have completed the task of in-
forming me of a series of changes, so I can wait to update the interface until after a full
batch of changes has ended. In this example, I don’t really have any interface to update;
I’ll just log the list of services, each of which is an NSNetService instance:

- (void) updateInterface {
 for (NSNetService* service in self.services) {
 if (service.port == -1) {
 NSLog(@"service %@ of type %@, not yet resolved",
 service.name, service.type);
 }
 }
}

To connect to a service, we would first need to resolve it, thus obtaining an address and
other useful information. An unresolved service has port -1, as shown in the previous
code. To resolve a service, you tell it to resolve; you will probably also set a delegate
on the service, so as to be notified when the resolution succeeds (or fails). Here, I’ll
have the delegate call my updateInterface method again if a resolution succeeds, and
I’ll extend updateInterface to show the port number for any resolved services:

- (void) updateInterface {
 for (NSNetService* service in self.services) {
 if (service.port == -1) {
 NSLog(@"service %@ of type %@, not yet resolved",
 service.name, service.type);
 [service setDelegate:self];
 [service resolveWithTimeout:10];
 } else {
 NSLog(@"service %@ of type %@, port %i, addresses %@",
 service.name, service.type, service.port, service.addresses);
 }
 }
}

- (void)netServiceDidResolveAddress:(NSNetService *)sender {
 [self updateInterface];
}

The addresses of a resolved service constitute an array of NSData. Logging an address
like this is largely pointless, as it is not human-readable, but it’s useful for handing to
a CFSocket. In general you’ll call the service’s getInputStream:outputStream: to start
talking over the connection; that’s outside the scope of this discussion. See Apple’s
WiTap example for more.

758 | Chapter 37: Basic Networking

Push Notifications
If your app uses a server on the network that’s under your control, you can arrange for
the user to be notified when a significant event takes place on the server. This is called
a push notification (or remote notification). The user interface for a push notification is
the same as for a local notification (Chapter 26): the user is shown an alert in front of
whatever is happening at that moment and can use this alert to launch your app.

For example, the TidBITS News app is about news stories on the TidBITS website. The
app’s data comes from an RSS feed, which is refreshed on the server side whenever
something changes on the site, such as a new news story being posted. It might be
appropriate (and cool) if we were to add push notifications to the server code that
refreshes the RSS feed, so that users could be alerted to the fact that they might like to
launch TidBITS News and read a newly posted story.

Implementing push notifications is not trivial, and requires cooperation across the net-
work between your app and your server, and between your server and Apple’s push
notification server. I’ve never actually tried this, so I’m just describing what the archi-
tecture is like; for details, read Apple’s Local and Push Notification Programming Guide.

When developing your app, you obtain from the iOS Provisioning Portal (Chapter 9)
credentials identifying your app, and allowing communication between your server and
Apple’s push notification server, and between Apple’s push notification server and your
app running on the user’s device. When your app launches, it calls the UIApplication
method registerForRemoteNotificationTypes:, which communicates asynchronously
with Apple’s push notification server to obtain a token identifying this instance of your
app. If successful, the token comes back in the app delegate method application:did-
RegisterForRemoteNotificationsWithDeviceToken:. At that point, your app must com-
municate with your server to provide it with this token.

The server is now maintaining two pieces of information: its credentials and a list of
tokens effectively representing users. When an event occurs at your server for which
the server wishes to push a notification out to users, the server uses its credentials to
connect with Apple’s push notification server and — for every individual user whom
the server wishes to notify — streams a message to Apple’s push notification server,
providing the user token plus a “payload” that describes the notification, much as a
UILocalNotification does (Chapter 26). The payload is written in JSON, which is a
lightweight dictionary-like structure.

Meanwhile, the user’s device, if it is still on, is (with luck) connected to the network in
a low-power mode that allows it to hear from Apple’s push notification server. The
push notification server sends the message to the user’s device, where the system treats
it much like a local notification: if your app isn’t frontmost, the user sees an alert, and
if the user taps the action button in the alert, your app is brought to the front (launching
if necessary). Either way, your app can then learn what has happened through either
the app delegate message application:didReceiveRemoteNotification: or (if the app

Push Notifications | 759

had to be launched from scratch) through application:didFinishLaunchingWith-
Options:, whose dictionary will contain UIApplicationLaunchOptionsRemote-
NotificationKey. The notification itself, instead of being a UILocalNotification object,
is an NSDictionary corresponding to the original JSON payload.

Beyond Basic Networking
An NSURLRequest has a cache policy, which you can set to determine whether the
request might be satisfied without freshly downloading previously downloaded data.
An NSURLRequest to be handed to an NSURLConnection can specify the FTP, HTTP,
or HTTPS scheme, including POST requests. An NSURLConnection can handle redi-
rects and authentication. See the URL Loading System Programming Guide. You can
also get as deep into the details of networking as you like; see in particular the CFNet-
work Programming Guide.

Apple provides a generous amount of sample code. See in particular SimpleURLCon-
nections, AdvancedURLConnections, SimpleNetworkStreams, SimpleFTPSample,
and MVCNetworking.

760 | Chapter 37: Basic Networking

CHAPTER 38

Threads

A thread is, simply put, a subprocess of your app that can execute even while other
such subprocesses are also executing. Such simultaneous execution is called concur-
rency. The iOS frameworks use threads all the time; if they didn’t, your app would be
less responsive to the user — perhaps even completely unresponsive. The genius of the
frameworks, though, is that they use threads precisely so that you don’t have to.

For example, suppose your app is downloading something from the network (Chap-
ter 37). This download doesn’t happen all by itself; somewhere, someone is running
code that interacts with the network and obtains data. Yet a long download doesn’t
prevent your code from running, nor does it prevent the user from tapping and swiping
things in your interface. That’s concurrency in action.

It is a testament to the ingenuity of the iOS frameworks that this book has proceeded
so far with no explicit discussion of threads. Indeed, it would have been nice to avoid
the topic altogether. Threads are difficult and dangerous, and if at all possible you
should avoid them. But sometimes that isn’t possible. So this chapter introduces
threads, along with a warning: here be dragons. There is much more to threading, and
especially to making your threaded code safe, than this chapter can possibly touch on.
For detailed information about the topics introduced in this chapter, read Apple’s
Concurrency Programming Guide and Threading Programming Guide.

The Main Thread
You are always using some thread. All your code must run somewhere; “somewhere”
means a thread. When code calls a method, that method normally runs on the same
thread as the code that called it. Your code is called through events (Chapter 11); those
events normally call your code on the main thread. The main thread has certain special
properties:

The main thread automatically has a run loop
A run loop is a recipient of events. It is how your code is notified that something is
happening; without a run loop, a thread can’t receive events. Cocoa events nor-

761

mally arrive on the main thread’s run loop; that’s why your code, called by those
events, executes on the main thread.

The main thread is the interface thread
When the user interacts with the interface, those interactions are reported on the
main thread. When your code interacts with the interface, it must do so on the
main thread. Of course that will normally happen automatically, because your code
normally runs on the main thread.

The main thread thus has a very great deal of work to do. Here’s how life goes in your
app:

1. An event arrives on the main thread; the user has tapped a button, for example,
and now its control action handler is being called.

2. The event calls your code on the main thread. Your code now runs on the main
thread. While this happens, nothing else can happen on the main thread. Your
code might command some changes in the interface; this is safe, because your code
is running on the main thread.

3. Your code finishes. The main thread’s run loop is now free to report more events,
and the user is free to interact with the interface once again.

The bottleneck here is obviously step 2, the running of your code. Your code runs on
the main thread. That means the main thread can’t do anything else while your code
is running. No events can arrive while your code is running. The user can’t interact
with the interface while your code is running. But this is usually no problem, because:

• Your code executes really fast. It’s true that the user can’t interact with the interface
while your code runs, but this is such a tiny interval of time that the user will
probably never even notice.

• Your code, as it runs, blocks the user from interacting with the interface. But that’s
not bad: it’s good! Your code, in response to what the user does, might update the

What Is Concurrency, Really?
Part of the power of threads is that they implement concurrency without your having
to worry about precisely how they do it. On a Mac Pro with eight cores, you could
theoretically run eight threads truly simultaneously, one on each core. An iPhone device,
however, has only one core. Nevertheless, an iOS app is multithreaded. How can this
be? Basically, the processor performs a little code from one thread, then a little code
from another, then a little code from yet another, and so on; it switches its attention
between threads so quickly that they seem to run at the same time. But this is still
concurrency. Concurrency is every bit as meaningful a reality on an iPhone as on a Mac
Pro; how it is implemented at the level of the kernel and the processor is, mercifully,
no concern of yours.

762 | Chapter 38: Threads

interface; it would be insane if the user could do something else in the interface
while you’re in the middle of updating it.

On the other hand, as I’ve already mentioned, the frameworks operate in secondary
threads all the time. The reason this doesn’t affect you is that they talk to your code on
the main thread. You have seen many examples of this in the preceding chapters. For
example:

• You saw in Chapter 17 that during an animation, the interface remains responsive
to the user, and it is possible for your code to run. The Core Animation framework
is running the animation and updating the presentation layer on a background
thread. But any delegate methods or completion blocks are called on the main
thread.

• You saw in Chapter 24 that a UIWebView’s fetching and loading of its content is
asynchronous; that means the work is done in a background thread. But delegate
methods are called on the main thread. The same is true of downloading a resource
from the network with NSURLConnection (Chapter 37).

• You saw in Chapter 27 that sounds are played asynchronously. But delegate meth-
ods are called on the main thread. Obviously, the same is true of music players
(Chapter 29). Similarly, you saw in Chapter 28 that movie loading, preparation,
and playing happens asynchronously. But delegate methods are called on the main
thread.

• You saw in Chapter 28 and Chapter 30 that saving a movie file takes time. So the
saving takes place on a background thread. But delegate methods or completion
blocks are called on the main thread.

Thus, you can (and should) usually ignore threads and just keep plugging away on the
main thread. However, there are two kinds of situation in which your code will need
to be explicitly aware of threading issues:

Your code is not called back on the main thread.
Some frameworks explicitly inform you that callbacks are not guaranteed to take
place on the main thread. For example, CATiledLayer (Chapter 20) warns that
drawLayer:inContext: is called in a background thread. As I explained, this means
that in iOS 3.x and earlier, you can’t draw here using UIKit, because UIKit classes
are generally not thread-safe. In iOS 4, not only are the UIKit drawing-related
classes thread-safe, but so is accessing the current context, so you can draw with
drawRect: instead. Nevertheless, even in iOS 4 you need to be aware of the fact that
drawRect:, when triggered by a CATiledLayer, might be running in a background
thread.

Similarly, AV Foundation (Chapter 28) warns that its blocks and notifications can
arrive on a background thread. So if you intend to update the user interface, or use
a value that might also be used by your main-thread code, you’ll need to be thread-
conscious.

The Main Thread | 763

Your code takes significant time.
If your code takes a long time to run and if running it on the main thread would
prevent user interaction, you’ll need to run that code on a background thread in-
stead. This isn’t just a matter of aesthetics; the system will actually kill your app if
it discovers that its main thread is blocked for too long.

Why Threading Is Hard
The one certain thing about computer code is that it just clunks along the path of
execution, one statement at a time. Lines of code, in effect, are performed in the order
in which they appear. With threading, that certainty goes right out the window. If you
have code that can be performed on a background thread, then you don’t know when
it will be performed in relation to your main-thread code. Any line of your background-
thread code could be interleaved between any two lines of your main-thread code.

You also might not know how many times a piece of your background-thread code
might be running simultaneously. Unless you take steps to prevent it, the same code
could be spawned off as a thread even while it’s already running in a thread. So any
line of your background-thread code could be interleaved between any two lines of
itself.

This situation is particularly threatening with regard to shared data. Suppose two
threads were to get hold of the same object and change it. Who knows what horrors
might result? Objects in general have state, adding up to the state of your app as a
whole. If multiple threads are permitted to access your objects, they and your entire
app can be put into an indeterminate or nonsensical state.

This problem cannot be solved by simple logic. For example, suppose you try to make
data access safe with a condition, as in this pseudo-code:

if (no other thread is touching this data)
 do something to the data...

Such logic cannot succeed. Suppose the condition succeeds; no other thread is touching
this data. But between the time when that condition is executed and the time when the
next line executes and you start to do something to the data, another thread can come
along and start touching the data!

It is possible to request assistance at a deeper level to ensure that a section of code is
not run by two threads simultaneously. For example, you can implement a lock around
a section of code. But locks generate an entirely new level of potential pitfalls. In general,
a lock is an invitation to forget to use the lock, or to forget to remove the lock after
you’ve set it. And threads can end up contending for a lock in a way that permits neither
thread to proceed.

Another problem is that the lifetime of a thread is independent of the lifetimes of other
objects in your app. When an object is about to go out of existence and its dealloc is

764 | Chapter 38: Threads

called, you are guaranteed that after dealloc calls super, none of your code in that object
will ever run again. But a thread might still be running, and might try to talk to your
object, even after your object has gone out of existence. You cannot solve this problem
by having the thread retain your object, because then there is the danger that the thread
might be the last code retaining your object, so that when the thread releases your
object, its dealloc is called on that thread rather than the main thread, which could be
a disaster.

Not only is threaded code hard to get right; it’s also hard to test and hard to debug. It
introduces indeterminacy, so you can easily make a mistake that never appears in your
testing, but that does appear for some user. The real danger is that the user’s experience
will consist only of distant consequences of your mistake, long after the point where
you made it, making the real cause of the problem extraordinarily difficult to track
down.

All of this is meant to scare you away from using threads if you can possibly avoid it.
For an excellent (and suitably frightening) account of some of the dangers and consid-
erations that threading involves, see Apple’s tech note TN2109. If terms like race con-
dition and deadlock don’t strike fear into your veins, look them up on Wikipedia.

Three Ways of Threading
Without pretending to completeness or even safety, this section will illustrate three
approaches to threading. To give the examples a common base, we envision an app
that draws the Mandelbrot set. (The actual code, not all of which is shown here, is
adapted from a small open source project I downloaded from the Internet.) All it does
is draw the basic Mandelbrot set in black and white, but that’s enough
number-crunching to introduce a significant delay. The idea is then to see how we can
get that delay off the main thread.

The app contains a UIView subclass, MyMandelbrotView, which has one instance
variable:

@interface MyMandelbrotView : UIView {
 CGContextRef bitmapContext;
}
// ...
@end

Here’s the structure of its implementation:

// jumping-off point: draw the Mandelbrot set
- (void) drawThatPuppy {
 [self makeBitmapContext: self.bounds.size];
 CGPoint center =
 CGPointMake(CGRectGetMidX(self.bounds), CGRectGetMidY(self.bounds));
 [self drawAtCenter: center zoom: 1];
 [self setNeedsDisplay];
}

Three Ways of Threading | 765

// create (and memory manage) instance variable
- (void) makeBitmapContext:(CGSize)size {
 if (self->bitmapContext)
 CGContextRelease(self->bitmapContext);
 // ... configure arguments ...
 CGContextRef context = CGBitmapContextCreate(NULL, /* ... */);
 self->bitmapContext = context;
}

// draw pixels of self->bitmapContext
- (void) drawAtCenter:(CGPoint)center zoom:(CGFloat)zoom {
 // do stuff to self->bitmapContext
}

// turn pixels of self->bitmapContext into CGImage, draw into ourselves
- (void) drawRect:(CGRect)rect {
 CGContextRef context = UIGraphicsGetCurrentContext();
 CGImageRef im = CGBitmapContextCreateImage(self->bitmapContext);
 CGContextDrawImage(context, self.bounds, im);
 CGImageRelease(im);
}

// final memory managment
- (void) dealloc {
 if (self->bitmapContext)
 CGContextRelease(bitmapContext);
 [super dealloc];
}

(I haven’t discussed creating a bitmap context from scratch; see “Graphics Contexts”
in the Quartz 2D Programming Guide for example code. In this case, we take advantage
of an iOS 4 feature that lets us pass NULL as the first argument to CGBitmapContext-
Create, which relieves us of the responsibility for creating and memory-managing a data
buffer associated with the graphics context.)

The drawAtCenter:zoom: method, which calculates the pixels of the instance variable
bitmapContext, is time-consuming. We will consider three ways of moving this work
off onto a background thread: with an old-fashioned manual thread, with NSOpera-
tion, and with Grand Central Dispatch.

Manual Threads
The simple way to make a thread manually is to send performSelectorInBackground:
withObject: to some object containing a method to be performed on a background
thread. Even with this simple approach, there is additional work to do:

Pack the arguments.
The method designated by the first argument to performSelectorInBackground:
withObject: can take only one parameter, which you supply as the second argu-
ment to performSelectorInBackground:withObject:. So, if you want to pass more

766 | Chapter 38: Threads

than one piece of information into the thread, or if the information you want to
pass isn’t an object, you’ll need to pack it into a single object. Typically, this will
be an NSDictionary. You should create this dictionary with init... and release it
after passing it, because passing an autoreleased argument is unreliable.

Set up an autorelease pool.
Secondary threads don’t participate in the global autorelease pool. So the first thing
you must do in your threaded code is to create an NSAutoreleasePool, and the last
thing you must do in your threaded code is to release it. Otherwise, you’ll probably
leak memory as autoreleased objects are created behind the scenes and are never
released.

We’ll rewrite MyMandelbrotView to use manual threading. Our drawAtCenter:zoom:
method takes two parameters (and neither is an object), so we’ll have to pack the ar-
gument that we pass into the thread, as a dictionary. Once inside the thread, we’ll set
up our autorelease pool and unpack the dictionary. This will all be made much easier
if we interpose a trampoline method between drawThatPuppy and drawAtCenter:zoom:.
So our implementation now looks like this (ignoring the parts that haven’t changed):

- (void) drawThatPuppy {
 [self makeBitmapContext: self.bounds.size];
 CGPoint center =
 CGPointMake(CGRectGetMidX(self.bounds), CGRectGetMidY(self.bounds));
 NSDictionary* d = [[NSDictionary alloc] initWithObjectsAndKeys:
 [NSValue valueWithCGPoint:center], @"center",
 [NSNumber numberWithInt: 1], @"zoom",
 nil];
 [self performSelectorInBackground:@selector(reallyDraw:) withObject:d];
 [d release];
 // [self setNeedsDisplay];
}

// trampoline, background thread entry point
- (void) reallyDraw: (NSDictionary*) d {
 NSAutoreleasePool* pool = [[NSAutoreleasePool alloc] init];
 [self drawAtCenter: [[d objectForKey:@"center"] CGPointValue]
 zoom: [[d objectForKey:@"zoom"] intValue]];
 [pool release];
}

So far so good, but we haven’t yet figured out how to draw our view. We have com-
mented out the call to setNeedsDisplay in drawThatPuppy, because it’s too soon; the call
to performSelectorInBackground:withObject: launches the thread and returns imme-
diately, so our bitmapContext instance variable isn’t ready yet. Clearly, we need to call
setNeedsDisplay after drawAtCenter:zoom: finishes generating the pixels of the graphics
context. We can do this at the end of our trampoline method reallyDraw:, but we must
remember that we’re now in a background thread. Because setNeedsDisplay is a form
of communication with the interface, we should call it on the main thread. We can do
that with easily with performSelectorOnMainThread:withObject:waitUntilDone:. For

Three Ways of Threading | 767

maximum flexibility, it will probably be best to implement a second trampoline
method:

// trampoline, background thread entry point
- (void) reallyDraw: (NSDictionary*) d {
 NSAutoreleasePool* pool = [[NSAutoreleasePool alloc] init];
 [self drawAtCenter: [[d objectForKey:@"center"] CGPointValue]
 zoom: [[d objectForKey:@"zoom"] intValue]];
 [self performSelectorOnMainThread:@selector(allDone)
 withObject:nil waitUntilDone:NO];
 [pool release];
}

// called on main thread! background thread exit point
- (void) allDone {
 [self setNeedsDisplay];
}

This code is specious; the seeds of nightmare are already sown. We now have a single
object, MyMandelbrotView, some of whose methods are to be called on the main
thread and some on a background thread; this invites us to become confused at some
later time. Even worse, the main thread and the background thread are constantly
sharing a piece of data, the instance variable bitmapContext; what’s to stop some other
code from coming along and triggering drawRect: while drawAtCenter:zoom: is in the
middle of filling bitmapContext?

To solve these problems, we might need to use locks, and we would probably have to
manage the thread more explicitly. For instance, we might use the NSThread class,
which lets us retain our thread as an instance and query it from outside (with is-
Executing and similar). For example code, see Apple’s Metronome example, in Met-
ronomeView.m. You’ll observe immediately that the Metronome thread-handling code
is quite elaborate and difficult to understand, yet it is an extremely basic implementa-
tion. In any case, it will be easier at this point to use NSOperation, the subject of the
next threading approach.

NSOperation
The essence of NSOperation is that it encapsulates a task, not a thread. The operation
described by an NSOperation object may be performed on a background thread, but
you don’t have to concern yourself with that directly. You describe the operation and
add the NSOperation to an NSOperationQueue to set it going. When the operation
finishes, you are notified, typically by the NSOperation posting a notification. You can
query both the queue and its operations from outside with regard to their state.

We’ll rewrite MyMandelbrotView to use NSOperation. We need a new instance vari-
able, an NSOperationQueue; we’ll call it queue. And we have a new class, MyMandel-
brotOperation, an NSOperation subclass. It is possible to take advantage of a built-in
NSOperation subclass such as NSInvocationOperation or (in iOS 4) NSBlockOpera-

768 | Chapter 38: Threads

tion, but I’m deliberately illustrating the more general case by subclassing NSOperation
itself.

Our implementation of drawThatPuppy makes sure that the queue exists; it then creates
an instance of MyMandelbrotOperation, configures it, registers for its notification, and
adds it to the queue:

- (void) drawThatPuppy {
 CGPoint center =
 CGPointMake(CGRectGetMidX(self.bounds), CGRectGetMidY(self.bounds));
 if (!self.queue) {
 NSOperationQueue* q = [[NSOperationQueue alloc] init];
 self.queue = q; // retain policy
 [q release];
 }
 NSOperation* op =
 [[MyMandelbrotOperation alloc] initWithSize:self.bounds.size
 center:center zoom:1];
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(operationFinished:)
 name:@"MyMandelbrotOperationFinished"
 object:op];
 [self.queue addOperation:op];
 [op release];
}

Our time-consuming calculations are performed by MyMandelbrotOperation. An
NSOperation subclass, such as MyMandelbrotOperation, will typically have at least
two methods:

A designated initializer
The NSOperation may need some configuration data. Once the NSOperation is
added to a queue, it’s too late to talk to it, so you’ll usually hand it this configuration
data as you create it, in its designated initializer.

A main method
This method will be called (with no parameters) automatically by the NSOpera-
tionQueue when it’s time for the NSOperation to start.

Here’s the interface for MyMandelbrotOperation:

@interface MyMandelbrotOperation : NSOperation {
 CGSize size;
 CGPoint center;
 CGFloat zoom;
 CGContextRef bitmapContext;
}
- (id) initWithSize: (CGSize) sz center: (CGPoint) c zoom: (CGFloat) z;
- (CGContextRef) bitmapContext;
@end

We have provided three instance variables for configuration, to be set in the initializer.
Because MyMandelbrotOperation is completely separate from MyMandelbrotView, it
must be told MyMandelbrotView’s size explicitly in the initializer. MyMandelbrotOp-

Three Ways of Threading | 769

eration also has its own CGContextRef instance variable, bitmapContext, along with an
accessor so MyMandelbrotView can retrieve a reference to this graphics context when
the operation has finished. Note that this is different from MyMandelbrotView’s bitmap-
Context; one of the benefits of using NSOperation is that we are no longer sharing data
so promiscuously between threads.

Here’s the implementation for MyMandelbrotOperation. All the calculation work has
been transferred from MyMandelbrotView to MyMandelbrotOperation without
change; the only difference is that bitmapContext now means MyMandelbrotOpera-
tion’s instance variable:

- (id) initWithSize: (CGSize) sz center: (CGPoint) c zoom: (CGFloat) z {
 self = [super init];
 if (self) {
 self->size = sz;
 self->center = c;
 self->zoom = z;
 }
 return self;
}

- (void) dealloc {
 if (self->bitmapContext)
 CGContextRelease(self->bitmapContext);
 [super dealloc];
}

- (CGContextRef) bitmapContext {
 return self->bitmapContext;
}

- (void)makeBitmapContext:(CGSize)size {
 // ... same as before ...
}

- (void)drawAtCenter:(CGPoint)center zoom:(CGFloat)zoom {
 // ... same as before ...
}

- (void) main {
 if ([self isCancelled])
 return;
 [self makeBitmapContext: self->size];
 [self drawAtCenter: self->center zoom: self->zoom];
 if (![self isCancelled])
 [[NSNotificationCenter defaultCenter]
 postNotificationName:@"MyMandelbrotOperationFinished" object:self];
}

The only method of interest is main. First, we test through the NSOperation method
isCancelled to make sure we haven’t been cancelled while sitting in the queue; this is
good practice. Then, we do exactly what drawThatPuppy used to do, initializing our
graphics context and drawing into its pixels.

770 | Chapter 38: Threads

When the operation is over, we need to notify MyMandelbrotView to come and fetch
our data. There are two ways to do this; either main can post a notification through the
NSNotificationCenter, or MyMandelbrotView can use key–value observing (Chap-
ter 13) to be notified when our isFinished key path changes. We’ve chosen the former
approach; observe that we check one more time to make sure we haven’t been cancelled.

Now we are back in MyMandelbrotView, hearing that MyMandelbrotOperation has
finished. We must immediately pick up any required data, because the NSOperation-
Queue is about to release this NSOperation. However, we must be careful; the notifi-
cation may have been posted on a background thread, in which case our method for
responding to it will also be called on a background thread. We are about to set our
own graphics context and tell ourselves to redraw; those are things we want to do on
the main thread. So we immediately step out to the main thread:

// warning! called on background thread
- (void) operationFinished: (NSNotification*) n {
 [self performSelectorOnMainThread:@selector(redrawWithOperation:)
 withObject:[n object] waitUntilDone:NO];
}

As we set MyMandelbrotView’s bitmapContext by reading MyMandelbrotOperation’s
bitmapContext, we must concern ourselves with the memory management of a CGCon-
text obtained from an object that may be about to release that context:

// now we're back on the main thread
- (void) redrawWithOperation: (MyMandelbrotOperation*) op {
 [[NSNotificationCenter defaultCenter]
 removeObserver:self
 name:@"MyMandelbrotOperationFinished"
 object:op];
 CGContextRef context = [op bitmapContext];
 if (self->bitmapContext)
 CGContextRelease(self->bitmapContext);
 self->bitmapContext = (CGContextRef) context;
 CGContextRetain(self->bitmapContext);
 [self setNeedsDisplay];
}

Using NSOperation instead of manual threading may not seem like any reduction in
work, but it is a tremendous reduction in headaches:

The operation is encapsulated.
Because MyMandelbrotOperation is an object, we’ve been able to move all the
code having to do with drawing the pixels of the Mandelbrot set into it. No longer
does MyMandelbrotView contain some code to be called on the main thread and
some code to be called on a background thread. The only MyMandelbrotView
method that can be called in the background is operationFinished:, and that’s a
method we’d never call explicitly ourselves, so we won’t misuse it accidentally.

Three Ways of Threading | 771

The data sharing is rationalized.
Because MyMandelbrotOperation is an object, it has its own bitmapContext. The
only moment of data sharing comes in redrawWithOperation:, when we must set
MyMandelbrotView’s bitmapContext to MyMandelbrotOperation’s bitmap-
Context. Even if multiple MyMandelbrotOperation objects are added to queue, the
moments when we set MyMandelbrotView’s bitmapContext all occur on the main
thread, so they cannot conflict with one another.

The coherence of MyMandelbrotView’s bitmapContext does depend upon our obedi-
ence to an implicit contract not to set it or write into it anywhere except a few specific
moments in MyMandelbrotView’s code. But this is always a problem with data sharing
in a multithreaded world, and we have done all we can to simplify the situation.

If we are concerned with the possibility that more than one instance of MyMandel-
brotOperation might be added to the queue and executed concurrently, we have a
further defense — we can set the NSOperationQueue’s maximum concurrency level
to 1:

NSOperationQueue* q = [[NSOperationQueue alloc] init];
[q setMaxConcurrentOperationCount:1];
self.queue = q;
[q release];

This turns the NSOperationQueue into a true serial queue; every operation on the
queue must be completely executed before the next can begin. This might cause an
operation added to the queue to take longer to execute, if it must wait for another
operation to finish before it can even get started; however, this delay might not be
important. What is important is that by executing the operations on this queue com-
pletely separately, we guarantee that only one operation at a time can do any data
sharing. A serial queue is thus a form of data locking.

Because MyMandelbrotView can be destroyed (if, for example, its view controller is
destroyed), there is still a risk that it will create an operation that will outlive it and will
try to access it after it has been destroyed. We can reduce that risk by canceling all
operations in our queue before releasing it:

- (void)dealloc {
 // release the bitmap context
 if (self->bitmapContext)
 CGContextRelease(bitmapContext);
 [self->queue cancelAllOperations];
 [self->queue release];
 [super dealloc];
}

Grand Central Dispatch
Grand Central Dispatch, or GCD, introduced in iOS 4, is a sort of low-level analogue
to NSOperation and NSOperationQueue. When I say low-level, I’m not kidding; GCD

772 | Chapter 38: Threads

is baked into the operating system kernel. Thus it can be used by any code whatsoever
and is tremendously efficient.

Using GCD is like a mixture of the manual threading approach with the NSOpera-
tionQueue approach. It’s like the manual threading approach because code to be exe-
cuted on one thread appears together with code to be executed on another; however,
you have a better chance of keeping the threads and data management straight, because
GCD uses Objective-C blocks. It’s like the NSOperationQueue approach because it
uses queues; you express a task and add it to a queue, and the task is executed on a
thread as needed. Moreover, by default these queues are serial queues, with each task
on a queue finishing before the next is started, which, as we’ve already seen, is a form
of data locking.

We’ll rewrite MyMandelbrotView to use GCD. The structure of its interface is very
slightly changed from the original, nonthreaded version. We have a new instance var-
iable to hold our GCD queue; makeBitmapContext: now returns a graphics context
rather than setting an instance variable directly; and drawAtCenter:zoom: now takes an
additional parameter, the graphics context to draw into:

@interface MyMandelbrotView : UIView {
 CGContextRef bitmapContext;
 dispatch_queue_t draw_queue;
}
- (void)drawAtCenter:(CGPoint)center zoom:(CGFloat)zoom context:(CGContextRef)c;
- (CGContextRef)makeBitmapContext:(CGSize)size;
- (void) drawThatPuppy;
@end

In MyMandelbrotView’s implementation, we add management to create our GCD
queue as the view is created and to tear it down as the view is destroyed:

- (id)initWithCoder:(NSCoder *)aDecoder {
 self = [super initWithCoder: aDecoder];
 if (self) {
 self->draw_queue = dispatch_queue_create("com.neuburg.mandeldraw", NULL);
 }
 return self;
}

- (void) dealloc {
 if (bitmapContext)
 CGContextRelease(bitmapContext);
 dispatch_release(draw_queue);
 [super dealloc];
}

Now for the implementation of drawThatPuppy. Here it is:

- (void) drawThatPuppy {
 CGPoint center =
 CGPointMake(CGRectGetMidX(self.bounds), CGRectGetMidY(self.bounds));
 dispatch_async(draw_queue, ^{
 CGContextRef bitmap = [self makeBitmapContext: self.bounds.size];

Three Ways of Threading | 773

 [self drawAtCenter: center zoom: 1 context:bitmap];
 dispatch_async(dispatch_get_main_queue(), ^{
 if (self->bitmapContext)
 CGContextRelease(self->bitmapContext);
 self->bitmapContext = bitmap;
 [self setNeedsDisplay];
 });
 });
}

That’s all there is to it. No trampoline methods. No performSelector.... No packing
arguments into a dictionary. No autorelease pools. No instance variables. And effec-
tively no sharing of data across threads. That’s the beauty of blocks.

We begin by calculating our center, as before. This value will be visible within the
blocks, because blocks can see their surrounding context.

Now comes our task to be performed in a background thread on our queue,
draw_queue. We specify this task with the dispatch_async function. GCD has a lot
of functions, but this is the one you’ll use 99 percent of the time; it’s the most im-
portant thing you need to know about GCD. We specify a queue and we provide a
block saying what we’d like to do. Thanks to the block, we don’t need any trampoline
methods. In the block, we begin by declaring bitmap as a variable local to the block.
We then call makeBitmapContext: to create the graphics context bitmap, and drawAt-
Center:zoom:context: to set its pixels; we make these calls directly, just as we would
do if we weren’t threading in the first place.

Now we need to get back onto the main thread. How do we do that? With
dispatch_async again! We specify the main queue (which is effectively the main
thread) with a function provided for this purpose and describe what we want to do
in another block. This second block is nested inside the first, so it isn’t performed
until the preceding commands in the first block have finished; moreover, because
the first block is part of its surrounding context, the second block can see our block-
local bitmap variable! We set our bitmapContext instance variable (with no need for
further memory management, because makeBitmapContext has returned a retained
graphics context), and call setNeedsDisplay.

The benefits and elegance of GCD are stunning. The bitmap variable is not shared; it is
local to each specific call to drawThatPuppy. The nested blocks are executed in succes-
sion, so any instance of bitmap must be completely filled with pixels before being used
to set the bitmapContext instance variable. Moreover, bitmapContext is set on the main
thread, plus the entire operation is performed on a serial queue; thus data sharing is
reduced to a minimum, with no possibility of conflict. Our code is also highly main-
tainable, because the entire task on all threads is expressed within the single drawThat-
Puppy method, thanks to the use of blocks; indeed, the code is only very slightly modified
from the original, nonthreaded version.

774 | Chapter 38: Threads

Threads and App Backgrounding
When your app is backgrounded and suspended (Chapter 11), a problem arises if your
code is running. The system doesn’t want to kill your code while it’s executing; on the
other hand, some other app may need to be given the bulk of the device’s resources
now. So as your app goes into the background, the system waits a short time for your
app to finish doing whatever it may be doing, but it then suspends your app and stops
it by force.

This shouldn’t be a problem from your main thread’s point of view, because your app
shouldn’t have any time-consuming code on the main thread in the first place; you now
know that you can avoid this by using a background thread. On the other hand, it could
be a problem for lengthy background operations, including asynchronous tasks per-
formed by the frameworks. You can request time to complete a lengthy task (or at least
abort it yourself, coherently) in case your app is backgrounded, by wrapping it in calls
to UIApplication’s beginBackgroundTaskWithExpirationHandler: and endBackground-
Task:.

You call beginBackgroundTaskWithExpirationHandler: to announce that a lengthy task
is beginning; it returns an identification number. At the end of your lengthy task, you
call endBackgroundTask:, passing in that same identification number. This tells the ap-
plication that your lengthy task is over and that, if your app has been backgrounded
while the task was in progress, it is now okay to suspend you.

The argument to beginBackgroundTaskWithExpirationHandler: is a block, but this block
does not express the lengthy task. It expresses what you will do if your extra time ex-
pires before you finish your lengthy task. At the very least, your expiration handler must
call endBackgroundTask:, just as your lengthy task would have done; otherwise, your
app won’t just be suspended — it will be killed.

If your expiration handler block is called, you should make no assump-
tions about what thread it is running on.

Let’s use MyMandelbrotView, from the preceding section, as an example. Let’s say that
if drawThatPuppy is started, we’d like it to be allowed to finish, even if the app is sus-
pended in the middle of it, so that our bitmapContext instance variable is updated as
requested. To try to ensure this, we call beginBackgroundTaskWithExpirationHandler:
beforehand and call endBackgroundTask: at the end of the innermost block:

- (void) drawThatPuppy {
 CGPoint center =
 CGPointMake(CGRectGetMidX(self.bounds), CGRectGetMidY(self.bounds));
 UIBackgroundTaskIdentifier bti = [[UIApplication sharedApplication]
 beginBackgroundTaskWithExpirationHandler: ^{
 [[UIApplication sharedApplication] endBackgroundTask:bti];

Threads and App Backgrounding | 775

 }];
 dispatch_async(draw_queue, ^{
 CGContextRef bitmap = [self makeBitmapContext: self.bounds.size];
 [self drawAtCenter: center zoom: 1 context:bitmap];
 dispatch_async(dispatch_get_main_queue(), ^{
 if (self->bitmapContext)
 CGContextRelease(self->bitmapContext);
 self->bitmapContext = bitmap;
 [self setNeedsDisplay];
 [[UIApplication sharedApplication] endBackgroundTask:bti];
 });
 });
}

If our app is backgrounded while drawThatPuppy is in progress, it will (we hope) be given
enough time to live that it can run all the way to the end. Thus, the instance variable
bitmapContext will be updated, and setNeedsDisplay will be called, before we are ac-
tually suspended. Our drawRect: will not be called until our app is brought back to the
front, but there’s nothing wrong with that.

It’s actually pretty good policy to use a similar technique when you’re notified that your
app is being backgrounded. It’s common practice to respond to the app delegate mes-
sage applicationDidEnterBackground: (or the corresponding UIApplicationDidEnter-
BackgroundNotification) by saving state and reducing memory usage, but this can take
time, whereas what you’d like to do is return from applicationDidEnterBackground: as
quickly as possible. A reasonable solution is to implement applicationDidEnter-
Background: very much like drawThatPuppy earlier: call beginBackgroundTaskWith-
ExpirationHandler: and then call dispatch_async to get off the main thread, and do
your state-saving and so forth in its block. In this case, there’s no point creating your
own queue, because you don’t care about serial order; you can use
dispatch_get_global_queue(0), the default-priority global background queue.

What about lengthy asynchronous operations such as networking (Chapter 37)? As far
as I can tell, it might not strictly be necessary to use beginBackgroundTaskWithExpiration-
Handler: in connection with NSURLConnection; it appears that NSURLConnection
has the ability to resume automatically after an interruption when your app is suspen-
ded. Still, it might be better not to rely on that behavior (or on an assumption that, just
because the network is present now, it will be present when the app awakes from sus-
pension), so you might like to integrate beginBackgroundTaskWithExpirationHandler:
into your use of NSURLConnection.

Such integration can be just a little tricky, because beginBackgroundTaskWithExpiration-
Handler: and endBackgroundTask: rely on a shared piece of information, the UIBack-
groundTaskIdentifier — but the downloading operation begins in one place (when the
NSURLConnection is created, or when it is told to start) and ends in one of two other
places (the NSURLConnection’s delegate is informed that the download has failed or
succeeded), so information is not so easily shared. However, with something like our
MyDownloader class, an entire single downloading operation is encapsulated, and we

776 | Chapter 38: Threads

can give the class a UIBackgroundTaskIdentifier instance variable. So, we would set
this instance variable with a call to beginBackgroundTaskWithExpirationHandler: just
before telling the connection to start, and then both connection:didFailWithError:
and connectionDidFinishLoading: would use the value stored in that instance variable
to call endBackgroundTask: as their last action.

Threads and App Backgrounding | 777

CHAPTER 39

Undo

The ability to undo the most recent action is familiar from Mac OS X. Typically, a Mac
application will maintain an internal stack of undoable actions; choosing Edit → Undo
or pressing Command-Z will reverse the action at the top of the stack, and will also
make that action available for Redo so that the user can undo the most recent Undo.
The idea is that, provided the user realizes soon enough that a mistake has been made,
that mistake can be reversed.

A pervasive, extensive implementation of Undo makes sense on Mac OS X, especially
when real-life objects are involved. For example, a window may represent an actual
document, a file on disk; it would be terrible if every word typed or pasted or cut
represented a permanent, irreversible change to that document. Given the transient,
visual nature of the iOS interface, however, and the sorts of thing for which iOS apps
are typically intended, users do not generally expect Undo at all.

Nevertheless, some iOS apps may benefit from at least a limited version of this facility.
Not every action needs to be undoable, and the ability to undo needn’t persist for very
long. And limited Undo is not difficult to implement. Some built-in views — in par-
ticular, those that involve text entry, UITextField and UITextView (Chapter 23) —
implement Undo already. And you can add it in other areas of your app.

The Undo Manager
Undo is provided through an instance of NSUndoManager, which basically just main-
tains a stack of undoable actions, along with a secondary stack of redoable actions. The
goal in general is to work with the NSUndoManager so as to take care of handling both
Undo and Redo in the standard manner: When the user chooses to undo the most
recent action, the action at the top of the Undo stack is popped off and reversed and is
pushed onto the top of the Redo stack.

To illustrate, I’ll use an artificially simple app in which the user can drag a small square
around the screen. We’ll start with an instance of a UIView subclass, MyView, to which

779

has been attached a UIPanGestureRecognizer to make it draggable, as described in
Chapter 18. The gesture recognizer’s action target is the MyView instance itself:

- (void) dragging: (UIPanGestureRecognizer*) p {
 if (p.state == UIGestureRecognizerStateBegan ||
 p.state == UIGestureRecognizerStateChanged) {
 CGPoint delta = [p translationInView: self.superview];
 CGPoint c = self.center;
 c.x += delta.x; c.y += delta.y;
 self.center = c;
 [p setTranslation: CGPointZero inView: self.superview];
 }
}

To make dragging of this view undoable, we need an NSUndoManager instance. Let’s
store this in an instance variable of MyView itself, accessible through a property, undoer.

There are two ways to register an action as undoable. One involves the NSUndoMan-
ager method registerUndoWithTarget:selector:object:. This method uses a target–
action architecture: you provide a target, a selector for a method that takes one pa-
rameter, and the object value to be passed as argument when the method is called.
Then, later, if the NSUndoManager is sent the undo message, it simply sends that action
with that argument to that target. What we want to undo here is the setting of our
center property. This can’t expressed directly using a target–action architecture: we
can call setCenter:, but its parameter needs to be a CGPoint, which isn’t an object.
This means we’re going to have to provide a secondary method that does take an object
parameter. This is neither bad nor unusual; it is quite common for actions to have a
special representation just for the purpose of making them undoable.

So, in our dragging: method, instead of setting self.center to c directly, we now call
a secondary method (let’s call it setCenterUndoably:):

[self setCenterUndoably: [NSValue valueWithCGPoint:c]];

At a minimum, setCenterUndoably: should do the job that setting self.center used to
do:

- (void) setCenterUndoably: (NSValue*) newCenter {
 self.center = [newCenter CGPointValue];
}

This works in the sense that the view is draggable exactly as before, but we have not
yet made this action undoable. To do so, we must ask ourselves what message the
NSUndoManager would need to send in order to undo the action we are about to
perform. We would want the NSUndoManager to set self.center back to the value it
has now, before we change it as we are about to do. And what method would NSUn-
doManager call in order to do that? It would call setCenterUndoably:, the very method
we are implementing; that’s why we are implementing it. So:

- (void) setCenterUndoably: (NSValue*) newCenter {
 [self.undoer registerUndoWithTarget:self
 selector:@selector(setCenterUndoably:)

780 | Chapter 39: Undo

 object:[NSValue valueWithCGPoint:self.center]];
 self.center = [newCenter CGPointValue];
}

This not only makes our action undoable, it also makes it redoable. Why? Because
when we send undo to the NSUndoManager, it calls setCenterUndoably: and is imme-
diately sent registerUndo... — and there’s a rule that, if the NSUndoManager is sent
this message while it is undoing, it puts the target–action information on the Redo stack
instead of the Undo stack (because Redo is the Undo of an Undo, if you see what I
mean). That’s one of the chief tricks to working with an NSUndoManager: it will re-
spond differently to registerUndo... depending on its state.

So far, so good. But our implementation of undoing is very annoying, because we are
adding a single object to the Undo stack every time dragging: is called — and it is called
many times during the course of a single drag. Thus, undoing merely undoes the tiny
increment corresponding to one particular dragging: call. What we’d like, surely, is for
undoing to undo an entire dragging gesture. We can implement this through undo
grouping. As the gesture begins, we start a group; when the gesture ends, we end the
group:

- (void) dragging: (UIPanGestureRecognizer*) p {
 if (p.state == UIGestureRecognizerStateBegan)
 [self.undoer beginUndoGrouping];
 if (p.state == UIGestureRecognizerStateBegan ||
 p.state == UIGestureRecognizerStateChanged) {
 CGPoint delta = [p translationInView: self.superview];
 CGPoint c = self.center;
 c.x += delta.x; c.y += delta.y;
 [self setCenterUndoably: [NSValue valueWithCGPoint:c]];
 [p setTranslation: CGPointZero inView: self.superview];
 }
 if (p.state == UIGestureRecognizerStateEnded ||
 p.state == UIGestureRecognizerStateCancelled)
 [self.undoer endUndoGrouping];
}

This works: each complete gesture of dragging MyView, from the time the user’s finger
contacts the view to the time it leaves, is now undoable (and then redoable) as a single
unit.

Earlier I said that registerUndo... was one of two ways to register an action as undo-
able. The other is to use prepareWithInvocationTarget:. You provide the target and, in
the same line of code, send to the object returned from this call the message and argu-
ments you want sent when the NSUndoManager is sent undo (or, if we are undoing
now, redo). So, in our example, instead of this line:

[self.undoer registerUndoWithTarget:self
 selector:@selector(setCenterUndoably:)
 object:[NSValue valueWithCGPoint:self.center]];

You’d say this:

The Undo Manager | 781

[[self.undoer prepareWithInvocationTarget:self]
 setCenterUndoably: [NSValue valueWithCGPoint:self.center]];

This code seems impossible: how can we send setCenterUndoably: without calling set-
CenterUndoably:? Either we are sending it to self, in which case it should actually be
called at this moment, or we are sending it to some other object that doesn’t implement
setCenterUndoably:, in which case our app should crash. However, under the hood,
the NSUndoManager is cleverly using Objective-C’s dynamism (similarly to the mes-
sage-forwarding example at the end of Chapter 25) to capture this call as an NSInvo-
cation object, which it can use later to send the same message with the same arguments
to the specified target.

In our example, prepareWithInvocationTarget: provides no particular advantage over
registerUndo.... In general, the advantage of prepareWithInvocationTarget: is that it
lets you specify a method with any number of parameters, and those parameters needn’t
be objects.

The Undo Interface
We must now decide how to let the user request Undo and Redo. In testing the code
from the preceding section, I used two buttons, an Undo button that sent undo to the
NSUndoManager and a Redo button that sent redo to the NSUndoManager. This can
be a perfectly reasonable interface, but let’s talk about some others.

By default, your application supports shake-to-edit. This means the user can shake the
device to bring up an undo/redo interface. We discussed this briefly in Chapter 35. If
you don’t turn off this feature by setting the shared UIApplication’s application-
SupportsShakeToEdit property to NO, then when the user shakes the device, the frame-
work walks up the responder chain, starting with the first responder, looking for a
responder whose undoManager property returns an actual NSUndoManager instance. If
it finds one, it puts up the undo/redo interface and communicates appropriately with
that NSUndoManager, depending on the user’s choice in that interface.

You will recall what it takes for a UIResponder to be first responder in this sense: it
must return YES from canBecomeFirstResponder, and it must actually be made first
responder through a call to becomeFirstResponder. Let’s suppose that MyView satisfies
these requirements (for example, we might call becomeFirstResponder at the start of
dragging:). Then, to make shake-to-edit work, we must also set its undoManager prop-
erty instead of its undoer property as we are now doing. However, the inherited undo-
Manager property is read-only, so in order to set it, we must override its property dec-
laration, which we can do through a class extension. For example:

@interface MyView ()
@property (nonatomic, retain) NSUndoManager *undoManager;
@end

@implementation MyView
@synthesize undoManager;

782 | Chapter 39: Undo

- (id)initWithCoder:(NSCoder *)aDecoder {
 self = [super initWithCoder:aDecoder];
 NSUndoManager* u = [[NSUndoManager alloc] init];
 self.undoManager = u; // retain policy
 [u release];
 return self;
}

- (BOOL) canBecomeFirstResponder {
 return YES;
}

- (void) dragging: (UIPanGestureRecognizer*) p {
 [self becomeFirstResponder];
 // ... the rest as before ...
}
//...
@end

This works: shaking the device now brings up the undo/redo interface, and its buttons
work correctly. However, I don’t like the way the buttons are labeled; they just say
Undo and Redo. To make them more expressive, we should provide a string describing
each undoable action by calling setActionName:. We can appropriately and conven-
iently do this in setCenterUndoably:, as follows:

- (void) setCenterUndoably: (NSValue*) newCenter {
 [self.undoer registerUndoWithTarget:self
 selector:@selector(setCenterUndoably:)
 object:[NSValue valueWithCGPoint:self.center]];
 [self.undoManager setActionName: @"Move"];
 self.center = [newCenter CGPointValue];
}

Now the buttons say Undo Move and Redo Move, which is a nice touch (Figure 39-1).

Another possible interface is through a menu (Figure 39-2). Personally, I prefer this
approach, as I am not fond of shake-to-edit (it seems both violent and unreliable). This
is the same menu used by a UITextField or UITextView for displaying the Copy and
Paste menu items (Chapter 23). The requirements for summoning this menu are ef-
fectively the same as those for shake-to-edit: we need a responder chain with a first
responder at the bottom of it. So the code we’ve just supplied for making MyView first
responder remains applicable.

Figure 39-1. The shake-to-edit undo/redo interface

The Undo Interface | 783

We can make a menu appear, for example, in response to a long press on our MyView
instance. So let’s suppose we’ve attached another gesture recognizer to MyView. This
will be a UILongPressGestureRecognizer, whose action handler is called longPress:.
Recall from Chapter 23 how to implement the menu: we get the singleton global UI-
MenuController object and specify an array of custom UIMenuItems as its menuItems
property. But a particular menu item will appear only if we return YES from canPerform-
Action:withSender: for that menu item’s action:

- (void) longPress: (id) g {
 UIMenuController *m = [UIMenuController sharedMenuController];
 [m setTargetRect:self.bounds inView:self];
 UIMenuItem *mi1 =
 [[UIMenuItem alloc] initWithTitle:[self.undoManager undoMenuItemTitle]
 action:@selector(undo:)];
 UIMenuItem *mi2 =
 [[UIMenuItem alloc] initWithTitle:[self.undoManager redoMenuItemTitle]
 action:@selector(redo:)];
 [m setMenuItems:[NSArray arrayWithObjects: mi1, mi2, nil]];
 [mi1 release]; [mi2 release];
 [m setMenuVisible:YES animated:YES];
}

- (BOOL)canPerformAction:(SEL)action withSender:(id)sender {
 if (action == @selector(undo:))
 return [self.undoManager canUndo];
 if (action == @selector(redo:))
 return [self.undoManager canRedo];
 return [super canPerformAction:action withSender:sender];
}

- (void) undo: (id) dummy {
 [self.undoManager undo];
}

- (void) redo: (id) dummy {
 [self.undoManager redo];
}

Observe how we consult our NSUndoManager throughout. We get the titles for our
custom menu items from the NSUndoManager (there might, after all, be more than
one undoable kind of action, and therefore more than one title), and we know whether
to display the Undo menu item or the Redo menu item by calling our NSUndoMan-

Figure 39-2. The shared menu as an undo/redo interface

784 | Chapter 39: Undo

ager’s canUndo and canRedo, which essentially asks whether there’s anything on the
respective stack.

The Undo Architecture
Implementing basic Undo is not particularly difficult. But maintaining an appropriate
Undo stack at the right point (or points) in your responder hierarchy, so that the right
thing happens at every moment, can require some work and some thought. Many
questions can arise, and there are no simple answers.

In general, your chief concern will be maintaining a consistent state in your app and in
the Undo and Redo stacks of any NSUndoManager instances. You don’t want an Undo
stack to contain a method call that, if actually sent, would be impossible to obey, or,
if obeyed, would make nonsense of your app’s state, because of things that have hap-
pened in the meantime. In order to prevent this, you have to make sure you are not
implementing Undo only partially. Suppose, for example, your app presents a To-Do
list in which the user can add items, edit items, and so forth. And suppose you imple-
mented Undo and Redo for inserting an item but not for editing an item. Then if the
user inserted an item and then edited it, and then did an Undo of an item insertion
followed by a Redo of that item insertion, this would fail to restore the state of the app,
because the editing has been omitted from the Redo.

This is why you typically want each undoable action to pass consistently through a
bottleneck method that will register this action with the NSUndoManager. And you
will usually want this bottleneck method to be the same method that is registered with
the NSUndoManager, so that the Undo and Redo stacks are kept synchronized prop-
erly. The sole exception involves independent constructive and destructive actions,
such as insertion into a list and deletion from that list; in that case, the Undo method
for insertion will be the deletion method, and the Undo method for deletion will be the
insertion method. You can customize the arrangement of bottlenecks further and in
more complex ways, but it’s easy to become confused, so you probably won’t want to.

Not all aspects of communication with an NSUndoManager need to be performed in
the same place, however. We already saw this in the examples earlier in this chapter:
setCenterUndoably:, the bottleneck method, knows what method to register with the
NSUndoManager, but dragging: knows what a complete gesture is and therefore
knows where to place the boundaries of a group. Similarly, it happens that our bottle-
neck method is the one that called setActionName:, but in real life it will often be some
other method that knows best what name should be attached to a particular action.
You will thus end up with a single NSUndoManager being bombarded with messages
from various places in your code. Indeed, NSUndoManager accomodates exactly this
sort of design; for example, it emits many notifications for which you can register, to
help tie together operations that are performed at disparate locations in your code.

The Undo Architecture | 785

Then there are the larger architectural questions of how many NSUndoManager objects
your app needs and how long each one needs to live. There’s typically nothing wrong
with an iOS app having occasional short-lived, short-depth Undo stacks and no Undo
the rest of the time. Apple’s SimpleUndo example constructs an app with an Edit in-
terface, where the user makes changes and then taps either Cancel or Save, returning
to the main interface. Here, the user can shake to undo what happened during that edit
session. And that’s all that’s undoable within this app. If the user taps Edit again, one
imagines that it would make sense to clear the existing Undo stack; there’s no point in
letting the user return to an earlier Edit session’s state. If the user switches away to a
different view controller altogether, one imagines that it would make sense to release
the NSUndoManager completely and start with a clean slate when we come back; if
the user had any intention of undoing, the time to do so was before abandoning this
part of the interface.

Your architectural decisions will often be closely tied to the actual functionality and
nature of your app. For example, consider again the MyView instance that the user can
move, and whose movements the user can undo. Suppose our app has two MyView
instances in the same window. In our earlier examples, we’ve implemented Undo at
the level of the individual MyView instance. Is this right when there are multiple My-
View instances, or should we move the implementation to a higher point in the res-
ponder chain that effectively contains them both — for example, to the view controller
of whose view they are subviews? The answer is that there’s no right answer. It depends
on what makes sense for what our app actually does. If these are fairly independent
objects, in terms of the app’s functionality and the mental world it creates, then it might
make sense to be able to undo a move of either view, independently of the other. But
if these are, say, two playing cards in a deck, then obviously it isn’t up to an individual
card whether it can be put back into the place it was before; the only undoable card is
the most recently moved of all cards.

For more about the NSUndoManager class and how to use it, read Apple’s Undo Ar-
chitecture as well as the documentation for the class itself.

786 | Chapter 39: Undo

CHAPTER 40

Epilogue

You may go, for you’re at liberty.

—W. S. Gilbert, The Pirates of Penzance

This book must come to an end, but your exploration of iOS will go on and on. There’s
much more to know and to explore. A single book that described completely, or even
introduced, every aspect of iOS programming would be immense — many times the
size of this one. Inevitably, severe limits have had to be set. Having read this book, you
are now in a position to investigate many further areas of iOS that this book hasn’t
explored in any depth. Some of these areas have been mentioned in individual chapters;
here are a few others:

OpenGL
An open source C library for drawing, including 3D drawing, that takes full ad-
vantage of graphics hardware. This is often the most efficient way to draw, espe-
cially when animation is involved. iOS incorporates a simplified version of OpenGL
called OpenGL ES. See the OpenGL Programming Guide for iOS. Also, some forms
of animated display (chiefly, but not exclusively, those using OpenGL) will benefit
from CADisplayLink, a timer object that calls a method repeatedly based on the
refresh rate of the screen’s physical display.

Accelerate framework
Certain computation-intensive processes will benefit from the vector-based Accel-
erate framework, added in iOS 4. See the vDSP Programming Guide.

Game Kit
The Game Kit framework covers three areas that can enhance your user’s game
experience: Wireless or Bluetooth communication directly between devices (peer-
to-peer); voice communication across an existing network connection; and Game
Center, a networking facility introduced in iOS 4.1 that facilitates these and many
other aspects of interplayer communication, such as posting and viewing high
scores and setting up combinations of players who wish to compete. See the Game
Kit Programming Guide.

787

Advertising
The iAD framework, added in iOS 4, lets your free app attempt to make money by
displaying advertisements provided by Apple. See the iAD Programming Guide.

Purchases
Your app can allow the user to buy something, using Apple’s App Store to process
payments. See the In App Purchase Programming Guide.

Printing
Printing was added to iOS in version 4.2. See the “Printing” chapter of the Drawing
and Printing Guide for iOS.

Security
This book has not discussed security topics such as keychains, certificates, and
encryption. See the Security Overview and the Security framework.

Accessibility
VoiceOver assists visually impaired users by describing the interface aloud. To
participate, views must be configured to describe themselves usefully. Built-in
views already do this to a large extent, and you can add to this functionality. See
the Accessibility Programming Guide for iOS.

Telephone
The Core Telephony framework, introduced in iOS 4, lets your app get information
about a particular cellular carrier and call.

External accessories
The user can attach an external accessory to the device, either directly via USB or
wirelessly via Bluetooth. Your app can communicate with such an accessory. See
External Accessory Programming Topics.

788 | Chapter 40: Epilogue

Index

A
ABNewPersonController, 692
ABPeoplePickerNavigationController, 690
ABPerson, 687
ABPersonViewController, 692
ABRecordRef, 688
ABUnknownPersonViewController, 693
accelerometer, 722
accessors, 84, 249
accessors and memory management, 260
accessors, synthesized, 272
accessory views, 510, 531
action connections, 143
action mechanism, 389
action message, 143, 604
action message of a gesture recognizer, 412
action search, 390
action selector signatures, 235, 604
action sheet, 631
action target of a control, 234
action target of a gesture recognizer, 412
actions (animation), 389
actions (control), 142, 233, 604
actions, nil-targeted, 238
activity indicator, 597

network activity in status bar, 598
ad hoc distribution, 186
address book, 687
Address Book framework, 687
Address Book UI framework, 687
address operator, 22, 60
adopting a protocol, 203
ALAsset, 684
alert view, 630, 636

Alfke, Jens, 170
alloc, 74
analyze, 176
angle brackets in import directive, 26
animating a layer, 371, 374
animating a view, 362
animation, 357–395

action mechanism, 389
action search, 390
block-based view animation, 368
delegate of an animation, 364, 375
grouped animations, 381
hit-testing during animation, 426
keyframe animation, 379
layer animation, explicit, 374
layer animation, implicit, 371
layer, adding an animation to, 386
properties, animatable, 371
properties, custom animatable, 380
redrawing with animation, 366, 370, 385
subviews, animating, 370, 394
transactions, 372
transitions, 366, 370, 385
UIImageView animation, 361
view animation, 362

animation blocks, 362
animation synchronized with video, 663
animation triggered immediately, 373
animation “movie”, 358
animations list, 386
annotation (on map), 706
API, 1
API of a class, 36
app bundle, getting a resource inside, 312
app delegate, 133, 230

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

789

App Store, 192
AppKiDo, 153, 201
application lifetime events, 239
Application Support folder, 730
applicationFrame, 299, 439, 447
archives, 186, 192
archiving data, 731
argument, 20
arithmetic operators, 13
array, 11

(see also C arrays)
(see also NSArray)

arrow operator, 85
asserts, 171
Assets Library framework, 684
assign policy, 263
assignment, 15
assignment of instance, 47
assignment to a pointer, 11, 47
assistant pane, 105
asynchronous, 591
at-sign, forgetting before NSString literal, 7
attributed string, 579
Attributes inspector, 104, 131
audio, 643–654, 655

(see also video)
audio session, 644
Audio Toolbox framework, 643, 645
audio, ducking background, 645
audio, interrupting and interruptible, 644
audio, playing from music library, 671
audio, playing in background, 651
audio, remote control of, 650
autocompletion, 164
autorelease, 264
autorelease pool, 264, 767
autoresizing, 303
AV Foundation framework, 645, 663, 674
availability, 153, 161, 676
AVAudioPlayer, 648
AVPlayer, 663
AVSynchronizedLayer, 663

B
back item, 465
background audio, 651
background location information, 719
background tasks, lengthy, 775
bar button item, 466, 621, 623

bar views, 620
base class, 65
Base SDK build setting, 160
base URL, 589
beep, 643
bitmask, 14
bitwise operators, 14
block-based view animation, 368
blocks, 61
Bonjour, 757
books about C, 3
BOOL, 19, 211
bootstrapping, 133
borders, 353
bottom and top reversed, 344, 385
bounds, 299
break, 17
Breakpoint navigator, 102
breakpoints, 172
bridged, toll-free, 60
browser, web, 587
build, 97
build configurations, 111
build phases, 109
build settings, 110
bundle identifier, 96
buttons, 614
bytes, C array of, 13

C
C arrays, 11, 13
C language, 3–29

assignment, 15
blocks, 61
books about C, 3
C arrays, 11
C string, 7
C99, 4
capitalization, 6
caret character, 61
comma-separated statements, 17
comments, 5
comparison, 18
compiler, 4
compound statements, 17
conditions, 18
curly braces, omitting in flow control, 16
data types of C, 6
enum, 7

790 | Index

flow control, 15
for loop, 16
functions, 19

calling a function, 19
declaring a function, 21
defining a function, 19
pointer to function, 60
scope in function definition, 20
signature of a function, 21

macros, 28
operators

address operator, 22, 60
arithmetic operators, 13
arrow operator, 85
bitwise operators, 14
decrement operator, 14
equality operator, 18
increment operator, 14
logical operators, 18
relational operators, 18
sizeof operator, 24
structure pointer operator, 85
ternary operator, 15

pointers, 10
assignment to a pointer, 11
creating a pointer, 22
declaring a pointer, 10
generic pointer, 11

preprocessing, 5
return, 20
scope in flow control, 15
standard C library, 27
structs, 8
typecasting, 7
variables

declaring a variable, 6
initialization of variables, 6
lowercase variable names, 6

C string, 7
C99, 4
CA prefix, 335, 357
CAAction, 389
CAAnimationGroup, 381
CABasicAnimation, 375
caching a drawing, 337
CAGradientLayer, 346
CAKeyframeAnimation, 379
CALayer, 335

(see also layers)

Calendar app, 695
callback, 60
calling a function, 19
calling a method, 50

nesting method calls, 52
calling dealloc, 262
calling super, 84
CAMediaTimingFunction, 373
camera, 681
Camera app, 682
Camera Roll album, 686
canvas (nib editor), 128
capitalization, 6
CAPropertyAnimation, 376
caret character, 61
CAScrollLayer, 340
CAShapeLayer, 346
cast (see typecasting)
categories, 200
categories documented separately, 201
CATextLayer, 346, 581
CATiledLayer

scrolling with CATiledLayer, 489
zooming with CATiledLayer, 496

CATransaction, 372
CATransform3D, 349
CATransformLayer, 351
CATransition, 385
caveman debugging, 169
ceil function, 27
cell identifiers don’t match, 516
cells, 507–517

accessory views, 510, 531
label punches hole in cell, 511
labels in built-in cell styles, 509
layout of table view cells, 513
nib-loaded cells, 515

cells, built-in styles, 508
cells, configuration of, 510
cells, reusing, 519
CF prefix, 60
CFRelease, 270
CFString vs. NSString, 60
CFStringRef, 60
CGAffineTransform, 305, 330, 347
CGFloat, 6
CGGradientRef, 326
CGImageRef, 315
CGPathRef, 323

Index | 791

CGPatternRef, 328
CGPoint, 8, 22
CGRect, 9
CGSize, 9
char, pointer to, 13
Clang, 6, 176
class, 33

conflicting class names, 70
defining a class, 69, 201
inheritance, 55, 66
pointer to class name, 43
uppercase class names, 44

Class class, 72
class clusters, 217
class directive, 70
class documentation page, 152
class does not implement protocol, 204
class extension, 202
class hierarchy, 65
class method, 36, 71
class methods of all classes, 219
class name, 72
class not key–value coding compliant, 252
class object, 71
class of object in nib, changing, 131
cleaning, 177
clipboard, 576
clipping region, 325
CLLocationManager, 718
closure, 63
Cocoa, 195, 197–289
Cocoa Touch, 195
Code Snippet library, 104, 165
collection, 213, 215
collections and memory management, 257
colons in method name, 49
columnized text, 584
comma-separated statements, 17
comments, 5
company identifier, 96
comparison, 18
comparison of objects, 212
compass, digital, 719
Compile Sources build phase, 109
compiler, 4

static typing, 57
component of a picker view, 600
compound assignment operators, 15
compound paths, 323

compound statements, 17
concatenating literal strings, 8
concurrency, 761
conditions, 18
configurations, 111
conflicting animations, 359
conflicting class names, 70
conflicting gesture recognizers, 416
conflicting signatures, 58
conflicting types, 52
conforming to a protocol, 203
connecting an action, 143
connecting an outlet, 136
connections, 135

action connections, 143
outlet connections, 135

Connections inspector, 104, 138, 139, 144
console, 102, 169
const variables, 28
constants, 154, 227

defining a constant, 69
Contacts app, 687
contained view controllers, 436
content mode, 333
content view of scroll view, 481
contents of a layer, 341
context (see graphics context)
continue, 17
control events, 143, 233
control events of a text field, 573
controls, 142, 233, 604–620
converting coordinates, 302, 339
converting to polar coordinates, 618
coordinate systems, 298
coordinates

converting coordinates, 302, 339
converting to polar coordinates, 618
layer coordinates, 339
main window coordinates, 300
screen coordinates, 300
view coordinates, 300

Copy Bundle Resources build phase, 110
Copy Files build phase, 120
copy policy, 263
Core Animation, 374
Core Data framework, 747
Core Foundation, 60
Core Graphics framework, 123
Core Location framework, 705, 717

792 | Index

Core Motion framework, 717
Core Text, 579–586
Core Text framework, 579
course, 720
Cox, Brad, 43
crash

class not key–value coding compliant, 252
garbage pointer, 45
later feature used on earlier system, 160
unrecognized selector, 54

creating a file, 731
creating a folder, 730
creating a nib file, 135
creating a pointer, 22
creating a view controller, 437–447
creating an outlet, 136
creation of instances, 73
CTM, 330
curly braces, omitting in flow control, 16
current method, logging, 171

D
dangling pointers, 255
data in table view, 517
data in table view, downloading, 754
data in table view, refreshing, 524
data sources, 232
data types of C, 6
data, shared between threads, 764
date picker, 606
date to string conversion, 608
dates, 210
dealloc, 261
dealloc and threads, 765
Debug navigator, 101, 174
Debug pane, 101, 173
debugging, 169

caveman debugging, 169
memory management debugging, 256

debugging a Release build, 172
declaration vs. initialization, 44
declaring a C array, 11
declaring a function, 21
declaring a method, 51, 68
declaring a method privately, 202
declaring a pointer, 10
declaring a property, 272
declaring a property privately, 274
declaring a variable, 6, 44

declaring an instance variable, 85
decrement operator, 14
define directive, 27
defining a category, 200
defining a class, 69, 201
defining a constant, 69
defining a function, 19
defining a method, 67
defining a protocol, 203
delayed performance, 220
delayed performance, canceling, 409
delegate, 133, 229
delegate methods documented as protocols,

229
delegate of a gesture recognizer, 419
delegate of a scroll view, 499
delegate of a text field, 572
delegate of a view controller, 476
delegate of an animation, 364, 375
delegation, 229
delivery of touches, 422
Deployment Target build setting, 160
depth of layers, 339, 350
Design Patterns (book), 41
designated initializer, 76
destinations, 114
Developer folder, 96
device family, 159
device, location of, 717
device, running on, 178
dialogs, modal (see modal dialogs)
dictionary, 215
dictionary of touches, 406
directives

class directive, 70
define directive, 27
dynamic directive, 275, 380
implementation directive, 66
import directive, 26
include directive, 24
interface directive, 66
NSString literal directive, 7
pragma directive, 28, 167
protocol directive, 232
selector directive, 59
synthesize directive, 273

directories (see folders)
distributing your app, 184
dock (nib editor), 127

Index | 793

document types, 735
document, receiving from another app, 736
document, sending to another app, 737
documentation, 149

categories documented separately, 201
class documentation page, 152
delegate methods documented as protocols,

229
Internet as documentation, 158
key–value coding method names hard to

discover, 254
NSObject documentation scattered, 219
protocols documented separately, 205
searching the documentation, 150

documentation sets (doc sets), 149
documentation window, 150
Documents folder, 729
dot-notation, 8, 87
double resolution image files, 313
double tap vs. single tap, 409, 417
downloading from the network, 751
dragging a view, 402, 415
drain, 264
drawing a layer, 341
drawing a path, 321
drawing a view, 198, 318
drawing an NSString, 564
drawing efficiently, 309, 354, 503
drawing in a background thread, 490, 498
drawing rotated, 330
drawing text with Core Text, 579
drawing, caching of, 337
drawing, hit-testing of, 425
drawing, when actually happens, 358
ducking background audio, 645
duplicate declaration, 52
dynamic directive, 275, 380
dynamic message sending, 53, 207

E
edit all in scope, 168
editing a table view, 539
editing the project, 109
editing the target, 109
editing your code, 163
editor, 104
EKEvent, 695
EKEventEditViewController, 701
EKEventViewController, 700

EKRecurrenceRule, 696
email, 703
Empty Window example project, 96, 128, 134,

144, 198, 199
encapsulation, 39
enum, 7
enumerate, 17, 213, 214, 215, 216
equality of objects, 212
equality operator, 18
equality operator and assignment operator,

confusing, 18
errors

animation triggered immediately, 373
at-sign, forgetting before NSString literal, 7
calling dealloc, 262
cell identifiers don’t match, 516
conflicting signatures, 58
conflicting types, 52
debugging a Release build, 172
duplicate declaration, 52
equality operator and assignment operator,

confusing, 18
format specifier and argument mismatch,

170
frame, forgetting to assign, 298, 340
garbage pointer, 45
global denied access, 684
integer division, 13
layer contents, setting to a UIImage, 342
layer delegate, changing, 337, 342
layer size, forgetting to set, 340
missing base SDK, 155
missing sentinel, 53
nil terminator, forgetting, 53
Objective-C is C, forgetting, 3
outlet broken by misused accessor name,

250
outlet, forgetting to connect, 139
parentheses around condition, forgetting,

16
protocol documentation, forgetting, 231
request for member in something not a

structure, 276
semicolon, forgetting, 5
standard C library, forgetting about, 27
superclass documentation, forgetting, 79,

152, 225
symbol(s) not found, 123
target integrity warning, 155

794 | Index

undeclared symbol, 123
uninitialized instance variable, 45, 170
unrecognized selector, 54
view controllers, forgetting to retain, 440

escaped characters, 8
Event Kit framework, 695
Event Kit UI framework, 695
events, 143, 223
events, called too often, 246
events, remote, 650
events, shake, 721
exception, 54
exception breakpoint, 173
executable, 120
EXIF data, 747

F
factory method, 37, 71
File inspector, 103
file sharing, 730
File Template library, 104
files, 729–748

creating a file, 731
document types, 735
document, receiving from another app, 736
document, sending to another app, 737
double resolution image files, 313
header files, 24, 68

jumping to header files, 157
precompiled header, 121

HTML, 587
image files, 312, 747
implementation files, 68
iWork, 587
Microsoft Office, 587
nib files, 77, 118, 125–147

creating a nib file, 135
loading a nib file, 132, 135
main nib file, 133
nib objects, 127
owner of nib file, 132
proxy objects, 127
top-level objects, 127

PDF, 587
previewing a document, 738
project file, 107
reading a file, 731
RTF, 587
saving to a file, 731

sharing files through iTunes, 735
SQLite, 746
strings files, 162
TIFF, converting to, 748
XML, 740

File’s Owner proxy object, 132
find and replace, 168
finding, 168

(see also searching)
first responder, 239, 568, 650
First Responder proxy object, 239
first responder, learning, 568
Fix-it, 166
flipping, 316, 331
flow control, 15
fmdb, 746
folders, 119

Application Support folder, 730
creating a folder, 730
Documents folder, 729
listing a folder’s contents, 730
lproj folders, 163
project folder, 106

fonts in app, 564
footer, 522
for loop, 16
format specifier and argument mismatch, 170
format string, 169
Forms, Plato’s theory of, 34
for…in, 17, 214, 215, 216
Foundation framework, 122, 208
Fowler, Martin, 41
frame, 298, 340
frame, forgetting to assign, 298, 340
frameworks, 121

Address Book framework, 687
Address Book UI framework, 687
Assets Library framework, 684
Audio Toolbox framework, 643, 645
AV Foundation framework, 645, 663, 674
Core Data framework, 747
Core Graphics framework, 123
Core Location framework, 705, 717
Core Motion framework, 717
Core Text framework, 579
Event Kit framework, 695
Event Kit UI framework, 695
Foundation framework, 122, 208
Image I/O framework, 747

Index | 795

Map Kit framework, 705
Media Player framework, 655, 667
Message UI framework, 703
Mobile Core Services framework, 679
Quartz Core framework, 336, 357
Quick Look framework, 739
UIKit framework, 123

functions, 19
calling a function, 19
declaring a function, 21
defining a function, 19
pointer to function, 60
scope in function definition, 20
signature of a function, 21

G
Gamma, Erich, et al. (the Gang of Four), 41
garbage collection, 254
garbage pointer, 45
GCC, 6
GCD, 773
GDB, 175
generic pointer, 11
gesture recognizers, 408–432

action message of a gesture recognizer, 412
action target of a gesture recognizer, 412
conflicting gesture recognizers, 416
delegate of a gesture recognizer, 419

gesture recognizers and exclusivity of touches,
429

gesture recognizers, subclassing, 418
gesture recognizers, views, and touch delivery,

427
gestures, distinguishing, 408
getter, 249
git, 182
global denied access, 684
global utility method, 71
globally visible instances, 281
goto, 17
gradients, 326, 346
Grand Central Dispatch, 773
graphics context, 311–333

clipping region, 325
size of a graphics context, 326
state of a graphics context, 320

gravity, 722
grouped animations, 381
grouped table view, 507

groups, 99, 108
groups, undo, 781
GUI (see interface)
gyroscope, 725

H
header, 522
header files, 24, 68

jumping to header files, 157
precompiled header, 121

heading, 719
height of table view row, 512, 526
hidden, 308
hierarchy

class hierarchy, 65
layer hierarchy, 337
view hierarchy, 295

history of Cocoa, 43
history of Objective-C, 43
hit-testing drawings, 425
hit-testing during animation, 426
hit-testing layers, 424
hit-testing views, 423
Home button, 240
HTML, 587
HTTP requests, 751
HUD, 140

I
IBAction, 144
IBOutlet, 138, 272
icons, 188
id, 56
IDE, 93
Identity inspector, 104, 131
image files, 312, 747
Image I/O framework, 747
images for tab bar items, 462
images, drawing your own, 313
immutable, 217
implementation directive, 66
implementation files, 68
import directive, 26
include directive, 24
incomplete implementation, 204
increment operator, 14
index of a table view, 522
Info.plist, 116, 117, 191

796 | Index

(see also property list settings)
informal protocols, 206
inheritance, 55, 66, 78

NSObject, 67
init(With…), 75
initialization

C arrays, 13
structs, 9
variables, 6

initialization of instance, 75
initialization of instance variables, 262
initialization of nib-based instances, additional,

146
initialization of variables, 6, 44
initialization vs. declaration, 44
initializer, 74, 262

designated initializer, 76
initializer, writing, 89
instance, 34

assignment of instance, 47
creation of instances, 73

(see also instantiation)
globally visible instances, 281
initialization of instance, 75
mutability of instances, 48
reference to an instance, 43
relationships between instances, built-in,

281
subclass legal where superclass expected,

78
visibility of one instance to another, 279

instance method, 36
instance methods of NSObject, 218
instance variables, 37, 43, 84

accessors, 84, 249
declaring an instance variable, 85
initialization of instance variables, 262
key–value coding retains instance variables,

263
key–value coding violates privacy, 251
memory management of instance variables,

260
nil, 45
nilifying, 257
protected, 85, 250
synthesizing an instance variable, 273

instantiation, 34, 73
nib-based instantiation, 77, 132

Instruments, 184, 256, 503

integer division, 13
interface and threads, 762
Interface Builder, 125
interface directive, 66
interface for address book, 690
interface for calendar, 700
interface for mail, 703
interface for map, 705
interface for music library, 675
interface for photo library, 679
interface for playing video or audio, 656
interface for taking pictures, 681
interface for trimming video, 661
Internet as documentation, 158
Internet, displaying resources from, 587
introspection, 72, 207, 251
iOS Deployment Target build setting, 160
iOS Provisioning Portal, 178
iPad, code that differs on, 161, 676
iPad, migrating to, 162, 561
iPad, resources that differ on, 313
iPod app, 667
iPod app, controlling and querying, 671
iPod app, default remote control event target,

651
Issue navigator, 101
iTunes Connect, 192
iTunes, sharing files through, 735
ivar, 84

(see also instance variables)
iWork, 587

J
JavaScript, 594
jump bar, 104, 127, 150, 151, 167, 174
jumping after animation, preventing, 364
jumping to header files, 157

K
K&R, 3
Kay, Alan, 43
Kernighan, Brian, 3
key, 215
key paths, 252
keyboard, 568–572, 577–579
keyboard shortcuts in Xcode, 99
keyboard, customizing, 572
keyboard, dismissing, 570, 574, 577

Index | 797

keyboard, language of, 572
keyboard, scrolling in response to, 569
keyframe animation, 379
key–value coding, 86, 251–254
key–value coding and layers, 354
key–value coding and transforms, 352
key–value coding compliant, 252
key–value coding method names hard to

discover, 254
key–value coding retains instance variables,

263
key–value coding violates privacy, 251
key–value observing, 284
KVC, 86

(see also key–value coding)
KVO, 284

L
label punches hole in cell, 511
labels, 564–565
labels in built-in cell styles, 509
labels in nib editor, 128
landscape orientation at startup, 449
later feature used on earlier system, 160
launch images, 189
layer animation, explicit, 374
layer animation, implicit, 371
layer contents, setting to a UIImage, 342
layer coordinates, 339
layer delegate, changing, 337, 342
layer hierarchy, 337
layer size, forgetting to set, 340
layer, adding an animation to, 386
layering order of views, 296
layers, 335–395

animating a layer, 371, 374
animations list, 386
contents of a layer, 341
depth of layers, 339, 350
drawing a layer, 341
gradients, 346
hit-testing layers, 424
key–value coding and layers, 354
layout of sublayers, 341
mask, 353
opaque, 343
position of a sublayer, 339
shape layers, 346
text layers, 346, 581

transparent background, 343
layout of sublayers, 341
layout of subviews, 302
layout of table view cells, 513
leaks, memory, 254
library, music, 667
library, photo, 679
library, standard C, 27
libsqlite3, 746
libxml2, 745
LIFO, 39
Link Binary With Libraries build phase, 109
linking to a framework, 122
listing a folder’s contents, 730
literal NSString, 7
LLDB, 175
LLVM, 6
loading a nib file, 132, 135
loading a view controller’s view, 441
loadView, 438, 442
local notifications, 636
localization, 162
location services, 717
locks, 764
Log navigator, 102
logging, 169
logical operators, 18
Love, Tom, 43
lowercase variable names, 6
lproj folders, 163

M
macros, 28
magic numbers, 27
magnetometer, 719
mail, 703
main function, 25, 121
main nib file, 133
main thread, 761
main window, 133, 293, 294
main window coordinates, 300
main window, background color of, 295
main window, overlapped by status bar, 299
maintenance of state, 39
manual threading, 766
Map Kit framework, 705
maps, 705
Maps app, 705
mask, 353

798 | Index

Media library, 104, 131
Media Player framework, 655, 667
media timing functions, 373
memory management, 48, 254–271
memory management debugging, 256
memory management of instance variables,

260
memory management of view controllers, 477
memory, low, 477
menus, 783
menus in a text field, 574
message, 32

action message, 143
dynamic message sending, 53, 207
receiver, 50
selector, 59

message as data, 58
message forwarding, 626
message sending syntax, 50
message to nil, 46
Message UI framework, 703
message vs. method, 33
message without a matching method signature,

54
method, 33

calling a method, 50
nesting method calls, 52

class method, 36, 71
colons in method name, 49
current method, logging, 171
declaring a method, 51, 68
declaring a method privately, 202
defining a method, 67
factory method, 37, 71
global utility method, 71
inheritance, 66, 78
instance method, 36
minus sign (instance method), 36, 51
optional methods, 206
overriding, 66, 82
parameter, 50
parameter lists, 53
plus sign (class method), 36, 51
signature of a method, 52, 58

method not found, 54
method vs. message, 33
MFMailComposeViewController, 703
MFMessageComposeViewController, 704
Microsoft Office, 587

minus sign (instance method), 36, 51
missing base SDK, 155
missing sentinel, 53
mixin classes, 203
MKAnnotation protocol, 706
MKAnnotationView, 707
MKMapView, 705, 717
MKOverlay protocol, 712
MKOverlayView, 712
Mobile Core Services framework, 679
modal dialogs, 629

action sheet, 631
alert view, 630, 636
local notifications, 636

modal dialogs, alternatives to, 635
modal popovers, 554
modal view controller, 453
modal view in a popover, 554
modal views, 453
model–view–controller, 277
More item in tab bar, 463, 623
motion of device, 722
movies (see video)
MPMediaEntity, 667
MPMediaLibrary, 671
MPMediaPickerController, 675
MPMoviePlayerController, 656
MPMoviePlayerViewController, 660
MPMusicPlayerController, 671
multitasking, 240
multitouch sequence, 398
multivalue, 688
Music app (see iPod app)
music library, 667
mutability of instances, 48
mutable, 217
mutable array, observing, 287
MVC, 277

N
namespaces, 70
naming accessors, 249
navigating your code, 166
navigation bar, 465, 621
navigation bar, customizing, 474
navigation bar, hiding and showing, 474
navigation controller, 465
navigation interface, 465, 530
navigation item, 465, 469, 621

Index | 799

Navigation-based Application, 508, 530
Navigator pane, 99
navigators

Breakpoint navigator, 102
Debug navigator, 101, 174
Issue navigator, 101
Log navigator, 102
Project navigator, 99, 166
Search navigator, 100
Symbol navigator, 100, 167

nesting method calls, 52
network activity in status bar, 598
NeXTStep, 43, 125
nib files, 77, 118

class of object in nib, changing, 131
creating a nib file, 135
loading a nib file, 132, 135
main nib file, 133
nib objects, 127
owner of nib file, 132
proxy objects, 127
top-level objects, 127

nib name matching view controller, 443
nib objects, 127
nib-based instantiation, 77, 132
nib-based instantiation and memory

management, 266
nib-instantiated view controller, 443
nib-loaded cells, 515
nib-loaded view of view controller, 442
nil, 19, 45

message to nil, 46
nil in collections illegal, 217
nil terminator, forgetting, 53
nil testing, 45
nilifying, 257
NO, 19
nonatomic, 272
notifications, 226

registering for a notification, 227
unregistering for a notification, 228

notifications matching delegate methods, 231
notifications, local, 636
notifications, when appropriate, 282
NS prefix, 43
NSArray, 213
NSArray proxy, key–value coding, 253
NSAttributedString, 579
NSCoding, 731

NSCopying, 203
NSData, 212
NSDate, 210
NSDateFormatter, 210, 608
NSDictionary, 215
NSError, 23, 46
NSFileManager, 730
NSIndexSet, 213
NSInteger, 6
NSInvocation, 782
NSKeyedArchiver, 731
NSKeyedUnarchiver, 731
NSLog, 169
NSNetServiceBrowser, 757
NSNotFound, 208
NSNotification, 226
NSNotificationCenter, 226
NSNull, 217
NSNumber, 211
NSObject, 67, 218–221
NSObject documentation scattered, 219
NSOperation, 768
NSOperationQueue, 768
NSPredicate, 214
NSRange, 208
NSRegularExpression, 209
NSScanner, 209
NSSet, 215
NSString, 208

CFString vs. NSString, 60
concatenating literal strings, 8
date to string conversion, 608
drawing an NSString, 564
escaped characters, 8
literal NSString, 7
Unicode characters, 8

NSString literal directive, 7
NSThread, 768
NSTimer, 228
NSUndoManager, 779
NSURLConnection, 751
NSURLRequest, 588, 751
NSUserDefaults, 282, 733
NSValue, 211
NSXMLParser, 740

O
object, 31
Object library, 104, 129

800 | Index

object-based programming, 31
object-oriented programming, 82
Objective-C, 3, 43–91, 200–208
Objective-C 2.0, 86, 87
Objective-C is C, forgetting, 3
Objective-C, history of, 43
opaque, 309, 319, 343
operators

address operator, 22, 60
arithmetic operators, 13
arrow operator, 85
bitwise operators, 14
decrement operator, 14
equality operator, 18
increment operator, 14
logical operators, 18
relational operators, 18
sizeof operator, 24
structure pointer operator, 85
ternary operator, 15

optimizing, 184
optional methods, 206
orientation of device, 722
orientation of interface at startup, 449
outlet broken by misused accessor name, 250
outlet collections, 142
outlet connections, 135
outlet, forgetting to connect, 139
outlets, 135
overlapping views, 295
overlay (on map), 712
overloading, 53
overriding, 66, 82
overriding a synthesized accessor, 275
owner of nib file, 132

P
page control, 606
paging, 487
parameter, 20, 50
parameter lists, 53
parentheses around condition, forgetting, 16
password field, 572
pasteboard, 576
paths

compound paths, 323
drawing a path, 321

patterns, 328
PDF, 587

phases of a touch, 398
photo library, 679
photo, taking, 681
Photos app, 679
picker view, 600
pixels vs. points, 332
pixels, transparent, 426
Plato, 34
plus sign (class method), 36, 51
pointer to class name, 43
pointer to function, 60
pointer to pointer to NSError, 23, 46
pointer-to-struct (see struct pointers)
pointer-to-void, 11
pointer-to-void, memory management of, 269
pointers, 10

assignment to a pointer, 11, 47
creating a pointer, 22
dangling pointers, 255
declaring a pointer, 10
garbage pointer, 45
generic pointer, 11
memory management, 48
nilifying, 257

points vs. pixels, 332
polar coordinates, 618
polymorphism, 78–82
pool, autorelease, 264, 767
popovers, 549–558, 631–635
popovers, automatic, 557
popovers, dismissing, 553, 554
popovers, presenting, 550
popovers, size of, 551
Portal, iOS Provisioning, 178
position of a sublayer, 339
position of a subview, 298
posting a notification, 226
pragma directive, 28, 167
precompiled header, 121
preprocessing, 5

define directive, 27
import directive, 26
include directive, 24
pragma directive, 28

presentation layer, 361, 427
presenting action sheet clipped by its

superview, 632
previewing a document, 738
private methods, 202

Index | 801

private properties, 274
product name, 96
profiling, 184
progress view, 598
project, 95
project file, 107
project folder, 106
Project navigator, 99, 166

groups, 108
project window, 98
properties, 87, 271–276
properties, animatable, 371
properties, custom animatable, 380
property list settings, 117, 191
property lists, 218
protected, 85, 250
protocol directive, 232
protocol documentation, forgetting, 231
protocols, 203
protocols documented separately, 205
proxy objects, 127
push notifications, 759

Q
QLPreviewController, 739
Quartz Core framework, 336, 357
questions, three big, 518
Quick Help, 103, 156
Quick Look framework, 739
quotation marks in import directive, 26

R
random function, 27
reading a file, 731
readonly, 273
receiver, 50
rectangle, rounded, 325, 353
redraw moment, 358
redrawing with animation, 366, 370, 385
Ref suffix, 60
refactoring, 169
Refactoring (book), 41
reference to an instance, 43
reference, getting, 33, 279
reference, getting, to a UIPopoverController,

554, 558
region monitoring, 719
registering for a notification, 227

regular expressions, 209
relational operators, 18
relationships between instances, built-in, 281
release, 256
remote control of audio, 650
remote notifications, 759
replace, 168
request for member in something not a

structure, 276
Resize View From XIB, 447
resolution, 313, 315, 317, 490
resources, 119
resources in your app bundle, 312
resources that differ on iPad, 313
responder, 237
responder chain, 237, 431
responders and touches, 431
restricting touches, 401, 429
retain, 256
retain count, 255
retain policy, 263
Retina display (see screen, double resolution)
return, 20
Ritchie, Dennis, 3
root class, 65
root view, 437
root view controller, 437
root view, putting into interface, 440
rotating a drawing, 330
rotating interface, 447–453, 459, 462, 475
rotation, 449

(see also orientation)
rotation 3D transform, 349
rounded rectangle, 325, 353
RTF, 587
run, 97
run loop, 761
running on a device, 178
runtime environment, testing for, 161, 676

S
sandbox, 729
Saved Photos album, 686
saving state, 241, 733
saving to a file, 731
schemes, 112
scope in flow control, 15
scope in function definition, 20
screen coordinates, 300

802 | Index

screen, double resolution, 313, 315, 317, 490
screen, user locks or unlocks, 241
screens, multiple, 294
screenshots, 190
scroll indicators, 485
scroll views, 481–504

content view of scroll view, 481
delegate of a scroll view, 499
paging, 487
scrolling, 484
tiling, 488
touches in a scroll view, 500
zooming, 491

scrolling, 484
scrolling in response to keyboard, 569
scrolling with CATiledLayer, 489
SDK, 122
search bar, 602
search bar in a toolbar, 557, 603
Search navigator, 100
search results in table view, 533, 557
searching for symbols, 157
searching the documentation, 150
searching your code, 168
sections of a table view, 521
segmented control, 612
SEL, 58
selection in a table view, 528
selection in a text view, 576
selector, 54, 59
selector directive, 59
self, 80
semicolon, forgetting, 5
sending a message, 50
sentinel, 53
separators in table views, 512
set, 215
setter, 249
Settings app, 734
settings bundle, 734
shadows, 332, 353
shaking the device, 721
shaking the device to undo, 722, 782
shape layers, 346
shapes, hit-testing of, 425
shared application instance, 74, 132, 133
shared data, 764
sharing files through iTunes, 735
should, delegate method names with, 231

signature of a function, 21
signature of a method, 52, 58
significant location monitoring, 719
Simulator, 177
single tap vs. double tap, 409, 417
singleton, 74
Size inspector, 104, 131
size of a graphics context, 326
size of a popover, 551
sizeof operator, 24
slider, 609
small caps, 583
Smalltalk, 43
SMS messages, 703
snapshots, 183
snippets, 165
sound (see audio)
source code for Cocoa, 71
split views, 549, 559–561
Split View–based Application, 560
SQLite, 746
stack, 39, 47
stack, navigation bar, 465, 621
stack, navigation controller, 465, 468
standard C library, 27
standard C library, forgetting about, 27
state of a graphics context, 320
state, maintenance of, 39
state, saving, 241, 733
static analyzer, 176, 256
static typing, 57
static variables, 29
status bar, 298
string, 7

(see also C string)
(see also NSString)

strings files, 162
struct pointers, 60
struct pointers, memory management of, 270
struct properties, setting, 89
structs, 8, 9
structs, logging, 170
structs, wrapping in an object, 211
structure pointer operator, 85
styled text, 563, 579
subclass, 65
subclass legal where superclass expected, 78
subclassing in Cocoa, 197, 224
subclassing UIApplication, 427

Index | 803

subclassing UIGestureRecognizer, 418
subclassing UIWindow, 427
subclassing view controllers, 435, 462, 475
sublayer, 337
sublayerTransform, 350
Subversion, 182
subview, 127, 293
subviews, animating, 370, 394
subviews, layout of, 302
subviews, removing all, 297
super, 82
superclass, 65
superclass documentation, forgetting, 79, 152,

225
superlayer, 337
superview, 127, 293
suspension of the app, 240, 360, 477, 775
switch, 605
Symbol navigator, 100, 167
symbol(s) not found, 123
symbolic breakpoint, 173
symbols, searching for, 157
syntax checking, 166
synthesize directive, 273
synthesized accessor, overriding, 275
synthesizing an accessor, 273
synthesizing an instance variable, 273
system (iOS) versions, xx, 159
System Sound Services, 643

T
tab bar, 461, 623
Tab Bar Application, 464
tab bar interface, 461
tab bar item, 461, 623

images for tab bar items, 462
More item in tab bar, 463, 623

table views, 505–547
(see also cells)
cells, built-in styles, 508
cells, configuration of, 510
cells, reusing, 519
data in table view, 517
data in table view, downloading, 754
data in table view, refreshing, 524
editing a table view, 539
grouped table view, 507
height of table view row, 512, 526
index of a table view, 522

navigation interface, 530
search results in table view, 533, 557
sections of a table view, 521
selection in a table view, 528
separators in table views, 512

tabs in Xcode, 105
tap, single vs. double, 409, 417
target, 109
target integrity warning, 155
target, action, 234
Targeted Device Family build setting, 160
templates

bootstrapping, 133
main window, 294
Navigation-based Application, 508, 530
Split View–based Application, 560
Tab Bar Application, 464
Utility Application, 456
View-based Application, 445
Window-based Application, 274

ternary operator, 15
text, 563–586
text fields, 565–576

control events of a text field, 573
delegate of a text field, 572
keyboard, 568–572
menus in a text field, 574

text layers, 346, 581
text views, 576–579

keyboard, 577–579
selection in a text view, 576

text views, self-sizing, 577
texting, 703
threads, 761–777

dealloc and threads, 765
drawing in a background thread, 490, 498
Grand Central Dispatch, 773
interface and threads, 762
locks, 764
main thread, 761
manual threading, 766
NSOperation, 768
shared data, 764

thumb of a slider, 609
TIFF, converting to, 748
tiling, 488
timers, 228
times, 210
toll-free bridged memory management, 271

804 | Index

toll-free bridging, 60
toolbar, 466, 623

search bar in a toolbar, 557, 603
toolbar items, 472, 623
toolbar, customizing, 474
toolbar, hiding and showing, 472, 474, 477
top and bottom reversed, 344, 385
top item, 465
top-level objects, 127
touch phases, 398
touches, 397–432

delivery of touches, 422
dictionary of touches, 406
responders and touches, 431
restricting touches, 401, 429

touches in a control, 617
touches in a scroll view, 500
touches… methods, 400
TouchXML, 746
track of a slider, 609
transactions, 372
transform, 305, 330, 346
transform, depth, 350
transitions, 366, 370, 385
transparency, 308
transparent background, 320, 343
transparent pixels, 426
typecasting, 7
typecasting to quiet compiler, 55, 60, 62, 78,

294, 341, 346, 391

U
UIAccelerometer, 722
UIActionSheet, 631
UIActivityIndicatorView, 597
UIAlertView, 630
UIApplication

subclassing UIApplication, 427
UIBarButtonItem, 466, 621, 623
UIBarItem, 462, 466
UIBezierPath, 324
UIButton, 614
UIControl, 604

(see also controls)
UIDatePicker, 606
UIDocumentInteractionController, 737
UIEdgeInsets, 486
UIEvent, 397
UIGestureRecognizer, 412

(see also gesture recognizer)
subclassing UIGestureRecognizer, 418

UIGestureRecognizer built-in subclasses, 413
UIImage, 311, 313

(see also images)
UIImagePickerController, 679
UIImageView, 311
UIImageView animation, 361
UIKit framework, 123
UILabel, 199, 509, 564–565

(see also labels)
UILocalizedIndexedCollation, 523
UILocalNotification, 636
UIMenuController, 574, 784
UIMenuItem, 574, 784
UINavigationBar, 465, 621
UINavigationController, 465
UINavigationItem, 465, 469, 621
UINib, 517
UIPageControl, 606
UIPickerView, 232, 600
UIPopoverController, 550

(see also popovers)
UIPopoverController, reference to, 554, 558
UIPopoverControllers, distinguishing, 556
UIProgressView, 598
UIResponder, 237
UIScrollView, 481

(see also scroll views)
UISearchBar, 602
UISearchDisplayController, 533, 557
UISegmentedControl, 612
UISlider, 609

thumb of a slider, 609
track of a slider, 609

UISplitViewController, 559
(see also split views)

UISwitch, 605
UITabBar, 461, 623
UITabBarController, 461
UITabBarItem, 461, 623
UITableView, 505

(see also table views)
UITableViewCell, 505

(see also cells)
UITableViewController, 530
UITextField, 565

(see also text fields)
UITextView, 576

Index | 805

(see also text views)
UIToolbar, 466, 623
UITouch, 397, 400

(see also touches)
UIVideoEditorController, 661
UIView, 198, 293

(see also views)
UIViewController, 435

(see also view controllers)
UIWebView, 587

(see also web views)
UIWindow, 293, 294

(see also window)
subclassing UIWindow, 427

unarchiving data, 731
undeclared symbol, 123
underlying layer, 336
underlying layer, animating, 371, 374
undo alert, button titles in, 783
Undo and Redo, 779–786
Unicode characters, 8
uninitialized instance variable, 45, 170
unique identifier for UITouch, 406
universal app, 160
unrecognized selector, 54
unregistering for a notification, 228
uppercase class names, 44
URL, 588

base URL, 589
user address book, 687
user calendar, 695
user defaults, 733
user interaction, allowing, 368
user interaction, preventing, 360, 401
user library, music, 667
user library, photo, 679
Utilities pane, 103
Utility Application, 456

V
variables, 6

const variables, 28
declaring a variable, 6, 44
initialization of variables, 6, 44
instance variables, 37, 43, 84
lowercase variable names, 6
static variables, 29

variables list, 101, 174
version control, 181

versions of iOS, xx, 159
versions of Xcode, xx
video, 655–665
video playback controls, 657
video, recording, 681
video, trimming, 661
view animation, 362
view controller for address book, 690
view controller for calendar, 700
view controller for mail, 703
view controller for music library, 675
view controller for photo library, 679
view controller for playing video or audio, 660
view controller for taking pictures, 681
view controller for trimming video, 661
view controllers, 435–480

contained view controllers, 436
delegate of a view controller, 476
memory management of view controllers,

477
modal view controller, 453
navigation bar, hiding and showing, 474
navigation item, 469
nib name matching view controller, 443
nib-instantiated view controller, 443
nib-loaded view of view controller, 442
root view controller, 437
rotating interface, 459, 462, 475
subclassing view controllers, 435, 462, 475
toolbar items, 472
toolbar, hiding and showing, 472, 474, 477
view generated automatically, 445
view shifted upward, 446

view controllers, creating, 437–447
view controllers, forgetting to retain, 440
view controllers, lifetime events of, 476
view controller’s view, loading of, 441
view coordinates, 300
view for map, 705
view for playing video or audio, 656
view generated automatically, 445
view hierarchy, 295
view shifted upward, 446
View-based Application, 445
viewDidLoad, 442
viewport, 592
views, 126, 293–432

animating a view, 362
autoresizing, 303

806 | Index

bounds, 299
content mode, 333
dragging a view, 402, 415
drawing a view, 318
frame, 298
gesture recognizers, views, and touch

delivery, 427
hidden, 308
hit-testing views, 423
layering order of views, 296
layout of subviews, 302
modal views, 453
opaque, 309, 319
overlapping views, 295
position of a subview, 298
root view, 437
root view, putting into interface, 440
transform, 305
transparency, 308
transparent background, 320
underlying layer, 336
view controller’s view, loading of, 441

visibility of one instance to another, 279
void, 20, 49

W
warnings

class does not implement protocol, 204
incomplete implementation, 204
message without a matching method

signature, 54
method not found, 54
presenting action sheet clipped by its

superview, 632
typecasting to quiet compiler, 55

web views, 563, 587–595
WebKit, 587
window, main, 294

(see also main window)
Window-based Application, 274
windows, secondary, in Xcode, 106

X
Xcode, 95–194

archives, 186, 192
assistant pane, 105
Attributes inspector, 104, 131
autocompletion, 164

build configurations, 111
build phases, 109
build settings, 110
canvas (nib editor), 128
cleaning, 177
Code Snippet library, 104, 165
configurations, 111
connections, 135

action connections, 143
outlet connections, 135

Connections inspector, 104, 138, 139, 144
console, 102
Debug pane, 101, 173
debugging, 169
destinations, 114
dock (nib editor), 127
documentation, 149
editing your code, 163
editor, 104
executable, 120
File inspector, 103
File Template library, 104
File’s Owner proxy object, 132
First Responder proxy object, 239
Fix-it, 166
groups, 99
Identity inspector, 104, 131
Info.plist, 116, 117, 191
jump bar, 104, 127, 167, 174
keyboard shortcuts in Xcode, 99
labels in nib editor, 128
Media library, 104, 131
navigating your code, 166
Navigator pane, 99
navigators

Breakpoint navigator, 102
Debug navigator, 101, 174
Issue navigator, 101
Log navigator, 102
Project navigator, 99, 166
Search navigator, 100
Symbol navigator, 100, 167

Object library, 104, 129
outlet collections, 142
outlets, 135
precompiled header, 121
profiling, 184
project file, 107
project window, 98

Index | 807

Quick Help, 103, 156
resources, 119
running on a device, 178
schemes, 112
searching your code, 168
Size inspector, 104, 131
static analyzer, 176, 256
target, 109
templates

bootstrapping, 133
main window, 294
Navigation-based Application, 508, 530
Split View–based Application, 560
Tab Bar Application, 464
Utility Application, 456
View-based Application, 445
Window-based Application, 274

Utilities pane, 103
variables list, 101, 174
version control, 181
versions of Xcode, xx

xib file extension, 125
XML, 740

Y
YES, 19

Z
zombies, 256
zooming, 491
zooming with CATiledLayer, 496

808 | Index

About the Author
Matt Neuburg has a PhD in Classics and has taught at many universities and colleges.
He has been programming computers since 1968. He has written applications for Mac
OS X and iOS, is a former editor of MacTech Magazine, and is a long-standing contri-
buting editor for TidBITS. His previous O’Reilly books are Frontier: The Definitive
Guide, REALbasic: The Definitive Guide, and AppleScript: The Definitive Guide. He
makes a living writing books, articles, and software documentation, as well as by pro-
gramming, consulting, and training.

Colophon
The animal on the cover of Programming iOS 4 is a kingbird, one of the 13 species of
North American songbirds making up the genus Tyrannus. A group of kingbirds is
called a “coronation,” a “court,” or a “tyranny.”

Kingbirds eat insects, which they often catch in flight, swooping from a perch to grab
the insect midair. They may also supplement their diets with berries and fruits. They
have long, pointed wings, and males perform elaborate aerial courtship displays.

Both the genus name (meaning “tyrant” or “despot”) and the common name (“king-
bird”) refer to these birds’ aggressive defense of their territories, breeding areas, and
mates. They have been documented attacking red-tailed hawks (which are more than
twenty times their size), knocking bluejays out of trees, and driving away crows and
ravens. (For its habit of standing up to much larger birds, the gray kingbird has been
adopted as a Puerto Rican nationalist symbol.)

“Kingbird” most often refers to the Eastern kingbird (T. tyrannus), an average-size
kingbird (7.5–9 inches long, wingspan 13–15 inches) found all across North America.
This common and widespread bird has a dark head and back, with a white throat,
chest, and belly. Its red crown patch is rarely seen. Its high-pitched, buzzing, stuttering
sounds have been described as resembling “sparks jumping between wires” or an elec-
tric fence.

The cover image is from Cassell’s Natural History. The cover font is Adobe ITC Gara-
mond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSansMonoCondensed.

	Wow! eBook
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Part€I.€Language
	Chapter€1.€Just Enough C
	Compilation, Statements, and Comments
	Variable Declaration, Initialization, and Data Types
	Structs
	Pointers
	Arrays
	Operators
	Flow Control and Conditions
	Functions
	Pointer Parameters and the Address Operator
	Files
	The Standard Library
	More Preprocessor Directives
	Data Type Qualifiers

	Chapter€2.€Object-Based Programming
	Objects
	Messages and Methods
	Classes and Instances
	Class Methods
	Instance Variables
	The Object-Based Philosophy

	Chapter€3.€Objective-C Objects and Messages
	An Instance Reference Is a Pointer
	Instance References, Initialization, and nil
	Instance References and Assignment
	Instance References and Memory Management

	Messages and Methods
	Sending a Message
	Declaring a Method
	Nesting Method Calls
	No Overloading
	Parameter Lists
	Unrecognized Selectors

	Typecasting and the id Type
	Messages as Data Type
	C Functions and Struct Pointers
	Blocks

	Chapter€4.€Objective-C Classes
	Class and Superclass
	Interface and Implementation
	Header File and Implementation File
	Class Methods
	The Secret Life of Classes

	Chapter€5.€Objective-C Instances
	How Instances Are Created
	Ready-Made Instances
	Instantiation from Scratch
	Initialization
	The designated initializer

	Nib-Based Instantiation

	Polymorphism
	The Keyword self
	The Keyword super
	Instance Variables and Accessors
	Key–Value Coding
	Properties
	How to Write an Initializer

	Part€II.€IDE
	Chapter€6.€Anatomy of an Xcode Project
	New Project
	The Project Window
	The Navigator Pane
	The Utilities Pane
	The Editor

	The Project File and Its Dependents
	The Target
	Build Phases
	Build Settings
	Configurations
	Schemes and Destinations

	From Project to App
	Build Settings
	Property List Settings
	Nib Files
	Other Resources
	Code
	Frameworks and SDKs

	Chapter€7.€Nib Management
	A Tour of the Nib-Editing Interface
	The Dock
	Canvas
	Inspectors and Libraries

	Nib Loading and File’s Owner
	Default Instances in the Main Nib File
	Making and Loading a Nib
	Outlet Connections
	More Ways to Create Outlets
	More About Outlets

	Action Connections
	Additional Initialization of Nib-Based Instances

	Chapter€8.€Documentation
	The Documentation Window
	Class Documentation Pages
	Sample Code
	Other Resources
	Quick Help
	Symbols
	Header Files
	Internet Resources

	Chapter€9.€Life Cycle of a Project
	Choosing a Device Architecture
	Localization
	Editing Your Code
	Autocompletion
	Snippets
	Live Syntax Checking

	Navigating Your Code
	Debugging
	Caveman Debugging
	The Xcode Debugger

	Static Analyzer
	Clean
	Running in the Simulator
	Running on a Device
	Device Management
	Version Control
	Instruments
	Distribution
	Ad Hoc Distribution
	Final App Preparations
	Icons in the App
	Other Icons
	Launch Images
	Screenshots
	Property List Settings

	Submission to the App Store

	Part€III.€Cocoa
	Chapter€10.€Cocoa Classes
	Subclassing
	Categories
	Splitting a Class
	Private Method Declarations

	Protocols
	Optional Methods
	Some Foundation Classes
	Useful Structs and Constants
	NSString and Friends
	NSDate and Friends
	NSNumber
	NSValue
	NSData
	Equality and Comparison
	NSIndexSet
	NSArray and NSMutableArray
	NSSet and Friends
	NSDictionary and NSMutableDictionary
	NSNull
	Immutable and Mutable
	Property Lists

	The Secret Life of NSObject

	Chapter€11.€Cocoa Events
	Reasons for Events
	Subclassing
	Notifications
	Receiving a Built-In Notification
	Unregistering
	NSTimer

	Delegation
	Data Sources
	Actions
	The Responder Chain
	Deferring Responsibility
	Nil-Targeted Actions

	Application Lifetime Events
	Swamped by Events

	Chapter€12.€Accessors and Memory Management
	Accessors
	Key–Value Coding
	Memory Management
	The Golden Rules of Memory Management
	How Cocoa Objects Manage Memory
	Memory Management of Instance Variables
	Instance Variable Memory Management Policies
	Autorelease
	Nib Loading and Memory Management
	Memory Management Comments on Earlier Examples
	Memory Management of Pointer-to-Void Context Info
	Memory Management of C Struct Pointers

	Properties

	Chapter€13.€Data Communication
	Model–View–Controller
	Instance Visibility
	Visibility by Instantiation
	Visibility by Relationship
	Global Visibility

	Notifications
	Key–Value Observing

	Part€IV.€Views
	Chapter€14.€Views
	The Window
	Subview and Superview
	Frame
	Bounds and Center
	Layout
	Transform
	Visibility and Opacity

	Chapter€15.€Drawing
	UIImage and UIImageView
	UIImage and Graphics Contexts
	CGImage
	Drawing a UIView
	Graphics Context State
	Paths
	Clipping
	Gradients
	Colors and Patterns
	Graphics Context Transforms
	Shadows
	Points and Pixels
	Content Mode

	Chapter€16.€Layers
	View and Layer
	Layers and Sublayers
	Manipulating the Layer Hierarchy
	Positioning a Sublayer
	CAScrollLayer
	Layout of Sublayers

	Drawing in a Layer
	Contents Image
	Contents on Demand
	Contents Resizing and Positioning
	Layers that Draw Themselves

	Transforms
	Depth
	Transforms and Key–Value Coding

	Shadows, Borders, and More
	Layers and Key–Value Coding

	Chapter€17.€Animation
	Drawing, Animation, and Threading
	UIImageView Animation
	View Animation
	Animation Blocks
	Modifying an Animation Block
	Transition Animations
	Block-Based View Animation

	Implicit Layer Animation
	Animation Transactions
	Media Timing Functions

	Core Animation
	CABasicAnimation and Its Inheritance
	Using a CABasicAnimation
	Keyframe Animation
	Making a Property Animatable
	Grouped Animations
	Transitions
	The Animations List

	Actions
	What an Action Is
	The Action Search
	Hooking Into the Action Search
	Nonproperty Actions

	Chapter€18.€Touches
	Touch Events and Views
	Receiving Touches
	Restricting Touches
	Interpreting Touches
	Gesture Recognizers
	Distinguishing Gestures Manually
	Gesture Recognizer Classes
	Multiple Gesture Recognizers
	Subclassing Gesture Recognizers
	Gesture Recognizer Delegate

	Touch Delivery
	Hit-Testing
	Hit-testing for layers
	Hit-testing for drawings
	Hit-testing during animation

	Initial Touch Event Delivery
	Gesture Recognizer and View
	Touch Exclusion Logic
	Recognition
	Touches and the Responder Chain

	Part€V.€Interface
	Chapter€19.€View Controllers
	Creating a View Controller
	Manual View Controller, Manual View
	Manual View Controller, Nib View
	Nib-Instantiated View Controller
	No View
	Up-Shifted Root View

	Rotation
	Initial Orientation
	Rotation Events

	Modal Views
	Modal View Configuration
	Modal View Presentation
	Modal View Dismissal
	Modal Views and Rotation

	Tab Bar Controllers
	Tab Bar Item Images
	Configuring a Tab Bar Controller

	Navigation Controllers
	Bar Button Items
	Configuring a Navigation Interface
	View controller’s navigation item
	View controller’s toolbar items
	Configuring the navigation view controller

	Navigation Interface Rotation

	View Controller Lifetime Events
	View Controller Memory Management

	Chapter€20.€Scroll Views
	Creating a Scroll View
	Scrolling
	Paging
	Tiling

	Zooming
	Zooming Programmatically
	Zooming with Detail

	Scroll View Delegate
	Scroll View Touches
	Scroll View Performance

	Chapter€21.€Table Views
	Table View Cells
	Built-In Cell Styles
	Custom Cells
	Overriding a cell’s subview layout
	Adding subviews in code
	Designing a cell in a nib

	Table View Data
	The Three Big Questions
	Table View Sections
	Refreshing Table View Data
	Variable Row Heights

	Table View Selection
	Table View Scrolling and Layout
	Table View Searching
	Table View Editing
	Deleting Table Items
	Editable Content in Table Items
	Inserting Table Items
	Rearranging Table Items

	Chapter€22.€Popovers and Split Views
	Presenting a Popover
	Managing a Popover
	Dismissing a Popover
	Automatic Popovers
	Split Views

	Chapter€23.€Text
	UILabel
	UITextField
	Editing and the Keyboard
	Configuring the Keyboard
	Text Field Delegate and Control Event Messages
	The Text Field Menu

	UITextView
	Core Text

	Chapter€24.€Web Views
	Loading Content
	Communicating with a Web View

	Chapter€25.€Controls and Other Views
	UIActivityIndicatorView
	UIProgressView
	UIPickerView
	UISearchBar
	UIControl
	UISwitch
	UIPageControl
	UIDatePicker
	UISlider
	UISegmentedControl
	UIButton
	Custom Controls

	Bars
	UINavigationBar
	UIToolbar
	UITabBar

	Chapter€26.€Modal Dialogs
	Alert View
	Action Sheet
	Dialog Alternatives
	Local Notifications

	Part€VI.€Some Frameworks
	Chapter€27.€Audio
	System Sounds
	Audio Session
	Audio Player
	Remote Control of Your Sound
	Playing Sound in the Background
	Further Topics in Sound

	Chapter€28.€Video
	MPMoviePlayerController
	MPMoviePlayerViewController
	UIVideoEditorController
	Further Topics in Video

	Chapter€29.€Music Library
	Exploring the Music Library
	The Music Player
	The Music Picker

	Chapter€30.€Photo Library
	UIImagePickerController
	Choosing from the Photo Library
	Using the Camera

	The Assets Library Framework

	Chapter€31.€Address Book
	Address Book Database
	Address Book Interface
	ABPeoplePickerNavigationController
	ABPersonViewController
	ABNewPersonViewController
	ABUnknownPersonViewController

	Chapter€32.€Calendar
	Calendar Database
	Calendar Interface

	Chapter€33.€Mail
	Mail Message
	SMS Message

	Chapter€34.€Maps
	Presenting a Map
	Annotations
	Overlays

	Chapter€35.€Sensors
	Location
	Heading and Course
	Acceleration
	Shake Events
	UIAccelerometer
	Core Motion

	Part€VII.€Final Topics
	Chapter€36.€Persistent Storage
	The Sandbox
	Basic File Operations
	Saving and Reading Files
	User Defaults
	File Sharing
	Document Types
	Handing Off a Document
	XML
	SQLite
	Image File Formats

	Chapter€37.€Basic Networking
	HTTP Requests
	Bonjour
	Push Notifications
	Beyond Basic Networking

	Chapter€38.€Threads
	The Main Thread
	Why Threading Is Hard
	Three Ways of Threading
	Manual Threads
	NSOperation
	Grand Central Dispatch

	Threads and App Backgrounding

	Chapter€39.€Undo
	The Undo Manager
	The Undo Interface
	The Undo Architecture

	Chapter€40.€Epilogue

	Index

